
HAL Id: tel-01534528
https://theses.hal.science/tel-01534528

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource allocation in Cloud federation
Salma Rebai

To cite this version:
Salma Rebai. Resource allocation in Cloud federation. Networking and Internet Architecture [cs.NI].
Institut National des Télécommunications, 2017. English. �NNT : 2017TELE0006�. �tel-01534528�

https://theses.hal.science/tel-01534528
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et

L’UNIVERSITE PIERRE ET MARIE CURIE

Spécialité: Informatique et Télécommunications

Ecole doctorale: Informatique, Télécommunications et Electronique de Paris

Presentée par

Salma REBAI

Pour obtenir le grade de

DOCTEUR DE TELECOM SUDPARIS

Allocation et fédération des ressources
informatiques dans le Cloud

Soutenue le 13 Mars 2017

devant le jury composé de:

Prof. Samir TOHMÉ Rapporteur Université de Versailles

Prof. Jalel BEN OTHMAN Rapporteur Université Paris 13

Prof. Marcelo DIAS DE AMORIM Examinateur UPMC – Paris 6

Prof. Véronique VÈQUE Examinateur Université Paris-Sud

Prof. Nadjib AIT SAADI Examinateur Université Paris-Est

Dr. José NÈTO Examinateur Telecom SudParis

Prof. Djamal ZEGHLACHE Directeur de thèse Telecom SudParis

Thèse no 2017TELE0006

JOINT PHD THESIS BETWEEN TELECOM SUDPARIS AND

UNIVERSITY OF PIERRE ET MARIE CURIE

Speciality: Informatics and Telecommunications

Doctoral School: Informatique, Télécommunications et Electronique de Paris

Presented by

Salma REBAI

To obtain the degree of

DOCTOR OF TELECOM SUDPARIS

Resource allocation in Cloud federation

Defended on 13 March 2017

Jury Members:

Prof. Samir TOHMÉ Reporter University of Versailles

Prof. Jalel BEN OTHMAN Reporter University of Paris 13

Prof. Marcelo DIAS DE AMORIM Examiner UPMC – Paris 6

Prof. Véronique VÈQUE Examiner University of Paris-Sud

Prof. Nadjib AIT SAADI Examiner University of Paris-Est

Dr. José NÈTO Examiner Telecom SudParis

Prof. Djamal ZEGHLACHE Thesis Director Telecom SudParis

Thesis no 2017TELE0006

To my parents Fouzia and Zouhir,

I am particularly indebted for your endless love, unconditional trust and continuous

support. Thanks for always believing in me and being at my side in everything I do!

To my dear husband Wael,

I am especially thankful for your understanding, encouragement, infinite support and

sincere love. Thanks for everything!

To my sisters Imen and Amal, and my brother Rami,

Thank you for always standing by my side during difficult times and for the fun

moments I have shared with you!

To all REBAI, ZOUAOUI and JRIBI family members,

Thanks for your love, kind support and encouragement!

Salma Rebai

ii

Abstract

Cloud computing is a steadily maturing large-scale model for providing on-demand IT

resources on a pay-as-you-go basis. This emerging paradigm has rapidly revolutionized

the IT industry and enabled new service delivery trends, including infrastructure exter-

nalization to large third-party providers. The Cloud multi-tenancy architecture raises

several management challenges for all stakeholders. Despite the increasing attention on

this topic, most efforts have been focused on user-centric solutions, and unfortunately

much less on the difficulties encountered by Cloud providers in improving their business.

In this context, Cloud Federation has been recently suggested as a key solution to the in-

creasing and variable workloads. Providers having complementary resource requirements

over time can collaborate and share their respective infrastructures, to dynamically ad-

just their hosting capacities in response to users’ demands. However, joining a federation

makes the resource allocation more complex, since providers have to also deal with co-

operation decisions and workload distribution within the federation. This is of crucial

importance for cloud providers from a profit standpoint and especially challenging in a

federation involving multiple providers and distributed resources and applications.

This thesis addresses profit optimization through federating and allocating resources

amongst multiple infrastructure providers. The work investigates the key challenges

and opportunities related to revenue maximization in Cloud federation, and defines

efficient strategies to govern providers’ cooperation decisions. The goal is to provide

algorithms to automate the selection of cost-effective distributed allocation plans that

simultaneously satisfy user demand and networking requirements. We seek generic and

robust models able to meet the new trends in Cloud services and handle both simple

and complex requests, ranging from standalone VMs to composite services requiring the

provisioning of distributed and connected resources.

In line with the thesis objectives, we first provide a survey of prior work on infras-

tructure resource provisioning in Cloud environments. The analysis mainly focuses on

profit-driven allocation models in Cloud federations and the associated gaps and chal-

lenges with emphasis on pricing and networking issues. Then, we present a novel exact

integer linear program (ILP), to assist IaaS providers in their cooperation decisions,

through optimal ”insourcing”, ”outsourcing” and local allocation operations. The dif-

ferent allocation decisions are treated jointly in a global optimization formulation that

splits resource request graphs across federation members while satisfying communica-

tion requirements between request subsets. In addition to the request topology, this

partitioning takes into account the dynamic prices and quotas proposed by federation

members as well as the costs of resources and their networking. The algorithm perfor-

mance evaluation and the identified benefits confirm the relevance of resource federation

in improving providers’ profits and shed light into the most favorable conditions to join

or build a federation. Finally, a new topology-aware allocation heuristic is proposed to

improve convergence times with large-scale problem instances. The proposed approach

uses a Gomory-Hu tree based clustering algorithm for request graphs partitioning, and

a Best-Fit matching strategy for subgraphs placement and allocation. Combining both

techniques captures the essence of the optimization problem and meets the objectives,

while speeding up convergence to near-optimal solutions by several orders of magnitude.

keywords: Cloud federation, profit optimization, distributed allocation, request split-

ting, linear integer programming, Graph decomposition, Gomory-Hu tree, Best-Fit match-

ing.

Acknowledgements

It is a pleasure to thank and convey my most profound gratitude to all those people who

have contributed in one way or another to the achievement of this work.

I would like to express my deep gratitude and sincere thanks to my supervisor and

thesis director, Prof. Djamal ZEGHLACHE, for welcoming me in his research group at

Telecom SudParis and for his continuous support and guidance during my PhD study

years.

I am very grateful to my reading committee members, Prof. Samir TOHMÉ and Prof.

Jalel BEN OTHMAN, for accepting to judge this work. Thank you for your precious

time, your interest, and your valuable feedback and suggestions to improve my disser-

tation work. My sincere thanks go also to the other members of my defense committee,

Prof. Véronique VÈQUE, Prof. Nadjib AIT SAADI, Prof. Marcelo DIAS DE AMORIM

and Dr. José NÈTO, for their interest and valuable comments and for being part of my

thesis jury.

I extend heartfelt thanks to my friends and colleagues at Telecom SudParis for their

encouragements and support and for the fun moments we spent together. A special ac-

knowledgement is necessary for the administrative staff and especially the department’s

assistant for their continuous effort to facilitate administrative procedures. My warmest

thanks go also to my colleagues at ESME Sudria for the excellent and truly enjoyable

ambiance. I am very thankful for their encouragements and valuable advices whenever

I was in need.

Last but not least, my endless and deepest appreciations go to my family members:

my loving parents, my dearest husband, my caring brother and sisters, to whom I owe

so much. Thanks for making my life beautiful and for supporting me throughout my

thesis!

v

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures x

List of Tables xii

Glossary of Acronyms xiii

1 Introduction 1

1.1 Scientific Context . 1

1.2 Research Problem and Objectives . 5

1.2.1 Motivations and Problem Statement 5

1.2.2 Research Questions and Objectives 8

1.3 Thesis Contributions . 9

1.4 Thesis Organization . 10

2 Background and Foundations 12

2.1 Introduction . 12

2.2 Cloud Computing Overview . 13

2.2.1 Cloud definition and key features 13

2.2.2 Virtualization and Cloud Computing 16

2.2.2.1 Server Virtualization . 16

2.2.3 Cloud Services and Deployment Models 18

2.3 Federated Inter-Cloud Environments . 21

2.3.1 Limitations of Single-Cloud Deployment Model 21

2.3.2 Inter-Cloud: Definition, Benefits and Deployment Scenarios 22

2.3.2.1 Definition of the Inter-Cloud model 22

2.3.2.2 Benefits of Inter-Cloud Deployment Models 23

2.3.2.3 Architectural Classification of Inter-Cloud Scenarios . . . 24

2.3.3 Drivers and Barriers for Cloud Federation 28

vii

Contents viii

2.3.3.1 Drivers and Conditions for Federation Profitability 28

2.3.3.2 Economic Challenges and Enabling Standards 29

2.4 Resource Pricing in Cloud Computing . 31

2.4.1 A General Taxonomy of IaaS Pricing Models 31

2.4.2 Common Pricing Types and Models 32

2.4.2.1 Fixed Pricing . 33

2.4.2.2 Dynamic Pricing . 34

2.4.2.3 Pricing Attributes and Resources Bundling 35

2.5 Thesis Scope and Focus . 36

2.6 Conclusions . 36

3 Cloud Resource Allocation: State of the Art 38

3.1 Introduction . 38

3.2 Resource Provisioning and Allocation in the Cloud 39

3.3 Resource Allocation in Single-Cloud Environments 40

3.4 Resource Allocation in Multi-Cloud Environments 41

3.4.1 Resource Allocation in Cloud Brokering Scenario 41

3.4.2 Resource Allocation in Hybrid Cloud 42

3.4.3 Resource Allocation in Cloud Federation 44

3.4.3.1 Cooperation and Profit-driven Resource Sharing 45

3.4.3.2 Networking Requirements and Issues in Cloud Federation 47

3.4.3.3 Resource Pricing Issues in Cloud Federation 49

3.5 Conclusions . 51

4 Exact ILP-Based Algorithm for Federating and Allocating Resources 52

4.1 Introduction . 52

4.2 The System Overview . 53

4.2.1 Cloud Federation Model and Assumptions 54

4.2.2 Resources Requests Model . 55

4.2.3 Generic Pricing Model . 57

4.3 Exact Federation Allocation Algorithm . 58

4.3.1 Linear Integer Program Formulation 60

4.4 Performance Evaluation . 65

4.4.1 Evaluation Environment . 65

4.4.2 Comparative Baselines Approaches 66

4.4.3 Evaluation Results . 67

4.4.3.1 Effectiveness of the Exact Federation Algorithm 67

4.4.3.2 Favorable Federation Conditions 70

4.4.3.3 Scalability of the Exact Algorithm 72

4.5 Conclusions . 75

5 Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 77

5.1 Introduction . 77

5.2 Networking-Cost Aware Federating Resources Algorithm (NCAFedRA) . 79

5.2.1 Request Graph Partitioning . 80

5.2.1.1 Gomory-Hu Tree Construction 82

Contents ix

5.2.1.2 Gomory-Hu Tree based Request Splitting 83

5.2.2 Cost Metric Computation . 86

5.2.3 Cost-Aware Best-Fit Matching Algorithm 90

5.2.4 Description of the Heuristic Approach (NCAFedRA) 92

5.3 Computational Complexity . 94

5.4 Performance Evaluation . 96

5.4.1 Simulation & Evaluation Settings 96

5.4.2 Evaluation Results . 96

5.4.2.1 Scalability of the NCAFedRA Heuristic Algorithm 97

5.4.2.2 Effectiveness of the NCAFedRA Heuristic 104

5.5 Conclusions . 108

6 Conclusions and Perspectives 109

6.1 Results and Discussion . 109

6.2 Future Research Directions . 111

Thesis Publications 113

A French Summary - Résumé Français 114

A.1 Introduction . 114

A.2 Algorithme Exact d’Allocation et de Fédération 116

A.2.1 Modélisation du problème . 117

A.2.1.1 Modélisation de l’environnement de Fédération 117

A.2.1.2 Modélisation des requêtes de ressources 117

A.2.1.3 Modèle de tarification des ressources 117

A.2.2 Formulation en programme linéaire en nombres entiers 119

A.3 Approche Heuristique basée sur les arbres de Gomory-Hu 124

A.3.1 Décomposition des graphes de requêtes 125

A.3.2 Calcul de la métrique de coût générique 127

A.3.3 Algorithme du meilleur ajustement: Cost-Aware Best-Fit Matching129

A.3.4 Description de l’approche heuristique 129

Bibliography 133

List of Figures

1.1 The IDC’s forecasts on worldwide IT cloud services spending in billion
dollars [1] . 2

1.2 A daily demand distribution of a typical Internet application [2] 3

1.3 Google cluster workload traces of May 2011 [3] 3

1.4 Static vs. Dynamic infrastructure resources provisioning. 4

1.5 Insourcing and Outsourcing resources within a federation. 6

2.1 The NIST Definition of Cloud Computing [4] 14

2.2 Hypervisor-based vs. Container-based virtualization. 16

2.3 Cloud Computing Services models. 18

2.4 Cloud deployment Models. 20

2.5 Interoperability and Inter-Cloud Scenarios.[5] 24

2.6 The Taxonomy of IaaS Pricing models.[6] 32

2.7 Fixed Pricing limits providers’ profits. [7] 34

4.1 Cloud Federation Scenario . 55

4.2 Resources Request Model . 56

4.3 The example of an e-commerce website . 57

4.4 Decision Making Process . 59

4.5 Impact of federation on providers’ profit and acceptance rate (Same load) 68

4.6 Impact of federation on providers’ profit and acceptance rate (Heteroge-
nous load) . 69

4.7 Splitting requests and smart outsourcing improve profit 70

4.8 Average revenues evolution with the federation’s size received load 71

4.9 Impact of the number of received requests on the execution time of the
exact allocation algorithm . 72

4.10 Impact of topologies of received requests on the execution time of the
exact allocation algorithm . 74

5.1 Example of Gomory-Hu Transformation 80

5.2 Execution steps of the classical Gomory-Hu algorithm 81

5.3 Request Splitting and Allocation across the Federation 85

5.4 Providers’ Selection based on the Aggregate Cost 86

5.5 Networking cost Approximation . 89

5.6 Convergence Time comparison between Exact and Heuristic Approaches
for |Vi| = 10 . 98

x

List of Figures xi

5.7 Convergence Time comparison between Exact and Heuristic Approaches
for |Vi| = 20 . 99

5.8 Convergence Time comparison between Exact and Heuristic Approaches
for |Vi| = 30 . 101

5.9 Impact of the batch size on the Convergence times of the Exact and
Heuristic algorithms . 102

5.10 Heuristic algorithm’s convergence times for large federations. 103

5.11 Heuristic algorithm’s convergence times for large and complex requests . . 103

5.12 Exact and Heuristic achieved profit improvements 104

5.13 Impact of the federation size on the profit improvement gaps between
Exact and Heuristic algorithms . 106

5.14 Exact Versus Heuristic request acceptance rates 107

A.1 Le Scénario de fédération de Cloud . 118

A.2 Decision Making Process . 120

A.3 Partition et Allocation des requêtes au sein de la Fédération 126

List of Tables

4.1 Notations and Variables . 61

4.2 VM’s instances types . 65

4.3 Allocation’s prices and costs . 66

4.4 Simulation parameters . 68

4.5 Revenues gap between selfish and cooperative behaviors 72

5.1 VM’s instances types . 97

5.2 prices and costs . 97

5.3 Performances evaluation and Simulation settings 97

5.4 Gaps (%) between Exact and NCAFedRA achieved profit improvements . 105

5.5 Impact of the federation size on the profit improvements gaps 106

A.1 Notations et Variables . 121

xii

Glossary of Acronyms

API Application Programming Interface

CAGR Compound Annual Growth Rate

CPU Central Processing Unit

EC2 Elastic Compute Cloud

GH Gomory Hu

GICTF Global Inter-Cloud Technology Forum

IaaS Infrastructure-as-a-Service

IDC International Data Corporation

ILP Integer Linear Program

IT Information Technology

KVM Kernel based Virtual Machine

LXC LinuX Containers

NIC Network Interface Controller/Card

NIST National Institute of Standards and Technology

OCCI Open Cloud Computing Interface

OS Operating System

PaaS Platform-as-a-Service

PM Physical Machine

QoS Quality of Service

SaaS Software-as-a-Service

SLA Service Level Agreement

VA Virtual Appliance

VDC Virtual Data Center

VM Virtual Machine

VMM Virtual Machine Monitor

xiii

Chapter 1
Introduction

Contents

1.1 Scientific Context . 1

1.2 Research Problem and Objectives 5

1.2.1 Motivations and Problem Statement 5

1.2.2 Research Questions and Objectives 8

1.3 Thesis Contributions . 9

1.4 Thesis Organization . 10

1.1 Scientific Context

Cloud Computing [8–10] is a steadily maturing model for providing on-demand IT re-

sources as a service over the Internet. This new computing paradigm, emerged initially

as a solution for hosting large-scale online applications (e.g. social networking, web

search and video gaming), has rapidly revolutionized the IT industry and enabled new

trends of delivering, managing and consuming IT capabilities. With the rapid evolution

of Internet and virtualization technologies and the support of Leader IT companies, the

long-held dream of ”Computing as utility” has finally come true and Cloud Computing

has become one of the fastest growing fields in IT. According to a new forecast from

Cisco [11], more than 86% of workloads will be processed in Cloud data centers by 2019.

Likewise, IDC (International Data Corporation) predicts that spending on public Cloud

services will exceed the $127 billion in 2018 compared to $56.6 billion spent in 2014, as

shown in Figure 1.1. This represents a compound annual growth rate (CAGR) close to

23%, which is about six times the growth rate of the overall IT market [1].

1

Chapter 1. Introduction 2

Figure 1.1: The IDC’s forecasts on worldwide IT cloud services spending in billion
dollars [1]

This increasing popularity of Cloud services is due to their flexibility in enabling access

to resources and applications from anywhere and at anytime on a ”pay-as-you-go” ba-

sis. This allows customers to avoid upfront investments for hardware acquisition and

maintenance, while benefiting from increased resource availability and improved fault-

tolerance capabilities. Among different Cloud delivery models, the Infrastructure as a

Service (IaaS) allows users to outsource their infrastructures to third-party providers,

offering on-demand access to an elastic pool of virtualized compute, network and storage

resources. The IaaS services are typically delivered to users as Virtual Machine (VM)

instances with different resource configurations and QoS guarantees. According to a

recent forecast [1], IDC recognized the IaaS model as one of the fastest growing Cloud

service categories, with an expected revenue of $24.6 billion in 2018 and a CAGR rate

of 31% from 2014 to 2018 (Figure 1.1). This thesis is centered around this promising

technology and addresses the related resource management challenges.

With the rapid growth of Cloud services, the definition of efficient management strategies

has become a major concern for Cloud actors and has attracted significant attention in

recent years. Most related works have been focused on user-centric solutions analyzing

the functional and economic benefits of using Cloud services. Less attention, however,

has been paid to the opportunities and challenges encountered by Cloud vendors to

improve their profits and remain in business. This is of paramount importance for

Cloud providers, who endlessly need efficient solutions to reduce their operational costs

and maximize their revenues. Even if the multi-tenant cloud model enables providers

to increase their hosting capacity by sharing their infrastructure among multiple users,

they still need effective management policies to handle the complexity of Cloud systems

and better meet user requirements. This includes the optimization of resource allocation

and placement decisions, which is the focus of this thesis.

Chapter 1. Introduction 3

Figure 1.2: A daily demand distribution of a typical Internet application [2]

Figure 1.3: Google cluster workload traces of May 2011 [3]

The resource allocation problem is a recurring issue in distributed computing. The

growing scale of Cloud computing and the increasing complexity of users’ requirements

introduce additional constraints and make allocation decisions more challenging with dif-

ficult tradeoffs between user satisfaction and profit maximization. In fact, IaaS providers

are faced with stochastic request arrivals and departures, which generates highly hetero-

geneous and time-varying workloads. Moreover, the analysis of real workload traces has

shown that user demands experience seasonal fluctuations with random bursts of up to

20 times the usual load, as illustrated in Figures 1.2 [2] and 1.3 [3]. Given these con-

straints, the long-term resource capacity planning becomes problematic [12]. Traditional

allocation solutions based on static resource provisioning lead to poor performance and

hinder providers from achieving expected profits. In fact, over-provisioning resources

to meet potential demand peaks can result in significant costs and unused capacities

as depicted in Figure 1.4-(a). In contrast, planning resources for only usual workloads

Chapter 1. Introduction 4

may lead to request rejection and QoS degradation in overload, which both reduce the

provider’s reputation and revenue as shown in Figure 1.4-(b). To avoid such issues,

IaaS providers must be able to dynamically adjust their hosting capacity in response to

demand fluctuations as in Figure 1.4-(c). This emphasizes the need for richer allocation

mechanisms to help providers achieve better profits.

(a) Static capacity:
over-provisioning

(b) Static capacity:
under-provisioning

(c) Dynamic capac-
ity adjustment

Figure 1.4: Static vs. Dynamic infrastructure resources provisioning.

To address these limitations, ”Cloud Federation” has recently been introduced as a

key solution to build efficient and profitable Cloud business. A Federation is a partic-

ular scenario of inter-Clouds [13, 14], where several providers can voluntarily form a

partnership and share their resources to meet users’ demands and requirements. This

mutual resource sharing can improve the availability, cost-efficiency and QoS guarantees

of Cloud services. This also enables new business opportunities through multi-site ser-

vice provisioning. Such functional and financial benefits have motivated the evolution of

the Cloud market from large ”Monolithic” vendors to interoperable federations of small

and medium providers, who cooperate to meet each other’s resource needs (Business-2-

Business).

The work carried out in this thesis is related to this context and is focusing on Cloud

resource federation among multiple IaaS providers, with the aim to maximize their rev-

enues. The goal is to provide novel and cost-effective allocation algorithms to optimize

the cooperation decisions within a federation in response to market conditions. The rest

of this chapter summarizes the main aspects of our research work, and is organized as fol-

lows. In section 1.2, we present the problem statement and motivations behind the work,

the addressed research issues and the thesis objectives. Section 1.3 outlines the major

scientific contributions of this dissertation and section 1.4 presents the organization of

the thesis.

Chapter 1. Introduction 5

1.2 Research Problem and Objectives

1.2.1 Motivations and Problem Statement

The dynamic and uncertain nature of Cloud environments makes the resource allocation

problem hard to solve. This difficulty increases with the sizes of service requests and

hosting infrastructures. To address such problem, providers should be able to dynam-

ically scale their hosting capacity in response to demand fluctuations. In fact, even if

cloud computing promises on-demand access to ”unlimited resources”, there would al-

ways be an upper bound on hardware and network capacity within a data-center, which

may lead to resource exhaustion and performance degradation during demand spikes.

Moreover, as computational services are non-storable, unused resources generate a rev-

enue loss that cannot be recovered later. To improve revenues, providers should optimize

their resource utilization and achieve higher acceptance rates. However, existing alloca-

tion mechanisms are limited to static capacities and poor auto-scaling policies, which do

not allow providers to efficiently manage unpredictable traffic bursts. Therefore, current

solutions need to evolve beyond the simple allocation of local resources to offer flexible

and seamless scalable hosting infrastructures.

To deal with these issues, Cloud Federation has been proposed as a key solution to ran-

dom bursts in user demands. Providers having complementary resource requirements

over time can collaborate and share their respective resources to dynamically adjust

their hosting capacities in response to their workloads. Such collaboration empowers

providers to overcome resource limitation and deliver advanced services with improved

performance, availability and QoS guarantees. Figure 1.5 illustrates the cooperation

aspects within a federation, namely the ”Insourcing” and ”Outsourcing” of virtual re-

sources. During demand spikes, providers may ”Outsource” part of their incoming loads

to other members, by ”borrowing” unused resources from foreign Clouds to get addi-

tional capacities. This gives providers the illusion of infinite resources and results in

fewer requests rejection. In case of low demands, providers can avoid wasting resources

by ”renting” part of their idle capacities to serve ”Insourcing” requests from other mem-

bers. Beyond this collaboration, the federation members remain totally independent and

may use different allocation and pricing strategies to operate their own infrastructures.

Joining a Federation brings many business opportunities for IaaS providers, including

advanced service offerings, reliable multi-site deployment and service cost minimization.

Among the different incentives of this emerging paradigm, we focus on its economical

and financial benefits as solution to enhance providers’ profitability. If used efficiently,

Insourcing and Outsourcing resources can help providers alleviate the problem of load

variability and meet specific requirements about geographic locations and access latency

Chapter 1. Introduction 6

Figure 1.5: Insourcing and Outsourcing resources within a federation.

of users’ applications. However, being part of a federation raises new resource allocation

challenges since providers have to also deal with cooperation level optimization (work-

load distribution, insourcing and outsourcing operations). The increasing number of

actors and the diversity of service offerings within the federation make the allocation

task particularly complex to handle, since the number of metrics and key performance

indicators can be high. The definition of efficient resource allocation and sharing strate-

gies is and will remain a real challenge for a while.

This issue has recently attracted significant attention from the research community.

Prior works have mainly focused on VM placement and servers consolidation in Single-

Cloud environments, but unfortunately much less on distributed multi-Cloud scenarios.

However, with the progress and popularity of Cloud offerings, customers are becoming

more demanding in terms of quality and range of services, which is hard to be satisfied

by isolated Clouds. To fulfil complex requirements, providers are inclined to collaborate

and form partnerships for mutual benefits and resource sharing. More attention should

be given to federated Clouds to meet these new business trends. Related state-of-the-art

solutions have been centered on the definition of platforms and architectures for interop-

erability and interactions between providers, but much less on the problem of workload

management within a federation. This is of crucial importance for cloud providers from

a business value and profit standpoint and especially challenging in a federation involv-

ing multiple providers and heterogeneous distributed resources. Innovative allocation

algorithms and techniques are required to help providers address current barriers and

Chapter 1. Introduction 7

support large-scale applications with advanced QoS requirements.

Our work focuses on this optimization problem of federating and optimally allocating

distributed resources amongst multiple infrastructure providers, with respect to profit

maximization. The problem consists in finding, for each incoming service request, the

optimal resource aggregation that leads to the best cost/performance tradeoff from the

users and system point of view. The selected allocation plan should achieve the max-

imum profit according to the federation offerings, while satisfying users’ demands and

requirements.

Analyzing the field of infrastructure resource provisioning from one or multiple providers,

we noticed that current research handles primarily the allocation of individual VMs

to consumers and ignores the internal structure of requested services. This leads to

suboptimal solutions and service performance degradation, especially in case of multi-

tier applications involving distributed and networked resources. Allocation mechanisms

must evolve to support composite services and meet stringent networking requirements.

This issue is at the center of this thesis research, which aims to address complex service

requests requiring the provisioning of multiple connected VMs according to a specific

network topology. To our knowledge, previous work on profit-driven allocation models

does not incorporate networking costs between the federation members. Making the

system aware of the communication requirements between service components and the

costs of their networking, may significantly improve performance.

Resource pricing is another important aspect that should be considered in our study,

since it directly affects the efficiency of the allocation strategy and achieved profits.

Current Cloud market is mainly based on fixed pricing for service billing. Nevertheless,

recent studies have revealed that traditional flat-rate pricing can lead to ineffective per-

formances due to the mismatch between demand fluctuations and resource availability.

To improve their business, several providers are resorting to new pricing strategies based

on dynamic price adjustment according to supply and demand conditions. To obtain

accurate results, we believe it is important to respect this variety of pricing schemes

when solving the resource allocation problem.

Adopting the previously cited aspects makes the profit optimization in Cloud federa-

tions more challenging. Finding the optimal distributed resource allocation plan becomes

more complicated since providers need to involve networking QoS parameters and pric-

ing information in the selection procedure. Smart placement solutions are required to

automate the resource assignment for tenants’ applications according to requests require-

ments and federation conditions. This thesis addresses the problem with its different

facets and dimensions to provide a generic allocation approach.

Chapter 1. Introduction 8

1.2.2 Research Questions and Objectives

In line with the scope of the thesis, we have identified the following research questions

that have obviously driven the investigations of this doctoral work:

• How to support the heterogeneity of users’ demands? The user expressed require-

ments in terms of computing resources and network topology have to be embedded

in the model to achieve better performance and optimal request partitioning across

providers. We seek generic allocation models able to support both basic standalone

virtual machines and complex services with several elementary components.

• How should providers exploit available resources to optimally distribute their in-

coming load across the federation? This question addresses the provider’s allo-

cation policy to simultaneously satisfy its business goals and users’ requirements.

Federation members have to decide about several conflicting allocation alterna-

tives, including when and where to outsource service requests, how to partition

requests across providers, how many resources to allocate from each provider to

achieve minimum costs, when and to what extent to contribute resources to the

federation, and how to identify requests leading to less profit and those improving

revenues. These are some of the questions the thesis is attempting to answer.

• How to evaluate the proposed allocation algorithms? The evaluation of alloca-

tion policies on a real Cloud federation is a major challenge for researchers. The

assessment of this complex multi-Cloud scenario requires the implication of sev-

eral providers with heterogeneous platforms and services, which is too expensive

to be conducted. A common cost-effective solution is to resort to Cloud simula-

tion frameworks [15] that enable reproducible experiments with various evaluation

parameters and scenarios. However, existing tools provide limited support for fed-

erated Clouds and their use requires additional extensions and development work.

Moreover, simulation experiments should be as realistic as possible to get convinc-

ing results and be certain of the model’s applicability in real Cloud environments.

Lastly, due to privacy and security reasons, there is no publicly available Cloud

workload traces. Realistic workloads should be generated to feed the simulation

experiments.

Driven by the above research problems, the thesis focuses on the design and development

of resource allocation algorithms to help federated providers make profitable coopera-

tion decisions. The objective is to investigate the challenges and opportunities related

to resource sharing in cloud federations, and to define efficient allocation policies for

workload distribution across federated infrastructures. A key step of our thesis work is

Chapter 1. Introduction 9

the review of related literature to gain a clear understanding of existing approaches and

identify the key parameters to consider for the problem modeling. We aim to provide

novel exact and heuristic algorithms advancing the state-of-the-art and considering new

constraints and criteria often neglected in the past. Different approaches, ranging from

combinatorial optimization to graph theory and simple heuristics, are explored and com-

pared in terms of performance and scalability to identify the most favorable conditions

for profit improvements. The proposed algorithms should be generic enough to deal

with the new trends in Cloud and to support large-scale workloads with heterogeneous

requirements and performance objectives.

1.3 Thesis Contributions

With respect to the defined objectives, this thesis brings the following key contributions:

1. A survey of the state-of-the-art solutions for profit-driven resource allocation in

federated Clouds. The analysis allowed us to identify the relevant parameters and

criteria to consider in our optimization model, including the providers’ workloads,

insourcing prices variation, resource and networking costs, providers’ reputation,

requests sizes and connectivity, etc. These parameters are studied in terms of

impact on the federation profitability to shed additional light on this matter.

2. A novel exact algorithm for optimal request partitioning and allocation in dis-

tributed Cloud federations. The model is formulated as an integer linear program

(ILP) that maximizes providers’ profit and user satisfaction through insourcing and

outsourcing resources. Based on a generic graph modeling of tenants’ demands,

the proposed approach can handle both simple and complex requests ranging from

standalone VMs to composite services with connected elementary components. In

addition to profit optimization, the algorithm minimizes both requests rejection

and networking costs imposed by the desired VMs connectivity. All allocation

decisions are treated jointly in a global objective function that takes into account

the prices and quotas proposed by the federation and the costs of resources and

their networking, to optimally split received requests across providers. A cus-

tom discrete-event simulator, using synthetic workloads generated according to

stochastic models from the literature, was implemented to assess the algorithm

performance. The results are reported with respect to profit improvements, re-

quests acceptance rates, convergence times and scalability. The evaluation results

show the algorithm efficiency in improving profits and user satisfaction and shed

light into the most favorable conditions to join or build a federation.

Chapter 1. Introduction 10

3. A topology-aware heuristic allocation algorithm is proposed to handle large-scale

federations and increasing request graph sizes and connectivity. The heuristic

uses a Gomory-Hu tree based clustering algorithm for request decomposition into

weakly connected subgraphs, which are distributed across the federation accord-

ing to a Best-Fit strategy. Combining both techniques captures the essence of the

optimization problem and meets the defined objectives in terms of profit and ac-

ceptance rate maximization, while respecting networking costs and requirements.

A thorough evaluation and comparison of the heuristic and exact solutions have

shown the efficiency of the proposed algorithm to scale with problem size and to

achieve near-optimal solutions. The heuristic leads to small gaps in profit im-

provements compared to the ILP model (ranging in [2%; 10%] in worst cases),

while improving convergence times by several orders of magnitude.

1.4 Thesis Organization

This dissertation is organized into six core chapters. Besides the present chapter in-

troducing the context, objectives and contributions of the thesis, the manuscript is

organized as follows:

Chapter 2 provides the background information related to this thesis. It presents an

overview of Cloud Computing including features, service delivery models, and preva-

lent resource pricing schemes. The chapter also introduces the inter-Cloud paradigm

promising new business opportunities and better performance, with emphasis on Cloud

federations and related economic and management challenges.

Chapter 3 investigates the problem of resource allocation in Cloud environments and

provides a detailed review of the literature on profit-driven allocation strategies. It also

discusses the related pricing and networking issues in cloud federations and presents

some dynamic pricing models suitable for the studied scenario.

Chapter 4 introduces an integer linear program for profit optimization in Cloud federa-

tions. The federation system model is presented in terms of assumptions, users’ requests

modeling and pricing schemes used to derive the ILP formulation for distributed resource

allocation. The chapter then describes the simulation experiments and provides the per-

formance evaluation results about the algorithm effectiveness and favorable federation

conditions.

Chapter 5 presents a novel topology-aware heuristic allocation algorithm to address the

complexity of the exact model with large-scale instances. The heuristic is based on

Gomory-Hu transformation and Best-Fit allocation strategy to speed up convergence

Chapter 1. Introduction 11

times to optimal and near optimal solutions. A comparative performance evaluation

with the exact model is reported to assess the efficiency and scalability of the proposed

algorithm.

Finally, Chapter 6 concludes the thesis with a summary of main contributions and

findings and provides insights into future research directions.

For the sake of accessibility, we also provide in Appendix A a French summary of the

thesis contributions.

Chapter 2
Background and Foundations

Contents

2.1 Introduction . 12

2.2 Cloud Computing Overview 13

2.2.1 Cloud definition and key features 13

2.2.2 Virtualization and Cloud Computing 16

2.2.3 Cloud Services and Deployment Models 18

2.3 Federated Inter-Cloud Environments 21

2.3.1 Limitations of Single-Cloud Deployment Model 21

2.3.2 Inter-Cloud: Definition, Benefits and Deployment Scenarios . . 22

2.3.3 Drivers and Barriers for Cloud Federation 28

2.4 Resource Pricing in Cloud Computing 31

2.4.1 A General Taxonomy of IaaS Pricing Models 31

2.4.2 Common Pricing Types and Models 32

2.5 Thesis Scope and Focus . 36

2.6 Conclusions . 36

2.1 Introduction

The Cloud Computing is an emerging concept for on-demand resource provisioning,

promising relevant and cost-effective IT solutions. While the economic benefits for Cloud

customers have been extensively discussed, less attention has been paid to the challenges

faced by service providers to ensure profitable business in such a competitive market.

Cloud providers require novel methods for efficient resource allocation and management

to reduce their costs and improve their profits. Among different potential solutions

12

Chapter 2. Background and Foundations 13

for achieving such objectives, we investigate the cooperation and federation between

providers. Before addressing this problem, it is crucial to study it in depth and identify

its drivers and barriers.

This chapter introduces background information on the basic concepts related to our re-

search topic. We first present in section 2.2 an overview of Cloud Computing describing

its key features and enabling technologies, notably the virtualization technique. After-

wards, we investigate in section 2.3 the Cloud Federation concept which is the target

platform addressed in this thesis. We broadly discuss the challenges and benefits of

inter-Cloud model addressing the limitations of traditional Cloud architectures. Then,

we narrow down our focus on Cloud Federation to study its main economic drivers and

challenges, including the resource sharing and allocation problem. In section 2.4, we

give a short overview on common resource pricing schemes used in the Cloud market

today. Finally, we conclude with section 2.5 that gives a summary of the orientation

and scope of this thesis.

2.2 Cloud Computing Overview

Cloud Computing [8] [9] [10] is a steadily maturing large-scale model for providing on-

demand IT resources (compute, storage, networks, platforms and applications) as a

service over the Internet. With the evolution of virtualization, high-speed Internet ac-

cess and especially the support of leader IT companies, the long-envisioned dream of

”computing as utility” has been achieved and Cloud Computing has become one of the

fastest growing fields in the IT industry [1, 8, 11, 16]. This increasing attractiveness of

Cloud results from its efficiency and flexibility, enabling customers to rapidly provision

and access resources from anywhere and at any-time on a pay-per-use basis. Cloud

Computing allows its users to avoid the installation and management efforts by exter-

nalizing their hardware and software resources to a large-scale environment promoting

high availability and reduced costs.

Understanding the main characteristics of Cloud services, its advantages and limitations,

is crucial for cloud actors to make appropriate decisions and get full benefits of this

technology. This is the focus of this section that surveys the main aspects of Cloud

paradigm.

2.2.1 Cloud definition and key features

”Cloud computing” has become the 21st century IT buzzword, that nearly everyone

has heard about, but much less truly understand what it is and what are its economic

Chapter 2. Background and Foundations 14

benefits. Although various Cloud definitions have been proposed in both academia and

IT industry [17] [18] [19], there is still no consensus on a precise and complete definition

for this evolving paradigm. The most accepted definition is that provided by the U.S

National Institute of Standards and Technology (NIST) in [20]:

”Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g. networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. This cloud model is composed of five

essential characteristics, three service models, and four deployment models.”

Figure 2.1: The NIST Definition of Cloud Computing [4]

This definition, shown in figure 2.1, covers the important concepts enabling the under-

standing of the Cloud Computing terminology, including cloud service types and deploy-

ment models. In particular, the NIST definition highlights the key features discerning

Cloud offerings from other traditional IT services, as detailed below:

• On-demand self-service: Consumers are able to automatically provision IT re-

sources at any time, in a simple and flexible way through a web-based management

interface.

• Broad network access: Cloud resources are remotely accessible over the network

through standard mechanisms supporting heterogeneous client platforms such as

mobile devices and workstations.

• Resource pooling: The cloud provider pools its resources to serve multiple cus-

tomers using a multi-tenancy architecture based on virtualization technologies.

Chapter 2. Background and Foundations 15

Shared resources are dynamically assigned and reassigned to consumers, who have

no control or knowledge about the exact physical location of delivered resources.

• Rapid elasticity: Cloud resources can rapidly scale up and down to cope with

workload variations. The resources are allocated and released immediately on-

request or automatically by customizable triggers to fit users demand and perfor-

mance requirements without disturbing the running tasks. This gives the illusion

of infinite resources available on-demand.

• Measured service: Cloud providers possess appropriate accounting mechanisms

to measure the resource usage for each tenant. ”Metered” resources are monitored,

controlled, accounted and transparently reported, to enable ”pay-per-use” billing

and capacity optimization.

With the myriad definitions of Cloud Computing, understanding the above features is

fundamental to avoid the widespread confusion between cloud solutions and other IT

services. This helps consumers fairly evaluate the cloud services based on their price-

performance values to take better advantage of the promised economic and functional

benefits. Figure 2.1 lists also eight additional ”Common Characteristics”, that can help

customers prioritize important features for their needs. Cloud common characteristics

include ”massive scale”, ”homogeneity”, use of ”virtualization”, ”Low Cost software”

due to multi-tenancy model, ”resilient computing” ensuring fault tolerance and disaster

recovery, ”Geographic distribution”, ”service orientation” and ”advanced security”.

According to NIST [21], the Cloud ecosystem involves five major actors that have distinct

roles and interactions: Cloud provider is the entity operating and managing the cloud

infrastructure and it is responsible for handling users’ requests. Cloud consumer is a

person or an organization that uses this service. The Cloud broker is an intermediary

that may be solicited by the consumer to negotiate the service on his behalf. The

Cloud carrier manages the connectivity and routing of services between providers and

consumers. Finally the Cloud auditor, is an independent party that can assess the service

performance to verify its conformance to standards.

Furthermore, the NIST definition [20] classifies Cloud services into three delivery models

(i.e. Software as a Service ”SaaS”, Platform as a Service ”PaaS”, Infrastructure as a

Service ”IasS”) based on the type of provided resources, and identifies four possible

deployment models (i.e. private cloud, community cloud, public cloud, hybrid cloud)

depending on the ownership and usage scope of the Cloud Infrastructure. Cloud services

and deployment models will be described in details in section 2.2.3.

Chapter 2. Background and Foundations 16

2.2.2 Virtualization and Cloud Computing

The Virtualization technology is the main foundation of Cloud Computing offerings [22].

This concept refers to the set of hardware and software tools enabling the abstraction

of a physical resource into several logical units, that can be used separately by different

Operating Systems (OS) and applications [23]. Resources Virtualization is a key feature

for Cloud providers to build efficient, flexible and cost-effective computing models satis-

fying the Cloud market challenges. It enables simple resource management and dynamic

resource resizing, reduced hardware costs due to resource sharing, isolation and fairness

between tenants, increased availability and quick recovery through easy backups and

rapid migrations [24, 25].

The virtualization can be implemented in various levels by using different methods. We

distinguish three major virtualization forms namely the ”server virtualization”, ”net-

work virtualization” and ”storage virtualization”, which are all based on the concept of

hardware abstraction and sharing. ”Storage virtualization” enables the access to virtual

disks independently of the data location and its mapping into the hard storage device.

”Network virtualization” refers to the creation of isolated virtual networks overlaid on

the same physical infrastructure and sharing the available bandwidth. A virtual net-

work can combine multiple network resources and functionalities such as virtual NICs or

logical switches and routers. Finally the ”server virtualization” allows the consolidation

of multiple isolated virtual servers into a single physical one. In this thesis, we focus on

server virtualization, which is the most common technique used in Cloud systems.

2.2.2.1 Server Virtualization

Figure 2.2: Hypervisor-based vs. Container-based virtualization.

Chapter 2. Background and Foundations 17

Server virtualization enables to host on the same server multiple independent virtual

units running their own OS and applications. This kind of virtualization can be im-

plemented using different methods, classified into two main categories based on the

abstraction layer: hypervisor-based and container-based virtualization, as illustrated in

Figure 2.2.

Hypervisor-based virtualization: is the most popular virtualization approach and

is based on a thin software layer running on top of the operating system, called Hypervi-

sor or Virtual Machine Monitor (VMM)[26]. The hypervisor is responsible for the server

resource management to provide necessary utilities to the virtual guests (Virtual Ma-

chines) running on top of it. Each guest VM can run a different OS and is fully isolated

from both hosting OS and other VMs. This technology can be implemented in different

manners including full-virtualization, para-virtualization and hardware assisted virtu-

alization [27], which differ in the way the host and guest OSs are modified to support

virtualization and interact with each others. Well-known hypervisors include KVM [28]

and VMWare ESXi [29] as full-virtualization solutions, Xen [30] for paravirtualization

implementation and Hyper-V [31] for hardware-assisted virtualization.

Container-based virtualization: also known as OS-level virtualization, is a light-

weight alternative to run multiple virtual servers without requiring additional layer

for hardware virtualization [32–34]. In this approach, an application running within

the host OS manages the virtualization and isolation between the virtual servers. All

guest instances, called containers, share the same underlying OS but have their own

processes as depicted in Figure 2.2. Container-based virtualization is supposed to have

weaker isolation compared to hypervisor-based approach. Examples of container-based

solutions include Linux containers (LXC) [35], Docker [36] and OpenVZ [37].

Although both categories allow VMs isolation, each one has its assets and utilization

cases depending on the hardware and workload characteristics [38]. Hypervisor-based

approach is more suitable when different OSs or high security levels are needed. Even

with the additional communications overhead introduced by the abstraction layer, this

approach ensures high efficiency through heterogenous OS consolidation [39, 40], and

high flexibility due to live VM migration [41]. The container-based virtualization is a

good alternative offering near-native performance since there is no overhead for hardware

device emulation. The drawback of this type is that guest containers depend on the

hosting OS kernel, which makes portability more complex.

In Cloud Computing, container-based virtualization is commonly used for building

lightweight PaaS environments while hypervisors are suitable for building IaaS services.

Chapter 2. Background and Foundations 18

Cloud services can be encapsulated into virtual appliances (VAs) to be deployed using

VM instantiation whenever needed [42], which allows economies of scale. The thesis

work assumes hypervisor-based virtualization and provides VM-based algorithms for

resource allocation in distributed Clouds. Through the rest of this thesis, and unless

specified, the term virtualization refers to this type.

2.2.3 Cloud Services and Deployment Models

Cloud Computing brings new business opportunities and offers a wide variety of IT

solutions. There are three basic services commonly associated with Cloud referred as

SPI model: the SaaS, PaaS and IaaS services [20, 43], that differ in the resource types

made available to users. Cloud Computing architecture is often represented as a stack of

these three abstract layers (Infrastructure, platform and application), where each layer

can offer its resources as a service to the upper layers, as depicted in Figure 2.3.

Figure 2.3: Cloud Computing Services models.

Software as a Service (SaaS): SaaS is the highest level of the Cloud stack that

delivers complete applications to consumers through the internet. The SaaS provider

is responsible for hosting, managing and controlling the application and its running

environment (hardware infrastructure, software stack, access and security aspects,. . .).

Details about the underlying infrastructure are transparent to SaaS users, who have sim-

ple access to the application’s functionalities without the ability to control or customize

its features. The SaaS delivery model has notably been popularized with SalesForce [44]

and its Customer Relationship Management (CRM) application. Today the SaaS is more

widespread with many new offerings such as social media platforms, e-mails, business

accounting, collaboration and management applications and online-gaming. Among the

most popular SaaS applications, we cite the storage solutions Box Inc [45] and Dropbox

Chapter 2. Background and Foundations 19

[46] and the collaboration software suite Google Apps [47] that includes Gmail, Google-

Docs and GoogleDrive. These SaaS solutions are either available for free use or charged

on a subscription basis.

Platform as a Service (PaaS): This Cloud delivery model is typically designed for

software developers and provides them with platforms to design, develop and deploy

applications. PaaS platforms are high-level integrated environments (OS, programming

languages, libraries, databases, web servers . . .) supporting the full software life-cycle.

PaaS users have full control of the applications and the environment configuration set-

tings, but no control of the underlying infrastructure that is maintained by the cloud

provider. This aims at simplifying the software development process and allowing de-

velopers to focus on their applications’ core features without worrying about complex

low-level management operations. Examples of popular PaaS platforms include Google

App Engine [48], Microsoft Azure Cloud Services [49] and Pivotal Cloud Foundry [50].

Infrastructure as a Service (IaaS): Moving down the stack, we get to the funda-

mental model for delivering Cloud services namely the IaaS service [51]. It refers to the

on-demand provisioning of basic IT infrastructure resources (processing power, memory,

storage and network). IaaS users can request either virtualized resources delivered in

the form of virtual machines or containers (see section 2.2.2), or rent physical servers

for sake of better performance (known as bare metal service MaaS). IaaS customers

have higher control over their resources compared to SaaS and PaaS models. They are

responsible for managing the deployed OS, applications and data, while IaaS providers

still manage the underlying hardware and virtualization layers. IaaS users are able to

dynamically scale their rented resources according to their workloads which allows them

to pay only for what they use. The most prominent actor in the IaaS market is Amazon

Elastic Compute Cloud (EC2) [52] offering different VM instances with various com-

putational configurations and OS kernels rented at fixed and dynamic prices. Other

popular IaaS providers include Microsoft Azure [53], Google Compute Engine (GCE)

[54], IBM SmartCloud Enterprise [55] among others.

To easily distinguish these services, it helps to remember that IaaS is about hosting,

PaaS is about building and SaaS is about consuming. With the advances of Cloud

services, the market is moving to the scenario where each IT system component can

be provided as a service over Internet (Network as a service or Naas, Monitoring as a

service or MaaS,. . .). This increasing selection of services is often referred to as ”XaaS”

(Everything as a service).

Chapter 2. Background and Foundations 20

This thesis work focuses on IaaS services. Nevertheless, the proposed allocation ap-

proaches can be easily extended to apply to the PaaS and SaaS models. Our graph-based

requests modeling (discussed in section 4.2.2) is generic enough to address all services.

Throughout the thesis manuscript, we refer to IaaS vendor by ”the Cloud provider”,

”the Cloud Service Provider” or ”the Cloud” unless otherwise specified.

IaaS services can be deployed in different scenarios, that can be classified into four main

deployment models [20] depending on the Cloud infrastructure ownership and the access

rights to deployed services, as illustrated in Figure 2.4:

Private Cloud: provides highly secure services used exclusively by the organization

that owns the infrastructure and maintains full control over it.

Community Cloud: refers to an IT infrastructure owned and shared for collaboration

between a group of organizations having common concerns.

Public Cloud: refers to a large and highly efficient IT infrastructure owned and man-

aged by an external organization, that provides on-demand services to the general public.

Services and data are hosted outside the users’ premises.

Hybrid Cloud: refers to an infrastructure combining two or more Clouds (private,

community, or public) that remain independent entities but are bonded together to

enable in-house and external services deployment.

Figure 2.4: Cloud deployment Models.

Besides these traditional deployment models, new distributed and inter-Cloud approaches

are recently emerging to satisfy customers and providers requirements and provide higher

flexibility and scalability. The next section 2.3 is dedicated to an overview of these inter-

Cloud models.

Chapter 2. Background and Foundations 21

2.3 Federated Inter-Cloud Environments

Nowadays, the cloud adoption is increasing at a rapid pace and users become more de-

manding in terms of performance and QoS. To meet this evolution and higher demand,

providers must be able to dynamically adjust their hosting capacities in response to

workload variation and QoS requirements. Recent studies have introduced the concept

of interconnecting and federating multiple Cloud platforms as an efficient solution to

overcome resource limitation and satisfy users requirements. In this context, various

recent works [56–60] have suggested different Inter-Cloud architectures for interoper-

ability and cooperation between separate Clouds. In this section, we briefly discuss

the limitations of current ”Monolithic” Cloud architectures, before reviewing the main

Inter-Cloud scenarios and major challenges in such distributed environments.

2.3.1 Limitations of Single-Cloud Deployment Model

Despite the advancements in cloud technology, traditional architectures are still having

several challenges and limitations that hinder cloud adoption and performance. The

major limitations of standard single-Cloud deployments are the following:

Limited scalability and availability: Although the Cloud gives the illusion of infi-

nite resources, in practice there would always be a maximum bound on the provider’s

hosting capacity restricted by hardware and network capabilities. Resource shortage

remains problematic for small and medium-sized providers due to increasing demands

[8], and even for large providers during workload spikes and technical failures [61–64].

Service disruption and unavailability affect directly the Cloud providers profits, since it

may result in losing reputation and customer initiated penalties for QoS violations.

Lack of interoperability and Vendor lock-in : Cloud systems were not designed

to interoperate with each other and lack of standardization and compatibility between

the underlying technologies. Cloud providers propose heterogenous proprietary solu-

tions and access interfaces, which hinders business partnership achievement and profit

improvement [65–67]. This lack of interoperability is also a crucial problem for Cloud

customers since they become dependent on a particular vendor. This vendor lock-in

may lead to economic and functional losses for users due to unfavorable deployment

and pricing plans, and involve significant costs and technical efforts to migrate their

workloads to other clouds.

Chapter 2. Background and Foundations 22

Performances degradation: Single-cloud deployment may result in significant per-

formance degradation due to the distant service location from the users distributed

worldwide, which leads to increased latency and response times. This deployment model

suffers also from a single point of stress and may result in total service interruption in

case of failure. Furthermore, with a single Cloud it is hard to satisfy complex demands

requiring advanced QoS requirements.

These issues accentuate the importance of interoperability and motivate Cloud actors

to move into inter-Cloud architectures for better reliability and scalability.

2.3.2 Inter-Cloud: Definition, Benefits and Deployment Scenarios

IT experts predict that the cloud market will converge towards a federated interoperable

environment, through a three-stage evolution [60, 68, 69]. The cloud market is currently

moving from ”Monolithic” providers delivering services based on their own infrastruc-

tures, to the ”Vertical supply chain stage” where providers operating at different service

levels can request resources from others to deploy their services [70]. The expected

third stage ”Horizontal Federation” consists in the cooperation and resource sharing

between several providers to satisfy users’ demands [71]. Achieving full transition to

this federated model is far from trivial and requires overcoming many management and

interoperability issues before it comes into wider usage. Our thesis is focusing on this

federated Cloud model to contribute to the optimization of resource allocation and coop-

eration between providers. In the following sections, we briefly review main architectural

aspects of horizontal federations, also called inter-Cloud [57] or cross-Cloud [58, 60].

2.3.2.1 Definition of the Inter-Cloud model

The term ”Inter-Cloud” has been firstly introduced by Cisco [13] to define a novel vision

of globally interconnected Clouds ”Cloud of Clouds”, inspired by the Internet paradigm

known as a ”network of networks”. The Inter-Cloud concept focuses on the use of open

standards and protocols to achieve interoperability across heterogeneous Clouds [65] and

provide a unified mesh of shared resources between providers [13]. Hereby, providers can

freely distribute their loads among distinct Clouds to meet requirements, while users can

easily migrate their services to suitable providers whenever needed. The Inter-Cloud was

formally defined by the Global Inter-Cloud Technology Forum (GICTF) as follows [14]:

”A cloud model that, for the purpose of guaranteeing service quality, such as the perfor-

mance and availability of each service, allows on-demand reassignment of resources and

transfer of workload through a interworking of cloud systems of different cloud providers

Chapter 2. Background and Foundations 23

based on coordination of each consumer’s requirements for service quality with each

provider’s SLA and use of standard interfaces”.

The GICTF white paper [14] has also identified the main inter-Cloud use cases and the

functional implementation requirements. Many other academic publications [56, 57, 59,

60, 72] adhered to the above definition and proposed various architectural initiatives

for different inter-Cloud scenarios including Cloud brokering, bursting and aggregation.

The next section describes the features of the main inter-cloud scenarios and identifies

that addressed in this thesis.

2.3.2.2 Benefits of Inter-Cloud Deployment Models

Inter-Cloud models bring numerous advantages for both Cloud providers and customers.

Among the key benefits of such interoperable environments we cite:

• High scalability and flexibility: Inter-Cloud models enable providers to meet

workload fluctuations while saving costs. Instead of over-provisioning extra ca-

pacities for peak-load periods, federated Cloud enables providers to cost-efficiently

adjust their hosting capacity through cooperation with others [56, 57].

• Fault tolerance and high availability: The distribution and replication of

service components across multiple Clouds avoid the single point of failure and

ensure better reliability and availability. During a site failure, the service downtime

can be easily controlled through dynamic resource reallocation across other Clouds.

Inter-Cloud model is identified as a substantial solution for fault tolerance and

disaster recovery in case of failure [61, 73].

• Cost and performance efficiency: Since it is difficult for providers to own

data-centers in each region, Inter-Cloud model is an efficient solution to expand

their geographic footprints to satisfy users’ location constraints and improve ser-

vice performance and latency. The Inter-Cloud model allows also saving costs due

to efficient resource aggregation. In [74], an evaluation based on a service broker-

ing shows that multi-Cloud VMs deployment improves QoS and minimizes costs

compared to the single-Cloud deployment case. Moreover, given the time-varying

pricing among providers, dynamic resource reallocation can further reduce the

overall deployment cost. Authors in [75] investigated the energy cost minimization

problem through federating Clouds. They proposed dynamic allocation policies to

place and migrate VMs based on time-varied electricity costs and cooling effects,

and showed that dynamic strategies outperform static allocations.

Chapter 2. Background and Foundations 24

2.3.2.3 Architectural Classification of Inter-Cloud Scenarios

Cloud actors can benefit from various Inter-Cloud models that differ in the initiator

and degree of the collaboration, as depicted in Figure 2.5. Inter-Cloud scenarios can

be classified ranging from loosely coupled architectures where cloud providers have lim-

ited control and basic operations over remote resources, to tightly coupled architectures

enabling advanced control and cross-site networking and migration features [76–78].

On the other hand, we can distinguish according to the initiator of the inter-Cloud two

usage scenarios: Cloud Federation and Multi-Cloud [79]. For Cloud Federation, desig-

nated as provider-centric interoperability [5], there is a volunteer cooperation between

providers based on prior business agreements. The Hybrid Cloud combining private

and public Cloud infrastructures [20] is also considered as a provider-centric federated

approach [5, 76, 79]. In contrast for Multi-Cloud scenarios, known as client-centric inter-

operability [5], the resource aggregation is initiated and managed by end-users or more

often by third-party brokers responsible for the full management cycle [59]. This section

briefly describes the features of these inter-Cloud architectures.

Figure 2.5: Interoperability and Inter-Cloud Scenarios.[5]

Hybrid Cloud: Is an infrastructure combining private resources owned by the user

and restricted for its internal use, with remote resources provisioned dynamically from

public Clouds, as seen in Figure 2.5. This loosely coupled architecture, usually referred

to as Cloud Bursting, allows users to offload part of their workload to external Clouds

when their data-centers are overloaded. Typically, non-critical tasks are outsourced to

public Clouds while critical jobs are hosted in the private infrastructure. This allows

taking advantage of both public (cost-efficiency, scalability,. . .) and private Clouds

(privacy, control, security,. . .). For thus, most Cloud management platforms such as

OpenNebula [80] or OpenStack [81], support hybrid deployment [82].

Chapter 2. Background and Foundations 25

Multi-Cloud: In this scenario, the end-users are responsible for selecting the better

aggregation of resources from multiple Cloud providers to meet their services require-

ments. Users are in charge of the full management cycle, including resource planning

and deployment, SLA negotiations, performance monitoring and resource migration. To

handle such task, users require different API adapters for the involved heterogeneous

cloud providers.

Cloud Brokering Service: Brokering Services [74, 83] have emerged as fundamental

mechanisms to facilitate the interoperability and reduce the management complexity in

Multi-Cloud environments. A Cloud broker acts as a mediator that negotiates contracts

between Cloud customers and providers and manages the service delivery and usage.

The broker may have prior agreements with multiple public Clouds that update regu-

larly the state of their service offerings (available resources, prices, QoS guarantees,. . .).

Instead of directly soliciting providers, the customers submit their requests to the Cloud

broker that selects from its repository the best providers and services matching users’

requirements and criteria (cost, geographic location, performance,. . .).

According to the NIST [21] and Gartner Research Company [84], Cloud Brokers offer

services, that can be categorized into three main roles:

• Cloud Service Intermediation: by enhancing the initial service’s capabilities through

value-added functionalities. This can include identity management, advanced

billing services, performance monitoring and reporting, and failure recovery.

• Cloud Service Aggregation: through the integration of heterogeneous distributed

services into a new cohesive one, accessed and managed through a unified interface.

• Cloud Service Arbitrage: allowing flexible and dynamic services deployment across

suitable Cloud providers.

The inter-Cloud brokerage scenario has received considerable attention in scientific and

industrial research. Several broker architectures, suggesting the system components

and interactions between them, have been designed in the literature. Related work

include the SLA-based broker [85], the STRATOS brokering service [86], the SLA-Based

Cloud@Home broker [87], among many others. Other works have focused on particular

broker component, notably the resource selection and scheduling module [74, 83, 88–91].

Relevant provisioning algorithms will be reviewed in next Chapter 3. To facilitate the

adoption of brokering scenarios, several European and International research projects

have designed and implemented various architectures dealing with different optimization

Chapter 2. Background and Foundations 26

objectives. Among them we cite: the mOSAIC Project [92, 93] proposing Ontology-

based brokering module for resource discovery and usage ; the CompatibleOne broker

[94, 95] based on open standards (notably OCCI) to assist Cloud customers in their

resource selection ; the SLA@SOI European project [96] designing a broker framework

for automated SLA management in SaaS provisioning [97] ; the OPTIMIS project [98]

implementing a Cloud brokerage module for SLA negotiation and management based on

the WS-Agreement standard, with a special focus on identity and security issues [99].

A deep comparison of the most known Open-Source brokerage solutions can be found in

[100]. In [5, 79, 101] authors have reviewed the brokering strategies in federated Clouds

and highlighted the features, advantages and drawbacks of each solution.

In this context, we have contributed during the thesis work to the CompatibleOne project

[94, 95], by proposing an OCCI-Compliant placement module called COPS (Compati-

bleOne Placement Service) to handle the resource provisioning across involved providers.

The COPS component is invoked by the broker to select the optimal resources aggre-

gation that best-match the users’ requirements. The placement results are used by the

broker to create the provisioning and SLA contracts with selected providers. To control

users’ constraints and providers’ offerings heterogeneity (cost, performance, security,

location,. . .), the placement module resorts to a multi-criteria algorithm to drive the

placement decisions. The current COPS version uses two equal-weighted preference

criteria to select the suitable clouds: the reputation of the providers and their pricing

offers. The model is generic enough to easily integrate new criteria if needed. Each

criterion is associated with a weight that reflects its importance compared with others.

These weights can be specified by the Broker based on its financial and security ob-

jectives, or according to users’ preferences. To communicate with the CompatibleOne

ACCORDS platform [102], the COPS module is based on a Restful API implementing

the OCCI HTTP rendering [103] and new-defined OCCI categories as specified in the

CompatibleOne Resources Description System (CORDS) [104]. The COPS service can

as well operate with the JSON rendering to address a broader audience. The COPS

module was actually developed and designed in the context of this thesis work.

Volunteer Cloud Federation: Cloud federation consists in a trustful cooperation

between two or more independent providers to share their respective resources. This

coalition is governed through ”Federation Level Agreements (FLA)” defining the rules

and conditions that regulate the pooling and trading of resources [105]. This inter-

Cloud model has been proposed as a new paradigm empowering IaaS providers to over-

come resources limitation. Providers having complementary resources requirements over

time can collaborate and dynamically adjust their hosting capacities to fulfill users’ de-

mands and gain additional revenues [105, 106]. During workload spikes, Cloud providers

Chapter 2. Background and Foundations 27

can alleviate requests rejections and SLA violations through ”outsourcing” part of the

load by ”borrowing” additional resources from federation members at negotiated prices.

Providers can thus achieve higher resource availability and better reputation among

customers. On the other hand, providers receiving low workload may avoid wasting

resources via ”renting” their idle capacities and ”insourcing” partners’ requests. Apart

from this collaboration, participating providers remain independent and competitive in

the Cloud market and may use different management and pricing strategies.

In this scenario, the cooperation and workload offloading between providers is totally

transparent to the customer, who is not aware about the federation and the way its

service is delivered (hosted locally or outsourced across the federation). Cloud federa-

tion architectures are in general partially coupled [76, 78] since providers should have

some advanced control over the remote resources to seamlessly execute users’ actions

(migration, resizing,. . .).

Given its promising benefits, Cloud federation has received recently a growing interest

to speed up its adoption among Cloud stockholders. The definition of architectural

features and necessary standards enabling such collaboration has received the majority

of attention from the scientific community [79, 101]. Relevant related works include:

• The RESERVOIR European project [56] that introduces a modular and extensi-

ble architecture for IaaS providers federation. Each Reservoir site contains three

management layers: the Service Manager for high-level tasks including requests

provisioning, SLA monitoring, accounting and billing; the Virtual Execution En-

vironment Manager (VEEM) responsible for VEEs management and interaction

with remote sites; and the Virtual Execution Environment Host (VEEH) handling

virtualization features and VEEs migration among distributed platforms.

• In the Contrail European project [72], an SLA-centered federated approach is

proposed to allow resources usage and deployment across different Clouds. The

Contrail three-layered architecture provides a single unified access interface to the

federation and supports advanced SLA management. The top Interface layer en-

sures interactions between users, providers and Contrail components through CLI

and REST interfaces. The mid Core layer contains the necessary modules to

support the federation features and requirements, including identity management,

resources discovery and selection, applications life-cycle management, SLA nego-

tiation and monitoring. The bottom Adapters layer contains internal and external

adapters to enable the interaction with both Contrail and non-Contrail Clouds.

• Authors in [57] have proposed a market-oriented InterCloud architecture for flexi-

ble and scalable distributed resource provisioning. The InterCloud model is based

Chapter 2. Background and Foundations 28

on three key elements: the Cloud Exchange that maintains the registry of available

providers and their offerings, handles resource trading based on auctions, and en-

forces financial and payment transactions; the Cloud Coordinators managing the

federation memberships by providing the basic features for the resource discovery,

allocation and monitoring and the periodic updates of the registry; and finally the

Brokers handling SLA and resources negotiation on behalf of users.

Other federation architecture proposals include the OPTIMIS toolkit [59], the Open

Cirrus architecture [107], the Cross-Cloud approach [60], the Dynamic Cloud Collabo-

ration (DCC) [108], among many others. Generally, Cloud federation architectures can

be classified as Centralized and Decentralized (or Peer-to-Peer) [79] approaches. In cen-

tralized architectures, there is a central entity responsible for the resources trading and

workload distribution among providers as proposed in [57, 72, 108]. On the contrary in

peer-to-peer approach, the involved providers negotiate cooperation and resource sharing

directly without any mediators as in [56, 60, 107].

Unfortunately, much less research works have been focused on the management aspects

within a federation, notably the challenging problem of workload distribution and re-

sources allocation. This thesis work assumes a decentralized volunteer Cloud federation,

to propose a novel model assisting providers in their cooperation and placement deci-

sions. Among the different incentives of federation, we focus on its economical benefits

as solution for enhancing Cloud provides’ profits through insourcing and outsourcing re-

sources. A deep review of related literature works [105, 106, 109, 110] will be presented

in next Chapter 3.

2.3.3 Drivers and Barriers for Cloud Federation

2.3.3.1 Drivers and Conditions for Federation Profitability

Ideally, a Cloud Federation should be profitable for all involved providers in terms of

revenues and acceptance rates, but it is not always the case. A coalition can be less

favorable for some providers owing to different factors that may impact the potential

federation benefits, including the following:

• The sizes of involved Clouds, in terms of available and shared resources (balanced

capacities or highly variable infrastructure sizes among providers).

• The federation size, meaning the number of providers joining the coalition.

Chapter 2. Background and Foundations 29

• The instantaneous workload received by the federation. The achieved benefits can

also depend on the providers’ locations, since geographically and timely distributed

federation may better manage load variations and peak hours.

• The types of offered resources within the federation. In fact, the existence of

similar offerings among providers is fundamental since they are willing to serve

each other’s requests. The cooperation with providers offering different services

may also be beneficial since it enables new business opportunities.

• The market rules and federation business agreements, in terms of pricing policies

and resource sharing strategies.

Up to now, there is no study defining precise rules for building profitable federations

according to these parameters. We discuss in chapter 4 some of these key drivers through

the evaluation of our exact allocation algorithm and identified benefits, that have shed

light on the favorable conditions leading to the best improvements.

2.3.3.2 Economic Challenges and Enabling Standards

The establishment of Cloud federation raises much more challenges than traditional

Cloud models. These challenges cover broad requirements including services description

and discovery, distributed resource provisioning, data portability and security, SLA nego-

tiation and monitoring, inter-Cloud networking, accounting and billing, etc [5, 57, 111].

Substantial efforts are required to overcome these issues and develop necessary features

enabling the wider adoption of Cloud federation. Reviewing all federation challenges is

not the aim of this chapter that is limited to the description of its major economic issues

relevant to our thesis work focusing on providers’ profitability:

Interoperability and Portability between Clouds: To take full benefits from

Cloud federation, providers should be able to seamlessly integrate and manage resources

across various Clouds according to performance and business requirements. This requires

the definition of standardized protocols and APIs for distributed resource management

[13, 65, 82], which has been the focus of many industrial and research groups. Among

the most adopted standards and APIs we cite: the Open Cloud Computing Interface

(OCCI) providing a specification of a RESTful management API for provisioning and

monitoring IaaS resources [112]; the Open Virtualization Format (OVF) for virtual ap-

pliances packaging and deployment across heterogeneous platforms [113]; the Cloud Data

Management Interface (CDMI) providing a generic interface for common data storage

operations [114]; the Libcloud API [115] that abstracts the heterogeneity between Clouds

Chapter 2. Background and Foundations 30

and enables large-scale deployment. Despite these standardization efforts, many opera-

tional challenges remain and have to be addressed. It will take time for these standards

to be commonly supported by public Cloud providers.

Resource Allocation and Management: The resource provisioning task is signifi-

cantly challenging in Cloud federation. It consists in finding the optimal placement and

mapping of requested services onto the distributed available physical resources. The de-

cision making process is especially complex due to the increasing number of federation

actors and parameters, and the highly heterogeneity and dynamicity in such environ-

ment. The optimization is dependent on a multitude of decision criteria including the

providers’ workloads and shared offerings, the applications’ constraints, the outsourcing

and local allocations costs, the potential insourcing revenues, etc [106, 109]. Efficient

allocation strategies are needed to enable providers to automate the selection of the

optimal resource aggregations that better fit their business goals and users’ demands

according to the current federation conditions.

Several research efforts have focused on this optimization problem and proposed policies

for distributed resource placement in federated Cloud environments [105, 106, 109, 110].

A detailed overview of relevant works in this area will be provided in next Chapter.

Similarly, this thesis work focuses on the design and development of optimal profit-

driven resource allocation models. Our objective is to address complex services requiring

the provisioning of distributed resources and their specific networking topologies. Both

exact and heuristic algorithms for optimal requests partitioning and distribution across

the federation are proposed and detailed respectively in Chapters 4 and 5.

Resource Pricing and Market Regulations: Defining adequate market agreements

for cooperation and resource sharing is another crucial challenge for federated Cloud

providers. The latter should have a clear understanding of the resource trading deci-

sions to better improve their profits [105, 106]. In this regard, there are two key factors

that strongly influence their revenues, namely the shared resource quotas and the in-

sourcing prices proposed for other members. In fact, resources allocation and pricing

strategies are correlated issues and should be considered jointly to achieve better per-

formance. For that, there is a growing attention from the scientific community to the

adoption of market-based approaches for federation resources management [116–118].

These methods have proven their efficiency for resources scheduling, and highlighted the

relevance of using dynamic pricing schemes in improving providers’ revenues compared

to fixed pricing [7, 117]. A detailed description of these two pricing models is given in

next section 2.4.

Chapter 2. Background and Foundations 31

Ideally insourcing prices and shared quotas would be dynamically adjusted at each allo-

cation cycle to better reflect the fluctuations in supply and demand. Elaborate pricing

schemes, combining various market parameters (e.g. received workloads, resources uti-

lization level, future demands,. . .), are needed to achieve better performance improve-

ments. This complex case-study is out the scope of this thesis that primarily focuses on

optimizing the allocation and partitioning of resource requests under cost and network-

ing constraints. This later optimization task is hard enough in itself to merit separate

treatment. Nevertheless, to capture the essence of this study, we integrate from the

literature a realistic pricing mechanism [105] that dynamically updates the insourcing

prices used by our profit optimization algorithms. A discussion about pricing models

relevant to the research study, and our choice motivations are presented in next chapter.

2.4 Resource Pricing in Cloud Computing

Resource pricing is the process of determining the prices that providers receive in ex-

change of selling (renting) resources. Various pricing methods can be applied in response

to the market criteria (peak or off-peak times, fixed or changing pricing rates, resources

availability). Defining the appropriate pricing strategies is important for providers to

achieve successful business, since it is a key factor in regulating supply and demand,

controlling users’ behaviors and improving resource utilization.

Therefore, cloud providers need to determine the right value of their services and capture

it through pricing. Different factors should be considered when setting prices, including

operating costs, targeted profits, market competition, consumers’ satisfaction and the

service’s perceived value. The resource pricing problem has been extensively studied by

both academia and IT industry. Various pricing strategies have been proposed in the

literature [119], varying from complex to simple models. In next Chapter, we cover some

of these studies through a detailed review of relevant related work. In practice, existing

Cloud providers use their own confidential methods for service assessment and pricing,

which leads to a myriad of pricing types and options among providers. This section

presents an overview of the main pricing models used in the Cloud market today with a

focus on IaaS services.

2.4.1 A General Taxonomy of IaaS Pricing Models

Despite the promises of simple usage-based Cloud services billing, the diversity of offer-

ings and pricing among providers have led to a complex business market. A fundamental

Chapter 2. Background and Foundations 32

Figure 2.6: The Taxonomy of IaaS Pricing models.[6]

step for Cloud users is to understand these pricing options and their Pros and Cons, to

select the best offer fitting their needs and budgets.

Generally speaking, resource pricing is usually based on some economic model such as

commodity market, flat-rate or auctions. A detailed survey covering the pricing methods

and metrics applied among 53 IaaS providers has been done by the 451 Research group

[6]. The research points out the great diversity among studied models and defines a gen-

eral ”Taxonomy of IaaS pricing” including eight main pricing categories, as illustrated

in Figure 2.6. The study also outlines the characteristics of each pricing method, its

strengths and weakness and its best-practice usage scenarios. This provides a guideline

for IaaS users to better understand the Cloud economic landscape and make efficient de-

cisions. A comparative description of the most prevalent pricing models in IaaS market,

namely the ”Cash Pay-as-you-go” pricing (On-demand, Reserved Instances, and Spot

Pricing) and the ”Committed VM” pricing, is presented in next section.

2.4.2 Common Pricing Types and Models

As shown in Figure 2.6, there are two different pricing rates, namely the fixed-rate basis

and variable-rate basis changing over time based on market parameters.

Chapter 2. Background and Foundations 33

2.4.2.1 Fixed Pricing

With fixed pricing, cloud providers set to each service a predetermined selling price that

will be maintained during an extended time period. Fixed pricing mechanisms are easy

to implement (controllable using a simple cost-plus strategy) and are the most popular

in cloud market (Figure 2.6). The most well-known fixed pricing implementations are

the On-demand usage-based pricing and the Subscription-based pricing described below.

The on-demand usage-based pricing: known also as pay-as-you-go, is the most

common pricing model offered by the majority of IaaS providers (more than 90% ac-

cording to the 451 Research [6]), including Amazon [52], Google [54], Microsoft Azure

[53], and many others. This model is based on metering the customers’ resource us-

age to bill them accordingly. The resources are quantified as usage units charged at

time-based fixed prices (VM instance per hour, gigabytes of storage per month,. . .).

Customers acquire resources on the fly and pay only for their consumption indepen-

dently of their request time. From users’ perspective, the on-demand pricing model may

be an attractive solution to rapidly scale up/down resources, to enable riskless service

experimentation without long-term commitments and to ensure a guaranteed service

during the whole time horizon at a known price. However, for long-term utilization, this

pricing model may not be suitable for users to minimize their provisioning costs. To sat-

isfy customers, many providers (over 50% according to [6]) offer new pricing alternatives

enabling more cost-effective resource usage, as detailed in next sections.

Subscription-based pricing: is a fixed pricing based on the payment of some upfront

fee to subscribe to a service during a predefined commitment period. This pricing model

is implemented by many IaaS providers (Amazon [52], Google [54], Microsoft Azure

[53], etc.) with different specificities. For example, Amazon provides the ”Reserved

Instances” pricing scheme [120] that allows users to reserve a VM instance for one or

three years by paying an upfront fee and receive in turn significant discount on the hourly

usage price. GoGrid [121] in contrast offers the ”Prepaid VM” model enabling users to

pre-pay only a subscription fee to have unlimited free usage during the contract term.

Using subscriptions helps users get lower prices with guaranteed service availability. This

pricing model is especially profitable if resource utilization can be planned in advance to

extensively use reserved resources during the contract term. This pricing scheme is also

beneficial for providers since it helps them optimize the utilization of their data-centers

and gain an assured revenue through subscription fees. However, they must ensure the

availability of reserved resources whenever requested to respect the SLA contracts.

Chapter 2. Background and Foundations 34

Figure 2.7: Fixed Pricing limits providers’ profits. [7]

Fixed pricing remains the predominant strategy today. However, recent studies [7] have

shown that this model can lead to financial loss for both providers and consumers, since it

is not sensitive to supply and demand fluctuations. In case of under-demand, customers

may pay a higher fee than market price or look for other providers and service offerings.

Whereas in case of over-demand, fixed price may be lower than the market price which

limits the provider’s revenue, as shown in Figure 2.7. Dynamic Pricing has emerged as

an efficient policy to cope with this issue and achieve better performance [7, 117].

2.4.2.2 Dynamic Pricing

Dynamic pricing is the practice of setting variable prices for the same service according

to real-time market conditions, such as available resources or customers’ expected QoS.

The dynamic pricing strategy is the least common model in Cloud market. Amazon’s

Spot Pricing [120, 122] is the only implemented dynamic policy for selling IaaS services.

However, this pricing strategy has received the highest attention in the literature [7, 116–

118] due to its complex implementation and promising benefits.

Spot instance pricing: Is an auction-based scheme offering variably-priced resources

via bid auctions. According to the Amazon price history, users can acquire spot instances

at a reduced prices of 50% to 93% compared to on-demand instances. A spot request

specifies the needed instance type, the availability zone, the reservation duration and

especially the user’s bid stating the maximum hourly price that he is willing to pay

for using resources. Once sent, the request remains waiting until its bid meets the

current spot price to be satisfied. The spot price is set by the provider and is supposed

to be updated based on supply and demand. Once satisfied, the access to the VM

instances remains active as long as the market price is fulfilled, otherwise these instances

Chapter 2. Background and Foundations 35

terminate instantly. Although spot services are not guaranteed, this pricing remains an

attractive cost-effective alternative for many interruption-tolerant applications such as

web crawling and Map-Reduce tasks. Spot pricing is also beneficial for providers to sell

unused resources and strategically manage customers’ demands by adjusting prices.

2.4.2.3 Pricing Attributes and Resources Bundling

Current IaaS providers use different formats to provide their services to customers,

including customizable computing resources, predefined bundles of packaged resources

or in-between service offerings. The 451 Research survey [6] has identified four main

levels of IaaS resources bundling, as detailed in the following:

Bundling Pricing Strategy: refers to the practice of combining several computing

resources such as CPU and memory, into a single package to be sold as a unique resource

for a single flat rate. This strategy is practiced by the majority of IaaS providers that

offer a set of pre-configured bundles with varied resource capacities, known usually as

VM instance, VM class, or VM size. Different bundling levels can be used, namely:

• VM Bundled : offering pre-configured VMs with specific CPU, Memory and disk

capacities, but the bandwidth is charged separately. Many providers such as Ama-

zon[52], Microsoft Azure[53], Google[54], and IBM [55] provide this bundling type.

• Fully Bundled : offering VM instances with predefined CPU, memory, disk capac-

ities and unlimited data transfer bandwidth. Dedicated Server-Arsys Cloud [123]

provides this pricing type.

• Processor Bundled : defines only the CPU capacity of VM instances while the rest

of resources are charged separately. VMWare vCloud [124] uses this pricing type.

Unbundling Pricing Strategy: allows customers to purchase individual computing

resources at a fine-grained level to configure their VMs by themselves. The requested

resources are charged separately per unit-usage (e.g. 0.01875$ per CPU/hour, 0.04$ per

GB of bandwidth, 6.48$ for 500 Mhz of CPU per month, etc. . .). CloudSigma [125] and

ElasticHosts [126] are two well-known providers offering this pricing type.

Choosing between bundled or unbundled service offerings is not a trivial decision, and

is mainly depending on the user’s workload characteristics and requirements. Bundled

services are favorable when most of the packaged resources are needed, otherwise it is

more advantageous to purchase unbundled resources to avoid paying unused capacities

Chapter 2. Background and Foundations 36

and enable fine-granular elasticity. Without loss of generality, our optimization study

assumes a bundling pricing strategy offering VM instances with a preset amount of CPU

and memory. For the pricing rates, both fixed and dynamic policies are used to feed

the allocation algorithms. While fixed pricing are used to charge end-users requests,

demand-oriented dynamic pricing are applied for resource trading within the federation.

2.5 Thesis Scope and Focus

This thesis addresses profit optimization for IaaS providers involved in a cloud federation.

If this concept alleviates the problems of resource limitation and workload fluctuations,

it introduces new management challenges and tradeoffs between users’ satisfaction, rev-

enue maximization, and federation agreements fulfillment. Therefore, we aim to define

efficient resource allocation strategies, to assist federated IaaS providers in selecting the

profitable cooperation decisions in response to their workloads, in-house available capac-

ities and federation offerings. We focus exclusively on the federation management level

in terms of outsourcing, insourcing, local hosting or request rejection decisions, but not

on the VM placement and consolidation inside each data-center.

Both exact and heuristic solutions for the resource federation problem are proposed and

compared in terms of complexity, performance and scalability. Our approaches are VM

based and provide on-demand allocation strategies for complex and composite service

requests. Resource requests are charged according to a bundle pricing strategy. We

consider both fixed and dynamic prices for serving end-users and federation members

respectively. The End-users prices are fixed according to standard on-demand schemes

used in IaaS market, while insourcing prices are set using a pricing estimation model

from the literature.

2.6 Conclusions

This chapter provided an overview of necessary background and foundations for the

thesis work. We introduced the key concepts and enabling technologies of Cloud Com-

puting paradigm and the commonly used pricing models for billing Cloud resources. We

investigated as well the features and benefits of inter-Cloud scenarios, with a special fo-

cus on Cloud federation emerging as a potential solution for providers’ profitability. We

reviewed the major drivers and economic challenges for profitable federations including

the optimization of resource allocation decisions, the focus of this thesis.

Chapter 2. Background and Foundations 37

The next chapter investigates in more detail the problem of Cloud resource allocation,

with a special focus on federated cloud environments. We review state-of-the-art solu-

tions for profit-driven resource allocation, as well as some relevant market-based alloca-

tion studies and dynamic pricing policies, suitable for our optimization scenario. Then,

we discuss the related gaps and issues and introduce our contributions in this field.

Chapter 3
Cloud Resource Allocation: State of the

Art

Contents

3.1 Introduction . 38

3.2 Resource Provisioning and Allocation in the Cloud 39

3.3 Resource Allocation in Single-Cloud Environments 40

3.4 Resource Allocation in Multi-Cloud Environments 41

3.4.1 Resource Allocation in Cloud Brokering Scenario 41

3.4.2 Resource Allocation in Hybrid Cloud 42

3.4.3 Resource Allocation in Cloud Federation 44

3.4.3.1 Cooperation and Profit-driven Resource Sharing . . . 45

3.4.3.2 Networking Requirements and Issues in Cloud Feder-

ation . 47

3.4.3.3 Resource Pricing Issues in Cloud Federation 49

3.5 Conclusions . 51

3.1 Introduction

Cloud federation is a new concept enabling providers to cooperate and share their in-

frastructures to meet users’ demands. A key challenge for federated providers is to

define effective resource allocation strategies to take full advantages of this cooperation.

The mapping of user requirements and provider goals to resource provisioning in the

Cloud infrastructures raises several challenges due to the scale of modern data-centers,

the heterogeneity of resource types and the variability of received loads. The problem

38

Chapter 3. Cloud Resource Allocation: State of the Art 39

becomes more challenging in cloud federations involving multiple providers and various

distributed resources.

To get a broader view of the Cloud resource allocation problem, a deep review of related

studies is needed to identify the main issues and gaps. This chapter provides a detailed

description of the problem and its associated challenges. Then it presents an overview

of state-of-the-art solutions, with a special focus on profit-driven allocation models in

federated Clouds. The literature analysis is based on several aspects such as the service

request type, the optimization goal and the underlying Cloud architecture. The chap-

ter presents also some relevant work on market-based resource allocation and dynamic

pricing models suitable for our study.

3.2 Resource Provisioning and Allocation in the Cloud

Efficient resource management is one of the key issues in Cloud environments and is of

prime interest to both Cloud providers and users. This challenging task has become an

active area of research in recent years. In comparison to the studies devoted to user

cost minimization, relatively much less attention has been paid to provider-centric al-

location solutions to help them build profitable business. As the owner of the physical

infrastructures, cloud providers are responsible for hosting, maintaining and allocating

resources to the customers for their computational needs. Reducing the operational costs

while maintaining high levels of user satisfaction are important factors for providers to

increase their revenues and remain in business. Achieving this goal requires efficient

allocation strategies to schedule user requests on the provider infrastructure. The re-

source allocation task consists in finding the best mapping or assignment of the received

requests having different resources requirements and performance objectives, onto the

available local and possibly remote physical resources having heterogeneous capacities

and different performance characteristics and pricing models. This mapping has several

challenges and is driven by both user requirements (e.g., SLA, localization, latency) and

provider’s business goals (e.g., cost optimization or energy consumption optimization).

The problem of resource allocation in large-scale shared cloud infrastructures is known

to be NP-hard and has been studied in many contexts in the past. Related work has

addressed different optimization problems that involve separate considerations and ob-

jectives. Studied topics covered different kinds of resource provisioning plans (e.g., on-

demand, advanced reservation and Best-effort requests), various types of service requests

(simple VMs, composite services, VDC, etc.) and different allocation policies. The

proposed policies targeted initial VM placement, dynamic resource reallocation, energy-

efficiency, load-balancing, cost-efficiency, reliability and fault-tolerance, etc. Since it

Chapter 3. Cloud Resource Allocation: State of the Art 40

is a non-deterministic problem, several algorithms have been used to solve these al-

location scenarios, including Mathematical Programming (Combinatorial optimization,

Stochastic Programming, Constraint Programming, . . .), Multi-criteria decision making,

Genetic algorithms, Bin-Packing approximation heuristics.

This thesis addresses cost-effective allocation policy for on-demand resource requests to

help providers select profitable distributed allocation plan for both simple and compos-

ite services. This chapter reviews the related literature and discusses the associated

challenges. The prior art can be classified into two main scenarios, namely single-cloud

environments and multi-cloud environments, as discussed in the following.

3.3 Resource Allocation in Single-Cloud Environments

In single-cloud environments, the resource allocation process consists in selecting an

optimal set of physical machines to host the received services (VMs), while respecting

resource and QoS constraints. The service and infrastructure characteristics (e.g real-

time monitoring information, pricing policies,. . .) are usually exposed to the optimiza-

tion algorithm and can be used as parameters for the placement decisions. Different

approaches were used in the literature to solve this NP-Hard problem [127] with the

aim to achieve good tradeoffs between solution quality and computation time. Related

works address different allocation policies focusing on various criteria as described in the

following:

• Load balancing : Authors in [127] design an end-to-end management layer for

non-disruptive load balancing across the different resource layers. They propose

the VectorDot algorithm, inspired from multidimensional knapsacks methods, to

address the hierarchical and multi-dimensional resource constraints in datacenters.

Using the dot products of capacity usage and resource requirement vectors, the

algorithm identifies the best destination to migrate VMs from overloaded server,

switches or storage nodes.

• Service-Level Agreement (SLA) compliance : Bobroff et al. [128] propose

a dynamic server migration and consolidation algorithm to reduce resource con-

sumption and SLA violations. The algorithm is based on measuring historical

data, forecasting future demand, and then re-mapping VMs to the physical servers

according to a Bin-Packing First-Fit heuristic.

• Energy Efficiency : Borgetto et al. [129] present an integrated management

framework based on VM migration and server power management, to reduce en-

ergy consumption while keeping predefined SLA. The framework incorporates an

Chapter 3. Cloud Resource Allocation: State of the Art 41

autonomic management loop that uses a variety of heuristics ranging from rules

to random optimization methods, while taking into account the costs of VM mi-

grations and server powering on-off.

• Cost-based Consolidation : Authors in [130] address the autonomic resource

management problem through a two-level architecture, that decouples the appli-

cation functions from the generic decision-making layer. A local decision module

measures the applications satisfaction with regard to its performance goals us-

ing utility functions. Based on both these SLA fulfillment degrees and operating

costs, the global decision layer optimizes the VM provisioning and placement into

a minimum number of active PMs, using a Constraint Programming approach.

3.4 Resource Allocation in Multi-Cloud Environments

In multi-cloud scenarios, the resource allocation decision is usually focused on the selec-

tion of the best cloud infrastructures to distribute and deploy user workload. This is con-

sistent with the cases of cloud bursting, cloud brokering and cloud federation described

in Chapter 2. In such scenarios, the information about resource usage and load distri-

bution inside each provider are commonly hidden from others. Only business-related

information (e.g VM instance types and prices, datacenter locality, . . .) are exposed to

the placement optimization process. Therefore, most related work is centered on cost

and profit aspects. In this section, we review relevant works on profit-driven alloca-

tion models, with a special focus on those using resource outsourcing as a technique for

placement optimization.

3.4.1 Resource Allocation in Cloud Brokering Scenario

Cloud brokers [79] have recently emerged as mediators between users and providers to

facilitate the selection and integration of services from different Cloud providers, which

is too complex for users to manage by themselves. Users can solicit a Cloud broker

that selects for them the best service offerings that match their demand requirements

and achieve the cost-effective resource deployment plan, while hiding the complexity

of contracts negotiation and services integration. Resource allocation in multi-cloud

brokering environments has received the most attention from the research community.

In this section we present some of the relevant related work in this area.

Tordsson et al. [74] propose a cloud brokering mechanism that optimizes the placement

of VMs across multiple Cloud providers according to the demand constraints, resource

Chapter 3. Cloud Resource Allocation: State of the Art 42

prices and user-selected optimization criteria (performance, cost and load-balance). The

authors consider a static approach and propose a 0−1 integer programming formulation

to achieve optimal cost-performance tradeoffs.

Chaisiri et al. [89] address the optimization of resource provisioning costs in multi-cloud

computing environment under demand and price uncertainty, by proposing a stochastic

integer programming (SIP) formulation that minimizes both on-demand and oversub-

scribed costs. In [90], the authors extend the work and provide new methods for fast

decision making, including deterministic equivalent formulation, Sample-Average Ap-

proximation and Benders decomposition approaches.

Li et al. [91] propose a linear integer program for dynamic VM placement across mul-

tiple Clouds. The model handles changes in both infrastructure conditions and services

requirements through VM migration and uses different levels of migration overheads

when restructuring the existing virtual infrastructures to fit optimization criteria.

Similarly, Lucas-Simarro et al. [83] [88] investigate the problem of dynamic VM place-

ment and migration across available Cloud offers. In [83], authors propose a brokering

scheduler module for the optimization of VM deployment costs in dynamic pricing multi-

cloud environments. The scheduler uses a prediction model to estimate the next hour

prices based on historical prices, their averages and their trends of variability, and ac-

cordingly suggests the best cost-effective deployment plan. In [88], a modular Cloud

broker architecture offering different scheduling strategies is presented. The scheduler

component, based on binary integer programming, supports both static and dynamic

scheduling scenarios and can handle cost and performance optimization under different

deployment restrictions (budget, performance, VM instance types, reallocation or load

balancing constraints).

All the previously described approaches focus on the allocation of separate VMs across

providers without considering the links and network topology between virtual resources.

These models are not suitable for complex services where the satisfaction of networking

requirements and relations between elementary components is essential to achieve opti-

mum service performance. Moreover, the discussed works propose user-centric solutions

that are not appropriate for the optimization of providers’ performance objectives.

3.4.2 Resource Allocation in Hybrid Cloud

The outsourcing of cloud resources is not only considered in the context of federated

Clouds. The outsourcing technique has also been investigated in hybrid clouds as a way

to increase applications’ scalability and improve performance and QoS. Managing the

Chapter 3. Cloud Resource Allocation: State of the Art 43

outsourcing decisions, involving hybrid private and public resources, is a complex issue

that has been addressed by several studies.

Van den Bossche et al. [131] propose a cost-optimal scheduling method for the prob-

lem of workload outsourcing in hybrid cloud environments, with a focus on preemptive

deadline-constrained and non-migratable workloads. Their optimization objective is to

maximize the utilization of the internal data center and to minimize the cost of exter-

nal provisioning from public clouds, while respecting the applications’ QoS constraints.

They formulate the problem as a binary integer program considering both compute and

data transmission requirements, and provide experimental insight into the scalability

and performance of their formulation.

In [132], Fito et al. use the outsourcing technique to meet service level agreements

(SLA) in hybrid clouds. The authors avoid SLA violations through an SLA-aware elastic

model that outsources requests to a third-party cloud, whenever their SLA would be

violated. Their work focuses on a reactive scheduler that scales up and down resources

based on immediate state of local servers and outsources workload to a public Cloud

provider whenever local resources are not sufficient to guarantee SLAs and/or exceeds

an acceptable local hosting cost. A heuristic is used to make the outsourcing decisions.

Javadi et al. [133, 134] propose a flexible hybrid architecture with several failure-aware

provisioning policies to address the issue of node failure in private Clouds. The proposed

architecture is based on inter-Grid concepts and includes a gateway (IGG) to intercon-

nect involved Cloud providers. The IGG’s scheduler policies are responsible for sharing

the loads between the private and public Clouds, and aim to improve the users’ QoS by

renting additional public resources during failures. The provisioning policies proposed

in [133] are Knowledge-Free and consider the workload model and failure correlations to

redirect users’ requests to the appropriate providers. The objective being to reduce the

dependency to public Clouds and the induced outsourcing costs, while satisfying users’

requirements regarding request deadlines. In [134], the authors present a generic three-

step provisioning model including resource brokering, dispatching and scheduling. The

proposed brokering strategy is based on the stochastic analysis of routing in distributed

parallel queues and is adaptive to the cost and response time of resource providers.

For request dispatching, both probabilistic and deterministic sequences are investigated,

while the resource scheduling is handled through well-known scheduling algorithms.

Similarly, Moreno-Vozmediano et al. [135, 136] investigate the cloud bursting scenario

for deploying large clusters of loosely coupled applications on top of multi-cloud infras-

tructures. The authors analyze the viability, performance and scalability of hybrid in-

frastructures for different distributed web server architectures. Both web server clusters

are deployed using real testbeds comprising computational resources from the in-house

Chapter 3. Cloud Resource Allocation: State of the Art 44

infrastructure, and external resources rented on-demand from public Clouds to handle

peak demand periods. The solution provides an elastic provisioning model that allows

to dynamically adjust the cluster size in response to users demands and improve the

service availability and cost-effectiveness.

Lee et al. [137] have addressed the problem of profit-driven service request schedul-

ing in Cloud systems, while taking into account user satisfaction. They propose a client

satisfaction-oriented scheduling heuristic (CSoS) that maximizes the providers’ profit by

accommodating as many requests as possible while maintaining the QoS at an accept-

able level. The proposed algorithm exploits the outsourcing of services to third-party

providers as a solution to handle overloading situations and avoid user request rejection

or deadline violation.

In [138], Zuo et al. propose an integer-program based allocation model to solve the

deadline constrained task scheduling (DCTS) problem in hybrid Clouds. The objective

is to find the optimal allocation scheme of internal and external outsourced resources

to schedule users’ tasks, while maximizing provider’s profit and guaranteeing promised

QoS. A self-adaptive learning particle swarm optimization (SLPSO) based scheduling

approach is proposed to overcome the tendency of standard PSO to trap into local

optima, and speed up convergence times with large size problems compared to CPLEX.

In SLPSO, four velocity updating strategies are used to adaptively update the particles

properties to improve the quality and robustness of the scheduling solution.

Most of the works discussed above are dealing with the allocation of simple requests

involving separate VMs and independent tasks. The proposed models do not incorporate

inter-VM communication requirements and costs in the outsourcing decision making.

This leads to performance degradation with complex services involving distributed and

interconnected resources. Another difference between these works and our study is that

we focus on the business opportunities of cloud federation, not only as a technique to

avoid service request rejection, but also as a way to improve profits by sharing the

otherwise-wasted resources at competitive prices between involved providers. Our study

addresses the broader question of tradeoffs between SLA violations (rejection rate) and

providers’ profit.

3.4.3 Resource Allocation in Cloud Federation

Cloud federation has been recently proposed as a key solution to help providers handle

workload fluctuations through cooperation and mutual resource sharing. Related work

is mainly focused on the architectural aspects of Cloud federation [56–58, 72, 107, 108],

but unfortunately much less on its functional and economic issues, including the profit

Chapter 3. Cloud Resource Allocation: State of the Art 45

optimization problem. The provider’s profitability depends on several parameters such

as the incoming workload, the shared quotas and the costs of resources and their net-

working. Efficient management strategies are needed to help providers make strategic

decisions including optimal resource placement and sharing, which is the focus of this

thesis. This section presents an overview of the state-of-the-art solutions on profit-driven

allocation models in federated clouds and the related pricing and networking issues.

3.4.3.1 Cooperation and Profit-driven Resource Sharing

Previous work closer to our study is found in [105], [106] and [109]. Toosi et al. [105]

consider two types of VM requests: on-demand and spot VM requests. On-demand

VM requests correspond to the type handled in our work. These VMs are provisioned

immediately to users when requested with a fixed price per hour for each accepted VM

[120]. In spot VMs [122], end-users make bids for specific VM instance types to the

infrastructure provider. A spot request is accepted only if the value of the bid is greater

or equal to the spot price that changes on an hourly basis depending on the provider’s

load. The profit optimization and allocation policies in [105] rely on a simple comparison

of the profit of outsourcing resources to the federation with serving requests locally

by terminating Spot VMs (making higher the spot price). This leads to suboptimal

solution, since each action is evaluated separately without considering the potential profit

improvement if splitting requests across multiple providers and combining allocation

actions. Moreover, authors consider only simple requests with unconnected VMs and

only one type of VM instance, when current cloud services actually involve more complex

requests with distributed and connected heterogeneous VMs.

Goiri et al. [106, 109] present a profit-driven economic model that characterizes providers’

decisions when operating in a cloud federation. Authors propose a series of decision

equations to serve user requests locally, outsource them to the federation, insource other

requests from other providers and include the possibility of shutting down unused nodes

to optimize overall cost and revenues. Their approach consists of trying each action

independently and compare them to select the best outcome, which may result in sub-

optimal request partitioning and allocation decisions. The authors limit the study to

simple resource requests with unconnected VMs and one type of VM instance, which is

far from the expectations of Cloud users who require more complex virtual infrastructure

topologies with multiple VM instances. In addition, the insourcing prices are set using

a simple discounting method that does not provide enough incentives for providers to

cooperate and share their resources within the federation to regulate supply and demand.

Chapter 3. Cloud Resource Allocation: State of the Art 46

In [139], Breitgand et al. address the problem of elastic service provisioning based

on a federated cloud approach. They present a general framework for policy-driven VM

placement optimization using both local capacity and remote (federated) resources, with

profit maximization and SLA adherence as main objectives. The problem is formulated

as an integer linear program applied with different placement policies, including the

optimization of power saving and load balancing within a cloud, as well as the mini-

mization of outsourcing costs to external partners. For scalability goals, the authors

provide a 2-approximation greedy LP rounding heuristic and describe the integration of

the proposed algorithms into the RESERVOIR federation architecture [56].

Casalicchio et al. [140] present an inter-cloud outsourcing model to scale the perfor-

mance, availability and security guarantees offered to cloud customers, while maximizing

the provider’s revenue. The proposed model assumes a cloud federation involving sev-

eral service providers located in different zones and characterized by different resource

capacities, costs and QoS guarantees. Each provider receives several requests with differ-

ent QoS levels requirements from customers dispersed in various zones and experiencing

different latencies and network delays to access remote resources. A mathematical op-

timization formulation is proposed to determine the optimal distribution and allocation

of the incoming load across providers, while satisfying SLA constraints and minimizing

allocation and outsourcing costs.

Other works in [110, 141, 142] have addressed the problems of efficient resource alloca-

tion and revenue maximization in cloud federations using game theoretic approaches.

The proposed game models are used to study the behavior and decision-making process

of self-interested providers when engaging in a federation. In [110], Niyato et al. study

the cooperative behavior in a federation to share revenues, ensure fairness and mutual

benefit for providers using coalition game theory. The considered scenario corresponds

to multiple providers cooperating to establish a logical resource pool (a coalition) to ac-

commodate their internal users and serve public cloud users. A hierarchical cooperative

game model, composed of two interrelated games, is proposed to analyze when providers’

cooperation can lead to a higher profit. They develop a stochastic linear programming

game to study the resource and revenue sharing for a coalition of providers while taking

into account the uncertainty in user demand. Because this coalition may not necessarily

result in higher individual profit for all members, authors applied a Markov-chain based

coalitional game to study the rational formation of coalitions allowing to obtain stable

cooperative group and help providers join or leave the federation based on the coalition’s

payoff.

Samaan [141] presents an economic model to regulate the resource sharing within a

Cloud federation in presence of demand-oriented spot market, based on a repeated game

Chapter 3. Cloud Resource Allocation: State of the Art 47

theory approach. The author introduces a set of self-enforceable allocation strategies

that aim to maximize the provider’s long-term profit, by sharing part of its unused

capacity to the federation and selling the rest in the spot market. The uncertainty of

workload fluctuations and expected revenues has been considered as an incentive for

rational providers to insource federation requests for free, so as to build an informal

insurance against the future workload peaks and the risk of grim punishment strategy

for non-cooperative providers. An efficient update rule, depending only on the current

workload and the history of previous interactions among providers, is derived to find the

subgame perfect Nash equilibrium values for the spot market allocations and make the

sharing decisions.

Another related work is done by Xu et al. [142] who propose a cooperative game resource

allocation algorithm for profit and customer satisfaction maximization in a dynamic

cloud federation, where the providers can join or leave the coalition at any time and

the total amount of shared resources is adjusted according to customer’s QoS require-

ments. The proposed model provides two different approaches for cost-sensitive and

time-sensitive consumers. The allocation decision concerns the resource amount each

provider need to supply to the federation and the optimal assignment of customer tasks

to these resources, so that the global utility function is optimized. The main objective

and optimization strategies of the above discussed investigations differ considerably from

our work; even if they bear some similarities a direct comparison is not feasible with the

works in [110, 141, 142].

3.4.3.2 Networking Requirements and Issues in Cloud Federation

Although resource allocation in Cloud federation has attracted significant attention re-

cently, most research focuses primarily on the placement of individual VMs, and ignores

the communication requirements between resources. This may degrade the service per-

formance and lead to higher deployment costs, especially with network-sensitive appli-

cations. While loosely coupled architectures have minimal constraints to be distributed

across multiple clouds, tightly coupled applications involve more stringent requirements

on traffic flows and coordination between components. The request topology and com-

munication requirements have to be considered in the request partitioning and deploy-

ment decisions across the federation. This issue is at the center of this thesis research,

which aims to provide topology-aware allocation policies supporting both simple and

composite Cloud services.

The Virtual Data Center embedding problem is a related research area that is receiving

an increasing attention. A VDC is a resources request consisting of several virtual

Chapter 3. Cloud Resource Allocation: State of the Art 48

machines connected through switches, routers and virtual links with different bandwidth

requirements. The VDC allocation in Cloud environments is known to be NP-hard

and is more complicated than scheduling independent VMs. Different techniques and

algorithms are used in the literature to solve this mapping problem [143–148].

Most work has focused on the embedding of VDCs in a single data center. Rabbani et

al. [147] present a three-step minimum-cost-flow-based heuristic algorithm that maps

VMs, switches and links separately. The algorithm first tries to assign the VDC request

to a single physical server. If any of the three phases fails, the heuristic adds a new

adjacent server and iterates the mapping process, while considering server defragmen-

tation, residual bandwidth, communication costs and load balancing. Authors in [145]

extend the study to dynamic VDCs embedding, where VM migration can be used to

dynamically adjust the resource allocation plan in response to demand fluctuations and

system conditions. They propose a migration-aware dynamic VDC embedding frame-

work that aims to achieve high revenue while minimizing energy and migration costs. A

general mathematical formulation dealing with initial VDC embedding, scaling requests

and dynamic VDC consolidation is presented and solved using greedy algorithms. Xu

et al. [146] consider the problem of embedding Survivable Virtual Infrastructure (graph

of correlated VMs and their backups) at minimum operational costs. The optimization

problem is handled in two stages (VM placement and virtual link mapping) subject to

resource and bandwidth demand constraints. Authors use a heuristic to solve the VM

placement sub-problem, and propose a polynomial-time linear program for mapping vir-

tual links to the data-center network, while guaranteeing sufficient bandwidth for regular

and failover communications between primary VMs and their backups in case of failure.

Few works have studied the VDCs embedding problem across distributed cloud infras-

tructures. Amokrane et al. [143] propose a VDC management framework that aims to

maximize the provider’s revenue and reduce the energy costs and carbon footprint of

selected infrastructures. The proposed solution uses a location-aware Louvain heuris-

tic to split the VDC request into different partitions with highly-communicating VMs,

while minimizing the inter-partition bandwidth. A greedy algorithm is then used to

place each partition into a single datacenter to reduce the backbone network load. The

work presented in [144] is based on a similar approach that integrates a minimum k-cut

algorithm to partition the virtual topology into smaller subsets according to a weighted

load-balancing cost function, which are then mapped to different cloud sites. Alicherry

et al. [148] propose a network-aware resource allocation model minimizing the communi-

cation latencies between allocated VMs, since this can affect the application performance

and delay the overall completion time. The resource allocation process is performed in

four steps: datacenter selection, request partitioning, rack selection and VM placement.

The datacenter selection, reduced from the Max-Clique problem, aims to minimize the

Chapter 3. Cloud Resource Allocation: State of the Art 49

distance between selected clouds and is solved using a 2-approximation algorithm. The

same algorithm is used to select hosting servers while reducing the inter-rack traffic

inside datacenters. Finally, a greedy heuristic algorithm is proposed for request parti-

tioning and VM assignment to the identified resources. However, none of the presented

models takes into account the opportunities of resource sharing between clouds when

joining a federation.

The end-to-end mapping of request links onto the federation network is out of the scope

of this thesis, that mainly focuses on the optimization of workload distribution and

cooperation decisions within a federation. We nevertheless aim to provide network-

aware allocation policies to improve the performance and cost-efficiency of deployed

services. The communication requirements among VMs and the costs of networking

distributed resources are both included in our formulation. Making the system aware of

the application structure may significantly improve the solution quality, and allow easy

extension of the proposed model to support end-to-end service mapping in future work.

The goal is to minimize the load on the links and the induced cost when distributing,

across the federation, VMs that require connectivity for their interactions.

3.4.3.3 Resource Pricing Issues in Cloud Federation

Resource pricing is another challenging issue for Cloud providers, since it directly impacts

their resource utilization and the efficiency of their allocation strategies. Currently, the

usage-based pricing remains the predominant model for offering cloud services. However,

recent studies have suggested that this fixed pricing can lead to inefficient outcomes, due

to the mismatch between resource availability and user demand fluctuation. A common

solution is to move towards dynamic pricing schemes that adjust prices in response

to market and service conditions. This real-time dynamic pricing is more suitable for

resource sharing in federated Clouds, since it helps regulate the supply and demand and

gives incentives for providers to join the federation. The success of such cooperation

cannot be achieved without the resolution of the federation economic aspects and the

definition of efficient resource pricing strategies. In fact, the resource allocation, pricing

and trading mechanisms are correlated issues that should be addressed jointly to achieve

maximum benefits. This explains the increasing interest in the use of economic-based

approaches to address the resource allocation challenge in federated Clouds.

The proposal of new models for dynamic resource pricing lies outside the scope of this

thesis. However, to broadly address the problem of profit optimization in cloud fed-

eration, we use a pricing model from the literature [105] to dynamically adjust the

insourcing prices. This section presents an overview of related literature on dynamic

Chapter 3. Cloud Resource Allocation: State of the Art 50

pricing and market-based resource allocation models relevant to our work. Studies in

this area can be classified into two main groups that use either economic-based models

or computer science techniques to address the pricing and profit maximization issues.

Most related work is based on theoretical game approaches that determine the dynamic

prices through a social welfare maximization problem in a competitive market of multiple

providers. Mihailescu and Teo [7] present a strategy-proof dynamic pricing model for

resource sharing and allocation in a cloud federation, where users are rational and the

resource demand and supply fluctuate as consumers join and leave the federation. Using

simulations, authors show that their dynamic pricing is more suitable for federated

clouds and it achieves better economic efficiency than fixed pricing in terms of higher

user welfare and successful requests. Similarly, Hassan et al. [149] address the problem

of optimal distributed resource allocation in cloud federations based on a game-theoretic

model ensuring mutual benefits among providers. Authors use a price-based resource

allocation strategy and develop both cooperative and non-cooperative allocation games

to examine the interaction and social welfare maximization among providers under each

game. The cooperative game is shown to be more efficient, cost-effective and scalable.

Other works consider the application of market-oriented pricing mechanisms to address

the resource trading and sharing within a federation. Mihailescu and Teo [117] present

a reverse auction-based framework that uses dynamic pricing to allocate multiple types

of shared resources in a cloud federation, where the sellers and buyers trading resources

are rational users. The price auctions are carried out by a market-maker that collects

the bids, selects the winner sellers for allocation based on the published price, and

computes the actual payments based on the market supply of each resource type. Using

simulations, they show that their dynamic pricing increases the buyer welfare and the

percentage of successful buyer requests and allocated seller resources. Li et al. [118]

address the profit maximization problem in a federation of selfish clouds under time-

varying job arrivals and operational costs. They combine a truthful double auction

mechanism with stochastic optimization techniques and design a dynamic algorithm for

inter-cloud resource trading and scheduling. The proposed algorithm decides the best

VM valuations and bids, schedules the received jobs onto VMs according to resources

and SLA requirements and judiciously turns on and off servers based on electricity prices.

Similarly, Toosi et al. [116] propose a financial option-based market model for resources

pricing in cloud federation that helps providers increase their profits and mitigate the

risk of QoS violations. The model uses option contracts between providers as a backup

capacity for the reserved instances, which allows them to better exploit the underutilized

reserved capacity for on-demand instances without concern to acquire resources when

needs arise.

Chapter 3. Cloud Resource Allocation: State of the Art 51

The above-discussed pricing mechanisms mostly focus on social welfare maximization in

competitive federations and promote fairness and mutual benefits for involved actors.

While such models are efficient to motivate providers to join a federation, they are not

suitable for our research study. Our objective is the optimal allocation and partitioning

of resource requests across the federation as a technique to maximize providers’ revenues.

The main objective of the two investigations differ considerably, even if they bear some

similarities the presented pricing models are not adequate for our profit maximization

problem. We believe that demand-oriented pricing approaches are more favorable for

our optimization goal. The closest work to our study is found in [105] and proposes

a utilization-based policy to dynamically update VM instance prices. The insourcing

prices are set according to the providers’ remaining capacity, which ensures load bal-

ancing between federated providers. The prices decrease with increasing idle resources

to incite other providers to outsource their requests, and increase to discourage selec-

tion when the number of idle resources decreases. The pricing scheme of [105] will be

combined with our allocation algorithms to adjust at each round the insourcing prices

proposed by each provider to the federation members.

3.5 Conclusions

This chapter described the main research efforts in the area of profit-driven resource

allocation in distributed and federated Clouds. We mainly focus on the service request

type, the optimization goal and the underlying Cloud architecture as dimensions to

classify the related work. The chapter also presents some relevant related work on

market-based resource allocation and dynamic pricing models suitable for our study.

The main direction of this thesis is the design of efficient resource allocation models

and algorithms for workload distribution and partitioning across a federation, while

increasing providers’ revenues and user satisfaction. The next chapters describe in detail

our contributions to this research field.

Chapter 4
Exact ILP-Based Algorithm for

Federating and Allocating Resources

Contents

4.1 Introduction . 52

4.2 The System Overview . 53

4.2.1 Cloud Federation Model and Assumptions 54

4.2.2 Resources Requests Model . 55

4.2.3 Generic Pricing Model . 57

4.3 Exact Federation Allocation Algorithm 58

4.3.1 Linear Integer Program Formulation 60

4.4 Performance Evaluation . 65

4.4.1 Evaluation Environment . 65

4.4.2 Comparative Baselines Approaches 66

4.4.3 Evaluation Results . 67

4.4.3.1 Effectiveness of the Exact Federation Algorithm . . . 67

4.4.3.2 Favorable Federation Conditions 70

4.4.3.3 Scalability of the Exact Algorithm 72

4.5 Conclusions . 75

4.1 Introduction

A trend in Cloud Computing is to extend cloud offerings to more complex services in-

volving distributed resources across multiple infrastructures to meet users requirements.

52

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 53

To respond to these increasing and evolving workloads, Cloud Federation has been pro-

posed as a key solution to random bursts in user demands (see section 2.3). Effective

algorithms are needed to help providers define efficient resource management strategies

to improve their profits and customer satisfaction. This includes the optimal workload

distribution and resource sharing within the federation. Our thesis focuses on this opti-

mization problem of federating and optimally allocating distributed resources amongst

multiple infrastructure providers.

The chapter proposes an integer linear programming (ILP) formulation to increase

providers’ revenue according to the federation offerings through optimal ”insourcing”

and ”outsourcing” decisions. Our goal is to provide an algorithm that automates the

selection of a cost-effective distributed resource allocation plan that simultaneously sat-

isfies user demand and networking requirements in such a distributed context. We

address complex service requests requiring the provisioning of distributed resources and

their networking to handle composite services. The proposed model aims at optimal

partitioning of user requests across federation providers while respecting communica-

tion requirements between requests subsets. The algorithm performance evaluation and

the identified benefits shed light on the conditions for a profitable federation and the

efficiency of the proposed model in improving providers’ profit.

Section 4.2 of this chapter describes the Cloud federation resource management model

with our assumptions, including the request’s graph modeling and assumed pricing

schemes. Based on this system model, section 4.3 derives the exact ILP solution for

distributed resource allocation in cloud federations. A number of valid constraints,

equalities and inequalities are added to our mathematical formulation to speed up con-

vergence and circumscribe much better the problem convex hull. Finally, section 4.4

reports the simulations and performance evaluations of the exact algorithm before con-

cluding with a summary of main findings in section 4.5.

4.2 The System Overview

In this section, we introduce the assumptions and system model used in the design of the

exact resources management algorithm. We first describe the federation scenario and

the cloud resource requests modeling. Then, we point out the cooperation requirements

and allocation costs that should be taken into account, while formulating the profit

optimization problem, to achieve the above outlined objectives.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 54

4.2.1 Cloud Federation Model and Assumptions

Figure 4.1 depicts the assumed cloud federation context involving m cloud infrastruc-

ture providers, F = {cp1, cp2, ..., cpj , ..., cpm}, cooperating in a peer-to-peer inter-cloud

fashion as in [79]. The figure emphasizes cloud provider cpj ’s view. Each provider has

a finite amount of resources to split into a fraction to be used for internal use and an-

other portion to share and make available as quotas to the federation. Each provider,

at each round, will run our algorithm to find the optimal partitioning to serve users

from local resources and accept requests for resources from federation members. The

provider will also determine opportunistically the amount of requests to outsource to

selected providers according to their respective proposed prices. As in public clouds

(such as Amazon, Windows Azure and others), the providers will offer several resource

instances types with emphasis on virtual machines with a preset amount of compute

power (CPU) and memory (RAM) per instance type. The set of considered resource

instances is denoted as I = {small,medium, large, xlarge, xxlarge}. To emphasize the

limited amount of available resources per provider, the maximum capacity in compute

power and memory available at home Cloud cpj is capped at CPUj and MEMj . We use

CPUAvail
f and MEMAvail

f to represent the quotas of compute power and memory each

federated provider cpf will cooperatively make available to the federation and dAvail
f the

period of their availability to other members.

When receiving its requests for resources allocations, each provider in the federation

knows the quotas made available by other providers and the prices proposed per VM

instance type. The providers will use this information and the proposed algorithm to

split their requests into subsets to be served by selected members of the federation. The

splitting and scheduling decisions have to lead to minimum costs and maximum revenues

for the providers. Note that our work focuses exclusively on federation level optimization

(outsourcing, insourcing, or local allocations). The proposed algorithm does not deal

with optimal placement and consolidation at each provider [39, 40] to increase their

hosting capacity. The work assumes that this is done locally and independently by each

provider. The providers are also assumed to be interconnected by high performance

and capacity links meeting applications’ communications requirements. Our algorithm

is not dealing with inter-cloud bandwidth provisioning and end-to-end networking for

distributed requests components, but it will nevertheless aim at minimizing the load

on the links and the induced cost when making partitioning and allocation decisions.

While we believe that the inter-cloud networking issues are important, the management

of providers’ cooperation decisions under the hosting and communication costs criteria

discussed in this work are complex enough in themselves to deserve separate treatment.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 55

Figure 4.1: Cloud Federation Scenario

4.2.2 Resources Requests Model

Each cloud provider cpj can receive several batches of requests R, during a round, com-

posed of requests from end users and from other providers. Cloud users can request

resources for building complex applications, requiring distributed and connected ele-

mentary services, with different topologies and networking requirements. Each received

request i can be modeled as an undirected graph Gi = (Vi, T r
i), where vertices Vi repre-

sent needed resources in terms of requested VM instances belonging to the set I of offered

instances, and edges Tri = (tril,l′)1≤l,l′≤|Vi| reflect connections and traffic flow require-

ments between VMs l and l′. We assume that all virtual machines l (l ∈ Vi), associated

to a user or a provider request i, are active during a specified duration di = di,l, ∀l ∈ Vi.
Figure 4.2 provides an example of a received request Gi, with general topology defined by

the inter-VMs traffic matrix Tri characterizing the amount of data units to be commu-

nicated between the 9 requested services (VMs) Vi, as illustrated respectively in Figure

(4.2-(a)) and (4.2-(b)).

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 56

Figure 4.2: Resources Request Model

A typical class of distributed applications widely running on the Cloud is the ”e-

commerce applications”. In this scenario, we can consider a user request for deploying

a website for on-line shopping store. Figure 4.3 shows the modeling of such application

composed of five types of servers: the load balancer redirecting incoming customers’

requests to the suitable server, the web server providing the interface of the on-line store

and handling HTTP requests and web pages browsing, the application server processing

the users shopping requests (the preview of products catalog and prices, management

of the virtual shopping cart, checking of the store stock, interaction with suppliers in

case of product lack, interaction with shippers for customers’ orders delivery, etc ...),

the database server recording the site’s information (available products and prices, cus-

tomers’ data, orders, etc ...), and finally the payment gateway/server ensuring secure

payment process. Once deployed, these servers are hosted across different VMs with

different capabilities satisfying each service’s requirements, and communicate together

to handle customers’ shopping process. Some or all of these servers can be replicated

to provide fault tolerance and disaster recovery solutions and/or to respect latency re-

quirements. The user request can be presented to the Cloud provider as a template (or

manifest) that specifies all needed resources and allocation constraints. Many other dis-

tributed applications like social networks, multi-players video gaming, simulations and

data analysis applications can be easily represented using the underlying model.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 57

Figure 4.3: The example of an e-commerce website

4.2.3 Generic Pricing Model

In order to foster cooperation within the federation and make more profit at the same

time, members will charge other providers less for insourcing actions than they would

charge end users. Providers will earn a certain amount for each accepted request for

resources. To remain competitive, the price charged to end users will be lower or close

to the prices imposed by the cloud market. For each accepted VM l, a provider earns

some revenue per resource unit represented by Pi,l when satisfying a resource request i

for a VM instance type l. The amount of resources providers share with the federation

and their proposed prices for insourcing influence directly their potential profit improve-

ments. Ideally, insourcing prices and quotas would be assessed dynamically based on

workloads, available resources, future demands and cloud market fluctuations. This

rather complex case is out of the scope of this work that limits the study by using a

simple but realistic pricing mechanism [105] that captures the essence of the optimiza-

tion problem. The pricing in [105] ensures load balancing between federated providers

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 58

depending on their remaining capacity. At each round, each provider will use the math-

ematical expression below to set their insourcing prices:

P insourcing
type =

Capmax
type−Capidletype

Capmax
type

∗ (P user
type − Costtype) + Costtype (4.1)

The expression takes into account the cost associated to the use of resources on a per VM

instance type basis, the end user price and sets the proposed insourcing price according to

the provider’s idle resources. The proposed price decreases with increasing idle resources

to incite other providers to outsource their requests and increases to discourage selection

when the number of idle resources decreases. There are other costs than the cost of using

local resources (C local
j,l , the cost of a VM l served locally at provider cpj) to take into

account to derive the potential revenue improvements when joining a federation. The

cost of outsourcing, when delegating some of the load to other providers, is one of these

costs that is represented by Cout
f,l for each VM l outsourced to a provider cpf . The cost

of networking VMs distributed across the federation infrastructures has to be included.

The networking cost, to be paid to third party such as a network provider, of two VMs l

and l′ hosted respectively by providers cpf and cpf ′ is represented by Cnet
f,f ′ . We assume,

however, that there is no cost for networking VMs hosted by the same provider or data

center (i.e., Cnet
f,f = 0) as this is embedded in the cost of the resources themselves (or

VMs). We also assume an average loss in revenue when not accepting requests from users

and federation members as this affects directly reputation and profit of the provider.

To reflect this aspect we introduce in the model a penalty Lpenaltyrejection representing the

equivalent loss in revenue for each request rejected by the provider. This penalty can be

used by the providers to set the weight and importance they give to their reputation.

This has also the advantage of promoting cooperation in the federation.

With the generic pricing model, the outsourcing and networking costs expressions and

the rejection penalty, we can mathematically formulate the revenue optimization prob-

lem and propose an exact algorithm to improve profit of the federation providers.

4.3 Exact Federation Allocation Algorithm

In this section, we present our ILP-based algorithm to assist IaaS providers, involved in

a cloud federation, in adjusting their hosting and cooperation decisions in response to

their workloads and available resources. We give the objective function to optimize under

several linear constraints reflecting practical requirements of cloud resources allocation

process.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 59

Note that the proposed algorithm will run at each provider involved in the federation.

Prior to running the algorithm that maximizes profit, each provider will use the generic

pricing model of Equation (4.1) to set their insourcing prices at each round. These prices

will feed the profit maximization algorithm when allocating resources. As depicted

in Figure 4.4, the algorithm helps each provider cpj (j = 1, ...,m) partition received

requests into subsets that will be hosted locally (at cpj) or outsourced to other providers

cpf (f 6= j) as well as select the insourcing requests from other providers to accept

(served by cpj on behalf of cpf , f 6= j), while taking into account prices and quotas

proposed by the federation members and the costs of resources and their networking.

The goal of the algorithm is to optimally distribute the requests across the federation by

maximizing revenues and minimizing costs at each provider to lead to improved profits

for all federation members.

Figure 4.4: Decision Making Process

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 60

4.3.1 Linear Integer Program Formulation

We derive an integer linear program (ILP) for the problem for an arbitrary provider cpj

since the algorithm will run at each provider independently. The coupling is ensured by

equation (4.1) that each provider uses to set its insourcing prices at each round. The

objective function and the ILP should:

1. maximize profit achieved by provider cpj when hosting (serving) typical and in-

sourcing requests on local infrastructure (i.e. at provider cpj);

2. enhance revenues by outsourcing requests to other members proposing advanta-

geous prices when compared to the cost of local hosting and the price applied by

provider cpj to end users;

3. minimize networking costs when distributing, across the federation, VMs that

require connectivity for their interactions;

4. maintain good reputation for the providers by minimizing the number of rejected

resource requests.

To reach these goals, we define a number of boolean and integer variables as listed

for convenience in Table 4.1. The bivalent decision variable xj,f,l indicates if a VM l

received from provider cpf is accepted and served locally by provider cpj . Note that

xj,j,l (when f = j) represents user requests received by cpj and served locally by cpj . In

order to differentiate between end users requests and other providers (f 6= j) requests,

we introduce the set Si. This set is equal to {j} for end user requests and to {f/f =

1, ...,m; f 6= j} for hosting (insourcing) requests from the other providers. The set Si

is used also to control the price Pi,l that is fixed for end users since governed by the

market, while dynamically set for providers requests. The dynamic price is updated at

each allocation round by the cooperating federation providers themselves in order to

achieve the highest possible profit. For outsourcing decisions, we use variable xf,j,l to

indicate if VM l is outsourced by provider cpj to another provider cpf in the federation

or not. Variable ai is used to indicate if a resource allocation request i is accepted or

rejected in order to minimize rejection rate to maintain good reputation for the provider.

Using these notations, we can formulate our objective function achieving the optimiza-

tion goals cited earlier and making optimal partitioning and allocation decisions. The

maximization of the profit gained from local allocations during a round can be expressed

using the following equation:

maximize

 |R|∑
i=1

|Vi|∑
l=1

∑
f∈Si

(Pi,l − C local
j,l) · xj,f,l · di ·∆t

 (4.2)

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 61

Notation Meaning

m Number of providers in the federation.

j, f, f ′ Are used to designate federation providers. cpj refers to the Home
Cloud and cpf ,cpf ′ to other federated members.

i A resource request received from end-user or other providers.

R The request batch composed of several received requests (from
end-users and providers) to be handled together, R = ∪i{i}.

Vi The set of VMs desired by a request i. l and l′ refer to VMs in
this set (l, l′ ∈ Vi).

cpul,meml The resources requirements needed by VM l in terms of compute
power and memory resources respectively.

di The execution time of request i (request lifetime).

tril,l′ Traffic to be exchanged between VMs l and l′ of request i.

CPUj Maximum CPU capacity on cpj ’s local infrastructure.

MEMj Maximum Memory capacity on cpj ’s local infrastructure.

CPUAvail
f CPU quotas shared by provider cpf in the federation.

MEMAvail
f Memory quotas shared by provider cpf in the federation.

dAvail
f The availability duration of provider cpf ’s offered quotas.

Cnet
f,f ′ The networking unit cost between providers cpf and cpf ′ .

C local
j,l The local hosting cost of VM l.

Cout
f,l The outsourcing cost of VM l among provider cpf .

Pi,l The unit price per each satisfied VM l of request i.

Lpenaltyrejection The average revenue loss (penalty) for each request rejected by
the provider.

Si Is the set of actors having sent the request to provider cpj . Ac-
cording to our modeling, Si = {j} if i is an end-user request, and
Si = {f = 1, ...m; f 6= j} if i is an insourcing request from provider
cpf .

Variables Definition

xj,f,l A binary variable. xj,f,l = 1 if the VM l has been received by the
provider cpj from cpf and allocated locally, and 0 otherwise.

xf,j,l A binary variable. xf,j,l = 1 if the VM l has been outsourced by
the provider cpj to the provider cpf , and 0 otherwise.

yjf,f ′,l,l′ A binary variable. yjf,f ′,l,l′ = xf,j,l · xf ′,j,l′ .

ai A binary variable. ai = 1 if the request i has been accepted and 0
otherwise.

Table 4.1: Notations and Variables

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 62

Finding the best profit improvement through outsourcing virtual resources can be for-

mulated as follows:

maximize

 |R|∑
i=1

m∑
f=1,f 6=j

|Vi|∑
l=1

(Pi,l − Cout
f,l) · xf,j,l · di ·∆t

 (4.3)

The prices in equations (4.2) and (4.3) are updated using the pricing model of equa-

tion (4.1). The price Pi,l in both terms (or expressions) is updated by provider cpj in

each round to set the new price when serving insourcing requests from other providers.

This price is fixed for end users. In the second equation (4.3), representing revenue of

outsourcing actions, the cost Cout
f,l is the outsourcing cost applied by other providers to

provider cpj for outsourced requests. This cost, corresponding to the proposed insourc-

ing price by other providers, is also updated by these providers (f 6= j), using equation

(4.1) based on their respective resources usage and condition.

The networking costs, induced by partitioning requests across different providers, is

minimized by adding this expression to the objective function:

minimize

 |R|∑
i=1

m∑
f=1

m∑
f ′=1

|Vi|∑
l=1

|Vi|∑
l′=1,l>l′

tril,l′ · Cnet
f,f ′ · xf,j,l · xf ′,j,l′ ·∆t

 (4.4)

To avoid the resulting quadratic formulation, we define the binary decision variable

yjf,f ′,l,l′ to linearize the expression in (4.4):

yjf,f ′,l,l′ = xf,j,l · xf ′,j,l′ (4.5)

This gives the following linear equation:

minimize

 |R|∑
i=1

m∑
f=1

m∑
f ′=1

|Vi|∑
l=1

|Vi|∑
l′=1,l>l′

tril,l′ · Cnet
f,f ′ · yjf,f ′,l,l′ ·∆t

 (4.6)

Finally, the minimization of the requests rejection rate during the allocation round can

be expressed using:

minimize

(|R| −
|R|∑
i=1

ai) · Lpenaltyrejection ·∆t

 (4.7)

The global objective function, combining all the stated optimization goals and criteria,

is given by equation (4.8). This optimization is subject to several linear and integrity

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 63

constraints expressed respectively by equations (4.9) to (4.19) and equation (4.20). The

introduced mathematical equalities and inequalities for the federating resources prob-

lem, formulate the conditions on the selected resources and providers that have to be

respected when splitting requests across the federation. These linear constraints will

speed up to some extent the convergence time of the exact approach, by reducing the

search space for the optimal allocation decisions enhancing providers’ revenues. The first

two constraints (4.9) and (4.10) express resources limitation constraints so local alloca-

tions do not exceed the available maximum capacity in compute (CPUj) and memory

(MEMj) at provider cpj . Inequalities (4.11) and (4.12) make sure that outsourcing

allocations remain below the quotas made available by providers to the federation. In-

equality (4.13) guarantees that quotas are available during the entire lifetime of out-

sourced requests (or service time). Inequality (4.14) and equality (4.15) ensure that

accepted requests are satisfied. Constraint (4.14) ensures that each VM is allocated to

one and only one host. This also means that a satisfied VM request is exclusively served

locally or outsourced to only one provider. Constraint (4.15) makes sure that all VMs

associated to a request are allocated so the request is completely fulfilled otherwise the

request is rejected. The family of constraints expressed by equality (4.16) prevent loops

of insourcing and outsourcing actions. Insourcing requests from a provider cpf (f 6= j)

will not be outsourced back by provider cpj to cpf . Inequalities (4.17) and (4.18) define

relations between the bivalent variables xj,f,l, xf,j,l and yjf,f ′,l,l′ . To guarantee provider

cpj gets at least some revenue when engaging in the federation, constraint (4.19) ensures

that selected solutions always lead to a revenue higher than a minimum threshold R0

(R0 ≥ 0, R0 = 0 guarantees no revenue loss to the providers).

maxZj =

 |R|∑

i=1

|Vi|∑
l=1

∑
f∈Si

(Pi,l − C local
j,l) · xj,f,l · di

+

 |R|∑
i=1

m∑
f=1,f 6=j

|Vi|∑
l=1

(Pi,l − Cout
f,l) · xf,j,l · di

−
 |R|∑

i=1

m∑
f=1

m∑
f ′=1

|Vi|∑
l=1

|Vi|∑
l′=1,l′>l

tril,l′ · Cnet
f,f ′ · yjf,f ′,l,l′

−
(|R| −

|R|∑
i=1

ai) · Lpenaltyrejection

 ·∆t

(4.8)

Subject To:

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 64

|R|∑
i=1

|Vi|∑
l=1

∑
f∈Si

cpul · xj,f,l ≤ CPUj (4.9)

|R|∑
i=1

|Vi|∑
l=1

∑
f∈Si

meml · xj,f,l ≤MEMj (4.10)

|R|∑
i=1

|Vi|∑
l=1

cpul · xf,j,l ≤ CPUAvail
f ∀f = 1, ...,m; f 6= j (4.11)

|R|∑
i=1

|Vi|∑
l=1

meml · xf,j,l ≤MEMAvail
f ∀f = 1, ...,m; f 6= j (4.12)

di · xf,j,l ≤ dAvail
f

∀i = 1 ∈ R; ∀l =∈ Vi; ∀f = 1, ...,m; f 6= j
(4.13)

m∑
f=1

xf,j,l ≤ 1 ∀i ∈ R; ∀l ∈ Vi (4.14)

m∑
f=1

|Vi|∑
l=1

xf,j,l = |Vi| · ai ∀i ∈ R (4.15)

xf,j,l = 0 ∀i, {i ∈ R | Si 6= {j}}; ∀l ∈ Vi; ∀f ∈ Si (4.16)

xf,j,l + xf ′,j,l′ − yjf,f ′,l,l′ ≤ 1

∀i ∈ R; ∀l = 1, ..., |Vi|; ∀l′ = 1, ..., |Vi|; l′ > l;

∀f = 1, ...,m; ∀f ′ = 1, ...,m

(4.17)

m∑
f ′=1

yjf,f ′,l,l′ ≤ xf,j,l

∀i ∈ R; ∀l = 1, ..., |Vi|; ∀l′ = 1, ..., |Vi|; l′ > l;

∀f = 1, ...,m;

(4.18)

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 65

Instance type CPU RAM (Gbytes)

small 1 1.7

medium 1 3.75

large 2 7.5

xlarge 4 15

xxlarge 8 30

Table 4.2: VM’s instances types

 |R|∑
i=1

|Vi|∑
l=1

∑
f∈Si

(Pi,l − C local
j,l) · xj,f,l · di

+

 |R|∑
i=1

m∑
f=1,f 6=j

|Vi|∑
l=1

(Pi,l − Cout
f,l) · xf,j,l · di

−
 |R|∑

i=1

m∑
f=1

m∑
f ′=1

|Vi|∑
l=1

|Vi|∑
l′=1,l′>l

tril,l′ · Cnet
f,f ′ · yjf,f ′,l,l′

 ≥ R0

(4.19)

xj,f,l , xf,j,l , y
j
f,f ′,l,l′ ∈ {0, 1}

∀i ∈ R; ∀l = 1, ..., |Vi|; ∀l′ = 1, ..., |Vi|; l′ > l;

∀f = 1, ...,m; ∀f ′ = 1, ...,m

(4.20)

4.4 Performance Evaluation

4.4.1 Evaluation Environment

The performance of the exact federation algorithm was evaluated using the ILOG

CPLEX library [150] and a custom discrete event simulator on an Intel Xeon server

with a 2.53 GHz Quad Core Processor and 24 Gbytes of RAM. A number of geograph-

ically distributed cloud providers (in [2, 20]) operating over different time zones with

various infrastructure sizes were drawn randomly to perform the assessment in order

to span the optimization space. Homogeneous and heterogeneous federation scenarios

and conditions were used to collect the performance results. Request batches (ranging

in [1, 20] requests) with Poisson arrivals having different rates emulated the providers’

day and night workloads. Each request is composed of a random number of connected

VMs ([1, 10]) organized in a graph with random topologies and a random required ser-

vice time in [1 hour, 5 hours]. The VM instance type was also drawn randomly in

I = {small,medium, large, xlarge, xxlarge} with configurations summarized in table

4.2. Connected VMs exchange traffic in the 1 to 5 Gbytes range.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 66

Instance End-user Prices Hosting Costs Networking Costs

small [0.040$, 0.060$] (0.5 ∗ P user
s) [0.001$, 0.005$]

medium [0.062$, 0.120$] (0.5 ∗ P user
m) [0.001$, 0.005$]

large [0.140$, 0.240$] (0.5 ∗ P user
l) [0.001$, 0.005$]

xlarge [0.260$, 0.480$] (0.5 ∗ P user
xl) [0.001$, 0.005$]

xxlarge [0.520$, 0.980$] (0.5 ∗ P user
xxl) [0.001$, 0.005$]

Table 4.3: Allocation’s prices and costs

The end-users prices are fixed and set according to standard on-demand pricing schemes

such as Amazon EC2 [120]. The insourcing prices are set dynamically by providers using

equation (4.1). In the evaluation, the unit cost per instance type is fixed to (Costtype =

0.5 ∗ P user
type) for each VM hosted locally. The cost of inter-providers networking units

is drawn from a specific interval [0.001$, 0.005$]. All costs and prices used for the

evaluation are summarized in Table 4.3. The revenue threshold R0 is set to 0 to make

sure providers do not lose revenue. The rejection penalty Lpenaltyrejection that represents the

average loss per rejected request is fixed arbitrarily to 1$ without loss of generality.

4.4.2 Comparative Baselines Approaches

Since previous proposals on distributed allocation and federation of virtual resources

can not be directly contrasted with our exact algorithm (see Chapter 3 reviewing related

works in the literature), we resort to a comparison with three baseline approaches to

highlight the benefits of federations and of the exact algorithm:

• Non-Federated Approach: The providers operate independently and rely only

on their own infrastructure to serve users. Requests are rejected if there are no

more free resources. This approach corresponds to the exact algorithm with infinite

outsourcing costs and zero insourcing prices (no out/in-sourcing). This approach

is used as a normalizing reference for overall comparison.

• Non-Splitting Approach: This approach allocates each request (graph of VMs)

without any splitting only to the provider with the most advantageous pricing.

This corresponds to the exact algorithm with infinite inter-providers networking

costs since this will force assignment of an entire request to one and only one

provider.

• Only-IF-Full Approach: The providers outsource requests to the most appro-

priate federation members only when their own infrastructure is full.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 67

4.4.3 Evaluation Results

The evaluation is performed for two working days (48 hours) with one hour rounds for

the dynamic price updates by providers. The assessment concerns profit improvements,

requests acceptance ratio, resources utilization and algorithm convergence time. All

results correspond to a 95% confidence interval shown only for few curves (Figure 4.9)

in order not to overload figures.

4.4.3.1 Effectiveness of the Exact Federation Algorithm

Improvement of Profit and Acceptance ratio: The first assessment of the exact

federation algorithm performance concerns its effectiveness in improving profit for fed-

eration providers and gain insight on the most appropriate conditions for this improve-

ment. A federation of 5 providers homogeneous in available resources (1500 CPU and

6000 Gbytes of RAM) is used and evaluated with homogeneous and heterogeneous loads

within the federation. The parameters used for this simulation are summarized in Table

4.4. For homogeneous loads, providers receive batches of requests at a rate of 4 batch-

es/hour during the day and 1 batch/hour at night. For heterogeneous case, providers

experience different batches arrival rates in line with their respective end-users prices

(see Table 4.4). Figures 4.5 and 4.6 show clearly profit improvements for all providers.

When the load is homogeneous, providers with the highest end user prices gain the most

see providers 3 and 4 that respectively improve their profits by 42% and 35%. This is

due to highest gain margins between their prices and those offered dynamically by other

federation members, especially those with lower end user prices. The latter will propose

advantageous insourcing prices, and will be over solicited by incourcing requests. They

end up proposing much higher prices to tamper other providers when overloaded, but

they will not be able to frequently resort to federation because their end users prices

need to be higher than outsourcing costs (insourcing price proposals from others) to

improve their profit. This can be confirmed in Figure 4.5 by observing that provider

5 (with lowest end user prices) achieves only 9% profit improvement and suffers an in-

creased rejection rate of 20% (compared to the case when operating without federation)

while providers 3 and 4 improve their acceptance rates (46% and 48% respectively).

The case of heterogeneous loads provides additional insight and shows as expected that

providers with the lowest proposed user prices and the highest workloads will set their

insourcing prices to even higher values within the federation to avoid being overwhelmed

by the other providers and will be able to achieve a better tradeoff between profit and

rejection rate. The federation is more balanced overall in heterogeneous conditions even

if providers 1 and 5 achieve better gains (respectively 47% and 23% profit improvement

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 68

Figure 4.5: Impact of federation on providers’ profit and acceptance rate (Same load)

and 69% and 3% request acceptance improvement) as depicted in Figure 4.6. In sum-

mary, the results highlight the importance of predicting future demands to derive more

elaborate pricing schemes to improve profits even more for all providers. The pricing

schemes should take into account both resource utilization and load prediction in Equa-

tion (4.1) to adjust insourcing prices. The pricing rounds when providers update their

prices should also be set according to the workload arrival rate. This will be explored

in future work that will combine the pricing with a load predictor.

Provider CPU/RAM (GMT) Small Medium Large XLarge XXLarge loads of Loads of
prices prices prices prices prices Scenario 1 Scenario 2

Prov1 1500/6000 -8 0.044 0.070 0.140 0.280 0.560 4/h ; 1/h 6/h ; 1/h
Prov2 1500/6000 +1 0.047 0.077 0.154 0.308 0.616 4/h ; 1/h 3/h ; 1/h
Prov3 1500/6000 +9 0.061 0.101 0.203 0.405 0.810 4/h ; 1/h 4/h ; 1/h
Prov4 1500/6000 -4 0.058 0.095 0.190 0.381 0.761 4/h; 1/h 2/h ; 1/h
Prov5 1500/6000 +4 0.040 0.062 0.124 0.258 0.500 4/h ; 1/h 5/h ; 1/h

Table 4.4: Simulation parameters

Request splitting and outsourcing impact on profit improvements: Our ex-

act federation algorithm using both insourcing and outsourcing and distributing requests

across providers is compared to the baseline strategies in Figure 4.7. The results (normal-

ized to the no federation strategy) are obtained for a federation of 5 providers receiving

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 69

Figure 4.6: Impact of federation on providers’ profit and acceptance rate (Heteroge-
nous load)

batches of 20 requests per hour with 10 VMs per request and various connectivity ratios

(all way to a full mesh scenario where all VMs are pairwise connected). Our exact al-

gorithm that uses smart insourcing and outsourcing and thus optimizes allocations and

partitioning of requests across the federation outperforms all other strategies. The exact

algorithm improves by 8% and 11% the profit of provider cpj compared to the ”Non-

Splitting” and ”Only-IF-Full” approaches respectively. The improvement gap between

our algorithm and the ”Non-Splitting” approach decreases as the connectivity between

VMs increases. The gap for only 2% for requests with full meshed VMs graphs is not

surprising since the exact algorithm aims at minimizing networking costs by packing

requests at each provider as much as possible thus behaves like the ”Non-Splitting”

strategy (allocates each complete request to the best provider only) in this case. The

gap with the ”Only-IF-Full” strategy is minimally affected (around 10%) by increas-

ing connectivity. The ”Only-IF-Full” approach has the drawback of filling the overall

infrastructure of provider cpj before resorting to any outsourcing.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 70

Figure 4.7: Splitting requests and smart outsourcing improve profit

4.4.3.2 Favorable Federation Conditions

Impact of load and federation size: This assessment aims at finding the condi-

tions that are favorable for building and engaging in a federation. The optimal size of

the federation and the profit improvements depend on the user base, the load (or total

demands) users induce on the federation and the infrastructure size of each member. To

shed some light into this question, three scenarios composed of providers with homo-

geneous characteristics are evaluated using the dynamic pricing scheme (equation 4.1)

and our exact federation algorithm (equation 4.8), that each provider uses to respec-

tively set their proposed prices and make outsourcing and insourcing decisions. The

three scenarios correspond to a combination of provider sizes (in available CPU) and

various arrival rates for Poisson distributed batches/hour. The evaluated combinations

are tuples of (CPU units/provider, requests batches arrival rate/hour): (CPU = 1000,

λ = 20), (CPU = 2000, λ = 20) and (CPU = 2000, λ = 30) as depicted in Figure

4.8. The achieved profits are recorded for selfish (serving their users locally) and coop-

erative providers (engaging in a federation) to evaluate the profit improvements when

joining a federation for the three scenarios using formula in (4.21). The results report

the achieved average gap in % in profit improvement as a function of federation size

(number of providers), amount of resources made available to the federation and the

received workloads.

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 71

Gap =
Cooperative revenues− Selfish revenues

Selfish revenues
∗ 100 (4.21)

Figure 4.8: Average revenues evolution with the federation’s size received load

As depicted in Figure 4.8, there is always an optimal size for a federation in terms of

involved providers depending on the size of providers, requests workloads and shared re-

sources. This optimal number is 9, 5 and 7 providers for the (1000, 20), (2000, 20),

(2000, 30) CPU/λ cases respectively. For higher amounts of available capacity per

provider, the peak in profit improvement will occur at lower federation sizes (5 for

CPU = 2000 versus 9 for CPU = 1000). When the workloads on the providers is

higher, the optimal federation size will be higher since more providers are required to

serve the overall higher load in the federation (7 for λ = 30 versus 5 for λ = 20). Beyond

these optimal number of providers, the profits will decrease as there is a finite amount

of money from users to share among providers.

Impact of Provider Size: The size of the provider in terms of available and shared

resources has also an impact on the federation that is evaluated using 5 heterogenous

providers receiving the same load but having different infrastructure sizes ranging from

1000 to 5000 of CPU capacity. The revenue gaps between selfish (serving users lo-

cally) and cooperative providers (using the exact federation algorithm to collaborate)

are recorded, to identify the benefits for a provider to join a federation as a function

of relative size to other federation members. The gaps are computed using the formula

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 72

in (4.21). Table 4.5 shows that all providers improve their profit by joining federation

but with gains that depend on the amount of resources they own and share in the fed-

eration. Providers with fewer resources (providers 1 and 3) achieve the highest gains

(72.64% and 49.20% profit improvements respectively). Other providers (2, 3 and 5)

with moderate and large infrastructures earn much less. Provider 5 with the largest

infrastructure (5000 CPU) achieves the lowest improvement (around 4.67%). Clearly

providers with large infrastructure will have less interest in joining federation compared

to small providers. The federations have to be balanced either in provider sizes or in

the long term (availability of resources from providers become balanced with time, e.g.

complementarity in terms of geographical situation and time zones) to be beneficial to

all members.

Provider CPU RAM (Gb) Gap (%)

Prov-1 1000 4000 72.64

Prov-2 2000 8000 34.99

Prov-3 1500 6000 49.20

Prov-4 3000 12000 18.76

Prov-5 5000 20000 4.67

Table 4.5: Revenues gap between selfish and cooperative behaviors

4.4.3.3 Scalability of the Exact Algorithm

Figure 4.9: Impact of the number of received requests on the execution time of the
exact allocation algorithm

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 73

Impact of requests batch size: In order to tune the size of batches (number of re-

quests queued before the exact algorithm processes them jointly), a deeper understanding

of the impact of the requests in arrival rate and graph structure is essential. Since the

size of the batches should be selected as a function of the scalability of the exact algo-

rithm, a simulation with different batch sizes were generated (|R| = {10; 20; 30; 40; 50})
for federations of 2 to 20 providers. The request size was set to 8 VMs with a con-

nectivity of 50%. Figure 4.9 shows the exact algorithm convergence time performance

for increasing federation size for the simulated scenario. For small federation sizes in

line with the previous findings (see Figure 4.8) and limited number of batched requests,

the algorithm is quite fast and achieves optimal partitioning and allocation in the order

of second (30 msec to 1.1 sec for up to 10 providers and |R| ≤ 10). For (|R| > 10)

and larger federations with more than 10 providers, the convergence times increase to

seconds and tens of seconds, and reach minutes for extreme cases in the simulation. The

reported times can be used to set the target size for a request batch depending on the

federation size and the user desired response time for resource requests (the limit ac-

cepted convergence time of the exact algorithm). Note also that the duration of rounds

as stated earlier needs to be adapted dynamically according to the variation of loads

at each provider through prediction of future demand. When both the optimal round

duration and batch size (number of VM requests to lump into a batch for allocation)

are known, all the needed information is available for optimal setting of the system

parameters.

Impact of request topology: Figure 4.10 extends the analysis of the algorithm

scalability by evaluating the impact of level of connectivity of VMs composing a request,

by assessing performance for several request graphs: |Vi| = 10, |Vi| = 20 and |Vi| =

30 ranging from unconnected to fully meshed VMs. The results reported in the set

of Figures 4.10 show an exponential increase in convergence time for increase request

graph size and connectivity. For weakly connected request topologies with 10 VMs per

request the partitioning and allocation can be achieved in the milliseconds range and the

exact algorithm is quite efficient (see Figure 4.10(a)). In cloud services, typical requests

sizes and topologies are rather small with partial connectivity. Hence, the algorithm

performance is adequate for typical Cloud services with or without federation since the

partitioning is achieved in times compatible with the quality encountered in current

cloud services. For larger size of requests (20 and 30 VMs), Figures 4.10(b) and 4.10(c)

show a significant increase in convergence times that reach tens of seconds and tens

of minutes respectively depending on the degree of connectivity. The complexity and

scalability of the algorithm are governed mostly by the request graph complexity and

connectivity (third term in equation (4.8)). These high convergence times with large

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 74

Figure 4.10: Impact of topologies of received requests on the execution time of the
exact allocation algorithm

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 75

problem instances are impractical for on-demand services provisioning and can badly

affect the reputations and profits of Cloud providers. Indeed, the response time spent

by providers to deliver the requested services, is one of the key quality metrics that

drive the decision of Cloud consumers when choosing the suitable providers to solicit

for Cloud resources provisioning. This exponential performance degradation with large-

scale instances, compels us to search for efficient heuristic algorithms that scale better

with problem sizes and find optimal and near optimal solutions in polynomial times.

Based on all the performance evaluation results, the exact algorithm is a viable, ex-

ploitable and efficient solution for typical requests sizes and practical federations (usu-

ally less than 10 providers). With large connected graphs and federation sizes, the exact

model encounters some difficulties in finding optimal solutions in prompt and practical

computational times. Hence we need to resort to efficient heuristic algorithms to bring

convergence times to convenient values for Cloud services today. The exact algorithm re-

mains nevertheless important and useful for these problem sizes to compare and validate

the performance of the proposed heuristics.

4.5 Conclusions

In this chapter, an exact algorithm for optimal resources request allocation across dis-

tributed providers is proposed and used to identify favorable conditions for joining a

federation and assess the potential profit improvements for the involved providers. The

presented ILP model is used by each provider to achieve optimal outsourcing and in-

sourcing decisions to maximize its revenue. The algorithm is combined with a pricing

scheme that updates at each round the proposed insourcing prices by each provider to

other members, based on its resources usage and condition. In addition to maximiz-

ing providers’ profits, the algorithm takes into account both networking costs imposed

by the desired virtual machines connectivity and user satisfaction in terms of request

rejection rate. Thanks to the use of a generic objective function englobing multiple op-

timization criteria and an efficient graph-based request modeling, the proposed model

cloud be applied to other could service models (IaaS, PaaS, SaaS) supporting VM or

container virtualization.

The exact algorithm complexity and scalability is governed by the size and connectivity

of the virtual machines composing resource requests. With typical service requests (low

complexity graphs and sizes) and few providers involved in the federation, the algorithm

is shown to perform very well and find optimal solutions within seconds to tens of

seconds. The proposed model is thus an efficient solution for small and medium-sized

problem instances and achieves practical times in line with the performance experienced

Chapter 4. Exact ILP-Based Algorithm for Federating and Allocating Resources 76

by Cloud users today. The formulated ILP experiences exponential convergence times

with large-sized instances. Therefore, we present in the next chapter a new efficient and

scalable heuristic algorithm, based on Gomory-Hu requests transformation and Best-Fit

matching, to improve performance when solving the resource federation problem.

Chapter 5
Graph Clustering based Algorithm for

Resource Allocation in Cloud Federation

Contents

5.1 Introduction . 77

5.2 Networking-Cost Aware Federating Resources Algorithm

(NCAFedRA) . 79

5.2.1 Request Graph Partitioning . 80

5.2.1.1 Gomory-Hu Tree Construction 82

5.2.1.2 Gomory-Hu Tree based Request Splitting 83

5.2.2 Cost Metric Computation . 86

5.2.3 Cost-Aware Best-Fit Matching Algorithm 90

5.2.4 Description of the Heuristic Approach (NCAFedRA) 92

5.3 Computational Complexity 94

5.4 Performance Evaluation . 96

5.4.1 Simulation & Evaluation Settings 96

5.4.2 Evaluation Results . 96

5.4.2.1 Scalability of the NCAFedRA Heuristic Algorithm . . 97

5.4.2.2 Effectiveness of the NCAFedRA Heuristic 104

5.5 Conclusions . 108

5.1 Introduction

The previous chapter introduced an exact ILP-Based algorithm for request partitioning

and allocation across Cloud federation. The proposed model is shown to be efficient

77

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 78

in profit improvements and convergence times with small and medium-sized problem

instances, but it exhibits exponential computational times for large-scale instances. With

the growing adoption of Cloud services and increasing complexity of tenants’ requests,

cloud providers are often faced with challenging large-sized allocation problems involving

multiple composite applications and heterogenous distributed resources. In addition, for

the sake of resource usage optimization, cloud providers are inclined to combine several

resource requests to be processed jointly in fixed allocation rounds. Batched requests can

be modeled as a large composite graph with links between lumped subgraphs expressing

placement and networking constraints, which leads to complex allocation tasks.

Moreover, even when handling moderate allocation problem instances, it would be ben-

eficial for providers to further speed up their decision making process to satisfy quickly

user demand. In fact, the provisioning response time (”request-to-deliver”) has crucial

effects on the provider’s profit and reputation, since it is considered as one of the key

quality metrics for cloud customers when selecting the appropriate providers for their

workloads.

Efficient distributed resource allocation mechanisms are not only needed in Cloud fed-

eration, but also in many other multi-Cloud scenarios. For instance, private clouds

involving multiple datacenters require such mechanisms to make better use of their in-

frastructures. In Hybrid Clouds, the ”load bursting” problem needs effective strategies

to distribute the applications’ components and decide about subsets to be deployed in

external Clouds and those to be hosted locally. The same need arises with Cloud Ser-

vice Brokerages to select the best aggregation of resources satisfying user demand and

selection criteria. These challenging resource allocation tasks are similar to our federa-

tion optimization problem. Minor adaptations of the model’s parameters are needed to

extend its usability to other multi-Cloud scenarios. This has motivated us to provide

a generic efficient algorithm for federating and allocating resources across large-scale

distributed Clouds, that is able to manage the plethora of requirements in practical

computation times.

In this chapter, we present a new topology-aware resource allocation algorithm that

utilizes a Gomory-Hu Tree based clustering algorithm and a best-fit matching strategy

to make decisions. The combination of these two approaches is in our view suitable to

meet the objectives of our optimization problem. The Best-Fit matching can minimize

the hosting costs and request rejection rates by optimizing the utilization of available

resources and quotas (seen as bins). On the other hand, the clustering approach al-

lows to fulfill networking requirements and minimize inter-cloud communication costs

by lumping together highly interacting VMs (seen as items to be packed into providers’

infrastructures). The performance and solution quality of the proposed heuristic were

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 79

evaluated by using the exact ILP model as a benchmark for comparison. The simulation

results proved the efficiency and scalability of the heuristic, that provides close to opti-

mal solutions while improving convergence times by several orders of magnitude. The

algorithm scales well with problem size and can handle large federations and complex

requests in polynomial times.

The remainder of the chapter is organized as follows. The next section 5.2 describes our

Networking-Cost-Aware Federating Resources Algorithm (NCAFedRA) as a scalable

solution for the allocation problem. The complexity of the proposed heuristic is discussed

in section 5.3. Section 5.4 provides a performance analysis of the simulation experiments,

before concluding in section 5.5 with a summary of contributions and main results.

5.2 Networking-Cost Aware Federating Resources Algo-

rithm (NCAFedRA)

Our ILP algorithm performs well with practical federations and typical requests sizes.

However, like most exact solutions for NP-Hard problems (see computational complexity

in 5.3), it does not scale with large-scale instances, especially with increase request graph

size and connectivity (see section 4.4.3.3). To address this scalability issue, we resort to

a heuristic allocation algorithm able to find efficient solutions in polynomial times. The

NCAFedRA heuristic is based on request graphs clustering and consists of the following

major steps visible in Algorithm 4:

1. Splitting the request graph into disjoint sets of VM-clusters with low inter-subgraph

communication traffic, through a well-known minimum k-cut algorithm.

2. Assignment of these candidate partitions to the federation providers using a cost-

based adaptation of the Best-Fit matching strategy.

3. Identification of the optimal k-cut leading to the minimum hosting and networking

costs, by iterating the above steps across a range of possible k values.

In the following subsections, we present the details of the designed algorithm stages.

Since request partitioning is the key step of our approach, we start the heuristic de-

scription with the needed background on minimum k-cut and Gomory-Hu trees, before

proceeding to the Best-Fit matching used for VMs and subgraphs assignment.

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 80

5.2.1 Request Graph Partitioning

This problem is a variant of k-cut graph partitioning problem. A k-cut is a set of

edges S ∈ EG whose removal separates an undirected graph G = (VG, EG) into k

connected components. The minimum k-cut asks for the cut-set S with the minimum

total weight (sum of capacities on the edges). This problem can be solved in polynomial

and has a complexity of O(|V |k2) for fixed k [151], but is NP-Complete if k is part of

the input variables [152]. As the optimal k number of request graph partitions is not

predetermined, we use a popular approximation algorithm with a ratio of 2− 2/k [153],

based on Gomory-Hu trees [154].

Definition 5.1. A Gomory-Hu tree (or cut tree) TGH = (VT , ET) of an undirected graph

G, is a compact representation of the edge-connectivity between all pairs of its vertices.

It is a weighted tree having the same nodes as G (VT = VG), but its |ET | = (|VG| − 1)

edges represent the minimum cuts between all vertex pairs in the original graph.

This tree can be built in polynomial time with only (|VG| − 1) max flow computations

[154]. Figure 5.1-(b) shows an example of a cut tree TGH for the undirected graph G

shown in Figure 5.1-(a). For instance the weight 6 on the edge between nodes (3) and

(5) in TGH corresponds to the 3-5 minimal cut in G. The removal of this edge from

TGH will result into two disjoint connected components (1, 2, 3, 8, 9) and (4, 5, 6, 7) with

a total flow of 6 across the cut-links in the original graph G. The minimum cut between

any pair of vertices in G is equal to the minimum weight on the path connecting these

two nodes in TGH . For example, the 2-9 minimum cut is equal to (min {10, 6, 9} = 6).

(a) Graph G (b) Gomory-Hu tree TGH

Figure 5.1: Example of Gomory-Hu Transformation

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 81

(a) The GH algorithm starts (b) Minimum 1-8 Cut

(c) Minimum 8-9 Cut (d) Minimum 1-5 Cut

(e) Minimum 1-2 Cut (f) Minimum 2-3 Cut

(g) Minimum 4-7 Cut (h) Minimum 4-6 Cut

(i) Minimum 4-5 Cut (j) The resulted GH Tree TGH

Figure 5.2: Execution steps of the classical Gomory-Hu algorithm

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 82

5.2.1.1 Gomory-Hu Tree Construction

This subsection gives a summarized explanation of the cut-tree’s construction for weighted

undirected graphs. There are two well known algorithms, namely the Gomory-Hu’s al-

gorithm [154] and the Gusfield’s algorithm [155]. Both algorithms consist in (|VG| − 1)

maximum flow computations to determine all minimum cuts between the graph’s ver-

tices and lead to similar time complexities. They only differ in the used data structures,

since the Gusfield algorithm uses the original input graph G to compute all cuts, while

the Gomory-Hu algorithm contracts the graph G as iterations progress. We present in

the following a formal description of the classical Gomory-Hu (GH) algorithm [154], used

by our heuristic to get the tree representations of received requests. Figure 5.2 shows

the execution steps of the GH algorithm applied to the graph G in figure 5.1-(a) to get

its cut tree TGH (figure 5.1-(b)).

The Gomory-Hu algorithm is detailed in 1. To distinguish the nodes of the input graph

G = (VG, EG) and those of the cut tree TGH = (VT , ET), we use the terms ”vertices” and

”nodes” to designate the elements of VG and VT respectively. In the rest of the thesis,

these words are used interchangeably to denote the nodes (VMs) of the resource requests.

At first, the algorithm initializes the cut tree TGH to a single node VT containing all

vertices of the graph G. At each iteration, the algorithm picks from VT a node X

containing at least two vertices of VG. For other connected nodes in TGH\X, it contracts

the associated vertices in G into a same vertex and derives a new contracted graph G′.

Two vertices s and t are chosen from node X to calculate the minimum s-t-cut in

the generated graph G′. The nodes and edges of the current tree TGH are updated

according to the s-t-cut solution {A,B}. The node X is removed from VT and split

into two new nodes Xs and Xt containing respectively s and t. Other vertices of X are

distributed between nodes Xs and Xt with respect to the s-t cut solution (Xs = A ∩X
and Xt = B ∩X). A new edge having a capacity equal to the minimum s-t cut weight

is added to ET to connect Xs to Xt. Already existing edges e′ = (X,Y) between X and

other nodes Y in TGH will be replaced with edges to connect Y to either Xs or Xt (

e′ = (Xs, Y) if Y ⊂ A, or e′ = (Xt, Y) otherwise). The algorithm continues to handle

the VT nodes by iterating the above steps until all nodes contain a single vertex of VG.

Note that the GH algorithm can result in different cut-tree representations for a same

graph G, due to the variety of vertex permutations when calculating the (|VG| − 1) max

flows and the potential multiplicity of minimum cuts between vertices. More details and

explanation on the cut trees can be found in [154] and [155]. Other studies about exper-

imental performances comparison of cut-tree algorithms and parallel implementations

for faster convergence times can be found in [156–158].

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 83

Algorithm 1 Gomory-Hu Algorithm

Input: A weighted undirected graph G = (VG, EG)
Output: A Gomory–Hu Tree TGH = (VT , ET)
1: TGH ← (VT = {VG}, ET = ∅)
2: while (∃X ∈ VT such that |X| ≥ 2) do
3: Let X ∈ VT such that |X| ≥ 2
4: Let SC is the set of nodes from VT belonging to a connected component C of

TGH\X
5: Let S = {SC | C is a connected component in TGH\X}
6: Construct the contracted graph G′ = (VG′ , EG′) such that VG′ = X ∪ S and

EG′ = EG|X×X ∪ {(u, SC) ∈ X × S | (u, v) ∈ EG; u ∈ X; v ∈ SC}
7: calculate the associated weights on EG′

8: choose two nodes s, t ∈ X and find the minimum s-t cut in G′

9: {A,B} ← minimum s-t cut
10: // update the Gomory-Hu tree vertices : Split X
11: Xs ← A ∩X
12: Xt ← B ∩X
13: VT ← (VT \{X}) ∪ {Xs, Xt}
14: // update the Gomory-Hu tree edges
15: e← {Xs, Xt} with a capacity equal to the minimum s-t cut weight.
16: for all edges e′ = (X,Y) ∈ ET do
17: if Y ⊂ A then
18: e

′′ ← (Xs, Y)
19: else
20: e

′′ ← (Xt, Y)
21: end if
22: ET ← (ET \{e′}) ∪ {e

′′}
23: end for
24: ET = ET ∪ {e}
25: end while
26: replace each {v} ∈ VT by v and each ({u}, {v}) ∈ ET by (u, v)
27: return TGH

5.2.1.2 Gomory-Hu Tree based Request Splitting

As discussed earlier in chapter 4, resource requests i from users and other providers are

modeled by undirected weighted graphs Gi = (Vi, T ri), where vertices Vi represent the

requested VMs and edges Tri reflect traffic flows between VMs (see section 4.2.2). To

find optimal request partitioning, our heuristic starts with applying the GH algorithm

to the VMs graph to get a concise representation TGH
i of the maximum flows between

all service VMs, so that any k ∈ [1;m] partitions can be obtained when needed. A k-cut

of the request Gi is obtained by picking up the lightest (k − 1) edges from TGH
i , which

lead to k disjoint connected components. This weight-based sorting of the TGH
i ’s edges

ensures that links with low traffic are removed earlier, so that highly connected VMs

remain in the same partition assigned to a single provider, while disjoint VMs-clusters

can be distributed across the federation with a minimum inter-cloud networking cost.

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 84

It is worth emphasizing that cut-trees were widely applied to solve many optimization

problems in different research fields, such as scheduling problems [159], image segmen-

tation [160] and social network analysis and mining [161], due to its efficient structure

and properties. For our allocation problem, we have taken advantage of the connectivity

property captured by the tree’s edges to meet the cost minimization objective. Other

properties can be used to solve the problem under different constraints. For instance, if

dealing with QoS-oriented allocations, we can consider the VMs criticality through an-

alyzing the vertices’ degree (number of neighbors) in the cut-tree. VMs having a degree

exceeding some threshold can be secured through restricted allocation decisions (local

hosting only, replication for fault-tolerance, etc. . .).

Figure 5.3 illustrates the splitting of a complex graph Gi requiring several networked

VMs into 3 subsets, through the removal of the two lightest edges from the corresponding

cut-tree TGH
i . After request partitioning, the heuristic should select for each candidate

partition the suitable provider to allocate the needed resources according to hosting and

networking costs. This resources assignment is conducted using a customized best-fit

matching algorithm that aims to minimize the overall allocation cost and make better

utilization of available resources. Before describing this assignment procedure, let us

introduce some definitions and terminologies used in the remainder of this chapter.

Definition 5.2. A VM cluster V clus
c , identified by a unique ID (id = c), is a group of

VMs l ∈ Vi and their networking. The list of all VM-clusters resulting from the k-cut

splitting of request i is denoted by LCski = {V clus
1 , ..., V clus

c , ..., V clus
k }. The relation

between LCski elements is given by: V clus
c ∩ V clus

c′ = ∅ ∀c, c′ ≤ k; c 6= c′

∪
c
V clus
c = VT = VG = Vi

The terms clusters, subsets, partitions and subgraphs are used interchangeably to refer

to these sets of connected VMs.

Definition 5.3. An edge-cut (or cut) ecut(l,l′), is a link connecting two nodes in the

Gomory-Hu tree TGH
i . This naming is used to avoid ambiguities with VMs links in

the original graph Gi. The list of all (|Vi| − 1) edges in TGH
i is denoted by cutsGH

i =

{ecut(l,l′); l, l
′ ∈ Vi}. Each edge-cut ecut(l,l′) is defined by its endpoint nodes l and l′ and its

weight bwcut
l,l′ corresponding to the maximum flow exchanged between VMs l and l′.

Definition 5.4. The set cutkremov = {e removcut(c,c′); c, c
′ ≤ k} denotes the list of (k − 1)

edge-cuts, whose removal from cutsGH
i split the request i into k disjoint clusters LCski .

Each removed cut e removcut(c,c′) is defined by its endpoint clusters V clus
c and V clus

c′ (∈
LCski) and its weight bwcut

c,c′ . The relation between the sets cutkremov and cutsGH
i is

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 85

Figure 5.3: Request Splitting and Allocation across the Federation

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 86

defined as follows:{
cutkremov ⊆ cutsGH

i

∀e removcut(c,c′) ∈ cut
k
remov ; ∃ecut(l,l′) ∈ cuts

GH
i | l ∈ V clus

c , l′ ∈ V clus
c′ , and bwcut

c,c′ = bwcut
l,l′

5.2.2 Cost Metric Computation

Figure 5.4: Providers’ Selection based on the Aggregate Cost

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 87

Handling composite services requires special attention to the networking costs and re-

quirements to achieve profitable allocation decisions. In addition to an efficient request

partitioning to minimize the load on transit links, the inter-cloud communication costs

must also be considered when making decisions. The example illustrated in Figure 5.4

highlights the impact of omitting networking costs on the solution quality. In such case,

the clusters A, B and C are assigned to providers cp2, cp1 and cp1 respectively, which

leads to a hosting cost of 20$ and a networking cost of (28 ∗ 0.05) = 1.4$ between dis-

tributed VMs, given a total of 21.4$. This allocation plan is suboptimal and results in

a revenue loss of 0.45$ compared to the optimal solution considering both networking

and hosting costs (10.500 + 6.800 + 3.450 + 20 ∗ 0.01 = 20.95$), as depicted in Figure

5.4. This revenue loss may have significant impact on the provider’s profit, especially

with higher traffic between distributed VMs and larger gap between inter-provider net-

working costs. In fact, we assume a generic cost reflecting links condition in terms of

bandwidth availability, performance, latency and security levels. The consideration of

networking costs in decision making becomes more difficult with increasing number of

clusters and providers. To address this issue, we define an aggregate cost metric that ap-

proximates the overall charge of satisfying both computing and networking requirements

of VM-clusters. Algorithm 2 summarizes the steps of calculating this cost metric.

The aggregate cost CAggregate
f,V clus

c
of a virtual cluster V clus

c when served by a provider cpf

is expressed by equation (5.1). It is equal to the sum of the hosting cost CHosting
f,V clus

c
(5.2),

required to accommodate all the cluster’s VMs during the request lifetime di, and an

approximate networking cost CNetworking
f,V clus

c
for its interaction with other clusters. The

term cost(l) in (5.2) designates the cost of serving a VM instance l among the provider

cpf . This cost corresponds either to the local hosting cost C local
j,l if cpf is the home Cloud

(f = j), or to the outsourcing cost Cout
f,l applied by provider cpf to provider cpj (f 6= j)

for outsourced VMs.

CAggregate
f,V clus

c
= CHosting

f,V clus
c

+ CNetworking
f,V clus

c
(5.1)

CHosting
f,V clus

c
=

∑
l∈V clus

c

cost(l) · di (5.2)

CNetworking
f,V clus

c
=

∑
V clus
n ∈Nassign

c

bwcut
c,n · Cnet

f,Ass(n) +ACnet
f ·BWNgh

c (5.3)

ACnet
f =

∑m
f ′=1;f ′ 6=f C

net
f,f ′

(m− 1)
(5.4)

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 88

Algorithm 2 Approximation of the aggregate cost metric

function: Aggregate-Cost-Cluster(V clus
c , cpf , LCs

k
i , cut

k
remov):

Input: A cluster V clus
c , a provider cpf , the list of all k VM-clusters LCski =

{V clus
1 , V clus

2 , . . . , V clus
k }, the set of removed (k − 1) cuts cutkremov =

{e removcut(c,c′); c, c
′ ≤ k} partitioning the original graph into k clusters

Output: The approximate overall cost CAggregate
f,V clus

c
for serving the cluster V clus

c on

provider cpf
1: Initialize: CAggregate

f,V clus
c

← 0; CHosting
f,V clus

c
← 0; CNetworking

f,V clus
c

← 0

2: // Evaluate the hosting cost
3: calculate CHosting

f,V clus
c

using equation (5.2)

4: // Evaluate the networking cost
5: if (size(LCski) = 1) then

6: CNetworking
f,V clus

c
← 0

7: else
8: Nc ← List-of-neighbors(V clus

c , LCski , cut
k
remov)

9: Nassign
c ← List-of-assigned(Nc)

10: Nunassign
c ← List-of-Unassigned(Nc)

11: if (size(Nassign
c) = 0) then

12: calculate ACnet
f using equation (5.4)

13: calculate BWNgh
c using equation (5.5)

14: CNetworking
f,V clus

c
← ACnet

f ∗BWNgh
c

15: else
16: // Evaluate the networking cost with assigned neighbors
17: for (V clus

n ∈ Nassign
c) do

18: Ass(n)← get-assigned-provider(V clus
n)

19: CNetworking
f,V clus

c
← CNetworking

f,V clus
c

+ bwcut
c,n ∗ Cnet

f,Ass(n)

20: end for
21: // Evaluate the networking cost with non-assigned neighbors
22: calculate ACnet

f using equation (5.4)

23: calculate BWNgh
c using equation (5.5)

24: CNetworking
f,V clus

c
← CNetworking

f,V clus
c

+ACnet
f ∗BWNgh

c

25: end if
26: end if
27: CAggregate

f,V clus
c

← CHosting
f,V clus

c
+ CNetworking

f,V clus
c

28: return CAggregate
f,V clus

c

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 89

BWNgh
c =

∑
V clus
n ∈Nunassign

c

bwcut
c,n (5.5)

Figure 5.5: Networking cost Approximation

The networking cost CNetworking
f,V clus

c
approximates the cost induced by interactions between

cluster V clus
c when served by cpf and its neighbors distributed in the federation. This cost

is set to 0 if there is a single cluster to allocate, otherwise it is estimated using Equation

(5.3). As detailed in Algorithm 2, we start by finding the list Nc of neighboring clusters

directly connected to V clus
c , using the function List-of-neighbors(V clus

c , LCski , cut
k
remov).

In figure 5.5, the list of neighbors of cluster V clus
2 is N2 = {V clus

1 , V clus
4 , V clus

5 }. The

Nc list is classified into two different subsets Nassign
c and Nunassign

c , containing re-

spectively the neighboring clusters already assigned to some providers and those not

assigned yet. If no cluster is assigned, the cost CNetworking
f,V clus

c
is set to the product

of the average networking unit cost ACnet
f between cpf and other providers defined

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 90

by equation (5.4), by the total bandwidth BWNgh
c exchanged between V clus

c and all

its neighbors expressed in equation (5.5). Otherwise, CNetworking
f,V clus

c
is calculated us-

ing equation (5.3), by first cumulating the costs of communication with already as-

signed neighbors, and adding an approximate cost of the interactions between V clus
c

and its unassigned neighbors as detailed above. In the example of figure 5.5, assuming

that all neighbors of the first cluster N1 = {V clus
2 , V clus

3 } are unassigned, its approx-

imate networking cost if served by provider cp2 is equal to the product of ACnet
2 =

0.023$ = ((0.05 + 0.01 + 0.01)/3), by the total bandwidth exchanged on the neighbor-

ing cuts BWNgh
1 = (6 + 6) = 12, given a CNetworking

2,V clus
1

cost of 0.276$ = (12 ∗ 0.023).

Assuming now that the cluster V clus
1 is assigned to provider cp2 for allocation, and

we are handling the second cluster V clus
2 . In this case, N2 = {V clus

1 , V clus
4 , V clus

5 },
Nassign

2 = {V clus
1 } and Nunassign

2 = {V clus
4 , V clus

5 }. Using algorithm 2 and equation

5.3, the approximate networking cost of V clus
2 if served by provider cp1 is equal to

CNetworking

1,V clus
2

= bwcut
2,1 ∗ Cnet

1,2 +ACnet
1 ∗BWNgh

2 = (6 ∗ 0.05) + (0.033 ∗ (9 + 9)) = 0.894$.

The obtained aggregate cost CAggregate
f,V clus

c
is used to drive the selection of suitable providers

for request’s partitions. The next steps consist in resource selection following a cost-

aware best fit approach and identification of the optimal k-cut partitioning.

5.2.3 Cost-Aware Best-Fit Matching Algorithm

To distribute users’ applications across the federation, we resort to an adaptation of

the well-known Best-Fit algorithm [162]. The remaining hosting capacities within the

federation, including local resources and shared quotas, are seen as bins to be filled.

The set of k disjoint VMs-clusters resulting from request splitting represent the items

to be packed. This matching policy was selected since it can achieve good performance

in terms of resource utilization and item acceptance ratios compared to the classical

Bin-Packing. This allows to improve providers’ profits and maintain good reputation by

reducing the number of rejected requests. To minimize the cost of federating resources,

we use a cost-aware best-fit matching approach illustrated in Algorithm 3, that makes

allocation decisions based on the aggregate cost metric calculated by Algorithm 2.

The assignment algorithm handles the k candidate clusters in a decreasing order of their

total needed resources. Using equation 5.1, it estimates for each cluster the allocation

costs among all providers to select the best one (having lowest cost and remaining

capacity). The process continues until all k-cut clusters are assigned to target providers,

and returns the assignment matrix to the main routine (Algorithm 4) to finalize the

allocation task. If no provider could satisfy a cluster’s requirements, the algorithm stops

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 91

Algorithm 3 Providers selection for hosting requests partitions

function: Cost-Aware-Best-Fit-Assignment(LCski , F, cut
k
remov);

Input: The list of k clusters LCski = {V clus
1 , V clus

2 , . . . , V clus
k } to allocate, the federation

providers F = {cp1, cp2, ..., cpf , ..., cpm} and their offerings, the set of removed (k−1)
cuts partitioning the graph cutkremov = {e removcut(c,c′); c, c

′ ≤ k}
Output: A cost-effective assignment plan assign matrix[k] specifying the list of

providers to host the k candidate clusters.
1: Initialize: assign matrix[k] ← null ; cost matrix[k,m] ← null ;
remain capacity matrix[m]← null ; nbclusSatisfied ← 0 ;

2: for (cpf ∈ F) do
3: remain capacity matrix[f]← remaining-capacity(f)
4: end for
5: Sort the list of VM-clusters LCski in decreasing order of their total needed resources.

6: for (V clus
c ∈ LCski) do

7: boolean assigned← false
8: for (cpf ∈ F) do
9: cost matrix[c, f]← Aggregate-Cost-Cluster(V clus

c , cpf , LCs
k
i , cut

k
remov)

10: end for
11: Sort the list of providers F in increasing order of their aggregate allocation cost

and remaining hosting capacities.
12: for (cpf ∈ F) do
13: if cpf has enough resources to host V clus

c then
14: assigned← true
15: assign matrix[c]← f
16: update remain capacity matrix[f]
17: nbclusSatisfied ← nbclusSatisfied + 1
18: break
19: end if
20: end for
21: if (assigned = false) then
22: break
23: end if
24: end for
25: if (nbclusSatisfied 6= k) then
26: assign matrix← null
27: end if
28: return assign matrix

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 92

iterations and returns a null value to the main process that will split the request into

(k + 1) smaller subgraphs to fit available capacities (see section 5.2.4).

Applying the Best-Fit algorithm 3 to the example in figure 5.4 allows finding the optimal

allocation plan for the 3-cut partitions. The first processed cluster A has an aggregate

cost of cost matrix[1] = [14.780$; 11.460$; 13.290$] across the federation members, and

hence is assigned to the provider cp2. The aggregate costs of the second cluster B are

equal to cost matrix[2] = [7.500$; 8.500$; 7.000$], and so it is assigned to cp3. Finally

the cluster C, having as aggregate costs cost matrix[3] = [3.600$; 3.450$; 3.490$], is at-

tributed to cp2. Thus, the assignment result for LCs3i = {A,B,C} is assign matrix =

[2, 3, 2], which is the optimal cost-effective allocation solution. Note that this step repre-

sents a selection phase without any effective allocation. These choices will be validated

by the main algorithm 4 once costs criteria are checked and optimal k-cut is reached.

5.2.4 Description of the Heuristic Approach (NCAFedRA)

The proposed heuristic uses algorithms 2 and 3 as subroutines to find the optimal request

partitioning into subsets to be hosted locally or outsourced to other providers. Algorithm

4 summarizes the key steps of the decision making process.

The heuristic starts with ranking the batch R of received requests in decreasing order

of their potential revenues (selling prices) to prioritize profitable ones. If there are not

enough resources across the federation to satisfy a request i, the algorithm rejects the

demand and skips to the next item in R. Otherwise, it constructs the Gomory-hu tree

of the graph Gi = (Vi, T ri) to define the minimum-cuts cutsGH
i between all VMs. The

algorithm iterates across a range of possible k values to find the best request partitioning

leading to minimum costs. The federation size m defines the upper bound of k, since a

request can be split at worst among all involved providers.

For each k value, the algorithm Cost-Aware-Best-Fit-Assignment (Algorithm 3) is

used to find the best providers meeting the requirements of the candidate clusters LCski .

The solution corresponds to a mapping function M : LCski → F , that associates for

each VMs-cluster a hosting provider. If there is no mapping solution that satisfies all k

clusters (a null result), the algorithm skips directly to the next k value to get smaller

partitions fitting available quotas. Otherwise, the algorithm 4 evaluates the solution

quality assign sol in terms of costs criteria before validating it and effectively allocating

resources for the request i. The current allocation cost alloc costki (5.6) is compared with

the minimum recorded cost alloc costbesti corresponding to the (k − 1)-cut partitioning.

If it is higher, the algorithm exits iterations and selects the Kopt = (k − 1) partitions

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 93

Algorithm 4 NCAFedRA heuristic

Input: A batch of requests R = ∪i, the list of federation providers F =
{cp1, cp2, ..., cpf , ..., cpm} and their offerings.

Output: A distributed allocation plan for requests R minimizing the overall costs.
1: Initialize: accept matrix[|R|] ← null ; alloc plan[|R|,max(|Vi|)] ← null ;
assign sol[m]← null ; LCsbesti ← null ; assignbest[m]← null;

2: Sort requests i in R in decreasing order of their profitability.
3: for (i ∈ R) do
4: if (total-capacity(i) ≥ total-remaining-quotas(F)) then
5: accept matrix[i]← rejected
6: alloc plan[i, l]← −1, for all l ∈ Vi
7: else
8: boolean solution found← false
9: alloc costbesti ←∞

10: profitbesti ← −∞
11: Construct the Gomory-Hu tree of i and obtain TGH

i containing Vi nodes and
(|Vi| − 1) links cutsGH

i

12: Sort cutsGH
i by increasing weights

13: for (k ∈ [1,m]) do
14: cutkremov ← the lightest (k − 1) links from cutsGH

i if exists, else break
15: LCski ← the k disjoint clusters resulted from the removal of cutkremov

16: assign sol← Cost-Aware-Best-Fit-Assignment(LCski , F, cut
k
remov)

17: if (assign sol 6= null) then
18: solution found← true
19: // Calculate the allocation cost C(k) of this k-cut partitions
20: alloc costki ← total-allocation-cost(LCski , assign sol, i) (5.6)
21: if (alloc costki > alloc costbesti) then
22: // Exit iterations : optimal solution is found for (k − 1) partitions
23: break
24: else
25: alloc costbesti ← alloc costki
26: // Memorize this allocation solution and evaluate the next k value
27: LCsbesti ← LCski
28: assignbest ← assign sol
29: end if
30: end if
31: end for
32: profitbesti ← (total-selling-revenue(i)− alloc costbesti)
33: if (solution found & (profitbesti ≥ R0)) then
34: accept matrix[i]← accepted
35: // Effective Allocation: update resources and quotas
36: alloc plan[i, |Vi|]← allocate-request(LCsbesti , assignbest)
37: update-profit(cpj)
38: else
39: accept matrix[i]← rejected
40: alloc plan[i, l]← −1, for all l ∈ Vi
41: end if
42: end if
43: end for
44: return accept matrix , alloc plan

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 94

as optimal solution; otherwise it pursues with the next k value. Once the optimal k-

cut is reached, the algorithm verifies if the resulted revenue is higher than a minimum

threshold R0 (R0 ≥ 0) to accept the request i and allocate resources according to

the selected mapping solution; otherwise the request is rejected. The process updates

the providers’ profits and remaining capacities and continues with next requests until

handling the entire batch.

alloc costki =

 ∑
V clus
c ∈LCski

assign sol[c]=j

∑
l∈V clus

c

(C local
j,l · di)

+

 ∑
V clus
c ∈LCski

assign sol[c]=f 6=j

∑
l∈V clus

c

(Cout
f,l · di)

+

 ∑
V clus
c ∈LCski

assign sol[c]=f

∑
V clus
c′ ∈LCski

assign sol[c′]=f ′ 6=f

∑
l∈V clus

c

∑
l′∈V clus

c′

(tril,l′ · Cnet
f,f ′)

(5.6)

5.3 Computational Complexity

This section analyzes the complexity of our profit maximization problem and assesses

the ability of the proposed heuristic to handle large-scale instances in polynomial times.

The algorithm performance evaluation in section 5.4 will bring additional experimental

proof of its efficiency to find near-optimal solutions in reasonable convergence times.

Theorem 5.5. The problem of profit maximization in Cloud federation is NP-Hard.

Proof. Our optimization problem focuses on the allocation of complex requests requiring

distributed and networked VMs across multiple federated infrastructure providers. The

goal is to provide the optimal combination of insourcing, outsourcing and local alloca-

tions that maximize the providers’ revenues while respecting resources and networking

requirements. If considering only separate VMs allocation, the studied problem can be

viewed as an instance of the Bin-Packing problem, where the items are the requested

VMs and the bins are the hosting providers. Compared to the classical Bin-Packing

problem, the specificities of our allocation problem are mainly the communication re-

quirements between VMs (items) and the inter-cloud networking costs between fed-

eration providers (inter-bins costs). The problem bears other modifications including

restricted availability periods of offered quotas, varied hosting costs between providers,

different selling prices of VM instances, and rejection penalty for not-served requests.

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 95

Adding these networking and pricing constraints increases the complexity compared to

the classical Bin-Packing that is known to be NP-Hard in its basic form [152]. This

proves the NP-Hardness of our profit maximization problem seen as a generalization of

the Bin-Packing problem.

The NCAFedRA heuristic has been proposed to handle this NP-Hard problem in prac-

tical times. In the following, we assess its complexity through the analysis of the main

steps of the algorithm:

1. Gomory-Hu Tree Construction: For each received request Gi = (Vi, T r
i), the

heuristic constructs the corresponding Gomory-Hu tree, that requires (|Vi| − 1)

maximum flow computations. The fastest known max-flow algorithm is running

in O(min{|Vi|
2
3 , |Tri|

1
2 } × |Tri|) time [163], which is better than O(|Vi| × |Tri|).

An extra O(|Vi|) factor for handling all max-flow iterations gives a O(|Vi|2×|Tri|)
time complexity.

2. Aggregate Cost Computation: This step consists in computing the overall al-

location cost for a given VMs-cluster. The hosting cost evaluation is done at worst

in O(|Vi|) when the cluster lumps all VMs. For networking cost evaluation, the

algorithm determines the cluster’s neighbors achievable in O(m− 1) in worst case

when dealing with m partitions, and then calculates the necessary communica-

tion costs between neighbors executed also in O(m−1). This leads to a total time

complexity not exceeding O(|Vi|+m+m), which is equivalent to O(max{|Vi|,m}).

3. Best-Fit Assignment: This step assigns the list of current k-cut clusters to

the federation providers, that is m clusters in worst case. For each cluster, the

algorithm estimates its aggregate allocation costs among all providers to select the

best one. The best-fit algorithm has an average complexity time of O(m logm)

and in worst case O(m2). This leads to an overall time complexity not exceeding

O(m× [(m×max{|Vi|,m}) +m2]), equivalent to O(max{m2 × |Vi|,m3}).

4. optimal k-cut identification: For each request i, we iterate the Best-Fit cluster

assignment across a range of k values until converging to the optimal k-cut. In

worst case, we have to deal with m partitioning steps. This leads to an overall time

complexity of O(m×[(max{m2×|Vi|,m3})+(|Vi|+|Vi|2)]). The term O(|Vi|+|Vi|2)
corresponds to the solution cost evaluation in each iteration using equation (5.6).

This is equivalent to O(max{m3 × |Vi|,m4}+ (m× |Vi|2)).

5. Requests batch processing: Finally, an extra factor O(|R|) is added to handle

all requests in the received batch.

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 96

In summary, the average computational complexity of the proposed heuristic algorithm

is: O
(
|R| ×

[
(|Vi|2 × |Tri|) + (m3 ×max{|Vi|,m}) + (m× |Vi|2)

])
. If we assume that

the average requests size is higher than the federation size (|Vi| ≥ m), the time com-

plexity can be simplified to O
(
|R| ×

[
|Vi|4 + |Vi|4 + |Vi|3

])
, that is O

(
|R| × |Vi|4

)
.

5.4 Performance Evaluation

This section evaluates and compares the performance of the NCAFedRA algorithm with

the exact model detailed in chapter 4, in terms of solution optimality and scalability. The

assessment and comparison of the proposed algorithms was performed using a custom

Java-based discrete event simulator and the CPLEX library [150] to solve the exact ILP

model. Simulation results will show the efficiency of the heuristic algorithm that rapidly

converges to near-optimal solutions, contrary to the ILP algorithm that does not scale

well due to the limitations of the branch and bound method.

5.4.1 Simulation & Evaluation Settings

The performance evaluation was carried out using similar settings as in section 4.4.1 to

compare the heuristic and exact approaches using the same conditions. The simulation

parameters were drawn randomly in order to span the optimization space. Different fed-

eration scenarios were generated with various sizes ([2; 30]) and heterogenous providers’

capacities and offerings. The request batches are generated according to a Poisson pro-

cess with different rates to emulate the providers’ day and night workloads. Each request

is composed of a random number of connected VMs ([1; 50]), belonging to different VM

instances (table 5.1) and organized in a graph with random topologies and traffic re-

quirements. To emulate price variations between cloud providers, the end-user prices

and the hosting and inter-cloud networking costs were randomly drawn from specific

intervals as summarized in Table 5.2. The insourcing prices are dynamically adjusted

by providers at each round using equation 4.1 based on their resources usage. For all

simulated scenarios, 100 independent runs were conducted and averaged to produce each

performance point in the reported curves.

5.4.2 Evaluation Results

Through extensive experiments, we first study the scalability of the heuristic approach

by evaluating the algorithm convergence time with different problem sizes. We evaluate

the heuristic solution quality in terms of profit improvements and requests acceptance

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 97

Instance type CPU RAM (Gbytes)

small 1 1.7

medium 1 3.75

large 2 7.5

xlarge 4 15

xxlarge 8 30

Table 5.1: VM’s instances types

Instance End-user Prices Hosting Costs Networking Costs

small [0.040$; 0.060$] (0.5 ∗ P user
s) [0.001$; 0.005$]

medium [0.062$; 0.120$] (0.5 ∗ P user
m) [0.001$; 0.005$]

large [0.140$; 0.240$] (0.5 ∗ P user
l) [0.001$; 0.005$]

xlarge [0.260$; 0.480$] (0.5 ∗ P user
xl) [0.001$; 0.005$]

xxlarge [0.520$; 0.980$] (0.5 ∗ P user
xxl) [0.001$; 0.005$]

Table 5.2: prices and costs

Curve Performance Algorithms m |R| |Vi| Dconn

Figure 5.6 Convergence Time Exact, NCAFedRA 2− 30 1 10 0− 1

Figure 5.7 Convergence Time Exact, NCAFedRA 2− 30 1 20 0− 1

Figure 5.8 Convergence Time Exact, NCAFedRA 2− 30 1 30 0− 1

Figure 5.9 Convergence Time Exact, NCAFedRA 2− 30 10, 30, 50 6 0.5

Figure 5.10 Convergence Time NCAFedRA 30− 60 5− 50 10, 20 0.5

Figure 5.11 Convergence Time NCAFedRA 30− 60 1, 10 40, 50 0.5, 1

Figure 5.12 Profit Improvements Exact, NCAFedRA 5, 8 20 2− 30 0.5

Figure 5.13 Profit Improvements Exact, NCAFedRA 2− 15 20 15 0.5

Figure 5.14 Acceptance Ratios Exact, NCAFedRA 5 20 2− 30 0.5

Table 5.3: Performances evaluation and Simulation settings

ratio. For convenience, Table 5.3 summarizes all the conducted simulations with the

reported performance and evaluation settings for each experiment.

5.4.2.1 Scalability of the NCAFedRA Heuristic Algorithm

Impact of request topology: The evaluation of the ILP model has shown that the

algorithm complexity is essentially governed by the size and connectivity of the request

graphs. The first assessments aim at evaluating the scalability of the heuristic algorithm

when dealing with these complex instances and its ability to reduce convergence times

to acceptable levels. The experiments consist in comparing the exact and heuristic

algorithms for several request graphs (|Vi| = {10, 20, 30}) ranging from unconnected to

fully meshed VMs. The algorithm behaviour as a function of increasing federation size

is reported in figures 5.6, 5.7 and 5.8 for request sizes of 10, 20 and 30 VMs respectively.

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 98

Figure 5.6: Convergence Time comparison between Exact and Heuristic Approaches
for |Vi| = 10

For small and weakly connected request topologies (|Vi| = 10 and Dconn < 0.5), the

exact algorithm is quite efficient and achieves optimal request allocation in milliseconds

range for small and medium federation sizes (m < 20). For higher number of providers

(m ≥ 20) and highly connected request graph (Dconn ≥ 0.5), the convergence times

increase slightly to second and few seconds as depicted in Figure 5.6. The heuristic

algorithm achieves better performance and reduces even more the convergence times to

be in the order of 10 msec for all evaluated scenarios. The gap between both algorithms is

in the [10; 5∗102] improvement factor in favor of the heuristic algorithm and it increases

with increasing federation size and request graph connectivity Dconn.

With larger request sizes (20 and 30 VMs), the heuristic is shown to be much more robust

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 99

Figure 5.7: Convergence Time comparison between Exact and Heuristic Approaches
for |Vi| = 20

and to achieve higher improvements in terms of convergence times. The results reported

in Figure 5.7 show that the exact algorithm experiences an exponential increase in

computational times to several seconds and minutes depending on the degree of request

connectivity. In contrast, the heuristic algorithm scales much better and finds optimal

solutions in less than 100 msec for all evaluated scenarios. A significant convergence time

improvement ratio in the range of [102; 104] can be observed in figure 5.7 depending

on the federation size and request graph connectivity. For example, with a request

graph of 20 fully meshed VMs and 30 participating providers, the heuristic converges

to the allocation solutions within 41 msec, that is much faster with a factor of (7 ∗ 103)

compared to the exact algorithm convergence time (over than 300 seconds). Note that

this convergence time gain is significantly higher with complex topologies. Across a

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 100

30-sized federation, an improvement gain around 7 ∗ 103 is experienced with complete

VM graphs versus only 102 ratio with unconnected VMs.

Furthermore, the simulation results show that the heuristic’s performance is minimally

affected by the request connectivity degree Dconn and yields similar convergence times.

This behavior is reflected by the algorithm computational complexity, expressed by(
O
(
|R| ×

[
(|Vi|2 × |Tri|) + (m3 ×max{|Vi|,m}) + (m× |Vi|2)

]))
, that is mainly gov-

erned by the request and federation sizes (|Vi| and m), but less by the batch size

|R| and the number of links |Tri|. The heuristic converges even a bit faster when

dealing with highly connected topologies (Dconn ≥ 0.5), as in the example scenario

(m = 30, |Vi| = 20), where it converges to the solution in 40 msec with fully meshed

VMs versus 65 msec with unconnected VMs. This minor increase of computational

time is due to the use of the min k-cut approach. In fact, the k-cut algorithm has the

weakness of possible unbalanced partitions, since it is based only on the link weights

without any consideration of partitions sizes, which may generate large clusters that

cannot be served by any provider. Thus, additional partitioning will be needed to get

smaller clusters fitting available capacities, which will increase the convergence time.

This is the case with unconnected VMs, which are related by fictitious zero-weighted

cuts removed arbitrarily from the Gomory-Hu tree. Since the increase of partitions does

not generate additional inter-cloud traffic and networking costs, the algorithm is forced

to iterate until the maximum k value to evaluate all partitioning possibilities. In con-

trary with highly connected graphs, the algorithm may stop iterations before reaching

the maximum k value and converge much faster to the best solution, since new parti-

tions induce additional inter-Cloud networking costs (see Lines 21-23 in algorithm 4).

Additional evaluations with higher request sizes (|Vi| = {30; 40; 50}), reported in Figure

5.11, confirmed this performance behavior as will be detailed later. Nevertheless, this

slight increase in convergence times remains marginal and does not impact the heuristic

efficiency in achieving good and adequate performance for cloud services provisioning.

Figure 5.8 extends the analysis of the algorithms scalability with larger requests com-

posed of 30 VMs. Reported results confirm the exponential performance degradation of

the exact algorithm with increasing federation size and request connectivity. For weakly

connected graphs (Dconn ≤ 0.25), the exact algorithm finds solutions in the order of

tens of seconds to minutes depending on the federation size. With higher connectivity

(Dconn ≥ 0.5), the convergence times raise dramatically to tens of minutes (around 45

min for extreme cases). Beyond these input settings, the ILP-based algorithm reaches

its limits and experiences unfeasible convergence times for operational cloud systems as

several hours are required to find an allocation plan. In contrast, the heuristic algorithm

is quite robust and exhibits far better performances in the order of tens and hundreds of

milliseconds (125 msec with 30-sized federation). The relative performance gap between

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 101

Figure 5.8: Convergence Time comparison between Exact and Heuristic Approaches
for |Vi| = 30

both algorithms is more significant and ranges in the [102; 105] interval in favor of the

heuristic algorithm.

Impact of requests batch size: Figure 5.9 extends the scalability study of the heuris-

tic algorithm by evaluating its convergence times when handling a batch of several re-

quests. A simulation of different batch sizes (|R| = {10; 30; 50}) was conducted for

federations ranging from 2 to 30 providers. The size of received requests was set to 6

VMs with a connectivity of 50%. Experimental results shown in Figure 5.9 confirm the

efficiency of the heuristic algorithm that remains quite fast and achieves allocation deci-

sions in the order of tens and hundreds of milliseconds for all simulated scenarios, unlike

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 102

Figure 5.9: Impact of the batch size on the Convergence times of the Exact and
Heuristic algorithms

the exact algorithm that rapidly reaches tens of seconds and minutes. The proposed

heuristic is relevant for handling batched requests and reduces the convergence times by

2 to 3 orders of magnitude compared to the exact ILP model.

NCAFedRA Heuristic and large-scale problem instances: The above experi-

ments have shed light on the limits of the ILP algorithm, that experiences exponential

response times beyond ten providers and thirty partially meshed VMs. These problem

sizes cover only a portion of likely encountered Cloud resource provisioning scenarios in

distributed and federated Clouds. Does the heuristic algorithm scale with higher feder-

ation sizes and request graph complexity, and what are its limits? The answers to these

questions are pointed out in Figures 5.10 and 5.11, that depict the heuristic performance

for large federations (30 to 60 providers), large batch sizes and complex request graphs

with 40 and 50 highly connected VMs.

For the first assessment of the heuristic scalability, we generated different batch sizes

(|R| = {5; 10; 20; 30; 40; 50}) composed of request graphs with 10 or 20 VMs and an

average connectivity of 50%, to evaluate the impact of increasing federation and batch

sizes on the heuristic performance. Reported results in 5.10 confirm the robustness of

the proposed approach that finds solutions in milliseconds and seconds and in less than

16 seconds for the extreme simulation case (m, |R|, |Vi|) = (60, 50, 20).

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 103

Figure 5.10: Heuristic algorithm’s convergence times for large federations.

Figure 5.11: Heuristic algorithm’s convergence times for large and complex requests

Figure 5.11 confirms the expected stable behavior of the heuristic with larger request

graphs composed of 40 and 50 VMs, when handled separately or lumped into a batch.

Both full and partial mesh graph topologies were used for the evaluation, and the

experienced convergence times were reported as a function of federation size. For

both Batch sizes (|R| = {1, 10}), the heuristic is quite fast and finds allocation so-

lutions in the order of second and a few of seconds respectively (a maximum of 1.3

sec and 16 sec are recorded in worst cases for (|R|, |Vi|,m,Dconn) = (1, 50, 60, 0.5) and

(|R|, |Vi|,m,Dconn) = (10, 50, 60, 0.5)). Moreover, the reported results illustrate that the

heuristic achieves better performance with complete VMs graphs compared to partially

connected graphs. A gap of tens to hundreds of milliseconds between the 50% and 100%

connectivity levels is experienced with single request allocation. This performance gap

increases when dealing with request batches to a few seconds in favor of complete graphs.

The heuristic finds the solution in 7 and 10 seconds for the (m, |Vi|, Dconn) = (60, 40, 1)

and (m, |Vi|, Dconn) = (60, 50, 1) scenarios respectively, versus 10 and 16 seconds in case

of 50% connected topologies. This gain in convergence time is due to the stringent net-

working requirements in complete VMs graphs, that impose to the heuristic a limited

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 104

number of cuts to satisfy the cost minimization constraint. In the contrary, with par-

tially connected graphs there is less strict networking requirements which leads to more

splitting iterations before converging to the best allocation plan.

Based on all these evaluation results, the NCAFedRA heuristic keeps its promises in

terms of scalability and stands out as a viable and efficient solution for resource allocation

problems in large-scale federated and distributed Clouds. What remains to be verified

is the optimality of the heuristic solutions and its quality in meeting the optimization

objectives and constraints.

5.4.2.2 Effectiveness of the NCAFedRA Heuristic

Figure 5.12: Exact and Heuristic achieved profit improvements

Profit Improvement: To assess the effectiveness of the proposed algorithm, we com-

pare in Figure 5.12 the profit improvements achieved based on the heuristic decisions to

the optimal profit generated by the exact ILP. The assessment scenario corresponds to a

federation size of 5 and 8 providers, homogeneous in available resources (1500 CPU and

6000 Gbytes of RAM) and received loads. Providers receive batches of 20 requests, com-

posed of [2; 30] partially meshed VMs with an average connectivity of 50%, arrived at a

rate of 2 batches/hour during the day and 1 batch/hour at night. The reported results

correspond to the realized profits during 48 hours as a function of request size for an

arbitrary reference provider cpj . The gaps in % in profit improvement are summarized

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 105

|Vi| 2 5 7 10 12 15 18 20 22 25 27 30

m = 5 0.00 0.25 0.71 2.42 3.75 6.18 7.94 8.31 10.03 8.48 7.62 8.26

m = 8 0.00 0.26 0.37 1.28 2.18 4.73 7.22 7.39 9.24 7.95 − −

Table 5.4: Gaps (%) between Exact and NCAFedRA achieved profit improvements

for convenience in Table 5.4. This gap is defined as the difference between coopera-

tive profits achieved by both federation algorithms when normalized to the selfish profit

(non-federation strategy) according to formula in (5.7). Using normalized profits allows

to show the comfortable benefits achieved by the heuristic algorithm despite the de-

crease in revenues compared to the optimal. Reported gaps represent an average over

100 independent runs for small and medium request sizes, for which the exact algorithm

is able to find optimal solutions.

Gap(%) = (Cooperative Exact revenues− Cooperative Heuristic revenues) ∗ 100

=

(
Exact revenues− Selfish revenues

Selfish revenues
∗ 100

)
−(

Heuristic revenues− Selfish revenues
Selfish revenues

∗ 100

)
(5.7)

For both algorithms there is an optimal workload leading to a profit improvement peak

depending on the federation size and available capacity per provider (see section 4.4.3.2

on favorable federation conditions). With 5 federated providers, the higher profit im-

provement occurs with 22 VMs per request, while with 8 providers the peak takes place

with higher request sizes (25 VMs) since more workload can be served across the fed-

eration. Beyond these optimal values, the profits decrease with increasing workload as

the federation providers will be overloaded and forced to reject requests, and hence lose

revenues due to the rejection penalty Lpenaltyrejection. Moreover, the heuristic is shown to find

near optimal solutions with only 10% gap compared to optimal profits as worst perfor-

mance degradation. For small request sizes (up to 8 VMs), the heuristic performs quite

close to optimal with less than 1% degradation in achieved profits. This gap remains

lower than 5% for request graphs with less than 15 VMs. For increasing loads in the

range of 15 to 30 VMs per request, the profit gap increases up to 10% with the optimal

workload value, before stabilizing around the 8% with higher request sizes as depicted

in Figure 5.12. Beyond 25 VMs per request in a federation of 8 providers, the exact

algorithm reached its limits and was not able to find solutions during several hours.

In fact, the higher performance gaps with large requests of 15 to 30 VMs is due to the

limitation of the number of authorized k-cut compared to the request sizes. Indeed, the

moderate connectivity of requests enables wide distribution of resources while satisfying

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 106

m 2 4 5 6 8 10 12 14 15

Profit Gaps(%) 0.6 5.47 6.18 5.76 4.73 2.68 2.28 1.31 0.70

Table 5.5: Impact of the federation size on the profit improvements gaps

networking requirements; whereas the maximum k value is not high enough (k ≤ m)

to favor better request partitioning across providers, especially with possible resulting

unbalanced k-cut partitions. In fact, the quality of the heuristic’s solutions in terms of

performance gaps is highly dependent on the problem’s inputs including the federation

and requests sizes. This explains the performance improvement when the federation size

has increased from 5 to 8 providers as shown in Table 5.4. Nevertheless, despite these

performance gaps, the profits achieved by the heuristic remain significant with regard

to the fast convergence times (milliseconds to several seconds) compared to the time

required by the exact model to find solutions (several minutes to hours).

Figure 5.13: Impact of the federation size on the profit improvement gaps between
Exact and Heuristic algorithms

Impact of federation size on the profit improvement gaps: Figure 5.13 extends

the analysis of the heuristic’s optimality by evaluating the impact of varying the number

of cooperating providers on the solutions quality. For this assessment we hold constant

the size of request graphs at 15 VMs with 50% connected topologies and we evaluate

the algorithm’s behaviour for federations of 2 to 15 providers. The normalized profits

depicted in Figure 5.13 confirms the sensibility of the heuristic to the federation size with

consistently better performance with increasing size. As shown in Table 5.5, the profit

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 107

gaps decrease significantly from around 5% with less than 8 providers to 2% for larger

federation of 10 and 12 providers. The heuristic achieves the best profit improvements

with 14 and 15 providers with only 1.31% and 0.70% degradation compared to the exact

solutions. Indeed, as the upper bound (m) of authorized cuts increases, the heuristic

is more likely to converge to optimal partitioning and allocation solutions. The results

emphasize the efficiency of our algorithm with large-scale problem instances for which

it achieves near optimal performance with significantly reduced computation times.

Figure 5.14: Exact Versus Heuristic request acceptance rates

Acceptance Ratio: To pursue the performance evaluation of the heuristic, we mea-

sure in Figure 5.14 its requests acceptance rate. For this experiment, a federation of

5 providers receiving batches of 20 partially meshed request graphs with different sizes

of 2 to 30 VMs is used. Reported results in Figure 5.14 confirm the efficiency of the

heuristic in reducing request rejection rate with performance quite close to the optimal.

For small requests of up to 15 VMs, the heuristic achieves identical request acceptance

improvement as the exact algorithm. For higher load, both algorithms achieve better

acceptance rates with a small performance advantage in favor of the exact method. A

maximum gap of 5% is experienced for extreme cases in the simulation (30 VMs). This

gap is due to the restricted number of authorized cuts leading to large VM-clusters not

fitting the remaining capacities, as detailed above. The obtained results confirm and

match those of profit improvements reported in Figures 5.12 and 5.13.

Chapter 5. Graph Clustering based Algorithm for Resource Allocation in Cloud
Federation 108

Based on all evaluation results, the NCAFedRA heuristic performance is quite good in

terms of profit, request acceptance rate and remarkable in terms of convergence time

and scalability with large problem sizes.

5.5 Conclusions

This chapter presents a topology-aware heuristic algorithm for profit-driven resource al-

location in cloud federations. The proposed solution relies on a Gomory-Hu based min

k-cut algorithm and a Best-Fit assignment strategy, which combined together achieve

both optimization objectives in terms of revenue maximization and user requirements

satisfaction. The proposed heuristic is shown to perform close to the exact ILP formu-

lation in terms of profit improvements and request acceptance rates, with less than 10%

of performance gaps in all simulated scenarios. Moreover, the heuristic algorithm scales

well with problem size and exhibits fast convergence times not exceeding tens of second,

as opposed to the exact algorithm that experiences exponential convergence times. The

heuristic is remarkably efficient with large federations and highly connected topologies

for which it improves convergence time by 3 to 5 orders of magnitude, while achieving

near-optimal solutions with less than 2% of profit gaps. Finally, both exact and heuristic

algorithms are exploitable for resource provisioning in distributed and federated Clouds.

The exact model is a viable and efficient solution for small and medium problem in-

stances. Beyond the limits of the branch and bound method, the heuristic stands out

as a powerful alternative for large problem instances, able to achieve practical response

times and performances quite close to optimal. The exact method remains neverthe-

less requisite as it can serve as a benchmark to assess the quality of approximate and

heuristic solutions.

Chapter 6
Conclusions and Perspectives

Contents

6.1 Results and Discussion . 109

6.2 Future Research Directions 111

This final chapter concludes the work presented in this dissertation and points out future

research directions. We first summarize the thesis contributions and highlight the main

results regarding providers’ profit maximization in Cloud federations. Then, we outline

some promising perspectives for future investigations, to address the research limitations

and further refine the proposed resource allocation algorithms.

6.1 Results and Discussion

With the rapid development of Internet and hardware/software virtualization technolo-

gies, Cloud Computing has rapidly become the de facto model for delivering on-demand

cost-effective and large-scale IT solutions over the past few years. This promising

paradigm has fundamentally revolutionized the way IT industries conduct their busi-

nesses by enabling new multi-tenant third-party hosted scenarios. Despite this success,

the growing scale of Cloud infrastructures and the increasing workloads still raise sev-

eral resource management challenges for Cloud stakeholders. While the functional and

economic benefits of moving to the Cloud have been extensively discussed in the liter-

ature, much less attention has been devoted to the opportunities and issues faced by

Cloud vendors to improve their profitability. Recently, Cloud Federation has emerged

as a key solution to help providers build scalable infrastructures through cooperation

and resource sharing with others to achieve better performance and revenues.

109

Chapter 6. Conclusions and Perspectives 110

Defining efficient allocation strategies for workload orchestration in a federation is a

challenging task for providers since they also have to deal with cooperation decisions.

This involves many factors and criteria, including the diversity of resource and pricing

offerings, heterogeneity of demand requirements, applications’ topologies and induced

networking costs. To take advantage of this multi-Cloud environment and make fruitful

collaborations, it is crucial for providers to use advanced optimization mechanisms to

automate this challenging and tedious provisioning task. This thesis addresses profit

optimization for cloud infrastructure providers engaging in a federation. The overall

goal is to provide effective algorithms to find optimal distributed resource allocation

plans that achieve the best tradeoffs between user satisfaction, resource utilization and

cost minimization.

In line with these objectives, the major contributions of the thesis are listed below:

• An in-depth review of the literature on infrastructure resource provisioning in

distributed federated Clouds has been provided. The study includes an overview

of the key concepts, enabling technologies and pricing models of Cloud computing.

The major motivations and revenue-related challenges for inter-Cloud scenarios

have also been studied. Finally, a detailed discussion of prior works on profit-

driven allocation models in federated Clouds has been presented. This analysis

allowed us to build a deeper understanding of the problem and identify the relevant

challenges and constraints to consider and to define the thesis scope and objectives.

(Chapters 2 and 3).

• Based on the literature analysis, a generic model for Cloud federation resource

management has been designed. The model introduces the federation scenario

properties, the graph-based request modeling to better capture users’ requirements

and support both simple and complex services as well as the resource cost and

pricing schemes. (Chapter 4).

• An integer linear program for request allocation across federation has been pro-

posed to achieve cost-effective cooperation and placement decisions. The allocation

choices are treated jointly in a global objective function, that combines actions and

partitions the request across different providers, while considering the VMs con-

nectivity and the induced networking costs. The evaluation results highlighted

the efficiency of the algorithm in improving profit and acceptance ratio, with re-

spectively up to 47% and 69% improvements compared with the non-federated

scenario. The exact algorithm is shown to outperform the baseline federation

approaches with up to 10% of profit improvements, and to experience practical

convergence times with typical federation and request sizes. The achievable prof-

its depend on several parameters namely the received workloads during rounds

Chapter 6. Conclusions and Perspectives 111

and the provider and federation sizes. The reported results can be used to derive

guidelines on the favorable conditions for a provider to join or build a federation.

(Chapter 4).

• To address scalability issues, a new topology-aware heuristic algorithm has been

introduced for the revenue maximization problem. The heuristic uses a Gomory-

Hu based clustering algorithm to partition requests into smaller subgraphs, and a

cost oriented best-fit matching for resource placement across providers. Evaluation

results have proven the efficiency of the heuristic, that closely approximates the

optimal profit outcome while improving convergence times by several orders of

magnitude. The heuristic is shown to scale well with problem size and achieve

better performances with complex scenarios (large federation and request sizes,

significant graph connectivity) with less than 2% of revenue loss compared to the

optimal. (Chapter 5).

6.2 Future Research Directions

Beyond the thesis contributions, we have identified a number of additional investigations

that can be pursued in future work to address the issues outside the scope of this study

and further enhance the mechanisms of profit maximization in cloud federations. The

potential future research directions include:

• The design and development of advanced pricing strategies represents a

natural extension of the current work. In this thesis, to update the insourcing

prices, we have used a simple pricing mechanism from the literature that dynami-

cally adjusts prices according to remaining capacities. The evaluation results have

highlighted the importance of considering both current resource utilization and

future demands when setting prices and sharing quotas. However, existing pricing

models are still relatively abstract and do not provide such advanced policies. As

future work, we plan to enhance our allocation algorithms with a load predictor

to derive more elaborate pricing schemes to improve profits even more. To this

end, we foresee exploring different prediction techniques such as Markov chains

and regression approaches that we believe are suitable to characterize and predict

Cloud workload fluctuations.

• Intra- and Inter-Cloud network provisioning: So far we have only considered

the allocation of computational resources. While this is reasonable for traditional

VM-based Cloud systems, we believe it is important to extend the work to support

further resource types such as network and storage to meet the new trends in

Chapter 6. Conclusions and Perspectives 112

cloud services. In addition, the data-center and inter-Cloud network topologies are

important aspects to consider with distributed resource allocation. For the current

research, we have assumed that federated providers are interconnected by high

performance and capacity links meeting applications’ requirements. This differs

from real Cloud environments where dynamic network conditions can influence

application performance. Network features in terms of bandwidth and latency

variations should be integrated to the proposed model to address more thoroughly

the resource allocation problem in Cloud federations.

• Advanced Resource Allocation Policies: In addition to resource capaci-

ties and prices, the allocation model could be enhanced to consider additional

constraints and criteria including energy consumption, geographic location and

providers’ reputation. Moreover, the fault tolerance and SLA enforcement are

important aspects to be considered to prevent the application performance degra-

dation. Advanced policies are needed to detect and react to SLA violations through

partial or complete update of the current allocation plans (e.g. scaling up/down

VM sizes, VM migrations, VM replications . . .). Furthermore, the resource place-

ment and consolidation at each provider can be handled jointly with the federation

level optimization to provide more generic solutions. Further allocation actions

such as dynamic adjustment of local hosting capacity (restarting and shutting

down servers in response to the workload) and admission control decisions can be

added to the model.

• Cloud Federation Framework: An important goal of this thesis is to integrate

our profit optimization algorithms into a real federation testbed to confirm their

performance and compatibility with cloud infrastructures. We aim to provide a

global orchestration framework for inter-Cloud management that automates the

resource allocation decisions, assesses insourcing prices and shared quotas, sup-

ports QoS monitoring and establishes connectivity between distributed resources.

The achievement of such advanced features requires the adoption of efficient pro-

tocols and APIs. For interoperability purposes, we can investigate the open Cloud

standards, such as the OCCI interface [112] for providers’ interaction, the Open-

Flow protocol [164] for resource connectivity, the OpenStack [81] and OpenNebula

[80] Cloud managers for resource deployment and management, and common mon-

itoring services like Monitis [165] or Amazon CloudWatch [166].

Thesis Publications

International Conferences

• S. Rebai, M. Hadji and D. Zeghlache, ”Improving profit through cloud federa-

tion,” In 12th Annual IEEE Consumer Communications and Networking Confer-

ence (CCNC), Las Vegas, NV, 2015, pp. 732-739.

• S. Rebai and D. Zeghlache, ”Gomory-Hu based Algorithm for Distributed Resource

Allocation in Cloud Federation,” (Under Review).

Open source software

• S. Rebai and D. Zeghlache, ”CompatibleOne Placement Service,”

http://gitorious.ow2.org/ow2-compatibleone/dev-cops.

Technical Reports

• I.J. Marshall et al., ”CompatibleOne Resource Description System (CORDS),”

Technical report, CompatibleOne, http://www.compatibleone.com/community/wp-

content/uploads/2014/05/CordsReferenceManualV2.15.pdf, 2013.

• S. Rebai et al., ”CompatibleOne Placement Service COPS,” Technical report,

CompatibleOne, 2012.

113

Appendix A
French Summary - Résumé Français

A.1 Introduction

L’informatique en nuage (Cloud Computing) est un modèle à grande échelle et en

évolution continue, permettant le provisionnement et l’utilisation des ressources informa-

tiques à la demande, selon un modèle rentable de facturation à l’usage ”pay-as-you-go”.

Ce nouveau paradigme a rapidement révolutionné l’industrie IT et a permis de nouvelles

tendances en matière de prestation de services informatiques, y compris l’externalisation

des infrastructures IT vers des prestataires tiers spécialisés. Cependant, la nature

multi-utilisateur des plateformes d’hébergement, ainsi que la complexité des deman-

des, soulèvent plusieurs défis liés à la gestion des ressources Cloud. Malgré l’attention

croissante portée à ce sujet, la plupart des efforts ont été axés sur des solutions centrées

sur l’utilisateur, et malheureusement beaucoup moins sur les difficultés rencontrées par

les fournisseurs Cloud pour maximiser leurs bénéfices et améliorer leurs affaires dans

un tel marché concurrentiel. Les solutions d’allocation traditionnelles basées sur des

capacités d’hébergement statiques et limitées, ne sont pas adaptées aux nouvelles ten-

dances Cloud, et empêchent les fournisseurs de réaliser les performances et les revenus

souhaités.

Dans ce contexte, la Fédération de Cloud a été récemment proposée comme une solu-

tion clé pour répondre à l’augmentation et la fluctuation des charges de travail. Les

fournisseurs ayant des besoins complémentaires en ressources au fil du temps, peuvent

collaborer et partager leurs infrastructures respectives via l’externalisation (”Outsourc-

ing”) et l’internalisation (”Insourcing”) des machines virtuelles. Une telle coopération

permet aux fournisseurs de faire face à la limitation des ressources et de mieux satis-

faire les demandes et exigences des utilisateurs, en leur offrant la possibilité de dépasser

114

Appendix A. French Summary - Résumé Français 115

leurs capacités d’hébergement initiales. Toutefois, être membre d’une fédération, rend

la procédure d’allocation des requêtes plus complexe à traiter, puisque les fournisseurs

doivent également gérer leurs décisions de collaboration et de partage. Ce problème n’a

pas été suffisamment abordé par la communauté scientifique. Les travaux de recherche

antérieurs ont été principalement focalisés sur la définition de plates-formes et d’architectures

pour l’interopérabilité et les interactions entre fournisseurs. Cependant, peu d’attention

a été accordée à la problématique de gestion et de distribution des charges de travail au

sein d’une fédération. Ceci est d’une importance cruciale pour les fournisseurs de Cloud

du point de vue rentabilité, et particulièrement délicat dans une fédération impliquant

plusieurs membres et différentes ressources et applications distribuées.

Cette thèse aborde le problème d’optimisation du profit via la fédération et l’allocation

optimale des ressources parmi plusieurs fournisseurs d’infrastructures. L’étude exam-

ine les principaux défis et opportunités liés à la maximisation des revenus dans une

fédération de Clouds, et définit des stratégies efficaces pour diriger les fournisseurs dans

leurs décisions d’allocation et de coopération. Le but est de fournir de nouveaux algo-

rithmes qui automatisent la sélection du plan d’allocation le plus rentable, qui satisfait à

la fois la demande des utilisateurs et les exigences de mise en réseau dans ce contexte dis-

tribué. Pour atteindre ces objectifs, des approches exacte et heuristique sont proposées et

évaluées en termes de performance, flexibilité et scalabilité, afin d’identifier les meilleurs

conditions et équilibres pour l’amélioration des bénéfices. Nous visons des modèles

d’allocation génériques et robustes qui répondent aux nouvelles tendances Cloud, en

termes de gamme et de qualité des services fournis. Les travaux de recherche actuels

se concentrent principalement sur l’allocation des machines virtuelles indépendantes et

séparées. Cependant, les utilisateurs de Cloud s’attendent à des services beaucoup plus

avancés avec différentes ressources distribuées et connectées. Notre objectif est d’étendre

l’applicabilité des modèles proposés à ces demandes complexes tout en conservant de

bonnes performances.

Conformément aux objectifs de la thèse, nous avons mené une étude approfondie des

travaux antérieurs traitant la problématique de provisionnement des ressources d’infrastructure

dans les environnements Cloud distribués. L’analyse a porté notamment sur les modèles

d’allocation ayant pour objectif la maximisation des profits dans les fédérations de

Clouds, et les lacunes et défis associés.

Dans un deuxième temps, nous avons proposé un programme linéaire en nombre entiers

(ILP), pour aider les fournisseurs de services IaaS à ajuster leurs décisions d’hébergement

et de coopération en réponse à leurs charges de travail et aux offres de la fédération.

Grâce à une modélisation des demandes utilisateurs par graphes génériques, l’approche

proposée s’applique efficacement aux requêtes complexes, exigeant le provisionnement

Appendix A. French Summary - Résumé Français 116

d’infrastructures virtuelles composites et connectées. Afin de sélectionner les meilleures

solutions, nous traitons les différentes décisions d’allocation potentielles conjointement

dans une même formule d’optimisation globale. Cette formulation peut résulter en un

plan de placement optimal qui combine différentes actions d’externalisation, d’internalisation

et d’allocation locale, et partitionne une requête entre plusieurs fournisseurs, tout en sat-

isfaisant les exigences de communication entre les services élémentaires. En plus de la

structure (topologie) des graphes de requêtes, ce partitionnement prend en compte les

prix et quotas de ressources proposés par les autres membres de la fédération ainsi que

les coûts d’hébergement et de mise en réseaux des ressources demandées.

Enfin, pour respecter les attentes de délais de provisionnement des services Cloud, nous

avons proposé une heuristique pour faire face à la dégradation des performances du

modèle exact avec les instances de grandes tailles. Pour réduire la complexité du proces-

sus de partitionnement, l’approche proposée recourt à des méthodes de coupe minimale

(min k-cut) pour la décomposition des graphes de requêtes initiaux, et à des stratégies

de meilleur ajustement (Best-Fit) pour l’allocation et le placement des sous-graphes

résultants. L’utilisation conjointe de ces deux techniques permet de capturer l’essence du

problème d’optimisation et de respecter les différents objectifs fixés, tout en améliorant

le temps de convergence vers les solutions optimales et proches de l’optimale de plusieurs

ordres de grandeur.

A.2 Algorithme Exact d’Allocation et de Fédération

Dans cette section, nous décrivons les modèles conceptuel et analytique proposés pour

la résolution du problème d’allocation et de fédération des ressources. Nous présentons

en premier lieu la modélisation des paramètres de conception de l’algorithme exact de

maximisation de profit, y compris le scénario de fédération, les requêtes utilisateurs,

les exigences de coopération et les coûts d’allocation à prendre en compte. Ensuite,

nous présentons la formulation mathématique du problème, basée sur un programme

linéaire en nombres entiers, et ayant pour objectif d’aider les fournisseurs à optimiser

leurs décisions d’allocation et de coopération selon les offres de la fédération.

Appendix A. French Summary - Résumé Français 117

A.2.1 Modélisation du problème

A.2.1.1 Modélisation de l’environnement de Fédération

La figure A.1 décrit notre modèle de fédération impliquantm fournisseurs d’infrastructure

Cloud, F = {cp1, cp2, ..., cpj , ..., cpm}, en coopération selon un mode d’interaction peer-

to-peer [79]. Ces fournisseurs sont supposés être connectés par des liens réseaux de haute

performance capables de satisfaire continuellement les exigences de communication et

d’interaction des applications distribuées. Chaque fournisseur dispose d’une quantité

limitée de ressources à répartir entre l’utilisation interne de son centre de données, et

la contribution à la fédération en tant que quotas de ressources partagés. A chaque cy-

cle d’allocation, le fournisseur exécute notre algorithme pour déterminer la répartition

optimale de ses ressources locales et répondre aux demandes des utilisateurs et celles

des autres membres. L’algorithme lui permet également de fixer la partie des requêtes

à externaliser à la fédération pour sous-traitance, en fonction des prix proposés. Pour

accentuer la contrainte de limitation des ressources, CPUj et MEMj définissent les ca-

pacités maximales de ressources de calcul (CPU) et de mémoire disponibles dans le Cloud

domestique (”Home Cloud”) cpj . Nous utilisons également les notations CPUAvail
f et

MEMAvail
f pour représenter les quotas de CPU et de mémoire partagés par chaque

fournisseur fédéré cpf en guise de coopération.

A.2.1.2 Modélisation des requêtes de ressources

Durant chaque cycle d’allocation, un fournisseur cpj peut recevoir plusieurs lots de

requêtes R. Chaque lot est composé de plusieurs demandes de la part des utilisateurs

finaux et/ou des fournisseurs membres. Chaque requête reçue i est modélisée par un

graphe non orienté Gi = (Vi, T r
i), où les sommets Vi représentent les ressources de-

mandées en termes d’instances de VMs, et les arêtes Tri = (tril,l′)1≤l,l′≤|Vi| reflètent les

exigences de communication et d’échange de trafic entre les VMs l et l′. Nous supposons

aussi que toutes les machines virtuelles l (l ∈ Vi) associées à une requête donnée i,

restent actives durant toute sa période d’activité di = di,l,∀l ∈ Vi.

A.2.1.3 Modèle de tarification des ressources

Concernant les bénéfices réalisés par le fournisseur, ce dernier touche un certain revenu

unitaire Pi,l pour toute acceptation d’une instance de VM l associée à une requête

i. Afin de favoriser la coopération au sein de la fédération, les fournisseurs devraient

facturer l’hébergement des requêtes d’internalisation des autres membres moins cher que

Appendix A. French Summary - Résumé Français 118

Figure A.1: Le Scénario de fédération de Cloud

le prix payé par les utilisateurs finaux. Pour établir ces prix avantageux, nous avons

opté pour un simple et efficace mécanisme de tarification [105], qui permet d’ajuster

dynamiquement les prix d’internalisation en fonction des conditions actuelles du système,

selon l’expression mathématique ci-dessous:

P insourcing
type =

Capmax
type−Capidletype

Capmax
type

∗ (P user
type − Costtype) + Costtype (A.1)

L’expression prend en compte le coût d’hébergement des instances de VMs (Costtype),

le prix d’allocation fixe facturé aux utilisateurs (P user
type), les capacités d’hébergement

maximale (Capmax
type) et inactive (Capidletype) chez le fournisseur, et détermine son prix

d’internalisation selon le taux d’utilisation de ses ressources. L’équation (A.1) assure

l’équilibrage de charge entre les membres fédérés, en diminuant le prix des fournisseurs

ayant des capacités restantes importantes pour encourager l’internalisation des requêtes.

Cependant, un prestataire de services supporte plusieurs coûts qu’il faut prendre en con-

sidération pour évaluer ses revenus potentiels. Outre le coût d’utilisation des ressources

Appendix A. French Summary - Résumé Français 119

locales (C local
j,l), le fournisseur encaisse un coût d’externalisation Cout

f,l pour chaque VM

l déléguée à un autre fournisseur cpf . Le coût de mise en réseau Cnet
f,f ′ pour toutes

VMs l et l′ distribuées entre différents membres cpf et cpf ′ de la fédération doit être

également pris en compte. Finalement, vu que le rejet des requêtes affecte directement

la réputation et les bénéfices des fournisseurs, nous avons introduit une pénalité Lpenaltyrejection

pour refléter la perte moyenne de revenu pour chaque demande rejetée.

A.2.2 Formulation en programme linéaire en nombres entiers

Il convient de noter que l’algorithme proposé sera exécuté par chaque membre de la

fédération. Les fournisseurs se serviront du modèle de tarification (A.1) pour établir

leurs prix d’internalisation à pratiquer durant chaque cycle d’allocation. Comme le

montre la Figure A.2, l’algorithme aide chaque fournisseur cpj (j = 1, ...,m) à partager

les requêtes reçues en sous-ensembles à héberger localement (chez cpj) ou à externaliser à

d’autres fournisseurs cpf (f 6= j), ainsi que de sélectionner les demandes d’internalisation

à accepter. Cette décision prend en compte les prix et quotas proposés par les membres

de la fédération et les coûts des ressources et leurs mise en réseau. Le but est de trouver

la distribution optimale des demandes à travers la fédération, en maximisant les revenus

et minimisant les coûts de chacun des fournisseurs afin d’améliorer leurs bénéfices.

Pour la résolution du problème, nous dérivons un programme linéaire en nombres en-

tiers (ILP) centré sur un membre arbitraire cpj de la fédération, puisque l’algorithme

est exécuté indépendamment par chacun des fournisseurs. Le couplage est assuré par

l’équation de tarification (A.1). La fonction objective de notre programme linéaire doit:

1. maximiser le profit réalisé par le fournisseur cpj à travers l’allocation optimale

des requêtes reçues (typiques et/ou d’internalisation) sur sa propre infrastructure

locale;

2. améliorer ses revenus en externalisant des requêtes vers d’autres membres pro-

posant des prix d’allocation avantageux en comparaison avec ses coûts d’hébergement

en local et les prix facturés à ses utilisateurs;

3. minimiser les coûts de mise en réseau nécessaires pour la connectivité et l’interaction

des machines virtuelles réparties sur plusieurs infrastructures dans la fédération;

4. maintenir une bonne réputation pour les fournisseurs en minimisant le nombre des

requêtes rejetées.

Pour atteindre ces objectifs, nous définissons un certain nombre de variables booléennes

et entières, énumérées dans le tableau A.1. La variable de décision bivalente xj,f,l indique

Appendix A. French Summary - Résumé Français 120

Figure A.2: Decision Making Process

si une VM l reçue de la part d’un fournisseur cpf est acceptée par le fournisseur cpj et

servie localement sur son propre infrastructure. Il convient de noter que la variable xj,j,l

(quand f = j) représente les requêtes d’utilisateurs finaux reçues et servies en local par

cpj . Afin de différencier les requêtes utilisateurs de celles des autres fournisseurs (f 6= j),

nous introduisons l’ensemble Si. Cet ensemble est égal à {j} dans le cas d’une requête

utilisateur, et égal à {f/f = 1, ...,m; f 6= j} dans le cas d’une requête d’internalisation

de la part de cpf . L’ensemble Si est utilisé également pour contrôler le prix facturé Pi,l,

qui est fixe pour les utilisateurs finaux mais dynamiquement ajusté pour les requêtes

de ”insourcing”. Pour les décisions d’externalisation, nous utilisons la variable xf,j,l

pour indiquer si une VM l est confiée par le fournisseur cpj à un autre membre cpf de

la fédération. La variable ai est utilisée pour indiquer si la demande d’allocation de

ressources i est acceptée ou rejetée.

En utilisant ces notations, la fonction objectif globale est formulée par l’équation (A.2),

Appendix A. French Summary - Résumé Français 121

Notation Signification

m Nombre de fournisseurs dans la fédération.

j, f, f ′ Sont utilisés pour désigner les fournisseurs de la fédération. cpj
fait référence au Cloud domestique (”Home Cloud”), cpf et cpf ′

aux autres membres fédérés.

i Une requête de ressources reçue de la part d’un utilisateur final
ou un autre fournisseur fédéré.

R Un lot de requêtes contenant plusieurs demandes reçues (de la part
des utilisateurs finaux et des fournisseurs) à traiter simultanément,
R = ∪i.

Vi L’ensemble des VMs demandées par une requête i. l et l′ font
référence à deux VMs quelconques dans cet ensemble (l, l′ ∈ Vi).

cpul,meml Les exigences en ressources requises par la VM l en termes de
puissance de calcul (CPU) et de mémoire (RAM) respectivement.

di La durée de vie (de service) de la requête i.

tril,l′ Le trafic à échanger entre les VMs l et l′ de la requête i.

CPUj La capacité maximale de CPU sur l’infrastructure locale de cpj .

MEMj La capacité maximale de mémoire (RAM) sur l’infrastructure lo-
cale de cpj .

CPUAvail
f Le quota de CPU partagé par le fournisseur cpf dans la fédération.

MEMAvail
f Le quota de RAM partagé par le fournisseur cpf dans la fédération.

dAvail
f La durée de disponibilité des quotas offerts par le fournisseur cpf .

Cnet
f,f ′ Le coût unitaire de mise en réseau entre les fournisseurs cpf et

cpf ′ .

C local
j,l Le coût d’hébergement en local d’une VM l.

Cout
f,l Le coût d’externalisation (outsourcing) d’une VM l chez le four-

nisseur cpf .

Pi,l Le prix unitaire facturé par le fournisseur lors de la satisfaction
d’une VM l demandée par la requête i.

Lpenaltyrejection La perte moyenne de revenu (pénalité) pour chaque requête rejetée
par le fournisseur.

Si Est l’ensemble des acteurs ayant soumis la requête au fournisseur
cpj . Selon notre modélisation, Si = {j} si i est une requête typique
d’un utilisateur final, et Si = {f = 1, ...m; f 6= j} si i est une
requête d’internalisation (insourcing) de la part du fournisseur cpf .

Variables Définition

xj,f,l Est une variable binaire. xj,f,l = 1 si la VM l a été reçue par le
fournisseur cpj de la part de cpf et allouée en local, et 0 sinon.

xf,j,l Est une variable binaire. xf,j,l = 1 si la VM l a été externalisée
(outsourced) par le fournisseur cpj à un autre membre cpf , et 0
sinon.

yjf,f ′,l,l′ Est une variable binaire. yjf,f ′,l,l′ = xf,j,l · xf ′,j,l′ .

ai Est une variable binaire. ai = 1 si la requête i a été acceptée, et 0
sinon.

Table A.1: Notations et Variables

Appendix A. French Summary - Résumé Français 122

et est soumise à un ensemble de contraintes linéaires et d’intégrité exprimées respec-

tivement par les équations (A.3) à (A.13) et l’équation (A.14). Les deux premières con-

traintes (A.3) et (A.4) formulent la condition sur la limitation des ressources locales pour

que les allocations ne dépassent pas les capacités maximales de cpj . Les inégalités (A.5)

et (A.6) assurent que les allocations d’externalisation demeurent en deçà des quotas mis

à disposition par les autres fournisseurs. L’inégalité (A.7) garantit que les quotas sont

disponibles pendant toute la durée de vie des requêtes externalisées. L’inégalité (A.8)

et l’égalité (A.9) assurent que les requêtes acceptées sont bien satisfaites. La contrainte

(A.8) garantit que chaque VM est allouée à un seul et unique hôte (fournisseur); alors que

la contrainte (A.9) garantit qu’une requête est acceptée seulement si elle est entièrement

allouée. La contrainte (A.10) empêche les boucles sur les opérations d’externalisation et

d’internalisation. les inégalités (A.11) et (A.12) définissent les relations entre les vari-

ables de décisions xj,f,l, xf,j,l et yjf,f ′,l,l′ . Finalement, pour garantir au fournisseur cpj un

certain gain en participant à la fédération, la contrainte (A.13) assure que les solutions

sélectionnées mènent toujours à un revenu supérieur à un seuil minimal R0.

maxZj =

 |R|∑

i=1

|Vi|∑
l=1

∑
f∈Si

(Pi,l − C local
j,l) · xj,f,l · di

+

 |R|∑
i=1

m∑
f=1,f 6=j

|Vi|∑
l=1

(Pi,l − Cout
f,l) · xf,j,l · di

−
 |R|∑

i=1

m∑
f=1

m∑
f ′=1

|Vi|∑
l=1

|Vi|∑
l′=1,l′>l

tril,l′ · Cnet
f,f ′ · yjf,f ′,l,l′

−
(|R| −

|R|∑
i=1

ai) · Lpenaltyrejection

 ·∆t

(A.2)

Sous Contraintes:

|R|∑
i=1

|Vi|∑
l=1

∑
f∈Si

cpul · xj,f,l ≤ CPUj (A.3)

|R|∑
i=1

|Vi|∑
l=1

∑
f∈Si

meml · xj,f,l ≤MEMj (A.4)

|R|∑
i=1

|Vi|∑
l=1

cpul · xf,j,l ≤ CPUAvail
f ∀f = 1, ...,m; f 6= j (A.5)

Appendix A. French Summary - Résumé Français 123

|R|∑
i=1

|Vi|∑
l=1

meml · xf,j,l ≤MEMAvail
f ∀f = 1, ...,m; f 6= j (A.6)

di · xf,j,l ≤ dAvail
f

∀i = 1 ∈ R; ∀l =∈ Vi; ∀f = 1, ...,m; f 6= j
(A.7)

m∑
f=1

xf,j,l ≤ 1 ∀i ∈ R; ∀l ∈ Vi (A.8)

m∑
f=1

|Vi|∑
l=1

xf,j,l = |Vi| · ai ∀i ∈ R (A.9)

xf,j,l = 0 ∀i, {i ∈ R | Si 6= {j}}; ∀l ∈ Vi; ∀f ∈ Si (A.10)

xf,j,l + xf ′,j,l′ − yjf,f ′,l,l′ ≤ 1

∀i ∈ R; ∀l = 1, ..., |Vi|; ∀l′ = 1, ..., |Vi|; l′ > l;

∀f = 1, ...,m; ∀f ′ = 1, ...,m

(A.11)

m∑
f ′=1

yjf,f ′,l,l′ ≤ xf,j,l

∀i ∈ R; ∀l = 1, ..., |Vi|; ∀l′ = 1, ..., |Vi|; l′ > l;

∀f = 1, ...,m;

(A.12)

 |R|∑
i=1

|Vi|∑
l=1

∑
f∈Si

(Pi,l − C local
j,l) · xj,f,l · di

+

 |R|∑
i=1

m∑
f=1,f 6=j

|Vi|∑
l=1

(Pi,l − Cout
f,l) · xf,j,l · di

−
 |R|∑

i=1

m∑
f=1

m∑
f ′=1

|Vi|∑
l=1

|Vi|∑
l′=1,l′>l

tril,l′ · Cnet
f,f ′ · yjf,f ′,l,l′

 ≥ R0

(A.13)

xj,f,l , xf,j,l , y
j
f,f ′,l,l′ ∈ {0, 1}

∀i ∈ R; ∀l = 1, ..., |Vi|; ∀l′ = 1, ..., |Vi|; l′ > l;

∀f = 1, ...,m; ∀f ′ = 1, ...,m

(A.14)

Appendix A. French Summary - Résumé Français 124

Il convient de noter que les prix Pi,l dans le premier et le deuxième terme de la fonction

objectif, sont établis par le biais du modèle de tarification exprimé par l’équation (A.1).

Ce prix est mis à jour par le fournisseur cpj au début de chaque cycle d’allocation

pour fixer le prix facturé aux autres membres pour l’hébergement de leurs requêtes

d’internalisation. Pi,l reste fixe pour les utilisateurs finaux. Dans le second terme,

exprimant le revenu réalisé par les opérations d’externalisation, Cout
f,l est le coût de sous-

traitance appliqué par les autres fournisseurs à cpj . Ce coût n’est autre que le prix

d’insourcing proposé par les autres membres (f 6= j), et qui est également fixé par ces

derniers selon l’équation (A.1) en fonction de l’utilisation de leurs ressources respectives.

L’évaluation des performances du modèle exact et les différents gains identifiés, ont

confirmé la pertinence de la fédération des ressources et du modèle proposé, pour

l’amélioration des bénéfices des fournisseurs et de la satisfaction des utilisateurs. L’étude

a mis en exergue également les conditions les plus favorables pour la participation et/ou

la construction d’une fédération.

A.3 Approche Heuristique basée sur les arbres de Gomory-

Hu

Le modèle exact réalise de bonnes performances avec les instances de problème de taille

moyenne et de complexité modérée. Toutefois, comme tout problème NP-difficile, les

solutions exactes ne passeront pas à l’échelle et leurs performances se dégradent avec les

instances de grande tailles. Notre algorithme exact entrâıne des temps de convergence in-

acceptables, notamment avec l’augmentation du nombre de VMs composant les requêtes

et leurs degrés de connectivité. Vu que le temps de réponse est une préoccupation cru-

ciale pour les utilisateurs de Cloud, les décisions d’allocation de ressources doivent être

prises dans un temps opportun. Ceci nous oblige à concevoir des algorithmes heuris-

tiques efficaces, permettant de trouver des solutions optimales et proches de l’optimale

dans un temps polynomial.

L’heuristique proposée est basée sur la clusterisation des graphes de requêtes, et se

déroule selon ces trois étapes principales décrites dans l’algorithme 7:

1. La décomposition des requêtes en un ensemble de grappes de VMs (clusters) dis-

joints, ayant de faibles flux de trafic de communication inter-grappes, selon une

approche de minimum k-cut.

2. L’affectation de ces partitions candidates aux membres de la fédération suivant un

algorithme de meilleur ajustement (Best-Fit) basé sur les coûts d’allocation.

Appendix A. French Summary - Résumé Français 125

3. L’identification de la meilleure k-coupe (k-cut) qui résulte en une partition de

requête optimale ayant le coût minimum d’hébergement et de mise en réseau.

Dans les sections suivantes, nous détaillons les différentes étapes de l’algorithme proposé.

A.3.1 Décomposition des graphes de requêtes

La décomposition des requêtes est une variante du problème de partitionnement de

graphes et de k-coupe minimale (”minimum k-cut”). Une k-cut est un ensemble d’arêtes

S ∈ EG, dont la suppression partage un graphe non-orienté G = (VG, EG) en k com-

posants connectés. Le problème de ”minimum k-cut” consiste à trouver l’ensemble S

ayant le poids global le plus faible. Ce problème est résoluble en temps polynomial

(O(|V |k2)) pour des valeurs de k fixées [151], mais il est NP-complet avec des k faisant

partie des variables d’entrée [152]. Vu que le nombre optimal k de partitions des requêtes

n’est pas connu à l’avance, nous utilisons un algorithme heuristique populaire et efficace

basé sur les arbres de Gomory-hu [154].

Definition A.1. Un arbre de Gomory-Hu TGH = (VT , ET) associé à un graphe non-

orienté G, est une représentation compacte de la connectivité entre tous ses sommets.

Il s’agit d’un arbre pondéré ayant les mêmes noeuds que G (VT = VG), mais ses arêtes

|ET | = (|VG| − 1) représentent les coupes minimales entre toutes les paires de sommets

dans le graphe d’origine.

Cet arbre peut être construit en temps polynomial, en se basant sur (|VG|−1) évaluations

des flux maximaux entre les sommets du graphe [154]. La Figure A.3-(b) montre un

exemple d’un arbre Gomory-Hu TGH
i associé au graphe Gi représenté par A.3-(a). Par

exemple, le poids 6 de l’arête reliant les sommets (3) et (5) de l’arbre TGH
i , correspond à

la 3-5 coupe minimale dans le graphe d’origine Gi. La coupe minimale entre n’importe

quelle paire de sommets dans Gi est égale au poids minimum sur les arêtes composant le

chemin entre les deux noeuds dans TGH
i . Par exemple, la 2-9 coupe minimale est égale

à (min {10, 6, 9} = 6). Pour en savoir davantage au sujet des arbres de Gomory-Hu, les

lecteurs peuvent se référer au [154] et [155].

Afin de sélectionner le plan d’allocation le plus rentable, l’heuristique débute par l’application

de l’algorithme de Gomory-Hu au graphe de requête reçu. Cela permet d’obtenir une

représentation concise TGH
i des flux maximaux échangés entre toutes les VMs, de sorte

que n’importe quelles k ∈ [1;m] partitions peuvent être facilement obtenues en cas de

besoin. Une k-coupe de la requête Gi en k sous-graphes, est obtenue simplement en en-

levant les (k− 1) arêtes de TGH
i ayant le poids le plus faible. Cette élimination d’arêtes

Appendix A. French Summary - Résumé Français 126

basée sur un tri croissant de poids assure que les VMs fortement connectées feront partie

de la même partition et seront allouées sur la même infrastructure, alors que les grappes

de VMs résultantes peuvent être réparties dans la fédération. La Figure A.3 illustre un

exemple de partition d’une requête complexe Gi, en 3 sous-graphes de VMs, en éliminant

les deux arcs de plus faible poids dans TGH
i .

Figure A.3: Partition et Allocation des requêtes au sein de la Fédération

Appendix A. French Summary - Résumé Français 127

Après la décomposition du graphe, l’heuristique doit sélectionner pour chaque partition

candidate, le fournisseur le plus approprié pour l’allocation des ressources selon les coûts

d’hébergement et de mise en réseau. Cette étape d’affectation est basée sur une approche

de meilleur ajustement (Best-Fit), détaillée dans les sections suivantes.

A.3.2 Calcul de la métrique de coût générique

Le traitement des requêtes complexes nécessite une attention particulière concernant

les exigences et coûts de mise en réseau entre les composants distribués. Même avec

le modèle de partitionnement minimisant le trafic sur les liens du réseau inter-Cloud, il

serait plus bénéfique de considérer également les coûts de communication inter-fournisseurs

pour la prise de décision. La gestion de ces coûts devient plus compliquée avec l’augmentation

du nombre des fournisseurs et celui des partitions à allouer. Pour résoudre ce problème,

nous définissons une métrique de coût global, estimant les frais totaux d’allocation

d’une grappe de VMs donnée, en matière de ressources de calcul et de communication.

L’algorithme 5 récapitule les étapes d’évaluation de cette métrique de coût:

L’estimation du coût global CAggregate
f,V clus

c
d’une grappe de VMs V clus

c en cas d’allocation

chez un fournisseur cpf , est exprimée par l’équation (A.15). Ce coût correspond à la

somme du coût d’hébergement des différentes VMs y appartenant CHosting
f,V clus

c
(A.16), et

du coût approximatif CNetworking
f,V clus

c
de mise en réseau avec ses voisins distribués dans la

fédération. Le terme cost(l) dans l’expression (A.16) fait référence au coût d’allocation

de la VM l, qui correspond soit au coût d’allocation en local C local
j,l , soit au coût

d’externalisation Cout
f,l . Le coût CNetworking

f,V clus
c

est fixé à 0 s’il y a un seul cluster à al-

louer; sinon il est évalué par l’équation (A.17), comme détaillé dans l’algorithme 5.

CAggregate
f,V clus

c
= CHosting

f,V clus
c

+ CNetworking
f,V clus

c
(A.15)

CHosting
f,V clus

c
=

∑
l∈V clus

c

cost(l) · di (A.16)

CNetworking
f,V clus

c
=

∑
V clus
n ∈Nassign

c

bwcut
c,n · Cnet

f,Ass(n) +ACnet
f ·BWNgh

c (A.17)

ACnet
f =

∑m
f ′=1;f ′ 6=f C

net
f,f ′

(m− 1)
(A.18)

Appendix A. French Summary - Résumé Français 128

Algorithm 5 Approximation of the aggregate cost metric

function: Aggregate-Cost-Cluster(V clus
c , cpf , LCs

k
i , cut

k
remov);

Input: A cluster V clus
c , a provider cpf , the list of all k VM-clusters LCski =

{V clus
1 , V clus

2 , . . . , V clus
k }, the set of removed (k − 1) cuts cutkremov =

{e removcut(c,c′); c, c
′ ≤ k} partitioning the original graph into k clusters

Output: The approximate overall cost CAggregate
f,V clus

c
for serving the cluster V clus

c on

provider cpf
1: Initialize: CAggregate

f,V clus
c

← 0; CHosting
f,V clus

c
← 0; CNetworking

f,V clus
c

← 0

2: // Evaluate the hosting cost
3: calculate CHosting

f,V clus
c

using equation (A.16)

4: // Evaluate the networking cost
5: if (size(LCski) = 1) then

6: CNetworking
f,V clus

c
← 0

7: else
8: Nc ← List-of-neighbors(V clus

c , LCski , cut
k
remov)

9: Nassign
c ← List-of-assigned(Nc)

10: Nunassign
c ← List-of-Unassigned(Nc)

11: if (size(Nassign
c) = 0) then

12: calculate ACnet
f using equation (A.18)

13: calculate BWNgh
c using equation (A.19)

14: CNetworking
f,V clus

c
← ACnet

f ∗BWNgh
c

15: else
16: // Evaluate the networking cost with assigned neighbors
17: for (V clus

n ∈ Nassign
c) do

18: Ass(n)← get-assigned-provider(V clus
n)

19: CNetworking
f,V clus

c
← CNetworking

f,V clus
c

+ bwcut
c,n ∗ Cnet

f,Ass(n)

20: end for
21: // Evaluate the networking cost with non-assigned neighbors
22: calculate ACnet

f using equation (A.18)

23: calculate BWNgh
c using equation (A.19)

24: CNetworking
f,V clus

c
← CNetworking

f,V clus
c

+ACnet
f ∗BWNgh

c

25: end if
26: end if
27: CAggregate

f,V clus
c

← CHosting
f,V clus

c
+ CNetworking

f,V clus
c

28: return CAggregate
f,V clus

c

Appendix A. French Summary - Résumé Français 129

BWNgh
c =

∑
V clus
n ∈Nunassign

c

bwcut
c,n (A.19)

L’étape suivante consiste à sélectionner les meilleurs fournisseurs pour servir les grappes

de VMs, suivant une approche de meilleur ajustement (Best-Fit) [162] basée sur la

métrique du coût global.

A.3.3 Algorithme du meilleur ajustement: Cost-Aware Best-Fit Match-

ing

Cette approche d’allocation a été sélectionnée vu sa pertinence et efficacité en termes de

performances et qualité des solutions, y compris la rapidité du temps de convergence,

l’optimisation de l’utilisation des ressources et la maximisation des requêtes acceptées.

Les capacités d’hébergement disponibles dans la fédération (ressources locales et quotas

proposés par les autres membres) représentent les bôıtes ”bins” à remplir. L’ensemble

des k sous-graphes issus de la décomposition des requêtes et ayant des exigences variées

en ressources, sont les objets ”items” à empaqueter. Pour assurer un meilleur profit,

nous avons adapté l’algorithme du meilleur ajustement en y intégrant la métrique du

coût global, comme illustré par la procédure 6.

Pour l’affectation des ressources, l’algorithme 6 commence par trier les k sous-graphes

de la requête en ordre décroissant de leurs capacités demandées, et estime pour chacun

son coût d’allocation global chez les différents fournisseurs selon l’algorithme 5. Chaque

sous-graphe est assigné au fournisseur le moins cher ayant des capacités suffisantes.

Le processus se répète jusqu’à ce que tous les composants de la requête soient placés

et empaquetés autant que possible chez les meilleurs fournisseurs. Si un sous-groupe

donné ne peut pas être satisfait, le processus d’affectation s’arrête pour passer à la

prochaine valeur de partitions k (voir Algorithme 7). Finalement, la matrice d’affectation

résultante est retournée au programme principal pour valider l’allocation. Il convient

de noter que cette étape représente juste un phase de sélection de fournisseurs sans

aucune allocation effective. Ces decisions seront validées par l’algorithme principal (7),

seulement si les critères de coûts sont vérifiés et la partition optimale (k-coupe) de la

requête est déterminée.

A.3.4 Description de l’approche heuristique

L’heuristique proposée utilise les procédures décrites par les algorithmes 5 et 6 pour

déterminer le partitionnement optimal des requêtes. L’algorithme sélectionne les meilleurs

Appendix A. French Summary - Résumé Français 130

Algorithm 6 Providers selection for hosting requests partitions

function: Cost-Aware-Best-Fit-Assignment(LCski , F, cut
k
remov);

Input: The list of k clusters LCski = {V clus
1 , V clus

2 , . . . , V clus
k } to allocate, the federation

providers F = {cp1, cp2, ..., cpf , ..., cpm} and their offerings, the set of removed (k−1)
cuts partitioning the graph cutkremov = {e removcut(c,c′); c, c

′ ≤ k}
Output: A feasible cost-effective assignment plan assign matrix[k],if exists, specifying

the list of best providers to host the k candidate clusters.
1: Initialize: assign matrix[k] ← null ; cost matrix[k,m] ← null ;
remain capacity matrix[m]← null ; nbclusSatisfied ← 0 ;

2: for (cpf ∈ F) do
3: remain capacity matrix[f]← remaining-capacity(f)
4: end for
5: Sort the list of VM-clusters LCski in decreasing order of their total needed resources.

6: for (V clus
c ∈ LCski) do

7: boolean assigned← false
8: for (cpf ∈ F) do
9: cost matrix[c, f]← Aggregate-Cost-Cluster(V clus

c , cpf , LCs
k
i , cut

k
remov)

10: end for
11: Sort the list of providers F in increasing order of their aggregate allocation cost

for cluster V clus
c and in increasing remaining hosting capacities in case of equal

costs.
12: for (cpf ∈ F) do
13: if cpf has enough resources to host V clus

c then
14: assigned← true
15: assign matrix[c]← f
16: update remain capacity matrix[f]
17: nbclusSatisfied ← nbclusSatisfied + 1
18: break
19: end if
20: end for
21: if (assigned = false) then
22: break
23: end if
24: end for
25: if (nbclusSatisfied 6= k) then
26: assign matrix← null
27: end if
28: return assign matrix

Appendix A. French Summary - Résumé Français 131

décisions d’internalisation et d’externalisation maximisant le profit des fournisseurs,

selon les étapes décrites dans 7.

L’heuristique commence par trier les requêtes R selon un ordre décroissant de leurs

revenus potentiels afin de privilégier les plus rentables. Pour chacune des requêtes i,

l’algorithme détermine les meilleurs fournisseurs pour l’allocation selon les étapes suiv-

antes. Tout d’abord, l’arbre de Gomory-Hu associé au graphe de VMs reçuGi = (Vi, T ri)

est établi pour définir les éventuelles décisions de son partitionnement, comme le décrit

la Figure A.3. Ensuite, l’algorithme itère sur les valeurs de k partitions possibles

(k ∈ [1,max{m, |Vi|}]), pour évaluer leurs coûts d’allocation et sélectionner la meilleure

solution. Pour chaque valeur de k, l’heuristique fait appel à l’algorithme du meilleur

ajustement (Cost-Aware-Best-Fit-Assignment 6) pour déterminer la liste des meilleurs

fournisseurs satisfaisant les exigences des k sous-graphes de la requête LCski . Si aucune

solution n’est faisable, l’algorithme passe directement à la valeur suivante de k pour

partitionner davantage la requête et obtenir des sous-graphes plus petits, adaptés aux

capacités et quotas des fournisseurs. Autrement, l’algorithme 7 évalue la qualité de la

solution obtenue assign sol en termes de coût d’allocation global avant de l’appliquer.

Pour chaque itération, le coût actuel de la k-coupe alloc costki est comparé à celui de

la (k − 1)-coupe alloc costbesti , jusqu’à identifer le meilleur coût minimum et le nombre

optimal Kopt de partitions à utiliser pour distribuer la requête i à travers la fédération.

Appendix A. French Summary - Résumé Français 132

Algorithm 7 NCAFedRA heuristic

Input: A batch of requests R = ∪i, the list of federation providers F =
{cp1, cp2, ..., cpf , ..., cpm} and their offerings

Output: A distributed allocation plan for requests R minimizing the overall costs.
1: Initialize: accept matrix[|R|] ← null ; VM alloc plan[|R|,max(|Vi|)] ← null ;
assign sol[m]← null ; LCsbesti ← null ; assignbest[m]← null;

2: Sort requests i in R in decreasing order of their profitability (selling prices)
3: for (i ∈ R) do
4: if (total-capacity(i) ≥ total-remaining-quotas(F)) then
5: accept matrix[i]← rejected
6: VM alloc plan[i, l]← −1, for all l ∈ Vi
7: else
8: boolean solution found← false
9: alloc costbesti ←∞

10: profitbesti ← −∞
11: Construct the Gomory-Hu tree of i and obtain TGH

i containing Vi VMs
(nodes) and (|Vi| − 1) links cutsGH

i

12: Sort cutsGH
i by increasing weights

13: for (k ∈ [1,m]) do
14: cutkremov ← the lightest (k − 1) links from cutsGH

i if exists, else break
15: LCski ← the k disjoints clusters resulted by the removal of cutkremov

16: assign sol← Cost-Aware-Best-Fit-Assignment(LCski , F, cut
k
remov)

17: if (assign sol 6= null) then
18: solution found← true
19: // Calculate this resulted allocation cost C(k) for this k-cut partitions
20: alloc costki ← total-allocation-cost(LCski , assign sol, i) (5.6)
21: if (alloc costki > alloc costbesti) then
22: // Exit iterations : optimal solution is found for (k − 1) partitions
23: break
24: else
25: alloc costbesti ← alloc costki
26: // Memorize this allocation solution and evaluate the next k value
27: LCsbesti ← LCski
28: assignbest ← assign sol
29: end if
30: end if
31: end for
32: profitbesti ← (total-selling-revenue(i)− alloc costbesti)
33: if (solution found & (profiti ≥ R0)) then
34: accept matrix[i]← accepted
35: // Effective Allocation: update resources and quotas
36: VM alloc plan[i, |Vi|]← allocate-request(LCsbesti , assignbest)
37: update-profit(cpj)
38: else
39: accept matrix[i]← rejected
40: VM alloc plan[i, l]← −1, for all l ∈ Vi
41: end if
42: end if
43: end for
44: return accept matrix , VM alloc plan

Bibliography

[1] F. Gens. Worldwide and regional public it cloud services 2014–2018 forecast. White

Paper, http://www.idc.com/getdoc.jsp?containerId=251730, 2015.

[2] C. Oppenheimer. Which is less expensive: Ama-

zon or self-hosted? https://gigaom.com/2012/02/11/

which-is-less-expensive-amazon-or-self-hosted/, Feb. 2012.

[3] J. Wilkes and C. Reiss. Cluster workload traces. https://github.com/google/

cluster-data/blob/master/ClusterData2011_2.md, Aug. 2015.

[4] P. Mell and T. Grance. Effectively and securely using the cloud com-

puting paradigm. http://csrc.nist.gov/groups/SNS/cloud-computing/

cloud-computing-v26.ppt, 2009.

[5] A.N. Toosi, R.N. Calheiros, and R. Buyya. Interconnected cloud computing envi-

ronments: Challenges, taxonomy, and survey. ACM Comput. Surv., 47(1):7:1–7:47,

May 2014.

[6] O. Rogers and W. Fellows. The cloud pricing codex–2013, November 2013.

[7] M. Mihailescu and Y.M. Teo. Dynamic resource pricing on federated clouds. In

10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

(CCGrid), pages 513–517, May 2010.

[8] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,

D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A

berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS

Department, University of California, Berkeley, Feb 2009.

[9] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

133

http://www.idc.com/getdoc.jsp?containerId=251730
https://gigaom.com/2012/02/11/which-is-less-expensive-amazon-or-self-hosted/
https://gigaom.com/2012/02/11/which-is-less-expensive-amazon-or-self-hosted/
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-computing-v26.ppt
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-computing-v26.ppt

Bibliography 134

[10] M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali. Cloud computing:

Distributed internet computing for it and scientific research. Internet Computing,

IEEE, 13(5):10–13, Sept 2009.

[11] Cisco. Cisco global cloud index: Forecast and methodology, 2014–2019.

White Paper, http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.

pdf, 2015.

[12] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using pre-

dictive models for workload forecasting. In 2011 IEEE International Conference

on Cloud Computing (CLOUD), pages 500–507, July 2011.

[13] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow. Blueprint

for the intercloud - protocols and formats for cloud computing interoperability. In

Internet and Web Applications and Services, 2009. ICIW ’09. Fourth International

Conference on, pages 328–336, May 2009.

[14] Global Inter-Cloud Technology Forum (CICTF). Use cases and functional require-

ments for inter-cloud computing. White Paper, http://www.ttc.or.jp/files/

8614/1214/5480/GICTF_Whitepaper_20100809.pdf, Aug. 2010.

[15] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, and R. Buyya.

Cloudsim: A toolkit for modeling and simulation of cloud computing environ-

ments and evaluation of resource provisioning algorithms. Software: Practice and

Experience, 41(1):23–50, January 2011.

[16] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing

and emerging it platforms: Vision, hype, and reality for delivering computing as

the 5th utility. Future Gener. Comput. Syst., 25(6):599–616, June 2009.

[17] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing

360-degree compared. In Grid Computing Environments Workshop, 2008. GCE

’08, pages 1–10, Nov 2008.

[18] L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the

clouds: Towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):

50–55, December 2008.

[19] L. Schubert, K.G. Jeffery, and B. Neidecker-Lutz. The Future of Cloud Computing:

Opportunities for European Cloud Computing Beyond 2010:–expert Group Report.

European Commission, Information Society and Media, 2010.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.ttc.or.jp/files/8614/1214/5480/GICTF_Whitepaper_20100809.pdf
http://www.ttc.or.jp/files/8614/1214/5480/GICTF_Whitepaper_20100809.pdf

Bibliography 135

[20] P.M Mell and T. Grance. Sp 800-145. the nist definition of cloud computing.

Technical report, Gaithersburg, MD, United States, 2011.

[21] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf. Sp 500-292.

nist cloud computing reference architecture. Technical report, Gaithersburg, MD,

United States, 2011.

[22] M. Cafaro and G. Aloisio. Grids, clouds, and virtualization. In Grids, Clouds and

Virtualization, pages 1–21. Springer London, 2011.

[23] J.E. Smith and R. Nair. The architecture of virtual machines. Computer, 38(5):

32–38, May 2005.

[24] M. Nelson, B. Lim, and G. Hutchins. Fast transparent migration for virtual ma-

chines. In Proceedings of the Annual Conference on USENIX Annual Technical

Conference, ATEC ’05, pages 25–25, Berkeley, CA, USA, 2005. USENIX Associa-

tion.

[25] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield. Live migration of virtual machines. In Proceedings of the 2Nd Con-

ference on Symposium on Networked Systems Design & Implementation - Volume

2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.

[26] M. Rosenblum and T. Garfinkel. Virtual machine monitors: current technology

and future trends. Computer, 38(5):39–47, May 2005.

[27] Understanding full virtualization, paravirtualization, and hardware

assist. whitepaper, http://www.vmware.com/files/pdf/VMware_

paravirtualization.pdf, 2007.

[28] Kvm (kernel-based virtual machine). http://http://www.linux-kvm.org/,

2015.

[29] Vmware esxi. https://www.vmware.com/products/esxi-and-esx/, 2015.

[30] Xen. http://www.xenproject.org/, 2015.

[31] Microsoft hyper-v. http://www.microsoft.com/Hyper-V, 2015.

[32] S. Soltesz, H. Pötzl, M.E. Fiuczynski, A. Bavier, and L. Peterson. Container-

based operating system virtualization: A scalable, high-performance alternative

to hypervisors. SIGOPS Oper. Syst. Rev., 41(3):275–287, March 2007.

[33] M.G. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, and C.A.F. De Rose.

Performance evaluation of container-based virtualization for high performance

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://http://www.linux-kvm.org/
https://www.vmware.com/products/esxi-and-esx/
http://www.xenproject.org/
http://www.microsoft.com/Hyper-V

Bibliography 136

computing environments. In Proceedings of the 21st Euromicro International Con-

ference on Parallel, Distributed, and Network-Based Processing, PDP ’13, pages

233–240, Washington, DC, USA, 2013. IEEE Computer Society.

[34] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance

comparison of virtual machines and linux containers. technology, 28:32, 2014.

[35] Linux containers. https://linuxcontainers.org/, 2015.

[36] Docker. https://www.docker.com/, 2015.

[37] Openvz. https://openvz.org/, 2015.

[38] M.J. Scheepers. Virtualization and containerization of application infrastructure:

A comparison. volume 21. University of Twente, 2014.

[39] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for cloud

computing. In Proceedings of the 2008 Conference on Power Aware Computing

and Systems, HotPower’08, pages 10–10, Berkeley, CA, USA, 2008. USENIX As-

sociation.

[40] I. Goiri, F. Julià, J.O. Fitó, M. Maćıas, and J. Guitart. Resource-level qos metric

for cpu-based guarantees in cloud providers. In Jörn Altmann and Omer F. Rana,

editors, GECON, volume 6296 of Lecture Notes in Computer Science, pages 34–47.

Springer, 2010.

[41] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J. Mambretti, I. Monga,

B. van Oudenaarde, S. Raghunath, and P.Y. Wang. Seamless live migration of

virtual machines over the man/wan. Future Gener. Comput. Syst., 22(8):901–907,

October 2006.

[42] G. Kecskemeti, G. Terstyanszky, P. Kacsuk, and Z. Neméth. An approach for

virtual appliance distribution for service deployment. Future Gener. Comput.

Syst., 27(3):280–289, March 2011.

[43] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified ontology of cloud

computing. In Grid Computing Environments Workshop, 2008. GCE ’08, pages

1–10, Nov 2008.

[44] Salesforce. www.salesforce.com, 2015.

[45] Box inc. https://www.box.com/, 2015.

[46] Dropbox. https://www.dropbox.com/, 2015.

https://linuxcontainers.org/
https://www.docker.com/
https://openvz.org/
www.salesforce.com
https://www.box.com/
https://www.dropbox.com/

Bibliography 137

[47] Google apps. http://www.google.com/intx/fr/enterprise/apps/business/,

2015.

[48] Google app engine. https://cloud.google.com/appengine/, 2015.

[49] Microsoft azure cloud services. http://azure.microsoft.com/services/

cloud-services/, 2015.

[50] Pivotal cloud foundry. https://pivotal.io/platform-as-a-service/

pivotal-cloud-foundry, 2015.

[51] S. Bhardwaj, L. Jain, and S. Jain. Cloud computing: A study of infrastructure as

a service (iaas). International Journal of engineering and information Technology,

2(1):60–63, 2010.

[52] Amazon ec2. http://aws.amazon.com/ec2/, 2015.

[53] Microsoft azure iaas. http://azure.microsoft.com/en-us/services/

virtual-machines/, 2015.

[54] Google compute engine. https://cloud.google.com/compute/, 2015.

[55] Ibm smartcloud enterprise. http://www.ibm.com/cloud-computing/iaas.html,

2015.

[56] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I.M. Llorente, R. Mon-

tero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-Yehuda, W. Emmerich, and

F. Galán. The reservoir model and architecture for open federated cloud comput-

ing. IBM J. Res. Dev., 53(4):535–545, July 2009.

[57] R. Buyya, R. Ranjan, and R.N. Calheiros. Intercloud: Utility-oriented federation

of cloud computing environments for scaling of application services. In Proceedings

of the 10th International Conference on Algorithms and Architectures for Parallel

Processing - Volume Part I, ICA3PP’10, pages 13–31, Berlin, Heidelberg, 2010.

Springer-Verlag.

[58] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. Three-phase cross-cloud federation

model: The cloud sso authentication. In Second International Conference on

Advances in Future Internet (AFIN), pages 94–101, July 2010.

[59] A.J. Ferrer, F. HernáNdez, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sir-

vent, J. Guitart, R.M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos, S.K. Nair,

G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia, A. Kipp, S. Wesner,

M. Corrales, N. Forgó, T. Sharif, and C. Sheridan. Optimis: A holistic approach

to cloud service provisioning. Future Gener. Comput. Syst., 28(1):66–77, January

2012.

http://www.google.com/intx/fr/enterprise/apps/business/
https://cloud.google.com/appengine/
http://azure.microsoft.com/services/cloud-services/
http://azure.microsoft.com/services/cloud-services/
https://pivotal.io/platform-as-a-service/pivotal-cloud-foundry
https://pivotal.io/platform-as-a-service/pivotal-cloud-foundry
http://aws.amazon.com/ec2/
http://azure.microsoft.com/en-us/services/virtual-machines/
http://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
http://www.ibm.com/cloud-computing/iaas.html

Bibliography 138

[60] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud architec-

tures to enable cross-federation. In IEEE 3rd International Conference on Cloud

Computing (CLOUD), pages 337–345, July 2010.

[61] Amazon EC2. Summary of the amazon ec2 and amazon rds service disruption in

the us east region. aws.amazon.com/message/65648, Apr. 2011.

[62] Amazon EC2. Summary of the aws service event in the us east region. aws.

amazon.com/message/67457, July 2012.

[63] Google App Engine. Post-mortem for february 24th, 2010 outage. https://

groups.google.com/forum/#!topic/google-appengine/p2QKJ0OSLc8, 2010.

[64] B. Laing. Windows azure service disruption update. https://azure.microsoft.

com/blog/windows-azure-service-disruption-update/, Feb. 2012.

[65] D. Petcu. Portability and interoperability between clouds: Challenges and case

study. In Proceedings of the 4th European Conference on Towards a Service-based

Internet, ServiceWave’11, pages 62–74, Berlin, Heidelberg, 2011. Springer-Verlag.

[66] F. Gonidis, I. Paraskakis, and D. Kourtesis. Addressing the challenge of application

portability in cloud platforms. pages 565–576, 2012.

[67] F. Gonidis, A.J.H. Simons, I. Paraskakis, and D. Kourtesis. Cloud application

portability: An initial view. In Proceedings of the 6th Balkan Conference in In-

formatics, BCI ’13, pages 275–282, New York, NY, USA, 2013. ACM.

[68] L. Rodero-Merino, L.M. Vaquero, V. Gil, F. Galán, J. Fontán, R.S. Montero,

and I.M. Llorente. From infrastructure delivery to service management in clouds.

Future Gener. Comput. Syst., 26(8):1226–1240, October 2010.

[69] T. Bittman. The evolution of the cloud computing mar-

ket. http://blogs.gartner.com/thomas_bittman/2008/11/03/

the-evolution-of-the-cloud-computing-market/, 2015.

[70] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, L. Fong,

S. Masoud Sadjadi, and M. Parashar. Cloud federation in a layered service model.

J. Comput. Syst. Sci., 78(5):1330–1344, September 2012.

[71] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tords-

son, C. Ragusa, M. Villari, S. Clayman, E. Levy, A. Maraschini, P. Massonet,

H. Muñoz, and G. Tofetti. Reservoir - when one cloud is not enough. Computer,

44(3):44–51, March 2011.

aws.amazon.com/message/65648
aws.amazon.com/message/67457
aws.amazon.com/message/67457
https://groups.google.com/forum/#!topic/google-appengine/p2QKJ0OSLc8
https://groups.google.com/forum/#!topic/google-appengine/p2QKJ0OSLc8
https://azure.microsoft.com/blog/windows-azure-service-disruption-update/
https://azure.microsoft.com/blog/windows-azure-service-disruption-update/
http://blogs.gartner.com/thomas_bittman/2008/11/03/the-evolution-of-the-cloud-computing-market/
http://blogs.gartner.com/thomas_bittman/2008/11/03/the-evolution-of-the-cloud-computing-market/

Bibliography 139

[72] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti. Cloud federations in

contrail. In Proceedings of the 2011 International Conference on Parallel Process-

ing, Euro-Par’11, pages 159–168, Berlin, Heidelberg, 2012. Springer-Verlag.

[73] T. Aoyama and H. Sakai. Inter-cloud computing. Business & Information Systems

Engineering, 3(3):173–177, 2011.

[74] J. Tordsson, R.S. Montero, R. Moreno-Vozmediano, and I.M. Llorente. Cloud

brokering mechanisms for optimized placement of virtual machines across multiple

providers. Future Gener. Comput. Syst., 28(2):358–367, February 2012.

[75] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T.D. Nguyen. Reducing

electricity cost through virtual machine placement in high performance computing

clouds. In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11, pages 22:1–22:12, New

York, NY, USA, 2011. ACM.

[76] R. Moreno-Vozmediano, R.S. Montero, and I.M. Llorente. Iaas cloud architecture:

From virtualized datacenters to federated cloud infrastructures. Computer, 45(12):

65–72, Dec 2012.

[77] D. Petcu. Consuming resources and services from multiple clouds. J. Grid Com-

put., 12(2):321–345, June 2014.

[78] T. Subramanian and N. Savarimuthu. A study on optimized resource provisioning

in federated cloud. CoRR, abs/1503.03579, 2015.

[79] N. Grozev and R. Buyya. Inter-cloud architectures and application brokering:

Taxonomy and survey. Software: Practice and Experience, 44(3):369–390, 2012.

[80] The opennebula project. http://opennebula.org/, 2015.

[81] The openstack project. https://www.openstack.org/, 2015.

[82] Z. Zhang, C. Wu, and D.W.L. Cheung. A survey on cloud interoperability: Tax-

onomies, standards, and practice. SIGMETRICS Perform. Eval. Rev., 40(4):13–

22, Apr. 2013.

[83] J.L. Lucas-Simarro, R. Moreno-Vozmediano, R.S. Montero, and I.M. Llorente.

Dynamic placement of virtual machines for cost optimization in multi-cloud en-

vironments. In International Conference on High Performance Computing and

Simulation (HPCS), pages 1–7, July 2011.

[84] Gartner. Gartner says cloud consumers need brokerages to unlock the potential

of cloud services. http://www.gartner.com/newsroom/id/1064712, July 2009.

http://opennebula.org/
https://www.openstack.org/
http://www.gartner.com/newsroom/id/1064712

Bibliography 140

[85] F. Jrad, J. Tao, and A. Streit. Sla based service brokering in intercloud environ-

ments. In Frank Leymann, Ivan Ivanov, Marten van Sinderen, and Tony Shan,

editors, CLOSER, pages 76–81. SciTePress, 2012.

[86] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski. Introducing

stratos: A cloud broker service. In IEEE 5th International Conference on Cloud

Computing (CLOUD), pages 891–898, June 2012.

[87] A. Cuomo, G. Di Modica, S. Distefano, A. Puliafito, M. Rak, O. Tomarchio,

S. Venticinque, and U. Villano. An sla-based broker for cloud infrastructures.

Journal of Grid Computing, 11(1):1–25, 2013.

[88] J.L. Lucas-Simarro, R. Moreno-Vozmediano, R.S. Montero, and I.M. Llorente.

Scheduling strategies for optimal service deployment across multiple clouds. Future

Gener. Comput. Syst., 29(6):1431–1441, August 2013.

[89] S. Chaisiri, Bu-Sung Lee, and D. Niyato. Optimal virtual machine placement

across multiple cloud providers. In Services Computing Conference, 2009. APSCC

2009. IEEE Asia-Pacific, pages 103–110, Dec 2009.

[90] S. Chaisiri, B.S. Lee, and D. Niyato. Optimization of resource provisioning cost in

cloud computing. Services Computing, IEEE Transactions on, 5(2):164–177, Apr.

2012.

[91] W. Li, J. Tordsson, and E. Elmroth. Modeling for dynamic cloud scheduling via

migration of virtual machines. In Proceedings of the 2011 IEEE Third International

Conference on Cloud Computing Technology and Science, CLOUDCOM ’11, pages

163–171, Washington, DC, USA, 2011. IEEE Computer Society.

[92] mOSAIC Project. Open-source api and platform for multiple clouds. http://

www.mosaic-cloud.eu/, 2010-2013.

[93] F. Moscato, R. Aversa, B. Di Martino, T. Fortis, and V. Munteanu. An analysis

of mosaic ontology for cloud resources annotation. In Federated Conference on

Computer Science and Information Systems (FedCSIS), pages 973–980, Sept 2011.

[94] Compatibleone project. http://www.compatibleone.org/, 2010-2013.

[95] S. Yangui, I.J. Marshall, J.P. Laisne, and S. Tata. Compatibleone: The open

source cloud broker. Journal of Grid Computing, 12(1):93–109, 2014.

[96] Slasoi project. http://sla-at-soi.eu/, 2008-2011.

[97] E. Badidi. A cloud service broker for sla-based saas provisioning. In International

Conference on Information Society (i-Society), pages 61–66, June 2013.

http://www.mosaic-cloud.eu/
http://www.mosaic-cloud.eu/
http://www.compatibleone.org/
http://sla-at-soi.eu/

Bibliography 141

[98] Optimis project. http://www.optimis-project.eu/project, 2010-2013.

[99] S.K. Nair, S. Porwal, T. Dimitrakos, A.J. Ferrer, J. Tordsson, T. Sharif, C. Sheri-

dan, M. Rajarajan, and A.U. Khan. Towards secure cloud bursting, brokerage

and aggregation. In IEEE 8th European Conference on Web Services (ECOWS),

pages 189–196, Dec 2010.

[100] F. Fowley, C. Pahl, and L. Zhang. A comparison framework and review of service

brokerage solutions for cloud architectures. In AlessioR. Lomuscio, Surya Nepal,

Fabio Patrizi, Boualem Benatallah, and Ivona Brandić, editors, Service-Oriented

Computing – ICSOC 2013 Workshops, volume 8377 of Lecture Notes in Computer

Science, pages 137–149. Springer International Publishing, 2014.

[101] N.M Calcavecchia, A. Celesti, and E. Di Nitto. Understanding decentralized and

dynamic brokerage in federated cloud environments. In Achieving Federated and

Self-Manageable Cloud Infrastructures: Theory and Practice, pages 36–56. IGI

Global, Nov. 2012.

[102] I.J. Marshal. The compatibleone accords platform. http://www.compatibleone.

com/community/wp-content/uploads/2014/05/AccordsPlatformv1.4.pdf,

Mar. 2012.

[103] T. Metsch and A. Edmonds. Open cloud computing interface - restful http ren-

dering. https://www.ogf.org/documents/GFD.185.pdf, June 2011.

[104] I.J. Marshal and J.P. Laisné. The compatibleone resource description system

(cords). http://www.compatibleone.com/community/wp-content/uploads/

2014/05/CordsReferenceManualV2.15.pdf, Dec. 2013.

[105] A.N. Toosi, R.N. Calheiros, R.K. Thulasiram, and R. Buyya. Resource provision-

ing policies to increase iaas provider’s profit in a federated cloud environment. In

IEEE 13th International Conference on High Performance Computing and Com-

munications (HPCC), pages 279–287, Sept 2011.

[106] I. Goiri, J. Guitart, and J. Torres. Characterizing cloud federation for enhancing

providers’ profit. In IEEE 3rd International Conference on Cloud Computing

(CLOUD), pages 123–130, July 2010.

[107] A.I. Avetisyan, R. Campbell, I. Gupta, M.T. Heath, S.Y. Ko, G.R. Ganger, M.A.

Kozuch, D. O’Hallaron, M. Kunze, T.T. Kwan, K. Lai, M. Lyons, D.S. Milojicic,

H.Y. Lee, Y.C. Soh, Ng.K. Ming, J.Y. Luke, and H. Namgoong. Open cirrus: A

global cloud computing testbed. Computer, 43(4):35–43, April 2010.

http://www.optimis-project.eu/project
http://www.compatibleone.com/community/wp-content/uploads/2014/05/AccordsPlatformv1.4.pdf
http://www.compatibleone.com/community/wp-content/uploads/2014/05/AccordsPlatformv1.4.pdf
https://www.ogf.org/documents/GFD.185.pdf
http://www.compatibleone.com/community/wp-content/uploads/2014/05/CordsReferenceManualV2.15.pdf
http://www.compatibleone.com/community/wp-content/uploads/2014/05/CordsReferenceManualV2.15.pdf

Bibliography 142

[108] M.M. Hassan, B. Song, and E.N. Huh. A market-oriented dynamic collab-

orative cloud services platform. annals of telecommunications - annales des

télécommunications, 65(11-12):669–688, 2010.

[109] Í. Goiri, J. Guitart, and J. Torres. Economic model of a cloud provider operating

in a federated cloud. Information Systems Frontiers, 14(4):827–843, 2012.

[110] D. Niyato, A.V. Vasilakos, and Zhu Kun. Resource and revenue sharing with coali-

tion formation of cloud providers: Game theoretic approach. In 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages

215–224, May 2011.

[111] W. Li, P. Svard, J. Tordsson, and E. Elmroth. A general approach to service

deployment in cloud environments. In Second International Conference on Cloud

and Green Computing (CGC), pages 17–24, Nov 2012.

[112] The open cloud computing interface (occi). http://occi-wg.org/about/

specification/, 2015.

[113] The open virtualization format (ovf). https://www.dmtf.org/standards/ovf,

2015.

[114] The cloud data management interface (cdmi). http://www.snia.org/cdmi, 2015.

[115] The apache libcloud standard. https://libcloud.apache.org/, 2015.

[116] A.N. Toosi, R.K. Thulasiram, and R. Buyya. Financial option market model

for federated cloud environments. In Proceedings of the 2012 IEEE/ACM Fifth

International Conference on Utility and Cloud Computing, UCC ’12, pages 3–12,

Washington, DC, USA, 2012. IEEE Computer Society.

[117] M. Mihailescu and Y. Teo. Strategy-proof dynamic resource pricing of multiple

resource types on federated clouds. In Algorithms and Architectures for Parallel

Processing, volume 6081 of Lecture Notes in Computer Science, pages 337–350.

Springer Berlin Heidelberg, 2010.

[118] H. Li, C. Wu, Z. Li, and F.C.M. Lau. Profit-maximizing virtual machine trading

in a federation of selfish clouds. In Proceedings of IEEE INFOCOM, pages 25–29,

April 2013.

[119] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad. Cloud computing pricing

models: A survey. International Journal of Grid & Distributed Computing, 6(5):

93–106, 2013.

[120] Prices of amazon on-demand instances. http://aws.amazon.com/ec2/pricing/.

http://occi-wg.org/about/specification/
http://occi-wg.org/about/specification/
https://www.dmtf.org/standards/ovf
http://www.snia.org/cdmi
https://libcloud.apache.org/
http://aws.amazon.com/ec2/pricing/

Bibliography 143

[121] Gogrid - a datapipe company. http://www.gogrid.com/, 2015.

[122] Amazon ec2 spot instances. https://aws.amazon.com/ec2/spot/, 2015.

[123] Dedicated server-arsys cloud. http://www.arsys.net/servers/dedicated, 2015.

[124] Vmware vcloud pricing. http://vcloud.vmware.com/uk/service-offering/

pricing-guide, 2015.

[125] Cloudsigma pricing. https://www.cloudsigma.com/pricing/, 2015.

[126] Elastichosts cloud server pricing. https://www.elastichosts.com/pricing/,

2015.

[127] A. Singh, M. Korupolu, and D. Mohapatra. Server-storage virtualization: Inte-

gration and load balancing in data centers. In SC - International Conference for

High Performance Computing, Networking, Storage and Analysis, pages 1–12, Nov

2008.

[128] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines for

managing sla violations. In 10th IFIP/IEEE International Symposium on Inte-

grated Network Management, pages 119–128, May 2007.

[129] D. Borgetto, M. Maurer, G. Da-Costa, J. M. Pierson, and I. Brandic. Energy-

efficient and sla-aware management of iaas clouds. In Third International Confer-

ence on Future Energy Systems: Where Energy, Computing and Communication

Meet (e-Energy), pages 1–10, May 2012.

[130] H. Nguyen Van, F. Dang Tran, and J.M. Menaud. Autonomic virtual resource

management for service hosting platforms. In ICSE Workshop on Software Engi-

neering Challenges of Cloud Computing (CLOUD 2009), pages 1–8, May 2009.

[131] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-optimal scheduling

in hybrid iaas clouds for deadline constrained workloads. In Proceedings of the 2010

IEEE 3rd International Conference on Cloud Computing, CLOUD ’10, pages 228–

235, Washington, DC, USA, 2010. IEEE Computer Society.

[132] J.O. Fito, I. Goiri, and J. Guitart. Sla-driven elastic cloud hosting provider. In 18th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP), pages 111–118, Feb 2010.

[133] B. Javadi, J. Abawajy, and R. Buyya. Failure-aware resource provisioning for hy-

brid cloud infrastructure. J. Parallel Distrib. Comput., 72(10):1318–1331, October

2012.

http://www.gogrid.com/
https://aws.amazon.com/ec2/spot/
http://www.arsys.net/servers/dedicated
http://vcloud.vmware.com/uk/service-offering/pricing-guide
http://vcloud.vmware.com/uk/service-offering/pricing-guide
https://www.cloudsigma.com/pricing/
https://www.elastichosts.com/pricing/

Bibliography 144

[134] B. Javadi, P. Thulasiraman, and R. Buyya. Cloud resource provisioning to extend

the capacity of local resources in the presence of failures. In IEEE 14th Interna-

tional Conference on High Performance Computing and Communication and IEEE

9th International Conference on Embedded Software and Systems (HPCC-ICESS),

pages 311–319, June 2012.

[135] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente. Multicloud deployment

of computing clusters for loosely coupled mtc applications. IEEE Transactions on

Parallel and Distributed Systems, 22(6):924–930, June 2011.

[136] R. Moreno-Vozmediano, R.S. Montero, and I.M. Llorente. Elastic management

of web server clusters on distributed virtual infrastructures. Concurr. Comput. :

Pract. Exper., 23(13):1474–1490, September 2011.

[137] Y.C. Lee, C. Wang, J. Taheri, A.Y. Zomaya, and B.B. Zhou. On the effect of using

third-party clouds for maximizing profit. In Proceedings of the 10th International

Conference on Algorithms and Architectures for Parallel Processing - Volume Part

I, ICA3PP’10, pages 381–390, Berlin, Heidelberg, 2010. Springer-Verlag.

[138] X. Zuo, G. Zhang, and W. Tan. Self-adaptive learning pso-based deadline con-

strained task scheduling for hybrid iaas cloud. IEEE Transactions on Automation

Science and Engineering, 11(2):564–573, April 2014.

[139] D. Breitgand, A. Marashini, and J. Tordsson. Policy-driven service placement

optimization in federated clouds. IBM Research Division, Tech. Rep, 2011.

[140] E. Casalicchio and L. Silvestri. An inter-cloud outsourcing model to scale per-

formance, availability and security. In IEEE Fifth International Conference on

Utility and Cloud Computing (UCC), pages 151–158, Nov 2012.

[141] N. Samaan. A novel economic sharing model in a federation of selfish cloud

providers. IEEE Transactions on Parallel and Distributed Systems, 25(1):12–21,

Jan 2014.

[142] X. Xu, H. Yu, and X. Cong. A qos-constrained resource allocation game in feder-

ated cloud. In Seventh International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing (IMIS), pages 268–275, July 2013.

[143] A. Amokrane, M.F. Zhani, R. Langar, R. Boutaba, and G. Pujolle. Greenhead:

Virtual data center embedding across distributed infrastructures. IEEE Transac-

tions on Cloud Computing, 1(1):36–49, Jan 2013.

Bibliography 145

[144] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, and A. Yumerefendi.

Embedding virtual topologies in networked clouds. In Proceedings of the 6th In-

ternational Conference on Future Internet Technologies, CFI ’11, pages 26–29,

New York, NY, USA, 2011. ACM.

[145] M.F. Zhani, Q. Zhang, G. Simona, and R. Boutaba. Vdc planner: Dynamic

migration-aware virtual data center embedding for clouds. In IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM 2013), pages 18–25,

May 2013.

[146] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue. Survivable virtual infrastructure

mapping in virtualized data centers. In IEEE 5th International Conference on

Cloud Computing (CLOUD), pages 196–203, June 2012.

[147] M.G. Rabbani, R.P. Esteves, M. Podlesny, G. Simon, L.Z. Granville, and

R. Boutaba. On tackling virtual data center embedding problem. In IFIP/IEEE

International Symposium on Integrated Network Management (IM 2013), pages

177–184, May 2013.

[148] M. Alicherry and T.V. Lakshman. Network aware resource allocation in distributed

clouds. In Proceedings IEEE INFOCOM, pages 963–971, March 2012.

[149] M.M. Hassan, B. Song, and E.N. Huh. Distributed resource allocation games in

horizontal dynamic cloud federation platform. In IEEE 13th International Con-

ference on High Performance Computing and Communications (HPCC), pages

822–827, Sept 2011.

[150] Ibm cplex solver. www.ibm.com/software/commerce/optimization/

cplex-optimizer/.

[151] O. Goldschmidt and D.S. Hochbaum. Polynomial algorithm for the k-cut problem.

In 29th Annual Symposium on Foundations of Computer Science., pages 444–451,

Oct 1988.

[152] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[153] H. Saran and V.V. Vazirani. Finding k-cuts within twice the optimal. In 32nd An-

nual Symposium on Foundations of Computer Science, pages 743–751, Oct 1991.

[154] R.E. Gomory and T.C. Hu. Multi-terminal network flows. Journal of the Society

for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[155] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal

on Computing, 19(1):143–155, 1990.

www.ibm.com/software/commerce/optimization/cplex-optimizer/
www.ibm.com/software/commerce/optimization/cplex-optimizer/

Bibliography 146

[156] A.V. Goldberg and K. Tsioutsiouliklis. Cut tree algorithms: An experimental

study. Journal of Algorithms, 38(1):51–83, 2001.

[157] J. Cohen, L.A. Rodrigues, F. Silva, R. Carmo, A.L.P. Guedes, and E.P. Duarte.

Parallel implementations of gusfield’s cut tree algorithm.

[158] J. Cohen, L.A. Rodrigues, and E.P. Duarte. A parallel implementation of gomory-

hu’s cut tree algorithm. In IEEE 24th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), pages 124–131, Oct

2012.

[159] G.S. Rao, H.S. Stone, and T.C. Hu. Assignment of tasks in a distributed processor

system with limited memory. Computers, IEEE Transactions on, C-28(4):291–299,

April 1979.

[160] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:

theory and its application to image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 15(11):1101–1113, Nov 1993.

[161] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?:

Anonymized social networks, hidden patterns, and structural steganography. In

Proceedings of the 16th International Conference on World Wide Web, WWW ’07,

pages 181–190, New York, NY, USA, 2007. ACM.

[162] E.G. Coffman Jr., J. Csirik, and G.J. Woeginger. Approximate solutions to bin

packing problems. Technical report, WOE-29, INSTITUT FR MATHEMATIK B,

TU GRAZ, STEYRERGASSE 30, A-8010, 1999.

[163] A.V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM, 45

(5):783–797, September 1998.

[164] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. Openflow: Enabling innovation in campus networks.

SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.

[165] Monitis monitoring service. http://www.monitis.com/, 2015.

[166] Amazon cloudwatch. http://aws.amazon.com/fr/cloudwatch/, 2015.

http://www.monitis.com/
http://aws.amazon.com/fr/cloudwatch/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Glossary of Acronyms
	1 Introduction
	1.1 Scientific Context
	1.2 Research Problem and Objectives
	1.2.1 Motivations and Problem Statement
	1.2.2 Research Questions and Objectives

	1.3 Thesis Contributions
	1.4 Thesis Organization

	2 Background and Foundations
	2.1 Introduction
	2.2 Cloud Computing Overview
	2.2.1 Cloud definition and key features
	2.2.2 Virtualization and Cloud Computing
	2.2.2.1 Server Virtualization

	2.2.3 Cloud Services and Deployment Models

	2.3 Federated Inter-Cloud Environments
	2.3.1 Limitations of Single-Cloud Deployment Model
	2.3.2 Inter-Cloud: Definition, Benefits and Deployment Scenarios
	2.3.2.1 Definition of the Inter-Cloud model
	2.3.2.2 Benefits of Inter-Cloud Deployment Models
	2.3.2.3 Architectural Classification of Inter-Cloud Scenarios

	2.3.3 Drivers and Barriers for Cloud Federation
	2.3.3.1 Drivers and Conditions for Federation Profitability
	2.3.3.2 Economic Challenges and Enabling Standards

	2.4 Resource Pricing in Cloud Computing
	2.4.1 A General Taxonomy of IaaS Pricing Models
	2.4.2 Common Pricing Types and Models
	2.4.2.1 Fixed Pricing
	2.4.2.2 Dynamic Pricing
	2.4.2.3 Pricing Attributes and Resources Bundling

	2.5 Thesis Scope and Focus
	2.6 Conclusions

	3 Cloud Resource Allocation: State of the Art
	3.1 Introduction
	3.2 Resource Provisioning and Allocation in the Cloud
	3.3 Resource Allocation in Single-Cloud Environments
	3.4 Resource Allocation in Multi-Cloud Environments
	3.4.1 Resource Allocation in Cloud Brokering Scenario
	3.4.2 Resource Allocation in Hybrid Cloud
	3.4.3 Resource Allocation in Cloud Federation
	3.4.3.1 Cooperation and Profit-driven Resource Sharing
	3.4.3.2 Networking Requirements and Issues in Cloud Federation
	3.4.3.3 Resource Pricing Issues in Cloud Federation

	3.5 Conclusions

	4 Exact ILP-Based Algorithm for Federating and Allocating Resources
	4.1 Introduction
	4.2 The System Overview
	4.2.1 Cloud Federation Model and Assumptions
	4.2.2 Resources Requests Model
	4.2.3 Generic Pricing Model

	4.3 Exact Federation Allocation Algorithm
	4.3.1 Linear Integer Program Formulation

	4.4 Performance Evaluation
	4.4.1 Evaluation Environment
	4.4.2 Comparative Baselines Approaches
	4.4.3 Evaluation Results
	4.4.3.1 Effectiveness of the Exact Federation Algorithm
	4.4.3.2 Favorable Federation Conditions
	4.4.3.3 Scalability of the Exact Algorithm

	4.5 Conclusions

	5 Graph Clustering based Algorithm for Resource Allocation in Cloud Federation
	5.1 Introduction
	5.2 Networking-Cost Aware Federating Resources Algorithm (NCAFedRA)
	5.2.1 Request Graph Partitioning
	5.2.1.1 Gomory-Hu Tree Construction
	5.2.1.2 Gomory-Hu Tree based Request Splitting

	5.2.2 Cost Metric Computation
	5.2.3 Cost-Aware Best-Fit Matching Algorithm
	5.2.4 Description of the Heuristic Approach (NCAFedRA)

	5.3 Computational Complexity
	5.4 Performance Evaluation
	5.4.1 Simulation & Evaluation Settings
	5.4.2 Evaluation Results
	5.4.2.1 Scalability of the NCAFedRA Heuristic Algorithm
	5.4.2.2 Effectiveness of the NCAFedRA Heuristic

	5.5 Conclusions

	6 Conclusions and Perspectives
	6.1 Results and Discussion
	6.2 Future Research Directions

	Thesis Publications
	A French Summary - Résumé Français
	A.1 Introduction
	A.2 Algorithme Exact d’Allocation et de Fédération
	A.2.1 Modélisation du problème
	A.2.1.1 Modélisation de l'environnement de Fédération
	A.2.1.2 Modélisation des requêtes de ressources
	A.2.1.3 Modèle de tarification des ressources

	A.2.2 Formulation en programme linéaire en nombres entiers

	A.3 Approche Heuristique basée sur les arbres de Gomory-Hu
	A.3.1 Décomposition des graphes de requêtes
	A.3.2 Calcul de la métrique de coût générique
	A.3.3 Algorithme du meilleur ajustement: Cost-Aware Best-Fit Matching
	A.3.4 Description de l'approche heuristique

	Bibliography

