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Résumé

La nature diachronique des bulletins d’information provoque de fortes variations
du contenu linguistique et du vocabulaire dans ces documents. Dans le cadre de
la reconnaissance automatique de la parole, cela conduit au problème de mots
hors vocabulaire (Out-Of-Vocabulary, OOV). La plupart des mots OOV sont des
noms propres. Les noms propres sont très importants pour l’indexation automa-
tique de contenus audio-vidéo. De plus, leur bonne identification est importante
pour des transcriptions automatiques fiables. Le but de cette thèse est de pro-
poser des méthodes pour récupérer les noms propres manquants dans un système
de reconnaissance. Ces mots seront intégrés au lexique du système de recon-
naissance pour effectuer une deuxième passe de reconnaissance. Comme dans
la littérature, nous allons utiliser des documents textuels récupérés sur Internet
pour sélectionner de nouveaux mots. Les méthodologies existantes sont fondées
sur des matrices terme-document ou des co-occurrences de mots pour retrouver
des nouveaux mots. Dans cette thèse nous proposons de modéliser le contexte
sémantique et d’utiliser des informations thématiques contenus dans les docu-
ments audio à transcrire. Des modèles probabilistes de thème (topic model) et
des projections dans un espace continu obtenues à l’aide de réseaux de neurones
(word embeddings) sont explorés pour la tâche de récupération des noms propres
pertinents. Une évaluation approfondie de ces représentations contextuelles a été
réalisée. Pour modéliser le contexte de nouveaux mots plus efficacement, nous
proposons des réseaux de neurones qui maximisent la récupération des noms
propres pertinents. Les modèles de neurones (Neural Bag-of-Words, NBOW)
modélisant les représentations contextuelles au niveau du document obtiennent
de très bonnes performances. En s’appuyant sur ce modèle, nous proposons un
nouveau modèle (Neural Bag-of-Weighted-Words, NBOW2) qui permet d’estimer
un degré d’importance pour chacun des mots du document et a la capacité de
capturer des mots spécifiques à ce document. Des expériences de reconnaissance
automatique de bulletins d’information télévisés montrent l’efficacité du modèle
proposé. L’évaluation de NBOW2 sur d’autres tâches telles que la classification
de textes, l’analyse des critiques des films et la classification thématique des textes
issus de groupes des discussions, montre des bonnes performances. Ce modèle
donne des meilleurs résultats que les modèles utilisant des sac-de-mots.

Mots-clés: Reconnaissance de la parole, noms propres, OOV, sémantique dis-
tributive
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Abstract

The diachronic nature of broadcast news causes frequent variations in the linguis-
tic content and vocabulary, leading to the problem of Out-Of-Vocabulary (OOV)
words in automatic speech recognition. Most of the OOV words are found to
be proper names whereas proper names are important for automatic indexing
of audio-video content as well as for obtaining reliable automatic transcriptions.
New proper names missed by the speech recognition system can be recovered by a
dynamic vocabulary multi-pass recognition approach in which new proper names
are added to the speech recognition vocabulary based on the context of the spoken
content. Existing methods for vocabulary selection rely on web search engines and
adaptation corpora and choose the new vocabulary words using term-document
frequency and co-occurrence based features. Open vocabulary systems based on
sub-word units are an interesting solution but they face the problem of producing
a reliable text transcription. The goal of this thesis is to model the semantic and
topical context of new proper names in order to retrieve those which are relevant
to the spoken content in the audio document. Training semantic/topic models is a
challenging problem in this task because (a) several new proper names come with
a low amount of data and (b) the context model should be robust to word errors
in the automatic transcription. Probabilistic topic models and word embeddings
from neural network models are explored for the task of retrieval of relevant
proper names. A thorough evaluation of contextual representations from these
models is performed. It is argued that these representations, which are learned
in an unsupervised manner, are not the best for the given retrieval task. Neural
network context models trained with an objective to maximise the retrieval per-
formance are proposed. A Neural Bag-of-Words (NBOW) model trained to learn
context vector representations at a document level is shown to outperform the
generic representations. The proposed Neural Bag-of-Weighted-Words (NBOW2)
model learns to assign a degree of importance to input words and has the ability
to capture task specific key-words. Experiments on automatic speech recognition
on French broadcast news videos demonstrate the effectiveness of the proposed
models. Further evaluation of the NBOW2 model on standard text classification
tasks, including movie review sentiment classification and newsgroup topic clas-
sification, shows that it learns interesting information about the task and gives
the best classification accuracies among the bag-of-words models.

Keywords: speech recognition, OOV, proper names, distributional semantics
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2.3 Récupération des OOV PN en utilisant des représentations
du contexte . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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4.3 Modèle de référence : Pointwise Mutual Information . . . . 15

4.4 Mesures de performance pour la récupération des OOV PN 16
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NBOW2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Les résultats de la deuxième passe de reconnaissance de la parole.
PNER désigne Proper Name Error Rate. . . . . . . . . . . . . . 28

2.1 French broadcast news datasets used in experiments . . . . . . . . 57

3.1 Description of Symbols used for LDA Topic Model . . . . . . . . . 70

4.1 Comparison of MAP@128 for PMI, RP, LSA and LDA models . . 92

4.2 Maximum MAP for rare and frequent OOV proper names using
LDA Topic Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Maximum MAP for rare and frequent OOV proper names using
LSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Improvement in maximum MAP after applying lexical context re-
ranking to LDA results. . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Comparison of LDA and Entity Topic models in terms of maximum
MAP obtained with Method I and Method II . . . . . . . . . . . 105

4.6 More Diachronic News Datasets . . . . . . . . . . . . . . . . . . . 107

4.7 Comparison of MAP@128 for different diachronic corpora . . . . . 111

5.1 Illustration of linearity property of word embeddings . . . . . . . 116

5.2 Comparison of MAP@128 for LSA, LDA, CBOW and Skip-gram
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Maximum MAP, for rare and frequent OOV proper names, using
the two retrieval methods and word embeddings from the CBOW
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xvi



5.4 Maximum MAP, for rare and frequent OOV proper names, using
the two retrieval methods and word embeddings from the Skip-
gram model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Comparison of MAP@128 for LSA, LDA, Skip-gram and NBOW
group of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Maximum MAP for retrieval of OOV proper names, obtained with
the NBOW model. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Maximum MAP for retrieval of OOV proper names, obtained by
the NBOW, NBOW2 and NBOW2+ models. . . . . . . . . . . . . 142

6.4 Comparison of maximum MAP obtained using document level rep-
resentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 OOV proper name retrieval performance on the test sub-set after
the first pass using ANTS LVCSR . . . . . . . . . . . . . . . . . . 148

6.6 Second pass proper name recognition results . . . . . . . . . . . . 149

6.7 Quantitative evaluation of different word weight features, in terms
of classification accuracy obtained using an SVM classifier . . . . 155

6.8 Comparison of different models on movie reviews sentiment clas-
sification task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.9 Comparison of different models on 20 Newsgroup topic classifica-
tion task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1 Performance of retrieval of relevant OOV proper names obtained
with the best retrieval methods . . . . . . . . . . . . . . . . . . . 161

xvii



List of Figures
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Synthèse en Français

1 Introduction

Les bulletins d’information sont diachroniques par nature et sont caractérisés par
des changements continus de thèmes et de contenus. Les variations fréquentes
dans le contenu linguistique et le vocabulaire posent un défi pour la reconnais-
sance automatique de la parole (Large Vocabulary Continuous Speech Recog-
nition, LVCSR). Tous les mots existants dans un langage ne peuvent pas être
inclus dans le vocabulaire et le Modèle de Langage (Language Model, LM) d’un
système de LVCSR, car

• il y a beaucoup des mots nouveaux/rares, particulièrement des noms pro-
pres (Proper Names, PN) ;

• leur inclusion augmenterait l’espace de recherche du LVCSR et sa com-
plexité sans garantir une diminution du taux d’erreur de mots (Word Error
Rate, WER).

Le choix pratique consiste à ajouter qu’une partie de ces mots au vocabulaire. Ce
qui conduit au problème des mots hors vocabulaire (Out-Of-Vocabulary, OOV)
pour le LVCSR. Une analyse des mots OOV révèle que la majorité des mots
OOV (56-72% [Sheikh et al., 2015b]) sont des PN. Ces noms propres sont très
importants pour l’indexation automatique des contenus audio-vidéo, ainsi que
pour l’obtention des transcriptions automatiques précises et fiables. Dans cette
thèse, nous étudions le problème suivant : comment récupérer de nouveaux OOV
PN à partir de documents audio diachroniques.

Dans le cadre de la reconnaissance de la parole, les méthodes de récupération
des mots OOV peuvent être classées en deux catégories :

• les approches fondées sur la détection des OOVs ;

• les approches fondées sur la sélection de vocabulaire.

Les approches fondées sur la détection des OOVs [Rastrow et al., 2009b, Qin
and Rudnicky, 2012, Parada et al., 2010a, Kombrink et al., 2012, Chen et al.,
2013b] ont pour but de détecter la présence de mots OOV et/ou localiser des
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régions OOV dans l’hypothèse du LVCSR. Ensuite, le mot correspondant à l’OOV
est recherché. Ces approches utilisent principalement des modèles de langage hy-
brides : modèles de mots et de sous-mots (par exemple, des syllabes). Ces mêmes
idées sont utilisées pour les systèmes de reconnaissance avec un vocabulaire ou-
vert [Bisani and Ney, 2005, Shaik et al., 2015]. Cependant, ces méthodes de
détection des OOVs utilisent l’information obtenue à la fin du processus de re-
connaissance, par exemple, les scores a posteriori ou des réseaux de confusion de
mots. Des systèmes fondé sur des modèles de langage hybrides peuvent nécessiter
une sélection rigoureuse des unités de sous-mots. Parfois, cela peut conduire à
une augmentation des taux d’erreurs [Shaik et al., 2015].

Les approches fondées sur la sélection de vocabulaire proposent un vocabulaire
pertinent en utilisant des textes complémentaires. Pour un corpus spécifique
à un domaine, des méthodes intéressantes [Allauzen and Gauvain, 2005a, Liu
et al., 2007, Jouvet and Langlois, 2013, Ming Sun, 2015] ont été proposées pour
sélectionner le vocabulaire afin de réduire le taux de OOVs. [Martins et al., 2007]
propose une méthodologie pour une mise à jour quotidienne du vocabulaire. Les
méthodes de sélection de vocabulaire spécifique à un document [Seneff, 2005, Oger
et al., 2008b, Meng et al., 2010, Maergner et al., 2012] sont plus dynamiques
que les méthodes fondées sur la détection des OOVs, car elles proposent un
vocabulaire spécifique au contexte du document.

Dans notre travail, nous avons recueilli un corpus de documents textuels à
partir d’Internet. Ce corpus est utilisé pour modéliser le contexte sémantique des
noms propres nouveaux apparaissant dans le corpus. Pour un document audio de
test, nous déduisons le contexte sémantique du contenu de ce document. Puis,
à partir des documents recueillis sur Internet, nous proposons une liste de noms
propres OOV qui sont pertinents pour le contexte du document de test. Notre
motivation pour explorer des modèles sémantiques et contextuels vient d’une
question plus générale et ouverte : Est-ce que le contexte sémantique pourrait
être profitable pour améliorer le processus de transcription automatique ?

Nous proposons d’analyser la séquence de mots entourant les noms pro-
pres OOV et de l’utiliser pour modéliser le contexte sémantique local. Il est
également possible d’utiliser un contexte de niveau plus élevé obtenu par une
analyse sémantique ou thématique du document entier. Cependant, les tran-
scriptions automatiques du LVCSR contiennent des erreurs de reconnaissance.
D’autre part on ne dispose pas d’information sur la position des OOVs. Les
approches fondées sur la détection d’OOVs peuvent localiser les régions où se
trouvent les OOVs. Dans cette thèse, nous nous intéressons plutôt aux méthodes
qui ne nécessitent pas de données étiquetées manuellement. Par conséquent, dans
notre approche nous nous appuyons sur le contexte sémantique/thématique de la

2



transcription du document audio pour récupérer les noms propres OOV qui sont
pertinents.

Les modèles sémantiques/thématiques ont été largement étudiés dans le do-
maine de la Linguistique Informatique et du Traitement Automatique du Langage
Naturel, plus particulièrement dans le domaine de la Sémantique Distribution-
nelle [Turney and Pantel, 2010]. Parmi ceux-ci, l’analyse sémantique latente (La-
tent Semantic Analysis LSA) [Deerwester et al., 1990] et l’allocation de Dirichlet
latente (Latent Dirichlet Allocation LDA) [Blei et al., 2003] sont les plus impor-
tantes pour extraire automatiquement des représentations sémantiques/théma-
tiques à partir des documents textuels. Pour obtenir des espaces sémantiques,
la LSA utilise des méthodes de décomposition des matrices. La LDA apprend
des mélanges et des distributions de thèmes en utilisant une analyse Bayésienne
hiérarchique. Récemment, les modèles appelés Word Embeddings ont été pro-
posés et permettent de représenter des informations sémantiques ou syntaxiques
des mots [Mikolov et al., 2013c].

L’une des principales contributions de cette thèse est le développement d’un
ensemble de méthodes permettant de récupérer les noms propres OOV pertinents
à partir de documents diachroniques. Ces méthodes s’appuient sur différentes
représentations de l’espace sémantique/thématique. Nous procédons à une anal-
yse approfondie de ces représentations pour savoir si elles peuvent être exploitées
pour notre tâche de récupération des noms propres OOVs. Nous concentrons
notre travail sur deux aspects importants :

• sur la robustesse de ces représentation à des erreurs de reconnaissance, car
pour inférer le contexte sémantique/thématique nous nous appuyons sur
des hypothèses du LVCSR ;

• sur l’efficacité de ces représentations pour les noms propres OOVs peu
fréquents, parce que la grande partie des noms propres OOVs sont peu
observés dans les données diachroniques.

La deuxième contribution principale de cette thèse est un ensemble de repré-
sentations discriminantes de contexte. Les modèles de Word Embeddings et
la LDA apprennent des représentations sémantiques/thématiques en optimisant
des fonctions de probabilité estimées sue les données d’apprentissage. Tout en
maximisant la performance de la récupération des noms propres OOV, nous pro-
posons différentes représentations discriminantes des contextes. Un des nou-
veaux modèles proposés est est un modèle neuronal de sac de mots pondérés
Bag-of-Weighted-Words (NBOW2). Ce modèle estime un degré d’importance
de chaque mot du document. Ce modèle a la capacité de capturer les mots
importants. Outre notre tâche de récupération des noms propres OOV, nous
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évaluons ce modèle sur des tâches d’analyse de critiques des films et de classifi-
cation thématique de textes.

La section 2 présente une description générale de notre approche pour le
traitement des OOVs et donne un aperçu des méthodes pour récupérer les OOVs
pertinents en utilisant la LDA et les modèles fondées sur des word embeddings.
La section 3 décrit des représentations contextuelles discriminantes, apprises en
utilisant des réseaux de neurones. Le protocole expérimental et la description du
système sont donnés dans la section 4. Les résultats de récupération des OOV
PN sont discutés dans la section 5. Cette section est suivie des résultats de la
reconnaissance de la parole (section 6). La section 7 donne quelques conclusions.

2 Approches proposées

Les méthodes existantes de sélection de vocabulaire spécifique à un document
[Seneff, 2005, Oger et al., 2008b, Meng et al., 2010, Maergner et al., 2012, Nkairi
et al., 2013] proposent souvent d’utiliser des moteurs de recherche du Web pour
récupérer des documents pertinents. Elles choisissent les nouveaux mots à ajouter
au vocabulaire en utilisant la fréquence des termes, la fréquence des documents
et des calculs de co-occurrences. Dans notre travail pour récupérer les OOV
PN pertinents pour un document audio de test, nous proposons de modéliser le
contexte des OOV PN. La figure 1 présente un schéma de notre approche. Les
articles diachroniques de presse sont collectées à partir d’Internet pour construire
un corpus diachronique de textes contenant des nouveaux PN. Ce corpus dia-
chronique de textes est utilisé pour apprendre un modèle de contexte qui capture
les relations entre les mots du vocabulaire du LVCSR (In-Vocabulary, IV) et les
OOV PN. Cela constitue la phase d’apprentissage. Pendant la phase de test, le
document audio de test est reconnu par le LVCSR (en utilisant le vocabulaire et
le LM de base) pour obtenir une transcription (premier passage). En utilisant
cette transcription, le contexte du document est inféré par le modèle de contexte.
Puis les OOV PN du corpus diachronique sont classés en fonction du contexte.
Ensuite, les OOV PN sélectionnés sont utilisés pour mettre à jour le vocabulaire et
le LM du LVCSR. Finalement, une deuxième passe de reconnaissance est effectuée
avec ce nouveau vocabulaire et ce nouveau modèle de langage. A la place de la
deuxième passe de reconnaissance, il est possible d’effectuer une recherche de
mots clés, comme décrit dans [Sheikh et al., 2016c].
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Figure 1: Méthodologie de reconnaissance des mots hors vocabulaire (OOV).

2.1 Travaux connexes

Dans le cadre de notre tâche de reconnaissance des documents diachroniques
audio, la modélisation du contexte sémantiques/thématique est un problème dif-
ficile, parce que

• plusieurs nouveaux noms propres peuvent être présents dans une faible
quantité de données ;

• le modèle de contexte doit être robuste aux erreurs de transcription du
LVCSR.

[Senay et al., 2013] modélise les PN avec le modèle de type LDA. Une approche
similaire basée sur la LSA a été expérimentée dans [Bigot et al., 2013]. Cepen-
dant, ces approches estiment un modèle pour chaque PN, ce qui les limite seule-
ment aux PN très fréquents.
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Nos représentations contextuelles discriminantes sont liées aux approches ré-
centes de classification de textes en utilisant les réseaux de neurones. Dans le
contexte de la classification de textes, plusieurs architectures fondées sur les
réseaux de neurones ont été proposées : Feedforward Neural Networks [Iyyer
et al., 2015, Nam et al., 2014], réseaux convolutifs (Convolutional Neural Net-
works, CNN) [Kim, 2014, Johnson and Zhang, 2015, Wang et al., 2015] et réseaux
récurrents (Recurrent Neural Networks, RNN) [Socher et al., 2013, Hermann and
Blunsom, 2013, Dong et al., 2014, Tai et al., 2015, Dai and Le, 2015]. Pour notre
tâche, nous nous appuyons sur des méthodes de type sac-de-mots (Bag-of-Words)
et construites au niveau de document. Nous avons choisi de travailler au niveau
du document d’une part car cela permet d’être moins influencé par les erreurs des
transcription du LVCSR et d’autre part car nous n’avons pas d’information sur
la position des noms propres manquants. Par rapport aux autres travaux dans
le domaine de la classification de textes, notre spécificité est que nous avons un
grand nombre de classes de sorties (les OOV PN) et la distribution des documents
par OOV PN est très asymétrique [Sheikh et al., 2015a].

2.2 Modèles de contexte sémantique et de thème

Les modèles de contexte sémantique ont une longue histoire dans le traitement
automatique du langage naturel [Turney and Pantel, 2010]. Les modèles fondées
sur la Latent Dirichlet Allocation (LDA) [Blei et al., 2003] ont été les méthodes
les plus importantes pour représenter la distribution des thèmes des documents.
La LDA permet de dériver des thèmes en utilisant une analyse bayésienne hiérar-
chique. La LDA est un modèle génératif. Il a été montré que la LDA surpasse la
LSA pour la tache de classification des documents [Blei et al., 2003] et la tache
de prédiction de mots [Griffiths et al., 2007].

Soit un ensemble de D documents composés d’un vocabulaire de V mots et
(K) thèmes à modéliser, la distribution conjointe correspondante au processus
génératif du modèle LDA est :

p(w, z, θ, φ|α, β) = p(φ|β) p(θ|α) p(z|θ) p(w|φz) (1)

où z est le thème (caché) attribué au mot w dans un document d, θ = [θdk]D×K est
la distribution multinomiale de thèmes dans chaque document d. φ = [φvk]V×K
est la distribution multinomiale des mots dans un thème. α et β sont deux
probabilité a priori (Dirichlet priors) pour θ et φ. Les paramètres du modèle
LDA, θ et φ, et les thèmes attribués aux mots z peuvent être estimés en utilisant
un algorithme d’échantillonnage de Gibbs [Griffiths and Steyvers, 2004].

Plus récemment, d’autres méthodes de représentations des mots (word embed-
dings) et des contextes sont devenus populaires. Ce sont des méthodes fondées
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sur la prédiction du contexte dans lequel les mots apparaissent [Mikolov et al.,
2013b, Pennington et al., 2014]. Ces représentations ont été efficacement ap-
pliquées à diverses tâches de traitement de textes [Baroni et al., 2014]. Les
modèles de Mikolov et al. [Mikolov et al., 2013b, Mikolov et al., 2013a] sont
devenus populaires en raison de leur capacité à gérer de grandes quantités de
données non structurées avec un faible coût de calculs. Dans notre travail, nous
utilisons le modèle Skip-gram de Mikolov et al. car les Word Embeddings, générés
par ce modèle, sont plus performants que ceux du modèle CBOW. L’objectif du
modèle Skip-gram consiste à maximiser la probabilité de prédire les mots qui
apparaissent à proximité d’un mot donné. Soit C(w) le contexte d’un mot w du
corpus, la fonction objectif est1 :

arg max
Θ

∏

w∈corpus


 ∏

c∈C(w)

p(c|w; Θ)


 (2)

où Θ sont les paramètres du modèle (poids de la couche d’entrée et de la couche
de sortie).

2.3 Récupération des OOV PN en utilisant des représentations du
contexte

Pour récupérer les OOV PN pertinents à un document audio, nous construisons
un espace sémantique/thématique qui capture les relations entre les mots IVs et
les OOV PN. Ensuite, la meilleure hypothèse du LVCSR est projetée dans l’espace
de contexte pour déduire des OOV PN pertinents. Dans cette section, nous
présentons les méthodes de récupération des OOV PN en utilisant les modèles
LDA et Skip-gram.

2.3.1 Méthode I : Proximité entre l’hypothèse du LVCSR et les OOV PN dans
l’espace contextuel

Pour récupérer les OOV PN, nous proposons d’utiliser la proximité entre l’hypo-
thèse du LVCSR et des OOV PN dans l’espace contextuel. Un modèle de
type LDA ou LSA peut etre appris sur les données diachroniques. Ce modèle
représente la distribution des thèmes et prend en compte tous les OOV PN ap-
parus dans les données diachroniques. Ce modèle peut également être utilisé

1Pour améliorer l’efficacité des calculs, une autre fonction avec le même objectif est possi-
ble [Goldberg and Levy, 2014].
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pour inférer les thèmes à partir des transcriptions du LVCSR. Donc nous pou-
vons en déduire la proximité entre les OOV PN dans les hypothèses du LVCSR
et attribuer un certain score à chaque mot OOV PN.

Utilisation des représentations LDA : Tout d’abord, le modèle LDA est con-
struit en utilisant les documents textuels du corpus diachronique. Si nous notons
l’hypothèse du LVCSR par h, la probabilité d’un OOV PN (ṽi) est obtenu ainsi :

p(ṽi|h) =
K∑

k=1

p(ṽi|k) p(t|h) (3)

Pour récupérer les OOV PN pertinents, nous calculons p(ṽi|h) pour chaque ṽi,
puis nous l’utilisons comme score de classement des OOV PN pertinents.

Utilisation des Word Embeddings : Le modèle Skip-gram ne permet pas d’ap-
prendre une représentation par document mais seulement une représentation pour
chaque mot. Pour représenter un document, nous proposons d’utiliser la pro-
priété de linéarité des word embeddings : grâce au fait qu’il n’y pas de linéarité
dans la première couche du modèle neuronal du modèle Skip-gram, il est valide
d’additionner les représentations de différents mots.

Pendant l’apprentissage, un projection (Skip-gram word embedding) est ap-
prise pour chaque mot présent dans le corpus diachronique. En utilisant les word
embeddings et leur propriété de linéarité, la représentation d’un document est
obtenue en faisant la moyenne des embeddings des tous les mots de ce document.
Nous appelons cette représentation AverageVec. Cette représentation vectorielle
de dimension K pour le document h est comparée avec l’embedding ṽi de chaque
OOV PN. Ensuite, le score est calculé de la façon suivante :

si =

∑K
k=1 hk ṽik√∑K

k=1(hk)2

√∑K
k=1(ṽik)2

(4)

Le score si est utilisé pour classer les OOV PN ṽi.

2.3.2 Méthode II : Représentation spécifique au document

La méthode I est fondée sur les représentations de l’espace sémantique/théma-
tique des noms propres OOV. Les points faibles de cette méthode sont les suiv-
ants :

• les noms propres OOV qui ont un petit nombre d’observations peuvent
avoir des représentations non fiables ;
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• si les noms propres OOV qui apparaissent dans des contextes trop variables,
leurs représentations globales peuvent être sous-optimales.

Au lieu d’utiliser comme représentation d’un nom propre OOV estimé, nous
pouvons exploiter des représentations estimées avec des documents dans lesquels
ce OOV PN apparâıt. La méthode proposée dans la suite utilise cette idée.

Pendant la phase d’apprentissage, les documents textuels diachroniques sont
indexés avec des noms propres OOV qui s’y trouvent. Une représentation séman-
tique est apprise pour chaque document du corpus diachronique. Cette représen-
tation est associée à chaque nom propre OOV de ce document. Un OOV PN qui
figure dans plusieurs documents diachroniques aura de multiples représentations.
Pendant la phase de test, la représentation vectorielle (T -dimensionnelle) de
l’hypothèse du LVCSR h est comparée aux q vecteurs de contexte (Ci

q) de chaque
OOV PN ṽi pour calculer un score, en utilisant la similitude cosinus :

si = max
q
{Cosine Similarity(h,Ci

q)}

= max
q

{
h.Ci

q

‖h‖
∥∥Ci

q

∥∥

}

= max
q





∑T
k=1 hk C

i
qk√∑T

k=1(hk)2

√∑T
k=1(Ci

qk)
2





(5)

où si est le score de ṽi qui sera utilisé pour classer les OOV PN pertinents pour
h.

3 Représentations discriminantes

Dans cette section, nous présentons des modèles discriminants. Dans ces modèles,
le critère d’apprentissage que nous voulons maximiser est directement la proba-
bilité des OOV PN en fonction des mots présents dans un document.

3.1 Modèle neuronal sac-de-mots

Le modèle neuronal sac-de-mot (Neural Bag-of-Words NBOW) [Kalchbrenner
et al., 2014, Iyyer et al., 2015] prend en entrée un texte X contenant un ensemble
de mots w et génére des estimations de probabilité pour les L classes de sortie. Le
réseau compte un couche d’entrée de taille V (taille du vocabulaire) ; une couche
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cachée de taille K ; une couche de sortie de taille L correspondant au nombre de
mots OOV PN. La figure 2 illustre le modèle NBOW. Les paramètres devant être
estimés sont la matrice W I de taille [V ×K], la matrice WO de taille [K ×L] et
b est un vecteur de biais. En entrée, on utilise une représentation sac-de-mot : si
le mot i est présent dans le document analysé alors le neurone d’entrée i est mise
à 1, sinon il est mis à zéro. Les valeurs de la couche cachée sont obtenues par le
produit matriciel de W I et de la couche d’entrée. En pratique, la moyenne des
vecteurs de mots est utilisée :

z =
1

|X|
∑

w∈X
vw (6)

Cette moyenne des vecteurs est utilisée pour estimer les probabilités de sortie :
ŷ = softmax(zWO + b), où WO est une [K × L] matrice et b est un vecteur de
biais, et softmax(l) = exp(l)/

∑L
j=1 exp(lj).

Matrice

de sortie

Matrice

d’entrée

Vecteur de

contexte
Probabilités

softmax

Vecteur de

document

Figure 2: Modèle neural bag-of-words (NBOW).

La moyenne des vecteurs z ≡ {z1, z2...zK} représente le vecteur de contexte
pour ce document. Le produit entre ce vecteur contexte et la matrice de sortie
(WO) est équivalent à la comparaison du document d’entrée et des OOV PN dans
l’espace de contexte.

Pendant l’apprentissage du modèle, les mots d’un document du corpus dia-
chronique sont fournis à l’entrée du modèle et un neurone de sortie correspondant
à un OOV PN de ce document est mis à 1. Le critère d’apprentissage choisi est la
minimisation de l’entropie croisée [Goldberg, 2015]. Si un document contient plus
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d’un OOV PN, ce document d’apprentissage est dupliqué pour chaque OOV PN.
Pendant le test, pour récupérer des OOV PN pertinents, les mots de la meilleure
hypothèse du LVCSR sont donnés à l’entrée du système ; les probabilités softmax
de sortie sont utilisées en tant que scores pour classer les OOV PN.

3.2 Modèle Neural Bag-of-Weighted-Words (NBOW2)

Nous pensons que le modèle NBOW présenté précédemment ne parvient pas à
utiliser explicitement le fait que certains mots peuvent être plus importants que
d’autres. En conséquence, nous proposons un nouveau modèle, appelé NBOW2.
Ce modèle permet d’apprendre l’importance de certains mots en leurs associant
des poids. Pour apprendre ces poids d’importance, une somme pondérée des mots
d’entrée X est utilisé :

z =
1

|X|
∑

w∈X
αw vw (7)

où αw sont des poids d’importance pour chaque mot w ∈ X. Les poids αw sont
obtenus en introduisant un nouveau vecteur a de dimension K, défini de la façon
suivante :

αw = f(vw · a) (8)

où (·) représente le produit scalaire. La fonction f permet de projeter les poids
d’importance dans l’intervalle [0, 1]. Les poids d’importance αw représentent
une distance entre w et a dans l’espace de contexte. Cela permet de garantir
que le calcul des αw tient compte des similitudes de mots contextuels. Pour f ,
différentes fonctions d’activation peuvent être utilisées, par exemple, sigmoide,
softmax (comme dans [Sheikh et al., 2015c]) ainsi que la tangente hyperbolique.
Selon nos expériences, la fonction sigmoide f(x) = (1 + e−x)−1 est un meilleur
choix en termes de convergence et de la précision. Nous discutons plus en details
le choix de f dans la Section 5.

La figure 3 représente le modèle NBOW2. Les entrées, la matrice W I et
la matrice WO sont similaires à celles de NBOW. En revanche, le vecteur de
contexte du document est obtenu différemment. Un produit scalaire est calculé
entre chaque vecteur de mot d’entrée et le vecteur a. Les sorties du produit
scalaire sont modifiées par la fonction f . Les poids d’importance des mots sont
multipliés par les vecteurs des mots du document d’entrée, et on obtient la somme
pondérée représentant le vecteur de contexte du document.

Le travail de Ling [Ling et al., 2015] est proche de notre proposition con-
sistant à utiliser des poids des mots en s’appuyant sur un réseau de neurones.
Cependant, pour améliorer les vecteurs de contexte, les auteurs utilisent des poids
en fonction des positions des mots dans le document Continuous Bag-Of-Words
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Figure 3: Modèle neural bag-of-weighted-words (NBOW2).

(CBOW) [Mikolov et al., 2013a]. Notre modèle NBOW2 permet d’apprendre un
vecteur contextuel et d’attribuer des poids d’importance à des mots spécifiques
à la tâche étudiée. Quelques travaux similaires sont développés dans le domaine
de la traduction automatique [Bahdanau et al., 2014] de la reconnaissance de
la parole [Chan et al., 2015], de sous-titrage des images [Xu et al., 2015] et de
l’analyse des séquences protéiques [Sønderby et al., 2015].

3.3 Combinaison des Modèles NBOW et NBOW2

Nous proposons un nouveau modèle, appelé NBOW2+, dans lequel, pour un doc-
ument donné, les vecteurs de contexte sont concaténés. NBOW2+ possède deux
matrices d’entrée (W I

1 ,W
I
2 ) et utilise deux vecteurs v1

w et v2
w, de K dimensions

pour chaque mot d’entrée w. Ce modèle a un vecteur a de K dimensions, simi-
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laire à NBOW2, une matrice WO et un vecteur de biais b. Le vecteur de contexte
z du document est obtenu par la concaténation des deux vecteurs de contexte z1

et z2 comme suit :

z1 =
1

|X|
∑

w∈X
v1
w , z2 =

1

|X|
∑

w∈X
αw v

2
w

z = [z1z2]

(9)

Le vecteur de contexte de document est la concaténation des deux vecteurs de
contexte de dimension K chacun. Donc les paramètres de la couche de sortie
(WO, b) ont une dimension 2K. La procédure d’apprentissage et la fonction à
optimiser sont les mêmes que dans le cas de NBOW et de NBOW2.

4 Protocole expérimental

4.1 Corpus

Le Table 1 présente trois ensembles de données d’actualité réalistes qui sont
utilisés pour l’apprentissage, la validation et le test dans notre étude. Ces ensem-
bles de données justifient notre motivation pour la traitement des OOV PN. Ces
ensembles de données ont été recueillis à partir de deux sources différentes : (a)
le journal français L’Express2 et (b) le site français3 de la châıne de télévision Eu-
ronews. Le corpus L’Express contient des articles de journaux alors que le corpus
Euronews contient des articles ainsi que des vidéos de bulletins d’information et
leurs transcriptions textuelles. Dans notre étude, les données de L’Express seront
utilisées comme corpus diachronique pour estimer des modèles de contexte ou de
thème et pour choisir les OOV PN pertinents pour les vidéos d’Euronews (le cor-
pus de test). Les documents textuels d’Euronews, désigné par ‘valid’ dans Table
1, seront utilisés comme un ensemble de validation dans nos expériences.

4.1.1 Prétraitement du corpus diachronique pour former des modèles de con-
texte

Le logiciel TreeTagger [Schmid, 1994b] est utilisé pour détecter automatiquement
les PN dans le texte. Les mots et PN qui apparaissent dans le lexique de notre
système de LVCSR sont désignés par ‘IV’ (dans le vocabulaire) et les mots et PN
restants sont étiquetés comme ‘OOV’ (hors vocabulaire). Pour la construction

2http://www.lexpress.fr/
3http://fr.euronews.com/
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Table 1: Ensembles de données d’actualité

L’Express Euronews Euronews
(train) (valid) (test)

Type de Documents Text Text Video
Période Janvier - juin 2014
Nombre de documents1 45K 3.1K 3K
Taille du vocabulaire2 150K 42K 45K
Taille du Corpus (nombre de mots) 24M 550K 700K

PN unigrammes2 57K 12K 11K
Nombre des PN 1.45M 54K 42K

OOV unigrammes3 12.4K 4.9K 4.3K
Documents avec OOV3 32.3K 2.25K 2.2K
Nombre des OOV3 141K 9.1K 8K

OOV PN unigrammes3 9.3K 3.4K 3.1K
Documents avec OOV PN3 26.5K 1.9K 1.9K
Nombre des OOV PN3 107K 6.9K 6.2K

1K désigne Mille et M désigne Million
2 Les unigrammes de L’Express qui apparaissent moins de 3 fois sont
ignorés
3 Les unigrammes de L’Express qui apparaissent dans moins de 3
documents sont ignorés ; documents avec plus de 20 et moins de 500
mots

des modèles de contexte, les mots du corpus diachronique sont lemmatisés et
filtrés (suppression des PN et des mots non PN apparaissant moins de 3 fois). De
plus, les mots outils sont supprimés et seuls les mots des classes grammaticales
nom propre, nom, adjectif, verbe et acronyme sont conservés. Les modèles de
contexte et de thème sont construits à partir de ce vocabulaire filtré.

4.1.2 Statistiques des OOV PN

Comme indiqué dans la Table 1, 72% (3.1K sur 4.3K) des OOV dans le corpus
Euronews video sont PN, et 64% (1.9K sur 3K) des vidéos contiennent des OV
PN. Le nombre total de OOV PN à retrouver pour le corpus Euronews vidéos
(obtenu en comptant les OOV PN uniques par vidéo), est 4694. Sur ces 4694
OOV PN, seulement 2010 (c’est-à-dire 42%) peuvent être récupérés avec le corpus
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diachroniqueL’Express. La couverture des OOV PN pourrait être augmentée en
ajoutant des documents textuels extraits de sites d’informations supplémentaires
comme indiqué dans [Sheikh et al., 2016a].

4.2 Systèmes de reconnaissance de la parole

Dans nos expériences, nous utilisons deux systèmes de LVCSR. Notre système de
LVCSR basé sur des GMM-HMM a un WER plus élevé que celui fondé sur des
DNN-HMM. Ces deux systèmes de LVCSR sont utilisés pour démontrer l’effet
des erreurs de reconnaissance sur les performances des approches proposées. Ces
systèmes effectuent une segmentation et une transcription automatique de la
parole de fichiers audio de bulletins d’information.

4.2.1 Logiciel ANTS (Automatic News Transcription System)

Le système ANTS [Illina et al., 2004] est fondé sur des modèles GMM-HMM
appris sur 200 heures de fichiers audio de bulletins d’information. Il utilise le
moteur de reconnaissance Julius [Lee and Kawahara, 2009]. Le lexique a été
sélectionnée à partir des mots les plus fréquents dans des documents textuels
antérieur à 2009. Il contient 122K mots (260K prononciations). En utilisant le
SRILM toolkit [Stolcke, 2002], un modèle de langage 4-grammes est estimé sur des
corpus de texte d’environ 1800 millions de mots. Les transcriptions automatiques
obtenues par ANTS pour les vidéos de Euronews ont un WER de 41.7%.

4.2.2 Logiciel KATS (Kaldi Automatic Transcription System)

Le système KATS est basé sur des modèles DNN-HMM appris sur les mêmes
corpus que ANTS. Il utilise le moteur de reconnaissance de la parole Kaldi [Povey
et al., 2011]. Le lexique est identique à celui de ANTS. Un modèle de langage bi-
gramme est estimé sur le même corpus de textes que celui utilisé pour construire
le modèle de langage de ANTS. Les transcriptions automatiques obtenues par
KATS ont un WER de 16.4%, sur les vidéos de Euronews.

4.3 Modèle de référence : Pointwise Mutual Information

La pointwise mutual information (PMI) est utilisé comme une mesure de corréla-
tion statistiques dans la théorie de l’information. En linguistique informatique
(Computational linguistics), PMI a été utilisé pour trouver des corrélations et
des associations entre les mots [Church and Hanks, 1990]. Nous l’utilisons pour
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mesurer les associations entre OOV PN et des mots de vocabulaire LVCSR.
Désignant vx et vy deux mots apparaissant dans un document, les PMI est cal-
culée ainsi :

pmi(vx, vy) = log
p(vx, vy)

p(vx)p(vy)
(10)

où p(vx, vy) désigne la probabilité de co-occurrence des termes vx et vy dans un
document, p(vx) et p(vy) désignent les probabilités d’occurrence des termes vx
et vy dans tout du corpus. Pour une hypothèse de reconnaissance h contenant
des mots {w1, w2, w3, ...}, le score de chaque OOV PN ṽi est calculé de la façon
suivante :

s(ṽi) =

|h|∑

i=1

log
p(ṽi, wi)

p(ṽi) p(wi)
(11)

Cette méthode ne modélise pas explicitement des informations sémantiques ou
thèmatiques et elle sera utilisée comme notre méthode de référence (baseline).

4.4 Mesures de performance pour la récupération des OOV PN

Pour mesurer la performance de récupération des OOV PN pertinents pour un
document audio, nous utilisons des mesures fondées sur le rappel et la précision.
Spécifiquement, nous utilisons le rappel et la MAP (Mean Average Precision :
moyenne de la précision moyenne) [Manning et al., 2008a] qui sont couramment
utilisés pour évaluer les systèmes de recherche d’information. Pour un document
audio, de nombreux OOV PN peuvent être pertinents. Nous appelons ‘target
OOV PN’ les OOV PN effectivement présents dans un document. Pour notre
tâche, nous calculons le rappel (R) :

R =
nombre des targets OOV PN récupérés

nombre total des targets OOV PN

Le calcul des MAP pour un ensemble de documents Q se fait ainsi :

MAP =

∑Q
q=1 P (q)

Q
(12)

où P (q) est le score moyen de précision pour chaque document q. Avec la liste
classée des OOV PN pour un document, P (q) est calculé par :

P (q) =

∑
r P (r) rel(r)

nombre des targets OOV PN dans q
(13)
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où P (r) est la précision au rang r, calculée comme

P@r =
nombre des targets OOV PN récupérées jusqu’à r

r

rel(r) est une fonction indicatrice égale à 1 si le OOV PN au rang r est une target
OOV PN et égale à 0 sinon.

Les courbes de rappel et de MAP permettent des interprétations différentes
des résultats. Après la récupération des OOV PN pertinents, les N premiers OOV
PN pertinents sont sélectionnés. Après avoir ajouté ces OOV PN au vocabulaire
du système de reconnaissance, une deuxième passe de reconnaissance ([Fohr and
Illina, 2015, Oger et al., 2008b]) ou une recherche de mots clés ([Parada et al.,
2010b]) peut être effectuée. Alors que la valeur MAP tient compte des rangs des
OOV récupérés, la valeur de rappel pour un point de fonctionnement (N choisi
n’est pas sensible au rang des OOV choisis ; par exemple, dans les expériences de
la figure 4) pour N = 465, toutes les méthodes indiquent le même rappel, mais
les MAP sont différentes.

Pour une analyse détaillée, les résultats de récupération seront présentés sous
forme de graphique de rappel et MAP (Figure 4). En calculant de la MAP less
target OOV PN qui ne sont pas dans le liste des top-N meilleures OOV PN
obtenir un score de précision (P (r)) de zéro. Pour permettre de comparer tous
les modèles, on utilisera la valeur MAP calculée au point de fonctionnement 128
(MAP@128).

Pour déterminer si la différence entre les valeurs MAP@128 obtenues par les
deux méthodes est statistiquement significative, nous utilisons un test de Student
mesurée à l’aide du Student’s paired t-test ou un ré-échantillonnage [Smucker
et al., 2007]. L’hypothèse nulle est qu’il n’y a pas de différence entre les deux
méthodes, et qu’elles produisent des résultats identiques. L’hypothèse nulle est
rejetée si la valeur de p est inférieure à 0.05 pour les deux tests [Smucker et al.,
2007]. Pour le ré-échantillonage, nous générons 100,000 permutations aléatoires
des résultats des deux méthodes à comparer.

4.5 Sélection des hyper-paramètres des modèles

Le modèle LDA a trois hyper-paramètres, α : Dirichlet prior pour les distributions
documents-thèmes, β : Dirichlet prior pour les distributions thèmes-mots et T :
le nombre de thèmes, qui est aussi la dimension du vecteur représentant un mots
ou un document. Il y a des travaux dans la littérature [Griffiths and Steyvers,
2004, Wallach et al., 2009] qui discutent de la sélection des hyper-paramètres de
la LDA et ils sont généralement basés sur la probabilité obtenue par le modèle
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sur un ensemble de données. Dans notre tâche, nous choisissons des probabilités
symétriques pour les priors et nous sélectionnons les hyper-paramètres qui don-
nent les meilleurs résultats sur les données de validation au point de fonction-
nement 128 mots (MPA@128).

En plus de la taille du word embedding, le modèle Skip-gram a un hyper-
paramètre crucial : la taille de la fenêtre contextuelle. Nous avons essayé jusqu’à
la taille de fenêtre de 40 (longueur du plus petit des documents dans nos données).

D’après les résultats obtenus sur les données de validation, nous avons choisi
400 pour le nombre de thèmes de la LDA, 400 pour la taille du word embedding du
modèle Skip-gram, 20 pour la taille de fenêtre de contexte du modèle Skip-gram,
α = 0.01 et β = 0.01 pour la LDA.

Les modèles NBOW, NBOW2 et NBOW2+ avec des word embeddings de
taille 400 ont également donné la meilleure performance sur le corpus de valida-
tion. En plus de la taille de word embeddings, il y a d’autres hyper-paramètres
importants à choisir pour ces modèles. Ceux-ci seront discutés en détail dans les
sections 4.6 et 5.2.

4.6 Apprentissage des Modèles NBOW, NBOW2, NBOW2+

Dans cette section, nous discutons des choix faits pour la construction et l’appren-
tissage des modèles NBOW, NBOW2 and NBOW2+. Certains hyper-paramètres
jouent un role crucial qui affectent significativement les performances des modèles.
Une discussion plus spécifique est présentée dans la section 5.2.

4.6.1 Initialisation

Il est bien connu qu’une bonne initialisation des poids du réseau est cruciale
pour l’apprentissage des réseaux de neurones profonds [Larochelle et al., 2009,
Goldberg, 2015]. Bien que le modèle NBOW n’est un modèle profond, nous
avons examiné si l’initialisation affecte la performance du modèle NBOW dans
notre tâche. Nous présenterons les résultats pour le modèle NBOW avec des
vecteurs de mots d’entrée initialisée (a) de manière aléatoire et (b) avec des word
embeddings issus du modèle Skip-gram. Les vecteurs correspondant aux OOV
PN sont initialisés de manière aléatoire.
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4.6.2 Apprentissage en une passe et apprentissage en deux passes

Nous explorons deux méthodes d’apprentissage des modèles NBOW, NBOW2
et NBOW2+ : (a) Apprentissage en une passe et (b) Apprentissage en deux
passes. Dans l’apprentissage en une passe, tous les paramètres du réseau sont
appris et mis à jour en même temps. Le modèle NBOW (Section 3.1) comporte
une matrice d’entrée, une matrice de sortie et un vecteur de biais de sortie. Les
modèles NBOW2 et NBOW2+ (section 3.2 et 3.3) comportent en plus un vecteur
a.

La méthode à deux phases comporte une première phase d’apprentissage dans
laquelle seuls les paramètres de sortie (WO, b), et le vecteur a pour les modèles
NBOW2 et NBOW2+, sont mis à jour en gardant les vecteurs d’entrée fixes à
leurs valeurs d’initialisation (word embeddings calculés par le modèle Skip-gram).
Dans la deuxième phase, tous les paramètres du modèle, y compris les vecteurs
d’entrée, sont mis à jour. La motivation de cet apprentissage en deux phases est
l’espoir d’obtenir une meilleure convergence. La première phase est utilisée pour
mieux apprendre les paramètres de sortie (qui ont été initialisés au hasard).

4.6.3 Taux d’apprentissage et critère d’arret

Tous les modèles NBOW sont appris en utilisant l’algorithme de descente de gra-
dient avec ADADELTA [Zeiler, 2012]. ADADELTA fournit un taux d’apprentis-
sage (learning rate) adaptatif et il est robuste aux fluctuations du gradient. Nous
avons testé deux valeurs pour la paramètre (ρ) d’ADADELTA, 0.99 et 0.95. Nous
avons choisi ρ =0.99 dans toutes nos expériences, parce qu’il donne de bons
résultats sur les données de validation.

Pour contrôler l’apprentissage des modèles NBOW, nous avons choisi un
critère d’arrêt [Bengio, 2012] basé sur l’erreur sur les données de validation :
Early stopping. Le critère d’early stopping est utilisé pendant l’apprentissage en
une passe ainsi que lors des deux passes de l’apprentissage en deux passes.

4.6.4 Dropout

Le technique de dropout [Srivastava et al., 2014] réduit le sur-apprentissage et
donne des améliorations par rapport aux autres méthodes de régularisation pour
les réseaux neuronaux profonds. Les modèles NBOW, NBOW2 et NBOW2+
ne sont pas des architectures profondes, mais nous sommes intéressés à analyser
si le mécanisme de dropout pouvait éviter le sur-apprentissage et ajouter de
la robustesse aux modèles BOW. Nous avons appliqué le dropout à la couche
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d’entrée pour simuler des erreurs d’omissions d’un système de reconnaissance.
Cette méthode dropout a été récemment essayée et a donné des améliorations
dans les tâches de classification de texte [Dai and Le, 2015, Iyyer et al., 2015].

5 Résultats des expériences et Discussion

5.1 Performance de récupération des OOV PN

Le Figure 4 illustre les performances (rappel et MAP) de récupération des OOV
PN pour les différents modèles. Les résultats sur des transcriptions de référence
sont présentés à gauche, ceux sur les transcriptions de ANTS LVCSR au centre
et ceux sur les transcriptions de KATS LVCSR à droite. Ce triptyque permet de
montrer l’effet des erreurs de reconnaissance sur la récupération des OOV PN.
Les axes horizontaux représentent le nombre des OOV PN choisis dans le corpus
diachronique. L’axe vertical représente le rappel (en haut) et la MAP (en bas)
pour les target OOV PN. Pour chacune des méthodes, les modèles qui donnent
la meilleure performance sur les données de validation ont été choisis (Section 4.5
et 5.2).

En comparant les performances de la Figure 4, nous pouvons faire les obser-
vations suivantes :

• La méthode de PMI, qui ne modélise pas explicitement le contexte séman-
tique, obtient la plus mauvaise performance. Les méthodes basées sur des
modèles de contexte sémantique et le thème donnent de bien meilleurs
résultats.

• Les méthodes basées sur LSA et Skip-gram donnent de meilleures perfor-
mances que la LDA. En revanche, la LDA est plus robuste aux erreurs de
reconnaissance.

• Les représentations spécifiques au document donnent de meilleurs rappel et
MAP que les représentations globales apprises par chacun des modèles.

• Les modèles NBOW, NBOW2 et NBOW2+ montrent des résultats simi-
laires (leurs graphiques se superposent). Ils obtiennent la meilleure per-
formance de récupération des OOV PN et ils sont robustes aux erreurs de
reconnaissance.
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Figure 4: Rappel et moyenne de la précision moyenne (Mean Average Precision,
MAP) de récupération des OOV PN pour l’ensemble de données audio Euronews.
La Term Frequency (TF, fréquence d’un terme) est une sélection des k plus
fréquents OOV PN. Les modèles NBOW, NBOW2 et NBOW2+ sont initialisés
avec les word embeddings du Skip-gram et sont appris en deux phases.
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5.2 Analyse de l’apprentissage des modèles NBOW, NBOW2 et
NBOW2+

Dans cette section, nous analysons d’abord comment (a) l’utilisation du dropout
et (b) l’apprentissage en deux phases affectent les performances du modèle NBOW.

5.2.1 Robustesse avec dropout

L’effet de l’application du dropout peut être observé sur la Table 2. Il est clair
que le dropout améliore les résultats MAP. Nous pouvons observer que le modèle
NBOW initialisé avec les embeddings du Skip-gram (Sg-1p) converge plus vite
et donne de meilleures performances que le modèle NBOW avec initialisation
aléatoire (Rand-1p). Mais l’utilisation du dropout donne plus d’amélioration
pour Rand-1p que pour Sg-1p. Par exemple, la valeur de MAP pour la tran-
scriptions de référence (MAP-TR) est améliorée de 15% pour Rand-1p et de
6.75% pour Sg-1p avec un dropout de 0.9, par rapport aux résultats obtenus sans
dropout. Deuxièmement, nous pouvons observer que l’amélioration de la MAP
avec le dropout est plus grand pour les transcriptions LVCSR. Par exemple, si
l’on compare la valeur MAP pour la référence manuelle et pour les transcriptions
de ANTS (MAP-TR et MAP-TA), les améliorations sont de 15% versus 25% pour
Rand-1p, de 6.75% versus 11.8% pour Sg-1p et de 3.3% versus 8.2% pour Sg-2p.

5.2.2 Apprentissage en deux phases et améliorations avec le modèle NBOW2+

Dans la section 4.6.2 nous avons proposé d’apprendre les modèles NBOW en deux
phases. Les résultats du MAP dans la Table 2 montrent que le meilleur résultat
est obtenu avec l’apprentissage en deux phases. Cependant, il faut un plus grand
nombre d’époques d’apprentissage comparé à l’apprentissage en une seule phase
(Sg-1p). Avec l’aide de la figure 5, nous illustrons que ce problème est résolu
par le modèle NBOW2+. Cette figure montre les évaluations des erreurs sur
les données de validation pour les modèles NBOW, NBOW2 et NBOW2+ lors
de l’apprentissage. On peut observer que les trois modèles (NBOW, NBOW2
et NBOW2+) convergent vers un même point, mais pas à la même vitesse :
le modèle NBOW2+ obtient une convergence plus rapide sans compromis sur le
taux d’erreur. Pour appuyer cet argument, nous présentons la table 3 qui compare
le MAP atteint par les modèles NBOW, NBOW2 et NBOW2+ (dimension des
vecteurs des mots de 400 et dropout de 0,9).

A partir de ces expériences, on peut conclure que (a) deux phases d’apprentis-
sage conduisent à de meilleures performances avec les modèles NBOW et NBOW2
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Table 2: MAP@128 obtenu par le modèle NBOW (vecteurs
des mots de dimension 400) en utilisant le critère d’arrêt early
stopping. les Suffixes V, TR, TA et TK désignent respective-
ment les performances sur les données de Validation, sur les
Transcriptions de Référence, sur les Transcriptions de ANTS et
KATS. Rand (resp. Sg) désigne l’initialisation avec des vecteurs
aléatoires (resp. embeddings de Skip-gram). 1p et 2p désignent
le nombre de passes d’apprentissage. La meilleure configuration
est mise en évidence en caractères gras. ∗ dénote une différence
statistiquement non-significative par rapport à la meilleure con-
figuration.

probabilité dropout(p)
0.0 0.25 0.5 0.75 0.9

Rand-1p

époques 175 217 249 320 276
MAP-V 0.458 0.482 0.502 0.537 0.530

MAP-TR 0.500 0.522 0.549 0.578 0.576
MAP-TA 0.419 0.435 0.464 0.505 0.526
MAP-TK 0.457 0.473 0.500 0.533 0.542

Sg-1p

époques 112 147 152 149 155
MAP-V 0.511 0.522 0.535 0.541 0.543

MAP-TR 0.563 0.569 0.576 0.587 0.601
MAP-TA 0.491 0.483 0.502 0.531 0.549
MAP-TK 0.523 0.522 0.532 0.551 0.566

Sg-2p

époques 481 482 398 417 410
MAP-V 0.551 0.553 0.562 0.574 0.585

MAP-TR 0.602 0.598 0.605 0.615∗ 0.622
MAP-TA 0.525 0.519 0.533 0.561∗ 0.568
MAP-TK 0.555 0.552 0.561 0.578∗ 0.586

mais cela nécessite un apprentissage plus long, et (b) le modèle NBOW2+ permet
de réduire considérablement ce temps d’apprentissage, sans compromis sur la
performance MAP.
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Figure 5: Erreurs sur le corpus de validation, au cours de l’apprentissage en deux
phases des modèles NBOW, NBOW2 et NBOW2+. (Les pointillés indiquent la
fin de la première phase d’apprentissage.)

5.3 Importance des mots appris par le modèle NBOW2

Nous présentons la figure 6 pour discuter (a) de l’importance des poids αw appris
par le modèle NBOW2, et (b) du choix de la fonction f pour le modèle NBOW2
(équation (8)). Il montre le degré d’importance des mots dans un document.
Dans la figure 6, le graphique de gauche montre les poids attribués par le modèle
NBOW2 avec une activation sigmoide et le graphique de droite montre les poids
attribués par une activation softmax.

Tout d’abord, il est clair à partir de ces graphiques que le modèle NBOW2
apprend et affecte différents degrés d’importance pour les différents mots. Par
exemple, ce document de test a pour sujet l’accident du pilote de Formule 1
Michael Schumacher et il a un OOV PN manquant ‘Kehm’ (Sabine Kehm est la
porte-parole de Michael Schumacher). Si nous analysons la liste des mots selon le
graphique de gauche, les quatre mots les plus importants sont michael, formule,
critique et hospitaliser et les quatre mots les moins importants sont rester, tenir,
monde et présent. Dans cet exemple, il est évident que le modèle NBOW2 at-
tribue un poids plus élevé à des mots qui sont importants pour la récupération
des OOV PN. Cela est également vrai pour le modèle NBOW2 avec softmax. La
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Table 3: Résulatts MAP@128 obtenus par les modèles NBOW,
NBOW2 et NBOW2+ (dimension des vecteurs de mots 400,
dropout de p = 0,9 et early stopping). V :données de valida-
tion, TR :transcriptions de référence, TA : transcriptions ANTS,
TK : transcriptions KATS, Rand : initialisation aléatoire, Sg :
initialisation avec les embeddings du Skip-gram, 1p : une seule
passe, 2p :deux passes. La meilleure configuration est mise en
évidence en caractères gras. ∗ dénote une différence statistique-
ment non-significative par rapport à la meilleure configuration.

NBOW NBOW2 NBOW2+

R-1p

époques 276 123 210
MAP-V 0.530 0.474 0.519

MAP-TR 0.576 0.507 0.574
MAP-TA 0.526 0.402 0.526
MAP-TK 0.542 0.440 0.546

Sg-1p

époques 155 166 161
MAP-V 0.543 0.541 0.547

MAP-TR 0.601 0.599 0.601
MAP-TA 0.549 0.549 0.545
MAP-TK 0.566 0.566 0.566

Sg-2p

époques 410 648 273
MAP-V 0.585∗ 0.587∗ 0.593

MAP-TR 0.622∗ 0.622∗ 0.621
MAP-TA 0.568∗ 0.566∗ 0.569
MAP-TK 0.586∗ 0.586∗ 0.588

deuxième observation est que le modèle NBOW2 avec softmax tend à attribuer
un poids plus élevé à moins de mots et un poids proche de zéro à la plupart
des autres mots. Nous faisons l’hypothèse que le modèle NBOW2 avec softmax
ignore (c’est-à-dire donne une valeur d’importance faible) trop de mots, ce qui
affecte sa capacité discriminative, en particulier quand l’hypothèse de reconnais-
sance contient des mots erronés, ou que le document est multi-thématique, par
exemple un mélange de sport et de politique.

25



5 10 15 20 25 30 35 40 45
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
·10−2

mots (triés par importance)

d
eg

ré
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Figure 6: Degré d’importance des mots affectés par le modèle NBOW2, dans
un document contenant 48 mots. Deux variantes du modèle NBOW2 sont
présentées : à gauche la fonction f est une sigmoide et à droite f est un softmax.
La ligne bleu horizontale représente l’importance utilisée par le modèle NBOW
(même importance donnée à tous les mots).

6 Expérience de reconnaissance

La liste des OOV PN pertinents, récupérée par le modèle de contexte, doit être
utilisée pour diminuer le taux d’erreur du système de reconnaissance. Dans
nos travaux précédents, nous avons évalué l’efficacité de la liste des OOV PN
obtenus à partir de modèles de contexte, en effectuant une recherche acous-
tique/phonétique. Dans [Sheikh et al., 2016b], nous avons effectué une recherche
phonétique pour les N premiers OOV PN dans la meilleure hypothèse du système
de reconnaissance. Dans [Sheikh et al., 2016c], nous avons effectué une recherche
acoustique dans le réseau d’hypothèse de LVCSR basé sur un transducteur à états
finis (FST Finite State Transducer). La récupération basée sur la recherche de
mots clés permet une évaluation plus rapide, mais il en résulte de nombreuses
fausses alarmes. Dans cette thèse, nous effectuons une seconde passe de recon-
naissance en ajoutant les nouveaux noms propres récupérés au lexique.

6.1 Ajout des noms propres dans le système de reconnaissance

Pour ajouter les nouveaux noms propres au système de reconnaissance il est
nécessaire d’ajouter ces mots dans le lexique phonétique et dans le modèle de lan-
gage. Pour générer les prononciations de ces nouveau noms propres, nous avons
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utilisé le générateur automatique G2P (Grapheme-to-Phoneme) Sequitur [Bisani
and Ney, 2008]. L’estimation des probabilités n-grammes de LM, pour de nou-
veaux mots est un problème non trivial et ouvert. La plupart des méthodes pro-
posées reposent sur la similitude entre les nouveaux mots et des mots du vocabu-
laire [Orosanu and Jouvet, 2015, Qin, 2013, Lecorvé et al., 2011] ou utilisent des
classes de mots dans le modèle de langage [Allauzen and Gauvain, 2005b, Pražák
et al., 2007, Naptali et al., 2012]. Nous avons décidé d’ajouter seulement des
probabilités unigrammes pour ces nouveaux mots. Les probabilités unigrammes
sont ajustées en prenant une partie de la probabilité de <unk> et la probabilité
unigramme est calculée comme suit :

poov−pn−unigram = p<unk> ×
δ

# OOV PN
(14)

où δ est la fraction de probabilités de <unk> qui est attribué à tous les OOV
PN à ajouter. Cette approche est similaire à l’utilisation d’une classe de mots.

6.2 Configuration de l’expérience pour la reconnaissance

Pour réduire le temps de calcul, nous avons défini un ensemble de tests plus
petit pour ces expériences. A partir des 3000 vidéos de Euronews (Table 1),
nous avons choisi un sous-ensemble de vidéos qui apparaissent dans 4 semaines
choisies au hasard. Ce sous-ensemble de test comprend un total de 467 vidéos,
parmi lesquelles 318 ont un ou plusieurs noms propres manquants (target OOV
PN). On peut noter qu’il y a 149 vidéos dans ces données de test qui sont sans
OOV PN. Comme ce serait le cas dans une configuration réelle, on ne sait pas à
l’avance si la vidéo contient ou non des OOV PN. Les 318 vidéos contiennent un
total de 1023 OOV PN (non uniques), parmi lesquels 483 peuvent être récupérés
avec le corpus diachronique L’Express.

Nous effectuons la seconde passe de la reconnaissance de parole avec le système
ANTS car il est rapide d’effectuer une mise à jour du modèle de langage pour
chaque document4. Notre système de base (baseline) sera ANTS avec le lexique
de base (asns OOV PN), désigné par No-OOV. Le système noté LX-All utilise
ANTS dans lequel touts les 9300 OOV PN du corpus L’Express ont été ajoutés.
Nous avons créé deux systèmes de reconnaissance pour lequels nous avons ajouté,
lors de la deuxième passe, les 128 premiers OOV PN pertinent pour le docu-
ment vidéo, récupéré par les modèles LDA et les NBOW2+. Ceux-ci seront
désignés LDA-128 et NBOW2+-128. Nous avons utilisé un autre sous-ensemble

4Le système KATS est basé sur Kaldi qui nécessite une longue (∼ 6 heures) compilation des
(HCLG) FST.
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de vidéos Euronews (ne faisant pas partie du sous-ensemble de test) pour ajuster
le paramètre δ dans equation (14). Après différents essais, nous choisissons une
valeur de 0,001 pour δ, ce qui a donné une performance optimale pour chacune
des méthodes. Une valeur plus élevée de δ permet d’améliorer la reconnaissance
des target OOV PN mais elle entrâıne une augmentation des fausses alarmes.

6.3 Résultats des reconnaissance

La Table 4 représente le taux d’erreur de noms propres (Proper Name Error
Rate PNER) après la deuxième passage de reconnaissance de la parole. Le taux
PNER est obtenu en alignant d’abord la référence et la transcriptions automa-
tique au niveau du mot, puis en calculant les erreurs de substitution, d’omission
et d’insertion en ne prenant en compte que les noms propres. A partir de la ta-
ble 4, on peut observer que l’ajout de tous les OOV PN du corpus diachronique
(LX-All) conduit à une augmentation de PNER. Les modèles contextuels LDA
et NBOW2+ permettent la sélection de PN pertinents et la réduction du PNER.
LDA et NBOW2+ montrent une performance PNER similaire, mais une analyse
des erreurs a révélé que le modèle NBOW2+ conduit à une meilleure reconnais-
sance des noms propres et à moins de fausses alarmes. En outre, l’ajouter des
nouveaux PN dans le vocabulaire et le modèle de langage n’a eu aucun impact
négatif sur le WER.

Table 4: Les résultats de la deuxième passe de reconnaissance
de la parole. PNER désigne Proper Name Error Rate.

(OOV PN ajoutée)
No-OOV LX-All LDA-128 NBOW2+-128

% PNER 61.6 67.8 57.0 56.8

7 Conclusion

Les modèles de contexte sémantique permettent d’améliorer la récupération des
noms propres hors vocabulaire en sélectionnant des OOVs pertinents pour un
document audio. Nous avons analysé des méthodes basées sur la LSA, sur des
modèles thématiques LDA et sur des embeddings obtenus à l’aide d’un réseau
neuronal. Nous avons également étudié le modèle NBOW pour la tâche de
récupération des OOV PN. Nous avons proposé une nouvelle extension du modèle
NBOW qui permet de pondérer les mots importants pour notre tâche.
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Lors d’expériences sur des vidéos d’actualité en français, nous avons montré
que nos méthodes basées sur le modèle thématique LDA et les modèles NBOW
peuvent récupérer jusqu’à 85% à 90% des noms propres manquants extraits d’un
corpus diachronique. Les méthodes proposées basées sur des modèles de LDA et
NBOW sont robustes aux erreurs du système de reconnaissance.

Les modèles NBOW et NBOW2 donnent une amélioration des performances
de récupération par rapport à une méthode fondée uniquement sur des em-
beddings. L’apprentissage en deux phases et la méthode dropout permettent
aux modèles NBOW d’obtenir de meilleures performances. La combinaison
de modèles NBOW et NBOW2 conduit à une convergence plus rapide lors de
l’apprentissage. Les OOV PN pertinents, récupérés par les modèles de contexte,
ont été évalués en effectuant un deuxième passage de reconnaissance. Cette
seconde passe de la reconnaissance montre une réduction absolue de 4,8 % du
taux d’erreur de noms propres. Si tous les OOV PN du corpus diachronique
sont simplement ajoutés au vocabulaire du système de reconnaissance, une forte
dégradation est observée. D’autres améliorations sont possibles en utilisant des
données diachroniques de plusieurs sources.

Dans un autre travail [Sheikh et al., 2016d], nous avons évalué le modèle
NBOW2 sur les tâches de classification de texte, d’analyse de critiques de film
et de classification thématique de texte issus de groupe de discussion. Nous
avons montré la capacité d’apprentissage du modèle NBOW2 et qu’il surpasse
les modèles utilisant des sac-de-mots (Bag-Of-Words.
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CHAPTER 1

Introduction

Automatic Speech Recognition (ASR) systems are software programs which can
automatically transcribe a spoken utterance into written text. Most ASR sys-
tems follow a statistical approach and try to predict the most likely sequence of
sounds given the observed acoustic evidence from the speech recording. Instead
of simply predicting a sequence of sounds or phonemes, which lacks word bound-
aries and are difficult to interpret, it is favourable to predict a sequence of words.
This requires the speech recognition system to maintain a vocabulary of words, a
pronunciation lexicon to map a sequence of phonemes to a word and a language
model which defines the possible word sequences in that language. This hierarchi-
cal approach introduces some linguistic and grammatical knowledge into speech
recognition, leading to better results and more interpretable transcriptions.

Automatic speech recognition systems are known as Large Vocabulary Con-
tinuous Speech Recognition (LVCSR) systems when they can transcribe a large
set of words, typically ranging between 50,000 to 200,000 words. Given a reliable
acoustic model, the vocabulary of the LVCSR system can grow larger if there
is significant amount of text data available to train the language model. Words
which do not have enough occurrences in the training data cannot be relied upon
to learn reliable language model statistics. A practical choice is to leave out these
words from the language model. However, it turns out that there are many such
un-modelled words and they comprise important words, like names and entities,
which carry important information.

This chapter serves as an introduction to this dissertation. It begins with
an overview of the problem, and presents the motivation to study and address
it. This includes a discussion on the part of the problem being focused in this
dissertation1. This is followed by a brief discussion on adopted methodology and
proposed models, and finally a description of the layout and remaining chapters
of this dissertation.

1This thesis work is carried out under the ContNomina project supported by the French
National Research Agency (ANR) under the contract ANR-12-BS02-0009. (Details available
on the webpage: http://www.agence-nationale-recherche.fr/?Projet=ANR-12-BS02-0009)
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LVCSR Transcription

le dirigeant nord-coréen troisièmes représentants
de la dynastie au pouvoir depuis 1900 48 n’a pas
explicitement nommé son oncle et en sont à être
exécuté le 12 décembre officiellement pour crimes
contre le parti des travailleurs au pouvoir et
activités nuits en a l’international

Reference Transcription

Le dirigeant nord-coréen, troisième représentant
de la dynastie au pouvoir depuis 1948, n’a pas
explicitement nommé son oncle Jang Song-thaek,
exécuté le 12 décembre, officiellement pour crimes
contre le Parti des travailleurs au pouvoir et
activités nuisant à l’intérêt national.

Figure 1.1: LVCSR and reference transcriptions of a sentence from a French
broadcast news video from Euronews.

1.1 Overview of the Problem

1.1.1 Out-of-Vocabulary (OOV) Words

LVCSR systems cannot recognise words which are not present in their vocabulary,
leading to the problem of Out-of-Vocabulary (OOV) Words. As an example,
Figure 1.1 shows LVCSR and reference transcriptions of a sentence from a French
broadcast news video2. The words highlighted in red color indicate the errors
made by the LVCSR system. The name Song-thaek is not in the vocabulary of
the LVCSR system and hence the LVCSR predicts a sequence of similar sounding
words, sont à être, which are in the LVCSR vocabulary. On the other hand, the
first part of the name Jang is present in the LVCSR vocabulary but it is mis-
recognised. This is a common phenomenon where OOV words spread errors into
the adjacent in-vocabulary words and affect the overall LVCSR performance.

2available at https://www.youtube.com/watch?v=YtM0mc x0bo
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1.1.2 Can we simply accumulate new words?

A simpler solution to the OOV problem would be to find new words and a sig-
nificant amount of text data for these words to train the language model, and
finally accumulate the new words into the LVCSR system. To discuss on this
possibility we present Figure 1.2, which is taken from [Hetherington, 1995]. Het-
herington plotted a graph of the vocabulary size obtained by varying the amount
of training data taken from a corpus. As shown in Figure 1.2, he plotted this
graph for nine different corpora, comprising different languages (English, French,
Italian) and different communication styles (human-computer interactions, con-
versational speech and news corpora).
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Figure 1.2: Vocabulary size versus amount of training data, taken from [Hether-
ington, 1995]. The datasets are in different languages with F-ATIS and BREF in
French, I-VOYAGER in Italian and the remaining in English. They comprise dif-
ferent application domains including human-computer interactions (VOYAGER,
ATIS), conversational speech (CITRON, SWITCHBOARD) and news corpora
(BREF, NYT, WSJ).
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A flatter curve in Figure 1.2 indicates that, as the amount of training data
is increased the increase in vocabulary is lesser. This is true for corpora from
limited vocabulary tasks such as ATIS, F-ATIS, VOYAGER and I-VOYAGER3.
The vocabulary growth rate are much higher for the less restricted conversational
speech corpora, CITRON and SWITCHBOARD, and highest for news corpora
BREF, NYT and WSJ4. The trend of the graph for news corpora indicates that
its vocabulary growth rate will not flatten and new words will keep increasing
with the amount of training data. As an example, one could imagine names of
all politicians, all possible places from various countries, the names of organisa-
tions and products, and other entities. A crawl on the internet for news articles
in an particular language, like English, French, Italian, leads to a corpus with
vocabulary of millions of words. Thus continuously adding more words into
the LVCSR system is not a practical solution, as also discussed in previous
works [Hetherington, 1995, Parada, 2011, Qin, 2013].

The growth in vocabularies is due to the accumulation of new words intro-
duced by constantly evolving topics in the news. This brings our discussion to
a more specific issue that we discuss in our research, that of diachronic audio
documents.

1.1.3 Diachronic Documents and Proper Names

Documents like broadcast news and Youtube videos are diachronic in nature and
are characterised by a variety of topics which change frequently with time. The
appearance and disappearance of new events leads to many new words which are
ultimately OOVs. To illustrate this phenomenon we present Figure 1.3. This
figure shows a plot of count of new words appearing in news articles, from a
French newspaper, during a period of 25 weeks. From these examples we can see
that some OOV words are common and could be present throughout the timeline
but others span a short time and can have fewer instances. Simply accumulating
such new words into the LVCSR system would increase the LVCSR search space
and complexity and lead to confusion with in-vocabulary words.

Similar to our illustration in Figure 1.3, previous works have reported that
the majority of the new or OOV words are proper names (PNs). Percentage of
proper names in OOV words been reported as: 56% by Qin [Qin, 2013], 66% by
Parada [Parada et al., 2011a], 57.6% by Palmer [Palmer and Ostendorf, 2005],

3 ATIS stands for Air Travel Information Services [Hemphill et al., 1990] and VOYAGER
is a system for locating some services in a specific area [Zue et al., 1990].

4WSJ is for Wall Street Journal [Paul and Baker, 1992], NYT for New York Times, and
BREF has read speech from French newspaper Le Monde [Lamel et al., 1991]
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Figure 1.3: Time versus frequency distribution of new words in a news corpus.
The words are new and OOV with respect to our automatic news transcription
system described in Section 2.4.2. Occurrence count shown were obtained from
news articles appearing in the French newspaper L’Express during January-June
2014. (Mohamed Morsi is an Egyptian politician, MH370 is the Malaysia airlines
flight which disappeared, Petro Porochenko is the fifth and current President of
Ukraine, WhatsApp is a mobile application, Gravity is the name of Hollywood
movie.)

70% by Allauzen [Allauzen and Gauvain, 2005b], 72% by Bechet [Béchet et al.,
2000]. We observed similar statistics in our analysis. As discussed in Section
2.4.1, about 72% of OOV words in our test set, comprising of broadcasts videos
from Euronews, are proper names and about 64% of the videos contain OOV
proper names. Speaking in terms of number of OOV proper names, there are
about 10K new proper names when looking at 6 months of recent news articles
from only one website. This number increases to 18K for articles from two news
websites (see Section 4.6.1). With this trend the total number of OOV proper
names will be in hundreds of thousands for an LVCSR system trained on the
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French Gigaword corpus with 16 years of news data5. (It should also be noted
that for highly inflected languages like Portuguese this may not be completely
true. Inflections of verbs contribute majority of OOV tokens and reduce the
percentage of OOV proper names. For instance as reported in [Martins et al.,
2006], proper names contribute about 29% of the OOVs as compared to 57% of
verb inflections.)

Broadcast news transcription is one of the most widely studied LVCSR setup,
and as discussed above it faces the problem of OOV proper names. Proper names
in audio/video news are of prime importance for content based indexing and
browsing applications as well as to produce accurate and reliable transcriptions,
as partly evident from the example in Figure 1.1. This motivates us to study the
problem of OOV proper names in broadcast news, i.e. names which appear in
diachronic broadcast news audio but are not present in the LVCSR vocabulary
and language model and hence cannot be recognised by the LVCSR system.

1.1.4 Approaches to Address the OOV Problem

Approaches addressing the OOV problem in LVCSR systems can be put into two
categories as follows.

• OOV detection based approaches [Qin and Rudnicky, 2012, Parada
et al., 2010a, Kombrink et al., 2012], which aim to detect the presence of
OOV words and/or locate OOV regions in the LVCSR hypothesis. These
approaches mainly learn from outputs of one or more speech recognition en-
gine. A related and more interesting approach is based on hybrid language
models, which enable hypothesis of both word and sub-word units. This
approach forms the motive for most open vocabulary ASR systems [Bisani
and Ney, 2005, Shaik et al., 2015].

• Vocabulary selection approaches, which propose a relevant vocabulary
for speech recognition using additional text data. They try to minimise the
OOV rate for a domain specific corpus [Allauzen and Gauvain, 2005a, Liu
et al., 2007] or for a daily update system [Martins et al., 2007]. Document
specific vocabulary selection methods [Oger et al., 2008b, Meng et al., 2010]
are more dynamic as they propose context specific vocabulary.

The problem with OOV detection approaches which learn from outputs of
speech recognition is that it requires speech datasets with manual and automatic
LVCSR transcriptions, and features obtained from LVCSR decoding, to train

5https://catalog.ldc.upenn.edu/LDC2011T10
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classifiers for detecting OOVs. Modelling together word and sub-word units is
more promising as it does not necessarily depend on OOV detection or knowledge
of possible OOV words. However this approach requires an optimal selection of
sub-word units, so that it does not impact the recognition of in-vocabulary words.

Vocabulary selection based approaches are more flexible as they enable dy-
namic vocabulary selection for speech recognition. They require (a) the knowl-
edge of possible OOV words, as also required for OOV word recovery post OOV
detection, and (b) related text data for training the selection methods. However,
it is easier to meet these requirements in most LVCSR tasks, especially with the
availability of text data on the internet. One may argue that this data might as
well be used to train language models to include the OOV words in the LVCSR
system. However, this would bring us back to the questions (a) is the amount
of data sufficient for training reliable language model, and (b) how many of the
new words should be added in the LVCSR models.

1.2 Adopted Methodology

In this dissertation, we adopt a document specific vocabulary selection
approach and focus on the problem of retrieving relevant OOV words
in large vocabulary continuous speech recognition. Earlier proposed document
specific vocabulary selection methods rely on web search engines to retrieve text
documents containing relevant words [Oger et al., 2008a] and/or rely on methods
based on term frequency, document frequency and word co-occurrence features
for selecting new words [Allauzen and Gauvain, 2005b, Martins et al., 2007, Meng
et al., 2010, Maergner et al., 2012, Nkairi et al., 2013]. As opposed to relying on
ad-hoc methods and count based hand crafted features, we adopt unsupervised
and theoretically well defined methods for document vocabulary selection.

In our approach, we collect a corpus of in-domain text documents from the
web, which contain new/OOV proper names. This corpus, referred to as the
diachronic text corpus, is the input to train our OOV proper name retrieval
models. This model learns the semantic and topic context of the OOV proper
names, rather than simply relying on search engines or text matching techniques.
Given a test speech utterance, our models infer the semantic/topic context of the
spoken content and hypothesise a list of context relevant OOV proper names.
This list can then be used to recognise/recover the target OOV proper names6

6All new proper names in the diachronic text corpus, and not in LVCSR vocabulary, are
referred as OOV proper names. Those actually present in the test speech are referred as target
OOV proper names.
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present in the speech. The recovery can be performed using a second pass of
speech recognition with an updated language model or using keyword spotting
techniques. The methods for recovery are not the problems that we focus on.
Instead, for evaluation we perform a second pass speech recognition in which
the relevant OOV proper names are added as unigrams into the language model.
Throughout this dissertation, our aim is to model and exploit semantic/topic
context to retrieve relevant OOV proper names. Our motivation to explore se-
mantic/topic context models for addressing the OOV problem in LVCSR comes
from a more fundamental question - How can we leverage semantic and topic
context to improve LVCSR transcriptions?

Semantic and topic information can be exploited in different ways in our task.
One could model the local level semantic information of OOV proper names,
relying on its surrounding word sequences, or a more global document level topic
information. However LVCSR transcriptions are prone to word errors and noise
in word sequences, and secondly have no direct information about the position
of OOVs. So it is less favourable to rely on local level semantic information of
OOV proper names. In our approach we rely on a document level semantic
and topic context of LVCSR transcriptions to retrieve relevant OOV
proper names.

Semantic and topic models have been widely studied in the field of Compu-
tational Linguistics and Natural Language Processing, more specifically under
Distributional Semantics [Turney and Pantel, 2010]. Among these, the Latent
Semantic Analysis (LSA) [Deerwester et al., 1990] and Latent Dirichlet Alloca-
tion (LDA) [Blei et al., 2003] models have been the most prominent methods
for automatically extracting underlying topic/semantic representations in docu-
ments. While LSA obtains semantic spaces using matrix decomposition method
from linear algebra, LDA learns topic distributions using a hierarchical Bayesian
analysis. More recent developments on Neural Network based language mod-
els [Mikolov et al., 2013c] have led to interesting semantic/syntactic word and
context representations.

This dissertation focuses on two main issues: (a) robustness of semantic/topic
representations to speech recognition errors, because in our task the context is
inferred from an LVCSR hypothesis, and (b) effectiveness of the representations
for less frequent OOV proper names, because most OOV proper names do not
have many instances in the training data. One of the main contribution
of this dissertation is a methodology to retrieve relevant OOV proper
names, which generalises to different semantic and topic space repre-
sentations, including LSA, LDA and word embedding spaces. We perform a
thorough analysis of how these representations can be exploited for our task.

37



The second main contribution is models to learn discriminative con-
text representations. LSA, LDA and word embedding models learn represen-
tations by maximising training data likelihood. Following the detailed analysis
of these different representations, we argue that they are not the most optimal
for our task. We propose discriminative context representations trained with an
objective to maximise the performance of retrieval of OOV proper names. The
proposed discriminative models outperform the different semantic/topic represen-
tations. Our Neural Bag-Of-Weighted-Words (NBOW2) model learns to assign
task specific importance weights to words. The effectiveness of our NBOW2
model is also evaluated on standard topic classification and sentiment analysis
tasks.

In this dissertation, we present experiments performed on retrieval of OOV
proper names in French broadcast news videos. However, our proposed method-
ology and the discriminative context representation models are language inde-
pendent and readily apply to other types of diachronic audio/video documents
as well as non proper name OOVs. We would also like to highlight that the
proposed methodology does not require any supervision or labelled data.

1.3 Thesis Layout

The dissertation is organised as follows. In Chapter 2 we present a background,
providing a very generic and technical description of automatic speech recognition
and a glimpse of the major revivals in LVCSR research. This is followed by a
survey of previous works addressing the OOV problem and finally the details
about our LVCSR setup, corpora, tasks and evaluation measures.

As we would like to exploit semantic and topic context for our task of OOV
proper name retrieval, we dedicate Chapter 3 to introduce models from distri-
butional semantics. In this chapter we describe the LSA model, the LDA topic
model and the Continuous Bag Of Words (CBOW) and Skip-gram word embed-
ding models [Mikolov et al., 2013b].

In Chapter 4 we present the proposed methodology for retrieval of OOV
proper names. We introduce our retrieval methods using topic representations
from LDA and extend these to semantic vectors from the LSA model and rep-
resentations from LDA based Entity-Topic models. An evaluation of the pro-
posed methods is performed and the performances for all these representations
are compared. This chapter also presents a discussion on the problem of selection
of diachronic text corpora from the internet, which is essential for training the
context models and to retrieve OOV proper names.
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In Chapter 5 the proposed retrieval methods are extended to word embedding
space representations. Similar to chapter 4, we analyse the performance of the
representations with different model hyper-parameters and finally compare the
best performing semantic/topic representations. A detailed analysis reveals the
inadequacies with these representations.

Chapter 6 presents the proposed discriminative context representations. It
describes the model architectures and the training procedure for our Neural Bag-
Of-Words (NBOW) model and the Neural Bag-Of-Weighted-Words (NBOW2)
model. This is followed by a detailed analysis of the proposed methods to boost
robustness and performance of these models. After presenting the improvement
in retrieval performance with these models, we try to evaluate it in terms of
recovery of the target OOV proper names in audio documents. We also evaluate
the NBOW2 model on standard topic and sentiment classification tasks.

The conclusions and future perspectives drawn from this dissertation are pre-
sented in Chapter 8.
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CHAPTER 2

Background

This chapter provides a general background relevant to this dissertation. It is
divided into three sections. In the first section we give an overview of Large
Vocabulary Continuous Speech Recognition (LVCSR) systems, providing a very
generic technical background as well as a glimpse of the major revivals in LVCSR
research. The second section briefly presents the Out-of-Vocabulary (OOV) prob-
lem faced by LVCSR systems and mainly discusses the previous works addressing
the OOV problem, followed by the approach that we have adopted. The last sec-
tion provides details and description of our study, including the LVCSR setup,
corpora, tasks and evaluation measures.

2.1 Large Vocabulary Continuous Speech Recognition

Automatic Speech Recognition (ASR) systems produce a transcription of a spo-
ken utterance into the corresponding string of words. These systems are known
as large vocabulary continuous speech recognition systems when they can tran-
scribe a large set of possible words, typically ranging between 50,000 to 200,000
words. The continuous attribute of LVCSR indicates that the speech signal is
processed to obtain a sequence of words in a continuous manner as, opposed to
isolated word recognition systems. Historically, most LVCSR systems were devel-
oped during the 1990’s1,2 under the continuous speech recognition programmes
funded by the Advanced Research Projects Agency (ARPA) [Young and Chase,
1998].

Given the task of transcribing spoken utterances, sentences and even dialogs
and discourse into the corresponding sequence of words, LVCSR systems are
evaluated with a measure termed as Word Error Rate (WER). The WER measure

1In the years before, systems with thousand or more words were sometimes referred as large
vocabulary systems.

2The Broadcast News (BN) and the late Wall Street Journal (WSJ) and North American
Business (NAB) news tasks during the mid-1990’s had a vocabulary of about 65,000 words.
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is itself derived from the edit distance [Navarro, 2001] or Levenshtein distance
(attributed to Levenshtein [Levenshtein, 1966]). Denoting N as the total number
of words in the reference transcription, D as the number of words missed or
deleted by the LVCSR, I as the number of erroneous words inserted by the
LVCSR itself and S as the number of words in the reference transcription that
are substituted by the LVCSR with some other words, WER is calculated as:

WER = (D + I + S)/N (2.1)

Most practical and state-of-the-art LVCSR systems take a statistical approach
and pose speech recognition as a problem to estimate the most likely sequence of
words Ŵ = ŵ1ŵ2ŵ3 · · · ŵn given the observed acoustic evidence A. This can be
formally written as:

Ŵ = argmax
W∈L

P (W |A) (2.2)

where P (W |A) denotes the probability of a word sequence W , drawn from a
language L, given that acoustic evidence A was observed. Using Baye’s rule,
Equation 2.2 becomes:

Ŵ = argmax
W∈L

P (A|W )× P (W )/P (A) (2.3)

≈ argmax
W∈L

P (A|W )× P (W ) (2.4)

where we can see that the problem of finding the best word sequence relies
on maximising the acoustic likelihood P (A|W ) given the language prior P (W ).
The acoustic likelihood P (A|W ) of a word is obtained from an Acoustic Model
(AM) whereas the prior P (W ) comes from a Language Model (LM) which defines
the possible word sequences in that language. These models are learned from
hundreds of hours of speech recordings and their transcriptions. To perform
speech recognition, the LVCSR system includes a decoder module which performs
the search for the best likely word sequence.

Instead of modelling the acoustics of each possible word separately words
are split into smaller units, most commonly a sequence of phonemes looked up
from a pronunciation lexicon. The total number of these sub-word units is fix,
for example 40-45 phonemes for English and French. Composing words from
a fixed set of smaller units gives the flexibility to include new words into the
speech recognition vocabulary. The language model is most commonly built on
word units and gives the flexibility to recognise different sequence of words. This
hierarchical approach adds linguistic and grammatical constraints to the speech
recognition problem, leading to more accurate results as compared to transcribing
a speech signal into a sequence of characters or phonemes.
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Figure 2.1 illustrates a generic processing hierarchy of large vocabulary con-
tinuous speech recognition systems. A generic description of this hierarchy, in-
dependent of the specific underlying modelling techniques, is as follows.

• Signal Level: At the lowest level is the input speech signal, which is noth-
ing but the acoustic signal captured by a microphone and digitised into a
discrete waveform. Since the speech signal is non-stationary and changes
continuously with time, it is split into short overlapping frames, generally of
25 milliseconds length and 10 milliseconds overlap, for further processing.

• Feature Level: In the next level, important acoustic features are extracted
from each speech frame and each frame is now represented by a feature
vector. This step discards the useless information from the raw frame level
representation of the speech signal and reduces its dimensionality for sta-
tistical modelling. To capture low level temporal dynamics, feature vectors
corresponding to each frame can use information from feature vectors cor-
responding to previous few frames.

• Sequence of States: The temporal patterns in the feature vectors are cap-
tured by a sequence learning model, for example Hidden Markov Model
(HMM). A sequence learning model maintains a particular sequence of
states for each pattern to be recognised, for example a sequence of feature
vectors corresponding to a phoneme. The sequence of observed feature
vectors remain in the same state as long as they are similar to previous
ones. Changes in temporal pattern of the observed feature vectors cause a
transition from the current state to the next state in the state sequence.

• Sequence of Sub-word Units: A sub-word unit is composed of a particular
sequence of states. Depending on the choice of sub-word units, a sequence
of feature vectors may trigger the sequence of states corresponding to two
acoustically closer sub-word units, for example ‘p’ and ‘b’. The context
of preceding and following sub-word units can disambiguate (but cannot
eliminate) such possibilities. Generally, there is a lexicon which maps a
sequence of sub-word units to words.

• Sequence of Words: A language model built on word units, or sometimes
even on sub-word units, is at the top most level of the LVCSR processing
hierarchy. It models the possible words (or word sequences) that could be
present in a speech utterance.

In the LVCSR processing hierarchy, the acoustic model links the feature level
to the sub-word sequence level whereas the language model covers the word level
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and sometimes also the sub-word sequence level. It must be noted that, as op-
posed to first predicting a sequence of sub-words and then fitting a sequence of
words over it, most LVCSR systems follow an integrated approach. In this ap-
proach, a speech recognition decoder loads a language model in the form of a
graph, with words as nodes in the graph and arcs connecting those words which
can appear in a sequence. The words are eventually decomposed into sub-word
and then state sequences. Given a sequence of feature vectors representing the
speech utterance, the decoder performs the search for the most likely state se-
quences and hence hypotheses of the most likely word sequences. On the contrary,
some very recent systems [Hannun et al., 2014] based on Connectionist Tempo-
ral Classification first recognise a sequence of phonemes/characters from speech
and then use a slightly sophisticated language model to obtain the best word
sequence.

The earliest LVCSR frameworks were discussed in [Rabiner and Juang, 1993,
Young, 1996, Jelinek, 1997] and until a few years ago the state-of-the-art LVCSR
systems were based on this framework [Gales and Young, 2007, Hinton et al.,
2012a]. In the recent few years the progress in machine learning and speech
recognition has led to improved acoustic models and language models as well
more efficient decoders for LVCSR systems. We will present a brief overview
of the most prominent acoustic modelling and language modelling methods that
have have led to major breakthroughs in LVCSR technology in the past few
decades. Since the main focus of this dissertation is on modelling context for
dynamic vocabulary selection in LVCSR, the description does not go into the
technical depth of individual acoustic and language models.

2.1.1 LVCSR Acoustic Modelling

In the early days of speech processing and recognition, extracting feature vectors
from speech signal was a hot research topic. This lead to interesting developments
including the Linear Predictive Coding (LPC) [Atal and Hanauer, 1971], and later
Mel-Frequency Cepstral Coefficients (MFCC) [Davis and Mermelstein, 1980] and
Perceptual Linear Prediction (PLP) coefficients [Hermansky, 1990]. See [Anusuya
and Katti, 2011] for a detailed review. Except for some very recent LVCSR
systems, acoustic modelling involves training a sequence learning model on these
automatically extracted, but specifically engineered, sequence of acoustic feature
vectors.

Hidden Markov Models have been the most common and widely used ap-
proach for modelling sequences of acoustic feature vectors. Figure 2.2 shows a
diagrammatic representation of an HMM. The HMM has two types of variables
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Figure 2.2: Hidden Markov Model (HMM) based acoustic modelling.

(a) the observed variables (denoted as x1, x2...x5 in Figure 2.2), which are the
acoustic feature vectors in speech recognition applications, and (b) the hidden
variables or the hidden states (denoted as s1, s2, s3 in Figure 2.2), where each
state represents a probability distribution over possible feature vectors. While
the HMM is a generative model we will present a simpler description in terms
of decoding during speech recognition. We refer to [Rabiner, 1989] for a more
detailed discussion on operation and training of HMMs. At every time step or
feature vector in the incoming sequence of feature vectors, the HMM takes a
transition from the current state to either the next state or to the current state
itself. The probability of making a transition from one state si to another state
sj is given by the probabilities aij. The probability of a feature vector belonging
to, or in generative sense output vector being generated by, a state sj is given by
bj().

For many years (about 1990’s - 2012), the state-output distribution for each
state was modelled by a Gaussian Mixture Model where each component of the
mixture model is a Gaussian probability density function. We refer to [Gales
and Young, 2007] for more details. The complete GMM-HMM acoustic model,
including model parameters [{aij}, {bj()}] are efficiently estimated from a corpus
of spoken utterances and their corresponding transcriptions, using the Baum-
Welch algorithm [Baum et al., 1970] which is a special case of the more general
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Expectation-Maximisation (EM) algorithm [Dempster et al., 1977]. Over the
years, many refinements in the GMM-HMM acoustic model have been presented,
some of them including discriminative parameter estimation, acoustic feature
projections, vocal tract length normalisation and algorithms for adaptation and
noise compensation [Gales and Young, 2007]. As a result these GMM-HMM
based models became very successful and they could not be easily outperformed
by other acoustic modelling techniques, especially in LVCSR systems.

Despite the continuing success of GMM-HMM acoustic models it was known
that these models had inherent shortcomings. The GMMs, which were mainly
driving the HMM based acoustic models, amount to several thousands of Gaus-
sian densities and lead to statistically inefficiencies, as pointed out in more recent
works on acoustic modelling [Mohamed et al., 2012, Hinton et al., 2012b, Dahl,
2015]. There were early attempts to replace the GMMs with an artificial neural
network [Bourlard and Morgan, 1993, Ellis and Morgan, 1999]. However after
many years, the idea and success on deep learning and Deep Neural Networks
(DNN)3 [LeCun et al., 2015, Schmidhuber, 2014], lead to a promising DNN-
HMM hybrid acoustic model [Mohamed et al., 2009]. Record breaking results
were presented on small scale speech recognition task [Mohamed et al., 2012]
and on LVCSR [Dahl et al., 2011]. These acoustic models were commonly know
as DBN-HMMs in those days as Deep Belief Networks (DBN) [Hinton et al.,
2006] were used for pre-training the multiple layers of the DNN. This training
mechanism was replaced by other techniques resulting in further improvements
[Dahl, 2015]. Since 2012, DNN-HMM acoustic models have shown striking gains
in performance, as witnessed by several speech recognition groups [Hinton et al.,
2012b], leading to state-of-the-art LVCSR systems. We refer interested readers
to [Yu and Deng, 2014] for a detailed discussion on DNN-HMM acoustic models
and their comparison with GMM-HMM acoustic models.

With the continuing development in the field of neural networks and deep
learning there have been several new proposals for acoustic modelling. Some of
the prominent ones being the use of Convolutional Neural Networks (CNN) for
extracting features and acoustic modelling [Sainath et al., 2013, Abdel-Hamid
et al., 2014] and the use of Recurrent Neural Networks (RNN) for performing
end-to-end speech recognition without requiring feature extraction and HMM
acoustic models [Graves and Jaitly, 2014].

3multiple layers of artificial neural networks
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2.1.2 LVCSR Language Modelling

The task of the language model is to capture the possible sequence of symbols
(usually words) in a given language. In small vocabulary applications, the ex-
pected word sequences can be specified by a finite-state or context-free grammar
[Bahl et al., 1978]. However for LVCSR systems a more feasible, and a long stand-
ing, solution has been a Statistical Language Model (SLM)[Bahl et al., 1983]. An
SLM is trained over a (sufficiently large) text corpus to capture a probability dis-
tribution over sequences of words. Once an SLM is trained it can be used to
calculate the likelihood of a new sequence of words or to predict the next word
for the given word sequence. The probability of a sequence of N words is given
as:

p(w1, w2, w3, ..., wN) =
N∏

i=1

p(wi|w1, w2, ..., wi−1) (2.5)

Assuming an nth order Markov property, the probability of the word wi can be
approximated by the probability of observing this word after the preceding n− 1
words as:

p(w1, w2, w3, ..., wN) ≈
N∏

i=1

p(wi|wi−(n−1), ..., wi−1) (2.6)

This is referred to as the n-gram language model, with unigram, bigram and
trigram being a common term referring to the case where n is 1, 2 and 3 respec-
tively. The conditional probabilities can be directly obtained with the n-gram
counts from the training text corpus. For instance the unigram, bigram and
trigram probabilities can be obtained with the following equations:

p(w1) =
count(w1)

total word count of corpus

p(w2|w1) =
count(w1, w2)

count(w1)

p(w3|w1, w2) =
count(w1, w2, w3)

count(w1, w2)

(2.7)

This kind of counting can be problematic because many valid, but unseen, word
sequences will have a zero n-gram count and hence the probability estimates
are going to be zero. This problem is addressed by discounting or smoothing
techniques, with Good-Turing smoothing [Katz, 1987] and modified Kneser-Ney
smoothing [Kneser and Ney, 1995] being the more widely used smoothing tech-
niques.

The simple smoothed n-gram language models have several shortcomings for
which they receive great criticism from linguists. On the other hand they have
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been quite successful as building blocks in LVCSR and other natural language
processing systems. Over the years, researchers have presented interesting mod-
ifications for the standard n-gram language models and we will briefly mention
some of the popular ones. For more details, we refer the interested readers to
[Rosenfeld, 2000, Goodman, 2001, Mikolov, 2012].

One of the problems with n-gram models is to capture long term history. For
instance the model could make a better prediction of the next word if the topic
was known rather than simply relying on a sequence of handful of words4. Cache
models [Jelinek et al., 1991] address this problem by dynamically estimating an
n-gram model by interpolating the recent long term history (about hundreds
of words) with a standard n-gram model. The latent semantic analysis based
language model [Bellegarda, 2004a] is an interesting variant of the cache language
model which takes into account the semantic representation of the text. Even the
trigger based model [Lau et al., 1993] can be seen an a variant of a cache model.
Another problem with n-gram models is that of data sparsity in higher order
n-grams. A very simple example of this problem could be that of the name of the
months and days in a week. While they can have some specific word histories,
for example in case of specific events, it is easy to imagine that they can appear
interchangeably and hence share their word history contexts. The class based
model is proposed as a solution to this problem and it has many existing variants
[Goodman, 2001]. A class based model replaces words by their classes, a class of
months and a class of days of the week in our example, and estimates an n-gram
model on these classes instead of those words. If a class is encountered during
word prediction, then the words contained in that class are chosen based on their
probability within the class. More linguistically motivated statistical language
models are the structured language models in which a sentence is seen as a tree
generated from a context free grammar. Probabilistic context free grammars
are learned during the training phase from parsed or annotated text corpora.
A slightly different kind of language model worth mentioning is the maximum
entropy (or exponential) language model which expresses the probability of a
word given a history in terms of arbitrary features corresponding to the word-
history pair using an exponential model5. Important contributions in maximum
entropy language models were presented in [Rosenfeld, 1996, Chen, 2009].

Similar to the research in acoustic models for speech recognition, even the
statistical n-gram language model were challenged by statistical language models
based on neural networks. The main idea behind these models was to represent
words as vectors in a continuous space and to predict a word by comparing its vec-

4Simply increasing the order n of the n-gram model will start overfitting the data and does
not help.

5more commonly known as logistic regression among the machine learning community
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tor with the vector corresponding to the context of the word. The context vector
is composed from the vectors of the words in the context. Under this represen-
tation and learning framework, similar words were arranged close to each other
in the continuous vector space and shared similar context. Without requiring
an exact match in context, this helped to overcome the problem of exponential
increase of parameters as faced by an n-gram model.

The first successful neural network language model was based on a feed-
forward neural network architecture [Bengio et al., 2001, Bengio et al., 2003] and
it was later tried for LVCSR [Schwenk and Gauvain, 2002]. The feed-forward
neural network was later replaced by a recurrent neural network architecture
[Mikolov et al., 2010], giving the ability to capture long term contexts, leading
to significant improvements in the language model. The training problems re-
lated to RNN language models were addressed by the Long-Short Term Memory
(LSTM) based recurrent neural network language model [Sundermeyer et al.,
2015], leading to further improvements. More recent works have explored sev-
eral other neural network architectures [Józefowicz et al., 2016], also including
character level information.

Irrespective of the methods used, a common challenge with language models
is to adapt it to newer scenarios. Adapting a language model to new domain
and datasets has been of interest to researchers in speech recognition, almost as
much as the language modelling problem itself [Bellegarda, 2004b, Mikolov et al.,
2010]. A related and more severe problem is that of handling new words which
were not seen before and/or when there is not enough data to include them into
the language model. As this dissertation deals with this specific issue, we devote
the next section to discuss more about it.

2.2 The Out-of-Vocabulary Problem in LVCSR

LVCSR systems give the flexibility to include new words into the speech recog-
nition vocabulary as well as to recognise new sequence of words. However a
limitation to this is the amount of text data available to train the language
model, irrespective of the underlying method. The words which do not have
enough occurrences in the language model training data cannot be relied upon
for getting n-gram statistics and as a practical choice they are excluded from the
language model. This leads to the Out-of-Vocabulary (OOV) problem, in which
the LVCSR cannot recognise words which are not present in the LVCSR vocab-
ulary and language model. As a result the LVCSR substitutes the spoken OOV
word with a similar sounding In-vocabulary (IV) word, or group of in-vocabulary
words, in the output text. This dissertation deals with the problem of OOV
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words for LVCSR systems. We devote this section to discuss about the previous
works addressing the OOV problem, before discussing the severity of the problem
and our task setup in Section 2.4.

Previous works addressing OOV words in LVCSR systems can be put into
two main categories (a) OOV detection based approaches and (b) vocabulary
selection based approaches. The OOV detection based approaches aim to detect
presence of OOV words and/or locate OOV regions in the speech recognition
hypothesis. On the other hand, vocabulary selection based approaches try to
directly recognise or recover OOV words using knowledge of possible OOV words
and/or task specific information. We present different techniques that were pro-
posed along these two kind of approaches, followed by a discussion summarising
the advantages and dis-advantages of each which finally led to the choice of our
adopted approach.

2.2.1 OOV Detection Based Approaches

OOV detection based approaches try to detect and/or locate OOV regions in the
speech recognition hypothesis. Most of these approaches can be used without
any knowledge of the OOV words. The earliest works in OOV detection explored
a generic word model which could be augmented to the IV words in the speech
recogniser [Asadi et al., 1991, Katunobu et al., 1992, Suhm et al., 1993, Hayamizu
et al., 1995, Fetter, 1998, Bazzi and Glass, 2000]. The generic word model could
hypothesise a sequence of sub-word units and therefore could represent any pos-
sible word. The idea was to recognise the IV words when a known sequence of
phones (or features) are encountered or simply substitute a sequence of sub-word
units otherwise. While there were other works which relied only on confidence
scores from the usual word only speech recognition [Suhm et al., 1993, Young,
1994], the idea of modelling and recognising sub-word units formed the base for
most works which address the OOV problem in LVCSR. We have further divided
the OOV detection approaches into three categories based on the methods and
information used for OOV detection.

2.2.1.1 Hybrid Language Models

Hybrid language models are statistical n-gram language models trained with
word and sub-word units to enable recognition of fragments of OOV words in
between IV words. In this approach, the choice of the sub-word units is very
crucial and there have been several works discussing and comparing different
type of sub-word units [Yazgan and Saraclar, 2004, Choueiter, 2009, Rastrow
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et al., 2009a, Qin et al., 2011]. Automatically generated sub-word fragments
[Klakow et al., 1999, Bazzi and Glass, 2000, Qin et al., 2011, Parada et al.,
2011b] have been shown to be an optimal choice. Furthermore, some of the
works have studied combining and mixing of different type of sub-word units
[Bazzi and Glass, 2002, Qin et al., 2012, Qin and Rudnicky, 2012].

In the context of hybrid LM speech recognition systems, also worth mention-
ing are open vocabulary systems which model sub-word units. Some works in
this direction are that of [Bisani and Ney, 2005, Rastrow et al., 2009b, Shaik
et al., 2012, Shaik et al., 2015]. In contrast to the above methods supporting
hybrid LM, one of the previous works [Gerosa and Federico, 2009] showed that
simply expanding the lexicon using a Grapheme-to-Phoneme (G2P) system and
incorporating these words in LM training could reduce the word error rate.

2.2.1.2 Word and Sub-word Recogniser Output Combination

While the hybrid LM systems combine word and sub-word units before the recog-
nition process there are works which combine the outputs of independent word
and sub-word unit recognisers. To detect OOV regions, some methods per-
form alignment of the independently generated word and sub-word hypothesis
[Lin et al., 2007, White et al., 2008] and other methods train classifiers with
recognition posteriors and confidence scores as input features [Ketabdar et al.,
2007, Kombrink et al., 2009]. These classification models have been used along
with an alignment error model [Hannemann et al., 2010] and further extended to
include scores from a hybrid word sub-word recogniser [Kombrink et al., 2012].

2.2.1.3 Including Language Context for OOV Detection

Words in any language follow linguistic and grammatical constraints and thus
exhibit some contextual features, for example part-of-speech information, typical
neighbouring words, appearance in topics, etc. Vice versa, these features can
be used to verify discrepancies in the text and hence to detect speech recogni-
tion error regions and presence of OOV words. Thus features based on acoustic
scores and confusion have been combined with language context features to detect
OOV words. Some very earlier works in this category are those of [Suhm et al.,
1993] and [Young, 1994], which used simple n-gram LM and semantic parsing
techniques along with acoustic scores to detect OOV words.

Following the developments in natural language text processing, later works
adopted approaches similar to text sequence tagging and classification to address
the OOV detection problem. Apart from the basic acoustic and language model
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scores, several new features were used. For instance context words, part-of-speech
tags, features from the LVCSR decoding graph, word graphone disagreement,
etc. Different classification methods were used to perform the OOV detection
with these features, including boosting classification algorithm [Lecouteux et al.,
2009], Conditional Random Fields (CRF) [Parada et al., 2010a], MaxEnt model
[Kumar et al., 2012, Chen et al., 2013b]. Intensely trained systems involving slot
level as well as sentence level classification along with syntactic parsing on word
confusion networks from LVCSR were also proposed [Marin et al., 2012].

2.2.2 Vocabulary Selection Based Approaches

Detecting the presence of OOVs or finding the location of OOVs in speech suites
a scenario when the OOV words are not known. In many LVCSR transcription
tasks the majority of the OOV words could be known beforehand, either from
the statistics of text data used for LM training, or from a domain/task specific
corpus, or from the World Wide Web. With the knowledge of possible OOV
words, methods can be developed to directly recognise or recover the OOV words,
instead of detecting OOV regions first. For instance techniques like OOV word
phone sequence matching or acoustic keyword search or a second pass LVCSR
with updated vocabulary and language model can be used. Even the methods
which first detect the OOV region and then perform OOV recovery also require
selection of appropriate OOV words [Pan et al., 2005, Parada et al., 2010b, Oger
et al., 2008b] for better recovery. Hence, with each of these methods it is crucial
to balance the number of OOV words being searched, to avoid un-necessary
false alarms. The underlying problem tackled by vocabulary selection based
approaches is to infer a relevant vocabulary and/or reduced list of OOV words.
We have grouped the related previous works under the following categories.

2.2.2.1 Vocabulary Selection to Reduce OOV Rate

There are several works in literature on selection of an optimal vocabulary for
speech recognition. The main objective of these methods is to reduce mismatch
between the trained LM and the utterances expected in the test speech while
minimising the OOV rate. Some methods [Wang, 2003, Allauzen and Gauvain,
2005a] focus on learning a linear or vectorial combination of words in several
existing corpora in order to re-estimate and interpolate the count of words in a
domain/task specific corpus which ideally resembles the test speech data. New
vocabulary is chosen based on the interpolated word counts or word weights.
Neural network based methods have also been proposed [Liu et al., 2007, Jouvet
and Langlois, 2013]. In these methods a neural network is trained on features
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based on word frequencies, document frequency, TF-IDF and part-of-speech tag
features, to infer word weights used for selection of speech recognition vocabulary.

Systems for daily update of LVCSR vocabulary have been proposed [Bertoldi
and Federico, 2001, Federico and Bertoldi, 2001, Martins et al., 2006, Martins
et al., 2007]. These systems uses news articles from the internet to update the
LVCSR vocabulary. Given this new text data, the simpler scheme was to chose
the new LVCSR vocabulary from the most recent and most frequent new words
[Bertoldi and Federico, 2001, Federico and Bertoldi, 2001, Martins et al., 2006]
or to use the earlier proposed linear interpolation schemes [Martins et al., 2007].
Furthermore, document specific vocabulary selection approaches have also been
proposed. These methods adapt the vocabulary and language model for each
test audio document. Allauzen and Gauvain [Allauzen and Gauvain, 2005b] used
the video meta-data to add new words in the vocabulary and language model
of the speech recognition system used for indexing videos. Meng et al. [Meng
et al., 2010] used meta-data along with some selected phrases from the speech
recognition hypothesis for querying the internet. They employed a neural net-
work classifier using word frequencies, document frequency, TF-IDF and POS
tag features for selection of new words. A similar approach was used for vocab-
ulary selection for recognition of lectures, by using information from the lecture
presentation slides [Maergner et al., 2012].

2.2.2.2 Querying the Internet for Recovery of OOV Words

Similar to the vocabulary selection techniques discussed in the previous section,
these works also query the internet for relevant documents. They form queries
based on the speech recognition hypothesis and then choose OOV words from
the retrieved documents. The approaches mainly differ in techniques used to
form search queries and/or the methods used to select the OOVs from the re-
trieved documents. TF-IDF based techniques were used to form search queries
by [Parada et al., 2010b] and [Pan et al., 2005]. [Oger et al., 2008a] discussed
different techniques for query formulation and later presented the results of inte-
gration of the chosen OOV words into speech recognition [Oger et al., 2008b, Oger
et al., 2009]. The target OOV candidates were chosen from the retrieved docu-
ments using phone sequences observed in the identified OOV region [Pan et al.,
2005, Parada et al., 2010b] or by using the words adjacent to the OOV region
[Oger et al., 2008b].
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2.2.2.3 Acoustic Search for OOV Words

When the known list of OOV words is small, acoustic keyword search techniques
can be used to directly recover the OOV words. [Seneff, 2005] used a two pass
strategy in which OOV candidates were filtered in the first pass by performing
a phone search and the second pass performed LVCSR with OOV candidates
included in the vocabulary. [Chen et al., 2013a] proposed WFST techniques to
generate IV words and phone sequence proxies for each OOV word for searching
the LVCSR lattice for OOVs. Similarly, [Karakos and Schwartz, 2014] presented a
fuzzy phonetic search employing syllables and phone sequences of variable lengths
for spotting OOV words. A combination of the proxy method and fuzzy-phonetic
search was later shown to perform even better [Karakos and Schwartz, 2015].

2.3 Our Approach

Following the arguments and motivation presented in Section 1.2, in this disserta-
tion we explore semantic and topic context models for handling the OOV problem
in LVCSR systems. Fig. 2.3 shows a block diagram of our adopted approach.
Text documents are collected from the web/internet to build a diachronic text
corpus which contains documents with new i.e., OOV words. The diachronic text
corpus is used to learn a context model which captures relationships between the
LVCSR in-vocabulary words and the OOV words. This is the training or OOV
learning phase. During normal operation, i.e. the test phase, speech is processed
by the LVCSR system (with the base vocabulary and LM) to obtain the (first
pass) LVCSR hypothesis. Given this text hypothesis and the context models,
the context of the spoken content is inferred and a context based ranking is per-
formed to choose only the relevant OOV words from the full list of OOV words.
The list of relevant OOV words is then used to update the vocabulary and LM
of the LVCSR to perform a second pass of LVCSR6, which can now recognise
the OOV words. Alternatively, an acoustic search can be performed for each of
the relevant OOV words. However, unlike LVCSR decoding, the simpler acous-
tic search for OOV words is not constrained by the local n-gram word sequence
(or grammatical order). For purpose of evaluation we perform a second pass of
speech recognition using a simple language model update, given that updating
the LVCSR language model is not in the scope of this dissertation.

For our study we have chosen the scenario of large vocabulary continuous

6Dynamically including words in the single pass of LVCSR decoding itself is possible and
has been discussed in some works [Allauzen and Riley, 2015, Ma et al., 2015b], but this is a
separate open problem and it is not in the scope of this dissertation.
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Figure 2.3: Block diagram of our approach for the recognition of Out-of-
Vocabulary (OOV) words.

speech recognition systems applied to automatic transcription of French broad-
cast news videos. However, our proposed methods can be directly applied to
LVCSR systems for other languages and domains. Moreover, as will be high-
lighted in Section 2.4.1 the majority of the OOV words in French broadcast news
data are proper names or named entities. So we will focus mainly on proper
name OOV words. But our methods do not depend on any specific linguistic or
grammatical property of proper names and are readily applicable to other type
of OOV words.

It must be noted that unlike the OOV detection methods, our context mod-
els are trained using only text data available from the web. Furthermore, our
approach can be directly applied to process the hypothesis from LVCSR systems
with sub-word units and hybrid language models, however this extension will not
be studied in this dissertation.
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2.3.1 Related Works

The idea of understanding and interpreting spoken utterances is not new. There
is a fully fledged sub-field under spoken language research and development, gen-
erally referred as Spoken Language Understanding (SLU) [Mori et al., 2008, Tur
and De Mori, 2011]. However it mainly deals with the problems of understanding
and extracting the intent from spoken utterances, which is essential in tasks like
spoken dialog systems for querying information, question answering systems and
voice search.

Long span language models capturing semantic information [Bellegarda, 1999,
Chien and Chueh, 2008, Bengio et al., 2003, Mikolov et al., 2010, Bayer and
Riccardi, 2014] have shown success but it has been limited to generating better
n-gram models and rescoring LVCSR n-best outputs. There have been several at-
tempts on using long term context directly in LVCSR decoding [Chueh and Chien,
2009, Bayer and Riccardi, 2014]. Similarly, as opposed to separately modelling
the speech recognition and the understanding modules, there have been efforts
to improve the language model for both speech recognition and understanding
[Riccardi and Gorin, 1998, Bayer and Riccardi, 2012]. Other related methods
and techniques will be discussed alongside our proposed methods in the following
chapters.

2.4 Task, Corpora and Transcription Systems

Section 2.3 presented a generalised description of our approach to handle OOV
words. In this section we will present some specific details of our study, including
a discussion on the task that will be focused on in this dissertation, as well as
the evaluation measures, experiment corpora and the LVCSR systems used.

2.4.1 Diachronic News Corpora

Table 2.1 presents realistic diachronic news corpora which will be used as the
training, validation and test datasets in our study. These corpora also highlight
the motivation for handling OOV proper names in broadcast news transcription.
The corpora are collected from two different sources: (a) website of the French
newspaper L’Express7, and (b) the French website8 of the Euronews television

7http://www.lexpress.fr/
8http://fr.euronews.com/
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Table 2.1: French broadcast news datasets used in experiments

L’Express Euronews Euronews
(train) (validation) (test)

Type of Documents Text Text Video

Time Period
Jan - Jun Jan - Jun Jan - Jun

2014 2014 2014
Number of Documents1 45K 3.1K 3K
Vocabulary Size2 150K 42K 45K
Corpus Size (word count) 24M 550K 700K

Number of PN unigrams2 57K 12K 11K
Total PN count 1.45M 54K 42K

Number of OOV unigrams3 12.4K 4.9K 4.3K
Documents with OOV3 32.3K 2.25K 2.2K
Total OOV count3 141K 9.1K 8K

Number of OOV PN unigrams3 9.3K 3.4K 3.1K
Documents with OOV PN3 26.5K 1.9K 1.9K
Total OOV PN count3 107K 6.9K 6.2K

1K denotes Thousand and M denotes Million
2 L’Express unigrams occurring less than 2 times are ignored
3 L’Express unigrams occurring in less than 3 documents are ignored;
documents with more than 20 and less than 500 terms
Note: OOV, OOV PN statistics are computed after term-document filtering

channel. The L’Express dataset contains text news whereas the Euronews dataset
contains text news as well as news videos and their text transcriptions.

In our study the L’Express dataset will be used as the diachronic text corpus
to train context/topic models in order to infer the OOV proper names relevant
to Euronews videos which is our test set. Euronews text documents, denoted as
‘validation’ in the Table 2.1, will be used as a validation set in our experiments.
To train the context models, the L’Express diachronic corpus vocabulary is lem-
matised and filtered by removing proper names occurring only once, non proper
name words occurring less than 4 times, and using a stop-list of common and
non-content French words. Moreover, a POS based filter is employed to choose
only words tagged as proper name, noun, adjective, verb and acronym. The
filtered vocabulary has about 50K terms.
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TreeTagger9 [Schmid, 1994a] is used to automatically tag the proper names
in the text. The words and proper names which occur in the vocabulary of our
LVCSR system are tagged as in-vocabulary and the remaining words and proper
names are tagged as out-of-vocabulary. The vocabulary of our LVCSR system
was formed with the 122,000 most frequent words in a corpus comprising articles
from the French newspaper LeMonde and the French Gigaword corpus. These
two corpora containing data until the year 2008.

As shown in Table 2.1, 72% (3.1K out of 4.3K) of OOV words in the Euronews
video dataset are proper names and about 64% (1.9K out of 3K) of the videos
contain OOV proper names. An important statistic termed “target OOV proper
name coverage” is not shown in Table 2.1. We use the term “target OOV proper
name coverage” to refer to the percentage of OOV proper names in Euronews
videos which can be recovered with the given diachronic corpus. For the Euronews
videos the sum of the number of unique OOV proper names per video is 4694.
Out of these 4694, up to 2010 i.e. 42% of the target OOV proper names can be
recovered with the L’Express diachronic text corpus which introduces 9.3K new
(OOV) proper names. So we say that the target OOV proper name coverage of
L’Express diachronic text corpus is 42%.

The target OOV proper name coverage can be increased by augmenting text
documents from additional news websites, as discussed in Section 4.6.3.2. For
instance if additional news articles were collected from the website of the French
news paper Le Figaro10, and this for the same time period of January - June
2014, we can obtain a target OOV proper name coverage of 52%, but the total
number of possible OOV proper names increase from 9.3K to 18.4K.

2.4.2 LVCSR and News Transcription Systems

Automatic broadcast news transcription systems use an LVCSR system with
additional tools for pre-processing of the audio inputs and post-processing of the
text outputs. Our broadcast news transcription system includes a set of tools that
are trained to perform automatic segmentation of audio into different segments
like music, jingles and speech from different genders and of different audio quality.
Details on these pre-processors are available in [Illina et al., 2004]. Following this
pre-processing step LVCSR is applied to the identified speech segments.

The LVCSR acoustic models are trained for speech-to-text transcription in the
French language, with separate models to handle wide band (16 kHz) and narrow
band (8kHz, telephone) quality audio. The transcription system LVCSR has a

9http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger/
10http://www.lefigaro.fr/
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vocabulary based on articles that appeared in the French newspaper LeMonde
and in the French Gigaword corpus, both until the year 2008. The LVCSR
vocabulary contains the 122,000 most frequent words, which result into 260,000
entries in the pronunciation lexicon of the LVCSR system.

For our experiments, we will use two LVCSR systems which are based on
different type of acoustic models and give different word error rates. Since our
proposed methods infer the context of the spoken content from the LVCSR hy-
pothesis, the LVCSR systems with different word error rates will demonstrate the
robustness of our proposed methods under LVCSR errors. One is a GMM-HMM
acoustic model based LVCSR system, which has a higher WER compared to the
second LVCSR system based on DNN-HMM acoustic models. A brief description
of the two systems follows.

2.4.2.1 Automatic News Transcription System (ANTS)

The ANTS [Illina et al., 2004] LVCSR system is based on context dependent
GMM-HMM phone models trained on 200 hour broadcast news audio files. It
uses the Hidden Markov Model toolkit (HTK) [Young et al., 2006] for training
acoustic models and the Julius [Lee and Kawahara, 2009] speech recognition
engine as the decoder backend. Using the SRILM language modelling toolkit
[Stolcke, 2002], a 4-gram language model is estimated on text corpora of about
1800 million words. Automatic transcriptions obtained from ANTS have an
average WER of 41.7% on the Euronews videos.

2.4.2.2 Kaldi Automatic Transcription System (KATS)

The KATS LVCSR system is based on context dependent DNN-HMM phone
models trained on the same speech dataset used to train acoustic models for
ANTS. It uses the Kaldi [Povey et al., 2011] backend for training acoustic mod-
els and for speech recognition decoding. A bi-gram language model is estimated
on the same text corpora as that used for training ANTS language model. Au-
tomatic transcriptions obtained from KATS have an average WER of 16.4% on
the Euronews videos.

2.4.3 Task Description and Evaluation Measures

As discussed earlier, the number of possible OOV proper names can be of the
order of hundreds of thousands, depending on the mis-match from the LVCSR
vocabulary. All these OOV proper names cannot be included in the vocabulary

59



and language model of the LVCSR system because (a) they are infrequent and not
well represented in training data (b) it would increase the LVCSR search space
and complexity, without guaranteeing correct recognition and on the contrary
leading to false alarms which ultimately affect the recognition of in-vocabulary
words. Even the acoustic search based recovery would face the problem of un-
necessary false alarms. On the other hand, including OOV proper names with
a non-optimal selection criterion may not show any improvements. Hence it
is crucial to balance the number of OOV words included in the LVCSR. The
main focus of this dissertation will be on learning context models which obtain
OOV lists of highest relevance. This primary task will use its own evaluation
measures, namely Recall and Precision. We further evaluate the effectiveness
of the retrieved OOV list in terms of improvement in speech recognition and
recovery of OOV words, as discussed in Chapter 6.

2.4.3.1 Primary Task: Retrieval of Relevant OOV PNs

Our primary task, to find the list of OOV proper names relevant to the spoken
content, can be formulated as a retrieval task. Let us consider an automatic
speech-to-text transcription setup with an LVCSR system having a base vocab-
ulary V = {v1, v2, v3, · · · }, where vi represents an in-vocabulary word. A set
of OOV proper names, denoted as Ṽ = {ṽk}, is obtained from a diachronic text
corpus collected from the web. Given that in-vocabulary words and OOV proper
names co-occur in the diachronic text corpus, a context model θC can be learnt
to capture relationships and/or mapping between the in-vocabulary words and
OOV proper names.

θC ≡ f(V, Ṽ ) (2.8)

In the simplest case θC could just capture mutual information between the words
[Church and Hanks, 1990] or it could be a more complex model based on distri-
butional semantics, as it will be discussed throughout this dissertation.

From a spoken utterance, the sequence of words hypothesised by LVCSR is
denoted as h = w1, w2, w3, · · · where wj ∈ V i.e. each word w in the LVCSR
hypothesis h comes from the LVCSR base vocabulary V . Given the context
model θC and the LVCSR hypothesis h, we can obtain a likelihood score sk for
each OOV proper name ṽk as:

sk = p(ṽk | θC , h)

= p(ṽk | θC , w1, w2, w3, · · · )
(2.9)

To retrieve OOV proper names we calculate sk for each OOV proper name ṽk ∈ Ṽ
and then use it as a score to rank OOV proper names relevant to h.
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2.4.3.2 OOV PN Retrieval Performance Measures

To measure the performance of retrieval of relevant OOV proper names, we use
measures based on Recall and Mean Average Precision (MAP) [Manning et al.,
2008a], which are commonly used to evaluate information retrieval systems. As
mentioned earlier, for a given audio document several OOV proper names can be
relevant. The ones actually present in the audio are referred to as target OOV
proper names. For our task we can calculate recall (R) as:

R =
# of target OOV PNs retrieved

# total target OOV PNs

The MAP for a set of Q test (or validation) documents is calculated as:

MAP =

∑Q
q=1 P (q)

Q
(2.10)

where P (q) is the average precision score for each test/validation document q.
Given a ranked list of OOV proper names for q, the average precision P (q) is
calculated as:

P (q) =

∑
r P@r rel(r)

# target OOV PNs in q
(2.11)

where rel(r) is an indicator function whose value is 1 if the OOV proper name at
rank r is a target OOV proper name and 0 otherwise. And P@r is the precision
at rank r, calculated for a given q as:

P@r =
# of target OOV PNs retrieved until r

r

The overall recall is not informative and a more useful metric would be:

R@N =
# of target OOV PNs in top-Nretrieved OOV PNs

# total target OOV PNs

which indicates how much of the recall is achieved with the top-N retrieved OOV
proper names. This is because, after retrieval of the relevant OOV proper names,
the top-N (relevant) OOV proper names are to be used for recovery/recognition
of the target OOV proper names. Similarly, MAP@N gives useful insights on
the retrieval results. In MAP@N , while calculating the average precision P (q)
for a document q, the target OOV proper names not present in the top-N OOV
proper name list get a precision score of zero.

For analysis of performance of retrieval of OOV proper names, and for the
comparison of different context models, we plot a graph of recall and MAP for
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the top-N retrieved OOV proper names. These recall and MAP curves present
different information about the OOV proper retrieval results. To recover the tar-
get OOV proper names one can use an additional speech recognition pass ([Oger
et al., 2008b]); or an acoustic spotting of the relevant proper names ([Parada
et al., 2010b]). In each of these approaches, the retrieval ranks/scores may or
may not be used. This is where plotting both the recall and MAP curves make a
difference. The recall value at an operating point (N in the top-N choice) is not
sensitive to the rank of the retrieved OOV proper names whereas the MAP value
takes into account the retrieval ranks. As discussed later, in our experiments we
choose an operating point of N=128 because around this point the MAP curves
stop increasing and also this point roughly corresponds to about 1% of the total
OOV proper names that we obtain in the diachronic text corpus used in our
experiments. Thus for simple (non-detailed) comparison of two models, or model
configurations, the MAP@128 (equivalently the maximum MAP) achieved by the
model will be used.

The statistical significance of the difference between the (maximum) MAP
values achieved by two models is measured using Student’s paired t-test and
randomisation test [Smucker et al., 2007]. The null hypothesis is that there is no
difference between the two models and they produce identical retrieval results.
The null hypothesis is rejected if the p-value is less than 0.05 for both the tests
[Smucker et al., 2007]. For the randomisation test we generate 100,000 random
permutations of the results of the two models under test.
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CHAPTER 3

Topic and Semantic Context Models

Retrieval of relevant Out-of-Vocabulary (OOV) Proper Names (PNs) in LVCSR
is the main goals of this dissertation. Our proposal is to model the semantic
and topic context of the possible OOV proper names. If the semantic and topic
context of the spoken content can be inferred, the relevant OOV proper names
can be retrieved from the (long) list of possible OOV proper names. In this
chapter we will present a background on existing topic and semantic context
models proposed in the literature. These models are studied extensively in the
field of Computational Linguistics and Natural Language Processing (NLP).

There have been attempts to use the rich representations learned by semantic
and topic models in LVCSR, specifically to model long term context in language
models [Bellegarda, 1999, Schwenk and Gauvain, 2002, Mikolov et al., 2010, Bayer
and Riccardi, 2014] and in applications on classification of spoken queries and
spoken documents [Tur and De Mori, 2011, Wintrode, 2011, Morchid et al., 2014].
However we want to study and evaluate these models for our task of OOV proper
name retrieval and hence we dedicate a separate chapter to describe these models.

This chapter serves as introductory material to readers new to the
area of modelling semantics and topics. It begins with a brief introduction
to distributional semantics and vector space models. It then describes the most
prominent models, including Latent Semantic Analysis (LSA), Latent Dirichlet
Allocation (LDA), Continuous Bag-Of-Words (CBOW) and Skip-gram.

3.1 Semantic and Topic Space Representations

Semantic and topic spaces are in effect vector spaces that are used for computer
(or machine) representation and interpretation of semantics and topics. The cor-
responding models and methods have a long history in the field of computational
linguistics and natural language processing. A survey on this topic is available
in [Turney and Pantel, 2010]. Almost every model is backed by the statistical
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semantics hypothesis which states that: statistical patterns of word usage,
in pieces of text or around a word, can be used to describe the under-
lying semantics. Turney and Pantel divide the statistical semantics hypothesis
into specific cases: (a) bag of words hypothesis (b) the distributional hypothesis
(c) the extended distributional hypothesis and (d) the latent relation hypothesis.
While (a) seems related to semantics of documents or smaller contexts, and (b) to
semantic representation of individual words, they are essentially two sides of the
same coin, specifically when documents and contexts are treated as bag of words.
In general, the term ’distributional hypothesis’ encompasses both hypotheses and
we will follow this terminology in this dissertation, except for the discussion in
this section. (c) and (d) on the contrary, are concerned with semantic relations
between pairs of words, for example mason:stone and carpenter:wood, and can
extend to n-tuples of words. In accordance with the objectives of this disserta-
tion (see Section 1.2) all discussed models will be based on (a) and (b), without
focusing on local or relational semantics of names and entities.

3.1.1 Distributional Semantics

Distributional semantic models encompass the semantic and topic models based
on the bag of words hypothesis and the distributional hypothesis. To
develop a general understanding of these models we present an example in Figure
3.1. Figure 3.1 (a) shows a sample text corpus with six lines, where each line rep-
resents a context. As a generalisation context could be a document, paragraph,
sentence or some other window of text. Each context is composed of words, and
each word is an instance of a term in the vocabulary. Figure 3.1 (b) shows a
term-context matrix, which is formed by counting the number of occurrences
of each term in each context. It highlights the bag of words hypothesis which
states that if contexts/documents have similar word counts then they tend to
have similar meanings1. For instance we can see that the first and second con-
texts/documents are most relevant to each other. It can be verified that if we
compute cosine similarity of the first column (or context vector) with the rest
of them then the cosine similarity would be highest with the second column (or
context vector). Similarly, it also highlights the distributional hypothesis which
states that words that occur in similar contexts tend to have similar meanings2.
And it can be verified that the vectors for the terms vote and elect, which share
common semantics, are closest to each other.

1Bag of words, since it simply relies on word counts and ignores word sequence information
2Distributional signifies the distribution of words or word counts
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Context 1: Some People like to play and to watch cricket

Context 2: Other People like to watch and to play football

Context 3: Some People vote to elect Prime minister

Context 4: Other People vote to elect President

Context 5: Prime minister to watch cricket

Context 6: President to watch football

(a) A sample text corpus.

1 2 3 4 5 6

and 1 1 0 0 0 0

cricket 1 0 0 0 1 0

elect 0 0 1 1 0 0

football 0 1 0 0 0 1

like 1 1 0 0 0 0

minister 0 0 1 0 1 0

Other 0 1 0 1 0 0

people 1 1 1 1 0 0

play 1 1 0 0 0 0

President 0 0 0 1 0 1

Prime 0 0 1 0 1 0

Some 1 0 1 0 0 0

to 2 2 1 1 1 1

vote 0 0 1 1 0 0

watch 1 1 0 0 1 1

Context Index

(b) Term-Context co-occurrence matrix derived from the text corpus.

Figure 3.1: Example of statistical patterns of word usage
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3.1.2 Distributional Modelling Approaches and Our Choice

Driven by the distributional hypothesis, the term-context matrix forms the start-
ing point for machine interpretation and representation of semantics and topics.
However as we move to real world problems and datasets it becomes apparent
that its requires further processing, both linguistic as well as computational, to
interpret and represent semantics and topics efficiently. Some of the common and
popular processing steps are listed below with some examples.

• Linguistic processing

– tokenisation

e.g. Prime Minister could be one term

– text normalisation

e.g. handling accented characters in French, like in Égypte v/s Egypte

– annotation

e.g. annotating capitonyms3 like Turkey (the country) and turkey (the
bird)

• Computational processing

– type and scope of context

e.g. topic models [Hofmann, 1999, Blei et al., 2003] and information
retrieval applications commonly use complete documents as con-
text

e.g. some models use a pairwise word co-occurrence (square) matrix
[Lund et al., 1995, Lund and Burgess, 1996]

– weighting context matrix elements

e.g. Term Frequency-Inverse Document Frequency (TF-IDF) variants
[Manning et al., 2008b]

e.g. Pointwise Mutual Information (PMI) variants [Church and Hanks,
1990, Turney and Pantel, 2010]

– smoothing, sparsity and noise reduction

e.g. matrix decomposition/factorisation [Deerwester et al., 1990, Lee
and Seung, 1999]

e.g. probabilistic smoothing [Hofmann, 1999, Blei et al., 2003]

3A word whose meaning changes based on whether it is capitalised or not.
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Research in distributional semantics has led to several semantic word-context
vector representations. The earliest success was seen with Latent Semantic Anal-
ysis (LSA) [Deerwester, 1988, Deerwester et al., 1990]. LSA derives a semantic
vector space by applying truncated Singular Value Decomposition (SVD) on the
word co-occurrence matrix. SVD reduces the dimensionality of the vector space,
suppressing redundancy and sparsity, and results in a semantic space where se-
mantically related documents/contexts are close to each other even if they do
not have same set of terms. While the LSA remained prominent for many years,
it faced scalability challenges and was criticised for its uninterpretable semantic
space. A probabilistic version of LSA named Probabilistic Latent Semantic Anal-
ysis (PLSA) was later proposed [Hofmann, 1999], which expressed a document
as a mixture of interpretable and non-orthogonal topics. But PLSA itself was
soon succeeded by LDA, which learns probabilistic topic space representations
with a Bayesian framework4. LDA has been shown to outperform PLSA and
LSA for document classification [Blei et al., 2003] and word prediction [Griffiths
et al., 2007] tasks. LDA, being a Bayesian network, has also been extended to
included different attributes and variables [Blei, 2012]. The prior evaluations
and modelling capability motivate us to study LDA for learning con-
text of OOV PNs. On the other hand, LSA has been popular in information
retrieval, so it is also evaluated alongside the LDA model. A description of LSA
is presented in Section 3.2 and that of the LDA model follows in Section 3.3.

Recent developments in Neural Network based language models [Mikolov
et al., 2013c] led to a renewed interest in the field of distributional seman-
tics. More specifically in learning word embeddings: representation of words
in a vector space describing syntactic and/or semantic properties. The most
straightforward method to learn these representations is by predicting the word
embedding using the context in which words appear [Mikolov et al., 2013b, Pen-
nington et al., 2014], and this could be achieved with neural networks or matrix
factorisation methods [Levy and Goldberg, 2014]. These representations were
shown to perform effectively for a range of text processing tasks [Baroni et al.,
2014]. Particularly, the Skip-gram and CBOW models of Mikolov et al. [Mikolov
et al., 2013b, Mikolov et al., 2013a] have become very popular due to their ability
to handle large amounts of unstructured text data with reduced computational
costs. The efficiency and semantic properties of the word embedding
representations motivate us to explore word embeddings for our task
of OOV proper name retrieval and to compare its performance with that of LDA
topic models. The CBOW and Skip-gram models are described in Section 3.4.

4[Girolami and Kabán, 2003] showed that PLSI is a Maximum a Posteriori (MAP) estimated
LDA model under a uniform Dirichlet prior and the shortcomings of PLSA can be resolved with
the LDA framework.
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3.2 Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) [Deerwester et al., 1990] derives semantic rep-
resentations of words and documents using linear algebra and matrix decom-
position methods. The LSA model begins with a term-document co-occurrence
matrix computed on a text corpus. This term-document matrix is similar to
term-context matrix shown in Figure 3.1b. Each document is treated as context
and the term-document matrix consists of Term Frequency-Inverse Document
Frequency (TF-IDF) weights, corresponding to each word in each document, as
its elements. Extending the discussion in Section 3.1.1, the columns of this matrix
carry semantic information in documents and the rows carry semantic informa-
tion in words. The dimensions of the document and word vectors are very high
(of the size of the vocabulary and the number of documents in the corpus, re-
spectively). In order to reduce the dimensionality of these vectors and to handle
the sparsity and noise in the huge term-document matrix (X), a Singular Value
Decomposition (SVD) is applied as:

X = UΣV
′

(3.1)

where Σ is a diagonal matrix with the singular values of X; U and V are the left
and right singular vectors for the corresponding singular values. Selecting the K
largest singular values, and their corresponding singular vectors from U and V ,
we get the rank K approximation to X as:

XK = UKΣKV
′
K (3.2)

UK now contains the K dimensional semantic representation of each term and
VK now contains the K dimensional semantic representation of each document.
This decomposition is depicted in Figure 3.2.

Figure 3.2: Matrix Decomposition in LSA.

Semantic space representation of a new unseen document h can be obtained as:

hK = Σ−1
K U

′
Kh (3.3)
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3.3 Latent Dirichlet Allocation (LDA) Topic Model

Latent Dirichlet Allocation (LDA) [Blei et al., 2001, Blei et al., 2003] has been
a prominent method for automatically learning underlying topic representations
in text documents. LDA takes a generative probabilistic approach for modelling
collections of text documents5. Each text document is described as a mixture
of latent topics; for example the sentence “With Olympics over, Haitian workers
are leaving Brazil for the US.” could be a mixture of about 70% economics, 20%
politics and 10% sports. Each topic is a discrete distribution over the vocabu-
lary. More specifically, each topic is a multinomial distribution of words and the
mixture of topics in a document is also a multinomial distribution. Following a
Bayesian framework each of these multinomial distributions have corresponding
priors with a Dirichlet distribution, which give some control over the shape of
the topic distributions.

For a better understanding we will describe the generative process of the
model. Table 3.1 describes the list of mathematical symbols that will be used to
formulate the LDA model. In addition, Figure 3.3 shows a plate diagram for the
smoothed6 LDA topic model. Given the notations in Table 3.1, the generative
process for a collection (or a corpus) of text documents under the LDA model is
as follows:

1. Draw T multinomials φz from a Dirichlet prior β, one for each topic z;

2. For each document d, draw a multinomial θd from a Dirichlet prior α;

3. For each of the Nd words wi in document d;

→ Draw a topic zdi from multinomial θd;

→ Draw a word wdi from multinomial φzdi

Given a corpus of text documents, the number of topics T to be modelled and
choice of priors α and β, the LDA model can learn topic distributions in a un-
supervised manner. This involves the procedure of posterior inference: learning
the posterior distributions of the latent variables (θ, φ, z) of the LDA model.

5LDA can model any type of collections of grouped discrete data and has been tried for
images [Fei-Fei and Perona, 2005], audio [Kim et al., 2009], social-network data [Cha and Cho,
2012], etc. It is interesting to note that the same model was also proposed independently in
the study of population genetics [Pritchard et al., 2000].

6The Dirichlet prior α gives non-zero probability to words that do not appear in the training
text and hence as in the original paper this version of the LDA model is also called smoothed
LDA model. However, throughout this dissertation we will refer to the smoothed LDA model
as simply the LDA model.
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Table 3.1: Description of Symbols used for LDA Topic Model

Symbol Description

T number of topics
D number of documents in the corpus
V number of unique words in the corpus
Nd number of word tokens in document d

θ, θd
the multinomial distribution of topics to documents
(suffix d denotes to specific document d = 1, 2, ..., D)

φ, φz
the multinomial distribution of words
(suffix z denotes specific topic z = 1, 2, ..., T )

z, zdi
topic assignment
(suffix di denotes for the ith token in document d)

w, wdi
token in a document
(suffix di denotes the ith token in document d)

α Dirichlet prior to θ
β Dirichlet prior to φ

wzθ

φβ

α

D
Nd

T

Figure 3.3: Plate Diagram for the LDA Topic Model. The circles, referred as
nodes, represent variables of the model. The grey node represents observed vari-
able (the words), whereas the other nodes represent hidden variables. The rect-
angles, referred as plates, represent replication and the replication count is shown
at the bottom left corner of the plate.
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3.3.1 Estimating LDA Model Parameters

Estimating these LDA model parameters requires to solve the equation:

p(θ, φ, z|w, α, β) =
p(θ, φ, z, w|α, β)

p(w|α, β)
(3.4)

The difficult part in this equation is the denominator which becomes compu-
tationally intractable, as it requires iteration over possible mixture of topics for
every possible word. As a result, we need to use approximate inference techniques,
such as mean-field variational expectation maximisation (as in the original work
[Blei et al., 2001, Blei et al., 2003]), Gibbs Sampling [Griffiths and Steyvers,
2004] or expectation propagation [Minka and Lafferty, 2002]. While each of these
methods have their own advantages, we adopt the Gibbs sampling method due
to its simplicity. There are works in literature which present detailed discussion
on Gibbs Sampling based estimation of LDA parameters [Griffiths and Steyvers,
2004, Heinrich, 2004, Carpenter, 2010]. For completeness we will present a quick,
but comprehensive, walkthrough of Gibbs Sampling estimation of LDA
parameters, using a slightly different perspective.

The LDA parameters to be estimated are θ, φ, z. We will start with an as-
sumption that the topic assignment for each token in each document is known,
and denoted as Z. Then it is straightforward to obtain the multinomial parame-
ter sets θ and φ. According to their definitions as multinomial distributions with
Dirichlet prior their posterior estimate turns out to be a Dirichlet distribution,
as detailed in Appendix A.1 (Equation A.5).

p(θd|Z, α) =
1

∆θd

Nd∏

i=1

p(zdi|θd) p(θd|α)

= Dirichlet(θd|{nd,k + α}k=1,2,...,T )

(3.5)

p(φk|Z, β) =
1

∆φk

∏

v:zv=k

p(v|φk) p(φk|β)

= Dirichlet(φk|{nk,v + β}v=1,2,...,V )

(3.6)

where, ∆ are used to denote the corresponding normalising factors, nd,k is the
count of tokens in document d which are assigned the topic k, nk,v is the number
of times word v in the vocabulary is assigned the topic k. Using the expectation
of the Dirichlet distribution, 〈Dirichlet(~a)〉 = ai/

∑
i ai, we can estimate:

θd,k =
nd,k + α∑T
k=1 nd,k + α

φk,v =
nk,v + β∑V
v=1 nk,v + β

(3.7)
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Now the problem is to estimate the topic assignments p(z|w, α, β), which can
be obtained by sampling from the joint distribution p(z, w|α, β), using Gibbs
sampling. The Gibbs sampler samples the hidden variable (topic assignment)
for each token in each document conditioned on all other hidden variables (topic
assignments) sampled before it. If we denote this hidden variable as zi and use
superscript (−i) to denote leaving the ith token out of the calculation, then the
Gibbs sampling equation would be:

p(zi|z(−i), w, α, β) =
p(w, z|α, β)

p(w, z(−i)|α, β)

∝ p(w, z|α, β)

p(w(−i), z(−i)|α, β)

(3.8)

The joint distribution expands as:

p(z, w|α, β) =

∫ ∫
p(φ|β) p(θ|α) p(z|θ) p(w|φz) dθ dφ

=

∫
p(z|θ)p(θ|α) dθ

∫
p(w|φz)p(φ|β) dφ

(3.9)

The first integral represents the Dirichlet-Multinomial distribution for the mix-
ture of topics for each of the documents and the second integral represents the
Dirichlet-Multinomial distribution of words in each topic. These integrals can
be expressed in terms of the normalising constants of Dirichlet distributions of
the posterior and prior, as discussed in Appendix A.1 Equation A.6. (The vector
notation~ on symbols is skipped for simplicity.)

p(z, w|α, β) =
D∏

d=1

B(nd,· + α)

B(α)

T∏

k=1

B(nk,· + β)

B(β)
(3.10)

B(α) is the multivariate Beta function, which can be expressed as: B(α) =∏V
i=1 Γ(αi)

Γ(
∑V

i=1 αi)
, where Γ(n) = (n − 1)! for positive integer. nd,· denotes topic specific

word counts in document d and nk,· denotes word counts for each topic k.

Using Equation 3.10 in Equation 3.8:

p(zi|z(−i), w, α, β) ∝
∏D

d=1
B(nd,·+α)

B(α)

∏T
k=1

B(nk,·+β)

B(β)

∏D
d=1

B(n
(−i)
d,· +α)

B(α)

∏T
k=1

B(n
(−i)
k,· +β)

B(β)

∝
D∏

d=1

B(nd,· + α)

B(n
(−i)
d,· + α)

T∏

k=1

B(nk,· + β)

B(n
(−i)
k,· + β)

(3.11)
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Expressing the Beta functions in terms of the Gamma functions (Γ(x)) and sub-
stituting the identity Γ(x+1) = xΓ(x) in the above equation, all the terms inside
the two products cancel each other except the last two terms, resulting into:

p(zi = k|z(−i), w, α, β) ∝
n

(−i)
d,k + α

∑T
k′=1(n

(−i)
d,k′

+ α)

n
(−i)
k,v + β

∑V
v′=1(n

(−i)
k,v′

+ β)

∝ (n
(−i)
d,k + α)

n
(−i)
k,v + β

∑V
v′=1(n

(−i)
k,v′

+ β)

(3.12)

Using Equation 3.12, we can sample the topic assignments for each token in
each document conditioned on all other topic assignments sampled previously,
beginning with a random initialisation. Sampling the topic assignments for the
entire corpus will complete one iteration. After a considerably large number of
iterations, a stationary state of the above Markov chain has been reached, and
hence the samples begin to converge to what would be sampled from the true
distribution. A summary of the complete procedure for estimating the LDA
model parameters using Gibbs sampling algorithm is present in Appendix A.2.

3.3.2 Topic Inference on New Documents

Once an LDA model is trained, it can be used to infer the topic mixture in
new unseen documents. Similar to model parameter estimation, the latent topic
mixture θh of a new document h can be inferred from the topic assignments
for words in h. Let ch,k be the count of words, in the new document h, which
are assigned the topic k. Then following the analogy to training set documents
(Equation 3.7 and 3.5), we can estimate the topic mixture of h as

θh,k =
ch,k + α∑T

k′=1(ch,k′ + α)
(3.13)

The count ch,k depends on the topic assignments for words in h and similar to
the training procedure the topic assignments p(z = k|w, α, β) will be inferred by
sampling from the joint distribution p(z, w|α, β). The Gibbs sampling equation
for this inference will use the global word-topic assignment counts (nk,v) estimated
during training. Let us denote ck,v as the number of times a vocabulary item v
is present in h and assigned topic k. The updated Gibbs sampling equation for
inference on test/new document is given as:

p(zi = k|z(−i), h, α, β) ∝ (c
(−i)
h,k + α)

c
(−i)
k,v + nk,v + β

∑V
v′=1(c

(−i)
k,v
′ + nk,v′ + β)

(3.14)
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3.4 Skip-gram, CBOW models to learn Word Embeddings

Word embeddings have been a recent trend in distributional semantics with the
work of Mikolov et al. [Mikolov et al., 2013a, Mikolov et al., 2013b] being one
of the most influential. They proposed two models: (a) the Continuous Bag Of
Words (CBOW) model which predicts the center word given the surrounding
context words, and (b) the Skip-gram model, trained with an objective function
to maximise the likelihood of predicting the context words given the center word,
where context refers to a window of words in a document. These models can
be seen as single hidden layer neural network models without a non-linearity.
It has been shown that word vectors with similar properties and performance
can be obtained also using matrix factorisation methods [Levy and Goldberg,
2014, Pennington et al., 2014].

3.4.1 Model Descriptions

The CBOW and Skip-gram models have the same model architecture and they
just differ in their functioning. We will describe these two models with the help
of Figure 3.4, which gives an illustration of their architecture as well as their
functioning.

3.4.1.1 CBOW Model

As depicted in Figure 3.4 (a), the CBOW model takes as input a bag of word
vector, of size V - the size of vocabulary, in which indexes corresponding to words
present in the context are set to one and the remaining are set to zeros. This input
vector is multiplied with the input embedding matrix W I of size [V ×K], where
K is the embedding dimension, to obtain the context embedding z. As each row
of the the input embedding matrix W I corresponds to a word embedding, this
is computationally equivalent to taking a sum of the embeddings of words in the
context. Instead of a sum an average is used in practice. Denoting the bag of
word input as x1, x2, ..., xV :

z =
1

|C|(x1 x2 · · · xV ) W I

=
1

|C|
V∑

i=1

xiW
I
i

=
1

|C|
∑

i∈C
W I
i

(3.15)
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(a) Continuous Bag Of Words Model

(b) Skip-gram Model

Figure 3.4: Architectures of CBOW and Skip-gram word embedding models
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where C is the context (without the center word), |C| denotes length (or number
of words) of the context, W I

i denotes input embedding for the ith word in the
vocabulary. The context embedding z is then multiplied to the output embedding
matrix WO of size [K×V ] and followed by the softmax layer to predict the center
word vq in the context window. This prediction probability is calculated as:

p(vq|C) = softmax(z ·WO
q )

=
exp(z ·WO

q )
∑V

j=1 exp(z ·WO
j )

(3.16)

where (·) denotes a vector matrix product.

3.4.1.2 Skip-gram Model

The Skip-gram model, depicted in Figure 3.4 (b), works in a reverse manner
compared to the CBOW model. It takes as input a V dimensional one hot
vector, with the one corresponding to the center word vi. The multiplication of
this one hot vector with the input embedding matrix W I is equivalent to a simple
lookup of the corresponding input word embedding W I

i . This word embedding
is then multiplied with the output embedding matrix WO and followed by the
softmax layer to predict the words surrounding the center word in the context
window. In the actual implementation of the Skip-gram model one context word
is predicted at a time instead of predicting all C context words simultaneously.
Thus the probability of the qth word from the vocabulary which is present in the
current context window of the input center word vi is calculated as:

p(vq|vi) = softmax(W I
i ·WO

q )

=
W I
i ·WO

q∑V
j=1 exp(W

I
i ·WO

j )

(3.17)

3.4.2 Model Training

In both the CBOW and Skip-gram models, the input and output word embed-
dings matrices W I ,WO are the model parameters which are to be trained and
estimated from the training data. As with neural network models in general, the
training of these model parameters is carried out using back propagation and
stochastic gradient descent methods [LeCun et al., 1998]. Being an unsupervised
learning method, the objective is to maximise the prediction log likelihood (L)
over the training data. Denoting individual hidden units in the input and out-
put matrix as ω, such that ω ∈ {W I

jk,W
O
jk}k=1,2,3,...,K ; j=1,2,3,...,V , the parameter
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update at the t-th iteration using stochastic gradient descent is performed as:

ωt+1 = ωt + ∆ωt

= ωt − ηgt
(3.18)

where ∆ωt denotes the update in parameter ω, gt denotes the the gradient of the
parameters at the t-th iteration and η denotes the learning rate constant which
controls how large of a step to take in the direction of the (negative) gradient.
The gradient being calculated as gt = ∂L

∂ω

Considering iterative training with one training sample at a time, and given
Equation 3.15 and Equation 3.16, the loss function for the CBOW model is
calculated as:

L = −log p(vq |C)

= −z ·WO
i + log

V∑

j=1

exp(z ·WO
j )

(3.19)

Similarly, using Equation 3.17, the loss function for the Skip-gram model is:

L = −log p(C|vi)

= −log
∏

q∈C

W I
i ·WO

q∑V
j=1 exp(W

I
i ·WO

j )

= −
∑

q∈C
W I
i ·WO

q + |C| log
V∑

j=1

exp(z ·WO
j )

(3.20)

The update equations are simple to derive further, as elaborated in [Rong,
2014].

3.4.2.1 Output Layer Optimization

In practise the vocabulary V can be very large. As a result, computation of
softmax probabilities, each of which require a dot product with every word in
the vocabulary, will be huge. This problem is also common to neural network
based language models as discussed in [Morin and Bengio, 2005]. Additionally,
the number of possible contexts can be as many as the total number of words
in the entire text corpus. As a result evaluating Equation 3.19 for the entire
corpus requires a tremendous amount of computations and hence training based
on Equation 3.19 would be very slow. To address this problem Mikolov et.al
[Mikolov et al., 2013a] proposed two alternate solutions, (a) hierarchical softmax
and (b) negative sampling.
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In the hierarchical softmax approach, a hierarchical tree is constructed at
the output layer with vocabulary terms as the leaves. The tree is traversed
by making decisions at each node, finally calculating the target word likelihood
with the computational complexity reduced from O(V ) to O(log(V )) per training
instance. It must be noted that this speedup also reflects in the back propagation.
In the negative sampling approach a set of randomly sampled terms referred as
negative samples are used instead of all the vocabulary terms in the denominator
of the softmax function. For more details on these two approaches we refer the
interested readers to [Rong, 2014, Goldberg and Levy, 2014].
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CHAPTER 4

Retrieving OOV PNs with Topic Context

Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) can ob-
tain semantic and topic space representations of documents and words appearing
in a text corpus. These models, described in Chapter 3, can thus provide con-
text representations for our task of retrieving OOV proper names relevant to an
LVCSR hypothesis. As the notion of context is very abstract we can exploit these
representations in different ways. For a given OOV proper name we could imag-
ine that it has a single global contextual image based on all its occurrences in
the corpus, as also represented by the LDA and LSA models. At the same time,
context of an OOV proper name can also come from the document containing
this OOV proper name. In this chapter, we build on these ideas and propose two
methodologies to retrieve context relevant OOV proper names.

LDA has been used to model proper names in [Senay et al., 2013]. A similar
approach based on vector space representation similar to LSA has been tried in
[Bigot et al., 2013]. However, these approaches estimate one LDA/LSA context
model for each proper name, which restricts them to only frequent proper names,
which have a significant amount of associated documents to learn individual
LDA/LSA models. In our approach, we train a global topic model over all the
diachronic text documents. As opposed to the usual practice of discarding less
frequent terms in topic modelling, we need to retain the less frequent proper
names both in the training and the test set.

We first introduce our retrieval methodologies using the topic space repre-
sentations from LDA and then extend these to semantic vectors from the LSA
model. We perform a detailed analysis and comparison of the performance of
the two methodologies for the LSA and LDA model. We explore some re-ranking
methods to further improve the performance of the LDA model and also study
variants of the LDA model in which words and OOV proper names are modelled
separately, but with a correlation between their corresponding topic spaces.
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4.1 Proposed Retrieval Methodologies

To retrieve OOV proper names relevant to an LVCSR hypothesis, our first
methodology exploits the closeness of the context representation of
the LVCSR hypothesis and that of the OOV proper name. Models like
LDA and LSA can be trained on the diachronic text corpus collected from the
internet and they can learn the topic space representations of all the OOV proper
names found in the diachronic text corpus. These models can also be used to infer
the topic space representation of the LVCSR text hypothesis. Being a common
representation space we can now measure the closeness of different OOV proper
names to the LVCSR hypothesis, and hence use it to score the relevance of each
OOV proper name. This methodology is illustrated in Figure 4.1.

Figure 4.1: Retrieval of OOV PNs based on Closeness in the Context Space

We can also exploit the fact that a document in which an OOV proper name
appears, can also represent the context of that OOV proper name. Following this
idea, our second methodology relies on document specific representa-
tions of OOV proper names, instead of their global representations. Similar to
our first methodology, models like LDA and LSA can be trained on the diachronic
text corpus collected from the internet and a representation for each of its text
document can be obtained. These document representations can now be used as
context representations of the contained OOV proper names. This methodology
is illustrated in Figure 4.2. We expect that the document specific representations
will not only induce a document specific context but will also assist (a) OOV
proper names which have only few training instances causing non-reliable global
representations and (b) OOV proper names which have too many variations in
context leading to averaged and sub-optimal global representations.

A more detailed description of the proposed retrieval methodologies is pre-
sented using the LDA topic model. The methodologies are then extended to the
representations from the LSA model.
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Figure 4.2: Retrieval of OOV PNs based on Document Specific Representations

4.1.1 OOV PN retrieval using LDA Topic Representations

Consider an LDA topic model trained on the diachronic text corpus containing
D documents. The topic vocabulary size V , the number of topics T and Dirichlet
priors α, β are chosen before training. During training, topic model parameters
θ and φ are estimated using the procedure discussed in Algorithm 1 and Algo-
rithm 2 in Appendix A.2. As discussed previously, θ = [θdt]D×T is the mixture
of topics in each document d in the diachronic text corpus and φ = [φvt]V×T is
the distribution of words in each topic, both sharing a topic space composed of
T topics.

Let us denote the LVCSR word hypothesis by h and OOV proper names by
ṽi. As discussed in Section 3.3.2, Gibbs sampling can be used to infer the topic
assignments for each of the words in the LVCSR hypothesis h and using these
topic assignments the topic mixture {p(k|h)}k=1,2,....,T in h is calculated as:

p(k|h) =
ch,k + α∑T
k=1 ch,k + α

(4.1)

where ch,k is the count of words, in the LVCSR hypothesis h, which are assigned
the topic k.

4.1.1.1 LDA Method I: Closeness of LVCSR hypothesis and OOV PNs in LDA
Topic Space

If the topic space representation of the LVCSR hypothesis is known, then it can
be compared with the topic space representation of the OOV proper names. The
probability of an OOV proper name given a particular topic, i.e. p(ṽi|k), can
be obtained directly from φ. Finally, given the topic space probabilities of the
LVCSR hypothesis h and that of an OOV proper name ṽi, the likelihood of the
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OOV PN ṽi can be calculated as:

p(ṽi|h) =
T∑

k=1

p(ṽi|k) p(k|h) (4.2)

To perform retrieval of OOV proper names we calculate p(ṽi|h) for each OOV
proper name ṽi and then use it as a score to rank OOV proper names relevant
to LVCSR hypothesis h.

4.1.1.2 LDA Method II: Document Specific LDA Representations of OOV PNs

During training, the diachronic text corpus documents are indexed with each of
the contained OOV proper names. The topic mixture for each of the documents in
the diachronic corpus is obtained and stored as a prototype context vector for each
of the OOV proper names in that document. OOV proper names occurring in
more than one diachronic document will have multiple prototype context vectors
or in other words the OOV proper names are characterised by multiple document
specific context vectors. Multiple OOV proper names in a diachronic corpus
document will share a common topic context vector.

To find the relevant OOV proper names, the T dimensional topic mixture
vector of the LVCSR hypothesis of the audio document (h) is compared with the
q context vectors (Ci

q) for each of the OOV proper name ṽi to calculate a score,
using cosine similarity1, as follows:

si = max
q
{Cosine Similarity(h,Ci

q)}

= max
q

{
h.Ci

q

‖h‖
∥∥Ci

q

∥∥

}

= max
q





∑T
k=1 hk C

i
qk√∑T

k=1(hk)2

√∑T
k=1(Ci

qk)
2





(4.3)

where si is the score to rank and retrieve OOV proper names relevant to h. hk
and Ci

qk denote the kth topic component of h and Ci
q. It should be noted that this

approach can be directly applied to vector representations of documents from any
other model.

1Since the document representations are probability distributions, divergence based mea-
sures like Kullback-Leibler divergence, Jason-Shanon divergence and Hellinger distance can be
used [David M. Blei, 2007, Niraula et al., 2013, Celikyilmaz et al., 2010, Krstovski et al., 2013].
However, from our initial experiments we found that cosine similarity gives the best overall
performance for our task.
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4.1.1.3 LDA Method III: Avoiding Topic Inference on LVCSR hypothesis

LDA Method I and Method II discussed above require to follow the inference
procedure to obtain the topic mixture of the LVCSR hypothesis. Gibbs sampling
based inference discussed in Section 3.3.2, as well as methods based on varia-
tional inference [Blei et al., 2003], would require the complete (or a significantly
long) LVCSR hypothesis to infer its topic mixture reliably. As as alternative,
we propose another method for retrieval of OOV proper names using LDA topic
models. This method relies on associations between in-vocabulary words in the
LVCSR hypothesis (h) and the OOV proper names to be retrieved. It does not
require any inference of word-topic assignments and simply performs a lookup in
the word-topic distributions φ. While this simplification skips the hierarchical
generative process of LDA, it tries to exploit both association and separation of
in-vocabulary words and OOV proper names in the topic space.

Denoting the words in LVCSR hypothesis h by {wj}Nvh
j=1 , with Nvh being the

number of words in h, the retrieval score for an OOV proper name ṽi can be
calculated as:

p(ṽi|h) = p(ṽi|{wj}Nvh
j=1 )

≈
Nvh∏

j=1

p(ṽi|wj)

≈
Nvh∏

j=1

T∑

k=1

p(ṽi|k) p(k|wj)

(4.4)

where, both p(ṽi|k) and p(k|wj) can be obtained using word-topic distribution
captured in φ.

Note that using a sum instead of the product, in Equation 4.4, will lead to a
linear summation of the words in h. Such a linearity is exploited later with word
embeddings (in Section 5.1), as well implicitly incorporated for LSA. When used
with LDA it induces a bias towards frequent words leading to a lower performance
of retrieval of relevant OOV proper names.

From Equation 4.4, we can also note that all of the elements in this scoring
technique can be pre-computed just after the training phase. Thus this retrieval
method can also work with online LVCSR decoding.

4.1.2 Extension of the Proposed Retrieval Methodologies to LSA

The proposed methodologies to retrieve relevant OOV proper names presented for
the topic space representations from the LDA model, can be extended to the LSA
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model. As mentioned before in Chapter 3, the LSA model was a pre-cursor to the
LDA model. Similar to the LDA model it can learn a so called semantic vector
representation for each OOV proper name (ṽi) and it can also project the LVCSR
hypothesis into this semantic space to obtain its semantic vector representation
(h). Similarly during training it also generates the semantic vector representation
of each document in the diachronic text corpus, which could be used as context
vectors (Ci) for each OOV proper name (ṽi).

Give the K dimensional semantic space representations based on LSA, the
scoring function si for the OOV proper name retrieval methods are given as:

LSA Method I: si = Cosine Similarity(h, ṽi)

=
h.ṽi
‖h‖ ‖ṽi‖

=

∑K
k=1 hk ṽik√∑K

k=1(hk)2

√∑K
k=1(ṽik)2

(4.5)

LSA Method II: si = max
q
{Cosine Similarity(h,Ci

q)}

= max
q

{
h.Ci

q

‖h‖
∥∥Ci

q

∥∥

}

= max
q





∑K
k=1 hk C

i
qk√∑K

k=1(hk)2

√∑K
k=1(Ci

qk)
2





(4.6)

where (Ci
q) are context vectors for each of the OOV proper name ṽi. hk, ṽik and

Ci
qk denote the kth vector component of h, ṽi and Ci

q.

4.2 Evaluation of the Proposed Retrieval Methods

In this section we present an evaluation of our proposed methodologies, using
LDA and LSA representations to retrieve relevant OOV proper names. The
corpus setup and the retrieval evaluation measures have been presented in Section
2.4. We will first introduce the baseline methods for these experiments. Then we
will present a discussion on selection of hyper-parameters for learning the LDA
topic models. These will be followed by a comparison of the retrieval results
achieved with the best model configurations.
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4.2.1 Baseline Methods

In this section we present models and methods, for comparison with our proposed
context based retrieval methods.

4.2.1.1 Pointwise Mutual Information (PMI)

Pointwise Mutual Information (PMI) is used as a measure of association in statis-
tics and information theory. In computational linguistics, PMI has been used for
finding collocations and associations between words [Church and Hanks, 1990].
We use it to measure the associations between OOV proper names and the in-
vocabulary words. Denoting vx and vy as any two terms co-occurring in a docu-
ment in the diachronic text corpus, the PMI is calculated as2:

pmi(vx, vy) = log
p(vx, vy)

p(vx)p(vy)
(4.7)

where p(vx, vy) denotes the probability of co-occurrence of the terms vx and vy
in a document, p(vx) and p(vy) denote the probabilities of occurrence of terms
vx and vy respectively, throughout the corpus. Given an LVCSR hypothesis h
containing words {w1, w2, w3, ...}, the score for retrieval of each OOV PN ṽi is
calculated as:

s(ṽi) =

|h|∑

j=1

log
p(ṽi, wj)

p(ṽi) p(wj)
(4.8)

The PMI based method does not explicitly model any semantic or topic informa-
tion. Due to its similarity with Method I, it is treated as the baseline equivalent
for Method I for LDA and LSA, as well as for LDA Method III.

4.2.1.2 Random Projections (RP)

It is classical to represent text documents as vector of Term Frequency-Inverse
Document Frequency (TF-IDF) values of the words in the vocabulary. Bingham
and Mannila [Bingham and Mannila, 2001] showed that Random Projections
(RP) can efficiently reduce the dimensionality of term frequency vectors while still
preserving their original similarities and distances. With random projection, the
V -dimensional TF-IDF vectors of D diachronic text corpus documents, denoted
as XD×V ), are projected to a K-dimensional (K << N) subspace through the

2Other normalised variants of PMI have been proposed [Bouma, 2009, Turney and Pantel,
2010, Role and Nadif, 2011, Damani, 2013], however in our initial experiments the improvements
with these variants were not significant.
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origin as: XRP
K×D = RK×DXD×V , where RK×D is a random projection matrix

with random unit vectors. In our experiments R is chosen as in the original work
[Bingham and Mannila, 2001] with the elements of R being:

rij =
√

3 ·





+1 with probability 1
6

0 with probability 2
3

−1 with probability 1
6

(4.9)

The random projection of the LVCSR hypothesis can be obtained by multiplica-
tion with the random projection matrix R. During test the K dimensional vector
representations of the diachronic text corpus documents and that of the LVCSR
hypothesis are available and can be used to retrieve relevant OOV proper names
using the Method II described in Section 4.1.1.2. This random projection based
method does not explicitly model any semantic or topic information. It can be
treated as the baseline for Method II.

4.2.2 Selection of LDA Model Hyper-parameters

The role of hyper-parameters is mostly known beforehand in a well defined model
like LDA. But an exploration of hyper-parameter values enables to obtain the
best model performances. The LDA model has three hyper-parameters (a) α
the Dirichlet prior for document-topic distributions, (b) β the Dirichlet prior
for topic-word distributions, and (c) T the number of topics which is also the
size of the word and document topic vectors. In general bigger topic size is
better for larger amounts of text data and with higher topic variability. The
priors α and β are like smoothing hyper-parameters and they also control the
nature of the topic distributions3. There are works in literature [Griffiths and
Steyvers, 2004, Wallach et al., 2009] which discuss about selection of the LDA
hyper-parameters and they are generally based on the log probability achieved
by the model on a held out dataset. Following the common practice, we explore
only symmetric Dirichlet priors with values less than 1, for our task. In this case
the priors act more as smoothing and regularisation hyper-parameters. We will
select the final hyper-parameters based on the maximum MAP for OOV proper
names achieved on our validation set.

4.2.2.1 Method I and LDA Hyper-parameters

Figure 4.3 shows a chart depicting the variations in the maximum MAP values
obtained on the validation set, using Method I, for a range of values for LDA

3roughly stating, the peakiness and flatness
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hyper-parameters α, β and T . With the hyper-parameter values shown, the
maximum MAP varies between 0.229 and 0.370. Beyond these set of values we
observed degradation, or the improvement is statistically insignificant. Each of
the LDA models were trained with 1500 iterations of Gibbs Sampling over the
L’Express diachronic text corpus.

100 200 300 400 500
0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Number of Topics (K)

M
ax

im
u
m

M
A
P

β = 0.01

α = 0.01 α = 0.1 α = 0.25

100 200 300 400 500

Number of Topics (K)

β = 0.1

100 200 300 400 500

Number of Topics (K)

β = 0.25

Figure 4.3: Variation in maximum MAP of retrieval of OOV PNs using Method
I, with different topic sizes K and Dirichlet priors α, β for LDA. Evaluated on
the validation set.

We can observe an increase in maximum MAP performance until 500 topics,
beyond which the improvement is not significant with the L’Express diachronic
text corpus. Based on the maximum MAP obtained on the validation set 400
LDA topics seem to be the best for Method I.

The priors in the LDA model gave better performance when they were set
to smaller values, with α = 0.01 and β = 0.01 being the values for the best
performing LDA model with Method I.

4.2.2.2 Method II and LDA Hyper-parameters

Figure 4.4 shows a chart depicting the variations in the maximum MAP values
obtained on the validation set, using Method II, for a range of values for LDA
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hyper-parameters α, β and T . With the hyper-parameter values shown, the
maximum MAP varies between 0.244 and 0.394. There is an increase in maxi-
mum MAP performance until 500 topics and beyond this the improvement is not
significant. Similar to Method I, the maximum MAP obtained with 400 LDA
topics seem to be the best for Method II. However, priors α = 0.1 and β = 0.01
gave the best performing LDA model with Method II. Since Method II relies on
document topic distributions, a slightly higher value of document prior α seems
more suitable for Method II. Overall the MAP values for the validation set are
similar to those from Method I, except around the best configuration of Method
II, which performs better than the best model of Method I.
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Figure 4.4: Variation in maximum MAP of retrieval of OOV PNs, with different
topic sizes K and Dirichlet priors α, β for LDA Method II. Evaluated on the
validation set.

4.2.2.3 Method III and LDA Hyper-parameters

Figure 4.5 shows a chart depicting the variations in the maximum MAP val-
ues obtained on the validation set, using Method III, for a range of values for
LDA hyper-parameters α, β and T . With the hyper-parameter values shown,
the maximum MAP varies between 0.172 and 0.313, which is quite low com-
pared to Methods I and II. However unlike Method I and Method II, Method
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III gives instant retrieval results without the delay in topic inference on LVCSR
hypothesis. Similar to Method I, the maximum MAP is obtained with 400 LDA
topics. Similarly, even the prior values α = 0.01 and β = 0.01 give the best MAP
performance for Method III, as the case with Method I.
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Figure 4.5: Variation in maximum MAP of retrieval of OOV PNs, with different
topic sizes K and Dirichlet priors α, β for LDA Method III. Evaluated on the
validation set.

4.2.3 Retrieval results achieved with the best model configurations

Figure 4.6 shows the recall and MAP performance obtained with the different
models and methods. The figure shows the recall and MAP performance obtained
on the reference transcription of the Euronews audio test set (on the left) as
well as automatic transcriptions obtained from the ANTS LVCSR system (in the
middle) and KATS LVCSR system (on the right), which were presented in Section
2.4.2. In comparison to the LDA model, Figure 4.6 shows the performance of
the baseline PMI method, 400 dimensional Random Projections, the LSA model
with 400 dimensional semantic space representations. Further it also includes the
recall performance that would be achieved by simply selecting OOV proper names
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Figure 4.6: Recall and MAP performance of OOV PN retrieval, using LSA and
LDA representation, evaluated on the Euronews audio test set. (TF, stands for
term frequency, depicts MAP performance for a simple selection of top-k most
frequent OOV PNs.)
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based on their frequency of occurrence in the diachronic text corpus (denoted as
TF for term frequency).

The number of possible OOV proper names that can be recovered with the
six months L’Express corpus being used as the diachronic text corpus limits the
recall performance to 0.42. The number of OOV proper names and the recall
limit can be increased by using diachronic text from additional sources and/or
additional period, as it will be discussed in Section 4.6.3.2.

Some of the recall curves appear closer to each other and for higher values on
the X-axis, denoting the top-N retrieved OOV proper names, the recall curves
merge with each other. However, the difference in performance is clearly identified
by the MAP curves. MAP takes into account the ranks assigned to the target
OOV proper names and thus indicates that the model which gave better ranks
(closer to 1) to the target OOV proper names are more better. Eventually a
system with better MAP will perform better when the number of possible OOV
proper names are large, as discussed in Section 4.6.3.2. Moreover this is also
important for acoustic search based audio indexing systems which would rely on
context based models to automatically form a keyword list for searching, because
a longer keyword list would add to false alarms and confusions.

The MAP@128 (maximum MAP) for the different models and methods pre-
sented in this chapter are presented in Table 4.1. Comparing the performances
in Table 4.1 and Figure 4.6, we can make the following observations:

• Document specific representation of OOV proper names, specifically using
Random projection (RP) and LSA (LSA-MII), achieves the best retrieval
results. While the document specific representation of OOV proper names
in Method II performs better than the global representation of OOV proper
names, it must be noted that this improvement comes at extra computation
cost, because Method II is equivalent to comparing the LVCSR hypothesis
with each document in the diachronic text corpus. This could be a problem
when the diachronic text corpus is extended further to improve coverage of
target OOV proper names.

• Simple word association based methods, whether based on pointwise mu-
tual information (PMI) or on LDA (LDA-MIII), give the lowest recall and
MAP. However, it must be noted that these methods are computationally
equivalent to performing a lookup from the word-OOV proper name associ-
ation matrix and they retrieve the relevant OOV proper name list instantly
and without requiring the whole LVCSR hypothesis to be available. This
makes them suitable for use with online LVCSR decoding.
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• LDA based retrieval methods (especially LDA-MI and LDA-MII) are more
robust to LVCSR errors. As it can be seen for each of the LDA methods, the
difference between the MAP values on reference transcriptions and LVCSR
transcriptions is quite small compared to that for other models and meth-
ods. For instance LSA-MII and RP, which achieve the best MAP, show a
relative drop of 12.1% and 17.3% respectively between reference and ANTS
transcriptions, whereas LDA-MII and LDA-MI give a drop of 10.1% and
5.25% respectively.

• While the document specific representation method of LSA (LSA-MII) out-
performs that of LDA (LDA-MII), it must be noted that the topic space
representation of OOV proper names learned by LDA is more robust than
the semantic space representation learned by LSA. This can be observed
from the MAP of Method I (LDA-MI versus LSA-MI) for the LVCSR tran-
scriptions.

Table 4.1: Comparison of MAP@128 for PMI, RP, LSA and
LDA models. (The best model is highlighted in bold. ∗

denotes statistically insignificant difference compared to the
best model.)

Reference ANTS KATS
Transcription Transcription Transcription

PMI 0.273 0.229 0.247
RP 0.518∗ 0.428 0.462

LSA-MI 0.417 0.331 0.371
LSA-MII 0.527 0.462 0.485

LDA-MI 0.400 0.379 0.387
LDA-MII 0.414 0.372 0.399
LDA-MIII 0.334 0.291 0.314

4.3 Frequent versus Rare OOV PNs

Some OOV proper names in the diachronic corpus may belong to popular and
bursty news events making them relatively frequent OOV proper names. On the
other hand, many other OOV proper names are not so frequent or rare in the
diachronic text corpus. This behaviour, similar to the Zipf’s law on frequency of
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occurrence of words [Powers, 1998], is depicted by the chart in Figure 4.7. This
chart shows the distribution of frequency of OOV proper names in the L’Express
diachronic text corpus. The Y-axis shows bins corresponding to frequency of
OOV proper names in the diachronic text corpus and X-axis shows the count of
OOV proper names in a particular frequency bin.

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
1

10

100

Number of OOV PNs

F
re
q
u
en
cy

in
D
ia
ch
ro
n
ic

C
or
p
u
s

Figure 4.7: Distribution of frequency of OOV PNs in the L’Express diachronic
text corpus.)

As the less frequent (or rare) OOV proper names do not have many training
instances and/or documents, we believe that they do not have good co-occurrence
statistics and hence have non-reliable topic/semantic space representations. So
we hypothesise that they do not achieve good retrieval ranks. In our test set of
Euronews videos about 24% (479 out of the possible 2010) OOV proper names
appear in 10 or fewer documents in the L’Express train corpus. This motivates
us to specifically study the behaviour of retrieval of rare OOV proper names.

In this section, we will analyse the performance of LDA and LSA models along
our hypothesis - ‘bias against rare OOV proper names’. To test our hypoth-
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esis will use (a) a rank-frequency distribution plot, which shows the distribution
of ranks assigned to OOV proper names versus their frequency of occurrence in
the diachronic text corpus, and (b) MAP for rare OOV proper names, which is
simply the MAP calculated only for OOV proper names appearing 20 or fewer
times in the diachronic text corpus.

4.3.1 Effects in LDA

LDA Method I and Method III rely directly on the OOV proper name topic
probabilities p(ṽi|t) (see Equation (4.2) and Equation (4.4)). For rare OOV
proper names these probabilities would be low and hence they would be achieving
lower retrieval ranks with Method I and Method III. To validate this hypothesis
we plotted the rank-frequency distribution for retrieval ranks obtained with LDA
Method I, II and III. This plot is shown in Figure 4.8. As evident from the plots,
Method I and III give better ranks to frequent OOV proper names and lower
ranks to rare OOV proper names.

Table 4.2: Maximum MAP for rare and frequent OOV proper
names, obtained using the three retrieval methods for LDA
Topic Model. (Best Performance in each category is highlighted
in bold. ∗ denotes statistically insignificant difference compared
to the best performance in that category.)

Method Type of OOV PNs Reference ANTS KATS

LDA-MI all 0.400 0.379 0.388
LDA-MII all 0.414 0.372∗ 0.399
LDA-MIII all 0.334 0.291 0.314

LDA-MI rare 0.069 0.060 0.065
LDA-MII rare 0.215 0.173 0.208
LDA-MIII rare 0.032 0.020 0.026

LDA-MI frequent 0.609 0.579 0.591
LDA-MII frequent 0.515 0.473 0.493
LDA-MIII frequent 0.524 0.460 0.495

Table 4.2 presents a more quantitative evaluation as compared to Figure 4.8.
It lists the maximum MAP for rare and frequent OOV proper names separately,
as achieved with the three retrieval methods using LDA topic model. Using the
results from Table 4.2 and Figure 4.8, we can add following observations to those
made from Figure 4.6:
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Figure 4.8: Rank-Frequency distribution for retrieval of OOV PNs for (a) LDA-
MI, (b) LDA-MII, and (c) LDA-MIII.
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• LDA-MII gives the best overall MAP performance among LDA methods as
it significantly improves the MAP for rare OOV proper names as compared
to LDA-MI and LDA-MII. This improvement is due to document specific
topic representations for OOV proper names. However, it also leads to
some loss in performance for the frequent OOV proper names.

• As we had hypothesised, LDA-MI and LDA-MIII which rely on global OOV
proper name topic representations are clearly biased against rare OOV
proper names.

4.3.2 Effects in LSA

We observed earlier, in Table 4.1, that Method II with LSA (LSA-MII) clearly
outperformed the Method II with LDA (LDA-MII) in terms of MAP (although
not in terms of robustness to LVCSR errors). However, Method I with LSA (LSA-
MI) is almost as good as Method I with LDA (LDA-MI). In order to investigate
further we plot the rank-frequency distribution for retrieval using LSA Method
I and LSA Method II. This plot is shown in Figure 4.9. It can be observed
that LSA Method I gives poor performance for the frequent OOV proper names
whereas the Method II performs good for both frequent as well as the rare OOV
proper names.

Table 4.3: Maximum MAP for rare and frequent OOV proper
names, obtained using the two retrieval methods for LSA.
(Best Performance in each category is highlighted in bold. ∗

denotes statistically insignificant difference compared to the
best performance in that category.)

Method Type of OOV PNs Reference ANTS KATS

LSA-MI all 0.417 0.331 0.370
LSA-MII all 0.527 0.463 0.485

LSA-MI rare 0.370 0.316 0.340
LSA-MII rare 0.309 0.262 0.281

LSA-MI frequent 0.413 0.311 0.356
LSA-MII frequent 0.634 0.562 0.586

Table 4.3 presents a quantitative evaluation, listing the maximum MAP for
rare and frequent OOV proper names separately. Using the results from Table
4.3 and Figure 4.9, we can add the following few more observations to the ones
previously stated:
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Figure 4.9: Rank-Frequency distribution for retrieval of OOV PNs for (a) LSA-
MI, and (b) LSA-MII.

• Document specific representation again gives the best overall MAP perfor-
mance. However, the improvement given by LSA-MII for the rare OOV
proper names is less than with LSA-MI. But the improvements obtained
with any of the LSA methods for rare OOV proper names is better than
those obtained with the LDA methods.

• Document specific representations can improve performance of frequent
OOV proper names too, as opposed to the observation for LDA where
LDA-MII caused loss in performance for the frequent OOV proper names.
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4.4 OOV PN Re-ranking with Lexical Context Model

A problem with ranking proper names using LDA topic models is that if topic
k is prominent for a test document h (i.e. p(k|h) is high) then all the proper
names which have high p(ṽx|k) take higher ranks. For instance, the diachronic
news corpus from the period of the 2014 Football World Cup leads to a topic of
sports which is dominated by football. As a result, the topic models tend to give
higher scores to football proper names whenever a document handles any sports
topic. Increasing the number and granularity of topics is one possible solution
to this problem, but its is not a feasible solution when the diachronic corpus is
not large enough. Thus topics alone may not be discriminant enough for ranking
OOV proper names.

To address this problem we proposed a lexical context model in [Sheikh et al.,
2015b] to re-rank OOV proper names retrieved by the LDA topic model. The
proper name lexical context model is structured such that each word in a docu-
ment is generated directly by a proper name in that document. During training
the model learns which words are generated by each of the proper names, us-
ing the co-occurrences of proper names and words within and across documents.
During test, the lexical context model is used to improve the scores of those
proper names which are more likely to have generated these words. Continuing
our previous example, when the document is about a sport other than football
the lexical context model will help to improve the scores of proper names specific
to this sport.

This lexical context model showed some improvements in MAP of retrieval of
OOV proper names in our work in [Sheikh et al., 2015b]. However, the diachronic
corpus used there was much smaller (compared to the L’Express diachronic text
corpus used in this dissertation). Hence we would like to study how much im-
provement the lexical context model provides with the relatively larger L’Express
diachronic text corpus.

4.4.1 Lexical Context Model

Figure 4.10 shows the graphical representation of our proposed proper name
lexical context model. In its structure, it shares similarity with the smoothed
LDA model [Blei et al., 2003]. A description of the different variables in this
models is as follows:

w is the word observed in a document

w̃ is the unobserved proper name which generates w
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Figure 4.10: Proper name Lexical Context Model

Nd is the number of words in document d

Nṽ is total number of proper names

Πṽ is the distribution of words for the proper name ṽ

ηd is the distribution of proper name (word counts) in document d

Ṽd is the (known) set of proper names in a document d

αo, βo are Dirichlet priors to η,Π respectively

For the ith term in a diachronic document d, a proper name w̃i is sampled from
the document specific proper name distribution ηd, i.e. w̃i ∼ Multi(ηd). Then a
corresponding word wi is sampled from the proper name specific word distribution
Πw̃i

, i.e. wi ∼Multi(Πw̃i
). Ṽd is used as a prior knowledge in training.

We use Gibbs sampling to estimate the proper name assignments to each
word; the sampling equation being:

p(w̃i = ṽ|wi = v, w̃(−i), w(−i), Ṽd) ∝
n

(−i)
d,ṽ + αo

∑Nṽ

ṽ′=1
n

(−i)
d,ṽ′

+ αo

n
(−i)
ṽ,v + βo

∑Nv

v′=1
n

(−i)
ṽ,v′

+ βo
(4.10)
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where w̃i = ṽ implies that the ith term in a document is assigned proper name ṽ.
The superscript (−i) denotes that the ith term itself is left out of the counts and
calculation. nd,ṽ is the number of words in d assigned to proper name ṽ. nṽ,v is
the number of times word v is assigned to proper name ṽ. Nv is the total number
of non proper name words.

4.4.2 Re-Ranking with Lexical Context

Lexical context is used only to re-rank OOV proper names. During test, the topic
model is first used to choose top-N topic relevant OOV proper names. Then the
lexical context model is used to re-rank OOV PNs in the top-N list. We use
Gibbs sampling to infer the best OOV proper name assignments to each word in
h, using a modified equation:

p(w̃i = ṽ|wi = v, w̃(−i), w(−i), Ṽ T
d ) ∝

pT (ṽ|h)
c

(−i)
ṽ,v + nṽ,v + βo

∑Nv

v′=1
c

(−i)
ṽ,v′

+ nṽ,v′ + βo
(4.11)

where w̃i = ṽ implies that the ith term in LVCSR hypothesis h is assigned an
OOV proper name ṽ, from the top-N OOV proper names Ṽ T

d . cṽ,v is the number
of times term wi in h is the word v and assigned to a top-N OOV proper name ṽ.
nṽ,v is the count saved from training. pT (ṽ|h) is the score given to OOV proper
name ṽ by the topic model.

The top-N OOV proper names are then re-ranked using:

PN(ṽ|h) ≈ pT (ṽ|h) + sLh

∑Nv

v′=1
cṽ,v′ + αo

Nvh + αoN
(4.12)

where, Nvh is the number of words in LVCSR hypothesis h, and N is same as
the (N in) top-N. sLh is a scaling factor to combine topic and lexical model scores
of the top-N OOV proper names. This scaling factor has to be tuned using the
validation set.

Table 4.4 shows the relative improvements in maximum MAP obtained by re-
ranking the retrieval results, obtained from LDA Method I, using the proposed
lexical context model. From the results we can see that the lexical context re-
ranking helps, but only when the number of topics are small (w.r.t. the given
diachronic text corpus). As the number of LDA topics are increased, it does not
give any improvements. The scaling factor sLh was chosen such that it does not
cause degradation in the MAP.
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Table 4.4: Relative improvement in maximum MAP after
applying lexical context re-ranking to OOV proper name
retrieval results from LDA Method I.)

Number Reference ANTS KATS
of Topics Transcription Transcription Transcription

100 16.3% 8.6% 13.5%
200 7.3% 3.9% 6.2%
300 1.1% 0.3% 0.6%
400 ≈0% ≈0% ≈0%

4.5 Retrieving OOV PNs with Entity Topic Models

Newman et. al. [Newman et al., 2006] proposed Entity-Topic models as an
extension of the LDA topic model, to explicitly address the interactions between
entities, i.e. person, organisation, locations4, and topics. In their work, Entity-
Topic models were shown to perform better than LDA for entity prediction tasks.
This motivated us to try these extensions of LDA in our task, by treating OOV
proper names as entities.

4.5.1 Entity Topic Models

Figure 4.11 shows graphical representations of entity-topic models. We can see
that the entity topic models share structural similarity with LDA, except that in
entity-topic models there is a separate hierarchy for the generation of
words and entities. z̃ denotes the latent entity topic variable which generates
an entity w̃, based on the entity topic distribution φ̃, whereas z denotes the latent
word topic variable which generates word w based on word topic distribution φ.

SwitchLDA has a switch variable x which controls the generation of words
and entities. In Conditionally Independent LDA (CI-LDA) and SwitchLDA, the
document specific topic distribution θd generates both word and entity topics.
Whereas in the Correspondence LDA models (CorrLDA1 and CorrLDA2), the
document specific topic distribution θd generate the word topics and then word
topics are used to generate entity topics and entities. CorrLDA2 has an additional
hierarchy (z → x→ z̃) which allows different number of word and entity topics (T
and T̃ ). A more detailed description of the variables and the generative/sampling
process for these models is available in [Newman et al., 2006].

4which can include non proper name words
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Figure 4.11: Graphical representation of Entity-Topic models [Newman et al.,
2006].
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In addition to these models, we tried further variations of the entity-
topic models by inter-changing the hierarchy of word topics and en-
tity topics. In the CorrLDA1 model, word topic zi is first sampled from the
document topic distribution θ, i.e. zi ∼ Multi(θ), and entity topic z̃j is then
sampled uniformly from the word topics, z̃j ∼ Unif(z1, z2...zNwd

). Instead of
this, entity topic z̃j can be first sampled from the document topic distribution
θ, z̃j ∼ Multi(θ), and the word topic can then be sampled uniformly from en-
tity topic zi ∼ Unif(z̃1, z̃2...z̃Nw̃d

). We refer to this variation of CorrLDA1 as
CorrLDA1-Flipped (CorrLDA1-F). Figure 4.12 depicts the graphical model for
the CorrLDA1-F model. The motivation for trying CorrLDA1-F model is that
since it learns entity centric topics, it may perform better in retrieving OOV
proper names using the document topic.

Similar to CorrLDA1, even the CorrLDA2 model can be flipped. This has
been proposed as Entity Centred Topic Model (ECTM) [Hu et al., 2013]. We
tried this model in our work in [Sheikh et al., 2015a], where the diachronic text
corpus was smaller. However, with a large diachronic text corpus like L’Express,
training the ECTM model takes weeks due to complexity of the Gibbs sampling
of the hierarchy of entity-word topics.

Thus we study the performance of 6 different topic models for OOV PN
retrieval: classic LDA, CI-LDA, SwitchLDA, CorrLDA1 and CorrLDA2, and the
CorrLDA1-F model discussed above.

4.5.2 Setup for OOV PN Retrieval

To use these models for our task of OOV proper name retrieval we divide the
topic model vocabulary into a set of Nv words & proper names in the LVCSR
vocabulary and a set of Nṽ OOV proper names5. φv, the topic distribution to IV
words, and φṽ, the topic distribution to OOV proper names, can be estimated
using Gibbs sampling as in case of LDA. The Gibbs sampling equation for these
models are also analogous to LDA and are available in [Newman et al., 2006].

During test the latent topic mixture of the LVCSR hypothesis h, i.e. p(t|h), is
inferred by sampling the topic assignments for words in h, using the word-topic
assignments accumulated during training. This procedure is the same as that
used for LDA, as discussed in Section 3.3.2. Then the likelihood of an OOV proper

5The topic model vocabulary can be divided in two more ways, (a) words and PNs, as in
the original work [Newman et al., 2006]; (b) forming three categories i.e. IV PNs, OOV proper
names and other words. We tried these variations, however our approach discussed above (to
separate OOV proper names from IV words) gives relatively better or similar results on our
dataset.
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Figure 4.12: Plate Diagram for the CorrLDA1-F Entity Topic Model

name ṽi in the diachronic corpus is calculated using Equation (4.2) for Method I
and using Equation (4.3) for Method II. The only exception is the entity centered
model CorrLDA1-F. In CorrLDA1-F, the document topic representations (θ) are
dependent on OOV proper names and OOV proper names are not observed in
LVCSR hypothesis. Therefore, as an alternative during test, we infer the word
topic representation for each of the diachronic text corpus document using the
same procedure as for the LVCSR hypothesis. These (independently) inferred
document topic vectors are now treated as document specific OOV proper name
representations in Method II.

It must be noted that Method III can also be tried with the entity-topic
models discussed above. However, as it was discussed earlier, Method III is an
alternative for computational efficiency. We will thus exclude the evaluation of
Method III for the different entity-topic models.
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4.5.3 Performance of Entity Topic Models

Our work in [Sheikh et al., 2015a] compared the performance of LDA and entity-
topic models using a smaller diachronic text corpus and test set. The results
from these experiments did not show significant differences between the perfor-
mance of LDA and entity-topic models. One of our observation was that the
number of OOV proper name instances in the diachronic text corpus used in our
previous work was quite small. In this dissertation we would like to present the
results obtained from our experiments with the entity-topic models trained on
the L’Express diachronic text corpus which has about 10 times more training
data and OOV proper name instances. We do not perform an explicit hyper-
parameter search for the entity-topic models and present the results of Method I
and Method II obtained with 400 topics. The α, β hyper-parameters are set to
0.01, which are the values corresponding to best LDA Method I configuration.

Table 4.5: Comparison of LDA and Entity Topic models in terms of maxi-
mum MAP obtained with Method I and Method II on the Euronews audio
test set. (Best Topic model performance is highlighted in bold. ∗ denotes
statistically insignificant difference compared to the best configuration.)

Method I Method II
Reference ANTS KATS Reference ANTS KATS

LDA 0.400 0.379 0.387 0.390 0.335 0.357
CI-LDA 0.398 0.371 0.385 0.417 0.362 0.379∗

SwitchLDA 0.400 0.370 0.383 0.402 0.354∗ 0.383
CorrLDA1 0.390 0.366 0.375 0.395 0.348 0.368
CorrLDA1-F 0.421 0.394 0.402 0.372 0.332 0.341
CorrLDA2 0.376 0.351 0.357 0.401 0.357∗ 0.369

The maximum MAP obtained on the reference transcription of the Euronews
audio test set as well as automatic transcriptions obtained from the ANTS LVCSR
system and KATS LVCSR system (presented in Section 2.4.2) are shown in Table
4.5. Similar to our results in [Sheikh et al., 2015a], we can observe that most
entity models perform only as good as LDA, as opposed to the improved entity
prediction results obtained in [Newman et al., 2006]. However, our proposed vari-
ation CorrLDA1-F significantly outperforms LDA and other entity-topic models
for Method I, while it did not perform that well in [Sheikh et al., 2015a]. This is
because in [Sheikh et al., 2015a] the total count of our entities (i.e. OOV proper
names) was quite small and as the topics are centred around entities the model
representations were not optimal. In our current experiments there is a relatively
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larger amount of entity-instances to learn better entity centered topic represen-
tations. Contrary to Method I, CorrLDA1-F does not perform well with Method
II. As discussed in Section 4.5, when testing with Method II the generation hier-
archy of CorrLDA1-F is not followed. Document topic representations for both
train and test are inferred independently from the word topics, without the avail-
ability of OOV proper names and their topics. This could be the reason for the
reduced performance of CorrLDA1-F with Method II. For Method II different
models including CI-LDA, SwitchLDA and CorrLDA2 seem to perform better
than LDA.

4.6 On the Selection of the Diachronic Text Corpus

Until now we have presented different methods for exploiting topic context to
retrieve OOV proper names. The topic context of the OOV proper names are
modelled and derived from the diachronic text corpus and therefore it is im-
portant to study the selection of documents for the diachronic corpus. In this
section we try to investigate some characteristics of the diachronic corpus which
can affect the performance of retrieval of OOV proper names.

4.6.1 New Diachronic Text Corpora

Table 4.6 presents a new set of new diachronic text corpora which will be used
as training sets in our study in this section. The datasets are collected from two
sources: (a) the French newspaper L’Express (http://www.lexpress.fr/), and (b)
the French newspaper Le Figaro (http://www.lefigaro.fr/). Both L’Express and
Le Figaro contain news articles. The LX in LX+FIG is the L’Express corpus
corresponding to Jan - Jun 2014 as presented in Table 2.1. The details on corpora
setup in our experiment are presented in Section 4.6.3.1.

Similar to the processing for corpora in Table 2.1, TreeTagger6 [Schmid, 1994a]
is used to automatically tag proper names in the text. The words and proper
names which occur in the lexicon of our LVCSR system are tagged as IV, and
the remaining proper names are tagged as OOV. As before we use the term
‘target OOV proper name coverage’ to refer to the percentage of OOV proper
names in Euronews videos which can be recovered with a given diachronic corpus.
The target OOV proper name coverage for each of the diachronic text corpus is
as follows: 40% for FIG, 52% for LX+FIG combined and 54% for LX-18m, as
compared to 42% for LX only. We can observe that LX-18m captures more new

6http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger/
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proper names (28.2K) as compared to those by LX+FIG (18.4K) but the OOV
proper name coverage of the two differs only by 2% absolute.

Table 4.6: More Diachronic News Datasets

Le Figaro L’Express + L’Express
Le Figaro

(FIG) (LX+FIG) (LX-18m)

Type of Documents Text Text Text

Time Period
Jan - Jun Jan - Jun Jul 2013 -

2014 2014 Dec 2014
Number of Documents1 59K 104K 142K
Vocabulary Size2 140K 180K 270K
Corpus Size (word count) 18M 42M 70M

Number of PN unigrams2 51K 80K 104K
Total PN count 1.3M 2.7M 4.2M

Number of OOV unigrams3 11.9K 24.4K 37.1K
Documents with OOV3 36.4K 73K 109K
Total OOV count3 142K 320K 509K

Number of OOV PN unigrams3 8.8K 18.4K 28.2K
Documents with OOV PN3 30K 61.3K 93.5K
Total OOV PN count3 103K 243K 388K

Target OOV PN coverage 40% 52% 54%

1K denotes Thousand and M denotes Million
2unigrams occurring less than two times are ignored
3unigrams occurring in less than three documents ignored, documents
with more than 20 and less than 500 terms
Note: OOV, OOV PN statistics are after term-document filtering

4.6.2 Configurations of the Diachronic Corpus

The topic context of OOV proper names, which enables retrieval of the relevant
OOV proper names, is learned from a diachronic text corpus. We would like to
study the effect of selection of documents for the training diachronic corpus. In
particular we study the following configurations of the diachronic corpus.
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(A) Documents containing OOV proper names7 and from the same time period
as the test set, e.g. L’Express documents containing OOV proper names
and corresponding to the same 6 months of the Euronews video test set.

(B) Documents coming from two different originating sources, e.g. L’Express
and Le Figaro.

(C) Documents from a time period extending beyond the timeline of the test set
(e.g. L’Express documents from 18 months for the Euronews video test set).

(D) Documents with OOV proper names that are collected from one source and
then for the less frequent OOV proper names in this collection new docu-
ments are additionally collected from another source. As discussed in Sec-
tion 4.3, retrieval of less frequent OOV PNs has a poor performance because
there is not enough data to learn their topic distribution. This problem of
reduced representation of less frequent OOV proper names motivates us to
study this configuration.

4.6.3 Experimental Analysis

It must be noted that our objective in these experiments is not to achieve
the best (MAP) retrieval performance but instead to study the cov-
erage (recall) behaviour of diachronic text corpora. Our work in [Sheikh
et al., 2016a] discussed these experiments and following this work we will use
LDA Method I (from Section 4.1) for retrieving relevant OOV proper names.

4.6.3.1 Experiment Setup

The datasets presented in Table 2.1 and Table 4.6 will be used for our experi-
ments. The different configurations discussed in Section 4.6.2 will be studied with
the L’Express and Le Figaro datasets, where they will be used as a diachronic
corpus to train the topic models. Audio news extracted from the Euronews video
dataset will be the test set. To train the context models, the diachronic text cor-
pus vocabulary is lemmatized and filtered by removing proper names occurring
only once, non proper name words occurring less than 4 times, and using a stop-
list of common and non-content French words. Moreover, a POS based filter is
employed to choose only words tagged as proper name, noun, adjective, verb or
acronym. The retrieval results reported are obtained with an LDA topic model

7including documents not containing OOV PN did not give significant improvement in the
retrieval performance
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with 300 topics trained on each of the diachronic text corpora. We ignore the
fact that each corpus will perform optimally for a certain number of topics.

Note that LX, FIG and LX+FIG correspond to configurations A and B of Sec-
tion 4.6.2. LX-18m corresponds to configuration C. Corresponding to configura-
tion D, we form a corpus LX+rFIG which contains documents of LX (L’Express,
Jan 2014 - Jun 2014) supplemented with documents from FIG (Le Figaro, Jan
2014 - Jun 2014) which contain OOV proper names occurring less than 10 times
in LX. The target OOV proper name coverage for LX+rFIG was found to be
49%.

4.6.3.2 Retrieval Performance with Different Diachronic Corpora

Figure 4.13 presents the effects of diachronic corpus configurations A, B, C and
D discussed in Section 4.6.2. Figure 4.13 shows a graph of recall and MAP of
retrieval of OOV proper names. As the focus is on comparing different diachronic
corpora, only the performance on reference and ANTS LVCSR transcriptions are
shown. The X-axes represent the number (N) of top-N retrieved OOV proper
names. The Y-axes represent recall (top) and MAP (bottom) of the target OOV
proper names.

Table 4.7 compares the MAP@128 (maximim MAP) obtained for different
diachronic corpora. By analysing the performance in Table 4.7 and Figure 4.13,
we can draw the following observation:

• Smaller corpora achieve good MAP but give low coverage of the target
OOV proper names: the MAP for LX and FIG is the highest but they do
not have the best recall rates. They have a small number of OOV proper
names to choose from and make smaller retrieval errors but they give only
40% coverage of the target OOV proper names.

• Expanding the time period of a diachronic corpus (as in LX-18m) gives
better target OOV PN coverage, but not the best recall rates. Similar is
the case with including data from additional source (as in LX+FIG). A
low MAP is obtained in these cases because both the number of possible
OOV proper names and the number of target OOV proper names have
increased but the recall rate is still poor than (or similar to) that of LX.
Such corpora can possibly be exploited by training a larger number of topics
or by employing better retrieval methods [Sheikh et al., 2015c, Sheikh et al.,
2016b].

• Adding new documents corresponding to less frequent OOV proper names
is not effective: performance of LX+rFIG is similar to that of LX+FIG. We
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Figure 4.13: Recall and MAP for OOV proper name retrieval on Euronews news
video test set with different diachronic text corpora for training the LDA topic
model. LDA Method I is used for OOV PN retrieval.
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found that adding documents containing less frequent OOV proper names
in LX+rFIG leads to inclusion of more than 60% of FIG documents. The
additional data not only increases data for learning topic representation of
less frequent OOV proper names but also comes with additional less fre-
quent OOV proper names and more instances of frequent OOV PNs. Fur-
ther analysis of the ranks of the less frequent OOV proper names obtained
with LX, LX+FIG and LX+rFIG showed that the ranks with LX+rFIG
are better with respect to LX but similar to that with LX+FIG.

• Using diachronic text documents of the same time period and from multiple
sources (LX+FIG) gives a good balance of recall, MAP and target OOV
PN coverage.

Table 4.7: Comparison of MAP@128 for dif-
ferent diachronic corpora

Reference ANTS
Transcription Transcription

FIG 0.370 0.347
LX 0.385 0.365
LX+FIG 0.319 0.304
LX+rFIG 0.331 0.311
LX-18m 0.269 0.254

4.7 Conclusion

In this chapter, we presented two methods for retrieval of OOV proper names.
The first method measures the closeness of OOV proper names and LVCSR hy-
pothesis in the context space, and it relies on the global representation of each
OOV proper name in the context space. On the other hand, the second method
relies on multiple document specific representations of each OOV proper name.
These two methods were extended to different type of semantic/topic represen-
tations including LSA, LDA topic model and entity-topic models.

Our analysis and observations from the comparison of the different models
and methods enable us to conclude the following:

• Semantic and topic context models (LSA and LDA) outperform simple
word co-occurrence based models (PMI and also Random Projections) in
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our task of retrieval of relevant OOV proper names, both in terms of MAP
and robustness to LVCSR errors.

• Previous works [Blei et al., 2003, Griffiths et al., 2007] and our earlier exper-
iments on smaller datasets [Sheikh et al., 2016b] showed that LDA based
topic models perform better than or as good as LSA. However, experi-
ments with a larger diachronic corpus revealed that LSA outperforms LDA
in terms of retrieval MAP. But at the same time, we found that the LDA
model performance showed more robustness to LVCSR errors as compared
to that for LSA.

• On contrary to LDA, retrieval with LSA model showed that the method
based on global representation of OOV proper names can possibly address
both frequent and rare OOV proper names.

• Among the proposed retrieval methods, the document specific representa-
tions showed the largest improvements in MAP. This method can improve
the retrieval of rare OOV proper names with LDA. However, it comes at
extra computation cost, which would increase linearly with the size of the
diachronic text corpus.

• LDA gives the flexibility to model OOV proper names and their topics
separately with entity-topic models. As compared to existing entity-topic
models our proposed CorrLDA1-F model gave significant improvements
over the basic LDA model. In CorrLDA1-F model the topics are centered
around OOV proper names and this gives improvements (when more data
and OOV proper name instances are available).

• Inferring the topic distribution of an LVCSR hypothesis with an LDA model
requires multiple iterations over entire hypothesis. As an alternative we
proposed a retrieval method for LDA which is based on association of words
and OOV proper names in the topic space. This method achieves its goal
of being a computationally efficient method and gives improvements over
an equivalent method based on pointwise mutual information. However
it attains a lower performance compared to the other methods based on
semantic/topic space representations.

• Exploration of hyper-parameters in the LDA model showed that its MAP
performance is very sensitive to the choice of hyper-parameters. Also
suggesting that hyper-parameter selection is crucial for performing OOV
proper name retrieval using the topic space representations from LDA topic
models.
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• From our experiments on selection of diachronic text corpus, we can con-
clude that

- text from a longer time span can give increased coverage of OOV
proper names

- but a corpus with text from different sources leads to better retrieval
performance than relying on text from a single source, even if it cor-
responds to a longer time span

- less frequent OOV proper names need improvement in retrieval meth-
ods and not just additional training data.

These findings motivate us to continue to explore models with better global
representations of OOV proper names and at the same time having robustness
to LVCSR errors.
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CHAPTER 5

Retrieving OOV PNs using Word
Embeddings

Developments in Neural Network based language models [Mikolov et al., 2013c]
led to a renewed interest in the field of distributional semantics, more specifically
in learning word embeddings. Computational efficiency was one big factor which
popularised word embeddings from the CBOW and Skip-gram models. The word
embeddings capture syntactic as well as semantic properties of the words [Mikolov
et al., 2013b]. As a result they outperformed several other word vector represen-
tations on different tasks [Baroni et al., 2014]. This motivates us to study word
embeddings for our task of context based OOV proper name retrieval.

In this chapter, we extend our proposed OOV proper name retrieval
methods to utilise word embedding representations. For this, we first
present the important linearity property of word embeddings and discuss how it
can be used to form document context embeddings in our task of retrieval of OOV
proper names. This is followed by an analysis of model performance and choice
of best configuration. Previous works have shown that the word embeddings
from the CBOW model are more syntactic whereas the word embeddings from
the Skip-gram model are more semantic [Mikolov et al., 2013a] (although the
differences in performance in some of the tasks was not quite large). Moreover
both the CBOW and Skip-gram models have hyper-parameters to choose. So
we will carry out an analysis of performance of both models, under different
hyper-parameter settings.

Finally we will compare the retrieval results from the best model configura-
tions to those obtained from the experiments on LSA and LDA models. This will
be followed by a conclusion and further directions to our search for robust high
performance representations for OOV proper name retrieval.
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5.1 Enabling Retrieval Methods for Word Embedding Space

In Section 4.1 we proposed two main methods for OOV proper name retrieval.
These methods can be extended to representations from any vector space model.
Method I is based on comparison of LVCSR hypothesis and OOV proper names
in context space, and Method II is based on document specific OOV proper name
representations. However, unlike LDA and LSA neither CBOW nor Skip-gram
models the document representation required by the two methods. To address
this problem we exploit the linearity property of the word embeddings.

As evident from Equation 3.15 and Figure 3.4 (a), the bag of words repre-
sentation of the context and the absence of non-linearity at the hidden layer
causes the context embedding to be a sum of the word embeddings. This leads
to the linearity property in which word embeddings can be simply added
and subtracted to obtain embeddings representing semantically and/or
syntactically relevant words. In effect the embeddings resulting after the lin-
ear operations are closer to, and not exactly equal to, the embeddings of the
relevant words.

To illustrate the linearity property, Table 5.1 shows sample contexts built
using words from French news articles. Alongside are their nearest neighbour
terms, which were obtained by calculating cosine similarity between the context
embedding and embeddings of all terms in a Skip-gram model. From the ex-
amples in Table 5.1 (a) we can see that context embeddings can be obtained by
performing an average over the constituent word embeddings, and that the result-
ing context embeddings are closer to relevant words in the embedding space. We
also present Table 5.1 (b), which shows individual words taken from the different
context examples and their top five nearest neighbours. It shows that individual
word embeddings also carry rich semantic information, but it is too generic to
use directly in our task. We thus rely on the linearity property, and perform an
average of the word embeddings, to obtain a document context representation.

Thus in our task, a CBOW/Skip-gram model is trained on the diachronic
text corpus to learn embeddings for in-vocabulary words and OOV proper names.
Given these word embeddings and their linearity property, we obtain a represen-
tation for a diachronic corpus text document or LVCSR hypothesis by taking
the average of the embeddings of all words. We will refer to this representa-
tion as AverageVec representation. Given the AverageVec representations for
the LVCSR hypothesis and those for the diachronic text corpus documents our
proposed OOV proper name retrieval methods, Method I and Method II, can be
applied with cosine similarity as the scoring measure, as in case of context vector
representations obtained from the LSA model.
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Table 5.1: Illustration of linearity property of word embeddings.
(a) Sample contexts, built with words from French news arti-
cles, and the corresponding nearest neighbour terms obtained by
calculating cosine similarity between the context embedding and
embeddings of all the terms in the model.

Context of five words Top five nearest
neighbour terms

ski coma CHU hospital accident Schumacher
Méribel
neurochirurgie
crânien
cérébral

avion recherche trouver vol perdre Boeing
MH370
Malaysia
débris
airlines

jeux olympique hiver athlète mondiaux Sotchi
ski
JO-2014
biathlète
paralympiques

(b) Nearest neighbours of individual words, obtained by calculating the
cosine similarity between its embedding and embeddings of all other terms.

ski recherche hiver accident

Alpin Bluefin-21 week déraillement
Top five biathlon débris JO crash
nearest bosse Perth fashion drame
neighbours biathlète scientifique neige mortel

freestyle chercheur collection Schumacher
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For Method I, the K dimensional vector representation of the LVCSR hypoth-
esis h is compared with the embedding ṽi of an OOV proper name to calculate a
score as:

Method I: si = Cosine Similarity(h, ṽi)

=
h.ṽi
‖h‖ ‖ṽi‖

=

∑K
k=1 hk ṽik√∑K

k=1(hk)2

√∑K
k=1(ṽik)2

(5.1)

Similarly for Method II, the K dimensional representation of the LVCSR
hypothesis of the audio document h is compared with the context vectors (Ci

q)
for each of the OOV proper name ṽi to calculate a score as follows:

Method II: si = max
q
{Cosine Similarity(h,Ci

q)}

= max
q

{
h.Ci

q

‖h‖
∥∥Ci

q

∥∥

}

= max
q
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i
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qk)
2





(5.2)

To perform retrieval of OOV proper names we calculate si for each OOV
proper name ṽi and then use it as a score to rank OOV proper names relevant
to h.

5.2 Experiments and Results

In this section we present an evaluation of our proposed approaches to use word
embeddings for the retrieval of OOV proper names. One of the objective, when
performing retrieval of OOV proper names, is to learn relevant semantic embed-
dings. Syntactic embeddings could also be useful in predicting proper names,
however they rely more on local word context and it has been commonly ob-
served that LVCSR hypotheses are erroneous in the region of OOV words. Based
on the conclusions from earlier works, the Skip-gram model would be favourable
to obtain word embeddings which capture semantic properties and thus perform
better for semantic tasks. As our task will rely also on the document context
embeddings, we would like to analyse the performance of both CBOW and Skip-
gram models.
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We will first present discussions on the selection of hyper-parameters for learn-
ing the embeddings. These will be followed by a comparison of the retrieval results
achieved with the best model configurations. The experiment corpus setup and
the retrieval evaluation measures have been presented in Section 2.4.

5.2.1 Selection of Model Hyper-parameters

The hyper-parameters for CBOW and Skip-gram models are the dimensional-
ity of the word embeddings and the context window length. Previously, it has
been shown that the context window size is a crucial parameter for distributional
methods relying on context windows [Bullinaria and Levy, 2007]. It is also very
crucial for our task as it will help composition of the document context em-
beddings. Furthermore, the number of training epochs is also important, as in
any neural network model with an iterative learning procedure. Generally more
training epochs show better results, which is also true for the CBOW and Skip-
gram models1. However these improvements stop after some training epochs and
further epochs can lead to over fitting.

The negative sampling approach for training CBOW and Skip-gram models
models [Mikolov et al., 2013a] comes with an additional hyper-parameter, namely
number of negative samples. This approach gave lesser validation set performance
in our initial experiments. So we will be using the approach with hierarchical
softmax, which was also proposed in [Mikolov et al., 2013a].

5.2.1.1 Method I and Model Hyper-parameters

Figure 5.1 and Figure 5.2 show charts depicting the variation in maximum MAP
values obtained for Method I with CBOW and Skip-gram model embeddings
respectively, on the validation set. Each figure shows MAP for a range of values
for context window size, word embedding size and number of training epochs.

We tried until a window size of 40, limited by the length of the smallest
documents in our datasets. Beyond an embedding size of 500, and the respective
number of epochs shown, the improvements were not statistically significant.
With the different hyper-parameters, the maximum MAP for the CBOW model
varies between 0.151 and 0.392. And for skip-gram the MAP values vary between
0.275 and 0.494.

In general, bigger word embeddings are better for larger amounts of text data

1The original work of Mikolov et. al obtained slightly better performance when training for
more epochs [Mikolov et al., 2013a].
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with several topics and events. We can observe an increase in maximum MAP
performance until an embedding size of 500, beyond which the improvement is
not significant with the L’Express diachronic text corpus. As in the case of the
LDA model, word embeddings of 400 dimensions seem to be optimal for Method
I, both for CBOW and Skip-gram models.

As we had predicted the context window size proves to be quite crucial for our
task. Larger context windows enable a better composition of the document con-
text embeddings and gives a better MAP performance for both the CBOW and
Skip-gram models. Comparing the number of training epochs for the two mod-
els, the performance of the CBOW model stops improving after 5 epochs while
that of the Skip-gram model continues to improve until 25 epochs. We believe
that the CBOW model with larger context window starts overfitting faster. This
particular problem must not be happening with the Skip-gram model because,
instead of predicting the complete context window, it predicts one word from the
context window at a time, as discussed in Section 3.4.1.2.

Based on the MAP performances on the validation set, the CBOW and Skip-
gram models trained with a context window size of 40, with 5 and 25 epochs
respectively, are chosen as the best performing word embedding model configura-
tions for Method I. Models with better performance but statistically insignificant
improvement are ignored in favour of choosing models of an embedding dimension
of 400, to keep similarity to the LDA and LSA models chosen before.

5.2.1.2 Method II and Model Hyper-parameters

Figure 5.3 and Figure 5.4 show charts depicting the variation in maximum MAP
values on the validation set achieved by Method II with the CBOW and Skip-
gram model embeddings respectively. The MAP values are obtained for a range
of values of context window size, word embedding size and number of training
epochs.

As with Method I, we experimented window size up till 40, limited by the
length of the smallest documents in our datasets. Similarly, we varied the embed-
ding size from 100 till 500, and the number of epochs from 1 to 10 for the CBOW
model and from 1 to 25 for the Skip-gram model. As evident from Figure 5.3
and Figure 5.4, for Method II, the maximum MAP for the CBOW model varies
between 0.361 and 0.474, and for Skip-gram it varies between 0.451 and 0.485.

The next important observation is that for Method II with Skip-gram model
representations (see Figure 5.4) the variations in MAP performance are quite
limited compared to that of CBOW (see Figure 5.3), as well as of Method I
with both CBOW and Skip-gram word embeddings (see Figure 5.1 and Figure
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Figure 5.1: Variation in maximum MAP of retrieval of OOV PNs using CBOW
Method I, with different embedding sizes K, (maximum) context length |C| and
number of training epochs. Evaluated on the validation set.

120



100 200 300 400 500
0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Dimension of embeddings

M
ax

im
u
m

M
A
P

|C| ≤20
epochs=5 epochs=15 epochs=25

100 200 300 400 500

Dimension of embeddings

|C| ≤30

100 200 300 400 500

Dimension of embeddings

|C| ≤40
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5.2). This suggests that the Skip-gram model word embeddings must be well
separated in the embedding space, and this separation is less affected by the model
hyper-parameters. More importantly the model is able to compose the document
context reliably with a sum composition, at least for the non-video/LVCSR news
transcriptions in the validation set.

The word embeddings of 400 dimension do not give the best MAP perfor-
mance with Method II, especially for the Skip-gram model. But its MAP perfor-
mance is still quite close2 to that of the model with the best MAP. For sake of
consistency we choose both CBOW and Skip-gram models with 400 dimensional
word embeddings. Similar to Method I, larger context window size gave better
performance for both the models. Comparing the number of training epochs, the
MAP performance of the CBOW model stops improving after 10 epochs, while
that of the Skip-gram model continues to improve until 25 epochs.

Based on the MAP performances of Method II on the validation set, CBOW
and Skip-gram models trained with a context window size of 40, and until 10 and
25 epochs respectively, are chosen as the best performing word embedding model
configurations.

5.2.2 Retrieval results achieved with the best model configurations

Figure 5.5 shows the recall and MAP performance obtained with CBOW and
Skip-gram models. It shows the recall and MAP performance obtained on the
reference transcription of the Euronews audio test set (on the left) as well as
automatic transcriptions obtained from the ANTS LVCSR system (in the middle)
and KATS LVCSR system (on the right). Figure 5.5 also shows the performance
of the LSA and LDA model with 400 dimensional semantic and topic space
representations. The MAP@128 (maximum MAP) for LSA, LDA, CBOW and
Skip-gram models is also presented in Table 5.2. Comparing the recall and MAP
performances of the different models, we can make the following observations:

• All word embedding based methods, except for Method I with CBOW
(CBOW-MI), give better MAP performance than the previous best MAP
obtained with Method I on LSA semantic space (LSA-MI). The poor perfor-
mance of CBOW-MI could be connected to the problem of faster overfitting
in CBOW, which we attributed to the larger context windows as discussed
in Section 5.2.1.1.

• The Method II MAP performance for both CBOW and Skip-gram models
seems to be relatively robust to LVCSR errors, as compared to that for the

2statistically significant difference but with a low p-value
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Method I performance for these models. The drop between the MAP values
for reference and ANTS transcriptions is 10.4% and 11.2% relative, for the
CBOW (CBOW-MII) and the Skip-gram (SG-MII) models respectively.
For LDA Method II (LDA-MII) this drop is 10.1% relative.

• The Method I MAP performance for both CBOW and Skip-gram models is
highly affected by LVCSR errors. The difference between the MAP values
for reference and ANTS transcriptions is 21.3% and 19.2% relative, for the
CBOW (CBOW-MI) and the Skip-gram (SG-MI) models respectively. For
LDA Method I (LDA-MI) this drop is only 5.25% and that for the LSA
model (LSA-MI) it is 20.6% relative.

• The recall curves for the highest MAP performance method SG-MI appears
to be overlapping with that of some other methods/models. However, it
must be noted that SG-MI achieves much more OOV proper names in
the top 3 ranks, suggesting that it is a much better retrieval method. As
mentioned earlier, this improvement is captured by the MAP curves.

Table 5.2: Comparison of MAP@128 for LSA, LDA, CBOW
and Skip-gram models. (The best model is highlighted in bold.
∗ denotes statistically insignificant difference compared to the
best model.)

Reference ANTS KATS
Transcription Transcription Transcription

LSA-MI 0.417 0.331 0.371
LSA-MII 0.527 0.462 0.485

LDA-MI 0.400 0.379 0.387
LDA-MII 0.414 0.372 0.399

CBOW-MI 0.534 0.346 0.388
CBOW-MII 0.534 0.478∗ 0.508

SG-MI 0.560 0.452 0.506∗

SG-MII 0.544 0.483 0.502∗

5.2.3 Retrieval of Rare and Frequent OOV PNs

Following the discussion in Section 4.3, we would like to analyse the performances
of the CBOW and Skip-gram model word embeddings combined with Method I
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and Method II for retrieval of rare OOV proper names. Table 5.3 and Table 5.4
present a quantitative evaluation of retrieval of rare versus frequent OOV proper
names. Table 5.3 lists the maximum MAP for rare and frequent OOV proper
names, as achieved with the two retrieval methods using word embeddings from
the CBOW model. Similarly, Table 5.4 lists the maximum MAP achieved for
rare and frequent OOV proper names using word embeddings from the Skip-
gram model. The corresponding plots depicting rank-frequency distribution for
the retrieval are shown in Figure B.1 and Figure B.2 in Appendix B.1.

From the results in Table 5.3 and Table 5.4, we can add the following obser-
vations to those made from Figure 5.5:

• In case of CBOW, Method II improves the retrieval of rare as well as fre-
quent OOV proper names and hence the overall MAP improves. Method
II helps to alleviate the overfitting problem that affected the performance
of the CBOW model with Method I.

• On contrary to the CBOW model, in case of the Skip-gram model the
Method I gives a better retrieval of rare as well as frequent OOV proper
names. Indicating that it is possible to address both frequent and rare
OOV proper names with a global representation of OOV proper names. A
similar observation was also made for LSA model with Method I.

Table 5.3: Maximum MAP, for rare and frequent OOV proper
names, using the two retrieval methods and word embeddings
from the CBOW model. (Best Topic model performance is high-
lighted in bold.)

Method Type of OOV PNs Reference ANTS KATS

CBOW-MI all 0.440 0.346 0.388
CBOW-MII all 0.534 0.478 0.508

CBOW-MI rare 0.257 0.183 0.212
CBOW-MII rare 0.327 0.274 0.305

CBOW-MI frequent 0.539 0.431 0.478
CBOW-MII frequent 0.629 0.572 0.600
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Table 5.4: Maximum MAP, for rare and frequent OOV proper
names, using the two retrieval methods and word embeddings
from the Skip-gram model. (Best Topic model performance
is highlighted in bold. ∗ denotes statistically insignificant
difference compared to the best configuration.)

Method Type of OOV PNs Reference ANTS KATS

SG-I all 0.560 0.452 0.506
SG-II all 0.544 0.483 0.502∗

SG-I rare 0.382 0.289 0.337
SG-II rare 0.326 0.273 0.294

SG-I frequent 0.649 0.583 0.598
SG-II frequent 0.633 0.524 0.576

5.3 Conclusion

In this chapter, we extended our proposed methods for retrieval of OOV proper
names to word embeddings learned from the popular CBOW and Skip-gram mod-
els. The first method compared OOV proper names and LVCSR hypothesis in the
embedding space. The second method relied on multiple document specific rep-
resentations of OOV proper names in the word embedding space. As the CBOW
and Skip-gram models do not provide document representations, we exploited the
linearity property of the word embeddings to obtain document representations
by performing an average of the constituent word embeddings.

Comparison of the proposed retrieval methods for CBOW, Skip-gram, LSA
and LDA models, enables us to draw the following conclusions:

• In terms of MAP of retrieval of target OOV proper names, word embeddings
from both CBOW and Skip-gram models outperformed LDA based topic
space representations as well as those from LSA, which gave the previous
best MAP. However, their MAP is not robust to LVCSR errors.

• When using the OOV proper name representations from the CBOW model,
the MAP performance is quite low. This is perhaps due to the overfit-
ting problem of the CBOW model, when it is trained with larger con-
text windows. Proposed retrieval method of using document specific OOV
proper name representations helped to improve the MAP performance of
the CBOW model.
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• The MAP performance of OOV proper name representations from the Skip-
gram model re-confirms that it is possible to address both frequent and rare
OOV proper names with a global representation of OOV proper names, as
it was also observed for LSA-MI. However, the big differences in MAP
performance of reference and LVCSR transcriptions are discouraging. This
continues to motivate us to learn representations with robustness to the
LVCSR errors.

128



CHAPTER 6

Discriminative Context Representations
using Neural Networks

The OOV proper name retrieval methods based on LDA topic space represen-
tations showed robustness to LVCSR errors. On the other hand, the methods
based on LSA and word embeddings, obtained from CBOW and Skip-gram mod-
els, were less robust to LVCSR errors, while they outperformed the LDA based
methods. The topic space representations from the LDA model are multinomial
distributions learned in an unsupervised manner following a Bayesian parameter
estimation setup. Similarly, the CBOW and Skip-gram models learn word vec-
tors with an objective to maximise the average log probability of predicting the
center word given the surrounding context words and vice versa. Arguing that
these context representations learned in an unsupervised manner are not the most
optimal for our task of retrieving OOV proper names, we explore discriminative
context representations. The CBOW and Skip-gram models are unsupervised
methods but they use a pseudo supervision when predicting their outputs. We
exploit this mechanism to train neural network models which predict OOV
proper names. The training objective will be to maximise the retrieval of rel-
evant OOV proper names, thus learning a discriminative context representation
at the hidden layer.

Our methodology is related to the recent approaches for text classification
with neural networks. In this context, fully connected feed forward networks [Iyyer
et al., 2015, Nam et al., 2014], Convolutional Neural Networks (CNN) [Kim,
2014, Johnson and Zhang, 2015, Wang et al., 2015] and also Recurrent/Recursive
Neural Networks (RNN) [Socher et al., 2013, Hermann and Blunsom, 2013, Dong
et al., 2014, Tai et al., 2015, Dai and Le, 2015] have been applied. On the one
hand, the approaches based on CNN and RNN capture rich compositional infor-
mation, and have outperformed the state-of-the-art results in text classification;
on the other hand they are computationally intensive and require careful hyper-
parameter selection and/or regularisation [Zhang and Wallace, 2015, Dai and
Le, 2015]. As compared to text, LVCSR transcriptions of audio documents are
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firstly prone to noise in word sequences due to word errors and secondly have no
direct information about the position of OOVs. Hence for our task we rely on a
document level bag-of-words architectures because they are suitable to
process LVCSR transcriptions. Moreover, in contrast to the tasks considered
in most state-of-the-art text classification works, our task has a large number of
output classes i.e. OOV proper names and the distribution of documents per
OOV proper name is very skewed.

In this Chapter, we will present proposed discriminative context models and
discuss methods for training these models to achieve improved retrieval perfor-
mance as well as robustness to LVCSR errors. Apart from the comparison of
its OOV proper name retrieval performance to the other models, we will study
the evaluation of these models in terms of recovery of the target OOV proper
names, as also discussed in [Sheikh et al., 2016c]. Additionally, we also evaluate
the effectiveness of the proposed NBOW2 model on standard sentiment and topic
classification tasks, as discussed in [Sheikh et al., 2016d].

6.1 Neural Bag-of-Words Model

The first model that we propose takes the in-vocabulary words in the document
as input and predicts OOV proper names at the output. This model can also be
seen as the AverageVec setup of Section 5.1, with the word vectors being trained
to maximise the retrieval of relevant OOV proper names. Interestingly this turns
out to be similar to the Neural Bag-of-Words model (NBOW)1, proposed in [Iyyer
et al., 2015].

The Neural Bag-of-Words (NBOW) model [Kalchbrenner et al., 2014, Iyyer
et al., 2015] is a fully connected neural network model which takes an input text
X containing a set of words w and generates probability estimates for the L
output labels. Figure 6.1 shows a schematic representation of the NBOW model.
The NBOW model has two hidden layers, one corresponding to the input (W I)
and the other for the output (WO). The first hidden layer W I is a [V × K]
matrix containing K dimensional vectors corresponding to each of the words in
the chosen input vocabulary of size V . With a sparse BOW input vector, with
words present in the input set to 1 and others set to 0, the vector-matrix product
at first hidden layer translates into a sum of the vectors corresponding to input

1Our initial work in [Sheikh et al., 2015c] reported this model with the name Document
Continuous Bag-Of-Words (D-CBOW) due to its resemblance to the CBOW model. However,
later we switched the name from D-CBOW to NBOW because the name NBOW was used in
the text classification work [Iyyer et al., 2015], which appeared around the same time.
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words. In practice the average of the word vectors is used instead, as follows:

z =
1

|X|
∑

w∈X
vw (6.1)

The average vector z is then fed into the output layer to estimate probabilities
for the output labels as:

ŷ = softmax(zWO + b) (6.2)

where WO is the [K × L] matrix corresponding to the output layer with b as a
bias vector and softmax(l) = exp(l)/

∑L
j=1 exp(lj).

Figure 6.1: Neural Bag-of-Words (NBOW) Model.

In our task to retrieve relevant OOV proper names, the input (word em-
bedding) matrix W I has vectors corresponding to the in-vocabulary words &
proper names (W I ≡ {v1, v2, v3...vV }). The output matrix WO has vectors cor-
responding to OOV proper names. The input is a sparse BOW vector with 1’s
representing the in-vocabulary words and proper names present in a training/test
document. The average vector z ≡ {z1, z2...zK} represents the context vector for
the document. A vector-matrix product between the average/context vector and
the output/OOV proper name matrix (WO) is equivalent to comparison of the
input document and the OOV proper names in the context space.

For the retrieval of relevant OOV proper names, the words from the LVCSR
hypothesis are given at the input and the softmax probabilities at the output are
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used as scores to rank the OOV proper names. During training of the model,
the words in a document from the diachronic text corpus are given at the input
and each co-occurring OOV proper name in the document is set at the output
in turns. The NBOW model is trained to minimise the categorical cross-entropy
loss [Goldberg, 2015]. The categorical cross-entropy error function is commonly
used for single label classification and some documents can have more than one
OOV proper name. In this case the training document is replicated for each OOV
proper name. It has been shown that using cross-entropy error leads to better
classification and faster convergence than the pairwise error function which tries
to minimise the ranking loss in multi label classification [Nam et al., 2014].

Similar to the CBOW model, the input and output word embeddings W I ,WO

are the unknown parameters in the NBOW model which are to be learned from
the training data. The training for these model parameters is carried out using
back propagation and gradient descent based learning methods [LeCun et al.,
1998]. The training objective is to minimise the cross entropy error between true
labels y and predicted labels ŷ, calculated for a batch of M training samples as:

L = − 1

M

M∑

m=1

(
L∑

j=1

ymj log(ŷmj)

)
: ymj ∈ {0, 1} (6.3)

During training, we consider one OOV proper name per document at a time and
only one output is set to one and others to zero. This function then becomes
equivalent to the negative log likelihood for prediction of OOV proper names:

L = − 1

M

M∑

m=1

log(ŷm) (6.4)

With this loss function the equations for updating W I ,WO are similar to those
for the CBOW model, as elaborated in [Rong, 2014]. Other specific details and
techniques adopted for training the NBOW model are discussed in Section 6.3.

6.2 Neural Bag-of-Weighted-Words (NBOW2) Model

The NBOW model learns discriminative word and context vector representations
specialised for the retrieval task. However we feel that it fails to explicitly model
the information that certain words are more important than others for retrieval of
an OOV proper name. Therefore we propose the Neural Bag-of-Weighted-Words
(NBOW2) model, with the motivation of enabling the NBOW model to learn and
use word importance weights which can attribute an OOV proper name. This
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idea was inspired by the works on learning to pay attention in a sequence of input,
which became popular with the neural network machine translation architecture
proposed in [Bahdanau et al., 2014] and was later applied in speech [Chan et al.,
2015], image [Xu et al., 2015] and protein sequence analysis [Sønderby et al.,
2015]. [Ling et al., 2015] also proposed the use of different word weights in a bag-
of-word neural network model. However, they use word position based weights
to improve vectors learned by the CBOW model. As it will be discussed, our
NBOW2 model learns to assign task specific word importance weights based on
distances in the word embedding space.

To learn these word importance weights, we introduce a weighted sum com-
position of the input word sequence X as follows.

z =
1

|X|
∑

w∈X
αw vw (6.5)

where αw are scalar word importance weights for each word w ∈ X. The weights
αw are obtained by integrating a new K dimensional vector a into the model,
and using the following operation:

αw = f(vw · a) (6.6)

where (·) represents the dot product and f scales the importance weights to
[0, 1]. The word importance weight αw is a function of the distance of that word
w from a in the context space. This ensures that the calculation of αw takes into
account the contextual word similarities and it is not biased by the frequency of
occurrence of words in the training corpus. We believe that the vector a, which is
itself learned and updated along with the word vectors, will act as a reference for
separation and composition of the word vectors into a context vector. Regarding
the function f , common activation functions can be used such as sigmoid, softmax
(as in [Sheikh et al., 2015c]) and even hyperbolic tangent. In our experiments we
found that the sigmoid function f(x) = (1 + e−x)−1 is a better choice in terms of
convergence speed and accuracy. We present a more elaborate discussion on the
choice of f in Section 6.4.

Figure 6.2 shows a schematic representation of the NBOW2 model. The
inputs, input embedding matrix, outputs and the output matrix are similar to
that of the NBOW model. However, the procedure to obtain the document
context vector has changed. After the lookup of the word vectors for input text,
a dot product is performed between each input word vector and the vector a.
The scalar values from the dot product are then passed through the function
f . The resulting scalar word importance weights are multiplied with the input
word vectors and a weighted sum composition representing the document context
vector is obtained.
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Similar to the NBOW model, the NBOW2 model is trained to minimise the
categorical cross-entropy loss, given by Equation 6.4. However, as the forward
propagation obtains the context vector z using a weighted sum combination of the
input words with Equation 6.5 and Equation 6.6, the backward propagation and
the update equations will involve the vector a. The parameter update equations
for the NBOW2 model are similar to those for the CBOW model [Rong, 2014].

Figure 6.2: Neural Bag-of-Weighted-Words (NBOW2) Model.

6.2.1 Combination of the NBOW and NBOW2 Models

We further propose the NBOW2+ model in which the NBOW and NBOW2
document context vectors are concatenated together. The motivation behind
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this combination is to enhance the averaged context representation, where all
words are equally important, with the specificity of more important words from
weighted average context and vice versa. NBOW2+ has two input matrices
(W I

1 ,W
I
2 ) and hence maintains two K dimensional word vectors v1

w and v2
w for

each input word w. It has one K dimensional anchor vector a similar to NBOW2
and one matrix WO and one bias vector b in the output layer. The document
context vector z is obtained as the concatenation of two context vectors z1 and
z2 as follows:

z1 =
1

|X|
∑

w∈X
v1
w

z2 =
1

|X|
∑

w∈X
αw v

2
w

z = [z1 z2]

(6.7)

As the document context vector is concatenation of the two K dimensional con-
text vectors, the output layer parameters (WO, b) have a dimension of 2K. The
training procedure for the NBOW2+ model is the same as for the NBOW and
NBOW2 models.

6.3 Training the NBOW group of models

In this section we discuss in general the choices made for training the NBOW,
NBOW2 and NBOW2+ models. It includes some crucial hyper-parameters which
can affect the retrieval performance significantly. A more model specific discus-
sion and comparison is made in Section 6.4.2.

6.3.1 Initialisation

It is well known that good initialisation and pre-training of hidden layer weights
are crucial for training deep neural networks [Larochelle et al., 2009, Goldberg,
2015]. While the NBOW model is not deep, we examined if initialisation is
crucial and if it affects the performance of the NBOW model in our task. We will
present the results for the NBOW model with input word vectors (W I) initialised
(a) randomly and (b) with Skip-gram word vectors pre-trained on the diachronic
text corpus. The vectors corresponding to output OOV proper names (WO)
are randomly initialised. Initialising WO with Skip-gram word vectors did not
give any significant performance improvements. In our results and discussions
the prefixes ‘RAND-’ and ‘Sg-’ will be used to denote models with random and
Skip-gram initialisation of word vectors, respectively.
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6.3.2 Full Training v/s Two Phase Training

We explore two methods of training the NBOW, NBOW2 and NBOW2+ models:
(a) full training and (b) two phase training. In full training all the network
parameters including the input matrix, output matrix, output bias vector of
NBOW model (c.f. Section 6.1), and additionally the anchor vector for NBOW2
and NBOW2+ models (c.f. Section 6.2 and 6.2.1), are trained and updated using
back-propagation.

The two phase training method has a first training phase in which only the
output parameters (WO, b), and the vector a for the NBOW2 and NBOW2+ mod-
els, are updated by keeping the input word vectors fixed to pre-trained Skip-gram
word vectors. In the second training phase all the model parameters including
the word vectors are updated. The motivation behind the two phase training is
again a better initialisation and convergence. The first training phase is supposed
to take the randomly initialised output parameters to a better state for simul-
taneously training all the network parameters. In our results and discussions
the suffixes ‘-1p’ and ‘-2p’ will be used to denote models trained in one and two
training phases, respectively.

6.3.3 Learning Rate and Stopping Criteria

All the NBOW models are trained using a stochastic gradient descent algo-
rithm with ADADELTA [Zeiler, 2012]. ADADELTA provides an adaptive per-
dimension learning rate for gradient descent and is robust to noisy gradient in-
formation. We tested two values of the ADADELTA decay constant (ρ), 0.99
and 0.95, and used ρ =0.99 in all our experiments as it gives a lower validation
error rate and a better retrieval performance.

To control the training of all the NBOW models an early stopping criterion
[Bengio, 2012] based on the validation set error is used. Early stopping is used in
full training as well as both the first and the second training phases of two phase
training2.

6.3.4 Dropout at Input

Dropout is a technique, adopted for training deep neural networks, in which the
output of randomly selected units in the network is set to zero [Srivastava et al.,

2Using a fixed number of epochs in the first phase of the two phase training did not give a
better performance.
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2014]. The dropout technique has been shown to significantly reduce overfitting
and give major improvements over other regularisation methods in deep neural
networks. While the NBOW model and the proposed NBOW2 and NBOW2+
models are not deep architectures we are interested to analyse if the dropout
mechanism helps us to avoid overfitting and add robustness to the document level
BOW input. We specifically applied dropout at the input layer. The dropout at
the input layer is equivalent to dropping words in the input. The motivation be-
hind this word dropout is (a) to synthesise variations of document context using
training set documents and (b) to simulate deletion errors in LVCSR hypothesis.
Based on the experiments on the validation set we chose a word dropout probabil-
ity of 0.9 (from among 0, 0.25, 0.5, 0.75 and 0.9)3. We found that word dropout
has been recently tried and gave improvements in text classification tasks [Dai
and Le, 2015, Iyyer et al., 2015].

6.4 Experiment Results and Discussion

In this section we first present a comparison of recall and MAP performance
of the NBOW, NBOW2 and NBOW2+ models with the methods discussed in
previous chapters. As the LSA, LDA, CBOW and Skip-gram models gave the
best performance with 400 dimensional word and context vectors, we set the
embedding size of the NBOW group of models to 400. The recall and MAP
performance comparison will be followed by a detailed discussion on the learning
and performance improvements of the NBOW, NBOW2 and NBOW2+ models.

6.4.1 OOV Proper Name Retrieval Performance

Figure 6.3 shows the recall and MAP performance of retrieval of OOV proper
names for different methods. As before, the graphs shown are for the reference
transcriptions (left), LVCSR transcriptions from ANTS (middle) and the LVCSR
transcriptions from KATS (right) for the Euronews test set audio. The X-axis
represents the number of OOV proper names selected from the diachronic text
corpus i.e. the ‘N ’ in the top-N retrieved results. The Y-axis represents recall
(top) and MAP (bottom) of the target OOV proper names. For each of the
methods, the models giving best performance on validation set are chosen. The
MAP@128 (maximum MAP) values are also presented in Table 6.1.

The recall and MAP retrieval performance for NBOW, NBOW2 and NBOW2+

3Word dropout probability p does not necessarily translate to leaving out p% of the input
words in our implementation.

137



1 4 16 64 256 1024 4096 16K

0.1

0.2

0.3

0.4

R
ec
al
l

Reference Transcriptions

LSA-MI LDA-MI LSA-MII LDA-MII
SG-MI SG-MII NBOW NBOW2

NBOW2+

1 4 16 64 256 1024 4096 16K

ANTS LVCSR Transcriptions

1 4 16 64 256 1024 4096 16K

KATS LVCSR Transcriptions

1 4 16 64 256 1024 4096 16K

0.3

0.4

0.5

0.6

0.7

Number of OOV PNs

M
A
P

1 4 16 64 256 1024 4096 16K

Number of OOV PNs
1 4 16 64 256 1024 4096 16K

Number of OOV PNs

Figure 6.3: Recall and MAP performance of NBOW, NBOW2 and NBOW2+
models for OOV proper name retrieval on Euronews audio test set. The NBOW,
NBOW2 and NBOW2+ models were initialised with Skip-gram word vectors and
trained in two phases (c.f. Section 6.3.2 and Table 6.2). The NBOW and NBOW2
graphs are overlapped by that of NBOW2+.
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Table 6.1: Comparison of MAP@128 for LSA, LDA, Skip-
gram and NBOW group of models. (The best model is high-
lighted in bold. ∗ denotes statistically insignificant difference
compared to the best model.)

Reference ANTS KATS
Transcription Transcription Transcription

LSA-MI 0.417 0.331 0.371
LSA-MII 0.527 0.462 0.485

LDA-MI 0.400 0.379 0.387
LDA-MII 0.414 0.372 0.399

SG-MI 0.560 0.452 0.506
SG-MII 0.544 0.483 0.502

NBOW 0.622∗ 0.568∗ 0.586∗

NBOW2 0.622∗ 0.566∗ 0.586∗

NBOW2+ 0.621 0.569 0.588

models is similar and their graphs are overlapping. We will discuss in detail in
Section 6.4.2 about the difference in performance of the NBOW2 and NBOW2+
models as compared to the NBOW model. Overall the three models clearly out-
perform the methods based on LSA, LDA and Skip-gram in terms of recall and
MAP, both for reference and LVCSR transcriptions. In terms of robustness to
LVCSR errors, the % reduction in the MAP values of ANTS transcriptions (com-
pared to that of reference transcriptions) with NBOW, NBOW2 and NBOW2+
model is 8.6%, 9.0% and 8.3% (relative) respectively. Where this reduction for
Method I of Skip-Gram (SG-MI), LSA (LSA-MI) and LDA (LDA-MI) is 19.2%,
20.6% and 5.25% (relative) respectively.

6.4.2 Scrutinising the Training of NBOW models

In this section, we first analyse how the choice of training conditions, namely (a)
word dropout and (b) two phase training, affect the performance of the NBOW
model. We present Table 6.2 for this discussion. Then with the help of Figure
6.4 and Table 6.3 we compare the training convergence and retrieval performance
of the NBOW, NBOW2 and NBOW2+ models. Alongside we will also compare
performance of random versus Skip-gram embedding initialisation of the NBOW
model, as well as for the NBOW2 and NBOW2+ models.
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6.4.2.1 Robustness with Word Dropout

The effect of applying word dropout can be observed from Table 6.2. It is clear
that word dropout improves the MAP; higher dropout rate giving higher MAP.
We can observe that the NBOW model initialised with Skip-gram word vectors
(Sg-1p) takes a smaller number of training epochs and gives better MAP perfor-
mance than the NBOW model with random initialisation (Rand-1p). However,
applying word dropout gives larger relative improvements in Rand-1p as com-
pared to Sg-1p.

For instance the MAP value for reference transcriptions i.e. MAP-TR im-
proves by 15% for Rand-1p and by 6.75% for Sg-1p for word dropout of 0.9 as
compared to no word dropout. Secondly, we can observe that the improvement
in MAP with word dropout is relatively larger for LVCSR transcriptions. For
instance if we compare the MAP value for reference and ANTS LVCSR tran-
scriptions i.e. MAP-TR and MAP-TA the improvements are 15% v/s 25% for
Rand-1p, 6.75% v/s 11.8% for Sg-1p and 3.3% v/s 8.2% for Sg-2p. These im-
provements validate our speculation that word dropout would enhance
performance by simulating variations in document context as well as
deletion errors in the LVCSR hypothesis.

6.4.2.2 Two phase training and the improvement with NBOW2+ model

In Section 6.3.2 we proposed to train the NBOW models in two phases. The MAP
results in Table 6.2 show that the best retrieval performance is obtained with this
two phase training method. However, it takes a larger number of training epochs
compared to training the NBOW model in one phase (Sg-1p). With the help of
Figure 6.4, we show that this problem can be addressed by the NBOW2+ model.

Figure 6.4 shows a graph of validation set errors of the NBOW, NBOW2
and NBOW2+ models, as training progresses. It can be observed that all three
models (NBOW, NBOW2 and NBOW2+) converge to a similar point but at
different convergence rates. While both NBOW and NBOW2 models take a larger
number of training epochs, the NBOW2+ model gives a faster convergence
without compromise in error rate. This can be seen in Table 6.3, which
compares the MAP achieved by the NBOW, NBOW2 and NBOW2+ models.

As a counter experiment we examined if the ADADELTA decay constant
(ρ) can speed up the two phase training convergence. We observed from our
experiments that the ADADELTA decay constant (ρ) of 0.95 takes fewer training
epochs as compared to a decay constant (ρ) of 0.99, but at the cost of reduced
MAP performance. For instance with word dropout of 0.9, the 400 dimensional
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Table 6.2: Maximum MAP for retrieval of OOV proper names,
obtained by the NBOW model (400 dimension word vectors)
trained with an early stopping criterion. Suffixes V, TR, TA
and TK denote the performance on the validation set, the ref-
erence transcription test set and the ANTS LVCSR and KATS
LVCSR transcriptions of the test set respectively. Rand and
Sg denote random and Skip-gram word vector initialisation. 1p
and 2p denote one and two phase training. The best configura-
tion is highlighted in bold. ∗ denotes statistically insignificant
difference compared to the best configuration.

word dropout probability (p)
0.0 0.25 0.5 0.75 0.9

Rand-1p

epochs 175 217 249 320 276
MAP-V 0.458 0.482 0.502 0.537 0.530

MAP-TR 0.500 0.522 0.549 0.578 0.576
MAP-TA 0.419 0.435 0.464 0.505 0.526
MAP-TK 0.457 0.473 0.500 0.533 0.542

Sg-1p

epochs 112 147 152 149 155
MAP-V 0.511 0.522 0.535 0.541 0.543

MAP-TR 0.563 0.569 0.576 0.587 0.601
MAP-TA 0.491 0.483 0.502 0.531 0.549
MAP-TK 0.523 0.522 0.532 0.551 0.566

Sg-2p

epochs 481 482 398 417 410
MAP-V 0.551 0.553 0.562 0.574 0.585

MAP-TR 0.602 0.598 0.605 0.615∗ 0.622
MAP-TA 0.525 0.519 0.533 0.561∗ 0.568
MAP-TK 0.555 0.552 0.561 0.578∗ 0.586
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Table 6.3: Maximum MAP for retrieval of OOV proper names,
obtained by the NBOW, NBOW2 and NBOW2+ models with
400 dimension word vectors trained with word dropout proba-
bility p = 0.9 and an early stopping criterion. Suffixes V, TR,
TA and TK denote the performance on the validation set, refer-
ence transcription in test set and the ANTS LVCSR and KATS
LVCSR transcriptions of the test set respectively. Rand and
Sg denote random and Skip-gram word vector initialisation. 1p
and 2p denote one and two phase training. The best configura-
tion is highlighted in bold. ∗ denotes statistically insignificant
difference compared to the best configuration.

NBOW NBOW2 NBOW2+

R-1p

epochs 276 123 210
MAP-V 0.530 0.474 0.519

MAP-TR 0.576 0.507 0.574
MAP-TA 0.526 0.402 0.526
MAP-TK 0.542 0.440 0.546

Sg-1p

epochs 155 166 161
MAP-V 0.543 0.541 0.547

MAP-TR 0.601 0.599 0.601
MAP-TA 0.549 0.549 0.545
MAP-TK 0.566 0.566 0.566

Sg-2p

epochs 410 648 273
MAP-V 0.585∗ 0.587∗ 0.593

MAP-TR 0.622 0.622 0.621∗

MAP-TA 0.568∗ 0.566∗ 0.569
MAP-TK 0.586∗ 0.586∗ 0.588
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Figure 6.4: Validation set errors during the two phase training of NBOW,
NBOW2 and NBOW2+ models. (400 dimension word vectors and 0.9 word
dropout probability. − − − markers indicate end of first and begin of second
training phase)

NBOW model takes 351 epochs and achieves a maximum MAP of 0.5 as compared
to 410 epochs and 0.568 MAP obtained with ρ = 0.99.

From these experiments we can conclude that (a) two phase training leads to
better retrieval performance with the NBOW and NBOW2 models but it requires
a longer training and (b) the NBOW2+ model, which combines the average
and weighted average contexts of NBOW and NBOW2 models, can significantly
reduce this training time without compromise in the MAP performance.
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6.4.3 Word Importance weights of the NBOW2 model

We present Figure 6.5 to discuss about (a) the scalar word importance weights
αw learned by the NBOW2 model and (b) the choice of the function f for the
NBOW2 model (see Equation (6.6)). Figure 6.5 shows a graph of the importance
weights of words in a document from the test set. The top graph of Figure 6.5
shows the weights assigned by the NBOW2 model with f as sigmoid activation
and the bottom graph shows the weights assigned with f as softmax activation.

Firstly it is clear from these graphs that the NBOW2 model learns and as-
signs different degrees of importance for different words. For example this test
document is about the accident of Formula one driver Michael Schumacher and
it has a missing OOV proper name ‘Kehm’ (Sabine Kehm is the spokesperson
for Michael Schumacher). If we analyse the list of words as per the top graph
the top four important words are michael, formule, critique and hospitaliser and
the four least important words are rester, tenir, monde and présent4. From this
example, it is evident that the NBOW2 model assigns higher weights to words
which are important for retrieval of the OOV proper name. The same holds true
for the NBOW2 model with softmax f .

The second observation is that the NBOW2 model with f as softmax tends
to assign higher weights to fewer words and a weight close to zero most
of the other words. While this feature could help in tasks like selection of key-
words in written texts, it leads to a relatively bad OOV proper name retrieval
performance [Sheikh et al., 2015c]. We hypothesise that this happens because
the NBOW2 model with softmax f ignores (or gives low importance value to)
too many words from the input which affects its discriminative ability, especially
when (a) the LVCSR hypothesis has many word errors and (b) the document
contains OOV proper names from different contexts, for instance both sports
and politics.

6.4.4 Document Specific Representation of OOV PNs

The NBOW, NBOW2, NBOW2+ models perform an average composition or/and
weighted sum composition of the words in the input document. This composition,
denoted by z in the Equations 6.1, 6.5 and 6.7, represents the document context
vector. Thus we can use our proposed methodology based on document spe-
cific representations, as discussed in Section 5.1, to retrieve OOV proper names.
When applying this method (Method II) to NBOW, NBOW2 and NBOW2+
models these models are trained as discussed previously. Then the document

4English translations: michael, formula, critical, hospitalise, remain, stay, world, present
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Figure 6.5: Distribution of word importance weights assigned by the NBOW2
model in a sample document with 48 words. Two variations of the NBOW2
model are shown: (top) f as sigmoid and (bottom) f as softmax. Horizontal
lines denote the all equal weights (1/48 = 0.0208) in the simple average by the
NBOW model.
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context vector z is obtained for each of the diachronic corpus documents and the
documents in the test set.

Table 6.4 presents the maximum MAP achieved with the NBOW, NBOW2
and NBOW2+ models using Method II. The first observation is that the MAP
performance of these models is lower as compared to that obtained by their
equivalent Method I (see Table 6.3). It must be noted that although the NBOW,
NBOW2 and NBOW2+ models are trained discriminatively, they heavily rely
on the OOV proper name representations in the output layer of these models.
So their performance is not as good as their performance with a forward pass
(Method I, Table 6.3). However the NBOW, NBOW2 and NBOW2+ models
perform better when comparing the MAP for LVCSR transcriptions of the LSA
(LSA-MII) and Skip-gram (SG-MII) models, which gave the best MAP with
Method II before. As highlighted in Table 6.4, the NBOW2 model gives best
MAP for both ANTS and KATS LVCSR transcriptions.

Table 6.4: Comparison of maximum MAP ob-
tained using document level representations.
The best MAP is highlighted in bold. ∗ de-
notes statistically insignificant difference com-
pared to the best configuration.

Reference ANTS KATS

LSA-MII 0.527 0.463 0.485
SG-MII 0.544 0.483 0.502∗

NBOW-MII 0.524 0.492∗ 0.505∗

NBOW2-MII 0.527 0.498 0.510
NBOW2+-MII 0.525 0.487 0.504∗

6.5 Recognition of OOV PNs

The list of relevant OOV proper names retrieved by the context model is to be
used for recognition/recovery of the missed proper names. In our previous works
we evaluated the effectiveness of the list of relevant OOV proper names obtained
from the context models by performing a keyword search based recovery. In
[Sheikh et al., 2016b] we performed a phonetic search for the top-N relevant
OOV proper names in the 1-best LVCSR hypothesis. In [Sheikh et al., 2016c] we
performed a Finite State Transducer (FST) based keyword search in the LVCSR
lattice. Keyword search based recovery enables a faster evaluation but it results
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in many false alarms. In this dissertation, we perform a second pass speech
recognition to recognise the OOV proper names by updating the LVCSR system
with the list of relevant OOV proper names retrieved by the context model.

6.5.1 Updating LVCSR for Recognition of OOV PNs

Updating the LVCSR system for new words requires updating the pronuncia-
tion lexicon and the language model (LM) n-gram probabilities. To update the
pronunciation lexicon automatic Grapheme-to-Phoneme (G2P) converters can
be used. We trained the Sequitur G2P converter [Bisani and Ney, 2008] on our
original pronunciation lexicon and used it to generate up to 3 pronunciations
of each new OOV proper name. Estimating LM probabilities for new words is
a non-trivial and open problem. Most of the proposed methods rely on simi-
larity between in-vocabulary and OOV words [Orosanu and Jouvet, 2015, Qin,
2013, Lecorvé et al., 2011] or use word classes in the LM [Allauzen and Gau-
vain, 2005b, Pražák et al., 2007, Naptali et al., 2012]. In our second pass speech
recognition experiments we added OOV proper names as new unigrams without
changing the existing unigram probabilities and leaving out the higher order n-
grams of OOV proper names. The unigram probabilities are adjusted by taking
a part of the <unk> probability and assigning it to an OOV proper name as:

poov−pn−unigram = p<unk> ×
δ

# OOV PNs
(6.8)

where δ is the fraction of <unk> probability assigned to all the OOV proper
names to be added. This approach to add OOV proper names is similar to a
class LM with a class in unigrams. (A detailed comparison to other methods is
not in the scope of this dissertation.)

6.5.2 Recognition Experiment Setup

Since the second pass speech recognition experiments are to be performed for
different OOV proper name lists, we formed a smaller test set for these experi-
ments. From the 3000 Euronews videos (see Table 2.1), we formed a subset of
videos appearing in 4 randomly selected weeks. This test subset comprises 467
videos, of which 318 videos have one or more proper name missed in the first pass
speech recognition as they were OOV. It must be noted that there are 149 videos
in this test set with no known OOV proper name; as would be the case in a real
setup where it is not known beforehand if the video has OOV(s) or not. The 318
videos contain a total of 1023 OOV proper name (non unique) terms, of which
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up to 483 can be recovered with the L’Express diachronic corpus. The number
of words and proper names to be recognised are 97935 and 5838, respectively.

We perform the second pass speech recognition with our ANTS system since it
can easily perform a document specific LM update at runtime5. Our baselines will
be ANTS one pass speech recognition without knowledge of OOV proper names,
denoted as No-OOV, and ANTS one pass speech recognition which includes all
9.3K new OOV proper names from L’Express, denoted as LX-All. We compare
these to second pass speech recognition with the ANTS system updated with
the top-128 (∼1%) document specific relevant OOV proper names retrieved by
the LDA and the NBOW2+ models. These will be denoted as LDA-128 and
NBOW2+-128. We chose the point 128 for our analysis because after this point
both the recall as well as the MAP curves are flat, and before this point there
are big differences in the recall of the different retrieval methods. Moreover,
Skip-gram-128 performance is not shown but we found that it is similar to that
of LDA. Similarly, we expect that NBOW-128 and NBOW2-128 would perform
similar to NBOW2+-128.

The Recall@128 and MAP@128, i.e. the recall and MAP with the top-128
retrieved OOV proper names, for the LDA-128 and the NBOW2+-128 setup are
shown in Table 6.5. Since we are using only a subset of the original test set, the
Recall@128 and MAP@128 values are different compared to those in Figure 6.3,
but NBOW2+ gives a better performance than LDA as observed in Figure 6.3.

Table 6.5: OOV proper name retrieval performance on the test sub-set after the
first pass using ANTS LVCSR. (These retrieval results will be used in the second
pass recognition.)

LDA-128 NBOW2+-128

Recall@128 0.37 0.41
MAP@128 0.41 0.62

We used another subset of Euronews videos (not part of the test subset) to
tune the δ parameter in Equation 6.8. After different trials we chose a value
of 0.001 for δ, which gave an optimal performance for each of the methods. A
higher value of δ will improve the OOV proper name recognition but also lead to
increased false alarms.

We also present the PNER and WER results from an oracle setup. In the
oracle setup we perform only one pass of ANTS speech recognition using an

5The KATS system is based on Kaldi which requires a lengthy (∼6hours) compilation of
the LM (HCLG) FST.
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updated pronunciation lexicon and LM (using Equation (6.8)). They are specific
to each video from the test sub-set and include the OOV proper names which
actually appear in the video. For comparison we add only those OOV proper
names which can be obtained using the L’Express diachronic text corpus.

6.5.3 Recognition Results

Table 6.6 shows the Proper Name Error Rate (PNER) after the second pass
speech recognition. PNER is obtained by first aligning the reference and hy-
pothesised word level transcriptions and then calculating substitution, deletion,
insertion errors, and thus the error rate only on the proper name terms. Similarly,
OOVPNER is the error rate calculated only for OOV proper names.

It can be observed from Table 6.6 that adding all OOV proper names from
the diachronic corpus (LX-All) leads to an increased PNER and OOVPNER.
The increased error rate is mainly due to insertion and substitution errors, and
it can possibly be reduced with better LM update techniques. The LDA and
NBOW2+ context models enable selection of relevant OOV proper names and
hence recognition of new proper names and a reduction of PNER. While LDA and
NBOW2+ models show similar PNER performance, we can see that NBOW2+
gives a lower OOVPNER. The NBOW2+ model leads to more correctly recog-
nised OOV proper names. The performance of NBOW2+ is close to our Oracle
setup. After analysing errors in the Oracle setup we hypothesise that automatic
G2P pronunciations of OOV proper names is another source of recognition errors.
Adding the new proper names into the vocabulary and LM did not have a nega-
tive impact on the WER. Instead the WER showed minor improvements of 0.7%
and 0.8% absolute for LDA-128 and NBOW2+-128, compared to the No-OOV
case having a WER of 41.7%. Improvements in WER were due to recognition of
OOV proper names and reduction in insertion and deletion errors.

Table 6.6: Second pass proper name recognition results. PNER denotes
Proper Name Error Rate. OOVPNER denotes OOV Proper Name Error
Rate. (In LDA-128 and NBOW2+-128, top-128 document specific OOV PNs
retrieved by LDA and NBOW2+ models are added to lexicon and LM.)

No-OOV LX-All LDA-128 NBOW2+-128 Oracle

OOV PNs added 0 9.3K 128 128 oracle
% OOVPNER 100.0 117.8 63.9 63.6 63.1
% PNER 61.6 67.8 57.0 56.8 56.7
% WER 52.7 52.8 52.0 51.9 51.8
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6.6 Performance of NBOW2 on Text Classification Tasks

In this section we will evaluate the NBOW2 model on standard text classification
tasks and compare its performance with that of the NBOW model and other state
of the art results. This evaluation is done to showcase the improved performance
that our proposed NBOW2 model can achieve and to further support our argu-
ment that the NBOW2 model can learn task specific word importance weights.
We will first present a brief description of the two text classification tasks that
we will use for evaluation of the NBOW2 model. This will be followed by a
discussion on the word importance weights learned by the NBOW2 model and a
comparison of its classification performance. It must be noted that as oppose to
OOV proper name retrieval, these are single label classification tasks and their
performance will be evaluated in terms of percentage accuracy of classification of
the input text document into the target class.

6.6.1 Task Descriptions

To analyse the working and performance of our proposed NBOW2 model, we
consider two common tasks: (a) binary sentiment classification on the Internet
Movie Database (IMDB) movie review dataset [Maas et al., 2011] and the Rot-
ten Tomatoes (RT) movie review dataset [Pang and Lee, 2005], and (b) topic
classification on the 20 Newsgroup dataset. The IMDB dataset has longer movie
reviews, in form of paragraphs, as compared to those in RT, which are just sen-
tences. Each of the movie review is to be tagged as positive or negative. The 20
Newsgroup dataset has newsgroup documents, organised into 20 categories (for
example misc.forsale, soc.religion.christian, etc.). These are among the standard
tasks for evaluating text classification algorithms and we have made available our
source code used in these experiments6 so that the results can be reproduced.

6.6.1.1 Sentiment Analysis

For the IMDB task we use the original dataset7 with 25000 train and 25000 test
movie reviews. For Rotten Tomatoes (RT) we obtained the v1.0 dataset8. Fol-
lowing the standard evaluation scheme, we do 10-fold cross-validation over the
balanced binary dataset of 10,662 sentences of RT. In both the IMDB and RT
tasks, model training parameters9 for NBOW2 are kept similar to those chosen

6Source code available at https://github.com/mranahmd/nbow2-text-class
7http://ai.stanford.edu/∼amaas/data/sentiment/
8https://www.cs.cornell.edu/people/pabo/movie-review-data/
9word vector size 300, word dropout probability 0.3, L2 regularisation weight 1e-5
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for NBOW by Iyyer [Iyyer et al., 2015] after cross validation. For NBOW and
NBOW2 models, the ‘-RAND’ suffix will denote random word vector initialisa-
tion and no suffix is initialisation with publicly available 300 dimensional Global
Vectors (GloVe 300-d) [Pennington et al., 2014] trained on the Common Crawl10.

6.6.1.2 The 20 Newsgroup Topic Classification

For the 20 Newsgroup topic classification task we use the ‘bydate’ train/test
splits, cleaned and made available by Cardoso [Cardoso-Cachopo, 2007]11. There
are 11,293 text documents in the original training set and 7,528 in the test set.
For training the NBOW and NBOW2 models, we randomly extract 15% of the
original train set as the validation set and use the remaining 85% as the final
training set. This is the most common approach for performing evaluation on
this task. Training was performed with the ADADELTA [Zeiler, 2012] gradient
descent algorithm. An L2 regularisation weight of 1e-5 was applied to all param-
eters. Further, to add robustness, we applied 75% word dropout12. Additionally
we use an early stopping criterion to stop the training when the validation error
starts to increase continuously for 5 training epochs. Similar to the sentiment
analysis experiments ‘-RAND’ suffix will denote random word vector initialisation
and no suffix is initialisation with 300-d GloVe.

6.6.2 Word importance weights learned by the NBOW2 model

Before discussing the classification performance, we present an analysis of the
word importance weights learned by the NBOW2 model by demonstrating some
qualitative and quantitative results.

6.6.2.1 Visualisation of word vectors from the RT sentiment analysis task

We visually examine the word vectors learned by the NBOW and NBOW2 mod-
els. For visualisation, these word vectors are projected into a two dimensional
space using the t-Distributed Stochastic Neighbour Embedding (t-SNE) tech-
nique [van der Maaten and Hinton, 2008]. Figure 6.6 shows the two dimensional
t-SNE plot of word vectors learned by these models, with Figure 6.6 (a) repre-
senting those from the NBOW model and Figure 6.6 (b) representing those from

10http://nlp.stanford.edu/projects/glove/
11http://web.ist.utl.pt/acardoso/datasets/
12choice based on accuracy on validation set
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(a)

(b)

Figure 6.6: Visualisation of word vectors learned by the NBOW and NBOW2
models in the RT task. Word vectors are reduced to 2 dimension using t-SNE
technique and shown in each plot. Plot (a) represents word vectors from the
NBOW model, (b) represents words from NBOW2 model, with colours indicating
the word importance weights learned by the NBOW2 model.
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the NBOW2 model. In Figure 6.6 (b) each word projection is given a colour
based on the word importance assigned to it by the NBOW2 model.

In Figure 6.6 (a) we see that the NBOW model can separate the words in the
word vector space. According to the word examples labelled in Figure 6.6 (a) the
word projections are grouped into two regions/clusters corresponding to positive
and negative sentiments of the RT movie review task. Similarly we can observe
that the NBOW2 model also learns to separate the words into regions of positive
and negative sentiments, as shown by the same word examples in Figure 6.6 (b).
If we examine the word importance assigned by the NBOW2 model, indicated
by colours in Figure 6.6 (b), it is evident that the NBOW2 model also learns to
separate words based on their importance weights. To support this statement we
show additional word examples labelled in different regions in Figure 6.6 (b). For
instance the words a, on, it, for, there are not so important for the RT sentiment
classification task13 and are present together in a region of low word importance.
On the contrary, the words staid, inflated, softens can contribute to negative
polarity of movie reviews. Note that they have relatively higher importance
weights and are present towards the negative sentiment region in the word vector
space. Compared to both these set of examples, the words obnoxious, cliché,
vapid are strongly negative. They have importance weights close to one and are
present together at the tip of the negative sentiment region (completely opposite
to the positive sentiment region with words like excels, amazed, jolted).

To further verify our claim that, in comparison to the NBOW model, the
NBOW2 model is able to distinguish words based on their importance we present
Figure 6.7. This figure shows the word vectors learned by the NBOW model
(same as in Figure 6.6 (a)) but it depicts each word with a colour based on word
importance weight learned by the NBOW2 model. It can be seen that the NBOW
model does not separate/group words based on word importance, even if we look
only to the example words a, on, it, for, there.

6.6.2.2 Word importance weights v/s TF-IDF weights as classification features

In this analysis, we compare the word importance weights learned by the NBOW2
model with Term Frequency-Inverse Document Frequency (TF-IDF) weights and
other word weight features proposed in previous works. For this comparison,
one Support Vector Machine (SVM) classifier is trained for the IMDB binary
classification task and one for the RT binary classification task. The input to
the SVM classifier is a train/test document represented as a sparse BOW feature

13from a BOW sentiment classification perspective; for other approaches or text analysis they
might be essential
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Figure 6.7: Visualisation of word vectors from the NBOW model, as in (a),
but each word is depicted with word importance weight learned by the NBOW2
model.

vector in which each word feature is only the word weight. For NBOW2 model it
is the scalar word importance weight learned by the model. For comparison we
train separate SVM classifiers trained using the following word weight features:

• classical TF-IDF weights

• credibility adjusted TF-IDF (cred-TF-IDF) weights proposed by Kim [Kim
and Zhang, 2014]

• binary cosine-normalised weights (bnc), binary delta-smoothed-idf cosine-
normalised (b∆’c) weights used by Maas [Maas et al., 2011]

• the Naive-Bayes SVM (NBSVM) method proposed by Wang [Wang and
Manning, 2012]

TF-IDF, bnc and b∆’c word weights are task independent word weights but cred-
TF-IDF and NBSVM are built using class/task information. It must be noted
that some of these features have given state-of-the-art results for IMDB and RT
tasks.
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Features for SVM Classifier IMDB RT

bnc [Maas et al., 2011] 87.8 -
b∆’c [Maas et al., 2011] 88.2 -
TF-IDF-uni [Kim and Zhang, 2014] 88.6 77.1
cred-TF-IDF-uni [Kim and Zhang, 2014] 88.8 77.5
NBSVM-uni [Wang and Manning, 2012] 88.3 78.1
NBOW2-RAND Word Importance Weights 88.2 76.7
NBOW2 Word Importance Weights 88.3 76.3

Table 6.7: Quantitative evaluation of different word weight features, in terms
of classification accuracy obtained using an SVM classifier. (For IMDB 0.1%
corresponds to 25 test documents. For RT 1% is about 10 test sentences.)

The classification accuracies obtained by the SVM classifiers are reported in
Table 6.7. The TF-IDF, cred-TF-IDF and NBSVM methods are denoted with
a ‘-uni’ suffix in Table 6.7 following the notation used by Kim [Kim and Zhang,
2014]. For the SVM classifier on 25k full length test documents of the IMDB
task, the NBOW2 model weights are as good as NBSVM and b∆’c and better
than bnc. But they do not perform as good as the TF-IDF weights. Whereas for
the RT task with 1066 test sentences, the NBOW2 model word weights perform
closer to the TF-IDF variants.

6.6.3 NBOW2 Classification Performance

After the discussion on the word importance weights learnt by the NBOW2 model
we compare the classification results obtained with our NBOW2 model. We
compare the NBOW2 model classification accuracy to that obtained from the
NBOW model [Iyyer et al., 2015], BOW approaches based on Restricted Boltz-
mann Machines (RBM) and Support Vector Machines (SVM) and more complex
approaches based on RNN, CNN. It must be noted that the CNN and RNN based
approaches operate on rich word sequence information and have been shown to
perform better than BOW approaches on these tasks.

Table 6.8 compares the classification accuracy of the NBOW2 model on IMDB
and Rotten Tomatoes (RT) movie reviews binary classification tasks. Table 6.9
compares the classification accuracy on 20 Newsgroup topic classification. Re-
sults in Table 6.8 and Table 6.9 indicate that the NBOW2 model gives the best
accuracy among the BOW approaches. For the IMDB and the newsgroup task,
the accuracy of the NBOW2 model is closer to that of NBOW (not statistically
significant for the 20 Newsgroup). It is also evident that for RT and newsgroup
classification, the performance of NBOW2 is not far from the CNN and LSTM
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Model IMDB RT

NBOW-RAND [Iyyer et al., 2015] 88.9 76.2
NBOW [Iyyer et al., 2015] 89.0 79.0
NBOW2-RAND 88.7 78.2
NBOW2 89.1 80.5
NBSVM-uni [Wang and Manning, 2012] 88.3 78.1

NBSVM-bi [Wang and Manning, 2012] 91.2 79.4
CNN-MC [Kim, 2014] - 81.1
CNN-non-static [Kim, 2014] - 81.5
s2-bown-CNN [Johnson and Zhang, 2015] 92.3 -

SA-LSTM [Dai and Le, 2015] 92.8 83.3
LM-LSTM [Dai and Le, 2015] 92.4 78.3

Table 6.8: IMDB and Rotten Tomatoes (RT) movie reviews sentiment classi-
fication accuracy. The first group lists BOW methods; including different ini-
tialisations of NBOW and NBOW2 (this work). The next group shows the best
reported results with bi-gram BOW and CNN methods, followed by LSTM RNN.
The best method in each group is shown in bold. (For IMDB 0.1% corresponds
to 25 test documents. For RT 1% is about 10 test sentences.)

Model Accuracy (%)

NBOW-RAND 83.2
NBOW 83.2
NBOW2-RAND 82.7
NBOW2 83.4
RBM-MLP [Dauphin and Bengio, 2013] 79.5
SVM + BoW [Cardoso-Cachopo, 2007] 82.8

SA-LSTM [Dai and Le, 2015] 84.4
LM-LSTM [Dai and Le, 2015] 84.7

Table 6.9: 20 Newsgroup topic classification accuracy. First group lists BOW
methods; including different initialisations of NBOW [Iyyer et al., 2015] and
NBOW2 (this work). The second group shows best reported results with LSTM
RNN. Best method in each group is shown in bold. (0.2% corresponds to about
15 test set documents.)
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methods. For further analysis we also trained the NBOW2 model by simply using
fixed TF-IDF weights in Equation 6.5. This gave 87.6% and 79.4% accuracy for
the the IMDB and the RT task. Thus we can state that the word importance
weights of the NBOW2 model are themselves informative.

6.7 Summary of Contributions and Conclusion

In previous chapters, our evaluations of context representations learned with
LSA, LDA, CBOW and Skip-gram models showed that LSA and Skip-gram rep-
resentations outperform those from LDA and CBOW but LDA representations
are more robust to LVCSR errors. Arguing that these representations, learned in
an unsupervised manner, are not the most optimal for our task of OOV proper
name retrieval, in this chapter we proposed discriminative context representa-
tions trained with an objective to maximise the OOV proper name retrieval
performance.

Our first proposed model is a bag-of-word neural network model which learns
a document context vector by averaging the vectors of words in the document
and retrieves the relevant OOV proper names using a logistic regression. We
named it the Neural Bag-Of-Word (NBOW) model following its resemblance to
the model proposed in [Iyyer et al., 2015].

As an improvement to the NBOW model, we proposed the Neural Bag-Of-
Weighted-Word (NBOW2) model, which learns task specific word importance
weights and performs a weighted sum composition of the word vectors to obtain
the document context.

While the proposed models share architectural similarity with the CBOW
model our model training mechanism is completely different. We used a gradi-
ent descent learning algorithm with mini-batches of training samples and used
ADADELTA [Zeiler, 2012] which provides an adaptive per-dimension learning
rate for gradient descent. More importantly we proposed the use of word dropout
to simulate document context variations and LVCSR deletion errors.

From the evaluation of the proposed NBOW and NBOW2 models on our
OOV proper name retrieval task we can conclude that:

• The proposed NBOW and NBOW2 models outperform the methods based
on LSA, LDA, CBOW and Skip-gram in terms of MAP of retrieval of OOV
proper names. As compared to the best performing method (Skip-gram
Method I, SG-I), they achieve MAP improvements of 25.8%, 16% and 11%
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relative on ANTS LVCSR transcriptions, KATS LVCSR transcriptions and
reference transcriptions respectively (see Figure 6.3).

• As opposed to the LSA, CBOW and Skip-gram models, which show sub-
stantial degradation on LVCSR transcriptions compared to working with
the reference transcriptions, the proposed NBOW and NBOW2 models are
more robust to LVCSR word errors.

• While training the NBOW and NBOW2 models takes a large number
of training epochs, these can be significantly reduced with the proposed
NBOW2+ model which concatenates the average context vector of NBOW
and the weight sum context vector of NBOW2 into one model. For in-
stance, for the (equally) good performing NBOW and NBOW2 models (of
similar configurations) the number of training epochs was reduced from 405
and 648 to 273 with the NBOW2+ model (see Figure 6.4). This improve-
ment in training convergence does not affect the MAP performance. While
the number of epochs are quite large compared to those taken by CBOW
and Skip-gram models, it must be noted that the amount of computation
per epoch required by the NBOW, NBOW2 and NBOW2+ models is quite
small as also evident from their architectures and the number of parameters.

The relevant OOV proper names retrieved by the LDA and NBOW models
were further evaluated by including them as unigrams in the language model of
the second pass speech recognition. These second pass speech recognition experi-
ments showed a 7.8% relative drop in proper name error rate. On the other hand,
if all possible OOV proper names were simply added to the LVCSR vocabulary,
the proper name error rate increases by 10% relative. Further improvements are
possible by using well designed language model adaptation schemes and by using
diachronic text data from more sources.

As the NBOW and NBOW2 models gave very similar performance on our
task of retrieval of OOV proper names, we evaluated these models on standard
text classification tasks. Our experiments on standard topic and sentiment clas-
sification tasks showed that proposed NBOW2 model (a) learns meaningful word
importance weights, and (b) gives the best accuracies among the bag-of-word
approaches. The word importance weights learned by the NBOW2 model are
comparable to TF-IDF based word weights when used as features in a bag-of-
word SVM classifier.
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CHAPTER 7

Conclusion

Diachronic audio/video documents exhibit frequent variations of topics over time,
giving rise to many new proper names missing from the vocabulary and language
model of a Large Vocabulary Continuous Speech Recognition (LVCSR) system.
This leads to the Out-Of-Vocabulary (OOV) problem, where new proper names
cannot be recognised by the LVCSR system. To address this problem, we propose
to model the semantic and topic context of the OOV proper names. In our
approach, a diachronic text corpus containing new proper names was collected
from the internet and models were trained to learn the semantic/topic context of
the new proper names. Given an audio document to recognize, our models infer
the semantic/topic context of the spoken content and retrieve a list of context
relevant OOV proper names. As a result, the target OOV proper names in the
audio document can now be found within a small subset, about 1% of all possible
OOV proper names. We focused on modelling the context of the OOV proper
names and a robust retrieval of the ones relevant to the spoken content; the actual
recovery and LVCSR update being beyond the scope of this dissertation.

To exploit semantic and topic context representations to retrieve OOV proper
names, we presented two different methodologies. One measures the closeness
between the context of the LVCSR hypothesis and a global contextual repre-
sentation of each OOV proper name. Whereas the other relies on similarities
with document specific representations of OOV proper names. Chapter 4 evalu-
ated these methodologies on representations from the Latent Semantic Analysis
(LSA) model and Latent Dirichlet Allocation (LDA) based topic models. Chap-
ter 5 extended these methods to word embedding spaces from the Skip-gram and
Continuous Bag-Of-Words (CBOW) models. A thorough analysis of the different
models and methods enable us to conclude the following.

• Semantic and topic context representations outperform simple word co-
occurrence statistics based on Pointwise Mutual Information (PMI). 15-25%
improvements were seen in the MAP of retrieval of OOV proper names on
our experiment corpus.
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• The proposed document specific OOV proper name representations give sig-
nificant improvements for the different modelling approaches. The amount
of computation in this methodology increases with the number of docu-
ments in the diachronic text corpus. As compared to this, the computation
for the methodology using global representation of OOV proper names is
dependant only on the number of OOV proper names.

• While prior works show that LDA performs better than LSA on word pre-
diction task, we found that representations from LSA give better MAP
performance in our task. However LDA topic space representations are
more robust to LVCSR word errors.

• The existing Entity Topic models did not perform better than LDA. But our
proposed CorrLDA1-F model gives better MAP than LDA and other entity
topic models, when using global OOV proper name representations. The
document and word topic distributions in this model are centred around
OOV proper names and this enables it to perform better.

• Representations from word embedding spaces gave the best MAP perfor-
mance among all these (unsupervised) representations.

• Hyper-parameter exploration is very crucial to achieve a good OOV re-
trieval performance with representations from the LSA, LDA and word
embedding models.

Our analysis on selection of diachronic text corpora, in Chapter 4, shows that
for retrieval of relevant OOV proper names,

• the coverage of target OOV proper names and the total retrieval recall can
be increased by augmenting data from multiple sources.

• it is better to rely on diachronic text corpora from multiple sources than
on a single corpus from longer time span.

Chapter 6 presented models to learn discriminative context representations
which significantly outperform the previous models and methods. After the LDA
model, the proposed NBOW2+ model was the most robust to LVCSR errors.
Table 7.1 shows the improvements in performance of retrieval of relevant OOV
proper names obtained with the best retrieval methods for the different models.

To validate the achievement of our aim ‘to retrieve a list of relevant OOV
proper names’, we performed an evaluation with a second pass speech recognition
in which the top-128 retrieved OOV proper names were added to the LVCSR
vocabulary. The OOV proper name recognition results, in Chapter 6, showed
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• a 10% relative increase in the proper name error rate when all known OOV
proper names were simply added to the LVCSR vocabulary, and

• a 7.8% relative drop in the proper name error rate when the relevant OOV
proper names, retrieved by the NBOW2 model, are added simply as uni-
grams into the LVCSR language model.

The diachronic text corpus used in these experiments had a target OOV proper
name coverage of only about 40% and the gains would be higher with a larger
diachronic text corpus with more new proper names.

Table 7.1: Performance of retrieval of relevant OOV proper names obtained
with the best retrieval methods and the best model configuration for the dif-
ferent models.

PMI LDA RP LSA CBOW Skip- NBOW2+
Gram

MAP@128 for
0.247 0.399 0.462 0.485 0.508 0.506 0.588KATS LVCSR

transcriptions

Evaluation of our proposed Neural Bag-Of-Weighted-Words (NBOW2) model
on standard sentiment and topic classification tasks, in Chapter 6, showed that
it gives the best performance among the bag-of-word approaches.

7.1 Contributions

The main contributions of this dissertation are presented below.

• New methodologies to exploit semantic and topic context to retrieve OOV
proper names relevant to an audio/video document.

– One methodology is to measure the closeness between the context of
the LVCSR hypothesis and a global contextual representation of each
OOV proper name.

– The other methodology derives document specific representations of
OOV proper names, and measures the closeness between the context of
the LVCSR hypothesis and different instance specific representations
of each OOV proper name [Sheikh et al., 2016b].
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• A systematic analysis and exploration of different semantic and topic mod-
els, to model the context of OOV proper names.

– We introduced our methodologies with the Latent Dirichlet Allocation
(LDA) topic model [Sheikh et al., 2015b].

– Being a Bayesian probabilistic model, new variables can be introduced
into the LDA model. We explored this extensibility with Entity Topic
models [Sheikh et al., 2015a] and proposed a new model variant,
CorrLDA1-Flipped, which performs better than LDA and other entity
topic models, when using global OOV proper name representations.

– We evaluated the proposed methodologies on semantic representations
from Latent Semantic Analysis (LSA) and extended these to word
embedding spaces from Skip-gram & CBOW models.

• Models for learning discriminative context representations for noisy and
mismatched text input [Sheikh et al., 2016c].

– We presented methods to train bag-of-word neural network architec-
tures efficiently, leading to improved performance and robustness to
errors from automatic speech recognition.

• Neural Bag-Of-Weighted-Words (NBOW2) model [Sheikh et al., 2016d].

– Our NBOW2 model learns to assign task specific importance weights
to words/features in documents, using a simple BOW architecture.

– The proposed weighted average composition of documents can improve
learning and provide meaningful insights on the task corpora.

• A thorough evaluation and comparison of different semantic and topic space
representations for a (generalisable) retrieval task.

– While we focused on the task of retrieval of relevant OOV proper
names, our problem setup readily extends and generalises to other
document entities or meta information for instance non proper name
OOVs, tags for audio/video documents and their genre or categories.
As compared to related works in topic modelling area, the study in
this dissertation would provide important pointers for (a) selection of
appropriate models for context representations, (b) setups where out-
put/retrieval labels are large in number and have a skewed distribution
of number of training samples, and (c) dealing with erroneous speech
recognition hypothesis in similar context representation tasks.

Source code of proposed models is shared at https://github.com/mranahmd/
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7.2 Future Directions & Prospects

This dissertation has made important advances in modelling semantic and top-
ical context to improve recognition of OOV proper names in large vocabulary
speech recognition systems. We envision possible directions to enhance our pro-
posed solutions, as well to improve automatic speech recognition and audio/video
indexing systems in general.

The short term future works would be:

• Automatic Indexing of audio/video archives
Throughout the dissertation we focussed on retrieval of relevant OOV proper
names, however the proposed methodology would enable automatic index-
ing and structuring of large audio/video archives. Our proposed retrieval
methods can reduce a longer list of possible indexes and suggest context rel-
evant indexes. Proposed NBOW2 model can also be used for automatically
suggesting important keywords and indexes for the audio/video documents.

• Updating the LVCSR to recognise the retrieved Proper Names
It is necessary to develop methods to update the LVCSR language model
with the retrieved list. This is essential for non indexing applications, where
reliable transcriptions are required. Some recent works focusing on updat-
ing the LVCSR WFST [Allauzen and Riley, 2015, Ma et al., 2015a], in order
to introduce new or relevant words, would be a direction.

• Extensions to the Neural Bag-Of-Weighted-Words (NBOW2)
The proposed NBOW2 model learns task specific word importance weights
and this can be used in keyword extraction and text summarization tasks.
We foresee further extensions to learn word importance, such as (a) includ-
ing additional parameters to learn class-specific word importance, and (b)
learning document context specific word importance (as in [Sheikh et al.,
2015c]).

• Beyond document level context
In our approach, we chose to rely on the document level semantic/topic
context. Lower levels of contextual information, including local word con-
text and also phonetic information of proper names, can be exploited. The
main challenge here is to model errors in word sequences. We performed
preliminary experiments extending our bag-of-word neural network archi-
tectures to incorporate this information. The results are motivating and
indicate that OOV proper name recovery can be improved significantly,
and this approach can possibly eliminate the need for a second pass speech
recognition or keyword search.
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The long term future directions are:

• From single event to multiple events per document
Throughout this dissertation we focused on broadcast news audio with a
single news event and used a document level context derived with a bag-of-
words representation. However there are news programs in which multiple
news events are discussed one after the other. In such documents a single
global bag-of-word representation may not work. Topic segmentation tech-
niques [Tür et al., 2001, Mohri et al., 2010, Bouchekif et al., 2015] can be
applied as a pre-processing step in such scenarios.

A more interesting solution would be to design a sequential variant of our
NBOW2 model using Recurrent or Convolutional Neural Network archi-
tectures. While this might converge to the popular attention based neural
network models [Bahdanau et al., 2014], one of the challenges would be to
model the many-to-few sequence learning problem, similar to Connectionist
Temporal Classification [Graves et al., 2006].

• End-to-End and Open Vocabulary recognition systems
A recent trend in automatic speech recognition is an End-to-End neural
network pipeline [Graves and Jaitly, 2014, Hannun et al., 2014, Song and
Cai, 2015, Miao et al., 2015, Bahdanau et al., 2016]. These systems mainly
transcribe speech into a sequence of characters and use a language model
or a WFST frameworks to obtain the word sequences. Similar to hybrid
language models, even these systems would face the problem of unresolved
OOV words and proper names. Our proposed approach to model semantic
and topic context, would be useful in such systems. When incorporated in
the later stages of these systems it would help to resolve the target OOVs
and improve the word level transcriptions.

• Other contextual information
Apart from the semantic and topic context in the spoken content, there are
many other possible contextual cues which can be modelled, depending on
the kind of audio/video documents being addressed. Simple contextual cues
like document title, tags, timestamps, authors, etc. can be useful for online
adaptation of LVCSR processing audio/video files. Some existing works
have used these cues, but mostly in a ad-hoc manner. For large archives,
like Youtube and Dailymotion, it could be worth investigating structured
probabilistic and neural network models, as presented in this dissertation.

Even more interesting contextual cues are the perceptual ones, like acoustic
themes/genre [Kim et al., 2012, Doulaty et al., 2016] and visual cues from
image/video features. Such contextual cues will be more challenging to
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model, but they are more rich and they would bring new abilities to machine
cognition; for example visual attention to improve multi-modal machine
translation [Specia et al., 2016], grounding language models based on visual
cues [Fleischman and Roy, 2008].
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APPENDIX A

Dirichlet-Multinomial Distribution and
Latent Dirichlet Allocation

A.1 Posterior Inference for Dirichlet-Multinomial

Compound Distribution

Let us consider a set of outcomes X consisting of N i.i.d. draws from a multi-
nomial random variable w. Let V be the number of different possible outcomes,
for example number of sides of a dice or the number of words in the vocabulary
of corpus. If pt is the probability of each t ∈ V then

∑
pt = 1. Also if n(t) is the

count of each t in X then
∑
n(t) = N . Let us denote ~p = {pt}t=1,2,...,V , then the

likelihood of generating X can be written as:

L(X|~p) =
N∏

i=1

Pr(wi|~p)

=
V∏

t=1

pn
(t)

t

(A.1)

Following a Bayesian framework the parameters ~p can can be modelled with a
conjugate Dirichlet distribution. This is depicted in the plate diagram in Figure
A.1.

The Dirichlet prior distribution itself is given as:

Dirichlet(~p |~α) =
1

B(~α)

V∏

k=1

pαk−1
k (A.2)

in which normalising constant B(~α) is the multivariate Beta function, which can

be expressed as: B(~α) =
∏V

k=1 Γ(αk)

Γ(
∑V

k=1 αk)
where Γ(n) = (n− 1)! for positive integer.
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w

~p

~α

~p |~α = Dirichlet(~p |~α)

wi|~p = Multinomial(wi|~p)
N

Figure A.1: Plate Diagram for the Dirichlet-Multinomial Compound Distribu-
tion. (→ on variables is used to denote the multivariate chracteristics.)

The conjugate Dirichlet prior enables us to simplify the (Bayesian) posterior
inference of the parameters ~p, which can be formulated as:

~p |X, ~α =
Pr(X|~p) Pr(~p |~α)

Pr(X)

=

∏N
i=1 Pr(wi|~p) Pr(~p |~α)∫

p

∏N
i=1 Pr(wi|~p) Pr(~p |~α) d~p

(A.3)

Using Equation A.1 and A.2 we can rewrite Equation A.3 as:

~p |X, ~α =

∏V
t=1 p

n(t)

t
1

B(~α)
pαt−1
t∫

p

∏V
t=1 p

n(t)

t
1

B(~α)
pαt−1
t d~p

=

∏V
t=1 p

n(t)+αt−1

∫
p

∏V
t=1 p

n(t)+αt−1
t d~p

(A.4)

It can be seen that the numerator is of the form of a Dirichlet distribution with-
out the normalising constant, which indeed is provide by the integral in the
denominator. Thus the posterior estimate is also a Dirichlet distribution which
merges the multinomial observations with the prior pseudo-counts ~α, and can be
expressed as:

~p |X, ~α = Dirichlet(~p |~n+ ~α) (A.5)

191



Using this generative model, we can write the probability for a set of individual
outcomes as:

p(W |~α) =

∫

p

Pr(W |~p) Pr(~p |~α) d~p

=

∫

p

N∏

i=1

Pr(wi|~p) Pr(~p |~α) d~p

=

∫

p

V∏

t=1

pn
(t)

t

1

B(~α)
pαt−1
t d~p

=

∫

p

1

B(~α)

V∏

t=1

pn
(t)+αt−1
t d~p

=
B(~n+ ~α)

B(~α)

(A.6)
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A.2 Gibbs Sampling to Estimate LDA Model Parameters

Algorithm 1 : LDA model parameter estimation (Part I)

Input: words wd,i observed in each document d
Output: topic assignments zd,i; counts nd,k, nk,v

procedure Estimation of topic assignments zd,i
init()
for large number of iterations do

for d = 1 : D do
for i = 1 : Nd do

zd,i ← gibbs sampler(d, i)
end for

end for
end for
θ ← estimate theta()
φ← estimate phi()

end procedure

function init()
{nd,k} = 0, {nk,v} = 0
for d = 1 : D do

for i = 1 : Nd do
zd,i ← randomly assign from {1, 2, 3, ..., T}
nd,k++, nk,v++

end for
end for

end function

function gibbs sampler(d, i)
v = wd,i
topic = zd,i
nd,topic−−, ntopic,v−−
for k = 1 : T do

p(z = k|·) = (nd,k + α) (nk,v + β)/(∑V
v=1nk,v + β)

end for
topic = sample from p(z|·)
nd,topic++, ntopic,v++

return topic
end function
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Algorithm 2 : LDA model parameter estimation (Part II)

Input: topic assignments zd,i for each word in each document; counts nd,k, nk,v
Output: parameters θ, φ

function estimate theta()
for d = 1 : D do

for k = 1 : T do
θd,k ← (nd,k + α)/(∑T

k=1nd,k + α)
end for

end for
end function

function estimate phi()
for k = 1 : T do

for v = 1 : V do
φk,v ← (nk,v + β)/(∑V

v=1nk,v + β)
end for

end for
end function
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APPENDIX B

OOV PN Retrieval Performances

B.1 Rank-Frequency Distribution for Retrieval with Word

Embedding Methods
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Figure B.1: Rank-Frequency distribution for retrieval of OOV PNs with (a)
CBOW Method I, CBOW-MI in Figure 5.5 (b) CBOW Method II, CBOW-MII.
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Figure B.2: Rank-Frequency distribution for retrieval of OOV PNs with (a) Skip-
gram Method I, SG-MI in Figure 5.5 (b) Skip-gram Method II, SG-MII.
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