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2
Introduction

2.1 Overview

Liquid crystals are one of the best examples of the unique behavior of matter. As the name

describes, they form intermediate states between the liquid and crystalline phases, that share

important properties from both of them. First observed by Friedrich Reinitzer and later ex-

plained by Otto Lehmann [1], the molecular Liquid crystals have represented an important

step in material science and technology, used as the Liquid Crystal Display (LCD). However,

this phenomenon was also observed in colloidal particles.

Rod-like colloidal particles form different liquid crystalline mesophases, as shown in

Fig.2.1. Zocher was the first to observe birefringent nematic tactoids of inorganic V2O5 rods

in an isotropic background, in 1925 [2]. Later, not only the I-N phase coexistence was also

reported in biological particles as the Tobacco Mosaic Virus (TMV) [3,4], but also the Smectic

layered patterns formed due to the high monodispersity of the particles [5, 6]. The phase co-

existence between the Isotropic and Nematic phases observed experimentally, motivated Lars

Onsager to develop a theory for first-order Isotropic-Nematic Phase transition of hard rods in

his seminal work during 1949 [7].

Hard rods per definition cannot overlap, and only feel each other when they are in con-

tact. Onsager demonstrated how highly anisotropic particles undergo a transition from the

Isotropic liquid to the Nematic phase, which depends only on the maximization of the free

volume. Particles in the Isotropic phase have neither positional nor orientational order, as

opposed to those in the Nematic phase which have long-range orientational order but no po-

7



8 2.1. OVERVIEW

Figure 2.1: Scheme of the different meshopases that hard rods form when increasing concen-
tration, from the less concentrated (Isotropic) to the highest dense phase (Crystal) [19]

sitional order. Through computer simulations, the work of Onsager was expanded to include

the transition from the Nematic to the Smectic phase, where the particles gain 1D quasi-long-

range positional order due to their layer confinement, being liquid-like within the layer [8, 9].

Transitions between these phases are purely entropy driven, which means that the excluded

volume interaction between particles is enough to form the different mesophases. These kinds

of systems are called colloidal lyotropic liquid crystals, and their phase transitions are concen-

tration dependent. Moreover, rod-like particles are abundant in nature, e.g. the actin filaments,

cytoskeleton and muscular proteins [10–12] that have a liquid crystalline-like behavior. These

systems self-organize or diffuse in different ways, depending on their functions or even the

changes in the medium. However, we are far from understanding some of the structures and

mechanisms involved. One of the motivations for studying the dynamics and kinetics of these

systems over the past decades was to understand the path that these systems follow to order

and disorder [13–18].

In addition to the TMV viruses, the fd viruses were also observed to exhibit liquid crys-

talline mesophases [20], and due to their physical properties, they are considered an ideal

experimental system to study the phenomena of phase transitions and self-organization of

rod-like particles. The fdwt (wild type) is well known for the ability to infect Escherichia coli

(E.Coli). As opposed to synthetic particles, they are naturally monodisperse, which favors the

formation of the Smectic layers [21]. Moreover, the fd virus can be easily labeled with fluores-

cent dyes, thanks to the solvent exposed amines in their coat protein. Their physical properties
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can be tuned by genetic modification to obtain mutants with different lengths or stiffness. This

is the case for the mutant fdY21M which is slightly longer than and much stiffer than fdwt.

The fd virus high aspect ratio, L/D>100, makes the individual visualization with fluorescence

microscopy possible. Also, the I-N transition of the stiff fdY21M virus takes place at the same

volume fraction of the value predicted by Onsager [22]. Futhermore, they exhibit Brownian

motion due to thermal agitation, first observed by Robert Brown in 1827 [23]. Thus, their

dynamics that can be studied in order to understand the features of the different mesophases

that they form and the underlying physics.

Since the phase transition implies a difference in the free volume between the liquid crys-

talline phases, it directly affects the self-dynamics of the system. Thus, of fd viruses dynamics

have been extensively studied over the past decade for each distinct mesophase. In the dilute

Isotropic phase, the rods have no positional or orientational order, causing a freely rotation and

translation of the rods. Experiments and simulations have demonstrated that when approach-

ing the I-N phase transition, the rotational diffusion freezes in the Isotropic phase [24, 25].

After the I-N phase transition, in the Nematic phase, the parallel translational diffusion is pro-

moted, due to the alignment of rods along the long axis of the particles [26]. Later, it was

found that self-diffusion of these rods in the Smectic phase occurs via mass transport between

the layers, which is called hopping-type diffusion [27–30]. In this case, the particles jump

between the layers, overcoming the layering potential, rather than staying within the layer.

Thus, the rod-like viruses exhibit 1D diffusion confined in a potential energy background set

by the Smectic layers. Although a big step has been taken towards the understanding of the

dynamics of fd viruses in their different mesophases, the direct effect of the self-dynamics at

these entropy driven phase transitions and in dense phases due to the change of free volume

remain unclear. These will be the main questions treated in this Thesis.
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2.2 Phase transitions in Liquid Crystals

The cascade of liquid crystalline phases exhibited by rod-like particles has been of great in-

terest in the field of Soft Matter. In this section, we first introduce the theoretical work that

Onsager developed on the Isotropic-Nematic Phase transition for hard rods. Second, we intro-

duce the Onsager’s theory for the Nematic-Smectic phase transition and also denser phases,

which has been demonstrated with experiments and simulations.

2.2.1 Onsager’s theory for an entropy driven Isotropic-Nematic Phase

transition

Onsager developed the virial theory in the Isotropic-Nematic Phase transition for hard rod par-

ticles (1949). He established the theoretical basis for next generations in the field of colloidal

liquid crystals. His work was motivated by the experiments of Zocher with the inorganic rod-

like particles of V2O5, that exhibit Isotropic and Nematic phase coexistence [2] as well as for

TMV viruses, observed by Bawden et al. in 1936 [4]. The work of Onsager is based on the

maximization of entropy since he considered purely hard particles. When discussing entropy,

we consider the definition given by Boltzmann 1, which refers to the number of accessible

microstates of the system, which corresponds to the accessible volume.

Onsager developed a theory based on the second virial expansion of the free energy. The

free energy has a contribution for an assembly of non-interacting rods, Fideal and a contribution

due to the excluded volume Fexc, where F = Fideal +Fexc. Therefore, the free energy of a hard

rods system expanded to the second virial factor can be expressed as

4F
NkBt

=
µo(T )
kBT

+Ln(Λ3
ρ)+B2ρ, (2.1)

1To explain the behavior of macroscopic systems regarding the dynamical laws that rule their microscopic
elements was the main motivation for Clausius, Maxwell, and Boltzmann in the 18th century. In his paper in
1877, Boltzmann presented a probabilistic expression for the entropy, where he showed that the entropy S is
proportional to the 6N-dimensional phase space volume Ω occupied by the corresponding macrostate of an
N-particle system, S ∝ logΩ . The second law implies to have an irreversible change in a closed system, the
number of final states has to be larger than the initial state
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Figure 2.2: a) Scheme of the Isotropic and Nematic phases. The particles in the Isotropic
phase have short range positional and short range orientational order, while in the Nematic
phase they have long-range orientational order and short range positional order. The arrow
indicates that the transition is reversible by changing the volume fraction b) Excluded volume
between two hard rods in the isotropic phase. [32]

where, µo is the chemical potential of the solvent, Λ is the Broglie wavelength, ρ the rod

particle density N/V , and B2 is the second virial coefficient which is related to the intermolec-

ular pair potential, in other words: the interaction between two particles. Since the second

virial coefficient contains the interaction of two particles, it can be expressed as

B2 =
−1
2V

∫∫
Φ1Φ2dr1dr2, (2.2)

where Φ represents the Mayer functions [31] for a pair potentials of two particles 1 and 2.

The solution of Mayer functions, Φ, depends on if the particles overlap or not, being -1 for

overlapping particles and zero in the opposite case.

In the context of Onsager’s hard rod system, where the Isotropic-Nematic Phase transition

occurs (Fig.2.2), the contribution to the free energy is expressed as orientational distribution

function f (Ω), which is the probability of finding a particle with determined orientation char-

acterized by the solid angle Ω. In the Isotropic phase fiso(Ω) = 1
4π

, where all orientations are

equally probable due to the possibility of the rods to rotate. Onsager reformulates the sec-

ond virial coefficient using this distribution function for pair potentials between two hard rods

given by:
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B2 =
1
2

∫∫
dΩdΩ

′ f (Ω) f (Ω′)vexcl(ΩΩ
′) (2.3)

where Vexcl(ΩΩ′) is the excluded volume between two spherocylinders with orientations Ω

and Ω′ which can be written as

Vexcl(Ω,Ω′) = 2L2D|sinγ|+ 4
3

πD3 +2πLD2, (2.4)

where γ(Ω,Ω′) is the angle formed between two adjacent rods, D the diameter and L the

length. Onsager considered the particular case of infinite long rods, where the aspect ratio

is L/D >> 100. If the rods are completely parallel the excluded volume is minimal V ‖excl =

2πLD2 (Nematic phase) and maximal if they are perpendicular V⊥excl = 2L2D (Isotropic phase).

Knowing the orientational distribution function, the orientational order parameter S can be

determined,

S =
1
2
〈3cos2(θ)−1〉 (2.5)

where 〈...〉 indicates the average and θ the angle that the particle orientation forms with the

director. If all particles are oriented along the director unit vector n (unit vector that represents

the preferred orientation of the particles in the phase, see Fig.2.2), then θ = 0 and S = 1, while

for particles which have a random orientation S = 0.

At the I-N Phase transition then Fexc ∝
L
Dφ . Therefore, the formation of a liquid crystalline

phase as the phase transition depends only on the volume fraction of the system φ . For flex-

ible rods, an approach has been used [33], where the excluded volume is less than for hard

rods due to their partial deformability. It follows that, within the Onsager theory, the volume

fraction of hard rods at the I-N phase transition scales as φ = 4D
L . When increasing volume

fraction, the excluded volume becomes very small for parallel rods, the free volume in the

system must increase. This way, when there is a transition from the isotropic which involves

a loss of orientational entropy, it is compensated by the gain of translational entropy. Onsager
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determined with his theory that the Isotropic-Nematic Phase transition of thin and long hard

rods is a first order phase transition and purely entropy driven when the aspect ratio of rods is

higher than 100. For smaller aspect ratios, third or higher virial terms need to be taken into

consideration for the free energy expansion.

To find the Isotropic-Nematic Phase boundaries, the free energy is minimized with respect

to the orientational distribution function as a function of concentration. Thus, the volume frac-

tion of both phases at phase coexistence is obtained numerically using the correct distribution

functions [34]:

φI(−N) = 3.3
D
L
, φ(I−)N = 4.2

D
L
, S = 0.79 (2.6)

The low packing density of thin rods or fibers in comparison to that of spheres is explained

due to the number of rod contact per rod [35].

The ideal theoretical particle does not exist in nature; therefore different considerations need

to be taken into account for the study of experimental systems. Extensions of Onsager’s theory

were done for the case where the particles are not completely rigid but have a persistence

length P,

P =
Bs

kBT
(2.7)

where Bs is Young’s modulus and measures the capacity of deformation. Flexibility destabi-

lizes the Nematic phase. Thus, the I-N phase transition for flexible particles is found at higher

volume fraction values, and there is a decrease of the order parameter at the phase coexistence.

Since many colloidal particles in solution are stabilized by the charge repulsion, another

extension that has to be applied to the theoretical model of Onsager is the charge on the

particle surface. Onsager has introduced the concept of the effective diameter ( De f f ) of

a charged particle, which is bigger than the bare particle diameter. First simulations were

performed by Khokhlov and Semenov in 1982 [36] and later Chen [33] predicted the isotropic-

nematic coexistence concentrations accurately for hard, semiflexible, polymers, cI = 4.7/be f f
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and be f f = πL2Diso
e f f /4. The increase of the De f f , leads to a decrease of the aspect ratio, and

to an increase of the volume fraction needed to form a liquid crystalline phase [34, 37].

2.2.2 Nematic-Smectic Phase Transition

When increasing the volume fraction or rod density, liquid crystals formed by monodisperse

rod-like particles exhibit a transition to a higher ordered phase called Smectic phase. In this

phase the particles are located in periodic layers, exhibiting long range positional order in 1D

and short range positional order (or liquid-like behavior) within the layers.

The fact that Smectic ordering was observed for TMV at low concentrations (3 wt% ) only

due to electrostatic repulsion interactions was surprising, and it caught the attention of re-

searchers in the 80’s. The theory developed by Onsager of the effect of the excluded volume

was applied to explain the phase transition that occurs from the Nematic phase to the Smec-

tic phase. Hosino in 1979 developed a second virial approximation theory for the Nematic-

Smectic phase transiton [38]. He showed that the Nematic-Smectic-A is a second order phase

transition when fluctuations of the director are not taken into account or very weak first order

otherwise. Wen and Meyer [39] proposed that the appearance of smectic layers is driven by

the decrease of lateral packing density of the rods within the layers, compensating the entropy

loss involved in the layer ordering, again due to an effect of excluded volume. The same year,

Mulder shows theoretically and compared with simulations, that smectic order occurs purely

due to packing effects caused by short-range repulsions [40] Then Frenkel and Stroobants in

their simulations in 1988 [41, 42] demonstrated that the N-Sm phase transition for short rods

(L/D ' 5) it is purely entropy driven, undergoing a stable Smectic phase. Later, simulations

for hard spherocylinders of infinite aspect ratio L/D were performed in 1997 by Polson and

Frenkel [9], where they showed that N-Sm phase transition was first order. Even though there

were different opinions about the order of this phase transition, it has been accepted that for

freely rotating hard long rods the Nematic-Smectic phase transition is first order.

The Smectic phase has been observed in suspensions of stiff monodisperse rod-like particles

like TMV and silica-coated boehmite rods [43, 44], and also in the semiflexible fd viruses

[21]. Indeed, flexibility is a factor that affects the concentration at which the the Nematic-

Smectic Phase transition occurs. In the same way that it was observed for I-N Phase Transition,

simulation and experimental studies agree that flexibility shifts the N-Sm phase transition,
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destabilizing the formation of Smectic-A phase for flexible rods, and also decreasing the layer

spacing. Experiments performed by Pouget et al. [29] and Grelet [19], compared the flexible

fdwt with its stiff mutant fdY21M, showing that the effect of flexibility shifts also the N-Sm

phase transition. These results were supported by theory and simulations [8]. The volume

fraction for the N-Sm phase transition depends on the approximations done (i.e., if the rods

are parallel or freely rotating), varying from 0.36 to 0.47. Kuijk et al [45] showed that the

phase behavior of silica rods with an aspect ratio (L/D) smaller than 8, exhibits Isotropic-

Nematic and Smectic phases. Later experimental work showed that for fd viruses, Smectic-B

mesophase could also be formed, in which the particles have hexagonal long range positional

order within the layer [19].

Different studies [46–49] have proved that monodispersity is a key feature for the forma-

tion of the Smectic phase. It has been reported that, when the polydispersity of the system

increases, a hexagonal columnar phase is favored rather than the Smectic lamellar phase [5].

Stroobants showed with simulations how the bidispersity of the rods favors the Nematic-

Hexagonal columnar phase transition rather than the Nematic-Smectic phase transition, sup-

ported later by more simulations [49].

In the next sections, we will show how the dynamics of the particles is influenced by these

phase transitions or even how dynamics cause them to occur, as well as by the structure of

each mesophase. Prior to that, we will take some time to introduce the general theory for the

diffusion equation of rods and their dynamical features.

2.3 Self-diffusion Equation for rods and diffusion

coefficients: from semi-dilute Regime to high

concentrated phases

Colloids exhibit the very well-known Brownian motion, due to thermal agitation, first ob-

served by Robert Brown in 1827 [23]. This motion originates from thermal agitation of the

order of a kBT per solvent molecule, which was demonstrated by Einstein in 1906 [50]. In

nature, we find a lot of examples of anisotropic particles which exhibit Brownian motion,
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Figure 2.3: Scheme of the Nematic and the Smectic mesophases for a system of hard rods.
In the Smectic phase the particles gain position quasi long range order in 1D forming the
Smectic layers. λL indicates the layer spacing.

like DNA, proteins. This motion in most cases occurs in crowded environments which make

dynamics more complex.

The diffusion of rod-like particles does not only have a translational component, but also a

rotational component with respect to the symmetry axis of the particle, corresponding to the

positional and orientational degrees of freedom. The diffusion is concentration dependent, as

increasing the volume fraction the free volume decreases, decreasing the space available for

diffusion [51, 52].

At infinite dilution, we consider a single Brownian rod-like particle j, for which the orien-

tation varies from û j(0) to û j(t), and the centre of mass changes from~r(0) to~r(t) (Fig.2.4a).

This change of position and orientation is due to the thermal energy equal to kBT , while at

the same time we need to consider the friction that a particle feels when moving throughout a

solvent. Considering the friction coefficients and the equation of Stoke-Einstein, for long thin

rods, the diffusion coefficients at infinite dilution are given by

D0
‖ =

kBT Ln(L/D)

2πη0L
, D0

⊥ =
kBT Ln(L/D)

4πη0L
(2.8)

where η0 is the viscosity of the solvent and L/D is the aspect ratio of the rod, with length
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L and diameter D. Hence, for the perpendicular motion the friction constant is twice larger as

for parallel motion. Knowing that D⊥ = (1/2)D‖, thus the total translational diffusion is

Dt =
1
3
[D‖+2D⊥] =

kBT ln{L/D}
3πη0L

(2.9)

For the rotational diffusion coefficient,

D0
rot =

3kBT Ln(L/D)

πη0L3 (2.10)

From these equations, we can conclude that the friction is reduced if we increase the aspect

ratio or the rod. If we imagine these rods as a chain of single beads, we can imagine that first

bead will decrease the effect of friction in the second bead that follows, which is called the

hydrodynamics effect. When we have rods with a finite length, this effect decreases.

At higher concentrations, the interaction between particles needs to be taken into account.

This is done by defining the equation of diffusion of the probability density function of an

ensemble of rods as P(r1, ...rN , û1,...ûN , t). The equation of diffusion for the probability

density function P of these phase space coordinates can be found from the exact conservation,

∂

∂ t
P(r1, ...rN ,û1, ...ûN) =−

N

∑
j=1
{∇ j · [v jP]+ R̂ j · [Ω jP]} (2.11)

where [v j is the translational velocity and Ω j the rotational velocity. Finally, we get

∂

∂ t
P =

N

∑
j=1
{3

4
D0

∇ j ·(Î+û jû j) · [∇ jP+βP∇ jφ ]+D0
r R̂ j · [R̂ jP+βPR̂ jφ ]} (2.12)

where Î is the identity matrix. This is the Smoluchowski equation for very long and thin, rigid

rods, where hydrodynamic interactions are neglected. The index 0 indicates that we consider
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Figure 2.4: a) Rod-like particle translational and rotational motion. The initial and final
orientations of the rod are u0 and ut respectively and r0, rt are the initial position and final
position. b) Interacting rods in the semi-dilute regime [51].

the case of infinite dilution for which the diffusion coefficients are given by Eq. 9 and 10. Note

that we will always consider equilibrium on the colloidal time-scale. For infinite time t→ ∞,

when the suspension attains equilibrium, the probability density function P is proportional to

the Boltzmann exponential βφ and ∂P/∂ t = 0.

The translation motion of a particle in a time t can be measured knowing its initial position.

This is described by the conditional probability density function (pdf), which is the probability

for a particle to diffuse a given distance at time t. For a Brownian particle, when there is no

external force acting on the colloid, positive or negative displacement can occur with the same

probability. If we consider a single particle at infinite dilution such that interaction potential

can be neglected, then:

∂

∂ t
P(r, t) = D0

t,S52 P(r, t) (2.13)

As aforementioned, since random motion has no preferred direction, we square the average

displacement over all particles; otherwise the average displacement would be zero. The Mean

Square Displacement, is defined from the trajectories r j of the diffusing particles (labelled

with index j) in terms of the distance from the initial position r(0) = 0 as:
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MSD(t) = 〈r2(t)〉= 1
N

N

∑
j=1

(r j(t)− r(0))2 (2.14)

〈...〉 being the average over all particles and N the total number of particles. If we use

equation 2.13, we average over the pdf,

d
dt

∫
drr2P(r, t) = D0

t,s

∫
drr252 P(r, t) (2.15)

where Gauss’s integral theorem has been used twice in the second line and 52r2 = 6 in

three dimensions, 4 in two dimensions and 2 in one dimension. Hence

MSD(t) = a2Dstγ (2.16)

where a defines the dimension of the system, and γ is the diffusion exponent. When γ ∼
1, the self-diffusion has a Brownian (diffusive) behavior, while γ < 1 is characteristic of a

subdiffusive regime. Anomalous subdiffusive events have been observed in systems near glass

transition of spherical colloids [53] a cage effect is observed. Moreover, the same behavior

is present in most biological systems (i.e. diffusion of proteins) [54], transport in porous

media [55] or the so called free energy landscape systems [29,56]. The value of D depends on

the interaction with other rods or if there is any obstacle in the way.

The rotational diffusion coefficient Drot is obtained by measuring the orientation of a particle

at time t, û j(t), knowing the initial orientation û j(0). The angle between û j(0) and û j(t), is

calculated using P(û j |û0), the so-called conditional probability density function, which gives

the probability that a particle has an orientation û at time t, given that it had orientation û0

at t = 0. This function correlates the orientations of the particles at different times. The

orientational ordering in the system is set by P(û0), which is peaked around the director n̂,

when the rods are in the nematic phase. The ordering of the system is characterized by the
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square cosine of the angle Φ between the rod, û0, and the director n̂ defined by

P̄2 ≡ 〈P2(Φ)〉= 1
2
{3〈cos2(Φ)〉−1} (2.17)

where θ = n.û is the angle between the molecular axis and the director and P2(x) is the

second Legendre polynomial. Thus, P̄2 is de order parameter which measures the degree of

order, and it is 0 for an isotropic state and equal to 1 for a perfectly aligned state. For a system

of rods without orientational order P(û0) =
1

4π
. We now derive the time dependence of the

orientation of a single particle, again using Eq.2.12 omitting the torque term, such that

∂

∂ t
P(û, t) = D0

û,SR̂2P(û, t) (2.18)

Hence, for a system with no orientational order, the Mean Squared Angular Displacement

is

MSAD(t) =
2
3

exp(−6D0
r,St) (2.19)

Finally, we can re define the evolution of the order parameter for a single particle:

P̄2 = 〈P2(Φt)〉) =
1
2
(3 MSAD(t)−1) =

1
2
{3〈cos2(Φ)〉−1}= exp(−6D0

r,St) (2.20)

We derived the equations for the translational and rotational motion, by omitting the in-

teraction terms. In principle, the full collective translational and rotational diffusion can be

calculated from the Smoluchowski equation. In this thesis, however, we will focus on the

self-diffusion of rods, which is a good measure of the available free volume. The accessi-

ble volume of the system plays a significant role in the dynamics. Thus, when increasing

the volume fraction, the rotational diffusion "freezes", as Russo et al. demonstrate for the

TMV [57–59]. However, it is important to distinguish between the self-diffusion DS
i and the
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collective diffusion DC
i . It has been proved that in the Isotropic phase the self-rotational diffu-

sion of the particles decreases as increasing concentration which does not reach zero, contrary

to the collective diffusion. [60, 61].

A further step to explain the motion within an entangle of rods in the semi-dilute regime

where L−3 < v < d−1L−2 was done by Doi in 1975 [51]. He developed the first successful

theory to explain the diffusion of rods in a concentrated rod dispersion. He assumed that a

really thin rod in an isotropic packing of rods could diffuse freely in the direction of the rod

axis. Its rotational motion, however, is highly restricted by neighbor rods (Fig.2.4b). This

confinement can be visualized, when one considers a sphere of radius L/2 centered on the

middle-point of the test rod, and project all the other rods intersecting the sphere on the surface

of this sphere. Thus, at short times the rotating rod can probe a surface S and is thus effectively

confined in a tube with radius a =
√

S. The confining tube is given by the maximum angle

a/L and the free rotational motion (a/L)2/D0
r . When the rod diffuses throughout its tube, it

can only rotate by a/L. A rod can only get out of its confining tube when it diffuses at least

L/2 along its axis, or when one of the other confining rods does. When the rod diffuses out of

its tube, it can only rotate by an angle a/L. The overall rotation of the rod is attained by the

repetition of these jump steps, hence

Dr ∼= (a/L)2/τ1 ∼= a2D‖/L4 (2.21)

where τ1 is the persistence time, assuming that translational diffusion along the axis is

unhindered. The size of the tube a can be estimated with the probability that two cones with

radius r if the base circle does not contact with the randomly placed thing rods, giving a ∼=
1/cL2, where c is the concentration. Thus, assuming that a << L, the rotational diffusion is

Dr(φ)/D0
r = β (v/L3)−2 (2.22)

The interest to understand the diffusion in the liquid crystalline phases of rod-like particles

in isotropic and semi-dilute has motivated extensive experimental dynamical studies, such

as experiments with F-actin filaments in isotropic and semi-dilute regime phases [62], silica
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rods [45] and the filamentous fd viruses [19, 28, 63, 64]. However, there are some issues like

the coupling between the translational and rotational diffusion and the effect of the flexibility

of the particles that should be addressed and which play an important role to understand the

diffusion of rods in semi-dilute and dilute regimes.

2.3.1 Self-Van Hove function as a robust method to quantify dynamics

The dynamical equivalent of the radial distribution function g(r) is the van Hove distribution

function G(r, t) [65–67]. It is a conditional real-space dynamical correlation function to char-

acterize the spatial and time distributions of particles in a fluid [68]. It gives the probability of

finding two particles at a distance r at time t , given that at time t = 0 they were at distance r,

G(z, t) =
1
N
〈

N

∑
i=1

N

∑
i6= j

δ [z+ z j(0)− zi(t)]〉 (2.23)

where 〈...〉 represents the average over all particles, i and j are two different particles, and δ

is the three dimensional Dirac delta function. Then the van Hove function can be split in two

terms, the distinct part where i 6= j and the self part of the van Hove function where i = 1 for

a single particle,

Gs(z, t) =
1
N
〈

N

∑
i=1

δ [z+ zi(0)− zi(t)]〉 (2.24)

Gs(z, t) describes the conditional motion of the particle that was initially at the origin. Gen-

erally, for Brownian particles, it has the shape of a Gaussian function that smears out with

time [69], as we show in Fig.2.5. The self-van Hove function Gs(z, t) has been used to study

dynamics around the glass transition, where the shape is not Gaussian anymore but turns out

to be a Lévy-flight distribution where P∼ exp(−|x/x0|β ) [53,70]. The Lévy-flight distribution is

characteristic for heterogeneous dynamics typical of the glass state. Furthermore, for particles

that diffuse in a periodic potential background, the self-Van Hove function is affected showing

distinct peaks due to potential barriers, as shown by Dalle-Ferrier et al. [71]. This is also the
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Figure 2.5: a) 3D representation of the G(z,t) as a function of time and position. The prob-
ability density function decreases with time as the particle diffuses from the first position. b)
Log-linear representation of the self-van Hove function as a function of time. The different
colors indicate different time steps. The position is normalized by the length of the rod.

concrete case for the already mentioned jump-like diffusion [29, 72]. Hence, the change of

shape of the self-van Hove function provides important dynamical and structural information

of the system.

2.3.2 Theoretical background for the analysis of the self-van Hove

function: study of diffusivity

For Brownian colloidal particles, the general approximation is to assume that Gs(z, t) it is

Gaussian [69]

Gs(z, t) = (4πDtt)−3/2exp(− z2

4Dtt
) (2.25)

The change of shape of the self-van Hove function can be characterized to distinguish the

type of diffusion that the system exhibits. In this thesis, we use a method to analyze the

self-van Hove function developed by Wouter den Otter ( the University of Twente, private
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communications). This method quantifies the deviation from the Gaussian behavior with the

shape of the self-van Hove function, as well as the Gaussian behavior itself. Thus, from the

probability density function G(z,t) represented in Fig2.5b,

G(z, t) =
G0√

t
exp− (

∆z
t
) (2.26)

the probability G(z, t) is rescaled by the
√

dt and the position by z/
√

dt to cancel the effect

of time and to represent the squared position z2

√
tG(z, t) = G0exp− (a1∆z2) (2.27)

Next, we plot the Ln(G(z, t) ∗
√

dt), such that for in case of a purely diffusive process all

curves are linear.

ln(
√

tG(z, t)) = lnG0− (a1∆z2) (2.28)

and fit it by

Ln(G(z, t)
√

dt) = a0−a1(4z2)a2; (2.29)

The parameter a1 measures the slope of the normalized self-van Hove function, while the

a2 is the exponential parameter. Hence, after the normalization of the self-van Hove function,

we observe that the linear function is characteristic for Gaussian behavior (a2 = 1), while the

exponential decay function (a2 = 0.5) corresponds to Lévy-flight. Thus, equation 2.25 is valid

only when a2 = 1 and in this case a1 is proportional to Dt . We use this method to quantify the

a2 parameter which measures the deviation from the Gaussian behavior. In Fig.2.6 we show

the simulations provided by Wouter den Otter (University of Twente, private communications),
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Figure 2.6: Simulation of the rescale and fit self-van Hove function with Wouter de Otter,
private communications) The curves are the self-van Hove function at different dt normalized
and fit with Eq.2.29. The linear lines correspond to Gaussian behavior, a2 ∼= 1 while the
exponential decays is related with the diffusive heterogeneity a2 ∼= 0.5.

obtained from a self-van Hove function at different times, which goes from Gaussian behavior

(linear) to Lévy-flight (exponential decay), and it recovers again to Gaussian.

All this quantitative information (MSD, diffusion coefficient and exponents, and self-van

Hove function) is the result of the analysis of previous qualitative results, which have been

collected using the single particle tracking. The single particle tracking is a tool to study the

dynamics at individual particle scale or also called self-dynamics. The advantage of the single

particle tracking is that individual particles can be observed even when they are dispersed in a

host system consisting of identical or different non-labelled particles. In addition to the mean

square displacement of the center of mass of the rod, also the orientation can be followed.

Hence, the position and orientation of single particles at every point in time are known, and

one is free to choose the kind of correlation function that is used to determine the rotational

diffusion coefficient. This is in contrast to techniques such as Dynamics light scattering (DLS)

or fluorescence recovery after photobleaching (FRAP) where only second moments are mea-

sured, and they provide no information about the deviation from the Gaussian behavior [44].

Moreover, it is not only possible to independently measure translational and rotational diffu-
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sion, but also to see how they are correlated. We consider that the self-dynamics is related to

the available space or free volume, and it can be a probe for the entropy of the system [73,74].

However, a suitable experimental system and method to explore the complexity of dynamics

in the different liquid crystalline mesophases is needed.

2.4 fd filamentous bacteriophages as a hard rod model

colloidal system

In previous sections, we have introduced the theoretical model for colloidal hard-rods, their

phase transitions and the dynamics of the rod-like particles from dilute to the semi-dilute

regime. However, the ambition to find an experimental system to test this theoretical model

has always motivated researchers to explore different types of colloidal dispersion. One of the

main goals is to connect order and dynamics.

In biological systems, we can find many different and complex filamentous ordered systems

(cytoskeleton, actin filaments, DNA or TMV) which can also form liquid crystalline phases.

These crowded systems and the way they ordered were poorly known, despite the important

role that they play in nature. One of the ways for understanding the ordering of these systems

is by using the hard rod model of Onsager through the maximization of entropy.

the fd viruses are an excellent experimental model of anisotropic colloidal particles and

consistent with the previously described theoretical predictions. Their easy production, their

versatility to be functionalized (with polymers and dyes) and their physical properties, make

them a perfect model system as a lyotropic colloidal liquid crystal [20, 75]. Moreover, it has

been widely studied in molecular biophysics [76, 77].

In this section, we will give details about the morphology, phase diagram and dynamics

of the fd-viruses in their different liquid crystalline mesophases which are the experimental

colloidal system used in this thesis.
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Figure 2.7: a) Structure of fd viruses and the forming proteins [85] b) TEM image of fd
virus [29].

2.4.1 Morphology of the fd viruses

The fd virus, together with M13, belongs to a group of closely related filamentous, male-

specific coli phages. It is formed by a circular single-stranded DNA chain covered by the

main coat protein and consists of 6408 nucleotides. It has only 8 genes which are responsible

for the codification of the proteins of the virus. [78–80]. The process of infection Escherichia

coli is done through the adsorption of the p2 protein to the host receptor, which is the tip of the

F-pilus [81, 82]. The ssDNA encodes three classes of proteins: replication (pII, pX and pV),

morphogenetic (pI, pIV and pXI) and structural (pVIII, pIII, pVI, pVII and pIX) proteins, as

shown in Fig.2.7. Although filamentous bacteriophages do not have a membrane, the major

coat protein (pVIII) is present in the viral lifecycle [83, 84]. Proteins pIII and pVI are located

at one extremity of the virus pVII and pIX in the other.

The coat protein pVIII has around 2700 copies of identical structural subunits, and it forms

an α-helix structure with 50 amino acids, of which only the 20 first are hydrophilic and

solvent-exposed [86], which determines the surface properties. The charge surface density

is approximate 10 e−/nm at pH = 7.5 as a result of the location of the two amino groups

(NH2) and five acidic residues (COOH) in the solvent exposed part. [87] and its isoelectric

point (IEP) is 4.2.

The fdwt virus is about 880 nm in length (L) and 6.6 nm in diameter (D) [12], having an

aspect ratio (L/D) bigger than 100. The persistence length (P) or stiffness is around 2.2 µm,
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being 2.5 times its contour length. The Molar Weight (MW) of fdtwt is 1.62x107 g/mol. The

virus absorbs in the UV’s spectra at 269 nm with an extinction coefficient (ε) of 3.84 cm2/mg.

The fact that by genetic modification the physical properties such as length and stiffness

change makes this particle a versatile system to study. The result of these modifications is

the so-called mutants, which have different physical features compared to the wild-type. In

this thesis, we will focus on fdY21M and M13KO7 mutants.

The fdY21M only differs by one aminoacid from fdwt: the tyrosine in the 21st place is

replaced by a methionine in the pVIII inside coat protein [88], which is not solvent-exposed.

This change has a direct effect on the morphology of the virus. The length L = 0.92µm is

bigger than for fdwt, as well as for the persistence length P = 9.9µm [22], which makes the

mutant fdY21M stiffer. The molar weight is slightly different being 1.63x107 g/mol and the

UV absorption changes to 3.63 cm2/mg at 269 nm.

The M13 virus differs only from fdwt by the substitution of one charged for one neutral

amino acid per virus coat protein. This is the Aspartic acid in the 12th position of the pVIII of

the fdwt, which is replaced by the Asparagine. This time the amino acid replaced is exposed

to the solvent, and the surface charge of the virus is affected, decreasing up to 7 e−/nm at

pH = 7. On the contrary the length, diameter and molar weight are not affected by this

modification [89]. One of the most known mutants of M13 is M13KO7, used as helper phase

for bacterial infection [90]. It consists of M13 phage with a Kanamycin resistance gene added

to the genome. The only difference for this mutant is the length L = 1.2 µm.

The characterization of these viruses can be performed by TEM (Transmission Electron

Microscopy) and measure the average length, but also by gel electrophoresis. This is possible

due to their different surface charge [89]. However, the most precise way to characterize each

virus is by DNA sequencing, which determines the precise order of nucleotides (including the

genetic modification for each mutant).

2.4.2 Phase behavior of fd viruses

The isotropic-nematic phase transition of fd viruses was first studied by Purdy and Fraden [89].

They investigated the ionic strength dependence of the location of the phase transition. These

experiments allowed them to compare this experimental system to the Onsager’s theory. These
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Figure 2.8: (Left) Phase transitions for suspensions of fd as a function of ionic strength. The
isotropic-cholesteric transition is indicated by the circles, with the open circles the coexisting
isotropic phase. The cholesteric- smectic transition is indicated by the squares with the open
symbols the highest measurable nematic phase concentration. The solid line is the second
virial theoretical prediction for coexisting isotropic phase for charged semi-flexible rods [33]
with L/P = 0.4 [91]. (Right) Experimental phase diagram of the dense phases showing the
N-Sm and Sm-Col as a function of ionic strength [19]

studies on ionic strength dependence were also performed for N-Sm and Sm-Col phase tran-

sitions, as shown in Fig.2.8. Moreover, the flexibility has a strong influence on the location of

the I-N phase transition. Decreasing the flexibility of the particles, the concentration at which

the I-N transition occurs decreases, as shown by Barry et.al [22]: the coexistence concentra-

tion at a fixed Ionic strength of 110mM is 19.8−22.6 mg/mL for fd and 13.9−18.9 mg/mL

for fdY21M.

Due to the chirality of fd virus, in the Nematic phase particles are not just aligned along

the director, but also the director rotates forming a helix. The characteristic texture for this

behavior is the fingerprint from which they are able to measure the pitch P0 [92]. This pitch

decreases with concentration, as shown in Fig.2.9. Thus, the nematic phase is called chiral-

nematic phase, and it has been first observed by Lapointe and Marvin during 1973 [93]. Dogic

and Fraden have studied this chiral-Nematic phase for fdwt and fdY21M [22].

The origin of this chirality is studied and discussed by Grelet and Fraden [95], showing

that the chirality was independent of the charge, proposing a model of the existence of a

superhelical twist, where chirality occurs at a much larger length scale.

The first observation of the Nematic-SmecticA phase transition and Smectic phase was per-
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Figure 2.9: a) Polarized microscopy picture of the fingerprint characteristic of chiral-Nematic
phase [92] b) Representation of cholesteric pitch P0 as a function of concentration for fd (open
circles) and fdY21M (solid symbols) [22] c) Model of the helical location of the coat protein
on the virus surface. The left image represents the atoms of the individual proteins in different
colors. In the middle, the electrostatic representation is shown, where the blue corresponds to
the negative and the red the positive potentials. The right figure represents the model for the
general surface of the virus; being the red dots the negative punctual charges [94]

formed by Lapointe and Marvin [93], observing a periodicity of 1µm and the iridescence due

to the diffraction of white light. Later, extensive studies were carried out to explain the behav-

ior of the Smectic phase depending on the flexibility and charge of the fd virus [21,89]. Also,

the flexibility will shift the Nematic-Smectic phase transition to higher volume fractions and

decrease the smectic periodicity. Dogic explained that N-Sm phase transition of fd viruses

is discontinuous (first order) rather than continuous (second order), and the fd smectic layer

spacing is approximately one rod-length, and this value decreases with rod flexibility. This

effect of flexibility on the stability of the Smectic phase has been already predicted by simula-

tions [42]. Later, the formation of a Smectic-B phase by fd viruses was shown by Grelet [19].

The difference between Smectic A and Smectic B is the ordering within the layer of the parti-

cles being liquid-like for Smectic-A and crystalline like for Smectic-B (Fig.2.10). Also, Grelet
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Figure 2.10: a) DIC optical micrograph of the fd smectic. The high contrast narrow black-
white lines are the gaps between smectic layers. The particles are oriented perpendicular to
the smectic planes [20]. b) Sketch of the smectic layers where ρ(z) density distribution and
λ is the layer spacing [20]c)Scattered intensity obtained by SAXS that shows the different
ordering within the layer for SmA (dotted black line) and SmB (solid red line) phases d)
corresponding SmA and SmB schemes [19].

proposes how the condensed ions estimated by different models change the effective diame-

ter, finding a good agreement between experiments and theory. The smectic layers create a

periodic energy landscape in one dimension, which as we will see later, affects the dynamics.

2.4.3 Dynamics of the fd virus throughout the phase diagram

The fd viruses can be labeled with fluorescent dyes, which make them a suitable system to be

observed under fluorescence microscopy. Moreover, the high aspect ratio (L/D>100) of these

particles allows for the study of the self-rotational diffusion of the particle and the diffusion

along the short and long axis. This is indeed interesting to investigate the self-dynamics at

the single particle level, related to the available space and being a probe for the entropy of



32
2.4. FD FILAMENTOUS BACTERIOPHAGES AS A HARD ROD MODEL COLLOIDAL

SYSTEM

Figure 2.11: a) Results of simulation for the rotational self-diffusion coefficients of rigid rods
with various aspect ratios as functions of the scaled volume fraction based on Doi’s theory in
semi-dilute regime b) Scaled volume fraction dependence of self (black circles) and collective
(red squares) rotational diffusion coefficients for rods of L/D=50 [60].

the system. Using this technique the position and orientation of each particle at every point

in time is known. Hence, the dynamics of the fd virus in the different mesophases has been

investigated over the past decade.

It has been demonstrated that the diffusion in the Isotropic and Nematic phases is affected

by the change of free volume [26]. In the Isotropic phase, the rotational diffusion decreases by

increasing the concentration. Simulations for fd viruses were performed to study the collective

and self-rotational diffusion, as shown in Fig.2.11. In these simulations, there is a difference

between the collective and the self-rotational diffusion, where the last does not drop to zero.

Moreover, in the semi-dilute isotropic regime, the rotational diffusion starts to be restricted

due to the interaction which neighbor rods. This agrees with the model proposed by Doi for

the "tube effect" [51]. This tube diffusion for fd viruses has been confirmed by Modlinska et

al. in his experiments at I-N phase transition [24], where a reptation-like diffusion is observed

within the isotropic a-tactoids at the phase coexistence.

In the Nematic phase, the D‖ is higher than in the Isotropic phase, being promoted by the

alignment of the rods (see Fig.2.12). However, at higher concentration, it decreases due to the

packing of rods.

In the Smectic phase a hopping-like diffusion between the smectic layers is reported by

Lettinga and Grelet [28]. The self-van Hove function shows distinct peaks at integers of

one-rod length, as shown in Fig.2.13. To understand this jumping-like behavior we need to

introduce the concept of Smectic ordering potentials. The Smectic potential can be measured
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Figure 2.12: a) Fluorescence image of labeled fd rods dispersed in the Nematic phase of
unlabelled ones. The scale bar is 5 µm b) Two-dimensional Gaussian fit for an individual rod.
The circle indicates the center of mass and the arrow the short and long axis. c) Diffusion
coefficient Dpar (squared) and Dper (triangles) as a function of concentration. The vertical
line indicates the I-N phase transition [26].

from the fluctuations of the particles within the layers. When increasing the concentration,

the system gets highly packed, decreasing the fluctuations and increasing the potential barrier.

Thus, the diffusion of the particles between the smectic layers decrease. The presence of

vacancies between adjacent layers and the packing of the system play a significant role in this

type of diffusion. The small perpendicular diffusion within the layer depends on the flexibility,

being more restricted for the flexible particles [29]. However, the reasons are still unclear.

It has been proposed that flexibility allows a higher packing within the layer, consequently

decreasing the perpendicular dynamics [29].

Recently, simulations on dynamics in the Smectic phase with particles of different aspect

ratio (L/D) are presented in the work of Patti et al. [6]. They show that the potential bar-

rier increases with increasing particle anisotropy, making the dynamics more heterogeneous

and non-Gaussian for longer hard rods, having a lower diffusion coefficient. At even higher

concentrations, it has been reported that there are full and half-jump displacements in the

columnar phase in an aqueous solution of fd, due to the creation of a void. The jumping

frequency if higher for flexible particles, in this case [96].

These studies of dynamics are all performed in systems formed by one type of particles.

Although there are some studies on the effect of bidispersity in the formation of the Smectic

phase, neither the experiments nor the simulations treat the complexity of a Smectic system
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Figure 2.13: a) Overlay of DIC and fluorescence images, showing the Smectic layers and
two fluorescently labeled particles, and the schematic representation of the jump of rod-like
particles between adjacent smectic layers. The layer spacing is L' 0.92 µm b) Displacement
as a function of time of a given particle in the parallel (red line) and perpendicular (black
line) directions to the normal of the smectic layers. The horizontal green lines indicate the
residence time τres within a layer [64] c) Evolution of the self-Van Hove function at different
times. The functions are normalized to one; the z-axis is scaled by the smectic layer thickness
L [64].

with guest particles that do not belong to the host Smectic phase. The interest of studying these

systems relies on the dynamics of particles on crowded order phases. In the smectic phase, the

dynamics are affected by the Smectic potentials, but a particle that is not commensurate within

this potential could exhibit a different behavior. In nature we find a lot of examples for the

lamellar-like structure (e.g., cell membranes) [97] as well as for some new materials [98, 99].

The effect on dynamics of the organization of the host system as well as the characteristics of

the guest particle could be addressed. Moreover, the behavior of the dynamics at the phase

transitions and its dependence on physical propertier of the particles remains unclear and a

challenging part of the dynamical studies.
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2.5 Outline of this thesis

The study of the self-organization of colloidal liquid crystals treats the simplest phenomena

of forming structured systems. In a system where anisotropic particles have hard core interac-

tions, the self-organization is purely entropy driven due to the maximization of the free volume

of the system. Thus, the measure of dynamics at the single particle level should provide in-

formation on the available free volume and the structure of the mesophase. The dynamics can

be used to address different questions related to the liquid crystalline phase transitions and

with the structure of the mesophases. We propose different approaches to find a dynamical

signature of the phase transitions, to dynamically recognize the order of the phase transitions,

to explore the dynamics as a function of physical features such as flexibility and length, and

finally to study the diffusion of guest particles in a layered system.

Experimentally, the self-dynamics has been used extensively in the study of the kinetics and

diffusion of liquid crystalline mesophases of fd viruses [27–29, 63], which are considered a

colloidal model system of rod-like particles. However, some questions have not been treated

concerning the dynamics at phase transitions and the techniques to characterize it. Further-

more, systems of higher complexity, like the guest-host systems of Smectic phases can help to

understand diffusion in high order systems, as found in nature. Although there are extensive

theoretical and simulation studies focused on how the stability and location of the phase transi-

tions are affected by flexibility, aspect ratio and monodispersity, very few experimental studies

have been done about dynamics and kinetics at the phase transitions of fd viruses [24,63]. On

the contrary, there are no studies of the diffusion of inclusions in the Smectic phase of fd

viruses, which could help to understand the behavior of diffusion through lamellar structures

found in nature.

In this Thesis, we aim to clarify the nature of the dynamics at the phase transitions and to

understand more complex problems as the introduction of a guest particle in a host system

and the effect of length and flexibility in the Isotropic semi-dilute regime where Doi’s theory

can be applied [51]. We use the analysis of the self-van Hove function as a robust method to

characterize the Gaussian behavior, and as an alternative to the non-Gaussian parameter. We

develop our experiments and data analysis with a complexity hierarchy: going from the less

complex to the more complex system and phases. Hence, this thesis is done in such a way that

the results of each chapter build upon the previous one.
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In Chapter 3 we describe the general experimental approaches and strategies performed

during this Thesis, which are the production and purification of our viral particles, the sam-

ple preparation for each different system here studied, and finally a brief description of the

microscope techniques used.

In Chapter 4 we provide insights of the self-dynamics at each liquid crystalline mesophase

of the stiff fdY21M mutant. We characterized the dynamics in the Isotropic-Nematic Phase

transition, being highly heterogeneous and glass-like at the Isotropic phase, and undergoing to

Gaussian in one direction in the Nematic phase. This is done by analyzing the self-van Hove

function. Moreover, we can distinguish dynamical coexistence at the Nematic-SmecticA and

SmA-SmB phase transitions by using an image and dynamical analysis. This presents an

extra confirmation that N-SmA is a first order phase transition. The question of how the

homogeneity of the sample affects the results is discussed.

In Chapter 5 we address the question of how the diffusion of a guest particle is affected by

the organization of the host system, concretely when the guest particle is not commensurate

within the Smectic phase. We study the self-diffusion of a semi-flexible long guest particle

that has been included in the host Smectic phase of the stiff fdY21M. We show that the long

and semi-flexible particle exhibits a faster and more continuous diffusion through the layers,

in comparison with the jumping-like diffusion of host fdY21M. Furthermore, the results of

the dynamics within the layer suggest that its perpendicular diffusion is restricted, being only

promoted by the parallel diffusion when permeating between the layers.

In Chapter 6 we present the study of dynamics of the guest particles presented in the previ-

ous chapter, which is located into defects of the Smectic phase. We show that particles diffuse

within a defect exhibit a slightly super-diffusive behavior. The analysis of the trajectory and

the diffusion exponents make us conclude that the change of geometry imposed by the defect

promotes the Dpar of the guest particle. Moreover, we observe that the long guest particle

prefer to be located within defects, where it exhibits Nematic-like diffusion.

In Chapter 7 we study the effect of flexibility in the diffusion at concentrations correspond-

ing to the semi-dilute regime in the Isotropic liquid phase. With these preliminary results,

we show that the flexibility may help to release the constraints imposed by the surrounding

neighbors, making the diffusion at this concentration more Gaussian-like.

Finally, we conclude by providing an outlook and perspectives for future investigations.



3
Experimental Materials and Methods

In this chapter, we will introduce the experimental procedures followed in this thesis from

the very first step of sample production and preparation to the data acquisition by techniques

such as fluorescence and DIC microscopy. In the first section, we introduce the standard

protocol for virus production and purification. In section 2 we explain a method of induced

fractionation used to remove polyphages from the sample. In section 3 we get into details

of the protocol followed for the particle labeling with fluorescence dyes. Finally, in the last

section we describe the sample preparation to perform microscopy observation.

37
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Figure 3.1: Scheme of the different steps carried out during the phage infection process

3.1 Production and purification of fd bacteriophages

Filamentous bacteriophages (fd, M13, and f1) are well known for their ability of the infection

of Escherichia Coli bacteria, by the complex formation between the minor coat protein g3P

(see Chapter 1) and the bacteria integral membrane protein TolA, which leads to the intro-

duction of the phage genome into the bacterial cytoplasm [100, 101]. The infection technique

is used to prepare stock samples of viruses which are further purified. The production and

purification of fdY21M and M13KO7 were performed several times to get a stock sample for

future experiments.

Production of fdY21M and M13KO7 bacteriophages. In both cases, the viruses were grown

following the standard biological protocol using E.coli ER2837 as host bacteria. All materials

and LB media have been autoclaved before the production, and the infecting experiment was

carried out in a biological laminar-flow hood. All the infection procedure has been done

in extremely clean conditions, by cleaning with ethanol the instruments used (pipets, vials )

before introducing them in the laminar flow hood to avoid the introduction of any biological

contamination.

We first pre-amplified the bacteria, taking a colony from the Petri plate in 3mL of LB media

where we add 4 µL of Tetracycline (TET, antibiotic, 1.5x10−2 mM). The incubation is done

for 5 hours at 37 ◦C and 200 rpm, until the solution is turbid. Then, in a 500 mL Erlenmeyer
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we add 100 mL of LB media, 1 mL of the bacteria solution and 133 µL of TET, and we let it

grow overnight stirring at 200 rpm at 37 ◦C. For the infection of bacteria dispersion with the

bacteriophage, 6 total liters of LB media are divided in three Erlenmeyer (2L in each one) and

autoclaved. Then, we add in each Erlenmeyer 20 mL of the pre-amplified bacteria and 1 mL of

the bacteriophages infecting solution of around 10−9PFU/mL infection power. In virology, a

plaque-forming unit (PFU) is a measure of the number of particles capable of forming plaques

per unit volume, like in this case viruses [102].

The final infected solution is stirred for 7h at 37 ◦C and 200 rpm. It is important to control

the bacteria Optical Density (OD). When the OD is between to 0.5-0.9 (approx.6 hours), the

growth has reached an exponential state. Before the OD reaches 1, we stop the infection and

we proceed to the purification step.

Purification of the viruses from the bacteria solution. After the step of infection, the viruses

need to be purified from the bacteria. It is important to remark that the first turbidity that we

observe during and after the infection is due to the growth of bacteria. Viruses are 1 µm length

and 6 nm diameter, while E.Coli are approximate 2 µm length and 1 µm diameter. This differ-

ence in size and volume and also molecular weight makes possible the separation of the bac-

teria and the viruses with centrifugation. For the bacteria removal, we use a rotor F10-4x1000

LEX in a Sorvall RC6+ centrifuge. We set the speed at 6000g (approx. 6000 rpm) during 20

minutes at 4 ◦C, to separate the bacteria of the virus suspension. We put the supernatant (with

the suspended viruses) in clean and sterile Erlenmeyer. In each Erlenmeyer where the super-

natant has been collected we add 15g per liter of NaCl and 20g per liter of PEG 8K, working

as a depletant for the negatively charged viruses. The depletion is performed to collect the

viruses at low-speed centrifugation from significant volumes of LB used during the infection

process. Depletion takes place under stirring during around 1h at 4◦ C, until the solution is

turbid. In the next step, the viruses are collected by centrifugation using the same rotor and

centrifuge, at 6000g (approx. 6000 rpm) during 30 minutes at 4 ◦C. The pellet is re-dispersed

in a small amount of distilled water and transferred to 20 mL ultra-centrifuge tubes. Another

step of bacteria removal is done at higher speed using rotor F50L-8x39 in the Sorval WX Ul-

tra 80 centrifuge, at 24000g(15000rpm) for 45 minutes at 4 ◦C. The supernatant containing

the viruses is collected, and it needs to be concentrated by ultra-centrifugation at 215 000g

(45000 rpm) for 3 hours at 4 ◦C. After this step of centrifugation, the viruses have precipitated

forming a pellet, and the supernatant is discarded. We redisperse the pellet in approximately

20 mL of fresh TrisHCl-NaCl buffer at 20 mM and pH = 8.2 to stabilized the electrostatic
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interactions and it is stored in the fridge at 4 ◦C as a stock solution for our experiments. The

concentration of the viruses can be checked by getting the absorbance at 269 nm (extinction

coefficient of the virus is 3.84 cm2/mg for fd-wt and M13 or 3.63 cm2/mg for fd-Y21M) with

a spectrophotometer Genesys 10 UV scanning (Thermo). As purity check the ratio between

the absorbance at 269 nm and 244 nm should be less than 1.41 for impurities below 1% [103].

The final yield obtained from the production (using 6L of LB media) is approximate 130 mg

for fdY21M and 180 for M13KO7. The concentration of stock solution is between 40 and

50 mg/mL.

Characterization by Transmission Electron microscopy. The length of fdY21M and

M13KO7 viruses after the production was measured using TEM (Transmission Electron Mi-

croscopy), analyzing the images obtained as shown in Fig.3.2. The center of the peak is placed

at the average length value for each virus. For fdY21M there is a percentage of dimers in the

sample (at around 1800 nm), while there is no important of dimers in M13KO7 sample.

Figure 3.2: Histogram of the length of the viruses obtained from the measured of the TEM
images for fdY21M (left) and M13KO7 (right). Red line is the Gaussian fit. Insets are the
original TEM images.
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Figure 3.3: a) Image of the phase separation using Dextran between polarizers. Analysis of
the intensity from the gel electrophoresis (inset) of the b) reference sample c) Isotropic phase
after phase separation d) Nematic phase after phase separation .

3.2 Induced phase separation using non-adsorbing polymer

to increase monodispersity

Since we aim to have completely monodisperse tracers in our experiments, we have performed

a sample purification for fdY21M using Dextran (non adsorbing polymer) as depletant, which

will allow us to phase separated the longer polyphages from, the shorter (Brandeis protocol,

private communication).

The presence of Dextran increases the concentration at which the I-N transition takes place

and also extends the phase coexistence concentration [63, 104]. The long viruses (dimers,
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trimers) go to the Nematic phase due to the difference of free volume, while the small viruses

stay in the Isotropic phase (see Fig.3.3). The buffer used for the experiment is TriHCl-NaCl

110 mM pH=8.19. Different concentrations of Dextran have been tried in a small volume

of our fdY21M. The optimal concentration of Dextran and fdY21M for the phase separation

are 13 mg/mL and 18 mg/mL respectively, for which the separation was efficient as shown in

Fig.3.3.

Gel electrophoresis for virus characterization. The characterization of both phases obtained

from the induced phase separation with Dextran has been done by gel electrophoresis. Shorter

molecules move faster and migrate farther than longer ones because shorter molecules migrate

more easily through the pores of the gel. This characterization confirms that there are not

polyphages in the Isotropic phase after the phase fractionation. Contrary, in the Nematic

phase we have a population of monomers and polymers of the fdY21M viruses.

The gel used is 1.4% agarose to have the optimal pore size, weighing 0.7 g of agarose in

an Erlenmeyer and add 1x TBE Buffer until the total mass reaches 50 g. The mix is heated

in the microwave until the agarose melts. The solution is transferred to the agarose tray to

cool it down. We prepare 20 µL of the sample of around 1 mg/mL and for the staining, we

add 4µL of Bromophenol Blue (used as tracking dye in electrophoresis). The electrophoresis

was performed overnight at 28V to obtain an optimum resolution of the sample. The next day

the gel is introduced into a solution of NaOH of 0.2M for 45 minutes in a shaking plate and

then put in a distilled water bath for other 45 minutes. After the gel is put into an Ethidium

Bromide (BET) bath; a fluorescence dye used to stain nucleic acids, as the gel is checked with

UV-light. We need to take extreme precaution due to the high toxicity of this compound

The purified total mass of monomers obtained from the Isotropic phase (around 6 mg) is

used for the functionalization with fluorescence dyes, as explained in next section.

3.3 Efficient fluorescence labeling for microscopy

observation

The measure of dynamics of Brownian particles have been mostly done by fluorescence imag-

ing using different techniques such as Fluorescence Correlation Spectroscopy, Fluorescence
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Recovery after Photobleaching (FRAP) and dynamic light scattering [105–107]. However, the

simplest way to obtain the diffusion coefficient is by individually imaging the particles using

fluorescence microscopy [108–110]. This technique, as it is performed in this thesis, allow us

to observe individual tracer particles when they are dispersed in a host system consisting of

identical or different, non-labelled particles [28], to further calculate the self-dynamics. We

have used two different viruses (fdY21M and M13KO7) for two main experiments: 1) dynam-

ics in pure systems (labeled viruses in a matrix of identical non-labelled viruses), 2) dynamics

in guest-host systems (labeled viruses inside a matrix of different non-labelled viruses). We

assume that the labeled particles behave similar to the unlabeled ones, as demonstrated to hap-

pen regarding physical features, such as length and diameter [111]. The two different dyes are

used as shown in Table 3.1, one for each virus.

Table 3.1: Resume of dyes used and the correspondent virus labeled. λ (nm)

Dye name Molar Weigth (g/mol) Virus Excitation/Emission (λ )

Alexa Fluor 488 5-TFP 884.91 fdY21M 495/519
Dylight 549 NHS Ester 982 M13KO7 556/571

NHS and TFP Esters react with primary amines of the protein, forming stable, covalent

amide bond and releasing the NHS groups, as shown in Fig.3.4.

The most important point during and after the labeling process is to protect them from light

with aluminum foil to avoid photo-bleaching of the dyes. Moreover, the second consideration

for the labeling of the virus with fluorescent dyes is that the reaction between the dye and

the virus occurs with the amine groups of the coat protein. Thus, TRIS buffer has to be

excluded, due to the presence of amine group that will compete with the coat protein amine

groups of the viruses. For the labeling with Alexa Fluor488 5-TFP ester, the buffer used is

Sodium Carbonate (I = 150mM and pH = 9), while for Dylight549-NHS Ester we have used

Phosphate buffer (I = 350 mM and pH = 7). In the case of reaction with the TFP ester, a

slightly basic pH is needed, to maintain the amine group in the non-protonated form. For the

NHS ester, we achieve a more specific labeling due to the neutral pH, as the pka of the amine

is lower than the amine terminus protein of the virus (pKa = 7.9). The virus concentration

should be around 1 mg/mL. The dye has to be kept in the fridge inside the glove box.

Dialysis of the viruses for the labeling with fluorescent dyes. The fresh buffer is prepared

one day before the labeling is done (see Appendix 1) to perform the dialysis to exchange
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Figure 3.4: Scheme of reaction corresponding to the functionalization of viruses with the two
types of fluorescent dyes. The reaction takes place between the surface amino group and the
ester groups of the dyes.

buffer. The principle relies on the selective diffusion of molecules across a semi-permeable

membrane with a fixed pore size. In our case, we use SnakeSin 10K Molecular weight cut-off

(MWCO), which allows the exchange of ion concentration of the buffer and non-reacting dye

molecules, while the viruses stay inside the membrane.

We first need to clean the stock solution from any bacteria. We take 1mL of the stock

solution of around 40−50 mg/mL and we transfer it to a clean ultracentrifuge tube in which

a volume of the fresh PBS buffer at 350 mM ionic strength and pH = 7.0 is added to have a

final concentration of around 4−5 mg/mL and a bacterial removal step is done. We transfer

the supernatant to a clean falcon tube of 15 mL. The dialysis bag is prepared in which 1 mL

of the already clean solution is transferred and after PSB fresh buffer is added giving final

concentration between 1 and 2 mg/mL. The dialysis is carried out against the fresh buffer,

which should be 3 times the volume inside of the dialysis bag. We make at least 3 changes

of buffer and leaving the last change overnight. The next day the sample is removed from the

dialysis bag (essential to rinse the bag walls well to recover all viruses that could get attached

to the dialysis bag).

Labeling of fdY21M and M13KKO7. To start with the labeling process, we take a volume

of around 1 mL of our stock solution at around 1 mg/mL and we transferred it to a glass vial

covered with aluminum foil and with a small stirring bar inside. The dye stock once opened,
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has to be used in one go. The quantity (mass) of virus which has to be adjusted knowing that,

for 1mg of virus the optimum number of moles of the dye is 0.5x10−6mol [112], having a 3

times excess of dye per protein. The dye should be dissolved in DMSO in a volume such that

it does not exceed 20% of the total volume when added to the virus suspension. The viruses

have to be added carefully. Once the dyes and the viruses are mixed, the reaction is carried

out under stirring during 1h at room temperature or overnight at 4◦ C, in the fridge (still under

stirring). After the process of labeling, the solution has to be purified from the excess of dye,

and the buffer needs to be changed again. Several dialyzes are done until the outer dilution

color is transparent, against the desired buffer. In this case, we use TrisHCl-NaCl at 20mM

and pH=8.2. After, the solution of labeled dyes is transferred to a ultracentrifuge tube where

a first turn to clean bacteria is done and then the sample is concentrated, and the pellet is

redispersed in the chosen buffer to have a stock solution concentration of 1mg/mL.

3.4 Optical microscopy techniques: sample preparation and

observation

In all the experiments a fixed concentration of tracers is introduced in the non-labeled virus

sample (matrix). These samples need to be in the correct buffer for each experiment, so a

dialysis has been done as explained before the experiment. After, each sample is transferred

to an ultracentrifuge tube in which a bacteria cleaning step is performed, and then the sample

is concentrated (in the same conditions mentioned above), and the pellet is redispersed in the

chosen buffer up to Nematic Phase close to Smectic. The addition of the tracers is done at

this concentration because homogenization of the sample is easier (liquid like state) and also

to have an idea how the tracers look in a background at a relatively high concentration. Later,

depending on the experimental system studied we follow different procedures to prepare the

dilutions, as explained below.

Prepararation of the pure systems: fdY21M-Alexa488 in non-labeled fdY21M and

M13KO7-Dylight549 in non-labeled M13KO7 (Isotropic experiments). A volume that con-

tains 30 mg of the stock virus solution obtained from each production is dialyzed against

TrisHCl-NaCl 110 mM buffer at pH=8.2 and then reconcentrated at around 70 mg/mL. A

dilution of the labeled stock solution ( 1mg/mL) is prepared at 10−4 mg/mL. A set of different
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dilutions are prepared in 100 mL plastic Eppendorf to get different concentrations from the

Nematic phase through the Isotropic up to infinite dilution. Each dilution has a final total

volume of 20 µL. Thus, we add a constant volume of tracers (in order to have a final ratio of

around 1 labelled virus for 105 non-labelled viruses), and spacers (beads of around 500 nm

diameter), and we change the ratio between of non-labeled host viruses sample and buffer

(increasing the buffer and decreasing the host sample) in order to decrease concentration at

each dilution. From each dilution, a volume of around 10 µL is pipetted and poured onto a

previously cleaned and dried (see Appendix) glass slide (76x26 mm) and covered rapidly with

a coverslip (18x18 mm). The sample is sealed with UV-glue and covered with aluminum foil.

Table 3.2: The different systems used in this thesis

System Viruses I(mM)/pH

Pure host-host fdY21M-Alexa488 in fdY21M 110/8.2
Pure host-host M13KO7-Dylight549 in M13KO7 110/8.2

Guest-host M13KO7-Dylight549 and fdY21M-Alexa488 in M13KO7 20/8.19

Prepararation of the guest-host systems: guest M13KO7-Dylight549 and fdY21M-Alexa

(Phase Transition and Smectic experiments). The buffer used in this experiment is TrisHCl-

NaCl at 17 mM and pH=8.19 in which we have added 3 mM of NaN3 to avoid any bacte-

ria growing, being an inhibitor for gram-negative bacteria [113–115]. The host system is

formed by non-labelled fdY21M at around 70 mg/mL in which labeled fdY21M-Alexa488

and M13KO7-Dylight549 are added directly to have a final ratio of around 1 labeled virus for

105 non-labelled viruses. The sample is then re-concentrated to a high dense phase (Colum-

nar) of about 140 mg/mL. Dilutions are done by adding small amounts of the buffer in the

same tube and homogenizing by vortexing and centrifuging at low speed. The final sample is

prepared by pipetting around 8−10 µL onto a glass slide. When covering it with the coverslip

is important to shear to homogenize the sample. We use two stripes of a thin layer of a poly-

mer film (12 µm) as a spacer, placed at the edge between the coverslip and glass slide. The

sample is sealed with UV-glue and covered with aluminum foil. All samples are observed one

day after sample preparation to ensure they are in equilibrium.

Optical microscopy observations. Samples with labeled viruses are visualized using an in-

verted microscope (IX-71 Olympus), equipped with a high-numerical aperture (NA) oil objec-

tive (100x PlanAPO NA 1.4) and a mercury lamp as excitation light source (X-cite series 120

Q). The camera used is an sCMOS and Neo, using a rolling shutter. The readout time between
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Figure 3.5: Set-up used for the guest-host experiments. (Left) Scheme of the Optosplit II
Andor. The emission wavelength recovered from both dyes is split into two channels by using
a dichroic mirror. (Right) Fluorescence image result of the beam split for each labeled particle
in the same field of view.

frames is not the same as the exposure time set during the data acquisition in the microscope.

The real read out time is calculate using readout time = (1/ f rame rate)− exptime.

In the experiments of host-host pure systems, the exposure time set for the experiments was

5 and 2 ms, with frame rates of 55 and 199 fps respectively. The corresponding readout times

are 2 and 3 ms, which means that the real exposure times are 7 and 5 ms. This difference could

be due to the size of the Region of Interest (ROI) used during the data acquisition. The SNR

(Signal to Noise Ratio) at 2ms is very low, so we have chosen to use the data acquired at 5 ms.

The correspondent polarization microscopy image was taken for each sample. For guest-host

systems series of experiments, the exposure time set was 20 ms and 5ms, giving frame rates of

33 and 55 fps respectively. The movies taken at 20 ms had a duration of 15 s while the movies

taken at 5ms were 5 s total. The readout time for this experiment was 10 ms. Again, for image

quality reasons only 20ms data is used and because results are consistent at lowest exposure

time (see Appendix). After approximately 6-7 seconds photobleaching of the Alexa488 dyes

becomes apparent while Dylight-549 seems to be less photo-bleachable. To observe the two

different labeled viruses at the same time in real time, a dual emission image splitter (Op-

tosplit II Andor) was used to project two identical fields of view, corresponding to the two

emission wavelengths, on to the two halves of the sensor of the ultra-fast electron-multiplying

camera (Fig.3.5). Each time after the acquisition of fluorescence movie a DIC (Differential

interference contrast) microscopy picture has been taken to have the correspondent Smectic

background.





4
Self-Dynamics as a signature of the Liquid Crystals

Phase Transition

In this chapter, we report on the dynamics at phase transitions of a colloidal suspension of stiff

viral rods, called fdY21M. The stiff fdY21M forms liquid crystalline mesophases, which un-

dergo phase transitions when varying the volume fraction, due to the maximization of free vol-

ume in the system. The dynamics are strongly affected exhibiting a different behavior for each

mesophase. We focus on the dynamical insights around the Isotropic-Nematic Phase transi-

tion and at the Nematic-SmecticA and SmecticA-SmecticB phase transitions. For this purpose,

direct visualization at the scale of a single particle is performed. For the I-N phase transition,

we quantify the deviation from the Gaussian behavior analyzing the self-van Hove function,

showing that Brownian diffusion is much more restricted in the Isotropic phase close to the

Phase transition, and being characterized as glass-like. Moreover, we found a dynamical co-

existence at the Nematic-SmecticA and SmecticA-Smectic B phase transitions, confirming that

both phase transitions are first order.

49
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4.1 Introduction

Assuming that we have a bunch of pencils inside a box just big enough such that they can

be pointing in different directions. If we want to add pencils to the box, we need to opti-

mize the space by aligning them. Thus, the system will undergo a phase transition from a

disordered phase to an orientated phase. In this oriented phase, the rods have more space

to be placed, and also more rods can be added. At the colloidal scale, for rod-like particles

which undergo Brownian motion, this is the so-called Isotropic-Nematic Phase transition, and

it spontaneously occurs at scaled concentration of φ = 4D/L, predicted by Onsager [7]. In the

long-rod limit (L >> D), the excluded volume scales as V⊥excl = 2L2D in the Isotropic phase

near the I-N transition. In the case of parallel hard rods and neglecting rod-end V ‖excl = 2πLD2.

At higher concentration, the system undergoes the N-SmA, where the particles gain positional

order in one dimension, which leads to the formation of Smectic layers [8, 9, 32]. At even

higher concentration, another phase transition occurs from the Smectic-A to the crystalline

Smectic-B phase [64], as it is illustrated in Fig.4.1. Thus, colloidal rods self-organize spon-

taneously into different liquid crystalline phases, displaying different phase transition that are

purely entropy driven [4, 45] when increasing the rod density.

It is, however, demonstrated that this loss of entropy between phases is counter-balanced by

an increased in the local free volume, and hence, that the dynamics of the single particles are

affected [116]. The study and understanding of dynamics at the single particle level around

the phase transition is crucial because it might hint to an entropic gain which is related to the

accessible free volume. Recent advances in experimental techniques have made it possible to

explore the Brownian motion of individual particles in liquid crystalline phases. It is the case

for the self-diffusion of actin filaments in dilute and semi-dilute isotropic regimes [62], as well

as for the fd viruses [59]. Later, self-diffusion of fd viruses in the nematic phase was studied

using fluorescent microscopy techniques [63]. It was found that the self-diffusivity along the

main axis of the particles is promoted in the nematic phase compared to that in the isotropic

phase. Moreover, in the smectic phase, diffusion of particles along the main axis has been

found to be a kind of hopping-type diffusion between smectic layers [27–30, 72, 96]. This is

also the case for the Smectic phases of monodisperse silica rods [117].

These studies provided relevant information on the physical behavior for each liquid crys-

talline mesophase. Contrary, self-diffusion at the phase transitions is still poorly understood,
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although some experiments have been done [24,44]. In the case of the I-N, simulations showed

that the collective rotational diffusion slows down reaching zero, facilitating the formation of

aligned states, while the self-diffusion does not [25, 60].

The already mentioned fd virus, are particularly interesting because, unlike most other types

of colloidal particle, they are very monodisperse. Due to the high aspect ratio and rigidity, the

I-N transition of stiff fdY21M virus takes place at the same volume fraction of the value

predicted by Onsager. Their length makes them accessible to be observed under optical mi-

croscopy. In this chapter, we study dynamics throughout the full phase diagram by tracking

labeled fdY21M inside a matrix of unlabeled particles using fast fluorescence microscopy.

We show how we calculate and use different dynamical parameters than can act as dynamical

signatures for phase transitions. The main goal is to investigate how the self-diffusion of the

particles is affected by the proximity of the phase transition and if, reciprocally, the phase

transition is affected by the dynamics of the system. Moreover, we will explore a method to

quantify the dynamical signature of the phase transition, as well as characterized dynamically

the phase coexistence.

We will treat dynamically three phase transitions of fdY21M: I-N, N-SmA, and SmA-SmB.

In the first case, at the I-N phase transition, the analysis of the self-van Hove function (as it

has been explained in Chapter 3) is used to quantify the diffusivity on both sides of the phase

transition. At higher concentration, N-SmA and SmA-SmB phase transitions, the fitting and

analysis of the self-van Hove is not straightforward. Thus, we use a step-detect algorithm (see

Appendix at the end of the Thesis) to study the evolution of dynamics at the phase transitions

of denser phases, showing that self-dynamics is sensitive to the order of the phase transition.

This chapter is structured as follows: in Sec.1 we show the raw data for the full phase

diagram consisting of self-van Hove functions and mean-squared displacement. Then, we first

treat the dynamics around the I-N Phase transition analyzing the self-van Hove function. In the

last sections, the results for the dynamical coexistence at N-SmA and SmA-SmB are shown

and discussed.
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Figure 4.1: Scheme of the liquid crystalline phase diagram of hard rods. From left to right:
Isotropic, Nematic, Smectic A and Smetic B phase by increasing the volume fraction. The
black arrow indicates the director n along which the particles are oriented.

4.2 Stiff fdY21M as a colloidal model rod-like particle:

experimental system

We investigate the dynamics of three Phase Transitions of the system formed by the stiff

filamentous virus fdY21M: Isotropic-Nematic, Nematic-Smectic A, Smectic A-Smectic B. As

already mentioned in Chapter 1, the stiff fdY21M has a persistence length of P = 9.9 µm

and a contour length L = 0.92 µm, and it has a diameter of d = 6.6 nm. We take a volume

from the stock solution sample to have a total mass of viruses of around 40 mg/mL, and we

clean and concentrate it with an ultra centrifugation step. We re-disperse from the resulting

highest concentrated (Columnar) phase, by adding TrisHCl-NaCl I = 17mM at pH = 8.2 and

3mM of NaN3, covering all range of mesophases and phase transitions (Fig.4.1). Samples

were prepared by putting a drop of solution between a glass slide and cover slip, as explained

in details in Chapter 2. Observations by optical microscopy were performed one day after

sample preparation, assuming that the system has reached the equilibrium.

The Nematic and Smectic phases are characterized by their optical features. The chiral-

Nematic phase exhibits birefringence by observing the sample through cross polarizers, while

the Smectic phase displays iridescence, due to the diffraction of white light from the layer

spacing of around 1 µm (see Fig.4.2a and see Fig.4.2b at SmecticA phase). Moreover, polar-
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Figure 4.2: Polarized microscopy pictures of fdY21M samples. a) Nematic tactoids in a back-
ground of Isotropic phase. Inset: bulk isotropic-nematic phase transition. b) Smectic Phase,
evidenced by a layered pattern. Inset: refraction of white light due to the Smectic pattern.
All pictures are taken with a 100x magnification oil immersion objective, Numerical Aperture
(NA) 1,4. Microscopy scale bar: 5 µm.

ize microscopy can be used to determine the liquid crystal phase transitions. However, this is

not the case of the SmA-SmB phase transition, as both phases have the same layered pattern.

In this case, we need to rely on X-ray experiments [19]. To study the single-particle dynamics

forming the system, we added labeled fdY21M virus into non-labelled matrix of the same type

of particles to have a ratio of 1 labeled viruses into 105 non-labeled. The individually fluores-

cent labeled viruses were visualized using the techniques already mentioned in Chapter 2, and

the further analysis by particle tracking has been done using a Matlab algorithm (Appendix).

We extract the raw dynamic information from trajectories which are produced by the image

analysis, as shown in figure 4.3. From left to right we see random diffusion in the Isotropic

phase, oriented diffusion in Nematic, jumping-like diffusion in Smectic-A phase and non-

moving particle in what we consider to be the Smectic-B phase as will be discussed later. The

z-axis is defined by the director of the matrix. All trajectories have been rotated such that the

original y coordinates lies on the z-axis. We are able to identify parallel (‖) and perpendicular

(⊥) diffusion.

In the next section, we will show calculated features such as the mean square displacement
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Figure 4.3: Typical trajectories in the Isotropic, Nematic and Smectic phases obtained from
the particle tracking algorithm. For isotropic phase random trajectories are observed, for
Nematic phase are oriented in one direction and in the Smectic phase we observe the typical
jumps from layers and the residence time of the particle within the layer. The z axis indicates
the orientation along the director. The color scale indicates the evolution of the position in
time.

and self-van Hove function which are calculated from such trajectories, throughout the full

phase diagram.

4.3 Physical and dynamical behavior of fdY21M through the

concentration range

4.3.1 Self-Van Hove calculation

We start by calculating the self-van Hove function which gives the probability of displacement

z after a time t,

G(z, t) =
1
N

N

∑
i=1

δ [z+ zi(0)− zi(t)] (4.1)

For Brownian particles the self-van Hove function takes the form of a Gaussian, with a
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Figure 4.4: Self-Van Hove probability density function over different time steps for different
concentrations through all mesophases of stiff fdY21M. In the Nematic (18, 27, 40 and 65
mg/mL) and Smectic (87, 91, 93, 95, 97 and 98 mg/mL) phases, the parallel self-van Hove is
represented. Dashed vertical lines indicate the adjacent layers at one rod length. Position is
normalized by the Llayer, λ = 0.92 µm
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probability that smears out with time. In a crowded environment the function will change

its shape, and is therefore very sensitive to changes in dynamics and structure of the system.

The concentration dependence of the self-van Hove function is shown in Fig.4.4. Indeed, at

very low concentration (0.1mg/mL) we observed a Gaussian curve, which is frustrated when

approaching the I-N undergoes a roof-tent shape. In the Nematic phase after the I-N phase

transition, for which we only plot the parallel self-van Hove function, the Gaussian shape is

recovered. With increasing concentration, approaching the Smectic phase, the Gaussian shape

is lost again, and the self-van Hove function starts to exhibit peaks at integral multiples of the

particle length [29, 72]. The peaks get sharper when increasing the concentration throughout

the Smectic-A. This is a signature of the background potential which is imposed by the Smec-

tic ordering. When reaching the Smectic-B phase, the absence of diffusion is reflected in the

self-van Hove function, which does not change over time due to the freezing of dynamics.

Figure 4.5: Log-log representation of some of the parallel (solid symbols) and perpendicular
(open symbols) MSDs. a) Nematic and Isotropic (star symbols) concentrations b) High dense
concentrations (from Smectic to Nematic phase). Each MSD is calculated for around 800
particles.

4.3.2 Mean Square displacement

The MSD quantifies the average distance that a particle travels in a given time. Most generally,

it depends on the diffusion rate Di and on time as tγ , where the exponent γ > 1 indicates super-

diffusive behavior and γ < 1 sub-diffusive behavior,
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〈r2
i (t)〉= 2dDitγi, (4.2)

where d is the dimension of the system and i represent the direction with respect to the director

(‖ and ⊥ for parallel and perpendicular respectively). In Fig.4.5 we plot the mean-squared

displacement (MSD) as a function of time for the full range of concentrations studied: from

the dilute Isotropic to the deep Smectic phase. For most concentrations, the MSD exhibits a

linear behavior, but in the Isotropic phase close to the I-N phase transition and deep in the

Smectic phase, we can distinguish two-time windows at short and long times, well defined by

a change of slope. This can be interpreted as an effect of confinement when approaching the

crystalline phase, which is overcome with time by the particles which escape from their local

cage induced by the crowded environment.

Diffusion coefficients and exponents have been obtained from the fit of the MSDs using Eq.

4.2. For consistency of the results, we have therefore tuned the time range of the fit to always

maintain a high fit quality with a minimum value required for the reduced chi-square.

First we will describe the results obtained for the diffusion coefficients Di. We observe a

non-monotonic evolution of the diffusion rates with concentration, as shown in Fig.4.6a. Ini-

tially, Diso decreases sharply from the dilute isotropic phase to the semi-dilute regime. Imme-

diately after the I-N phase transition, D‖ increments dramatically promoted by the alignment

of the rods. The increase of concentration in the Nematic phase causes a slow down of D‖,

due to the gain of order packing after the phase transition where the rods strongly align. On

the contrary, D⊥ drops after the I-N phase transition and stays further constant. These results

are in agreement with simulations [118] and also previous experiments [26]. The diffusion

is even more restricted entering in the Smectic-A phase, due to the smectic ordering which

favors the jumping like behavior through layers, as we have shown already in the Self-Van

Hove functions.

Furthermore, we plot in Fig.4.6a in blue, the total diffusion rate given by Dtot = D‖+ 2 ∗
D⊥, indicating that indeed also the total diffusion increases after the I-N transition, while it

smoothly decays from the deep Nematic phase throughout the N-Sm phase transition and the

Smectic-A phase. Finally, the Dtot drops to zero in the Smectic-B phase.
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Figure 4.6: Concentration dependence for a) The D‖ (black solid squares), D⊥ (red open

squares) and Dtot (blue symbols) b)
D‖
D⊥

for stiff fdY21M (black squares). Inset zooms in the
N-Sm Phase transition. Dashed vertical lines delimit the phase transition regimes. Error bars
indicate the St.Deviation

In addition, in Fig.4.6b we plot the ratio
D‖
D⊥

as a function of concentration. Starting at the

I-N transition, a maximum in
D‖
D⊥

evolves due to the increasing of the D‖, as mentioned above.

Surprisingly, we observe also a jump in the
D‖
D⊥

in the concentration just before the N-Sm Phase

transition (85 mg/mL) and in the first concentration at the phase transition (87 mg/mL). This

could be a pre-transitional effect, and suggests that N-SmA transition is driven by increased

configurational entropy in the parallel direction rather than free volume gain within the layers.

When reaching the Smectic-A mesophase
D‖
D⊥

tends to decrease as the D‖ decreases due to the

Smectic ordering.

Regarding the diffusion exponents γi, we plot the evolution with concentration as shown in

Fig.4.7. At very low concentrations in the Isotropic γ ∼= 1, which is characteristic of diffusive

behavior. However, around the I-N Phase transition, we observe a dip of the diffusivity. After

the I-N phase transition, it fluctuates around one throughout the Nematic phase. Finally, when

entering the Smectic-A phase, the exponents for both directions decrease, gradually reaching

values below 0.5. This is typical behavior for glassy dynamics [53, 70] and at even higher

concentrations it drops to zero, which is related to the absence of dynamics. This is in agree-

ment with the fact that in the Smectic-B phase particles are crystalline-like within the Smectic

layers [19].
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Figure 4.7: Diffusion exponent γ‖ (black solid squares), γ⊥ (black open squares) and γiso (blue
triangles). Dashed vertical lines delimit the phase transition regimes. Error bars indicate the
Standard Deviation

The study of the diffusion exponents and coefficients gives a hint of the behavior of the

system. However, together with these studies, we need a different approach to characterize

the dynamics. In following sections, we will do an analysis and quantification of dynamics

beyond the results previously presented. This is done for all phase transitions, starting from

the I-N, then N-SmA and finally SmA-SmB.

4.4 Isotropic-Nematic Phase transition

The I-N phase transition of fd virus is a first order phase transition [20,119] where the Isotropic

and Nematic phases coexist. The dynamics at the I-N phase transition is distinctly different

for each phase [24, 63], as the free volume in the Isotropic phase is much lower than in the

Nematic phase. Increasing the concentration in the Isotropic phase, the diffusion is frustrated

as explained by Doi [51], reaching the semi-dilute regime where the particles diffuse through

a tube created by its neighbors. For densely packed colloidal spheres in the glass state, it is
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Figure 4.8: Parallel self-van Hove functions (left) and fitting of the normalization (right) at
concentrations around the I-N Phase Transition at Isotropic (6,9 and 10 mg/mL) and Nematic
(13,14,16 mg/mL). Fitting has been done with y = a1xa2; being a2 = 1 and a2 = 0.5 if it is
Gaussian or Levy distribution respectively. Insets represent the perpendicular self-van Hove
function at the Nematic phase.
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Figure 4.9: Parameter a2 obtained from the fitting of the normalized self-van Hove function
as a function of time. a) Isotropic concentrations b) Nematic parallel (solid symbols) and
perpendicular (star symbols). The open red stars represent the reference close to the dilute
regime 0.1 mg/mL, where the behavior is almost Gaussian so values of a2 are close to 1.

shown that the dynamics are heterogeneous. This is reflected in the self-van Hove function,

which behaves as Lévy-flight distribution [120–122] in contrast with Brownian particles that

have a Gaussian shape. The change in the shape of the self-van Hove function is connected

with the diffusivity of the system [123, 124].

In Fig.4.8, we have represented the self-van Hove function (left) and the corresponding

normalization (right) at different concentrations around the I-N phase transition. In the semi-

dilute isotropic regime (6, 9 and 10 mg/mL) just before the I-N phase transition, the self-van

Hove function takes a roof-tent or Lévy-flight shape. After the phase transition, in the Nematic

phase the parallel self-van Hove recovers to Gaussian-like. Contrary, the perpendicular self-

van Hove function remains non-Gaussian.

We characterize the evolution from Gaussian to a Lévy-flight distribution by analyzing the

Self-Van Hove (described in details in Chapter 1), with a method developed by Wouter den
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Otter (University of Twente, private communications). We normalize the self-van Hove func-

tion by multiplying the probability by
√

dt and dividing the position by dz/(
√

dt)2. This will

take out the effect of time, so the curves will be comparable, and the fitting is done by using

the following expression:

Ln(G(z, t)
√

dt) = a0−a1(4z2)a2; (4.3)

where a2 is 0.5 for Lévy-flight and 1 for Gaussian respectively, and a1 is related to the inverse

of the Di when a2 = 1.

We focus first on the time dependence of the a2 parameter since it is related with the dif-

fusivity of the system, represented in Fig.4.9, taking the Gaussian behavior at 0.1 mg/mL as

a reference. In the Isotropic phase at 6 mg/mL the a2 parameter is initially low and recovers

to a2 = 0.8. Close to the I-N at 11 mg/mL it remains roughly constant. In the Nematic phase,

a2 is relatively high 0.8 < a2 < 1 for the parallel diffusion. On the contrary, the perpendicular

diffusion is below 0.8 and recovers at longer times at 14 mg/mL, and does not change for

27 mg/mL which is deeper into the Nematic phase.

Finally, we represent the parameters a1 and a2 for parallel diffusion, as a function of con-

centration for 3 different times: short (0.03 s), middle (0.24 s) and longest time (2.4 s), as

shown in Fig4.10. The a1 parameter decreases with concentration and after the I-N transition

remains rather constant. The a2 parameter exhibits Gaussian behavior at very low concentra-

tions in the Isotropic phase, with values a2 ∼= 1 and drops just before the I-N. In the Nematic

phase after the I-N phase transition, the a2 parameter for the parallel diffusion jumps to higher

values and increases continuously with concentration to values close to 0.9 or Gaussian be-

havior. Furthermore, the data exhibit a big decay after I-N for short times, while at long times

the curves before and after I-N converge.

This transition from restricted dynamics with a low value of a2 to a diffusive state with more

free volume in the Nematic phase is the dynamic signature we were after for the I-N phase

transition.

Thus, we conclude that this behavior is caused by tube effect in the dense Isotropic phase

before the I-N Phase transition, where the high particle packing restricts diffusion. This is
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Figure 4.10: Concentration dependence of a1 and a2 parameters obtained from the Normal-
ized self-van Hove function at different time steps: 0.03 s (black), 0.24 s (red) and 2.4 s (blue).
The slash lines determine the I-N phase transition.

further confirmed with a general calculation of the deviation from the Gaussian behavior, the

non-Gaussian parameter,

α2(∆t) =
〈∆x4〉

3〈∆x2〉2
−1, (4.4)

where the second and fourth moments of a 1D P[∆x(∆t)] are combined, being zero for

a Gaussian distribution. In Fig.4.11 we show the values of α2 as a function of time in the

Isotropic phase. We observe that α2 changes its behavior from dilute Isotropic to the semi-
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Figure 4.11: Time dependence of the non-gaussian parameter α2 calculated for different con-
centrations in the Isotropic phase.

dilute Isotropic regime. At high concentrations in the Isotropic phase, there is a rise of α2

which indicates the slowing down of the dynamics, approaching the phase transition. Interest-

ingly, this behavior has been observed by Weeks et al. for the glass transition of spheres [53].

In his work Weeks showed how close to the glass transition there is a rise of α2 and it dra-

matically changes the behavior in the glass state, where α2 shows immediately a decrease and

then it drops at longer lag times, as we observed for 6 and 10 mg/mL in our results. The main

difference is that our system does not undergo to a glass state, but this glass state behavior is

prior to the I-N phase transition.
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4.5 Nematic-SmecticA Phase Transition

Contrary to the I-N phase transition which is clearly first order as demonstrated by the exis-

tence of tactoids, the Nematic-Smectic phase coexistence is not that evident. Generally, DIC

microscopy is used to identify characteristic layered pattern of the Smectic phase, which can

be distinguished from the Nematic texture characterized by the birefringence and the absence

of layers.

In our sample, we found a N-Sm phase coexistent between 87 and 91 mg/mL, which is con-

sistent with literature [19, 29]. At 87 mg/mL we observe clearly Nematic regions mixed with

small Smectic regions, and at 91 mg/mL the Smectic region dominates while small Nematic

regions can be distinguished. In this range of concentration, we want to study the underlying

dynamical behavior of the rods to demonstrate that the order phase transition can be dynami-

cally identified.

4.5.1 Analysis of dynamics throughout the phase transition

We proceed to the specific analysis of dynamics of the N-SmA Phase transition. The most

noticeable difference in the dynamics between the N-Sm phase transition is that in the Nematic

the motion is continuous while in the Smectic phase particles exhibit jumps.

In figure 4.12 we show four different types of trajectories that we find at 87 and 91 mg/mL:

a) Continuous Nematic-like diffusion; b) smooth smectic trajectory, where a transition between

layers has intermediate points, such that our algorithm cannot identify as a jump; c) pure

smectic trajectories where jumps are clearly recognized (the residence time τ is indicated by

the green line); d) Mixed trajectories, in which we observe both Nematic and Smectic-like

behavior. These are most likely particles that get into or out of a defect, see below.

In Fig4.13a we represent the trajectories that are characteristic of the N-Sm Phase transition.

We color code them (green: pure Smectic, red: pure nematic and pink: smooth Smectic)

and overlay them with DIC pictures. These types of trajectories are distinguished using the

step-detect algorythm, which identifies the sharp transitions of the Smectic jumps from the

continuous Nematic diffusion. The smooth smectic are trajectories which the jumps have

a very short residence time and the transitions start to be less sharp, so then the program
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Figure 4.12: Typical trajectories found in the N-Sm phase transition (87 and 91 mg/mL): a)
Nematic, b) Smooth Smectic c) Smectic d) Mixed trajectories. Parallel (black line) and per-
pendicular (red line) diffusion are represented as a function of time. For Nematic and smooth
Smectic jumps are not recognized by the Step-detection program contrary to the Smectic were
clear jumps are observed. The position is normalized by the Llayer = 0.92 µm. Horizontal
lines indicate adjacent layers.

cannot identify them. As we can observe for 87 mg/mL, we have two types of regions: no

Smectic layers with Nematic-like trajectories, and Smectic layers with smooth Smectic-like

trajectories. Mainly we get pure Smectic, pure Nematic, and smooth Smectic trajectories. At

91 mg/mL, we have regions of clear coexistence of Smectic Smooth Smectic, and we have a

few number of Nematic trajectories. The mixed trajectories are not considered since they have

been observed only in highly defected regions and will be discussed more extensively later in

this Thesis.
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Figure 4.13: Overlaying DIC picture of and fdY21M trajectories. Upper figures: first con-
centration N-Sm phase transition (87 mg/mL). Bottom figures: second concentration N-Sm
phase transition (91 mg/mL). Green trajectories represent pure Smectic trajectories, violet
trajectories are Smooth Smectic trajectories, and red trajectories are pure Nematic. At this
concentration, Smectic layers start to fade (left), and there are regions where they are not
observed (right). Scale bar indicates 5 µm.

These observations suggest a N-SmA dynamical phase coexistence. However, we need to

quantify the differences between the trajectories labeled as pure Nematic and smooth Smectic,

as the step-detection is not conclusive. The program may have limitations due to the short

time residences found in the smooth smectic trajectories. We again evoke the use of the self-

van Hove, as it is distinctly different for both types of trajectories, as shown in Fig.4.14.
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Figure 4.14: Self-Van Hove function after the distinction of the dynamics for 87 mg7mL. a)
Profile for the Self-Van Hove of the pure nematic like trajectories. Number of particles: 117
b) Profile of Self-Van Hove function of smooth Smectic trajectories. Number of particles: 541.
Typical discrete peaks are shown at one layer distance for the smooth Smectic Self-Van Hove.
5ms data is included to increase statistics.

In Fig.4.14a we plot the self-van Hove corresponding to the Nematic trajectories (red) and in

Fig.4.14b the smooth Smectic-like trajectories (pink). Despite the fact that for smooth Smectic

trajectories the jumps are smooth, discrete peaks show up in the self-van Hove function at

one adjacent layer distance, which is not present in the self-van Hove of the pure Nematic

trajectories. However, this difference is not as clear as for the pure-Smectic self-van Hove

function where sharp peaks are exhibited.

Once the trajectories are categorized, we plot the fraction of the different trajectories as we

go from the Nematic into the Smectic-A phase, as shown in Fig.4.15. In the Nematic phase,

pure Nematic trajectories predominate. At 87 and 91 mg/mL we have a coexistence of both

classes of trajectories. This is our dynamics proof of Nematic-Smectic phase coexistence as

we set out to do. Moreover, the limitation to clasify the smooth smectic could be the accuracy

of the step detection algorithm for Smectic jumps at the phase transition, where residence

times are very short. As said before, the Mixed trajectories, which are the ones that diffuse in

or out from a defect, are in small percentage and only appear in highly defected regions in the

Smectic-A phase.
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Figure 4.15: Ratio of pure smectic (green squares), pure Nematic (red triangles), Smooth
Smectic (pink circles) and mixed (blue triangles) over the total number of positions as a func-
tion of concentration. Dashed vertical lines indicate phase transition limits. Number of parti-
cles used at each concentration is around 300.

4.5.2 Calculation of Smectic Ordering Potentials

In addition to the dynamics, we characterize the N-SmA phase transition by first quantifying

the energy barriers imposed by the Smectic ordering, as they strongly influence the dynamics.

The Smectic potentials ULayer are obtained from the probability P(z) of finding the particle

with respect to the middle of the layer parallel to the director and subsequently using the

Boltzmann factor,

P(z)∼ e−ULayer(z)/kbT . (4.5)

where kB is the Boltzmann constant. P(z) is experimentally obtained from the fluctuations

within the layer as shown in Fig.4.3. For this purpose, we use a step-detection algorithm which

finds sharp transitions of one-rod length between two points within the trajectory which we
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Figure 4.16: Concentration dependence of a) Smectic potential barriers ULayer devonvoluted
from the psf. Inset shows raw data for all Smectic concentrations; b) Residence time τ; c)
Ratio of jumpers over no-jumpers. The vertical dashed lines represent the phase transitions.

call jump. With this methodology, we identify many time windows corresponding to the time

that the particles stay in the layer between jumps (or the so-called the residence time τ), and

we measure the fluctuation within the layer.
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The values of the potentials obtained from deconvolution of the raw data from the point

spread function (see Appendix), are represented as a function of concentration in Fig.4.16a.

ULayer decreases with decreasing concentration, due to a higher packing between layers. At

the concentration in the N-Sm phase transition close to the Nematic phase (87mg/mL), the

value of ULayer drops below 1kbT . A similar trend is observed in the residence time τres as

shown in Fig.4.16b , which is the average time that a particle stays within the layer. The τres

follows the same trend that the scape rate of Kramer’s escape theory [125]. Moreover, the

ratio of jumpers over a total number of particles is represented, as shown in Fig.4.16c. The

number of particles that jumps through the layers correspondingly decreases with increasing

concentration.

4.6 Smectic A-Smectic B Phase Transition

At high concentrations in the Smectic phase, the dynamics freezes as we showed by looking at

the concentration dependence of the diffusion coefficients and exponents in the first section of

the chapter. It is conceivable that this is related to the formation of the crystalline Smectic-B

phase. So far, the way to recognize the Smectic-B phase is by using SAXS [19]. While in

the Smectic-A mesophase particles have short range ordering or liquid like within the layer;

in Smectic-B a long range crystalline order is found. Here we will dynamically recognize the

possible co-existence of Smectic-A and Smectic-B phases looking at their different dynamical

behavior.

Before we discuss the analysis of the dynamics, we further investigate the structure of the

phase using DIC microscopy. This technique, instead of quantifying the packing of the rods

which is obtained by SAXS, quantifies the packing between layers which is characterized by

the layer spacing λ . We obtain λ from the FFT (fast Fourier transform) of the DIC pictures.

The value of the radius from the center of the FTT to the first and second harmonic intensity

signal is related to the value of the layer spacing λ (Fig.4.17). For each concentration, we

have measured 12-15 values of layer spacing.

The concentration dependence of the layer spacing λ and the normalized layer spacing

λ/Lrod , are shown in (Fig.4.18). There is a slight change of slope between the SmecticA and

the SmecticB phase, which can be related to a different packing density, due to the confine-
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a) b)

Figure 4.17: a) Region of interest (ROI) of a DIC picture of the Smectic phase formed by the
host system fdY21M at 98 mg/mL. Layer spacing λ at this volume fraction is 0.95 µm. Scale
bar indicates 5 µm. b) Corresponding Fast Fourier Transform (FFT) of original field of view
left picture (2048x2048, binning 1, 100x, exposure time 50 ms, NA=1.4) of the Smectic system
at 98mg/mL. The quantification of the lengths of the Smectic layer spacing has been done
performing the FTT of the DIC pictures.

ment within the layers induced by the high rod density [19]. At concentrations higher than

110 mg/mL, within the range of Smectic-B mesophase, λ/Lrod reaches 1, which means that

the system is highly packed. These results, however, are not consistent with the previous

measurement, where the difference of slope of λL between SmA and SmB phases is not that

dramatic [19].

We now want to relate this difference in the packing with the dynamic behavior. As men-

tioned before, Di and γ drop to zero at concentrations corresponding to the Smectic-B phase.

This is also reflected in the values of τ , which diverges due to the residence time of the parti-

cles, which do not move from the layers, as shown in Fig.4.16. Nonetheless, we do have to be

cautious with this latter statement due to the limited total time of observation, due to practical

issues (photobleaching, memory, etc...). In this total time, most of the particles do not exhibit

jumping-like behavior (non-jumpers). This poses the question if for those particles we do not

observe jumps due to the limited time of observation (15 seconds), or they are completely

stuck in the layer because they belong to the Smectic-B phase.

Hence, we want to distinguish the particles that jump and the particles that do not jump due

to the lack of dynamics. We assume that there will be a considerable difference between the

fluctuations within the layer of the particles that jump (even if do not track the jumps during
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Figure 4.18: The layer spacing λ as function of concentration. Left axis indicate the raw data
and right axis the normalization λ

Lrod
, Lrod = 0.92µm. The Smectic layered pattern starts to be

observed after the SmecticB-Columnar phase transition at around 138 mg/mL and it vanishes
when the Nematic-Smectic phase transition finishes at 87 mg/mL.

the time window of the movie), and the particles that are in the Smectic-B and consequently

do not show any dynamics. Thus, if we analyze the dynamics, we can track this difference

and classify the type of particle. It is important to remark that we take as a reference for the

Smectic-B phase (no dynamics) the data at 100 mg/mL, to compare the results obtained within

the layer.

First, we make a distinction between the particles that exhibit jumps during the total time

of the movies and the ones that do not exhibit any jump. Then, we obtain the dynamics of the

jumping particles within the layer from isolated time windows during the residence time τ ,

represented by the green line in Fig.4.19b. Also, we obtain the dynamics of the non-jumping

particles from the full trajectory, as shown in Fig.4.19c.

In figure 4.20 the linear representations of the MSDLayer parallel and perpendicular for

jumping and non-jumping particles are represented. Indeed, the MSD shows two different

behaviors. For non-jumping particles only at 93 mg/mL, we observe some motion while for
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Figure 4.19: Diffusion within the layer examples. a) DIC and fluorescence overlaying pictures
at different time steps of a particle that diffuse within the layer. The blue cross is the reference
starting point. The white arrow indicates the director n. Scale bar: 2 µm. b) Smectic-like
trajectory as a function of time. The green line represents the time residence window where
the analysis within the layer is performed. c) Typical trajectory of a non-jumping particle,
which stays within the layers during the total movie time.

higher concentrations the MSD remains at approximately zero. At the same concentration,

we see almost free but sub-diffusive behavior for the particles that we classify as jumping

particles.

The diffusion coefficients have been extracted from the slope of the MSDLayer, using Eq.4.2.

The D‖layer and D⊥layer for jumping-particles have values that follow the same trend, but they are

somewhat lower than for full trajectories due to the discrimination of the jumps. Compared to

the full trajectories, the main difference is that the diffusivity γ is glass-like for the dynamics

within the layer, as shown in Fig4.21.

On the contrary, the diffusion rates within the layer for the non-jumping particles show that

from 95 to 98 mg/mL motion is almost prohibited, as we observe for the full SmecticB at

100 mg/mL. Also, γ drops below 0.5 for the glassy state which confirms that these particles

are in the Smectic B phase, as shown in Fig.4.21. Interestingly, this is first observed at 95

mg/mL for the parallel diffusion, which means that the parallel diffusion is the first to be fixed
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Figure 4.20: MSD raw data within the layer for a) jumping particles and b) non-jumping
particles. Non-jumping particles are in the range of Smectic-B concentration for the Host
fdY21M. Subdiffusive behavior is reflected in the change of slope of the MSD. Each MSD is
calculated for around 300-350 particles. Solid lines indicate the fitting with the power law
〈r2

i (t)〉= 2dDitγi .

on its crystal lattice point. Therefore, it is safe to assume that the non-jumping particles belong

to the Smectic-B regions. We can now complement the phase diagram as shown in Fig.4.21

with the fraction of non-jumping particles which reaches 1 when entering the pure Smectic-B,

as shown in Fig4.22. This figure clearly shows that there is phase coexistence of SmA-SmB

in a quite broad concentration range.

However, at this concentration, the homogeneity of the sample can affect the results. One

could argue that this dynamic co-existence is due to the poor homogeneity when preparing the

sample. Although we follow an experimental protocol for sample homogenization, it is hard

to tell at this state of the sample.
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Figure 4.21: Concentration dependence of Di (upper figures) and γi (bottom figures) within
the layer for a) jumping particles b) non-jumping particles within the total time of the movie.
Parallel diffusion is represented with black solid squares and perpendicular with open black
triangles. Horizontal dashed line indicates the value for particles in SmB phase. The arrow
indicates the range of concentration where SmB dynamics are found. Horizontal dashed line
indicates the value at which the glass transition occurs. Vertical dashed lines indicate the
phase boundaries. Each data point is calculated for around 400 particles.

4.7 Discussion and conclusion

In this chapter, we have presented an overview of the dynamics of the rod-like fdY21M parti-

cles at the different phase transitions: I-N, N-SmA, and SmA-SmB.

In Sec.4.4 we use the self-van Hove function to characterize the dynamic signature of the I-

N phase transition. We found that the Brownian motion is very much restricted in the Isotropic

phase close to the I-N phase transition as characterized by a2→ 0.5. The same behavior has
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Figure 4.22: Ratio of pure smectic (green squares), pure Nematic (red triangles), Smooth
Smectic (pink circles), mixed (blue triangles) and SmB particles (black diamonds) over the
total number of positions as a function of concentration. Dashed vertical lines indicate phase
transition limits. Number of particles used at each concentration is around 300.

been observed for colloidal glasses [53, 70], which hints to heterogeneous dynamics. Hence,

this effect could be a signature of the tube effect [51], where particles are confined by their

neighbours until they reorient to find the path they can diffuse through. The Gaussian behavior

is recovered after the phase transition in the Nematic phase for the parallel diffusion, which

is promoted by the orientational order of the phase [26]. The perpendicular diffusion remains

sub-diffusive.

In Sec.4.5 we use the different behavior of the trajectories in the Nematic phase (continuous

motion) [26] and Smectic phase (jumping-like motion) [28, 29] to characterize dynamically

the N-SmA phase transition. Phase transitions can be first order, where both mesophases

are in coexistence in equilibrium (as it is clearly observed for I-N Phase Transition). On the

contrary, second order phases transitions are continuous and do not exhibit phase coexistence.

We distinguish dynamic coexistence in the range of the N-SmA phase transition, which is also

observed by DIC microscopy. Hence, the experiments support that the N-SmA phase transition

is first order as proposed in previous studies [8, 9]. We tried also to characterize the smooth
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smectic trajectories, for which the program cannot recognize the jumps because they are not

as sharp as the the pure Smectic ones. The self-van Hove function is used to do so (Fig.4.14).

Even though the self-van Hove for the Smooth Smectic trajectories exhibits discrete peaks

observed at one adjacent layer distance, they are not as sharp as the pure Smectic trajectories.

It makes difficult the comparison with the pure Nematic phase.

Finally, in In Sec.4.6 we investigate dynamics at the SmA-SmB phase transition, for which

the layer spacing λlayer suggests a different packing of the layer between both phases, in

addition to the lateral particle packing studied by SAXS [19]. We show that this change of

packing density affects the dynamics as the diffusion rates and exponent drop to zero. When

comparing the dynamics within the layer for jumping and non-jumping particles, we find a

dynamic coexistence in a region with an appreciable width. Thus, a complete phase diagram

which represents the fraction of particles in each mesophase and at the phase transitions is

presented in Fig4.22. At each phase transition, we have a coexistence of two populations

of trajectories, corresponding to the phases at both sides of the transition. However, one

could argue that our observations are due to insufficient mixing after dilution, especially at

SmA-SmB phase transition where the sample is very dense. Although there is a procedure of

homogenization during the sample separation, there could be regions where the sample is not

perfectly homogenized.

4.8 Appendix

For the acquisition of fluorescence movies of our system, we used two different exposure

times: 20 and 5 ms. The corresponding frame rates for our instrument resolution are 33 and

180 fps for 20 and 5 ms respectively. For the data at 5ms, we used a region of interest (ROI) of

approximately 1200x430 pixels. Residence time (τres) and potential are strongly related, since

the potentials are calculated from the fluctuation within a determine τres. However, as shown

in Figure 4.23, τ for 5 ms is lower than for 20 ms movies, while the potentials obtained for 5

ms and 20 ms are consistent. Low exposure times allow us to make fast movies (which means

increasing the frame rate), but the length of the movie decreases. Our effective time window

for 5ms movies is 3-3.5 seconds (depending on the movie), although the movies are 6 seconds

long. Despite the fact that we use the same conditions as for 20 ms, at this exposure time the
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Signal to Noise Ratio (SNR) or contrast value between the intensity of the particles and the

background noise decreases. Hence, the effect of photobleaching becomes more apparent.

If we look at 20 ms movies, we have a distribution of residences times where we find values

above 3 or 4 seconds, but also shorter times. When we calculate the average of this probability,

we take into account all of these different values.

Figure 4.23: Concentration dependence of Potentials and τr for 5 and 20 ms expsosure time.

The fact that at 5 ms our time windows is reduced to 3 seconds results in a cut off for the

long residence times, see Fig 4.24. Hence, particles that stay in the layer a time longer than

3 seconds will not be accounted as a jumper, but as stuck particles, because within these 3

seconds, they do not jump. However, the short residence times are taken into account (those

values are also in 20 ms movies), biasing the final result.

An advantage of using high time resolution is that we can resolve small intermediate jumps.

Thus, at small exposure times, we can track smaller time residence events. However, the

fluctuations that we find within this small time residence are the same, giving potentials that

are consistent with the 20 ms data.
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Figure 4.24: Histograms of residence time in pixels at 97, 95 and 91 mg/mL for 5 and 20
ms exposure time. The vertical dashed line indicated the two different time windows for each
exposure time.



5
Single Particle dynamics of Guest-Host Smectic system

of colloidal filamentous particles

In this chapter, we investigate the dynamic behavior of long guest rod-like particles (M13KO7)

immersed in liquid crystalline phases formed by shorter host rods (fdY21M). We use direct

visualization and tracking at single particle level using fluorescence microscopy, thanks to the

presence of labeled viruses. We quantify Nematic-like diffusion of the guest particle for the low

concentration of the host Smectic-A phase, confirming that they are not commensurate in the

Smectic layers. At higher concentrations, the long particles feel the stronger Smectic potential,

and typical discrete peaks in the self-Van Hove functions are observed. In the crystalline

smectic-B phase, the long guest particles which are not commensurate with the layer spacing,

are still mobile as they generate their own voids in their adjacent layers. These results suggest

that dynamics can be controlled by tuning the guest particle size and the packing density of

the host system.

81
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5.1 Introduction

Highly dense ordered and crowded systems generally cause a slowing down of the Brownian

diffusion of its constituents [54,126,127]. There are many studies of this anomalous diffusion

which mainly focus on the diffusion of a tracer through an amorphous unstructured host [128].

In many systems, however, there is structure present mainly through self-assembly. Thus the

question arises as for how diffusion of a guest particle is altered when the host is ordered.

In nature, self-organization of systems into lamellar-like structures is ubiquitous, such as the

lateral diffusion of membrane proteins within cell membranes [129]. Many biological systems

exhibit lamellar or smectic-like ordering [97] such as chloroplasts and retinal rods [130]. As

transport through such structures still needs to take place, the question is whether and how

transport of guest particles, which are not part of the structure forming materials, takes place

through such highly ordered structures.

Similarly, it has been a long-standing question how diffusion in colloidal crystals takes

place, where local mobility [131] at the crystal lattice points as well as vacancies play an

important role. In most studies of the transport of guest particles through a structured back-

ground, the guest particles are smaller than the typical length scale of the host system, see e.g.

simulations [132, 133] and experiments [56, 134–136].

In this chapter, we address the opposite limit from an experimental point of view, e.g.

how the mobility of a guest particle is affected by a surrounding energy landscape that has

a smaller length scale than the guest particle? For this study, we have defined a model system

by introducing tracer amount of long, non-commensurate, guest rods in a host smectic phase

comprised from shorter host rods, as schematically represented in Fig5.1. Having long guest

particles whose length is higher than the host layer spacing for which Llayers ' Lhost , implies

that the guest rods have to be accommodated in more than one smectic layer, exceeding the

typical length scale of the host ordering potential.

It mimics the transport of a guest particle through layered structures, the so-called perme-

ation, while it represents diffusion in a less stringently ordered phase than 3-d crystals. As we

will consider purely hard core interactions, we assume that the complexity of the experimen-

tal model is reduced to a purely entropic problem, where only repulsion interactions between

particles will lead a change from an ordered phase to am more ordered phase by increasing

the free energy of the system.
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From the fact that the particle is non-commensurate only in one layer we expect that the

ordering potential that sets the smectic layers will not be the same as for the host particle, and

therefore also that the parallel diffusion will be affected. We also expect that the diffusion

within the layer will be affected, as the particles have effectively close neighbors stemming

from at least two adjacent layers.

Systems based on rod-like fd viruses are ideally suited for this study as they exhibit the full

range of liquid crystalline phases [64, 75]. Their size of almost 1 µm allows for detailed fluo-

rescence microscopy studies, while a biological toolbox can be exploited to make particles of

different lengths and stiffnesses. This system has been used earlier to study host-in-host diffu-

sion in the nematic [63], smectic phases [27, 29] and columnar phases [96], but also for guest

(bead) host (nematic) systems [137]. We will study the diffusion of the mutant M13KO7 as a

guest particle in a Smectic ordered phase of the stiff fdY21M. M13KO7 has a contour length

of 1.2 µm, which is 1.3x longer than the contour length of fdY21M viruses. When form-

ing Smectic layers, fdY21M particles have a layer spacing of around 1µm so that we expect

that the long guest M13KO7 is accommodated in more than one Smectic layer. As we have

seen in chapter 2 and the work of Pouget et al., anomalous hopping type diffusion between

the Smectic layers has been observed for a the Smectic phase of pure fdY21M, rather than

diffusion within the layer. This hopping type diffusion takes places in quasi-quantized steps

of one-rod length. Thus, the particles exhibit Brownian diffusion confined in a background

ordering potential.

The chapter is organized as follows. We start by introducing our guest-host Smectic system

and the methodology we use to characterize it. In the first section, we calculate the effective

potential for the particles and then investigate its influence on the self-van Hove function,

which is a very sensitive measurement to observe the effect of structure on the diffusion. In

the second section, we discuss the mean square displacement both for the full trajectory of the

particles and locally within the layer, which means that we consider the motion only within

the Smectic layer. The results are always compared with the data that we already showed in

chapter 4 for the host system. Finally, in section 5.6 we propose an interpretation of the results

on the basis of the misfit between the guest particle and the layers that contain it.
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Figure 5.1: (a) a scheme of the Guest-Host system used in this work. The host system is a
smectic phase of fdY21M viral rods, in which we dispersed tracer amounts of labeled short-
host (green, fdY21M) and long-guest (red, M13K07) rods, which are 1.3 times longer and
about 3 times more flexible than the host rods. (b) Overlay of a DIC image, displaying smectic
layers, and Fluorescence microscopy image, displaying the differently labeled particles. Scale
bar indicates 1 µm length.

5.2 Design and detection of Guest-Host Smectic system

In this study, we have used two mutants of fdwt to create our experimental guest-host sys-

tem: fdY21M as host liquid crystalline system and M13KO7 labeled with fluorescence dye

as the guest particle. The diameter for both viruses is d = 6.6 nm, and due to a genetic

modifications in the amino acids of the pVIII coat protein, both mutants have different con-

tour lengths and stiffness. For fdY21M, which we will call short-host, the contour length is

L = 0.92 µm and for M13KO7, which we will call long-guest, it is L= 1.2 µm [20], so that

the ratio LM13KO7/L f dY 21M = 1.3. The length is characterized by Transmission Electron Mi-

croscopy (TEM). To visualize the rods by fluorescence microscopy, we labeled fdY21M with

Alexa488-TFP (Invitrogen, MW=884.91 g/mol), and M13KO7 with Dylight549-NSH ester

(ThermoFischer, MW=1040 g/mol). The procedure of labeling has been explained in Chapter

3. Both labeled particles were added in a ratio of about 1 labeled particle in 105 non-labelled

particles (Fig. 5.1). With this ratio, we have around 100 labeled particles in our field of

view (1208x1080 pixels) in the range of concentration of the Smectic phase. The host system

fdY21M was prepared as explained in Chapter 4.

We performed experiments throughout the full phase diagram as described in Chapter 4.

Samples were prepared by putting a drop of the sample between two spacers of a height of

about 10µm, covering it with a cover slip and shearing it by slight up and down motion for
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about 10 seconds before the sample was sealed. Note that for smectic samples we observed

the segregation with time of the long guest particle into highly defected regions of the sample

or in regions containing impurities. This process occurs in more than a few weeks (Fig.5.2).

In contrast, the labeled host particles do not show this tendency. Hence we conclude that

this segregation is driven by the length mismatch [138], and not by an effective different

diameter [46, 139, 140] due to the labeling. Moreover, the amount of labeled particles, and

especially of long-guest particles, is so small (ratio 1 : 105) that we assume that the phase

behavior of the host system is not affected by adding the tracer particles.

Figure 5.2: Left: Overlaying of Fluorescence picture of M13KO7 particles with DIC picture at
100x magnification one day after sample preparation. Right: Same sample one week after. We
observe how M13KO7 particles tend to aggregate in a inhomogeneous region of the sample.

Fluorescently labeled viruses were visualized using an inverted microscope (IX-71 Olym-

pus), equipped with a high-numerical aperture (NA) oil objective (100x PlanAPO NA 1.4) and

a mercury lamp as excitation light source (X-cite series 120 Q). A dual emission image splitter

(Optosplit II Andor) was used to project two identical fields of view, corresponding to the two

emission wavelengths, onto an ultra-fast electron-multiplying camera (sCMOS Andor cam-

era). The exposure time was 20 ms, while the maximum length of the movies was 15 seconds.

After approximately 6-7 seconds photobleaching of the Alexa488 dyes become apparent. Per

concentration, we collect in total around 800 trajectories using a particle tracking algorithm as

explained in details (Appendix 1).

Figure 5.3 shows two typical trajectories in the middle of Smectic-A phase (93 mg/mL)
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for M13KO7 guest (top plot) and fdY21M host (bottom plot). There are a few apparent dif-

ferences: (1) the long-guests do not display sharp jump events as compared with short-hosts,

but still diffuse strongly along their long-axis; (2) diffusion within the layer is more hindered

for long-guest than for short-host fdY21M particles. We could also observe that maximum

displacement is bigger for the long-guest M13KO7 particles, but this needs to be quantified.

We will try to quantify these observations by comparing the potentials, the self-van Hove

functions and diffusive behavior of the guest and host particles.

Figure 5.3: Typical trajectories for guest-M13KO7 and host-fdY21M in the Smectic Phase.
[fdY21M=93 mg/mL]. (a) Overlay of a DIC picture and a M13K07 guest trajectory for
which rapid diffusion is observed through the layers. (b) Corresponding displacements of the
M13K07 rod, parallel (red) and perpendicular (black) to the normal of the smectic layer. (c)
An example of a trace for a fdY21M host particle in the lamellar phase of layer spacing Llayer.
(d) Associated displacement where jumping type diffusion process is clearly evidenced. The
green lines are obtained by the jump-recognition algorithm and define the residence time, τres,
that rods spend within a smectic layer before a hopping type event. Scale bars represent 1 µm.
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5.3 Calculation of the Smectic ordering potentials

We start the evaluation of our results by calculating the potential that is effectively felt by

the non-commensurate particles. The Smectic phase is characterized by an effective periodic

energy landscape in one dimension due to the layered ordering. The potential barriers increase

with increasing concentration. Thus, the particle has to overcome this barrier to jump from one

layer to the adjacent one, exhibiting "hopping type" diffusion. We anticipate that this ordering

potential will not be experienced to the same extent by the long-guest particles. As explained

in Chapters 3 and 4, the Smectic potentials ULayer can be obtained experimentally from the

probability P(z) of finding the particle with respect to the middle of the layer parallel to the

director (or the fluctuations within the layer) (Fig.5.3) and subsequently using the Boltzmann

factor,

P(z)∼ e−ULayer(z)/kBT . (5.1)

where kB is the Boltzmann constant. Fig. 5.4a displays the concentration dependence of

ULayer for both particles. While for the short-host the potential increases around the N-SmA

transition, as expected, the onset of ULG
Layer for the long-guest is shifted to much higher con-

centrations. Thus, even if there is a background periodic potential, at this density packing of

the system the guest particle can permeate through the Smectic layers. ULG
Layer continues to

increase after the SmA-SmB, while for the short-guest the diffusion freezes and no potential

can be obtained anymore. The raw data observed in the inset has been deconvoluted from the

optical smearing using the psf(point spread function) that we get from the immobile particles,

as we explained in Chapter 2. Moreover, both particles have the same concentration depen-

dence, since the slope is the same from both of potential decays. This is directly reflected in

the ratio of jumping particles (particles that do not exhibit jumps within our time window)

over non-jumping particles (particles that we are not able to observe jumping within our time

window), see Fig. 5.4b. The ratio of jumpers for the short-host starts to decrease after the N-

SmA transition and reaches 0 at the SmA-SmB transition, while for the long-guest the decay

sets in at higher concentrations and jumpers can still be found in the SmB phase. Similarly,

the average residence time τ , which is calculated from the histogram of residence times for all
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Figure 5.4: Concentration dependence of a) Smectic potential barriers ULG
Layer are lower than

for the short-host USH
Layer, deconvoluted for optical smearing. Solid lines represent the slope

of the data. The arrow indicates the difference in concentration for the onset of the smectic
potential. The inset shows raw data at [98 mg/mL]; b) Ratio of jumpers over no-jumpers; c)
Residence time t. The vertical dashed lines represent the phase transitions. The open squares
are the data for the fdY21M short-host particles, and the solid circles are the data for the
M13KO7 long-guest ones.
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particles diverges around the SmA-SmB transition for the short-host while it further increases

throughout that transition for the long-guest, see Fig. 5.4c.

5.4 Study of self-dynamics: the self van Hove function

We now would like to see how the differences between the potential barriers ULG
Layer and USH

Layer

affect the diffusion of the particles. The data presented in the previous section suggests that

the long-guest is not-commensurate within the host Smectic phase, so we expect a significant

impact on the dynamics. This can be most clearly judged from the Self-Van Hove function.

This function gives the probability density function for a displacement z during a time t.

G(z, t) =
1
N

N

∑
i=1

δ [z+ zi(0)− zi(t)] (5.2)

Eq. 5.2 provides valuable information about the dynamics of particles as it represents the

solution at the single particle level for the diffusion permeation equation 1 through the layers.

For Brownian particles, the Self-Van Hove function is given by a Gaussian distribution which

smears over time.

In the scenario of a smectic background potential, it exhibits distinct peaks at integral mul-

tiples of the layer spacing [27, 29]. In Fig 5.5 we plot a comparison of the parallel self-van

Hove function between the host and the guest particles at three concentrations in the Smectic-

A phase. For the host particle indeed we observe distinct peaks for the lowest concentration

of [91 mg/ml]. The long-guest particles display weak humps, so the long-guests do "feel" the

potential even though they are not-commensurate. However, the peaks are much less distinct.

This shows that the self-van Hove function is the most sensitive measurement to observe the

effect of a background potential. For the middle concentration of [93 mg/ml], peaks are more

distinct, but by far not as defined as for short-host particles. Finally, for the last concentration

1 The permeation through the Smectic is also a consequence of the vacancies available in adjacent layers. In
2013, Grelet and Lettinga [28] proposed a phenomenological expression for the permeation, derived by cou-
pling the displacement of a segment of a smectic layer u to the compressibility modulus B̃ via the permeation
parameter λb. As they explain, the fundamental solution of this diffusion equation at single-particle level is
the self-van Hove function (Eq.5.2)
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Figure 5.5: Self-Van Hove function or probability density functions in space at different con-
centrations for guest (left) and the host (right) particles at different concentrations for the
parallel diffusion. The functions are normalized to one and the position is normalized by the
thickness of the smectic layer λ . Vertical lines indicate the position of the adjacent layers with
to respect z0.
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of [97 mg/ml] the self-van Hove of the short-host is almost frozen, while a smearing is still

observed for the long-guest.

These observations hint to an enhanced diffusion in the direction parallel to the rod along

the normal of the layers. This will be further exploited in the next section where we discuss

the mean square displacement.

Figure 5.6: Log-log representation of the mean square displacement (MSD) parallel (top) and
perpendicular (bottom) to the director plotted as a function of time for the long guest M13K07
particles in the range of high host concentrations. In blue is indicated the diffusion exponent
γ obtained from the numerical fit (red lines) according to Eq.5.3
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5.5 Study of self-dynamics: mean square displacement

5.5.1 Dynamics of the full trace

We have now established that the long-guest particles do feel the ordering potential of the

smectic phase but to a much smaller extent. Also, the self-van Hove functions hint to a faster

diffusion. The potentials and the self-van Hove function are the basis to understand the physics

of the most common transport property, namely the mean-squared displacement (MSD). In

complex systems, the time evolution of the MSD can most generally be described by a power

law:

〈r2
i (t)〉= 2Ditγi, (5.3)

where γi is the diffusion exponent, Di the diffusion rate and i represents the direction with

respect to the director (Par and Per for Parallel and Perpendicular respectively). Diffusion

coefficient Di depends on tγ . When the exponent γ > 1, it is called superdiffusion, while

for γ < 1 it is sub-diffusive. Both are considered anomalous diffusion. The mean square

displacement is calculated from the particle trajectories. In Figure 5.6 we have represented

in log-log scale the MSD for the Smectic concentration range, with their respective diffusion

exponents for long-guest M13KO7 particles. Diffusion coefficients and diffusion exponent

have been obtained from a fit of the data in the linear representation with Eq. 5.3. Only for

very high concentrations and for perpendicular diffusion we observe an upturn of the curve in

the log-log representation.

There are a few clear distinctions between the diffusion of the short-host and long-guest

particles. The long-guest particles exhibit slightly lower D‖ than short-host particles through-

out the Nematic range, while D⊥ is much lower and therefore more hindered, as shown in

Fig 5.7. On the contrary, after the N-Sm transition D‖ for the short-host sharply decreases,

while for the long-guest D‖ even seems to increase. The perpendicular diffusion D⊥ for both

rods is similar in the smectic phase. The anisotropy in the diffusion is directly reflected in the

ratio between D‖/D⊥ which is plotted in Figure 5.7c. While this ratio is already higher in the

nematic phase, due to the more restricted perpendicular diffusion of the long-guest, it shows a
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Figure 5.7: Diffusion rates calculated from the slope of the Mean Square Displacement nor-
malized by the diffusion coefficients at infinite dilution D0[µm2/s] a) D‖ b) D⊥ as a function
of concentration for short-host (open black squares) and long-guest (solid red circles) c) The
ratio D‖ / D⊥ as function of concentration for host fdY21M (black open squares) and guest
M13KO7 (red solid circles). The dashed lines indicate the concentrations at which the phase
transitions occur.
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Figure 5.8: The γ‖ (left graph) and γ⊥(right graph) obtained from the mean square displace-
ment (MSD = 2Dtγ ), as a function of concentration for host fdY21M (black open squares) and
guest M13KO7 (red solid circles). The horizontal dashed line indicates the value at which the
particle has diffusive rate, for γ = 1. Values for γ < 1 are sub-diffusive and γ > 1 superdiffu-
sive. The vertical dashed lines indicate the phase transition boundaries.

strong increase for the long-guest when entering the smectic phase, while the increase for the

short-host is far more restricted. D‖ and D⊥ values have been normalized by the corresponding

theoretical values at infinite dilution, using D0
‖ =

kBT
γ‖

and D0
⊥ = kBT

γ⊥
, where T = 278K,kB is

the Boltzmann’s constant and γ is the friction constant. For M13KO7 particles the theoretical

values are M13KO7: D0
‖ = 1.89 µm2/s, D0

⊥ = 0.95µm2/s, and for fdY21M D0
‖ = 2.32µm2/s,

D0
⊥ = 1.16µm2/s.

The trends are the same for the diffusion exponent for the parallel diffusion γ‖. The short-

host becomes sub-diffusive at a lower concentration than the long-guest, which is a feature

that is also reflected in the potentials plotted in Fig. 5.4. γ⊥ is less sensitive to the differences.

It is interesting to remark that at high concentrations (100, 98 and 97 mg/mL) we observe a

change in the slope of the log-log MSD in both directions. There is an increase in the slopes,

and thus a decrease in γ , which implies that the confined particles escape from a cage.

The fact that no significant difference is observed between semi-flexible long guests and

stiff short hosts in the perpendicular diffusion is rather unexpected. Indeed, it has been shown

that self-diffusion within the layers is far more pronounced for stiff rods as compared to more

flexible ones of the same size [29]. The reason is that parallel, and perpendicular diffusion

is correlated, and that M13K07 guests do feel a weaker ordering potential than the constitut-



CHAPTER 5. SINGLE PARTICLE DYNAMICS OF GUEST-HOST SMECTIC SYSTEM
OF COLLOIDAL FILAMENTOUS PARTICLES 95

Figure 5.9: Representation of the different location for the guest particle M13KO7 in the smec-
tic background of fdY21M. In the first conformation, guest M13KO7 (red) is only in contact
with two of the layers, when in the image of the right it is located within three layers.

ing host particles, accounting then for their relative promoted lateral diffusion. This is also

reflected by the diffusion exponents showing a less enhanced sub diffusivity than the host

particles at the same concentration (Fig.5.8).

5.6 Discussion and Conclusion

The proposition that the diffusion rate of Brownian particles decreases with increasing parti-

cles size is not generally true. We proved this effect by evidencing a promoted permeation

of non-commensurate long guest rods through self-assembled smectic layers of shorter host

particles. We show in this chapter that big Brownian particles can diffuse faster than small

particles, when the length scale of a background potential fits the small particles, but not the

bigger particles: the long-guest M13KO7 diffuses faster through smectic layers of short-host

fdY21M than the host particles themselves, as can be seen in Fig.5.7a, Fig.5.4b and c. The

long-guest particles are even mobile in the crystalline Smectic B phase. Thus, we can con-

clude that permeation is favored for non-commensurate particles. Indeed, also the potential

barriers that are effectively felt by the long-guests, ULG
Layer are lower than for the short-host

USH
Layer, see Fig.5.4a. This does not mean, however, that there is no potential. Even at the
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lowest concentration in the smectic, the discrete peaks in the self-van Hove function confirm

that a mean potential is felt by the long-guest particles, see Fig.5.5. It suggests that the long-

guests "feel" the Smectic ordering potential even though they are not-commensurate within

the Smectic-layer.

In order to interpret the enhanced permeation of the long particles, it is important to realize

that a potential barrier in the SmA is not a static value but rather the result of fluctuations in

the density within the layer. Particles can jump in between layers only when there is a void.

With increasing concentration, the number of voids decreases and hence the barrier increases.

Non-commensurate particles will always be present at least in two layers at the same time so

that it does not need to "wait" until a void is created, hence ULG
Layer < USH

Layer. In the smectic

B, which has a crystalline order in the layer, the long-guest particle has to create a void to be

accommodated. Hence it is not surprising that it will still be able to diffuse, while the short-

host are fixed to their crystal lattice. This process is indicated in the cartoon of Fig.5.9. We

assume that there is a coupling of the parallel and perpendicular motion of the guest particle

so that the perpendicular diffusion is promoted when the particle diffuses through the smectic

layers of the host system.

A particle can, therefore, jump when a transient void exists in the adjacent layer. At higher

concentrations, the number of voids decreases and hence the potential barrier increases. As

non-commensurate long rods are always present in at least two layers at the same time, they

generate their voids facilitating their permeation.

For this process, the flexibility of the long-guest will certainly enhance the diffusion. This

is in agreement with results obtained for the columnar phase, where semi-flexible fdwt exhibit

higher number of half-jump events than for stiff fdY21M [96].



6
Induced super-diffusion in defected regions of dense

Smectic phase

Anomalous diffusion is observed in confined systems and geometries, such as the glass transi-

tion or crowded systems. Here, we study the diffusion of long guest tracer particles observed in

highly defected regions of a host Smectic phase of filamentous bacteriophages. The defects ap-

peared when two smectic domains with different orientation meet in a grain boundary. These

defects are called extrinsic defects since they appear to compensate the deformation. Direct

visualization of the guest traces has been performed by fluorescence microscopy, and the grain

boundaries regions have been recognized by DIC. The guest particles exhibit two types of be-

haviors: pure nematic like behavior within a grain boundary and particles that diffuse from

the Smectic phase into a grain boundary, displaying a mixed Smectic-Nematic behavior. For

these last particles, we find an induced super-diffusion as a result of a driven motion due to

confinement, and lateral diffusion is highly restricted. With time, phase separation of the guest

particles is observed, preferably located within grain boundaries.

97
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6.1 Introduction

Transport properties in Soft Matter depend sensitively on microstructure. Hence, the struc-

ture of the host phase in which a Brownian particle is embedded dramatically influences

the dynamics of the particles within the system. This is often observed in biology, where

for example, anomalous diffusion in living cells or bacteria predominates due to crowding.

The best-known effect is the sub-diffusion of a tracer which is hindered by the crowded sys-

tem [126,127]. However, there are also examples of particles within a biological system which

exhibit super-diffusion due to self-propulsion [141, 142]. Moreover, external forces can bring

colloids out of equilibrium in a controlled way, such as shear flow, electric or magnetic fields,

and confinement. We generally find confinement scenarios in crowded systems. The struc-

ture of these confined systems can be altered by the introduction of topological defects, as

it happens for silica rods [45] or the hexatic columnar phase of fd viruses [64]. It has been

studied that super-diffusion emerges in confined, crowded systems mainly for geometrical

reasons [143–145]. In colloidal crystals, rapid diffusion in dislocations is observed, giving a

dynamical heterogeneity, and a random walk in 1D is promoted [146, 147].

Inspired by the example of the colloidal crystals, one could ask about the dynamics of a

particle within a dislocation in a Smectic liquid crystal. A considerable amount of inves-

tigations has been focused on the nature of the defects of the liquid crystals, concretely in

the Smectic phase [148–150]. However very few investigations on single-particle dynamics

within the Smectic defects [151, 152] are known, where Brownian diffusion through defects

is studied. In these studies, they observe a spontaneous diffusion caused by the appearance of

grain boundaries that affect the continuity of the Smectic layers.

The two principal line defects or dislocations in the Smectic are the edge and screw dislo-

cations, as shown in Fig 6.2. Both of them can be defined as a local breaking of the transla-

tional order which involves a local variation of the layer symmetry, studied by F.C Frank in

1958 [153]. The edge dislocations are characterized by the breaking of continuity of a Smectic

layer, where a new layer appears. The screw dislocations impose a change of orientation of the

Smectic layer through the axial direction of the sample, and the rotation in the lateral packing

of the molecules becomes localized at defect sites.

The imposed twist is accommodated in the smectic by taking the form of a series of reg-

ularly spaced blocks of smectics with a constant angle of rotation between adjacent blocks.
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Figure 6.1: a) Scheme of (left) a screw dislocation and (right) an edge dislocation [154]. The
Burger’s vector is represented by b b) Scheme of a Twist Grain Boundary (TBG) formed by
screw dislocations [155].

They are defined by the Burger’s vector b, which represents the magnitude and direction of

the distortion. In an edge dislocation, the Burger’s vector is perpendicular to the line direction,

contrary to the screw dislocations where it is parallel to the line direction.

However, experimentally in the Smectic phases of rod-like colloidal particles we observe

grain boundaries when there is a disturbance of the packing between two domains, which

may consist of various dislocation arrangements [155]. The smectic phase resists the twist

deformations because it destroys the layering continuity, which is the configuration of lowest

energy of the system. Thus, defects must be introduced when such a deformation is imposed.

These defects are called extrinsic defects since they appear to compensate the deformation.

The defects allow for blocks of defined size of the smectic phase to be rotated about one

another through the introduction of rows of screw dislocations that form grain boundaries. One

of the optical features due to the TGB is the Moiré pattern, observed by optical microscopy

when two Smectic planes with different orientations overlap [154]. However, the distinction

of single line defects is not straightforward, since a TGB can be formed by a configuration of

a screw and also edge dislocations.
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Figure 6.2: DIC pictures at different z positions through the sample a) picture of the Smectic
phase where a Moiré pattern can be observed. The black arrow indicates the director along
which the particles are oriented b) edge dislocations where a Smectic layer appears breaking
the continuity (dashed white lines). The yellow numbers indicate the position of the layers.
The z (µm) indicates the planes normal to the director, at which each picture has been taken.
Scale bar indicates 2 µm

As we have mentioned for colloidal crystals, one might expect that structural defects in

the Smectic phase could facilitate the diffusion. In Chapter 4, we have studied a guest-host

system, where we observed how the long guest particles locate into defects rather than the

host particles. Motivated by these observations, we explore here the role of defects on the

dynamics of these guest particles located in the defects of the Smectic host system.

This chapter is organized as follows: in the first section, we present the system and the

conditions for the analysis. In the second section, we present the two most important events

that take place within and through the defects. We calculate the dynamics, and we compare

the results with the already calculated data for the Smectic monodomains (data from Chapter

4). Finally, we suggest an interpretation of the results.



CHAPTER 6. INDUCED SUPER-DIFFUSION IN DEFECTED REGIONS OF DENSE
SMECTIC PHASE 101

6.2 System: guest-host defected Smectic system

The Smectic phase exhibits two main types of defects: the screw and the edge dislocations,

which form the grain boundaries. In the guest-host system presented in Chapter 4, we have

observed that the long guest particles (semi-flexible M13KO7, L = 1.2 µm), are predomi-

nantly located within the defects of the Smectic phase formed by the short host particles (stiff

fdY21M, L = 0.92 µm). The data were taken at 98 and 100 mg/mL within the Smectic phase

of the guest-host system, where highly defected regions are observed.

The conditions of data acquisition are the same as for the guest-host system (see Chapter

4): Fluorescently labelled viruses were visualized using an inverted microscope (IX-71 Olym-

pus), equipped with a high-numerical aperture (NA) oil objective (100x PlanAPO NA 1.4) and

a mercury lamp as excitation light source (X-cite series 120 Q). A dual emission image splitter

(Optosplit II Andor) was used to project two identical fields of view, corresponding to the two

emission wavelengths, onto an ultra-fast electron-multiplying camera (sCMOS Andor cam-

era). The exposure time was 20 ms, while the maximum length of the movies was 15 seconds.

After approximately 6-7 seconds photobleaching of the Alexa488 dyes became apparent.

The grain boundaries can be distinguished using DIC microscopy, as shown in Fig6.2. Since

the observation is in 2D, we look at single grain boundaries between domains. The corre-

sponding fluorescence images are taken in the same region of interest and overlaid with the

DIC picture to locate individual particles within the background structure. The data acquisition

was performed one day after sample preparation. For analysis of the dynamics, the trajectories

that are identified in a defected region are represented one by one using the Matlab algorithm,

as shown in Fig.6.3. At these concentrations, Smectic-like trajectories are expected. However,

when a particle is within a defect or diffuses from a Smectic region into a defect, its trajectory

exhibits different behavior, as we will demonstrate in the next section. In Figures 6.4 and 6.5

we show more examples of these two types of motion observed in the sample.

It is important to remark that this analysis has been performed by using as reference the

overlay of DIC and fluorescence movies, corresponding to each trajectory. The number of

particles analyzed was 188 for 98 mg/mL and 175 for 100 mg/mL
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Figure 6.3: a) Example of a particle that is located within a line defect that exhibits contin-
uous or Nematic-like motion (left) DIC and fluorescence pictures overlay of particles located
in a grain boundary (right) parallel and perpendicular position as a function of time b) Ex-
amples of a mixed trajectory (left) DIC and fluorescence picture overlay (right) examples of
the position as a function of time, where the first part displays jumps and the second part is
nematic-like The green lines indicate the time residence τres between two jumps.
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Figure 6.4: Nematic-like trajectories as a function of time (frames) for particles located within
defects. The parallel direction is represented by the black line, the perpendicular direction by
the red line and the angle by the blue one. The position has been normalized by the layer
spacing. Horizontal dashed lines indicate one layer distance.
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Figure 6.5: Mixed trajectories as a function of time (frames). The parallel direction is repre-
sented by the black line, the perpendicular direction by the red line and the angle by the blue
line. The position has been normalized by the layer spacing. The green line represents the
residence time within a layer between two jump events. Horizontal dashed lines indicate one
layer distance.
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Figure 6.6: Fluorescence images of guest M13KO7 one day (left) and one week (right) after
sample preparation in the Nematic phase at 83 mg/mL (top figures) and in the Smectic phase
at 98 mg/mL (middle figures) and 100 mg/mL (bottom figures). The scale bar indicates 2 µm.

Furthermore, we observe a phase separation of the guest particles with time, within 5 to 7

days after the sample preparation. This phase separation occurs due to the size mismatch of
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the guest and host particles. This size mismatch is the origin of the faster diffusion of the guest

particles, as studied in Chapter 4, but also of the preference of guest particles to be located into

defects. After one week, we observe that most of the guest-particles are separated in regions

and exhibit motion. However, the dynamics in this state of the sample are not comparable with

previous data due to partial drying of the sample. This phase separation has not been observed

in the Nematic phase (at 83 mg/mL), as shown in Fig.6.6. This phase separation in the deep

Smectic phase may be favored by the location of the guest particles within the defects.

6.3 Measurement of dynamics of particles within grain

boundaries

The dynamics of the Smectic phase is influenced by the Smectic potentials, which leads to

a jumping-like behavior. At high concentrations in the host Smectic phase, the long guest

particles display discrete jump-events, as shown in Chapter 4. A different behavior hints to

a change of structure of the sample, as it is the case of the defected regions. We have used

two concentrations (98 mg/mL and 100 mg/mL) due to the presence of more defect regions,

and because at lower concentrations, the long-guest particles start to exhibit less prominent

jumping-like diffusion, which complicates the distinction between the motions within a defect

and in a monodomain.

We start the analysis of the results by the distinction between the two main types of events

that we observe in the highly defected regions. In Fig6.3 we showed the two characteristic tra-

jectories for the mentioned events: particles diffusing within a defect or particles diffusing into

a defect. We observe particles that are located within a grain boundary and whose trajectories

are Nematic-like, contrary to the expected jumping-like behavior within the Smectic domains.

Moreover, there are particles whose trajectories are partly smectic-like and nematic-like. We

call this behavior mixed trajectories, and it has also been observed for a small percentage of

host particles (see Chapter 3).

The analysis of these two types of behavior in a defected region has been done separately for

the full Nematic-like trajectories and the mixed trajectories. The distinction between Nematic-

like and mixed trajectories is possible using the step detection algorithm, which was already

used in Chapter 3 for the analysis of Nematic and Smectic behavior in the N-Sm phase transi-
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tion. We have collected enough events to calculate the average over all events for both types

of dynamics in defects. At 98 mg/mL 103 Nematic-like events have been observed, while for

100 mg/mL 96 events. For the mixed trajectories 85 event have been identified at 98 mg/mL

and 7 for 100 mg/mL.

Figure 6.7: Dynamics for a Nematic-like particle within a defect a) log-log MSD as a function
of time for parallel (solid) and perpendicular (open) direction at 100 (black) and 98 mg/mL
(red). The red lines correspond to the fit using a power law. The gamma values represent
the slope of the MSD b) Di obtained from the fitting. Solid symbols represent the data of the
Nematic-like particles within a defect and the open symbols the data obtained in the previous
chapter for the first Nematic concentration after the Smectic phase. The error bar is the
standard deviation of the different values obtained from all the movies at a fixed concentration.

6.3.1 Nematic-like behavior within the defects

We have observed that most of the long-guest particles that are located within a grain boundary,

exhibit a continuous motion which is characteristic for the Nematic phase. However, this

motion is confined within the defect.

In Fig6.7a we represent the log-log Mean squared displacement for the Nematic-like parti-

cles within a defect, from which we have obtained the Di and the γ by fitting with a power law

such as MSD = 2Ditγ . The results for Di as a function of concentration are shown in Fig6.7b.

We compare the Di to the behavior of the first concentration of the Nematic phase after the N-

Sm phase transition. For the particles within defects that exhibit Nematic-like behavior, there
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is no significant difference between 98 and 100 mg/mL. However, the D‖ in the Nematic like

trajectories presents higher values than for the data that has been analyzed in Smectic mon-

odomains (data presented in Chapter 4). On the contrary, the D⊥ is of the order of the values

in the Smectic monodomains (around 0.01 µm2/s), and seems compatible for the values of

D⊥ in the Nematic phase.

Regarding γ , we observe a distinct diffusive behavior for the Nematic-like particles that

diffuse within a defect, and previous results in the Smectic monodomains where it is clearly

sub-diffusive. For the nematic-like diffusion within defects, the γ‖ and γ⊥ are only slightly

below 1, which corresponds mainly to a diffusive behavior. Our interpretation for these results

is that the nature of the core may be a different phase than the Smectic, forming a channel that

induces a Nematic-like diffusion.

6.3.2 Mixed trajectories: motion from a Smectic domain into a defect

We will now turn to the analysis of the particles that exhibit mixed trajectories. This type of

particles exhibits a jump-like behavior, related to the location in a smectic monodomain, which

suddenly develops into continuous motion in one direction (Fig.6.3b). Thus, we separate both

behaviors using the step detection algorithm and analyze them separately.

We represent the log-log MSD’s for both parts of the trajectories in Fig.6.8. There is a

significant change in the dynamics between both parts of the trajectory by looking at the

MSD. The first significant difference is the diffusion exponent γ . The γ of the Nematic-like

part of the mixed trajectories exhibits a different behavior from the Smectic part and also from

the Nematic-like trajectories studied in Sec.6.3.1.

First, the γ‖ changes from diffusive to slightly super-diffusive behavior, as shown in the

change of slope of the MSD in Fig.6.8a. At given time t, the particles experience a velocity v
when they diffuse into the defect, which is bigger than zero, which causes the super-diffusive

behavior. We are able to quantify the velocity, knowing the time t where the slope changes

and using D‖ from the first slope of the MSD before it changes, such as D
v2 = t, and taking the

Di of the first slope where γ ∼= 1. For 98 mg/mL, D‖ = 0.208 µ2/s and t = 0.35 s so then,

v= 0.77 µm/s. For 100 mg/mL, D‖ = 0.06 µ2/s and t = 0.34 s, giving v= 0.42 µm/s.

Moreover, the results of the γ for the smectic part of the mixed trajectories are consistent
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Figure 6.8: Log-log representation of the MSD of a) Nematic part and b) Smectic part of
the mixed trajectories. Solid symbols represent the parallel direction, and the open symbols
represent the perpendicular direction. The red lines correspond to the fit using a power law.
The gamma values represent the slope of the MSD.

with the previous results in the Smectic domains for the guest M13KO7, studied in Chapter 4.

The particles exhibit a sub-diffusive behavior where the motion is determined by the Smectic

potentials of the host system.

Regarding the Di, there are clear distinctions between both behaviors. The Di is obtained

from the fit with the power law MSD = 2Ditγ of the first slope of the MSD of the Nematic

part, where γ ∼= 1. We observe an increase of D‖ for the Nematic-part of the mixed trajectory.

D‖ for the Smectic part is distinctly lower, by about 5 times, and consistent with the values

that we got before for Smectic monodomains. The D⊥ of the Smectic part is of the order of

the Nematic part.

Finally, we compare the results from the Nematic part of the mixed trajectories and the

Nematic-like trajectories within the defect. Interestingly, the γ⊥ for the Nematic-part of the

mixed trajectories exhibits a strong sub-diffusive behavior in comparison with the Nematic-

like particles within defects and also with the pure Nematic phase. This would hint a strongly

restricted diffusion in the perpendicular direction. In Fig.6.9 we compare the Drates of the

Nematic trajectories within a defect and the Nematic part of the mixed trajectories. We observe

that the D‖ is slightly higher for the nematic part of the mixed trajectories. However, the D⊥
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Figure 6.9: Comparison of a) D‖ and b) D⊥ between pure Nematic particles within defects
(black squares) and nematic part of the mixed trajectories. The error bar represents the stan-
dard deviation from the values obtained from all particles analyzed at each concentrations.

for the Nematic part is lower of the mixed trajectories is much lower than for the pure Nematic

of particles within a defect.

The previous results correspond to two principal types of behaviors found in the defect re-

gions: the pure nematic-like particles that are located within a defect, and the particles that

have partially Smectic and Nematic behaviors, where this mixed behavior is due to the dif-

fusion from a Smectic region into a defect. In the case of the partially Smectic and Nematic

particles, they diffuse from a Smectic domain into a defect. This change of domain could ex-

plain the slightly super-diffusion behavior, so then it becomes a driven motion with a velocity

v, as it is for the ballistic motion when MSD∼ t2.

6.3.3 Re-orientation events

We have observed a third type of event within the highly defected regions, which is the reorien-

tation of the particle during diffusion. However, only a small fraction of the particle reorients

(we have tracked 7 events of reorientation), so that the statistics are poor. This type of behavior

has been already observed by Naderi et al. in the columnar mesophase of fd viruses [96].

In Fig6.10 we show an example of a reorientation event. In this case, the reorientation of
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Figure 6.10: Reorientation event of a long-guest particle within a region where two orienta-
tions of the Smectic phase are observed (DIC picture, right). Fluorescence images show the
raw data where the dashed red line is drawn perpendicular to the long axis of the labeled
particle and indicates its position at the initial time and the yellow dashed line indicates the
final position of the particle after the reorientation. ∆θ indicates the angle between the initial
and the final positions. Scale bar indicates 1 µm

this particle is related with the possible dislocation (see DIC picture). However, in most of

these reorientation events, it is complicated to tell what causes the reorientation due to the

resolution of the microscopy techniques.
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6.4 Discussion and conclusions

In this chapter, we have studied the diffusion of tracer long-guest rods in a defected smectic

liquid crystal formed by shorter host rod particles. The analysis of the dynamics is focused in

the defected regions that appear at high concentration in the Smectic phase of the host system.

We have quantified diffusion within and into defects of the long-guest particle. We have shown

the two types of behavior predominate: particles that exhibit a continuous motion are confined

in a line defect of a grain boundary; and particles that escape from the Smectic confinement

through or into a line defect, for which the trajectories display both Smectic and Nematic-like

behaviors, as we have illustrated in Fig.6.3. The results for the Di and the γ indeed suggest

that for structural and geometrical reasons, the diffusion of the long-guest particle is affected

when the particle diffuses within or into a defect due to the absence of smectic ordering.

In the case of the particle within a line defect or a grain boundary, the particle exhibits a

Nematic-like diffusion throughout the full acquisition time. Also, this motion is restricted to

the defected region. Moreover, compared to the smectic monodomains (data obtained in the

previous chapter) the diffusion is higher for particles located within a defect.

The particles that exhibit first a Smectic-like behavior and which escape into defects per-

form a Nematic-like diffusion which goes from diffusive to slightly super-diffusive behavior.

The D⊥ and γ⊥ for these particles are lower than for the Nematic particles within defects, sug-

gesting that the D⊥ is restricted due to the structural configuration of the defect. We propose

that this super-diffusive behavior could be induced by a driven motion from the Smectic-like

region to the defect. Hence, we observe that particles are expelled, causing a super-diffusive

behavior, where after a time t a driving force starts to dominate. When a particle experience

a velocity, at longer times a ballistic behavior is expected were t2. However, the particles

that go into a defect experience a driven-like motion which should have a t f inal for this driven

regime, due to the confined geometry of the line defect, which finally develops into the pure

Nematic-like diffusion studied within the defects.

This behavior could also be compared with the model proposed by Selinger [152], in which

interlayer diffusion is enhanced due to the presence of Screw dislocation. However, in this

"spiral staircase" effect, we should also observe a change of orientation at the same time that

the Nematic-like diffusion occurs as well as the particle going out of focus, which is not the

case for most of our particles.
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Furthermore, the question about the nature of the core of the defect is presented due to the

different type of motion characterized as Nematic-like.

We did recognize a small number of particles that reorient. We suggest that this reorientation

from one Smectic region to another with a different orientation is done through a defect.

However, it is complicated to relate this kind of event to a specific type of defect due to the

poor z-resolution of the DIC technique.

Finally, we suggest that the phase separation observed with time of the long guest particle

in the deep Smectic phase of the host may be favored not only by the size mismatch but also

the location of the guest particles within the defects.
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Effect of length and flexibility on the Isotropic diffusion of

fd filamentous particles

In the Isotropic semi-dilute regime, the free volume decreases dramatically due to the forma-

tion of rod entanglement. Hence, the rotational diffusion is highly restricted. In this chapter,

we experimentally explore the effect of length L and persistence length P, on the diffusion of

the stiff fdY21M and the flexible M13KO7, from dilute Isotropic to semi-dilute regime. Using

single particle tracking, we quantify the self-translational and rotational diffusion. The results

for the concentration dependence of the Drot scales as (nL3)−0.3 for fdY21M, and (nL3)−0.6 for

M13KO7. The Dtrans is promoted at high concentration for long and flexible particles while

at low concentrations small particles are faster. Hence, we find that L and P have an opposite

effect on Drot and Dtrans. Furthermore, by analyzing the self-van Hove function, we determine

the diffusivity of the system. We show that flexible particles relax faster to Gaussian diffusion,

being the flexibility a mechanism to release the constraint imposed by neighbor particles.

115
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7.1 Introduction

Slender rod-like particles are common in nature and colloid science. They form entanglement

networks where the dynamics exhibits a complex behavior, as it occurs for example in cells

[156]. This behavior is present in systems such as F-actin filaments [10], microtubule [157],

fd viruses [20] and filamentous polymer [158].

This entanglement of particles occurs mainly in the semi-dilute regime where L−3 < v <

d−1L−2. Within this range of concentration, the motion of a single rod becomes a reptation

motion, where the particle needs to reorient in order to find the path to diffuse along the long

axis. This is called the tube effect, first developed by de Gennes [159] and redefined by Doi

and Edwards [51, 160]. Doi developed a simple model, where the diffusion of the rods is

not hampered when it takes place along the direction of the long axis of the rods, while the

rotational motion is reduced due to the confining presence of at least three neighboring rods.

The only way that the rods can reorient by ’reptating’ out of its cage is by diffusing along the

long axis. Doi showed that this diffusion strongly reduces as a function of the concentration,

as well as the length of the rod

Dr = kBT
Ln(L/d)
ηsc2L9 (7.1)

where c is the concentration, L and d are the lengths and the diameter of the particle re-

spectively, and η is the solvent viscosity. Studies on the rotational and translational diffu-

sion of rods in the semi-dilute and dilute regimes have been performed for rigid rod macro-

molecules [52], rod-like polymers [161], and also rod-like viruses [57,59]. Recent simulations

proved how the decrease of the rotational diffusion is significantly affected by the aspect ratio

of rigid fibers [60,162–164]. It is known that the rotational diffusion depends strongly on con-

centration and the length of the particle, but the role of stiffness on dynamics in the semi-dilute

regime remains unclear. Although, as with cooked spaghetti, flexibility would aid to reduce

the confinement effect by neighboring rods.

The flexibility of rods stabilizes the isotropic phase, narrows the I-N coexistence region, and

causes a decrease of the nematic order parameter at phase coexistence, as Khokhlov-Semenov

predicted in their theory [36]. This is indeed observed for rod-like viruses, where the I-N phase
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transition takes place at smaller volume fractions for stiff fdY21M than for flexible fd-wt [22].

This shift is related to the free volume and how the particle can diffuse within the system.

In this chapter we will study the effect of length L and persistent length P on the self-

dynamics of rod-like particles throughout the Isotropic phase: from dilute to semi-dilute

regime close to the I-N phase transition. In the first section, we present the experimental

system and the range of concentrations used. Then, we show and compare the rotational Drot

and translational diffusion Dtrans coefficients for both particles, and we analyze the self-van

Hove function to characterize the nature of the diffusivity at each concentration.

Figure 7.1: Representation of raw trajectories of a) isotropic diffusion b) reptation or skating
diffusion. The red cylinder represents the rod particle at each point where the particle needs
to reorient to diffuse. The color scale indicates the evolution of the position in time.

7.2 The System: semi-dilute isotropic phase of semi-flexible

and stiff rod-like viruses

We use as experimental rod-like particles stiff fdY21M with a persistence length of P= 9.9 µm

and contour length L= 0.92 µm, and semi-flexible M13KO7 with P= 2.2 µm and L= 1.2 µm.

The M13KO7 viruses were labeled with Dylight549 dye and the fdY21M with Alexa488 dye,

according to the protocol presented in Chapter 2. The particles are dispersed in TrisHCl-NaCl

buffer at 110 mM Ionic strength and pH=8.2. The labeled viruses were added to a matrix

of non-labelled viruses to have a ratio for each system of 1 labeled virus to 105 non-labelled

viruses. Fluorescent labeled viruses were visualized using an inverted microscope (IX-71

Olympus), equipped with a high-numerical aperture (NA) oil objective (100x PlanAPO NA

1.4) and a mercury lamp as excitation light source (X-cite series 120 Q). The exposure time
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used was 5 ms, while the maximum length of the movies was 9 seconds, with and frame rate

of 50 fps.

The concentrations used cover the full range of the Isotropic phase, starting from the dilute

regime where v < L−3 and semi-dilute regime where L−3 < v < d−1L−2. We characterized

two types of trajectories for each regime as shown in Fig.7.1. The Isotropic trajectories are

characteristic of the dilute regime where rods can freely rotate and D0
‖ = 2D0

⊥. The skating

trajectories are found in the semi-dilute regime, as the particles diffuse throughout the entan-

glement of neighbor rods. In next section, we present the characteristic dynamics for both

types for flexible and stiff particles in these two ranges of concentrations.

7.3 Study of dynamics

One of the significant changes in the Isotropic phase when the concentration increases, is the

decay of orientational degrees of freedom of the particles. The rotational diffusion freezes,

being compensated by the increase of translational entropy after the phase transition [25, 26,

60]. This is directly reflected in the diffusion coefficients, as shown in previous chapters. In

addition to the Mean-square displacement, we calculate the P̄2 parameter. The P̄2 parameter

measures the time-dependence between the initial orientation u0 and the orientation at time

t. We need to consider the < cos(Θt)
2 > between the u and u0, which is 0 when the rod is

perpendicular to the initial orientation. Thus, P̄2 should decrease to zero at a different rate

depending on the concentration.

The MSD and the P̄2 parameter are represented from the diluted to the semi-dilute regime,

where Doi’s theory can be applied, as shown in Fig.7.2. We observe a linear behavior of the

MSD for all concentrations for fdY21M, while for M13KO7 at concentrations close to the I-N

phase transition we observe a change of slope, after approximately 0.5 s. We normalize the

MSD by the square of the length of the rods L2, to obtain the time at which the particles have

diffused by half rod length L/2, which depends strongly on concentration, as shown in Table

7.1.

The time dependence of the P̄2 parameter is represented for both viruses in Fig.7.2b. It

shows an exponential decay that becomes stronger at lower concentrations, where the rods
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Figure 7.2: Time dependence at different concentrations of a) Log-log representation of the
MSD for the two viruses at different concentrations b) P̄2 parameter. The red line corresponds
to the fit up to the time where the particle diffuses by L/2.

Table 7.1: Times at which the viruses have diffuse by half rod length L/2

Viruses

C [mg/mL] fdY21M M13KO7

0.1 0.05 s 0.15 s
1 0.3 s 0.3 s
3 0.5 s 0.4 s
9 0.7 s 0.65 s
11 1.2 s 0.7 s

have more rotational freedom. The P̄2 parameter is fitted for each concentration up to the time

where the rod has diffused by half rod length L/2, using the following equation:

P̄2 = 〈P2(Φt)〉) = y0 + exp(−2dD0
r,St), (7.2)
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where d = 2 indicates the dimension of the system and Dr is the rotational diffusion coeffi-

cient. The rotational and translational diffusion coefficients are shown in Fig.7.3. Rather than

decreasing to zero, we observe an offset of the P̄2 parameter of 0.3± 0.1. We assume this

could be an artifact due to the tracking in a 2D plane, or even a time resolution limitation in

our data acquisition.

As expected, the translational diffusion depends on the size of the particle. For stiff fdY21M

the diffusion in the isotropic phase is shifted as the phase transition occurs at lower concentra-

tions. Also, it is of the order of Dtrans for flexible M13KO7 in the semi-dilute regime, and it

becomes higher at lower concentrations. For M13KO7, Dtrans increases gradually and remains

lower than fdY21M after 1 mg/mL, as shown in Fig.7.3a. The concentration dependence of

the rotational diffusion coefficient is shown in Fig.7.3b. In the diluted regime, Drot is higher

for flexible M13KO7 and reaches a constant value of around 17 s−1, then it decreases gradu-

ally, being higher than stiff fdY21M, up to the concentrations close to the I-N phase transition

where it drops below fdY21M. At higher concentrations in the semi-dilute regime, the ro-

tational diffusion for flexible particles is slightly lower than for stiff fdY21M. However, the

results are not in agreement with Doi’s prediction, as represented by the slope in Fig.7.3b. The

decreasing rate of the Drot/D0
rot as a function of rod density predicted by Doi’s is 2 within the

semi-dilute regime, while for the particles used in our experiments, the rates are considerably

smaller, being 0.2 and 0.3 for fdY21M and M13KO7, respectively.

Furthermore, we analyze the self-van Hove function using the method of Wouter den Otter

as explained in Chapters 1 and 3. This is done throughout all concentrations between the dilute

and semi-dilute regime. We are interested in the behavior of the system at concentrations close

to the I-N phase transition, where the tube effect is observed and also the called reptation

diffusion. We normalize the self-van Hove function by multiplying the probability by
√

dt and

dividing the position by dz/(
√

dt)2. This normalization takes out the effect of diffusion over

time, so the curves are comparable. The fitting is done by use the following expression:

Ln(G(z, t)
√

dt) = a1(4x2)a2; (7.3)

where a2 is 0.5 for Lévy-flight and 1 for Gaussian respectively, and a1 is related to the inverse

of the Di when a2 = 1. In Fig.7.4 we represented the re-scaled self-van Hove function (as
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Figure 7.3: Concentrations dependence of a) Dtrans calculated from the slope of the MSD fit
with a power law y = axb. The dashed colored lines represent the I-N phase transition for
each system b) Drot , calculated from the < P2(Θt)> parameter function as exp(−2dD0

rt). The
blue line indicates the slope obtained from Doi’s prediction, and the red and black lines are
the slopes obtained from the fitting of the data for M13KO7 and fdY21M, respectively.

explained in Chapter 1 and Chapter 3), for stiff fdY21M and flexible M13KO7 at different

times at a concentration of 3 mg/mL. We clearly see the change of the shape, from exponential

(black squared) to linear (blue triangles), as it goes from Levy-flight to Gaussian distribution

with time. The fact that the data at 1.4 s is squeezed is due to the rescaling of the self-van

Hove function, and shows a transition to a different diffusion rate Dlong.

The values for the a1 and a2 parameters as a function of time for both particles are shown in

Fig.7.5. At a low concentration in the Isotropic phase (0.1mg/mL), the a2 parameter fluctuates

around 1, exhibiting Gaussian behavior as expected. As we increase the concentration, we

observe a decrease of the a2 parameter. Initially, at 1mg/mL the a2 parameter starts at around

0.6 and recovers to 1 for M13KO7 and at around 0.8 for fdY21M. For flexible M13KO7, at 3

and 9 mg/mL, the a2 parameter relaxes again from values around 0.5 to 0.8-1, while for stiff

fdY21M the a2 parameter remains at lower values and it recovers at longer times to 1. At

concentrations close to the I-N phase transition the values for both systems remain between

0.5 and 0.75, being always lower for stiff fdY21M at longer times. The a1 parameter shows a

dependence which is proportional to D−1
trans when a2 = 1, as explained in Chapter 1. At long



122 7.4. DISCUSSION AND CONCLUSION

Figure 7.4: Re-scaled self-van Hove function at 3mg/mL for the two types of rods: short stiff
fdY21M (left) and long flexible M13KO7 (right). The effect of time has been suppressed with
the scaling. Three times are represented: short time (black squares), medium time (red circles)
and long time (blue triangle). The fits are represented by the red lines.

times, for flexible long particles a2 is higher than for short flexible particles, meaning that

Dtrans is smaller, being consistent with results shown in Fig.7.3a.

Moreover, the reptation, also called skating diffusion [24], is observed for both viruses at

concentrations close to the I-N phase transition, as showed in Fig.7.1. The back and forward

diffusion of the particle is represented in the trajectory in comparison with the trajectories

observed in the dilute Isotropic phase. The change of orientation of the rod allows the particle

to diffuse in a direction until the rod reorients again.

7.4 Discussion and conclusion

In this chapter, we have explored the effect of flexibility on the self-rotational and translational

diffusion at concentrations, where the theory of Doi [51] can be applied. We use two rod-like

viruses with different length and with a remarkable difference in persistence length, and we

will discuss here the effect of both on dynamics.

We observe from the Dtrans that short particles exhibit faster diffusion at low concentrations

in the Isotropic phase. The Dtrans coefficients overlap between 1 and 3 mg/mL for both parti-
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Figure 7.5: Time dependence for fdY21M (black squares) and M13KO7 (red circles) of (left)
the a1 parameter and (right) the a2 parameter both obtained from the fitting of the re-scaled
self-van Hove function.

cles and at 10 mg/mL remains higher for flexible M13KO7. This behavior has been discussed

by Russo in his study of the Dsel f for stiff TMV and semi-flexible PBLG. They proposed that

the delay in diffusion of PBLG was due to its flexibility as a mechanism to evade the con-
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straints to their motion [59]. In this case, our results are in agreement with the results obtained

for TMV.

On the contrary, rotational diffusion is not faster for longer rods at high concentrations in

the isotropic phase (close to the phase transition) and increases below the stiff particles at

concentrations lower than 10 mg/mL. Hence, flexibility may help to find more often a path

to diffuse between the neighbors without reorientation, and also promote the translational

diffusion, since Drot for flexible M13KO7 are close to those for stiff fdY21M, as it is shown

in Fig.7.3. Also, the time that a particle takes to diffuse L/2 is higher for stiff fdY21M, which

again confirms that at higher persistence length the mobility in the entanglement of rods is

indeed more restricted. These results show that there is an opposite effect of the flexibility

on Drot and Dtrans. However, although in simulations the results were in agreement with

Doi’s predictions [60], our results show a deviation in the slope for Drot/D0
rot as a function of

concentration. This could be due to the hydrodynamic interaction and the fact that we have a

semi-flexible particle in comparison with the stiff rod used in the theoretical model.

Moreover, the a2 parameter shows that the flexible particles relax faster to a2 = 1, the

Gaussian behavior, at concentrations where the tube effect is observed. For stiff particles, we

observe values that fluctuate between 0.5 and 0.75 at concentrations in the semi-dilute regime,

which suggests high dynamical heterogeneity of the system. Only at concentrations below 3

mg/mL the stiff particles relax to a2 = 1. Hence, the relaxation time shows up at later times

with increasing concentration, being slower for stiff fdY21M. This difference in the relaxation

is related to the flexibility that helps to overcome the constraint imposed by neighboring rods

so that diffusion recovers easily to the Gaussian behavior. In other words, the free volume

of flexible particles is higher, so it affects directly the diffusion. For the same reason, the

Isotropic phase stability is higher than for stiff particles [22, 36]. Doi proposed that a rod

would need to reorient to diffuse through the tube, but flexible rod-like particles can relax

by another mechanism, such that flexibility promotes the Dtrans within the semi-dilute regime

concentration. The flexible particles would also exhibit a permeation diffusion through the

tube, and they would not always need to reorient. At dilute regime, the Drot of semi-flexible

rod increases above that of the stiff particles.

We show that at low concentration the length dominates, as Dtrans is faster for the smaller

particle, while at higher concentrations the persistence length prevails over the length, as it is

a mechanism to reduce the constraints.
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It is important to remark that those are preliminary results. At present, the data obtained is

inconclusive since at the same time that we change flexibility we also change the aspect ratio in

1.3 between the particles, which in an experimental system has an effect for an accurate com-

parison. Hence, more experimental data is required over a broader range of concentrations

and for more systems with short flexible and long stiff rods, to cover all possible combina-

tions. In order to have a stronger confirmation, we also need to study the coupling between

the rotational and translational diffusion which is measured by the displacement of the rod

4r(t) = r(t)− r(0) projected along the long axis u(0), [165].





8
Conclusions and outlook

This Thesis provides a comprehensive study of the self-dynamics in the liquid crystalline

phases and at phase transitions of colloidal rods, using as a model colloidal system the fila-

mentous fd viruses. Concretely, we suggest an approach to characterize the phase transition

dynamically. Moreover, we give insight on how the self-dynamics of rod-like particles is af-

fected by the structure of the mesophase, as well as by the physical properties of the particles

(length and flexibility).

The fd viruses have been used for decades as a model colloidal system. These biological

rods are ideal model systems because they have an aspect ratio larger than 100, they are highly

monodisperse, and they form liquid crystalline phases only by entropy driven forces, as On-

sager predicted for the I-N phase transition. The fd viruses can be labeled with florescence

dyes, which allows for performing the single particle tracking to determine the self-dynamics.

In the case of colloidal lyotropic liquid crystals, the self-dynamics can be used to estimate the

free volume of the system, since its increase or decrease affects the dynamical behavior at the

single particle level. Hence, self-dynamics can be a probe of the entropy of the system. One

of the questions that we address in this Thesis is if the self-Van Hove function can be used to

characterize dynamics around and at the phase transitions. Also, we have explored if it can be

used to measure the deviation from the diffusive behavior, that commonly is measured with the

non-Gaussian parameter [166]. Deviation from the Gaussian behavior is interpreted as a result

of anomalous diffusion, generally caused by crowding. This behavior has also been observed

in the colloidal glass-transition where the self-van Hove function evolves from a Gaussian into

a Levy-flight, where dynamical heterogeneity is found [53, 70]. In most of the experimental

studies of self-dynamics of fd viruses in their different liquid crystalline mesophases, detailed
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analysis, and interpretation of the self-van Hove are missing [27–29]. In Chapters 3 and 6 we

try to demonstrate that the self-van Hove function can be used to characterize quantitatively

the deviation from the Gaussian behavior.

In chapter 3, we have investigated the dynamics of the stiff mutant fdY21M throughout the

phase diagram. The phase transitions are entropy driven by a maximization of the free volume

which leads to an increase in the free energy of the system.

First, we have investigated the dynamics around the I-N phase transition. In the Isotropic

phase close to the phase transition, the increase of volume fraction generates a scenario where

the rotational and translational diffusion is restricted, due to the tube effect. The study of

the translational diffusion reveals a decay of the motion, which is consistent with previous

studies [26]. We have shown that not only the diffusion rate is affected, but also the Gaussian

behavior, which is reflected in the change of shape of the self-van Hove function. We found

that the Brownian motion is very much restricted in the Isotropic phase close to the I-N phase

transition. The same behavior has been observed for colloidal glasses [53, 70], and hints to

heterogeneous dynamics.

The Gaussian behavior is recovered after the phase transition in the Nematic phase for

the parallel diffusion, which is promoted by the orientational order of the phase [26]. The

perpendicular diffusion remains frustrated, demonstrated by the deviation from the Gaussian

behavior.

The analysis of the self-van Hove with our method is not possible for the N-SmA and

SmA-SmB phase transitions, due to the appearance of distinct peaks at one-rod length integer.

Furthermore, we discuss the dynamical coexistence found in the N-SmA and SmA-SmB phase

transitions. The N-SmA phase transition is known as a first order phase transition [9, 27] and

the coexistence can be observed by DIC microscopy. In the case of the SmA-SmB phase

transition, the coexistence between phases cannot be performed by DIC microscopy. The

only method used to characterize SmecticA and SmecticB has been so far by SAXS [19].

Contrary to the studies of dynamics at the I-N phase transition [24,63], the possible dynamical

coexistence at N-SmA and SmA-SmB was not discussed before. Hence, we propose that the

order of the phase transition can be determined looking at the dynamics. Two approaches are

performed to distinguish the dynamics.

First, for the N-SmA phase transition, we made a dynamical selection between Smectic and
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Nematic trajectories, which is possible due to the different dynamical behavior of particles in

these two mesophases. This selection is performed using a step detect algorithm, from which

Nematic and Smectic trajectories are distinguished. Coexistence of Nematic and Smectic

regions observed by optical microscopy are in agreement with the corresponding dynamical

behavior of the tracer rods.

Second, for the SmA-SmB phase transition analysis, we assume that non-jumping particles

are in the SmecticB phase. We have compared the dynamics within the layer to estimate the

particles that do not jump and the ones that do a jump. This is possible by quantifying the

probability of a particle to fluctuate within the layer. In the Smectic-B phase, the particles

have crystalline order within the layer, which freezes the dynamics.

We showed that for N-SmA and SmA-SmB phase transition, the dynamics could be char-

acterized to determine the order of the phase transition. However, we need to keep in mind

that we could have problems of sample homogeneity. At these high concentrations it is highly

difficult experimentally to achieve a macroscopic phase separation (as it occurs for the I-N

phase transition), so dynamics could be used to identify the phase transition.

As a future approach to investigate the dynamics at phase transitions, it will be interesting

to monitor the dynamics while the phase transition takes place. This can be achieved by us-

ing a humidity chamber where evaporation of the solvent is performed leading to a change of

concentration undergoing the different phase transitions. This way one would avoid homoge-

nization issues during the sample preparation and also we could have an overview of dynamics

in real time as the phase transition occurs. Also, a proper fitting for the self-van Hove is re-

quired in the Smectic phase, which can relate the values that we get from the potentials with

the intensity of the distinct peaks, so that the analysis of the self-van Hove function can be

extrapolated to the N-SmA and SmA-SmB phase transitions.

Following the same dynamical characterization with the self-van Hove function as in Chap-

ter 3, in Chapter 6 we have compared the dynamics from the dilute Isotropic up to semi-dilute

regime before the phase transition for short stiff and long flexible particles. We have shown a

different dynamical behavior depending on the persistence length of the particle. The flexible

particles relax faster to the Gaussian behavior at concentrations corresponding to the semi-

dilute regime. Hence, flexibility provides a diffusion mechanism to release the constraint

imposed by the surrounding rods. It can be related to the fact that the Isotropic phase concen-
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tration range is higher for flexible particles [22]. However, our experimental results for Drot

are not in agreement with Doi’s predictions [51] for infinite stiff, slender rods and neither with

the simulation done by Tao et al. with rods of L/D∼= 60 [60]. This could be due to hydrody-

namic and electrostatic interactions that are not considered in the simulations, as well as to the

effect of flexibility in the experimental system. The results for our systems are limited due to

the analysis of the data in 2D. In the isotropic phase, we have short correlated time trajectories

due to particles going out of focus.

Hence, in follow-up studies, it will be interesting to consider other combinations of physical

properties as short and flexible particles and long stiff particles to gain insight on the effect of

flexibility and length. Moreover, with a solvent with higher viscosity, which slows down the

rotation of the rod, the measure of the rotational diffusion would be easier. Another alternative

approach would be to use confocal microscopy.

Previous studies on the dynamics of the Smectic phase motivated us to consider a more

complex system as it was the case for the guest-host system that we propose in Chapter 4. The

dynamics in the Smectic-A phase of fd viruses are characterized to be hopping-type behavior,

in which the particles jump through layers. It has been proved that flexibility also affects the

dynamics in the Smectic phase [29].

We have proposed a different approach, from the pure Smectic system, where the dynamics

of the Smectic host are compared with semi-flexible long guest particles introduced into it.

Generally, a big size of the particle is related to slow dynamics, also observed in the crowded

system. We have shown that this is not the case for long particles that are included in a Smectic

phase of slightly shorter particles. This is related to the concept of the non-commensurate

particle. We suggested that the Smectic potential is not a fixed value, but a result of fluctuations

within the layer. The long guest particle has part of its volume included in at least 2 adjacent

layers, which promotes the diffusion through the host Smectic layers. The confinement that

the long guest particles experience in the host Smectic phase, induce a faster diffusion which

disappears when entering the Nematic phase. The results of the analysis of the dynamics

within the layer proved that the Dper of the long semi-flexible guest particles is restricted.

Furthermore, we have observed phase separation of the longer particles with time. This phase

separation is expected due to the size mismatch. Recently, it has been shown by simulations

that at relatively short time scales, where caging of particles by neighbors predominates the

kinetics; the more flexible particles move faster in a pure Smectic phase. The flexibility will
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cause a softer cage effect [116]. However, in our guest-host system, the cage effect is caused

by the stiffer host particles. The same study with stiff guest particles would tell if flexibility

is a critical feature to release the constraint imposed by the host system, or if it relies only

on the non-commensurate effect. These results showed that diffusion for longer particles is

not always slower, depending on the structure of the matrix and the size ratio between the

guest and host particles. This could be attractive to study and to improve materials with better

permeation properties, such layered membranes through which particles could diffuse faster.

Thus, it would be a nice finding for example in drug delivery materials.

During these experiments in the guest-host Smectic phase, we have been able to track the

dynamics of the guest particles placed in grain boundaries. We present these results in Chap-

ter 5. It seems that particles can diffuse from the Smectic layers to the defect line dislocation

within a grain boundary. It has been demonstrated that break of geometry caused by the defects

may induce superdiffusion in crowded systems [144]. We have been able to calculate dynam-

ics of guest M13KO7 particles, where a slightly superdiffusive behavior has been observed

in particles that diffuse from the Smectic domain into a grain boundary. Also, a nematic-like

behavior is observed for the particles located within the line defect of a grain boundary. This

poses the question of the nature of the host sample within these line defects.

In conclusion, in this Thesis we have shown that the self-dynamics is a signature for the

phase transition of colloidal fd viruses. The Self-dynamics gives detailed information of the

free volume of the system around the phase transitions. Consequently, we can measure the

relaxation of the dynamics when approaching the phase transitions and also the dynamical

coexistence. Moreover, the dynamics of a smectic guest-host system, where the surround-

ing energy landscape has a smaller length scale than the guest particle, demonstrates that a

bigger particle can be faster. In this conditions, also the super-diffusion of the guest particle

is observed when it diffuses into a grain boundary. Hence, the fact that fd rods are such a

versatile system allowed us to play with different physical properties of the particles to un-

derstand more complex systems. Moreover, the self-dynamics can be accurately measured

using fluorescence microscopy techniques. This is a step forward to understand the dynamics

of colloidal structured systems and also in the development the new materials in which the

dynamics of the particles introduced can be controlled.

This thesis treats the dynamics of the different liquid crystalline mesophases and phase

transitions of a model colloidal of rod-like particles: the fd viruses. The study of the self-
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organization of colloidal liquid crystals treats the simplest phenomena of forming struc-

tured systems. In a system where anisotropic particles have hard core interactions, the self-

organization is purely entropy driven due to the maximization of the free volume of the system.

Thus, the measure of dynamics at the single particle level provides information on the avail-

able free volume and the structure of the mesophase. Hence, the dynamics can be used to

characterize phase transitions and solve issues such as the entropic gain of a phase transition,

the order of the phase transition and to find a dynamical signature. We measure the relaxation

of the dynamics when approaching the phase transitions and also the dynamical coexistence

and the effect of flexibility and length as a mechanism to release the constraint of the neigh-

bors. Moreover, the dynamics of a smectic guest-host system, where the surrounding energy

landscape has a smaller length scale than the guest particle, demonstrates that a bigger particle

can be faster. In this conditions, also the super-diffusion of the guest particle is observed when

it diffuses into a grain boundary. Hence, fd rods are a versatile system and their self-dynamics

can be accurately measured using fluorescence microscopy techniques. This is a step forward

to understand the dynamics of colloidal structured systems and also in the development the

new materials in which the dynamics of the particles introduced can be controlled. The ex-

tensive experimental results are completed by a whole analysis and interpretation, being very

promising and challenging
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Appendix 1

9.1 Two-dimensional single particle tracking for the study of

dynamics

Fluorescence microscopy allows us to collect good quality images of the fluorescence-labeled

particles to perform the particle tracking analysis. Single-particle tracking is a different ap-

proach appeared in the 80’s and combined high spatial and temporal resolution. It provides

information that is not available by Fluorescence Recovery After Photobleaching (FRAP) or

other methods that study the collective diffusion of the particles of the system. Single-particle

tracking is based on the individual location of a particle with micro or nanometer precision,

measuring its individual dynamics as a function of time. However, it is necessary to develop

algorithms to get the trajectories and analyze the diffusion obtained from the image analysis.

The centroids of the particles are located and continuously linked in time between frames to

generate the trajectories, as shown in Fig9.1. Later, these trajectories can be analyzed using

different approaches, such as the Mean squared-displacement or the self-van Hove function,

as we have seen throughout this thesis.

At the same time, the big disadvantages are the background fluorescence noise produced

by particles out of focus and the photobleaching of dyes over time. Also, different factors

influence the quality of the video microscopy: exposure time, frame rate, detection noise,

etcetera.

The aim of this section is to present the algorithms used to perform the single particle
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9.1. TWO-DIMENSIONAL SINGLE PARTICLE TRACKING FOR THE STUDY OF

DYNAMICS

Figure 9.1: Different steps of particle tracking method.

tracking analysis and how the parameters are determined to identify, locate and track rod-

like particles and study their dynamical behavior. For this purpose, we use a Matlab particle

tracking code, which has been improved from an existing version of IDL for particle tracking.

Nevertheless, we need to set some parameters within the algorithm to treat the movie and

collect the right information from it. In this section, the goal is to explain the function of

each algorithm as well as the criteria followed to set the different parameters within these

algorithms to optimize the analysis for our systems.

9.1.1 Particle Location: determining the position of the particles

The first thing to consider is the type of system that we are studying and the settings of our

instrument. In the Guest-Host system, for example, there are two kinds of rod-like particles

labeled with different dyes: fdY21M and M13KO7 labeled with Alexa488 and Dylight550

respectively, in a matrix of a concentrated Smectic phase of fdY21M. This is something to

take into account for the particle location because the size of the particles and the intensity

of the dye depend directly on them. It has been observed that the life time for Dylight550 is

longer than for Alexa448 due to the smaller effect of the photobleaching.

In all of the movies analyzed, we work with frame rates of 33 fps and 50 fps corresponding

to 20 and 5 ms exposure time, at 100x magnification (oil immersion objective) and at binning

two. The camera used is sCMOS, knowing that for the sCMOS camera one pixel is 6.5µm,

the size of a pixel at binning 2 using a 100x immersion oil objective can be easily calculated

using equation 1, which gives that one pixel is 0.13µm.
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pixelsize =
camerapixelsize×binning

ob jective magni f ication×ob jective lens magni f ication×Cmount
(9.1)

The theoretical values of length and width of both particles are compared by measuring the

particles with ImageJ. We found a big difference in the width of the particles measured due to

the resolution limitation of the camera. While the theoretical value Dtheo would correspond to

0.03 pixels, the minimum value for the experimental diameter Dexp is 1 pixel, because this is

the minimum unit of the resolution of the camera.

Table 9.1: Theoretical (Lt) and experimental length Lexp, experimental diameter Dexp. Units
in pixels

Lt Dexp Lexp

fdY21M 7 1.8±0.2 6.8±0.6
M13KO7 9 2±0.1 8.9±0.7

During the process of particle location, the program approximates the candidate particles

by looking at the brightest pixel. After this step, the location is refined by calculating the

centroid-weighed position using a 2D-Gaussian fitting, which also determines the x (parallel)

and y (perpendicular) axis and the angle with respect to the axis. This process requires certain

functions and parameters as described in Table 9.2.

Table 9.2: Functions and their corresponding descriptions using in Matlab for the Particle
location from the fluorescence movies

Function Description Parameters used

bpass Filtering and smoothing of the image image, bp1,bp2

pkfnd Find the local maxima intensity in a image, min.intensity

picture within a pixel level accuracy. si

Rough particle positon.

parapos_angle Calculates the centroid of the brighest spot image, sz, contrast, aspect.ratio

with sub-pixel accuracy. Gaussian fitting to si

determine the long and short axis and the angle
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DYNAMICS

Figure 9.2: Example of difference in background noise between two fluorescence images taken
at different exposure times. The scale bar is 2µm.

The process of particle location collects the information frame by frame, until a chosen

maximum number of frames. Moreover, specific parameters must be set to perform the particle

location. However, how do we know which are the right parameters to perform the analysis?

It is important to consider the physical meaning of these parameters and to take into account

the limitations of the instrument. As mentioned before, there are some factors that influence

the quality of the image, coming from the instrument:

• Exposure time and frame rate: it depends on the sensitivity of the camera, the intensity

of fluorescence emission of the particles and the overall tolerance noise.

• Detection noise: the noise is the standard deviation of the brightness in the region that

excludes in-focus and out of focus particles. The SNR (signal to noise ratio) is propor-

tional to the rate of photoelectrons conversion in the process that takes place in the detec-

tor, which converts light power to electrical current, on an active-pixel sensor (CMOS).

The SNR can be improved increasing the light or integration time

Furthermore, some parameters depend on the sample: the concentration of the labeled par-

ticles added, the concentration of the sample and as a consequence the phase of the sample

(Smectic, Nematic, isotropic), and also the type of dyes used to label our particles. The param-

eters for the particle location algorithm are shown in Tab.9.3. The particle location algorithm

is divided into different stages as explained below.

Filtering. The first step in the particle location is the filtering of the raw image to avoid

contrast gradients that complicate the process of identification of particles. The image has non-

uniform background intensity, and it must be corrected before the analysis. For that purpose
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Table 9.3: Parameters and their corresponding descriptions using in the Matlab functions for
the Particle location from the fluorescence movies.

Parameter Description Physical meaning

bp values values to smooth and discriminate noise

image image that is treated

sz twice the distance of the partilce Separation between particles.

picture within a pixel level accuracy. Depends on concentration

min.intensity the minimum brightness of Intensity of the particle

a pixel that might be local maxima

si Size of the square window Depends on the length of the particle

for the Gaussian fitting

contrast minimum value for the position Signal to noise ratio

to be kept

aspect minimun aspect ratio Calculation of L/D in pixels

we use the band pass values (bp1 and bp2) . The first value is referred to the intensity of the

noise correlation (ξ ) and the second value to the region dimension (w). If we increase the

difference between those two values, the brightness will increase, as shown in Fig.9.3. During

the filtering of the image, it is necessary to have a value of bp2 which makes the particles look

brighter but without making the background blurry.

Location of particles. Once the image is already filtered, the function pkfnd.m estimates

the brightest centroid at pixel-level accuracy from which the initial positions of the particles

(x0, y0) are obtained. For this estimation, the minimum intensity and the minimum distance

between particles parameters must be determined. The minimum intensity parameter is just

the intensity threshold value for identifying the brightest pixels. We can determine the maxi-

mum value in Matlab. The bigger the value, the fewer particles we will keep. This parameter

is tested for each concentration. The effect of the photobleaching in the minimum intensity

needed is also tested with the program FirstLasFrame_Analysis.m, which compares the per-

centage of particles located between the first and the last frame. The limit distance between

to particles, the si parameter, is applied in order to avoid two particles to be considered the
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Figure 9.3: Different values of the filtering parameter bp2. When increasing this value we
increase intensity of the brightest pixel but also the image becomes blurry.

same when two particles overlap by diffusion, as shown in Fig.9.4. It needs to be at least one

virus length in pixels to avoid dimers as two particles or big objects as many particles. The

minimum distance between close particles has been measured manually between 215 particles

at each concentration and taking into account events where the particles overlap.

The next step is refining the initial location to obtain a location with a sub-pixel resolution

from the raw image. This is done by fitting the shape of the ith particle using a Gaussian

function and applying some extra criteria to remove possible contamination locations. A 2D

Gaussian fitting is done around the particle Image Ii, where the orientation and the short and

long axes of the particle are specified:

Ii = I0exp(−|r− ri|
S2 ). (9.2)

To set the size of the square around the particle (Fig.9.4a), we use the sz parameter. The

correction is calculated as
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Figure 9.4: Fluorescence images of two particles that overlap in the image and them separate
with time due to parallel diffusion. The yellow circles indicate the two different particles, p1
and p2.

(
εx

εy

)
= ∑

i2+ j2≤w2

(
i

j

)
I(x0+i,y0+ j), (9.3)

where I is obtained from the Gaussian fitting. The final refined particle location is

(xi,y j) = (x0 + εx,y0 + εy). (9.4)

Moreover, an extra selection is done from the centroids obtained from the 2D-Gaussian

fitting, using the parameters contrast and aspect. Contrast is defined as difference in light

intensity between the image and the adjacent background relative to the overall background

intensity (or as described above SNR):

I0−d =
Isignal− Inoise

σnoise
(9.5)

The values for both particles are calculated and set as 5 over all frames. This value could

change depending on the movie, and the field of view, but in general, thanks to the filtering of

the image for our sample it stays constant during all phases. It is the minimum value for the

contrast.
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Figure 9.5: Result of the Particle Location program of two types of particles, comparing the
first and last frames of the movie. Red circles identify each single particle.

The aspect parameter sets the minimum aspect ratio for each particle to be considered.

When the particles are beads, the aspect ratio is 1. In our case, we have anisotropic particles,

which means that the aspect ratio is bigger than one. In pixels we have an aspect ratio of about

2-3, bur to be sure that all particles are located even if some of them get out of focus, we

decided to set this value between 1-2.

With all these parameters set, we use the program FirstLastFrameAnalysis.m to check if

they are the correct ones for our system. Since there is an effect of photobleaching, this

program allows us to also compare the first and last frame with the same parameters, and

confirm that we can keep them constant with time. Since there are two types of particles, we

will have the option to set them for each particle. Less than 20% of particles are lost from the

first frame to the last frame.

In conclusion, having different factors in mind and also the physical properties of our sam-

ple, we set parameters to perform our analysis. For other systems, with different physical

properties than the viruses, following these steps, it would be possible to do a proper analysis.
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9.1.2 Particle tracking: connecting the position in time

Once the particles are located frame by frame, the next step is to generate the traces by re-

lating in time the different particle positions. This is done by inputting the data file with the

coordinates and also setting the parameters for the particle tracking. The algorithm links the

positions by using separation-based criteria, such as the nearest-neighbor distance. The pairs

of localizations showing the minimum distance are selected as the most likely situation of the

same particle in successive frames and are linked together. Repeating this procedure over all

the particles and all the frames finally provide the reconstructed trajectories.

Table 9.4: Functions and their corresponding descriptions using in Matlab for the Particle
tracking from the fluorescence movies

Function Description Parameters used

tracks_2D construct 2-dimensional trajectories position, maxdisp

from a list of coordinates memory, good

CentRotLoc Center all traces and calculate the thetaUse, tracks

angle for each trace. Rotation of the trace

MSDsvh_rod Calculates the MSD, P2 stack, mindisp

and self-van Hove list

As explained before, there are some parameters that depend on the type of particle that we

are analyzing. In our sample, we have observed that the dynamics of M13KO7 are slightly

different from fdY21M, so this is a key point to build consistent trajectories for each particle.

Also, the mesophase affects the construction of trajectories, since for example in the Smectic

phase we have almost no particles going out of focus within the time duration of the movie,

while in the Isotropic phase particles are continuously going in and out of focus. The parame-

ters shown in Table 9.5, indicate the main criteria followed to have a well-connected trajectory.

The values of these parameters change for each virus and each mesophase as it is reported at

the end of this Appendix.

After obtaining the trajectories, the next step is the calculation of the Mean squared dis-

placement. The trajectories need first to be centered and rotated, using the CenRotLoc func-

tion. It centers the trajectories on the artificial XY axis that Matlab creates. After, the traces
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Table 9.5: Parameters and their corresponding descriptions using in the Particle tracking
program

Parameter Description Physical meaning

memory Number of frames that a particle Particle in-out focus

can be lost and recovered to

be considered the same

good minimum number of frames for a minimum length of a trajectory

trajectory to be considered

Max.displacement maximum numbers of pixels that Depends on the mesophase

a particle can move between 2 frames

Min.displacement minimum number of pixels that use to avoid stuck bodies

a particle can move

positions coordinates of the particles Positions

obtained from particle location

are rotated using the individual angle for each trace, which is calculated from the probability

distribution function for the orientation of the rod. The MSD is calculated for a particle j

whose position is sampled at N discrete times m∆t,

MSD =
1

N−m

N−m

∑
i=1

x j(ti +m∆t)− x j(ti))2, (9.6)

This process is done to each single particle and averaged over all of them in each movie.

The further analysis is done by Origin to get the diffusion coefficients and exponents from the

MSD. At the same time, the program creates a list with the information at each time step to

calculate the self-van Hove function using the program Self-van Hove calculation.
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Figure 9.6: Flow chart of the particle tracking program.

9.1.3 Jumping detection

The algorithm of the jump detection is a key point in the analysis of the N-SmA phase transi-

tion in Chapter 3. We recognize the jump due to a sharp transition in the trajectory which is

recognized by the program. The algorithm constructs a set of scaled derivatives of the input

data. First, it detects a maximum (or minimum) value that persists at a coarse scale to ensure

the features we detect are significant (e.g. not due to noise). We then track these features

through the other scaled derivatives; at the end, we have a reasonably confident measure of

where significant edges occurred in the data, in this case, the dramatic change of position due

to jumps.

Table 9.6: Parameters used in the jumping detection algorithm

Parameter Description

scales can be lost and recovered to

threshold minimum number of frames for a

SD coordinates of the particles

The selection of scales, therefore, is crucial in this analysis. If the scales considered are

too fine, false edges due to noise will be detected. If the scales considered are too coarse,
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Figure 9.7: a) Raw position versus time of the jumping particle b) Scales created from the
derivatives of the position c) Detection of the minima and maxima from the scales by using the
parameter threshold, indicated by the horizontal dashed line.

significant features may be missed. The parameters needed for this program are shown in

Table9.6

We obtain a profile which will be used for the identification of the jumps, as results of a

convolution of the Gaussian Kernel of a width given by the amplitude of the scale parameter

and the derivative of the data, as it is shown in Fig9.7. Given a threshold parameter, the

program will look for those peaks that are within the value. The position of the peaks will

be the position of the limit of the jumps. Then, Minimum jump is used to confirm that the

difference in distance between the recognized jumps is above the value introduced. Otherwise,

it will not be considered as a jump. In our case, the minimum jump is an approximately one-

rod length.

Fig.9.7c illustrates the importance of thresholding. Here we have used a high initial thresh-

old only to find very prominent features of the data set. Only the two strongest positive step

edges are detected. For a given threshold, n, the edge detection application will compare a

local maximum, in the derivative to the global maximum.

Moreover, this algorithm has been further refined by including the parameter SD, which is

the standard deviation within a residence to be considered Smectic behavior. This is done due

to the limitation of the original program to distinguish the Nematic and Smectic trajectories

when the jumps in the Smectic phase start to be less sharp.
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Figure 9.8: Flow chart of the step detection program to distinguish Nematic and Smectic
trajectories.

9.2 Calculation of Smectic potentials: PSF and

deconvolution

After the data acquisition, all videos have been treated with a Particle Tracking Algorithm.

The particle tracking gives us information about the dynamics which has to be quantified by

calculating the Mean-squared displacement, the self-van Hove function and in the case of the

Smectic phase also the Smectic ordering potentials. During the data treatment process, we

need to take into account several considerations as it is explained in this section.

9.2.1 PSF and deconvolution in Florescence microscopy

Fluorescence imaging is a versatile technique commonly used in biology to visualize cellu-

lar components, proteins or molecules of interest. Also, it is a useful tool to study dynamics

of colloids, where the particles can be easily functionalized with different fluorescent dyes,

and movies in real time are recorded for their further analysis. When using Fluorescence mi-
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croscopy, the sample is illuminated with light having the wavelength in the absorption spec-

trum of the fluorescence molecules of the sample, which will be excited and will emit light

of a longer wavelength. This is detected by a camera appended to the microscope which will

acquire a two-dimensional image of the light intensity. During this process, diffraction of light

will occur, causing blurring which is a nonrandom spreading of the light caused when it passes

through the lens and the sample. The final image will be a combination of the light of the in-

focus objects and the light caused by the blurring, making deconvolution necessary to remove

blur. Blur is considered a function of the microscope system, principally of the objective lens

so it can be easily modeled. For this reason, the concept of point spread function (PSF) is

introduced. We consider the point spread function as the smallest point source of light. Since

the camera cannot focus all this light into a perfect 2D image, the point appears spread into a

2D diffraction pattern. The convolution operation applies the PSF to every point in the object,

convolving the light emitted from each point with the PSF.

The procedure of deconvolution allows us to recover the real data from this convoluted in-

focus object with the out of focus information. This is all due to the diffraction effect, which

refers to diffraction of light when it goes through a small opening. This diffraction d due to

the resolution of the microscope can be written as

d =
1.22
NA

(9.7)

The point spread function or diffraction pattern depends strongly on the Numerical Aperture

(NA) of the objective lens. In an ideal situation, the light would travel in a straight line,

creating from a point object a point image. The light will get through an objective lens with an

angle α . Thus, the highest resolution depends on this angle α and on the Numerical aperture,

which is determined by α .

NA = η sinα (9.8)

where η is the index of refraction of the medium. At larger numerical aperture we will have

better resolution, having a sharper point spread function while at smallest numerical apertures



CHAPTER 9. APPENDIX 1 147

it will be broader. Resolution is defined as the smallest resolvable distance between two points

of light source,

Resolution(x,y) =
0.61λ

NA
(9.9)

Resolution is affected by this diffraction pattern. According to the Rayleigh criterium, two

objects are in the resolvable when the maximum intensity of one diffraction pattern is over the

first minimum of the other.

To understand the main idea of deconvolution, we first should explain what the convolution

process is (of the real image with the psf) and the mathematics behind it. Given two functions

f(x) and g(x), f(x) being the real image and g(x) the point spread function, and the convolution

gives the amount of overlap of the function g(x) (PSF) as it is shifted over the function f(x)

(image).

( f ∗g)(x) =
∫

f (a)g(a− x)dx (9.10)

Figure 9.9: Convolution of two functions and the results obtained.

The reciprocal process is the deconvolution, where the contribution of the PSF is removed

for the signal (final image) to get a more accurate image of the object.

During data acquisition, the accuracy of the determination of the centroid of the particle

plays a major role in the final results. This accuracy could decrease due to the static error

(smearing due to optical aberrations) and dynamics error (due to the fact that the particle is

moving) [167], and this error when determining the center of the particles propagates through

the calculations, showing up for example, in the MSD as the offset.
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9.2.2 Calculation of the Smectic potentials and deconvolution

In chapter 3 and 4 we have shown the results of raw and deconvoluted Smectic potentials.

In order to perform the deconvolution process, we first get the Point spread function (PSF).It

has been obtained with immobile viruses fixed on the glass coverslip of the sample under the

same experimental conditions, as shown in Fig.9.10. For a 100x oil objective of NA 1.4, the

resolution for the sCMOS camera used in the experiments is 0.2 µm. Our point spread function

represents the smearing the particle location due to the limited experimental resolution. One

of the key points of using fd bacteriophage for the study of dynamics is the colloidal scale

(with an aspect ratio L/D larger than 100) that enables imaging of individual viruses and to

observe them as anisotropic particles.

Despite the deconvolution is most of the times done directly during the image processing,

we applied the deconvolution analytically on the raw data obtained from the image analy-

sis. For the calculation of the Smectic ordering potentials, we measure fluctuations within the

layer, collecting positions for each fluctuation from the center of the Smectic layer. At high

concentrations in the Smectic phase, we have completely stuck particles that are not fluctuat-

ing. Thus, this signal has a maximum probability, and it needs to be deconvoluted from the

final signal of all particles, which is the convolution of fluctuating particles and completely

stuck particles.

Figure 9.10: a) Fluorescence picture for 20 and 5 ms exposure times. For low exposure times
the SNR is lower. b) Point spread function for 5 and 20 ms exposure times obtained from the
probability of the non-moving particles close to the phase transition

Exposure time has an effect on the quality of the image, where background noise increases

when decreasing the exposure time, and the signal of the particles smears. The direct con-

sequence of decreasing the exposure time is the increase of the error when determining the
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position of the center of the particle. Thus, at different exposure times, we will get different

PSF (Fig.9.10). The effect of the smearing of the particle brightness signal due to diffusion or

exposure time is also a factor to take into account when applying the deconvolution.

We first calculate the raw potentials. This is performed by converting the probability func-

tion P(z) of finding a particle at position z with respect to the middle of a layer to the smectic

ordering potential Ulayer(z) via the Boltzmann law

Figure 9.11: a) Probabilities P(z) obtained from the histogram of position of the particle from
the middle of the layer (inset). b) Raw Potentials Ulayer (black squares) obtained from the P(z)
using the Boltzmann factor for Smectic Potentials. Red line is the fit with the sine function.
c) Representation of the P(z) before deconvolution (black line) and after deconvolution (blue
line) from the PSF (red line).

P(z)∼ exp[−Ulayer(z)/kBT ] (9.11)

To obtain the total ordering potential, the particle distributions in a single layer are added

periodically to themselves at all integer numbers of layer spacing Llayer. All potentials can be

best fitted with a sinusoidal function

Ulayer(z) =U0sin(2πz/Llayer) (9.12)

We show this process in Fig.9.11. Then, the fitted sine function is deconvoluted from the
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PSF calculated. Hence, the deconvoluted potential is lower than the raw potential obtained

from the probability. We found out that the contribution of the point spread function for

the particles at high concentrations with approximately 80% stuck particles (100 mg/mL for

fdY21M) in the Smectic phase makes the convolved data asymmetrical, being not possible to

fit it with a sine function anymore (Fig.9.12).

Figure 9.12: a) Probabilities obtained for 3 concentrations in Smectic phase b) Corresponding
raw potentials before the deconvolution. The psf is represented with pink color.

This is because the particles are not fluctuating but are completely stuck on the layer, making

the profile of the probability sharper. For concentrations below the Smectic range for fdY21M

and for M13KO7 particles that exhibit Nematic like diffusion in the Smectic background, we

found a limitation during the deconvolution, where the results of the deconvolution are noisy.

The fact that particles are not commensurate within the Smectic layers gives results that we do

not have Smectic ordering potentials (values below 1 KBT ) and the deconvolution of the PSF

for the sine function is not valid anymore.

Finally, we simulate the convolution process using the value of U0 for a given concentration
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Figure 9.13: Simulation of the convolution of the real potential and the psf at 91 mg/mL a)
Probabilities P(z) obtained from the sine function (Eq) b) Raw Potentials Ulayer (black squares)
obtained from the P(z) using the Boltzmann factor for Smectic Potentials. Red line is the fit
with the sine function. c) Representation of the P(z) before deconvolution (black line) and
after deconvolution (blue line) from the PSF (red line).

after the deconvolution, as shown in Fig.9.13. We first generate the sine function correspond-

ing to the probability P(z), and then we convolute using Origin with the psf function.
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