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Dans plusieurs domaines de l’informatique, des techniques basées sur les tests, la
modélisation formelle ou la vérification ont été employées avec succès pour aider les
programmeurs à créer des systèmes fiables. Par exemple, dans le développement des
processeurs, les prouveurs automatiques de théorèmes révèlent des bugs profonds dans le
design avant qu’ils ne deviennent des erreurs coûteuses en silicone ; les développeurs en
avionique utilisent l’analyse des programme pour vérifier des propriétés de sûreté critiques
dans les logiciels embarqués des avions ; les vendeurs des systèmes d’exploitation utilisent le
“model checking” pour éliminer des bugs dans des pilotes de périphérique. Pourtant, jusqu’à
récemment, les systèmes de gestion des données n’ont pas utilisé les moyens d’analyse fournis
par les méthodes formelles.

De plus, les systèmes de gestion des données actuels manipulent des volumes de données
de plus en plus massifs. Ces données sont précieuses et leur disponibilité, intégrité et fiabilité
sont essentielles pour les entreprises, les scientifiques et les citoyens. En conséquence, il est
important d’assurer des garanties fortes de ces propriétés en établissant que ces systèmes
eux-mêmes sont sûrs et fiables. Pour atteindre cet objectif, des méthodes formelles et des
outils matures doivent être utilisées. Une approche très prometteuse consiste en l’utilisation
des assistants de preuve comme Coq.

La vérification et la certification des programmes ont été intensivement étudiés dans ces
dernières années et ont produit des résultats impressionnants et des logiciels fiables. De
manière surprenante, malgré le fait que le montant des données stockées et manipulées par
les moteurs de données a augmenté, peu d’attention a été accordée pour assurer la fiabilité
de ces systèmes. Parmi eux, les systèmes relationnels de gestion sont les plus répandus.
Par ailleurs, les systèmes déductifs fournissent un cadre unificateur pour une multitude de
langages de requêtes et resurgissent dans le contexte du Web Sémantique. Par conséquent,
ces observations justifient notre choix de formaliser le modèle relationnel, ainsi que le modèle
déductif - restreint au cas du Datalog.

Cette thèse présente une formalisation en Coq des langages et des algorithmes
fondamentaux portant sur les bases de données. Cela fourni des spécifications formelles issues
des deux approches différentes pour la définition des modèles de données : une basée sur
l’algèbre et l’autre basée sur la logique.

A ce titre, une première contribution de cette thèse est le développement d’une bibliothèque
Coq pour le modèle relationnel. Celui-ci contient des modélisations de l’algèbre relationnelle
et des requêtes conjonctives. Il contient aussi une mécanisation des contraintes d’intégrité et
de leurs procédures d’inférence. Nous modélisons deux types des dépendances, qui sont parmi



les plus courantes : les dépendances fonctionnelles et les dépendances multivaluées, ainsi
que leurs axiomatisations correspondants. Nous prouvons formellement la correction de leurs
algorithmes d’inférence et, pour le cas de dépendances fonctionnelles, aussi la complétude.
Ces types de dépendances sont des instances de dépendances générales : les dépendances
génératrices d’égalité et, respectivement, les dépendances génératrices de tuples. Nous
modélisons les dépendances générales et leur procédure d’inférence, c’est-à-dire, ”le chase”,
pour lequel nous établissons la correction. Enfin, on prouve formellement les théorèmes
principaux des bases de données, c’est-à-dire, les équivalences algébriques, le théorème de
l’homomorphisme et la minimisation des requêtes conjonctives.

Une deuxième contribution consiste dans le développement d’une bibliothèque
Coq/ssreflect pour la programmation logique, restreinte au cas du Datalog. Dans le cadre de ce
travail, nous donnons la première mécanisation d’un moteur Datalog standard, ainsi que son
extension avec la négation. La bibliothèque comprend une formalisation de leur sémantique
en théorie des modèles ainsi que de leur sémantique par point fixe, implémentée par une
procédure d’évaluation stratifiée. La bibliothèque est complétée par les preuves de correction,
de terminaison et de complétude correspondantes. Dans ce contexte, nous construisons aussi
un cadre préliminaire pour raisonner sur les programmes stratifiés. Cette plateforme ouvre la
voie à la certification d’applications centrées données.
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In many areas of computing, techniques ranging from testing to formal modeling to
full-blown verification have been successfully used to help programmers create reliable
systems. For example, in processor development, automated theorem proving uncovers deep
bugs in designs before they become costly errors in silicon ; avionics developers use program
analysis to verify critical safety properties of the embedded software running on airplanes ;
and operating system vendors have successfully used model checking to eliminate entire
classes of bugs in device drivers. But, until recently, data intensive management systems
have largely resisted analysis using formal techniques.

However, current data management applications and systems involve increasingly massive
data volumes. These are precious and their availability, integrity and reliability is a gold mine
for companies, scientists and simply citizens. Since it is important to protect data integrity
and reliability, one should ensure that the systems managing such data are indeed safe and
reliable. Obtaining strong guarantees requires the use of formal methods and mature tools.
A very promising approach consists in using proof assistants.

Program verification and certification have been intensively studied in the last decades
yielding very impressive results and highly reliable software. Surprisingly, while the amount of
data stored and managed by data engines has drastically increased, little attention has been
devoted to ensure that such complex systems are indeed reliable. Among them, relational
database management systems are the most widely spread. Also, deductive systems represent
an unifying framework for a multitude of query systems and are the object of a resurge of
interest in the context of the Semantic Web. Consequently, the observations motivate our
choice to focus on the formalization of the relational data model, as well as on the deductive
one - restricted to the Datalog fragment.

This thesis presents a Coq formalization of fundamental database languages and
algorithms. It provides formal specifications stemming from two different approaches in
defining database models : relational and logic based.

As such, the first contribution of the thesis is the development of a Coq library
for the relational model. This contains formalizations of the relational algebra and of
conjunctive queries. It also includes a mechanization of integrity constraints and of their
inference procedures. We model two types of dependencies, which are among the most
widely used : the functional dependencies and the multivalued dependencies, as well as
their corresponding axiomatizations. We formally prove the soundness of their inference
algorithms and, for the case of functional dependencies, also the completeness. These types
of dependencies are instances of more general ones, namely general dependencies : equality
generating dependencies and, respectively, tuple generating dependencies. We model general
dependencies and their inference procedure, i.e, ”the chase”, for which we establish the
soundness. Finally, we formally prove the fundamental database theorems, i.e, algebraic
equivalence, the homomorphism theorem and the minimization of conjunctive queries.



A second contribution consists of the development of a Coq/ssreflect library for logic
programming, restricted to Datalog. As part of this work, we provide a first mechanization of
a standard Datalog engine, as well as of its extension with negation. The library contains a
formalization of their model-theoretic semantics, together with the fixpoint one, implemented
through a stratified evaluation procedure. The library is complete with the corresponding
soundness, termination and completeness proofs. In this setting, we construct a preliminary
framework for reasoning about stratified programs. The platform paves the way towards the
certification of data-centric applications.
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Introduction
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1. Preliminaries

1.1. Motivation
This thesis describes a foundational formalization effort bridging formal verification and
database theory. In the present section, we overview the recent developments, stemming
from both areas, that motivated our endeavour.

Computers have become ubiquitous, handling increasingly large amounts of sensitive
data. Consequently, we are, more than ever, reliant on their correct functioning. How-
ever, many malfunctions have historically led to economic and human catastrophes, from
airplane, space probe and rocket explosions, to failed missile interceptions, to trading
disruptions and fatal medical machinary glitches. This need for strong guarantees has
ushered in the use of formal methods, which apply mathematical and logical tools to
the design and implementation of software. Not only have these methods been inte-
grated in the official standard for safety-critical systems, but their indisputable role in
the development of cost-effective and low-defect products has made them gain ground as
mainstream. Indeed, their application domains have expanded, both in research and in
industry. These now range from language semantics, compilers, operating systems and
security protocols - to embedded systems in the railway, automotive, nuclear, aeronautic
and aerospatial settings and commercial processors. Moreover, the significant progress
and refinement of such methods has even led to them assisting mathematical reasoning,
as demonstrated by the development of large machine-checked proofs.

Formal methods combine modeling and analysis techniques, aimed at the specification,
implementation and verification of languages and systems. Formal specifications unam-
biguously define the desired features of a given language, i.e, its syntax and semantics,
or of a system’s underlying algorithms, i.e, their expected behaviour. Such stringent
descriptions can serve as design guidelines and - in some cases - as direct basis for a
formal implementation, resulting in correct-by-construction code. Formal verification
aims to statically ensure that characteristic properties, e.g., soundness, termination and
completeness, are preserved dynamically, i.e, at execution.

Due to the undecidability of exhaustively finding potential run-time flaws through formal
static analysis, a wide variety of approximate solutions have been developed. Depending
on their nature and scope, these can be roughly classified into two main complementary
approaches: proof-based (i.e, deductive verification, whose implementation tools rely on
automatic theorem provers and semi-automatic proof assistants) and exploration-based
(i.e, model checking, whose implementation tools rely - among others - on symbolic
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and bounded model checking algorithms). While each have advantages and drawbacks,
proof-based techniques were particularly well-tailored to our purposes, because of their
expressivity and scalability to more complex systems.

The Coq proof assistant distiguishes itself among existing proof tools, through its sup-
port of high-order logic, proof script automation and code extraction, as well as through
its successful use in a large number of areas. Prominent projects based on Coq led to
certified compilers and operating systems, e.g, the CompCert verified C compiler
([16], [17], [53], [54]), the Vellvm verified LLVM interpreter ([85]) and the CertiKOS
verified kernel for cloud computing ([44]), of formalized programming frameworks,
e.g, the YNOT environment for imperative programs ([64]) and the Certicrypt en-
vironment for cryptography proofs ([11]), of mechanized programming language
semantics, e.g, the JSCert formal JavaScript semantics ([18]) and the CakeML im-
plementation of ML ([51]), of certified termination tools, i.e the CiME/Coccinelle
library ([26]), and of formalized mathematical proofs, e.g, the Four Color theorem
([37]) and the Feit-Thompson (odd-order) theorem ([39]).

These results have paved the way for envisioning a transfer of the methodologies under-
lying proof assistant usage to the field of software engineering at large. As such, the Deep
Specification Expedition in Computing project marks the emergence of what is called the
science of deep specification. This new paradigm targets the principled development of
real-world systems, based on full formalizations of their specification.

The DataCert project positions itself in the frame of this general setting and aims at
the deep specification of data-centric systems. Part of its objectives are to thus provide
mechanizations of the theoretical fundaments underlying, on the one hand, relational
database management systems and, on the other hand, data integration and exchange
systems. In accordance with some of these goals, we direct our foundational formalization
efforts towards relational and deductive databases. The key motivations are as follows.

• Relational databases have long been a prevalent and popular storage solution,
in particular for systems handling safety-critical data, such as security credentials,
sensitive user information, financial, medical and legal records. Consequently,
obtaining strong safety guarantees with respect to confidentiality and integrity has
become crucial.

• Deductive databases, while much less used in practice than their relational
counterpart, have a simpler, purely declarative and more expressive formalism. At
a theoretical level, this provides a generic, unifying framework for a plethora of
application-specific query languages. Moreover, its main exponent – Datalog –
has been the object of a recent resurge in interest, as described in [9], and found
many new applications in semantic web and ontology reasoning, data integration
and exchange, security, networking, cloud computing, program analysis, etc. An
overview is given in [48].
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1.2. State of the Art
1.2.1. Formalizations in the Relational Database Setting
First efforts in this area were carried out by [41], in the Agda proof system. This
work investigates different formalizations of the unnamed relational model, focusing on
data definition and relational algebra aspects. More recently, a formalization by [60]
provides a fully verified, lightweight implementation of a single-user relational database
system that is also based on the unnamed relational model. The authors prove that their
implementation meets formal requirements, all the proofs being written and verified in
the YNOT extension of Coq (see [22]). Compared to these works, we consider the
named version of the relational model, as it is the one implemented in real systems, such
as Oracle, DB2, PostgreSQL or Microsoft Access. Also, we additionally cover
conjunctive queries, optimization techniques and integrity constraint aspects.

1.2.2. Formalizations in the Deductive Database Setting
The work of [49] provides a Coq formalization of the correctness and equivalence of
forward and backward, top-down and bottom-up semantics, based on a higher-order
abstract syntax for Prolog. Related to the formalizations we describe in Section 8 in
that it provides - among others - formal soundness proofs regarding fixpoint semantics,
it differs from our work, as it follows an abstract interpretation perspective. Also, while
we do not consider, on the syntax side, function symbols and, on the semantics side,
forward and backward and top-down approaches, we do support negation and manage
to establish correctness, as well as completeness properties of the underlying algorithms
that bottom-up inference engines employ.

The work presented in [83]1 gives a Coq mechanization of standard Datalog, in the con-
text of expressing distributed security policies. The development contains the encoding
of the language, of bottom-up evaluation and the proofs corresponding to decidability.
In our corresponding Coq/SSReflect formalizations, we did not need to explicitly
need to prove decidability, as we took care to carefully set up our base type, such that
this property is inferred automatically (see Chapter 8). While we did not also take into
account the part concerning the modeling of security policy aspects, the scope of the
results we proved is wider by comparison.

1.3. Problem Statement
Many technologies and algorithms, routinely and widely used in the database world,
are not formalized or are, very often, underspecified. Indeed, we are on the threshold
of developing the machinary required for them to incorporate the strong guarantees
Coq certification provides. In light of reasons detailed in Section 1.1, we see this as a

1http://www.cs.nott.ac.uk/types06/slides/NathanWhitehead.pdf
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shortcoming that we seek to address. To this end, we consider it a crucial and neces-
sary step to formally model the foundational blocks on which they were built as deep
specifications. We aim to mechanize underlying models and logical inference engines
from the relational and deductive database setting, in an exploratory proof-engineering
endeavour, focused on component scalability and reusability.

1.4. Thesis Contributions
The technical contributions of this thesis are subsumed by work in two formal develop-
ments: first, a Coq library for the relational model and, second, a ssreflect library
for logic programming in the Datalog fragment. We detail them as follows.

• a formalized relational model library described in [14]
– formalization of the data model (relations, tuples, etc.)
– mechanization of integrity constraints:

we encode general dependencies and prove soundness of their inference proce-
dure; also, we encode instances corresponding to the two general dependency
subclasses: functional and multivalued dependencies; we establish soundness
of their inference, as well as completeness in the case of functional dependen-
cies

– mechanization of the main relational query languages:
we encode relational algebra and a restricted fragment of relational calculus,
i.e, conjunctive queries

– proof of the main “database theorems” :
algebraic equivalences, the homomorphism theorem and conjunctive query
minimization

• a formalized inference engine for positive Datalog programs
– using the finite machinary of ssreflect in the logic programming setting:

we greatly simplify the verification effort, by assuming finiteness in the core
thesis developments, without loss of generality; indeed, as it is well-known,
every Datalog program has a finite model, thus working in the finite setting
suffices. We perform this reduction separately from the main development,
which, in our opinion, allows for a clearer presentation.

– a scalable mechanization of the syntax and semantics of positive Datalog
– mechanization of the bottom-up evaluation heuristic:

formalization of an iterative monadic matching algorithm for terms, atoms
and clause bodies, with corresponding soundness and completeness proofs

– formal characterization of the positive engine:
the key properties we establish are soundness, termination, completeness and
model minimality, based on proofs we give for monotonicity, boundedness and
stability, together with fixpoint theory results
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• a formalized inference engine for Datalog programs with negation
– mechanization of the syntax and semantics of Datalog programs with negation
– mechanization of stratified evaluation:

we formalize program stratification and slicing of programs and interpreta-
tions; in order to reuse the positive engine, we translate negated literals to
flagged positive atoms and extend the notion of an interpretation to that of
a “complemented interpretation”;

– extending the theory of the positive engine:
a crucial part of the stratified evaluation relies on the positive engine to per-
form evaluation of negative programs encoded as positive; this reuse requires
an extension to the theory of the positive engine with incrementality and
modularity lemmas

– formal characterization of the negative engine:
the key properties we establish are soundness, termination and completeness
and model minimality
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2. Methodology
In constructing formal specifications of database models and algorithms, as mentioned
in the previous chapter, we follow a methodology based on theorem proving techniques.
These are aimed at building and verifying theorems using software, whose trusted kernel
is based on a specific set of inference rules. This concept can be traced back to the Au-
tomath project [29] and to Milner’s Logic of Computable Functions (LCF) architecture
[62], whose kernel implements natural deduction (see Section 3.4.2). Theorem provers
can be automatic or semi-automatic (interactive), i.e, requiring a user to work in tan-
dem with the computer. We focus on the latter kind, whose specification languages are
based on more expressive logics, thus rendering their application scope much larger. In
this setting, a typical workflow consists of providing an input program, together with
its specification, and helping the prover construct a (mechanized) proof that the pro-
gram’s output complies with the specification. Consequently, the problem of ensuring
program soundness is reduced to that of ensuring soundness of the underlying specifica-
tion. Following this approach, we developed the formalizations presented in Chapter 7
and, respectively, in Chapters 8 and 9, in the Coq proof assistant and its ssreflect
extension. In this chapter we briefly review these tools and libraries, highlighting the
main features we exploited.

2.1. Coq
The Coq proof assistant ([61]) belongs to the class of interactive theorem provers, along-
side systems from the HOL family, e.g, Isabelle/HOL ([65]), HOL-light ([45]), PVS
([68]), - in the classic higher-order logic tradition - and alongside systems such as NuPrl
([25]), Agda ([66]) and Matita ([6]) - in the constructive type theory tradition. Its core
formalism is the Calculus of Inductive Constructions (CIC) [70], which corresponds to
the most expressive type theory in Barendregt’s lambda cube [10], namely that sup-
porting polymorphism, type operators and dependent types. The Coq system and its
underlying theory are described in [15].

The Calculus of Inductive Constructions is based on the Curry-Howard “propositions-
as-types and proofs-as-programs” paradigm ([27], [47]). As such, Coq is both a proof
system and a functional programming language (Gallina). Essentially, the type system
can be seen as containing only function types and inductive types. Coq’s equality is
intensional and type checking is decidable. The system in implemented in Objective
Caml, a dialect of ML, and comes with an automatic extraction mechanism from Coq
proof specifications that can be used to build certified and efficient functional programs.
Proving a theorem T in Coq involves finding a program p, such that ` p : T , i.e, that
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p inhabits the type T . Alternatively, it involves constructing a typing derivation that
assigns the type T to the program p.

A classical example of a proposition is the “and” datatype with a single constructor,
encapsulating two proofs, usually written as ∧. To prove A ∧ B, one needs to find a
proof a for A and a proof b for B and then apply the conjunction constructor. A more
interesting datatype is ∨. This datatype has two constructors, indicating whether one
has found a proof either for A or for B. It is easy to see that to provide a proof for the
excluded middle principle, i.e, A∨¬A, one would have to find a proof for either A or ¬A.
This is unprovable in general, as there exist propositions that cannot be decided in this
way. For example, if A expresses Turing machine termination, the principle is equivalent
to the halting problem. Similarly, to prove ∃x, Px, one has to provide a witness w and
a proof of Pw. Consequently, ¬(∀x,¬Px) does not imply ∃x, Px, as this is equivalent
to the excluded middle.

As building programs by hand is cumbersome, Coq provides a set of so called tacticals,
for building Gallina programs. We will discuss tacticals more in the following section.

2.2. Ssreflect
The model-theoretic semantics of Datalog programs is deeply rooted in finite model the-
ory. To quote [57]:

“For many years, finite model theory was viewed as the backbone of database theory,
and database theory in turn supplied finite model theory with key motivations and
problems. By now, finite model theory has built a large arsenal of tools that can
easily be used by database theoreticians without going to the basics (...) ”

Given this foundational bias, we chose to rely, in our formalizations from Chapter 8 and
Chapter 9, on the Mathematical Components library1, built using the Ssreflect
([40]) extension of Coq. This library is especially well-suited for our purposes, as it was
the basis of extensive formalizations of finite model theory, in the context of proving the
Feit-Thompson theorem ([39]), central to finite group classification.

2.2.1. Ssreflect Tactics
A comprehensive presentation of Ssreflect functionalities is in [40]. We briefly overview
the most important tactics next. Generally, the tactics ssrflect provides can be split in
two types: the “defective” tactics, i.e, move, case, have, elim and apply, which behave
similarly to their Coq counterparts, and the rewrite tractics, comprising unfolding, sim-
plification and rewrite. Tactics are additionally constructed combining the “defective”
ones with context-manipulation “tacticals”, i.e, : and ⇒. The former moves facts and

1http://math-comp.github.io/math-comp/
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constants to the goal, while the latter introduces variables, local definitions and assump-
tions to the context. ssreflect supports pattern selection mechanisms common to all
tactics.

The defective move tactic exposes the first assumption in goals, i.e, changing ∼ P to
P → False. The defective case tactic does case analysis on (co)inductive types, by
deconstructing them, exposing their constructors and arguments and instantiating the
latter correspondingly; it also does injection, if it finds an equality. The defective elim
tactic performs inductive elimination on inductive types. Finally, backwards chaining
reasoning is implemented via apply. A convenient feature is that these tactics can be
chained with views, allowing to change boolean equality goals into equivalent proposi-
tions. We illustrate their use, by giving a step by step account of the proof below.

Lemma fwd_chain_cat def p1 p2 i :
fwd_chain def (p1 ++ p2) i =
fwd_chain def p1 i ∪ fwd_chain def p2 i.

Proof.
by apply/setP⇒ ga; rewrite ?(big_cat, inE); rewrite orbACA orbb.
Qed.

For the purposes of stating the fwd_chain_cat lemma, let us assume a default constant
def, an initial interpretation (finite set of ground atoms) i, and the (positive Datalog)
programs p1 and p2. We prove that applying forward chain to the concatenation of p1
and p2 equals the union of applying forward chain to p1 and to p2.

To this end, we use a crucial property of finite sets, namely that set equality is equivalent
to the extensional one. This is expressed by the setP lemma from the finset library.
Note that, for any finite sets, A and B, the =i2 operator stands for ∀ x, x ∈ A = x ∈ B.

setP : ∀ (T : finType) (A B : {set T}), A =i B ↔ A = B,

Transforming the goal with the setP view, naming and moving the universally quantified
arbitrary set element ga into the context, the proof obligation becomes:

(ga ∈ fwd_chain def (p1 ++ p2) i) =
(ga ∈ fwd_chain def p1 i ∪ fwd_chain def p2 i).

Since for an arbitrary program p, we defined the forward chain function as:

fwd_chain def p i = i ∪ \bigcup_(cl ← p) cons_clause def cl i

the goal is equivalent to:

(ga ∈ i ∪ \bigcup_(cl ← (p1 ++ p2)) cons_clause def cl i) =
(ga ∈ i ∪ \bigcup_(cl ← p1) cons_clause def cl i ∪

(i ∪ \bigcup_(cl ← p2) cons_clause def cl i)).
2Note that the i in =i is different from the interpretation parameter i in the fwd_chain_cat lemma
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Next, we optionally rewrite all further subgoals with a rule tuple containing the generic
inE membership simplification and the big_cat rule below, for decomposing big opera-
tions over program concatenations:

\big[op/idx]_(j ← (p1 ++ p2) | P j) F j =
op (\big[op/idx]_(j ← p1 | P j) F j) (\big[op/idx]_(j ← p2 | P j) F j)

Instantiating the latter, by replacing op with the union operation, we obtain:

\bigcup_(j ← (p1 ++ p2) | P j) F j =
(\bigcup_(j ← p1 | P j) F j) ∪ (\bigcup_(j ← p2 | P j) F j)

The goal is thus transformed into an equality of boolean disjunctions.

ga ∈ i || ga ∈ (\bigcup_(cl ← p1) cons_clause def cl i) ||
ga ∈ (\bigcup_(cl ← p2) cons_clause def cl i) =

ga ∈ i || ga ∈ (\bigcup_(cl ← p1) cons_clause def cl i) ||
ga ∈ i || ga ∈ (\bigcup_(cl ← p2) cons_clause def cl i)

This is solvable by rewriting with the boolean interchange lemma orbACA and with the
boolean idempotency lemma orbb, from the ssrbool library.3

Lemma orbACA (b1 b2 b3 b4 : bool) :
(b1 || b2) || (b3 || b4) = (b1 || b3) || (b2 || b4).

Lemma orbb (b : bool) : b || b = b.

Finally, we chain all tactics using ; and prefix the proof with the by terminator, to
explicitely discharge trivial subgoals.

Next, we illustrate the elim tactic with the proof for the iter_fwd_chain_sym lemma.

Lemma iter_fwd_chain_sym def p i ga k :
(ga ∈ iter k (fwd_chain def p) i) →
(ga ∈ i) || (sym_gatom ga ∈ hsym_prog p)

This establishes that, given an initial interpretation i, a ground atom ga is in the
result of k iterations of the forward chain procedure on a program p, either if ga is
in i or if the symbol of ga is among the head clause symbols in p. The proof is by
straightforward induction on k. Note the pattern [→ | k h] after the introduction
tactical, corresponding to the base and step case branches. For the first, we can rewrite
and close the goal with the top sequent. For the second, we aim to prove:

(ga ∈ fwd_chain def p (iter k (fwd_chain def p) i) →
(ga ∈ i) || (sym_gatom ga ∈ hsym_prog p)

3Alternatively, this is also provable by case analysis on (ga ∈ i).
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We know that the following lemma holds:

Lemma fwd_chain_sym def p i ga :
(ga ∈ fwd_chain def p i) →
(ga ∈ i) || (sym_gatom ga ∈ hsym_prog p).

Hence, transforming the goal with fwd_chain_sym, we obtain:

(ga ∈ iter k (fwd_chain def p) i) || (sym_gatom ga ∈ hsym_prog p) →
(ga ∈ i) || (sym_gatom ga ∈ hsym_prog p)

Applying the reflection lemma orP:

Lemma orP (b1 b2 : bool) : reflect (b1 ∨ b2) (b1 || b2).

the goal is split into two subgoals, for each disjunct. The first is provable directly from
the induction hypothesis:

ga ∈ iter k (fwd_chain def p) i →
(ga ∈ i) || (sym_gatom ga ∈ hsym_prog p).

The second is provable by rewriting with the top sequent→ and with the boolean lemma:

Lemma orbT (b : bool) : b || true.

The complete proof for iter_fwd_chain_sym is thus:

Lemma iter_fwd_chain_sym def p i ga k :
(ga ∈ iter k (fwd_chain def p) i) →
(ga ∈ i) || (sym_gatom ga ∈ hsym_prog p).

Proof.
by elim: k ⇒ [→|k h] //=/fwd_chain_sym/orP [/h|→]; rewrite ?orbT.
Qed.

2.2.2. Library Overview
The Mathematical Components library provides a development ranging from basic
data structures and types to linear algebra, Galois and finite group theory. In particular,
the support for finite types is mature, as it lies at the basis of many other developments.
The library is organized in an object-oriented way, with types implementing interfaces
and mixins implementing interface inheritance. The low level implementation of the
class system is done by the canonical structures mechanism, allowing users to supply
solutions to particular unification problems involving records; this is detailed in [35].
Next, we quickly present the main classes and libraries we used in our development.
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ssrfun The file contains the main lemmas and definitions about functions. For instance,
lemmas about injectivity.

ssrbool The Mathematical Components library is highly specialized in dealing with
decidable predicates. This file develops their corresponding base theory.
Decidable predicates are predicates whose truth can be computationally deter-
mined or, in Coq terms, P : Prop, such that {P} + {not P} is provable 4. It is
often convenient to represent the truth of P as a concrete algorithm p : bool.
Indeed, reflect P p does exactly that, i.e, reflect P true is provable only when
P is provable and reflect P false is provable only when not P is provable.
The ssrbool file also provides support for generic predicates, e.g, the \in predicate,
widely used in the library to implement membership comprehensively, allowing one
to, for instance, write x \in l = x \in s, where l is a list and s is a set.

eqtype The file provides the base class of the Mathematical Components hierarchy:
the eqType class of types with decidable equality, written x == y. The main corre-
sponding lemma is eqP, which states that the computational equality corresponds
to the propositional one, i.e (x = y) <-> (x == y). Also, this file contains the
subType class, which provides generic support for well-behaved sigma types of the
form {x | P x}, where P is a boolean predicate. A subtype coerces to the base
type automatically, and thanks to the boolean nature of P, the proof is irrelevant,
allowing us to transfer all the properties of the base type to the subtype.

ssrnat The file provides a theory of the natural numbers, with the more covenient choice
of boolean operators for orders, e.g, given two natural numbers m and n, the less
or equal comparison leq is defined as computationally checking m - n == 0.

seq The file provides a theory of lists or sequences, with generic predicate membership,
i.e, (x \in l), if x is an eqType.

fintype The file is crucial to our development, as it provides the finType class of finite
types. Finiteness is defined as the duplicate-free enumeration of elements of a given
type, i.e, ∀ x : T, count x (enum T) = 1. The library also provides the type
of ordinals ’I_n = { m : nat | m < n }. Moreover, we take advantage of the
finType instance for tuples, which provides a convenient way of encoding, for ex-
ample, a program’s Herbrand base, given the maximal arity n of its predicates and
its active domain adom, i.e, enum (n.-tuple adom). Another interesting property
supported by the library is that quantification becomes decidable. For this pur-
pose, the following constructs are supported: [∀ x, P x] and [∃ x, P x], together
with the reflection lemmas forallP and existsP, relating the computational defi-
nitions of quantification to their usual counterparts. This is very handy, as, in this
setting, classical logic principles hold, e.g, ∼ ∼[∀ x , ∼ ∼ P x] = [∃ x, P x].

4The “+” operator is the computational version of “or”.
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finfun The file provides a theory of finitely-supported functions. Given a finite type,
functions from it are represented extensionally as their graph, i.e the list of values
the function assigns to every domain element.

finset The file provides a theory of sets over finite types. Given an underlying finite
type, these are represented as lists of booleans, corresponding to the set mem-
bership or characteristic function. The main property is set extensionality (setP),
i.e, (forall x, x \in s1 = x \in s2) <-> s1 = s2, which is a very convenient
property for reasoning about sets point-wise.

bigop We also take advantage of the big operator library (see [15]), which adds monoid
classes to the Mathematical Components hierarchy. This library provides us with
indexed operators of the form:

\bigop[op/zero]_l (fun x ⇒ P x).

In particular, by instantiating the operator op and the lower limit zero with setU
and, respectively, set0, we obtain set union and, by instantiating them with addn
and 0, we obtain the big sum.

2.3. Thesis Outline
The thesis contents are divided into a Theoretical Overview and a Formalization Overview.
In the first part, we start with Section 3, by reviewing basic first-order logic definitions
related to its syntax, semantics and inference systems. In Section 4, we review aspects
from relational model theory that were relevant to our work: we discuss data represen-
tation in Section 4.1, data extraction in Section 4.2 and data integrity in Section 4.3.
In Section 5, we present the Datalog language, namely its syntax, in Section 5.1, and
its minimal model and fixpoint semantics, in Section 5.2.1 and Section 5.2.2. Finally,
in Section 6, we present the extension of Datalog with negation, namely its syntax in
Section 6.1 and its stratified semantics, in Section 6.2. In the second part, we present
corresponding formalizations of the relational model, in Section 7, and of two Datalog
engines: a standard one, in Section 8, and one extended with negation, in Section 9.
We give perspectives of our work and draw conclusions in Section 10 and Section 11.
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The logic roots of database inference became apparent in the context of converging
database and artificial intelligence research, following early advances in automated the-
orem proving. As overviewed in [63], [50], [56] and [42] noted the relevance of the
resolution principle [75] to question answering systems. In [23] a logic based query
language, i.e, the relational calculus, is introduced. The work by [81] laid out the foun-
dations of logic programming, spurring further interest in applying logic to databases.
In [74], a logical reconstruction of database theory is proposed, revealing foundational
assumptions, i.e, closed-world, unique-name and domain-closure. The field of deductive
databases soon developed, culminating with Datalog as its prominent language. The
formalizations of the relational model (Chapter 7) and of Datalog (Chapter 8 and
Chapter 9) are based on the theory of first-order logic. We recall basic concepts related
to its syntax and semantics, following [28].

3.1. Syntax
The base syntactical building blocks of first-order languages are signatures. These fix
the non-logical symbols of the language (its vocabulary) and are made explicit in our
mechanizations, as type declarations.

Definition 3.1.1 (Signatures). A first-order signature Σ is a triple (F ,P, ar) where

• F and P are pairwise disjoint sets of function and predicate symbols

• ar : F ∪ P → N is an arity mapping

We sometimes just write Σ ≡ (F ,P) and denote with f/n and p/m functions and predi-
cate symbols, such that ar(f) = n and ar(p) = m. Also, note that:

• If ar(f) = 0, for f ∈ F , f is called a constant.
We denote the set of constants with C, where C ⊆ F .

• If ar(p) = 0, for p ∈ P, p is called a propositional variable.

Examples of such structures are Peano arithmetic (F = {0/0, s/1,+/2,×/2},P = ∅),
groups (F = {e/0, inv/1, ◦/2},P = ∅)) and lattices (F = ∅,P = {≤}).

Fixing a signature Σ ≡ (F ,P), we can construct a first-order language L, by further
adding logical symbols, i.e, a countable set of variables X , quantifiers (∀, ∃) and con-
nectives (∧,∨, 6=,⇒,⇔), paranthesis and punctuation symbols. The primitives of the
language, i.e, its words, are called terms and are defined inductively below.
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Definition 3.1.2 (Terms). The set of L-terms is the minimal set TΣ(X ) satisfying

• X ⊆ TΣ(X ) and C ⊆ TΣ(X )

• for all f ∈ F , if t1, . . . , tar(f) ∈ TΣ(X ) then f(t1, . . . , tar(f)) ∈ TΣ(X )

Next, we can express base sentences, called atomic formulas, as sentential letters - ⊥
(true) and > (false) - and as atoms (applications of a predicate symbol to a number
of terms, as indicated by its arity). These can then be combined into more complex
sentences, as captured by the following inductive formula definition.

Definition 3.1.3 (Formulas). The set of L-formulas is the minimal set FΣ(X ) satisfying

• ⊥,>, p(t1, . . . , tar(p)) ∈ FΣ(X ), where p ∈ P and t1, . . . , tar(p) ∈ TΣ(X )

• if φ1, φ2 ∈ FΣ(X ) then φ1 � φ2 ∈ FΣ(X ), where � ∈ {∧,∨,⇒,⇔}

• if φ ∈ FΣ(X ) then ¬φ ∈ FΣ(X ) and (∀x)φ ∈ FΣ(X ) and (∃x)φ ∈ FΣ(X )

Note that by viewing term equality as a predicate, i.e = (t1, t2) ≡ t1 = t2, we subsume
the case : if t1, t2 ∈ TΣ(X ) then t1 = t2 ∈ FΣ(X ).

To summarize, a first-order language L is described by the grammar:

Terms t ::= x, x ∈ X | c, c ∈ C | f(t1, . . . , tn), f ∈ F , ar(f) = n

Atomic Formulas A ::= ⊥ | > | p(t1, . . . , tn), p ∈ P, ar(p) = n

Complex Formulas φ, ψ ::= A | φ � ψ, � ∈ {∧,∨,⇒} | ¬φ | (∀x)φ | (∃x)φ

In Chapters 5, 6, 8 and 9, we will focus on the Datalog language, a first-order
language without function symbols. Its formulas are of a particular kind, i.e, clausal.
Namely, these are disjunctions of positive or negated atomic formulas (literals), i.e,
C ::= L1 ∨ . . . ∨ Ln, where L ::= A | ¬A.

It is routinely the case that first-order logic sentences have to be syntactically trans-
formed to ease their manipulation. Such transformations, i.e substitutions, operate on
contexts, consisting of sets of variables. Depending on whether or not a variable is quan-
tified, a distinction is made between bound and free variables. Let us denote with BV
and FV the sets of bound and, respectively, free variables of a term or formula.

Definition 3.1.4 (Term Variables). The set FV (t) of free variables occuring in an
L-term t is defined as :

• FV (x) = {x} and FV (c) = ∅

• FV (f(t1, . . . , tar(f))) =
ar(f)⋃
i=1

FV (ti), ti ∈ TΣ(X )

An L-term t is ground (closed), if FV (t) = ∅. We denote ground terms set with TΣ.
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3. First-Order Logic

Definition 3.1.5 (Formula Variables). The set VAR(φ) of variables occuring in an
L-formula φ is defined as VAR(φ) = FV (φ) ∪BV (φ), where :

• FV (⊥) = BV (⊥) = ∅ and FV (>) = BV (>) = ∅

• FV (p(t1, . . . , tar(p))) =
ar(p)⋃
i=1

FV (ti), ti ∈ TΣ(X ) and BV (p) = ∅

• V (φ � ψ) = V (φ) ∪ V (ψ), V ∈ {FV,BV }, � ∈ {∧,∨,⇒,⇔}

• V (¬φ) = V (φ), V ∈ {FV,BV }

• FV ((∀x)φ) = FV ((∃x)φ) = FV (φ)− {x}

• BV ((∀x)φ) = BV ((∃x)φ) = BV (φ) ∪ {x}

An L-formula φ is called a sentence or closed if FV (φ) = ∅ and ground if VAR(φ) = ∅.
The set of L-sentences is denoted as SENL.

Definition 3.1.6 (Substitutions). A substitution σ is a mapping σ : X → TΣ(X ).
Extensionally, σ is represented as [x1 7→ t1, . . . , xn 7→ tn], with ti ∈ TΣ(X ) and pairwise
distinct xi ∈ X , for i ∈ [1, n].

Substitution application results in instances or instantiations, constructed as follows.

Definition 3.1.7 (Substitution Application). For a variable x ∈ X , the instantiation
of x with a substitution σ = [x1 7→ t1, . . . , xn 7→ tn], denoted as σx, is :

σx =
{
ti x = xi

x otherwise

The set {x ∈ X | σx 6= x}, called the domain or support of σ, is abbreviated dom(σ).

Even though σ operates on variables, it can be extended to a mapping σ̄ over terms
t ∈ TΣ(X ), replacing all x ∈ VAR(t) with σx :

σt =
{
t t ∈ C
f(σt1, . . . , σtn) t = f(t1, . . . , tn)

Based on this, the instantiation of a formula φ can be defined as:

σφ =



⊥ φ = ⊥
p(σt1, . . . , σtn) φ = p(t1, . . . , tn)
σφ1 � σφ2 φ = φ1 � φ2,� ∈ {∧,∨,⇒}
¬(σψ) φ = ¬ψ
(�x)σ′ψ, where σ′ = σ \ [x 7→ σx] φ = (�x)ψ, x ∈ dom(σ),� ∈ {∀, ∃}
(�x)σψ φ = (�x)ψ, x /∈ dom(σ),� ∈ {∀, ∃}

A notion that does not usually appear in standard presentations, but that we exploit in
Section 8.3.3, is that of a substitution ordering, defined below.
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3. First-Order Logic

Definition 3.1.8 (Substitution Ordering). Let us restrict ourselves to only consider
terms with no function symbols. Given substitutions σ1 and σ2, such that dom(σ1) ⊂
dom(σ2), we define a substitution ordering � as :

σ1 � σ2 ≡ ∀x ∈ dom(σ1),∃c ∈ C, σ1x = c⇒ σ2x = c.

3.2. Semantics
Let us fix a signature Σ = (F ,P, ar) and a language L over Σ. To give meaning to L,
we start by fixing a domain of discourse or universe UM. Based on this, we can assign
denotations to all its non-logical constants. The most common way of doing so is by
specifying structures over Σ.

Definition 3.2.1 (Σ-Structures 1). A Σ-structure M = (UM, I) consists of a universe
UM 6= ∅ and of an interpretation function I, such that:

• for every c ∈ C: cI ∈ UM

• for every f ∈ F , where ar(f) = n: f I : UnM → UM

• for every p ∈ P, where ar(p) = n: pI : UnM → {>,⊥}

In Chapters 5, 6, 8 and 9, we focus on Herbrand Σ-Structures H = (UH, IH). These
are based on the notion of a Herbrand Universe UH = TΣ, consisting of the set of ground
terms of the language. The corresponding Herbrand Interpretation IH is defined in the
standard way, i.e, IH : Σ→ UH ∪ {>,⊥}, such that:

• for every c ∈ C: cIH = c ∈ UH

• for every f ∈ F , where ar(f) = n: f IH : UnH → UH is fixed as f IH = f

• for every p ∈ P, where ar(p) = n: pIH : UnH → {>,⊥}

Let us fix a Σ-structure, M = (UM, I). In order to evaluate the veracity of a formula, we
need to associate an element of the domain of discourse to each variable. This is done
by valuations, as defined below.

Definition 3.2.2 (Valuations 2). A valuation ι over M is a mapping ι : X → UM.
Given x ∈ X , u ∈ UM, we denote with ι[x 7→ u], the extension of a valuation, such that,
for a variable y, its application ι[x 7→ u]y is defined as:

ι[x 7→ u]y =
{
u x = y

ιy otherwise

Using valuations, we can interpret terms homomorphically and associate to each, an
element from the domain of discourse.

1also called Σ-interpretations or Σ-algebras
2also called variable assignments
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3. First-Order Logic

Definition 3.2.3 (Term Interpretation). The interpretation of L-terms in M under a
valuation ι : X → UM is given by a mapping J·K : TΣ(X )→ UM, such that :

JxKI,ι = ιx, JcKI,ι = cI and Jf(t1, . . . , tn)KI,ι = f I(Jt1KI,ι, . . . , JtnKI,ι)

Having embedded all formula primitives into the universe UM, we can inductively eval-
uate formulas as true or false, based on the definition below.

Definition 3.2.4 (Formula Evaluation). The evaluation of L-formulas in M under a
valuation ι : X → UM is given by the mapping J·K : SENL → {0, 1}, such that:

• J⊥KI,ι = 0 and Jp(t1, . . . , tn)KI,ι =
{

1 pI(Jt1KI,ι, . . . , JtnKI,ι) = >
0 otherwise

• Jφ1 ∧ φ2KI,ι = min(Jφ1KI,ι, Jφ2KI,ι) and Jφ1 ∨ φ2KI,ι = max(Jφ1KI,ι, Jφ2KI,ι)

• Jφ1 ⇒ φ2KI,ι = max(1− Jφ1KI,ι, Jφ2KI,ι) and J¬φKI,ι = 1− JφKI,ι

• J(∀x)φKI,ι = inf
u∈UM

{JφKI,ι[x7→u]} and J(∃x)φKI,ι = sup
u∈UM

{JφKI,ι[x7→u]}

Note that, if UM is finite, we have:
J(∀x)φKI,ι = min

u∈UM

{JφKI,ι[x7→u]} and J(∃x)φKI,ι = max
u∈UM

{JφKI,ι[x7→u]}.

The fundamental concepts in semantics are satisfiability and validity. These express if
and under which conditions formulas are true.

Definition 3.2.5 (Formula Satisfiability). A formula φ ∈ FΣ(X ) is satisfiable iff there
exists M = (UM, I) and ι : X → UM, such that JφKI,ι = 1, denoted M, ι |=I φ;
otherwise, φ is unsatisfiable.

We can thus define what it means for a formula to be true in general, based on its
evaluation under a fixed structure.

Definition 3.2.6 (Formula Validity). A formula φ ∈ FΣ(X ) is valid in M iff, for all
ι : X → UM, JφKI,ι = 1. This is denoted as M |=I φ and M is called a model of φ. The
formula φ is valid in general iff, for all Σ-structures M, M |=I φ. This is denoted |= φ.

Based on this, we can introduce the central notion of logical consequence. This captures
the relation between sets of sentences that are generally valid, as detailed next.

Definition 3.2.7 (Formula Entailment and Equivalence). A formula φ1 ∈ FΣ(X ) entails
(or implies) a formula φ2, where φ2 ∈ FΣ(X ) is said to be a semantic consequence (or
logical implication) of φ1, denoted as φ1 |= φ2, iff, for all M = (UM, I) and ι : X → UM,

Jφ1KI,ι = 1 implies Jφ1KI,ι = 1, i.e, if M |=I φ1 then M |=I φ2

The formula φ1 is equivalent to φ2, denoted as φ1 ≡ φ2, iff φ1 |= φ2 and φ2 |= φ1.

For example, the following equivalences hold:
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3. First-Order Logic

• φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2 and φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1)

• ¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2 and ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2 (De Morgan’s laws)

• φ1 ∨ (φ2 ∧ φ3) ≡ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)

• ¬(∀xφ) ≡ ∃x¬φ, ¬(∃xφ) ≡ ∀x¬φ and ¬¬φ ≡ φ

• φ ∧ > ≡ φ, φ ∧ ⊥ ≡ ⊥, φ ∨ > ≡ >, φ ∨ ⊥ ≡ φ

Given a signature and a structure interpreting it, we can define restrictions over the set
of all possible sentences that can be expressed. These are called theories and consist of
all ground sentences satisfying the signature’s model structure.

Definition 3.2.8 (Σ-Theories). The first-order theory of a Σ-structure M = (UM, I) is
defined as Th(M) = {φ ∈ FΣ(X ) |M |=I φ}3.

Such theories occur naturally in logic, e.g, the theory of equality, as well as in mathemat-
ics, e.g the theory of Peano arithmetic, of Presburger arithmetic and those corresponding
to integers, rationals and reals. In databases, query languages can be seen as first-order
theories, as exemplified by the relational calculus (in Chapter 7) and by the Datalog
languages (in Chapters 8 and 6).

3.3. Normal Forms
Normal forms were introduced as a way of simplifying logical constructs, to obtain effi-
cient structures for mechanized (theorem prover) reasoning. A first such transformation
targets extracting all quantifiers to the head of a given formula.

Definition 3.3.1 (Prenex Normal Form). Any formula φ can be converted into an
equivalent prenex formula �1x1 . . .�nxnψ, �i ∈ {∀, ∃}. The quantifier-free ψ is called
matrix and �1x1 . . .�nxn is called quantifier prefix. The transformation is denoted⇒∗P .

Next, skolemization replaces existentially quantified variables with an explicit choice
function that computes the variables, based on all the arguments it depends on.

Definition 3.3.2 (Skolemization). Any prenex formula φ can be converted into an
equally satisfiable skolem formula ∀x1 . . . ∀xnψ. This is done by repeatedly applying
the following transformation, while existential quantifiers still remain:

∀x1 . . . ∀xn∃yφ⇒Sk ∀x1 . . . ∀xn[y 7→ f(x1, . . . , xn)]ψ

Note that f of arity n is a new function symbol that computes y.

A skolemized formula can be directly transformed into clausal normal form.

3Note that, from now on, we will write M |= φ instead of M |=I φ.
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3. First-Order Logic

Definition 3.3.3 (Clausal Normal Form (CNF)). Any skolem formula F ≡ ∀x1 . . . ∀xnφ

can be transformed into a clausal form CNF(F ) = C, where C ≡
m∧
i=1

ki∨
j=1

Lij, i.e, as a

conjunction of clauses, where Lij are literals. This is done by:

• converting to equivalent formulas, until no further simplifications are possible

• dropping the quantifier prefix of the obtained formula.

Horn clauses, presented next, are a subclass of clauses particularly well-tailored for
formalization purposes. As we will see, this is due to the fact that that Horn satisfiability
can be easily established via resolution alhorithms.

Definition 3.3.4 (Horn formulas/clauses). Let F ∈ FΣ(X ) and C ≡
m∧
i=1

ki∨
j=1

Lij its

clausal normal form, i.e, CNF(F ) = C. If, for all i ∈ [1,m], there exists at most one
j ∈ [1, ki], such that Lij is positive, F is said to be a Horn formula. Similarly, a clause

C =
ki∨
j=1

Lij, with at most one positive literal, is called a Horn clause.

These types of clauses will be revisited in Section 5.

3.4. Inference
The judgments of a given theory can be derived via inference systems, as defined below.

Definition 3.4.1 (Inference System). An inference system I for a language L consists
of a set of judgements and (labeled) inference rules of the form

J1 . . . Jn

Jn+1
R

stating that Jn+1 is the syntactical consequence of the hypothesis J1, . . . , Jn. This is
denoted as J1, . . . , Jn `R Jn+1. If n = 0, the judgments are called axioms. The iterative
application of inference rules is called a derivation.

Example 3.4.2 (Natural Deduction Inference). The natural deduction inference system
for first-order logic, consists of rules that, for the most part, introduce and eliminate
operators, as illustrated below for conjunction and implication.

` A ` B
` A ∧B

∧ intro
` A ∧B
` A

∧ elim left
` A ∧B
` B

∧ elim right

A ` B
A⇒ B

⇒ intro
A⇒ B A

B
⇒ elim (modus ponens)
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The following properties link inference systems to the semantics of the language they are
defined over, by stating that all syntactic consequences are semantically valid (soundness)
and vice-versa (completeness).
Definition 3.4.3 (Soundness and Completeness). Let I be an inference system for a
language L. If, for all ∆ ⊂ SENL, F ∈ SENL :

∆ `I F implies ∆ |= F, then I is sound
∆ |= F implies ∆ `I F, then I is complete
∆ 2 F implies ∆ ∪ {F} `I ⊥, then I is refutationally complete

In the context of studying formal languages, in addition to natural deduction, other
inference systems have been developed, such as Hilbert-style systems, sequent systems,
production grammars and type theories. However, the rise of computers and mechanized
theorem proving created the necessity of searching for derivations via efficient proof
methods. As a result, resolution based inference techniques were introduced. These
operate on clausal formulas and, due to their epurated form, lend themselves particularly
well to mechanization. We illustrate below one of the simplest such systems, namely
binary resolution.
Example 3.4.4 (Binary Resolution Inference). The system consists of two rules :

A ∨ C B ∨ ¬D
σ(A ∨B)

binary resolution

where σ is the most general unifier (mgu) of C and D (σ = mgu(C,D)), i.e, σC = σD

A ∨B ∨ C
σ(A ∨B)

factoring

where σ = mgu(B,C), i.e, σB = σC.

Note: binary resolution is a generalization of the modus ponens from Example 3.4.2
While many versions of resolution exist in the literature (see [7]), we focus on hyperres-
olution (due to [75]), revisited in Section 5.
Definition 3.4.5 (Hyperresolution Inference). The hyperresolution rule is given by:

C1 ∨A1 . . . Cn ∨An D ∨ ¬B1 ∨ . . . ∨ ¬Bn
σ(C1 ∨ . . . ∨ Cn ∨D)

where, for all i ∈ [1, n], σ = mgu(Ai, Bi), i.e, σAi = σBi.

Note that hyperresolution can be seen as iterated binary resolution. Also, it can be made
more efficient, by adding additional heuristics, regarding ordering and selection.
Theorem 3.4.6. Hyperresolution is sound and refutationally complete.
Proof. See [7].
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4. The Relational Model

Databases have been developed as viable solutions for accurate and efficient storage and
retrieval of large amounts of data. Formally representing organized collections of related
data, the notion of a database is intertwined, at an abstract level, with that of a data
model. As such, it is the underlying data model of a database that provides the necessary
formalism for defining, modifying and accessing its stored information. Historically, the
first data models were flat file systems that relied on sequential files linearly storing
fixed-length records. Among the many drawbacks of this approach, the more prominent
were domain-specificity, redundancy, dependency on storage devices, high maintenance
and weak security. The emergence of database systems was directly aimed at overcoming
such limitations. These systems relied on the relational model introduced in [23]. First
implemented in systems such as INGRES and System/R, it is still the basis for most
current DBMSs, such as Oracle, Microsoft SQL Server, IBM DB2, Sybase, PostgreSQL,
MySQL. In this chapter, we present the fundamentals of the relational model, as a tool
for representing and extracting data (see Section 4.1 and Section 4.2), while enforcing
its integrity (see Section 4.3). Our presentation is based on that given in [1].

4.1. Data Representation
The relational model centers on representing data structures as mathematical relations.

Definition 4.1.1 (Domains). A domain D is a set of constant values.

Definition 4.1.2 (Cartesian Product). The n-ary Cartesian product over domains
D1, . . . ,Dn is the set of all ordered n-tuples (v1, . . . , vn), such that each tuple compo-
nent ranges over its respective domain, i.e vi ∈ Di, for all i ∈ [1, n].

D1 × . . .×Dn ≡ {(v1, . . . , vn) | v1 ∈ D1, . . . , vn ∈ Dn}

In the relational model, data is intuitively represented by tables (tabulated relations)
consisting of rows (tuples), with uniform structure and intended meaning, each of which
gives information about a specific entity. In practice, columns (tuple components) are
labeled with names called attributes. An important distinction is made between the
structure (schema) and the content (instance) of such tables.

Assume finite sets of attributes att and relation names relname, related by the sorting
function sort : relname→ 2att.
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Title Director Actor
An American in Paris Minnelli Kelly
An American in Paris Minnelli Caron

Blue Velvet Lynch Hopper
Blue Velvet Lynch MacLachlan
Blue Velvet Lynch Rossellini

M Lang Lorre
Senso Visconti Granger

Table 4.1.: Movies relation

Theater Title Schedule
Action Christine Senso 20
Action Christine Blue Velvet 14

Le Champo M 16
Action Christine An American in Paris 16

Table 4.2.: Location relation

Theater Address Phone
Action Christine 4 rue Christine, Paris 6 0143258578

Le Champo 51 rue des Ecoles, Paris 5 0143545160

Table 4.3.: Pariscope relation

Definition 4.1.3 (Database Schemas). A relation schema R[U ] consists of a relation
name R ∈ relname and of set U ⊆ att, such that sort(R) = U . A database schema R is a
non-empty finite set of relation schemas, R = {R1[U1], . . . , Rn[Un]}, with sort(Ri) = Ui.

Definition 4.1.4 (Database Instances). A relation instance I of a schema R[U ] over a
domain D is a finite set of (stored) tuples I ⊆ D|U |. A database instance I of a schema
R, over a domain D, is a family of relation instances, i.e, I = {Ii}1≤i≤|R|.

To illustrate, let us consider theMovies relation above, describing the movies on display
at a given cinema, during a certain week. The relation schema is denoted as Movies
[Title, Director, Actor], where sort(Movies) = {Title, Director, Actor}. As such,
each table row in the relation instance stores a movie’s title, director and one of its lead
actors. Note that, for a given movie, there are as many entries as lead actors.

A relational database is represented by a collection of tables. As defined previously, a
database schema is given by a nonempty countable set of sorted relation names, while a
database instance refers to the collection of corresponding relation instances. Extrapo-
lating from the previous example, we can imagine a Cinema database that stores the
weekly movie program of each cinema in Paris, as listed in the Pariscope journal1. The

1The Pariscope is a Parisian journal for advertising cultural events.
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locations could be characterized by a theater name, an address and a phone number and
the journal program could contain the theater name, movie title and schedule.

Cinema = {Movies,Location,Pariscope}

sort(Movies) = {Title,Director,Actor}
sort(Location) = {Theater,Address,Phone}
sort(Pariscope) = {Theater,Title,Schedule}

Figure 4.1.: Cinema database schema

4.2. Data Extraction
Information is extracted from databases through mechanisms called queries. These are
expressed through query languages, a variety of which are supported by the relational
model. At their core, these are fundamentally rooted in two classes of equivalent math-
ematical formalisms that stem from algebraic and, respectively, logical approaches. The
first is illustrated by the relational algebra, which is more operational and describes
how needed information can be computed. The second is represented by the relational
calculus, which is more declarative and describes what is the nature of the required
information. We give an overview of these languages in Section 4.2.1 and Section 4.2.2.

4.2.1. Relational Algebra
Relational algebra is an umbrella term for a family of algebraic query languages. These
are defined over relation instances and extend the algebra of sets with specific operators.
Depending on whether these operators refer to attributes positionally or nominally,
relational algebras are said to either follow an unnamed or a named perspective. For
completeness purposes, we overview both, as exemplified by the SPC and SPJR algebras.
Note however that the corresponding Coq formalization in Section 7.1 favours the latter
approach, as it is more prevalent in practice.

The SPC Algebra

The primitive operators of the SPC algebra are selection (σ), projection (π) and the
cross-product (×). We formally define them below, given relation instances I and J of
arity n and m over a domain D.

Selection σj=a(I) = {t ∈ I | t(j) = a}, j ≤ n, a ∈ D
Projection πj1,...,jn(I) = {(t(j1), . . . , t(jn)) | t ∈ I}
Cross-product I × J = {(t1(1), . . . , t1(n), t2(1), . . . , t2(m)) | t1 ∈ I, t2 ∈ J}
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The SPJR Algebra

The primitive operators of the SPJR algebra are selection (σ), projection (π), join (./)
and renaming (ρ). We formally define them below, given a global set of attributes att,
a domain D and relation instances I, J of sorts V,W ⊆ att. Note that, for a tuple t and
an attribute set A, we use t|A to represent the tuple obtained from t by keeping only
attributes in A.

Selection σj=a(I) = {t | t ∈ I ∧ t(j) = a}, j ∈ V, a ∈ D ∪ V
σi=j(I) = {t ∈ I | t(i) = t(j)}, i, j ∈ V

Projection πA(I) = {t|A | t ∈ I}, A ⊆ V
Join I ./ J = {t | ∃v ∈ I, ∃w ∈ J, t|V = v and t|W = w}
Rename ρg(I) = {t | ∃u ∈ I, ∀a ∈ V, t(g(a)) = u(a)}, g : V → att

4.2.2. Relational Calculus
Relational calculus is a logical query language centered on the insight that database rela-
tions can be viewed as interpretations of predicates from first-order logic. Consequentely,
it is a specialization of the first-order languages reviewed in Section 3. Unlike these, how-
ever, the relational calculus is concerned only with validity in a fixed model, given by the
current database state. Moreover, in order to exclude infinite interpretations, relational
calculus formulas are required to be domain-independent (see Definition 4.2.3). Since
this property is undecidable (see [32]), syntactical restrictions are imposed, called safety
conditions. The relational calculus has two declinations, tuple relational calculus and
domain relational calculus, that differ on whether variables range over tuples or domain
values. In this section, we focus on conjunctive queries, a subclass of the domain rela-
tional calculus, for which efficient optimization techniques exist.

Let L be a first-order language over a domain D, whose signature contains arity predi-
cates that are either relation names or comparison predicates. The syntax of the rela-
tional calculus language extends L with query expressions, as defined below.

Definition 4.2.1 ((Safe) Relational Calculus Queries). Let F ∈ FΣ(X ) be a formula
and ~t = (u1, . . . , un), a tuple over a schema R, such that ~t ∈ TΣ(X )n. A query Q is an
expression Q = {~t | F}. If Q satisfies the safety condition

n⋃
i=1

FV (ui) ⊆ FV (F ), then Q
is said to be safe.

Databases can be seen as Herbrand Interpretations (see Definition 3.2.1) over L. Let F
be a given L-formula and I, a database instance over a schema R. The interpretation
JF KI of F with respect to I is analogous to that described in Section 3. Hence, we can
define the semantics of a query Q = {~t | F} over R, as establishing whether I |= F .

The main problems concerning (relational calculus) queries are computing their eval-
uation and establishing, given two queries, whether one is contained in the other and
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whether they are equivalent. We present the corresponding notions of evaluation, con-
tainment and equivalence in Definitions 4.2.2, 4.2.5 and 4.2.6.

Definition 4.2.2 (Relational Calculus Query Evaluation). Let I be a database instance
over a schema R and domain D. Let Q ≡ {(u1, . . . , un) | F} be a relational calculus
query on I. The query evaluation Q(I,D), also denoted as JQKI, is:

Q(I,D) = {(ν(u1), . . . , ν(un)) | ν :
n⋃
i=1

FV (ui)→ D ∧ JF KI,ν = >}.

Definition 4.2.3 (Domain-Independence). Let I be a database instance over a schema
R. A relational calculus query Q is said to be domain independent, if, for any distinct
arbitrary domains, D1 and D2:

Q(I,D1) = Q(I,D2)

Remark 4.2.4. Safe Relational Calculus is domain independent.

Definition 4.2.5 (Relational Calculus Query Containment). Let R be a database schema.
Let Q1 and Q2 be two relational calculus queries over R. Q1 is contained in Q2, denoted
as Q1 ⊆ Q2, if, for all instances I of domain D:

Q1(I,D) ⊆ Q2(I,D)

Query inclusion naturally induces an equivalence, as follows.

Definition 4.2.6 (Relational Calculus Query Equivalence). Let R be a database schema.
Let Q1 and Q2 be two relational calculus queries over R. Q1 is equivalent to Q2, denoted
as Q1 ≡ Q2, if, for all instances I of domain D:

Q1(I,D) ⊆ Q2(I,D) and Q2(I,D) ⊆ Q2(I,D)

The containment and equivalence problems for relational calculus queries (and for their
relational algebra counterparts) are undecidable ([77]). Hence, restricted fragments of
the full relational calculus, for which these properties can be decided, have been studied.
The conjunctive queries, overviewed next, are one such subclass.

Conjunctive Queries

Conjunctive queries, first introduced in [20], are a subclass of the domain relational
calculus. Specifically, they describe the query language for which query containment
and equivalence are inherently decidable. Conjunctive queries are expressed in relational
calculus form, as in Definition 4.2.7. They are also translatable into SPJ relational
algebra and into tableau form, as shown in Examples 4.2.9 and 4.2.11.

Definition 4.2.7 ((Safe) Conjunctive Queries). A conjunctive query Q over a database
schema R = {R1, . . . , Rk} has the form Q = {~t | ∃ ~X, R1(~t1) ∧ . . . ∧ Rk(~tk)}. If Q
satisfies the safety condition ~X ⊆ (

n⋃
i=1

FV (~ti) \ FV (~t)), then Q is said to be safe.
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In rule notation, the query corresponds to Q(~t) :− R1(~t1), . . . , Rk(~tk) (see Chapter 5).

Example 4.2.8 (Conjunctive Query over the Cinema database). The query:

‘Which of Fellini’s movies are played at the cinema “Action Christine” ?"

over the database schema in Figure 4.1, corresponds to the relational calculus expression:

{
(t, d, a) | ∃th,∃t

′,∃s,Movies(t, d, a) ∧Pariscope(th, t′, s)
∧ t = t′ ∧ d = “Fellini” ∧ th = “Action Christine”

}

Example 4.2.9 (Translation of a Conjunctive Query into a SPJ Algebra Expression).
The query above can be translated into the SPJ relational algebra as:

π{Title, Director, Actor}(σ x.Director = “Fellini” ∧
x.Theater = “Action Christine”

(Movies ./ Pariscope))

Definition 4.2.10 (Tableau Representation). According to [1], a tableau T over a
schema R is an instance that contains extended tuples, i.e tuples mapping schema at-
tributes to either constants or variables. As such, conjunctive queries of the form given
in Definition 4.2.7, can be represented by a pair (T, s), as follows:

• a first row contains the relevant attributes from sort(R)

• the rows in T contain blanks and the components of conjunction atoms Ri(~ti),
whose existentially quantified variables ~X are called nondistinguished

• a final row s, called summary, contains blanks and the components of ~t, whose
variables are called distinguished.

Example 4.2.11 (Translation of a Conjunctive Query into Tableau Representation).
The query in Example 4.2.8 can be translated into tableau form as:

Title Director Actor Theater Schedule
t “Fellini” a Movies
t “Action Christine” s Pariscope
t d a summary

Note that the corresponding equalities have been embedded.

4.3. Data Integrity
An important aspect to be taken into account by data models, in general, and the re-
lational model, in particular, is ensuring the integrity of the underlying stored data, i.e
its accuracy and consistency. However, the data representation language in itself acts
solely as a syntactic means of structuring and relating information, not of describing
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its nature. To remedy this, further semantic specifications, called integrity constraints,
were introduced to complement the database schema. These are logical properties that
precisely describe the application-specific meaning of stored data. Thus, they restrict
the set of possible database instances, by weeding out anomalies.

Since their study was first pioneered by Codd in [23], a plethora of different classes
of integrity constraints were developed during more than a decade. Among these, the
most prominent are functional, join and inclusion dependencies. This proliferation of
data integrity formalisms culminated with the insight that first-order logic provided
a general and unifying framework. As such, integrity constraints were polarized into
tuple-generating, universally quantified formulas enforcing tuple existence, and equality-
generating, universally quantified formulas enforcing variable equality.

Once placed on solid foundations, dependency theory research focused on the main
problem of logical implication:

“Given a set of dependencies Σ and a dependency d, is d implied by Σ, i.e, Σ |= d ?”.

To answer this, two complementary approaches were proposed: one based on construct-
ing finite axiomatizations for proving implication and the other, based on constructing
algorithms for testing implication. The former method led to the development of in-
ference systems for different classes of dependencies, the most prominent of which is
Armstrong’s system, for functional dependencies. The latter resulted in the development
of a family of chase procedures, for more general dependencies.

This section is structured to reflect both these aspects of the logical implication problem.
In Section 4.3.1, we begin from a narrower scope, formally introducing functional depen-
dencies, their axiomatization and its properties. In Section 4.3.3, we frame this in a wider
setting, by presenting general dependencies, the chase procedure and its properties.

4.3.1. Logical Implication for Functional Dependencies
Functional Dependencies

Let R[U ] be a relation schema. A functional dependency (FD) over R[U ] is an expression
that relates attribute sets V,W ⊆ U , denoted as V ↪→W . Informally, V ↪→W holds on
R[U ] if, for any instance I of R, any two tuples in I having equal components on V 2,
also have equal components on W .

Definition 4.3.1 (FD Satisfiability). A relation instance I over R[U ] is said to satisfy
V ↪→W , denoted as I |= V ↪→W , if

∀t1∀t2, t1 ∈ I ⇒ t2 ∈ I ⇒ t1|V = t2|V ⇒ t1|W = t2|W

Let F be a set of functional dependencies. I is said to satisfy F , denoted I |= F , if
2meaning that the tuples have the same component values for all attributes in V .
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∀d, d ∈ F ⇒ I |= d.

Let us fix F and F̃ , sets of functional dependencies over U .

Definition 4.3.2 (FD Implication). F̃ is logically implied by F , denoted F |= F̃ , if

∀I : U, I |= F ⇒ I |= F̃ .

Definition 4.3.3 (FD Closure). The set F+ of all functional dependencies that are
logically implied by F is called its closure and is defined as F+ = {d | F |= d}.

Definition 4.3.4 (FD Equivalence). F̃ and F are logically equivalent, denoted F ≡ F̃ ,
if F |= F̃ and F̃ |= F . Note that F ≡ F̃ ⇔ F+ = F̃+.

As can be seen from the previous definitions, closures are important in establishing
whether implication or equivalence hold between arbitrary sets of functional depen-
dencies. Indeed, given a procedure for constructing closures, checking these properties
translates to respectively testing set membership and equality. To this end, particularly
relevant is Armstrong’s System, a sound and complete axiomatization presented in [5],
as a way of characterizing functional dependency implication.

Armstrong’s System

The set A of inference rules proposed by Armstrong is given by the rules in Figure 4.2.

Y ⊆ X
X ↪→ Y

FD1 : reflexivity
X ↪→ Y

X ∪ Z ↪→ Y ∪ Z
FD2 : augmentation

X ↪→ Y Y ↪→ Z

X ↪→ Z
FD3 : transitivity

Figure 4.2.: Armstrong’s System

Definition 4.3.5 (FD Inference). Let F be a set of functional dependencies over a given
schema and A be Armstrong’s system of rules. A functional dependency X ↪→ Y can
be inferred from F using A, denoted F `A X ↪→ Y , if there is a proof derivation for
X ↪→ Y from A, using the dependencies in F as axioms.

We can test if F `A X ↪→ Y , based on the Armstrong closure of X, defined below.

Definition 4.3.6 (Armstrong Closure). Let U be an attribute set and X ⊆ U .
The closure X+

F of X with respect to a set of functional dependencies F over U is

X+
F =

⋃
{W ⊆ U | F `A X ↪→W}.
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Hence, F `A X ↪→ Y iff Y ⊆ X+
F . The Armstrong closure can be computed as follows.

1: procedure Closure(X, F )
2: X0 ← X
3: i← 0
4: while Xi 6= Xi+1 do
5: for all V ↪→W ∈ F do
6: if V ⊆ Xi and W * Xi then
7: Xi ← Xi ∪W
8: i← i+ 1
9: return Xi

Theorem 4.3.7 (Armstrong Soundness). Given a set of dependencies F over an at-
tribute set U and attribute sets X,Y ⊆ U , if F `A X ↪→ Y , then F |= X ↪→ Y .

Proof. The proof is by induction on the length of the derivation. In the base case, we
prove soundness of each inference rule. To this end, let us fix I, a relation instance over
U , and arbitrary tuples t1, t2 ∈ I.

Reflexivity Assume Y ⊆ X. If t1|X = t2|X , trivially t1|Y = t2|Y . Hence, I |= X ↪→ Y .

Augmentation Assume I |= X ↪→ Y . If t1|X∪Z = t2|X∪Z , then t1|X = t2|X . This implies
t1|Y = t2|Y and, by extension, t1|Y ∪Z = t2|Y ∪Z . Hence, I |= X ∪ Z ↪→ Y ∪ Z.

Transitivity Assume I |= X ↪→ Y and I |= Y ↪→ Z. If t1|X = t2|X , from I |= X ↪→ Y , it
follows that t1|Y = t2|Y and, by I |= Y ↪→ Z, that t1|Z = t2|Z . Hence, I |= X ↪→ Z.

From the soundness of Armstrong’s System, other rules, like the ones in Figure 4.3, can
also be proven. These allow to establish a key result, relating the Armstrong closure of
attribute sets with functional dependency inference, as stated in Lemma 4.3.8.

X ↪→ Y X ↪→ Z

X ↪→ Y ∪ Z
FD4 : union

X ↪→ Y Z ⊆ Y
X ↪→ Z

FD5 : decomposition

Figure 4.3.: Admissible Rules for Functional Dependency Inference

Lemma 4.3.8. Given the attribute set U and X,Y ⊆ U , F `A X ↪→ Y ⇔ Y ⊆ X+ .

Proof. Let Y = {A1, . . . , An}.

⇒ Definition 4.3.6 implies F `A X ↪→ Ai, for all i. Hence, by the union rule, X ↪→ Y .
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⇐ From X ↪→ Y , by the decomposition rule, F `A X ↪→ Ai, for all i. Hence, Y ⊆ X+.

This lemma is crucial in the following completeness proof for Armstrong’s system.

Theorem 4.3.9 (Armstrong Completeness). Given a set of dependencies F over an
attribute set U and attribute sets X,Y ⊆ U , if F |= X ↪→ Y , then F `A X ↪→ Y .

Proof. We prove the contrapositive statement: if F 0A X ↪→ Y then F 2A X ↪→ Y , i.e
∃I, such that I |= F and I 2 X ↪→ Y . Let I consist of tuples t1 and t2, as shown below.

t1

X+︷ ︸︸ ︷
1 1 1 1 0 . . . 0

t2 1 1 1 1 1 . . . 1

First, we prove I |= F , i.e ∀V ↪→ W, V ↪→ W ∈ F ⇒ I |= V ↪→ W . Assuming
t1|V = t2|V , we show t1|W = t2|W . From the definition of I, t1|V = t2|V ⇒ V ⊆ X+.
According to Lemma 4.3.8, F `A X ↪→ V , which, together with F `A V ↪→ W ,
via transitivity, produce F `A X ↪→ W (4.1). From reflexivity, it is inferred that
∀A,A ∈ W ⇒ F `A W ↪→ A (4.2). From (4.1) and (4.2), via transitivity, we ob-
tain F `A X ↪→ A (4.3). Since A ∈ X+, for all A ∈W , W ⊆ X+. Hence, t1|W = t2|W .

Next, we prove I 2 X ↪→ Y . As X ⊆ X+ and F 0A X ↪→ Y , it follows that Y * X+.

4.3.2. Logical Implication for Multivalued Dependencies
Multivalued Dependencies

Let R[U ] be a relation schema. A multivalued dependency (MD) over R[U ] is an expres-
sion that relates attribute sets V,W ⊆ U , denoted as V �W . Informally, V �W holds
on R[U ] if, for any instance I of R[U ], we can swap the components in W of any two
tuples whose components agree on V , to obtain two tuples also in I.

Definition 4.3.10 (MD Satisfiability). A relation instance I over R[U ] is said to satisfy
V �W , denoted as I |= V �W , if

∀t1∀t2, t1 ∈ I ⇒ t2 ∈ I ⇒ t1|V = t2|V ⇒ ∃t3, t3 ∈ I ∧ t3|V = t1|V ∧ t3|W = t1|W ∧ t3|Z = t2|Z

where Z = U \ (V ∪W ).

Note that the existence of the second tuple t4 ∈ I, such that

t4|V = t2|V ∧ t4|W = t2|W ∧ t4|Z = t1|Z ,

follows from interchanging t1 and t2.
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Inference System for Multivalued Dependencies

Analogous to what was presented in Section 4.3.2, in order to determine whether a given
multivalued dependency logically implies another, one can appeal to the inference system
presented in Figure 4.4.

X � Y

X � U \ (X ∪ Y )
MVD0 : complementation

Y ⊆ X ⊆ U
X � Y

MVD1 : reflexivity

X � Y Z ⊆ U
X ∪ Z � Y ∪ Z

MVD2 : augmentation
X � Y Y � Z

X � Z
MVD3 : transitivity

Figure 4.4.: Inference System for Multivalued Dependencies

The following admissible rules relate multivalued and functional dependencies:

X ↪→ Y

X � Y
FMVD1 : conversion

X � Y X ∪ Y ↪→ Z

X ↪→ Z \ Y
FMVD2 : interaction

Figure 4.5.: Admissible Rules for Multivalued Dependency Inference

Theorem 4.3.11. The inference system consisting of the rules in Figures 4.2, 4.4
and 4.5 is sound for the logical implication of functional and multivalued dependencies
considered together.

Proof. The proof is by induction on the length of derivation. In the base case, we prove
soundness of each inference rule. To this end, let us fix I, a relation instance over U and
tuples t1, t2 ∈ I.

Complementation Assume I |= X � Y . If t1|X = t2|X , then there exists a tuple t3 ∈ I,
such that t3|X = t1|X , t3|Y = t1|Y and t3|U\(X∪Y ) = t2|U\(X∪Y ). Since t3|X = t2|X ,
t3|Y = t2|U\(X∪Y ) and t3|Y = t1|Y , it follows that I |= X � U \ (X ∪ Y ).

Reflexivity Assume Y ⊆ X. Then, if t1|Y = t2|Y , it holds that t1|X = t2|X . To establish
I |= X � Y , we have to provide a witness tuple t3 ∈ I, such that t3|X = t1|X ,
t3|Y = t1|Y and t3|U\(X∪Y ) = t2|U\(X∪Y ). Taking t3 to be t2 concludes the proof.

Augmentation Assume I |= X � Y . If t1|X = t2|X , then there exists a tuple t3 ∈ I,
such that t3|X = t1|X , t3|Y = t1|Y and t3|U\(X∪Y ) = t2|U\(X∪Y ). It follows that
t3|X∪Z = t1|X∪Z , t3|Y ∪Z = t1|Y ∪Z and, respectively, t3|U\(X∪Y ∪Z) = t2|U\(X∪Y ∪Z).
Hence, I |= X ∪ Z � Y ∪ Z.
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Transitivity Assume I |= X � Y and I |= Y � Z. Let V = U \ (X ∪ Y ∪ Z).
If t1|X = t2|X , from I |= X � Y , there exists a tuple t3 ∈ I, such that t3|X = t1|X ,
t3|Y = t1|Y and t3|U\(X∪Y ) = t2|U\(X∪Y ), i.e, t3|V ∪Z = t2|V ∪Z . From t3|Y = t1|Y
and I |= Y � Z, it holds that there exists a tuple t4 ∈ I, such that t4|Y = t3|Y ,
t4|Z = t3|Z and t4|U\(Y ∪Z) = t1|U\(Y ∪Z), i.e, t4|V ∪X = t1|V ∪X . From the latter,
we have t4|X = t1|X , which, together with t1|X = t2|X , leads to t4|X = t2|X . As
t3|V ∪Z = t2|V ∪Z , we have t3|Z = t2|Z , which, together with t4|Z = t3|Z , gives
t4|Z = t2|Z . Finally, from t4|Y = t3|Y and t3|Y = t1|Y , t4|Y = t1|Y and, hence,
t3|V ∪Y = t1|V ∪Y . As t4|X = t2|X , t4|Z = t2|Z and t3|V ∪Y = t1|V ∪Y , I |= X � Z.

Conversion Assume I |= X ↪→ Y . If t1|X = t2|X , then t1|Y = t2|Y . To establish
I |= X � Y , we have to provide a witness tuple t3 ∈ I, such that t3|X = t1|X ,
t3|Y = t1|Y and t3|U\(X∪Y ) = t2|U\(X∪Y ). Taking t3 to be t2 concludes the proof.

Interaction Assume I |= X � Y and I |= X ∪ Y ↪→ Z. Let V = U \ (X ∪ Y ∪ Z). If
t1|X = t2|X , then there exists a tuple t3 ∈ I, such that t3|X = t1|X , t3|Y = t1|Y
and t3|U\(X∪Y ) = t2|U\(X∪Y ), i.e t3|V ∪Z = t2|V ∪Z . From the latter it holds that
t3|Z\Y = t2|Z\Y . From t3|X = t1|X and t3|Y = t1|Y , we have t3|X∪Y = t1|X∪Y . As
I |= X ∪Y ↪→ Z, we obtain t3|Z = t1|Z . Consequentely, t3|Z\Y = t1|Z\Y . Together
with t3|Z\Y = t2|Z\Y . it follows t1|Z\Y = t2|Z\Y . Hence, I |= X ↪→ Z \ Y .

Theorem 4.3.12. The inference system consisting of the rules in Figures 4.2, 4.4 and
4.5 is complete for the logical implication of functional and multivalued dependencies
considered together.

Proof. See [1]. We omit the completeness proof, as it is not part of the Coq formalization
we present in Chapter 7.

4.3.3. Logical Implication for General Dependencies
We start by giving a formal definition of general dependencies and show how they capture
a broad range of dependency subclasses. In this context, we present the chase procedure
by illustrating its application and providing a formal definition.

General Dependencies

According to [12], any dependency d can be expressed as a general dependency, i.e as a
first-order logic sentence of the form:

∀x1 . . . ∀xn(φ(x1, . . . , xn)⇒ ∃z1 . . . ∃zkψ(y1, . . . , ym, z1, . . . , zk))

where {y1, . . . , ym} ⊆ {x1, . . . , xm} and

• φ is a potentially empty conjunction of relational atoms, with VAR(φ) = {x1, . . . , xn}
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• ψ is either
1. a single equality atom, with VAR(ψ) ⊆ {x1, . . . , xn},
d is then called an equality generating dependency, abbreviated as EGD

2. a non-empty relational atoms conjunction, with VAR(ψ) = {y1, . . . , ym, z1, . . . , zk},
d is then called a tuple generating dependency, abbreviated as TGD

The expressions ψ and φ are respectively called the head and body of d.

Another distinction is made regarding whether or not d contains existential quantifiers:
in the former case (k ≥ 1), d is called embedded and, in the later (k = 0), d is called full.
Note that equality generating dependencies are, by nature, always full.

In the data integration community, two particular forms of TGDs are especially relevant:

• local-as-view constraints (LAV), expressible as embedded tuple dependencies with
single relational atom bodies

∀x1 . . . ∀xn(R(x1, . . . , xn)⇒ ∃z1 . . . ∃zkψ(x1, . . . , xn, z1, . . . , zk))

• global-as-view constraints (GAV), expressible as full tuple dependencies with single
relational atom heads

∀x1 . . . ∀xn(φ(x1, . . . , xn)⇒ R(x1, . . . , xn))

Example 4.3.13. We exemplify different instances of general dependencies:

• the functional dependency A ↪→ B on a relation instance I over the schema R[A,B]
is expressible as the (full) equality generating general dependency:

∀v1∀v2∀v3, (R(v1, v2) ∧R(v1, v3)⇒ v2 = v3),

where variable v1 ∈ A and {v2, v3} ⊆ B

• the multivalued dependency C � D on a relation instance I over the schema
R[U ], where C ∪ D ∪ E = U , is expressible as the full tuple generating general
dependency:

∀x∀y1∀y2∀z1∀z2(R(x, y1, z1) ∧R(x, y2, z2)⇒ R(x, y1, z2)),

where variable x ∈ C, {y1, y2} ⊆ D and {z1, z2} ⊆ E.

As was the case with conjunctive queries, a practical way of representing general depen-
dencies is visually, in tableau form. We illustrate with the previous examples.
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A B
a b1
a b2
b1 = b2

Figure 4.6.: A ↪→ B

C D E
c d1 e1
c d2 e2
c d1 e2

Figure 4.7.: C � D

The Chase Procedure

The chase is a fundamental database procedure, originally introduced in [2] and [59],
as a tool for testing the logical implication of data dependencies. More specificaly, it
is used to determine if, for a given set of general dependencies D and for a general
dependency d, it holds that D |= d. Note that, if D contains only full dependencies,
the chase terminates and, if D contains embedded dependencies, it may run indefinitely,
albeit providing the right answer, if it stops. An extensive overview of the chase and its
application is provided in [67].

Before presenting the chase, let us first define the following preliminary notions, as
introduced in [79]. Note that database domains are considered to consist of not only
constants, but also variables (labelled nulls), representing unknown values.

Definition 4.3.14 (Symbol Mappings/Homomorphisms3). Given symbol sets S and T ,
a symbol mapping h : S → T is such that, for every symbol a ∈ S, h(a) ∈ T . Note that it
is allowed for two distinct symbols a 6= b to be mapped to the same value h(a) = h(b) ∈ T .

Let R be a relation, I, J relation instances of R over domains DI ,DJ and h : DI → DJ ,
a symbol mapping, such that, for every c ∈ DI , h(c) = c.

A (symbol) homomorphism h̄ : I → J is the homomorphic extension of h, such that:

for every ~t ≡ (t1, . . . , tn) ∈ I, h̄(~t) = (h(t1), . . . , h(tn)) ∈ J

The homomorphism definition extends naturally for the case of “abstract” database in-
stances, i.e, whose tuples may contain variables.

Tailoring the previous first-order logic definition of general dependencies to the database
setting, we introduce the following notations. Let R[U ] be a relation schema over a
domain D, with |U | = n. We denote a generalized dependency γ as:

• if γ is a TGD: (~t1, . . . , ~tk)/~t, where ~ti,~t ∈ Dn and ~t can contain unique symbols,
i.e symbols not among those in ti (indeed, such is the case for embedded TGDs)

• if γ is an EGD: (~t1, . . . , ~tk)/x = y, where x, y are among the symbols in ~ti

3The terms symbol mappings and homomorphism are used interchangably in the database literature.
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We abbreviate ~t and, respectively, x = y, as head(γ), and {~t1, . . . , ~tn}, as body(γ).

Definition 4.3.15 (General Dependency Satisfiability). An instance I over R[U ] is said
to satisfy γ, denoted I |= γ, if, for any h : body(γ)→ I:

• when γ ≡ (~t1, . . . , ~tk)/~t, h can be extended to ĥ : body(γ) ∪ {~t} → I,
mapping all unique symbols in ~t to ĥ(~t) ∈ I

• when γ ≡ (~t1, . . . , ~tk)/x = y, h(x) = h(y)

If I 2 γ, then there exists a h : body(γ)→ I, such that:

• when γ ≡ (~t1, . . . , ~tk)/~t, h cannot be extended to ĥ : body(γ) ∪ {~t} → I,
mapping all unique symbols in ~t to ĥ(~t) ∈ I

• when γ ≡ (~t1, . . . , ~tk)/x = y, h(x) 6= h(y)

In the case that I 2 γ, the pair (γ, h) is called a trigger for the chase procedure, as it
causes it to be applied to I, under homomorphism h, in order to enforce γ.

Definition 4.3.16 (General Dependency Application). Assume I to be an instance over
R[U ]. Let us apply a general dependency γ to I, under a homomorphism h, such that
(γ, h) is a trigger, i.e, I 2 γ. We obtain a new instance J , denoted I (γ,h)−−−→ J , such that:

• TGD step: when γ ≡ (~t1, . . . , ~tk)/~t,
J = I ∪ ĥ(~t), where ĥ maps unique symbols in ~t to fresh variables

• EGD step: when γ ≡ (~t1, . . . , ~tk)/x = y,
– if h(x) and h(y) are both mapped to variables,
J is obtained by α-renaming in I all occurences of h(x) to h(y) or vice-versa

– if, among h(x) and h(y), one is a constant and the other a variable,
J is obtained by replacing in I all occurences of the variable with the constant

– if h maps x and y to distinct constants, the procedures fails, i.e I (γ,h)−−−→ ⊥.

As mentioned in the beginning of the section, in the presence of embedded dependencies,
the chase procedure may not terminate, as we illustrate next.

Example 4.3.17 (Chasing with Embedded Dependencies). Let us consider a database
instance I0 = {R(a1), R(a2), S(a1, a2)} and the embedded TGD

γ ≡ ∀x(R(x)⇒ ∃y(R(y) ∧ S(x, y))).

We are looking for homomorphisms h, satisfying R(h(x)) ∈ I0. As such, h(x) = a1
or h(x) = a2. If we choose, for example, h(x) = a1, then we could extend h to ĥ,
where ĥ(y) = a2. Hence, (γ, h) would not be a trigger, as {R(ĥ(y)), S(h(x), ĥ(y))} =
{R(a2), S(a1, a2)} ⊆ I0. Let us examine the case when h(x) = a2. Indeed, (γ, h) is a
trigger, since, for any h-extension ĥ, S(h(x), ĥ(y)) = S(a2, ĥ(y)) /∈ I0. Applying the
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TGD chase step, we obtain I0
(γ,h)−−−→ I1, where I1 = I0 ∪ {R(a3), S(a2,a3)} and a3 is a

fresh variable. Since, I1 2 γ, we are forced to continue iterating the procedure and, by a
similiar reasoning, we obtain I1

(γ,h)−−−→ I2, where I2 = I1 ∪{R(a4), S(a3,a4)} and a4 is a
fresh variable. We conclude the chase is nonterminating.

Informally, the chase starts from the instance represented by the tableau part of d,
i.e assuming that the body of d is satisfied. The procedure consists in iterating chase
steps that apply dependencies in D, as described in Definition 4.3.16. If the applied
dependency is a TGD, a new tuple is added and, if it is an EGD, the instance is modified
accordingly. If no dependency can be further applied, we can check whether the head
of d is satisfied in the resulting instance. Specifically, if d is a TGD, we check whether
the instance contains a tuple that agrees with it, modulo renaming. If d is an EGD, we
check whether the equated symbols have been mapped to the same value.

Example 4.3.18. Given the dependencies γ1, γ2 and γ3, presented in tableau form in
Figure 4.8, let us apply the chase procedure to determine whether {γ1, γ2} |= γ3.
We start from the instance (i), the tableau part of γ3.

• TGD step: Applying γ1 to (i) consists in finding a homomorphism h, where
{h(a1, b1, c1, d1), h(a1, b2, c2, d2)} ⊆ (i) and (γ1, h) are a trigger for the chase, i.e
there is no h-extension ĥ, such that ĥ(a1, b1, c2, d3) ∈ (i).
Indeed, one such mapping is:
h(a1) = a4, h(b1) = b5, h(c1) = c6, h(d1) = d7, h(b2) = b4, h(c2) = c5, h(d2) = d6,
since {h(a1, b1, c1, d1), h(a1, b2, c2, d2)} = (i) and, for any h-extension ĥ,
ĥ(a1, b1, c2, d3) = (a4, b5, c5, ĥ(d3)) /∈ (i).

Consequentely, I (γ1,h)−−−→ (ii), where (ii) = (i) ∪ {ĥ(a1, b1, c2, d3)}.
Note that, as the existentially quantified d3 is unique in γ1, ĥ(d3) is assigned to
be the fresh variable d8. Hence, ĥ corresponds to: ĥ(a1) = a4, ĥ(b1) = b5,
ĥ(c1) = c6, ĥ(d1) = d7, ĥ(b2) = b4, ĥ(c2) = c5, ĥ(d2) = d6 and ĥ(d3) = d8.

• EGD step: Applying γ2 to (ii) makes d7 and d8 equal in (iii). Also, as b6 is
existentially quantified in γ3, it can be instantiated by b5.

Since the tuple generated in γ3 occurs in (iii), γ3 is logically implied by γ1 and γ2.
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A B C D
a1 b1 c1 d1
a1 b2 c2 d2
a1 b1 c2 d3

tgd γ1

A B C D
a2 b3 c3 d4
a3 b3 c4 d5

d4 = d5

egd γ2

A B C D
a4 b4 c5 d6
a4 b5 c6 d7
a4 b6 c5 d7

tgd γ3

A B C D
a4 b4 c5 d6
a4 b5 c6 d7

(i)

A B C D
a4 b4 c5 d6
a4 b5 c6 d7
a4 b5 c5 d8

(ii)

A B C D
a4 b4 c5 d6
a4 b5 c6 d7
a4 b5 c5 d7

(iii)

Figure 4.8.: Applying Dependencies
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In this chapter, we introduce the standard Datalog language, a logic based data model,
that supports recursion. We outline its syntax in Section 5.1 and two-equivalent seman-
tics: the minimal model semantics, in Section 5.2.1, and the fixpoint semantics, in
Section 5.2.2. In our presentation we will specialize the base definitions regarding the
syntax and semantics of first-order languages, given in Chapter 3.

5.1. Syntax
Being a subset of Prolog, Datalog is rooted in logic programming, which, in turn, is a
rule-based formalism. As such, Datalog programs or knowledge-bases are represented
as finite sets of clauses that are either facts, i.e assertions known to be true, or rules, i.e
sentences that allow the inference of new facts from existing ones.

Definition 5.1.1 (Symbols). Datalog symbols are either arity bound predicates, con-
stants or variables. We fix P as the set of predicates together with an arity function
ar : P → N, C as the set of constants and V as the set of variables.

A Datalog expression e is either a term t, an atom A, a clause C or a program P . We
define each of these objects according to [58].

Definition 5.1.2 (Terms). A term t is either a constant or a variable.

t ::= x | c, where x ∈ V, c ∈ C

Remark 5.1.3. We denote predicate, variable and term sequences using the vector nota-
tion: ~p = p1, p2, . . . , pn, ~x = x1, x2, . . . , xn and ~t = t1, t2, . . . , tn, where n is the sequence
length denoted as |·|, i.e |~p| = |~x| = |~t| = n.

Definition 5.1.4 (Atoms). Let p be a predicate with ar(p) = n and ~t a term sequence
with |~t| = n. An atom A is an expression of the form :

A ::= p(~t), where p ∈ P

The terms t1, t2, . . . , tn are called its arguments. We denote sym(A) = p.

Definition 5.1.5 (Clauses). The general syntax of a Datalog clause C is :

C ::= A0 ← A1, . . . , Am, or, in an alternative notation, C ::= A0 :− A1, A2 . . . , Am

Remark 5.1.6. Note that the clause C represents :

40



5. Standard Datalog

• a fact, when m = 0, i.e C ≡ A0 ←

• a query, when m ≥ 1 and there is no head atom, i.e C ≡ ← A1, A2 . . . , Am

• a rule, otherwise

The atom A0 is called the head of C and the atom list A1, A2, . . . , Am, its body. As
such, from now on, we will denote A0 as H and A1, A2, . . . , Am as B1, B2, . . . , Bm.
Informally, C translates into “if B1 and B1 . . . and Bm then H”.

Definition 5.1.7 (Programs). A program P is a finite set of clauses.

P ::= C0, . . . , Ck, where k ∈ N

Note that the commas denote conjunction.

Definition 5.1.8 (Ground Expressions). Variable-free expressions are called ground.
We denote ground atoms, clauses and programs as Ā, C̄ and P̄ .

To ensure only a finite number of ground facts can be derived from a standard Dat-
alog program, a syntactic restriction is imposed on its clauses.

Definition 5.1.9 (Safety Condition). Let P be program and C one of its clauses. All
variables in the head of C should also appear in its body. As a corollary of this,
all facts in P have to be ground.

Extensional and Intensional Predicates Predicates of a Datalog program can be di-
vided into: extensional/base predicates, if they occur as clause heads in unit clauses,
and intensional/derived predicates, otherwise. From a database perspective, the former
correspond to stored relations and the latter, to virtual relations (views). As such, a
Datalog program P can be seen as the union of two disjoint databases: an extensional
database edb(P ), i.e the set of ground facts (whose predicates are all extensional), and
an intensional database idb(P ), i.e the set of rules (whose head predicates are all inten-
sional). The corresponding program schema is sch(P ) = edb(P ) ∪ idb(P ). From a logic
programming standpoint this distinction is not consequential. However, in practice it
serves the pragmatic purpose of decoupling the (typically much larger) extensional com-
ponent from the intensional one, which can thus be independently pre-processed. The
implications of the intensional versus extensional distinction in the deductive database
setting were originally described in [74].

Recursive Rules Given that a head literal can also appear either in the body of the
same clause or in that of other program clauses, Datalog rules and programs have
the property of being recursive. In this respect, Datalog extends the expressivity of
relational calculus, in which transitive closure queries cannot be stated. Recall that the
transitive closure of a relation R is the smallest relation R∗ such that 1) R ⊆ R∗ and 2)
R∗ is transitive.
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Example 5.1.10. We illustrate this with a Datalog program computing the transitive
closure of the graph below. The graph’s configuration is encoded as a series of facts
corresponding to existing edges. In particular, the transitive closure corresponding to the
edge relation e is modeled by the above rules defining tc.

e(1, 3).
e(2, 1).
e(4, 2).
e(2, 4).

tc(X, Y) :− e(X, Y).
tc(X, Y) :− e(X, Z), tc(Z, Y).

1 3

2 4

Example 5.1.11. Datalog can also serve as a basis for expressing various types of
access control policies. The present example is taken from [34], in which the following
policy for controlling access to conference review scores is considered:

1. During the submission phase, an author may submit a paper.

2. During the review phase, reviewer r may submit a review for paper p
if r is assigned to review p.

3. During the meeting phase, reviewer r can read the scores for paper p
if r has submitted a review for p.

4. Authors may never read scores.

Let Subjects, Actions and Rules be sorts and Σ be a first-order relational signature,
containing the ternary predicates Permit and Deny over Subjects×Actions×Rules.
A policy over Σ is expressed as a Datalog program P , where {Permit, Deny} ⊆ idb(P ).

Based on the XACML standard (see [69])1, the policy above can be modeled as:

Permit(a, submit_paper, p) :- author(a), paper(p), phase(submission)

Permit(r, submit_review, p) :-
reviewer(r), paper(p), assigned(r,p), phase(review)

Permit(r, read_scores, p) :-
reviewer(r), paper(p), has_reviewed(r,p), phase(meeting)

Deny(a, read_scores, p) :- author(a), paper(p)

1which explicitly uses the Deny predicate instead of the negation of Permit
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5.2. Semantics
As originally defined in [81], Datalog has two equivalent semantics: one based on
minimal models and the other, on the least-fixpoint.

5.2.1. Minimal Model Semantics
Datalog programs have a natural translation into first-order logic theories, as follows.

First-Order Logic Translation

• Atoms. An atom A can be represented as a first-order logic formula A∗

• Clauses. A clause C ≡ H ← B1, . . . , Bm translates into:

C∗ = ∀X1 . . . ∀Xq(∃Xq+1 . . . ∃Xl(B1 ∧ . . . ∧Bm)⇒ H)

with Xi ∈VAR(H), ∀i ∈ [1, q]; Xj /∈VAR(H); Xj ∈
⋃

k∈[1,m]
VAR(Bk), ∀j ∈ [q+1, l].

• Programs. A program P can be identified with a set of first-order logic formulas,
corresponding to P ∗ =

∧
C∈P

C∗.

Remark 5.2.1. Datalog clauses C ≡ H ← B1, . . . , Bm are equivalent to:

• full tuple generating dependencies (see Section 4.3.3)

C∗ ⇔ ∀X1 . . . ∀Xl(B1 ∧ . . . ∧Bm ⇒ H), with Xk ∈ VAR(C), ∀k ∈ [1, l].

• definite Horn clauses (see Definition 3.3.4) without function symbols

C∗ ⇔ ∀X1 . . . ∀Xl(¬B1 ∨ . . . ∨ ¬Bm ∨H).

Example 5.2.2 (Graph Transitive Closure). The first-order logic translation of the
Datalog program above is given by the formula:

e(1, 3) ∧ e(2, 1) ∧ e(4, 2) ∧ e(2, 4) ∧ (∀X∀Y (e(X,Y )⇒
tc(X,Y ))) ∧ (∀X∀Y ∀Z(e(X,Z) ∧ tc(Z, Y )⇒ tc(X,Y )))

Having established Datalog to be a fragment of first-order language, we proceed to
giving its interpretation, as a particular instance of that given in Section 3.

Let us fix a program P , with the symbol signature Σ = (C,P, ar).

A Σ-structure I for P is given by I = (U, I : Σ → U ∪ {>,⊥}), i.e, a non-empty
universe U and an interpretation function I mapping Σ to {>,⊥}, such that:

• for every c ∈ C: cI ∈ U

• for every p ∈ P, where ar(p) = n: pI is a mapping pI : Un → {>,⊥}
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Interpretations For a signature Σ, a set of variables V and a valuation ι : V → U , the
interpretation JeKI,ι of a Datalog expression e is defined by structural induction on e:

• JxKI,ι = ι(x)

• JcKI,ι = cI

• Jp(t1, . . . , tn)KI,ι = pI(Jt1KI,ι, . . . , JtnKI,ι) =
{
> if pI(Jt1KI,ι, . . . , JtnKI,ι) = >
⊥ otherwise

• JH ← B1, . . . , BnKI,ι =


> if there exists i ∈ [1, n], such that JBiKI,ι = ⊥

or if JHKI,ι = >
⊥ otherwise

• JH ← B1, . . . , BnKI =
{
> if JH ← B1, . . . , BnKI,ι = > for all ι
⊥ otherwise

Models An interpretation I is a model for

• a clause H ← B1, . . . , Bn, if JH ← B1, . . . , BnKI = >

• a program P , if JCKI = >, for all C ∈ P

We use the standard notation I |= C and I |= P , where C and P , are said to satisfy I.

Logical Consequence A fact F is a logical consequence of a P , i.e P |= F , iff

I |= P implies I |= F , for all interpretations I

The set of all logical consequences of a program P is denoted as cons(P ).

Definition 5.2.3. The fact that a fact F is a logical consequence of a program P can
be expressed based on the Herbrand Semantics (see Section 3.2) of P , consisting of the
following:

• Herbrand Universe: set of all program constants, denoted adom(P ).

• Herbrand Base: set of all ground atoms that can be built from predicates p ∈ P
and constants in adom(P ), denoted BP .

• Herbrand Interpretation IH: subset of the Herbrand base BP .

As such, it holds that: P |= F iff IH |= P implies F ∈ IH2.

2Since IH |= F iff F ∈ IH.
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Restricting ourselves to the Herbrand semantics setting, we thus define the grounding
of P with a valuation ι : BV (P )→ adom(P ) as ιP ≡

⋃
C∈P

ιC, where the grounding of a

clause C ≡ p0(~t0)← p1(~t1), . . . , pm( ~tm) is ιC ≡ p0(ι~t0)← p1(ι~t1), . . . , pm(ι ~tm).

For a Herbrand interpretation IH, it holds that:

• IH |= ιC iff {p1(ι~t1), . . . , pm(ι ~tm)} ⊆ IH implies p0(ι~t0) ∈ IH

• IH is a Herbrand model of P iff IH |= ιP , for all ι : BV (P )→ adom(P )

Note that, as illustrated next, a definite program can have multiple Herbrand models.

Example 5.2.4. Consider the program P̃ = {p(a), p(b), q(a), r(X)← p(X), q(X)}.

• adom(P ) = {a, b} and BP = {p(a), p(b), q(a), q(b), r(a), r(b)}

• I1 = {p(a), p(b), q(a)}, I2 = {p(a), p(b), q(a), r(a)}, I3 = {p(a), p(b), q(a), r(a), r(b)},
I4 = {p(a), p(b), q(a), q(b), r(a), r(b)} and I5 = ∅ are Herbrand interpretations of
P , but only I2, I3 and I4 are Herbrand models of P .

Theorem 5.2.5 (Model Intersection Property). If M1,M2 are Herbrand models of a
definite program P , then M1 ∩M2 is also a model of P .

Minimal Model Semantics Under the partial ordering induced by set inclusion, a
Herbrand model can be defined as being minimal, if none of its proper subsets are also
models. For example, the model I2 above is minimal. As a consequence of the model
intersection property, any definite program P has an unique minimal model M(P )
that is the intersection of all its Herbrand models.

This is the intended semantics of P , i.e cons(P ) = M(P ).
The reasons for this choice are discussed in Chapter 12 from [1].

5.2.2. Fixpoint Semantics
The fixpoint semantics is a denotational semantics based on the idea that definite pro-
gram models can be seen as pre-fixed points of a special closure operator named the
immediate consequence operator. The least-fixpoint semantics bridges the declarative
minimal-model semantics presented above to the procedural bottom-up evaluation.
We first introduce basic fixpoint theory definitions.

Definition 5.2.6 (Complete Lattices). Let us define a complete lattice as 〈L,⊆〉, where
L is an ordered set with respect to inclusion and any set A ⊂ L has a greatest lower
bound

⋂
A and a lowest upper bound

⋃
A.

Definition 5.2.7 (Complete Lattice Operator Properties). An operator T : L → L :

• is monotonic, if I1 ⊆ I2 implies T (I1) ⊆ T (I2), for all I1, I2 ⊆ L
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• has a pre-fixed point I, if T (I) ⊆ I

• has a fixpoint I, if T (I) = I

The following theorem by [78] is key to the fixpoint semantics given in [81].

Theorem 5.2.8 (Knaster-Tarski Theorem). Let 〈L,⊆〉 be a complete lattice and the
operator T on L. If T is monotonic, then it has a least fixpoint.

This result is applicable in our setting, if we consider the complete lattice of Herbrand
interpretations 〈P(BP ),⊆〉 and the operator TP : P(BP )→ P(BP ), introduced below.

Definition 5.2.9 (Immediate Consequence Operator). The immediate consequence op-
erator TP for a program P operates on program interpretations, i.e, TP : P(BP ) →
P(BP ), such that, for a set of ground atoms I ⊂ BP :

TP (I) = {F ∈ BP | F ∈ I ∨ F = head(ιC), C ∈ P ∧ body(ιC) ⊆ I}

The ground atom F is called an immediate consequence of the program P .

Remark 5.2.10. Note that the immediate consequence operator is inherently inflation-
ary3, i.e I ⊆ TP (I), for all program interpretations I.

Since the immediate consequence operator is monotonous, according to Theorem 5.2.8,
it has a least fixpoint, lfp(TP ). This is computed by iterating TP , starting from the
empty interpretation, as shown next.

Definition 5.2.11 (Powers/Iteration of the Immediate Consequence Operator). The
powers of the immediate consequence operator are given by:

TP ↑ 0 = ∅
TP ↑ (n+ 1) = TP (TP ↑ n)

TP ↑ ω =
⋃
n≥0

TP ↑ n

There exists some ω such that TP ↑ ω = lfp(TP ).

Example 5.2.12. Revisiting the transitive closure example from Figure 6.1.1, we have:

TP ↑ 0 = ∅
TP ↑ 1 = TP (∅) = {e(1, 3), e(2, 1), e(4, 2), e(2, 4)}
TP ↑ 2 = TP (TP ↑ 1) = TP ↑ 1 ∪ {tc(1, 3), tc(2, 1), tc(4, 2), tc(2, 4)}
TP ↑ 3 = TP (TP ↑ 2) = TP ↑ 2 ∪ {tc(2, 3), tc(4, 1), tc(4, 4), tc(2, 2)}
TP ↑ 4 = TP (TP ↑ 3) = TP ↑ 3 ∪ {tc(4, 3)}
TP ↑ 5 = TP (TP ↑ 4) = TP ↑ 4

Hence, TP ↑ ω = TP ↑ 4.

It follows that lfp(TP ) = {tc(1, 3), tc(2, 1), tc(4, 2), tc(2, 4), tc(2, 3), tc(4, 1), tc(4, 4), tc(2, 2), tc(4, 3)}.
3This property is also sometimes called supportedness
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Lemma 5.2.13. For a definite program P and a Herbrand Structure H = (UH, I):
I is a pre-fixed point of TP , i.e TP (I) ⊆ I ⇔ I |= P

Proof. Recall that I |= P ⇔ I |= ιP , for all valuations ι : BV (P )→ UH.
⇒ Let H̄ ← B̄1, . . . , B̄n ∈ ιP . If {B̄1, . . . , B̄n} ⊆ I, then, by definition of TP ,

H̄ ∈ TP (I). Since TP (I) ⊆ I, then H̄ ∈ I. Hence, I |= H̄ ← B̄1, . . . , B̄n.
It follows that I |= P .

⇐ Let H̄ ∈ TP (I). Then, there exists a ground instance H̄ ← B̄1, . . . , B̄n of a clause
in P , such that {B̄1, . . . , B̄n} ⊆ I. From the hypothesis, H̄ ∈ I. Thus, TP (I) ⊆ I.

The following theorem relates the immediate fixpoint operator to the unique minimal
model from Section 5.2.1.
Theorem 5.2.14 (van Emden and Kowalski). The unique minimal Herbrand Model
M(P ) of a definite program P is M(P ) = lfp(P ) = TP ↑ ω.
Operationally, the action of the immediate consequence operator is captured by the
following inference rule, called the Elementary Production Principle (EPP) (see [19])

H ← B1, . . . , Bn {F1 . . . Fn} ⊆ I ∃θ, θB1 = F1 ∧ . . . ∧ θBn = Fn

θH
EPP

Figure 5.1.: Elementary Production Principle for Clausal Logical Consequence Inference

Note that the EPP rule describes, in fact, hyperresolution (see Section 3), i.e the iterated
application of binary resolution steps, as detailed in Figure 5.2.
Definition 5.2.15 (Fact Inference). A fact F can be inferred from a definite program
P , according to the following rules:

H ∨ ¬B1 ∨ . . . ∨ ¬Bn F1 ∃θ1.θ1B1 = F1 θ1 � θ
θ1H ∨ ¬θ1B2 ∨ . . .¬θ1Bn F2 ∃θ2.θ2θ1B2 = F2 θ2θ1 � θ

θ2θ1H ∨ ¬θ2θ1B3 ∨ . . . ∨ ¬θ2θ1Bn F3 ∃θ3.θ3θ2θ1B3 = F3 θ3θ2θ1 � θ
...

θn−1 . . . θ1H ∨ ¬θn−1 . . . θ1Bn Fn ∃θn.θn . . . θ1Bn = Fn θn . . . θ1 � θ
θn . . . θ1H

Figure 5.2.: Logical Consequence Inference as Iterated Resolution
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For a Datalog program P , the set of all logical cons(P ) is obtained by iterating the
EPP rule, until reaching saturation, as illustrated by the pseudo-code:

1: procedure Cons(P )
2: X0 ← EDB(P )
3: i← 0
4: while Xi 6= Xi+1 do
5: for all C ≡ H ← L1, . . . , Ln ∈ P do
6: Xi ← Xi ∪ EPP(C,Xi)
7: i← i+ 1
8: return Xi

Theorem 5.2.16. The cons algorithm is sound and complete.

Proof. Corollary of the analogous properties of hyperresolution established in [76].
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In this chapter, we present Datalog with negation, a language strictly more expressive
than the relational algebra and the safe relational calculus, reviewed in Chapter 4. First,
we extend standard Datalog programs with the negation operator in Section 6.1. Then,
we give the stratified semantics for such programs in Section 6.2. Finally, we briefly
overview alternative semantics in Section 6.3.

6.1. Syntax
Revisiting Example 5.1.10, suppose we wish to compute the pairs of disconnected graph
nodes, i.e the complemented transitive closure, marked by the set of dashed arcs in the
example below. To define the corresponding ctc predicate, we need to use negation.

Example 6.1.1. As such, in a preliminary attempt, we could state that ctc holds for
all pairs not in the transitive closure computed by tc.

e(1, 3).
e(2, 1).
e(4, 2).
e(2, 4).

tc(X, Y) :− e(X, Y).
tc(X, Y) :− e(X, Z), tc(Z, Y).
ctc(X, Y) :− not tc(X, Y).

1 3

2 4

At the language level, adding negation amounts to extending the syntax of standard
Datalog defined in Section 5.1. This implies introducing a new primitive for literals and
adjusting the definition for clauses correspondingly.

Definition 6.1.2 (Literals). A literal L is either a positive or a negated atom:

L ::= A | ¬A.

Definition 6.1.3 (Clauses). A clause C has a positive atom head and a body of literals:

C ::= A← L1, . . . , Ln

We denote the sets of positive and negative atoms in the body of C as body+(C) and
body−(C).
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Safety The safety condition imposed on standard Datalog clauses - see Section 5.1.9
- fails at ensuring the finiteness of a model that we could “naively” compute in this
setting, following the semantics from Section 5.2. Indeed, while the definition of ctc
obeys the condition, an infinity of facts are not in the transitive closure computed in
Example 5.2.12. The ensuing extended restriction is standard in the literature.

Definition 6.1.4 (Extended Safety Condition). Let P be program and C one of its
clauses. All variables from the negated atoms in the body of C should also ap-
pear among the arguments of its positive atoms, i.e V (body−(C)) ⊆ V (body+(C)).

Example 6.1.5. The following safe program is an alternative to that in Example 6.1.1.

e(1, 3).
e(2, 1).
e(4, 2).
e(2, 4).

v(X) :− e(X, Y).
v(Y) :− e(X, Y).
tc(X, Y) :− e(X, Y).
tc(X, Y) :− e(X, Z), tc(Z, Y).
ctc(X, Y) :− v(X), v(Y), not tc(X, Y).

It is important to note that this condition is unnecessary if the database domain consists
of constants from the extensional part, i.e from base facts. Consequently, the formaliza-
tion developed in Chapter 9 does away with it, establishing that we indeed can - without
loss of generality - restrict ourselves to the active domain.

6.2. Stratified Semantics
We present the stratified semantics of Datalog programs with negation, by first discussing
the restricted case of semipositive programs. We then introduce the revised definition of
logical consequence and that of a program stratification and, based on these, we compute
the iterative least fixpoint model of a stratified program. We conclude by stating the
main property characterizing stratified semantics.

6.2.1. Semipositive Datalog
Semipositive Datalog programs are programs in which negation is only applied to atoms
with edb predicates. In this resticted case, the negated atoms can be replaced by their
complement with respect to the program’s Herbrand base. Consequently, their semantics
can be defined the same way as that for standard Datalog programs (see Chapter 5).
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Example 6.2.1. The program in Example 6.1.5 is not semipositive, as the negated
predicate tc is intensional. However, it is equivalent to the program below:

v(1). v(2). v(3). v(4).
tc(1, 3). tc(2, 1). tc(4, 2). tc(2, 4).
tc(2, 3). tc(4, 1). tc(4, 4). tc(2, 2). tc(4, 3).

v(X) :− e(X, Y).
v(Y) :− e(X, Y).
ctc(X, Y) :− v(X), v(Y), not tc(X, Y).

which, in turn, is equivalent to following standard Datalog program: This is obtained by

v(1). v(2). v(3). v(4).
tc’(1, 1). tc’(1, 2). tc’(1, 4).
tc’(3, 1). tc’(3, 2). tc’(3, 3). tc’(3, 4).

v(X) :− e(X, Y).
v(Y) :− e(X, Y).
ctc(X, Y) :− v(X), v(Y), tc’(X, Y).

replacing tc with its complement tc’ with respect to the Hebrand base of the program.

6.2.2. Logical Consequence
Let us now consider negation in a more general setting than that from the previous
section, i.e, when also idb predicates can appear negated. To this end, the immediate
consequence operator from Definition 5.2.9 requires amendement.

Definition 6.2.2 (Extended Immediate Consequence Operator). Let P be a program
with negation. The extended immediate consequence operator T̃P operates on program
interpretations, i.e, T̃P : P(BP )→ P(BP ), such that, for a set of ground atoms I ⊂ BP :

T̃P (I) = {F ∈ BP | F ∈ I|edb(P ) ∨ F = head(ιC), C ∈ P ∧ body+(ιC) ⊆ I ∧ body−(ιC)∩I = ∅}

Note that, compared to the operator from Definition 5.2.9, the extended immediate op-
erator is not inherently inflationary. Specifically, it is not the case that I ⊆ T̃P (I), for
all unrestricted1 instances I of P . This impacts monotonicity as explained next.

Indeed, despite clause syntax or database domain constraints, several issues arise when
defining an appropriate semantics for Datalog programs with negation. As we illustrate
below, relying on the semantics from Section 5 fails on numerous accounts.

1i.e instances over the full schema of P , given by the set of its head symbols
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Example 6.2.3. Consider the program P = {p← ¬q}.

• I1 = {p} and I2 = {q} are both minimal Herbrand models. (uniqueness violated)

• I1 ∩ I2 = ∅ 2 P . (model interesection property violated)

• T̃P (∅) = {p} and T̃P ({q}) = ∅ (monotonicity violated)

Moreover, the iteration of the consequence operator also has a problematic behaviour.

Example 6.2.4. Consider the program P̃ = {p← ¬q, q ← ¬p}. Computing the iteration
of the extended consequence operator according to Definition 5.2.11, we obtain results
alternating between ∅ and {p, q}.

As a remedy, [3] develops a theory of non-monotonic operators and, based on it, defines
a stratified semantics for Datalog programs with negation. A key point is the below
definition of iteration that, in being inflationary, ensures monotonicity. Note that this
is different from the inflationary fixpoint semantics, which is based on an alternative
definition of the extended immediate consequence operator. This distinction is detailed
in [1].

Definition 6.2.5 (Powers/Iteration of Non-monotonic Operators). Let 〈L,⊆〉 be a com-
plete lattice and T : L → L, a nonmonotonic operator defined on it. Its powers are:

T ↑ 0 = ∅
T ↑ (n+ 1) = T (T ↑ n) ∪ T ↑ n

T ↑ ω =
⋃
n≥0

T ↑ n

Note that this subsumes the monotonic operator iteration from Definition 5.2.11, i.e,
T ↑ (n+ 1) = T (T ↑ n).

Remark 6.2.6. Applying the previous definition to Example 6.2.4, it follows that {p, q}
is the fixpoint model for P̃ .

6.2.3. Program Stratifications
Having introduced a means of iterating the non-monotonic extended consequence oper-
ator from Definition 6.2.2, we proceed to defining what a program stratification is and
how to compute it. For this, we first need the notion of a predicate definition.

Definition 6.2.7 (Predicate Definitions). Let P be a program P and C ∈ P . The
definition of a program predicate p is given by:

def (p) ≡ {C ∈ P | sym(head(C)) = p}

Definition 6.2.8 (Stratified Programs). Let σ : P → [1, n] be a mapping indexing the
predicate symbols of a program P , such that, for any clause C ∈ P , where
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C ≡ H ← B1, . . . , Bk,¬C1, . . . ,¬Cl

the following properties hold:

• σ(Bi) ≤ σ(H), for all i ∈ [1, k]

• σ(Ci) < σ(H), for all i ∈ [1, l]

We call σ a stratification and, for i ∈ [1, n], we call each Pi a stratum, where

Pi = {p ∈ P | σ(p) = i} and Pi 6= ∅

The mapping σ induces a partitioning of P into P = P1 t . . . t Pn 2, such that, for
every predicate p ∈ P and clause C ∈ Pi, it holds that:

• if p ∈
⋃

L ∈ body+(C)
sym(L)⇒ def (p) ⊆

⋃
j≤i

Pj

• if p ∈
⋃

L ∈ body−(C)
sym(L)⇒ def (p) ⊆

⋃
j<i

Pj

A stratification of P - according to σ - is {P1, . . . , Pn}, denoted as P̄n. We call each Pi
a program slice.

Remark 6.2.9. A program can have multiple stratifications, as seen in Example 6.2.12.

Remark 6.2.10. Each program slice Pi is a semipositive Datalog program relative to
previously defined relations. This follows from the second stratification property.

In [80], the following algorithm is given for testing if a program is stratifiable and, if so,
for computing one of its stratifications:

1: procedure Stratification(P)
2: for all predicates p in P do
3: stratum[p]← 1
4: repeat
5: for all clause C in P with head predicate p do
6: for all negated subgoal of C with predicate q do
7: stratum[p]← max(stratum[p], 1 + stratum[q])
8: for all nonnegated subgoal of C with predicate q do
9: stratum[p]← max(stratum[p], stratum[q])

10: until no stratum changes or a stratum exceeds the predicate count in P

Based on this algorithm, we illustrate program stratification with the examples below.

Example 6.2.11. The programs {p← ¬p} and {p← q, q ← ¬p} are not stratified.
2where t denotes the pairwise disjoint set union
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Example 6.2.12. Consider the program P consisting of the following clauses:

C1 = p(X)← ¬q(X), r(X)
C2 = p(X)← ¬t(X), q(X)
C3 = q(X)← s(X),¬t(X)
C4 = r(X)← t(X)
C5 = q(a) ←
C6 = s(b) ←
C7 = t(a) ←

After iterating the stratification algorithm twice, each predicate symbol in P is associated
to a stratum number, as illustrated in the last line of the table below :

p q r s t
1 1 1 1 1

C1 2 1 1 1 1
C2 2 1 1 1 1
C3 2 2 1 1 1
...

...
...

...
...

...
C7 2 2 1 1 1
C1 3 2 1 1 1
...

...
...

...
...

...
C7 3 2 1 1 1

Hence, P3 can be partitioned into P3 = P1 t P2 t P3, where:

P1 =


r(X)← t(X)
s(b)←
t(a)←

 , P2 =
{
q(X)← s(X),¬t(X)
q(a)←

}
, P3 =

{
p(X)← ¬q(X), r(X)
p(X)← ¬t(X), q(X)

}

Other types of partitions can also be given:

P1 =
{
r(X)← t(X)
t(a)←

}
, P2 =


q(X)← s(X),¬t(X)
q(a)←
s(b)←

 , P3 =
{
p(X)← ¬q(X), r(X)
p(X)← ¬t(X), q(X)

}

All stratification refinements form valid stratifications.

For instance, P = P1 t P2 t P3 t P4, where: P1 =
{
s(b)←
t(a)←

}
, P2 = {r(X)← t(X)},

P3 =
{
q(X)← s(X),¬t(X)
q(a)←

}
and P4 =

{
p(X)← ¬q(X), r(X)
p(X)← ¬t(X), q(X)

}
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6.2.4. Iterated Fixpoint Models
The stratified semantics of a (stratifiable) Datalog program with negation is the iterated
fixpoint model obtained through the step-wise, bottom-up computation of the least
fixpoint model corresponding to each program slice.

Definition 6.2.13 (Stratified Semantics). Let P be a program stratified by

P = P1 t . . . t Pn.

We iteratively build a model for P , as follows:

M1 = T̃P1 ↑ ω(∅)
Mn = T̃Pn ↑ ω(Mn − 1)

The intended semantics of P is Mn, denoted as P strat(I).

Remark 6.2.14. Note that Mn is independent from the choice of stratification.
This result is proved in [3].

We illustrate the computation of the iterative least fixpoint model in the example below.

Example 6.2.15. Let us compute the semantics of P from Example 6.2.12, according
its first stratification, i.e P = P1 t P2 t P3, where:

P1 =


r(X)← t(X)
s(b)←
t(a)←

 P2 =
{
q(X)← s(X),¬t(X)
q(a)←

}
P3 =

{
p(X)← ¬q(X), r(X)
p(X)← ¬t(X), q(X)

}

• M1 = TP1 ↑ ω(∅) = {r(a), s(b), t(a)}

• M2 = TP2 ↑ ω(M1) = M1 ∪ {q(a), q(b)}

• M3 = TP3 ↑ ω(M2) = M2 ∪ {p(b)}

Hence, MP = M3 = {r(a), s(b), t(a), q(a), q(b), p(b)}.

Remark 6.2.16. As established in [3], the computation of the iterated fixpoint model is
polynomial in complexity.

Remark 6.2.17. The stratified semantics for Datalog programs with negation gener-
alizes that for semipositive Datalog programs. As such, an equivalent alternative to
Definition 6.2.13 is that found in [1]3:

M1 = I, where I is an instance over P1

Mn = Mn−1 ∪ TPn−1 ↑ ω(Mn−1|edb(Pi))

Note the use of the immediate consequence operator from Chapter 5. Also note that this
is the definition upon which we base our formalization in Chapter 9, conveniently reusing
results from our formalization of standard Datalog in Chapter 8.

3Mn−1|edb(Pi) corresponds to the notion of “interpretation slicing” introduced in Chapter 9
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The main property of the stratified semantics is captured by the following result, whose
statement is taken from [1]:

Theorem 6.2.18. For each stratifiable Datalog program P and instance I over edb(P ):

• P strat(I) is a minimal model4 of P∗5 and its restriction to edb(P ) equals I

• P strat(I) is a minimal fixpoint of TP and its restriction to edb(P ) equals I

where P strat(I) denotes the corresponding stratified semantics of P .

Proof. The proof follows by induction and is presented in Chapter 15.2 of [1]. We detail
the corresponding Coq proof in Section 9.6.1.

6.3. Alternative Semantics
As outlined in [1], numerous semantics have been proposed as a way of defining an
appropriate meaning for Datalog programs with negation. Among these, the perfect
model semantics is a refinement of the stratified one we previously presented and, for the
more general case of unstratified programs, the stable model and well-founded semantics
are standard approaches.

6.3.1. Perfect Model Semantics
The perfect model semantics, introduced in [71], operates on locally-stratified programs
that are a generalization of stratified programs. Rather than relying on stratifications
of predicate symbols and their induced program partitions, it is based on stratifications
of ground atoms and their induced Herbrand base partitions. As such, program slices
correspond to rules whose grounded heads are in a given Herbrand base stratum. The
computation of the perfect model follows Definition 6.2.13. Stratified programs are also
locally stratified and their iterated fixpoint model coincides with the perfect model.

6.3.2. Stable Model Semantics
The stable model semantics, introduced in [36], is based on the transformation of a
program with negation into a negation-free form. First, the initial program is grounded;
then, relative to a given interpretation I, the program is “reduced” by removing all rules
containing the negation of atoms belonging to I and, subsequently, removing all negated
atoms from the remaining rules. If the unique minimal model of the “reduced” program
coincides with I, then I - called a stable model - is the unique minimal model of the
original program. For stratifiable programs, the stable model coincides with the iterated
fixpoint model.

4among models M of P such that M |edb(P ) = I
5the first-order logic translation of P according to Section 5.2.1
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6.3.3. Well-founded Model Semantics
The well-founded model semantics, introduced in [82], extends the stable model semantics
to a three-valued logic setting (see [72]). Given a partial interpretation I, a Hebrand base
subset is “unfounded”, if, for all rule groundings with heads in the subset, it holds that
either a positive body atom belongs to the subset or a body literal is false, according to I.
Based on this, logical consequence is defined as the union of the immediate consequence
with the negation of elements in the greatest unfounded set. The well-founded model
is the fixpoint obtained by iterating this monotonous logical consequence operator. For
locally stratified programs, the well-founded and perfect model semantics coincide. For
Datalog programs with unstratified negation, the (total) well-founded model coincides
with the unique stable one.
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In this chapter, we present a Coq formalization of the relational data model, which
underlies relational database systems. More precisely, we formalize the data definition
part of the model, including integrity constraints. We model two different query language
formalisms: relational algebra and conjunctive queries. Also, we mechanize logical query
optimization and prove the main “database theorems”, namely algebraic equivalence, the
homomorphism theorem and conjunctive query minimization.

7.1. Data Representation
As introduced in Section 4.1, in the relational model, data is represented by relations.
These consists of rows, whose components are labelled with attribute names and contain
values from given domains. The structure of such relations (their schema) is dissociated
from their content (their instance), as outlined in our development as well.

In this section we outline the way in which we formalized all these base ingredients
in Coq. We start by presenting the encoding of attributes, domains and values, in
Section 7.1.1. Then, we move on to the modelization of tuples, in Section 7.1.2, and to
that of relations, schemas and instances, in Section 7.1.3.

7.1.1. Attributes, Domains, Values
Quoting [1], a set attribute, containing attribute names is fixed and equipped with a
total order ≤att. When different attributes should have distinct domains (or types),
a mapping, dom, from attribute to domain, is assumed. Furthermore, an infinite set
value is fixed. Usually, the set of attributes is assumed to be countably infinite, but,
in our formal development, this assumption was not needed. We also assume several
distinct domain names (e.g., “string”, “integer”), which belong to the domain set. In
the database context, domain corresponds to the Coq notion of a type. In order to
have a decidable equality, we rather used our own type : Type. In our setting, dom
is called type_of_attribute. Each value has a formal type (obtained by the function
type_of_value), inhabiting type. All these assumptions are gathered in a Coq record
Tuple.Rcd, presented below, whose contents will be iteratively enriched throughout this
section.

Module Tuple.
Record Rcd : Type := mk_R {
(* primitives: attributes, types, values *)
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attribute : Type;
type : Type;
value : Type;

(* typing attributes and values *)
type_of_attribute : attribute → type;
type_of_value : value → type;

(* default values.*)
default_value : type → value;
... }.

End Tuple.

We illustrate these definitions with our running movie example. Recall that our purpose
is not to store an actual database schema or instance in Coq. The following example is
rather intended to be a proof of concept.

Inductive attribute :=
| Title | Director | Actor | Theater | Address | Phone | Schedule.

Inductive type := type_string | type_nat | type_Z.

Inductive value :=
| Value_string : string → value
| Value_nat : nat → value
| Value_Z : Z → value.

Definition type_of_attribute x :=
match x with

| Title | Director | Actor
| Theater | Address | Phone ⇒ type_string
| Schedule ⇒ type_nat

end.

Definition type_of_value v :=
match v with

| Value_string _ ⇒ type_string
| Value_nat _ ⇒ type_nat
| Value_Z _ ⇒ type_Z

end.

There is also a more generic modeling for attributes, and in that case, for the sake of
readability, we could use the Coq notations shown in [13].
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7.1.2. Tuples
In the named perspective, tuples are characterized by their relevant attributes, e.g, for
the Movies relation, these are {Title, Director, Actor}. We call this the support
of the tuple. Following textbooks, we naturally model it using finite sets. To this end,
we adapted Letouzey’s MSet library [55]. In order to be as modular as possible, we
still dissociate the specification of finite sets from the implementation. The specification
is given by a record Fset.Rcd, parametrized by the type of elements, and contains a
comparison function elt_compare.

From now on, we will denote set equivalence with set=. This corresponds to extensional
set equality: ∀s∀s′, s set= s′ ⇔ (∀e, e ∈ s⇔ e ∈ s′). For the sake of readability, the usual
sets operators will be denoted by their standard mathematical notations (∩, ∪, \, ∈,...).
Extending the record Tuple.Rcd above, we further assume:

Module Tuple.
Record Rcd : Type := mk_R {

(* primitives : attributes, domains and values *)
...
(* finite sets of attributes *)
A : Fset.Rcd attribute;
(* tuples, their support and value extraction functions *)
tuple : Type;
support : tuple → set A;
dot : tuple → attribute → value;
(* building tuples and corresponding soundness conditions *)
mk_tuple : set A → (attribute → value) → tuple;
support_mk_tuple_ok : ∀ V f, support (mk_tuple V f) set= V;
dot_mk_tuple_ok : ∀ a V f, a ∈ V → dot (mk_tuple V f) a = f a;
(* finite sets of tuples *)
FTuple : Fset.Rcd tuple;
(* tuple equivalence *)
tuple_eq_ok : ∀ t1 t2 : tuple,

(Fset.elt_compare FTuple t1 t2 = Eq) ←→
(support t1 set= support t2 ∧
∀ a, a ∈ (support t1) → dot t1 a = dot t2 a)

}
End Tuple.

where A models finite sets of attributes. We still keep the type of tuples abstract and
assume the existence of two functions: support, returning the relevant tuple attributes,
and dot, the associated field extraction. These functions allow us to characterize tuple
equivalence (tuple_eq_ok), since a tuple t behaves as the pair (support t, dot t).
Further, we assume the existence of the mk_tuple function, which builds tuples. This
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and the previous modeling of attribute induce a notion of tuple well-typedness

A tuple t is well-typed if and only if, for any attribute a in its support, the type of the
extracted value t.a corresponds to the type of the attribute a:

Definition well_typed_tuple (t : tuple) :=
∀ a, a ∈ (support t) →
type_of_value (dot t a) = type_of_attribute a.

However and surprisingly, such a notion was useless in proving standard textbook re-
sults. This is an a posteriori justification of the relevance of the assumption that it
suffices to use a unique domain for values. The previously presented record Tuple.Rcd
captures exactly the abstract behavior of tuples, i.e., the needed properties for proving
all the theorems presented hereafter. To illustrate the generality and flexibility of our
specification, we give, in [13], different possible implementations for tuples. All of them
satisfy the required properties and are orthogonal to the implementation of attributes.
For example, one can implement tuples as pairs containing a set of attributes and a
function or as association lists, between attributes and values.

7.1.3. Relations, Schemas and Instances
A distinction is made between the database schema, which specifies the structure of the
database, and the database instance, which specifies its actual content: sets of tuples.
In textbooks, each table is called a relation and has a name. Hence, we assume a
set relname of relation names, equipped with a comparison function, specified by ORN.
The latter is suitable for computing equality checks and building finite set records. The
structure of a table is given by a relation name and a finite set of attributes: its sort. The
relation name, together with its sort, is called the relation schema. A database schema
is a non-empty finite set of relation schemas. We choose to model database schemas
with a function basesort, which associates to each relname its sort. We adopted this
representation, as it is the most abstract and makes no further choice on the concrete
implementation of the basesort function, e.g, be it through association lists, finite maps
or even functions.

Module DatabaseSchema.
Record Rcd attribute (A : Fset.Rcd attribute) : Type := mk_R {
(* relation names *)
relname : Type;
(* ordering on relation names *)
ORN : Oset.Rcd relname;
(* relation sort *)
basesort : relname → set A
}.
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End DatabaseSchema.

More precisely, the basesort function will be used to relate the support of tuples - in
the instance they belong to - and the structure of the corresponding relation name.

Definition well_sorted_instance (I : relname → setT) :=
∀ (r : relname)(t : tuple), t ∈ (I r) → support t set= basesort r.

It is important to mention that, in all our further development, the notion of well-sorted
instance resulted central to the correctness of many theorems.

7.2. Data Extraction: Query Languages
Queries allow for the extraction of information from tables. The result of a query is also
a table or a collection of tables. Information extraction is usually performed by a query
language, the standard being SQL or QBE. All these languages rely on a more formal
basis: relational algebra or first-order logic. Both formalisms are based on the notion of
tuples. Thus, we assume the existence of a record T of type Tuple.Rcd, for representing
tuples, as well as of a record DBS of type DatabaseSchema.Rcd, for representing base
relations. Moreover, we assume that T and DBS use the same representation, A, for
finite sets of attributes. This is achieved parameterizing DBS by (A T). For the sake of
readability, we omit all extra (implicit) record arguments and denote by setA and setT
the finite sets of attributes and, respectively, of tuples.

7.2.1. Relational Queries
Relational algebra consists of a set of (algebraic) operators with relations as operands.
The algebra we shall consider in this article is the SPJRU(ID), where S stands for selec-
tion, P for projection, J for natural join, R for renaming and last U for union. Though
intersection (I) and difference (D) are not part of the SPJRU minimal algebra, we decided
to include them at this point, as they are usually part of commercial query languages. In
the context of the named version, relations are combined using the natural join, whereas,
in the unnamed one, the Cartesian product is used. The complete definition of queries
is given in Figure 7.1. In our development, we chose, as far as possible, not to embed
proofs in types. Hence, types are much more concise and readable.

Syntax

Base relations are queries. Concerning the selection operator, in textbooks, as seen
in Section 4.2.1, it has the form σA=a or σA=B, where A,B ∈ attribute and a ∈ value.
The notation A = a, respectively A = B, is improper and corresponds to x.A = a,
respectively x.A = x.B, where x is a free variable. Given a set of tuples I, with the
same support S, we call S the sort of I. The selection with respect to A = B applies
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(* attribute renaming; no assumptions are made at this point,
neither about type compatibility, nor about injectivity. *)

Definition renaming := attribute T → attribute T.

Inductive query : Type :=
| Query_Basename : relname → query
| Query_Sigma : formula → query → query
| Query_Pi : setA → query → query
| Query_NaturalJoin : query → query → query
| Query_Rename : renaming → query → query
| Query_Union : query → query → query
| Query_Inter : query → query → query
| Query_Diff : query → query → query

with variable : Type :=
| Var : query → varname → variable

with term : Type :=
| Term_Constant : value → term
| Term_Dot : variable → attribute → term

with atom : Type :=
| Atom_Eq : term → term → atom
| Atom_Le : term → term → atom

with formula : Type :=
| Formula_Atom : atom → formula
| Formula_And : formula → formula → formula
| Formula_Or : formula → formula → formula
| Formula_Not : formula → formula
| Formula_Forall : variable → formula → formula
| Formula_Exists : variable → formula → formula.

Figure 7.1.: Queries
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to any set of tuples I of sort S, with A,B ∈ S, and yields an output of sort S. The
semantics of the operator is:

σf (I) = {t | t ∈ I ∧ f{x→ t}}

where f{x→ t} denotes “t satisfies formula f” and x is the only free variable in f .
Formula satisfaction is based on the standard underlying interpretation (see Section 3).
Since, in the context of database program verification, general first-order formulas are
used, we also chose these to model selection (filtering) conditions, rather than restricting
ourselves to the simpler case found in textbooks. We first introduce variable names :

Inductive varname : Set := VarN : N → varname.

Next, formulas are built in the standard way, from equality and inequality atoms, which
either compare constants or tuple field extractions. However, one should notice that
variables are used to denote tuples in the output of specific queries, therefore containing
information about the query itself. For example, the variable x below is intended to
represent any tuple in the Movies relation, while the formula f corresponds to:

x ∈ Movies⇒ x.Director = "Fellini".

(* x ∈ Movies *)
Notation x := (Var (Query_Basename Movies) (VarN 0)).
(* x.Director = "Fellini" *)
Definition f := (Formula_Atom

(Atom_Eq (Term_Dot x Director)
(Term_Constant (Coq_string "Fellini")))).

The projection operator has the form: π{A1,...,An}, n ≥ 0 and operates on all inputs, I,
whose sort contains the subset of attributes W = {A1, . . . , An} and produces an output
of sort W . The semantics of projection is: πW (I) = {t|W | t ∈ I}, where the notation
t|W represents the tuple obtained from t, by only keeping the attributes in W . Note
that setA, the type of W , denotes finite sets of attributes and embeds, as an implicit
argument, (A T), the record representing all types and operations on finite sets. Depend-
ing on the actual implementation of sets, this definition may contain some proofs in the
setA datatype. For instance, the proof that a set is an AVL tree may be part of the type.

The natural join operator, denoted ./, takes arbitrary inputs I1 and I2, of re-
spective sorts V and W , and produces an output of sort V ∪ W . The semantics is:
I1 ./ I2 = {t | ∃v ∈ I1,∃w ∈ I2, t|V = v ∧ t|W = w}. When sort(I1) = sort(I2), then
I1 ./ I2 = I1 ∩ I2, and, when sort(I1) ∩ sort(I2) = ∅, then I1 ./ I2 is the cross-product
of I1 and I2. The join operator is associative and commutative.

An attribute renaming for a finite set V of attributes is a one-to-one mapping from V
to attribute. In textbooks, an attribute renaming g for V is specified by the set of pairs
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(a, g(a)), where g(a) 6= a; this is usually written as a1a2 . . . an → b1b2 . . . bn, to indicate
that g(ai) = bi, for each i ∈ [1, n], n ≥ 0. A renaming operator for inputs over V is an
expression ρg, where g is an attribute renaming for V ; this maps to outputs over g[V ].
Specifically, for I over V , ρg(I) = {v | ∃u ∈ I,∀a ∈ V, v(g(a)) = u(a)}.

We made a different, more abstract, choice when modeling this operator. To avoid
proofs in types, we made no assumptions on the “renaming” function, except for its
type attribute → attribute, in the inductive definition. However, the one-to-one
assumption will explicitly appear as an hypothesis for some theorems. Set operators
can be applied over sets of tuples, I1 and I2, with the same sort. As it is standard in
mathematics, I1 ∪ I2, respectively I1 ∩ I2 and I1 \ I2, is the set having this same sort
and containing the union, respectively the intersection and difference, of the two sets
of tuples. Sort compatibility constraints are absent from our modeling, so as to avoid
proofs, and will be enforced in the semantics part.

Semantics

We present our Coq modeling of query evaluation. To this end, we have to explicitly
describe constraints about sorts, which were, deliberately, left out of the query syntax.
For base queries, the sort corresponds to the basesort of the relation name; for selec-
tions, the sort is left unchanged and, for joins, the sort is, as expected, the union of sorts.
The cases which are of interest are projection, renaming and set theoretic operators.

For projections, rather than imposing that the set W of attributes on which we project,
be a subset of the sort of q1, we chose to define the sort of Query_Pi W q1 as their
intersection (W ∩ sort q1). For renaming, we check that the corresponding function
rho behaves as expected, i.e., that it is a one-to-one mapping over attributes in q1;
otherwise the sort of the query is empty. Lastly, for set theoretic operators, if the input
sorts are not compatible, the sort of the query is empty. This is formally defined by:

Fixpoint sort (q : query) : setA := match q with
| Query_Basename r ⇒ basesort r
| Query_Sigma _ q1 ⇒ sort q1
| Query_Pi W q1 ⇒ W ∩ sort q1
| Query_Join q1 q2 ⇒ sort q1 ∪ sort q2
| Query_Rename rho q1 ⇒

let sort_q1 := sort q1 in
if one_to_one_renaming_bool sort_q1 rho
then fset_map A A rho sort_q1
else ∅

| Query_Union q1 q2 | Query_Inter q1 q2
| Query_Diff q1 q2 ⇒

let sort_q1 := sort q1 in
if sort_q1 set=? sort q2
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then sort_q1
else ∅

end.

At this point we are ready to interpret queries. We first assume an interpretation for
base relations. When proving the usual structural equivalence theorems (Section 4.2.1)
for query optimization, we impose that instances be well-sorted. This means that all
tuples in an instance or query evaluation must have the same support, which is the sort
of the query. This property is inherited from base instances, as stated below:

Lemma well_sorted_query :
∀ (I : relname → setT), well_sorted_instance I →
∀ (q : query) (t : tuple),
t ∈ (eval_query I q) → support t set= sort q.

Query evaluation is inductively defined from a given interpretation I for base relations.
We sketch its structure (the complete definition of eval_query is given in [13]), in order
to emphasize the fact that the same tests as for sorts are performed. For example, for
renaming, if the corresponding function is not suitable, the query evaluates to the empty
set of tuples.

Fixpoint eval_query I (q : query) : setT := match q with
| Query_Basename r ⇒ I r
| Query_Sigma f q1 ⇒ ...
| Query_Pi W q1 ⇒ ...
| Query_Join q1 q2 ⇒ ...
| Query_Rename rho q1 ⇒

let sort_q1 := sort q1 in
if one_to_one_renaming_bool sort_q1 rho
then ...
else ∅

| Query_Union q1 q2 ⇒
if sort q1 set=? sort q2
then (eval_query I q1) ∪ (eval_query I q2)
else ∅

| Query_Inter q1 q2 ⇒ if sort q1 set=? sort q2 ...
| Query_Diff q1 q2 ⇒ if sort q1 set=? sort q2 ...

end.

Our definition enjoys the standard properties stated in all database textbooks, which
are expressed in our framework by the following lemmas. We only present some of them;
the full list, as well as the complete code, is given in [13]. In particular, we detail the
way in which terms, atoms and formulas are interpreted. For the sake of readability, we
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used some syntactic sugar, such as I=, ∈I , as well as f {x → t}, for the interpretation
of a formula f under an assignment x → t.

Notation query_eq q1 q2 := (eval_query I q1 set= eval_query I q2).

Infix " I= " := query_eq.
Notation "t ’∈I ’ q" := t ∈ (eval_query I q).

Lemma mem_Basename :
∀ I r t, t ∈I (Query_Basename r) ←→ t ∈ (I r).

Lemma mem_Inter : ∀ I q1 q2, sort q1 set= sort q2 →
∀ t, t ∈I (Query_Inter q1 q2) ←→ (t ∈I q1

∧
t ∈I q2).

Lemma mem_Sigma : ∀ I, well_sorted_instance I →
∀ f x q t, set_of_attributes_f f ⊆ sort q →
Fset.elements FV (free_variables_f f) = x :: nil →
(t ∈I (Query_Sigma f q) ←→ (t ∈I q

∧
f {x → t} = true)).

Lemma mem_Pi : ∀ I, well_sorted_instance I →
∀ W q t, t ∈I Query_Pi W q ←→
∃ t’, (t’ ∈I q

∧
t t= mk_tuple (W ∩ sort q) (dot t’)).

Lemma mem_Join : ∀ I, well_sorted_instance I →
∀ q1 q2 t, t ∈I Query_Join q1 q2 ←→
∃ t1, ∃ t2, (t1 ∈I q1

∧
t2 ∈I q2∧

(∀ a, a ∈ sort q1 ∩ sort q2 → dot t1 a = dot t2 a)∧
t t= mk_tuple (sort q1 ∪ sort q2)

(fun a ⇒ if a ∈? (sort q1) then dot t1 a else dot t2 a)).

Definition rename_tuple (rho : renaming) (t : tuple T) : tuple T :=
let V := support T t in
mk_tuple T

(fset_map _ (A T) rho V)
(fun a ⇒ dot T t (inv_fun (A T) (A T) a V rho a)).

Lemma mem_Rename : ∀ I, well_sorted_instance I →
∀ rho q, one_to_one_renaming (sort q) rho →
∀ t, t ∈I (Query_Rename rho q) ←→
(∃ t’, t’ ∈I q

∧
t t= rename_tuple rho t’).

Lemma NaturalJoin_Inter : ∀ I, well_sorted_instance I →
∀ q1 q2, sort q1 set= sort q2 →
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Query_NaturalJoin q1 q2 I= Query_Inter q1 q2.

The lemmas above highlight the heterogeneous nature of relational operators. In order
to prove that these enjoy their usual semantics, only sort compatibility conditions were
needed for the purely set theoretic ones, while, for the database ones, the well-sortedness
conditions sufficed. Interestingly, the NaturalJoin_Inter lemma, which bridges both
worlds, needed both conditions.

Optimizing Relational Algebra Queries Query optimization exploits algebraic equiv-
alences. Such equivalences are found in all textbooks and in particular in [73]. We list
the most classical ones hereafter.

σf1∧f2(q) ≡ σf1(σf2(q)) (7.1)
σf1(σf2(q)) ≡ σf2(σf1(q)) (7.2)

(q1 ./ q2) ./ q3 ≡ q1 ./ (q2 ./ q3) (7.3)
q1 ./ q2 ≡ q2 ./ q1 (7.4)

πW1(πW2(q)) ≡ πW1(q) if W1 ⊆ W2(7.5)
πW (σf (q)) ≡ σf (πW (q)) if Att(f) ⊆ W (7.6)
σf (q1 ./ q2) ≡ σf (q1) ./ q2 if Att(f) ⊆ sort(q1)(7.7)
σf (q1∇q2) ≡ σf (q1)∇σf (q2) where ∇ is ∪,∩ or \(7.8)

All these have been formally proved and their formal statements are given in [13]. Al-
though not technically involved, all the proofs relied on the assumption that instances
are well-sorted. To illustrate this, we give the formal statement of (7.7).

Lemma Sigma_NaturalJoin_comm : ∀ I, well_sorted_instance I →
∀ f q1 q2, set_of_attributes_f f ⊆ sort q1 →
Query_Sigma f (Query_NaturalJoin q1 q2) I=
Query_NaturalJoin (Query_Sigma f q1) q2.

7.2.2. Conjunctive Queries
In this context, the query language is slightly different. Rather than relying on alge-
braic operators, queries are expressed by logical formulas of the form {(a1, . . . , an) |
∃b1, . . .∃bm, P1 ∧ . . .∧Pk}, where the ai, bi denote variables which will be interpreted by
values and where Pi’s denote either equalities or membership to a base relation. Recall
from Section 4.2.2 that, for example, the query: “Which of “Fellini” ’s movies are played
at the cinema “Action Christine” ?” expressed in relational algebra as:

π{Title, Director, Actor}(σ x.Director="Fellini"∧
x.Theater = "Action Christine"

(Movies ./ Pariscope))

corresponds to the conjunctive query:{
(t, d, a) | ∃th, ∃t

′,∃s, Movies(t, d, a) ∧ Pariscope(th, t′, s)
∧t = t′ ∧ d = "Fellini" ∧ th = "Action Christine"

}
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Quoting [1], “if we blur the difference between a variable and a constant, the body of
a conjunctive query can be seen as an instance with additional constraints”. This leads
to the notion of extended tuples mapping attributes to either constants or variables.
Hence, a tableau over a schema is defined exactly as was the notion of an instance over
this schema, except that it contains extended tuples. A conjunctive query is simply a
pair (T, s) where T is a tableau and s, an extended tuple called the summary of the
query. Variables occurring in s are called distinguished variables or distinguished symbols
in textbooks. The summary s in query (T, s) represents the answer to the query which
consists of all tuples for which the pattern described by T is found in the database.
This formulation of queries is closest to the QBE visual form. Equality conditions are
embedded in the tableau itself as shown by the following example:

Title Director Actor Theater Schedule
t “Fellini” a Movies
t “Action Christine” s Pariscope
t d a summary

Syntax

The formal way to “blur” the differences between variables and constants (values in our
modelling) is achieved by embedding them in a single Coq type, i.e, tvar.

Inductive tvar : Type :=
| Tvar : nat → tvar
| Tval : value → tvar.

Inductive trow : Type :=
| Trow : relname → (attribute → tvar) → trow.

Notice that a row, modeled by the type trow, is tagged by a relation name (its first
argument) and gathers variables and constants, thanks to its second argument. For
instance, the first row of the above query is:

Trow Movies
(fun a : attribute ⇒

match a with
| Title ⇒ Tvar 0
| Director ⇒ Tval ‘‘Fellini’’
| Actor ⇒ Tvar 2

end)

A tableau is a trow set. This is built using a comparison function, similar to the one
for tuples. Next, a summary is tagged by a set of relevant attributes and maps from
attribute to tvar. Lastly, a conjunctive query (tableau_query) consists of a tableau
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and a summary.

Notation setR := (Fset.set (Ftrow T DBS)).

Definition tableau := setR.

Inductive summary : Type :=
| Summary : setA → (attribute → tvar) → summary.

Definition tableau_query := (tableau * summary)

Semantics

We illustrate the semantics of conjuctive queries through our previous example. Its
query is expressed by the summary:

Summary (mk_set A (Title :: Director :: Actor :: nil))
(fun a : attribute ⇒

match a with
| Title ⇒ Tvar 0
| Director ⇒ Tvar 1
| Actor ⇒ Tvar 2

end)

and its result consists of the set of movies:

mk_set A
((mk_movie "Casanova" "Fellini" "Donald Sutherland") ::
(mk_movie "La strada" "Fellini" "Giulietta Masini") :: nil)

This set is computed by composing the summary function with some mappings from
variables in the tableau rows to values, hence mapping summaries to tuples. Thus,
we first need to define the notion of valuation, which, as usual, maps variables to
values. More precisely, in our case, as we embedded variables and constants in a single
abstract type tvar, and as variables are characterized by their nat identifier, the type of
valuation is nat → value. Indeed, applying a valuation (thanks to apply_valuation)
on constants, consists of applying the identity function.

Definition valuation := nat → value.

Definition apply_valuation (ν : valuation) (x : tvar) : value :=
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match x with

| Tvar n ⇒ ν n

| Tval c ⇒ c
end.

Notation "ν ’[[’ x ’]]’" := (apply_valuation ν x).

Valuations naturally extend to trow’s and summary’s, yielding tuples, and to tableaux,
yielding sets of tuples.

Definition apply_valuation_t (ν : valuation)(x : trow) : tuple :=
match x with

| Trow r f ⇒ mk_tuple (basesort r) (fun a ⇒ ν [[f a]])
end.

Notation "ν ’[[’ x ’]]t’" := (apply_valuation_t ν x).

Definition apply_valuation_s (ν : valuation)(x : summary) : tuple :=
match x with

| Summary V f ⇒ mk_tuple V (fun a ⇒ ν [[f a]])
end.

Notation "ν ’[[’ x ’]]s’" := (apply_valuation_s ν x).

Given a query (T, s), its result on an instance I is given by: {t | ∃ν, ν(T ) ⊆ I ∧ t = ν(s)},
where ν is a valuation. In our development, we characterize this set, using the predicate
is_a_solution I (T, s), where t= denotes tuple equivalence.

Inductive is_a_solution (I : relname → setT)
: tableau_query → tuple → Prop :=
| Extract : ∀ (ST : tableau) (s : summary) (ν : valuation),

(∀ (r : relname) (f : attribute → tvar),
(Trow r f) ∈ ST → ν [[Trow r f]]t ∈I (Query_Basename r)) →

∀ (t : tuple), t t= ν [[s]]s → is_a_solution I (ST, s) t.

Optimizing Conjunctive Queries For the algebraic queries that are expressible by a
conjunctive query, there exists an exact optimization technique. In this case, query op-
timization is based on the following consideration: the number of rows in the tableau
corresponds to the number of joins (plus one) in the relational expression. Hence, the
problem of conjunctive query optimization boils down to that of reducing the former.

The notions of containment, equivalence and minimality for tableaux are analogous to
those for queries. Specifically, let Q1, Q2 be two conjunctive queries and (T1, s1), (T2, s2),
their tableaux representation. The tableau (T1, s1) is said to be contained in (T2, s2),
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denoted as (T1, s1) ⊆ (T2, s2), iff (T1, s1) and (T2, s2) have the same set of attributes
and, for all relation instances, solutions of (T1, s1) are also solutions of (T2, s2). This
inclusion induces the equivalence:

(T1, s1) ≡ (T2, s2) iff (T1, s1) ⊆ (T2, s2) and (T2, s2) ⊆ (T1, s1).
This is formalized in Coq by:

Definition is_contained_instance I Ts1 Ts2 :=
∀ (t : tuple), is_a_solution I Ts1 t → is_a_solution I Ts2 t.

Definition is_contained Ts1 Ts2 :=
∀ I, is_contained_instance I Ts1 Ts2.

Definition are_equivalent Ts1 Ts2 :=
is_contained Ts1 Ts2

∧
is_contained Ts2 Ts1.

These semantic properties can be checked syntactically thanks to the notion of tableau
homomorphism, introduced as follows.
Definition 7.2.1 (Tableaux Homomorphism). Let (T1, s1) and (T2, s2) be two tableaux.
A homomorphism (tableau substitution) θ : (T1, s1) → (T2, s2) is a mapping from vari-
ables to variables or constants. This satisfies the conditions: 1) for all rows ~ti tagged by
a relation name Ri in T1, ~θ(ti) occurs tagged by Ri in T2 and 2) θ(s1) = s2.
Based on this, the theorem below characterizes conjunctive query containment:
Theorem 7.2.2 (Homomorphism Theorem). Let Q1, Q2 be two conjunctive queries and
(T1, s1), (T2, s2) be their tableaux representations. Then:

Q1 ⊆ Q2 iff there exists a homomorphism θ : (T2, s2)→ (T1, s1).
Consequentely, given a conjunctive query Q, an equivalent minimal one can be con-
structed, once the query is transformed into the tableau form (T, s). Indeed, this is
realized by iterating the following procedure, until a fixpoint is reached: 1) chosing a
row ~t from T and 2) checking whether a homomorphism θ : (T, s)→ (T \ ~t, s) exists.
Regarding our Coq formalization of the above, let us first give the definition of tableau
substitution in our setting and then formally define the application of a substitution to a
variable. This notion extends to trow’s and summary’s. Then, we give the correspond-
ing encodings for the tableau homomorphism and for the Homomorphism Theorem.

Definition substitution := nat → tvar.

Definition apply_subst_tvar (θ : substitution) (x : tvar) :=
match x with

| Tvar n ⇒ θ n
| Tval _ ⇒ x
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end.
Notation "θ ’[’ x ’]_v’" := (apply_subst_tvar θ x).

Definition tableau_homomorphism (θ : substitution) Ts2 Ts1 :=
match Ts1, Ts2 with (T1, s1), (T2, s2) ⇒

(fset_map Ftrow Ftrow (fun t ⇒ θ [t]_t) T2) ⊆ T1∧
θ [s2]_s s= s1

end.

Theorem Homomorphism_theorem :
∀ Ts1 Ts2, (∃ θ , tableau_homomorphism θ Ts2 Ts1) ←→
is_contained Ts1 Ts2.

We briefly sketch the Coq proof of the Homomorphism Theorem. Interestingly, in
textbooks a lot of material is hidden. Namely, the notion of fresh constants is central
to the proof in order to be able to define a list of such distinct fresh constants for each
variable present in the query. We assume therefore

Hypothesis fresh : (Fset.set Ftvar) → value.

Hypothesis fresh_is_fresh :
∀ lval, (Tval (fresh lval)) ∈ lval → False.

This implies that domains are infinite. Based on fresh constants we define a variable
assignment µ from variables to new fresh abstract constants on (T1, s1). We then
show that µ is a solution of (T1, s1) with respect to the interpretation I, which con-
tains exactly µ(T1). Thanks to the definition of tableaux containment, µ is a solution
of (T2, s2) with respect to I. Hence there is an assignment ν which corresponds to
a solution of (T2, s2), ν(s2) = µ(s1) ∧ (∀t2 r, t2 : r ∈ T2 ⇒ ν(t2) ∈ I(r)), that is
ν(s2) = µ(s1) ∧ (∀ t2 r, t2 : r ∈ T2 ⇒ ∃ t1, t1 : r ∈ T1 ∧ ν(t2) = µ(t1)). By
construction µ admits an inverse function defined over the variables of (T1, s1). What
remains to show is that x 7→ µ−1(ν(x)) is an homomorphism from (T2, s2) to (T1, s1).
The main difficulties encountered in Coq were to properly define the notion of query
solution, to build the variable assignment µ as a function from the fresh function and
to prove that µ is injective.

At this point, based on the Homomorphism Theorem, given a conjunctive query, we
explicitly construct an equivalent minimal one. As mentioned above, the optimization
process consists in inspecting all equivalent sub-tableaux and, among those, keeping a
minimal one.

Definition min_tableau Ts Ms :=
are_equivalent Ts Ms
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∧
(∀ Ts’, are_equivalent Ts Ts’ → cardinal (fst Ms) ≤ cardinal

(fst Ts’)).

Lemma tableaux_optimisation :
∀ T s, {T’ | min_tableau (T, s) (T’, s)}.

More precisely, the cornerstone of the algorithm is finding an homomorphism from the
initial tableau to a given sub-tableau. To do so we used a function abstract_matching.
All further details are given in [13]. Not only do we prove this result but we also provide
a certified algorithm to build this minimal tableau both in Coq and by extraction from
tableaux_optimization in OCaml.

7.2.3. From Algebraic to Conjunctive Queries
The two formalisms presented are not exactly equivalent, except for the case where re-
lational queries are only built with selections, projections and joins. In this case, there
is an apparently straightforward way to construct the corresponding conjunctive query.
In Figure 7.2, we give the verbatim account of the algorithm found in [80].

Given an SPJ algebraic expression, a con-
junctive query equivalent to this expres-
sion is inductively constructed using the fol-
lowing rules. The base case consists in
a relation r(A1, . . . , An) the corresponding
tableau consists in a single row and sum-
mary which are exactly the same with one
variable for each Ai. Assume that we have
an expression of the form πW (E) and that
we have constructed (T, s) for E, then to
reflect the projection, all the distinguished
variables that are not inW are deleted from
s. For selections σf (E) where f is either
of the form A = B or A = c, in the
former case, the distinguished symbols for

columns A and B in the summary and the
tableau are identified, in the latter, the dis-
tinguished variable for A is replaced by c.
For joins E1 ./ E2, it is assumed with-
out loss of generality that if both (T1, s1)
and (T2, s2) have distinguished symbols in
the summary column for attribute A then
those symbols are the same, but that other-
wise (T1, s1) and (T2, s2) have no symbols
in common. Then the tableau for E1 ./ E2
has a summary in which a column has a
distinguished symbol a if a appears as a dis-
tinguished symbol in that column of s1 or
s2 or both. The new tableau has as rows all
the rows of T1 and T2.

Figure 7.2.: Ullman’s algorithm for translating algebraic queries into conjuctive ones

If we apply this algorithm on the relational expression σA=B(r) ./ σB=C(r), we obtain,

for E1 and E2, the tableaux: x1 x1 x2 r
x1 x1 x2

and y1 y2 y2 r
y1 y2 y2

.

Given these, whatever renaming we choose to apply to the second tableau, as stated
in [80], there is no way to be in the situation described by the algorithm, i.e., if both
(T1, s1) and (T2, s2) have distinguished symbols in the summary column for attributes
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in A, then those symbols are the same. We fixed this source of incompleteness, using
unification, instead of renaming. Indeed, if we unify the two summaries of our example,

we obtain: x2 7→ x1; y1 7→ x1; y2 7→ x1, yielding the tableau x1 x1 x1 r
x1 x1 x1

This corresponds to what is expected in terms of semantics. The unify function, given
in [13], is readable, but the proofs of its soundness (the result of unify is a unifier) and
completeness (whenever there is a unifier, unify finds it) took more than 4000 lines of
code. Thanks to it, we are able to express the translation algorithm, also given in [13],
which is sound and complete and handles all SPJ queries.

If the selection condition is an equality conjunction, a preprocessing step, expand_query,
transforms it into a sequence of selections, whose conditions are equalities. Next, the
translation yields either 1) an equivalent query encapsulated in the TQ constructor, 2)
EmptyRel, when the original one has no solution, or 3) NoTranslation, when the input
query is not SPJ.

The translation algorithm relies on several auxiliary functions. First, fresh_row n r,
is used for the base case and generates a row, Trow r fr, tagged by relation name r.
The function fr maps attributes to fresh variables, starting from index n. The second
one, rename t1 t2, is used for selections with the condition t1 = t2. If t1 and t2 are
distinct constants, the renaming returns None. If there exists a substitution rho that
replaces t1 by t2 or vice-versa, avoiding to change constants into variables, it returns
Some rho. The substition rho is then applied to the whole tableau. The only time when
unify is needed is for joins. In this case, the translation is applied to both operands.
Compatibility on common attributes is ensured by applying the resulting substitution
to the whole query.

The following lemma states that the algorithm behaves as expected. Our formalization
helped us in making precise the exact behavior of the translation algorithm. In the
informal presentation taken from textbooks, an underlying assumption is made about
freshness of variables for the base case, which is quite tedious to handle at the formal
level. To the best of our knowledge, our algorithm is the first formally specified and fully
proved for such a translation.

Lemma algebra_to_tableau_expand_is_complete :
∀ (q : query) (n : nat) (I : relname → setT),
well_sorted_instance I →
match algebra_to_tableau (S n) (expand_query q) with

| TQ _ Ts ⇒ ∀ t, is_a_solution I Ts t ←→
t ∈ (eval_query I q)

| EmptyRel ⇒ ∀ t, t ∈ (eval_query I q) → False
| NoTranslation ⇒ translatable_q q = false

end.
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7.3. Data Integrity
Integrity constraints capture the semantics of data, as introduced in Section 4.3. To il-
lustrate, we revisit our running example of a Cinema database (see Section 4.1). For the
Movies relation, we may know that there is only one director associated with each movie
title. Such a property is called a functional dependency, denoted {Title} ↪→ {Director},
and refers to the fact that values of some tuple attributes uniquely determine other at-
tribute values of that tuple. This type of dependency corresponds to the more general
class of equality generating dependencies.

Let us further assume the relation: Showings(Theater, Screen, Title, Snack), contain-
ing a tuple (th, sc, ti, sn), if the theater th is showing the movie ti, on the screen sc
and offers snack sn. Intuitively, one would expect a certain independence between the
Screen-Title attributes, on the one hand, and the Snack attribute, on the other, for a
given Theater value. For instance, if (Action Christine, 1, Casanova, Coffee) and (Action
Christine, 2, M, Tea) are in Showings, we also expect (Action Christine, 1, Casanova,
Tea) and (Action Christine, 2, M, Coffee) to be present. Such a property is called a
multivalued dependency and is denoted {Theater, Screen, T itle}� {Snack}. It refers to
the fact that, if the values of some tuples t1 and t2 coincide for {Theater, Screen, T itle},
then Showings also has to contain tuples obtained from t1 and t2, by swapping the
corresponding Snack values. This type of dependency is tuple generating.

Equality and tuple generating dependencies fall under the yet wider class of general
dependencies. This also captures inclusion dependencies, corresponding to the foreign
key constraints, enforced by real database systems. As seen in Section 4.3, a central
issue concerning dependencies is that of the so called logical implication, i.e, what other
constraints can be inferred from a given set of constraints. We exemplified the deductive
and procedural approaches to solving this problem, by presenting Armstrong’s system -
together with its extension with multivalued dependency inference rules - and the chase
procedure. The former allows to deduce, in the functional (and multivalued) case, all
solutions to the logical implication problem. As such, it is sound, complete and terminat-
ing. The latter allows to deduce logical implication solutions, in the general dependency
setting. The chase is sound, but might not terminate in general.

In this section we present a Coq formalization of functional and multivalued dependen-
cies, together with their inference procedures and corresponding characterizations. Also,
we extend our modelization to the wider scope of general dependencies, formalize the
chase and its corresponding characterization.

7.3.1. Logical Implication for Functional Dependencies
Syntactically, functional dependencies between attribute sets (setA) are modeled with
the Coq inductive fd. The semantics fd_sem of a functional dependency V ↪→ W is de-
fined with respect to an instance, i.e, a set of tuples I : setT. Mirroring Definition 4.3.1,
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this captures the fact that any two instance tuples t1 and t2 whose projections agree
on V, also have to have their projections agree on W.

Inductive fd : Type := FD : setA → setA → fd.
Notation "V ’↪→’ W" := (FD V W).

(* tuples t1 and t2 agree on a set of attributes S *)
Definition tupl_agree (t1 : tuple) (t2 : tuple) (S : setA) :=
∀ a, a ∈ S → dot T t1 a = dot T t2 a.

(* I |= d, where d is a functional dependency *)
Definition fd_sem (I : setT) (d : fd) :=
match d with

| V ↪→ W ⇒ ∀ t1 t2, t1 ∈ I → t2 ∈ I →
tupl_agree t1 t2 V → tupl_agree t1 t2 W.

end.

Armstrong’s inference system A is modeled via the dtree inductive definition, repre-
senting a derivation tree, whose branches are the inference rules in Figure 4.2. To these,
we added the FD_ax rule, for deriving dependencies already in the context. We denote
the type of functional dependency sets by setF.

(* F ` X ↪→ Y *)
Inductive dtree (F : setF) : fd → Type :=
| FD_ax : ∀ X Y, (X ↪→ Y) ∈ F → dtree F (X ↪→ Y)
| FD_refl : ∀ X Y, Y ⊆ X → dtree F (X ↪→ Y)
| FD_aug : ∀ X Y Z XZ YZ, XZ set= (X ∪ Z) → YZ set= (Y ∪ Z) →

dtree F (X ↪→ Y) → dtree F (XZ ↪→ YZ)
| FD_trans : ∀ X Y Y’ Z, Y set= Y’ →

dtree F (X ↪→ Y) → dtree F (Y’ ↪→ Z) →
dtree F (X ↪→ Z).

The soundness of Armstrong’s system, i.e, Armstrong_soundness, corresponds to The-
orem 4.3.7. Its Coq proof is similar to the paper one and follows by induction on the
derivation tree. We show that, for any set of functional dependencies F and for any
functional dependency d, if d is syntactically derivable from F, i.e, dtree F d, then it is
logically implied by F as well, i.e, F |= d. The conclusion is equivalent to showing that,
if an arbitrary instance I implies all dependencies d’ in F, then I implies d as well.

(* F ` d then F |= d, i.e, ∀ I, I |= F implies I |= d *)
Theorem Armstrong_soundness : ∀ F d I,
dtree F D → (∀ d’, d’ ∈ F → fd_sem I d’) → fd_sem I d.
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Next, the completeness proof, corresponding to Theorem 4.3.9, borrows from [80] the
central idea of building a model M. Given a set of dependencies F and a set of attributes
X, M consists of two tuples t0 and t1, which only agree on the closure attribute set
[X]+F . The constructive proof of completeness is based on the fact that, if F |= X ↪→ Y ,
since M is a model of F , then M is a model of X ↪→ Y .

Interestingly, while for soundness the hypotheses did not make any assumption on the
finiteness of the attribute universe, for the completeness, this assumption was needed.
All intermediate lemmas are given in [13] and the main theorem explicitly mentions the
fact that all sets of attributes are included in the finite universe U and that the values
zero and one are distinct.

Lemma Armstrong_completeness : ∀ U F X Y, X ⊆ U → Y ⊆ U →
(∀ I, (∀ t, t ∈ I → support T t set= U) →

(∀ f, f ∈ F → fd_sem I f) → fd_sem I (X ↪→ Y)) →
(dtree F (X ↪→ Y)).

7.3.2. Logical Implication for Multivalued Dependencies
To also account for the tuple generating dependencies from Section 4.3.2, we extend the
previous fd inductive with the MD constructor. The resulting dep inductive encodes the
type of functional and multivalued dependencies. Similarly, we enrich the dependency
inference inductive dtree with the corresponding rules for multivalued dependencies,
described in Figure 5.2.2. The resulting dtree_ext inductive captures the fact that
a given dependency d : dep can be inferred from a set of functional and multivalued
dependencies F : Fset.set FMD.

Hypothesis U : Fset.set FAttr.
Inductive dep : Type :=
| FD : Fset.set FAttr → Fset.set FAttr → dep
| MD : Fset.set FAttr → Fset.set FAttr → dep.
Notation "V � W" := (MD V W).

Definition OMD : Eoset.Rcd dep. (* ... *)
Definition FMD := FiniteSet.build_fset OMD.

(* F ` X ↪→ Y or F ` X � Y *)
Inductive dtree_ext : Fset.set FMD → dep → Prop :=
| FD_ax : ∀ F X Y, (X ↪→ Y) ∈ F → dtree_ext F (X ↪→ Y)
| FD_refl : ∀ F X Y, Y ⊆ X → dtree_ext F (X ↪→ Y)
| FD_aug : ∀ F X Y Z, dtree_ext F (X ↪→ Y) →

dtree_ext F ((X ∪ Z) ↪→ (Y ∪ Z))
| FD_trans : ∀ F X Y Z, dtree_ext F (X ↪→ Y) →
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dtree_ext F (Y ↪→ Z) → dtree_ext F (X ↪→ Z)
| MD_compl : ∀ F X Y, X ⊆ U → Y ⊆ U → dtree_ext F (X � Y) →

dtree_ext F (X � (U \ (X ∪ Y)))
| MD_aug : ∀ F X Y Z, dtree_ext F (X � Y) → Z ⊆ U →

dtree_ext F ((X ∪ Z) � (Y ∪ Z))
| MD_trans : ∀ F X Y Z, X ⊆ U → Z ⊆ U →

dtree_ext F (X � Y) → dtree_ext F (Y � Z) →
dtree_ext F (X � (Z \ Y))

| FM_conv : ∀ F X Y, dtree_ext F (X ↪→ Y) → dtree_ext F (X � Y)
| FM_inter : ∀ F X Y Z, dtree_ext F (X � Y) → Z ⊆ U →

dtree_ext F ((X ∪ Y) ↪→ Z) →
dtree_ext F (X ↪→ (Z \ Y)).

Note that, as we only proved the soundness of dtree_ext - and not also its completeness,
as in Section 7.3.1 - in defining constructors FD_aug and FD_trans, a less general form
than that for their previous counterparts sufficed. Also, we did not need a constructor
for the multivalued dependency reflexivity rule MVD1 - present in the inference system
from Figure 4.4 - as it follows from FM_conv and FD_refl.

Next, we give the semantics mvd_sem of a multivalued dependency V �W with respect
to an instance I : setT. This mirrors Definition 4.3.10 and corresponds to the schematic
representation in Figure 7.3. The tuple t’ is obtained swapping t1 and t2 in mvd_sem.

t1 w1

V
w2

W
w3

U \ (V ∪ W)

t2 w1 w′2 w′3

t
w1 w2 w′3

t’ w1 w′2
w3

Figure 7.3.: Multivalued Dependency V �W over the attribute set U

Definition mvd_sem (I : setT) (V W : setA) :=
∀ t1 t2, t1 ∈ I → t2 ∈ r → tupl_agree t1 t2 V →
∃ t, t ∈ I

∧
tupl_agree t t1 V

∧
tupl_agree t t1 W∧

tupl_agree t t2 (U \ (V ∪ W)).

Next, we encode the notion of satisfiability of a functional or multivalued dependency
d, using fd_sem and mvd_sem, depending on the nature of d.
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(* I |= d, where d is a functional or multivaled dependency *)
Definition sat_dep I d :=

match d with
| X ↪→ Y ⇒ fd_sem I X Y
| X � Y ⇒ mvd_sem I X Y

end.

Finally, we can state the soundness of the inference system dtree_ext, for functional
and multivalued dependencies, corresponding to Theorem 4.3.11. The Coq proof is
analogous to the one presented in Section 4.3.2.

(* F ` X � Y then F |= X � Y *)
Lemma Mvd_soundness : ∀ F dep I,

dtree_ext F d → (∀ d’, d’ ∈ F → sat_dep I d’) → sat_dep I d.

7.3.3. Logical Implication for General Dependencies
Constraints described in textbooks (functional, join or inclusion dependencies) fall into
the wider category of general dependencies. Recall from Section 4.3.3 that these are
first-order logic sentences of the form:

∀x1 . . . ∀xn(φ(x1, . . . , xn)⇒ ∃z1 . . . ∃zkψ(x1, . . . , xn, z1, . . . , zk)),

where φ is a (possibly empty) conjunction of atoms and ψ an atom. In both φ and ψ, one
finds relation atoms of the form r(w1, . . . , wl) and equality atoms of the form w = w′,
where each of the w,w′, w1, . . . , wl is a variable or a constant. Inclusion dependencies can
be expressed by ∀x1 . . . ∀xn(r1(x1, . . . , xn) ⇒ r2(x1, . . . , xn)). According to textbooks,
the semantics of such formulas is the natural one. There is a strong relationship between
general dependencies and tableaux, which provides a convenient notation for expressing
and working with dependencies.

For example, the functional dependency A ↪→ B on the relation r(A,B), is represented
by the formula: ∀v∀v1∀v2, r(v, v1) ∧ r(v, v2)⇒ v1 = v2 and by the conjunctive query:

A B
v v1 r
v v2 r
v1 = v2

When the right part of the implication is a relation predicate, the last line is a summary
and such dependencies are referred to as tuple generating, while the other ones are
referred as equality generating. We model this by the following inductive definition of
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gd. According to whether φ is a relation predicate or an equality, we use the TupleGen
and EqGen constructors.

Notation setR := (Fset.set (Ftrow T DBS)).

(* row equivalence *)
Notation "s1 ’ r= ’ s2" := (Fset.elt_compare Ftrow s1 s2 = Eq).

Inductive gd :=
| TupleGen : setR → trow → gd
| EqGen : setR → tvar → tvar → gd.

The natural semantics is provided by:

Inductive gd_sem : gd → setT → Prop :=
| TupleGenSem :

∀ (SR : setR) (s : trow) (I : setT),
(∀ (ν : valuation),

(∀ x, x ∈ SR → (ν [[x]]t) ∈ I) →
∃ νe , (∀ x, x ∈ variables_tableau SR → νe [[x]] = ν [[x]])∧

νe [[s]]t ∈ I) → gd_sem (TupleGen SR s) I
| EqGenSem :

∀ (SR : setR) x1 x2 (I : setT),
(∀ (ν : valuation),

(∀ x, x ∈ SR → ν [[x]]t ∈ I) →
ν [[x1]] = ν [[x2]]) → gd_sem (EqGen SR x1 x2) I.

The only subtle point in this definition is that it is stated for tableaux, but corresponds
exactly to the semantics of logical formulas. Due to the particular form of the latter,
given a valuation ν assigning values to the x’s we extend it by νe over the existentially
quantified z’s.

The Chase We tried to formalize what is very informally provided by textbooks with
the following inference rules.

Let d and d′ be respectively ∀~x, φ(~x)⇒ ∃~z, ψ(~x∪ ~z) and ∀~x′, φ′(~x′)⇒ ∃~z′, ψ′(~x′ ∪ ~z′).
For applying d′ to d, we first need to find a mapping ν, such that ν(φ′(~x′)) - seen as a
set of atoms - is a subset of φ(~x). Depending on the form of ψ′, we get:

1. if ψ′ ≡ y′1 = y′2 and ρ is the renaming: {ν(y′2) 7→ ν(y′1)}
then chase(d, d′) is ∀~x, ρ(φ(~x)⇒ ∃~z, ψ(~x ∪ ~z)).

2. if ψ′ ≡ r′(~y′) then chase(d, d′) is ∀~x, φ(~x) ∧ ν(r′(~y′))⇒ ∃~z, ψ(~x ∪ ~z).
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However, the above version is faulty, due to variable capture for ν(r′(~y′)) by ∀~x, which
naturally arose in the second case, as shown by the following counterexample.

Let d be ∀y z, r(y, y, z)⇒ r(y, y, y) and d′ be ∀x y, r(x, x, y)⇒ ∃z, r(x, z, x).
We recall the main idea behind logical implication in the context of the chase procedure,
namely that, ∀I, if I |= d′ and I |= chase(d, d′), then, trivially, d′ |= d. With the
mapping ν = {x 7→ y, y 7→ z}, the above definition yields:

chase(d, d′) ≡ ∀y z, r(y, y, z) ∧ r(y, z, y)⇒ r(y, y, y).

Consider the instance I = {(a, a, b), (a, c, a)}. We have I |= d′, and I |= chase(d, d′),
since there is no µ, such that µ(y, y, z) ∈ I ∧ µ(y, z, y) ∈ I. But I 6|= d, as shown by
µ1 = {y 7→ a, z 7→ b}, since µ1(y, y, z) = (a, a, b) ∈ I and µ1(y, y, y) = (a, a, a) /∈ I.

This counterexample does not affect the essence of the theorem, but emphasizes the fact
that humans naturally perform α-conversion in order to avoid capture; therefore, when
defining the chase in Coq, this had to be explicitly taken into account.

Since variables (in the gd’s) are indexed by integers, in order to avoid captures, we gen-
erate fresh variables for renaming, starting from the maximum index of all variables in the
constraints, computed thanks to the max_var_chase function. Then, avoid_capture_trow
max_n phi’ psi’ computes a renaming for the variables which are in psi’ and not in

phi’. The chase may yield three different results: the first one is when there is at least
one ν producing a new constraint, the second captures the fact that no such mappings
exist and the third corresponds to the fact that the current dependency tries to identify
two distinct constants. There is one further subtle point to detail.

Given a pair of dependencies, there may exist several mappings ν, thus, in order to avoid
the design of a lazy matching function, we chose to apply them simultaneously. The first
case applies an equality generating dependency EqGen SR x1 x2. It consists of iterating
the replacement of nu x1 by nu x2, for all such ν’s. The second case applies a tuple
generating dependency TupleGen SR s. In that case, we simply add all nu s to current
tableau. The only point is to avoid capture for existential variables and also to avoid
interference between the different mappings. This has the unfortunate consequence that
the chase step given in [13], as well as the soundness proofs, are intricate.

As the chase terminates only for a specific class of dependencies (the one with no ex-
istential quantifiers), we defined a special “for loop” that iterates the application of a
dependency set over d a fixed number of times. At this point, the algorithm stops with
a (potentially) new dependency. If this dependency is trivial (i.e., either of the form
∀~x, φ(~x) ⇒ y = y or ∀~x, φ(~x) ⇒ ∃~z, ψ(~x ∪ ~z), where there exists a substitution σ for
z’s, such that ψ(~x∪ ~σ(z)) is an atom of φ(~x)), then the initial dependency set implies d.

Lastly, the soundness of the chase procedure is established by:
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Inductive res : Type := Res : gd → res | NoProgress | Fail.

Definition var_in_query x SR :=
match x with
| Tvar _ ⇒ x ∈ variables_gd SR
| Tval _ ⇒ True
end.

Lemma chase_is_sound : ∀ ST n D d d’,
chase n d D = Res d’ →
match d with

| TupleGen _ _ ⇒ True
| EqGen SR1 x1 x2 ⇒ var_in_query x1 SR1

∧
var_in_query x2 SR1

end → (∀ gd, List.In gd D → gd_sem gd ST) → gd_sem d’ ST →
gd_sem d ST.

Doing the proof, the main subtle point was to avoid variable capture through iteration.
Again, it was during this proof step that we discovered that the textbooks were imprecise.
The needed functions and technical lemmas are given in [13].

7.4. Discussion
Our formalization effort comprises two different aspects: one concerning modeling and
the other, proving properties of different operators and algorithms. With respect to
the proof aspects, we had to explicit technical points, such as freshness, unification and
variable capture avoidance. While these are not new for Coq users or even for the func-
tional programming community, they are worth precising for database theoreticians and
practitioners. The main reason is that such aspects are neither mentioned in textbooks,
nor do they appear explicitly in implementations (usually written in C). The real chal-
lenge was modeling. Our contribution, unlike, [41] is almost complete. We were able to
model all these various aspects because our very first choices for attributes, tuples were
adequate. Such choices were not trivial nor immediate and neither [60] nor [41] made
them; hence, they never reached the generality we achieved. Obviously, once the right
choices are done, the whole seems simple.

7.4.1. Contributions
In this chapter, we presented a Coq formalization of the relational model. The formal-
ization consists of the following components:

• the relational data model (relations, tuples, etc.)

• a mechanization of integrity constraints (general dependencies) and their charac-
teristic properties:
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– functional dependencies (subclass of the equality generating dependencies)
and their inference system (Armstrong);
proofs establishing the soundness and completeness of their logical implication

– multivalued dependencies (subclass of the tuple generating dependencies) and
their inference system (extended Armstrong);
the soundness proof for logical implication of functional and multivalued de-
pendencies considered together

– general dependencies (equality and tuple generating) and their inference sys-
tem (the chase);
the soundness proof for logical implication of general dependencies

• mechanization of the main relational query languages:
relational algebra and conjunctive queries

• proof of the main “database theorems”:
algebraic equivalences, the homomorphism theorem and conjunctive query mini-
mization.

7.4.2. Lessons
In a first version of our development, we heavily used dependent types and proofs in
types. In particular, they expressed that tuples and queries were well-typed by con-
struction. But, we experienced a lot of problems with type conversion in proofs. In
all algorithms given in this thesis, it is crucial to check equality (or congruence). In
Coq one can only check equality between two terms which belong to the same Type.
With dependent types, there are two possibilities: either to use type conversion or John
Major equality (fortunately we fall in the decidable case). Both are very cumbersome.
Moreover, in order to debug we needed to run the algorithms with well-typed terms
(i.e., with hand-written proofs embedded in types). The benefits of our approach are
three (i) with it, it is easier and lighter to write algorithms and perform case analysis in
proofs (ii) it is closer to main stream programming languages in which real systems are
encoded (iii) it precisely allows to locate where well-typedness is needed. Surprisingly,
we discovered that types, in the usual sense, were not useful, rather, the notion of well-
sortedness was indeed crucial. This is an a posteriori justification of the fact that in all
theoretical books values range in a unique domain. Specifying the main algorithms and
proving the “database theorems” for tableaux and the chase led us to thoroughly make
explicit some notions or definitions which were either unclear or at least very sloppy. For
example, freshness or variables’ capture are almost completely left aside in textbooks.
However, such notions are central to the correctness of the results, as shown by our
counter-example.
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In this chapter we discuss a formalization of standard (positive) Datalog, based on no-
tions introduced in Chapter 5. The library consists of a mechanization of the language,
of its semantics (model-theoretic and fixpoint), and of an inference engine, implement-
ing the bottom-up evaluation heuristic. It contains proofs capturing the characteristic
properties of all defined components. We briefly summarize below the main idea behind
the functioning of the engine, which lies at the core of the development.

The inference engine essentially iterates a fixpoint operator, which is based on the imple-
mentation of immediate consequence (see Definition 5.2.9) through an abstract matching
algorithm. The goal of the inference procedure is to build a model of an input standard
Datalog program. To this end, the engine maintains a current interpretation - the
“candidate model” - which it iteratively tries to “repair”. The repair process first iden-
tifies clauses that violate satisfiability - i.e, whose ground instances have bodies that
are satisfied by the current interpretation, but whose heads are not. The current in-
terpretation is then “fixed”, by adding to it the missing facts, corresponding to head
groundings. This is realized using forward chain’s matching algorithm, which computes
all substitutions matching body atoms to interpretation facts. Since the safety condition
ensures all head variables appear among those in the body, it follows that the resulting
substitution is, indeed, grounding. Hence, applying it to the head produces a new fact.
Once the current interpretation is “updated” with all facts that can be inferred in one
forward chain step, the procedure is repeated, until a fixpoint is reached. We prove this
to be a minimal model of the input program.

The chapter is organized as follows. We start with Section 8.1, by outlining the relevant
modelization choices we made. Next, in Section 8.2 and Section 8.3, we detail the way in
which we represented the language and its semantics. In Section 8.4, we present the base
building blocks needed for defining bottom-up evaluation and, in Section 8.5, we identify
relevant properties of the heuristic. We conclude in Section 8.6, with a characterization
of the inference engine, as captured by the main proof, establishing its evaluation as
sound, complete and terminating with a minimal model output.

8.1. Modelization Choices
In the formalizations presented, on the one hand in Chapter 7 and, on the other hand in
Chapter 8 and Chapter 9, we explore two different modelization approaches. The first
is based on having infinite (unrestricted) models, via simple datatype encodings and
trailing well-formedness side-conditions, and, the second, on having finite (restricted)
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models, via richer datatypes that obey well-formedness by construction. We argue that
the logic programming setting, as represented by Datalog, lends itself particularly well
to the latter approach. This is due to the fact that the declarative nature of the language
and its simple evaluation procedure favor a mathematical description. Such an approach
is heavily based on the compositional properties of more complex algebraic structures
and operators.

Next, we give an account of the main choices impacting the development of the standard
Datalog library. These correspond to the formalization of domains (Section 8.1.1), the
choice of primitives (Section 8.1.2), the formalization of ground atoms (Section 8.1.3)
and that of groundings and substitutions (Section 8.1.4).

8.1.1. Finite vs Infinite Domains
The fundamental choice we made in the formalization of standard Datalog is to model
the underlying database domains as finite sets. As such, we rely on the finset formal-
ization of the theory of sets over finite types, provided by the Mathematical Compo-
nents library (see Chapter 2).

The fact that we can base our development on this premise, without loss of generality,
is motivated by the following observation, whose proof we detail below.

Theorem 8.1.1. Assume a safe, positive Datalog program P . Also, let I be an arbi-
trary Herbrand interpretation of P , i.e, I ⊆ B(P)1. The satisfiability of P with respect to
I under (assignments mapping to) adom(P ), i.e, the active domain of P , coincides with
validity under (assignments mapping to) larger domains D, i.e, such that D ⊇ adom(P ).
This statement is expressible in logic form as:

∀P,∀I, ∀D, (∀C,C ∈ P ⇒ V (head(C)) ⊆ V (body(C)))⇒ I ⊆ B(P)⇒
D ⊇ adom(P )⇒ ((∀ι, ι : X → adom(P )⇒ I, ι |= P )⇔ (∀ι′, ι′ : X → D ⇒ I, ι′ |= P )).

Proof. Let P be a safe standard Datalog program and C = H ← ~B be a safe clause,
such that C ∈ P . Proving the above statement amounts to showing that:

(∀ι, ι : X → adom(P ), I, ι |= C)⇔ (∀ι′, ι′ : X → D, I, ι′ |= C)

According to the definition of clause interpretation in Section 5.2, this reduces to:

(∀ι, ι : X → adom(P ), J ~BKI,ι = ⊥ ∨ JHKI,ι = >)⇔
(∀ι′, ι′ : X → D, J ~BKI,ι′ = ⊥ ∨ JHKI,ι′ = >)

and, given the Herbrand semantics setting, to:

(∀ι, ι : X → adom(P ), ι ~B * I ∨ ιH ∈ I)⇔ (∀ι′, ι′ : X → D, ι′ ~B * I ∨ ι′H ∈ I)

1Note that imposing this condition on models is not a strong restriction per-se, since larger models
would only additionally contain “trash”, i.e, facts that are not relevant to the program.
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which is equivalent to:

(∀ι, ι : X → adom(P ), (ι ~B ⊆ I ⇒ ιH ∈ I))⇔
(∀ι′, ι′ : X → D, (ι′ ~B ⊆ I ⇒ ι′H ∈ I))

⇐ Trivial, since, from D ⊇ adom(P ), it follows that we can view an assignment
ι : X → adom(P ) as a more general one ι′ : X → D.

⇒ Let ι′ : X → D and ι′ ~B ⊆ I. Since I ⊆ B(P ), where B(P ) only contains constants
in adom(P ), it follows from ι′ ~B ⊆ I that ι′V ( ~B) ⊆ adom(P ) (1). As the clause
safety condition ensures V (H) ⊆ V ( ~B), we have ι′V (H) ⊆ ι′V ( ~B) (2). From (1)
and (2), by transitivity, ι′V (H) ⊆ adom(P ) (3).
Let ι′′ : X → adom(P ) be an assignment agreeing with ι′ on V ( ~B) (4). From (1),
we have ι′′V ( ~B) ⊆ adom(P ). Hence, we can instantiate with ι′′ the hypothesis:
∀ι, ι : X → adom(P )⇒ (ι ~B ⊆ I ⇒ ιH ∈ I). We obtain ι′′ ~B ⊆ I ⇒ ι′′(H) ∈ I (5).
From (4) and ι′ ~B ⊆ I, we have ι′′ ~B ⊆ I, which in turn, from (5), entails ι′′(H) ∈ I.
Since V (H) ⊆ V ( ~B), from (4), it follows that ι′′ and ι′ agree on V (H).
Consequently, ι′H ∈ I.

8.1.2. Separating Syntax and Semantics Objects
We found it easier to advance in constructing the development, by explicitly separating
the objects that belong to the syntax level of the language from those that implicitly
belong to the semantics level, i.e that do not contain variables. Hence, we provide dif-
ferent types for (open) atoms and ground atoms (atom and gatom) and for substitutions
and groundings, i.e, closed substitutions, (sub and gr). The main motivation is that we
did not want to reason about variables, every time we assumed an interpretation, as this
is more cumbersome and increases proof size. However, we envisage setting up a more
uniform treatment of these primitives, as an interface to the existing development.

8.1.3. Modeling Ground Atoms
The main diverging point between the infinite-state and the finite-state modelisation
approaches is given by the way in which (ground) atoms are represented.

In the first scenario, ground atoms are defined through an inductive type gatom, packing
a predicate symbol type and the type of its arguments, i.e, a list of constants.

Inductive gatom := GAtom of symtype & seq constant.

In the second scenario, they are defined via a record packing a base ground atom type
raw_gatom, encoded exactly as the gatom before, and a boolean well-formedness condi-
tion wf_raw_gatom, imposing the number of arguments correspond to the symbol arity.
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Inductive raw_gatom := RawGAtom of symtype & seq constant.
Definition wf_gatom rga :=
size (arg_raw_gatom rga) == arity (sym_raw_gatom rga).

Structure gatom := GAtom {rga :> raw_gatom; _ : wf_raw_gatom rga}.

It is important to note that, while working with dependent types may render proofs more
cumbersome in general, these are much simpler to maneuver when built with boolean
subtyping predicates. Indeed, such predicates are innately proof-irrelevant [46], since
there is only one boolean equality proof, thus any two are trivially equal. The cor-
responding subtype projection rga is thus injective, i.e, rga ga1 = rga ga2 implies
ga1 = ga2. That is to say, checking equality of well-formed raw ground atoms can be
reduced to checking equality of the underlying raw ground atoms.

In the rest of the chapter, we will rely on the second modelization of ground atoms. As
detailed in Section 8.3.4, a key step in our development is establishing the finiteness of
their type. To prove soundness and completeness of the inference, we take advantage of
the library support finType provides in the finite setting.

We comment on the main differences with respect to the infinite-state modelisation in
Section 8.7. There, we discuss an alternative development we built, which does not make
the finiteness assumption. This is based on Cyril Cohen’s finmap library2.

8.1.4. Modeling Groundings and Substitutions

Recall that a Datalog program P does not contain function symbols and that, due
to the safety condition, all its facts are ground. To build a model for P , we rely on
the immediate consequence operator, which computes new facts from relevant ground-
ings for clause heads. As such, it implements an algorithm matching program atoms to
facts 3. This, in turn, is based on matching variables to constants. Consequently, while
in general (see Section 3.1), substitutions have type X → TΣ(X ), for the purposes of
our formalization it is pertinent and sufficent to restrict (ground) substitutions to being
mappings from variables to constants, i.e, of type X → C.

The only difference between groundings and substitutions is that the former is a to-
tal function, while the latter is partial. The design choices made in representing these
mappings were influenced by the finiteness of their domain type and, in the case of
substitutions, by the partiality of the codomain.

Indeed, as we conveniently expressed the type of variables via a finite type (more specif-
ically, an ordinal type - cf. Section 2.2 - bounded by the number of program variables)

2https://github.com/Barbichu/finmap
3Note hence that we can restrict ourself to a more particular case than that of unification.
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both mappings can be encoded through finitely-supported functions (ffun), as de-
fined in the finfun library.

Essentially, the idea behind this special SSReflect representation is that an arbitrary
function f : A → B over a finite domain A, can be seen as a tabulation. Indeed the
corresponding fun_to_ffun definition is stated constructing a canonical function tuple
codomain_tuple, whose length is given by the number of inhabitants of A and whose
elements are inhabitants of B. The corresponding SSReflect expression is #|A|.-tuple
B and abbreviates to {ffun A → B}. Note that the tuple type is not the same as that

used in the Coq formalization of the relational model, from Chapter 7.

Canonical codom_tuple : #|A|.-tuple B := [tuple of codom f].
Definition fun_to_ffun (A : finType) (B : Type) (f : A → B)
: {ffun A → B} := Finfun (codom_tuple f).

The main advantage of seeing groundings and substitutions as instances of this type, is
that they now benefit automatically from the ffunP extensional equality property.

Definition eqfun (f g : B → A) : Prop := ∀ x, f x = g x.

Notation "f1 =1 f2" := (eqfun f1 f2)
(at level 70, no associativity) : fun_scope.

(* for finitely-supported functions f1 and f2,
extensional equality is equivalent to functional equality *)

Lemma ffunP (A : finType) (B : Type) (f1 f2 : {ffun A → B}) :
f1 =1 f2 ↔ f1 = f2.

Moreover, we can easily coerce finitely-supported functions into regular ones, as illus-
trated below by ffun_to_fun, thus still being able to use all the common functional
properties, in particular injectivity. This is realized by transforming a finitely-supported
function f into a regular function ffun_to_fun f, which associates to each element
x of the domain, the value enum_rank x at the corresponding index of the function’s
tabulation tuple fgraph f.

Definition ffun_to_fun (A : finType) (B : Type) (f : {ffun A → B})
:= fun (x : A) ⇒ tnth (fgraph f) (enum_rank x).

Due to the internals of the SSReflect tuple representation (see Section 2), we can also
conveniently use finitely-supported functions as lists of pairings. Thus, this modeling
approach subsumes the one taken in Section 7. Lastly, note that, when assuming a
finite type for constants - by only considering those in the active domain (as we will
in Section 9) - the type of substitutions becomes finitely-enumerable. Hence, given a
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decidable predicate P on substitutions, ∀x, Px also becomes decidable.

8.2. Language Representation
We overview the formalization of the syntax of a positive Datalog program: namely,
of its base signature (Section 8.2.1), of its (ground and open) primitives (Section 8.2.2
and Section 8.2.3) and of its safety restriction (Section 9.1.1).

8.2.1. Program Signature
As detailed in Section 8.1, we assume finite types for predicate symbols (symtype) and
constants (constype), as well as a finitely-supported function for symbol arity.

Variable constype : finType.
Variable symtype : finType.
Variable arity : {ffun symtype → nat}.

8.2.2. Ground Primitives
The choices to define ground primitive types separately from the non-ground ones, as
well as that concerning the type of ground atoms are explained in Section 8.1.

Ground Atoms Ground atoms are records packing a ground atom raw_gatom and a
well-formedness condition wf_raw_gatom, ensuring the symbol arity matches the number
of arguments. Recall that the latter is needed in order to ensure finiteness of the gatom
type, as we only allow a finite number of arguments. Accessing the well-formedness
property of a given ground atom ga is done by casing. Indeed, in accordance with the
Mathematical Components methodology, there is no named projector. This choice
is motivated by robustness purposes, as not to depend on the internal representation.

Inductive raw_gatom := RawGAtom of symtype & seq constant.
Definition wf_raw_gatom ga :=
size (arg_raw_gatom rga) == arity (sym_raw_gatom rga).

Structure gatom := GAtom {rga :> raw_gatom; _ : wf_raw_gatom rga}.

In the corresponding Coq proofs, we denote ground atoms with the bar notation, e.g, a
ground body atom is represented as B̄. As we will see in Section 8.2.3, a ground atom
B̄ can be lifted to an atom type, denoted as pB̄q, using the to_atom function.

In order to implement class hierarchy instances, e.g, for eqType and choiceType, we
will relate our raw_gatom type to one that possesses them, namely its underlying pair
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type, containing a symbol and a list of constants. Consequently, we define the map-
pings raw_gatom_rep and raw_gatom_pre that destruct and, respectively, construct a
raw_gatom from such a pair. As symbols and constants already have the right instances,
Coq will automatically infer corresponding ones for pairs and lists.

Definition raw_gatom_rep l := let: RawGAtom s a := l in (s, a).
Definition raw_gatom_pre l := let: (s, a) := l in RawGAtom s a.

We then prove the raw_gatom_repK cancelation lemma, stating that raw_gatom_pre is
the left inverse of raw_gatom_rep. The lemma is stated using ssrfun’s cancel construct,
whose definition we also give below. Since left-invertible functions are injective, we thus
establish an embedding of our raw_gatom type into a simpler structure, inheriting all
the properties of symbols and lists of constants.

Variables (A B : Type) (f : A → B) (g : B → A).

(* cancel f g ↔ g is a left inverse of f *)
Definition cancel f g := ∀ x, g (f x) = x.

Lemma raw_gatom_repK : cancel raw_gatom_rep raw_gatom_pre.
Proof. by case. Qed.

In particular, due to ssreflect’s canonical structure mechanism, briefly overviewed in
Section 8.1, the decidable equality and choice type properties can be transferred to (raw)
ground atoms. This is achieved by the CanxxMixin family of lemmas that build proper
instances from injection proofs.

Canonical raw_gatom_eqType :=
Eval hnf in EqType raw_gatom (CanEqMixin raw_gatom_repK).

Canonical raw_gatom_choiceType :=
Eval hnf in ChoiceType raw_gatom (CanChoiceMixin raw_gatom_repK).

As explained in [35], ssreflect does not automate class inheritence for canonicals, so
we declare separate ones corresponding to eqType and choiceType. Since gatom is a
subtype of raw_gatom, it will inherit all the classes of this base type.

Defining an instance of ground atoms for the finite type class finType is more complex
than shown previously for eqType and choiceType. The reason for this is that we have
to bound the largest possible ground atom occuring in our program; this in turn means
determining the maximal arity max_ar of the program symbols. Once we know max_ar,
together with the assumption of finitely many constants, we obtain the required bound.
All the ground atoms can thus be embedded in the finite type (symtype * max_ar.-
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tuple constant). Finally, the last step is providing a refinement of this type with the
actual arity x of type ’I_(max_ar.+1).

In this case, we exhibit an embedding from gatom to a finite type gatom_enc. This
encodes ground atoms as a pairing of a symbol type and a constant tuple of bounded
length ’I_(max_ar.+1), whose type is inferred as finite.

Notation max_ar := (\max_(s in symtype) arity s).
Notation gatom_enc :=

({x : ’I_(max_ar.+1) & (symtype * x.-tuple constant)%type}).

A ground atom ga can be injected into gatom_enc, using the existential constructor for
dependent pair types, i.e, existT. Indeed, since ga packs an underlying raw ground
atom rga and its well-formedness proof wf_rga, we can build a gatom_enc. This is
done by directly providing sym_raw_gatom rga, the symbol of the raw atom rga and
by constructing a tuple from wf_rga. The proof max_ar_bound, for the boundedness of
the corresponding tuple length ordinal, trivially relies on the leq_bigmax_cond lemma.
This states the soundness of maximum value computation, using the \max big operator,
for values satisying a given predicate.

Definition gatom_fenc (ga : gatom) : gatom_enc :=
let: GAtom rga wf_rga := ga in
existT _ (Ordinal (max_ar_bound (sym_raw_gatom rga)))

(sym_raw_gatom rga, Tuple wf_rga).

Conversely, we can convert a ground atom encoding into a ground atom.

Definition fenc_gatom (e : gatom_enc): option gatom.
case: e ⇒ x [s];
case: (val x == arity s) / eqP ⇒ [→ | _] [tup proof];
[exact: (Some (@GAtom (RawGAtom s tup) proof)) | exact/None].
Defined.

To prove that the function fenc_gatom is a partial left-inverse of gatom_fenc, we apply
casing, equality reflection and proof-irelevence, i.e, eq_axiomK.

Lemma fenc_gatomK : pcancel gatom_fenc fenc_gatom.
Proof.
by case⇒ [[? ?] ?] /=; case: eqP ⇒ // ?; rewrite !eq_axiomK. Qed.

Note that, to embed gatom into gatom_enc, we use the partial cancelation operator
pcancel, defined below.
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Variable (A B : Type) (f : A → B) (g : B → option A)

(* pcancel f g ↔ g is a partial left inverse of f *)
Definition pcancel f g := ∀ x, g (f x) = Some x

Finallly, ee derive a finite type for gatoms through the PcanFinMixin, using the fenc_gatomK
cancelation proof above.

Canonical gatom_finType :=
Eval hnf in FinType gatom (PcanFinMixin fenc_gatomK).

Ground Clauses Ground clauses are defined through the gclause inductive, whose
constructor packs two components: a distinguished ground atom, i.e the clause head,
and a list of ground atoms, i.e the clause body.

Inductive gclause := GClause of gatom & seq gatom.

The definition of the class hierarchy instances for gclause follows the exact same pattern
as above and is thus omitted for brevity.

8.2.3. Open Primitives
Terms Terms are formalized with an inductive joining 1) variables, which have an
ordinal type ’I_n, bounded by a maximal value n, computable from a given program,
and 2) constants.

(* maximal number of program variables*)
Variable n : nat.

Inductive term : Type :=
| Var of ’I_n
| Val of constant.

Note that we have chosen to bound the number of program variables, in order to take
advantage of a more convenient substitution theory. In no way is the bound essential to
the development.
As before, we inject a term into its corresponding Σ-type representation (’I_n +
constant), via the left cancelation lemma term_repK. Using this, we can then provide
an instance of canonical terms with decidable equality.
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Atoms Atoms are defined similarly to their ground counterpart in Section 8.2.2, as
records packing an atom base type raw_atom and a well-formedness condition wf_atom.
The point of maintaining the well-formedness condition over atoms is to ensure that
grounding them will always produce well-formed ground atoms.

Inductive raw_atom := RawAtom of symtype & seq term.

Definition sym_atom a := let: RawAtom s_a _ := a in s_a.
Definition arg_atom a := let: RawAtom _ arg_a := a in arg_a.

Definition wf_atom a := size (arg_atom a) == arity (sym_atom a).

Structure atom := Atom {ua :> raw_atom; _ : wf_atom ua}.

The set of atom variables is the union of argument variables of the underlying raw_atom.

Definition term_vars t := if t is Var v then [set v] else set0.
Definition raw_atom_vars (ra : raw_atom) : {set ’I_n} :=

\bigcup_(t ← arg_atom ra) term_vars t.

Definition atom_vars a := raw_atom_vars a.

Note that Coq will insert the proper coercion from atom to raw_atom in atom_vars.

Programs Clauses are represented by an inductive grouping the head atom and the
list of atoms in the body. Programs are lists of clauses.

Inductive clause := Clause of atom & seq atom.
Definition program := seq clause.

8.2.4. Safety Condition
As explained in Section 5.1, a safety condition, encoded by safe_prog, is imposed on
Datalog programs, to ensure computed models are finite. Specifically, this refers to
the fact that, for each clause, the head variables are required to appear among those in
the body.

Definition tail_vars tl := \bigcup_(t ← tl) atom_vars t.
Definition safe_cl cl :=
atom_vars (head_cl cl) ⊆ tail_vars (body_cl cl).

Definition safe_prog p := all safe_cl p.
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8.3. Semantics Representation
We first discuss groundings and substitutions in Section 8.3.1 and Section 8.3.2 and, in
Section 8.3.3, how we relate the two. We define the semantics of a standard Datalog
program in Section 8.3.4.

Note that groundings and substitutions are modeled via finitely-supported functions from
variables to constants, as detailed in Section 8.1.

Definition gr := {ffun ’I_n → constant}.
Definition sub := {ffun ’I_n → option constant}.

Every grounding can be coerced to a substitution and, conversely, substitutions can be
turned into groundings, by padding with a default element. It is often the case, in the
proofs later presented in this chapter, that we want to prove that applying a substitution
to an atom will produce a ground atom; it is fairly convenient to obtain such a ground
atom from the grounding associated to the original substitution. In the mathematical
presentation of the relevant Coq proofs, we will signal these transformations as follows:
if ν : gr, then ν̂ : sub and, if σ : sub, then σdef : gr.

8.3.1. Groundings
We define the application of a grounding ν to terms, atoms and clauses.

Term Grounding The grounding gr_term of a term t with a grounding ν is given
by case analysis: if t is defined by a variable v, we return the constant resulting from
applying ν to v and, if t is defined by a constant, we leave t unchanged.

Definition gr_term ν t :=
match t with

| Var v ⇒ ν v
| Val c ⇒ c

end.

Atom Grounding To define the grounding gr_atom of an atom a with a grounding ν,
it suffices to provide a well-formedness proof for the resulting ground atom, as the latter
can be automatically inferred. As such, we declare the grounding gr_raw_atom of the
underlying raw_atom and prove its well-formedness, i.e that the size of its argument list
matches its symbol arity.

Grounding a raw-atom ra follows from wrapping in a RawGAtom constructor: 1) the
raw-atom’s symbol sym_atom ra and 2) its argument grounding obtained by mapping
the gr_term ν function on each term.
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Definition gr_raw_atom ν ra :=
RawGAtom (sym_atom ra) [seq gr_term ν x | x ← arg_atom ra]

The corresponding well-formedness is directly derivable from the size_map lemma stat-
ing list size is preserved by function mapping.

Definition gr_atom_proof ν a : wf_gatom (gr_raw_atom ν a).
Definition gr_atom ν a := GAtom (gr_atom_proof ν a).

Clause Grounding Clause grounding is given by applying the GClause constructor
directly to the head grounding and to the body grounding, obtained mapping the atom
grounding function.

Definition gr_cl ν cl :=
GClause (gr_atom ν (head_cl cl))

[seq gr_atom ν x | x ← body_cl cl].

8.3.2. Substitutions
We define the application of a substitution σ to terms, atoms and clauses, as well as an
ordering on substitutions.

Term Substitution Applying a substitution σ to a term t is done by a term matching
returning either the corresponding value in σ or leaving the term unchanged, if there is
no corresponding value or if the term is constant.

Definition sterm σ t :=
match t with
| Val d ⇒ Val d
| Var v ⇒ if σ v is Some d

then Val d
else Var v

end.

Atom Substitution The definition of atom substitution is analogous to the above
one for atom grounding, in that we only need to provide a well-formedness proof for
sraw_atom, i.e the substituted underlying raw_atom. As before, constructing sraw_atom
consists of wrapping the atom’s symbol and the atom’s substituted arguments, obtained
by mapping the term substitution function sterm σ over the term list.
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Definition sraw_atom σ ra :=
RawAtom (sym_atom ra) [seq sterm σ x | x ← arg_atom ra].

The respective well-formedness proof is identical to gr_atom_proof, i.e, the proof of
atom grounding well-formedness. Atom substitution is analogous to atom grounding.

Definition satom σ a := Atom (satom_proof σ a).

Substitution Membership A substitution binding b is a pair consisting of a variable
and a constant, corresponding to the first and section projections b.1 and b.2. The fact
that a given binding belongs to a substitution is modeled with the mem_binding boolean
predicate.

(* Binding b belongs to s *)
Definition mem_binding s b : bool := s b.1 == Some b.2.

We formalize membership in a substitution as a generic predicate (see Section 2), thanks
to the eqbind_class definition. Consequently, we can implement the collective predicate
interface sub_of_eqbind for substitutions. As such, we extend the generic rewriting
lemma inE with the mem_bindE extensionality lemma for binders.

Definition eqbind_class := sub.

Identity Coercion sub_of_eqbind : eqbind_class >→ sub.

Coercion pred_of_eq_bind (σ : eqbind_class) : pred_class :=
[eta mem_binding σ].

Canonical mem_bind_symtype := mkPredType mem_binding.

Lemma mem_bindE σ b : b ∈ σ = (σ b.1 == Some b.2).

Definition inE := (mem_bindE, inE).

One example of the usefulness of introducing this generic predicate is given in the next
subsection, where we use it to define an ordering on substitutions.

Substitution Ordering In accordance with Definition 3.1.8, we say that a substitution
σ1 extends a substitution σ2, i.e, σ1 � σ2, if all variables bound by σ1 appear in σ2,
bound to the same values. This is formalized in the sub_st boolean proposition and will
be denoted as σ1 ⊆ σ2 in Coq proofs. Also, the SSReflect construct (v, c) ∈ σ2
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denotes σ2 v = Some c. Note that it is possible to use the boolean universal quantifier
(see Section 2.2), due to the finiteness of the ordinal type chosen to encode variables.

Definition sub_st σ1 σ2 :=
[∀ v : ’I_n, if σ1 v is Some c then (v, c) ∈ σ2 else true].

The more compact definition above is syntactic sugar provided by SSReflect for:

Definition sub_st σ1 σ2 :=
[∀ v : ’I_n, match σ1 v with

| Some c ⇒ (v, c) ∈ σ2
| None ⇒ true
end].

The characterizing reflection lemma substP below follows from the corresponding char-
acterizing for the boolean universal quantifier:
forallP : ∀ (T : finType) (P : pred T), reflect (∀ x : T, P x) [∀ x, P x].
Based on substP, we also establish the substitution extensionality lemma substE.

Lemma substP σ1 σ2 : reflect {subset σ1 ≤ σ2} (σ1 ⊆ σ2).
Lemma substE σ1 σ2 : reflect (∀ c v, σ1 v = Some c → σ2 v = Some c)

(σ1 ⊆ σ2).

Substitutions are a key ingredient for the matching algorithm we present in Section 8.4.1.
Indeed, the algorithm essentially consists of iteratively extending base substitutions with
appropriate bindings for clause body atoms, in order to construct a grounding. This is
then applied to the head to produce a new fact. Due to the crucial role substitutions
play, it was necessary to build a small theory capturing their properties. For instance,
we show these have a partial order structure.

(* reflexivity, antisymmetry and transitivity *)
Lemma substss σ : σ ⊆ σ .
Lemma subst_antitrans σ1 σ2 : σ1 ⊆ σ2 → σ2 ⊆ σ1 → σ1 = σ2 .
Lemma subst_trans σ1 σ2 σ3 : σ1 ⊆ σ2 → σ2 ⊆ σ3 → σ1 ⊆ σ3.

Extending a substitution is realized by the add function, for which we prove soundness
(sub_add) and extensionality (addE). Also we establish in the add_add lemma that
adding a new binding for the same variable shadows the previous one.

Definition add σ v c :=
[ffun u ⇒ if u == v then Some c else σ u].

Lemma sub_add σ v c : mem_free s v → σ ⊆ (add σ v c).
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Lemma addE σ v c : (add σ v c) v = Some c.
Lemma add_add σ v c e : (add (add σ v e) v c) = add σ v c.

A very important aspect, as mentioned above, is establishing groundedness of substituted
constructs, under certain restrictions. As such, it is needed to reason about the domain
of substitutions (dom), in particular in the context of exploiting the safety condition. The
base lemma is sub_dom_grt, according to which a (variable) term is grounded by any
substitution whose domain subsumes it. Similarly, the sub_dom_gra and sub_dom_ga
reflection lemmas establish, for any (raw) atom and substitution, an equivalence be-
tween the substitution being grounding and the (raw) atom variables belonging to the
substitution domain. The sub_dom_gtl lemma proves the analogous result for lists of
atoms.

Definition dom σ := [set v : ’I_n | s v].

Lemma sub_dom_grt t σ :
term_vars t ⊆ dom σ ↔ ∃ c, sterm σ t = Val c.

Lemma sub_dom_gra ra σ :
reflect (∃ gra, sraw_atom ra σ = to_raw_atom gra)

(raw_atom_vars ra ⊆ dom σ).

Lemma sub_dom_ga a σ :
reflect (∃ ga, satom a σ = to_atom ga)

(atom_vars a ⊆ dom σ).

Lemma sub_dom_gtl tl σ :
reflect (∃ gtl, stail tl σ = [seq to_atom ga | ga ← gtl])

(tail_vars tl ⊆ dom σ).

Based on these, we prove the following substitution extension lemmas:

Lemma sterm_sub t σ1 σ2 d :
σ1 ⊆ σ1 → sterm σ1 t = Val d → sterm σ2 t = Val d.

Lemma satom_sub a σ1 σ2 ga :
σ1 ⊆ σ1 → satom a σ1 = to_atom ga → satom a σ2 = to_atom ga.

As shown in Section 8.5.8, the main substitution ordering lemmas were instrumental to
proving the soundness of body matching and of the clause consequence operator.
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8.3.3. Relating Groundings and Substitutions
Grounding substitutions can be modeled directly and non-dependently, using a padding
default constant def. As such, given a substitution σ, we encode its grounding applica-
tion to an arbitrary term t, to a raw atom ra and to an atom a, in the gr_term_def,
gr_raw_atom_def and gr_atom_def definitions below. For the former, we use the odflt
function from ssrfun and case on t: if it is a constant, we do not modify it and, if it is
a variable, i.e, Var v, we return odflt def (σ v). That is to say, we either return the
substituted variable σ v, if it exists, or def, otherwise. The corresponding soundness
lemma gr_term_defP is provable by casing.

The grounding of a raw atom ra with σ, i.e, gr_raw_atom_def σ ra, is built wrapping
in the RawGAtom constructor the symbol of the raw atom, together with the grounding
application of σ to all of the raw atom arguments. Finally, in gr_atom_def, to express
the grounding of an atom a with σ, it suffices to wrap in the GAtom constructor the
well-formedness proof gr_atom_def_proof σ a for the grounding of its underlying raw
atom. The latter is a direct consequence of the raw atom well-formedness and of the
size_map lemma, stating list size is invariant to function mapping. The soundness
lemma gr_atom_defP below is provable by double induction on the argument lists of a
and ga , using gr_term_defP.

Variable def : constant.

Definition gr_term_def σ t : constant :=
match t with
| Val c ⇒ c
| Var v ⇒ odflt def (σ v)
end.

Lemma gr_term_defP c t σ :
sterm σ t = Val c → gr_term_def σ t = c.

Definition gr_raw_atom_def σ ra : raw_gatom :=
RawGAtom (sym_atom ra) (map (gr_term_def σ) (arg_atom ra)).

Lemma gr_atom_def_proof σ a : wf_gatom (gr_raw_atom_def σ a).
Proof. by case: a ⇒ ra pf; rewrite /wf_gatom size_map. Qed.

Definition gr_atom_def σ a : gatom := GAtom (gr_atom_def_proof σ a).

Lemma gr_atom_defP a σ ga :
satom a s = to_atom ga → gr_atom_def σ a = ga.

Using def, we can also indirectly lift a substitution σ : sub to a grounding σdef, by defin-
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ing a transformation function, i.e, to_gr, that provides the respective finitely-supported
function. As discussed in Section 8.1.4, this is equivalent to building the tabulation of
the latter, which has the type n.-tuple constant. Consequently, for each variable v
in the finite (ordinal) domain ’I_n of σ, we inspect whether σ binds v to a constant c.
If so, we return c and, if not, we pad the tuple corresponding to the finitely-supported
grounding with def. Conversely, a grounding ν : gr can be transformed into a substi-
tution ν̂, through the to_sub function. For each variable v in the finite (ordinal) domain
’I_n of ν, this converts the application of the grounding ν v into an option type.

Definition to_gr (σ : sub) : gr :=
[ffun v ⇒ if σ v is Some c then c else def].

Definition to_sub (ν : gr) : sub := [ffun v ⇒ Some (ν v)].

8.3.4. Program Semantics
We present the main ingredients for capturing the semantics of a standard Datalog pro-
gram: the type of interpretations, i.e, interp, and the definition of program satisfiability
with respect to a model, i.e, prog_true.

Program Interpretation An interpretation i, for a program p, is a finite set of ground
atoms (facts). Note that gatom is a assumed to share the signature of p; that is to say,
it is built over the same types of symbols and constants.

Notation interp := {set gatom}.

As seen in Section 5, an interpretation function assigns concrete meaning to the con-
stants and symbols of a program. A clause cl of the form H ← B1, . . . , Bm can have
multiple interpretations, rendering it either true or false. A particular interpretation i
is a model of cl, if, for all groundings ν, when the clause’s body groundings belong to
i, i.e {νB1, . . . , νBm} ⊆ i, then its head grounding also belongs to i, i.e, νH ∈ i.

This textbook definition of logical consequence is encoded in the cl_true proposition.
We express the fact that an interpretation i satisfies a clause cl, by stating that, for all
valuations ν, i satisfies the corresponding ground clause gr_cl ν cl. To this end, we
separately define ground clause interpretations, via the boolean proposition gcl_true.
This ensures the same valuation homogeneously instantiates all ground body atoms.

Definition gcl_true gcl i :=
all (mem i) (body_gcl gcl) =⇒ (head_gcl gcl ∈ i).
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An interpretation i is a model for a program p, if i satisfies all clauses cl in p. Hence,
we verify that, for all valuations ν, the interpretations of ground clauses, obtained in-
stantiating cl with ν, are true.

Definition prog_true p i :=
∀ ν : gr, all (fun cl ⇒ gcl_true (gr_cl ν cl) i) p.

8.4. Bottom-up Evaluation
The key in formalizing the bottom-up evaluation of a standard Datalog program is
its underlying matching algorithm, presented in Section 8.4.1. Based on this, in Sec-
tion 8.4.2, we define the one-step forward chain, implementing logical consequence.

8.4.1. Matching Algorithm
The matching algorithm consists of incrementally constructing substitutions that homo-
geneously instantiate all atoms in a given clause body to facts in the candidate program
model. As such, all of our matching functions will also take a seed substitution parame-
ter σ. This represents the previous intermediate substitution to be extended. The main
match_body procedure is built up through the term matching function match_term and
the atom matching function match_atom, presented as follows.

Term Matching The match_term function, matching a term t to a constant d under
a substitution σ, will either: 1) return the input substitution intact, if the term t or the
substituted term σ t already equals d, 2) return an extended substitution for σ, if t is a
variable that has not been previously bound in σ, or 3) fail, if t or the substituted term
σ t are different from d.

Definition match_term d t σ : option sub :=
match t with
| Val e ⇒ if d == e then Some σ else None
| Var v ⇒ if σ v is Some e

then (if d == e then Some σ else None)
else Some (add σ v d)

end.

Atom Matching We define atom matching functions match_atom and match_atom_all
that, respectively, return substitutions (sets of substitutions) instantiating a given atom
to a ground atom (set of ground atoms). To compute the substitution matching a raw-
atom ra to a ground one rga, we first have to check that the symbols and argument
sizes of the atoms agree. If such, we cumulatively enrich the initial accumulator value σ,
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by iterating term matching over zip arg2 arg1, i.e, the itemwise pairing of the atoms’
terms. Since term matching can fail, we wrap the function with an option binder ex-
tracting the corresponding variable assignations, if they exists. Hence, match_raw_atom
is, in effect, a monadic option fold that either fails or produces substitution extensions
of σ.

Definition match_raw_atom rga ra σ : option sub :=
match ra, rga with

| RawAtom s1 arg1, RawGAtom s2 arg2 ⇒
if (s1 == s2) && (size arg1 == size arg2)
then foldl (fun acc p ⇒ obind (match_term p.1 p.2) acc)

(Some σ) (zip arg2 arg1)
else None

end.

Atom matching can be defined as equal to the matching of the underlying raw atom
matching, due to the coercion to raw_atom.

Definition match_atom σ a ga := match_raw_atom σ a ga.

Next, we compute the substitutions that can match an atom a to a fact in an interpre-
tation i. This is formalized as the set containing substitutions σ that belong to the set
gathering all substitutions matching a to ground atoms ga in i.

Definition match_atom_all i a σ :=
[set σ’ | Some σ’ ∈ [set match_atom ga a σ | ga ∈ i]].

It is interesting to note that, while the previous matching functions match_term and
match_atom were written as Gallina algorithms, we were able to abstract to a more
declarative level in defining match_atom_all. Indeed, even though match_atom_all
implements an algorithm, its essence is set-theoretic, i.e:

{σ′ | σ′ ∈ {match_atom ga a σ | ga ∈ i}}

The function is at the basis of expressing forward chain (seen Section 8.4.2) and, ulti-
mately, at the basis of fixpoint evaluation. Consequently, by propagating its implementa-
tion, we manage to “reduce” proofs about the soundness and completeness of underlying
algorithms, to mathematical proofs belonging to set theory. As such, it was particularly
convenient that we could rely on properties established in the finset library.

Body Matching Having all the required ingredients, we proceed to define the matching
for clause bodies match_body, crucial to the inferrence of new facts (see Section 8.3.4).

We capture the fact that this operation returns a collection of substitution computations,
by modeling it with foldS, a monadic fold for the set monad. The operator iteratively
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composes the result of applying a function f, seeded with an initial value σ0, to all the
elements of a list l, while flattening intermediate outputs.

Fixpoint foldS {A : Type} {B : finType}
(f : A → B → {set B}) (σ0 : {set B}) (l : seq A) :=

if l is [:: x & l] then bindS σ0 (fun y ⇒ foldS f (f x y) l)
else σ0.

We implement the flattening via bindS, given below. We modeled it using the cover
operator, from the finset library. For a given set of sets S, this takes the union of its
elements, i.e, cover S := \bigcup_(x in S) x 4. In our setting, over each of these
elements, we can additionally map an arbitrary function f.

Definition bindS {A B : finType} (S : {set A}) (f : A → {set B}) :=
cover [set f x | x in S].

The function match_body extends an initial set of substitutions ss0 with the results
of matching all atoms in the tl body of a clause, to an interpretation i. The latter
are built using match_atom_all and stepwise and uniformly extending substitutions
matching each body atom to i.

Definition match_body i tl ss0 := foldS (match_atom_all i) ss0 tl.

As we will see in Section 8.5.1, in order to prove the soundness of match_body, a key
result is the following characterization lemma for bindS.

Lemma bindP {A B : finType} (S : {set A})
(f : A → {set B}) (σ : B) :

reflect (∃ θ, θ ∈ S & σ ∈ f θ) (σ ∈ bindS S f).
Proof.
by rewrite/bindS cover_imset; exact:(iffP bigcupP); case⇒ s ??; ∃ s.
Qed.

Regarding the proof for bindP, we have that the cover_imset lemma, ensures:
cover [set f x | x in S] =

⋃
x ∈ S

f x. Finally, from the characteristic lemma bigcupP

for big union, it holds that σ ∈
⋃

x ∈ S
f x is equivalent to ∃ θ, θ ∈ S & σ ∈ f θ.

8.4.2. Building the Forward Chain Operator
We mechanize the forward chain of a program as the iteration of a fwd_chain function
that collects the results of applying a consequence operator (as described in Section 5)

4In mathematical notation, this is equivalent to cover S :=
⋃

x ∈ S
x
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to the program’s clauses.

Immediate Consequence Operator Given an interpretation i, we model the imme-
diate consequences of a clause cl as the set of new facts that can be inferred from
cl, by matching its body to i. One such fact gr_atom_def def σ (head_cl cl) is
constructed by instantiating the clause head with the grounding corresponding to the
matching substitution σ. Note that emptysub encodes the empty substitution.

Definition emptysub : sub := [ffun _ ⇒ None].

Definition cons_clause def cl i :=
[set gr_atom_def def σ (head_cl cl) |

σ ∈ match_body i (body_cl cl) [set emptysub]].

One-Step Forward Chain One iteration of the forward chain algorithm computes
the set of all consequences that can be inferred from a program p and an interpre-
tation i. This amounts to taking the union of i and of all the consequences of the
program’s clauses. The formalization naturally mirrors the mathematical expression
i ∪

⋃
cl ∈ p

cons_clause def i cl, due to the use of ssreflect’s big operator, i.e, \bigcup.

Definition fwd_chain def p i :=
i ∪ \bigcup_(cl ← p) cons_clause def i cl.

8.5. Bottom-Up Evaluation Properties
This section details the fundamental results characterizing the matching algorithm (Sec-
tion 8.5.1) and the one-step forward chain (Section 8.5.2).

8.5.1. Matching Characterization
In the following, we establish soundness and completeness of our matching algorithm.

I. Soundness of Matching

We present the soundness proofs for the algorithms matching terms, atoms and clause
bodies, presented in Section 8.4.1. That is, we show that the output substitutions are
indeed a solution for the respective matching problems.
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Term Matching Soundness

Lemma 8.5.1. Let t be a term, d a constant and σ, an arbitrary substitution. If
match_term outputs a substitution θ, extending σ with the matching of t to d, then θ is
indeed a solution, i.e the instantiation of t with θ equals d.

Lemma match_term_sound d t σ θ :
match_term d t σ = Some θ → sterm θ t = Val d.

Proof. The proof follows by case analysis on t.

Case 1 If t is a constant c, matching returns a substitution θ, only if c equals d, in
which case θ = σ. Substitution application then trivially satisfies the conclusion.

Case 2 If t is a variable v, we analyze the following cases: σ v = d and σ v = ⊥, which
lead to θ = σ and, respectively, θ = σ, [d/v]. Either way, θ v = d.

Atom Matching Soundness

Lemma 8.5.2. Let a be an atom, ga a ground atom and σ, an arbitrary substitution.
If match_atom outputs a substitution θ, extending σ with the matching of a to ga, then
θ is indeed a solution, i.e the instantiation of a with θ equals ga.

Lemma match_atom_sound a ga σ θ :
match_atom σ a ga = Some θ → satom θ a = to_atom ga.

Proof. We destruct the atom a and the ground atom ga into their raw atom and, re-
spectively, raw ground atom counterparts, together with their well-formedness proofs.
For the atom matching algorithm to output a substitution θ, the corresponding symbols
and argument sizes have to agree. To prove the ground atom obtained instantiating a
with θ equals ga, we proceed by induction on the atom’s argument list. The base case
trivially holds, since θ a and ga have equal symbols and empty argument lists. In the
step case, the arguments of a and ga are t :: tl_a and c :: tl_g. By congruence and
application of the induction hypothesis, the proof boils down to showing sterm θ t =
Val c. To relate the matching of head terms, the intermediate matching of tail terms

and the final matching, we prove:

Lemma foldl_0 gl l σ θ :
foldl (fun acc p ⇒ obind [eta match_term p.1 p.2] acc)

σ (zip gl l) = Some θ → ∃ η, σ = Some η & η ⊆ θ.
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Hence, there exists a substitution η, such that match_term c t σ = Some η and η ⊆ θ,
i.e, the matching a to ga extends η with intermediate bindings, from the pairwise term
matching of tl_a and tl_g. As a result of the substitution extension lemma for terms,
we can restate our goal as sterm η t = Val c. This holds, according to the soundness
of term matching (Lemma 8.5.1).

Regarding atom matching, another useful property - used in the next soundness lemma
- is match_atom_sub. This establishes an ordering between the input substitution of
match_atom and its output. Its proof is by casing and direct application of foldl_0.

Lemma match_atom_sub σ1 σ2 a ga :
match_atom σ1 a ga = Some σ2 → σ1 ⊆ σ2.

Body Matching Soundness

We begin by introducing two auxiliary lemmas concerning the match_atom_all func-
tion, which underlies the definition of match_body.

First, we establish its soundness, expressed by match_atomsP below. The proof is a
corrolary of the imsetP lemma, from finset. This essentially establishes that, for finite
sets A and B, for an arbitrary function f : A→ B and an element y ∈ B, the fact that
y ∈ fA is equivalent to the existence of an element x ∈ A, such that y = fx.

Lemma match_atomsP a i θ σ :
reflect (∃ ga, ga ∈ i & Some θ = match_atom σ a ga)

(σ ∈ match_atom_all i a σ).

Second, we show that we can view a substitution σ, matching a list of atoms a :: l
to interpretation i, as the extension of a substitution matching a to i, with bindings
matching atoms in l to i. This extended substitution is the result of seeding match_body
with the output of match_atom_all.

Lemma match_body_cons a l i σ ss0 :
reflect

(∃ θ, θ ∈ ss0 & σ ∈ match_body i l (match_atom_all i a θ))
(σ ∈ match_body i (a :: l) ss0).

Indeed, unfolding match_body i (a :: l) ss0, we obtain:

foldS (match_atom_all i) ss0 (a :: l).

This, in turn, corresponds to:

bindS ss0 (fun y ⇒ foldS (match_atom_all i) (match_atom_all i a y) l),
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which is the same as:

bindS ss0 (fun y ⇒ match_body i l (match_atom_all i a y)).

It then follows σ ∈ match_body i (a :: l) ss0 is equivalent to:

σ ∈ bindS ss0 (fun y ⇒ match_body i l (match_atom_all i a y)).

The fact that ∃ θ, θ ∈ ss0 & σ ∈ match_body i l (match_atom_all i a θ) is a
corollary of the bindP monadic bind reflection lemma from Section 8.4.1.

Next, we prove a similar result to match_atom_sub, extended to body atom matching
and sets of input substitutions. This is expressed in the match_body_sub lemma that
follows. This states that, given an interpretation i, if σ is in the result of the extending
substitutions from a set ss0 with bindings matching an atom list tl to i, then there is
a substitution θ in ss0, such that θ � σ.

Lemma match_body_sub tl i σ ss0 :
σ ∈ match_body i tl ss0 → ∃ θ, θ ∈ ss0 & θ ⊆ σ.

The proof is by induction on tl, using match_atom_sub and the transitivity of substi-
tution ordering subst_trans (see Section 8.3.2).

We continue with the proof for the soundness of body matching, stated as follows.

Lemma 8.5.3. If a substitution σ is in the output of match_body, extending a given
substitution set ss0 with matchings of a clause body tl to an interpretation i, then there
exists a ground body gtl such that

• gtl is the instantiation of tl with θ

• all of the atoms in gtl belong to i

Lemma match_body_sound tl i σ ss0 :
σ ∈ match_body i tl ss0 →

∃ gtl, stail tl σ = [seq to_atom ga | ga ← gtl]
& all (mem i) gtl.

Proof. The proof is by structural induction on the clause body atom list tl.

Base Case tl ≡ [ ]. Trivial.

Induction Case tl ≡ l.

Induction Hypothesis tl ≡ a :: l. We know:
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∀ ss0 ∀σ, σ ∈ match_body i l ss0 →
∃ gtl, stail tl σ = [seq to_atom ga | ga ← gtl] & all (mem i) gtl.

Assume a substitution set ss0 and a substitution σ, where

σ ∈ match_body i (a :: l) ss0.

From match_body_cons, it holds that

∃ θ, θ ∈ ss0 & σ ∈ match_body i l (match_atom_all i a θ).

Instantiating the induction hypothesis with (match_atom_all i a θ) as ss0, with
σ and with σ ∈ match_body i l (match_atom_all i a θ), it follows that:
∃ gtl’, stail l σ = [seq to_atom ga | ga ← gtl’] & all (mem i) gtl’

From σ ∈ match_body i l (match_atom_all i a θ), by match_body_sub:

∃ θ′, θ′ ∈ match_atom_all i a θ & θ′ ⊆ σ.

Applying match_atomsP to θ′ ∈ match_atom_all i a θ, we obtain:

∃ ga’, ga’ ∈ i & θ′ = match_atom i a θ

Atom matching soundness ensures satom θ′ a = to_atom ga’. From this and
θ′ ⊆ σ, we derive, by satom_sub, that satom a σ = to_atom ga’.
We take ga’ :: gtl’ as the witness ground atom list gtl.
satom a σ = to_atom ga’ and stail l σ = [seq to_atom ga | ga ← gtl’]
lead to stail (a :: l) σ = [seq to_atom ga | ga ← (ga’ :: gtl’)].
Finally, ga’ ∈ i and all (mem i) gtl’ imply all (mem i) (ga’ :: gtl’).

II. Completeness of Matching

We detail the completeness proofs for the algorithms matching terms, atoms and clause
bodies, presented in Section 8.4.1. That is, we show these output all possible solutions for
their respective matching problems. In fact, these algorithms produce the best solutions,
which is something we account for in our theorem statements, as follows.

Term Matching Completeness

Lemma 8.5.4. Let t be a term, d a constant and σ a substitution that is a solution for
matching t against d. The match_term algorithm seeded with σ′, an arbitrary restriction
of σ, outputs a better matching solution than σ, i.e a substitution θ that is smaller or
equal to σ.
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Lemma match_term_complete d t σ σ′ :
σ′ ⊆ σ → sterm σ t = Val d →
∃ θ, match_term d t σ′ = Some θ & θ ⊆ σ.

Proof. The proof follows by case analysis on t.

Case 1 If t is a constant c, the instantiation of t equals d, only if c equals d. Hence, a
trivial solution to the matching algorithm is the input substitution σ′.

Case 2 If t is a variable v, we know that it is instantiated by σ and proceed to inspecting
whether of not it is also instantiated by σ′. If so, both σ v and σ′ v are equal and
the matching algorithm returns σ′. If not, the matching algorithm returns θ, the
extension of σ′ with the corresponding binding for v, i.e, θ = add σ′ v d, where
σ′ ⊆ σ and σ v = d.

Atom Matching Completeness

Lemma 8.5.5. Let a be an atom, ga a ground atom and σ a substitution that is a solution
for matching a against ga. The match_atom algorithm seeded with σ′, an arbitrary
restriction of σ, outputs a better matching solution than σ, i.e a substitution θ that is
smaller or equal σ.

Lemma match_atom_complete ga a σ σ′ :
σ′ ⊆ σ → satom σ a = to_atom ga →
∃ θ, match_atom σ′ a ga = Some θ & θ ⊆ σ.

Proof. Since instantiating a with σ equals ga, the symbols and argument sizes of a and
ga have to agree. Hence, the corresponding matching algorithm will produce an output.
We build the witness substitution by simultaneous induction on arg_a and arg_ga, the
argument lists for a and ga. For the base case, we take the witness to be σ′, which
trivially satisfies the required conditions. For the step case, we distinguish between the
head term t of arg_a and the head constant c of arg_ga, on the one hand, and the
tail arguments arg_a’ and arg_ga’, on the other. From the hypothesis, we infer that
sterm σ t = c and that the mapping of σ over arg_a’ equals arg_ga’. Applying the
term matching completeness lemma for t and c, we extract the substitution θ′, such that
match_term c t σ′ = Some θ′. Finally, θ is obtained from the induction hypothesis,
by passing θ′ as a seed.
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Body Matching Completeness

Lemma 8.5.6. Let cl be a clause, i an interpretation and ν, a valuation compatible with
any substitution σ in the accumulated substitution set ss0. If ν makes the body of cl true
in i, then the match_body algorithm outputs a compatible substitution θ that is smaller
or equal to ν.

Lemma match_body_complete σ ss0 i cl ν :
σ ∈ ss0 → σ ⊆ (to_sub ν) →
all (mem i) (body_gcl (gr_cl ν cl)) →
∃ θ, θ ∈ match_body (body_cl cl) i ss0 & θ ⊆ (to_sub ν).

Proof. Let us fix the grounding ν, an interpretation i and the clause cl ≡ H ← B1, . . . , Bn.
The proof is by structural induction on the clause body list.

Base Case cl ≡ H ←.
Since match_body [ ] i ss0 = ss0, we trivially take σ as the witness substitution θ.

Induction Case cl ≡ H ← B0, B1, . . . , Bn.

Induction Hypothesis cl ≡ H ← B1, . . . , Bn. We know that:

∀ss0 ∀σ, σ ∈ ss0 ∧ σ � ν̂ ∧ {νB1, . . . , νBn} ⊆ i⇒
∃θ, θ ∈ match_body [B1, . . . , Bn] i ss0 ∧ θ � ν̂.

(8.1)

Recall from Section 8.3.3, that we denote the coercion of a valuation (grounding)
ν to a substitution as ν̂. Assume a substitution set ss0 and a substitution σ, where
σ ∈ ss0. Also, assume a ground substitution η, with σ � η̂ and {ηB0, . . . , ηBn} ⊆ i.
Since ηB0 ∈ i:

∃ga, ga ∈ i ∧ ηB0 = ga (8.2)

From σ � η̂ and ηB0 = ga, applying the match_atom_complete lemma, we obtain:

∃η′, match_atom σ B0 ga = η′ ∧ η′ � η̂ (8.3)

Using the reflection lemma match_atomsP on 8.2 and match_atom σ B0 ga = η′:

η′ ∈ match_atom_all i B0 σ (8.4)

Instantiating the induction hypothesis with (match_atom_all i B0 σ) as ss0 and
η′ as σ, together with η′ � η (from 8.3) and {ηB1, . . . , ηBn} ⊆ i, it follows that:

∃θ, θ ∈ match_body i [B1, . . . , Bn] (match_atom_all i B0 σ) ∧ θ � η (8.5)

To conclude the proof, from 8.5 and σ ∈ ss0, applying match_body_cons:

θ ∈ match_body i [B0, . . . , Bn] ss0 (8.6)
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Note that the previous match_body_complete lemma is a generalized, “technical” one.
From it, we can obtain, as a corollary, the standard version:

Lemma match_body_complete_gen σ i cl ν :
all (mem i) (body_gcl (gr_cl ν cl)) →
∃θ, θ ∈ match_body (body_cl cl) i [set emptysub] & θ ⊆ (to_sub ν).

8.5.2. Forward-Chain Characterization
In the following, we establish the stability and soundness properties of logical conse-
quence inference and, based on these, the analogous properties of one-step forward chain.

Immediate Consequence Operator Characterization

The main properties of the cons_clause operator are stability and soundness, whose
proofs are given below.

Theorem 8.5.7 (Stability of the Immediate Consequence Operator). Let cl be a positive
clause and i a model for cl. The application of the consequence operator on cl, given i,
is stable, i.e, the operator derives no new facts from cl.

This is encoded as:

Lemma cons_cl_stable def cl i :
cl_true cl i → cons_clause def cl i ⊆ i.

Proof. Let cl ≡ H ← B1, . . . , Bn. Proving the stability property amounts to showing:

{σdef H | σ ∈ match_body i [B1, . . . , Bn] [set emptysub]} ⊆ i.

We apply the sub_imset_pre lemma, according to which, for any finite sets A and B
and function f : A → B, it holds that {f(x) | x ∈ A} ⊆ B ⇔ A ⊆ f−1(B). Hence, our
goal is transformed into match_body i [B1, . . . , Bn] [set emptysub] ⊆ {σ | σdef H ∈ i}.
Let σ ∈ match_body i [B1, . . . , Bn] [set emptysub]. We aim to infer σdef H ∈ i.

From the body matching soundness, we know there exists a list of ground atoms [B̄1, . . . , B̄n],
where {B̄1, . . . , B̄n} ⊆ i and [σB1, . . . , σBn] = [pB̄1q, . . . , pB̄nq]. The latter is equivalent
to [σdef B1, . . . , σdef Bn] = [B̄1, . . . , B̄n]. Hence, {σdef B1, . . . , σdef Bn} ⊆ i.

From the hypothesis, we know i |= cl, which means that, for all ground substitu-
tions η, if {ηB1, . . . , ηBn} ⊆ i, then ηH ∈ i. Taking η to be σdef , together with
{σdef B1, . . . , σdefBn} ⊆ i, concludes the proof.
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Theorem 8.5.8 (Soundness of Clause Consequence). Let cl be a safe positive clause
and i, an arbitrary interpretation. If the application of the consequence operator on cl
given i is stable, i.e, the operator derives no new facts from cl, then i is a model for cl.

This is encoded as:

Lemma cons_cl_sound def cl i :
safe_cl cl → cons_clause def cl i ⊆ i → cl_true cl i .

Proof. Let cl ≡ H ← B1, . . . , Bn. Unfolding the definition corresponding to consequence
operator application, the stability hypothesis becomes:

{σdef H | σ ∈ match_body i [B1, . . . , Bn] [set emptysub]} ⊆ i.

Proving i is a model for cl means showing that, for any ground substitution η, if
{ηB1, . . . , ηBn} ⊆ i, then ηH ∈ i. Given the above condition, it suffices to establish:

ηH ∈ {σdef H | σ ∈ match_body i [B1, . . . , Bn] [set emptysub]}

i.e, that ∃θ, θ ∈ match_body i [B1, . . . , Bn] [set emptysub], such that ηH = θdef H.

From the corollary of body matching completeness and {ηB1, . . . , ηBn} ⊆ i:

∃θ, θ ∈ match_body i [B1, . . . , Bn] [set emptysub] and θ � η.

Hence, it only remains to show ηH = θdef H, i.e η̂def H = θdef H.

To this end, we first prove there exists a ground atom H̄, such that θH = pH̄q, which, by
the sub_dom_ga reflection lemma (see Section 8.3.2) is equivalent to VarH ⊆ dom θ. In
turn, from transitivity and the safety condition VarH ⊆ Var [B1, . . . , Bn], this reduces to
proving Var [B1, . . . , Bn] ⊆ dom θ. From θ ∈ match_body i [B1, . . . , Bn] [set emptysub]
and body matching soundness, it follows there exists a list of ground atoms [B̄1, . . . , B̄n],
such that [θB1, . . . , θBn] = [pB̄1q, . . . , pB̄nq]. By the sub_dom_gtl reflection lemma, it
holds there exists a ground atom H̄, such that θH = pH̄q.

Applying the atom grounding reflection lemma gr_atom_def to the above: θdef H = H̄.
Also, since θ � η and θH = pH̄q, from satom_sub, η̂ H = pH̄q, i.e, η̂def H = H̄.
Consequently, η̂def H = θdef H.

One-Step Forward Chain Characterization

The main properties of the one-step forward chain are stability and soundness. Based
on these, we can state its characterization fwd_chainP, as a reflection lemma.

Theorem 8.5.9 (Stability of One-Step Forward Chain). Let p be a positive program.
Any interpretation i that is a model of p is a fixpoint of one iteration of forward chain.

This is encoded as:
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Lemma fwd_chain_stable def p i :
prog_true p i → fwd_chain def p i = i.

Proof.
move⇒ p_true; apply/setUidPl/bigcups_seqP⇒ cl h_in _.
by apply/cons_cl_stable⇒ v; have/allP := p_true v; exact.
Qed.

Proof. Unfolding the definition of a forward chain step, the fixpoint property becomes:

i ∪
⋃

cl ∈ p
cons_clause def cl i = i.

Applying the setUidPl reflection lemma, this is equivalent to:⋃
cl ∈ p

cons_clause def cl i ⊆ i.

which, in turn, by the bigcups_seqP reflection lemma, becomes:

∀cl, cl ∈ p, cons_clause def cl i ⊆ i.

Since i |= p, it follows that, for any clause cl, where cl ∈ p, i |= cl. Hence, the conclusion
follows directly from Theorem 8.5.7.

Theorem 8.5.10 (Soundness of One-Step Forward Chain). Let p be a safe positive
program and i an interpretation. If i is the fixpoint of one iteration of forward chain,
then i is a model for p.
This is encoded as:

Lemma fwd_chain_sound def p i :
safe_prog p → fwd_chain def p i = i → prog_true p i .

Proof.
move/allP⇒ h_sf /setUidPl/bigcups_seqP ⇒ h_cl ?.
by apply/allP⇒ ? h; apply: (cons_cl_sound (h_sf _ h)); apply: h_cl.
Qed.

Proof. By the same reasoning as above, the fixpoint condition becomes:

∀cl, cl ∈ p, cons_clause def cl i ⊆ i.

Since program safety implies the safety of each program clause, the conclusion follows
directly from Theorem 8.5.8.

Finally, based on Theorem 8.5.9 and Theorem 8.5.10, we establish that:

Lemma fwd_chainP def p i (p_safe : prog_safe p) :
reflect (prog_true p i) (fwd_chain def p i == i).
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8.6. Characterization of the Positive Engine
The main results presented in this section are the termination of the positive engine’s
evaluation (see Section 8.6.1) and its soundness and completeness (see Section 8.6.2).

8.6.1. Fixpoint Properties
In order to prove the bottom-up evaluation implemented by the positive engine termi-
nates, we rely on properties of its forward chain operator. Specifically, we show that it
is monotonous, increasing and bounded.

Monotonicity We prove forward chain is monotonous, by showing all its base functions
(see Section 8.4.1) have the property. The first such function is the monadic bind bindS,
implementing set flattening. The corresponding monotonicity lemma is:

Lemma bindS_mon {A B : finType} :
∀ (i1 i2 : {set A}) (f1 f2 : A → {set B}),
i1 ⊆ i2 → (∀ x, f1 x ⊆ f2 x) →
bindS i1 f1 ⊆ bindS i2 f2.

The proof relies on the subsetP and bindP reflection lemmas from the fintype library:

Lemma bindP {A B : finType} :
∀ (i : {set A}) (f : A → {set B}) (r : B),
reflect (exists2 s : A, s ∈ i & r ∈ f s) (r ∈ bindS i f).

Lemma subsetP {T : finType} (A B : pred T):
reflect {subset A ≤ B} (A ⊆ B).

We prove monotonicity of the monadic set fold, as a direct consequence of bindS_mon.

Lemma foldS_mon {A : eqType} {B : finType}
(f1 f2 : A → B → {set B}) (l : seq A)
(f_mon : ∀ x y, f1 x y ⊆ f2 x y) :
(∀ (s1 s2 : {set B}), (s1 ⊆ s2) → foldS f1 s1 l ⊆ foldS f2 s2 l).

Based on this, we establish monotonicity of the matching functions, building up to the
logical consequence operator cons_cl.

Lemma match_atom_all_mon i1 i2 s a : i1 ⊆ i2 →
match_atom_all i1 a s ⊆ match_atom_all i2 a s.

Lemma match_body_mon i1 i2 cl : i1 ⊆ i2 →
match_body (body_cl cl) i1 ⊆ match_body (body_cl cl) i2.
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Lemma cons_cl_mon i1 i2 cl def : i1 ⊆ i2 →
cons_clause def cl i1 ⊆ cons_clause def cl i2.

These properties trivially follow by compositionality, from the imsetS and preimsetS
properties in finset, stated below.

Variables (T1 T2 : finType) (f : T1 → T2).

Lemma imsetS (A B : T1) : A ⊆ B → (f A) ⊆ (f B).
Lemma preimsetS (A B : T2) : A ⊆ B → (f−1 A) ⊆ (f−1 B).

Using the finset library was particularly convenient, as it spared us from having to do
routine (yet typically much larger) induction proofs on sets or on their list of elements
up to permutation.

Finally, we establish monotonicity of the one-step forward chain:

Lemma fwd_chain_mon i1 i2 p def :
i1 ⊆ i2 → fwd_chain def p i1 ⊆ fwd_chain def p i2.

The proof additionally uses the bigcupP characteristic property of the big union opera-
tor, from the bigop library:

Lemma bigcupP (T I : finType) (x : T) (P : pred I) :
∀ (F : I → {set T}), reflect (exists2 i : I, P i & x ∈ F i)

(x ∈ (\bigcup_(i | P i) F i)%SET).

Increase and Boundedness These properties are stated as follows:

Lemma fwd_chain_inc i p def : i ⊆ fwd_chain def p i.
Lemma fwd_chain_bound s : s ⊆ bp → fwd_chain def p s ⊆ bp.

The first proof trivially follows since the operator is inflationary by definition. Concern-
ing the second result, textbook proofs, such as the one in [1], construct the bound by
taking the program’s Herbrand base, denoted as B(P). However, we did not need to
explicitly do so, as it sufficed to take the setT, the top element of sets over a finite type,
as the upper bound:

Definition bp : {set gatom} := setT.
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As such, it was convenient that we could express the type of ground atoms as being
finite. Also, note that the textbook construction on B(P) is only required when proving
we can restrict to the active domain (see Section 8.1.1).

Having proved the one-step forward chain is monotonous, increasing and bounded, estab-
lishing its iteration reaches a (minimal) fixpoint (lfpE and min_lfp_all) is a corrolary
of a more general Knaster-Tarski result (see Section 5.2.2). To this extent we were able
to fully reuse the corresponding proof by contradiction, from [33].

Variables (T : finType) (s0 ub : {set T}).
Implicit Types (s : {set T}) (f : {set T} → {set T}).
Variables (f : {set T} → {set T}).

Definition ubound := ∀ s, s ⊆ ub → f s ⊆ ub.

Hypothesis (f_mono : monotone f) (f_inc : increasing f)
(f_ubound: ubound).

Notation iterf_incr n := (iterf f s0 n).
Notation lfp_incr := (iterf f s0 #|ub|).

Hypothesis (s0_bound : s0 ⊆ ub).

(* boundedness of iteration is proved by induction *)
Lemma iterf_incr_bound n : (iterf_incr n) ⊆ ub.
Proof. by elim: n ⇒ /= [|n ihn]; rewrite ?lb_bound ?f_ubound //=.
Qed.

Lemma lfpE : lfp_incr = f lfp_incr.

Lemma min_lfp_all s (hs : s0 ⊆ s) (sfp : s = f s) : lfp_incr ⊆ s.
Proof. by rewrite (fix_iter #|ub| sfp); apply/iter_mon. Qed.

Lemma has_lfp :
{ lfp : {set T} | lfp = f lfp

∧ lfp = iter #|ub| f s0
∧ ∀ s’, s0 ⊆ s’ → s’ = f s’ → lfp ⊆ s’}.

Proof.
by ∃ lfp_incr; rewrite -lfpE /lfp_incr; repeat split;
apply/min_lfp_all.
Qed.
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8.6.2. Strong Soundness and Completeness
Theorem 8.6.1. Let p be a safe standard Datalog program. The iterative forward
chain inference engine terminates and outputs a minimal model m.

Proof. The fact that the engine iterating one-step forward chain reaches a minimal fix-
point follows from the has_lfp lemma in the previous section. It remains to show that
m is indeed the minimal model for p. The fact that m |= p is a direct consequence of the
forward chain soundness lemma fwd_chain_sound (see Theorem 8.5.10). The minimal-
ity of the model follows from the minimality of the fixpoint, as the forward chain stability
property (see Theorem 8.5.9) ensures ∀m′,m′ |= p⇒ fwd_chain def p m′ = m′.

The corresponding Coq statement is given below. Note that imposing program safety
is required, as the condition is needed in the soundness proof of one step forward chain.

Section Completeness.

Variables (n : nat) (ct : finType) (def : constant ct).
Variables (st : finType) (ar : {ffun st → nat}).
Variable (p : program n ct ar).

Hypothesis p_safe : prog_safe p.
Notation gatom := (gatom ct ar).
Definition bp : {set gatom} := setT.

Lemma incr_fwd_chain_complete (s0 : {set gatom}) :
{ m : {set gatom} &
{ n : nat | [∧ prog_true p m

, n = #|bp|
, m = iter n (fwd_chain def p) s0
& ∀ (m’ : {set gatom}), s0 ⊆ m’ →

prog_true p m’ → m ⊆ m’]}}.

(* corollary to the previous technical lemma *)
Lemma incr_fwd_chain_complete_gen :
{ m : {set gatom} &
{ n : nat | [∧ prog_true p m

, n = #|bp|
, m = iter n (fwd_chain def p) set0
& ∀ (m’ : {set gatom}), prog_true p m’ → m ⊆ m’]}}.

End Completeness.
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8.7. Discussion
As mentioned in Section 8.1.3, we established the key theorems proved this section also
in an alternative formalization, in which we did not make the finiteness assumption for
the domain of constants. The main consequence - apart from larger proof sizes for equiv-
alent lemmas - was that, given a program p, we had to explicitely construct its bound,
i.e its Herbrand base B(P), and prove it is indeed a model of p, i.e, B(P) |= p. In the
following, we will detail the most important differences that appeared in the infinite-
state setting, concerning both modelization and proofs.

At the program signature level, we encode the domain of constants and the symbols of
Datalog programs as types with the choice operator (with decidable equality). With
regard to the modeling of (ground) atoms, these take the form:

Variable symtype : choiceType.
Variable constype : choiceType.
Variable arity : symtype → nat.

Inductive constant := C of constype.

Inductive gatom := GAtom of symtype & seq constant.
Inductive atom := Atom of symtype & seq constant.

Definition wf_gatom ga :=
arity (sym_gatom ga) ≡ size (arg_gatom ga).

Definition wf_atom a := arity (atom_sym a) ≡ size (atom_arg a).

Note that the well-formedness proofs for (ground) atoms are encoded separately in this
setting, i.e, are not part of the type for ground atoms, as in Section 8.2.2. Also, the
rest of the language constructs are formalized in the same manner as in the previous
sections.

Building B(P) Let us assume a program p. We give a short overview of how we
construct the Herbrand Base of p, i.e, the set of all possible ground atoms formed from
its head symbols and active domain constants. First, we define the active domain, adom,
as the list of all program constants prog_const.

Variable (p : program).

Definition term_const t : seq constant :=
if t is Val e then [:: e] else [::].
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Definition atom_const a : seq constant :=
let: Atom _ args := a in

flatten [seq term_const x | x ← args].

Definition tail_const tl : seq constant :=
flatten [seq atom_const x | x ← tl].

Definition cl_const cl : seq constant :=
tail_const [:: head cl & body cl].

Definition prog_const p : seq constant :=
flatten [seq cl_const cl | cl ← p].

Definition adom : seq constant := prog_const.

To obtain a finite type corresponding to adom, we use the seq_sub function from the
finType library. For a type T : choiceType and a list l : seq T over T, seq_sub T
is a new type SeqSub {ssval : T, ssvalP : val ∈ l}, packing an element ssval
of T and a (boolean) proof ssvalP that ssval belongs to l. This record type has
the important property it possesses a canonical finType instance. Also, we can coerce
seq_sub T to T using the (injective) projection ssval.

Definition strip_adom (t : seq (seq_sub adom)) : seq constant :=
[seq ssval c | c ← t].

Next, we can construct the finite type containing tuples with arity n and with values in
adom, i.e, n.-tuple (seq_sub adom). Given an arbitrary type T, the type n.-tuple T
of tuples over T with arity n is defined in SSReflect as a subtype of lists over T, i.e,
seq T, that satisfies the size condition size tval == n. We can obtain the underlying
tuple using the (injective) projection tval.

Structure tuple_of : Type :=
Tuple {tval :> seq T; _ : size tval == n}.

Notation "{ ’tuple’ n ’of’ T }" := (n.-tuple T : predArgType)
(at level 0, only parsing) : form_scope.

To enumerate the elements of the n.-tuple (seq_sub adom) type, we use the enum
function from the finType library. Given a predicate P over a finite type, enum P builds
the list with all elements of that type, satisfying P. Hence, all_tuples n gives us
the desired list of tuples. Mapping over it the composition of the projection functions
tval and ssval, i.e, strip_adom \o tval, we can extract the corresponding lists of
constants.

121



8. Formalization of Standard Datalog

(* {: T } notation for predT : pred T *)
Definition all_tuples n := enum {: n.-tuple (seq_sub adom) }.
Definition all_adom n := map (strip_adom \o tval) (all_tuples n).

For a given symbol s, the bp_s s function builds all the ground atoms having s as a
symbol and arguments with values in adom. Finally, B(P) can be encoded with the bp
function that flattens the result of applying bp_s to all the head symbols of the program.

(* All the instances of s(c1...cn) over constants in adom *)
Definition bp_s s : seq gatom :=

[seq GAtom s t | t ← all_adom (arity s)].
Definition bp : seq_gatom := flatten [seq bp_s s | s ← sym_hd].

Note that we can also define B(P) directly, using the refine tactic, as shown next.

Definition bp : seq gatom.
refine (flatten _).
refine ([seq _ | s ← sym_hd]).
set adomT := seq_sub adom.
set argT := (arity s).-tuple adomT.
set l := enum {: argT}.
set l’ := [seq val t | t ← l].
rewrite /= in l’.
exact : [seq GAtom s [seq val c | c ← t] |t ← l’].
Defined.

Finally, we establish the characteristic property bpP for bp. This states that, a ground
atom ga is well-formed, has a symbol belonging to the head symbols of the program and
arguments with constants in adom if and only if it belongs to bp.

Lemma bpP ga :
[∧ wf_gatom ga, sym_gatom ga ∈ sym_hd

& {subset arg_gatom ga ≤ adom} ] ↔ ga ∈ bp.

Proving B(P) is a program model We now prove B(P) is a model of any safe program,
whose clause heads are well-formed. That is to say, bp |= p, as stated in the bpM lemma.
Note that the seq_fset function transforms a given list into a set containing its elements.

Definition prog_heads p := [seq (head cl) | cl ← p].
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Definition wf_prog_heads p := all wf_atom (prog_heads p).

Variable (p_wf : wf_prog_heads p) (p_safe : prog_safe p).

Lemma bpM : prog_true p (seq_fset bp).

The Coq proof follows the paper version given in [1]. Let H̄ ← B̄1, . . . , B̄n be the
instantiation of a program clause H ← B1, . . . , Bn. The proof reduces to showing
B(P) |= H̄ ← B̄1, . . . , B̄n, i.e, to showing that: if {B̄1, . . . , B̄n} ⊆ B(P), then H̄ ∈ B(P).
According to bpP this implies showing that: 1) H̄ is well-formed, 2) the symbol of H̄
is among the program symbols and 3) the arguments of H̄ are in adom. The first two
subgoals follow trivially from the hypothesis. We are left with proving the last one.
From the safety condition, we know that the variables in H are among those in the
body, i.e, V ar(H) ⊆ V ar(B1) ∪ . . . ∪ V ar(Bn). Since, {B̄1, . . . , B̄n} ⊆ B(P), all body
constants belong to adom. By an argument analogous to the one given in the proof of
Theorem 8.1.1, it follows that each constant occuring in H̄ is in adom. Hence, H̄ ∈ B(P).

Proving B(P) is a program bound Since B(P) is a program model, the fact that it is
a bound for bottom-up inference follows from the stability property of one-step forward
chain (see Theorem 8.5.9).

Proving Strong Soundness and Completeness of Forward Chain Finally, we establish
the analogous result to that proven in Theorem 8.6.1. That is to say:
“Let p be a safe standard (positive) Datalog program. The iterative forward chain
inference engine terminates and outputs a minimal model m.”

The proof is similiar to the one given is Section 8.6.2, except for the explicit bound
constructed for the positive engine, i.e, for the iteration of the forward chain operator.
Note that fset0 is a notation for the empty set in the finmap library.

Lemma fwd_chain_complete_alt :
{ m : {fset gatom} &
{ n : nat | [∧ prog_true p m

, m = iter n (fwd_chain def p) fset0
& ∀ m’, prog_true p m’ → m ‘≤‘ m’]}}.

Proof.
have h_mon := fwd_chain_mon p def.
have h_fp := fwd_chain_stable def (bpM p_wf p_safe).
have h_ub : bounded bp (fwd_chain def p).

by move⇒ ss H; rewrite -h_fp; apply/h_mon.
have [m [m_fix [m_def m_min]]] := has_lfp h_mon h_ub.
∃ m, #|‘bp|; do ! split; auto; first exact/(fwd_chain_sound p_safe (

esym m_fix)).
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by move⇒ m’ /fwd_chain_stable /esym /m_min.
Qed.

8.7.1. Contributions
In this chapter we presented a Coq/ssreflect formalization of the theory of positive
Datalog, based on the Mathematical Components library for sets over finite types, i.e,
finset. The formalization consists of the following components:

• the positive Datalog language and its model-theoretic semantics

• a corresponding inference engine implementing bottom-up evaluation:
– development of a core theory of substitutions
– development of a monadic abstract matching algorithm

• the fixpoint semantics of the language
– set-theoretic definitions of the immediate consequence and fixpoint operators
– monotonicity, boundedness and fixpoint results

• proofs of the characteristic properties of the engine:
– subsumption, injectivity, decomposition, modularity and stability
– main theorems: soundness, termination and completeness of the evaluation

with respect to the model-theoretic semantics

8.7.2. Lessons
The matching algorithm employed by the engine iteratively tries to construct ground-
ings from substitutions. As such, an important aspect in reasoning about its soundness
and completeness consists in reasoning about substitutions, i.e, about their domains,
orderings, properties and application to different language constructs. To this end we
formalized a small theory for substitutions, mirroring standard logic approaches (see
[21]) to characterizing hyperresolution.

An interesting point is that the completeness proof for matching body atoms against
interpretations (ground atom sets) was needed for proving the soundness of the forward
chain procedure. Regarding the completeness proof for the latter, we found it easier
to follow a fixpoint theory approach, rather than to rely on lifting and compactness
arguments. In particular, we used a Knaster-Tarski result to prove that the evaluation
output was indeed a minimal fixpoint (due to the monotonicity and boundedness of the
fixpoint operator). Also, we needed to establish the “stability” of the fixpoint operator,
i.e, the fact that, for a given program, its models are fixpoints.
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In this chapter we discuss a formalization of Datalog with negation, based on the one
we developed in Section 8, for standard Datalog. The library contains a mechaniza-
tion of the language and of its semantics, together with that of an inference engine,
implementing the stratified evaluation heuristic. It is complete with proofs capturing
the characteristic properties of all defined components. We briefly summarize below the
main idea behind the functioning of the engine, which lies at the core of the development.

As we have seen in Section 6, logic programs with negation are more difficult to handle
than non-negated programs, as, in particular, it is not guaranteeed that an (unique)
minimal model always exists. To remedy this, a sufficient condition for model existence
is provided in the literature, namely stratification. The main idea of the technique is
to segment a logic program in such a way that every slice can be soundly handled as a
positive one and, as such, its minimal model can be computed and iteratively enriched
as we move to higher stratas. Not all programs are stratifiable, but, for those that are,
a stratification can be defined by computing predicate dependencies. Thus, the lowest
strata must forcefully be a negation free, self-contained slice of the original program.
Due to the self-containement property, later layers can rely on the fixpoint semantics
given in Section 5. The Coq development is impacted by stratification in two ways:
first, the computed models have to be indexed by stratas and second, every slice of the
negated program has to be seen as a positive program, which is realized via an embed-
ding described in Section 9.2.1.

The chapter is organized as follows. We start with Section 9.2, by outlining the relevant
modelization choices we made. Next, in Section 9.1.1 and Section 9.1.2, we present the
syntax and semantics of the language. In Section 9.3, we give a formalization of relevant
aspects from the theory of stratification. In Section 9.4, we outline our mechanization
of stratified evaluation. In Section 9.5, we review the proofs of additional characteristic
properties we had to provide, in order to reuse the inference engine from Section 8. Also,
we introduce the essential properties that the evaluation of programs with negation has
to satisfy at each step, i.e, its invariant. This is a prelude to Section 9.6, in which we
conclude with the main proof, establishing stratified evaluation to be sound, complete
and terminating with a “relatively” minimal model.

9.1. Language Representation
We give an account of a formalization of the syntax (see Section 9.1.1) and semantics
(see Section 9.1.2) of Datalog programs with negation.
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9.1.1. Syntax
We extend the syntax of positive Datalog with literals that, according to Section 6,
are positive or negative atoms. Consequently, we reuse the definitions of ground (gatom)
and non-ground atoms (atom), from Section 8.2. Also, as before, we distinguish between
ground and non-ground literals and clauses.

Literals Literals are encoded by enriching ground and, respectively, non-ground atoms
with a boolean flag, marking whether or not they are negated.

Inductive glit := GLit of bool * gatom.
Inductive lit := Lit of bool * atom.

Clauses Ground clauses are defined as packing ground atoms and ground literal lists,
while non-ground ones pack atoms and literal lists. Note that, in both cases, we did not
need to model (ground) clause heads with (ground) literals. This is due to the fact that,
as mentioned in Section 6, within a clause, negation only occurs in the body.

Inductive gclause := GClause of gatom & seq glit.
Inductive clause := Clause of atom & seq lit.

The formalization of programs as clause lists is the same as in Section 8.2.

Safety The safety condition imposed on Datalog programs with negation is the same
as that described in Section 9.1.1. The extended safety condition from Definition 6.1.4
- stating that, within each program clause, variables in negated body atoms, should
also appear in positive ones - is not needed. This is due to the fact that the evaluation
algorithm we define in Section 9.4.3 operates on stratifiable programs. As noted in
Remark 6.2.10, these have the property that they can be partitioned into semipositive
programs, i.e, programs whose negated atoms can be complemented with respect to their
active domain. Since the latter is finite, we do not need any further restriction.

Definition term_vars := P.term_vars.
Definition atom_vars := P.atom_vars.

Definition lit_vars l := atom_vars (atom_lit l).
Definition tail_vars tl := \bigcup_(t ← tl) lit_vars t.

Definition cl_safe cl :=
atom_vars (head cl) ⊆ tail_vars (body cl).

Definition prog_safe p := all cl_safe p.
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9.1.2. Semantics
The only additions to the interpretation of programs defined in Section 8.3.4 concern
ground literals and clauses.

The glit_true definition below captures the fact that a ground literal gl is satisfied by
an interpretation i, by casing on the ground literal’s flag. If the latter is true, i.e the
literal is positive, we check membership of the underlying ground atom in i; otherwise,
i.e, if the literal is negative, validity in i is given by the absence of the underlying ground
atom from i.

Definition glit_true i gl :=
if flag_glit gl then gatom_glit gl ∈ i else gatom_glit gl /∈ i.

Satisfiability of a ground clause gcl with respect to an interpretation i holds if, when
all body literals are satisfied by i, the head atom is as well.

Definition gcl_true gcl i :=
all (glit_true i) (body_gcl gcl) =⇒ (head_gcl gcl ∈ i).

While using a different version of ground clause satisfiability, the definitions of non-
ground clause and program satisfiability have the same form as in the positive case.

9.2. Positive Embedding
We present the modeling choices for the syntax (see Section 9.2.1) and semantics (see
Section 9.2.2) aspects of employing the previous positive engine via positive embedding.

9.2.1. Syntax Aspects
To reuse the matching algorithm in Section 8.4.1, operating only on positive atoms, we
define a “positive” embedding. This transforms the positive programs from Section 8.2,
whose type we denote by pprogram, into programs supporting negation, as marked by
an additional boolean flag, with which we decorate all atoms. This is done by encoding
and, inversely, uncoding open and ground atoms, literals, clauses and programs to and
from their positive counterparts. This syntactic embedding naturally extends to the
semantic level, resulting in what we later refer to as positive interpretations (pinterp).
In Section 9.4.2 we prove satisfiability is an invariant of program encoding, generalizing
the commutativity of the diagram below :
Indeed, as the embedding is primarily used in the stratified evaluation part, we state
the result in the context of complemented interpretations (cinterp). As detailed in Sec-
tion 9.4.1, these pack normal interpretations (interp), together with their intended com-
plement, with respect to the Herbrand base of programs slicings, from each iteration step.
Consequently, satisfiability preservation is stated, depending on well-complementation
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pp : pprogram p : program

pi : pinterp i : interp

|= |=

properties. We briefly review the way in which we set up the embedding and some of its
properties, i.e, injectivity and safety invariance.

Symbol Embedding The type of predicate symbols symtype and their arity become
psymtype and parity. Encoded symbols have a true flag, while uncoded ones have
none.

Definition psymtype := [finType of bool * symtype].
Definition parity := [ffun ps ⇒ arity ps.2].
Definition encodes s := (true, s).
Definition uncodes ps := let: (_, s) := ps in s

A required (trivial) result is arity invariance with respect to encoding and uncoding. The
proof directly follows from the ffunE pointwise function equality, a convenient property
of finitely-supported functions (see Section 8.1.4).

Lemma arP x : arity x = parity (encodes x).
Lemma parP x : parity x = arity (uncodes x).

Atom Embedding The embedding of an atom relies on that of its underlying type
raw_atom and is the most technical of all construct embeddings leading up to programs.
Having imported the corresponding types for positive (raw) atoms, i.e, gen_ratom and
gen_atom, we define a “generic” raw atom embedding map_raw_atom_sym, obtained by
applying a function f to its symbol. In map_raw_atom_proof, we prove that, when
f is arity-preserving, the raw atom embedding of a positive atom (well-formed by
construction) is well-formed. Consequently, we define the “generic” atom embedding
map_atom_sym:

(* we import the module containing the library developed for
positive Datalog *)

Module P := pengine.
Variable constype : finType.

Notation gen_ratom := (P.raw_atom n constype).
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Notation gen_atom := (P.atom n constype).

Definition map_raw_atom_sym
(st1 st2 : finType) (f : st1 → st2) (gena : gen_ratom st1) :
gen_ratom st2 := P.RawAtom (f (sym_atom gena)) (arg_atom gna).

Lemma map_raw_atom_proof (st1 st2 : finType)
(ar1 : {ffun st1 → nat}) (ar2 : {ffun st2 → nat})
(f : st1 → st2) (h : ∀ x, ar1 x = ar2 (f x)) (gna : gen_atom ar1)
: P.wf_atom ar2 (map_raw_atom_sym f gna).

Definition map_atom_sym (st1 st2 : finType)
(ar1 : {ffun st1 → nat}) (ar2 : {ffun st2 → nat})
(f : st1 → st2) (h : ∀ x, ar1 x = ar2 (f x)) (gna : gen_atom ar1)
:= P.Atom (map_raw_atom_proof h gna).

This is then instantiated with the corresponding-preservation proofs, i.e, arP and parP,
to express the encoding and uncoding of atoms, i.e, encodea and uncodea.

Definition encodea := map_atom_sym arP.
Definition uncodea := map_atom_sym parP.

Literal Embedding The embedding of literals trivially extends that of atoms. If a given
literal has an explicitly negative flag, i.e, represents a negated atom, it can be encoded
into a positive one, by flipping the (true by default) boolean flag in the encoding of its
underlying atom. The uncoding of positive atoms is done by making their boolean flag
explicit in constructing the corresponding literals:

Definition flips ps := let: (b, s) := ps in (∼ ∼ b, s).
Lemma farP x : parity x = parity (flips x).
Definition flipa := map_atom_sym farP.

Definition encodel (l : lit) : patom :=
let: Lit (b, a) := l in
let: pa := encodea a in
if b then pa else flipa pa.

Definition uncodel (pa : patom) : lit :=
let: a := uncodea pa in
if flag_psym (sym_atom pa) then Lit (true, a) else Lit (false, a).
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Note that ∼∼ is a construct from the SSReflect library ssrbool and that it corre-
sponds to boolean negation.
The embedding of ground atoms and literals is analogous to the above definitions. Also,
we can easily extend these to capture the encoding and uncoding of programs. In the
corresponding Coq proofs, we denote the encoding of a program p as ppq.

Injectivity Based on the proofs that literal encoding and uncoding are inverse with
respect to each other and, hence, that they are injective, we prove the analogous can-
celation lemmas for clauses. The only difference is that, in this setting, the encoding of
clauses is inverse to their uncoding and, hence is injective, only when the flag of the head
clause’s encoded atom is positive, i.e, when hd_cl_pos is true. The injectivity property
is required for establishing that, if a program with negation is satisfied by a given com-
plemented interpretation that is well-complemented, then its encoding is satisfied by the
corresponding positive interpretation.

Definition hd_cl_pos pcl := flag_psym (P.hsym_cl pcl).

Lemma encodeclK : cancel encodecl uncodecl.
Lemma uncodeclK : {in hd_cl_pos, cancel uncodecl encodecl}.

Safety Invariance Additionally, it is trivial to prove that program safety is invariant
with respect to program encoding.

Lemma encode_prog_safe p : prog_safe p = P.prog_safe (encodep p).
Proof. by rewrite/P.prog_safe all_map; apply/eq_all/encode_cl_safe.
Qed.

9.2.2. Semantics Aspects
The main modeling choice at the semantics level consists of introducing complemented
interpretations, to explicitly account for the negative facts that are true, at every eval-
uation step. A complemented interpretation (see Section 9.4.1) extends a given inter-
pretation with its complement, with respect to the set of all possible ground atoms that
can be constructed from its symbols. We illustrate them below, in the context of reusing
the positive engine’s evaluation.

Example 9.2.1. Let us revisit Example 6.2.15, in which the program P is stratified
by the strata consisting of {r, s, t}, {q} and {p} into the program slices P1, P2 and P3.
Their corresponding positive encodings are pP1q, pP2q and pP3q :
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P1 =


r(X)← t(X)
s(b)←
t(a)←


P2 =

{
q(X)← s(X),¬t(X)
q(a)←

}

P3 =
{
p(X)← ¬q(X), r(X)
p(X)← ¬t(X), q(X)

}

pP1q =


(>, r)(X)← (>, t)(X)
(>, s)(b)←
(>, t)(a)←


pP2q =

{
(>, q)(X)← (>, s)(X), (⊥, t)(X)
(>, q)(a)←

}

pP3q =
{

(>, p)(X)← (⊥, q)(X), (>, r)(X)
(>, p)(X)← (⊥, t)(X), (>, q)(X)

}

We begin the stratified evaluation of P by computing the model M1 for pP1q, using the
positive inference engine: M1 = TpP1q ↑ ω(∅) = {(>, r)(a), (>, s)(b), (>, t)(a)}. Next,
complementing the interpretation with respect to the Herband base B(pP1q), we obtain
the complemented interpretation:

({(>, r)(a), (>, s)(b), (>, t)(a)}, {(⊥, r)(b), (⊥, s)(a), (⊥, t)(b)}).

This will be passed to the positive engine, as a single positive interpretation, in the second
evaluation phase. Consequently,

M2 = TP2 ↑ ω({(>, r)(a), (>, s)(b), (>, t)(a), (⊥, r)(b), (⊥, s)(a), (⊥, t)(b)}).

M2 adds to M1 two new facts, i.e, {(>, q)(a), (>, q)(b)}. Hence, the new complemented
interpretation is:

({(>, r)(a), (>, s)(b), (>, t)(a), (>, q)(a), (>, q)(b)}, {(⊥, r)(b), (⊥, s)(a), (⊥, t)(b)}).

Passing it to the positive engine, in the final evaluation phase, results in:

M3 = TP3 ↑ ω({(>, r)(a), (>, s)(b), (>, t)(a), (>, q)(a), (>, q)(b), (⊥, r)(b), (⊥, s)(a), (t,⊥)(b)}).

M3 adds to M2 one new fact, i.e, {(p,>)(b)}. The current complemented interpretation
(not well-complemented though) is:

({(>, r)(a), (>, s)(b), (>, t)(a), (>, q)(a), (>, q)(b), (>, p)(b)}, {(⊥, r)(b), (⊥, s)(a), (⊥, t)(b)}).

The set of all the derived positive facts is obtained “sanitizing” the above, by projecting
its first component:

{(>, r)(a), (>, s)(b), (>, t)(a), (>, q)(a), (>, q)(b), (>, p)(b)}.

Hence, the final model is M(P ) = {r(a), s(b), t(a), q(a), q(b), p(b)}.
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9.3. Stratification
We model stratifications based on the notion of a “strata”, i.e, a list of symbol sets,
partitioning the set of symbols of a given Datalog program with negation. Implicitly,
we assume the first list element to be the lowest stratum and the last to be the upper
one.

Definition strata := seq {set symtype}.

We present a mechanized strata characterization in Section 9.3.1 and, in Section 9.3.3,
a characterization of the induced program slicings.

9.3.1. Strata Characterization
There are many possibilities for capturing required strata properties, as seen in Section 6.
The following emerged as sufficient conditions for completing the proof of our main
theorem, described in Section 9.6.1:

1. each strata should refer to a disjoint set of symbols
(disjointness condition)

2. stratum symbols cannot be refered to negatively1 in lower or equal
strata;
equivalently, they can only refer to negated symbols defined in strictly lower strata
(negative-dependency condition)

3. stratum symbols only depend on2 symbols from lower or equal strata;
equivalently, they are independent from strictly upper strata, and, consequently,
program slices can be evaluated separately, from the bottom-up
(positive-dependencies condition/self-containment)

Given that we represent strata as lists, it seems natural to use a recursively defined
predicate for capturing the above invariants. This matches the structure of the main
algorithm, which iterates on the strata list. The technical definition is given in the
is_strata_rec fixpoint predicate below. The key point is the use of an accumulator,
such that we can refer to already processed stratas; this is typical of functional program-
ming. We also require that all program symbols be present in the strata, as enforced by
the empty list base case. Next, we discuss the step case conditions.

Let p be a normal program. At an intermediate processing stage, a full stratification
of p consists of a current strata str that has at least one stratum, namely ss, and an
accumulated strata acc, containing the list of previously visited sets of symbols.

1We say a stratum symbol is refered to negatively in a program, if it corresponds to a negated atom in
the body of a clause from the program.

2We say that a symbol s1 depends on a symbol s2, if s1 appears in the body of a clause having s2 as
head symbol.
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1. The disjointness condition above is implied by the local disjointness condition
expressed via the [disjoint acc & ss] predicate. This states that ss symbols
do not appear in any other acc strata.

2. The negative-dependency condition is encoded using the negdep predicate, which
holds for a symbol s, given a program p, if s is negated in the body of a p clause:

(* flattening of clause body literal lists for clauses in p *)
Definition lits_prog p := flatten [seq body_cl cl | cl ← p].

(* list of all program literals with a negative flag *)
Definition nlit_prog p :=

[seq l ← lits_prog p | ∼∼ flag_lit l].

(* membership in the negative literal symbol list *)
Definition negdep s p :=

s ∈ [seq sym_lit l | l ← nlit_prog p].

As such, all the symbols in the current stratum ss are forbidden from being refered
to negatively (appearing negated in clause bodies) in the program sliced up to ss:

all (predC (negdep^∼(slice_prog p (acc ∪ ss)))) (enum ss),

which is a notation for:

all (predC (fun x ⇒ negdep x (slice_prog p (acc ∪ ss)))) (enum ss)

and, respectively, for:

all (fun x ⇒ ∼∼ negdep x (slice_prog p (acc ∪ ss))) (enum ss),

3. The positive-dependency/self-containment condition is encoded using the posdep
predicate that holds for a stratum ss, given a clause cl, if all body symbols in cl
appear in ss.

(* list of symbols for literals from a clause body *)
Definition bsym_cl cl := [seq sym_lit l | l ← body_cl cl].
Definition posdep ss cl := bsym_cl cl ⊆ ss.

The condition states that all clause body symbols from the slicing of the program
with strata up to the current one appear in the latter.

all (posdep (acc ∪ ss)) (slice_prog p (acc ∪ ss)).
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Initializing the auxiliary strata predicate is_strata_rec with the empty set set0, we
can finally define the is_strata predicate, for a given program p and a strata str.

Fixpoint is_strata_rec p str acc :=
match str with
| [::] ⇒ [set x in sym_prog p] ≡ acc
| ss :: str ⇒ [&& is_strata_rec p str (acc ∪ ss)

, [disjoint acc & ss]
, all (predC (negdep^∼(slice_prog p (acc ∪ ss))))

(enum ss)
& all (posdep (acc ∪ ss))

(slice_prog p (acc ∪ ss))
]

end.

Definition is_strata p str := is_strata_rec p str set0.

9.3.2. Exhaustive Stratification Computation
Due to symbol type finiteness, we can give an effective, albeit inefficient, algorithm for
computing a stratification satisfying properties from the previous section. We define
the type of stratifications (strat_type) as packing an ordinal, bounded by the maximal
number of program symbols, and a tuple of that length, consisting of sets of symbols,
i.e the strata.

Definition strata_type :=
{ s_l : ’I_#|symtype|.+1 & s_l.-tuple {set symtype} }.

To ensure we indeed have a finite number of strata, we impose the additional condition
is_strata_strong. This requires that all symbols sets of a strata be non-empty.

Definition is_strata_strong p str :=
is_strata_rec p str set0 && all (predC1 set0) str.

We model the requirement using the predC1 operator, from the SSReflect library. As
such, the predicate predC1 set0 denotes [pred x | x != set0].

The compute_strata algorithm is defined as an option map omap. Given a program
p, this extracts a potential corresponding stratification (the second projection projT2
of the strata type), which obeys the is_strata_strong condition. This “witness” is
computed using the SSReflect [pick e | P e] construct that picks an element e,
satisfying a predicate P, among all inhabitants of the finite type of e. The soundness of
the algorithm, i.e, compute_strataP, states that, if, for a program p, compute_strata
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outputs a list of symbol sets str, then this is indeed a stratification for p and consists
of non-empty strata. However, if the algorithm fails, then p is not stratifiable. The
result follows from the characteristic property pickP of the pick operator and from the
negb_exists lemma. The latter expresses that, for elements x of finite type, ∼∼ [∃ x
, P x] = [∀ x, ∼∼ P x]. It is the encoded, boolean version of the logic proposition
¬(∃x, Px) = ∀x,¬Px, which exceptionally3 holds precisely because the type of x is finite.

Definition sttl (x : strata_type) : seq {set symtype} := projT2 x.
Definition compute_strata p : option strata :=
omap sttl [pick x : strata_type | is_strata_strong p (sttl x)].

Lemma compute_strataP p :
if compute_strata p is Some str
then is_strata_strong p str
else ∼∼ [∃ x : strata_type, is_strata_strong p (sttl x)].

Proof.
rewrite /compute_strata; case: pickP ⇒ //= hs.
by rewrite ¬_exists; apply/forallP⇒ s; rewrite hs.
Qed.

9.3.3. Slicing Characterization
Given a program p and an interpretation i, we consider a stratification, as previously
defined, and one of its arbitrary stratum elements ss. The latter induces, at a syntactic
level, a program slicing and, at the semantic level, an interpretation slicing. Both are
implemented using filter functions, as follows.

Program Slicing We call the slicing of p with ss, denoted as pss, the list of all clauses
whose head symbols appear in ss. Equivalently, relating this to Definition 6.2.7,
pss =

⋃
s ∈ ss

def (s). This is encoded as:

Definition slice_prog p ss := [seq cl ← p | hsym_cl cl ∈ ss].

The corresponding characterization is given by slice_progP. This states that, for a
program p and a stratum ss, the set of head symbols of the program obtained by slicing
p with ss, i.e, hsym_prog (slice_prog p ss) is a subset of the latter. We model the
lemma using the extensional, propositional characterization of the subset relation, i.e,
for sets A and B over a type T, {subset A ≤ B} denotes ∀ x : T, x ∈ A → x ∈ B.

3it is equivalent to the excluded-middle property, not guaranteeed by default in intutionistic logic
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(* list of head symbols of a clauses and programs *)

Definition head_cl cl := let: Clause h b := cl in h.

Definition hsym_prog p := [seq hsym_cl cl | cl ← p].

Lemma slice_progP p ss : {subset hsym_prog (slice_prog p ss) ≤ ss}.
Proof. by move⇒? /mapP[?]; rewrite mem_filter; case/andP⇒?? →.
Qed.

The slice_progU lemma gives the expected decomposition property, namely that the
slicing of a program p with the union of two symbols sets ss1 and ss2 is extensionally
equal to the concatenation of the slicing of p with ss1 and of its slicing with ss2.

Lemma slice_progU p ss1 ss2 :
slice_prog p (ss1 ∪ ss2) =i slice_prog p ss1 ++ slice_prog p ss2.

Proof. by move⇒ ?; rewrite mem_cat !mem_filter !inE andb_orl. Qed.

Finally, the sliced_prog_safe lemma ensures that slicing preserves program safety.

Lemma sliced_prog_safe p ss :
prog_safe p → prog_safe (slice_prog p ss).

Proof.
rewrite/slice_prog⇒ /allP h; apply/allP⇒ ?; rewrite mem_filter;
by case/andP⇒ _ ?; apply: h.
Qed.

Interpretation Slicing We call the slicing of i with ss, denoted as iss, the subset of i
containing ground atoms, whose symbols appear in ss. This is encoded as:

Definition i_ssym ss i : interp := [set x in i | sym_gatom x ∈ ss].

The corresponding characterization is given by the i_ssymP reflection lemma.

Lemma i_ssymP ss i ga :
reflect (ga ∈ i ∧ sym_gatom ga ∈ ss) (ga ∈ i_ssym ss i).

Proof. by apply/(iffP idP); rewrite !inE; case/andP; try split. Qed.

In the development, we also had to establish a series of results relating interpretation
slicing and intepretation symbols to set theoretical operators. The proofs are based on
properties of the finite set library and of the filter function. We exemplify with the most
basic ones below.
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(* composition property *)
Lemma i_ssymComp ss i : i_ssym ss (i_ssym ss i) = i_ssym ss i.
(* decomposition properties *)
Lemma i_ssymU ss i1 i2 :

i_ssym ss (i1 ∪ i2) = i_ssym ss i1 ∪ i_ssym ss i2.
Lemma i_ssymI ss i1 i2 :

i_ssym ss (i1 ∩ i2) = i_ssym ss i1 ∩ i_ssym ss i2.
Lemma i_ssymD ss i1 i2 :

i_ssym ss (i1 \ i2) = i_ssym ss i1 \ i_ssym ss i2.

9.4. Stratified Evaluation
In this section we give the stratified evaluation algorithm for Datalog with negation
(see Section 9.4.3), presenting each of its building blocks. To this end, we start by
introducing the notion of complemented interpretation (see Section 9.4.1), necessary due
to the reuse of the inference engine from Section 8. Then, we establish the preservation
of program satisfiability with respect to interpretation complementation and encoding
(see Section 9.4.2).

9.4.1. Complemented Interpretations
To account for the negated facts that hold by absence from the model, we resort to a
technical artifact and define a special type cinterp of complemented interpretations.
This is a pair-type packing an interpretation and its complement with respect to setT,
the top element of the interp finite type.

Notation cinterp := (interp * interp)%type.

Complementation As explained in Section 9.1.2, in evaluating a stratified program, we
incrementally compute complemented interpretations for all strata sub-programs. Let
us consider an intermediate iteration step, given a current stratum ss and a comple-
mented interpretation ci, for previous sub-programs. To obtain a new complemented
interpretation, also for the current sub-program, we have to complement ci with respect
to ss, denoted as : Css ci ≡ (ci.1, ci.1Css ∪ ci.2).

This is done in the ciC function below, extending ci.2 with ci.1Css , the finite set com-
plement of ci.1 sliced with ss, as computed by ic_ssym and i_ssym.

In our encoding, we used the complementation operator from the finset library. As
presented below, for given a finite type T, and a set A over T, ∼: A is defined as the
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complement of A. Since T is a finite type, we have a maximal set setT : {set T} with
all the elements in T. Hence, ∼: A contains all elements of type T in setT, not in A.

Variable T : finType.
Definition setC (A : {set T}) := [set x | x /∈ A].
Notation "∼: A" :=

(setC A) (at level 35, right associativity) : set_scope.

(* slicing of the complement of i with the set of symbols ss *)
Definition ic_ssym ss i := i_ssym ss (∼: i).
Definition ciC ss ci : cinterp := (ci.1, ic_ssym ss ci.1 ∪ ci.2).

Note that, due to the inherent properties of finite types, complemented interpretations
have a complete complemented lattice structure. In this respect, the choice for their par-
ticular type encoding is an essential one, as proofs regarding complementation naturally
match those corresponding to the ssreflect finite set complementation.

Well-Complementation A complemented interpretation ci is well-complemented with
respect to a set of symbols ss - denoted wcss ci - if the elements of >ss - the corresponding
complemented lattice’s top, consisting of all well-formed ground atoms with symbols in
ss - are in exactly one ci component. Equivalently, the ci components partition >ss:

ci.1ss ∪ ci.2ss = >ss and ci.1ss ∩ ci.2ss = ∅

This is encoded as:

Definition partf f A B S := (f A ∪ f B ≡ f S) && (f A ∩ f B ≡ ∅).
Definition ci_wc ss ci := partf (i_ssym ss) ci.1 ci.2 setT.

A useful well-complementation property regards its decomposition with respect to union:

(* set of symbols of an interpretation *)
Definition isyms i : {set symtype} := [set sym_gatom (val ga) |

ga in i].
(* set of symbols of a complemented interpretation *)
Definition ci_syms ci : {set symtype} := isyms ci.1 ∪ isyms ci.2.

Lemma wcUP ss1 ss2 ci1 ci2 :
ss1 ∩ ss2 = ∅ → ci_syms ci1 ⊆ ss1 → ci_syms ci2 ⊆ ss2 →
ci_wc ss1 ci1 → ci_wc ss2 ci2 → ci_wc (ss1 ∪ ss2) (ci1 ∪ ci2).

From Complemented to Positive Interpretations – and Back As explained in Sec-
tion 9.6.1, to evaluate a stratified program we reuse the positive engine mechanism from
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Section 8, for each of the (encoded) program slices. Since running the positive engine on
each encoding outputs a positive interpretation 4, while the main engine operates with
complemented interpretations, it becomes necessary to relate the two.

Given a positive interpretation pi : pinterp and a complemented interpretation ci :
cinterp, the corresponding transformations are given by the c2p and p2c functions.

The former takes the union of encoded atoms in ci.1 with encoded atoms with flipped
sign in ci.2, while the latter uncodes and separates atoms in pair components, according
to their sign:

Definition c2p ci : pinterp :=
[set encodega ga | ga in ci.1 ] ∪
[set (flipga \o encodega) ga | ga in ci.2 ].

Definition p2c pi : cinterp :=
([set uncodega ga | ga in pi & flag_pgatom ga],
[set uncodega ga | ga in pi & ∼∼ flag_pgatom ga]).

The reflection lemma characterizing c2p is expressed by the ciP lemma below. Its proof
relies on the cancelation properties for ground atom encoding and uncoding, as well as
on the reflection lemma for set image membership.

Lemma ciP pga ci :
pga ∈ (c2p ci) = if flag_pgatom pga then (uncodega pga) ∈ ci.1

else (uncodega pga) ∈ ci.2.
Proof.
apply/idP/idP.

by rewrite !inE; case/orP; case/imsetP ⇒ [ga ga_in →] /=;
rewrite ?encodegaK ?encodegafK.

by rewrite !inE; case: ifP⇒ hf ha; apply/orP; [left|right];
apply/imsetP; ∃ (uncodega pga); rewrite // ?uncodegaKD ?
uncodegaKDn // inE hf.

Qed.

Also, we establish c2p is a bijection, by proving the corresponding cancelation lemmas.

(* p2c is left inverse of c2p *)
Lemma c2pK : cancel c2p p2c.
(* c2p is left inverse of p2c *)
Lemma p2cK : cancel p2c c2p.

Lemma c2p_bij : bijective c2p.

4i.e, a set of ground atoms with positive flags
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Proof. exact: Bijective c2pK p2cK. Qed.

9.4.2. Satisfiability Preservation
We establish that the satisfiability of a Datalog program with negation in an interpre-
tation is invariant to the complementation of the interpretation and to the encoding of
the program into a positive one.

Satisfiability and Complementation A key property of complementing an interpre-
tation ci with respect to a stratum ss is that, if the negative dependency condition
holds, then program satisfiability is preserved by complementation, as stated in the
ciC_prog_true lemma:

Lemma ciC_prog_true ss ci pp :
all (predC (negdep^∼ p)) (enum ss) →
P.prog_true pp (c2p ci) →
P.prog_true pp (c2p (ciC ss ci)).

Conversely, for a complemented interpretation ci that is already well-complemented in-
terpretation with respect to a stratum ss, if the positive dependency condition holds, then
program satisfiability is preserved by program uncoding and positive model projection, as
stated in the sanitize_prog_true lemma:

Lemma sanitize_prog_true ss ci pp :
ci_wc ss ci → {in p, ∀ cl, posdep ss cl} →
P.prog_true pp (c2p ci) →
prog_true (uncodep p) ci.1.

Satisfiability and Encoding Having identified and stated the well-complementation
property of cumulative interpretations, we can now prove that program satisfiability is
preserved by encoding, as stated in the prog_true_pos lemma below.

Given a program p, a complemented interpretation ci and a set of symbols ss, if the
positive component of ci is a model of p and – additionally, the program symbols are
contained in the strata ss with the respect to which ci is well-complemented – then, the
corresponding positive interpretation is a model of ppq.

Lemma prog_true_pos p ci ss :
prog_true p ci.1 →
ci_wc ss ci → {subset sym_prog p ≤ ss} →
P.prog_true (encodep p) (c2p ci).
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9.4.3. Stratified Evaluation Algorithm
As we will see in the following, a crucial phase in the stratified evaluation of a program
is constructing complemented intepretations for its slices. To this end, we need to keep
track of the strata accumulated at each iteration. For convenience, we wrap cinterp,
together with a set of symbols, into a new type, sinterp, for cumulative intepretations.

Definition sinterp := (cinterp * {set symtype})%type.

Given a stratifiable program p and a stratification str, the eval_prog evaluation al-
gorithm below computes a model for p, stratum by stratum. At each step, we run the
positive engine pengine_step on the (positive encoding of the) program slice corre-
sponding to the current stratum encodep (slice_prog p (si.2 ∪ ss)), seeded with
the complemented model of the previous strata (see Section 9.4.1) si.1.

Note that the positive engine is defined in the same way as in Section 8.6.2, i.e, as
iterating the forward chain operator as many times as there are elements in the pro-
gram bound bp. The only difference is that we have to transform the resulting positive
interpretation into a complemented one.

Definition bp : pinterp := setT.

Definition pengine_step pdef pp ci0 :=
p2c (iter #|bp| (P.fwd_chain pdef pp) (c2p ci0)).

The positive engine will then add the facts that can be inferred for the current strata.
However, it will not explicitly add the “complemented facts”, i.e those corresponding
to negated ground atoms that implicitly hold, by not being in the intepretation (see
Section 9.1.2). To this extent, eval_prog must complement the model, as done by
applying the ciC function. Once we have a complemented model for the current stratum,
we process the rest through a recursive call.

Implicit Types (str : strata) (si : sinterp).

Variables (pdef : constant) (p : program) (p_sf : prog_safe p).

Fixpoint eval_prog str si : sinterp :=
match str with

| [::] ⇒ si
| ss :: ps ⇒

let p_curr := slice_prog p (si.2 ∪ ss) in
let m_next := pengine_step pdef (encodep p_curr) si.1 in
let m_compl := ciC ss m_next in
eval_prog ps (m_compl, si.2 ∪ ss)
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end.

9.5. Stratified Evaluation Properties
In Section 9.5.1, we outline additional characteristic properties required for the reuse of
the “positive” inference engine from Section 8. Also, in Section 9.5.2, we state the iden-
tified stratified evaluation invariant, capturing characteristic properties of our extended,
“negative” inference engine.

9.5.1. Properties of “Positive” Program Evaluation
As detailed next, the following properties of positive program evaluation were identi-
fied as relevant in our development: soundness and boundedness, subsumption, stability,
stratifiability, positivity, injectivity, modularity and incrementality.

Soundness and Boundedness The main characterization of the positive engine eval-
uation, as described in Section 8, is captured by the pengine_trueP reflection lemma
below. As such, in the presence of a safe positive program pp, the evaluation of pp –
given an initial interpretation ci0 – is sound and bound by bp, the Herbrand Base of pp.

Lemma pengine_trueP pdef pp ci0 (p_safe: P.prog_safe pp) :
[∧ P.prog_true pp (c2p (pengine_step pdef pp ci0))
& c2p (pengine_step pdef pp ci0) ⊆ bp].

The proofs for the next three properties follow directly from the cancelation lemma for
complemented interpretations and from the analogous results in Section 8.

Subsumption The evaluation of any positive program, given an arbitrary initial com-
plemented interpretation, contains the latter.

Lemma pengine_subset pdef pp ci :
c2p ci ⊆ c2p (pengine_step pdef pp ci).
Proof. by rewrite p2cK; exact: P.iter_fwd_chain_subset. Qed.

Stability Given any safe positive program pp and an arbitrary complemented interpre-
tation ci that satisfies it, its evaluation given ci adds no further facts.

Lemma pengine_stable pdef pp ci
(h_sf : P.prog_safe pp)
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(h_tr : P.prog_true pp (c2p ci)) :

pengine_step pdef pp ci = ci.

Proof. by rewrite /pengine_step P.iter_fwd_chain_stable ?c2pK. Qed.

(Symbol) Stratifiability Given a positive program pp and an initial complemented
interpretation ci, (ground) atoms in the output of evaluating pp given ci are either
initial, i.e from ci, or derived, i.e their symbols appear in the heads of clauses in pp.

Lemma pengine_sym pdef pp ci pga :
(pga ∈ c2p (pengine_step pdef pp ci)) →
(pga ∈ c2p ci) || (sym_gatom pga ∈ P.hsym_prog pp).

Proof. by rewrite p2cK; move/P.iter_fwd_chain_sym. Qed.

Positivity The evaluation of any positive program pp, given an arbitrary initial com-
plemented interpretation ci, only outputs positive facts. In other words, the second
“negative” component of ci is invariant with respect to evaluation.

Lemma pengine_idN pdef pp ci : (pengine_step pdef pp ci).2 = ci.2.

From the subsumption property above, a sufficient condition for establishing the result
is proving (pengine_step def pp ci).2 ⊆ ci.2. Indeed, we show that ga ∈ ci.2,
for any ga, such that ga ∈ (pengine_step def pp ci).2. The latter is equivalent
to ga belonging to the set of uncoded negative atoms in the outcome of iterating the
positive engine #|bp| times, which, by ciP, is the same as flipga (encodega ga) ∈
c2p (pengine_step def pp ci). From the stratifiability property above, it follows

that ga is either in ci.2 or has a symbol with a negative flag among the head symbols
of pp, which is clearly false, since negated atoms cannot appear in head clauses.

Injectivity Given two extensionally equal positive programs, their evaluations – given
an arbitrary initial interpretation ci – are equal. The proof is by induction on the
number of iterations of the positive engine evaluation, using the analogous property of
the forward chaining algorithm from Section 8.

Lemma eq_pengine_step pdef pp1 pp2 ci (eq_p : pp1 =i pp2) :
pengine_step pdef pp1 ci = pengine_step pdef pp2 ci.

Modularity Assume a safe positive program pp1 and a positive program pp2, whose
head symbols do not appear among the symbols of pp1. Starting from a model of pp1, i.e,
pi, the evaluation of their concatenation equals the union of their respective evaluations.
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Lemma pengine_cat pdef pp1 pp2 pi
(h_ss : [disjoint P.hsym_prog pp2 & P.sym_prog pp1])
(h_sfb : P.prog_safe pp1)
(h_tr : P.prog_true pp1 pi) :

pengine_step pdef (pp1 ++ pp2) (p2c pi) =
pengine_step pdef pp1 (p2c pi) ∪ pengine_step pdef pp2 pi.

Incrementality The final result is the incrementality property of the positive evaluation
of an encoded sliced program, given a well-complemented initial interpretation. This
lemma is fundamental in establishing the strong soundness and completeness result for
the normal program evaluation engine (see Section 9.6.1), hence we expand on it.

Theorem 9.5.1 (Incrementality of Positive Program Evaluation). Let p be a stratifiable
program, si = (ci, str≤) a cumulative interpretation of pstr≤ and ss a current stratum.
Assume that:

• H1 ≡ ppstr≤q symbols are not in ppssq heads, i.e, sym ppstr≤q ∩ hsym ppssq = ∅

• H2 ≡ pstr≤ symbols are contained in str≤, i.e, sym pstr≤ ⊆ str≤

• H3 ≡ ci is well-complemented with respect to str≤, i.e, wcstr≤ci

• H4 ≡ the positive component of ci satisfies pstr≤, i.e, ci.1 |= pstr≤

Then, the (positive) evaluation of ppstr≤ ∪ ssq increments ci, the input complemented
interpretation corresponding to pstr≤, with a set of positive facts iss with symbols in ss.

This is encoded as:

Lemma ci_decomposition ss si :
[disjoint P.hsym_prog (encodep (slice_prog p ss))
& P.sym_prog (encodep (slice_prog p si.2))] →
{subset sym_prog (slice_prog p si.2) ≤ si.2} →
ci_wc si.2 si.1 → prog_true (slice_prog p si.2) si.1.1 →
(∃ i_ss,

pengine_step pdef
(encodep (slice_prog p (ss ∪ si.2))) si.1 =
(si.1.1 ∪ i_ss, si.1.2)

& {subset isyms i_ss ≤ ss}).

Proof. The set of positive facts iss equals (pengine_step ppstr≤ ∪ ssq ci).1 \ ci.1.
First, we show that, indeed, (pengine_step ppstr≤ ∪ ssq ci) equals

(ci.1 ∪ (pengine_step ppstr≤ ∪ ssq ci).1 \ ci.1, ci.2).
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This holds as, according to pengine_idN, (pengine_step ppstr≤ ∪ ssq ci).2 = ci.2.

The second part of the proof is more intricate; namely, proving that the symbols in iss,
i.e the symbols in (pengine_step ppstr≤ ∪ ssq ci).1 \ ci.1, are entirely contained in
ss. We show that, for any ground atom ga, where ga ∈ (pengine_step ppstr≤ ∪ ssq
ci).1 and ga /∈ ci.1, its symbol belongs to ss. To this end, we have to separate the
evaluation of the program slicing with the current stratum ss from that of the program
slicing with inferior strata symbols, i.e, str≤. As intermediate results we establish:

1. Ht ≡ c2p ci |= ppstr≤q, from H2, H3, H4 and the preservation of satisfiability
with respect to encoding (see Section 9.4.2)

2. Hs ≡ P.prog_safe ppstr≤ ∪ ssq, from the invariance of safety with respect to
slicing and encoding (see Section 9.1.1)

3. Hd ≡ ppstr≤ ∪ ssq = ppstr≤q ∪ ppssq, from slicing decomposition (see Section 9.3.3)
and encoding injectivity (see Section 9.2.1)

From Ht, from program evaluation injectivity and, by using H1, Ht and Hs, from mod-
ularity, we can derive that pengine_step ppstr≤ ∪ ssq ci is equal to

pengine_step ppstr≤q ci ∪ pengine_step ppssq ci.

Also, from Ht and Hs, via the stability property, we have:

pengine_step ppstr≤q ci = ci.

Hence, ga ∈ (pengine_step ppstr≤ ∪ ssq ci).1 is equivalent to ga ∈ ci.1 or ga ∈
ppssq.1, which only leaves the latter, since we know that ga /∈ ci.1. Proving that
the symbol of ga is in ss, follows from ga ∈ ppssq.1, as a consequence of the symbol
stratifiability property.

9.5.2. Properties of “Negative” Program Evaluation
Let p be a stratifiable program and si = (ci, str≤), a cumulative interpretation. This
packs together the complemented interpretation ci of the program slice pstr≤ and the
corresponding accumulated strata symbols str≤. The crucial properties of the emph-
stratified evaluation of p - concerning program slicings and complemented interpretations
- are captured by the below invariant:

• the “positive” component of ci is indeed a model for pstr≤ , i.e, ci.1 |= pstr≤

• the set of symbols in pstr≤ is contained in str≤, i.e, sym pstr≤ ⊆ str≤

• ci is well-complemented with respect to str≤, i.e, wcstr≤ ci

• the set of symbols in ci is contained in str≤, i.e, sym ci ⊆ str≤
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Definition si_invariant si :=
[∧ prog_true (slice_prog p si.2) (sanitize_model si.1)
, sym_prog (slice_prog p si.2) ⊆ si.2
, ci_wc si.2 si.1
& ci_syms si.1 ⊆ si.2].

As discussed in the chapter’s introduction, we are interested in verifying that the pre-
viously described algorithm actually computes a model for a stratified program, as cap-
tured by the above invariant. The fully formal argument requires quite a bit of technical
detail, as shown by the corresponding proof, overviewed next.

9.6. Characterization of the “Negative” Engine
In Section 9.6.1, we present the main proof of soundness, termination and completeness
of the previously presented inference engine. Also, we discuss a proof of “relative” min-
imality for the model it computes (see Section 9.6.2).

The basic idea of the proof in Section 9.6.1 is to perform induction on the number of
stratas. It is easy to see that, for a program with a single symbol stratum, the positive
engine will output the right model. Thus, the interesting part of the proof is establishing
that one step of eval_prog will produce a model for the current program, sliced up to
the current strata. According to the main result from Section 5, in the first evaluation
step we obtain a model for the encoded program. At this point, an obvious question,
answered in the proof of Theorem 9.6.1 below, is:

When is a model of an encoded program also a model of the original one ?

Once we answer this, we prove complementation preserves truth. In fact, the strata
condition is crucial here, as explicit complementation will add negated facts to our
previous complemented model. However, given that no clause body can depend on such
a fact, validity is not altered. Finally, we apply the induction hypothesis with our newly
generated complemented model. The conditions for induction are indeed met, as the
model is well-complemented by construction.

9.6.1. Strong Soundness-Completeness of Stratified Program Evaluation
Theorem 9.6.1. Let p be a program, str a stratification of p - consisting of lower strata
str≤ and upper strata str>5 - and ci a complemented interpretation. If the cumulative
input interpretation (ci, str≤) satisfies the invariant conditions, then the output inter-
pretation of the one-step evaluation of pstr>, given (ci, str≤), also satisfies them.

The above theorem is encoded as:
5i.e, str≤ stratifies pstr≤ and str> stratifies pstr>
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Lemma eval_prog_true (ci, str≤) str> :
is_strata_rec p str> str≤ → si_invariant (ci, str≤) →
si_invariant (eval_prog str> (ci, str≤)).

Proof. The proof follows by induction on str>.

Base Case str> = [::]. Conclusion trivially holds.

Step Case str> = ss :: ps.

Induction Hypothesis Generalizing over the cumulative interpretation, we have that:

IH: ∀(ci, str≤), is_strata_rec p ps str≤ → si_invariant (ci, str≤) →
si_invariant (eval_prog ps (ci, str≤))

From the theorem hypothesis we know:

• is_strata_rec p (ss :: ps) str≤ , i.e according to Section 9.3.1
– str_ps ≡ is_strata_rec p ps (str≤ ∪ ss)

– strI ≡ [disjoint str≤ & ss]

– strN ≡ all (fun s ⇒ ∼∼ negdep s pstr≤ ∪ ss) (enum ss)

– strP ≡ all (posdep str≤ ∪ ss) pstr≤ ∪ ss

• si_invariant si, i.e according to Section 9.5.2
– si_true ≡ ci.1 |= pstr≤

– si_sub ≡ sym pstr≤ ⊆ str≤
– si_wc ≡ wcstr≤ ci
– si_str ≡ sym ci ⊆ str≤

Unfolding the goal si_invariant (eval_prog ss :: ps (ci, str≤)), we obtain:
si_invariant (eval_prog ps (Css (pengine_step pstr≤ ∪ ss ci), str≤ ∪ ss)), which
we will prove from the induction hypothesis.

Applying IH, the new goals become:

• is_strata_rec p ps str≤ ∪ ss

• si_invariant (Css (pengine_step pstr≤ ∪ ss ci), str≤ ∪ ss)

The first goal is directly provable via str_ps, while the second amounts to showing:

• G1 ≡ (Css (pengine_step pstr≤ ∪ ss ci)).1 |= pstr≤ ∪ ss
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• G2 ≡ sym pstr≤ ∪ ss ⊆ str≤ ∪ ss

• G3 ≡ wcstr≤ ∪ ss (Css (pengine_step pstr≤ ∪ ss ci))

• G4 ≡ sym (Css (pengine_step pstr≤ ∪ ss ci)) ⊆ str≤ ∪ ss

Before proving the above, we establish a couple of needed intermediate results.

• hD ≡ [disjoint hsym ppssq & sym ppstr≤q].
From slice_progP, it follows that hsym ppssq ⊆ ss. Since sym ppstr≤q ⊆ str≤
(from si_sub) and [disjoint str≤ & ss] (from strI), hD holds.

• hP ≡ {in pstr≤ ∪ ss, ∀ cl : clause, posep (str≤ ∪ ss) cl}, implied by strP.

We start by proving G3, as it is necessary in deriving G1 and G4.

Proof of G3 From hD, si_true, si_sub and si_wc, using the incrementality of positive
evaluation, i.e the ci_decomposition lemma (see Section 9.5.1), we have:

pengine_step pstr≤ ∪ ss ci = (ci.1 ∪ i_ss, ci.2)

Thus, wcstr≤ ∪ ss (Css (pengine_step pstr≤ ∪ ss ci)) is equivalent to:

wcstr≤ ∪ ss (Css (ci.1 ∪ i_ss, ci.2))

which, from the definition of complementation (see Section 9.4.1), equals:

wcstr≤ ∪ ss (ci.1 ∪ i_ss, (ci.1 ∪ i_ss)Css ∪ ci.2)

From strI and si_sub, given the well-complementation union decomposition property,
as stated in the wcUP lemma (see Section 9.4.1), the above goal can be split into:

• wcstr≤ ci, which is exactly si_wc

• wcss (i_ss, (ci.1 ∪ i_ss)Css), i.e
– i_ssss ∪ ((ci.1 ∪ i_ss)Css)ss = >ss

– i_ssss ∪ ((ci.1 ∩ i_ss)Css)ss = ∅
both of which are provable using properties of interpretation and complemented
interpretation slicing, as overviewed in Section 9.3.3
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Proof of G1 As a consequence of safety preservation with respect to slicing and encoding
(see Section 9.1.1), it holds that P.prog_safe ppstr≤ ∪ ssq. Hence, according to the
soundness of positive evaluation, i.e pengine_trueP (see Section 9.5.1):

c2p (pengine_step pstr≤ ∪ ss ci) |= pstr≤ ∪ ss.

From this and strN, due to satisfiability preservation with respect to complementation:

c2p (Css (pengine_step pstr≤ ∪ ss ci)) |= pstr≤ ∪ ss.

Using the above result, together with strP and G3, we reach the needed conclusion, by
applying the sanitize_prog_true lemma (see Section 9.4.1).

Proof of G2 We show that, for an arbitrary cl, where cl ∈ pstr≤ ∪ ss, for any symbol s,
s ∈ sym cl, it follows that s ∈ str≤ ∪ ss. The proof is by case analysis on whether s
is a head symbol or a body symbol of cl. In the first case the conclusion trivially holds,
by the definition of program slicing. In the latter, the conclusion holds due to the strP
positive-dependency property of the program stratification.

Proof of G4 As before, using positive evaluation incrementality and unfolding the
definition of complementation, the goal becomes:

sym (ci.1 ∪ i_ss, (ci.1 ∪ i_ss)Css ∪ ci.2) ⊆ str≤ ∪ ss

which is equivalent to:

(sym ci) ∪ (sym i_ss) ∪ (sym (ci.1 ∪ i_ss)Css) ⊆ str≤ ∪ ss

and which, from the definitions of (complemented) interpretation slicing, reduces to
(sym ci) ∪ ss ⊆ str≤ ∪ ss. This follows from the si_str invariant property.

9.6.2. Minimality and Uniqueness of the Computed Model
As a corrolary of Theorem 9.6.1, given a stratifiable Datalog program with negation
p, it follows that the encoded evaluation engine - as defined in Section 9.4.3 - indeed
computes a model for p. However, a more subtle discussion concerns its minimality (and
uniqueness), as illustrated by the example below.

Example 9.6.2. Consider the program:

P =


p← q
r ← ¬q
s← ¬q
t← ¬q


stratifiable, according to σ(p) = 1 and σ(q) = σ(r) = σ(s) = σ(t) = 2, into P = P1 t P2,

where: P1 =
{
p← q

}
and P2 =


r ← ¬q
s← ¬q
t← ¬q

.

According to the stratified semantics:
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• M1 = TP1 ↑ ω(∅) = ∅

• M2 = TP2 ↑ ω(M1) = {r, s, t}

The computed model is MP = {r, s, t}, different from the model Mmin
P = {p}, which is

smaller than MP .

As discussed in Section 6, this is due to the non-monotonicity of the extended immediate
consequence operator. From the stratification properties, we can treat already derived
facts as part of the extensional database (i.e, edb) – since their veracity is fixed – and,
consequently, later refer to them negatively. While the edb naturally expands during
bottom-up evaluation, the set of newly derived facts can actually decrease. Hence, the
minimality of a computed stratified model depends on fixing its input. Equivalently, a
model is minimal with respect to others, if they agree on the submodel relative to the ac-
cumulated stratification. Since when expressing minimality we cannot talk about models
globally, but need to consider previous ones, as well as current candidates, we state it
independently from the strata invariant conditions (as defined in Section 9.3.1).

The condition is formalized recursively below. Let p be a program with accumulated
strata str≤ and current stratum ss. For any well-complemented interpretation, whose
positive component ci≤.1 is a model of ppstr≤q, the computed model for ppstr≤ ∪ ssq
given ci≤, i.e (pengine ppstr≤ ∪ ssq ci≤).1, is minimal with respect to all models of
ppstr≤q containing ci≤.1.

Fixpoint is_min_str_rec p str> str≤ :=
match str> with
| [::] ⇒ True
| ss :: ps ⇒

(∀ (ci≤ : cinterp),
ci_wc str≤ ci≤ → ci_syms ci≤ ⊆ str≤ →
prog_true (slice_prog p str≤) ci≤.1 →
∀ (i_ss : interp),

i_ssym ss i_ss = i_ss →
let p_next := slice_prog p (str≤ ∪ ss) in
prog_true p_next (ci≤.1 ∪ i_ss) →
(pengine_step pdef (encodep p_next) ci≤).1
⊆ (ci≤.1 ∪ i_ss))

∧ is_min_str_rec ps (str≤ ∪ ss)
end.

The main result concerning model minimality in our setting establishes it as a conse-
quence of the strata invariant, i.e as relative to stratification:
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Lemma minimality p str> str≤ :
is_strata_rec p str> str≤ → is_min_str_rec str> str≤.

Proof. The proof follows by induction on str>.

Base Case str> = [::]. The conclusion trivially holds.

Step Case str> = ss :: ps.

Induction Hypothesis We have that:

IH: ∀ str≤, is_strata_rec p ps str≤ → is_min_str_rec p ps str≤ ∪ ss

From the theorem hypothesis we know:

• is_strata_rec p (ss :: ps) str≤ , i.e according to Section 9.3.1
– str_ps ≡ is_strata_rec p ps (str≤ ∪ ss)

– strI ≡ [disjoint str≤ & ss]

– strN ≡ all (fun s ⇒ ∼∼ negdep s pstr≤ ∪ ss) (enum ss)

– strP ≡ all (posdep str≤ ∪ ss) pstr≤ ∪ ss

• fixing a cumulative interpretation ci≤
– h_wc ≡ wcstr≤ ci
– h_true ≡ ci≤.1 |= pstr≤

We prove that (pengine ppstr≤ ∪ ssq ci≤).1 ⊆ ci≤.1 ∪ i_ss, for any addition i_ss
of current stratum facts to ci≤.1, such that satisfiability is preserved, i.e

ci≤.1 ∪ i_ss |= pstr≤ ∪ ss

The proof is based on using the above condition, together with the minimality of com-
puted positive program models:

Definition is_min_pmodel pi pp ci0 :=
∀ pi’, (c2p ci0) ⊆ pi’ → P.prog_true pp pi’ → pi ⊆ pi’.

Indeed, the only remaining obligation becomes:

c2p ci≤ ⊆ c2p (ci≤.1 ∪ i_ss, ci≤.1 ∪ i_ssCss)

which follows from the monotonicity of the c2p transformation and from properties of
(complemented) intepretation slicing.
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9. Formalization of Datalog with Negation

9.7. Discussion
9.7.1. Contributions
In this chapter we presented a Coq/ssreflect formalization of the theory of Datalog
with negation, based on the Mathematical Components library for sets over finite types,
i.e, finset. The formalization consists of the following components:

• mechanization of the syntax and semantics of Datalog programs with negation

• mechanization of stratified evaluation:
we formalize program stratification and slicing of programs and interpretations; in
order to reuse the positive engine, we translate negated literals to flagged positive
atoms and extend the notion of an interpretation to that of a “complemented
interpretation”;

• extending the theory of the positive engine:
a crucial part of the stratified evaluation relies on the positive engine to perform
evaluation of negative programs encoded as positive; this reuse requires an ex-
tension to the theory of the positive engine with incrementality and modularity
lemmas

• formal characterization of the negative engine:
the key properties we establish are soundness, termination and completeness and
model minimality

9.7.2. Lessons
What are the technical challenges in establishing the key characterization theorem ?

The central problem is the large amount of housekeeping needed, since every single ob-
ject in the main proof is defined relative to a set of strata symbols. We believe we could
improve our representation and data structures to ease this task; however, this comes
at a non-trivial cost. Another source of intricacy is the large amount of side-conditions
occuring in the proof. In addition to safety and other proof obligations already present
in the positive case, here the strata condition is composed of four separate predicates,
as well as an induction invariant. We do not think this can be easily improved, as these
conditions are intrinsic to the proof. Indeed, we believe that the length of the main
proof, even if a bit dense, is reasonable at approx. 60 loc.

Quoting [1]: “no precise characterization of stratified semantics in model-theoretic terms
has emerged”. To conclude, we regard the formal proofs given in this section as a step
towards addressing this concern.
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10. Conclusion

In this chapter, we evaluate the formal development presented previously, with regard
to proof effort, reusability and scalability (see Section 10.1) and by summarizing the
learned lessons (see Section 10.2).

10.1. Evaluation
Proof Effort We detail the proof effort that went into the formalization presented in
Chapter 8 and Chapter 9. Note that we heavily used SSReflect features and proofs
natively provided by the Mathematical Components library. As such, we estimate
the development to be particularly compact relative to the comprehensive nature of
the results established. As a comparison, the Coq formalization of standard Datalog
given in [84] amounts to 2500 loc. This only contains a soundness proof for bottom-up
inference, together with that of the procedure’s decidability (a proof we did not have to
carry out, as our development, by relying on small-step reflection, is computation-based
and exploits the inherent decidability of booleans).

Our mechanization of standard Datalog programs over finite domains, of bottom-up
inference, and of corresponding proofs for soundness, termination, completeness and
computed model minimality, as well as of relevant incrementally proofs - needed for the
extension of Datalog with negation -, amounts to approx. 1300 loc. An alternative
development, supporting Datalog programs over infinite domains and establishing the
same results - without the incrementally properties, as we did not base further work
on the development1 -, amounts to approx 1200 loc. The mechanization of Datalog
with negation, stratified evaluation, together with corresponding proofs for soundness,
termination, completeness and “relative” minimality of the computed model, amounts to
approx. 1700 loc. Another (preliminary) development that explicitly analyzes programs
- computing symbol arities, the active domain and building corresponding instances -
and that establishes preservation of soundness results from the Datalog with negation,
currently amounts to approx. 800. loc.

Reusability and Scalability We found that libraries and proofs developed in this set-
ting are highly reusable. This observation is based, on the one hand, on the seemless
integration of external proofs like those concerning fixpoint theory (see [33]) and, on the
other hand, on the robust reuse of the library we developed for standard Datalog in

1indeed basing the library for negation in the infinite domain setting was not needed, as we show we
can restrict ourselves to the active domain (see Section 8.1.1)
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building that for its extension with negation.

Concerning scalability, we plan to further refine our development on several accounts.
One example would be with respect to our library for Datalog with negation. In
the stratified evaluation, by indexing interpretations with the set of already processed
symbols, we would inherently assure, at every step, that the Herbrand base of programs
forms a well-complemented lattice. This would save us from having to explicity check
this property holds. Related to this point, we would like to develop a library for lattice
theory that would be particulary useful as basis for further language extensions, e.g,
when introducing function symbols. Also, we would like to implement support for other
types of semantics and evaluations, as presented in Section 5 and Section 6. Ideally, such
an effort would ultimately result in providing a heuristic-agnostic evaluation procedure,
together with corresponding, formally-checked, properties.

10.2. Lessons Learned
The exercise of formalizing database aspects has been an edifying experience. It helped
clarify both the fundamentals underlying theoretical results and the proof-engineering
implications of making these machine readable and user reusable.

On the database side, it quickly became apparent that, while foundational theorems
appeared intuitively clear, if not obvious, understanding their rigorous justification re-
quired deeper reasoning. Resorting to standard references (even comprehensive ones,
such as [1]), led at times to the realization that low-level details were either glanced over
or left to the reader.

For instance, to the best of the author’s knowledge, no scrupulous proofs of the sound-
ness and completeness of Datalog’s forward-chain evaluation (as presented in Chap-
ter 8 and Chapter 9) exist in the literature. Indeed, as these results are theoretically
uncontroversial, their proofs are largely taken for granted and, understandably so, as
they ultimately target database practitioners. Consequently, these are mostly assumed
in textbook presentations or when discussing proofs in more complex settings, e.g, when
studying further language extensions. It was only by constructing these proofs “from
the ground up”, in a proof assistant, that the relevance of different properties (e.g safety,
finiteness, domain independence), the basis behind introducing certain definitions (e.g,
predicate intensionality/extensionality, strata restrictions, logical consequence, stratified
evaluation), or the precise meaning of ad-hoc notions and notations (e.g “substitution
compatibility”, B(P), model restrictions) became apparent.

As it is well known, database theory is based on solid mathematical foundations, from
model theory to algebra. This suggests that, when compared to off-the-shelf program
verification, verification in the database context requires that proof systems have good
support for doing mathematics. It was an interesting lesson to discover, in practice,
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the extent to which database theory proofs could be recast into matemathical ones.
To exemplify, by expressing forward chain as an elegant set construct, we transferred
proofs about Datalog inference engines into set-theory proofs, which are more natural
to manipulate. Conversely, when formalizing the stratified semantics of Datalog with
negation, we were compelled to resort to some ad-hoc solutions to handle the lack of
native library support for lattice theory. Indeed, textbooks largely omit explainations as
to why and how it is necessary to reason about such structures when proving properties
of stratified evaluation. To this end, we were led to introduce specialized notions, such
as interpretation complementation. Also, we had to explicitly establish that, at each
evaluation step, the Herbrand base of the program’s restriction with respect to the set
of already processed strata symbols was a well-complemented lattice.

On the theorem proving side, a crucial lesson is the importance of relying on infrastruc-
ture that is well-tailored to the nature of the development. This emerged as essential
while working on the formalization of standard Datalog. The triggering realization was
that, as we could - without loss of generality - restrict ourselves to the active domain
(see Section 8.1.1), models could be reduced to the finite setting and atoms could be
framed as finite types (see Section 8.1.3). Therefore, the Mathematical Components
library, prominently used in carrying out finite model theory proofs, stood out as best
suited for our purposes. Indeed, since we could heavily rely on the convenient properties
of finite types and on already established set theory properties, proofs were rendered
much easier and more compact.

Apart from having good library support, making adequate choices for the type encoding
of various constructs proved essential. Having experimented with many alternatives,
we noticed first-hand the dramatic effect this could have on the size and complexity
of proofs. For example, while having too many primitives is undesirable in program-
ming language design, it turned out to be beneficial to opt for greater base granularity
when formalizing Datalog. Separating the type of ground constructs from that of con-
structs with variables helped both at a conceptual level, in understanding the relevance
of standard range restrictions, and at a practical one, in facilitating proof advancement.
Another example concerns the mechanization of substitutions. Having the option to
representing them as finitely supported functions, together with all the useful properties
this type has, was instrumental to finding a suitable phrasing of the matching algo-
rithm’s soundness and completeness properties. Indeed, as the algorithm incrementally
constructed groundings, it seemed natural to want to define an ordering on substitutions
leading up to these. Being able to have a type encoding allowing to regard substitutions
both as functions and as lists was essential for this purpose. A final example regards the
formalization of models. As previously mentioned, setting up the type of ground atoms
as finite payed off in that we could use many results and properties from the fintype
library, when reasoning about models - which was often the case. In particular, we took
advantage of the inherent lattice structure of such types.

The final lesson is that proof style is consequential not only a posteriori, for the sake
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of readability or reusability, but also as an a priori way of approaching a formalization
endeavour. In the early stages of getting used to working with a prover, it was very
tempting to try and build proofs in a top-down manner, i.e, to primarily work on refining
the goal itself to match the hypothesis. This does not seem to correspond to the natural
way one would typically do proofs on paper and would lead to a feeling that the proof
was driven by the machine and not the user. While this sometimes luckily works, it is
largely up to the user to take the lead and direct the proof. As such, in the author’s
experience, it helps to not only do the detailed proof on paper beforehand, but also to
proceed in a bottom-up manner, i.e, to rely on stating intermediate assertions based
on the hypothesis. Lastly, relying on characteristic properties (SSreflect’s so called
P-lemmas), many of which are conveniently stated as reflection lemmas, led to leaner
proofs by compositionality. In cases in which induction would have been the default
approach, these provided a shorter alternative (also, see [38], in which a comprehensive
fomalization of linear algebra is developed with no induction).

157



11. Perspectives

We consider that our formalization work opens many perspectives, both targeting lan-
guage extensions (see Section 11.1) and different domains of application (see Section 11.2).

11.1. Language Extensions
Many additions to the standard Datalog language have been proposed in the literature
over the years. We have so far only applied theorem techniques to Datalog with
negation. A logical step would then be to mechanize further such extensions and to
provide formal proofs regarding their semantics. Such an effort would make precise the
impact that the interaction between different operators, e.g, ∃, ∨ and update constructs,
could have on language properties.

11.1.1. Datalog with Existentials
As the best known and most widely used rule-based language, Datalog has application
in fields ranging from Data Integration and Exchange to Artificial Inteligence, i.e, the
Semantic Web. However, additions to the standard Datalog language are generally
required. In particular, these concern enabling support for expressing local-as-view con-
straints or for ontology reasoning relying on description logics, whose concept axioms
may include the existential restriction of concepts. Hence, we envision formalizing the
theory Datalog∃, a highly expressive languge extension allowing for existentially quan-
tified variables in rule heads. The main challenge in this context is the undecidability
of query answering. It would be interesting to mechanize inference and optimization
techniques for restricted fragments based on different paradigms, such as guardedness,
weak-acyclicity, stickiness or shiness. An important step would be formally studying
terminating versions of the chase procedure, such as the Parsimonious Chase ([52]), or
the application of rewriting algorithms, such as Magic Sets ([8]).

11.1.2. Datalog with Disjunction
A natural extension to the language of Datalog with negation, presented in Section 9,
is Disjunctive Datalog. This allows for disjunction of atoms in the head of rules and
can be refined to also support negation in rule bodies. In this setting, one line of work
could be formally establishing precise semantics for the language, based on standard
approaches in disjunctive logic programming. Also, another aspect could concern the
formal analysis of such programs, in particular of properties, such as stratification, mod-
ularity and rewritability.
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11.1.3. Datalog with Updates
In order to make Datalog more amenable to real-world system integration, another
extension regards the support of dynamic behaviour. This translates to incorporating
update constructs and to providing adequate incremental maintanence algorithms, as
an alternative to materialization. Given the declarative nature of the language, this
setting is a particularly favorable one for analyzing problems that notoriously occur
when dealing with updates, such as the view-update problem. As such, other lines of
work could be proposing a mechanized semantics in the presence of insertion and deletion
and studying relevant language restrictions for the unambiguous evaluation of rules with
updated heads.

11.2. Applications
We also outline two potential applications that would make use of our work in formalizing
Datalog languages and corresponding inference engines.

11.2.1. Enforcing Security
Another perspective of our work is to extend Datalog to a security language, capable
of expressing fine-grained access control rules and delegation operations. These could
then be used to define security policies, whose enforcement can be formally established
by providing corresponding Coq proofs. The development of such a framework would
be targeted to Data Integration and Exchange problems. The main goal would be to
ensure strong privacy guarantees, while working with heterogeneous data sources and
supporting data sharing.

11.2.2. System Certification
The renewed interest in the Datalog language has begun to feel its presence in industry
as well. A prominent example is the LogicBlox commercial Datalog system ([43], [4]).
This constitutes a promising opportunity to integrate formal certification techniques with
real-word database system. As such, one research direction would be to first adapt and
extend our the Coq specification of our inference engine, to account for the wide range of
queries supported by the LogicBlox one (in line with the language extensions mentioned
above). Then, we could ideally employ property-based testing tools, such as QuickChick
[31], to ensure that outputs conform to consistency constraints formulated as invariants.
This is particularly interesting in the context of generally undecidable inference proce-
dures, such as the chase. As QuickChick has only recently been incorporated into the
SSReflect proving process, by exploiting refinement methodology proposed in [30] and
[24], this endeavour would be good occasion to assess the feasability of employing such
a workflow.
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Synthèse en français

Dans le contexte actuel de la prolifération rapide des volumes de données, l’obtention de
garanties fortes sur la fiabilité des systèmes et des applications qui traitent ces données massives
est essentiel. À cette fin, une piste consiste à appliquer des techniques déjà bien connues dans
le domaine de la vérification et de la preuve de programmes. En particulier, le recours à des
assistants à la preuve tels que Coq, pour formaliser les systèmes et certifier formellement les
algorithmes, est une voie très prometteuse.

Dans cette thèse nous nous intéressons à fournir des spécifications formelles provenant de
deux approches différentes pour la définition des modèles de données. L’une est basée sur les
relations mathématiques - c’est-à-dire le modèle relationnel - et l’autre est basée sur la logique -
c’est-à-dire le modèle déductif - représenté par le langage Datalog. Le modèle relationnel permet
de représenter l’information à travers des relations, d’affiner l’information ainsi représentée en la
restreignant par des contraintes d’intégrité et d’extraire cette information grâce à des langages
de requêtes. Ces derniers sont fondés soit sur l’algèbre relationnelle, soit sur le calcul relationnel.

Deux versions équivalentes du modèle relationel co-existent : la version par positions et la
version par noms. Dans le cas par positions, les attributs spécifiques à une relation sont ignorés,
et seule l’arité (c’est-à-dire le nombre de ces attributs) est utilisée par les langages de requêtes.
Dans le cas nommé, au contraire, les attributs font partie intégrante de la base et sont utilisés
tant par les langages de requêtes que pour définir les contraintes d’intégrité.

En pratique, les systèmes tels qu’Oracle, DB2, PostgreSQL ou encore Microsoft Access
reposent sur la version nommée du modèle. Ce choix est motivé par plusieurs raisons. Les noms
portent davantage de sens que des numéros, ce qui est appréciable à des fins de modélisation. De
plus, les optimiseurs tirent parti des structures de données auxiliaires à des fins d’optimisation
physique. De telles structures, en particulier les index, sont définies en utilisant explicitement
les noms des attributs. C’est pourquoi nous avons choisi de formaliser cette version du modèle.

Le modèle déductif est issu du cel relationnel et de la programmation logique et étend
l’éxpresivité du prémier avec le support pour la recursion et pour le calcul des clôtures transitives.
En s’appuyant sur la logique, il fourni un cadre unificateur qui permet d’extraire non seulement
des données explicitement stockées, mais aussi des données qu’on peut inférer.

Contributions
Les contributions techniques de cette thèse consistent en deux développements formels :

une bibliothèque Coq pour le modèle relationnel et une bibliothèque Coq/ssreflect pour la
programmation logique dans le fragment Datalog. Nous les détaillons comme suit.

• une bibliothèque Coq pour le modèle relationnel qui contient :

– une formalisation du modèle de données (relations, tuples, etc.)
– une mécanisation des contraintes d’intégrité :

nous formalisons les dépendances générales et nous prouvons la correction de leur
procédure d’inférence ; aussi, nous formalisons des instances correspondant aux deux
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sous-classes de dépendances générales : les dépendances fonctionnelles et les dépendances
multivaluées ; nous établissons la correction de leur inférence, ainsi que la complétude,
dans le cas des dépendances fonctionnelles

– une mécanisation des principaux langages de requêtes relationnelles :
nous formalisons l’algèbre relationnelle et un fragment restreint de calcul relationnel,
c’est-à-dire, les requêtes conjonctives

– les preuves des principaux “théorèmes de base de données” :
les équivalences algébriques, le théorème d’homomorphisme et la minimisation des
requêtes conjonctives

• une mécanisation d’un moteur d’inférence pour les programmes Datalog positifs

– en utilisant le support ssreflect pour les types finis :
nous simplifions l’effort de vérification considérablement, en supposant, sans perte
de généralité, la finitude des modèles ; en effet chaque programme Datalog a un
modèle fini, pour cela, considérer le cadre fini suffit. Nous effectuons cette réduction
séparément du développement principal, ce qui, à notre avis, simplifie la présentation
du développement.

– une mécanisation évolutive de la syntaxe et de la sémantique de Datalog positif
– mécanisation de l’heuristique d’évaluation bottom-up :

formalisation d’un algorithme itératif de matching monadique pour les termes, atomes
et corps de clause, avec des preuves de correction et de complétude correspondantes

– caractérisation formelle du moteur positif :
les propriétés clés que nous établissons sont la correction, la terminaison, la complétude
et la minimalité du modèle. Elles sont basées sur des preuves que nous donnons pour
montrer que l’opérateur de conséquence immédiate est monotone, borné et stable,
ainsi que sur des résultats de la théorie des points fixes.

• une formalisation ssreflect d’un moteur d’inférence pour des programmes Datalog
avec négation

– mécanisation de la syntaxe et de la sémantique des programmes Datalog avec négation
– mécanisation de l’évaluation stratifiée :

nous formalisons la stratification des prédicats et le découpage des programmes et
des interprétations ; afin de réutiliser le moteur positif, nous traduisons les littéraux
niés vers des atomes positifs avec des markeurs booléens et nous étondrons la notion
d’interprétation à celle “d’interprétation complémentée” ;

– extension de la théorie du moteur positif :
une partie cruciale de l’évaluation stratifiée s’appuie sur le moteur positif pour
effectuer l’évaluation de l’encodage de programmes négatifs codés comme positifs ;
cette réutilisation nécessite une extension de la théorie du moteur positif avec des
lemmes d’incrémentalité et de modularité

– caractérisation formelle du moteur négatif :
les propriétés clés que nous établissons sont la correction, la terminaison, la complétude
et la minimalité du modèle
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Formalisation du modèle relationnel
Dans cette partie, nous présentons une formalisation du modèle relationnel. Le développement

comprend la partie définition de données, ainsi que les contraintes d’intégrité et leur inférence.
Dans le cas des dépendances générales, nous formalisons la procédure du “chase” pour laquelle
nous établissons la correction. Dans le cas plus restreint des dépendances fonctionnelles, nous
formalisons le système d’Armstrong pour lequel nous établissons la correction et la complétude.
De plus, nous formalisons l’algèbre relationnelle et les requêtes conjonctives et nous prouvons
les équivalences algébriques, le théorème d’homomorphisme et la minimisation des requêtes
conjonctives. Pour établir formellement les preuves de ces résultats, on a dû rendre explicites des
notions techniques comme la fraîcheur des variables, l’unification et l’échappement de capture
des variables. Ces aspects ne sont pas mentionnés dans la littérature et n’apparaissent pas dans
des les implémentations correspondantes (le plus souvant écrites en C). Pourtant, le vrai défi
est la modélisation des données, en particulier celle des attributs, tuples et relations. En faisant
des choix opportuns, nous arrivons à rester générique et fidèle aux formalisations sur papier,
existant dans les ouvrages de référence.

Formalisation du langage Datalog standard
Dans cette partie, nous présentons une formalisation du langage Datalog standard. La

librairie contient une mécanisation du langage, de sa sémantique par théorie des modèles et
par point fixe, ainsi qu’un moteur d’inférence implémentant l’évaluation bottom-up, c’est-à-dire
le forward-chain. Le développement comprend des preuves de propriétés caractéristiques de tous
les composants que nous avons défini. Le moteur d’inférence est la composante principale du
développement. L’idée principale derrière son fonctionnement est comme suit. Essentiellement,
le moteur itère un opérateur par point fixe, basée sur l’implémentation de la “conséquence
immédiate” à travers un algorithme de matching. Le but de cette procédure d’inférence est
la construction d’un modèle (minimal) pour un programme Datalog standard donné. À cette
fin, le moteur maintient une interprétation (le modèle candidat) qu’il essaie d’améliorer de
manière itérative. Pour ce faire, il identifie d’abord les clauses insatisfiables, c’est-a-dire celles
pour lesquelles le corps de la clause est satisfait par l’interprétation actuelle, mais la tête de
la clause ne l’est pas. L’interprétation actuelle est ensuite “réparée” en lui ajoutant les faits
manquants qui correspondent à des têtes de clause saturées. Cette opération est réalisée grâce
à un algorithme du forward-chain qui calcule les substitutions faisant le matching entre les
atomes dans le corps de la clause et les faits de l’interprétation. La condition de sûreté du
langage Datalog assure que toutes les variables présentes dans la tête de la clause sont aussi
parmi celles dans le corps de la clause. Par conséquent, la substitution obtenue est close et son
application à la tête de clause produit un nouveau fait. Une fois que l’interprétation actuelle est
mise à jour avec tous les faits qu’on puisse inférer en une étape du forward-chain, la procédure
est répétée jusqu’à l’obtention d’un point fixe. Nous montrons formellement que l’interprétation
finale est un modèle minimal du programme de départ.

Formalisation du langage Datalog stratifié
Dans cette partie, nous présentons une formalisation du langage Datalog stratifié, basé

sur le développement précédent pour le langage Datalog standard. La librairie contient une
mécanisation du langage, de sa sémantique et d’un moteur d’inférence qui implémente l’évaluation
stratifiée. Elle comprend des preuves des propriétés caractéristiques de tous les composants
que nous avons défini. Le moteur d’inférence est la composante principale du développement
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et nous donnons l’idée principale derrière son fonctionnement comme suit. Les programmes
logiques avec négation sont plus difficiles à analyser que ceux sans négation, car, en particulier,
l’existence d’un modèle (unique) minimale n’est pas toujours garantie. Pour remédier à cette
situation, une condition suffisante est fournie dans la littérature : la stratification des prédicats.
L’idée principale de cette technique est de découper le programme de sorte que chaque partie
puisse être correctement traité comme s’il s’agissait d’un programme positif. Par conséquent,
une telle partie a un modèle minimal qui peut être enrichi, de manière itérative, au fur et à
mesure qu’on considère les strates suivants. Il y a des programmes Datalog qui ne sont pas
stratifiables, mais, pour ceux qui le sont, une stratification peut être définie en calculant les
dépendances entre les prédicats du programme. Il suit que le strate inférieur est une partie
indépendante, sans négation, du programme original. Grâce au fait que la stratification assure
l’indépendance des parties suivantes du programme, nous évaluons chacune par la sémantique
du point fixe. La formalisation est impactée par la stratification de deux façons : premièrement,
les modèles calculés sont indexés par des strates et, deuxièmement, chaque partie du programme
avec négation peut être encodé comme un programme positif.
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