
HAL Id: tel-01534580
https://theses.hal.science/tel-01534580

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving Architectural Decisions through
Architectural Patterns

Minh Tu Ton That

To cite this version:
Minh Tu Ton That. Preserving Architectural Decisions through Architectural Patterns. Software En-
gineering [cs.SE]. Université de Bretagne Sud, 2014. English. �NNT : 2014LORIS340�. �tel-01534580�

https://theses.hal.science/tel-01534580
https://hal.archives-ouvertes.fr

THÈSE / UNIVERSITÉ DE BRETAGNE SUD
UFR Sciences et Sciences de l’Ingénieur

sous le sceau de l’Université Européenne de Bretagne

Pour obtenir le grade de :

DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE SUD

Mention : STIC

École Doctorale SICMA

présentée par

Minh Tu TON THAT
IRISA

Preserving Architectural Decisions

through Architectural Patterns

Thèse soutenue le 30 Octobre 2014,
devant la commission d’examen composée de :

M. Jean-Marc Jézéquel
Professor, IRISA, Université de Rennes 1 / President

M. Danny Weyns
Professor, Linnaeus University / Reviewer

M. Khalil Drira
Professor, LASS, Toulouse / Reviewer

M. Jean-Marc Jézéquel
Professor, IRISA, Université de Rennes 1 / Examiner

M. Flavio Oquendo
Professor, IRISA, Université de Bretagne Sud, France / Advisor

M. Salah Sadou
Assistant Professor, IRISA, Université de Bretagne Sud, France / Advisor

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Acknowledgements

I thank my supervisor Assoc. Prof. Dr. Salah Sadou for an exceptional supervision and
guidance of my Ph.D. project. Thank you for all the patience and care you gave me since the
first day I came to Vannes.

I thank my supervisor Prof. Dr. Flavio Oquendo for you kindness and inspiration. Thank
you for your encouragement and supportive discussions despite busy schedules. Thank you for
all the support during these three years.

I thank my colleagues at the ArchWare team at the University of South Brittany for nu-
merous helpful discussions. I also thank all the people I met and had discussions with during
conferences and workshops.

It has been a pleasure to be part of IRISA-UBS the last three years. I enjoyed plenty of talks
in a variety of subjects during lunch time and hangouts with other PhD students. In particular,
I loved to get to know you, Salma and Abdel. You have been such good friends, always caring
and supportive.

Last but not least, I thank my darling Khanh Ha and my family for supporting me during
this long journey. I thank you for your unconditional love and sacrifice you made for me. I
would have not been able to go this far without you.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Contents

Table of Contents i

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 3
1.3 Aim of the thesis . 4
1.4 Dissertation plan . 4

2 State of the art 5
2.1 Background . 6

2.1.1 Architectural Decision . 6
2.1.2 AD about the application of pattern 6

2.2 AD documentation . 7
2.2.1 Documentation of pattern-related AD 8
2.2.2 Checking of pattern-related AD . 9

2.3 Architectural pattern modelling languages . 14
2.4 Pattern composition . 16
2.5 Limitations of existing works . 18

2.5.1 The problem of StAD maintenance and checking 18
2.5.2 The problem of pattern composition 22

2.6 Summary and discussion . 25

3 COMLAN - COMposition-centered pattern description LANguage 27
3.1 Process Overview . 28
3.2 The COMLAN meta-model . 29

3.2.1 Example of pattern definition . 31
3.3 Pattern refinement . 33

3.3.1 Stringing operator transformation . 34
3.3.2 Overlapping operator transformation 35
3.3.3 Nested pattern transformation . 37
3.3.4 Support of traceability and reconstructability 37

3.4 Summary . 38

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

ii Contents

4 Pattern-based approach for documenting the solution of structural architectural
decision 41
4.1 General Approach . 42

4.1.1 Pattern definition . 43

4.1.2 StAD creation . 43

4.1.3 StAD verification . 44

4.2 Pattern definition . 44

4.2.1 General pattern meta-model . 44

4.2.2 Architectural Pattern Specification . 46

4.3 Use of StAD . 47

4.3.1 Associating a Pattern to an Architectural Model 47

4.3.2 Filtering StAD views . 48

4.3.3 StAD Checking . 51

4.4 Summary . 54

5 Implementation 57
5.1 COMLAN tool . 58

5.1.1 Use cases . 58

5.1.2 COMLAN architecture . 59

5.2 ADManager tool . 61

5.2.1 Use cases . 61

5.2.2 ADManager architecture . 62

5.3 Summary . 63

6 Empirical evaluation 65
6.1 Empirical evaluation for pattern composition approach 66

6.1.1 Experimental setup . 66

6.1.2 Traceability . 68

6.1.3 Reconstructability . 69

6.1.4 Discussion . 70

6.1.5 Threats to validity . 71

6.2 Empirical evaluation for StAD documentation approach 72

6.2.1 Application of pattern definition language 72

6.2.2 StAD documentation . 75

6.3 Summary . 83

7 Conclusion 85

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Contents iii

Bibliography 91

Appendices 93

Appendix A Architectural pattern composition catalogue 93
A.1 Enabled Cycle Component [26, 2, 9] . 93
A.2 Forbidden Cycle Component [2] . 93
A.3 Shield [53] . 94
A.4 Layers [2, 9] . 94

A.4.1 Basic Layer [2, 9] . 95
A.4.2 By-passed Layers [2] . 95
A.4.3 Not by-passed Layers [2, 9] . 95
A.4.4 Client-Server Layers [2] . 96
A.4.5 Filtered Layers [2] . 97

A.5 Pipes and Filters [2, 9] . 98
A.5.1 Basic Pipes and Filters [2][3] . 98
A.5.2 By-passed Pipes and Filters [2] . 98
A.5.3 Not by-passed Pipes and Filters (or Pipeline) [2, 9] 99
A.5.4 Internally layer-structured Pipes and Filters [2] 99
A.5.5 Data sharing Pipes and Filters [2] . 99

A.6 Shared repository [2, 9, 11] . 100
A.6.1 Basic Shared Repository [2, 9, 11] . 100
A.6.2 Internally Layer structured Shared repository [2] 100

A.7 Microkernel [2] . 101
A.7.1 Basic Microkernel [2] . 101
A.7.2 Broker between Client and External Server [2] 102

A.8 PAC [2] . 103
A.9 Indirection Layer [2] . 103
A.10 Client-Server [2, 9, 11] . 103

A.10.1 Basic Client-Server [2, 9, 11] . 103
A.10.2 Client-Server with Broker [2] . 104
A.10.3 Client-Server through Microkernel [2] 104

A.11 MVC [2] . 105
A.12 Proxy [9] . 106
A.13 Broker [2, 9] . 107
A.14 Façade [53, 11] . 107
A.15 Legacy Wrapper [11] . 107
A.16 Pipes and Filters + Repository [11] . 108

Appendix B Formalized SOA pattern 111

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

iv Contents

Appendix C Formalized CBA pattern 115

Appendix D List of architectural models 117

Appendix E Undetected cases of StAD violations 119

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

List of Figures

2.1 An AD template . 7
2.2 Meta-model of software architecture with first-class design decision (taken

from [22]) . 8
2.3 Development stages of reusable AD models (inspired from [57]) 9
2.4 An AD imposing the replication pattern (taken from [28]) 13
2.5 The binding meta-model of AD and design model (taken from [25]) 13
2.6 Shield architectural primitive . 15
2.7 Overlapping composition of Mediator pattern and Proxy pattern 16
2.8 Conjunction composition of Mediator pattern and Proxy pattern 17
2.9 UML profile for attaching pattern composition information 18
2.10 Architectural constraint composition (Figure taken from [49]) 19
2.11 Legacy Wrapper pattern in FRC . 20
2.12 Architectural decision violation by adding Service Façade pattern 20
2.13 Architectural decision violation by deletion 21
2.14 Pipes and Filters . 22
2.15 The Data-centered pipeline pattern . 23
2.16 Layers as internal structure of Repository . 24

3.1 Overall Approach . 28
3.2 The COMLAN meta-model . 29
3.3 Orientation organization of generic elements 30
3.4 Two types of merging operation . 31
3.5 Example of pattern model . 32
3.6 The refined pattern model . 34
3.7 The merged pattern of Client-Server and Pipes and Filters 36
3.8 Support of traceability . 38

4.1 The process of using StAD . 42
4.2 MDA approach for StAD documentation . 43
4.3 SOA General Pattern Meta-model . 45
4.4 SOA Legacy Wrapper pattern model . 46
4.5 SOA Mapping Meta-model . 48
4.6 Mapping model for the Legacy Wrapper pattern in FRC (Elements in dashed

line are those added after the evolution of the FRC architecture) 49
4.7 StAD views for the Legacy Wrapper pattern produced from FRC architecture

(Elements in dashed line are those added after the evolution of the FRC archi-
tecture) . 51

4.8 StAD view meta-model for the Legacy Wrapper pattern. 52

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

vi List of Figures

5.1 COMLAN tool architecture . 59
5.2 Snapshots of COMLAN tool . 60
5.3 The architecture of ADManager . 62
5.4 Snapshots of ADManager tool . 63

6.1 Most of pattern variants can be composed from other variants 69
6.2 Frequency of composing a pattern variant . 70
6.3 Reconstructability of composed pattern by switching between different variants

of constituent patterns . 71
6.4 Frequency of composed pattern reconstruction by reusing merging operators . . 72
6.5 General CBA pattern meta-model . 74
6.6 Size of 8 Acme architectural models in terms of model elements, components

and connectors . 76
6.7 Size of mappings comparing to size of architectural models in terms of com-

ponents and connectors . 77
6.8 Size of pattern view comparing to size of architectural models 78
6.9 Example of meaningful deletions . 81

A.1 Cycle enabled component . 93
A.2 Forbidden Cycle Component pattern . 94
A.3 Shield pattern . 94
A.4 Basic Layers pattern . 95
A.5 By-passed Layers . 96
A.6 Not by-passed Layers . 96
A.7 Client-Server Layers . 97
A.8 Filtered Layers pattern . 97
A.9 Basic Pipes and Filters pattern . 98
A.10 By-passed Pipes and Filters . 98
A.11 Not by-passed Pipes and Filters . 99
A.12 Internally layer-structured Pipes and Filters pattern 100
A.13 Data sharing Pipes and Filters pattern . 100
A.14 Basic Repository pattern . 101
A.15 Internally Layer structured Shared repository pattern 101
A.16 Basic Microkernel pattern . 102
A.17 Broker between Client and External Server pattern 102
A.18 PAC pattern . 103
A.19 Indirection layer pattern . 104
A.20 Client-Server pattern . 104
A.21 Client-Server with Broker pattern . 105
A.22 Client-Server through Microkernel pattern . 105

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

List of Figures vii

A.23 MVC pattern . 106
A.24 Proxy pattern . 106
A.25 Broker pattern . 107
A.26 Façade pattern . 108
A.27 Legacy Wrapper pattern . 108
A.28 Pipes and Filters + Repository pattern . 109

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

viii List of Figures

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

List of Tables

2.1 AD versus pattern (taken from [19]) . 10

6.1 Pattern catalogue . 67
6.2 Categories of SOA Patterns from [46] . 73
6.3 Categories of architectural patterns from [2] 75
6.4 Deletion of architectural elements . 79
6.5 Addition of architectural elements . 80

B.1 List of formalized SOA patterns . 111

C.1 List of formalized CBA patterns . 115

D.1 List of architectural models . 117

E.1 Undetected cases of StAD violations . 119

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

x List of Tables

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

1
Introduction

Contents
1.1 Motivation . 1
1.2 Problem statement . 3
1.3 Aim of the thesis . 4
1.4 Dissertation plan . 4

1.1 Motivation

Today’s software systems tend to evolve over time to adapt to changes, which are supposed
to be inevitable in software development [9]. No matter how well we design an application,
there will always be changes about functionalities, performance, deployment requirements,...
to name a few. The maintenance cost therefore sometimes outweighs the development cost.
This phenomenon in modern software development shifts the focus from creating software to
extending and adapting software. In other words, system designers on one hand, have to fulfil
their actual task and on other hand, have to take upcoming changes into consideration. Fur-
thermore, complex software systems often take a whole team of developers working in a long
period of time to complete. This particular condition makes the coordination and the commu-
nication among team members essential in the success of the project. Therefore, one of the
most crucial support for software development nowadays lies in documentation [11]. Indeed,
a proper means of documentation not only provides necessary information about the system
through development iterations but also facilitates the communication among stakeholders by
providing a common understanding of the system. Of different aspects of a system to be docu-
mented, the architecture - a high level abstraction of the system structure - plays an important
role. Architecture documentation is supposed to deliver the system’s required functions as
well as quality attributes [50]. It serves as a means to communicate the architecture to stake-
holders so that they can learn, analyse, make decisions from it. Also, documenting software
architecture during the early stage of development brings major benefits such as enabling early
analysis, system visibility, complexity management, and enforcing design disciplines.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2 Chapter 1. Introduction

During the last decade, the research community on software architecture has tackled one
important type of architecture documentation: architectural decision (AD) [22, 50, 27]. AD
is considered to have big influence on the design of a software system. Either it is about the
choice of a technology, a database or an applied pattern; AD significantly changes some parts
of the system. A system change always starts off with an AD and eventually ends up by specific
implementation. Having said that, AD documentation is often implicitly made because either
it is a time-consuming task and thus, avoided by architects; or architects themselves do not see
the immediate benefit from this extra effort. Nevertheless, explicit AD documentation is found
to be necessary if not crucial in most software development processes. Indeed, the benefit of
AD documentation is obvious since stakeholders do always need a deep understanding of the
system’s architecture: Developers want clear explications about the architecture to proceed
with implementation. Customers want to make sure that the architecture satisfies their business
requirements. Architects want to know the intention and the rationale of decisions that other
architects have made. The lack of such explicit AD documentation can lead to design conflicts
and eventually, the lost of the system’s quality properties. This phenomenon is also referred to
as the vaporization of architectural knowledge (AK) in the literature. To tackle this problem,
there have been a lot of works aiming to provide a proper means of AD documentation that
conveys rationale and supports the traceability of AD from the architectural model.

Of the commonly made ADs, those about the application of patterns are among the most
popular ones [51, 4]. Patterns have been largely used in software design. They document exist-
ing, proven design experience in order to support the construction of software with well-defined
properties. In the domain of software architecture development particularly, a typical design
method is to select and combine a number of patterns that address the expected quality re-
quirements and use them to build elements of the architecture [31]. Each element continues to
be decomposed to more fine-grained elements using an appropriate pattern whenever possible.
The process keeps going on until the elements at the lowest level are decided. This top-down
design approach makes ADs about pattern use become central activities in architecture devel-
opment. Construction and maintenance of architecture is then considered as the selection and
enforcement of ADs about pattern. Another interesting characteristic of patterns, which make
them the subjects of AD documentation, is that they are not simply design instructions to fol-
low but also a blueprint of the architecture [9]. Basically, the structure of a pattern consists
of elements that play certain roles and constraints imposed on them. Once this blueprint is
applied on an architecture, every related architectural element must respect it. This structural
aspect of patterns gives the potential to systematically document ADs about their application
and automatically check possible conflicts with existing ADs.

Since patterns exist at different levels and granularities, a popular usage of patterns in the
development of architecture is to combine patterns to create more complex ones [9, 2]. Pattern
composition has been considered as a key requirement in software development and provide
several benefits. First, in real world architectures recurring problems are complex and their
solutions can be represented by patterns that require the combination and reuse of other ex-

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

1.2. Problem statement 3

isting patterns. The combined patterns on one hand, handle the increased complexity of the
architecture and on the other hand, capture the properties of participating patterns. Second,
in such environment, a given architectural element can be interwoven with different roles and
constraints. Thus, combining patterns beforehand can provide early analysis and understand-
ing about emerging properties of the design. Last but not least, considering pattern as a mere
reusing structure, pattern composition gives architects the flexibility to customize and maxi-
mize its utility. Thus, in the literature, an important research topic is about designing a pattern
language that supports easy, systematic pattern composition in a pattern-centric software de-
velopment.

1.2 Problem statement

Current supports for structural AD documentation and verification are still at the early
stage. While ADs that are well captured side by side with the architectural model do enable
their recognition and traceability; when it comes to structural ADs, a more structural way of AD
documentation that provides AD violation detection is still missing. The lack of this structural
aspect of AD significantly limits the extent to which structural AD can be exploited.

Indeed, currently ADs are textually documented following certain templates, essentially
providing textual information and explanations about how ADs are made and how to respect
them. Little focus is paid on documenting AD’s structural aspect which makes it difficult, if
impossible at all, to verify AD’s consistency. Without an automatic verification support, ar-
chitects have to go through lengthy explanations to be able to proceed with the design, which
is a tedious task. Moreover, this informal way of documenting AD could lead to ambiguity
in understanding the design, which also makes it an error-prone task. This is where a struc-
tural approach of documenting AD comes to the rescue. In fact, not every AD is thoroughly
structurally constructed and a such approach is not necessary. However, in an architectural
development process where structural ADs, such as ADs about the application of patterns, are
heavily leveraged, structural AD documentation approaches can be put in use.

On the way of selecting and modelling pattern constructs to capture ADs, we realized the
need for pattern composition. Actually, existing pattern description approaches and pattern
languages do provide constructs and mechanisms to compose patterns. However, pattern com-
position information is not adequately documented when composing operations are not part of
the patter construct. Once the architectural solution achieved there is no means to know that it is
a result of a composition of patterns. In other words, while the obtaining of a composed pattern
is taken into consideration, the composition history is not. On one hand, this practice prevents
the traceability of pattern composition, which significantly helps in pattern comprehension. On
the other hand, it does not promote pattern customizability and reconstructability.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4 Chapter 1. Introduction

1.3 Aim of the thesis

The aim of this thesis is to use pattern constructs to provide an automated verification of
AD violation, in particular structural ADs, and pattern-related ADs to be precise. Having also
done a research on existing approaches about pattern description, we come up with a novel
support for pattern composition. Thus, a pattern description language leveraging the concept
of pattern composition is our another objective. These are two mainstream thoughts that are
conveyed throughout the dissertation.

To complement the documentation of structural AD, we present a means for automatic
checking of structural AD through the use of pattern constructs. We combine pattern formal-
ization and AD documentation into an approach which has been shown to be complete in AD
violation checking. Benefits of this approach are a convenient way of documenting structural
AD and an efficient mechanism to detect conflicts in making AD.

To address the composition of patterns, we present a way of combining patterns that pre-
serves composition information. Merging operators are treated as first-class status which has
been shown to be important in pattern traceability and reconstructability. The benefit of this
approach is an easy and customizable way of building composition-centered pattern catalogues.

With these two contributions, we believe that architects are provided with a better support
for documenting and enforcing structural ADs. The support is shown to be especially signifi-
cant in a pattern-centered architecture development process, where patterns are heavily used to
leverage their knowledge.

1.4 Dissertation plan

Chapter 2 provides a brief background of concerning terminologies as well as an overview
of the State of the art in two domains: AD documentation and pattern composition. Chap-
ter 3 introduces COMLAN, a composition-centered pattern description language. We describe
abstract and concrete syntax of the language and show how they are applied in a real-world
architectural model. Chapter 4 presents the approach of using pattern as a means to document
StADs and verify their consistency. This chapter comprises a general picture of the approach as
well as detailed explanations on a concrete example. Chapter 5 introduces the architecture as
well as the functionalities provided by two developed tools: COMLAN and ADManager, which
realize our conceptual ideas. In each tool, we present use cases and how they are implemented
via the tool. Chapter 6 shows two empirical evaluations for the two presented approaches, re-
spectively. For each evaluation, we show the setup, the evaluating process, the analysis and the
final result. Finally, in Chapter 7 we concludes the dissertation and open new perspectives.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2
State of the art

Contents
2.1 Background . 6

2.1.1 Architectural Decision . 6

2.1.2 AD about the application of pattern 6

2.2 AD documentation . 7
2.2.1 Documentation of pattern-related AD 8

2.2.2 Checking of pattern-related AD 9

2.3 Architectural pattern modelling languages 14
2.4 Pattern composition . 16
2.5 Limitations of existing works . 18

2.5.1 The problem of StAD maintenance and checking 18

2.5.2 The problem of pattern composition 22

2.6 Summary and discussion . 25

In this chapter we present an overview of the state of the art. We begin with a brief overview
of software architecture, architectural decision and pattern, and then discuss work in two cat-
egories that are most closely related to our work: the documentation of architectural decision
and the composition of patterns.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.1 Background

Before proceed to the relevant literature about AD documentation, we would like to clarify
the concept of AD and a special type of AD - AD about the application of pattern. We discuss
these background knowledge in the sub-sections below.

2.1.1 Architectural Decision

The concept of architectural decision (AD) has been brought to the community of soft-
ware architecture almost a decade ago since the date of this dissertation. Being one of the first
efforts to describe AD, Jansen et al. [22] defined AD as the description of a set of any mod-
ification made to the software architecture together with its rationale, design rules and design
constraints. More specifically, according to ISO/IEC/IEEE 42010 [20], AD is described as a
concept that affects architectural description elements, pertains to one or more concerns and
justifies architectural rationale. Correspondingly, an architectural description element could
be a stakeholder, a viewpoint or a model element, etc. A concern could be any interest in the
system such as behaviour, cost or structure, etc. Finally, an architecture rationale is the ex-
planation, justification or reasoning about the architecture decisions that have been made and
also about the architectural alternatives that are not chosen. This definition comes after many
efforts in the literature to draw a complete structure for AD such as [22, 50, 56].

Because the architecture must endure a lot of changes upon which many different ADs are
made, these ADs may contradict each other and thus result in design conflicts. That is the con-
text where AD documentation comes to its utility as an important architecting activity. Indeed,
AD documentation serves as a means to emphasize the rationale behind some design decisions
having been made. Respecting these rationale makes sure that the architect can avoid possible
design conflicts and the architecture evolves in harmony with existing design decisions. From
this point of view, software architecture design is not only the matter of depicting a set of
structures and their relation but also the result of making a set of ADs [22]. Moreover, since
architecture is complexed to be communicated, capturing the rationale and why things are the
way they are in the architecture facilitates the communication to future evolution [11].

2.1.2 AD about the application of pattern

During the software development, ADs can fall into many different categories and levels
such as enterprise-affected ADs, project-affected ADs or technical ones [56]. Among them,
structural ADs are supposed to be the most common ones [50, 39]. This is explained by the fact
that every evolution of a system often begins with structural ADs. They modify the structure
of architecture and affect the system on the highest level of abstraction.

In reality, a typical method of building the architectural structure of a system is to select
and combine a number of patterns that address the expected quality requirements and use them
to build elements of the architecture [3, 7]. Specifically, patterns are well-proven solutions

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.2. AD documentation 7

for particular recurring design problems that arise in a specific design context [9]. They serve
many different purposes such as providing common vocabulary and understanding for design
principles, a means of documenting software architecture, but most importantly supporting the
construction of software with well-defined properties [16].

That being said, one of the most popular structural ADs are those concerning the applica-
tion of patterns in the architecture. Indeed, patterns are the sources of some of the most im-
portant ADs and provide a rich set of architectural knowledge (AK) [54]. Moreover, reusable
design knowledge normally documented in patterns can be adapted to inexpensively document
AD in specific context [57]. Thus, the design of a pattern-centric architecture can be considered
as applying successive pattern-related ADs that eventually result in its final structure [11].

2.2 AD documentation

In the literature there are many proposed models and tools supporting AD documentation.
Among these works, we can mention some representative models such as the architectural
decision template [50], the ontology of design decisions [27] or recently the MAD 2.0 model
[52], and tools such as Archium [21], ADDSS [10], AREL [41]. Most of the proposed models
focus on characterizing AD. They point out which decisions architect have to deal with and
what important elements an architectural decision is made of. For instance, in [50] Tyree et
al. argue that architects should make the decisions that identify the system’s key structural
elements. Figure 2.1 depicts the most important elements to document this type of AD. Some
of them are: issue - the reason why the architect makes an AD, constraint - the arising constraint
that the made AD poses to the system, related artifact - the related elements resulting from the
AD, etc.

Figure 2.1: An AD template

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

8 Chapter 2. State of the art

On the other hand, proposed AD documentation tools try to figure out how to properly
document and leverage AD. For instance, Archium [21] proposes to make AD along with the
ADL model. Given the architectural model one should be able to trace back to the architectural
decision it is based on and vice versa. This two-way traceability helps to maintain a better
synchronization between the AD and its related architectural model elements. Figure 2.2 shows
the meta-model of a software architecture from which Archium is implemented with first-class
design decision [22]. The Architectural Model part comprises architectural elements while the
Design decision model part comprises AD elements. Software architecture is described as a
set of changes represented by the Composition Model part, which in turn include architectural
model elements and AD elements. Therefore, a change does not only involve architectural
model elements but also incorporate associated ADs. This idea of reserving first-class status
for AD and documenting AD in parallel with architectural model elements has paved the way
for many following works on AD modeling.

Figure 2.2: Meta-model of software architecture with first-class design decision (taken from
[22])

Although these works have provided an efficient way to describe and document AD, archi-
tects still need to verify if an AD is respected or not by themselves. Given that the process of
checking AD violation is error-prone, the automation of AD checking is a further step towards
AD documentation.

2.2.1 Documentation of pattern-related AD

In [56], Zimmermann et al. point out the importance of reusable ADs in decision identifi-
cation, decision making and decision enforcement and propose a model to document reusable
ADs. In [57], they propose to weave pattern information into reusable architectural decision

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.2. AD documentation 9

models to benefit their mutual interests. Figure 2.3 depicts development stages of reusable AD
models. At each stage of development, there exists a kind of pattern that corresponds to the
reusable AD model. Analysis and architectural patterns correspond to ADs on the executive
and conceptual level while design patterns fit in with the technology level, implementation and
test patterns are used at the vendor asset level.

Figure 2.3: Development stages of reusable AD models (inspired from [57])

Besides that, in [19], Harrison et al. compare pattern and AD and think that the former
can be leveraged to document the latter. These ideas focus on the fact that pattern use is an
important information that completes the AD. Table 2.1 compares AD’s features and those of
patterns. Although patterns provide general, application-independent knowledge while ADs
cover application-specific knowledge; they focus on the same issues such as context, solution
alternative, rationale, etc.

2.2.2 Checking of pattern-related AD

Documentation of AD is obviously an inevitable architectural activity but, is it efficient
enough to just literally write down ADs and expect architects to recognize them? It turns out
that in complex architectures where many structural ADs are made, architects can mistakenly
ignore or be unaware of ADs. This kind of mistake, what we call AD violation, can be avoided
by a support of AD checking mechanism which will be explained in the followings.

2.2.2.1 Pattern Conformance

Patterns have become important constructs in existing ADLs such as Wright [1], Acme [17]
or UML [15]. Patterns allow one to define a domain-specific design vocabulary, together with
constraints on how that vocabulary can be used in constructing an architecture. In these ADLs,
patterns are initialized by declaring instances of architectural elements and typing them with
pattern elements. An architecture is said to conform to a pattern if there is no conflict between

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

10 Chapter 2. State of the art

AD Pattern

Name

Category Group

Status

Context Assumptions, constraints

Solution variants Positions

Rationale Argument

Consequences Implications

Known uses

Related patterns Related decisions

Notes

Table 2.1: AD versus pattern (taken from [19])

pattern-typed architectural elements with respect to pattern constraints. In Acme and Wright,
constraints are written based on first-order predicate logic language and pattern consistency
is verified by formal specification checkers. The constraint 2.1 (taken from [1]) imposes that
the architecture is designed with the star topology pattern. The constraint consists of two
parts: i) The first part defines a component playing the “star” role which is connected to every
connectors in the architecture. ii) The second part stipulates that the architecture is a connected
graph; in other words, every components must be connected to at least one connector.

∃center : Component•
∀c : Connectors•∃r : Role; p : Port | ((center, p),(c,r)) ∈ Attachments

∧∀c : Components•∃cn : Connectors;r : Role; p : Port

| ((c, p),(cn,r)) ∈ Attachments (2.1)

In UML, constraints, also known as well-formed rules, are written using OCL (Object
Constraint Language) [36] and pattern consistency is referred to the conformance of model
against meta-model. For instance, in [32] Medvidovic el al. use the stereotype of UML to
model component-based software architecture. Concepts in UML such as class, association,
interface, etc. are respectively stereotyped with concepts from component-based architecture
such as component, connector, attachment, port, etc. The following is a snippet of OCL code
to describe the connectivity of a Wright architecture.

self.modelElements->select(oclIsKindOf(Class) and stereotype = WrightComponent)

->forAll(comp | self.modelElements

->select(oclIsKindOf(Class) and stereotype = WrightConnector)

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.2. AD documentation 11

->exists(con | isAttached(comp, con)))

Specifically, for every class playing the role of Wright component, there exists at least a
class playing the role of Wright connector that is attached to it 1.

2.2.2.2 Solution of structural AD conformance

Architectural patterns can be used as structural solutions of ADs (called StAD in the re-
maining of this dissertation). StAD not only conveys the intention of architects but also shapes
the structure of the architecture according to its corresponding AD. Thus, a StAD-conformed
structure within the architecture not only represents the intention of an AD but also, in terms
of AK, is the indicator of the existence of AK. In the structural point of view, while existing
in parallel with informal information of AD such as the context, the problem, the rationale,
etc., a StAD is considered as any addition, subtraction, modification made to the structure of
software architecture. An architecture is said to conform to a StAD if all of StAD-related el-
ements prevail in the architecture [21, 25]. This understanding of StAD conformance implies
two requirements: i) given an architectural element, one should be able to trace back to the
architectural decision which it is based on and ii) the main consequences of an executed StAD,
or the changed elements in the model due to that StAD in other words, must be preserved in the
architectural model. In case of StAD about the application of pattern, StAD-related elements
are in fact those playing roles in the applied pattern. Thus, the StAD conformance implies that
the outcome of the application of that pattern must be documented.

There are basically two trends of work in the literature to enforce StAD conformance. The
first one focuses on applying architectural constraints at the architectural level to impose StAD
while the second one establishes explicit links between architectural model and StAD.

Tibermacine et al. [47, 48] propose a family of architectural constraint languages to de-
scribe the structural part of AD. They put forward an important remark that many structural
ADs are often documented with constraints. Those constraints not only characterize AD but
also help detect AD violation. For example, the following snippet of code (taken from [48])
illustrates a constraint for the Pipes and Filters pattern.

context ACS:CompositeComponent inv:

ACS.subComponent.port

->forAll(p:Port|(p.kind = ’Input’)

or (p.kind = ’Output’))

and

ACS.configuration.binding.role.connector->AsSet()

->forAll(con:Connector|(con.role->size() = 2)

and ((con.role.kind = ’Source’)

or (con.role.kind = ’Sink’)))

and

ACS.configuration.binding.role.connector->AsSet()

1isAttached is a function to check if a component is attached to a connector

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

12 Chapter 2. State of the art

->forAll(con:Connector|con.role

->forAll(r:Role|ACS.subComponent

->exists(com:Component|com.port

->exists(p:Port|(r in ACS.configuration.binding)

and ((p.kind = ’Input’)

and (r.kind = ’Sink’))

or ((p.kind = ’Output’)

and (r.kind = ’Source’))))))

and

ACS.configuration.isConnected

and

ACS.configuration.binding.role.connector

->AsSet()->size() = ACS.subComponent->size()-1

and

ACS.subComponent->forAll(com:Component|

(com.port->size() = 2)

and (com.port->exists(p:Port|

p.kind = ’Input’))

and (com.port->exists(p:Port|

p.kind = ’Output’)))

This constraint is written in a standard profile which is supposed to be transformed to con-
straints in different target profiles corresponding to different ADLs. Specifically, it stipulates
that in a Pipes and Filters-conformed architecture, all components must conform to Filter style
(with Input and Output port), all connectors must conform to Pipe style (with Source and Sink
style) and they must be bound together.

In another work [28], the authors propose to impose OCL constraints at model level to
insure StAD. Many different off-the-shelf decision types are introduced, each one is repre-
sented by an OCL rule. Figure 2.4 shows an example of applying constraint on the architecture
to document a StAD. The class Replication inherits the class Decision and additionally in-
clude an OCL constraint. This OCL constraint brings an additional support for StAD checking
against AD-related architectural elements. Specifically, the OCL constraint states that the ref-
erenced component should be replicated numberReplicas times. This practice is known as the
Replication pattern [46].

Another way of documenting StADs through pattern use is to construct StADs in form
of linking elements between the StAD model and pattern-related elements in the architectural
model. In [25], the authors propose to reinforce the outcome of StAD by using model differ-
ences. The outcome of StAD is considered as a set of model changes. Model changes serve
as bindings between affected model elements and model differences. The architectural model
is consistent with made StADs if and only if affected model elements prevail. Figure 2.5 illus-
trates the meta-model showing the binding between StAD and design model. Elements on the
right side represent the AD while those on the left side represent model elemetns. These former
are linked to these latter via model difference elements. Specifically, a ModelChange repre-
sents any kind of operation made to the architecture (addition, deletion, modification) which

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.2. AD documentation 13

Figure 2.4: An AD imposing the replication pattern (taken from [28])

results in affected ModelElement. Via ModelDifferences, they are contained in the Outcome of
an AD and then, used to verify the conformance of the changed architecture against a given
AD.

Figure 2.5: The binding meta-model of AD and design model (taken from [25])

Similarly, in [30], the authors influence the outcome of StAD by using actions. A StAD
is provided with a set of actions which in turn are concretized into design model elements.
Checking rules are automatically derived from the actions via a transformation mechanism.
For example, the following snippet of code (taken from [30]) lists a set of action to impose the
Indirection pattern [2].

compound indirection (cv A B) {

add component "${A}${n}"

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

14 Chapter 2. State of the art

add port "${A}${n}_I1" kind=PROVIDED to ${cv}.${A}${n}

add port "${A}${n}_I2" kind=REQUIRED to ${cv}.${A}${n}

add port "${A}_I" kind=REQUIRED to ${cv}.${A}

add port "${B}_I" kind=PROVIDED to ${cv}.${B}

add connector "${A}_I_${A}${n}_I1" from ${cv}.${A}.${A}_I to ${cv}.${A}${n}.${A}${n}_I1

add connector "${A}${n}_I2_${B}_I" from ${cv}.${A}${n}.${A}${n}_I2 to ${cv}.${B}.${B}_I

add stereotype <<"${n}">> to ${cv}.${A}${n}

}

Specifically, in the context of a component view (cv in the above rule), it adds an indirection
component and two connectors from this component towards the target component (A) and the
client (B). This set of actions, once used to generate architectural elements, also imposes the
outcome of StAD. The common point of these two works is that reusable StAD is represented
by a set of changes in the architectural model. The architectural model is said to be consistent
with StAD as long as these changes prevail.

2.3 Architectural pattern modelling languages

Firstly, it is worth mentioning that in the literature, the term architectural style is used
slightly differently from architectural pattern. The latter is the solution to a specific problem
while the former does not require a problem for its appearance [11]. However, they both are
structural idioms for architects to use. Since we only focus our interest on the structural aspect
of these idioms, throughout this thesis architectural pattern is used as an interchangeable term
for both of them.

In the literature there have been some efforts to model architectural patterns and their prop-
erties. For instance, there are work focusing on the use of formal approach to specify patterns.
In the Wright ADL [1], the authors tend to provide a pattern-oriented architectural design en-
vironment where patterns are formally described. Similarly, Acme ADL [17] uses the term
family for the specification of the family of systems or recurring patterns. The system is then
instantiated from the definition of the family. For example, the following is an excerpt of Acme
description of pattern and its instantiation.

Family PipeFilterFam = {

Component Type FilterT = {

Ports { stdin; stdout; };

Property throughput : int;

};

...

}

System simplePF : PipeFilterFam = {

Component smooth : FilterT = new FilterT

...

}

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.3. Architectural pattern modelling languages 15

The Family PipeFilterFam is defined with a Component Type FilterT. It is then instantiated
in the System simplePF with a component named smooth typed with FilterT. This declaration
allows the system to make use of the types in the family, and it must satisfy all of the family’s
invariants.

As opposed to these domain specific languages, in [32] the authors propose to use general
purpose languages such as UML to model architectural patterns. The approach consists of in-
corporating useful features of existing ADLs by leveraging UML extensions. More specifically,
stereotypes on existing meta-classes of UML’s meta model are used to represent architectural
elements and OCL (Object Constraint Language) is used to ensure architectural constraints.
The approach has been shown to be able to model different ADLs such as C2, Wright and
Rapide.

In [53], the authors propose to use a number of architectural primitives to model architec-
tural patterns. Through the stereotype extension mechanism of UML, one can define architec-
tural primitives to design a specific structure of a pattern. In particular, those primitives are
not only common structure abstractions among architectural patterns but also demonstrations
of the variability in each pattern. Figure 2.6 is the example taken from [53] of the Broker
pattern. The Broker consists of a client-side Requestor to construct and forward invocations,
and a server-side Invoker that calls the target peer’s operations. The Request Handler forwards
request messages from the Requestor to the Invoker. The Request Handler component can only
be accessed by the Requestor or the Invoker, no other components are allowed. This limit of
accessibility is realized via an architectural primitive called Shield as shown in Figure 2.6. This
primitive is also applied in other patterns such as Layer, Façade, etc. which makes it a common
composable structure in pattern solutions.

Figure 2.6: Shield architectural primitive

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

16 Chapter 2. State of the art

2.4 Pattern composition

Pattern composition is an important technique to deal with the complexity of pattern de-
scription and the combination of pattern’s properties. There are mainly two branches of work
on the composition of patterns. The first including [18, 5, 38] proposes to combine patterns at
the pattern level which means that patterns are composed before being initialized in the archi-
tectural model. These approaches support two types of pattern element composition. The first
type consists of creating a totally new element which is the product of the unification of partici-
pating elements. Regardless of different terminologies used in [18] (conservative composition),
in [38] (unification) or in [5] (overlapping), the same idea is that the combined element will
have all the characteristics of participating elements, and these will no more be present in the
combined structure. An example taken from [38] is the composition of the Mediator pattern and
the Proxy pattern as shown in Figure 2.7. The composition takes place between the Colleague
class of the Mediator pattern and the Real subject class of the Proxy pattern. In its original
pattern, the Colleague class extends the Colleague Interface. Similarly, the Real subject class
extends the Subject class and contains the Request method. In the combined pattern, the Real
Colleague class, which is the product of the composition of Colleague class and Real subject
class, inherits all the features of its constituent classes. More specifically, it is a Real subject
that can communicate with other Colleagues of a Mediator structure.

Figure 2.7: Overlapping composition of Mediator pattern and Proxy pattern

The second type implies that the participating elements in the composition keep their own
identity, no new structure is formed because of the composition. Instead, a link element is
added to connect participating elements. This composition is called combinative composition
in [18] or conjunction in [38]. The example of the composition of the Mediator pattern and
the Proxy pattern is retaken to illustrate this type of composition. As shown in Figure 2.8,
the composition takes place between the Mediator class of the Mediator pattern and the Proxy
class of the Proxy pattern. The result of this composition is an added Proxy Reference which
connects the Mediator and the Proxy.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.4. Pattern composition 17

Figure 2.8: Conjunction composition of Mediator pattern and Proxy pattern

On the contrary to the approaches above, in [12], Deiters et al. propose to compose pattern
at instance level. An architecture entity can at the same time play roles from different architec-
tural building blocks which in fact represent architectural patterns. As a result, the affection of
different architectural building blocks to an architecture entity is not only an instantiation but
also a composition.

In another work [23], Jing et al. propose a UML profile to attach pattern-related information
on merged elements in composed patterns. Figure 2.9 is an example taken from [23]. The
Business Delegate pattern is composed with the Adapter pattern by overlapping the Business
Delegate class and the Adaptee class. As we can observe, the overlapped element Business
Delegate is annotated with the following tagged value:

<<{BusinessDelegate@BusinessDelegate[1]}{Adaptee@Adapter[1]}>>

This annotation indicates that the class plays two roles at the same time, one is Business
Delegate from the Business Delegate pattern and the other is Adaptee from the Adapter pattern.
Therefore, the constituent patterns can be traced back from the composed pattern. Similarly,
[13] proposes different types of annotations, such as Venn diagram-style, UML collaboration,
role-based tagged pattern, to make design pattern identifiable and traceable from its composi-
tion with others.

Patterns can also be expressed via architectural constraints. The composition of patterns
is thus realized by the composition of architectural constraints. In [49], Tibermacine et al.
propose to model architectural constraints by components. Constraints are represented by cus-
tomizable, reusable and composable building blocks. As a result, higher-level or complex
constraints can be built thanks to the composition of existing ones. Figure 2.10, which is taken
from [49], is the example of the Pipes and Filter pattern constraint component. This com-
ponent is internally composed by other components, each of them represents an architectural
constraint such as the restriction of port and role, the connectivity of participating components,
etc.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

18 Chapter 2. State of the art

Figure 2.9: UML profile for attaching pattern composition information

2.5 Limitations of existing works

In the previous sections, we have shown that there have been a lot of attentions in the re-
search community on the documentation of AD and structural AD in particular. We have also
shown the importance of using pattern as a construct to formalize structural AD. Moreover,
when it comes to pattern description, the composition of patterns is a key activity. Neverthe-
less, even though these approaches have illustrated their usefulness in the documentation of
structural AD, they are still incomplete when detecting AD violation. In terms of pattern com-
position, current approaches also do not allow to fully exploit composition information. In this
section we point out the shortcomings of the state of the art via some illustrative examples.
These examples are chosen from case studies documented in the literature. In each example
we show how the existing approaches cannot fulfil certain requirements. Then, we show how
we develop our proposal to address these issues.

2.5.1 The problem of StAD maintenance and checking

To illustrate the need of maintaining StADs and how existing work cannot respond to
this need, we take the FRC (Forestry Regulatory Commission) case study which is described
in [46]. FRC is dedicated to commercial activities related to the forestry industry. It has been
expanded in the past and expects to continue to change which results in costly development.
Therefore, SOA (Service Oriented Architecture) has been opted to help the system respond
more quickly to changing requirements. During the transition step to SOA solution, instead of
rebuilding existed components, it was considered faster and less expensive to reuse them. It

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.5. Limitations of existing works 19

interface IRolesKindRestriction {
 boolean areRolesOfKind(RoleKind[] kinds);
}

constraint
PipelineConstraintChecker

IO_PortRestriction:
IPortsRestriction

constraint
iopr: PortsKindRestrictor

ACL implementation of the
arePortsOfKind() service:
context.subComponent.port
->forAll(p|(p.kind=kinds[0])
or (p.kind=kinds[1])

interface IPortsRestriction {
 boolean arePortsOfKind(
 PortKind[] kinds);
}

constraint
sosirr: RolesKindRestrictor

ACL implementation of the
areRolesOfKind() service:
context.configuration.binding.role
.connector->AsSet()
->forAll(con:Connector|
(con.role->size() = 2) and
((con.role.kind = kinds[0]) or
(con.role.kind = kinds[1])))

interface IRolesKindRestriction {
 boolean areRolesOfKind(
 RoleKind[] kinds);
}

SoSiRolesRestriction:
IRolesKindRestriction

InSiOutSoBindingRestriction:
IInSinkOutSrcRestriction

constraint
isisosbr: InputSinkOutputSourceRestrictor

IO_PortRestriction.arePortsOfKind(...)
and
SoSiRolesRestriction.areRolesOfKind(...)
and
context.configuration.binding.role.connector-
>asSet()->forAll(con:Connector|
con.role->forAll(r:Role | context.
subComponent->exists(com:Component
| com.port->exists(p:Port|(r in
context.configuration.binding) and ...

interface IInSinkOutSrcRestriction {
 boolean inToSinkOutToSource();
}

constraint
cGC: ConnectedGraphChecker

ACL implementation of the
isConnectedGraph() service:
context.configuration
.isConnected

interface IConnectedGraph {
 boolean isConnectedGraph();
}

constraint
arcRestrictor: ArcsCountRestrictor

ACL implementation of the
restrictNumArcs() service:
context.configuration.binding.role
.connector->asSet()->size() =
context.subComponent->size()-1

interface IArcsCounter {
 boolean restrictNumArcs();
}

ArcsNumRestrictor:
IArcsCounter

constraint
listGraph: ListGraphConstrainer

interface IConnectedGraph {
 boolean isConnectedGraph();
}

ListGraph:
IListGraph

ACL implementation of the
isAList() service:
context.subComponent
->forAll(com:Component |
(com.port->size() = 2) and
(com.port->exists(p:Port |
p.kind = ʼInputʼ)) and
(com.port->exists(p:Port |
p.kind = ʼOutputʼ)))

interface IListGraph {
 boolean isAList();
}

PipelineChecker

SoSiRolesRestriction:
IRolesKindRestriction

IO_PortRestriction:
IPortsRestriction

ConnectedGraph:
IConnectedGraph

ListGraph: IListGraph

ArcsNumRestrictor: IArcsCounter

ConnectedGraph: IConnectedGraph

interface IPortsRestriction {
 boolean arePortsOfKind(PortKind[] kinds);
}

InSi...

Figure 2.10: Architectural constraint composition (Figure taken from [49])

is the case of the Fines service and the Evaluations service which want to access to different
repositories managed by a legacy component called Data Controller, a standalone Java EJB
(Enterprise Java Beans). The Legacy Wrapper pattern [46] was chosen to handle this situation
as illustrated in Figure 2.11.

More specifically, the DWSA Data Service which is deployed as a web-service is added to
wrap the legacy component Data Controller to assure a seamless communication. The advan-
tage of this pattern is that it allows the Data Controller component to perform changes and
refactoring efforts without affecting the other service consumers that bind to it. This pattern
implies the constraint stipulating that every service can only connect to the Data Controller
component via the wrapper DWSA Data Service. The application of the Legacy Wrapper pat-
tern in the FRC architecture is a StAD that needs to be taken into consideration throughout the
evolution of FRC. In the viewpoint of the existence of related elements, this StAD is consid-
ered to be preserved as long as the legacy component Data Controller and the wrapper DWSA
Data Service exist in the architecture of FRC. On the other hand, in the viewpoint of the pat-
tern’s structural consistency, this StAD is maintained as long as the legacy component Data
Controller is the only component being able to access to the wrapper DWSA Data Service.

Later, a new service called Appealed Assessments was added to FRC and it also needs to

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

20 Chapter 2. State of the art

Figure 2.11: Legacy Wrapper pattern in FRC

access the Data Controller component. The architect that decided this addition was not com-
pletely aware of the rationale behind the existence of the wrapper DWSA Data Service. He
then decided to use the Service Façade pattern [46]. More specifically, a façade called Data
Relayer is added inside the Appealed Assessments Service with the only purpose to communi-
cate with the component Data Controller (Figure 2.12). The reason influencing the architect
not to use the Legacy Wrapper pattern is that Service Façade is simpler to implement, although
the service using a façade will be coupled to the legacy component.

Figure 2.12: Architectural decision violation by adding Service Façade pattern

As we can observe in Figure 2.12, the constraint of the Legacy Wrapper pattern is violated
due to the fact that the Appealed Assessments Service can still connect to the Data Controller
component via the Data Relayer façade without passing through the wrapper DWSA Data

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.5. Limitations of existing works 21

Service. In spite of the existence of the legacy component Data Controller and the wrapper
DWSA Data Service, the decision of using Legacy Wrapper pattern has been violated since its
structural consistency is not insured. This example shows that the existence of StAD-related
elements is a necessary condition but not a sufficient one to detect the violation of StADs. In-
deed, one indispensable part of architectural pattern is constraints imposed on future evolution
of concerned elements.

Once informed about the violation, the architect changed the Legacy Wrapper pattern to
a less rigid version which allows façade components to connect to legacy components. Thus,
the link between Appealed Assessments Service and Data Controller is no longer a violation.
Later, another architect participated in the project. He was not aware of the extended version
of the Legacy Wrapper and he found that the Appealed Assessments Service must not access
the Data Controller component directly. He deleted the link from the Appealed Assessments
Service component towards the legacy component Data Controller and the Data Relayer façade
as well. Then he added a link between the Appealed Assessments Service component and the
legacy wrapper DWSA Data Service.

Figure 2.13: Architectural decision violation by deletion

Despite that the structural consistency of Legacy Wrapper pattern is always insured (there
is no direct access to the legacy component), the decision of allowing the Data Relayer com-
ponent (façade) to access directly to the Data Controller component (legacy component) as an
extended version of Legacy Wrapper pattern has not been preserved as shown in Figure 2.13.
Thus, the structural consistency of pattern is also a necessary condition but not a sufficient one
to detect the violation of StADs. Indeed, the obvious prerequisite of an architecture conformed
to a given pattern is that the concerned elements must exist.

In summary, these examples show that the documentation of StADs about the application

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

22 Chapter 2. State of the art

of patterns should focus on two aspects: the existence of related elements and the structural
consistency of the applied patterns. Moreover, they are complementary aspects and both of
them must be considered in evaluating StADs. In other words, one aspect can not replace
the role of the other one and vice versa. The lack of one of these two aspects could lead
to undetected StAD violations. In the literature, the existing work about ADLs [1, 17] or
architectural constraints [47, 48] focus solely on the structural consistency aspect. The validity
of StADs is maintained as long as concerned elements structurally conform to their playing
roles in the architecture. Whereas, the other works about ADs [25, 28, 30] on the other hand,
focus on the existence aspect. A StAD is considered to be preserved as long as modifications
to concerned elements persist in the architecture.

2.5.2 The problem of pattern composition

Architectural patterns tend to be combined together to provide greater support for the
reusability during the software design process. Indeed, architectural patterns can be combined
in several ways. We consider here three types of combination: A pattern can be blended with,
connected to or included in another pattern. To highlight the existing problems, we first show
an example for each case of architectural pattern composition and then point out issues drawn
from them.

2.5.2.1 Blend of patterns

By observing the documented patterns in [9, 11], we can see that there are some common
structures that patterns share. For example, the patterns Pipes and Filters and Layers share a
structure saying that their elements should not form a cycle.

Figure 2.14: Pipes and Filters

If we consider to express the constraint that no circle can be formed from filters via a
pattern, we can say that the pattern Pipes and Filters is composed of two sub-patterns (see
Figure 2.14). We call them Sequential pattern and Acyclic pattern. The former consists of

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.5. Limitations of existing works 23

Filter components linked together by Pipe connectors and the latter consists of Acylic com-
ponents in a way that no cycle can be formed from them. Thus, Pipes and Filters is actually
the product of the blend of these two patterns. But unfortunately, it is impossible to reuse the
Sequential pattern or the Acyclic pattern alone because they are completely melted in the def-
inition of the Pipes and Filters pattern. For instance, considering the construction of another
variant of Pipes and Filters where cycles among Filters are accepted, it is beneficial to reuse
the Sequential pattern.

2.5.2.2 Connection of patterns

A lot of documented patterns that are formed from two different patterns can be found
in [11, 2]. One of these examples is the case where the pattern Pipes and Filters can be
combined with the pattern Repository to form the pattern called Data-centered Pipeline as
illustrated in Figure 2.15.

Figure 2.15: The Data-centered pipeline pattern

As we can observe, the two patterns are linked together by a special connector which serves
two purposes at the same time: convey data from a Filter and access to the Repository. But
once the composed pattern built, it is even more difficult to identify and reuse the sub-patterns
in its constituent patterns. For instance, the fact that Pipes and Filters is the product of the
composition of two sub-patterns is hardly noticeable.

2.5.2.3 Inclusion of patterns

Another type of architectural pattern composition is the situation when architectural pat-
terns themselves can help to build the internal structure of one specific element of another
pattern. In [2], we can find several known-uses of this type of pattern composition. An exam-
ple where the Layers pattern becomes the internal structure of Repository pattern is shown in
Figure 2.16. Indeed, when we have to deal with data in complex format, the Layers pattern is
ideal to be set up as the internal structure of the repository since it allows the process of data
through many steps. Moreover, the inclusion of patterns can be found at different levels. To be
able to model such case, it is necessary to recursively explore patterns through many levels.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

24 Chapter 2. State of the art

Figure 2.16: Layers as internal structure of Repository

2.5.2.4 Discussion

As we can observe from the example of subsection 2.5.2.2, the Pipes and Filters pattern
is used as a constituent pattern to build the Data-centered pipeline pattern. When we look
at the Pipes and Filters pattern in this view, we have no idea that it is composed from other
patterns as shown in Example 2.5.2.1. We think the fact that the border between constituent
patterns of a composed pattern is blurred can reduce greatly the pattern comprehensibility.
Moreover, since the composed patterns may be then used to build another pattern, we believe
that the traceability, which is the ability to know the role and the original pattern of every
element in the pattern, becomes really essential.

Another issue to be taken into consideration is the reconstructability of composed patterns.
In the example of subsection 2.5.2.1, when one of the two pattens forming the Pipes and
Filters pattern changes, we should be able to propagate the change to the Pipes and Filters
pattern. Moreover, since the Pipes and Filters pattern has been changed, the Data-centered
Pipeline in which it participates in Example 2.5.2.2 must be also reconstructed. The same
requirement exists for the example of subsection 2.5.2.3. For example, when another Layers
pattern variant is used to form the internal structure of the Repository component, the change
should be reflected in the composed pattern.

As shown in Section 2.4, in the literature, the already proposed approaches about pattern
composition present pattern merging operators in an ad-hoc manner where information about
the composition of patterns is vaporized right after the composition process. Thus, they ignore
two aforementioned issues. Although in [23], one can trace back the constituent elements
from which an element is composed, a composition view showing how the original patterns are
composed is still missing and moreover, the support for reconstruction is ignored.

In summary, the examples shown above highlight two problems to solve:

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

2.6. Summary and discussion 25

1. Traceability of constituent patterns: One should be able to trace back to constituent
patterns while composing the new pattern.

2. Reconstructability of composed patterns: Any time there is a change in a constituent
pattern, one should be able to reuse the merging operators to reflect the change to the
composed pattern.

2.6 Summary and discussion

This chapter sums up existing works in the state of the art in two main categories: AD doc-
umentation and pattern composition. In the former category, we highlighted the focus of the
community on the first-class status of AD in the software development process. The documen-
tation of AD has been proved to bring many benefits. Of these benefits, one most important
is a clear vision about the rationale of the AD, which conveys certain quality properties of
the architecture. We also pointed out the important role of patterns in the documentation of
reusable AD. On one hand, patterns are central artefacts in attribute-driven architectural design
process. On the other hand, patterns are shown to have similar characteristics to AD which can
be leveraged to complement AD documentation. However, AD documentation is not the only
concern of architects. Once supplied with well documented AD, they still need a support for
detecting AD violation. Indeed, especially when it comes to structural AD, it may be easy to
understand the created AD, but not always obvious to maintain a conformed, coherent architec-
tural structure, as known as the solution of structural AD (StAD). To preserve StAD and avoid
any kind of violation, related works in the literature propose two basic methods. The first one
focuses on applying architectural constraints and architectural patterns at architectural level to
impose StAD while the second one establishes explicit links between architectural model and
StAD. Even though both kinds of approach show the ability to detect StAD violations, each
one of them does not detect all violations. This remark has been highlighted via the example
of the evolution of an architectural model in Section 2.5.1. We believe that the two approaches
are complementary aspects to detect StAD violation and they should coexist to complete one
another. Thus, one main part of this thesis is to promote the combination of architectural pat-
terns and explicit architectural model-StAD links to enable StAD violation checking. Please
also note that we do not attempt to promote another means of documenting AD, otherwise we
focus on the automation of AD violation checking, which is an error-prone process without
further support.

The second category of state of the art is about the composition of patterns. In fact, the
need of composing patterns also derives from the subject of AD documentation. When it
comes to pattern-related AD, chances are we could come across structures that involve many
patterns at once. Thus, AD documentation involves the use of patterns that are composed
from other patterns. We have showed that no matter of the type of pattern representation
(constraint, model) or the type of composition (stringing, overlapping), existing works in the

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

26 Chapter 2. State of the art

literature do not consider composition operators as a part of pattern’s elements. They exist in
an ad-hoc manner in the sense that what really matters is the resulted composed pattern but
not the composition process. Via different examples of pattern composition in Section 2.5.2,
we pointed out that the this way of composing pattern does not allow the traceability and
reconstructability of patterns. Thus, another part of the thesis is to propose a pattern description
language that preserves the first-class status for merging operators.

The following chapters of the thesis aim at presenting these two above ideas, illustrate them
through application examples and evaluate them with real data.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3
COMLAN - COMposition-centered pattern

description LANguage

Contents
3.1 Process Overview . 28
3.2 The COMLAN meta-model . 29

3.2.1 Example of pattern definition . 31

3.3 Pattern refinement . 33
3.3.1 Stringing operator transformation 34

3.3.2 Overlapping operator transformation 35

3.3.3 Nested pattern transformation . 37

3.3.4 Support of traceability and reconstructability 37

3.4 Summary . 38

The need of a pattern description language comes from our intention to capture pattern-
related StADs. While examining possible pattern-related StADs we found out that compound
patterns are often applied in the architecture. They are patterns that can be built by combining
more fine-grained patterns. Instead of building a compound pattern from scratch, one can select
some unit patterns and combine them. In this chapter we present a pattern description language
that favours composition by leveraging merging operators. We present the language in general
and show its application with examples.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3.1 Process Overview

We propose the process of constructing patterns including two steps as illustrated in Fig-
ure 4.2. The first step consists in describing a pattern as a composition graph of unit patterns
using the COMLAN language. In this presentation form, the pattern comprises many blocks,
each block represents a unit pattern, all linked together by merging operators.

The second step consists in refining the composed pattern in the previous step by concretiz-
ing the merging operators. More specifically, depending on the type of merging operator, a new
element is added to the composed pattern or two existing elements are mixed together. On the
purpose of automating the process of pattern refinement, we use the Model Driven Architec-
ture (MDA) approach [35]. Each pattern is considered as a model conforming to the COMLAN
meta-model (see Section 3.2) in order to create a systematic process thanks to model transfor-
mation techniques. Thus, each refined pattern is attached to a corresponding pattern model
from step 1 and any modification must be done only on the latter at step 1. At this stage, we
offer the architect a pattern description language based on the use of classical architectural
elements, architectural patterns and pattern merging operators.

Figure 3.1: Overall Approach

We can see that through this two-step process, anytime we want to trace back the constituent
patterns of a composed pattern in the second step, we can find them in its corresponding pattern
model. Thus, we solve the traceability problem pointed out in the previous section.

We solve the second problem (reusability of merging operators) by the fact that merging
operators are first-class entities in our pattern description language. In other words, merging
operators are treated as elements of the pattern language where we can manipulate and store
them in the pattern model like other elements. Therefore, the composition of patterns is not
an ad-hoc operation but a part of pattern. This proposal facilitates significantly the propagation
of changes in constituent patterns to the composed pattern. Indeed, the latter can thoroughly
be rebuilt thanks to the stored merging operators. So, merging operators not only do their job
which performs a merge of two patterns but also contain information about the composition

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3.2. The COMLAN meta-model 29

process. Thus, we think documenting them is one important task that architects should take
into consideration.

In the following sections, we describe our pattern description language through its meta-
model followed by the description of a pattern model and then, the transformation process that
produces the refined pattern model from the pattern model.

3.2 The COMLAN meta-model

We introduce COMLAN as a means to realize two main purposes: build complex patterns
from more fine-grained patterns using merging operators and leverage hierarchical patterns.
The language only emphasizes the structural solution of patterns, thus patterns that are based
on behavioural aspects of an architecture are not supported. As shown in Figure 3.2, our meta-
model is composed of two parts: the structural part of the architecture and the pattern part.
As pointed out in [24, 1] and also described in [11], the design vocabulary of an architectural
pattern necessarily contains a set of component, connector, port and role. We take these con-
cepts into consideration to build the structural part of our language. More specifically, they are
described in our language as follows:

Figure 3.2: The COMLAN meta-model

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

30 Chapter 3. COMLAN - COMposition-centered pattern description LANguage

• Component is a composite element which, through the internalElements relation, can
contain a set of component ports or even a sub-architecture with components and connec-
tors. These two types of containment relation are differentiated by a constraint imposed
on the meta-model.

• Component port is a simple element through which components interact with connectors.
A component port can be attached to a connector role or delegated to another component
port in an internal sub-architecture.

• Connector is a composite element which, through the internalElements relation, can
have a set of connector roles or even a sub-architecture with components and connectors.
Similarly to the case of component, thanks to a constraint on the meta-model, these two
types of containment relation are distinguished.

• Connector role is a simple element that indicates how components (via component ports)
use a connector in interactions. A connector role can be delegated to another connector
role in an internal sub-architecture.

The pattern aspect part (see Figure 3.2) of our meta-model aims at providing functionalities
to characterize a meaningful architectural pattern. To be more specific, the meta-model allows
us to describe a pattern element at two levels: generic and concrete. Via the multiplicity, we
can specify an element as generic or concrete. A concrete element (not associated with any
multiplicity) provides guidance on a specific pattern-related feature. Being generic, an element
(associated with a multiplicity) represents a set of concrete elements playing the same role in
the architecture. A multiplicity indicates how many times a pattern-related element should be
repeated and how it is repeated. Figure 3.3 shows two types of orientation organization for
a multiplicity: vertical and horizontal. Being organized vertically, participating elements are
parallel which means that they are all connected to the same elements. On the other hand, being
organized horizontally, participating elements are inter-connected as in the case of the pipeline
architectural pattern [9].

Figure 3.3: Orientation organization of generic elements

Each element in the meta-model can be associated with a role. A role specifies properties
that a model element must have if it is to be part of a pattern solution model [15]. To character-
ize a role, we use architectural constraints. A constraint made to a role of an element helps to

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3.2. The COMLAN meta-model 31

make sure that the element participating in a pattern has the aimed characteristics. Constraints
are represented in our approach in form of OCL [36] rules.

Similar to [18, 5, 38], in our language two types of merging operator are supported: string-
ing and overlapping as shown in Figure 3.4. As we can observe, these operators are preserved
with firs-class status by being represented as model elements. A stringing operation means a
connector is added to the pattern model to connect one component from one pattern to another
component from the other pattern. If an overlapping operation involves two elements, it means
that two involving elements should be merged to a completely new element. Otherwise, if
an overlapping operation involves a composite element and a pattern, it means that the latter
should be included inside the former. In both cases of merging, the participating elements are
respectively determined through two references source and target. An element has an origin
reference towards the merging operator from which it is concretized. This merging operator
contains the information about the source element and the target element which allows the
traceability of the composed element.

Figure 3.4: Two types of merging operation

Pattern can contain all concepts described above and most importantly, it inherits from El-
ement which allows a composite element to contain it. This special feature helps our language
to include an entire pattern into an element while constructing a pattern. In other words, hier-
archical patterns are supported.

3.2.1 Example of pattern definition

For the purpose of illustration, our pattern definition language will be used to model an
example about the pattern for data exploration and visualization as in the Vistrails application’s
architecture [8]. More specifically, this model represents the first step of the pattern definition
process. As shown in Figure 3.5, this pattern model consists of four main sub-patterns: Pipes
and Filters, Client-Server, Repository and Layers, all connected together through merging op-
erators. Among these three patterns, the Repository pattern is a hierarchical one whose the
component of the same name includes the Layers pattern.

To explain how the pattern concepts are realized, we go into details for the Pipes and Fil-
ters pattern. On the upper left corner of Figure 3.5, we can observe that the Pipes and Filters

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

32 Chapter 3. COMLAN - COMposition-centered pattern description LANguage

Figure 3.5: Example of pattern model

pattern is constructed with the emphasis on the following elements: the component Filter spec-
ified with two roles Filter and AcyclicComponent, the connector Pipe specified with the role
Pipe. The connector Pipe is not assigned with any multiplicity. Otherwise, the component
Filter is assigned with a multiplicity since it represents many possible filters inter-connected
by Pipe connectors. Furthermore, its horizontal multiplicity1 indicates that there may be many
instances of Filters and they must be horizontally connected. The role Filter is characterized
by the ConnectedFilter constraint. To be more specific, it stipulates that a filter cannot stand
alone, there must be at least one pipe connected to a filter. Similarly, the constraint Acyclic-
Component characterizing the role AcyclicComponent stipulates that among filters, we cannot
form a cycle. Finally, the two constraints InputConnectedPipe and OutputConnectedPipe say
that for a given pipe, there must be a filter as input and a filter as output. The above constraints
are presented as OCL invariants as follows:

invariant AcyclicComponent:

if role->includes(’AcyclicComponent’) then

Component.allInstances()->forAll(role = ’AcyclicComponent’ implies not

1upperbound = -1 indicates that there’s no limited upper threshold for a multiplicity

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3.3. Pattern refinement 33

self.canFormCycle())

endif;

invariant ConnectedFilter:

if role->includes(’Filter’) then

Connector.allInstances()->exists(role = ’Pipe’ and isConnected(self))

endif;

invariant InputConnectedPipe:

if role->includes(’Pipe’) then

Component.allInstances()->exists(role = ’Filter’ and

getOutputConnectors().contains(self))

endif;

invariant OutputConnectedPipe:

if role->includes(’Pipe’) then

Component.allInstances()->exists(role = ’Filter’

and getInputConnectors().contains(self))

endif;

Merging operators are used to link participating patterns together. More specifically, in our
pattern model (see Figure 3.5), three merging operators are used:

• An overlapping operator whose source is the Filter component in the Pipes and Filters
pattern and target is the Client component in the Client-Server pattern.

• A stringing operator whose source is the Filter component in the Pipes and Filters pattern
and target is the Repository component in the Repository pattern.

• An overlapping operator whose source is the Repository component in the Repository
pattern and target is the Layers pattern.

These three operators are used as elements of the pattern language and stored along with the
other elements.

This example has shown the ability of using our language to describe complex patterns
which are combined from different patterns by leveraging merging operators.

3.3 Pattern refinement

After being described as the composition of constituent patterns through merging opera-
tors, the pattern model will be refined. We consider the refinement as a model transformation
where the source model is a pattern model with explicitly presented merging operators and
the target model is a pattern model where merging operators are already concretized. There-
fore, the transformation rules consist in processing merging operators in the composed pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

34 Chapter 3. COMLAN - COMposition-centered pattern description LANguage

model and produce appropriate results in the refined pattern model. While realizing this trans-
formation, three important issues need to be taken into account: how to concretize a stringing
operator, how to concretize an overlapping operator and how to handle nested patterns.

3.3.1 Stringing operator transformation

Among structural elements in the pattern language, except for components which can be
linked by stringing operators, there is no interest to link together other elements like connectors,
component ports or connector roles. That is the reason why a stringing operator can only be
transformed into a new connector to link source component and target component. New com-
ponent ports are also added to the source component and the target component and attached
to new connector roles in the newly created connector. As shown in Figure 3.6, the stringing
operator described in the previous step is now transformed to the connector DataReading/Writ-
ingPipe. This new connector contains two connector roles, one attached to a component port in
the ClientFilter component and the other attached to a component port in the Repository com-
ponent. A simplified version of the transformation algorithm for stringing operator is presented
in Algorithm 1

Figure 3.6: The refined pattern model

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3.3. Pattern refinement 35

Algorithm 1 The stringing operator transformation algorithm
Require: Stringing StrOp
Ensure: Connector Con
1: Component TarComp← StrOp.target
2: Component SrcComp← StrOp.source
3: ComponentPort SrcPort← new ComponentPort
4: ComponentPort TarPort← new ComponentPort
5: ConnectorRole SrcRole← new ConnectorRole
6: ConnectorRole TarRole← new ConnectorRole
7: TarComp.internalElements.add(TarPort)
8: SrcComp.internalElements.add(SrcPort)
9: Con.internalElements.add(SrcRole)

10: Con.internalElements.add(TarRole)
11: SrcPort.attachedRole.add(SrcRole)
12: TarPort.attachedRole.add(TarRole)

The algorithm takes a stringing operator as input and produces a connector as output. First,
the source and the target components are determined. Next, ports and roles to be attached to the
source and the target component are respectively created. The final step consists of i) adding
ports and roles to the appropriate components and the new connector, and ii) attaching roles to
their corresponding ports.

3.3.2 Overlapping operator transformation

The result of the transformation for an overlapping operator is a new element which carries
all the characteristics of the source element and the target element. For composite elements,
the composition begins with the fusion of all internal elements. As we can see from Figure 3.6,
the overlapping operator described in the previous step is concretized by the component Client-
Filter. This component contains all component ports from the source element which is a Filter
and the target element which is a Client. Furthermore, via these component ports, the link from
the component to two connectors Pipe and Request/Reply is also preserved.

The overlapped element plays all the roles of the source element and the target element.
Indeed, the ClientFilter plays three roles at once: AcyclicComponent, Filter since it participates
as a Filter in the Pipes and Filters pattern and finally, Client since it participates as a Client in
the Client-Server pattern.

The multiplicity is merged as follows: The range of the merged element’s multiplicity is
the intersection of that of the source element and the target element. More specifically, the
merged lower value is the bigger one between the two lower values and the merged upper value
is the smaller one between the two upper values. If the source element’s multiplicity or the
target element’s multiplicity is vertical or horizontal then merged element’s multiplicity is also
vertical or horizontal. In our pattern model (Figure 3.6), the multiplicity of the merged compo-
nent ClientFilter is both vertical and horizontal since its source component Client is vertical and
its target component Filter is horizontal as illustrated in Figure 3.7. A simplified version of the
transformation algorithm for overlapping operator is presented in Algorithm 2. The algorithm

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

36 Chapter 3. COMLAN - COMposition-centered pattern description LANguage

takes an overlapping operator as input and produces a merged element as output. First, source
and target elements are determined via the source and target references of the overlapping op-
erator. Next, the source and target elements are tested whether they are composite elements.
If it is the case, internal nested elements from the source and target elements are included in
the newly created element. Finally, role and multiplicity elements are also respectively merged
into the newly created element.

Figure 3.7: The merged pattern of Client-Server and Pipes and Filters

Algorithm 2 The overlapping operator transformation algorithm
Require: Overlapping OvlOp
Ensure: Element MergedElem
1: Element TarElem← OvlOp.target
2: Element SrcElem← OvlOp.source
3: if TarElem isTypeOf CompositeElement then
4: for all Element e ∈ TarElem.internalElements do
5: MergedElem.internalElements.add(e)
6: end for
7: end if
8: if SrcEle isTypeOf CompositeElement then
9: for all Element e ∈ SrcElem.internalElements do

10: MergedElem.internalElements.add(e)
11: end for
12: end if
13: for all Role r ∈ TarElem.roles do
14: MergedElem.roles.add(r)
15: end for
16: for all Role r ∈ SrcElem.roles do
17: MergedElem.roles.add(r)
18: end for
19: MergedElem.multiplicity← multimerge(SrcElem.multiplicity,TarElem.multiplicity)

In the case of a chain of consecutive overlapping operators in which one continues an-
other, we use Algorithm 3. Let us say we have n random elements linked together by (n-1)
overlapping operators. The algorithm consists of n-1 steps. In the first step, the overlap-
ping operator merges Element-1 and Element-2 to create Element-12. Next, Element-2 is re-
placed by Element-12. In the second step, the overlapping operator merges the new Element-12

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3.3. Pattern refinement 37

and Element-3 to create Element-123. Similarly, Element-3 is then replaced by Element-123.
The algorithm continues so on until the (n−1)-th step when all elements are merged into the
Element-123..n. An important remark in this algorithm is that thanks to the replacement mech-
anism, an element can reflect the merging operation in which it participates. Thus, the merging
operation is propagated to every element participating in the merging chain. Notice that in the
case of an overlapping operator between an element and a pattern, the former is always the
source element and the latter is always the target element. This constraint is imposed in the
meta-model. Thus, in a chain of overlapping composition, the pattern, if exists, always stays at
the end of the chain.

Algorithm 3 The multi-overlapping transformation algorithm
Require: Set of Element ElemSet
Ensure: Element MergedElem
1: n← ElemSet.length
2: for i = 1, i++, while i < n do
3: MergedElem← overlappingMerge(ElemSet[i],ElemSet[i+1])
4: ElemSet[i+1]←MergedElem
5: end for

The algorithm takes a set of elements that are supposed to be merged together and produces
the merged element. Next, a loop to each pair of elements is performed. In each iteration, a
binary merge takes effect between two elements and assign the merged element to the element
that participates in the next iteration.

3.3.3 Nested pattern transformation

If a pattern participates in a merging operation, all of its internal elements will be added
in the refined pattern while the pattern itself will not be transformed. As shown in Figure 3.6,
all the three patterns Pipes and Filters, Client-Server and Repository disappear leaving their
internal elements in the refined pattern. Otherwise, if a pattern does not participate in any
merging operation, a refinement procedure (which is actually a recursive procedure) will be
applied to the pattern. Since the Layers pattern does not contain any merging operators, the
refinement procedure just simply keeps all its internal elements.

3.3.4 Support of traceability and reconstructability

For every merged element in the composed pattern, the origin reference towards the merg-
ing operator (e.g. see the the origin reference from Element towards MergingOperator in the
COMLAN meta-model)helps to preserve information about which element in the constituent
pattern participating in the composition process. Figure 3.8 illustrates the support of trace-
ability in the above example. The merged component ClientFilter containing a reference to-
wards an explicit overlapping operator from which the source element Client and the target el-
ement Filter can be retrieved (e.g. via the source and target references respectively). Similarly,

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

38 Chapter 3. COMLAN - COMposition-centered pattern description LANguage

thanks to references towards a stringing operator and an overlapping operator, the connector
DataReading/WritingPipe and the component Repository respectively can trace back to their
original source and target elements. The support for pattern reconstruction is pretty straight-
forward. Whenever a constituent pattern is modified, the composed pattern is updated with the
changes automatically. Next, thanks to the stored merging operators, the refined pattern can
be rebuilt taking into account the modifications. For instance, let us suppose the case that a
more complex variant of the Layers pattern is used instead of its actual pure variant. Thanks
to the overlapping operator between the Repository component and the Layers pattern, the new
Layers variant can be reflected in the newly merged Repository component.

Figure 3.8: Support of traceability

3.4 Summary

In this chapter we presented a solution to the documentation of pattern composition in-
formation by leveraging the first-class status of merging operators. First, we gave an overall
picture of the approach in general. Basically, the composition process passes through two steps.
They are actually two different composition views of pattern. The first step provides a compo-
sition view in which each participating pattern keeps its own identity and patterns are linked
from one to another via merging elements. The second step shows a concrete view in which
merging elements are concretized into architectural elements. A special characteristic of this
two-step process is that one can change from one step to another and vice versa. Changing from

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

3.4. Summary 39

the concrete view to the composition view can enable the traceability of the composed pattern.
One can discover that a given pattern is composed from which pattern and the composition is
realized using what type of merging operator. On the opposite sense, one can reconstruct a
new variant of a composed pattern just by modifying participating pattern in the first step and
propagate the changes to the second step.

We also showed the pattern description language in detail via its meta-model. Like other
pattern description languages, the meta-model comprises necessary elements to model a full-
fledged pattern. Except for these features, there are two main points that are worth mentioning
about the meta-model. First, merging operators are modelled using meta-classes which means
that they can be stored, manipulated, passed as reference, etc. like other elements in the meta-
model. Though it makes the meta-model more verbose, the first-class status merging elements
are shown to be efficient in the support of traceability and reconstructability of pattern. Second,
the separation between the pattern part and the structural part brings the flexibility to language.
One can keep the pattern part and switch the structural part to adapt from one architectural
representation to another. To illustrate the usage of the language, we selected a representative
example of an architecture in which four patterns coexist and are combined using two types of
merging operators.

Finally, for each type of merging operator, we presented the refinement process in which
merging operators are concretized into architectural elements in the composed pattern. While
stringing operator eventually ends up in a new connector, overlapping operator triggers the
grouping of participating elements.

The idea of using first-class merging operator in pattern composition has been presented in
the ECSA conference [43] and the Future Generation Computer Systems journal [44].

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

40 Chapter 3. COMLAN - COMposition-centered pattern description LANguage

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4
Pattern-based approach for documenting the

solution of structural architectural decision

Contents
4.1 General Approach . 42

4.1.1 Pattern definition . 43

4.1.2 StAD creation . 43

4.1.3 StAD verification . 44

4.2 Pattern definition . 44
4.2.1 General pattern meta-model . 44

4.2.2 Architectural Pattern Specification 46

4.3 Use of StAD . 47
4.3.1 Associating a Pattern to an Architectural Model 47

4.3.2 Filtering StAD views . 48

4.3.3 StAD Checking . 51

4.4 Summary . 54

In addition to common characteristics of a general AD, pattern-related ADs also convey the
structural aspect of a pattern. This special feature makes it possible to verify the conformity of
an architectural model against its applied pattern-related ADs thanks to StAD. StAD confor-
mance basically implies two requirements: i) given an architectural element, one should be able
to trace back to the architectural decision which it is based on and ii) the main consequences of
an executed StAD, or the changed elements in the model due to that StAD in other words, must
be preserved in the architectural model. As shown in Chapter 2, existing approaches that tempt
to document StAD are shown to be incomplete to satisfy these two requirements. Therefore, in
this chapter we present our own approach of StAD documentation. We present the approach in
general and then show its application with examples.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.1 General Approach

The main idea behind our work is that StADs about the use of patterns should be preserved
throughout the evolution of the architecture. More specifically, the existence of pattern-related
elements and the structural consistency of StADs about pattern use should be automatically
checked whenever there is a modification to the architectural model. Because we only concen-
trate on StADs about pattern use and for the sake of simplicity, the term StAD throughout the
dissertation is understood as StAD about pattern use. Moreover, we focus on the structural
part of AD to support the conformance checking. It does not mean that the other parts of AD
such as the rationale or the concerns are not important. Instead, together they make a complete
structure of StADs that supports both the documentation and the automatic checking.

Similar to [56], StAD documentation in our approach goes through three steps: Pattern
creation, StAD integration and StAD verification. Figure 4.1 depicts the process of using
StADs in architecture construction.

Figure 4.1: The process of using StAD

Pattern definition consists in the specification of a pattern structure. A pattern is defined
once and used for all concerned StADs. StAD creation is the step in which the decision about
the application of the defined pattern is created. Finally during the StAD verification step, the
architectural model is checked whether it complies with the created StAD. Basically, the life
cycle of a StAD begins to exist when a pattern definition is applied. Then, if the architectural
model is found to be inconsistent with the created StAD during the StAD verification step, the
architect can come back to the StAD creation step and modify or recreate another StAD and so
forth.

On the purpose of automating the process of StAD documentation, we use the Model
Driven Architecture (MDA) approach [35]. Each artifact is considered as a model conforming
to its meta-model in order to create a systematic process thanks to model transformations and
leverage existing MDA techniques (e.g. conformity verification).

In the remainder of this section, we will go further into each step in the StAD documenta-
tion process.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.1. General Approach 43

4.1.1 Pattern definition

We propose the use of a general pattern language for the purpose of pattern definition. As
shown in Figure 4.2 (Pattern definition part), the abstract syntax of this language is described
using a general pattern meta-model which contains only architectural elements involved in the
pattern definition. These elements are determined through a survey of well-known architectural
patterns such as those described in [46, 11, 9]. In terms of concrete syntax of our language,
one can graphically define a meaningful architectural pattern in form of a pattern model using
necessary elements. Furthermore, pattern models are also language-independent. With the sep-
aration between pattern definition and architectural design, no modification to the architectural
model is needed to define a pattern, which makes it easy to adapt to different ADLs.

4.1.2 StAD creation

Links between pattern elements and their correspondent architectural elements play an im-
portant role in keeping track of StAD made to an architectural model. An explicit linking will
facilitate the specification of StADs as well as their storage. In our approach, links between
pattern elements and architectural elements are represented by mapping models (illustrated in
the Pattern integration part of Figure 4.2). A mapping model indicates that a StAD has been
applied on an architectural model.

Figure 4.2: MDA approach for StAD documentation

In the literature, architecture is considered as a set of views which are representations of
system elements and relations associated with them [11]. Each view serves a specific purpose

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

44 Chapter 4. Pattern-based approach for documenting the solution of structural architectural decision

depending on the concerns of one or more stakeholders. Having taken this viewpoint into ac-
count, we propose to consider an architectural model as a multi-view representation where
each view contains only elements related to a specific StAD. In this scenario, StAD views are
filtered from the architectural model through a transformation mechanism in which mapping
models are the source models and StAD views are the target models. In fact, we can consider
the mapping models as the initial version of the StAD views where information about the inte-
gration of StAD are stored. Thus, the transformation is the step in which these information are
concretized into StAD views elements.

4.1.3 StAD verification

To make sure that an architectural model is consistent with created StADs, not only do
the existence of StAD-related elements in an architectural model need to be verified but also
the constraints imposed on them need to be handled. To achieve the first goal, the presence
of StADs in the architectural model is checked through the completeness of mapping models.
Indeed, mapping models are intermediary bridges between the architectural model and the
pattern model and thus, the incompleteness of mapping models shows the lack of StADs in
the architectural model. To achieve the second goal, the constraints imposed by patterns on
the architectural model are checked through the consistence of StAD views. To check the
conformity of StAD views, we chose to first transform the pattern models into StAD view meta-
models (Pattern verification part in figure 4.2) and then, make use of model checking techniques
from MDA [35].

4.2 Pattern definition

The process of creating a pattern consists in instantiating a pattern model from its meta-
model. We first introduce the general pattern meta-model from which pattern models are
created. Then, we clarify the pattern definition process through a concrete example.

4.2.1 General pattern meta-model

The COMLAN meta-model consists of two parts: the structural part and the pattern part.
While the pattern part is general enough to be applied in any paradigm, the structural part
represents concrete elements for each supported language family. Throughout this chapter, we
intentionally opt for Service Oriented Architecture (SOA) as the language family. Therefore,
the structural part contains all necessary architectural features from SOA and concepts related
to SOA pattern definition. As we can guess, the pattern part is kept unchanged. Figure 4.3
illustrates this SOA-adopted pattern language.

Inspired by the SCA model1 [6], we construct the structural part of our General Pattern

1SCA is a model created by a group of industrial partners to support building applications and systems using
SOA solution.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.2. Pattern definition 45

Figure 4.3: SOA General Pattern Meta-model

Meta-Model for the SOA description language family as follows:

• Composite serves as the container to assemble and connect service-oriented building
blocks together.

• Components are basic units of the architecture that represent business functions from
which composite applications are built.

• A component is composed of component services and component references. The for-
mer provide functionalities supported by the component and the latter play the role of
consuming services of other components. A component reference can be wired to a com-
ponent service through its target attribute. The attribute isWSDL specifies whether the
component service is a webservice or not.

• Thinking of composites as black-box components, they have also services and refer-
ences. To be consumed by the world outside of a composite, a component service of the
containing component can be promoted as a service of the composite. Similarly, to be

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

46 Chapter 4. Pattern-based approach for documenting the solution of structural architectural decision

served by an outside service, a component reference should be promoted as a composite’s
reference.

The pattern aspect part of this meta-model aims at providing functionalities to characterize
a meaningful architectural pattern. All the details can be found in Section 3.2.

4.2.2 Architectural Pattern Specification

For the purpose of illustration, we will examine the SOA Legacy Wrapper pattern [46]
which is also mentioned in Section 2.5.1.

Figure 4.4: SOA Legacy Wrapper pattern model

Based on the general pattern meta-model, we can instantiate the pattern model for the SOA
Legacy Wrapper with the emphasis on the following elements (as illustrated in Figure 4.4): the
component LegacyComponent specified with the role LegacyComponent representing the com-
ponent with legacy implementations and the component WrapperComponent specified with
the role WrapperComponent representing the wrapper services in the pattern. The component
LegacyComponent is not assigned with any multiplicity since it represents a concrete legacy
component. Otherwise, the component WrapperComponent is assigned with a multiplicity

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.3. Use of StAD 47

since it represents many possible wrapper components. Furthermore, its vertical multiplicity2

indicates that there maybe many instances of WrapperComponent and they must be vertically
connected. The role LegacyComponent is characterized by the ShieldedByWrapper constraint
and the OnlyConnectedToWrapper constraint. The former stipulates that there must exist a
component that plays the role WrapperComponent and is connected to the legacy component,
the latter stipulates that for all existing components, if one does not play the role WrapperCom-
ponent then it can not be connected to the legacy component. Note that the ShieldedByWrapper
constraint has a pattern scope since it involves only elements playing either the role Wrapper-
Component or LegacyComponent. The OnlyConnectedToWrapper constraint has an architec-
ture scope since it involves not only elements playing the two mentioned roles but maybe also
other elements in the architecture. The last constraint ConsumeLegacy characterizes the role
WrapperComponent and stipulates that there must exist at least one legacy component with all
services wrapped by the wrapper component. This constraint also has a pattern scope. Even
though the other participating elements in the Legacy Wrapper pattern model, such as the com-
ponent service of LegacyComponent and the component reference of WrapperComponent, do
not have specific roles, they still contribute to the model to make a meaningful pattern.

4.3 Use of StAD

The process of using StADs consists of integrating pattern models to architectural models
and checking the conformance of architectural models with associated StADs. The former is
made thanks to a mapping model and the latter is made thanks to a particular view on the
architecture.

4.3.1 Associating a Pattern to an Architectural Model

The association of a pattern with an architectural model consists in manually creating a
mapping model between the former and the latter. Concretely, it links elements in the architec-
ture that directly relates to elements from the pattern model. This is projected at the meta-model
level as follows: each meta-class defines a mapping between the source, an architectural meta-
class from the ADL meta-model and the target, an architectural meta-class from the general
pattern meta-model. Figure 4.5 shows the mapping meta-model in case of SOA pattern. Ele-
ments from the left side of the figure are those from SCA meta-model. Elements from the right
side of the figure are those from the SOA pattern meta-model. Each pair of these elements
is linked by an mapping element from the mapping meta-model (in the middle of the figure)
via the source and target references. All mapping elements are contained in the root mapping
element.

The architecture of FRC case study [46] is chosen to illustrate the documentation of pattern
use. Figure 4.6 sketches the mapping model which associates the Legacy Wrapper pattern to a

2upperbound = -1 indicates that there’s no limited upper threshold for a multiplicity

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

48 Chapter 4. Pattern-based approach for documenting the solution of structural architectural decision

Figure 4.5: SOA Mapping Meta-model

part of the FRC architecture. As we can see in this figure, two components Data Controller and
DWSA Data Service in the FRC architecture are mapped respectively to two components play-
ing the roles of Legacy Component and Wrapper Component in the Legacy Wrapper pattern
model.

An architectural model can contain different mapping models, each of them represents
a StAD made to the architecture. Thus, the architectural model can be considered as a set
of elements in which each element can play different roles coming from the same StAD or
different ones.

4.3.2 Filtering StAD views

The architectural views are useful for understanding the overall architecture of a com-
plex system. In our case, each view represents one instantiation of a pattern in the architec-
tural model. Thus, a view is produced by applying a transformation on the mapping model
which captures a given StAD. The transformation serves as a filter to realize two purposes:

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.3. Use of StAD 49

Figure 4.6: Mapping model for the Legacy Wrapper pattern in FRC (Elements in dashed line
are those added after the evolution of the FRC architecture)

first, extract from the architectural model elements related to StADs and second, eliminate
language-specific features of the architectural model to create a language-independent pattern
view model. This transformation can be compared to the one from PSM (platform specific
model) to PIM (platform independent model) in the MDA approach. To realize this, we lever-
age the MDA transformation techniques.

Algorithm 4 illustrates the transformation of a mapping model into a view model. First, it
detects whether the pattern model has an architecture-scope constraint. If not, the algorithm
creates a StAD view model that contains only pattern-related architectural elements. These el-
ements and their pattern roles are determined via the mapping model. Otherwise, if the pattern
model has at least one architecture-scope constraint, then the algorithm creates a StAD view
model that contains all elements in the architectural model. But, only the roles related to the
concerned pattern are kept in the elements. Patterns with architecture-scope constraints are not
usual, as shown through our experimentation on well-known SOA patterns (see section 6.2.1).

The bottom of Figure 4.7 represents the filtered StAD view model for the mapping model
before (without elements in dashed line) and after (with elements in dashed line) the evolution
of the architecture described in Figure 4.6. As we can recall from the Legacy Wrapper pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

50 Chapter 4. Pattern-based approach for documenting the solution of structural architectural decision

Algorithm 4 The StAD view model filtering algorithm
Require: MappingModel MM
Ensure: StAdViewModel V M
1: PatternModel PM←MM.target
2: ArchitecturalModel AM←MM.source
3: Flag f ← f alse
4: for all Role r ∈ PM.roles do
5: for all Constraint c ∈ r.constraints do
6: if c.scope = architecture then
7: f ← true
8: Break
9: end if

10: end for
11: end for
12: if f = f alse then // No architecture-scope constraint is found // Only pattern-related elements

are filtered
13: for all Mapping m ∈MM.mappings do
14: ArchitecturalElement ae← m.source
15: PatternElement pe← m.target
16: StAdViewElement ade← ae
17: ade.role← pe.role
18: V M.add(ade)
19: end for
20: else // At least one architecture-scope constraint is found // Filtering all elements
21: for all ArchitecturalElement ae ∈ AM.elements do
22: StAdViewElement ade← ae
23: for all Mapping m ∈MM.mappings do
24: if m.source = ae then
25: ade.role← m.target.role
26: end if
27: end for
28: V M.add(ade)
29: end for
30: end if

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.3. Use of StAD 51

Figure 4.7: StAD views for the Legacy Wrapper pattern produced from FRC architecture (El-
ements in dashed line are those added after the evolution of the FRC architecture)

defined in Figure 4.4, the scope of the constraint OnlyConnectedToWrapper is architecture.
This leads to the creation of a StAD view that contains all elements in the FRC architecture with
only their roles related to the Legacy Wrapper pattern. In the produced StAD view there are
two elements holding a role in the LegacyWrapper pattern: DWSA Data Service and Data Con-
troller playing respectively the roles WrapperComponent and LegacyComponent. The choice
of this illustrative pattern is made in order to cover the two kinds of constraint. In general cases
architectural patterns hold mainly constraints with pattern-scope. To illustrate the StAD views
generated in this case, we show on the top of Figure 4.7 the StAD view for the Legacy Wrapper
pattern without taking into account its architecture-scope constraint.

4.3.3 StAD Checking

The checking process consists of two steps: i) The completeness of the mapping model is
verified and if the mapping model’s integrity is assured, ii) The second step, the StAD view
meta-model is used to check the consistency of the StAD view model. Whenever the mapping
model is detected as incomplete (e.g. due to the removal of some StAD-related elements in
the architecture) or constraints imposed by the StAD view meta-models on StAD views are
not satisfied, warnings are notified to the architect about which StAD is violated and which
elements in the architectural model are involved.

The conformity of an architectural model with its associated StADs is checked through the

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

52 Chapter 4. Pattern-based approach for documenting the solution of structural architectural decision

conformity of the corresponding StAD view with the concerned pattern model. For the purpose
of checking, StAD view meta-models are generated from pattern models. The consistency
of an StAD view is thus verified against its corresponding StAD view meta-model using the
conformance operator from the MDA approach.

Figure 4.8: StAD view meta-model for the Legacy Wrapper pattern.

For every defined pattern model, an StAD view meta-model is generated containing meta-
classes from the general pattern meta-model embedded with pattern constraints. The Algo-
rithm 5 represents the simplified version of this transformation.

For instance, the Legacy Wrapper pattern model described in the previous section will be
transformed to an StAD view meta-model with the participation of the following meta-classes:
Composite, Service, Reference, Component, ComponentService and ComponentReference as
shown in Figure 4.8. The StAD view meta-model is embedded with invariants imposed on the
Component meta-class as follows:

//All legacy components must be wrapped with a wrapper

(1) invariant ShieldedByWrapper:

if role->includes(’LegacyComponent’) then

Component.allInstances()->exists(c: Component |

c.role->includes(’WrapperComponent’) and

self.isConnected(c) = true)

endif;

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.3. Use of StAD 53

Algorithm 5 The StAD view meta-model creation algorithm
Require: PatternModel M
Ensure: StAdViewMeta-model MM
1: MM.add(createMetaClasses())
2: for all PatternElement pe ∈M.elements do
3: Meta-class mc←MM.getCorrespondingMetaClass(pe) // Select the corresponding meta-class of

the StAD view meta-model based on the pattern model element
4: for all Role r ∈ pe.roles do
5: for all Constraint c ∈ r.constraints do
6: mc.add(c)
7: end for
8: if pe.getMultiplicity() 6= /0 then
9: Multiplicity m← pe.multiplicity

10: mc.add(createMultiplicityConstraint(m))
11: else // Multiplicity constraint without parameter means that the meta-class should have exactly

one instance
12: mc.add(createMultiplicityConstraint())
13: end if
14: end for
15: end for

//A wrapper must wrap at least one legacy component

(2) invariant ConsumeLegacy:

if role->includes(’WrapperComponent’) then

Component.allInstances()->exists(role->

includes(’LegacyComponent’) and service->

exists(s: ComponentService | self.reference->

collect(target)->includes(s)))

endif;

//Wrappers are vertically multiplied

(3) invariant vertical_WrapperComponent:

if role->includes(’WrapperComponent’) then

Component.allInstances()->forAll(role->

includes(’WrapperComponent’) implies

isParallel(self))

endif;

//There is only one legacy component (single multiplicity)

(4) invariant multiplicity_LegacyComponent:

let s: Integer = Component.allInstances()->

select(role->includes(’LegacyComponent’))->

size() in s = 1;

//There maybe more than one wrapper (plural multiplicity)

(5) invariant multiplicity_WrapperComponent:

let s: Integer = Component.allInstances()->

select(role->includes(’WrapperComponent’))->

size() in s >= 1;

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

54 Chapter 4. Pattern-based approach for documenting the solution of structural architectural decision

//There are no other component than wrappers can be connected to legacy component

(6) invariant OnlyConnectedToWrapper:

if role->includes(’LegacyComponent’) then

Component.allInstances()-> forAll(c: Component |

not c.role -> includes(’WrapperComponent’)

implies not self.isConnected(c) = true)

endif;

A part of invariants on meta-classes correspond to constraints specified on role elements
in the pattern model. The other part reflects information about orientation and multiplicity.
We can observe through the example that the constraints imposed on the roles LegacyCompo-
nent and WrapperComponent in the pattern model are transformed into the invariants Shield-
edByWrapper (1), OnlyConnectedToWrapper (6) and ConsumeLegacy (2) on the Component
meta-class. The multiplicity of the role WrapperComponent in the pattern model is concretized
in two other invariants in the Component meta-class: multiplicityWrapperComponent (5) and
verticalWrapperComponent (3). Since the role LegacyComponent in the pattern model is not
associated with any multiplicity, the invariant multiplicityLegacyComponent (4) restricts the
exact number of LegacyComponent in the pattern view to one.

The FRC architecture passed through an evolution in which two components Appealed
Assessment Service and Data Relayer (sketched in dashed line in Figure 4.6 and Figure 4.7)
are added. As we can observe, its mapping model is complete. However, the addition of
the Data Relayer component violates the OnlyConnectedToWrapper constraint (6) since it is
directly connected to a component playing the role LegacyComponent.

Similar to UML, this way of StAD specification allows us to introduce two levels of con-
sistency: meta-model and well-formedness rules. More specifically, well-formedness rules are
expressed in OCL to assert the syntactic correctness of StAD view models. According to the
classification of model consistency methods presented in [29], this approach is a syntactic-
horizontal consistency one.

4.4 Summary

In this chapter we presented a solution to the automatic checking of StAD by combin-
ing pattern model and mappings. We first introduced a general process in which patterns are
leveraged to document StAD. By using our existing pattern description language, patterns are
modelled once and later used to document StADs. ADs are made by mapping a predefined pat-
tern model to the architectural model. StAD violation is then checked against the architectural
model using both pattern model and mappings. Once violation is detected, the architect can
choose to modify the architectural model to avoid the violation or go back to the definition of
AD. We do not rewind back to the pattern definition part which is already presented in Chap-
ter 3. However, since we illustrate the approach on SOA, we presented basic concepts from

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

4.4. Summary 55

SCA, accompanied with the example of the SOA Legacy Wrapper pattern. Via the mapping
meta-model, we explained how to map pattern elements to architectural elements each time
we want to make an AD. The benefit of mappings is twofold: i) From the mapping model, we
can obtain a filtered view of AD-related element, ii) The information about the existence of
AD-related elements can be stored in the mapping model. We showed the algorithm to filter a
StAD view from the architectural model and an illustrative example of an architecture applied
with the Legacy Wrapper pattern. This step aims to provide a reduced architectural view which
contains only StAD-related elements. Finally, we demonstrated the StAD violation checking
method which involves both the pattern model and the mappings. While the pattern model
helps maintain the structural consistency of the StAD, the mappings on the other hand help
verify the existence of StAD-related elements.

The idea of using pattern and mappings as a means to verify StAD violation has been pre-
sented in the WICSA/ECSA conference [42] and the Automated Software Engineering journal
[45].

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

56 Chapter 4. Pattern-based approach for documenting the solution of structural architectural decision

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

5
Implementation

Contents
5.1 COMLAN tool . 58

5.1.1 Use cases . 58

5.1.2 COMLAN architecture . 59

5.2 ADManager tool . 61
5.2.1 Use cases . 61

5.2.2 ADManager architecture . 62

5.3 Summary . 63

Both ideas of a composition-supported pattern description language presented (Chapter 3)
and a StAD documentation approach (Chapter 4) are put into practice via two tools: ADMan-
ager and COMLAN respectively. In this chapter ADManager and COMLAN are presented
through a set of use cases and how they are realized using these tools.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

5.1 COMLAN tool

COMLAN is a tool to design architectural patterns with the focus on documenting com-
position operations. In COMLAN tool, merging operators are used as model element. Specif-
ically, one can store merging operators in a persistent form, reference to merging operator
from another element, etc. The following presents supported use cases in COMLAN and its
architecture.

5.1.1 Use cases

The use cases present a wide area of issues concerning the problems discussed in the intro-
duction of COMLAN in Chapter 3. COMLAN tool responds to the following use cases:

1. Create architectural patterns

Use case: Given an architectural pattern description, create a coherent pattern model
with all the necessary concepts.

COMLAN: The tool realizes the concrete syntax of the language via a graphical repre-
sentation. One could select necessary pattern elements from a design panel and modelize
his pattern. The created pattern model can be verified to be validated or not with respect
to its abstract syntax defined in the meta-model.

2. Compose patterns using merging operators

Use case: Use merging operators as first-class entity to combine patterns.

COMLAN: Merging operators also appear in the design panel together with other pat-
tern elements. One could drag and drop two different unit pattern models, add an appro-
priate merging operator and link it to corresponding elements in each pattern.

3. Refine the composed pattern

Use case: Refine the composed pattern by concretizing merging operators.

COMLAN: In the matter of a click, a refined version of a composed pattern model is
automatically produced. Also, the refined pattern model is syntactically checked against
the meta-model to verify the correctness of the transformation.

4. Trace back to constituent patterns

Use case: From a given pattern model, trace back to the constituent pattern models (if
they exist)

COMLAN: Any composed pattern element is tagged with the merging operator from
which it is originally created. Via the containing model of this merging operator, one can
obtain the general picture of pattern composition.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

5.1. COMLAN tool 59

5. Reconstruct the pattern via composition

Use case: From a given pattern model, changes in constituent pattern models (if they
exist) should be reflected.

COMLAN: Any change in a given pattern model can be propagated in the composed
pattern in which it participates. From the changed version of the composed pattern,
various pattern variants can be obtained.

5.1.2 COMLAN architecture

COMLAN is based on EMF (Eclipse Modelling Framework)1. We chose EMF to realize our
tool since we leverage MDA, where models are basic building units, to develop our approach.
Figure 5.3 depicts the architecture of the COMLAN tool.

Figure 5.1: COMLAN tool architecture

The tool consists of two Eclipse plug-ins built on existing Eclipse technologies:

• Pattern editor plug-in uses EMF and GMF (Graphical Modeling Framework)2 modeling
facilities in order to allow architects to define Pattern models graphically. Two types of
pattern models are supported using the graphical pattern editor: unit pattern models and
composed pattern models. Composed pattern models are designed by selecting patterns
from a catalogue and composing them using two types of merging operators: string-
ing and overlapping. Hierarchical pattern description is also supported via the inclusion

1More details about EMF are accessible at: http://www.eclipse.org/modeling/emf/"
2More details about GMF are accessible at: http://www.eclipse.org/modeling/gmp/"

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

60 Chapter 5. Implementation

of an entire pattern inside a pattern element. Besides, the editor allows the automatic
propagation of changes in the constituent patterns to the composed pattern in which they
participate. Figure 5.2 represents several snapshots of COMLAN tool. The bottom-left
shows the graphical pattern editor. It contains the example of two constituent patterns
ConnectedLayer and StrictOrder which are combined using an overlapping operator be-
tween the Layer component and the OrderedComponent. The bottom-right shows the
panel from which pattern elements can be chosen. The top-right depicts the property
window for the Layer component. It has a multiplicity and plays the role of a Layer.
Finally, the top-left shows the context menu where users can perform the pattern compo-
sition functionality.

Figure 5.2: Snapshots of COMLAN tool

• Pattern refinement plug-in uses Kermeta 3 to implement rules transforming composed
pattern model to refined pattern model. The plug-in takes as input composed pattern
models obtained from the pattern editor and produces as output the refined models. This
functionality allows the architect to obtain a pattern with all the merging operators con-
cretized. The refined pattern model is then accessible using the pattern editor, allowing
it to participate in further pattern compositions.

The reader is invited to visit the COMLAN website 4 for a complete tutorial and a video
about this tool and the example of Vistrails’s architecture [8] pattern modelling.

3Kermeta is described in details in [34]
4 http://www-archware.irisa.fr/software/comlan/

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

http://www-archware.irisa.fr/software/comlan/

5.2. ADManager tool 61

5.2 ADManager tool

ADManager is a tool to document StAD using pattern model. In ADManager tool, one
can define a pattern model, create an AD by mapping the pattern model to the architectural
model and verify the conformance of the architectural model against the created StAD after a
change in the architecture. The following presents supported use cases in ADManager and its
architecture.

5.2.1 Use cases

The use cases presented in this section are drawn from the ideas shown in Chapter 4. As a
StAD documentation tool, ADManager responds to the following use cases:

1. Create architectural patterns

Use case: Given an architectural pattern description, create a coherent pattern model
with all the necessary concepts.

ADManager: ADManager reuses COMLAN as its architectural pattern model creator.
Thus, any architectural pattern and its composition can be realized in the same way as
COMLAN does. Additionally, SOA patterns are also supported.

2. Integrate StADs to architectural models

Use case: As we know, StADs are represented by pattern model. Thus, this use case
concerns with how to relate a pattern model with an architectural model.

ADManager: Pattern models are mapped to architectural models using mapping ele-
ments. One can create a mapping model, select a corresponding pattern model and an
architectural model and then map elements from the former to those from the latter.

3. Extract pattern-view

Use case: An architectural model gets involved in different StAD models which leads to
the complexity of comprehension and violation detection. Thus, for each applied StAD
one should be able to extract only the related pattern elements.

ADManager: From the mapping model, one could extract a pattern-view model which
consists of only the StAD-related elements. All of the other elements are filtered out.

As ADManager is also a consistency management tool, it supports the following function-
alities among those described in [14]:

• Automatically detect inconsistency

Use case: At any moment, one should be able to detect if changes made to the architec-
ture lead to possible conflict with create StADs.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

62 Chapter 5. Implementation

ADManager: The tool automatically extracts pattern view models from mapping mod-
els and checks their consistency.

• Present inconsistency

Use case:

ADManager: The tool provides a visual inconsistency feedback to the user via descrip-
tion dialogues. More specifically, a summarized report about which StAD is violated and
if so, at which constraint.

5.2.2 ADManager architecture

In its actual version, ADManager supports the documentation of StADs in three different
languages: SCA [6], Acme [17] and PiADL [37].

Figure 5.3: The architecture of ADManager

ADManager is developed based on EMF (Eclipse Modelling Framework) [40]. As shown
in Figure 5.3, the tool consists of five Eclipse plug-ins built on existing Eclipse technologies.
They are:

• Pattern creation plug-in uses EMF and GMF (Graphical Modeling Framework)5 model-
ing support in order to allow architects to define Pattern models graphically.

• StAD integration plug-in is an editor supporting the creation of Mapping models between
pattern elements and architectural model elements.

• StAD verification plug-in uses OCL tool to support writing rules in pattern models, dur-
ing pattern creation, as well as conformance verification between StAD view models and
StAD view meta-models during StAD checking.

5http://www.eclipse.org/modeling/gmp/

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

http://www.eclipse.org/modeling/gmp/

5.3. Summary 63

• StAD view meta-model generator plug-in uses Kermeta to implement rules generating
StAD view meta-models from pattern models.

• StAD view generator plug-in uses Kermeta to implement rules generating StAD views
from mapping models.

Note that in Figure 4.3 the General Pattern Meta-Model for SOA is separated into two
parts: one specific to the SOA description language family and the other for the notion of
pattern. The separation of these two aspects gives our tool the flexibility to support many
different ADL families just by switching to the appropriate structural part of the pattern meta-
model. Indeed, besides SCA, we have been able to support two different ADLs, namely Acme
and PiADL, by keeping the pattern part and modifying the structure part in the pattern meta-
model6.

Figure 5.4 represents a snapshot of ADManager tool. This is actually the mapping model
aiming to link the Layer pattern model on the left to an architectural model on the right. As
we can observe, each mapping element has a reference pointing to a role-playing element in
the pattern model and another reference pointing to a respective element in the architectural
model.

Figure 5.4: Snapshots of ADManager tool

The reader may obtain a complete guiding tutorial video and more information about the
ADManager tool at: http://www-archware.irisa.fr/software/admanager/.

5.3 Summary

This chapter presented two tools ADManager and COMLAN corresponding to two main-
stream ideas of the thesis. While COMLAN describes itself as a tool to model patterns, AD-
Manager is used to document StADs and verify their consistency. They are both built based

6The reader can find these meta-models at the same website of ADManager tool

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

http://www-archware.irisa.fr/software/admanager/

64 Chapter 5. Implementation

on EMF and GMF which favour the MDA approach. These technologies center themselves
around the notion of model. Two important benefits from model-based approaches lies in : i)
The built-in meta-model/model conformance verification support and ii) The transformation
mechanism. Every concept in a language is described using model and the transition from one
model to another is realized via model transformations. In COMLAN, the pattern/pattern in-
stance conformance is assured via the meta-model/model relation and model transformation is
used to refine merging operator. In ADManager, the StAD/StAD-related model element con-
formance is assured via the meta-model/model relation and model transformation is used to
filter out StAD-related elements. For each of these two tools, we showed its architecture and
its supported use-cases. We also explained how each use-case responded to the initial require-
ments for each approach. Some screen shots and links to tutorial videos are also provided.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6
Empirical evaluation

Contents
6.1 Empirical evaluation for pattern composition approach 66

6.1.1 Experimental setup . 66

6.1.2 Traceability . 68

6.1.3 Reconstructability . 69

6.1.4 Discussion . 70

6.1.5 Threats to validity . 71

6.2 Empirical evaluation for StAD documentation approach 72
6.2.1 Application of pattern definition language 72

6.2.2 StAD documentation . 75

6.3 Summary . 83

To evaluate the two approaches that are respectively presented in chapter 3 and chapter 4,
we separately conducted two empirical experiments. The first experiment consists in applying
the approach on the composition of a set of formalized architectural patterns, including their
variants to show that composed patterns have become traceable and reconstructable. The sec-
ond experiment applies the approach on a set of architectural models to show that architectural
decisions are well explained and all of their violations are detected. In this chapter we present
these two empirical evaluations in detail.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.1 Empirical evaluation for pattern composition approach

Our approach focuses on giving pattern merging operators first-class status to support the
traceability and the reconstructability of patterns. Thus, the approach is evaluated on the inter-
est of using merging operators in: i) tracing back constituent patterns in pattern composition.
ii) reconstructing composed patterns.

6.1.1 Experimental setup

The materials used in our experiment are patterns we gather from different sources of ar-
chitectural patterns in the literature such as [2, 9, 53, 11, 46]. We distinguished two levels of
pattern granularity: primitive level and architectural level. As being shown via the Acyclic pat-
tern in the illustrative example (Section 2.5.2.1), we also consider the common structures used
in patterns as primitive patterns. In existing work, these structures are described by different
terminologies such as architectural constraints in [9, 11] or architectural primitives in [53, 54].
However, considering the ability to combine these structures to build patterns, they are also
treated as patterns at the primitive level in our approach. At the architectural level, patterns
are modeled using the information in the structure part of the pattern description. Indeed, the
structure description of the pattern is an important source to detect whether it is possible to
construct the pattern by composing other patterns using overlapping or stringing operator. In
total, 16 architectural pattern definitions are used in our study. They cover patterns in differ-
ent categories and viewpoints, from data flow, data-centering to distribution, etc. Taking the
variability of patterns into consideration, a given pattern can exist in different variants. Except
for the pure variant, which represents the characteristics of the pattern as is, the more relaxed
variants of patterns also integrate the structure of other patterns to adapt to different needs. For
instance, one of the variants of the Pipes and Filters pattern is the Layered Pipes and Filters
pattern. It is slightly different from the pure form of Pipes and Filters with Filters structured
in layers. From 16 collected architectural pattern definitions, we could find 28 variants. In
average, there are 1.75 variants per pattern definition. Table 6.1 shows the catalogue of pat-
tern definitions and their variants. The complete catalogue of patterns and variants used in our
experiment can also be found at Appendix A.

We do not evaluate the correctness of the traceability and the reconstructability of pattern
composition in our approach. The reason for that is twofold. First, it is quite obvious that
by switching from pattern designed in step 2 (refined pattern) to step 1 (composed pattern),
we should be able to detect which patterns are used to form the composed pattern. Second,
the ability to reconstruct pattern from merging operator is ensured by the correctness of our
transformation algorithm. However, we empirically evaluated how much necessary it is to
trace back to constituent patterns and to reconstruct patterns. Thus, we have two hypotheses to
validate.

Hypothesis 1 Most of pattern structures can be decomposed to other fine-grained pattern struc-

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.1. Empirical evaluation for pattern composition approach 67

Table 6.1: Pattern catalogue

Pattern definitions Pattern variants

P1-Enabled cycle V1.1-Enabled cycle [2, 9]

P2-Forbidden cycle V2.1-Forbidden cycle [2]

P3-Shield V3.1-Shield [53]

P4-Layers

V4.1-Basic Layers [2, 9]

V4.2-By-passed Layers [2]

V4.3-Not By-passed Layers [2, 9]

V4.4-Client-Server Layers [2]

V4.5-Filtered Layers [2]

P5-Pipes & Filters

V5.1-Basic Pipes and Filters [2, 9]

V5.2-By-passed Pipes and Filters [2]

V5.3-Pipeline [2, 9]

V5.4-Layer-structured Pipes and Filters [2]

V5.5-Data sharing Pipes and Filters [2]

P6- Shared Repository
V6.1-Basic Shared Repository [2, 9, 11]

V6.2-Layer-structured Shared Repository [2]

P7-Microkernel
V7.1-Basic Microkernel [2]

V7.2-Microkernel with Broker [2]

P8-PAC V8.1-PAC [2, 9]

P9-Indirection Layer V9.1-Indirection Layer [2]

P10-Client-Server

V10.1-Basic Client-Server [2, 9, 11]

V10.2-Client-Server with Broker [2]

V10.3-Client-Server with Microkernel [2]

P11-MVC V11.1-MVC [2, 9]

P12-Proxy V12.1-Proxy [2, 9]

P13-Broker V13.1-Broker [2, 9]

P14-Façade V14.1-Façade [53, 46]

P15-Legacy Wrapper V15.1-Legacy Wrapper [11]

P16-Data-centered Pipes and
Filters

V16.1-Data-centered Pipes and Filters [11]

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

68 Chapter 6. Empirical evaluation

tures

Hypothesis 2 Most of composed patterns can be reconstructed from other patterns by adapting
their constituent patterns

The next two sections aim at validating these two hypotheses.

6.1.2 Traceability

We first counted the number of pattern variants from which the structure can be deduced by
merging other patterns. The counting process is semi-automatic. First, beginning with pattern
variant descriptions from different sources we can form a graph of pattern relationship. Each
node of this graph represents a pattern and an arc between two nodes represents the compo-
sition relation between two patterns. Next, the graph is used to count pattern variants and the
frequency of composition. Figure 6.1 shows that a large number of pattern variants (19 over 28)
can be composed from other variants. The number of constituent patterns equals zero means
that the variant is at the primitive level or it is a monolithic pattern. An example of this could
be the Shield architectural primitive (V3.1) which is a fundamental modeling element to build
more complex pattern. A variant which is composed from only another pattern represents the
situation in which one or several elements of the pattern are structured by combining with an-
other pattern. For instance, a variant of the Pipes and Filters pattern is the case where the Filter
is internally structured by a Layers pattern (V5.4). This variant is in fact formed by the com-
bination of the Filter component and the entire Layers pattern. Finally, being composed from
two other patterns means that the pattern encompasses the two constituent patterns taking into
consideration overlapped elements. For example, in the Data-sharing Pipes and Filters variant
(V5.5), the Pipes and Filters pattern (V5.1) is combined with the Shared Repository pattern
(V6.1) by overlapping Filter components and Data accessor components. As we can observe,
19 over 28 variants, which is equivalent to 67.86% of the variants, can be composed from at
least another pattern. This partially explains the need of tracing back constituent patterns for a
given pattern variant.

We then evaluated the frequency of using a given pattern to compose the other ones. There-
fore, another question about the traceability is what is the probability to trace back to the same
pattern in different cases of pattern composition? To address this issue, we counted all cases
of pattern composition that can be performed by using a variant. Figure 6.2 shows that 11 over
28 pattern variants, which is equivalent to 39.29%, can be used in at least one composition of
pattern. Especially, two pattern variants of the Pipes and Filters pattern and the Layers pattern
(V1.4.1 and V1.5.1) are used in six compositions of other pattern variants. For the latter, this
is explained by the fact that the Layers pattern is often used to construct the internal structure
of other patterns. Similarly, the Pipes and Filters pattern is often integrated with other patterns
to form different variants such as Pipeline (V5.3), Data-sharing Pipes and Filters (V5.5), ect.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.1. Empirical evaluation for pattern composition approach 69

Figure 6.1: Most of pattern variants can be composed from other variants

In average, a given pattern variant can be found in 1.14 compositions of patterns. Thus, this
reinforces our hypothesis on the need to trace back the constituent patterns.

6.1.3 Reconstructability

In our approach, reconstructability is defined as the ability to create another pattern from
an existing one just by reusing a part of it and its merging operators. We found that this
phenomenon often occurs in the composition with different variants of the same pattern. Pattern
variants share the characteristics of the pattern definition, only a part of the structure differs
from one to another. Thus, reconstructing a composed pattern boils down to keeping one
constituent pattern structure, replacing the variant-related structure by another appropriate one
and reapplying the merging operators. An example of the reconstruction is the variant V5.4 of
the Pipes and Filters pattern where the Filters are internally structured by the Layers pattern.
This variant is in fact the composition of the Pipes and Filters pattern and the Layers pattern.
There exist totally five variants of the Layers pattern which leads to the possibility to have five
composed patterns. Reconstructing a composed pattern from another one is in fact the matter
of replacing different variants of the Layers pattern during the composition process as shown
in Figure 6.3. Indeed, the Layers pattern exists in different variants and switching among them
during the composition produces different composed pattern variants.

Taking this remark into account, in order to evaluate the interest to have the pattern recon-
struction possibility, for each pattern variant we applied the approach and measured how many
other variants can be built from it. Figure 6.4 shows for each composed pattern, the number of
possible reconstructions.

The variants chosen to participate in this evaluation are those created from the composition

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

70 Chapter 6. Empirical evaluation

Figure 6.2: Frequency of composing a pattern variant

of at least two patterns which reduces the dataset to 13 variants. The primitive variants are
excluded since they are not the products of any composition process. As we can observe from
Figure 6.4, 54% of the chosen variants (7 out of 13 variants), involve in at least two recon-
structions. In particular, the variant Data-centered Pipeline (V5.1), which is the composition
of the Pipes and Filters pattern and the Shared Repository pattern, involves in 10 reconstruc-
tions. This is explained by the fact that there exist 5 variants of Pipes and Filters and 2 variants
of Shared Repository. Thus, 10 possible compositions can be made by switching Pipes and
Filters variants and Shared Repository variants respectively. Thus, this result shows that the
reconstruction may concern a reasonably large cases of pattern composition.

6.1.4 Discussion

In our study we do not consider the combination of variants from the same pattern defini-
tion. The combined variant, if existed, would capture the characteristics of constituent variants.
For instance, there may exist a combination of the Layer-Structured Pipes and Filters pattern
(V5.4) and the Pipeline pattern (V5.3). The combined pattern would be a Pipes and Filters
pattern that does not allow cycles among Filter components and all the Filter components are
internally structured by the Layers pattern. Despite of the feasibility of this kind of combina-
tion, we have not been able to find any related work mentioning it. Thus, the combinations of
variants of the same pattern definition were excluded from our study.

We only studied the reconstruction of pattern variants of the same pattern definition. How-

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.1. Empirical evaluation for pattern composition approach 71

Figure 6.3: Reconstructability of composed pattern by switching between different variants of
constituent patterns

ever, we do not exclude the ability to reconstruct a variant of a pattern definition using a variant
from a different pattern definition. This situation does not exist within the scope of the archi-
tectural patterns collected in our study. Nevertheless, it may exist in an extended dataset using
a broadened library of patterns.

6.1.5 Threats to validity

Our study is concerned by internal and external threats to validity.
Internal validity: The determination of pattern composition could be biased by the fact

that the researchers participating in the pattern composition detection process already know
about the pattern composition operators. Moreover, architectural primitives or unit patterns
are sometimes implicitly described in patterns’ specification and we risk having some of them
undiscovered. We mitigated these risks by having pattern compositions discovered by differ-
ent members and making sure that pattern composition specifications are drawn from many
different sources. Thus, the correctness of our catalogue about pattern composition is assured.

External validity: All the architectural patterns used in our study and their variants are
mainly collected from existing work in the literature. Although a wide spectrum of architectural
patterns is covered, the study cannot generalize the effect of our approach in the support of
pattern composition in general, considering the flexibility and customizability of patterns [9].
Indeed, many patterns capture existing experience that are specific to certain projects, software

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

72 Chapter 6. Empirical evaluation

Figure 6.4: Frequency of composed pattern reconstruction by reusing merging operators

systems or companies. However, the more patterns, the more crowded the variants and thus the
more likely the approach has effect.

6.2 Empirical evaluation for StAD documentation approach

The main contribution which lies behind our work is the documentation of pattern-centric
StADs which maintains both the existence of StADs and their structural consistency. For
this purpose we defined a general pattern definition language that can be switched from one
paradigm to another. Thus, to evaluate our approach, we first show the expressiveness of our
pattern definition language in two different paradigms. Then we show the effectiveness of
StADs’documentation and their completeness in terms of existence and structural consistency.

6.2.1 Application of pattern definition language

To evaluate the support of multi-paradigms, we collected patterns from two different paradigms,
namely SOA and Component-Based Architecture (CBA), and see how our pattern definition
language can support them. There are two criteria upon which patterns are chosen to be for-
malized. The first one is that the pattern’s vocabulary cannot extend beyond the concepts
supported by the corresponding ADL. The second one concerns the scope of the pattern. We
limit selected patterns to the structural aspect, other patterns are considered to be out of scope.

6.2.1.1 SOA patterns

We have examined the SOA patterns from [46] that are summarized in table 6.2. In that
table we reused the categorization of patterns given in [46]. Among the 80 identified patterns
there are up to 50 patterns focusing on the aspect of service management. Examples of service

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.2. Empirical evaluation for StAD documentation approach 73

management patterns are those concern how to physically centralize or decentralize services,
how to determine the boundary of service logic, etc. These patterns in fact do not directly
concern the structural aspect of the architecture. Therefore, they cannot be formalized using
concepts from the ADL.

Table 6.2: Categories of SOA Patterns from [46]

Pattern category Patterns
Architectural

patterns
Formalized
patterns

Patterns with
architecture

scope
constraints

Service
inventory

design patterns
24 10 5 0

Service design
patterns

35 16 16 2

Service
composition

design patterns
23 6 6 2

Total 82 32 27 4

As we can observe in the Table 6.2, among the remaining 32 architectural patterns there
are ones based on architectural concepts that are not supported yet by Service-Oriented ADLs
such as service inventory, service layer, etc. This explains why only 27 patterns are formalized
using our approach (“Formalized patterns” column). Most of the formalizable patterns fall
into the Service design pattern category. Indeed, patterns in this category are good practices in
service organization, encapsulation, implementation, governance‚Ä¶ and therefore, suitable to
be architecturally formalized. The column “Patterns with architecture scope constraints” gives
the number of patterns holding at least one constraint with architecture-scope. Only 4 patterns,
among the 27 formalizable ones, fall in this case.

6.2.1.2 CBA patterns

To support the design of CBA patterns, starting from the SOA pattern meta-model (see
Section 4.3), we switched the structural part to another one that conforms to CBA patterns.
Figure 6.5 shows the CBA pattern meta-model. More specifically, this structural part consists
of the set of architectural elements: component, connector, port and role. This set of elements
is in fact the necessary design vocabulary for architectural pattern as pointed out in [33, 11].
Switching from the SOA pattern meta-model to the CBA pattern meta-model is in fact the
matter of disconnecting the structural part of the former and connecting the structural part of
the latter. More specifically, connecting the CBA meta-model to the pattern part consists in i)

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

74 Chapter 6. Empirical evaluation

Adding the inheritance relationship between two meta-classes SimpleElement and Composi-
teElement (CBA part) and the Element meta-class (Pattern part) and ii) Adding a composition
relationship between the CompositeElement meta-class (CBA part) and the Element meta-class
(Pattern part). Thus, the switching is realized without any modification in the pattern part of
the general pattern meta-model.

Figure 6.5: General CBA pattern meta-model

Using this adapted pattern language, we have tried to model the CBA pattern catalogue
described in [2]. Table 6.3 shows the examined patterns assigned to different viewpoints.

As we can observe, we have been able to model 14 patterns (Column Structural patterns)
out of the total 24 patterns (Column Pattern). Our pattern definition language focuses on the
structural aspect of architectural patterns. Thus, the patterns concerning the behavioural aspect
are not formalized in our study. Representatives of behavioural patterns can be those dealing
with invocation mechanism, runtime events, etc. None of the 14 formalized patterns contain a
constraint with architecture scope.

The reader can find a complete list of formalized patterns in two paradigms SOA and CBA
in Appendix B and Appendix C.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.2. Empirical evaluation for StAD documentation approach 75

Table 6.3: Categories of architectural patterns from [2]

Architectural
view

Pattern
Structural

pattern

Pattern with
architecture

scope
constraints

Layered view 2 2 0

Data flow view 2 1 0

Data-centered
view

3 3 0

Adaptation
view

3 2 0

Language
extension view

3 0 0

User interaction
view

3 3 0

Component
interaction view

5 2 0

Distribution
view

3 1 0

Total 24 14 0

6.2.2 StAD documentation

The following discusses the effectiveness and the completeness of our support for StAD
documentation. We first introduce the materials used in our study and then go into details of
experimental results.

6.2.2.1 Experimental materials

We empirically evaluated our approach with 8 architectural models. These models vary in
terms of size and domain. They are gathered from different sources in the literature. These
models as well as the applied patterns can be found in Appendix D. We choose Acme as the
ADL to depict these models in this experiment but as we stated in Subsection 5.2, it is feasible
to change to another ADL since the pattern meta-model is language independent. In Acme, an
architecture is described using elements such as component, connector, port, role, representa-
tion, attachment, etc. among which components and connectors play the most crucial roles.
Thus, the size of model is expressed according to three types of measurements: first, by the
number of all elements, second, the number of components and third, the number of connec-
tors. Figure 6.6 shows the sizes of the models in terms of model elements, components and

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

76 Chapter 6. Empirical evaluation

connectors. They differ from small models (49 elements, 7 components and 6 connectors) to
big models (287 elements, 34 components and 36 connectors). The models cover different do-
mains, from source code management systems, digital publishing systems to software product
line middlewares, etc.

Figure 6.6: Size of 8 Acme architectural models in terms of model elements, components and
connectors

One important criterion in choosing these models is that they must focus on the application
of architectural patterns in their design. All of the chosen models are indeed designed using
architectural patterns from different paradigms such as Enterprise Integration, SOA, etc. On
average, there are two patterns applied per model.

6.2.2.2 Modeling effort and StAD violation detection

We present in this section a quantitative evaluation on the modeling effort of using our
approach and how this effort is paid off through the detection of StAD violation. As we can
recall from section 4.3, the advantage of using mappings is twofold: i) They serve as the bridge
between the architectural model and the pattern and thanks to this, the pattern language is in-
dependent from any ADL; ii) They are a means to stock the decision of applying a pattern. The
question raised is how much effort do we afford to create these mappings for this aim. We count
the number of all mappings for each pattern applied in an architectural model and compare it
to the number of model elements to determine whether the mappings would not overwhelm the
architects. Figure 6.7 shows the size of mappings comparing to size of architectural models
in terms of components and connectors. We found that the number of mappings is in average
9.12 (between 3 and 22) and moreover, the average #mappings/#elements is 26.11%, which is

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.2. Empirical evaluation for StAD documentation approach 77

a reasonable number. In fact, seeing that mappings take part in the documentation of StADs,
the question of adding mappings or not can be considered as the trade-off of documenting a
StAD. This trade-off has been also discussed in [50, 55].

Figure 6.7: Size of mappings comparing to size of architectural models in terms of components
and connectors

The first benefit gained from our approach is the obtainment of simplified pattern views.
Pattern views serve as a filter of pattern-concerned elements from the architectural model. We
empirically evaluated whether pattern views help reduce a great number of non-related ele-
ments and thus, improve the understanding of the created StAD. Figure 6.8 shows the compar-
ison between the size of pattern view and the size of the architectural model where it is drawn
from. We can observe that most of the pattern views filter out less than 30% of model elements.
Two exceptions are the first pattern view of BRM (49 pattern view elements over 73 model el-
ements, equivalent to 67%) and the second view of DPS (91 pattern view elements over 179
model elements, equivalent to 51%). The reasons for this is that the BRM architecture is con-
structed using Layers pattern as the basic principle. Thus, most of the elements participate in
the Layers pattern view. Similarly, most of the components in the DPS architecture play the
role of Data accessors in the Repository pattern. If we consider all pattern views, pattern view
elements are about 25% of the total number of elements in average.

The second benefit of our approach is a complete mechanism of StAD violation detections.
Our approach emphasizes the combination of mapping models and pattern models in docu-
menting a StAD. Indeed, mapping models and pattern models together maintain the existence
of the StAD and its structural consistency. The absence of one of these two artefacts will lead
to an incomplete StAD and thus, undetected violations. To confirm this remark, we make the
architectural models evolved and see if we can detect the violations in two cases: i)without

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

78 Chapter 6. Empirical evaluation

Figure 6.8: Size of pattern view comparing to size of architectural models

mapping models and ii)without pattern models.
An evolution of an architectural model can fall into two cases: deletion and addition of

elements (modification is the combination of these two operations). We do not have architects’
participation to set up real-life scenarios which involve only meaningful evolutions. Instead,
we randomly seed deletion and addition of architectural elements.

Table 6.4 shows the result in the case we delete architectural elements. Theoretically, if N
= Nb of components + Nb of connectors, then the total number of combinations of possible
deletions is

N

∑
k=1

(
N
k

)
= 2N−1 (6.1)

This is in fact the sum of every combination of components and connectors. If we take the
case of the biggest model (34 components and 36 connectors), this sum is up to around 1021

possible deletions. This will create an exponential explosion. Among these possibles cases,
we only need to deal with those that lead to a model conforming to the concerned meta-model.
One chosen criterion is to exclude those when the components are deleted but their associated
connectors remain. It of course makes no sense of a deletion to leave a dangled connector in the
model. Concretely, we choose a subset of meaningful deletions which contains the union of the
combinations of connector-related deletions and the combinations of component-related dele-
tions including surrounding connectors. Taking this condition into consideration, the number of
possible deletions is reduced significantly and is reported in the column 2 (Nb of combinations
of meaningful deletions) of Table 6.4. Particularly, the DPS model has up to 68719478782

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.2. Empirical evaluation for StAD documentation approach 79

Table 6.4: Deletion of architectural elements

Model

Nb of
combinations

of
meaningful
deletions

Nb of
pattern-
related

deletions

Nb of
detected

violations
by

mapping

Nb of
detected

violations
by pattern

Nb of
detected

violations
by our

approach

BRM 157 22 22 16 22

DPS 68719478782 776 776 518 776

JITC 258 32 32 22 32

BTS 3076 30 30 21 30

GCC 4606 10 10 7 10

JBoss 271336 426 426 364 426

Vistrails 190 20 20 14 20

CoCoME 488 460 460 327 460

possible combinations of deletion because its architecture resembles to that of a strongly con-
nected graph where each component has connectors to many other components. Among these
deletions, those concerning the application of pattern continue to be filtered out (column Nb of
pattern-related deletions). All of these deletions violate the StAD about using pattern (detected
by mapping models or pattern models). It is clear that 100% violated pattern-related deletions
can be detected by mapping models (column Nb of detected violations by mapping) because
the latter binds to every element concerning the former. What is noticeable is that there are a
certain number of pattern-related deletions that can not be detected by pattern models. As we
can observe from the column 5 (Nb of detected violations by pattern), the number of detected
violations by pattern models is lower than the total pattern-related violations. In average, 72%
of pattern-related violated deletions can be detected by pattern models and the rest 28% can
not be detected. The undetected cases of violation by pattern are shown in Appendix E. One
example of these could be the case when the first or the last Filters in the Pipes And Filters are
deleted. In this case, the remaining Filters and Pipes would make a perfect Pipes And Filters
pattern without knowing that some Filters and Pipes have been deleted. In other words, the
decision about using the Pipes and Filters pattern has been affected while the pattern model
itself cannot recognize it. Another example is the case when the entire pattern (whatever pat-
tern) is deleted. The pattern model is useless since its instances disappeared, leaving the task of
keeping track of the decision of using pattern to mapping model. Our approach (last column)
detects all violations that were detected by mapping models.

Table 6.5 shows the result in the case we add elements to the architectural models. Since we
focus our evaluation on architectural patterns, where the most significant modifications happen

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

80 Chapter 6. Empirical evaluation

Table 6.5: Addition of architectural elements

Model
Nb of total
additions

Nb of
pattern-
related

additions

Nb of
detected

violations
by

mapping

Nb of
detected

violations
by pattern

Nb of
detected

violations
by our

approach

BRM 30 6 0 3 3

DPS 55 39 0 0 0

JITC 30 9 0 3 3

BTS 57 8 0 5 5

GCC 36 3 0 3 3

JBoss 145 52 0 30 30

Vistrails 21 6 0 3 3

CoCoME 44 34 0 24 24

at a coarse granularity level (component and connector), we consider only additions of com-
ponent and connector. Among them, we continue to limit the additions to those of connectors
between existing components (the combinations of addition are not taken into consideration).
The reason for this limitation is that unlike the case of deletions where the number of simulated
deletions are finite (seeing that the number of existing elements is fixed), the number of addi-
tions is infinite (seeing that we can arbitrarily add elements to the architecture). Besides, the
change of an element’s definition (name, type, etc.) is considered as the deletion of the element
and the addition of a new element (old element with its new definitions). Thus, we took the
most basic cases of deletion 1. The number of the possible additions is reported in column 2
(Nb of total additions). Only a part of these additions relates to patterns. These pattern-related
additions are shown in column 3 (Nb of pattern-related additions). Column 4 (Nb of detected
violations by mapping) shows that none of the violated additions can be detected by mapping.
This is true because the integrity of mapping models is always maintained despite of any ad-
dition and thus no violation can be detected. Otherwise, the additions that affect the structural
consistency of the applied pattern will be detected by pattern model. As shown in column 5 (Nb
of detected violations by pattern), pattern models can detect a part of violated pattern-related
additions. In average, 53% of pattern-related additions are violated and detected by pattern
models. The violated cases of addition are shown in Appendix E. One example of them could
be when we add a Pipe between two distant Filters to create a cycle which is not permitted in
Pipes and Filters pattern. Our approach (last column) detects all violations that were detected
by pattern models.

1This is also discussed as a threat to validity in Section 6.2.2.3

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.2. Empirical evaluation for StAD documentation approach 81

The two above experiments show that depending on the applied patterns, there are viola-
tions that can only be detected by the mappings but not by the pattern model and vice-versa.
This is also the point that makes our approach stand out from the existing works which focus
either only on the existence of AD’s element or the structural consistency of AD’s element.
We combine both mapping, which assures the existence of AD’s element, and pattern model,
which assure the structural consistency of AD’s element, to verify StAD and thus, all violations
are detected.

For the purpose of providing enough information to replicate the evaluation, in the follow-
ing we go to some details with examples about the evaluating process as well as the measure-
ments. Considering the case of the first evaluation (e.g. the deletion seeding evaluation), we
first proceed with the measurement of the number of combination of meaningful deletions of a
model. A meaningful deletion is one that involves either a connector or a component and does
not leave a dangled connector. Since a connector is always connected to two components, the
deletion of a single component will always leave at least one connector dangled. Thus, a mean-
ingful deletion of a component must affect all of its connectors. Figure 6.9 shows an example
of a simple architectural model (on top of the figure) with three components: Comp 1, Comp 2
and Comp 3 and two connectors: Con A, Con B. On the bottom right of the figure is a meaning-
ful deletion, in which Comp 2 and its associated connector Con A are removed respectively. At
the bottom, in the middle is the case when Comp 1 and its surrounding connectors Con A and
Con B are deleted. Finally, the bottom left of the figure is the case when Comp 3 and Con B are
deleted. From these 3 cases of component deletions we can create 7 combinations of compo-
nent deletions (e.g. three 1-combinations, three 2-combinations and one 3-combination). Plus,
from two cases of connector deletions, we can create 3 combinations of connector deletions
(e.g. two 2-combinations and one 1-combination).

Figure 6.9: Example of meaningful deletions

Thus totally we can create 10 different combinations of deletions (e.g. 3 combinations of
connector deletions and 7 combinations of component deletions). On the contrary, if we take

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

82 Chapter 6. Empirical evaluation

all possible deletions (of components and connectors) into consideration, there are up to 31
combinations of deletions (e.g. from 1-combinations to 6-combinations). This is to see how
the filter reduces the number of possible deletion combinations.

Next, two scenarios are set up: the first one only involves mappings in violation detection
and the second one only involves pattern model. First, let us assume that our example is a
Client-Server pattern where Comp 1 is the Server and Comp 2, Comp 3 are the Clients. In the
first scenario, every element in the model is mapped to the AD. Thus, every deletion of mapped
element is considered a violation. For instance, in our example, the deletion of Comp 2 and Con
A will be counted as a violation since both of them have been mapped. Thus, three of possible
deletion combinations will be detected as violation. In the second scenario, pattern-related
elements are directly assigned with roles and the conformance is checked against a pattern
meta-model. For instance, the deletion of Comp 1 will trigger a violation since the pattern
constraint is not assured. However the deletion of Comp 2 and Con A will not be detected as
a violation since the rest of the model (e.g. Comp 1, Con B and Comp 3) will make a perfect
Client-Server pattern. Among the three combinations of deletion, only one is detected (the case
when Comp 2, Comp 3, Con A, Con B are all deleted and leave no Clients) with the pattern
meta-model. Our approach combines these two ways of detecting deletion violation and thus,
can detect three cases of violation.

Algorithm 6 The evaluation algorithm
Require: Model M
1: Set of meaningful connector deletions SetConDels←{} // An empty set of deletions of connectors
2: Set of meaningful component deletions SetCompDels←{} // An empty set of deletions of components
3: for all Element e ∈M.elements do
4: if e is Connector then
5: SetConDels← e // Add the Connector in question to the set of meaningful connector deletions
6: end if
7: if e is Component then
8: Set of related elements SetEles← getRelatedElements(e) // Derive a set of the Component

and its surrounding Connectors
9: SetCompDels← SetEles // Add the the set of Component-related elements in question to the

set of meaningful deletions
10: end if
11: end for
12: Set of meaningful deletion combinations SetDelCombs ← getCombinations(SetConDels) ∪

getCombinations(SetCompDels) // Derive the set of combinations of meaningful deletions of
connectors and components

13: for all Set s∈ SetDelCombs do // From each combination, perform the deletions and verify the model’s
conformity

14: Perform the deletions based on s
15: Verify the conformity of the model using mappings
16: Verify the conformity of the model using pattern
17: Verify the conformity of the model using mappings and pattern
18: end for

Algorithm 6 shows the skeleton of the evaluation process. From an architectural model,
we try first to determine the set of meaningful connector deletions. Next, we determine the

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

6.3. Summary 83

set of meaningful component deletions (for each given component taking into consideration
surrounding connectors). Then thanks to a combination generation algorithm2, we obtain a set
of combinations of meaningful connector deletions and a set of combinations of meaningful
component deletions. Note that we do not generate all combinations of these two sets because
it will create an exponential explosion. Instead, we make a union of these two sets to get a
set of meaningful deletions. For each combination of meaningful deletions we apply to the
model and verify its conformance using mappings, pattern and both, respectively. Note that
the manipulation of model and its elements, and the measurement are done thanks to EMF and
its accompanied technologies. We do not show an example of addition seeding and violation
detection here but the set-up and applying scenarios remain the same.

6.2.2.3 Threats to validity

This section discusses the study’s various threats to validity.
Internal validity: Internal validity is the degree to which conclusions can be drawn about

the causal effect of independent variables on the dependent variable. In the case of seeding
deletion operations, our independent variable is the effect of detecting violations with/without
our approach. Similarly, the same measurement is performed in the case of seeding addition
operations. We excluded meaningless deletions to reduce the number of treated deletions.
However, in case of meaningful deletions and meaningless deletions mixed together, the ap-
proach can take more effect. Another point worth mentioning is that we also chose to separate
these two independent variables to highlight the drawbacks of using mapping models or pattern
models independently. However, in case of seeding deletions and additions one after another,
the effect of one independent variable can affect the other one and vice versa.

External validity: In the study, we simulate the architecture’s evolution by seeding mod-
ifications (deletions and additions). Except for deletion operations when we can determine
all possibilities of deleting elements in a model, the addition operations are unpredictable. In
the study we treated only additions of connectors between components because the number of
these additions is finite. Moreover, deletions and additions are not the only cases of architecture
evolution, there are also other types of evolution at the finer granularity level, e.g. elements can
be renamed, a connector can change type, and so on. Thus, this experiment cannot generalize
the effect of our approach in the evolution of architecture in general. However, the more cases
of evolution, the more likely StAD violations are detected by mapping models and pattern
models, and thus the more likely the approach has effect.

6.3 Summary

This chapter presented the setup, the process and the result of two empirical evaluations.
Basically, they aim at proving the applicability of the two mainstream approaches of the thesis:

2We use the Sets.powerSet method in Guava library

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

84 Chapter 6. Empirical evaluation

the documentation of StAD and the composition of pattern thanks to first-class merging oper-
ators. The former consists of seeding architectural modifications in a set of models to show
the advantage of the approach comparing to existing ones. The latter consists of building a
catalogue of patterns by leveraging first-class status merging operators and showing their ben-
efits. The first evaluation has shown the need for traceability and reconstructablility in pattern
composition (which is supported by our approach thanks to documented merging operators).
The second evaluation has shown that combining pattern model and mappings is the complete
way to detect StAD violation and to avoid missing StAD violation. However, both evalua-
tions still need further validation about its potential extra cost and the acceptance by architects.
COMLAN is only applied on a predefined catalogue of well-known patterns, its applicability
in reality is not yet validated. Similarly for ADManager, changes in architectural model is
simulated by seeding addition and deletion. Thus, real case scenarios still need to involve to
complete the validation.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

7
Conclusion

This thesis directly deals with two domains: the verification of StAD consistency and the
composition of pattern. To address the issue of additional costs caused by the non-explicitness
of the ADs, we proposed a solution where the ADs are not only explicit, but also first-class
elements in the architecture definition. We specifically focused on ADs about the application
of patterns, especially about the use of patterns as solution of structural ADs (StAD). We have
shown that the documentation of StADs about the application of patterns should focus on two
aspects: the existence of related elements and the structural consistency of the applied patterns.
They are complementary aspects and both of them must be considered in evaluating StADs.
We pointed out that existing works focus on either one of these two aspects and thus do not
detect all possible StAD violation. Our approach aims at leveraging the combination of map-
ping models and formalized architectural pattern models. This combination brings two major
advantages: i) it increases the level of AD reuse during the design stage, ii) it allows to au-
tomate the checking of the existence of ADs that must be maintained after the architecture’s
evolution. More importantly, we empirically show that this is the more complete way compar-
ing to related work to detect StAD violation. We have implemented our approach through a
pattern definition language, a process and a tool to automate the checking of the architecture’s
consistency, with respect to the concerned ADs, during its evolution.

We used MDA, an important approach in model-based software development, to apply our
proposal. Models are often used to describe architecture thanks to their high level of abstraction
and technology independence. The latter has helped us to make a clear separation between the
concepts specific to patterns and those specific to the architecture. This separation aims at mak-
ing our pattern description language easily adaptable to various ADLs of different paradigms
as shown through our empirical evaluation. Other benefits include the conformance checking
of the architecture with respect to certain patterns thanks to model validation and the extraction
of views targeting the concerned patterns thanks to model transformation.

With our approach architects can build their own library of patterns representing some of its
accumulated best practices. However, if one uses different ADLs with different paradigms, or
decides to move to an other paradigm, it will take an effort to redefine all existing patterns to fit
the new paradigm. There are often common patterns in different paradigms. For instance, the

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

86 Chapter 7. Conclusion

pattern Pipes and Filters can be found in different paradigms. In SOA, we can cite the example
of the free online service Yahoo pipe 1. In CBA, the architecture of Vistrails architecture
presented in Chapter 3 is a good example. This is a limitation in our approach of pattern
description. A solution to this limitation would be to describe, in a generic manner, patterns
that do not rely on a particular paradigm. Then, provide a means for their projection in each
paradigm to avoid the redefinition of pattern. This is one of the perspectives of the thesis.

The use of patterns, when building architecture, has a twofold interest: the use of proven
solutions to recurring problems, but also the support for documenting architectural choices.
To address the need of documenting pattern-related ADs, especially the ones involving many
patterns, we propose a language (COMLAN) for describing architectural patterns and their
compositions. This language has the particularity to make explicit the pattern composition
operators and the constituent patterns. Making these elements explicit allows us to trace back
constituent patterns and in case of changes this way allows the propagation of changes to the
composed pattern. Through an empirical study we have shown the importance of these two
features for better managing the evolution of architectures.

The use of MDA by our approach not only facilitates the refinement of patterns through
the use of transformation models, but also simplifies the definition of the COMLAN language
through the use of meta-modeling. Thus we were able to define a meta-model for COMLAN
where concepts directly related to the architecture aspect are clearly separated from those re-
lated to the pattern aspect. This separation allows an easy adaption of COMLAN to different
ADLs, independently of the underlying paradigm (component, service, etc..).

Our pattern description language covers structural aspects of architectures. Thus, patterns
that are based on behavioural aspects of an architecture are not supported in our language. Fu-
ture planned work is to extend our pattern description language to cover also the behavioural
aspects of architectures. We found that most of works about the pattern behavioural aspect
are based on a variety of behavioural specification mechanisms supported by UML such as
automata, petri-net like graph, partially-ordered sequences of event occurrences. These mech-
anisms are specified through UML diagrams such as state chart, activity, interaction. Thus,
elements on pattern languages are normally adapted from those of UML behavioural diagrams.
Similarly to these existing pattern languages, our intention is to integrate to COMLAN be-
havioural elements adapted from UML diagrams. However, the main purpose of integrating
the behavioural definition in COMLAN is to support composition. Therefore, there is still
work to be done regarding the composition of behavioural aspects in pattern languages.

1https://pipes.yahoo.com/pipes/

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Bibliography

[1] Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon,
School of Computer Science, 1997.

[2] Paris Avgeriou and Uwe Zdun. Architectural patterns revisited ‚Äì a pattern language. In
In 10th European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee,
pages 1–39, 2005.

[3] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice (2nd
Edition). Addison-Wesley Professional, 2003.

[5] Ian Bayley and Hong Zhu. On the composition of design patterns. In Proceedings of
the 2008 The Eighth International Conference on Quality Software, pages 27–36. IEEE
Computer Society, 2008.

[6] Michael Beisiegel, Henning Blohm, Dave Booz, Mike Edwards, Oisin Hurley, S Ielceanu,
A Miller, A Karmarkar, A Malhotra, J Marino, et al. Sca service component architecture-
assembly model specification. Open Service Oriented Architecture www. osoa. org/down-
load/attachments/35/SCA_Assembly_Model_V100. pdf, 2007.

[7] Jan Bosch. Design and use of software architectures: adopting and evolving a product-
line approach. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[8] Amy Brown and Greg Wilson. The Architecture Of Open Source Applications. lulu.com,
2011.

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chich-
ester, UK, 1996.

[10] Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C. Dueñas. A web-based tool for
managing architectural design decisions. SIGSOFT Softw. Eng. Notes, 2006.

[11] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo
Merson, Robert Nord, and Judith Stafford. Documenting Software Architectures: Views
and Beyond (2nd Edition). Addison-Wesley Professional, 2010.

[12] Constanze Deiters and Andreas Rausch. A constructive approach to compositional archi-
tecture design. In Proceedings of the 5th European Conference on Software Architecture,
pages 75–82. Springer-Verlag, 2011.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

88 Bibliography

[13] Jing Dong. Representing the applications and compositions of design patterns in uml.
In Proceedings of the 2003 ACM Symposium on Applied Computing, pages 1092–1098.
ACM, 2003.

[14] M Elaasar and L Briand. An overview of uml consistency management. Carleton Uni-
versity, Canada, Technical Report SCE-04-18, 2004.

[15] Robert B. France, Dae kyoo Kim, Sudipto Ghosh, and Eunjee Song. A uml-based pattern
specification technique. IEEE Transactions on Software Engineering, pages 193–206,
2004.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Ab-
straction and reuse of object-oriented design. In ECOOP’ 93 - Object-Oriented Program-
ming, Lecture Notes in Computer Science, pages 406–431. Springer Berlin Heidelberg,
1993.

[17] David Garlan, Robert T. Monroe, and David Wile. Foundations of component-based
systems. chapter Acme: architectural description of component-based systems, pages
47–67. Cambridge University Press, 2000.

[18] Imed Hammouda and Kai Koskimies. An approach for structural pattern composition. In
Proceedings of the 6th International Conference on Software Composition, pages 252–
265. Springer-Verlag, 2007.

[19] Neil B. Harrison and Paris Avgeriou. Leveraging architecture patterns to satisfy quality
attributes. In Proceedings of the First European Conference on Software Architecture,
pages 263–270, 2007.

[20] ISO/IEC/IEEE 42010:2011. Systems and Software Engineering - Architecture Descrip-
tion. ISO, Geneva, Switzerland.

[21] A. Jansen, J. van der Ven, P. Avgeriou, and D.K. Hammer. Tool support for architectural
decisions. In Software Architecture, 2007. WICSA ’07. The Working IEEE/IFIP Confer-
ence on, pages 4–4, 2007.

[22] Anton Jansen and Jan Bosch. Software architecture as a set of architectural design deci-
sions. In Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture,
pages 109–120. IEEE Computer Society, 2005.

[23] Dong Jing, Yang Sheng, and Zhang Kang. Visualizing design patterns in their applications
and compositions. IEEE Transactions on Software Engineering, pages 433–453, 2007.

[24] Jung Soo Kim and David Garlan. Analyzing architectural styles. J. Syst. Softw., pages
1216–1235, 2010.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Bibliography 89

[25] Patrick Könemann and Olaf Zimmermann. Linking design decisions to design models in
model-based software development. In Proceedings of the 4th European Conference on
Software Architecture, pages 246–262. Springer-Verlag, 2010.

[26] Sacha Krakowiak. Middleware architecture with patterns and frameworks, 2007.

[27] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up and reasoning about
architectural knowledge. In Proceedings of the Second international conference on Qual-
ity of Software Architectures, pages 43–58. Springer-Verlag, 2006.

[28] Martin Küster. Architecture-centric modeling of design decisions for validation and trace-
ability. In European Conference on Software Architecture (ECSA), pages 184–191, 2013.

[29] Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. A systematic review of uml
model consistency management. Information and Software Technology, 51(12):1631 –
1645, 2009.

[30] Ioanna Lytra, Huy Tran, and Uwe Zdun. Supporting consistency between architectural
design decisions and component models through reusable architectural knowledge trans-
formations. In Proceedings of the 7th European Conference on Software Architecture,
ECSA’13. Springer-Verlag, 2013.

[31] Anders Mattsson, Björn Lundell, Brian Lings, and Brian Fitzgerald. Linking model-
driven development and software architecture: A case study. IEEE Trans. Softw. Eng.,
35(1):83–93, January 2009.

[32] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins.
Modeling software architectures in the unified modeling language. ACM Trans. Softw.
Eng. Methodol., pages 2–57, 2002.

[33] Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework
for software architecture description languages. IEEE Trans. Softw. Eng., pages 70–93,
2000.

[34] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executability
into object-oriented meta-languages. In Proceedings of the 8th international conference
on Model Driven Engineering Languages and Systems, pages 264–278. Springer-Verlag,
2005.

[35] O.M.G. Model-driven architecture. http://wwww.omg.org/mda.

[36] OMG. Object Constraint Language, OCL Version 2.3.1, formal/2012-01-01. Technical
report, OMG, 2012.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

http://wwww.omg.org/mda

90 Bibliography

[37] Flavio Oquendo. Pi-adl: an architecture description language based on the higher-order
typed pi-calculus for specifying dynamic and mobile software architectures. SIGSOFT
Softw. Eng. Notes, pages 1–14, May 2004.

[38] L. Sabatucci, A. Garcia, N. Cacho, M. Cossentino, and S. Gaglio. Conquering fine-
grained blends of design patterns. In Proceedings of the 10th International Conference
on Software Reuse: High Confidence Software Reuse in Large Systems, pages 294–305.
Springer-Verlag, 2008.

[39] Juha Savolainen, Juha Kuusela, Tomi Mannisto, and Aki Nyyssonen. Experiences in
making architectural decisions during the development of a new base station platform.
In Muhammad Ali Babar and Ian Gorton, editors, ECSA, Lecture Notes in Computer
Science, pages 425–432. Springer, 2010.

[40] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse modeling frame-
work. Addison-Wesley Professional, 2008.

[41] Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture model for design
traceability and reasoning. Journal of Systems and Software, pages 918–934, 2007.

[42] Minh Tu Ton That, S. Sadou, and F. Oquendo. Using architectural patterns to define
architectural decisions. In Joint IEEE/IFIP Working Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA), pages 196–200,
2012.

[43] Minh Tu Ton That, Salah Sadou, Flávio Oquendo, and Isabelle Borne. Composition-
centered architectural pattern description language. In Proceedings of the 7th European
Conference on Software Architecture. Springer-Verlag, 2013.

[44] Minh Tu Ton That, Salah Sadou, Flávio Oquendo, and Isabelle Borne. Preserving ar-
chitectural pattern composition information through explicit merging operators. Future
Generation Computer Systems, 2014. to appear.

[45] Minh Tu Ton That, Salah Sadou, Flávio Oquendo, and Régis Fleurquin. Preserving archi-
tectural decisions through architectural patterns. Automated Software Engineering, 2014.
to appear.

[46] Erl Thomas. SOA Design Patterns. Prentice Hall, 2009.

[47] Chouki Tibermacine, Régis Fleurquin, and Salah Sadou. Preserving architectural choices
throughout the component-based software development process. In Proceedings of the
5th Working IEEE/IFIP Conference on Software Architecture, pages 121–130, 2005.

[48] Chouki Tibermacine, Régis Fleurquin, and Salah Sadou. A family of languages for archi-
tecture constraint specification. J. Syst. Softw., pages 815–831, 2010.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Bibliography 91

[49] Chouki Tibermacine, Salah Sadou, Christophe Dony, and Luc Fabresse. Component-
based specification of software architecture constraints. In Proceedings of the 14th in-
ternational ACM Sigsoft symposium on Component Based Software Engineering, pages
31–40, 2011.

[50] J. Tyree and A. Akerman. Architecture decisions: Demystifying architecture. IEEE
Software, pages 19–27, 2005.

[51] Rob Wojcik, Felix Bachmann, Len Bass, Paul C. Clements, Paulo Merson, Robert Nord,
and William G. Wood. Attribute-Driven Design (ADD), Version 2.0. Technical report,
Software Engineering Institute, November 2006.

[52] Andrzej Zalewski, Szymon Kijas, and Dorota Sokolowska. Capturing architecture evo-
lution with maps of architectural decisions 2.0. In Proceedings of the 5th European Con-
ference on Software Architecture, pages 83–96. Springer-Verlag, 2011.

[53] Uwe Zdun and Paris Avgeriou. A catalog of architectural primitives for modeling archi-
tectural patterns. Inf. Softw. Technol., pages 1003–1034, 2008.

[54] Uwe Zdun, Paris Avgeriou, Carsten Hentrich, and Schahram Dustdar. Architecting as
decision making with patterns and primitives. In Proceedings of the 3rd international
workshop on Sharing and reusing architectural knowledge, pages 11–18, 2008.

[55] O. Zimmermann. Architectural decisions as reusable design assets. Software, IEEE,
pages 64–69, 2011.

[56] Olaf Zimmermann, Thomas Gschwind, Jochen Küster, Frank Leymann, and Nelly Schus-
ter. Reusable architectural decision models for enterprise application development. In
Proceedings of the Quality of Software Architectures 3rd international conference on Soft-
ware architectures, components, and applications, pages 15–32. Springer-Verlag, 2007.

[57] Olaf Zimmermann, Uwe Zdun, Thomas Gschwind, and Frank leymann. Combining pat-
tern languages and reusable architectural decision models into a comprehensive and com-
prehensible design method. In Proceedings of the Seventh Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2008), pages 157–166. IEEE Computer Society,
2008.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

92 Bibliography

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A
Architectural pattern composition catalogue

This appendix documents possible cases of architectural pattern composition. For each pat-
tern we show the source from which we study the pattern as well as a brief description about the
pattern. For the sake of simplicity, we do not document the context, the problem, the solution,
the implementation, known uses and consequences of pattern. Instead, we concentrate on the
structure of the pattern which plays an important role in our study about pattern composition.
Especially, for each combined pattern, we show the constituent patterns from which the pattern
is composed. For the pattern variant that is formed from other pattern variants, we only show
the source variants, the variant’s example itself can be deduced from the examples of source
variants.

A.1 Enabled Cycle Component [26, 2, 9]

The pattern states that not non-adjacent components can share their data through their con-
nectors. Figure A.1 shows an example of the Enabled Cycle Component pattern. Component
1 can be connected to Component 3 even though they are not adjacent (Component 2 in the
middle).

Figure A.1: Cycle enabled component

A.2 Forbidden Cycle Component [2]

The pattern states that only two adjacent components can share data through their connec-
tor, but not non-adjacent components. Figure A.2 shows an example of the Forbidden Cycle

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

94 Appendix A. Architectural pattern composition catalogue

Component pattern. Component 1 cannot be connected to Component 3 because they are not
adjacent (Component 2 in the middle)

Figure A.2: Forbidden Cycle Component pattern

A.3 Shield [53]

In this pattern, one or more components act as ’shields’ for a set of components that form
a subsystem. No client should be allowed to access members of the subsystem directly, but
access should happen only through these ’shields’. Figure A.3 shows an example of the Shield
pattern. Clients can only access to subsystems through shields. Direct access from a client to a
subsystem (for instance, from Client 3 to Subsystem 3) is forbidden.

Figure A.3: Shield pattern

A.4 Layers [2, 9]

We consider the most described Layers pattern in the literature as the Basic Layer variant
to distinguish from the other variants of Layers pattern.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.4. Layers [2, 9] 95

A.4.1 Basic Layer [2, 9]

In the Basic Layers pattern, the system is structured into Layers so that each layer provides
a set of services to the layer above and uses the services of the layer below. Figure A.4 shows
an example of the Layers pattern with three layers: Layer 1, Layer 2 and Layer 3

Figure A.4: Basic Layers pattern

A.4.2 By-passed Layers [2]

In this variant of Layers pattern, layers can be by-passed: higher-level layers access lower-
level layers without passing through the layer beneath. This variant is the composition of
two constituent patterns: the first pattern is Enabled Cycle Component (Section A.1) and the
second pattern is Basic Layer (Section A.4.1). The composition is formed by creating the new
element Cycle-enabled Layer through the overlapping of the Cycle-enabled Component in the
first pattern and the Layer in the second pattern. Figure A.5 shows an example of the By-
passed Layers pattern with three layers: Cycle enabled Layer 1, Cycle enabled Layer 2 and
Cycle enabled Layer 3. As we can observe, the Cycle enabled Layer 1 can access the Cycle
enabled Layer 3 by bypassing the Cycle enabled Layer 2.

A.4.3 Not by-passed Layers [2, 9]

In the pure form of the pattern, layers should not be by-passed: higher-level layers access
lower-level layers only through the layer beneath. This variant is the composition of two con-
stituent patterns: the first pattern is Forbidden Cycle Component (Section A.2) and the second
pattern is Basic Layer (Section A.4.1). The composition is formed by creating the new element
Cycle-forbidden Layer through the overlapping of the Cycle-forbidden Component in the first
pattern and the Layer in the second pattern. Figure A.6 shows an example of the Not by-passed

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

96 Appendix A. Architectural pattern composition catalogue

Figure A.5: By-passed Layers

Layers pattern with three layers: Cycle forbidden Layer 1, Cycle forbidden Layer 2 and Cycle
forbidden Layer 3. As we can observe, the Cycle forbidden Layer 1 cannot directly access the
Cycle forbidden Layer 3 because it cannot bypass the Cycle forbidden Layer 2.

Figure A.6: Not by-passed Layers

A.4.4 Client-Server Layers [2]

In this variant of Layers, two adjacent layers can be considered as a Client-Server pair,
the higher layer being the client and the lower layer being the server. This variant is the com-
position of two constituent patterns: the first pattern is Client-Server (Section A.10) and the
second pattern is Basic Layer (Section A.4.1). The composition is formed by creating two new
elements: The first new element Client Layer is formed through the overlapping of the Client
in the first pattern and the Layer in the second pattern. The second new element Server Layer
is formed through the overlapping of the Server in the first pattern and the Layer in the second
pattern. Figure A.7 shows an example of the Client-Server Layers pattern with two layers:
Client Layer and Server Layer. The Client Layer requests information or services from Server

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.4. Layers [2, 9] 97

Layer.

Figure A.7: Client-Server Layers

A.4.5 Filtered Layers [2]

In this variant of Layers, Pipes and Filters can be used for communication between layers,
if data flows through layers are needed. This variant is the composition of two constituent
patterns: the first pattern is Pipes and Filters (Section refsec1.5) and the second pattern is Basic
Layer (Section A.4.1). The composition is formed by creating one new element Filtered Layer
which is formed through the overlapping of the Filter in the first pattern and the Layer in the
second pattern. Figure A.8 shows an example of the Filtered Layers pattern with two layers:
Filtered Layer 1 and Filtered Layer 2. These two layers are connected using a Pipes and Filters
pattern. Except for Filtered Layer 1 and Filtered Layer 2, the three other filters are: Filter 1,
Filter 2, Filter 3.

Figure A.8: Filtered Layers pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

98 Appendix A. Architectural pattern composition catalogue

A.5 Pipes and Filters [2, 9]

We consider the most described Pipes and Filters pattern in the literature as the Basic Pipes
and Filters variant to distinguish from the other variants of Pipes and Filters pattern.

A.5.1 Basic Pipes and Filters [2][3]

In a Basic Pipes and Filters pattern a complex task is divided into several sequential sub-
tasks. Each of these sub-tasks is implemented by a separate, independent component, a Filter,
which handles only this task. Figure A.9 shows an example of the Pipes and Filters pattern
with three filters: Filter 1, Filter 2 and Filter 3.

Figure A.9: Basic Pipes and Filters pattern

A.5.2 By-passed Pipes and Filters [2]

In this variant of Pipes and Filters pattern, filters can be by-passed: filters can access non-
adjacent filters. This variant is the composition of two constituent patterns: the first pattern
is Enabled Cycle Component (Section A.1) and the second pattern is Basic Pipes and Filters
(Section A.5.1). The composition is formed by creating the new element Cycle-enabled Filter
through the overlapping of the Cycle-enabled Component in the first pattern and the Filter in
the second pattern. Figure A.10 shows an example of the Pipes and Filters pattern with three
filters: Cycle enabled Filter1, Cycle enabled Filter2 and Cycle enabled Filter 3. As we can
observe, the Cycle enabled Filter 1 can access the Cycle enabled Filter 3 by bypassing the
Cycle enabled Filter 2.

Figure A.10: By-passed Pipes and Filters

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.5. Pipes and Filters [2, 9] 99

A.5.3 Not by-passed Pipes and Filters (or Pipeline) [2, 9]

In this variant of Pipes and Filters pattern, only two adjacent filters can share data through
their pipe, but not non-adjacent filters. This variant is the composition of two constituent
patterns: the first pattern is Forbidden Cycle Component (Section A.2) and the second pattern
is Basic Pipes and Filters (Section A.5.1). The composition is formed by creating the new
element Cycle-forbidden Filter through the overlapping of the Cycle-forbidden Component in
the first pattern and the Filter in the second pattern. Figure A.11 shows an example of the Not
by-passed Pipes and Filters pattern with three filters: Cycle forbidden Filter 1, Cycle forbidden
Filter 2 and Cycle forbidden Filter 3. As we can observe, the Cycle forbidden Filter 1 cannot
directly access the Cycle forbidden Filter 3 because it cannot bypass the Cycle forbidden Filter
2.

Figure A.11: Not by-passed Pipes and Filters

A.5.4 Internally layer-structured Pipes and Filters [2]

In this variant of Pipes and Filters pattern, the Layers pattern can be used for structuring
the internal architecture of Filters. This variant is the composition of two constituent patterns:
the first pattern is Layers (Section A.4) and the second pattern is Basic Pipes and Filters (Sec-
tion A.5.1). The composition is formed by creating the new element Internally layer-structured
Filter through the overlapping of the entire first pattern the Filter in the second pattern. Fig-
ure A.12 shows an example of the Internally layer-structured Pipes and Filters pattern with
three filters: Internally layer-structured Filter 1, Internally layer-structured Filter 2 and Inter-
nally layer-structured Filter 3. All these three filters are internally structured by Layer archi-
tecture.

A.5.5 Data sharing Pipes and Filters [2]

In this variant of Pipes and Filters pattern, it can be combined with data-centered archi-
tectures like Shared Repository to allow for data-sharing between Filters. This variant is the
composition of two constituent patterns: the first pattern is Shared Repository (Section ref-
sec1.6.1) and the second pattern is Basic Pipes and Filters (Section A.5.1). In Figure A.13, the
composition is formed by creating the new element Internally layer-structured Filter through
the overlapping of the entire first pattern the Filter in the second pattern.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

100 Appendix A. Architectural pattern composition catalogue

Figure A.12: Internally layer-structured Pipes and Filters pattern

Figure A.13: Data sharing Pipes and Filters pattern

A.6 Shared repository [2, 9, 11]

We consider the most described Shared Repository pattern in the literature as the Basic
Shared Repository variant to distinguish from the other variants of Shared Repository pattern.

A.6.1 Basic Shared Repository [2, 9, 11]

In the Shared Repository pattern one component of the system is used as a central data
store, accessed by all other independent components. Figure A.14 shows an example of the
basic Repository pattern with three Data Accessors: Data Accessor 1, Data Accessor 2 and
Data Accessor 3.

A.6.2 Internally Layer structured Shared repository [2]

In this variant of Shared repository pattern, the Layers pattern can be used for structur-
ing the internal architecture of Repository. This variant is the composition of two constituent
patterns: the first pattern is Layers (Section A.4) and the second pattern is Basic Repository
(Section A.6.1). The composition is formed by creating a new element named Internally layer-
structured Repository which is formed through the overlapping of the entire Layers pattern and

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.7. Microkernel [2] 101

Figure A.14: Basic Repository pattern

the Repository in the Repository pattern. Figure A.15 shows an example of the Internally Layer
structured Shared repository pattern with 3 Data accessors: Data accessor 1, Data accessor 2
and Data accessor 3. The Repository is internally structure by a Layers pattern with 3 layers.

Figure A.15: Internally Layer structured Shared repository pattern

A.7 Microkernel [2]

We consider the most described Microkernel pattern in the literature as the Basic Micro-
kernel variant to distinguish from the other variants of Microkernel pattern.

A.7.1 Basic Microkernel [2]

A Microkernel realizes services that all systems need and a plug-and-play infrastructure
for the system-specific services. Internal servers are used to realize version-specific services
and they are only accessed through the Microkernel. On the other hand, external servers offer
APIs and user interfaces to clients by using the Microkernel. External servers are the only way

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

102 Appendix A. Architectural pattern composition catalogue

for clients to access the Microkernel architecture. Figure A.16 shows an example of the basic
Microkernel pattern with one Client, three External Servers, one Microkernel and three Internal
Servers.

Figure A.16: Basic Microkernel pattern

A.7.2 Broker between Client and External Server [2]

In this variant, Microkernel pattern can be combined with the Broker pattern to hide the
communication details between Clients that request services and Servers that implement them.
This variant is the composition of two constituent patterns: the first pattern is Broker (Sec-
tion A.13) and the second pattern is Basic Microkernel (Section A.7.1). The composition is
formed by creating two new elements: Client which is formed through the overlapping of the
Client in the Broker pattern and the Client in the Microkernel pattern, External Server which
is formed through the overlapping of the Server in the Broker pattern and the External Server
in the Microkernel pattern. Figure A.17 shows an example of the Broker between Client and
External Server pattern.

Figure A.17: Broker between Client and External Server pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.8. PAC [2] 103

A.8 PAC [2]

The system is decomposed into a tree-like hierarchy of agents. Every agent is designed
according to MVC. Figure A.18 shows an example of PAC pattern.

Figure A.18: PAC pattern

A.9 Indirection Layer [2]

An Indirection Layer is a Layer between the accessing client and the the sub-system that
needs to be accessed. This variant is the composition of two constituent patterns: the first pat-
tern is Shield (Section A.3) and the second pattern is Indirection Layer itself. The composition
is formed by combining i) The Client from the Shield pattern with the Client from the Indi-
rection Layer pattern, ii) The Shield from the Shield pattern with the Indirection Layer from
the Indirection Layer pattern, iii) The Sub-system from the Shield pattern with the Sub-system
from the Indirection Layer pattern. Figure A.19 shows an example of the Indirection Layer
pattern.

A.10 Client-Server [2, 9, 11]

We consider the most described Client-Server pattern in the literature as the Basic Client-
Server variant to distinguish from the other variants of Client-Server pattern.

A.10.1 Basic Client-Server [2, 9, 11]

The Client-Server pattern distinguishes two kinds of components: Clients and Servers. The
Client requests information or services from a Server. Figure A.20 shows an example of the

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

104 Appendix A. Architectural pattern composition catalogue

Figure A.19: Indirection layer pattern

Client-Server pattern with three clients: Client 1, Client 2, Client 3.

Figure A.20: Client-Server pattern

A.10.2 Client-Server with Broker [2]

Sophisticated, distributed Client-Server architectures usually rely on the Broker pattern to
make the complexity of the distributed communication manageable. This variant is the com-
position of two constituent patterns: the first pattern is Broker (Section A.13) and the second
pattern is Basic Client Server (Section A.10.1). The composition is formed by combining i) The
Client from the Broker pattern with the Client from the Client-Server pattern, ii) The Server
from the Broker pattern with the Server from the Client-Server pattern. Figure A.21 shows an
example of the Client-Server with Broker pattern.

A.10.3 Client-Server through Microkernel [2]

In this variant, a Microkernel introduces an indirection that can be useful in certain Client-
Server configurations: a client that needs a specific service can request it indirectly through
the Microkernel, which establishes the communication to the server that offers this service. In

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.11. MVC [2] 105

Figure A.21: Client-Server with Broker pattern

this sense all communication between clients and servers is mediated through the Microkernel,
for reasons of e.g. security or modifiability. This variant is the composition of two constituent
patterns: the first pattern is Microkernel (Section A.7) and the second pattern is Basic Client
Server (Section A.10.1). In Figure A.22, the composition is formed by combining i) The Client
from the Microkernel pattern with the Client from the Client-Server pattern..

Figure A.22: Client-Server through Microkernel pattern

A.11 MVC [2]

The system is divided into three different parts: a Model that encapsulates some applica-
tion data and the logic that manipulates that data, independently of the user interfaces; one or
multiple Views that display a specific portion of the data to the user; a Controller associated
with each View that receives user input and translates it into a request to the Model. Figure 23
is an example of MVC pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

106 Appendix A. Architectural pattern composition catalogue

Figure A.23: MVC pattern

A.12 Proxy [9]

This pattern let the client communicate with a representative rather than the component
itself. This representative-called a proxy-offers the interface of the component but performs
additional pre- and post- processing. This variant is the composition of two constituent patterns:
the first pattern is Shield (Section A.3) and the second pattern is Proxy itself. The composition
is formed by combining i) The Client from the Shield pattern with the Client from the Basic
Proxy pattern, ii) The Shield from the Shield pattern with the Proxy from the Proxy pattern
and iii) The Sub-system from the Shield pattern with the Original from the Proxy pattern.
Figure A.24 shows an example of the Proxy pattern.

Figure A.24: Proxy pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.13. Broker [2, 9] 107

A.13 Broker [2, 9]

In the Broker pattern, a Broker decouples Clients from Servers. Servers register themselves
with the Broker, and make their services available to Clients through method interfaces. Clients
access the functionality of servers by sending requests via the Broker. The Broker is the com-
position of 2 Proxy pattern, one from Client to Broker and the other from Broker to Server.
Figure A.25 shows an example of Broker pattern. The proxies are applied on the client side
and the server side.

Figure A.25: Broker pattern

A.14 Façade [53, 11]

A façade component is used to abstract a part of the component architecture with negative
coupling potential to legacy components. All legacy components must go through the Façade to
communicate with the component This variant is the composition of two constituent patterns:
the first pattern is Shield (Section A.3) and the second pattern is Basic Façade itself. The
composition is formed by combining i) The Client from the Shield pattern with the Legacy
Component from the Basic Façade pattern, ii) The Shield from the Shield pattern with the
Façade from the Façade pattern. Figure A.26 shows an example of Façade pattern.

A.15 Legacy Wrapper [11]

In this pattern, legacy components are encapsulated with wrappers to insure a seamless
communication. This variant is the composition of two constituent patterns: the first pattern
is Shield (Section A.3) and the second pattern is Basic Legacy Wrapper itself. As shown in
Figure A.27, the composition is formed by combining i) The Client from the Shield pattern
with the Consumer from the Basic Legacy Wrapper pattern, ii) The Shield from the Shield

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

108 Appendix A. Architectural pattern composition catalogue

Figure A.26: Façade pattern

pattern with the Legacy Wrapper from the Basic Legacy Wrapper pattern, iii) The Sub-system
from the Shield pattern with the Legacy Component from the Basic Legacy Wrapper pattern.

Figure A.27: Legacy Wrapper pattern

A.16 Pipes and Filters + Repository [11]

In this pattern, the sink filter in the Pipes and Filters pattern is connected to the Repository
in the Repository pattern to perform data reading/writing operations. This variant is the com-
position of two constituent patterns: the first pattern is Pipes and Filters (Section A.5) and the
second pattern is Repository (Section A.6). The composition is formed by a stringing composi-
tion: a new connector (playing the role of both the Pipe in the Pipes and Filters pattern and the
Data reading/writing connector in the Repository pattern) is added to connect the first and the
second pattern. Figure A.28 shows an example of the Pipes and Filters + Repository pattern.

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

A.16. Pipes and Filters + Repository [11] 109

Figure A.28: Pipes and Filters + Repository pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

110 Appendix A. Architectural pattern composition catalogue

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

B
Formalized SOA pattern

Table B.1 shows the list of formalized SOA patterns along with the number of architectural
elements, the involved roles and the number of multiplicity elements.

Table B.1: List of formalized SOA patterns

Pattern category Patterns
Nb of
ele-

ments
Roles

Nb of
multi-
plici-
ties

Service inventory

Rules
Centralization

2
Service, Rule

service
1

Dual Protocols 1 Protocol 0

Service Grid 1 Service 0

Inventory
Endpoint

3

Internal inventory
service, Inventory
endpoint, External

consumer

2

State
Repository

2
Service, State

repository
1

Service

Service Façade 3
Service, Façade,

Consumer
0

Service Data
Replication

2
Service, Replicated

database
1

Partial State
Deferral

2
Service, Deferral
state repository

0

Partial
Validation

2
Service, Data

validator
0

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

112 Appendix B. Formalized SOA pattern

Decoupled
Contract

2
Service, Service

contract repository
0

Legacy
Wrapper

2

Legacy
Component,

Wrapper
Component

1

Exception
Shielding

2
Service, Exception

Shield
0

Message
Screening

2
Service, Message

screener
0

Trusted
Subsystem

1
Service, Trusted

Subsystem
0

Service
Perimeter

Guard
2

Internal service,
Perimeter service

1

Proxy
Capability

2 Service, Proxy 0

Decomposed
Capacity

2
Service,

Decomposed proxy
1

Canonical
Protocol

1
Service with

uniform protocol
0

Redundant
Implementation

1 Redundant service 1

Messaging
Bridge

2
Message System,
Message Bridge

0

Message Bus 2
Message Bus,
Application

1

Service composition

Intermediate
Routing

2
Service,

Intermediate logic
router

0

Asynchronous
Queuing

3
Service,

Intermediary
buffer, Consumer

0

Brokered
Authentication

3
Service, Broker,

Consumer
1

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

113

Data Format
Transformation

3

Service,
Intermediary data
formatter, Legacy

component

1

Service Agent 1 Service Agent 0

Agnostic
Sub-controller

2
Service,

Sub-controller
0

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

114 Appendix B. Formalized SOA pattern

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

C
Formalized CBA pattern

Table C.1 shows the list of formalized CBA patterns along with the number of architectural
elements, the involved roles and the number of multiplicity elements.

Table C.1: List of formalized CBA patterns

Pattern category Patterns
Nb of
ele-

ments
Roles

Nb of
multi-
plici-
ties

Layered
Layers 2

Layer, Layer
connector

1

Indirection
Layer

4

Client layer,
Indirection layer,

Sub-system, Layer
connector

0

Data flow Pipes and
Filters

2 Filter, Pipe 1

Data-centered

Shared
Repository

3
Client, Repository,

Data accessor
1

Active
Repository

3
Client, Active

repository, Data
accessor

1

Blackboard 3
Blackboard,

Knowledge source,
Data accessor

1

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

116 Appendix C. Formalized CBA pattern

Adaptation
Microkernel 5

Client, External
server, Micro

kernel, Internal
server, Layer

connector

2

Interceptor 4

Client layer,
Interceptor,

Sub-system, Layer
connector

0

User interaction

Model-View-
Controller

4
Model, View,

Controller, MVC
connector

0

Presentation-
Abstraction-

Control
2

PAC agent, PAC
connector

0

C2 2
Component,
Connector

0

Component interaction
Client-Server 3

Client, Server,
Request/Reply

connector
1

Peer to peer 2
Peer, Peer
connector

1

Distribution Broker 4
Client, Server,
Broker, Broker

connector
0

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

D
List of architectural models

Table D.1 shows the list of architectural models used in the evaluation along with the ap-
plied patterns and their frequency.

Table D.1: List of architectural models

Models Description
Nb of

compo-
nents

Nb of
con-

nectors

Applied
patterns

Frequency

BRM A revenue management system 12 5 Layers 1

DPS A digital publishing system 11 36 Repository 2

JITC
A source code comprehension
aiding system

10 9
Pipes and

Filters
1

Repository 1

BTS A bond trading system 15 10
Pipes and

Filters
1

Message
Bridge

2

GCC A digital TV system middle-ware 9 12 Pipes and
Filters

1

JBoss
An open source J2EE implemen-
tation

34 36

Broker 1

Microkernel 1

Pipes and
Filters

1

Vistrails
A data exploration and visualiza-
tion open-source system

7 6
Pipes and

Filters
1

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

118 Appendix D. List of architectural models

Repository 1

CoCoME A supermarket sales system 23 16
Layers 1

Message
Bus

1

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

E
Undetected cases of StAD violations

This appendix documents basic reasons for undetected cases of StAD violations which are
discovered during the evaluation. As shown in Table E.1, for each pattern encountered during
the evaluation, we show the reasons for undetected StAD violation in two cases: using only
pattern model and using only mappings.

Table E.1: Undetected cases of StAD violations

Pattern
Violations detected by mappings
but not by pattern model

Violations detected by pattern
model but not by mappings

Layers

The case when top or bot-
tom layers and connectors are
deleted

The case when a connector be-
tween two components that are
not adjacent is added

The case when both top and bot-
tom layers and connectors are
deleted

The case when the entire layers
are deleted

Repository

The case when the DataAccessor
and its Read/Write connector are
deleted

The case when the entire Repos-
itory pattern is deleted

Pipes & Filters

The case when first or last Filters
and their Pipes are deleted

The case when a Pipe between
two distant Filters is added to
create a cycle

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

120 Appendix E. Undetected cases of StAD violations

The case when both first and
last Filters and their Pipes are
deleted

The case when a Pipe between
two adjacent Filters that goes in
an opposite direction than the
other Pipes is added

The case when the entire Pipes
And Filters are deleted

Message
Bridge

The case when the entire Mes-
sage Bridge pattern is deleted

Broker

The case when we delete the
Client together with its connec-
tor to Broker

The case when a connector be-
tween the Remote Object and
the Client is added

The case when the entire Broker
pattern is deleted

Microkernel

The case when we delete the Ex-
ternal Service together with its
connector to Microkernel

The case when we add a connec-
tor between the External Service
and the Internal Service

The case when we delete the In-
ternal Service together with its
connector to Microkernel

The case when the entire Micro-
kernel is deleted

Message Bus

The case when we delete the Ap-
plication component and its as-
sociated Communicator connec-
tor

The case when we add a con-
nector between the Application
components

The case when we delete the en-
tire Message Bus

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

Résumé

Les décisions architecturales ont émergé comme un moyen important
pour maintenir la qualité de l’architecture pendant sa évolution. L’une des
décisions les plus importantes faite par l’architecte sont celles à propos des
approches de conception, à savoir des patrons ou des styles architecturales.
La structure de ce genre de décision donne la possibilité d’être contrôlée
automatiquement. Dans la littérature, il existe quelques travaux sur la
vérification automatique de la violation des décisions architecturales. Dans
cette thèse, nous montrons que ces travaux ne permettent pas de détecter
toutes les violations possibles. Pour les compléter, nous proposons une
approche qui i) décrit les patrons architecturaux qui contiennent la définition
de la décision architecturale, ii) intègre les décisions architecturales au
modèle architectural et iii) automatise la vérification de la conformance de
la décision architecturale. Notre approche est implémentée en utilisant EMF
et ses technologies accompagnées. Nous avons montré la possibilité de
formaliser tous les patrons structuraux. A travers de deux expérimentes,
nous avons montré que les décisions architecturales sont bien expliquées et
toutes les violations sont détectées.

Les systèmes logiciels composables sont prouvés capable de sup-
porter l’adaptation aux nouvelles exigences grâce à leur flexibilité. Une
méthode typique pour composer ces systèmes est de sélectionner et
combiner des patrons qui adressent aux exigences de qualité attendues.
Plusieurs propositions ont montré l’intérêt de la composition de patron.
En revanche, l’un des défauts de ces propositions est la vaporisation de
l’information de composition qui conduit au problème de la traçabilité et la
reconstructibilité des patrons. Cette thèse a pour but de réserver le statut
première classe aux opérateurs de composition pour stocker l’information
de composition. L’approche est implémentée dans un outil et une étude
empirique a été aussi conduite pour souligner ses intérêts.

Mots-clé: Décision architecturale, Patron, Composition de patron,
Ingénierie dirigée par des modèles.

Abstract

Architectural decisions have emerged as a means to maintain the quality of
the architecture during its evolution. One of the most important decisions
made by architects are those about the design approach such as the
use of patterns or styles in the architecture. The structural nature of this
type of decisions give them the potential to be controlled systematically.
In the literature, there are some works on the automation of architectural
decision violation checking. In this thesis we show that these works do not
allow to detect all possible architectural decision violations. To solve this
problem we propose an approach which: i) describes architectural patterns
that hold the architectural decision definition, ii) integrates architectural
decisions into an architectural model and, iii) automates the architectural
decision conformance checking. The approach is implemented using
Eclipse Modeling Framework and its accompanying technologies. Starting
from well-known architectural patterns, we show that we can formalize all
those related to the structural aspect. Through two experiments, we show
that architectural decisions are well explained and all of their violations are
detected.

Composable software systems have been proved to support the
adaptation to new requirements thanks to their flexibility. A typical method
of composable software development is to select and combine a number
of patterns that address the expected quality requirements. A lot of work
have shown the interest of pattern composition. Nevertheless, one of the
shortcomings of these work is the vaporization of composition information
which leads to the problem of traceability and reconstructability of patterns.
This thesis also proposes to give first-class status to pattern merging
operators to facilitate the preservation of composition information. The
approach is tool-supported and an empirical study has also been conducted
to highlight its interests.

Keywords: Architectural decision, Pattern, Pattern composition,
Model Driving Engineering.

n d’ordre : 000000000

Université de Bretagne Sud
Centre d’Enseignement et de Recherche Y. Coppens - rue Yves Mainguy - 56000 VANNES
Tél : + 33(0)2 97 01 70 70 Fax : + 33(0)2 97 01 70 70

Preserving Architectural Decisions through Architectural Patterns Minh Tu Ton That 2014

	Contents
	List of Figures
	List of Tables
	1 Introduction
	Motivation
	Problem statement
	Aim of the thesis
	Dissertation plan

	2 State of the art
	Background
	Architectural Decision
	AD about the application of pattern

	AD documentation
	Documentation of pattern-related AD
	Checking of pattern-related AD

	Architectural pattern modelling languages
	Pattern composition
	Limitations of existing works
	The problem of StAD maintenance and checking
	The problem of pattern composition

	Summary and discussion

	3 COMLAN - COMposition-centered pattern description LANguage
	Process Overview
	The COMLAN meta-model
	Example of pattern definition

	Pattern refinement
	Stringing operator transformation
	Overlapping operator transformation
	Nested pattern transformation
	Support of traceability and reconstructability

	Summary

	4 Pattern-based approach for documenting the solution of structural architectural decision
	General Approach
	Pattern definition
	StAD creation
	StAD verification

	Pattern definition
	General pattern meta-model
	Architectural Pattern Specification

	Use of StAD
	Associating a Pattern to an Architectural Model
	Filtering StAD views
	StAD Checking

	Summary

	5 Implementation
	COMLAN tool
	Use cases
	COMLAN architecture

	ADManager tool
	Use cases
	ADManager architecture

	Summary

	6 Empirical evaluation
	Empirical evaluation for pattern composition approach
	Experimental setup
	Traceability
	Reconstructability
	Discussion
	Threats to validity

	Empirical evaluation for StAD documentation approach
	Application of pattern definition language
	StAD documentation

	Summary

	7 Conclusion
	Bibliography
	Appendix A. Architectural pattern composition catalogue
	A.1 Enabled Cycle Component Krakowiak07Middleware,Avgeriou05ArchitecturalPatterns,BuschmannMeunier96
	A.2 Forbidden Cycle Component Avgeriou05ArchitecturalPatterns
	A.3 Shield Zdun2008ACatalog
	A.4 Layers Avgeriou05ArchitecturalPatterns,BuschmannMeunier96
	A 4.1 Basic Layer Avgeriou05ArchitecturalPatterns,BuschmannMeunier96
	A 4.2 By-passed Layers Avgeriou05ArchitecturalPatterns
	A 4.3 Not by-passed Layers Avgeriou05ArchitecturalPatterns,BuschmannMeunier96
	A 4.4 Client-Server Layers Avgeriou05ArchitecturalPatterns
	A 4.5 Filtered Layers Avgeriou05ArchitecturalPatterns

	Pipes and Filters Avgeriou05ArchitecturalPatterns,BuschmannMeunier96
	Basic Pipes and Filters Avgeriou05ArchitecturalPatterns[3]
	By-passed Pipes and Filters Avgeriou05ArchitecturalPatterns
	Not by-passed Pipes and Filters (or Pipeline) Avgeriou05ArchitecturalPatterns,BuschmannMeunier96
	Internally layer-structured Pipes and Filters Avgeriou05ArchitecturalPatterns
	Data sharing Pipes and Filters Avgeriou05ArchitecturalPatterns

	Shared repository Avgeriou05ArchitecturalPatterns,BuschmannMeunier96,Clements10Documenting
	Basic Shared Repository Avgeriou05ArchitecturalPatterns,BuschmannMeunier96,Clements10Documenting
	Internally Layer structured Shared repository Avgeriou05ArchitecturalPatterns

	Microkernel Avgeriou05ArchitecturalPatterns
	Basic Microkernel Avgeriou05ArchitecturalPatterns
	Broker between Client and External Server Avgeriou05ArchitecturalPatterns

	PAC Avgeriou05ArchitecturalPatterns
	Indirection Layer Avgeriou05ArchitecturalPatterns
	Client-Server Avgeriou05ArchitecturalPatterns,BuschmannMeunier96,Clements10Documenting
	Basic Client-Server Avgeriou05ArchitecturalPatterns,BuschmannMeunier96,Clements10Documenting
	Client-Server with Broker Avgeriou05ArchitecturalPatterns
	Client-Server through Microkernel Avgeriou05ArchitecturalPatterns

	MVC Avgeriou05ArchitecturalPatterns
	Proxy BuschmannMeunier96
	Broker Avgeriou05ArchitecturalPatterns,BuschmannMeunier96
	Façade Zdun2008ACatalog,Clements10Documenting
	Legacy Wrapper Clements10Documenting
	Pipes and Filters + Repository Clements10Documenting

	Appendix B. Formalized SOA pattern
	Appendix C. Formalized CBA pattern
	Appendix D. List of architectural models
	Appendix E. Undetected cases of StAD violations

