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Abstract

Advanced techniques for the low-rank approximation of matrices are crucial dimension re-
duction tools in many domains of modern scientific computing. Hierarchical approaches
like H2-matrices, in particular the Fast Multipole Method (FMM), benefit from the block
low-rank structure of certain matrices to reduce the cost of computing n-body problems to
O(n) operations instead of O(n2). In order to better deal with kernels of various kinds,
kernel independent FMM formulations have recently arisen such as polynomial interpola-
tion based FMM. However, they are hardly tractable to high dimensional tensorial kernels,
therefore we designed a new highly efficient interpolation based FMM, called the Uniform
FMM, and implemented it in the parallel library ScalFMM. The method relies on an equis-
paced interpolation grid and the Fast Fourier Transform (FFT). Performance and accuracy
were compared with the Chebyshev interpolation based FMM. Numerical experiments on
artificial benchmarks showed that the loss of accuracy induced by the interpolation scheme
was largely compensated by the FFT optimization. First of all, we extended both interpo-
lation based FMM to the computation of the isotropic elastic fields involved in Dislocation
Dynamics (DD) simulations. Second of all, we used our new FMM algorithm to accelerate
a rank-r Randomized SVD and thus efficiently generate multivariate Gaussian random vari-
ables on large heterogeneous grids in O(n) operations. Finally, we designed a new efficient
dimensionality reduction algorithm based on dense random projection in order to investigate
new ways of characterizing the biodiversity, namely from a geometric point of view.

Keywords: fast multipole method, fast Fourier transform, random projection, dislocation
dynamics, covariance matrix, multidimensional scaling.
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Résumé

Les techniques avancées pour l’approximation de rang faible des matrices sont des outils
de réduction de dimension fondamentaux pour un grand nombre de domaines du calcul
scientifique. Les approches hiérarchiques comme les matrices H2, en particulier la méthode
multipôle rapide (FMM), bénéficient de la structure de rang faible par bloc de certaines
matrices pour réduire le coût de calcul de problèmes d’interactions à n-corps en O(n) opéra-
tions au lieu de O(n2). Afin de mieux traiter des noyaux d’interaction complexes de plusieurs
natures, des formulations FMM dites ”kernel-independent” ont récemment vu le jour, telles
que les FMM basées sur l’interpolation polynomiale. Cependant elles deviennent très coû-
teuses pour les noyaux tensoriels à fortes dimensions, c’est pourquoi nous avons développé
une nouvelle formulation FMM efficace basée sur l’interpolation polynomiale, appelée Uni-
form FMM. Cette méthode a été implémentée dans la bibliothèque parallèle ScalFMM et
repose sur une grille d’interpolation régulière et la transformée de Fourier rapide (FFT).
Ses performances et sa précision ont été comparées à celles de la FMM par interpolation
de Chebyshev. Des simulations numériques sur des cas tests artificiels ont montré que la
perte de précision induite par le schéma d’interpolation était largement compensées par le
gain de performance apporté par la FFT. Dans un premier temps, nous avons étendu les
FMM basées sur grille de Chebyshev et sur grille régulière au calcul des champs élastiques
isotropes mis en jeu dans des simulations de Dynamique des Dislocations (DD). Dans un
second temps, nous avons utilisé notre nouvelle FMM pour accélérer une factorisation SVD
de rang r par projection aléatoire et ainsi permettre de générer efficacement des champs
Gaussiens aléatoires sur de grandes grilles hétérogènes. Pour finir, nous avons développé un
algorithme de réduction de dimension basé sur la projection aléatoire dense afin d’étudier
de nouvelles façons de caractériser la biodiversité, à savoir d’un point de vue géométrique.

Mots clés: méthode multipole rapide, transformé de Fourier rapide, projection aléatoire,
dynamique des dislocations, matrices de covariance, positionnement multidimensionnel.
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Résumé étendu

Introduction Les techniques avancées pour l’approximation de rang faible des matrices
sont des outils d’algèbre linéaire numérique cruciaux pour la réduction de dimension. Elles
interviennent dans un nombre important de domaines du calcul scientifique, dont certains
sont abordés dans cette thèse. Des variantes hiérarchiques comme les matrices dites H2,
en particulier la méthode multipôle rapide (FMM), peuvent en plus bénéficier de la struc-
ture de rang faible par bloc de certains opérateurs matriciels. Pendant les deux dernières
décennies, la FMM a été utilisée de manière intensive dans de nombreuses applications
allant de la simulation de problèmes à n-corps à la résolution d’équations aux dérivées par-
tielles (EDP). De manière générale, la FMM est une méthode hiérarchique d’algèbre linéaire
numérique permettant d’accélérer les calculs mettant en oeuvre des matrices noyaux (ou
matrices d’interactions), comme défini ci-après

K = {k(∥xi − xj∥2)}i,j=1...n

ou {xi}i=1...n est une distribution spatiale de points et k est une fonction noyaux (fonction
de 2 variables d’espace) suffisamment régulière mais pouvant présenter une singularité à
l’origine. La FMM permet de réduire le coût de calcul des problèmes d’interactions à n-
corps ou d’application de produits matrice-vecteur à O(n) opérations au lieu de O(n2).
D’autre part, de plus en plus d’applications nécessitent de mettre en oeuvre des noyaux
d’interaction très complexes, en particulier de natures différentes et de dimensions différentes
(potentiellement grandes). Afin de gérer ce vaste ensemble de fonctions, des formulations
FMM dites indépendantes du noyaux (ou kernel-independent) ont récemment vu le jour. Par
exemple, les formulations multipôles rapides basées sur l’interpolation polynomiale reposent
sur l’interpolation du noyau d’interaction en p + 1 points d’une grille notée {x̄a}a=1...p par
un polynôme S d’ordre p. Cette technique revient à approximer le noyau d’interaction par
la formule suivante

k(x,y) ≈
∑
a≤p

S(x, x̄a)
∑
b≤p

k(x̄a, ȳb)S(ȳb,y)

Cependant, de telles approches s’étendent difficilement à des noyaux d’interactions tensoriels
lorsque leur dimension est élevée, en particulier parce que l’approximation de rang faible est
sous optimale. Nous nous restreignons dans cette thèse au cas des noyaux non-oscillants,
mais mentionnons dans ce manuscrit les récentes avancées qui permettent d’étendre notre
approche aux noyaux oscillants. L’avantage de cette approche par rapport aux autres méth-
odes dites kernel-independent est qu’elle ne repose sur aucune hypothèse concernant la nature
du noyau, en particulier son lien éventuel avec une EDP. D’autre part, son implémentation
est relativement simple car elle repose sur des outils mathématiques relativement basiques
et peut bénéficier des outils optimisés pour l’algèbre linéaire numérique dense tels que blas
et lapack.

Fast interpolation based FMM Dans cette thèse, nous avons développé une nouvelle
formulation FMM hautement performante basée sur l’interpolation polynomiale, appelée
Uniform FMM ou ufmm, qui permet de réduire le coût de calcul de l’étape la plus coûteuse
de l’algorithme FMM, à savoir l’étape de transfert M2L. Cette technique repose simplement
sur une reformulation de l’opérateur M2L sans utiliser d’hypothèse supplémentaire sur le



noyau et sans introduire une nouvelle approximation matricielle. Cette approche a été
implémentée dans la bibliothèque ScalFMM*, où elle bénéficie des dernières évolutions en
terme de vectorisation, de paradigmes pour le calcul parallèle et de moteur d’exécutions.
Notre méthode repose sur une grille d’interpolation régulière, ce qui implique une structure
dites Toeplitz à l’opérateur M2L et permet de réduire son coût de stockage. De plus, la
conversion de l’étape M2L dans le domaine de Fourier par transformée de Fourier rapide
(FFT) permet de réduire significativement la complexité de l’étape de transfert M2L. Les
performances et la précision de l’approche ont été comparé aux méthodes existantes telles que
la FMM basée sur l’interpolation de Chebyshev et ses variantes optimisées par recompression
algébrique des opérateurs. Des simulations numériques sur des cas tests artificiels ont montré
que la perte de précision introduite par le schéma d’interpolation était largement compensé
par l’accélération FFT. D’autre part, l’empreinte mémoire de l’étape M2L a été réduite
de manière significative au prix de stocker des développements multipolaires de taille plus
importante.

Dynamique des dislocations Dans la première partie de cette thèse, nous avons étendue
les formulations FMM par interpolation à l’évaluation des champs isotropiques élastiques
mis en oeuvre dans les simulations de Dynamique des Dislocations (DD). Le modèle DD
repose sur un représentation intégrale aux frontières du champs de force élastique créé par
un ensemble de défauts linéiques en interactions élastiques, ces défauts sont aussi connus
sous le nom de dislocations. La simulation d’ensemble massifs de dislocations, par exemple
pour des discrétisations allant jusqu’à O(107) segments, permet de comprendre de manière
plus précise les lois de comportement plastique des matériaux cristallins irradiés. Entrepren-
dre de telles simulations a nécessité d’adapter les routines d’interpolation de la bibliothèque
ScalFMM aux éléments intégraux et à la nature tensorielle des interactions propres aux
dislocations. En utilisant ScalFMM comme moteur d’exécution de la FMM, nous avons
étendu les capacités du code DD parallèle OptiDis† en fournissant une évaluation multipôle
rapide performante des champs élastiques isotropiques. Notre méthode a permis de réaliser
des simulations DD avec n = O(107) segments en prenant en compte les contributions de
champs lointain de la contrainte, de la force et de l’énergie élastique, tout en maintenant
une précision de l’ordre de 10−4 et minimisant le coût de ce champs lointain. D’autre part
l’utilisation d’une approche kernel-independent a permis de facilement mettre en oeuvre des
formulations optimisées du champs d’interaction pour son évaluation multipôle rapide, et
facilitera la mise en oeuvre de noyaux anisotropiques. D’autre part, l’interpolation poly-
nomiale a permis de diminuer la dimensionnalité du noyaux et d’évaluer efficacement les
opérateurs intégraux. Enfin, nos travaux ont permis de mener à bien des simulations clés
dans le domaine des dislocations dans un temps raisonnable et avec la précision attendue,
en particulier nous avons pu simuler les mécanismes associés à l’apparition de bandes claires
dans les alliages de Zirconium (Figure 1).

Matrices de covariance Dans la seconde partie de cette thèse, nous avons mis en oeuvre
notre nouvel algorithme FMM afin de générer de manière efficace des variables aléatoires
Gaussiennes multidimensionnelles sur des grilles arbitraires et en particulier très hétérogènes.
L’approche standard consiste à appliquer une racine carrée de la matrice de covariance,
calculée à partir de la donnée d’une fonction de corrélation et d’une grille de n points, à

*La bibliothèque ScalFMM et sa documentation complète sont accessibles gratuitement à l’adresse suiv-
ante: https://gitlab.inria.fr/solverstack/ScalFMM.

†Une présentation de la bibliothèque Optidis ainsi que des vidéos de démonstration sont disponibles en
ligne à l’adresse suivante: http://optidis.gforge.inria.fr/.
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Figure 1: Appari ons de bandes claires dans les alliages de Zirconium (Zr) simulées avec Op Dis.

un bruit blanc généré sur cette grille. Cette méthode est particulièrement coûteuse, en
effet O(n3) opérations sont nécessaire pour calculer de manière exacte une racine carrée de
matrice par une factorisation de Cholesky ou SVD, de plus il est nécessaire d’assembler la
matrice pour en extraire sa racine. L’approche que nous proposons repose sur l’accélération
du calcul de la racine en combinant deux techniques avancées d’approximation de rang faible:

• une SVD de rang-r approchée par projection aléatoire, aussi connu sous le nom de
randomized SVD,

• accélérée par des multiplications de matrices approchées grâce à la FMM.

Le coût de la randomized SVD étant gouverné par 2r produits matrice-vecteur, la FMM
permet de réduire le coût de pré-calcul de la racine carré de rang faible de O(rn2) à O(r2n)
opérations sans qu’il n’y ait besoin de stocker la matrice de covariance. Premièrement,
nous avons optimisé notre implémentation ufmm afin de mieux gérer un nombre élevé de
vecteur d’entrée, à savoir r = O(103). Dans un second temps, étant donné la régularité de
certaines fonctions de corrélation utilisées dans ce type d’applications, e.g., la corrélation
Gaussienne, nous avons développé un algorithme d’approximation de rang faible par blocs
basé sur l’interpolation polynomiale, en changeant simplement le critère d’admissibilité de
la version standard de la FMM par interpolation. Notre approche hiérarchique a permis
de générer des champs aléatoires Gaussiens sur des grilles allant jusqu’à n = O(106) points
en quelques secondes. Pour finir, nous avons illustré que pour des distributions de points
très hétérogènes, le caractère hiérarchique de notre approche permettait d’augmenter ces
performances de manière significative, en effet le remplissage de l’arbre est d’autant plus
creux que la grille est hétérogène.

Positionnement multidimensionel Dans la dernière partie de la thèse, nous avons mis
au point un algorithme de réduction de dimension efficace pour étudier de nouvelles façons
de décrire la biodiversité, à savoir d’un point de vue géométrique. Notre approche est basée
sur une technique de visualisation appelée le positionnement multidimensionnel ou multidi-
mensional scaling (MDS). Cette technique permet de représenter un ensemble de n points
dans un espace euclidien à r dimensions avec r << n grâce à la seule donnée des distances
deux-à-deux entre ces points. Le coût de calcul de la MDS est en général largement dominé
par l’étape de factorisation de la matrice de similarité associée à la matrice de distance, en
effet les méthodes standards requièrent O(n3) opérations et nécessitent l’assemblage et le
stockage de la matrice. La plupart des méthodes rapides pour le positionnement multidimen-
sionnel sont basées sur des techniques de factorisation par sélection aléatoire de colonnes (ou
échantillonnage aléatoire), qui ne s’appliquent qu’à des matrices définie-positives, à savoir la
méthode de Nyström. D’autre part, une discussion sur l’influence de la présence de valeurs
propres négatives sur la distorsion du nuage a également été menée.

xiii



Notre nouvelle approche met en oeuvre un algorithme de SVD basé sur la projection
Gaussienne dense connu sous le nom de randomized SVD. La projection aléatoire a de
multiples avantages sur la sélection de colonnes aléatoire dans ce domaine bien que cette
dernière soit moins coûteuse en terme de calcul. Premièrement, la projection aléatoire
est par essence plus proche du concept de réduction de dimension, car une illustration
plus directe du le lemme de Johnson-Lindenstrauss. Ensuite, elle permet une factorisation
sous la forme SVD de manière rapide, stable et précise, en fournissant des informations
cruciales sur la structure de la matrice, à savoir une approximation de l’image et du rang
numérique. D’autre part, la randomized SVD présentent des avantages significatifs en terme
d’implémentation et de performance. La projection aléatoire a permis de faire tourner
l’algorithme de positionnement multidimensionnel sur de grands échantillons fournis par
la nouvelle génération de technologies de séquençage d’ADN dites ngs, et ce grâce à une
implémentation C++ efficace de la randomized SVD (mais aussi sur la décomposition de
Nyström) dans la bibliothèque fmr‡.

Des méthodes de visualisations basiques ont été utilisées pour représenter les nuages de
points dans un nombre relativement faible de dimensions. Nous avons pu traiter de manière
fluide et précise des échantillons jusqu’à O(105) séquences (ou reads) provenant du Lac
Léman, et ainsi illustrer deux phénomènes:

• la réunion en cluster des reads associés à des espèces identifiées

• et la forte concentration des reads dans des régions très localisées et bien séparées entre
elles.

Une étude plus avancée de ce dernier phénomène devrait permettre la définition de nouveaux
Operational Taxonomic Units (OTUs) et ainsi une caractérisation de la biodiversité sur un
critère purement géométrique.

Conclusion Nous avons montré sur deux applications l’importance de développer des al-
gorithmes efficaces qui exploitent la structure de rang faible par bloc des matrices d’interaction
et prennent en compte l’hétérogénéité du domaine. Une application en physique des matéri-
aux nous a permis de souligner la nécessité de développer des formulations peu coûteuses
et générique pour traiter des interactions très complexes. Une application en géostatistique
nous a permis d’illustrer les bénéfices d’une représentation hiérarchiques de la matrice de
covariance sur une technique efficace pour la factorisation globale des matrices (ou plus
précisément dans ce cas le calcul de racines carrés), reposant sur la projection aléatoire. En-
fin, une approche plus exploratoire nous a permis d’étendre la factorisation par projection
aléatoire aux matrices de similarités mises en oeuvre pour la classification de grands jeux
de données en biodiversité. Cette dernière a fourni des résultats prometteurs qui doivent
permettre une réduction supplémentaire du coût de calcul en exploitant plus finement la
structure des matrices.

‡La bibliothèque fmr est disponible en ligne à l’adresse suivante: https://gitlab.inria.fr/piblanch/fmr.
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Introduction

Introduction

Challenges in Scientific Computing Applied physicists, biologists, geoscientists, cli-
matologists, economists and many other kind of computational scientists keep developing
new models in order to simulate real-life phenomenon more accurately and at more realistic
scales. However, because of their complex nature, large dimensions and extreme refinement,
these models are more and more demanding in terms of computational resources. Therefore,
the challenges faced by the scientific computing community for the next few decades is huge,
in particular when it comes to tackling the curse of dimensionality induced by the use of
high dimensional models or projection spaces. For instance, new approaches developed by
researchers in mechanical engineering and materials sciences in order to better understand
the behavior of complex structures or materials involve a growing number of parameters,
which leads to very intensive computations and often requires advanced HPC solutions and,
what is called in this domain, reduced order models [128]. On the other hand, Molecular
Dynamics (MD) and Multiscale Materials Modeling (MMM) as a whole have pushed the
barriers of scientific computing by addressing arbitrary high order models for the interac-
tions at a given scale and also by coupling computations at various scales [48, 38]. A large
part of scientific computing is dedicated to the resolution of problems formulated in term
of n-body interactions or relying on the discretization of continuous operators on a mesh.
Therefore, they usually implement relatively basic matrix computations such as multiplica-
tion, inverse, square root or more evolved matrix functions. Over the last two decades many
algorithms have already been designed to reduce the complexity of these fundamentals op-
erations. A significant part of these algorithms belong to the framework of sparse Numerical
Linear Algebra (NLA) as it makes use of the sparsity of the matrix operators, but they will
not be discussed in this thesis. On the other hand, the framework of dense NLA addresses
the computation of more general dense matrices, which rapidly involve prohibitive resources
consumptions. In particular, since the cost of applying such operators is quadratic in the
problem size and factorization in low rank form as well as inversion are cubic, the challenge
in this field has been the design of linear scaling algorithm. Among the notable algorithms
that contributed most to the field of scientific computing, we would like to emphasize two
kinds of algorithms. First of all, hierarchical algorithms such as the Fast Multipole Method
(FMM) and H matrices as they allow for fast matrix multiplications as well as fast inver-
sion. Then, randomized algorithms have recently brought important contributions to the
fast factorization of matrices in standard forms that are oblivious of the matrix sparsity.

Hierarchical Algorithms The computation of n-body interactions problems lead to the
design of the very popular FMM [59], in order to apply discrete matrix operators at a linear
cost. Although the FMM terminology is highly oriented towards physical applications, it
has proven its efficiency and relevance in many other areas of computational sciences. In
particular, the FMM became very popular in the mechanical engineering community for the
resolution of boundary value problems, namely by accelerating the matrix multiplications
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involved in the iterative solvers [94, 112, 31, 88, 110]. In fact, it probably even motivated
the design of its algebraic counterpart, namely the more general framework of hierarchical
matrices, a.k.a.,H-matrices [11, 63]. Both methods benefit from the block low rank structure
of certain discrete or integral operators and rely on a data sparse representation of the
matrices. Furthermore, they involve approximations that need to be set w.r.t. to the target
application. They have not yet been integrated into generic packages such as lapack, because
their implementation need a very special care in order to achieve optimal performance.
However, the formulation and implementation of the FMM and H-matrices have become
more and more generic in order to easily adapt to any application [127, 54]. Nonetheless,
FMM algorithms still need to be improved in order to cope with the growing demand in
high dimensional models and extremely refined simulations.

Randomized Algorithms In the last few years, a new domain of NLA, called randomized
NLA, has gained popularity thanks to its potential benefits to data analysis applications,
e.g., machine learning or data mining. This sudden interest for randomized algorithms
lead to highly efficient methods for the Low-Rank Approximation (LRA) of matrices with
application to a wide range of domains [78]. Randomized LRA are random in the sense that
they involve sketching of a matrix using random procedures [123], but most importantly
because they rely on error bounds that hold with probability deriving from the theory
of the concentration of measure [3]. All randomized algorithms more or less derive from
the beautiful idea, illustrated by Johnson-Lindenstrauss lemma [68], that for any given set
of point in an Euclidean space there exists an arbitrary low-distortion embedding into a
lower dimensional Euclidean space. Despite relying on a relatively involved mathematical
background [65], the general idea of randomized LRA algorithms remain very intuitive
and their implementation straightforward. Moreover, as they rely on very basic matrix
computations [64], they can further benefit from the structure and the sparsity of the input
matrix and they parallelize well. In this thesis we will focus on dense random projection
based approaches [115] and there low-rank variants [75].

Scope of study First of all, our work aim at proposing new variants of the FMM that
are better suited for the requirements of modern scientific applications, such as Multiscale
Materials Modeling through Dislocation Dynamics (DD) simulations. Second of all, we want
to highlight the interest of using the hierarchical algorithms in a larger variety of domains,
in particular on geostatistical applications, that involve large grids and non-oscillatory in-
teraction kernels of various nature. Furthermore, we want to benefit from this framework to
illustrate the benefits of combining hierarchical algorithms with randomized LRA in terms
of performance. In this work, we focus on developing efficient sequential algorithms that
fully benefit from the recent advances in NLA and that can easily be ported on parallel
applications. Although no HPC solution is actually proposed in this thesis, all our contri-
butions are developed in commonly used and maintained open-source parallel libraries that
implement the state-of-the-art parallel paradigms.
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Introduction

Overview
The present manuscript is organized in 3 main parts, focusing on various aspects of dense
NLA for computationally demanding modern scientific applications. In particular, it de-
scribes the implementation of new efficient hierarchical algorithms, randomized algorithms
or combination of both.

Preliminary Part I introduces the various algorithms studied in this thesis and the current
state-of-the-art. In particular, Chapter 1 describes the main concepts and features of the
FMM and interpolation based variants. Then, Chapter 2 presents the framework of our first
application, namely Dislocation Dynamics. Finally, Chapter 3 introduces the fundamental
concepts of randomized NLA for the low-rank approximation of dense matrices.

n-body interactions Part II gathers our various contributions to the computation of n-
body interaction problems. First of all, Chapter 5 describes a highly efficient interpolation
based FMM that applies to any non-oscillatory kernel. Then, Chapter 6 implements this
algorithm along with other interpolation schemes for computing isotropic elastic interactions
in large dislocation networks.

Covariance matrix Part III focuses on our contributions to covariance matrix compu-
tations. In Chapter 7 we describe a linear time algorithm for performing randomized LRA
of matrices using our interpolation based FMM for performing fast matrix multiplications
with application to the generation of Gaussian Random Fields (GRFs). Finally, Chapter 8
addresses the design of a geometric view on biodiversity by mean of random projection aided
dimensionality reduction.

5



6



Part I

Scientific background & Related
works





1
The Fast Multipole Method

Contents
1.1 The Fast Multipole Method . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 The Fast Multipole Algorithm . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Computational cost and asymptotic complexity . . . . . . . . . . 14

1.2 Interpolation based FMM . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Chebyshev polynomial interpolation . . . . . . . . . . . . . . . . 17

1.2.2 Useful features of polynomial interpolation . . . . . . . . . . . . . 18

1.2.3 The bbfmm, a Chebyshev interpolation based FMM . . . . . . . . 21

1.2.4 Computational cost and memory footprint . . . . . . . . . . . . . 24

1.3 Related works on M2L-optimized FMM . . . . . . . . . . . . . . . . . . 25

1.3.1 M2L-optimization of the bbfmm . . . . . . . . . . . . . . . . . . . . 26

1.3.2 Conversion of a FMM to Fourier domain . . . . . . . . . . . . . . . 27



1.1. The Fast Multipole Method

1.1 The Fast Multipole Method
Here we recall the fundamentals of the Fast Multipole Method (FMM) and introduce generic
notations. Various tools associated with the FMM are presented along with the algorithm
itself as well as detailed asymptotic complexities.

1.1.1 Introduction
The simulation of n-body problems remains a crucial issue in a wide variety of scientific do-
mains involving elastic, acoustic, electric, gravitational interactions,…These problems usually
boil down to evaluating sums of the form

ϕ(xi) =
n∑

j=1

k(xi,xj)w(xj) (1.1)

where x ∈ Rn×d denote the points of a d-dimensional grid, i.e., the set of n bodies/particles
represented in d dimensions and w(xi), respectively ϕ(xi), denotes the density, respectively
the potential, associated to the particle i located at xi. Originally introduced by Greengard
and Rokhlin [59], the FMM provides an efficient method for approximating ϕ(xi), i.e., the
potential created by all particles on the particle i, for all i ∈ {1, . . . , n} up to a given accuracy
εFMM in O(n) operations instead of the O(n2) operations required by the naïve direct
computation of the sums. From an algebraic point of view, it is equivalent to performing
an approximate product between a kernel matrix and a vector, where the input and output
vectors are respectively w = {w(xi)}i=1,...,n and ϕ = {ϕ(xi)}i=1,...,n and the kernel matrix
reads as

K = {k(xi,xj)}i,j∈{1,...,n} .

The FMM relies on 2 main ingredients:

• the hierachical partitioning of the input grid using a binary tree (e.g., quadtree in 2D,
octree in 3D),

• the separation or decoupling of variables x and y in k(x,y), e.g., using analytic ex-
pansions of the kernel k.

If the input kernel matrix has a block low-rank structure, then hierachical partitioning of the
grid allows for efficiently building those blocks. On the other hand, analytical expansions
are used for computing the smooth block-to-block interactions in low-rank form.

1.1.2 The Fast Multipole Algorithm
The Fast Multipole Algorithm (FMA) is a 2-stage algorithm that produces approximate
potentials ϕ̄ given a set of particles x, a kernel k(·, ·) and densities w using a cluster tree, an
admissibility criterion and a low-rank approximation scheme. Let us describe the algorithm
in full details in this subsection.

10



Chapter 1. The Fast Multipole Method

Octree First of all, the FMA relies on a hierarchical partitioning of the domain using a
cluster tree structure. Since only 3D grids (or spatial grids) are considered in this thesis,
the name octree will be used to denote the tree structure. The root cluster of the tree is
the smallest cube enclosing all particles. At the level L of the octree we subdivide all parent
cells in 8 cubes of equal size to get all child cells at level L + 1. This recursive partition is
stopped at the leaf level L̄ once a suitable criterion is reached, e.g., minimum or average
number of particles per leaf cell, minimum leaf cell size. We denote C(L)x the level-L cell
containing the particle located at x. Its center and its width are denoted respectively c

(L)
x

and ω(L). In particular, ω(L)
x = ω(0)/2L with ω(0) the width of the root cluster. Finally, the

number of particles contained in C(L)x is denoted nx.

Admissibility Once the domain is partitioned into clusters we need to define admissible
cluster pairs T (L)

xy = (C(L)x , C(L)y ). At a given level L and for a fixed target cell C(L)x , the pair
T (L)
xy is uniquely defined by its transfer vector

t(L)xy =
c
(L)
x − c

(L)
y

ω(L)

If T (L)
xy is admissible, then the matrix of interactions

K(T (L)
xy ) =

{
k(xi,yj)

}
i<nx,j<ny

∈ Rnx×ny

can be approximated at a given precision using a low-rank method, i.e.,

K(T (L)
xy ) ≈ U(C(L)x )C(T (L)

xy )VT (C(L)y )

with U ∈ Rnx×r, C ∈ Rr×r, V ∈ Rny×r and r = rxy << nx, ny. A pair of clusters T (L)
xy is

said admissible if it satisfies

∥t(L)xy ∥ ≥ γ (admissibility criterion)

where γ is a prescribed parameter. While the original FMA [59] enforces γ = 2, i.e., the
well-separation of cells or strong admissibility, general H2-matrices can also enforce γ = 1,
i.e., the adjacency of cells, a.k.a., weak admissibility, e.g., the HSS structure [125, 34]. See
Bebendorf [11] for a comprehensive introduction to the concept of H-matrix.

Nesting A particular aspect of the FMM that produces a H2-format is the nesting of the
basis between levels. In fact, the basis U resp. V at a given level can be expressed in terms
of the basis at a lower level, resp. upper level, by a relation of the following kind

Uiα(C(L−1)
x ) = Uiα′(C(L)x )U ′

α′α(C(L)x )

V T
βi(C(L−1)

x ) = V ′T
ββ′(C(L)x )V T

β′i(C(L)x )
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1.1. The Fast Multipole Method

for all i = 1, . . . , nx, where U′,V′ ∈ Rr×r denote the operators used to transfer the basis,
and ultimately the expansions, from one level to another.

Neighbor and Interaction lists Let C(L)x denote a target cell at level L. Cells that form
admissible pairs with C(L)x are also said to be in farfield interactions with C(L)x , while the
other are in nearfield interactions. The neighbor list N (C(L)x ) is defined as the set of cells in
nearfield interactions with C(L)x . For γ = 2, N (C(L)x ) contains at most 3d cells for any L, i.e.,
27 in 3D. The interaction list I(C(L)x ) is defined as the set of non-empty cells C(L)y in farfield
interactions with C(L)x such that the parent of C(L)x and C(L)y are in nearfield interactions.

I(C(L)x ) =
{
C(L)y ∈ tree : T (L)

xy is admissible and C(L−1)
y ∈ N (C(L)x )

}
The latter condition ensures that all contributions are only computed once during the hier-
archical summation scheme. For γ = 2, I(C(L)x ) contains at most 6d−3d cells for any L, i.e.,
189 in 3D. Fig. 1.2 shows the neighbor list (colored in red) and interaction list (colored in
green) on a portion of a quadtree for a given target cell C(L)x . On the other hand, two brother
cells do not share the same interaction list, therefore there are 7d−3d possible configurations
of interacting pairs, i.e., 316 in 3D. Given a fictitious target cell C(L)x , we denote the set of
all possible interactions Ifull(C(L)x ).

(L̄− 1)

(L̄)

(L̄)
x yaybyc

C(L̄)
x

C(L̄−1)
x

C(L̄)
yaC(L̄)

ybC(L̄)
yc

C(L̄−1)
yc

P2P
P2M

M2M

M2L

L2L

L2PP2M

M2L

Figure 1.1: Por on of a 1D cluster tree at level L̄ and L̄− 1. The interac on lists I(C(L)
x ) (green) and neighbor listsN (C(L)

x )
(red) of a target par cle x is represented for γ = 2. The contribu on of the source par cle ya is computed analy cally as part
of the nearfied while contribu ons of yb and yc are approximated as part of the farfield at level L̄ and L̄− 1 respec vely.

Fast Multipole Algorithm The standard FMA computes approximate particle interac-
tions in a hierarchical fashion, i.e., considering multiple levels of the tree. The multi-level
fast multipole summation is presented in algorithm 1. It consists in 2 stages, namely 2 passes
through the binary tree: an upward pass followed by a downward pass. Figure 1.1 illustrates
the interaction and neighbor lists on the last two levels of a simple 1D tree structure. It also
schematically shows how the FMA transfers nearfield and farfield contributions by mean of
X2Y operations, where X and Y can be equal to
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• P, when contributions are expressed on the source or target particles contained in leaf
cells,

• M, when contributions are expressed as multipole expansions M in source cells,

• L, when contributions are expressed as local expansions L in target cells.

For a general d-dimensional grid, the FMA consists in successively performing the following
operations:

• The Upward Pass consists in performing the following operations at each level from
bottom (L = L̄) to top (L = 2)

– P2M: Compute all multipole expansions (M) at the leaf level, i.e., accumulate
contributions from source particles y to their containing leaf cell C(L̄)y in M(C(L̄)y )

Mβ(C(L̄)y ) =

ny∑
j=1

V T
βj(C(L̄)y )w(yj), ∀β ≤ r (1.2)

– M2M: If L < L̄, transfer the multipole expansions from 2d level-(L+ 1) child cells
to their level-(L) parent cell

Mβ(C(L)y ) =
∑
β′≤r

V T
ββ′(C(L)y )Mβ′(C(L+1)

y ), ∀β ≤ r (1.3)

• The Downward Pass consists in performing the following operations at each level from
top (L = 2) to bottom (L = L̄)

– M2L: Transfer multipole expansions (M) from a maximum of 6d− 3d (189 in 3D)
source cells C(L)y ∈ I(C(L)x ) into local expansions (L) of target cell C(L)x

Lα(C(L)x ) =
∑

C(L)
y ∈I(C(L)

x )

∑
β≤r

Cαβ(T (L)
xy )Mβ(C(L)y ), ∀α ≤ r (1.4)

– L2L: If L < L̄, transfer all the local expansions from level-(L) parent cells to their
2d level-(L+ 1) child cells

Lα(C(L+1)
x )+ =

∑
α′≤r

Uαα′(C(L)x )Lα′(C(L)x ), ∀α ≤ r (1.5)

– L2P: Aggregate local expansions (L) at the leaf level on the target particles x for
all target cells C(L̄)x

ϕ̄(xi) =
∑
α≤r

Uiα(C(L̄)x )Lα(C(L̄)x ) (1.6)
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– P2P: Add the nearfield contributions for each target cell C(L̄)x at the leaf level

ϕ̄(xi)+ =
∑

yj∈N (C(L̄)
x )

k(xi,yj)w(yj) (1.7)

Algorithm 1: A generic Fast Multipole Algorithm (FMA)
Input: kernel k(·, ·), densities w, positions x, order p, leaf level L̄, octree tree

Output: Potentials ϕ̄

// Upward pass
for level L = L̄, . . . , 2 do

for source cell C(L)y ∈ tree do
if L = L̄ then

// P2M: from source Particle to leaf Multipole expansion

Mβ(C
(L̄)
y ) =

ny∑
j=1

V T
βj(C

(L̄)
y )w(yj), ∀β ≤ r

else
// M2M: from 2d childs to parent
Mβ(C

(L)
y ) =

∑
β′≤r

V T
ββ′(C(L)y )Mβ′(C(L+1)

y ), ∀β ≤ r

// Downward pass
for level L = 2, . . . , L̄ do

for target cell C(L)x ∈ tree do
// M2L: from Multipole to Local expansions
for source cell C(L)y ∈ I(C(L)x ) do
Lα(C(L)x )+ =

∑
β≤p

Cαβ(T
(L)
xy )Mβ(C

(L)
y ), ∀α ≤ r

if L < L̄ then
// L2L: from parent to 2d childs
Lα(C(L+1)

x )+ =
∑
α′≤r

Uαα′(C(L)x )Lα′(C(L)x ), ∀α ≤ r

else
// L2P: from leaf Local Expansion to target Particles

ϕ̄(xi) =
∑
α≤r

Uiα(C(L̄)x )Lα(C(L̄)x )

// P2P: direct computation of the nearfield

for source cell C(L̄)y ∈ N (C(L̄)x ) do

ϕ̄(xi)+ =
ny∑
j=1

k(xi,yj)w(yj)

1.1.3 Computational cost and asymptotic complexity

Although the linear asymptotic complexity of the FMM andH2-methods (its algebraic coun-
terpart) is well-established, in this subsection we recall the computational cost of the FMA in
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Chapter 1. The Fast Multipole Method

details regardless of the expansion technique (series expansion, polynomial interpolation,…)
and regardless of the interaction kernel k. Therefore, we denote

• tk, the time required to compute k(x,y) for one couple (x,y) multiply by the density
w(y) and add to the potential ϕ(x)

• tU/V T = O(r), the time required to compute a multipole expansion for a given particle

• tC = O(r2), the time required to compute the basis of the expansion U or V T at a
given level

Consequently, the time required to transfer an expansion from child to parent or the other
way around reads as r × tU/V T = O(r2). For the sake of simplicity, we consider the case,
where all cells at all levels are non-empty and the number of particles per leaf is a constant
n0 = n/2dL̄, e.g., particles uniformly distributed in a cube.

C(L̄)
x

C(L̄−1)
x

Figure 1.2: The por on of a quadtree at level L̄ and L̄−1 used to precompute the M2L operators. The interac on list I(C(L)
x )

(green) and neighbor listN (C(L)
x ) (red) of a target par cle x are represented at the leaf level for γ = 2.

Nearfield interactions Each cell is in nearfield interaction with at most 27 cells (includ-
ing itself) in 3D. At the leaf level, nearfield interactions are actually computed in a direct
fashion, therefore the time tP2P required to compute the P2P step is equal to the time required
to compute interactions between n0 source and 27n0 target particles time the number of leaf
cells:

tP2P =
∑

C(L̄)
x ∈tree

(n0 × 27n0)tk = 2dL̄ × n0 × 27n0 × tk = n× 27n0 × tk

Hence, the P2P step has a linear complexity in n, i.e., tP2P = O(n). In order to maintain this
linear complexity, n0 has to remain constant or at least bounded as n grows. For a given
geometry, if particles are uniformly distributed (i.e., homogeneous density of particles) then
increasing the tree depth by one level every time the problem size is multiplied by 2d ensures
a constant n0.
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1.2. Interpolation based FMM

Farfield interactions On the other hand, since the size of the interaction list is bounded
for a given level and the number of cells scales like 2dL̄ = n/n0 then the cost of the farfield
is linear in n. Indeed, the asymptotic cost of each step of the FMM can be estimated as
follows:

• P2M/L2P
tP2M/L2P = (2dL̄ × n0)× tU/V T = n× tU/V T = O(n)

• M2M/L2L

tM2M/L2L = (
L̄−1∑
L=2

2dL × 2d)× (r × tU/V T ) ≤ (n/n0 × 2d)× (r × ttransfer) = O(n)

• M2L

tM2L =
L̄∑

L=2

2dL × 189× tC ≤ n/n0 × 189× tC = O(n)

Balance The fundamental idea behind FMM is to replace direct computations by low-
rank approximations while using a binary tree and interaction lists in order to ensure an
asymptotic linear complexity. The common procedure to setup an FMM algorithm is to
experimentally determine the order of the expansion in order to setup the accuracy. At this
point the cost of computing interactions between cells in farfield or nearfield interactions
is fixed but not necessarily well-balanced. Increasing the number of level will increase the
size of the farfield, i.e., the number of interactions that are computed in a low-rank fashion,
and decrease the number of nearfield interactions, i.e., direct computations. Therefore, the
optimal tree depth of any FMM algorithm is usually obtained when nearfield and farfield
computations are perfectly balanced.

1.2 Interpolation based FMM
The original FMA as introduced by Greengard and Rokhlin [59] relies on expansions of the
kernel k(r) = 1/r in terms of spherical harmonics, i.e., in the basis of Legendre polynomials
expressed in spherical coordinates. Since then many algorithms have been derived from this
one using the same terminology but implementing other strategies for the expansion of the
kernel. They are usually divided in 2 classes, whether the expansion technique depends on
the kernel or not.

• A kernel dependent approach implementing

– Spherical Harmonics expansions for k(r) = 1/r was introduced in the original
paper [59].

– Taylor series expansions for Dislocation Dynamics (elastostatics) was introduced
by Arsenlis et al. [8].
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– Hankel series expansions for frequency domain elastodynamics k(r) = eikr/r was
introduced by Chaillat et al. [31].

• Kernel independent approaches like

– the kifmm, introduced by Ying et al. [127], relies on Boundary integral represen-
tation.

– the skeletonization-based FMM proposed by Martinsson and Rokhlin [83].

– the bbfmm, introduced by Fong and Darve [54], relies on Chebyshev polynomial
interpolation.

In this thesis we focus on polynomial interpolation based variants like the bbfmm. First
of all, we present the general framework of polynomial interpolation based FMM. Then,
we discuss some useful features of polynomial interpolation. Finally, we present the bbfmm
algorithm using a polynomial basis independent terminology.

1.2.1 Chebyshev polynomial interpolation
As discussed in the thesis of Matthias Messner [86] or Michael Messner [89], the Chebyshev
polynomial interpolation is usually a good alternative to the Chebyshev series expansion.
For instance, as shown here, the computation of the coefficient cn takes the basic form of a
discrete summation over p+ 1 Chebyshev nodes instead of an integral over [−1, 1].

Basics The most simple way of constructing a polynomial approximation of order p of a
continuous function f on [−1, 1] is to interpolate f at p+1 equidistant points {x̄i}i=0,...,p by

f(x) ≈ fp(x) =

p∑
n=0

cnx
n

The interpolation procedure leads to the resolution of a system of p + 1 equations. This
method is time consuming and becomes numerically unstable as p grows. Moreover, since
the set of interpolation points is chosen equally spaced, the interpolating polynomials does
not converge uniformly on [−1, 1] (Runge phenomenon). A better choice for {x̄i}i=0,...,p is
the set of Chebyshev points, i.e., the root of the Chebyshev polynomials of the first kind
Tp+1, namely

x̄m = cos

(
2m+ 1

p+ 1

π

2

)
, for m = 0, . . . , p

The resulting interpolating polynomials converge exponentially on [−1, 1] for analytic func-
tions. Moreover, there is a quasi-best approximation result in ∞-norm, namely

∥f − fp∥∞ ≈ max
x∈[a,b]

|f(x)− fp(x)|,

that involves the Lebesgue constants, see Rivlin [103].
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1.2. Interpolation based FMM

Lebesgue constants In order to quantify the quality of an interpolation technique, i.e.,
the choice of interpolation nodes, we often use the Lebesgue constants. These quantities
grow only logarithmically with p when interpolating at Chebyshev nodes, whereas they grow
exponentially when interpolating on equispaced nodes.

Chebyshev interpolation formula Let us write the polynomial fp of order p interpo-
lating function f on Chebyshev nodes as a sum of Chebyshev polynomials of the first kind

f(x) ≈ fp(x) =

p∑
n=0

c′nTn(x) =
1

2
c0 +

p∑
n=1

cnTn(x), ∀x ∈ [−1, 1] (1.8)

then the coefficients cn read as

cn =
2

p+ 1

p∑
m=0

f(x̄m)Tn(x̄m)

As shown in [54] and recalled in [86] exponential convergence is also ensured for functions
f(·) and kernels k(·, ·) when using Chebyshev polynomial interpolation.

A generic interpolation formula Let us now re-write the interpolation formula (1.8)
in a more practical and generic form

f(x) ≈
p∑

m=0

S(p;x, x̄m)f(x̄m), ∀x ∈ [−1, 1] (1.9)

where the interpolation operator S is defined as

S(p;x, x̄m) =
1

p+ 1
+

2

p+ 1

p∑
n=1

Tn(x)Tn(x̄m) (1.10)

The interpolation formula (1.9) is generic in the sense that changing the interpolation poly-
nomials (or nodes) only affects the definition of S. In the following developments we will
always consider (1.9) when doing polynomial interpolation. Furthermore, for the sake of
clarity we will omit the interpolation order p in the definition of the order-p interpolation
operator, i.e.,

S(x, x̄m) ≡ S(p; x, x̄m)

1.2.2 Useful features of polynomial interpolation

Interpolating on an arbitrary interval In the general case, we may need to interpolate
a function f on an arbitrary [a, b]. This can be done provided the mapping function Φ defined
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as follows 

Φ : [−1, 1]→ [a, b]

x 7→ Φ(x) =
a+ b

2
+

b− a

2
x

Φ−1 : [a, b]→ [−1, 1]

x 7→ Φ−1(x) =
2x− b− a

b− a

(1.11)

The interpolation formula of order p then reads as

f(x) ≈
p∑

m=0

S(Φ−1(x), x̄m)f(Φ(x̄m)), ∀x ∈ [a, b]

, i.e.,

f(x) ≈
p∑

m=0

S(
2x− b− a

b− a
, x̄m)f(

a+ b

2
+

b− a

2
x̄m), ∀x ∈ [a, b]

The multi-index notation Let f denote a function mapping from R3 to C, a similar
interpolation formula as (1.10) can be derived for f that reads as

f(x) ≈
∑
|α|≤p

S(x, x̄α)f(x̄α), ∀x ∈ [−1, 1]3

This formula uses the third-dimensional multi-index notation defined as follows

α := (α1, α2, α3), where ∀i ∈ {1, 2, 3} , αi = 0, . . . , p.

The summation over all combinations of α1, α2 and α3 can be denoted

∑
|α|≤p

≡
p∑

α1=0

p∑
α2=0

p∑
α3=0

where
|α| := max

i≤3
(αi)

Please note that the interpolation points are represented in a tensorial way such that

x̄α := (x̄α1 , x̄α2 , x̄α3) ∈ [−1, 1]3

Using this notation, the interpolation operators can be expressed in a shorter form

S(x, x̄α) := S(x1, x̄α1)S(x2, x̄α2)S(x3, x̄α3)

which makes them easier to read and manipulate.
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1.2. Interpolation based FMM

Shifting derivatives Polynomial interpolation techniques allow for approximating the
derivatives of f at almost no extra cost by simply deriving the interpolation formula. This
feature was described and mathematically analyzed in [17, 18] and relies on a stability result,
namely a generalization of Markov’s inequality. Additionally, since derivation decreases the
order of the polynomial basis by one, this technique provides an order p − 1 polynomial
approximation of the derivative of f from the interpolation of f at p + 1 points. Let f

denote a univariate analytic function defined on [−1, 1], then for all x ∈ [−1, 1] we have

f ′(x) ≈ (fp(x))
′ (1.12)

This result does not hold in general but holds for analytic functions. Therefore, incorporating
the expression of fp given in (1.9) into the (1.12) yields the following approximation of f ′

f ′(x) ≈
p∑

m=0

∂S

∂x
(x, x̄m)f(x̄m), ∀x ∈ [−1, 1]

Hence, approximating f ′ boils down to shifting the derivative to the interpolating poly-
nomial S in (1.9). This trick is particularly convenient, since S ′ is known explicitly for
most interpolation polynomials. For a function f defined on an arbitrary interval [a, b] the
approximation reads as

f ′(x) ≈
p∑

m=0

∂Φ−1

∂x
(x)

∂S

∂x
(Φ−1(x), x̄m)f(Φ(x̄m)), ∀x ∈ [a, b] (1.13)

If we replace Φ by its definition (1.11), the approximation formula (1.13) becomes

f ′(x) ≈
p∑

m=0

2

b− a

∂S

∂x
(
2x− b− a

b− a
, x̄m)f(

a+ b

2
+

b− a

2
x̄m), ∀x ∈ [a, b]

Let f denote a function defined on a 3-dimensional interval [−1, 1]3, we have

∇xf(x) ≈
∑
|α|≤p

∇xS(x, x̄α)f(x̄α), ∀x ∈ [−1, 1]d

where the gradient is defined as

∂S

∂x1

(x, x̄α) := S ′(x1, x̄α1)S(x2, x̄α2)S(x3, x̄α3)

∂S

∂x2

(x, x̄α) := S(x1, x̄α1)S
′(x2, x̄α2)S(x3, x̄α3)

∂S

∂x3

(x, x̄α) := S(x1, x̄α1)S(x2, x̄α2)S
′(x3, x̄α3)

Applications of this approach to the FMM can be found in [86, 113]. It will often be used
in this work in order to decrease the dimensionality of the kernel during the M2L step at the
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Chapter 1. The Fast Multipole Method

cost of decreasing the accuracy of the approximation scheme.

1.2.3 The bbfmm, a Chebyshev interpolation based FMM

In this subsection, we present the interpolation formula of an arbitrary non-oscillatory kernel
function and the fast multipole summation scheme associated to it. The resulting algorithm
is an interpolation based FMM oblivious to the polynomial basis, that coïncides with the
bbfmm for the basis of Chebyshev polynomials. Most fundamental mathematical results
behind this method were covered 7 years prior the bbfmm in the framework of H2 matrices,
see [63].

Interpolating interaction kernels First of all, any smooth (and non-oscillatory) kernel
function k can be interpolated independently w.r.t. x and y, thus providing a low-rank
representation

k(x,y) ≈
∑
|α|≤p

S(x, x̄α)
∑
|β|≤p

k(x̄α, ȳβ)S(y, ȳβ) (1.14)

that holds for any x and y. Then, for any target particle x ∈ C(L)x and source particle
y ∈ C(L)y in farfield interaction, i.e., such that C(L)y ∈ I(C(L)x ), the interaction k(x,y) can be
approximated within well-controlled error bounds (see [86] for further details). As a result,
the farfield contributions to the potential created at position xi

ϕfar(xi) =
∑

yj∈I(C
(L)
xi

)

k(xi,yj)w(yj)

can be approximated at a fixed precision by the following expression

ϕfar(xi) ≈
∑
|α|≤p

S(xi, x̄α)
∑
|β|≤p

k(x̄α, ȳβ)
∑

yj∈I(C
(L)
xi

)

S(yj, ȳβ)w(yj)

using a low-rank representation of the interaction kernel, where Uiα(C(L)x ) = S(xi, x̄α),
V T
βj(C

(L)
y ) = S(yj, ȳβ) and Cαβ(T (L)

xy ) = k(x̄α, ȳβ). An important feature of polynomial
interpolation is that it only requires the evaluation of k on a fixed grid, which ensures both
kernel independence and modularity.

Compact notations For the sake of clarity we sometimes simplify notations by omitting
the dependence in the grid points, i.e., we denote

Sα(x) = S(x, x̄α), Sβ(y) = S(y, ȳβ), K̄αβ = k(x̄α, ȳβ) (1.15)

Thus, the compact interpolation formula reads as

k(x,y) ≈
∑
|α|≤p

Sα(x)
∑
|β|≤p

K̄αβSβ(y) (1.16)

21



1.2. Interpolation based FMM

Fast summation scheme The Fast Multipole summation scheme associated with poly-
nomial interpolation is presented in Algorithm 2, while Algorithm 3 defines the functions
that are specific to the original bbfmm as introduced by Fong and Darve [54]. Here we recall
the equations associated with the main steps of the algorithm.

• The Upward Pass consists in performing the following operations at each level from
bottom (L = L̄) to top (L = 2)

– P2M: Aggregate all source contributions from the particles to the multipole ex-
pansion at the leaf level

Mβ(C(L̄)y ) =

ny∑
j=1

S(yj, ȳβ)w(yj), ∀β/|β| ≤ p (1.17)

– M2M: Transfer multipole expansions child to parent cells

Mβ(C(L)y ) =
∑
|β′|≤p

S(ȳβ, ȳβ′)Mβ′(C(L+1)
y ), ∀β/|β| ≤ p (1.18)

• The Downward Pass consists in performing the following operations at each level from
top (L = 2) to bottom (L = L̄)

– M2L: Transfer all multipole expansions between all admissible cluster pairs

Lα(C(L)x )+ =
∑
|β|≤p

K̄αβMβ(C(L)y ), ∀α/|α| ≤ p (1.19)

– L2L: Transfer local expansions from parent to child cells

Lα(C(L)x ) =
∑
|α′|≤p

S(x̄α, x̄α′)Lα′(C(L−1)
x ), ∀α/|α| ≤ p (1.20)

– L2P: Aggregate all leaf-level local expansions L(C(L̄)x ) on the target particles x

ϕ̄(xi)+ =
∑
|α|≤p

S(xi, x̄α)Lα(C(L̄)x ) (1.21)

– P2P: compute and add the nearfield contributions for each target cell C(L̄)x at the
leaf level

ϕ̄(xi)+ =
∑

yj∈N (C(L̄)
xi

)

k(xi,yj)w(yj) (1.22)
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Algorithm 2: A generic interpolation based FMM
Input: kernel k(·, ·), densities w, positions x, order p, leaf level L̄, octree tree

Output: Potentials ϕ̄

// Upward pass
for level L = L̄, . . . , 2 do

for source cell C(L)y ∈ tree do
if L = L̄ then

// P2M: interpolation from source particles to leaf cell

Mβ(C
(L̄)
y ) =

ny∑
j=1

S(yj , ȳβ)w(yj), ∀β/|β| ≤ p

else
// M2M:
Mβ(C

(L)
y ) =

∑
|β′|≤p

S(ȳβ, ȳβ′)Mβ′(C(L+1)
y ), ∀β/|β| ≤ p

M̃(C(L)y )←transformM(M(C(L)y ))

// Downward pass
for level L = 2, . . . , L̄ do

for target cell C(L)x ∈ tree do
// M2L: transfer expansions between interacting cells
applyM2L(L̃(C(L)x ), C(L)x )
L(C(L)x )←transformL(L̃(C(L)x ))
if L < L̄ then

// L2L: interpolation from parent to 2d childs
Lα′(C(L+1)

x ) =
∑

|α′|≤p

S(x̄α, x̄α′)Lα′(C(L)x ), ∀α/|α| ≤ p

else
// L2P: interpolation from leaf cell to target particles

ϕ̄(xi)+ =
∑

|α|≤p

S(xi, x̄α)Lα(C(L̄)x )

// P2P: direct computation of the nearfield
for source cell C(L)y ∈ N (C(L)x ) do

ϕ̄(xi)+ =
∑

yj∈C
(L)
y

k(xi,yj)w(yj)
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Algorithm 3: bbfmm functions
Function precomputeM2L()

// For L̄− 1 levels in tree, or only 1 level for homogeneous kernels
for L = 2, . . . , L̄ do

// Assemble all possible interactions, i.e., 316.
for i-th source cell C(L)y ∈ Ifull(C

(L)
x ) do

K̄i
αβ(L) = k(x̄α, ȳβ), ∀α,β/|α|, |β| ≤ p

Function applyM2L(L̃(C(L)x ), C(L)x )
for i-th source cell C(L)y ∈ I(C(L)x ) do
L̃α(C(L)x )+ =

∑
|β|≤p

K̄i
αβ(L)M̃β(C

(L)
y ), ∀α/|α| ≤ p

Function transformM(M)
return M

Function transformL(L̃)
return L̃

1.2.4 Computational cost and memory footprint
The computational cost and memory footprint of the M2L step is much larger than the other
steps in most FMM variants, this subsection shows that this also applies to the interpolation
based FMM. In order to accurately describe the cost of interpolation based FMM such as
the bbfmm, Table 1.2 and Table 1.1 gather detailed theoretical estimations of its complexity
and memory footprint.

Interpolators During the P2M/L2P steps, part of the expansion can be precomputed, e.g.,
the polynomial basis, and stored at aO(p) cost. The rest of the expansion is computed on the
fly at a O(p3) cost. The M2M/L2L step can be slightly reworked in order to be performed in
O(p4) operations instead of the naive variant, that involves O(p6) operations and a memory
footprint of O(p3). The optimized variant only requires the interpolator S to be assembled
on a single fictitious pair of child and parent 1D interpolation grid at each level, which
results in a memory footprint of O(p2).

M2L operators In the framework of interpolation based FMM, the (p + 1)3-by-(p + 1)3

matrices K̄ =
{
K̄αβ

}
|α|,|β|≤p

are called the M2L operators. These operators are used to
transfer multipole expansions M, i.e., expansions w.r.t. the sources y, to local expansions
L, i.e., expansions w.r.t. the targets x. The M2L operators are known explicitly, therefore
they are precomputed at each level for each possible pair of interacting cells. Their number
reduces to a maximum of 316 per level in 3D thanks to the translation invariance. The O(p6)
memory footprint of these operators represents the largest part of the memory requirements.
As a result, computations involving large tree depth and p > 10 exceed the limits of standard
desktop computers in term of storage. On the other hand, the cost of applying K̄ to the
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multipole expansions scales likeO(p6). Moreover, these matrices must be applied at all levels
and a potentially large number of times (max. 189 interactions per cell per level), which
usually makes the M2L step the most computationally expensive step of any Fast Multipole
scheme.

Homogeneity In the case of a homogeneous kernel k, i.e.,

∃α ∈ R/∀(λ,x,y) ∈ R× Rd × Rd, k(λx, λy) = |λ|αk(x,y), (1.23)

the expression of K̄ at a given level can be expressed easily in term of K̄ at another level.
More precisely, if we store K̄

ref , an M2L operator at a fictitious level corresponding to a
reference cell width of ωref = 2, then a level-L M2L operator K̄(L) can be applied using K̄

ref

and a scale factor of λ(α,L) = (ωref/ωL)
α. Then, the level-L M2L operations read as

L(C(L)x )+ = λ(α,L)K̄
refM(C(L)y ) (1.24)

This optimization results in a reduction of the memory footprint by a factor of L̄ − 1 = 7

for the largest tree depth considered in this thesis, namely L̄ = 8, but also reduces the
precomputation time.

Before Computation During Computation
Step P2M/L2P M2M/L2L M2L global

homogeneous non-homogeneous

Operator T (x) S(x̄, x̄′) K̄ K̄
ref M/L

# operators 8L̄ 3× 8(L̄− 1) 316(L̄− 1) 316 ncells

# entries (p+ 1) (p+ 1)2 (p+ 1)6 (p+ 1)6 (p+ 1)3

Table 1.1: Asympto c memory footprint of each step of the bbfmm w.r.t. the interpola on order p. In order to get the exact
number of bytes one needs to mul ply by the value type size, i.e., 4 for single floats and 8 for double floats. The complexi es
of the non-homogeneous M2L and the M2M/L2L is mul plied by the number of levels, namely L̄ − 1. For the P2M/L2P the
complexi es are mul plied by the number of leaves. Finally the order-p3 expansions stored during the computa on is mul plied
by the number of non-leaf cells ncells =

∑L̄−1
L=2 2

dL = (8L̄ − 82)/7.

Step P2P P2M/L2P M2M/L2L M2L

# flops 27× 8L̄ × n2
0 n× p3 8ncells × 3p4 189(ncells + 8L̄)× p6

Table 1.2: Asympto c complexity of each step of the bbfmm w.r.t. the interpola on order p. The complexity of the M2L is
mul plied by the number of cells ncells + 8L̄ and the complexity of the M2M/L2L by the number of non-leaf cells ncells.

1.3 Related works on M2L-optimized FMM
The main contribution of this thesis, described in Section 5.1, consists in a new M2L-
optimized FMM powered by Fast Fourier Transform (FFT). While optimization of the
interpolation based M2L operators and conversion of the FMM to Fourier domain have
already been investigated independently in the past, they have never been combined. Here,
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we discuss those past developments in order to show how the method positions itself in this
context.

1.3.1 M2L-optimization of the bbfmm

As investigated in [54], the rank of the interpolation-based M2L operators is not optimal,
therefore compression of K̄ should be considered. Messner et al. [87] describes several
optimizations of the bbfmm based on compressing the M2L operators. These methods are
briefly described here and will be used as references in our numerical benchmarks (see
Section 5.4).

Compressed variant The first variant called the compressed-bbfmm and presented in
Algo 4 relies on the global compression of the set of M2L operators. The resulting factorization
of the M2L allows for shifting part of its application to the P2M/L2P step and store the
result in transformed expansions. This method usually requires a significant amount of
precomputation time and does not always provide optimal compression and application
time as opposed to the second variant.
Algorithm 4: compressed-bbfmm functions
Function precomputeM2L()

// For all levels in tree, or 1 level if kernel is homogeneous
for L = 2, . . . , L̄ do

// Assemble all possible interactions, i.e., 316.
for i-th source cell C(L)y ∈ Ifull(C

(L)
x ) do

K̄i
αβ(L) = k(x̄α, ȳβ), ∀α,β/|α|, |β| ≤ p

// Compress the entire set of interactions.
UL,

[
C1
L, . . . , C

316
L

]
, VL ←SVD

[
K̄1(L), . . . , K̄316(L)

]
Function applyM2L(L̃(C(L)x ), C(L)x )

for i-th source cell C(L)y ∈ I(C(L)x ) do
Lα(C(L)x )+ =

∑
|β|≤p

(Ci
L)αβMβ(C

(L)
y ), ∀α/|α| ≤ p

Function transformM(M)
// Apply V T

L .
M̃ = VT

LM

Function transformL(L̃)
// Apply UL.
L = ULL̃(, ∀α/|α| ≤ p

Symmetric variant For kernels exhibiting symmetries, like k(x,y) = k(y,x), the symmetric-
bbfmm presented in Algo 5 allows for significantly reducing the memory footprint of the
bbfmm while reducing both precomputation and running time. In the symmetric-bbfmm,
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the symmetries of the kernel and the interpolation grid allow for reducing the size of the in-
teraction list from |Ifull(C(L)x )| = 316 to |Isym(C(L)x )| = 16 for a given level L. Consequently,
we need to store less M2L operators and they can be applied to a set of multipole expansions
at once, however expansions have to be permuted properly before the M2L translation. On
the other hand, individual compression of the operators becomes affordable, which results
in a near-optimal low-rank compression and thus a faster application of each M2L operator.
In particular, a fully or partially pivoted Adative Cross Approximation (ACA) is used to
compress the M2L operators with or without assembling it. Then, recompression can be per-
formed using a QR Decomposition and a subsequent Singular Value Decomposition (SVD).
Although this method is kernel dependent it applies to a wide range of kernels, e.g., RBF
kernels and kernel satisfying k(x,y) = k(|x− y|) in general.
Algorithm 5: symmetric-bbfmm functions
Function precomputeM2L()

// For all levels in tree, or 1 level if kernel is homogeneous
for L = 2, . . . , L̄ do

// Assemble all possible interactions, i.e., 16

for i-th source cell C(L)y ∈ Isym(C(L)x ) do
U i
L, V

i
L ←ACA

[
K̄i(L)

]
Function applyM2L(L̃(C(L)x ), C(L)x )

for i-th source cell C(L)y ∈ I(C(L)x ) do
Lα(C(L)x )+ =

∑
|β|≤p

∑
r
(U i

L)αr(V
i
L)rβMβ(C

(L)
y ), ∀α/|α| ≤ p

1.3.2 Conversion of a FMM to Fourier domain
Principle An FFT conversion of the original Fast Multipole Algorithm was originally
proposed in a technical report by Greengard et al. [60], and later implemented and improved
by Elliott et al. [49]. For an efficient parallel implementation of this approach please refer
to Pan et al. [97]. The general idea of the original FFT conversion proposed in these
papers consists in rewriting the M2L operations in the form of a 2D linear convolution, then
converting it to a 2D circular convolution (using zero-padding) in order to finally perform
the M2L operations in Fourier domain at a lower cost using FFT.

Limits This approach differs from our method since it is based on expanding the kernel
1/r in spherical harmonics while our method relies on kernel-independent polynomial in-
terpolations. On the other hand, both variants require zero-padding for the conversion to
circular convolution. The FFT conversion of the FMA algorithm additionally suffers from
smearing effects, i.e., some entries are artificially not zeroed out due to the conversion to
circular convolution form. While our method suffers from the Runge phenomenon due to
the interpolation on an equispaced grid, the original variant suffers from various sources of
instability. The first occurs when a coefficient with strong variations in magnitude is warped
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in order to rewrite the expansion as a linear convolution. The second instability results from
a scaling problem that amplifies during the FFT operations. Stabilization techniques were
proposed in [60] and further discussed and improved in [49]. In Section 5.1, we also suggest
methods in order to defeat the Runge phenomenon that may occur in our method.
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2.1. Introduction to Dislocation Dynamics

2.1 Introduction to Dislocation Dynamics
Developing a deeper understanding of material’s behaviour is crucial for the design of new
structures. For instance, providing fine models for the plastic behaviour of complex alloys
submitted to high gradients of temperature and high levels of radiations has become a key
issue in nuclear safety.

A multiscale approach The general multiscale approach to material modeling is repre-
sented on Figure 2.1, it can be summarized in 3 main scales:

• Molecular Dynamics (MD) represents the material at the atomistic scale. MD simula-
tions allows to identify elastic laws by analyzing atomistics interactions on very large
sets of atoms.

• Dislocation Dynamics (DD) bridges the gap between the MD scale and the FEM scale
by modeling the moving plans of atoms represented in terms of line defects called dis-
locations. DD can be used to simulate either a single grain or a large number of grains.
Ultimately, DD produces empirical plasticity laws by simulating the propagation of
massive ensembles of dislocations.

• Finite Element Methods (FEM) are the well-known and broadly used methods that
aim at modeling elastoplastic or more complex media at the mesoscale. The internal
stress or strain states generated by FEM is usually used for design purposes.

Figure 2.1: Illustra ons of a material along the various steps of the mul scale modelling. The axis show the typical me and
length scales associated to the methods.

The DD model Dislocations are by definition the result of an eigenstrain state in a
medium, see Mura’s book [92]. They are usually studied in the context of lattice defects
in crystalline materials. In particular, the simulation of massive ensembles of dislocations
allows for a better understanding of the mesoscopic plasticity laws. Several models have
emerged in order to make such simulations computationally tractable to large ensembles.
In this thesis we focus on the most widely spread approach, namely Dislocation Dynamics
(DD). Here, we will only recall the fundamentals of the nodal approach to DD simulations,
please refer to Bulatov and Cai [27] for an extensive introduction to the topic or see Kubin
[72] for a more physics-oriented approach.
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Chapter 2. Dislocation Dynamics simulations

Topology Dislocations consist in closed line defects that are ubiquitous in crystalline
materials. As shown on Figure 2.2, a dislocation line (in red) is characterized by a Burger’s
vector b representing the intensity and direction of the dislocation. At any point x of the
line we also define the line tangent t(x). In the nodal approach to DD, dislocations lines are
discretized by segments and nodes. In particular, segments are treated as straight dislocation
lines with constant line tangent vectors t, and all segments discretizing a dislocation loop
share the same Burger’s vector b as the loop. Finally, the segment length denoted L is given
in Å(short for ångström, 1Å= 0.1nm= 10−10m), typically 20Å≤ L ≤ 100Å. In this thesis,
all lengths and distances involved in DD are given in Å.

b

xi

t

xj

Figure 2.2: A disloca on loop discre zed in 6 segments. All segments share the same Burger’s vector b as the loop but they
have various line tangents t depending on their orienta ons.

Dynamics and algorithm The motion of dislocations is usually initiated by an external
elastic stress state applied to the material. This stress states acts on dislocation lines along
with the internal stress state created by the dislocation network itself. The resulting forces
applied on the lines create the motion according to advanced mobility laws. While moving,
dislocations can collide, merge, annihilate or even multiply, creating a potentially significant
modification of the network’s topology. Please refer to Arnaud Etcheverry’s thesis [51] for an
extensive presentation of the algorithm and the efficient implementation in OptiDis code*.

2.2 Integral representations of the isotropic elastic fields

In this section we present expressions for the isotropic elastic stress, forces and energy fields
in integral form. The elastic stress field is first represented in integral form using Mura’s
formula. Then, we recall the definition of the elastic nodal forces acting on the extremities of
finite dislocation lines. Finally, we address the integral representation of the elastic energy.

*See OptiDis code’s home page at http://optidis.gforge.inria.fr/
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2.2. Integral representations of the isotropic elastic fields

2.2.1 Isotropic elastic stress through Mura’s formula

Mura’s formula The elastic stress field created at point x by a dislocation loop (C ′) with
Burger’s vector b′ is given in [92] by Mura’s formula as

σij(x) = Cijkl

∮
(C′)

εlnhCpqmnGkp,q(|x− x′|)b′mdx′
h, (2.1)

where Gij is the Green’s function for the infinite elastic media characterized by the Hooke’s
tensor C. We denote dx′(x′) the infinitesimal variation of x′ and t′(x′) the line tangent
vector at point x′. Thus, if dx′(x′) = |dx′| then dx′ = t′(x′)dx′(x′). Finally, ε denotes
the permutation symbol and we omit the summation over repeated indices using Einstein’s
summation convention. A demonstration of Mura’s formula can be found in Mura’s book
[92].

Isotropic elastic stress field In isotropic elasticity, the Hooke’s tensor reduces to the 2
Lamé constants (µ, ν) and the Green’s function reads as

Gij(r) =
1

8πµ
(δijr,pp −

1

2(1− ν)
r,ij), (2.2)

where r = x− x′ and r = |r|. The notation r,i denotes the partial derivatives of r w.r.t. xi,
i.e.,

r,i =
∂r

∂xi

.

Replacing the expression (2.2) of G in (2.1) yields

σij((C ′),x) =
µb′k
8π

∮
(C′)

r,mpp(εjmkdx
′
i + εimkdx

′
j) +

2

1− ν
εnmk(r,ijm − δijr,ppm)dx

′
n (2.3)

Let us write (2.3) in a slightly different form and distinguish 2 main contributions

σij((C ′),x) =
µ

8π
(σA

ij + σA
ji)((C ′),x) +

2

1− ν
(σB

ij − δijσ
B
pp)((C ′),x)) (2.4)

where σA and σB are defined as follows

σA
ij((C ′),x) =

∮
(C′)

r,mpp(x− x′)εjmkb
′
kt

′
idx

′

σB
ij ((C ′),x) =

∮
(C′)

r,ijm(x− x′)εnmkb
′
kt

′
ndx

′

Once σA(x) and σB(x) are computed one can easily deduce the expression of σ(x) using
(2.4). In the isotropic case σ is symmetric. More precisely, both terms σA

ij + σA
ji and

(σB
ij − δijσ

B
pp) are symmetric. Hence, we can always compute σij for i ≤ j and deduce the

remaining components by transposition.
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x1

x2

x3

x4

x
x′

r
t′t

L′L

Figure 2.3: Parametriza on of 2 interac ng disloca on segments, the source
[
x1x2

]
and the target segment

[
x3x4

]
.

Finite dislocation line Although (2.3) is only defined for a closed dislocation loop, not
only is it useful but also necessary to write this expression for a segment, i.e., a finite dislo-
cation line, in order to be able to sum up all contributions of a given discretized dislocation
loop. Let us consider a source segment [x1x2], i.e., extremity 1 (resp. 2) is located at point
x1 (resp. x2), characterized by a Burger’s vector b′, a line tangent t′ and a length L′. Thus,
the elastic stress created by the finite dislocation line [x1x2] reads as

σij(
[
x1x2

]
,x) =

µ

8π
(σA

ij + σA
ji)(
[
x1x2

]
,x) +

2

1− ν
(σB

ij − δijσ
B
pp)(
[
x1x2

]
,x)

where σA([x1x2] ,x) and σB([x1x2] ,x) are defined as follows

σA
ij(
[
x1x2

]
,x) =

∫ x2

x1

r,mpp(x− x′)εjmkb
′
kt

′
idx

′ =

∫ L′

0

r,mpp(x− x′)εjmkb
′
kt

′
idξ

′

σB
ij (
[
x1x2

]
,x) =

∫ x2

x1

r,ijm(x− x′)εnmkb
′
kt

′
ndx

′ =

∫ L′

0

r,ijm(x− x′)εnmkb
′
kt

′
ndξ

′

where ξ′ ∈ [0, L′] denotes the curvilinear abscissae of x′, x′ = x1 + ξ′t′ and dx′ = dξ′.

Non-singular formalism The integrals involved in (2.3) actually exist, however they
cannot be evaluated numerically using standard quadratures because of the singularity oc-
curing when r approaches 0, i.e., x′ → x. Attempts at regularizing the integrals have been
introduced in Brown [26], that gave the first definition of the core, then Peierls [98] and
Nabarro [93] developed the idea of spreading the Burger’s vector around the dislocation
line. In this thesis focus is made on the non-singular formulation introduced by Cai et al.
[28]. This method roughly consists in removing the singularity by considering a slightly
different Green’s function, i.e.,

Gns
ij (ra) =

1

8πµ
(δijra,pp −

1

2(1− ν)
ra,ij),

where the distance is shifted by a small and constant contribution, namely a parameter a

called the core width, such that
ra =

√
a2 + r2.

The newly defined Green’s function Gns is non-singular since for any (x,x′) ∈ (R3)2,
ra(x,x

′) ̸= 0. Not only does this formulation imply very little modifications in terms of
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2.2. Integral representations of the isotropic elastic fields

implementation compared to the singular variant, but it also relates to the atomistic mod-
els*. Cai et al. [28] also provides analytical expressions for the isotropic elastic stress field
and energy using this formalism. These expressions were initially implemented in OptiDis
code for the direct computation of the isotropic elastic stress, forces and energy.

2.2.2 Isotropic elastic nodal forces and energy

Sources of motion In the DD model, dislocation lines move under the effect of elastic
forces acting on nodes, that divide in 2 contributions: the internal nodal forces f = f int.

and the external nodal forces f ext.. While the former is induced by the elastic stress field
σ created by dislocations themselves, the latter is the result of an external stress field σext.

enforced on the boundary of the grain.

The Peach-Koehler force and nodal forces The local force induced by an elastic stress
state σ on any point x of a dislocation loop (b, t, L) is called the Peach-Koehler force and
it reads as

fPK(x) = (σ(x) · b)× t

On the other hand, the elastic nodal forces f i acting at the extremity i = 3, 4 of a finite
dislocation line [x3x4] characterized by (b, t, L) are obtained by integration of the Peach-
Koehler force on [x3x4], i.e.,

f i =

∫ x4

x3

fPK(x)N i(x)dx

where N i=3,4 are piecewise linear shape functions, such that N i(xj) = δij. If we denote ξ

the curvilinear abscissae of x, then x = x3 + ξt, dx = dξ and the linear shape functions
N i=3,4 read as

N4(x) =
|x− x3|

L
=

ξ

L
and N3(x) =

|x4 − x|
L

=
L− ξ

L
= 1− ξ

L
(2.5)

Hence, the force acting on node 4 and node 3 reads as

f4 =

∫ L

0

fPK(x)
ξ

L
dξ

f3 =

∫ L

0

fPK(x)dξ − f4

External forces The external stress state is usually enforced at the boundary of the grain
by a simple Dirichlet boundary condition. Therefore, it is considered constant within the
grain (far from the boundary). The external nodal forces are computed by integration of
the Peach-Koehler force associated to the external stress state σext. over the target segment

*This theory is obtained by spreading the Burger’s vector smoothly over the core of the dislocation.
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[x3x4], i.e.,

f ext.,4 =

∫ L

0

(σext. · b)× t
ξ

L
dξ =

L

2
(σext. · b)× t

Hence, external forces are computed directly at a linear cost in n.

Internal forces Similarly, the internal nodal force is computed by integration of the
Peach-Koehler force associated to the internal stress state σint. = σ over the target segment
[x3x4], i.e.,

f 4
i =

∫ L

0

εijkσjp(x)bptk
ξ

L
dξ, ∀i ∈ {1, 2, 3} (2.6)

Therefore, the non-singular contribution of σA to the internal forces can be expressed as
the following double line integral

fA,4
i =

∫ L

0

εijkbptk
ξ

L
dξ

∫ L′

0

ra,mrr(x− x′)εpmsb
′
st

′
jdξ

′, ∀i ∈ {1, 2, 3} (2.7)

and similarly for the contribution of σB. Hence, in a naive implementation, the cost of
computing the internal forces over the entire network is quadratic in n.

Elastic energy Let us consider the following expression of the isotropic elastic energy of
a dislocation network (C) taken from [28]

E((C)) = − µ

8π
(EA +

2

1− ν
(EB − EC + νED)) (2.8)

where contributions EA, EB, EC and ED are defined as

EA =

∮
(C)

bidxi

∮
(C)

ra,kkb
′
jdx

′
j , EB =

∮
(C)

bjdxk

∮
(C)

ra,ijb
′
idx

′
k

EC =

∮
(C)

bidxj

∮
(C)

ra,kkb
′
idx

′
j , ED =

∮
(C)

bjdxi

∮
(C)

ra,kkb
′
idx

′
j

This expression originates from De Wit et al. [41] along with various other forms. All
existing forms are equivalent up to an integral, that vanishes on a closed loop.

2.3 Existing Fast Multipole DD formulations

Since the interactions between dislocations are long-ranged and fast-decreasing (see the
expression of the Green’s function (2.2)), a common approach is to use the Fast Multipole
Method (FMM) in order to reduce the asymptotic cost of computing the elastic fields of
a n-segments network from a quadratic to a linear cost in n. While nearfield interactions
are evaluated directly using analytical expressions, farfield interactions are approximated in
order to be evaluated more efficiently.
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Direct evaluation of the nearfield As mentioned by Arsenlis et al. [8] the size of
the quadrature required to evaluate (2.6) up to a fixed accuracy grows dramatically as the
distance between dislocation lines decreases. Therefore, it is not recommended to evaluate
the double line integral involved in the nodal forces numerically. Instead, [8] relies on the
non-singular theory [28], i.e., σ = σns, in order to derive analytical expressions of the force
field created by a source segment and acting on a parallel or a non-parallel segment, as
well as on the segment itself. For the computation of the nearfield contributions, OptiDis
implements its own analytical expressions that are derived from the non-singular theory
[28]. For equivalent analytical expressions, please refer to [8] for the stress and force fields
(2.7), or [28] for the energy (2.8).

Approximation of the farfield Several formulations have already been considered for
the approximation of the farfield contributions to the elastic stress and energy, such as ex-
pansions in spherical harmonics [130] or Taylor expansions [120]. The well-known DD code
ParaDis developed at Lawrence Livermore National Laboratory first implemented Taylor
expansions of the isotropic elastic fields [8], and only recently incorporated polynomial in-
terpolation based on the bbfmm. The aim of our work was to implement an efficient inter-
polation scheme into OptiDis, the parallel implementation of NumoDis code (CEA Saclay),
that did not involve farfield approximation yet.
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3.1. The Randomized SVD

3.1 The Randomized SVD

3.1.1 Introduction to randomized algorithms

Randomized algorithms for the low-rank approximation of matrices, a.k.a., randomized Low-
Rank Approximation (LRA) algorithms, usually provide powerful alternatives to standard
matrix factorizations for matrices of relatively low-rank such as the Singular Value Decom-
position (SVD), QR Decomposition, Cholesky Decomposition, … Recently, they have gained
popularity in the numerical linear algebra community because they are easy to implement,
highly parallelizable and most of all they achieve very competitive performance within rea-
sonable accuracy. Moreover, these algorithms often involve very basic matrix computations
thus leaving significant room for improvement. They have drawn much attention in scien-
tific fields such as geostatistics [71, 42], machine learning [47, 121], genetics [79]. For further
references on their applications to data analysis please refer to Mahoney’s survey article
[78]. Randomized algorithms usually divide in 2 classes: random sampling- and random
projection-based algorithms. Both approaches rely on building a sketch version of the input
matrix in order to extract relevant information. The random sampling (also called column
selection) approach basically consists in selecting a subset of columns and rows, while the
random projection more generally consists in multiplying the input matrix by a sketching
matrix, that can be either sparse or dense. During this thesis we mainly focused on a
dense random projection based LRA algorithm called the Randomized SVD (rSVD), that
we present in details in the following subsection.

3.1.2 The Randomized SVD

Standard Decomposition First of all, we recall the formalism of the standard SVD. Let
C be an arbitrary m-by-n real matrix, then its SVD reads as

C = UΣVT (3.1)

where U ∈ Rm×m, resp. V ∈ Rn×n, denotes the set of m left singular vectors, resp. n right
singular vectors, associated with the singular values of C, that we denote σ(C). Finally, the
diagonal matrix Σ ∈ Rm×n contains the singular values of C, i.e.,

Σij = δijσi(C),∀i, j ∈ {1, . . . , n} .

We denote Cr the matrix obtained after truncation of the full SVD representation at rank
r, i.e.,

C ≈ Cr = UrΣrV
T
r (3.2)

where U ∈ Rm×r, resp. V ∈ Rn×r, denotes the first r left singular vectors, resp. right
singular vectors, associated with the first r singular values σ(C). According to Eckart-
Young theorem, Cr provides the best rank-r approximation of C. In particular, if the rank
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of C equals r, then C̃ = C̃r. For self-adjoint positive definite matrices C ∈ Rn×n, the SVD
boils down to

C = UΣUT , (3.3)

a.k.a. the Eigen Value Decomposition (EVD). If C has negative eigenvalues, then Σ contains
their absolute value. The full EVD can be obtained at an O(n3) cost using optimized LA-
Pack routines (e.g., Intel MKL wrapper), while the rank-r truncated EVD can be obtained
iteratively at an O(rn2) cost using the Arnoldi’s algorithm provided by ARPack.

Principle & Algorithm The rSVD is a very popular random projection-based LRA
algorithm introduced and further enhanced in a series of papers [84, 77, 124], that provides
approximate low-rank representation in SVD form at a quadratic cost. The 2 stage of the
rSVD for a symmetric input matrix C ∈ Rn×n given a prescribed numerical rank r are
summarized in Algorithm 6, they consist in:

• A randomized range approximation: Form Q ∈ Rn×r, an approximate length-r basis
for the range of C.

– Perform a Gaussian random projection, i.e., application of C to a n-by-r Gaussian
random matrix Ω

Y = CΩ (3.4)

– and a subsequent orthogonalization, e.g., a thin QR Decomposition, such that

QR = Y

with an upper triangular matrix R ∈ Rr×r and an orthogonal matrix Q ∈ Rn×r.

– Hence, Q approximate the range of C and we can get a rank-r approximation of
C in the form

C̃ = QQTCQQT (3.5)

with tight error bounds that hold with high probability.

• A standard matrix factorization: In order to provide C̃ in SVD form, i.e., C̃ = ŨΣ̃Ũ
T ,

we perform the following operations:

– We start by assembling the r-by-r matrix B such that

B = QTCQ (3.6)

– then we compute the full SVD of the small matrix B, i.e.,

B = UBΣBU
T
B. (3.7)
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– Finally, we obtain an approximate rank-r SVD of C by forming the exact rank-r
SVD of C̃, i.e.,

Ũ = QUB and Σ̃ = ΣB.

A comprehensive review of the method can be found in Halko et al. [64]. In this review, we
learn that the algorithm is fairly generic and thus easily extends to other factorizations such
as the Cholesky Decomposition or the Interpolative Decomposition. Moreover, it provides
various improvements such as iterative and pass-efficient variants. The full algorithm is
presented in Algorithm 6, please refer to [64] for the details of the fixed rank and fixed
accuracy approximate range finders.

Asymptotic complexity Since the overall cost of the rSVD is dominated by the cost of
the r matrix multiplications required in each stage, the algorithm has a O(n2×r) asymptotic
complexity in time. While standard LRA algorithms have a cubic complexity, algorithms
that produce truncated low-rank presentations (like the Arnoldi SVD or the pivoted QR
Decomposition) usually have a quadratic complexity. However, the rSVD is supposed to
have a much lower running time than Arnoldi’s variant. We verify this assumption on
numerical benchmarks in Section 7.4. Moreover, randomized algorithms leave significant
room for optimizations and parallelization.

Algorithm 6: The Randomized SVD
Input: symmetric matrix C ∈ Rn×n, rank r or accuracy ε, number of power iterations q,

oversampling parameter s

Output:
[
Ũ, Σ̃

]
approximate SVD of C

// Stage I: Approximate the range of C
if accuracy ε is prescribed then

[Q, r] = ARRF (C, n, q, s, ε) O(r × n2)

if rank r is prescribed then
[Q, ε] = RSI(C, n, q, s, r) (idem)

// Stage II: Decompose C̃ = Q(QTCQ)QT as ŨΣ̃ŨT

Build B = QTCQ ∈ Rr×r O(r × n2)
Perform SVD of B = UBΣBU

T
B O(r3)

Form Ũ = QUB and Σ̃ = ΣB O(n× r2)

Randomized range finders Algorithm 6 implements the random projection during the
randomized range approximation. It can be performed either directly using one large matrix-
to-matrix multiplication or iteratively by means of multiple small matrix-to-matrix multi-
plications. More precisely, if the rank of the matrix is known a priori, then the Randomized
Subspace Iterations (RSI) algorithm can be used to approximate the range directly given a
prescribed rank r, see Algorithm 4.4 in [64]. However, if the rank is not known in advance
and accuracy has to be monitored, the Adaptive Randomized Range Finder (ARRF) can be
used to return a near-optimal range approximation given a prescribed accuracy ε, see Algo-
rithm 4.1 in [64]. Due to their random nature these algorithms have a non-zero chance to
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fail, however error bounds such as (3.11) generally hold with high probability, e.g., at least
1 − n × 10−r for the RSI algorithm. For instance, a rank-r approximation of a symmetric
matrix of size n = 106 has a 1 chance to fail out of 1010−6 = 104.

Improving accuracy In order to improve the accuracy of the range approximation the
projection can be performed on a slightly larger subspace, namely using a n-by-(r + s)

random matrix Ω where s is called the oversampling parameter, and finally keeping the first
r columns of Q. Furthermore, the original algorithm does not apply well to matrices with
a slow decreasing (or relatively flat) spectrum, as it fails to identify the most important
singular values. A common alternative is to stretch this spectrum by using q subspace
iterations, i.e., by considering (CC∗)qC instead of C as the input matrix. The resulting C̃

approximates C within well-established and controlled error bounds, that can be expressed
in Frobenius or Spectral norm. First of all, the error of the rSVD, namely ∥C− C̃∥, cannot
be lower than the error of the best rank-r approximation of C provided by the SVD, namely
∥C−Cr∥, which translates to

∥C−Cr∥ ≤ ∥C− C̃∥ (3.8)

This deterministic lower bound is also called the baseline in [64] and it reads as

∥C−Cr∥F =

(
n∑

i=r+1

σ2
i (C)

)1/2

(3.9)

in Frobenius norm and
∥C−Cr∥S = |σr+1(C)| (3.10)

in Spectral norm. An upper bound for the average error in Frobenius norm can be expressed
in term of the baseline as

E(∥C− C̃∥F ) ≤ fF (r, s, q)∥C−Cr∥F , (3.11)

where fF is a polynomial function of the rank r that ensures tighter error bounds in aver-
age as s and q grow, see [64] for a comprehensive discussion on error bounds and explicit
expressions of fF and fS, the equivalent in Spectral norm.

3.2 Fast Randomized LRA

In this section we give a brief overview of the existing fast algorithms for performing LRA
of matrices using randomized techniques.
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3.2.1 Fast random projection

The acceleration of randomized LRA algorithms based on random projection usually relies
on the ability to apply fast matrix multiplication, hence most research works in this area
focus on exploiting the structure and the sparsity of the input matrix C and the random
matrix Ω.

Random matrix Random projection algorithms exploiting the nature of the random ma-
trix are presented by Woodruff [123] in a comprehensive survey within the general framework
of matrix sketching. While Sarlós [105] first mentioned the idea of using structured random
(sketching) matrices such as the Fast Johnson Lindenstrauss Transforms (FJLT), Ailon et
al. [5] described this algorithm in full details. The idea is based upon Achlioptas’s work
[3] that aimed at developing sparse sketching for more efficient random projection. Li et
al. [74] in turn developed a very sparse random projection-algorithm based on this work.
Woolfe et al. [124] subsequently designed an FJLT algorithm based on the Discrete Fourier
Transform, namely the Subsampled Randomized Fourier Transform (SRFT). The ability to
compute such transform in quasi-linear time allowed for reducing the computational cost
of the random projection from O(n2 × r) to O(n2 × log r). Such method can be used to
compute LRAs of matrices, in fact in Liberty et al. [77] the SRFT is used to speedup the
randomized Interpolative Decomposition introduced in Martinsson et al. [84]. However, it
is not clear yet if there exists a fixed accuracy variant for fast transform based projection
schemes. Various efficient algorithms for performing dense random projection are studied in
Liberty’s thesis [75, 76] such as the general FJLT, the SRFT, the Subsampled Randomized
Hadamard Transform (SRHT) (based on the Discrete Walsh-Hadamard Transform [19]) as
well as the Mailman algorithm for matrix multiplication. Finally, Tropp [114] provided an
improved error analysis for the SRHT.

Input matrix To our knowledge, very few articles address the acceleration of the matrix
multiplications in Gaussian random projection-based algorithm for dense structured input
matrices. In the context of low-rank approximations of matrices, Martinsson [82] describes
a way to build HSS matrices using a Fast Multipole Method (FMM)-powered Gaussian
random projection algorithm. The FMM is used there in order to accelerate the projection
stage, i.e., the product between the input matrix and the Gaussian random matrix (3.4).
Then, the factorization in HSS form is handled by the Interpolative Decomposition.

3.2.2 Fast random sampling

Block structure Random sampling techniques are particularly well-suited for applica-
tions requiring relatively low accuracy LRA. The most widely used random sampling algo-
rithm for spd matrices is the Nyström method, see [47, 57, 129]. Applications of the Nyström
method to the LRA of covariance kernel matrices can be found in Wang et al. [117]. An
improved variant of the original Nyström method introduced in Si et al. [108] exploiting the
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block structure of kernel matrices is known as the Memory Efficient Kernel Approximation
(MEKA). It relies on a pre-clustering of the data and a block-wise LRA. Very recently,
Wang et al. [118] provided an algorithm based on a similar idea and called the structured
Block Basis Factorization (BBF), that does not have stability issues and exhibits smaller
standard deviation than the MEKA.

Hybrid approaches The complementarity of random sampling and random projection
algorithms have often been highlighted in the literature [57]. Therefore, the design of an
efficient randomized algorithm often relies on the relevant combination of both approaches.
The most obvious example of fast methods for random sampling algorithm is probably the
fast approximation of matrix coherence using the randomized SVD proposed by Drineas
and Mahoney [46]. On the other hand, fast random projection techniques such as the
SRHT or the SRFT are tightly connected to improved random column selection. Finally,
[118] makes use of random sampling, random projection and clustering in order to design
an efficient O(n) factorization of a covariance kernel matrix with a low dependence on the
ambient dimension. Since it is taylored for the high dimensions involved in machine learning
applications, the BBF should perform worse than the FMM in 3D applications.
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4.1. Efficient interpolation based FMM

Many applications of scientific computing require fast methods for applying large scale
dense matricial operators, that can efficiently deal with the dimensionality of the problem.
Such methods should be fairly generic and not too intrusive, in order to allow more flexibility
and provide a better applicability to a wider range of problems and formulations. In partic-
ular, hierarchical methods such as kernel-independent Fast Multipole Method (FMM) allow
linear time computations of kernel matrices involved in computational physics, geostatis-
tics,… On the other hand, randomized low-rank approximation techniques provide a powerful
generic framework to compute approximate standard decomposition of large low-rank ma-
trices. Here, we describe the context of our research and our motivations for developing
faster FMM schemes and randomized Low-Rank Approximation (LRA) techniques.

4.1 Efficient interpolation based FMM

As mentioned in Section 1.2, the bbfmm suffers from a suboptimal low-rank representation
of the M2L operators [54], that is mainly due to the 3D interpolation procedure. Even if
M2L operators can be re-compressed [87], the algorithms are usually relatively involved and
computationally intensive. For instance, they can significantly increase the precomputa-
tion time for an arbitrary interaction kernel, as shown by our numerical benchmarks in
Section 5.4. Moreover, these optimizations are often kernel-dependent, in particular they
depend on certain features of the kernel such as its symmetry or its homogeneity. Finally,
these optimizations are based on low-rank approximations, therefore they need to be care-
fully tuned in order to control the extra error they introduce in the representation of the
kernel matrix. Consequently, there is a great need for a generic and exact method that
allows for a faster precomputation and application of the M2L with lower memory footprint,
i.e., a more optimal low-rank representation of the M2L operators. There is at least 2 op-
tions, that we could consider in order to find an interpolation scheme that produces a more
optimal rank. The first one would be to use less interpolation points but selecting them
more cleverly in order to maintain accuracy, as described in Casenave [30]. Another option
would be to use interpolation grids, that produce structured M2L operators. If those oper-
ators can be easily express in low-rank form, then they can be applied faster with a lower
memory footprint. In Chapter 5 we present a new efficient interpolation based FMM, called
the ufmm, that dramatically reduces the cost of the M2L and the overall running time of
the FMM. This method relies on an equispaced grid therefore it becomes instable for large
interpolation orders, however many real life applications only require relatively low accuracy
and can thus fully benefit from the performance of the ufmm. In the following chapters we
address 2 applications requiring fast matrix multiplications for either tensorial kernels or
scalar kernels with many right-hand-sides.
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4.2 Fast Multipole DD simulations
Although most existing Dislocation Dynamics (DD) codes implement a Fast Mutipole eval-
uation of the elastic fields, the formulations often lack efficiency and genericity. First of
all, FMM formulations based on Spherical Harmonics or Taylor expansions usually have
slow convergence, therefore they require a large number of modes to provide a relatively
low accuracy on the force field evaluation. Second of all, these methods depend heavily on
the kernel, therefore switching from one representation of the elastic field to another re-
quires a new implementation and a significant amount of work. In order to provide efficient
farfield evaluation of the isotropic elastic fields, we implemented interpolation based FMM
in OptiDis, a DD parallel code using ScalFMM as an FMM engine. However, the tensorial
nature of the interactions makes the problem inherently expensive to compute. Therefore,
the bbfmm may not perform well and we may require more efficient methods such as the
ufmm. Additional work should also be considered in order to reduce the effect of computing
tensorial farfield interactions. Finally, the main purpose of this work is not to compete with
existing DD codes but rather to propose a different alternative and extend the capabilities
of OptiDis. Moreover, performing comparisons between the state-of-the-art codes is in our
opinion neither easy nor relevant. In fact, all implementations exhibit major differences in
term of parametrization and tuning. Additionally, most existing codes are not open-source,
including OptiDis, and the few available releases, e.g., ParaDis, are far from having the
optimal performance of the development branch.

4.3 Fast Randomized LRA
The growing interest for randomized LRA methods and the lack of efficient software solution
brought us to develop an optimized code implementing fast numerical methods for random
projection based algorithms. In particular, we provided fast algorithms for 2 applications
involving the computation of large covariance matrices given as correlation kernels or com-
puted from distance matrices. Let us describe the reasons that motivated us to address such
problems in full details.

Gaussian Random Fields First of all, many scientific applications based on Monte Carlo
approaches arising from geosciences, cosmology or image processing, rely heavily on inten-
sive covariance matrix computations. A very usual issue encountered in such applications is
the generation of large ensembles of multivariate Gaussian Random Variables, a.k.a., Gaus-
sian Random Field (GRF), given an input correlation kernel. In particular, the efficient
computation of a square root of the associated covariance matrix cannot be addressed by
standard matrix decomposition algorithms. The existing alternatives usually have strong
numerical limitations and often do not benefit from the shape of the distribution of points.
Randomized LRA techniques provide convenient alternatives, since they benefit from the
genericity of the standard matrix decompositions but they simply rely on matrix multipli-
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cations. Furthermore, a hierarchical method such as the FMM allows for decreasing the
asymptotic complexity of the method from quadratic to linear in time, while avoiding the
assembly of the full matrix and benefiting from the spatial distribution of points. Finally,
the algorithm can benefit from the genericity and performance of the ufmm in order to
be applied to any kernel at a low computational cost. Hierarchical methods are becoming
more and more popular for performing faster covariance matrix computations [6, 7] but
are only rarely combined with random projection techniques, we propose to overcome this
shortcoming.

Taxonomy Our last contribution is an attempt at extending the capabilities of our library
to arbitrary matrices arising from biological applications. The classification of biological
species can be addressed using dimensionality reduction algorithms such as the Multidimen-
sional Scaling (MDS). More precisely, MDS allows for visualizing a point cloud in a low
dimensional subspace given a distance matrix, by simply computing a square root of the
associated covariance matrix, better known as similarity matrix. Since distance matrices
are computed from real-life data, namely samples of O(105) reads coming from new genera-
tion DNA sequencing, they result in large but low-resolution covariance matrices. However,
most fast MDS implementations rely on column selection based LRA, i.e., on the Nyström
method, therefore they are often restricted to spd matrices and may require a significant
amount of columns in order to represent the point cloud with sufficient accuracy. On the
other hand, a random projection based LRA such as the randomized Singular Value De-
composition (SVD) is a well-suited and competitive algorithm for the computation of such
square root, since it also gives useful extra information on the data and the structure of the
similarity matrix. In Chapter 7, we further discuss the benefits of using random projection
over common algorithms for such applications and its potential complementarity with the
state-of-the-art approaches.
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5.1. A new FFT-accelerated FMM, the Uniform FMM

In this chapter, we introduce a new computationally efficient Fast Multipole Method
(FMM) that reduces the cost of the M2L operators, namely the ufmm (Algo. 7). We also
derive a block low-rank algorithm, called the smooth-ufmm, that is optimized for globally
smooth kernels. Then, we evaluate the theoretical complexity and memory requirements of
these algorithms and compare them to the bbfmm. Finally, we evaluate the accuracy and
running times on artificial numerical benchmarks and we analyze the relative performance
of the ufmm and smooth-ufmm compared to optimized variants of the bbfmm.

5.1 A new FFT-accelerated FMM, the Uniform FMM
In the present section, we show that interpolating on equispaced grids allows for dramati-
cally decreasing the memory footprint and the computational cost of the M2L operators in
the bbfmm, namely from O(p6) to O(p3 log p) for precomputation and O(p3) for applica-
tion. First of all, we describe the basics of the method and its usual limitations. Then,
we discuss the structure of the associated M2L operators and improvements based on Fast
Fourier Transform (FFT). Finally, we present the algorithm as well as optimizations and
implementation details.

5.1.1 A new FMM based on equispaced interpolation grids

Uniform interpolation grid For the sake of clarity, let us first consider the 1D case. The
interpolation formula based on an equispaced grid still reads as (1.9) but involves different
expressions for the interpolation points x̄ and the interpolators S(x, x̄). More precisely, the
interpolation points are defined as

x̄m = −1 + 2m

p
, ∀m = 0, . . . , p (5.1)

and the polynomial interpolators, a.k.a., the Lagrange polynomials, take the following form

Sn(x) ≡ S(p;x, x̄n) =

p∏
m=0
m ̸=n

x− x̄m

x̄n − x̄m

, ∀x ∈ [−1, 1] , ∀n = 0, . . . , p. (5.2)

Addressing Runge phenomenon Interpolation schemes based on equispaced grids usu-
ally become unstable for high orders of interpolation p (Runge phenomenon), however as
described in a review by Boyd et al. [23] efficient regularization methods already exist.
They are for instance based on optimization techniques such as Tikhonov regularization
[21], series expansions such as Gegenbauer regularization [22], subsampling techniques such
overdetermined least-squares and Mock-Chebyshev interpolation [25]) or even multi-domain
approaches [24]. Moreover, these methods defeat Runge phenomenon while preserving sub-
geometric convergence. In our approach divergence is not likely to occur since we use
interpolation on multiple subdomains and in almost all cases of interest the value of p re-
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mains relatively small, e.g., p < 20. In particular, machine accuracy was reached with
our algorithm for a wide range of non-oscillatory kernels, e.g., 1/r, 1/r2, correlation ker-
nels (Section 5.4) and various isotropic elastostatic Green’s functions arising in Dislocations
Dynamics (Section 6.4.2).

5.1.2 Optimization of the M2L using the Fast Fourier Transform
Structure of the M2L operators The M2L operators associated to a uniform interpolation
grid exhibit a well-known structure that can be used to provide a more efficient fast multipole
summation scheme. Indeed, since k(·, ·) is evaluated on equispaced 1D source (respectively
target) grids denoted {x̄i}i=0...p (respectively {ȳi}i=0...p) and only depends on the distance
between grid points, i.e.,

k(xi, yj) = k(xi − yj) (5.3)

for all i, j = 0, . . . , p, then each diagonal of K̄ contains constant values (see Fig. 5.1 left).
We say that the M2L operator K̄ is a Toeplitz matrix. In the case of 2D grids the resulting
matrix is block Toeplitz, i.e., the matrix is composed of constant blocks over its diagonals
while each block is itself a Toeplitz matrix (see Fig. 5.2 left). In 3D, we introduce an extra
level of blocking meaning that the constant diagonal blocks are now block Toeplitz.

Figure 5.1: Circulant embedding (right) of a symmetric 1D Toeplitz matrix (le ), namely a Gaussian kernel matrix evaluated on
a 1D grid of 16 points. The Toeplitz matrix (blue frame) is embedded in the upper le corner of the circulant matrix (right).

Figure 5.2: Circulant embedding (right) of a symmetric 2D Toeplitz matrix (le ), namely a Gaussian kernel matrix evaluated on a
1D grid of 4-by-4 points. The small Toeplitz matrices (blue frames) are embedded in the upper le corner of the small circulant
matrices (right), while blocks are also embedded in the upper le corner (red frame) of a circulant block structure (right).

Circulant embedding The embedding of a Toeplitz matrix in a larger circulant matrix
is a very common technique that allows for efficiently applying a matrix to vector product
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as a convolution in Fourier space. Here, we briefly recall this method in the case of a 1-
dimensional M2L operator K̄ of order p. First of all, since K̄ is Toeplitz, it is fully defined
by its first row

R = (R0, . . . , Rp) ∈ Rp+1, with Ri = k(x̄0, x̄i) for i = 0, . . . , p.

and its first column

C = (C0, . . . , Cp)
t ∈ Rp+1, with Ci = k(x̄i, x̄0) for i = 0, . . . , p.

These row and column can be embedded into a row R̃ ∈ Rp̃ defined as

R̃ = (R0 = C0, . . . , Rp, Cp, . . . , C1)

with p̃ = (p + 1) + p = 2p + 1. This new row can be used to generate a circulant matrix
Ē ∈ Rp̃×p̃, that embeds K̄ in its upper left corner (see Fig. 5.1 blue frame on the right).
As a result, the application of both matrices to a vector is equivalent, if the last p columns
and rows of Ē are masked. On the other hand, if the Toeplitz matrix is symmetric, then it
is uniquely defined by its first row R and the associated the embedding is slightly smaller,
namely p̃ = p + 1 + (p − 1) = 2p. The circulant embedding of a 1D (resp. 2D) symmetric
Toeplitz matrix is illustrated on the right-hand-side of Figure 5.1 (resp. Figure 5.2).

Conversion to Fourier domain The discrete convolution theorem implies that the set
of eigenvectors of any circulant matrix Ē coïncides with the Discrete Fourier Transform
(DFT) operator, i.e.,

F =
{
p̃−1/2e−2iπmn/p̃

}
m,n=0,...,p̃

,

while the DFT of the first column of Ē yields the vector Λ containing the eigenvalues of
Ē, i.e., Λ = FR̃. Let us consider a multipole expansion M ∈ Rp+1 and a resulting local
expansion L ∈ Rp+1, such that

L = K̄M (5.4)

If M̃ ∈ Rp̃ denotes the vector obtained after padding M with p zeros, then for i = 0, . . . , p

we have

(L)i =
(
ĒM̃

)
i
=
(
F∗diag(Λ)FM̃

)
i
=
(
F∗
[
Λ⊙ FM̃

])
i
=
(
F∗
[
FR̃⊙ FM̃

])
i

Hence, the matrix to vector product (5.4) can be performed in the discrete Fourier space
in the form of an entrywise product FR̃ ⊙ FM̃. The same method applies to the 3D
case, except that the embedding has to be performed independently in each dimension. In
particular, the expansions and the row R̃ need to stored as 3D arrays and transformed by 3D
FFT. Transfers back and forth between Fourier and physical domains are done by forward
and backward FFT resulting in an asymptotic overall cost of O(p3 log p) for precomputation
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and O(p3) for application.
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5.1.3 Algorithm and efficient implementation of the ufmm

Let us show how we can efficiently adapt such feature in a Fast Multipole implementation
by describing various optimizations and then discuss the associated gains in terms of compu-
tational cost and memory footprint. The resulting algorithm, called the ufmm, is presented
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in Algo 7.
Algorithm 7: ufmm functions
Function precomputeM2L()

// Assemble M2L operators (in Fourier domain)
for source cell C(L)y ∈ I(C(L)x ) do

// Compute first row and column of 3D block Toeplitz M2L operators
Rβ = k(x̄0, ȳβ), Cβ = k(x̄β, ȳ0), ∀β/|β| ≤ p

// Embed R in the first row R̃ of a 3D block circulant matrix
for β/|β| < p̃ = 2p+ 1 do

if βd > p then
R̃β = Rβ′ with β′

d = 2p+ 1− βd and β′
i = βi for i ̸= d

else
R̃β = Cβ

// Apply 3D DFT
ˆ̃R = FR̃ with Fαβ = e

− 2iπ
p̃

(α·β), ∀(α,β)/|α|, |β| < p̃

Function applyM2L( ˆ̃L(C(L)x ), C(L)x )
// Apply M2L operators (in Fourier domain)
for source cell C(L)y ∈ I(C(L)x ) do

ˆ̃Lα(C(L)x )+ = δαβ
ˆ̃Rα

ˆ̃Mβ(C
(L)
y ), ∀α/|α| < p̃

Function transformM(M)
// Pad expansion with zeros and transfer to Fourier domain.
M̃ = 0p̃

M̃β =Mβ, ∀β/|β| ≤ p
ˆ̃M = FM̃

Function transformL( ˆ̃L)
// Transfer back to physical domain and unpad.

L̃ = F−1 ˆ̃L
Lα = L̃α, ∀α/|α| ≤ p

Fast Fourier Transforms In order to design an efficient algorithm we need to perfom as
few operations as possible during the M2L step, therefore the forward transformations of the
multipole expansions (resp. backward transformation of local expansion) are done during
the P2M/M2M (resp. L2P/L2L) steps, as in the compressed-bbfmm (Algo. 4). Furthermore,
we only precompute the first row of the circulant embedding of M2L operators and immedi-
ately transform and store them in Fourier domain. Consequently, the only operations that
remain in the M2L steps are entrywise products between complex valued vectors of size p̃.
However, in order to minimize the cost of storing larger complex valued expansions, it is
recommended to apply the backward transformations right after the entrywise product with
the M2L operators. Hence, we avoid the storage of the transformed local expansions, which
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can be crucial for large tree depths (see Section 5.3.3).

Real valued transforms In the ufmm, the cost of storing and applying the M2L operators
decreases from O(p6) to O(p3) with a slightly larger constant that can be divided by 2 using
symmetries of the DFT. In 1D, since both the expansions and the M2L operators are real
valued arrays, their 1D DFTs return conjugate-even* vectors. Consequently, only the first
entry and the first half of the complex valued entries of the conjugate-even vectors need to
be stored, i.e., p+1 complex entries for an input real valued array of size 2p+1. In multiple
dimensions, this data packing only affects the last dimensions, e.g., in 2D the output of the
2D DFT of a (2p + 1)-by-(2p + 1) real valued array is a (2p + 1)× (p + 1) complex valued
array. Hence, the storage of the M2L and the multipole expansions is roughly divided by 2.
Moreover, since the application of the M2L is a simple entrywise product, the output as a
similar format and the computational time is also divided by 2.

1D transform The block circulant embedding is a convenient approach, since it is rel-
atively easy to visualize (at least in 1D or 2D). However, there exists slightly different
embedding, that may be harder to visualize but lead to a fully circulant embedding matrix.
Let us illustrate such embedding on a simple 2D example with p = 2, where the M2L operator
is defined as

K̄ =


a b d e

c a f d

g h a b

i g c a

 . (5.5)

Then, the block and fully circulant embedding matrices are respectively defined as

Ē =



a b c d e f g h i

c a b f d e i g i

b c a e f d h i g

g h i a b c d e f

i g i c a b f d e

h i g b c a e f d

d e f g h i a b c

f d e i g i c a b

e f d h i g b c a



and Ē′ =



a b f d e i g h c

c a b f d e i g h

h c a b f d e i g

g h c a b f d e i

i g h c a b f d e

e i g h c a b f d

d e i g h c a b f

f d e i g h c a b

b f d e i g h c a



.

(5.6)
Therefore, it is possible to use the 1D FFT to compute the DFT of the M2L operators.
As a result, we can benefit from better performance of the FFT and also further reduce
the size of the transformed arrays. In fact, instead of packing in the last dimension, we

*The first value is real and the rest is complex. Moreover, the second half of the rest is the conjugate of
the first half.

57



5.2. A new block low-rank algorithm for smooth kernels, the smooth-ufmm

pack the entire complex arrays. More precisely, after transformation the M2L operators are
stored as complex valued rows of size ((2p+ 1)3 − 1)/2 + 1 = 4p3 + 6p2 + 3p+ 1 instead of
(2p + 1)× (2p + 1)× (p + 1) = 4p3 + 8p2 + 5p + 1, namely 2p(p + 1) extra entries. On the
other hand, the bbfmm stores M2L operators as real valued matrices of size (p+1)3×(p+1)3,
i.e., (p+ 1)6 real entries.

5.2 A new block low-rank algorithm for smooth ker-
nels, the smooth-ufmm

The FMM introduced by Greengard et al. [59] was originally developed for kernels with a
strong singularity at the origin, e.g., k(x,y) = 1/|x − y|. Moreover, it relied on spherical
harmonics expansions, thus requiring x and y to be sufficiently far appart. Therefore, the
algorithm was designed to always ensure well-separation (γ = 2). For globally smooth
kernels, e.g., the Gaussian kernel

k(r) = k∞(r) = e−r2/(2ℓ2), ∀ℓ ∈ R (5.7)

involved in the application of Chapter 7, we show that this condition can be relaxed in order
to define a new efficient block low-rank algorithm.

5.2.1 Extension of the interaction list

Provided the kernel is sufficiently smooth near the origin we want to consider a summation
scheme where the nearfield interactions are approximated as well. An algorithm of this na-
ture can be derived from the ufmm algorithm by simply changing the admissibility criterion
γ(L̄) at the leaf level from 2 to 0. While in the ufmm well-separation of leaves (γ(L̄) = 2)
is imposed, in the new variant coïnciding leaves form admissible pairs as well (γ(L̄) = 0).
In fact, since the kernel is sufficiently smooth at the origin, the diagonal subblocks of the
kernel matrix associated with coïncident and adjacent cell pairs are relatively low-rank.
This variant is denoted smooth-ufmm and can be seen as a block low-rank approximation
technique.

Figure 5.5 illustrates the difference between both variants in term of interaction list. In the
smooth variant the interaction list at the leaf level I(CL̄x ) includes all leaf cells whose parent
is a direct neighbor of the target parent cell CL̄−1

x and consequently N (CL̄x ) = ∅, whereas
in the standard variant the direct neighbors of the target leaf cell form the nearfield. The
interaction list of a given leaf now includes the direct neighbors and the leaf itself, which
means that all interactions will be transferred by means of M2L operations and thus no
interaction needs to be computed at the P2P step.
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(L̄)
x

ufmm
k1/2(|x− .|)

(L̄)
x

smooth-ufmm
k∞(|x− .|)

Figure 5.5: Illustra on of both ufmm variants on a 1D tree. The target par cle x (blue) lies in the leaf cell CL̄x . The interac on
list I(CLx ) at a given level L is represented in green, while the nearfieldN (CLx ) is represented in red.

5.2.2 Optimal setup

Since the P2P and the M2L do not compete anymore in the smooth-ufmm, these steps do
not have to be balanced. Consequently, the concept of level is not crucial anymore but it
remains convenient, and the actual tuning parameter becomes the width of the leaf cells.
However, we still need to minimize the cost of the M2L by using the fewest number of clusters,
i.e., the largest leaf cells. Therefore, our algorithm remains a multi-level scheme, where the
depth for the octree is used to control the width of the leaves and thus the overall cost of
the algorithm. The optimal setup for the algorithm is the lowest tree depth, that leads to a
similar accuracy as the original ufmm scheme.

5.3 Comparative cost analysis

5.3.1 ufmm versus bbfmm

The theoretical complexities of the bbfmm and ufmm algorithms are given in terms of com-
putational cost in Table 5.1 and memory footprint in Table 5.2. In the ufmm the precompu-
tation of the M2L operators requires O(p3 log p) operations (i.e., the cost of the FFT) while
their application requires only O(p3) operations (i.e., the cost of an entrywise product). All
algorithms scale linearly in n but they optimize the M2L step differently. In fact, the cost of
storing and applying M2L operators scales like O(p3) in the ufmm and O(p6) in the bbfmm,
therefore we expect significant differences in memory requirements and computational times.

5.3.2 smooth-ufmm versus ufmm

Due to the extension of the interaction list in the smooth-ufmm, the maximum number of
M2L operators to store and apply at the leaf level increases from 189 to 189 + 27 = 216 in
3D. However, as shown in the numerical benchmarks presented in Section 5.4, for a given
accuracy the optimal number of level is usually slightly lower than the level required for the
standard ufmm. Moreover, since low-rank representations replace the direct computations,
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for sufficiently large n the overall computational time of the smooth-ufmm is expected to be
lower than that of the ufmm.

bbfmm ufmm smooth-ufmm

P2P n0 × n n0 × n 0
P2M/L2P p3 × n p3 × n+ p3 log (p)× n/n0 p3 × n+ p3 log (p)× n/n0

M2M/L2L p4 p4 + p3 log (p) p4 + p3 log (p)
build M2L 316p6 316p3 log (p) 343p3 log (p)
apply M2L 189p6 189p3 216p3

Table 5.1: Asympto c complexi es of the ufmm variants compared to the bbfmm. The complexi es of the M2L and M2M/L2L
are given per level and per non empty cell, they should be mul plied by the number of non-empty cells (max. 8L) and then
summed over levels. For the P2P and P2M/L2P the complexi es are given globally. The constant n0 = n/8L̄ denotes the
average number of par cles per leaf.

Steps Operators bbfmm ufmm smooth-ufmm

M2L K̄ 316× (p+ 1)6 316× (4p3 + 6p2 + 3p+ 1) 343× (4p3 + 6p2 + 3p+ 1)
P2M/L2P M/L n/n0 × (p+ 1)3 n/n0 × (p+ 1)3 n/n0 × (p+ 1)3

P2M/L2P M̃/L̃ 0 n/n0 × (4p3 + 6p2 + 3p+ 1)× 2 n/n0 × (4p3 + 6p2 + 3p+ 1)× 2
P2P* K n0 × n n0 × n 0

Table 5.2: Memory footprint at various steps of the ufmm, smooth-ufmm and bbfmm expressed in terms of the number of entries.
We obtain the actual number of Bytes by mul plying the number of entries by the size of the value type, i.e., 8Bytes for real
valued entries in double precision arithme cs. The constant n0 = n/8L̄ denotes the average number of par cles per leaf in a
uniform distribu on of par cles.

5.3.3 Theoretical memory requirements

Although the M2L step is usually the most computationally intensive step of the FMM,
because it involves a total of 2dL̄ × (6d − 3d) multipole to local transfers of expansions,
where d is the ambiant dimension, only L̄ × (7d − 3d) M2L operators have to be stored.
On the other hand, the storage of the 2dL̄ expansions is usually the limitant factor in
term of memory consumption. Figure 5.6 representS the memory footprint of the ufmm
and the bbfmm w.r.t. the interpolation order p for growing values of L̄ = 3, 5, 7. First
of all, for large tree depths, e.g., L̄ ≥ 7, the amount of memory required for the storage
of the expansions in both algorithms dominates the overall cost. Most importantly, it
even exceeds the ressource available on standard computers for intermediate interpolation
orders, namely approximately 50GB for the ufmm and 100GB for the bbfmm with p = 7. In
such regime, usually associated with distributions of several million particles, a distributed
memory version of the algorithm is usually prefered. For lower tree depths, e.g., L̄ ≤ 5,
the M2L of the bbfmm dominates the overall cost due to its O(p6) complexity. On the other
hand, in the ufmm the storage of the expansions rapidely dominates the overall memory
footprint, namely for L̄ ≥ 5.

*The P2P operators are precomputed only if matrix to matrix products are considered (Section 7.2). In
that case, the smooth-ufmm requires a significantly lower amount of memory than the ufmm.
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Figure 5.6: Theore cal memory requirements of the interpola on based FMM in the worst case scenario, namely no empty cell.
These values should be qualified by the fact that for heterogeneous geometries the number of non-empty cells can be very low.
For instance, as shown on Figure B.2 for n = 106 par cles, the memory required for storing the expansions at level L̄ = 7
could be divided by 100 for a unit sphere and 1000 for a prolate sphere.

5.4 Numerical benchmarks
In order to compare the efficiency of our new algorithms to existing variants of the bbfmm,
we will consider artificial numerical benchmarks. The distributions of particles considered
are presented in Section 5.4.1, they involve different filling densities in the octree. Our
comparative analysis is organized as follows:

• We first discuss statistics on the filling of the octree for various geometries.

• Then, we compare the relative accuracy and numerical performance of the bbfmm and
the ufmm using the Laplacian kernel.

• Finally, we compare the relative accuracy and numerical performance of the ufmm and
the smooth-ufmm using a smooth kernel, namely the Gaussian kernel.

5.4.1 Distributions of points and kernels of interaction.
Distributions Let us consider 3 different geometries for the distribution of particles:

• The unitCube is a volumic distribution, in which the particles are distributed uniformly
inside a 2× 2× 2 cube.

• The unitSphere is a surfacic distribution, in which the particles are distributed uni-
formly on a unit sphere.
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• The prolateSphere is a surfacic distribution, in which the particles are distributed
uniformly on a 0.2× 0.2× 2 ellipsoid, a.k.a. prolate sphere with ratio 10.

Figure 5.7: Uniform distribu on of par cles in the unit cube (le ), on the unit sphere (center) and on a prolate sphere (right)
with propor ons (0.1, 0.1, 1.0).

Figure 5.7 shows examples of such particle distributions for n = 105 particles. All theses
geometries share the same bounding box, i.e., the 2× 2× 2 box, however they fill the octree
differently. More precisely, the unitCube has a fully populated octree, while the unitSphere
and the prolateSphere have respectively an intermediate and a low number of non-empty
cells. For advanced statistics on the filling of the octree and on the number of nearfield and
farfield operators please refer to Appendix B.

Kernels In our numerical benchmarks, we will consider various kinds of interactions char-
acterized by the different kernels represented on Figure 5.8. First of all, we will validate the
accuracy and analyze the performance of our algorithms on a standard homogeneous kernel,
namely the Laplacian kernel

k(r) = 1/r, (5.8)

and then on a smooth and non-homogeneous kernel, namely the Gaussian kernel

k(r) = e−
r2

2ℓ2 , with ℓ ∈ R. (5.9)

Tensorial variants of the Laplacian will be used in Chapter 6, while variants of the Gaussian
will be used in Chapter 7. Before starting any performance analysis, the accuracy of the
algorithm should always be validated by plotting the error εfmm on the potential w.r.t.
interpolation order p.

5.4.2 bbfmm vs. ufmm on the Laplacian kernel
In this subsection we discuss the relative accuracy and sequential performance of the ufmm
and optimized variants of the bbfmm using the standard Laplacian kernel (5.8).

Accuracy The convergence of the ufmm and smooth-ufmm is represented on Figure 5.9
(left) in term of the relative 2-norm of the error on the potential. As expected all variants of
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Figure 5.8: Shape of the kernel w.r.t. the distance r if the width of the root bounding box equals 2. The limit between nearfield
and farfield is represented for L̄ = 2. Le : Nega ve powers of r and some regularized variants. Right: Exponen al and
Gaussian kernels represent the extreme cases of smoothness in the family of Matérn func ons.

the bbfmm have the same accuracy and convergence rate. Moreover, the ufmm is slightly less
accurate than the bbfmm due to the near minimax property of the Chebyshev interpolation.
Nevertheless, we will show later on that it still performs better for a fixed accuracy.

Sequential performance The relative computational costs of the bbfmm, with or without
compression of the M2L operators (see [87]), and the ufmm are represented on Fig. 5.10
using a fixed number of particles n = 20.000 distributed in the unit cube with L̄ = 3 (i.e.,
n0 ≈ 30). The ufmm outperforms the unoptimized bbfmm in terms of both computational
time and memory requirements. Let us recall that the symmetric-bbfmm is taylored for
symmetric kernels allowing for a massive reduction of the interaction list and that it involves
individual compression of the M2L operators, while the compressed-bbfmm only involves a
global compression of the M2L operators. As shown on the graphs, the ufmm and the
symmetric-bbfmm have similar performance though the ufmm applies to any kernel. More
precisely, the ufmm is faster in term of computational time but requires a little more memory
than the symmetric-bbfmm.

Detailled timings Figure 5.11 shows the detailled running times of each step of the
ufmm and the symmetric-bbfmm for fixed tree depth L̄ = 3 w.r.t. the interpolation order.
Consequently, we observe how the cost of the farfield as the accuracy grows, while the cost
of the nearfield is fixed. The graphs also illustrate how reducing the cost of the M2L affects
the overall application time in the ufmm. Finally, it shows that the other steps (P2M/L2P
and M2M/L2L) are more expensive in the ufmm than in the bbfmm if the interpolation order
is large, namely p > 7, but cheaper in the opposite case.
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Performance at fixed accuracy For kernels such as the Laplacian, we may need to
increase the interpolation order of the ufmm by 1 in order to get the same accuracy as the
bbfmm (Figure 5.9), in particular for accuracy below 10−8, i.e., p ≥ 7. In any cases the
ufmm beats all bbfmm variants by a factor of at least 2 (for p = 7), that grows with the
interpolation order.

5.4.3 ufmm vs. smooth-ufmm on Gaussian kernels

In this subsection we discuss the relative accuracy and sequential performance of the ufmm
and the smooth-ufmm using Gaussian kernels (5.9) with length scales ℓ ∈ {0.5, 1.0}.

Accuracy The convergence of the ufmm and smooth-ufmm is represented on Figure 5.9
(right) in term of the relative 2-norm of the error on the potential. In particular, we observe
that the larger ℓ the faster the convergence and the lower the error, which directly results
from the smoothness of the function when ℓ grows. For large values of p, this fast convergence
allows us to witness another phenomenon. In fact, for any ℓ once the machine accuracy is
reached the interpolation scheme may become instable. However, most application require
precisions that are far lower than the machine accuracy.

Performance at fixed size The relative computational costs of the ufmm and the smooth-
ufmm are represented on Figure 5.12 using a fixed number of particles n = 20.000 and L̄ = 3,
i.e., n0 ≈ 30. First of all, the extra memory required for storing the extra M2L operators of
the smooth-ufmm is negligible compared to the memory required by the storage of the M2L
operators of the ufmm. Second of all, the application time grows faster for the ufmm than
for the smooth-ufmm as the interpolation order grows. As a result, the application time is
10 times lower for the smooth-ufmm at p = 2, while it is equal to the application time of the
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ufmm for p = 9. Finally, in this configuration, the ufmm and smooth-ufmm exhibit rather
similar performance, which may not be the case in practice. In fact, in practice the optimal
tree depth may be lower for the smooth-ufmm, therefore its computational cost may be far
lower.
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par cles inside the unit cube with L̄ = 3.

Performance at fixed accuracy In order to improve our comparison, we analyze the
relative performance of the ufmm and the smooth-ufmm for a given accuracy of about 10−5.
Figure 7.10 shows the application times for 3 different geometries for n up to 106 particles.
The smooth-ufmm unsurprisingly has better performance than the ufmm, since the cost
of approximating the nearfield becomes cheaper as n increases. Furthermore, it beats the
ufmm by a factor of 10 for sufficiently large n, while the ufmm only beats the bbfmm by a
factor of 2.
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Figure 5.13: Running me (s) w.r.t. the number of par cles n for a target accuracy of about 10−5. In order to compare all
algorithms we use a smooth kernel, namely the Gaussian kernel with ℓ = 0.5. Par cles are distributed uniformly in the unit
cube (le ), on the unit sphere (center) and on the prolate sphere (right).

5.5 Conclusion
We introduced a new interpolation based FMM with efficient formulation of the M2L step
in Fourier domain. Please refer to our research report [15] for a shorter introduction. The
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performance and accuracy of the algorithm were tested on artificial benchmarks illustrating
the significant benefits of using the ufmm over the bbfmm and its optimized variants. More-
over, a new algorithm called the smooth-ufmm was designed for handling smooth kernels
more efficiently. This variant differs substantially from the original FMM in the sense that
it implements a different admissibility criterion but it does not depend on the interpolation
procedure, therefore it could as well be derived from the bbfmm. In the next two chapters,
the applications of the ufmm and the smooth-ufmm to highly expensive simulations will be
considered, namely tensorial interactions (Chapter 6) and matrix-to-matrix multiplications
(Chapter 7).
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6.1. Fast Multipole computation of the isotropic stress and forces

In this chapter, we present the interpolation formula of tensorial interaction kernels in-
volved in elasticity problems such as DD simulations. Then, we introduce various Fast
Multipole Method (FMM) summation schemes for the fast evaluation the isotropic elastic
stress, forces and energy. We start by simple and naïve schemes and then we move on to
more evolved M2L-optimized schemes. Finally, we evaluate the performance of these schemes
on numerical benchmarks.

6.1 Fast Multipole computation of the isotropic stress
and forces

6.1.1 Introduction

Consistency First of all, we would like to recall that a dislocation loop may cross the
edges of the octree, thus part of its segments can contribute to the nearfield interactions
while the other segments contribute to the farfield interactions. Since all existing expressions
of the elastic stress and energy are only equivalent on a closed dislocation loop, we need to
use the same formula for the evaluation of the farfield and for the nearfield, namely (2.4) for
the stress and (2.8) for the energy. Therefore, the choice of well-suited expressions is crucial
in an efficient implementation and will be discussed here in particular for the evaluation of
the energy.

Balance For various computational reasons related to the velocity of the dislocations, the
width of the leaf cells cannot be smaller than a few dislocation lengths, namely ωL̄ = 3Lmax.
Consequently, the DD codes implementing the FMM usually impose a maximum depth for
the octree. For instance, if Lmax = 100 with a root bounding box of width ω0 = 20000

then L̄ ≤ 6. However, the number of nearfield interactions can grow dramatically if the
number of segment increases while the depth remains constant. As a result, the balance
between nearfield and farfield becomes impossible to maintain. Therefore, the efficient
implementation of the nearfield requires a lot of care.

6.1.2 Interpolation of the elastic stress

Let us first define the tensorial interaction kernels k(x,y) as

ki(x,y) = ra,i, kij(x,y) = ra,ij and kijk(x,y) = ra,ijk, (6.1)

where ra =
√
a2 + r2, r = |r| = √riri and r = x− y. The notation ra,i denotes the partial

derivatives of ra w.r.t. xi, i.e.,
ra,i =

∂ra
∂xi

.
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Figure 6.1: Representa on of the components k11, k12 and k11+k22 in 2D, i.e., r =
√
r21 + r22 , for r1 = r2 ∈ [0, 2]. Values

are plo ed w.r.t. the scaled distance x = r/ωmin for a = 3 and a typical segment length Lmax = 90, i.e., a = Lmax/30.
We consider the cri cal case, where the leaf cell width equals ωmin = 3Lmax.

Hence, the analytical expressions associated with the 3 variants of k(x,y) presented above
read as

ki =
ri
ra

, kij =
δij
ra
− rirj

r3a
and kijk = −

δjkri + δikrj + δijrk
r3a

+ 3
rirjrk
r5a

. (6.2)

The graphs on Figure 6.1 represent certain components of the 2nd-order interaction tensor
in 2D for a = 3 on a representative area, namely a few minimum leaf cell widths, w.r.t.
the scaled distance. It shows the maximum variations, that can exhibit the kernel in the
nearfield. In particular, we observe that the kernels decrease fast within the first few core
widths a and become rather smooth in the farfield, which makes interpolation based FMM
well-suited. Although the non-singular kernel is smooth by definition, it still exhibits brutal
variations within the nearfield, just like the Gaussian kernel for ℓ = 0.1. Therefore, it cannot
be approximated in the nearfield using the smooth-ufmm. Using the compact notations
defined in (1.15), we denote k̃ the interpolant of k of order p such that

k̃(x,y) =
∑
|α|≤p

Sα(x)
∑
|β|≤p

K̄αβSβ(y), ∀x,y ∈ R3. (6.3)

If we replace the expression (6.3) of the interpolant k̃ in (2.4), we get an approximation of
the elastic stress field σ, that reads as

σij(x) ≈
µ

8π
(σ̃A′

ij +
2

1− ν
σ̃B′

ij ), ∀(i, j) ∈ {1, 2, 3}
2 , (6.4)
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6.1. Fast Multipole computation of the isotropic stress and forces

where for all i, j ∈ {1, 2, 3}

σ̃A′

ij = σ̃A
ij + σ̃A

ji

σ̃B′

ij = σ̃B
ij − δijσ̃

B
ℓℓ

and

σ̃A
ij(x) =

∑
|α|≤p

Sα(x)
∑
|β|≤p

(
K̄αβ

)
mℓℓ

εjmk

∮
(C′)

Sβ(x
′)b′kt

′
idx

′ (6.5)

σ̃B
ij (x) =

∑
|α|≤p

Sα(x)
∑
|β|≤p

(
K̄αβ

)
mij

εnmk

∮
(C′)

Sβ(x
′)b′kt

′
ndx

′ (6.6)

Since (C ′) is a dislocation network discretized by the reunion of segments Ss = [x1
sx

2
s],

i.e., (C ′) = ∪n
s=1Ss, the contributions σ̃A and σ̃B can also be expressed as the sum of the

contributions of each segment, namely

σ̃A
ij(x) =

∑
|α|≤p

Sα(x)
∑
|β|≤p

(
K̄αβ

)
mℓℓ

εjmk

∑
[x1x2]∈(C′)

b′kt
′
i

∫ x2

x1

Sβ(x
′)dx′ (6.7)

σ̃B
ij (x) =

∑
|α|≤p

Sα(x)
∑
|β|≤p

(
K̄αβ

)
mij

εnmk

∑
[x1x2]∈(C′)

b′kt
′
n

∫ x2

x1

Sβ(x
′)dx′ (6.8)

6.1.3 A naïve Fast Multipole summation scheme

Equations (6.7) and (6.8) can be computed using a fast multipole summation scheme, that
consists in the following steps:

• For σ̃A, perform successively

(MA
β)mij = εjmk

∑
[x1x2]∈(C′)

b′kt
′
i

∫ x2

x1

Sβ(x
′)dx′ (P2M-SA)

(LA
α)ij =

∑
|β|≤p

(
K̄αβ

)
mℓℓ

(MA
β)mij (M2L-SA)

σ̃A
ij(x) =

∑
|α|≤p

Sα(x)(LA
α)ij (L2P-SA)

• For σ̃B, perform successively

(MB
β )m = (MA

β)mnn (P2M-SB)

(LB
α)ij =

∑
|β|≤p

(
K̄αβ

)
mij

(MB
β )m (M2L-SB)

σ̃B
ij (x) =

∑
|α|≤p

Sα(x)(LB
α)ij (L2P-SB)
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• Finally, compute σ̃ using (6.4).

First of all, we notice that the multipole expansions (MB)m for m ∈ {1, 2, 3} are the traces
of
{
(MA)mij

}
i,j≤3

, therefore they can be computed at almost no extra cost. Furthermore,
the M2L operators used for σ̃A are the traces of those used for σ̃B, more precisely

(
K̄αβ

)
mℓℓ

= tr

({(
K̄αβ

)
mij

}
ij

)
Finally, both terms σ̃X for X ∈ {A,B} share the same L2P step, i.e.,

σ̃X =
∑
|α|≤p

Sα(x)LX
α . (6.9)

Nodal forces The computation of the farfield contribution to the nodal forces presented
in (2.6) can be computed using a different summation at the L2P step, namely

f 4
i =

∫ L

0

∑
|α|≤p

Sα(x
3 + ξt)εijk(Lα)jℓbℓtk

ξ

L
dξ, ∀i ∈ {1, 2, 3} (L2P-F4)

Cost estimation In order to perform this summation, we need to store 30 M2L com-
ponents, namely 3 for σ̃A and 27 for σ̃B. We need to store 27 components of MA

β and
3 components of MB

β . Then, we need to perform 54 M2L operations in order to compute
all 9 components of σ̃A and σ̃B. Indeed, computing (M2L-SA) involves 3 × 9 = 27 M2L
operations and computing (M2L-SB) involves 9× 3 = 27 M2L operations.
The summation schemes proposed here is relatively naïve and expensive, therefore it will
only be used as a reference for more efficient schemes.

6.2 Improved farfield computation of the stress
Here we introduce optimized variants of the previous summation scheme based on symme-
tries in Section 6.2.1, refactoring of the interactions in Section 6.2.2 and shifted derivatives
in Section 6.2.3. Finally, we discuss the relative costs of each variant in Section 6.2.4.

6.2.1 Considering symmetries

Symmetries First of all, in the hypothesis of isotropic elasticity the stress field is symmet-
ric, only 6 components out of 9 need to be computed. Furthermore, since in the expression
of the kernel of interactions k the partial derivatives can be applied in an arbitrary order,
then

(
K̄αβ

)
ijk

is symmetric w.r.t. i,j and k. Consequently, σ̃B is symmetric and only its
upper triangular part needs to be assembled during the M2L step. On the other hand, it
could be more convenient to assemble σ̃A′ at the P2M step instead of the L2P, in order to
store only symmetric quantities.
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6.2. Improved farfield computation of the stress

Fast Multipole summation scheme Hence, for all (i, j) ∈ {1, 2, 3}2 with i ≤ j the
optimized summation scheme can summarized as

• For σ̃A′ , perform successively

(MA′

β )mij = (MA
β)mij + (MA

β)mji (Symm-P2M-SA)

(LA′

α )ij =
∑
|β|≤p

(
K̄αβ

)
mℓℓ

(MA′

β )mij (Symm-M2L-SA)

σ̃A′

ij (x) =
∑
|α|≤p

Sα(x)(LA′

α )ij (Symm-L2P-SA)

• For σ̃B′ , perform successively

(MB
β )m = (MA

β)mnn (Symm-P2M-SB)

(LB
α)ij =

∑
|β|≤p

(
K̄αβ

)
mij

(MB
β )m (Symm-M2L-SB)

σ̃B′

ij (x) = (σ̃B)ij − δij(σ̃
B)ℓℓ (Symm-L2P-SB)

• Finally, compute σ̃ using (6.4).

Cost estimation In order to perform this summation, we need to store 13 M2L compo-
nents, namely 3 for σ̃A and 10 for σ̃B. We need to store 3 × 6 = 18 components for MA′

and only 3 for MB. Then, we need to perform 36 M2L operations in order to compute 6

upper triangular components of σ̃A′ and σ̃B′ . Indeed, (Symm-M2L-SA) involves 3 × 6 = 18

M2L operations and (Symm-M2L-SB) involves 6× 3 = 18 M2L operations.

6.2.2 Refactoring interactions

The number of multipole and local expansions required by the two first schemes is rela-
tively high, namely 39 for the Direct and 27 for the Symmetric scheme. As mentioned in
Section 5.3.3, the amount of memory required to store 1 multipole expansion can quickly
become prohibitive in interpolation based FMM. Therefore, we propose a new scheme based
on expanding and refactoring the tensorial interactions and called the Factorized scheme,
that simultaneously minimizes the number of M2L operations and the number of multipole
expansions. For the sake of clarity, details of this scheme are presented in Appendix D.1.1.
If the energy needs to be computed as well, this variant is more convenient than using
symmetries of the stress, since it implements the same multipole expansions, namely

(Mβ)ij =
∑

[x1x2]∈(C′)

b′it
′
j

∫ x2

x1

Sβ(x
′)dx′. (Facto-P2M)
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6.2.3 Shifting derivatives

Principle As mentioned in Section 5.1, the derivative of a function can be approximated
by deriving the interpolated function. Thus, kijk can be approximated by deriving k̃ij, the
interpolant of kij. The associated interpolation formula reads as

kijk(x,y) ≈ ∇xk
k̃ij(x,y) =

∑
|α|≤p

∇kSα(x)
∑
|β|≤p

(
K̄αβ

)
ij
Sβ(y) (6.10)

Since S is a higher order polynomials than ∇kS for k ∈ {1, 2, 3}, then equation (6.3) should
provide a more accurate approximation of kijk than (6.10). On the other hand, (6.10)
reduces the number of components to approximate from 10 for all kijk to 6 for all kij, while
increasing the dimension of the interpolator by 3. Finally, if the derivation is done with
respect to y, then it applies to the right interpolator. Moreover, since k(x,y) = k(x− y),

∇yk k̃ij = −∇xk
k̃ij

and thus
kijk(x,y) ≈ −∇yk k̃ij(x,y) = −

∑
|α|≤p

Sα(x)
∑
|β|≤p

(
K̄αβ

)
ij
∇kSβ(y)

In other terms, for such interpolation formula, shifting derivatives from right to left implies
changing the sign in front of the formula.

Fast Multipole summation scheme Shifting the derivatives w.r.t. m and applying the
permutation symbol to the right interpolator in (6.7) and (6.8) results in a much cheaper
summation scheme in terms of both memory and computational time. Let us show this by
writing the new interpolation formula as follows

σ̃A
ij(x) = −

∑
|α|≤p

Sα(x)
∑
|β|≤p

(
K̄αβ

)
ℓℓ
εjmk

∑
[x1x2]∈(C′)

b′kt
′
i

∫ x2

x1

∇mSβ(x
′)dx′ (6.11)

σ̃B
ij (x) = −

∑
|α|≤p

Sα(x)
∑
|β|≤p

(
K̄αβ

)
ij
εnmk

∑
[x1x2]∈(C′)

b′kt
′
n

∫ x2

x1

∇mSβ(x
′)dx′ (6.12)

Let us define the new multipole expansions associated with σ̃A as

(MA
β)ji = εjmk

∑
[x1x2]∈(C′)

b′kt
′
i

∫ x2

x1

∇mSβ(x
′)dx′

Since summation over m can now be performed at the P2M step, the dimension of this
multipole expansion is divided by 3. Hence, for all (i, j) ∈ {1, 2, 3}2 with i ≤ j, the
associated fast multipole summation scheme consists in the following steps:
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• For σ̃A′ , perform successively

(MA′

β )ji = (MA
β)ij + (MA

β)ji (Shift-P2M-SA)

(LA′

α )ij =
∑
|β|≤p

(
K̄αβ

)
ℓℓ
(MA′

β )ij (Shift-M2L-SA)

σ̃A′

ij (x) = −
∑
|α|≤p

Sα(x)(LA′

α )ij (Shift-L2P-SA)

• For σ̃B′ , perform successively

MB
β = (MA

β)nn = tr(MA
β) (Shift-P2M-SB)

(LB
α)ij =

∑
|β|≤p

(
K̄αβ

)
ij
MB

β (Shift-M2L-SB)

σ̃B′

ij (x) = (σ̃B)ij − δij(σ̃
B)ℓℓ (Shift-L2P-SB)

• Finally, compute σ̃ using (6.4).

Cost estimation In order to perform this summation, we need to store 7 M2L components,
namely 1 for σ̃A and 6 for σ̃B. Moreover, we need to store 6 components of MA′

β and
1 components of MB

β . On the other hand, one need to apply 12 M2L operations in order to
compute all 6 components of σ̃A′ and σ̃B′ . Indeed, (Symm-M2L-SA) involves 6 M2L operations
and (Symm-M2L-SB) involves 6 M2L operations. This cost reduction should compensate the
need for a larger interpolation order induced by the loss of precision.

6.2.4 Comparative analysis of the theoretical cost
Here, we summarize the cost of each variant in two tables, please refer to Table 6.1 for
the memory requirements and Table 6.2 for the computational costs. The tables show the
constant that needs to be applied to the memory requirements or the computational costs
of a given interpolation based FMM (bbfmm or ufmm), for each step and each operator.

Storage Table 6.1 shows that the variant using shifted derivatives requires the less over-
all memory. Concerning the two other optimized variants, using the symmetries requires
approximately half of the memory required when refactoring the interactions for the stor-
age of the expansions. On the other hand, the memory footprint of the M2L does not vary
significantly for these 2 approaches. For the shifted variant, one should mention that the
computation of the energy does nor require extra memory for the storage of the M2L opera-
tors since they share the same kernel of interaction. However different multipole expansions
have to be stored for the stress and the energy, respectively 7 and 6.

Application In order to compare the computational cost of each tensorial approach, one
should consider the constant in front of the cost of a scalar M2L written in Table 6.2. Conse-
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Quantity Approach #L #K̄ #M (#M+#L)/#K̄

Stress Direct 9 3 + 27 = 30 27 + 3 = 30 1.3
Symm 6 3 + 10 = 13 18 + 3 = 21 2.1
Facto1 6 10 + 1 = 11 9 1.4
Facto2 6 11 + 3 = 14 12 1.4
Shift 6 6 + 1 = 7 6 + 1 = 7 1.9

Energy Direct 6 6 + 1 = 7 6 1.7

Table 6.1: Number of FMM operators required for the computa on of the stress and the energy, that represent the constants
in front of the theore cal memory requirements for each approach.

quently, the variant using shifted derivatives should be the fastest one in theory, since it has
the lowest constant. The cost of the P2M and L2P steps is similar for all optimized variants,
except that the P2M of the symmetric variant is far more expensive than that of the other
optimized variants.

Quantity Approach L2P M2L P2M

Stress Direct 9 27 + 27 = 54 27

Symm 6 18 + 18 = 36 27

Facto1 6 46 9

Facto2 6 18 + 33 = 51 9

Shift 6 6 + 6 = 12 6 + 1 = 7

Energy Direct 19 47 9

Table 6.2: Constants in front of the theore cal complexity for each approach w.r.t. to the FMM steps.

Discussion For a given variant, the ufmm is always faster than the bbfmm in theory. This
assumption is verified experimentally on the numerical benchmarks presented in Section 6.4.
Moreover, the ufmm require less memory for low tree depths. However, as the depth of the
tree grows, the expansions require more memory than the M2L and the ufmm becomes more
demanding. This may occur for lower depths than in the scalar case, since the ratio between
the number of components of the expansions and the M2L exceeds 1 for all approaches.
Figure 6.2 shows the total theoretical memory requirement of each variant for either the
bbfmm or the ufmm. We observe that for p = 4 (a typical value used in OptiDis, that
provides good accuracy) the profile does not change a lot due to the small variations of the
ratio (between 1 and 2). The profiles only differ for the low tree depths where the cost of
the M2L dominates in the bbfmm. For large tree depth, the memory footprints of the ufmm
is always larger since the storage of the expansions dominates the overall memory footprint
and it is substantially larger than that of the bbfmm. Based on previous observations, the
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6.3. Implementation details

optimal choice between the symmetric and the refactored variant may vary w.r.t. to the
chosen interpolation grid. For instance, the refactored variant seems better suited for a
FMM with fast M2L application such as the ufmm. Meanwhile, the symmetric variant can
benefit from low memory requirements at the P2M step such as in the bbfmm. Finally, for a
fixed interpolation grid, the variant using shifted derivatives has the lowest overall memory
footprint.
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Figure 6.2: Theore cal memory requirements at the leaf level w.r.t. the tree depth in the worst case scenario (no empty leaf)
and for a fixed interpola on order p = 4. We consider the maximum amount of memory required for storing the 316 tensorial
M2L operators, the mul pole and the local expansions as well as the transformed versions. The results are given in simple
precision arithme c. Observa ons: The memory required by the M2L is almost not no ceable for the ufmm, in fact only the
cost of storing the expansions is observed. For the bbfmm, the memory required for the storage of the M2L dominates the cost
and can thus be observed for the first values of L̄.

6.3 Implementation details

6.3.1 The extended bounding box concept

Extending leaves Inserting the elements of a spatial discretization in an octree structure
can sometimes be tedious, in particular when an element crosses an edge of the octree (see
Figure 6.3). For instance, in most Fast Multipole BEM implementations [31, 86], a boundary
element is considered to be in a cluster, if the center of the element lies inside of it. Moreover,
since interpolation is involved in our algorithm, it is crucial that the entire element lies
inside the interpolation domain. Therefore, as suggested by [86] we define a slightly larger
interpolation domain, called the extended bounding box, that contains all segments lying
inside a cluster. Since extending the bounding box reduces the minimum distance between
points of admissible clusters, it obviously affects the accuracy of the method. Associating
segments to a cluster with respect to their center leads to the minimal width extension, i.e.,
the maximum segment length (see 6.3). Note that the center of the cell remains unchanged
after extension of the width.
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x1 x2• •

Figure 6.3: Illustra on of the bounding box extension in the worst case scenario, where the center of a segment
[
x1x2

]
lies

on the edge of a leaf cell.

Extending parent cells Once the leaf cells are extended all parent cells need to be
extended as well, since interpolation is performed from child to parent and anterpolation
from parent to child. The minimal parent’s width extension, such that the extended child is
contained inside the extended parent, is equal to the child’s width extension. Therefore, we
use the same width extension for all cells of all levels. Note that since the center remains
unchanged, the extensions of adjacent cells intersect.

6.3.2 Numerical integration over segments
Farfield As described extensively in appendix D.3, during the P2M step (resp. L2P step),
the integrals over the segments [x1x2] (resp. [x3x4]) can be computed exactly by mean of
a simple Gaussian quadrature rule. For the integral involved in (P2M-SA) or (P2M-SB) the
resulting quadrature formula reads as

∫ x2

x1

Sβ(x
′)dx′ =

Q∑
q=1

ω′
qS(x

′
q),

where Q denotes the quadrature size satisfying 2Q + 1 = p and ω′
q (resp. x′

q) denotes the
q-th Gauss weights (resp. points) mapped to the source segment [x1x2]. More precisely, if
ωq ∈ [0, 1] and θq ∈ [−1, 1] denote standard Gauss weights and points, then mapped weights
reads as

ω′
q = ωq

L

2

and mapped points read as

x′
q = x1 + ξ(θq)t = x1 + (θq + 1)

L

2
t.

Nearfield As mentioned in the introduction 6.1.1, because of the condition imposed on
the tree depth, the efficiency of the FMM is lost after a certain problem size. In fact, once
the tree depth reaches its maximum value, the cost of computing the direct interactions
starts to grow quadratically n. Therefore, it is crucial to have an efficient implementation
of the P2P step. First of all, OptiDis already optimizes the evaluation of the nearfield using
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AVX instructions. Second of all, we implemented a new feature, that allows the direct
interactions to be evaluated using numerical quadratures if segments are sufficiently far
appart. Indeed, as mentioned in [8], using a quadrature can becomes cheaper than using
analytical expressions for very distant segments. For instance, if the target accuracy is 10−4,
then the required quadrature size equals 2 for d > 5Lmax and drops to 1 for d > 500Lmax.
Since the maximum distance at the maximum level is dmax = 6Lmax, this represents a
small gain at the maximum level. However, this can significantly accelerate the nearfield
computation for the low FMM levels if the root bounding box is very large compared to the
maximum segment length. For instance, if Lmax = 100 with a root bounding box of width
ω0 = 100.000 then dmax/Lmax = ω0/(2Lmax) = 500 at level L̄ = 2.

6.3.3 Enforcing homogeneity

Unlike the singular interaction kernel, the non-singular kernel is not homogeneous (see Sec-
tion 1.2.4) because of the core width, that creates a shift in the distance. However, since a is
very small compared to the minimum cell width ωmin, i.e., ωmin = 3Lmax, then both kernels
almost coïncides in the farfield, as shown on Figure 6.4. Consequently, using the singular
kernel in the farfield computation instead of the non-singular variant should only result in
a minor extra error compared to the interpolation error. This assumption is validated in
Section 6.4.2. On the other hand, as described in Section 1.1.3, given the homogeneity of
the kernel, we can store the M2L operators at only one reference level and thus divide the
memory footprint of the M2L step by the number of level L̄− 1. We would like to highlight,
that special care must be taken, when combining extended bounding boxes with the scaling
of a homogeneous kernel.
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Figure 6.4: Comparison of the homogeneous kernel k(r) = 1/r with the non-homogeneous kernel ka(r) = 1/
√
r2 + a2

for 2 representa ve values of a. The kernel values are plo ed w.r.t. the scaled distance r/ωmin with ωmin = 3Lmax using a
typical maximum segment length ofLmax = 90. Non-homogeneous kernels are represented for a = Lmax/30 = 3 (average
core width) and a = Lmax/10 = 9 (large core width). Observa ons: The non-singular kernels coïncide with the singular
kernel in the farfield, even for large values of the core width.
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6.4 Numerical benchmarks
In this section, we present 2 artificial benchmarks in order to validate the accuracy our
approach. We first verify the accuracy of the various Fast Multipole summation schemes
presented in the previous Section 6.2 and then determine an appropriate interpolation order
p, that leads to an accuracy of 10−4 on the force field. Then, we discuss their respective
sequential running times w.r.t. the number of segments using either the ufmm or the bbfmm.

6.4.1 Distributions of loops and visualization of the fields

In order to validate our implementation we do not need a very complex topology. However,
it is crucial to respect the order of magnitude of the various parameters, that are involved
in the dynamical simulation. In order to ensure the network to be closed and allow easy
monitoring of the number of segments, we consider 2 very basic distributions of dislocation
loops:

• the first one enforces 1 BCC loop per leaf (Fig. 6.5). As the tree grows, the diameter
D and the minimum and maximum segment length decrease. More precisely,

D = 1000/2L̄−2 and L = Lmin + 1 = Lmax − 1 = 200/2L̄−2. (6.13)

• the second uses a prescribed density d of loops in m/m3 (Fig. 6.6). As the tree grows,
the loop diameter D and segment lengths remain constant but the density grows.

Hence, in both cases the number of segment per leaf remains constant and the tree is always
fully populated (worst case scenario) except for lowest tree depth L̄ = 2.

(a) 4× 4× 4 loops, n = 1.920, L̄ = 2 (b) 8× 8× 8 loops, n = 15.360, L̄ = 3

Figure 6.5: 3 configura ons of BCC loops with b = [111]. The number of segments is driven by the number of loops, i.e., the
number of leafs, while the number of segments per loop remains constant. The exact nodal force modules are represented on
the disloca on lines for each configura on.
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(a) d = 5.1019m−2, n = 11.250, L̄ = 4 (b) d = 1020m−2, n = 90.090, L̄ = 5

Figure 6.6: 3 configura ons of BCC loops with b = [111]. The number of segments is driven by the density d, while the
segment length L = 20 and loop diameter D = 100 remain constant. The exact nodal force modules are represented on the
disloca on lines for each configura on.

6.4.2 Accuracy
Sources of error In order to verify the accuracy of the various schemes implemented
during this thesis, we consider the convergence in term of the relative 2-norm error on the
force and energy w.r.t. interpolation order p in the worst case scenario, where all possible
sources of errors are taken into account. Therefore, we consider the distribution of loops
driven by the specified density for the following reasons, since it is the closest to real life
simulations, the network is closed and dislocation can cross the edges of the octree. Finally,
the last source of errors is the use of the homogeneous kernel instead of the regularized
kernel. Figure 6.7 represents the experimental accuracy of the ufmm and the bbfmm for a
direct approach and the variant using shifted derivatives.
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Figure 6.7: Accuracy of the nodal forces (le ) and energy (right) evalua on for different interpola on schemes (ufmm and
bbfmm, with and without shi ed deriva ve) w.r.t. the interpola on order p. The farfield core width is set to 0. Configura on
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Chapter 6. Fast Multipole DD simulations

Discussion The accuracy of the cutoff variant is represented on the graphs in order to
show the benefit of having a farfield implementation, in this case the error on the force
evaluation equals 4.10−2. The rate of convergence is similar to the scalar case. As expected,
we observe a convergence delay of 1 interpolation order for certain values of p between the
direct and the shifted cases. However, for p = 4 all schemes have about the same accuracy
of 10−4. Therefore, in the range of accuracy targeted by the application, all schemes use the
same p.

6.4.3 Sequential performance
Validation procedure First of all, in order to properly evaluate the relative performance
of each variant we consider both configurations at comparable tree depths for p = 4. Then,
in order to better show the asymptotic complexity of the method, we enforce a constant n0

and a fully populated octree. Therefore, for a given distribution of loops, we first determine
the optimal n for L̄ = 2 and then multiply n by 8 each time we increment L̄. The sequential
running times of the Factorized and the Shifted variants are represented on Figure 6.8.

Discussion As expected, all variants have a linear complexity with the number of seg-
ments, however they do not evaluate the farfield with the same efficiency. The simulations
driven by the specified density reach their permanent regime a little slower, since for the
first densities the octree is not fully populated. It is important to mention, that by fixing
the tree depth we cannot ensure that all variants balance nearfield and farfield computations
optimally. In particular, in our numerical benchmarks, only the Symmetric variant with
bbfmm is balanced. Nevertheless, the cheapest approach is the Shifted variant with ufmm,
where the cost of the farfield computation is 3 times lower than for the Factorized variant.
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Figure 6.8: Computa onal me required by the nodal forces evalua on for different interpola on schemes w.r.t. the number
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7.1. Fundamentals and computational aspects

7.1 Fundamentals and computational aspects
Generating realizations of Gaussian Random Fields (GRFs) is a key issue in numerous sci-
entific research fields such as cosmology [100, 14, 29], geostatistics [69, 73], hydrogeology
[104, 12] or even Brownian dynamics [10]. A GRF is a multivariate Gaussian Random Vari-
able (GRV), i.e., a vector Y ∈ Rn of correlated Gaussian random variables each associated
with the points of a grid denoted {xi}i=1,...,n. In the present work we will only consider
spatial grids, i.e., xi ∈ R3.

7.1.1 Basics

The concept of GRF is extensively presented in [1], in this section we will recall its funda-
mental concepts and discuss several properties of spatial correlation functions and covariance
matrices.

Multivariate Random Variables In order to accurately represent the first moments
of a statistical distribution, namely the mean and the variance, GRFs usually need to be
sampled in large ensembles (laws of large numbers). For instance, let X be a univariate
GRV with mean 0 and variance 1, as shown on Table 7.1, one need to perform about 103

realizations Xi in order to reach 1% accuracy in term of sample mean and variance, namely

E(X) =
1

nreal

nreal∑
i=1

Xi and E(X2) =
1

nreal

nreal∑
i=1

X2
i

In the multivariate case, let say a length-n GRF, i.e., n GRVs, if n = 103 one needs nreal =

O(105) realizations to reach errors between 1 and 10% in terms of sample mean E(Y) and
covariance E(YYT). Therefore, efficiently generating many realizations of a GRF given
a large spatial grid, i.e., n = O(106), can rapidly become challenging even on modern
computers.

nreal E(X)− 0 rocE E(X2)− 1 rocE2−1 tX (s)
1 · 102 7.68 · 10−2 0.26 1.62 · 10−5

1 · 103 1.8 · 10−2 0.63 4.64 · 10−2 0.74 1.26 · 10−4

1 · 104 8.89 · 10−3 0.31 1.84 · 10−2 0.4 5.07 · 10−4

1 · 105 1.76 · 10−3 0.7 5.18 · 10−3 0.55 5.79 · 10−3

Figure 7.1: Convergence of a univariate GRV in terms of sample mean error E(X)− 0 and sample variance error E(X2)− 1
w.r.t. the number of realiza onsnreal. We used a Mersenne Twister random number generator with mean0 and variance 1. The
rates of convergence (roc) are defined as the ra o of the logarithm of two consecu ve values of an error. Finally, tX denotes
the me required to generate the random variable and compute the errors. We observe the theore cal 1/2 convergence rate
for the mean and variance.

Correlation kernels We use the terminology Y ∼ µ(0,C) to define a GRF Y with mean
0 and covariance C ∈ Rn×n. The covariance matrix can be prescribed as a kernel matrix,

88



Chapter 7. Sampling from Gaussian Random Fields

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

distance: r

co
rr

el
at

io
n

va
lu

e:
k
(r
)

Values for ℓ = 1.0

k1/2
k5/2
k∞

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

distance: r

co
rr

el
at

io
n

va
lu

e:
k
(r
)

Values for ℓ = 0.5

k1/2
k5/2
k∞

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

distance: r

co
rr

el
at

io
n

va
lu

e:
k
(r
)

Values for ℓ = 0.25

k1/2
k5/2
k∞

Figure 7.2: Representa on of the correla on func ons k∞,k5/2 and k1/2 w.r.t. the distance r ∈ [0, 1] for ℓ = 1.0 (le ),
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i.e.,
C = {k(rij)}i,j=1,...,n ,

where rij = ||xi − xj||2. The kernel k denotes a correlation function such as the Gaussian
kernel

k∞(r) = e−r2/(2ℓ2) (7.1)

or the exponential kernel
k1/2(r) = e−r/ℓ (7.2)

where the length scale ℓ characterizes the decreasing speed of the correlation function. These
functions are the extreme cases of Matérn functions [85] defined as

kν(r) =
21−ν

Γ(ν)
(

√
2νr

ℓ
)νB(

√
2νr

ℓ
), (7.3)

where B denotes a modified Bessel function and Γ the gamma function [2]. In particular, as
shown on Figure 7.2, k∞ is globally smooth and k1/2 has discontinuous first order derivative
at the origin. In this chapter, we also consider k5/2, which presents an intermediate degree
of smoothness and is often used in machine learning applications. Covariance matrices are
symmetric positive definite (spd) by definition of correlation kernels [1]. Hence, C admits
the following representation

C = AAT, (7.4)

where the matrix factor A ∈ Rn×n will be called a square root of the covariance matrix C,
even though others may call it a Cholesky factor and would expect the square root of an
spd matrix to be spd itself.

Sampling from GRF Realizations of a GRF Y ∼ µ(0,C) can be obtained in O(n2) by
applying A to a length-n white noise X, i.e., by computing

Y = AX, (7.5)
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7.2. Fast randomized algorithms for generating Gaussian Random Fields

where X ∼ µ(0, In) is a Gaussian Random Field verifying E(X) = 0 and E(XXT ) = In.

7.1.2 Limits of standard and alternative techniques

There exist numerous approaches for generating GRFs, that usually differ by the way A is
precomputed. Approaches based on standard matrix decompositions such as the Singular
Value Decomposition (SVD) or the Cholesky Decomposition [37] are the most popular ones,
since they provide an exact factorization and rely on well understood and robust algorithms
that apply to any spd matrix C. If the decomposition can be truncated at a prescribed
numerical rank r, then the resulting low-rank factor Ar ∈ Rn×r can be applied to a length-r
white noise in O(n) operations in order to generate a GRF Y with mean 0N and covariance
close to C, i.e., E(YYT) = ArA

T
r ≈ C.

Alternatives Nevertheless, standard factorization algorithms involve O(n3) operations
and thus become computationally prohibitive for large n, i.e., n over a few thousands.
Alternative methods are often considered such as the sequential simulation method [67], the
moving average methods [95], the turning bands method [69, 81], continuous [107] or discrete
[62, 104] spectral methods, combinations of spectral methods with the turning bands [80]
or with moving average [73], improved matrix decomposition [36]. They usually provide
approximate square roots but most importantly they do not always extend to 3D grids.

Circulant Embedding A popular alternative based on matrix decomposition, known as
circulant embedding technique, was developed in the early 90’s [43, 122]. It provides an
exact method for computing the product Y = AX, that has a O(n) cost in both running
time and storage, but most importantly A is assembled in Fourier domain in O(n log n) op-
erations using the Fast Fourier Transform (FFT). However, it presents significant numerical
limitations, especially in 3D, not to mention that it only applies to equispaced grids.

7.2 Fast randomized algorithms for generating Gaus-
sian Random Fields

Based on the observation that many covariance matrices of practical interest actually have
low-rank, Dehdari and Deutsch [42] used the Randomized SVD (rSVD) in order to accelerate
the precomputation of A in low-rank form and thus efficiently generate realizations of GRFs.
In this section, we present the details of this randomized algorithm and its numerical limi-
tations. Then, we show that it can be significantly improved by using a H2-representation
of the covariance matrix such as the Fast Multipole Method (FMM).
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7.2.1 Randomized approach
Correlation functions used in practical applications usually lead to globally low-rank covari-
ance matrices, therefore the rSVD (Algorithm 6) can be considered in order to efficiently
approximate C by its approximate low-rank representation

C̃ = ŨΣ̃Ũ
T
. (7.6)

Since covariance matrices are by definition symmetric positive semi-definite (spsd), a low-
rank matrix factor can then be computed as

Ã = ŨΣ̃
1/2 ∈ Rn×r. (7.7)

In fact, since Ã provides an exact square root of C̃, i.e., C̃ = ÃÃ
T , then Ã provides an

approximate square root of C, i.e., C ≈ ÃÃ
T . The matrix Ã can be applied to a length-r

white noise at a O(n×r) cost, which allows for generating realizations of n-variate Gaussian
random variables at a linear cost in time. However, this approach still requires the input
covariance matrix C to be fully assembled and the cost of precomputing an approximate
square root scales quadratically with n.
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Figure 7.3: Numerical rank r of some covariance kernel matrices w.r.t. the correla on length scale ℓ for 1% and 10% target
accuracy in Frobenius norm. We used n = 2.000 par cles distributed on the unit sphere. Observa ons: In this range of
accuracy the rank grows quadra cally with the inverse of ℓ, while being inferior to 10 for ℓ = 1. Finally, the rank never exceeds
40% of the full size except for the exponen al kernel k1/2 with ℓ = 1.0.

Numerical rank The complexity of the method grows linearly with the rank of the ma-
trix, therefore its applicability is restricted to matrices with a relatively low rank. Before
describing our new algorithm we would like to evaluate if the kernel matrices we want to
approximate fulfill this condition. For a given accuracy and a given norm, the rank r can be
determined numerically by considering the best rank-r error computed from the spectrum of
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Figure 7.4: Accuracy of the fixed rank rSVD w.r.t. the compression rate for a Gaussian correla on and n = 2.000 par cles
distributed on the unit sphere. Le : Op mal rela ve error in Spectral and Frobenius norms w.r.t. to r = 1, . . . , n. Right:
Accuracy of the rSVD w.r.t. prescribed rank r = 20, . . . , 200. Effect of the oversampling s alone (q = 0). Observa ons: The
Gaussian kernel is smooth, therefore its spectrum decreases fast andC is rela vely low-rank. Consequently, the rSVD performs
well even without power itera ons and with low oversampling (s = 5). An oversampling of s = 50 leads to a near op mal
error. Note that C becomes high-rank for small ℓ, e.g., ℓ = 0.1.

the input matrix, we call r the numerical rank. The target accuracy required for generating
GRFs is usually low, namely between 10−1 and 10−2 in either Frobenius or Spectral norm.
In this thesis we chose to use the Frobenius norm to determine the numerical rank, since
it is more restrictive than the Spectral norm and it better accounts for the shape of the
spectrum. In order to allow the computation of the full spectrum within a reasonable time
by mean of a full SVD, we chose a relatively low value of n, namely n = 2.000. In fact,
as shown by our numerical benchmarks, for sufficiently dense distributions, i.e., n > 1.000

for the unit sphere, the rank of the kernel matrix does not depend on n but rather on the
kernel function and the geometry.

Oversampling Figure 7.4 illustrates the benefit of using oversampling with the Gaussian
kernel k∞ (7.1) for n = 2.000 particles distributed on the unit sphere. No power iteration
is required, since the associated covariance matrix has a fast decreasing spectrum. Hence,
we set q = 0 and analyze the effect of the oversampling. First of all, the results show that
the fixed rank approach works well for matrices of relatively low rank, e.g. for ℓ ≥ 0.50.
For instance, if ℓ ≥ 0.50, r/n ≈ 5% and s = 5, then the relative error in Frobenius norm
is already below 2%. On the other hand, for ℓ = 0.1 the matrix is not low-rank, since for
a compression rate of 10% the optimal relative error exceeds 10%. Moreover, as shown on
Figure 7.4, increasing the oversampling significantly improves the accuracy and even provide
near-optimal accuracy on this particular test case. In fact, for ℓ ≥ 0.5, the error for s = 50

almost coïncides with the theoretical lower bound ∥C−Cr∥F .
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Subspace iterations On the other hand, Figure 7.6 illustrates the benefit of using sub-
space iterations with the exponential kernel k1/2 (7.2), that exhibits a relatively flat spec-
trum. In particular, it shows that with an oversampling of s = 50 the accuracy is still far
from the optimal. However, a near-optimal accuracy can be reached with a few subspace
iterations, namely q = 1. Since in this case the matrix is not low-rank, it only produces a
raw approximation of C in the desired range of compression, i.e., compression rates below
10%. Hence, we will not consider this kernel in the numerical benchmarks presented in
Section 7.4.

Exponential k1/2 on the unit sphere
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7.2.2 FMM-powered randomized algorithms

Algorithm & Theoretical complexity In the rSVD, the matrix-to-matrix multiplica-
tions involved at each stage, namely CΩ for the random projection (3.4) and CQ for the
assembly of B = QTCQ (3.6), dominate the asymptotic cost of the algorithm. Therefore,
the overall cost of the original randomized SVD is quadratic in n in both running time and
memory footprint. Since C is given as a kernel matrix it can be applied to another matrix
at a linear cost in n without ever assembling the full matrix using a H2-method like the
ufmm or the bbfmm. The resulting approach remains a dense random projection as Ω stays
dense, but it benefits from a data sparse representation of C. Algorithm 8 presents our
H2-powered randomized SVD and indicates the asymptotic complexity of each stage. The
resulting algorithm has an overall O(r2 × n) computational cost, which is one order less
than the O(r × n2) complexity of the original method. However, we will show that for the
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grid size and accuracy used in practice, the matrix multiplications still dominate the cost
although they have a O(r × n) complexity.

Algorithm 8: H2-powered Randomized SVD
Input: Correlation kernel k(., .), grid size n, positions x ∈ (R3)n, rank r or accuracy ε,

number of power iterations q, oversampling parameter s, interpolation order p, octree
depth h

Output:
[
Ã
]

approximate square root of C = {k(xi, xj)}i,j=1,...,n

// Stage 0: Build H2 representation of C
Build H2C = H2(k, x,N, p, h)
// Stage I: Approximate the range of C
if accuracy ε is prescribed then

[Q, r] = ARRF (H2C, q, s, ε) O(r2 × n)

if rank r is prescribed then
[Q, ε] = RSI(H2C, q, s, r) (idem)

// Stage II: Decompose Cr = Q(QTH2CQ)QT ≈H2C as UΣUT

Build B = QT(H2CQ) ∈ Rr×r O(r2 × n)
Perform SVD of B = UBΣBU

T
B O(r3)

// Compute square-root Ã = C̃1/2 ≈ C1/2 as ŨΣ̃1/2

B1/2 = UBΣ
1/2
B O(n× r2)

Ã = QB1/2 O(n× r2)

Accuracy The FMM provide approximate matrix multiplications, therefore it introduces
extra errors in each stage of the algorithm. The accuracy of the FMM needs to be carefully
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monitored in order to avoid perturbing the approximation of the range and the final accuracy
of the rSVD. In particular, the optimal order of interpolation should not affect the output
rank of the Adaptive Randomized Range Finder (ARRF) or the accuracy of the Randomized
Subspace Iterations (RSI). Figure 7.7 shows the effect of ufmm on the accuracy of the rSVD
for We found that enforcing one order of magnitude between the error on a fast matrix
multiplication εfmm = ∥ϕ̄ − Kw∥2,rel and the prescribed accuracy ε of the randomized
algorithm, i.e.,

ε = 10εfmm, (7.8)

preserves the accuracy of the original method, while still providing significantly better per-
formance. Hence, in the context of GRF, the interpolation order of the ufmm never exceeds
p = 4.

7.3 Efficient Fast Multipole matrix-to-matrix multipli-
cation

In this section, we present an optimized method for performing efficient Fast Multipole
matrix-to-matrix multiplication, i.e., FMM with multiple right-hand-sides. In particular,
we describe the efficient implementation of the interpolation operators (P2M, M2L & L2P) and
the P2P operators in order to minimize the cost of the algorithm in terms of both storage
and running times as the number of right-hand-sides grows.

7.3.1 Blocking farfield computations
Generic notations Handling multiple right-hand-sides in a FMM computation consists
in computing multivariate potentials using a scalar interactions kernel and multivariate
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densities. Let r denote the number of right-hand-sides, then the i-th component of the
potential generated at the target point x by the i-th component of the density w located at
the source point y reads as

ϕi(x) = k(x,y)wi(y), ∀i = 1, . . . , r. (7.9)

The interpolation formula used for the farfield computations reads as

ϕ̄far
i (x) =

∑
|α|≤p

Sα(x)
∑
|β|≤p

K̄αβSβ(y)wi(y) (7.10)

Summation scheme The fast multipole summation consists in performing the following
steps:

• P2M: Transfer the contributions of the r components of the density w located at the
source points y into the r multipole expansions (Mβ)i defined on the source interpo-
lation nodes ȳβ

(Mβ)i =
∑
y

Sβ(y)wi(y), ∀i = 1, . . . , r (7.11)

• M2L: Transfer the r multipole expansions (Mβ)i into the r local expansions (Lα)i
defined on the target interpolation nodes x̄α

(Lα)i =
∑
|β|≤p

K̄αβ (Mβ)i , ∀i = 1, . . . , r (7.12)

• L2P: Transfer the contributions of the r local expansions (Lα)i defined on the target
interpolation nodes x̄α into the r components of the potential ϕ̄ located at the target
points x

ϕ̄i(x) =
∑
|α|≤p

Sα(x) (Lα)i , ∀i = 1, . . . , r (7.13)

Memory footprint Although it does not require extra work or memory during precom-
putation, this summation scheme presents strong limitations in term of storage, in particular
when it comes to storing the expansions at run time. Indeed, the r multipole expansions,
r local expansions, and the associated transformed expansions have to be stored indepen-
dently. For instance, as shown on Figure 5.6, for p = 4 and a densely populated octree
of maximum level L̄ = 6, the memory required to store the expansions associated to one
right-hand-side equals 5 GigaBytes. Therefore, the number r of right-hand-sides should not
exceed rmax = 10, because this would result in a total memory footprint of 50GB for the
expansions only. As a comparison, storing the entire matrix would cost 8× (105)2 = 80GB.
Consequently, if the input r exceeds rmax, e.g., r is a fraction of the problem size, then we
need to perform several sequential but independent multi-rhs FMM.
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Figure 7.8: Schema c view of the FMM with mul ple (r) right-hand-sides.

Computational cost In a naïve implementation, the computational cost of this scheme
would roughly equal r times the cost of a standard FMM. First of all, our implementation
of the P2M and L2P steps decouples the computation of the polynomial interpolators and
the multivariate expansions, in order to factorize as much operations as possible. Second
of all, the M2L step is implemented in a similar fashion as the tensorial approach presented
in Appendix A. In the bbfmm, if r were large enough, the M2L step could be performed in
a block way instead of component by component, e.g., through a matrix-to-matrix product
based on level-3 Blas routines. However, due to the excessive memory required for large r

this approach is not relevant. In the ufmm, there is no point in blocking the operations,
since we perform an entry-wise product. Consequently, at the M2L step in both variants, we
transfer one rhs at a time using a simple loop over rmax. Hence, transferring all rhs costs r

times more than transferring one rhs.

7.3.2 Precomputing the P2P operators
As we just demonstrated, there is not much room for improvement in the farfield computa-
tion when performing FMM with multiple rhs, since we quickly reach a memory limit. On
the other hand, as explained in this subsection, many operations can be factorized during
the nearfield computation.

Implementation The nearfield computations of a single rhs FMM involve the computa-
tion of the kernel for all pairs of particle lying in neighbor cells and the direct evaluation
of the sum (7.9). However, there is no need to compute a new set of interactions for each
right-hand-side, the P2P operators can instead be precomputed and stored. The P2P opera-
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tors are eventually applied to a set of r rhs at once using Blas::gemm() routines provided
by the Intel MKL library. As a result, the application of the P2P is a lot faster than in the
original algorithm and the balance is not necessarily obtained for the same tree depth L̄.

Storage The memory required for storing the P2P operators

K =
{
k(xi,yj)

}
xi∈tree,yj∈N (C(L̄)

xi
)

(7.14)

equals n× 27n0× 8 bytes in double precision arithmetic if the tree is fully populated. Since
the memory footprint scales like n, i.e., like the number of (non-empty) cells, then it can
quickly become prohibitive. Figure 7.9 shows the theoretical amount of memory needed for
storing K for a uniform distribution of particles in a cube for various values of n and n0. If
we consider typical simulations using n0 = n/8L̄ = 64 particles per leaf, then for n = 256.000

particles with L̄ = 4, we would already need 3.5GB and for n = 2×106 particles with L̄ = 5,
we would need about 30GB.
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Figure 7.9: Theore cal memory requirements for the nearfield computa on in the worst case scenario (no empty cell).

7.4 Numerical Benchmarks
In this section, we present the performance of our algorithm within the range of accuracy
required by the generation of Gaussian Random Fields. We first present the computational
running time of our multi-rhs FMM for a smooth kernel. Then, we compare the performance
of the H2-powered rSVD with the rSVD and the truncated SVD. Finally, we validate our
method by generating many Gaussian Random Fields and verifying the convergence of the
sample mean and covariance w.r.t. the number of realizations. We also present realizations
on the unit sphere with the Gaussian kernel for multiple length scales.
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7.4.1 Fast Matrix multiplication

multi-rhs In order to calibrate our multi-rhs FMM, we measure the performance of the
ufmm and smooth-ufmm for p = 3, which ensures an accuracy of εfmm = 10−3 on the
matrix multiplications. Figure 7.10 shows the running times per matrix-to-vector product
for r = 10 rhs and particles distributed in the unit cube or on the unit sphere. Since the
experiments are very similar to those presented in Section 5.4, we draw similar conclusions
concerning the relative performance of the ufmm and the smooth-ufmm, as well as concerning
the good performance on heterogeneous grids such as the unit sphere. The computational
time are significantly lower since the interpolation order is lower and the P2P operators are
precomputed. In order to show the speed-up of the multi-rhs FMM compared to the direct
computation, we assemble a full covariance matrix and apply it to r = 10 rhs using MKL
Blas routines.

global fft The smooth-ufmm with L̄ = 0 boils down to an FFT-accelerated Lagrange
interpolation on the root bounding box. We call this method the global fft as it generalizes
the idea of the FFT on an arbitrary grid. The global fft has a theoretical linear complexity
in n, that can be verified on Fig. 7.10. Furthermore, for a given root bounding box the
performance of the global fft are independent of the shape of the distribution. Although
this method requires larger interpolation orders to reach similar accuracies as the ufmm
and the smooth-ufmm, that both rely on several subdomains, only one expansion has to be
transfered. As shown on Fig. 7.10, even in this range of accuracy, the global approach is
always slower than the hierarchical variants even with a fully populated octree (Fig. 7.10
left). Moreover, since hierarchical variants benefit from the heterogeneity of the distribution,
they beat the global fft by a significant factor on geometries such as the unit sphere (Fig. 7.10
right). The figures presented in Appendix C confirm these observations for a fixed n and
a varying accuracy. However, they show that the global fft exhibits performance that are
similar to the hierarchical variants for high values of ℓ, i.e., very smooth kernels.

7.4.2 Fast Randomized SVD

The accuracy and the O(n) complexity of the H2-powered rSVD are now illustrated for a
Gaussian correlation with ℓ = 0.5 and particles distributed on the unit sphere.

Optimal setup As shown by Figure 7.4 the covariance matrix can be represented by
a matrix of rank r ≈ 70 with a precision of about ε = 10−2 in Frobenius norm using a
conventional rSVD. In this case, our experiments showed that the smallest interpolation
order that does not affect the randomized algorithm is p = 3 for the ufmm, i.e., εfmm < 10−3.
If the desired accuracy equals ε = 10−3 then r ≈ 100 and p = 4 was found optimal, i.e.,
εfmm < 10−4. This confirms the optimal setup rule proposed in (7.8).
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Complexity & Speed-up Figure 7.11 shows the time required to build an approximate
square root of C within an accuracy of 10−2 in Frobenius norm. It confirms the theoretical
asymptotic complexities of all approaches, namely cubic for the full SVD (in red), quadratic
for the truncated SVD based on Arnoldi’s algorithm (in green) and randomized SVD (in
black) and finally linear for the H2-accelerated randomized SVD. As mentioned in [64], we
observe that the running times of the fixed rank and fixed accuracy variants are very close
to each other and that they outperform the truncated SVD by a factor of 6.5. Moreover, the
H2 variants (ufmm and smooth-ufmm) are faster than the original rSVD for n ≥ 104. Not
only do these variants allow computation to be performed for n up to a few millions but they
also provide significant speedup, e.g., they would be about 10 times faster for n = 105 if only
a dense matrix multiplication was affordable. This acceleration is even more pronounced
for smooth kernels and heterogeneous grids as explained in Section 5.4 and recalled by the
results displayed on Figure 7.10. Finally, we notice that even if the cost of computing
matrix multiplication has been dramatically reduced, it still governs the overall cost of the
algorithm. For instance, for n = 2.592.000 particles and r = 70 the random projection is
done in about 360s, while the QR Decomposition only takes 50s. This can be seen directly
on Figure 7.10 since the curves corresponding to FMM algorithms have the same shape than
those of Figure 7.11.

7.4.3 Realizations of Gaussian Random Fields
Gaussian Random Fields were simulated on particles distributed on the unit sphere using
Gaussian correlations with varying length scales ℓ. The approximation is done by mean of
a fixed precision (ε = 10−2) rSVD with ufmm- or smooth-ufmm accelerated matrix multi-
plications. Realizations are displayed on Figure 7.12 for length scales ℓ ∈ {0.25, 0.5} using
the smooth-ufmm. The figure shows that the actual correlation length between grid points
roughly corresponds to the input ℓ. Smaller length scales computed by mean of a standard
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ufmm are displayed on Figure 7.13. In particular, it shows that decreasing the accuracy by
one order of magnitude is hardly noticeable on such visualizations. Furthermore, since the
length scale is quite low, namely ℓ = 0.1, the rank is relatively large but the square root is
still precomputed in a reasonable amount of time, namely 90 seconds for 10−1 accuracy and
175 seconds for 10−2.

Accuracy The sample covariance matrix Creal, computed from the realizations as

Creal =
1

nreal

nreal∑
i=1

(Yi − E(Yi))(Yi − E(Yi))
t (7.15)

provides a good approximation of the experimental covariance of a finite sample. Therefore,
we analyze the accuracy of the method using the error between Creal and the input covariance
matrix C. In order to limit the computational cost required by verifications, the error can
be computed on a random subset of the matrices. The accuracy of the method w.r.t. the
number of realizations nreal is presented in Table 7.1. These results show that the ufmm and
the smooth-ufmm can be used to generate correlated random fields within similar accuracies
for ℓ ≥ 0.25, while maintaining a convergence rate that is close to the theoretical 1/2.
For lower length scales we recommend using the ufmm in order to better capture the fast
variation of the kernel, i.e., the potentially high rank of the matrix.

Running times As shown on Figure 7.11, for a Gaussian correlation with ℓ = 0.50, build-
ing an approximate square root with n = 72.000, r = 70 takes about 20 seconds with the
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ufmm, 8 seconds with the smooth-ufmm while it would take about 5 minutes with dense
matrix multiplications. For ℓ = 0.25, the rank r and the computational times are about 3

times larger. The ufmm also provides significant speed-up for matrices of relatively high
rank associated with low length scales ℓ or non-smooth correlations. For a given length
scale, the performance of the ufmm depends only very weakly on the nature of the corre-
lation function, therefore the computational cost associated with non Gaussian correlation
can be easily estimated once the rank is known.

Gaussian k∞

ℓ = 0.25, r = 210 ℓ = 0.50, r = 70

Figure 7.12: Realiza on of a Gaussian random field on n = 72.000 points distributed on the unit sphere using a Gaussian
correla on with ℓ = 0.25 (le ) and ℓ = 0.50 (right). The approximate square root was obtained by mean of a smooth-ufmm-
accelerated rSVD with a fixed accuracy of ε = 10−2.

Gaussian k∞

ℓ = 0.10, ε = 10−2, r = 1097 ℓ = 0.10, ε = 10−1, r = 560

Figure 7.13: Realiza on of a Gaussian random field on n = 72.000 points distributed on the unit sphere using a Gaussian
correla on. The approximate square root was obtained by mean of a ufmm-accelerated rSVD with a fixed accuracy of ε = 10−2

(le ) and 10−1 (right). Observa ons: The differences in terms of covariance quality and smoothness of the field are hardly
no ceable on a 3D visualiza on. However, since the rank is roughly divided by 2, the method is twice as fast for the lower
target accuracy.

7.5 Conclusion
Square root algorithm We designed a matrix-free algorithm for computing approximate
square roots of kernel covariance matrices in SVD form in linear time. This algorithm re-
lies on a new highly efficient kernel independent FMM that can further benefit from the
heterogeneity of the grid and the smoothness of the correlation kernel. The presentation of
the algorithm and the experimental results are summarized in a research report [15]. Many
geostatistical applications and in particular Kalman Filtering, a very popular data assimila-
tion technique, involve intensive matrix computations on arbitrary grids with up to several
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ℓ = 0.25

ufmm smooth-ufmm
nreal ∥Creal −C∥2,rel roc2 ∥Creal −C∥∞,rel roc∞
1 · 103 2.48 · 10−1 1.47 · 10−1

1 · 104 7.88 · 10−2 0.5 4.53 · 10−2 0.51
1 · 105 2.63 · 10−2 0.48 1.57 · 10−2 0.46
1 · 106 1.02 · 10−2 0.41 8.53 · 10−3 0.27

nreal ∥Creal −C∥2,rel roc2 ∥Creal −C∥∞,rel roc∞
1 · 103 2.48 · 10−1 1.57 · 10−1

1 · 104 7.88 · 10−2 0.5 5.68 · 10−2 0.44
1 · 105 2.67 · 10−2 0.47 1.84 · 10−2 0.49
1 · 106 1.09 · 10−2 0.39 1.09 · 10−2 0.23

ℓ = 0.50

ufmm smooth-ufmm
nreal ∥Creal −C∥2,rel roc2 ∥Creal −C∥∞,rel roc∞
1 · 103 1.31 · 10−1 1.12 · 10−1

1 · 104 3.75 · 10−2 0.54 4.56 · 10−2 0.39
1 · 105 1.41 · 10−2 0.43 1.76 · 10−2 0.41
1 · 106 4.72 · 10−3 0.47 5.95 · 10−3 0.47

nreal ∥Creal −C∥2,rel roc2 ∥Creal −C∥∞,rel roc∞
1 · 103 1.32 · 10−1 1.21 · 10−1

1 · 104 3.72 · 10−2 0.55 3.95 · 10−2 0.48
1 · 105 1.39 · 10−2 0.43 1.35 · 10−2 0.47
1 · 106 4.45 · 10−3 0.49 5.69 · 10−3 0.37

Table 7.1: Error (and rate of convergence, roc) on the covariance matrix C (n = 72.000) w.r.t. the number of realiza ons
nreal for a Gaussian correla on with ℓ = 0.25 (top) and ℓ = 0.50 (bo om). The approximate square root used to generate
realiza ons is computed using a fixed accuracy randomized SVD (ε = 10−2) powered by ufmm (le ) or smooth-ufmm (right)
with p = 3. The sample covariance Creal is computed from the nreal realiza ons as (7.15). Observa ons: The convergence
rate is close to the theore cal rate, i.e., 1/2. The rate slightly decreases as n grows, since C̃ fails to represent C with sufficient
accuracy, though the sample covariance accuracy is already very sa sfying, namely below 10%.

million points. Fast low-rank variant of those algorithms often require the efficient compu-
tation of matrix square root, namely Ensemble Kalman Filters. Another useful application
of our algorithm called denoising consists in removing correlated noise from a given random
field using the inverse square root of the covariance matrix.

H2-powered Randomized SVD Our approximate SVD algorithm showed good perfor-
mance even for matrices of relatively high rank and can partially overcome issues related
to matrices with relatively flat spectrum. This contribution is a rare attempt at accelerat-
ing random projection based Low-Rank Approximation (LRA) algorithms using the block
low-rank structure of the input matrix, which proved its efficiency on artificial test cases
and should now be applied to real-life applications. Finally, since many covariance matrices
arising in geostatistical applications are computed purely algebraically, e.g., from the ex-
perimental field, one should consider using the general H2 format in order to derive linear
time factorization algorithm.
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8.1. Multidimensional Scaling on biological datasets

Covariance matrix computations are involved in numerous fields of scientific computing
such as geostatistics, computational economics, computational biology, machine learning,…
In geostatistical applications such as the one addressed in Chapter 7 the covariance matrix
is often given as a smooth and fast decreasing kernel with nice low-rank properties, that al-
lows for Fast Multipole Method (FMM)-powered matrix computations, e.g., multiplication,
matrix decomposition, square root, inversion,… In the general case where the covariance
matrix is only known algebraically, e.g., assembled from the data, it often exhibits a cer-
tain structure, that can be exploited in order to improve the performance of the matrix
computations. In this chapter, we focus on a dimensionality reduction algorithm known
as Multidimensional Scaling (MDS), that allows for visualizing a point cloud in a low di-
mensional subspace by the only knowledge of the set of pairwise distances. In particular,
we want to make this method tractable to large biological datasets, where distances are
computed as dissimilarities between DNA sequences. This application was addressed for
the following reasons:

• Extend the capabilities of our randomized LRA library to arbitrary covariance matri-
ces.

• Design an operational tool for performing classification on large real life datasets pro-
vided by New Generation Sequencing (NGS).

• Provide new materials and design new metrics for investigating new ways of charac-
terizing the biodiversity.

We first describe the standard MDS approach as well as some specificities of biological
datasets. Then, present a new approach based on random projection and discuss its com-
plementarity with the state-of-the-art method. Finally, we provide some visuals in order to
better understand what useful outputs our method can provide to perform classification on
large datasets.

8.1 Multidimensional Scaling on biological datasets

In this section we present the fundamentals of MDS and discuss some key issues related to
error estimation. Then, we put the emphasis on the computational aspects and we highlight
the limits of the standard fast MDS algorithm. Finally, we discuss some specific issues
related to the operational chain addressed in this thesis.

8.1.1 Multidimensional Scaling

The method implemented here is the metric MDS, please refer to [66] for a recent survey
and [35] for a seminal monograph.
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Metric MDS Let us have a set of n items i with i ∈ E = {1, . . . , n}, and a distance Dij

between items i and j, then (E,D) is a finite metric space. Let r ∈ N and Rr have a bilinear
form B with an associated quadratic form q. Then, (E,D) is embedded into (Rr, B) if there
exists a map E : i −−−→ Xi ∈ Rr such that

D2
ij = q(Xi −Xj). (8.1)

If (Rr, B) is an Euclidean space, this is the classical

D2
ij = ∥Xi −Xj∥22. (8.2)

For a given dimension r ∈ N, the metric MDS consists in finding a map such that ∥Xi−Xj∥2
is as close as possible to Dij. The solution is well-known when B is definite positive [35]
and it is implemented in three steps:

1. Pre-treatment: We denote S, the similarity matrix associated with B,i.e.,

Sij = B(Xi,Xj) (8.3)

whose entries can be computed from the distances only as

B(Xi,Xj) = −
1

2

(
D2

ij −
1

n

∑
k

D2
kj −

1

n

∑
k

D2
ik +

1

n2

∑
k,ℓ

D2
kℓ

)
(8.4)

2. Factorization: Compute the eigenvalue decomposition of S

S = UΛUT (8.5)

3. Components: Represent the point cloud by the components of

X = UΛ1/2 (8.6)

It is straightforward that X verifies S = XXT, in fact

S = UΛUT = (UΛ1/2)(UΛ1/2)T = XXT (8.7)

If all eigenvalues are strictly positive, then (E,D) can be embedded isometrically in a
Euclidean space, and a best low-dimensional approximation can be computed. The accuracy
of this map is usually quantified by the error committed on the distance reconstruction,
which reads as

δ(X) =
∥∆2(X)∥F
∥D2∥F

, (8.8)
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where the entries of the distortion matrix ∆2(X) read as

∆2
ij(X) = D2

ij − ∥Xi −Xj∥22, ∀i, j = 1, . . . , n. (8.9)

Negative eigenvalues However, in general, not all eigenvalues of S are strictly positive,
since the input distance is not Euclidean. This means that

√
Λ may have imaginary parts,

which may induce extra distortion in the point cloud and affect the quality of the recon-
struction. In fact, it is possible to show that there exists an isometry into a pseudo-euclidean
space, i.e., a vector space with a bilinear symmetric form, with positive and negative eigen-
values (see [58] and [99] with references therein). Then, there exists two Euclidean spaces
E+ and E− of dimensions r+ and r− respectively if the bilinear form is of signature (r+, r−),
such that D2

ij = ∥X+
i−X+

j∥22−∥X−
i−X−

j∥22. Let Λ+ be the diagonal matrix of strictly
positive eigenvalues, and −Λ− of strictly negative ones. Let X+ be the n × r+ matrix of
images in E+, and X− of images in E−. Then, X+ = U+(Λ+)1/2 and X− = U−(Λ−)1/2.
Hence, the distortion matrix can be expressed on both E+ and E− as

∆2
ij(X

+, X−) = D2
ij − ∥X+

i −X+
j∥22 + ∥X−

i −X−
j∥22, ∀i, j = 1, . . . , n (8.10)

or on E+ only as

∆2
ij(X

+) = D2
ij − ∥X+

i −X+
j∥22, ∀i, j = 1, . . . , n. (8.11)

Finally, we can show that for an exact representation of the similarity matrix, i.e., Xi ∈ Rn,
the distortion associated to the representation in E+ defined as

δ(X+) =
∥∆2(X+)∥F
∥D2∥F

(8.12)

is related to the energy of the matrix associated to negative eigenvalues ε− by the following
expression

δ2(X+) =
ε−

ε+ − ε−
, with ε− =

∑r−

i=1(λ
−
i )

2∑n
i=1(λi)2

, (8.13)

In the case of a rank-r approximation this relation is more complicated and will be analyzed
experimentally in this chapter.

Other factorizations Many matrix decomposition techniques (Cholesky Decomposition,
Singular Value Decomposition (SVD), …) can provide a valid factor X, i.e., real valued
components, as long as the matrix is spsd. Since S is in general not strictly positive definite,
the Cholesky Decomposition does not apply. However, S is symmetric, thus a factorization
equivalent to (8.5) is achievable using an SVD, which takes the following form

S = UΣVT (8.14)
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where V is also an orthonormal matrix and the singular values σi need be positive and verify

σi = |λi|, ∀i = 1, . . . , n (8.15)

If λi < 0 then the i-th column of V integrates this negative sign. Hence, if the factorization
is obtained in SVD form then the conversion to Eigen Value Decomposition (EVD) form is
straightforward.

8.1.2 Limits of standard techniques and alternatives
As far as calculation is concerned, the most demanding step is step 2, i.e., computing the
eigenvectors and eigenvalues of S. As mentioned numerous times in this thesis, the cubic
cost of direct approaches such as full SVD is intractable to large sample sizes. Although
there exist iterative algorithms for computing EVD, e.g., Arnoldi, randomized low-rank
approximation techniques usually perform better and offer more flexibility, while reaching
near optimal accuracy for most matrices involved in practical applications.

Column selection The usual work around in metric MDS is to consider subsets of the
rows and columns of the input matrix, then perform the MDS on the resulting subsample
and finally use a matrix factorization technique known as the Nyström method [121] to
reconstruct the entire point cloud. The standard Nyström approach consists in first sampling
c columns from S and building an approximation of S as

S ≈ CW†CT (8.16)

where C ∈ Rn×c gathers the sampled columns and W† is the Moore-Penrose pseudo-inverse
of W the matrix of sampled rows and sampled columns. Hence, Nyström based MDS provide
an approximate map, that reads as

X ≈ CW†/2 (8.17)

Many fast MDS variants derive from that approach, e.g., Landmark MDS [39, 40], FastMap
[53] or MetricMap [116]. More precisely, each approach differs from the other by the variant
of the Nyström method it implements, namely the way it selects the columns and/or builds
the factorization. Nyström based MDS is usually very convenient for biological applications
since it offers interpretability, i.e., easy connection between components and individuals,
and very competitive performance. However, it presents some significant drawbacks, that
we discuss in the following.

Limitations First of all, the Nyström factorization only applies to spsd matrices. As
stated in [56], although the extension of Nyström approach to non-spd similarity matrices
was addressed in [13], the alternatives usually lack stability. Moreover, the design of effi-
cient non-negative embeddings is not the purpose of this work, but the reader will find a
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fair amount of articles on that topic under the name non-metric MDS. Second of all, as
shown in [101], certain variant like Landmark MDS and FastMap may produce negative
eigenvalues. Finally, it is usually very involved to predict or even just monitor the num-
ber of selected rows/columns to achieve satisfying accuracy on the rank r approximation
of a given matrix, not to mention the variability of the approximation error. An improved
Nyström factorization was proposed in [119] and designed to provide better accuracy, that
reads as

S ≈ (CC†)S(CC†)T (8.18)

However, as mentioned in [57], this variant is just another instantiation of the random
projection based Low-Rank Approximations (LRAs) described in [64]. In particular, it has
a similar computational cost without the many benefits of random projection described in
the present chapter.

Random projection Although the concept of random projection is intrinsically related
to dimensionality reduction through Johnson-Lindenstrauss Lemma [68], to our knowledge
there are very few contributions to MDS that involve neither sparse or dense random pro-
jection if any. Moreover, since random projection belongs to a broader class of sketching
techniques, including random sampling to some extent, it offers a large variety of fast al-
ternatives. In fact, many random projection techniques such as the original Fast Johnson
Lindenstrauss Transforms (FJLT) [5], rely on sparse or very sparse projection [3], which is
in essence very close to column selection and performs similarly. On the other hand, dense
random projection based LRAs [64, 45, 115] represent significant alternatives to iterative
EVD algorithms, as they share the same complexity, namely O(rn2), but usually perform
significantly better. Despite involving more intensive computations than sparse projection
or random sampling they have many benefits such as better accuracy, robustness and low
variability. Furthermore, they provide factorization in many practical forms such as SVD,
Cholesky Decomposition or Interpolative Decomposition, and they can be tuned to reach
near optimal accuracy at a relatively low extra cost. Finally, since the efficiency of the
random projection based LRA algorithms mostly depend on the ability to apply fast matrix
multiplication, it can be improved by exploiting the structure of the matrix and it can be
parallelized straightforwardly.

8.1.3 Origin and nature of the data
Workflow We integrated our new algorithm in an operational chain that consists in the
three following steps:

• Compute distance matrices from sequences provided by NGS and store them on iRods.
Please refer to [55] for further details on the pairwise distance computations.

• Transfer the distance matrix D associated with a sample to plafrim2, perform MDS
on the full sample or subsamples and store associated components X.
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• Post-treat components on a local or a cluster computer and provide some data to be
analyzed, namely statistics and visuals.

We mostly contributed to the improvement of the second step, while focusing on providing
relevant information for the third step that can be analyzed easily. In this section, we
define the goals of our contribution in terms of performance and storage improvement, error
estimation and visualization. In particular, we discuss the specificity of the data involved
in this chain and illustrate it on small subsets of full samples for which exact full SVD is
affordable.

Sample compute distances transfer and convert subsample perform MDS
(Lake Geneva) S-W on Turing iRods→plafrim 104 reads full SVD

105 reads 4h 20min + 1h40 30s 20min

Table 8.1: Some average running mes related to expensive opera ons involved in the opera onal chain. Observa ons: The
large amount of me required to convert distance matrices from text files to binaries actually represent a significant gain com-
pared to the ini al state of the chain (text files read from python). In fact, since opera ons such as subsampling may be repeated
numerous mes for a given sample, it is recommended to store the full distance matrix on the disk in a format that allows for a
fast loading of the full sample in memory.

Samples The samples studied in this thesis were collected in Lake Geneva at various time
t = 1, . . . , 10 of the year, that we denote Lt. They correspond to diatoms scraped from 5
stones each month between April 2012 and March 2013 in order to investigate a seasonal
dynamics. Some individuals have previously been identified while other remain unknown.
Table 8.2 shows the size of the different samples involved in this chapter, that go from about
70.103 to 140.103 reads. Therefore, samples can have quite different sizes. We expect the
point clouds to have different shapes while always present clusters and comparable numerical
rank.

sample name L1 L2 L3 L4 L5 L6

#sequences 72083 98492 72897 136450 75218 99594

Table 8.2: Size of diatoms samples from Lake Geneva at various me of the year. Observa ons: The number of sequences,
a.k.a., reads, can vary by a factor of 2, while the average number of reads is approximately 100.000.

Distances & Similarities As opposed to the previous applications considered in the
thesis, where the point cloud is known a priori (or generated randomly) and the interactions
are computed using kernel functions, here the data are given as raw distance matrices, a.k.a.
dissimilarity matrices. There are several ways of comparing DNA sequences (see [61, 126]),
the dissimilarity used here is computed from a local alignment score [61, p. 232] using Smith-
Waterman algorithm [109]. The entries of the distance matrices have a very low resolution,
namely 0.05 for a maximum value below 650. In particular, the distance matrices can be
multiplied by 100 and stored as short unsigned integers. Then, the similarity matrix S can
be assembled very efficiently using single precision arithmetics and then stored in memory
using single float. For n = 10.000 the similarity matrix is computed in 0.2s and stored
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using 400MBytes, therefore a full sample takes about 40GBytes in memory, which fits the
128GBytes available on plafrim2/miriel nodes and leaves room for storing a large number
of components, namely up to r = n.
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Figure 8.1: Best rank-r error w.r.t. the rank in term of Frobenius (right) and Spectral (le ) norm for a subset of a full sample from
Lake Geneva at various mes. Sr is obtained by mean of a full SVD, therefore we can only afford to compute small subsamples,
namely up to n = 104.

Spectrum In the following we will mostly focus on the properties and the low-rank struc-
ture of the similarity matrix S, that will often be refer to as a similarity or a covariance
matrix, since it represents correlations between sequences of the sample. In order to design
an efficient LRA technique, we first need to ensure that the similarity matrix fulfills the hy-
pothesis of low numerical rank, i.e., r << n. The numerical rank is usually defined in term
of the reconstruction error on the covariance and cannot be lower than the best rank-r error
provided by the SVD. As shown on Figure 8.1, for subsamples up to 10.000 reads selected
from a full sample at various times, the reconstruction error reach a value of 10−3 in Spectral
norm and about 10−2 in Frobenius norm for a rank of about r = 200, i.e., 2% compression.
However, one needs to set the rank to r ≈ n/2 in order to reach a relative error of 10−3

in Frobenius norm. Moreover, the best rank-r relative errors of all subsamples (of any size
and origin) almost coïncide for the first r = 100 eigenvalues. In particular, the similarity of
all subsamples can be approximated with r = 10 within 10% of accuracy in Frobenius norm
and r = 40 within 0.1% of accuracy in Spectral norm. These remarks on the numerical
rank will be confirmed in Section 8.2 on larger subsamples and full samples. Finally, despite
being rather flat, the spectrum of the similarity matrices associated to our samples decreases
sufficiently fast (Figure 8.1 left) to be well approximated by random projection.

Distortion A key issue in our application is to ensure a certain accuracy when reproducing
the point cloud, that we quantify in term of the distortion δ(X) , i.e., the representativity
error of the computed components on the distance. First of all, the numerical rank should
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ideally be determined w.r.t. to the distortion, thus providing an application-oriented crite-
rion. Second of all, the relation between the distortion and the accuracy of the low rank
approximation of the similarity matrix should be investigated in order to set the target
accuracy of our LRA algorithm w.r.t. to the target distortion. Figure 8.2 shows the evo-
lution of the distortion w.r.t. to the rank r for the first 1.000 entries of a full sample. We
can observe that the distortion decreases then reaches a plateau at about r = 10, where it
stays slightly inferior to 10%, and then decreases again until it reaches its minimum value,
namely about 0.1 to 0.01%. If 10% distortion seems sufficient then only 20 components can
be used to represent the point cloud, for better accuracy one should consider much larger r,
namely between 200 and 500. On the other hand, if we look at the fraction of the energy
of the similarity matrix associated to negative eigenvalues, we observe that it grows fast
once the first negative eigenvalue occurs. However, the relative contribution of the negative
eigenvalues to the Frobenius norm, defined as

ε−r =

∑r−

i=1(λ
−
i )

2∑r
i=1(λi)2

, (8.19)

stops increasing after r = 200, where it reaches its maximum value, namely 5 to 6%. This
illustrates the correlation between distortion and negative singular values mentioned earlier
on.

Coherence A crucial information when performing subsampling is the coherence of the
matrix, please refer to [111, 91] for nice introductions to the concept of matrix coherence and
its relation to the performance of the Nyström method. If each column contains the same
amount of information on the matrix, i.e., information is spread equally throughout the
columns, then the matrix is incoherent. As a result, columns can be sampled uniformly at
random in order to accurately represent the full matrix. On the other hand, if only certain
columns concentrate valuable information on the full sample, then the matrix is coherent
and columns should be selected more carefully. In order to quantify the importance of a
column we usually associate the i-th column with a leverage score ℓri for i = 1, . . . , n defined
as the Euclidean norm of the rows of the singular vectors of the input matrix, namely

ℓri = ∥Ui∥2 =
√

U2
i1 + . . .+ U2

ir. (8.20)

In particular, the leverage scores quantify the correlation between the columns and the
basis formed by the first r eigenvectors. A common technique to select columns properly for
coherent matrices is based on random sampling with probability proportional to the leverage
scores [79, 57], hence the higher the score of a column the higher the probability to sample
that column. However, computing the leverage scores of a matrix requires computing the
rank-r SVD of the input matrix, which is in general not affordable. A common alternative
is approximating those scores by mean of a Randomized SVD (rSVD) [46], which make the
design of an efficient rSVD even more relevant for MDS applications. On the other hand,
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there exist other methods to select relevant columns in a matrix that perform relatively
good in practice, e.g., deterministic approach based on the pivoted QR Decomposition [50],
semi probabilistic approaches on k-cluster partitioning [4] or combination of randomized and
deterministic algorithms [20]. The matrices studied here are expected to have low coherence
since all individuals are supposed to have similar significance, as a matter of fact their
presence in the sample is inherently random. This assumption will be verified in Section 8.2
since the computation of the coherence of the full sample can only be achieved by mean of
a randomized SVD.

Visualization The main goal of our approach is to achieve an efficient and handy visu-
alization technique that provides relevant information on some real-life samples of about
100.000 sequences at various time of the year, namely about 10 measures corresponding to
different months. First of all, we would like to be able to characterize the shape of the
point clouds in the first few dimensions, identify potential clustering and relate clusters to
identified species. Second of all, we want to compare these shapes between various times in-
dividually or using cross correlations. Finally, we would like to provide handy visualization
technique to characterize clustering in larger dimensions.

8.2 Random projection aided MDS

In this section, we present our main contribution, namely a random projection based MDS
algorithm, that allows for treating samples up to several hundred thousand reads on a single
node in reasonable time, namely within a few minutes. The algorithm also allows for :

• computing distortion compared to the input distance,

• approximating the spectrum of the matrix,

• and evaluating the coherence of the matrix to be used for improving a subsequent
subsampling.

We first discuss the benefits of random projection and present our approach. Then, we setup
the parameters of the algorithm and we analyze the distortion on small subsamples. Finally,
we analyze the performance of the algorithm on full samples.

8.2.1 Fast MDS based on random projection

Here we introduce a new random projection based MDS algorithm and show how it can
contribute to the design of more efficient randomized MDS algorithm in general. Then, we
perform simulations on subsamples with an intermediate size, namely 10, 20 or 30 thousand
reads, in order to calibrate the input rank and the tune up parameters.
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Random Projection Our prior analysis of the data (Section 8.1.3) showed that simi-
larity matrices involved in our application could be well-treated by random projection in
term of both accuracy and performance. In particular, we highlighted the relatively low
numerical rank of the similarity matrix S given the low target distortion, namely about
10%. Furthermore, within this range of accuracy, the spectrum associated to each sample
appeared to decrease sufficiently fast and behave independently of the time t or subsample
size. Therefore, we have implemented an MDS algorithm relying on a random projection
LRA technique, namely the rSVD (Algorithm 6) introduced in Chapter 3. In this approach,
the similarity matrix is approximated as follows

S ≈ (QQT)S(QQT), (8.21)

namely the projection on a rank-r approximation Q of its range, itself obtained by dense
Gaussian random projection (3.4). While being inherently related to dimensionality re-
duction, this approach presents many numerical benefits compared to random sampling
technique, such as strong theoretical error bounds, near optimal accuracy in practice and
good performance, while leaving significant room for improvement. Although the theory
behind this approach is relatively involved, the method is easily implemented, stable and
rather robust, which makes it both attractive and accessible to computational biologist for
instance. Furthermore, the factorization in EVD form provided by the rSVD gives useful
information on the structure of the similarity matrix, e.g., coherence, rank and any quantity
that can be computed from the approximate eigen-pairs. In particular, we can estimate the
reconstruction error in Spectral norm, compute the energy of the approximate similarity or
even detect negative eigenvalues and evaluate the associated distortion.

Subsampling As discussed in Chapter 3, the design of an efficient randomized algorithm
mostly relies on a good knowledge of the input data and matrices (structure, clustering,…)
and it can often benefit from efficient combinations of both random sampling and random
projection techniques. In our application, since working on the full sample or on a random
subset should in essence lead to similar conclusions for a given sample, it can be very useful
to perform a few computations on subsamples before performing computations on the full
dataset. This allows us to draw preliminary conclusions on the structure of the similarity
matrix in order to ultimately tune up our algorithm. Since our random projection algorithm
can be used to efficiently approximate the coherence of the matrix [46], we can verify by
analysis of the leverage scores whether or not subsets of the full sample can be selected
uniformly at random. If it is not the case, then the algorithm provides useful information to
select a more relevant subset. In that sense, our contribution not only provides an alternative
to column selection algorithms with many extra benefits, but it could as well help design a
more efficient column selection approach.
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Fixed rank or accuracy Our new approach involves very little modification on the
original MDS algorithm, as it only relies on a new way to perform the EVD of the similarity
matrix S. In that sense, the target accuracy or the rank of the algorithm is set in the same
fashion as a standard tSVD. In order to validate and calibrate our algorithm it is more
convenient to prescribe the number of components that we want to visualize. Therefore,
we prefer the fixed rank rSVD. Since we do not want to visualize more than a few hundred
components, we will determine the prescribed rank to be the rank that leads to a few
percent distortion on a length-n subset of the full sample such that r << n. The associated
reconstruction error on the covariance matrix will ultimately be taken as input of the fixed
accuracy rSVD.

Oversampling and Power iterations As opposed to the tSVD, the rSVD provides
approximate rank-r factorization, therefore it needs to be carefully tuned in order to make
this approximation near optimal at a small extra cost. Figure 8.3 shows the accuracy of the
rSVD on the spectrum of the similarity matrix for the sample L6. The rSVD accurately
estimates the first 100 eigenvalues even without oversampling (s = 0), but it may fail
to identify the last few eigenvalues. The figure also shows that significant oversampling
(s = r) can substantially improve the accuracy. Although the accuracy still decreases
slightly on the last part of the spectrum, the associated eigenvalues hardly contribute to
the reconstruction error (Figure 8.1). For instance, for n = 10.000 random reads from L6,
the reconstruction error achieved for r = 200 equals 2.1% in Frobenius norm while the best
rank-r is 1.6%. Finally, simulations showed that this issue can be fixed by a single power
iteration, nevertheless we prefer to avoid that and tolerate this small difference in order to
develop a faster algorithm.

8.2.2 Validation of the method

Here we validate our method on various subsamples of a given Lt sample, namely L6. We
first show the benefits of using random projection to select a relevant subset of the full
sample. Then, we discuss the accuracy of our approach on various subsamples and compare
it with full samples.

Subsampling First of all, we want to verify whether or not uniform sampling of the
columns applies well to our datasets. Let us analyze the leverage scores associated to the
sample L6. Figure 8.4 shows some statistics such as the mean, variance and extrema of
the leverage scores up to r = 1.000. In particular, we observe that for an artificial sample
with n = 10.000 (Figure 8.4 left) the scores are spread equally around the mean and have a
rather small variance. This shows that the similarity matrix associated with this sample is
incoherent, i.e., all columns contain about the same amount of information on the sample.
However, the full sample exhibit a different behavior (Figure 8.4 right) in the sense that some
leverage scores are significantly larger than the rest and make the distribution deviates from
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Figure 8.3: Le : First 500 eigenvalues of a random subsample ofL6 compared to approximate values obtained by rSVD without
(s = 0) or with (s = r/2) oversampling. Right: First 200 approximate eigenvalues obtained by rSVD with significant oversam-
pling s = r on larger subsamples: n = 10.000, n = 20.000 and n = 30.000. We use the result of a rSVD with r = 1.000 as
an overkill to compare the approximate spectrum to a near op mal spectrum, but also to show that the rSVD delivers a result
with very low variability. Observa ons: The approximate spectrum differs slightly from the exact one only for the smallest
values, namely r > 100. Furthermore, as the size of the subsample n increases, the spectrum gets shi ed upwards but s ll
has the same shape, i.e., same reconstruc on error, but the distor on may differ.

its mean. On the other hand, the variance remains relatively small. Hence, uniform sampling
may still be relevant for selecting columns in a Nyström based approach or simply selecting
a relevant subset of the sample in a subsampled random projection approach. But a finer
analysis of the leverage scores may lead to a more accurate representation at a lower cost.

Distortion In order to properly set the rank r of the rSVD we need to quantify the
distortion on subsamples with intermediate number of reads, namely n = 10.000 to n =

30.000. Although r = 200 components lead to a reconstruction error of the similarity
matrix of about 10−3 in Spectral norm and 10−2 in Frobenius norm (Figure 8.3), it only
leads to a distortion of about 12% for 10.000 reads and 17% for 30.000 reads (Figure 8.5).
Moreover, for n = 10.000 we need to use 5 as much components to reach 8% distortion,
i.e., r = 1000. Hence, based on the distortion criterion the ranks of our matrices are not
extremely low, namely r ≈ n/10.

8.2.3 Performance on real-life samples

Here we discuss the computational cost of the method in terms of memory and running
time. We also discuss the time required to compute various statistics on the point cloud
and the similarity matrix.

Memory footprint Obviously, since the distance and similarity matrices are stored and
applied in a dense way, the cost is quadratic in n. In particular, storing the distance matrix
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8.2. Random projection aided MDS

using short integers takes about 40GigaBytes for a full sample with 100.000 individuals and
the similarity matrix 20GigaBytes. Since the computers used for our simulations, namely
plafrim2/miriel, have 128GB RAM, the matrices associated with the computation of a full
sample are relatively large but still fit in memory and leave significant room for the storage
of the components X even for large r.

Running times Figure 8.6 shows various experimental running times measured during the
computation of a subsample with n = 10.000 reads and a full sample of about 100.000 reads.
First of all, reading the distance matrix and computing the similarity is rather cheap. In
particular for the full sample, it requires as much time as computing the rSVD with r = 200,
namely about 100s. Second of all, Figure 8.6 confirms that the cost of the rSVD grows
linearly with the rank and quadratically with n. Third of all, as expected, the computation
of the actual distortion of the point cloud representation has a similar complexity as the
rSVD, namely O(rn2). However, its magnitude is 10 times higher than the rSVD, which
makes its computation intractable to large r, e.g., 6hours for r = 2000. Hence, a better
understanding of the distortion is required here in order to develop estimators for this
application before addressing faster factorization techniques. This work will be addressed in
a forthcoming article, that introduces our random projection based MDS algorithm. Finally,
the computation of the coherence is performed on the full sample by mean of a rSVD and
only introduces a small O(nr) extra cost for computing the leverage scores.
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Chapter 8. A geometric view on biodiversity

8.3 Visualization of the point cloud
As shown in Section 8.2, enforcing a few percent distortion as a target threshold of our
method can result in relatively high ranks. Although this can still be addressed efficiently
using random projection, it is rather demanding in term of error computation. However,
the analysis of the components of the point cloud is currently not done in a large number
of dimensions. Until high dimension analysis is made possible, visualizing data in small
dimensions, e.g., r ≤ 10, still provides numerous crucial information on the datasets. Here,
we show representations of the full samples in 3D for easy visualization of the point clouds
and basic comparison of their shapes. Then, we discuss the visualization of a cloud obtained
by our method in higher dimensions.

8.3.1 Representation in 3D
The easiest way of visualizing a point cloud is to project the value of the components in
3D. This can be done by mean of three 2D projections on the first feature pairs, namely
(F1, F2), (F1, F3) and (F2, F3).

Subsample We first consider the cloud associated with a subsample, namely 10.000 ran-
dom reads out of L6. Figure 8.7 represents the position of each individual on the first feature
pairs. First of all, we observe that certain regions of the domain associated to a feature pair
are more concentrated than others. Second of all, these regions can have various shapes and
be well separated from the others, for instance in the plane (F3, F2). Another specificity of
this cloud is that a small cluster lies very far from the rest of the cloud in the first dimension
F1 and is surrounded by all the other individuals in (F2, F3). Finally, such clustering of the
data can be better shown by coloring the identified individuals w.r.t. their species. Hence,
association between known species and features can be better understood. In particular,
the presence of individuals from the species Nitzichia dissipita in the isolated cluster can
probably help understand the meaning of feature F1.

Full Sample Let us now consider the cloud associated with the full sample L6 computed
by mean of a rank r = 50 rSVD. Figure 8.8 represents the position of each individual on
the first feature pairs, while Figure 8.9 represents the concentration of the cloud. First of
all, without both coloring and concentration, it would be harder to identify clusters than for
the smaller subsample (Figure 8.7). Despite being 10 times as dense, the cloud associated
with the full sample has a similar shape than that of the subsample. This can be observed
more clearly on Figure 8.9, where the concentration of the population is represented in
logarithmic scale. In particular, this figure shows that only very small regions of the full
domain contain most of the individuals and are surrounded by regions of fast decreasing
population. Second of all, the previous remarks on clustering of known individuals w.r.t.
their species hold even stronger for the full sample. Moreover, a large part of the cloud
contains unknown individuals but still exhibits a certain structure and a significant density,
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8.3. Visualization of the point cloud

which suggests a deeper analysis of the data. In particular, a combined analysis of the
concentration and the identified individuals seems crucial in order to better characterize
regions of high concentration.

Figure 8.7: Representa on of the point cloud associated to 10.000 random reads of the sample L6 on the first 3 features
F1, F2, F3 using 2D plots. The components were computed using rSVD with s = r = 200. Iden fied species are repre-
sented using large colored markers, while unknown species are represented in black. Observa on: Such representa on allows
for easily verifying that individuals of the same iden fied species gather in clusters. However random subsampling does not
allow to represent all individuals and in par cular all the previously iden fied ones.

Variations in time Let us recall that samples L1 to L10 represent monthly sampling over
10 months at the same location, namely Lake Geneva. Comparison between various samples
can be discussed in 3D, where the point clouds exhibit significant differences along time but
similarities as well. In particular, we still observe clustering and highly concentrated areas.
However, the magnitude of the features, i.e., the size of the domain containing the cloud,
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Chapter 8. A geometric view on biodiversity

Figure 8.8: Representa on of the point cloud associated the full sampleL6 on the first 3 features (F1, F2, F3) using 2D plots.
The components were computed using rSVD with s = r = 200. Iden fied species are represented using large colored markers,
while unknown species are represented in black. Observa on: Such representa on allows for easily verifying that individuals
of the same species gather in clusters. Moreover, individuals sharing the same root like the Encyonema are themselves located
in cluster or at least small bounded domains. Finally, in such low dimensions, the cloud has a similar shape than the subsample
with n = 10.000 although the distor on is supposed to be a lot higher because of the larger size and the smaller input rank of
the rSVD.
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8.3. Visualization of the point cloud

L6

Figure 8.9: Popula on of the point cloud associated the full L6 sample represented on the first 3 features (F1, F2, F3) using
2D plots. The components were computed using rSVD with s = r = 50. Iden fied species are represented using large
colored markers, while unknown species are represented in black. Observa on: Such representa on allows for easily verifying
that reads concentrate on very specific part of the feature domains. This can provide crucial informa on on iden fied individuals
but also on unknown ones and may lead to the discovery of new species.
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Chapter 8. A geometric view on biodiversity

may vary by a factor of 2 to 3 in certain dimensions. For instance, L1 and L2 spread over a
similar domain, namely a box of size roughly equal to 60 and centered in (0, 0, 0), while L3

and L4 spread over a smaller box that is slightly shifted from the origin. Moreover, rotation
or translation of the point clouds should be considered in the analysis of the shape as the
result of MDS is only defined up to a combination of such transformations.

L1 L2

L3 L4

Figure 8.10: Popula on of the point clouds associated to various samples represented on the first 3 features (F1, F2, F3)
using 2D plots. The components were computed using rSVD with s = r = 50 on the full samples: L1 (top le ), L2 (top
right), L3 (bo om le ) and L4 (bo om right). Observa on: The shape of the cloud varies significantly along the me, while s ll
presen ng similar characteris cs such as clear clustering and highly concentrated areas.

8.3.2 Representation in many dimensions
Parallel Coordinates In order to visualize the point cloud in many dimensions a common
alternative to 2D plots is the representation in parallel coordinates such as the one displayed
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8.3. Visualization of the point cloud

on Figure 8.11. This technique offers various advantages as it decouples the features and
displays them on a single axis. As shown on Figure 8.11 (top left), the observation of all
reads on the same plot without characterization of the concentration cannot be exploited,
which suggests the use of a different plotting software with better rendering than matplotlib
or a finer pretreatment of the components. However, the expected clustering of the reads
can be confirmed by observing that individuals of the same species (top right and bottom
left), follow a similar path along the first few dimensions, while spreading only on a fraction
of the full domain. This observation is made more clear by the observation of each species
separately (bottom left). As the index of the feature grows the associated eigenvalue of the
similarity matrix decreases, however it has almost no impact on the first 10 features and
can only be noticed on more than 100 features.

Figure 8.11: Representa on of the point cloud associated to the full sample L6 on the first 10 features (F1, . . . , F10) using
parallel coordinates from matplotlib. The components were computed using rSVD with s = r = 50.
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Conclusion
Let us summarize our various achievements and contributions one topic after another.

Fast Multipole Method We developed a highly competitive interpolation based Fast
Multipole Method (FMM), called the ufmm, relying on a very simple idea and benefiting
from the performance of the Fast Fourier Transform (FFT). It provides a kernel independent
M2L-optimized approach that may suffer from instabilities at very high accuracies but per-
forms significantly better in all cases of interest than the state-of-the-art approaches, namely
the bbfmm and optimized variants. This method was implemented in the open-source par-
allel HPC library ScalFMM and it is already used by several users for diverse applications
such as Molecular Dynamics or Boundary element methods for elastostatics. In this thesis,
we used the ufmm in various computationally intensive applications with rather low target
accuracies in order to demonstrate its good performance and illustrate its genericity.

Dislocation Dynamics We implemented the isotropic elastic force and energy farfield
computation based on the ufmm and bbfmm within OptiDis, an operational parallel Dislo-
cation Dynamics (DD) code developed in collaboration with the CEA Saclay. In particular,
it already allowed for simulating the phenomenon of clear band channels in Zirconium al-
loys, as presented in Arnaud Etcheverry’s thesis [51]. An efficient summation scheme was
proposed along with several variants minimizing the cost of certain operators. We adapted
certain features of the code to accurately and efficiently handle segments within an octree
structure, exact integration of the farfield as well as the specific nature of the interaction
kernel (tensorial, homogeneous, singular,…). In particular, this lead us to develop a generic
formalism for tensorial interactions within ScalFMM library. Additionally, this allowed us
to illustrate the rather high memory requirements of the ufmm, compared to the bbfmm,
while proposing alternative formulations that could compensate this phenomenon. More-
over, this issue arise for high tree depths and only affects the storage of the expansions that
is usually spread over several nodes in a shared memory parallelism.

Sampling from GRF A radically different application was addressed, that consisted in
accelerating the matrix multiplication involved in a Randomized Low-Rank Approximation
(LRA) algorithm by mean of the ufmm and thus provide low-rank square root of covariance
matrices. This allowed us to extend the capabilities of our algorithm to matrix-to-matrix
multiplication using a multi-rhs FMM implementation. The matrix studied here were covari-
ance kernel matrices used for sampling from Gaussian Random Field (GRF), i.e., generating
multivariate Gaussian Random Variables. Several correlation kernels were tested, such as
Gaussian, Exponential and several other Matérn correlations, in order to generate GRFs on
artificial heterogeneous distributions of points. We designed a smooth variant of the ufmm
in order to represent smooth kernels more efficiently. This was tested on the Gaussian kernel
but this should have ideally been tested on a less nice kernel, for which there does not al-
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ready exist fast algorithms. To our knowledge, this contribution is one of the rare attempts
at combining randomized LRA with the data sparse representation of a matrix. The results
were promising and setting the FMM accuracy w.r.t. to the global low-rank approximation
turned out to be extremely easy.

Random projection aided MDS We addressed another shortcoming in randomized
numerical linear algebra, namely the lack of fast Multidimensional Scaling (MDS) algorithm
based on random projection. Application of a Randomized Eigen Value Decomposition
(EVD) on the similarity matrix allowed for deriving an efficient MDS algorithm that provides
useful information on the structure of the matrix. This method is complementary with
the state-of-the-art method, namely Nyström factorization, while being applicable to any
similarity matrix. We provided a discussion and several experiment to relate the distortion
with the presence of negative eigenvalue in the spectrum and a best or near-best low-rank
representation. The method was applied on biological datasets coming from real-life samples
and an operational workflow was organized during the thesis in order to provide visualization
data and thus help design a geometric view on biodiversity. The algorithmic and numerical
aspects of our random projection based approach to MDS is the topic of a forthcoming
paper, that will also present the idea behind this geometric view on biodiversity, with strong
references on the theory of dimensionality reduction.

Perspectives

A significant amount of work is still ongoing in order to consolidate these contributions,
however our current point of view allows us to draw a considerable number of perspectives.

Uniform FMM The main drawback of the ufmm should be dealt with in a near future,
namely the relatively high amount of memory required for the storage of the expansions
in Fourier domain. A first idea would be to transfer expansions to Fourier domain only
when it is actually required. Then, an interesting problem would be the application of the
ufmm in a directional Fast Multipole Boundary Element Formulation [113, 86] where the
cost of the M2L can be critical but the interaction lists can be very large as well. Another
issue that we need to address would be the regularization of the equispaced interpolation
involved in the ufmm, as instability are very likely to occur for oscillatory kernels for instance.
Additionally, the significant improvement of the M2L step should allow the implementation of
much complex FMM schemes such as a variable order FMM [112] or H2-methods [18]. Most
importantly, the ufmm and its smooth variant, the smooth-ufmm, are in essence so close
from the general H-matrix formats, therefore we hope that our modest contribution can
motivate the design of a unified framework for hierarchical low-rank matrix approximations
behind the H2 format that can benefit to both the FMM and the H-matrix communities.
In our opinion, a first step would be for us to compare the performance of our method with
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Perspectives

recent interpolation based FMM [30] and commonly used interpolation based H2-methods
[63, 44].

Anisotropic DD First of all, our fast approach to isotropic DD simulations should allow
to perform the accurate simulation of massive ensembles of dislocations and thus better un-
derstand the plastic behavior of complex crystalline materials. Although our contribution
to the isotropic force evaluation was in our opinion not novel enough, we think that writing
an article on an interpolation based FMM formulation for both isotropic and anisotropic
elastic fields would represent a significant and novel contribution to the domain of Multi-
scale Materials Modeling. In fact, anisotropic models should allow to better simulate and
understand the behavior of materials that exhibit large anisotropic coefficients like Fe. Dur-
ing this thesis, an efficient representation of the anisotropic force field based on the Stroh
formalism and expansions in spherical harmonics were also addressed, that should allow for
an efficient fast multipole implementation in a similar fashion as the recent methodology
presented in [9]. Special care should be taken in order to derive an equivalent non-singular
formalism for anisotropy as well as analytic expressions for the integrals of the expansion in
spherical harmonics. The ufmm should efficiently address the high dimensional interactions
involved in anisotropic DD simulations and make the comparison of various formulations
easier.

Applications to Data Assimilation We hope that ourH2-powered randomized Singular
Value Decomposition (SVD) algorithm can help solving large scales problems of geostatistics
and that it can be beneficial to the computational geosciences community. Therefore, we are
considering applying the method to a more active topic of geostatistics, namely data assim-
ilation via Kalman Filtering. Recent advances in Kalman Filtering have brought ensemble
variants and thus low-rank square root algorithms in front of the scene, namely Ensemble-
[52], Unscented-Kalman Filters [70] and reduced order variants [96, 33]. As these methods
rely either on efficient computation of a covariance matrix square root or generation of corre-
lated noises, they provide an ideal framework for the application of our algorithm. However,
designing a relevant application to emphasize the benefits of our approach is a rather chal-
lenging issue. During this thesis we met or exchanged with people from several teams of
the data assimilation community, namely hydrologists, climatologists and oceanographists
from either CERFACS or Stanford Civil Engineering Department, but only recently came
up with an application that could benefit to a broader community.

Linear scaling MDS We are planning on developing a linear scaling factorization tech-
nique in a near future in order to address very large biological datasets in a more efficient
way. This approach should benefit from the clustering phenomenon occurring on the point
clouds and will benefit from recent advances in k-means algorithms and graph partitioning.
Moreover, we would like to be able to better characterize and compare the shape of the
clouds between various time of the year. In particular, we wish to analyze the point cloud
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associated to several samples at the same time. Another crucial perspective consists in de-
signing new metrics as well as efficient application-oriented visualization tools in the spirit
of Chris Johnson’s work, e.g., [102].

Concluding remarks Randomized Numerical Linear Algebra (NLA) is a relatively young
research area compared to the FMM or H-matrices and it is most definitely much wider.
However, recently the combination of both randomized and hierarchical algorithms seems
to be a topic of broad interest [118, 90]. A crucial issue here is to develop new hierarchical
methods with lower dependence in the ambient dimension, a topic that we wish to address
very soon. We hope that our open-source library for the randomized low rank approxima-
tion of matrices can benefit from the variety of topics addressed in this thesis and from our
upcoming publications. Finally, we hope that the hierarchical and randomized NLA com-
munities can keep growing and that we can continue exchanging on these beautiful topics,
their complementarity as well as their numerous applications.
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A.1. Nature of tensorial interactions

A.1 Nature of tensorial interactions

Although the Fast Multipole Method (FMM) was originally designed for particle interactions
with k(r) = 1/r [59], i.e., a scalar valued kernel, many n-body problems formulated in terms
of Boundary Integral Equations [16, 94] have arisen in the past decade that involve tensorial
valued kernels [113, 106, 31] and that can be very well treated by the FMM. The tensorial
nature of the kernel appears as soon as we consider that densities are multivariate quantities
evaluated on grid points x, i.e.,

w(x) = {wJ(x)}J=1...dw
(A.1)

where dw denotes the dimension of w(x). For instance, in most BEM formulations used for
isotropic elasticity the Green’s function is given as

Gij(r) =
1

8πµ
(δijr,pp −

1

2(1− ν)
r,ij) (A.2)

for the infinite elastic space [31], where µ and ν denote the Lamé coefficients, whereas for
acoustics it is given as a scalar valued function,

G(r) =
1

4πr
(A.3)

namely Laplace kernel, or Helmholtz kernel in the frequency domain [86, 110]. In elas-
ticity problems, G is tensorial because it represents the relation between a multivariate
density w (namely a point force) and the displacement u. This tensorial nature can become
problematic for problems involving large number of parameters, e.g., viscoelasticity and
poroelasticity [106], highly oscillatory kernels, e.g., elastodynamics in time or frequency do-
main [113], or multi-layered spaces [32]. In particular, the author of the present contributed
to the design of an efficient interpolation based directional Fast Multipole BEM formulation
for elastodynamics in Laplace domain and results are discussed in Thomas Traub’s PhD
thesis [113]. In the present thesis we used tensorial interactions in the context of Disloca-
tion Dynamics (DD) simulations (see Chapter 2), a special case of elastostatic interactions
between line segments.

A.2 A generic formalism

Let us first define a generic formalism for tensorial interactions using a direct formulation.
Then, we describe the associated fast multipole summation scheme. For the sake of clarity
and genericity we denote d the ambient dimension, although most of the time d = 3.
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Appendix A. Tensorial interpolation based FMM

A.2.1 Direct formulation

First of all, multivariate potentials (resp. densities) are written in bold characters as p

(resp. w) and defined by dp (resp. dw) components identified by a multi-index I (resp. J)
of order op (resp. ow), such that |I| = maxi≤op (Ii) ≤ d and dw = dow . Then, the kernel of
interaction is denoted k and defined for any grid points x and y as

k(x,y) = {kIJ(x,y)}|I|≤d,|J|≤d (A.4)

Finally, the I-th component of the potential generated at the target point x by all compo-
nents of the densities located at the source points y reads as

pI(x) =
∑

Π(J)≤dw

kIJ(x,y)wJ(y), ∀I/Π(I) ≤ dp (A.5)

where Π(I) = Πi≤opIi.

A.2.2 Fast Multipole formulation

Computing such interactions on a large number of points can be done in O(n) operations
using FMM. The steps of the associated Fast Multipole summation scheme are defined by
the following equations:

• P2M: Aggregate contributions of the dw components of density w located at source
points y into dw multipole expansions defined on source interpolation nodes ȳβ

(Mβ)J =
∑
y

Sβ(y)wJ(y), ∀|J| ≤ dw (A.6)

• M2L: Transfer dw multipole expansions (Mβ)J into dϕ local expansions (Lα)I defined
on target interpolation nodes x̄α

(Lα)I =
∑

Π(J)≤dw

∑
|β|≤p

(
K̄αβ

)
IJ
(Mβ)J , ∀|I| ≤ dϕ (A.7)

• L2P: Aggregate contributions of dϕ local expansions from target interpolation nodes
x̄α into the dϕ components of the potential ϕ located at all target points x

ϕ̄I(x) =
∑
|α|≤p

Sα(x) (Lα)I , ∀|I| ≤ dϕ (A.8)
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A.3 Matrix-to-Vector interactions

A.3.1 Direct formulation

Let us for instance consider the case where potentials and densities are vectors of dimension
dϕ = dw = d and k is a d-by-d matrix, i.e., dk = d × d. Then, I and J are simple indices,
that can be denoted i and j, and the summation over the indices reads as

ϕi(x) =
d∑

j=1

kij(x,y)wj(y), ∀i = 1, . . . , d (A.9)

A.3.2 Fast Multipole formulation

• P2M: Aggregate contributions of the d components of density w located at source points
y into d multipole expansions defined on source interpolation nodes ȳβ

(Mβ)j =
∑
y

Sβ(y)wj(y), ∀j ≤ dw (A.10)

• M2L: Transfer d multipole expansions (Mβ)j into d local expansions (Lα)i defined on
target interpolation nodes x̄α

(Lα)i =
∑
j≤d

∑
|β|≤p

(
K̄αβ

)
ij
(Mβ)j , ∀i ≤ d (A.11)

• L2P: Aggregate contributions of d local expansions from target interpolation nodes x̄α

into the d components of the potential ϕ located at all target points x

ϕ̄i(x) =
∑
|α|≤p

Sα(x) (Lα)i , ∀i ≤ d (A.12)

A.4 Optimizations and numerical complexities

A.4.1 Multidimensional interpolators

The L2P, resp. P2M, steps must be applied for dp, resp. dw, potentials, resp. density.
In a naïve implementation, this would result in multiplying the cost of these steps by their
associated dimension. Most importantly, the steps described above require that dw multipole
expansions and dp local expansions are stored during the algorithm. We recall that storing
an expansion costs O(p3) bytes, more precisely 8 × (p + 1)3 for a real valued expansion in
double precision. Each cell of the octree contains at least* 2 expansions, therefore it must
be multiplied by the number of cells, e.g., #cells(L) = (23)L = 8L for an arbitrary level L.
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applyL2P

Figure A.1: Schema c view of the tensorial M2L step in case #1.

Hence, the cost of storing the expansions grows dramatically with the depth of the octree.

A.4.2 Tensorial M2L

The tensorial nature of the interactions also affects the critical M2L step. In fact, all compo-
nents kIJ need to be evaluated, stored and applied to the local expansions. Therefore, the
cost of the precomputation is roughly multiplied by the number of components dk. If some
components depend on each other by a constant factor (e.g., symmetric tensors), then less
components need to be stored. We denote dmin

k the number of independent components of
the tensor of interactions k that actually need to be stored. Finally, in (A.7) the summation
over J is done outside the loop over the interpolation grid in order to preserve the optimized
application of the M2L operators.

*For each expansion (local and multipole) ScalFMM uses an extra array to store a compressed expansion
for Chebyshev FMM or a transformed (complex valued) expansion for Uniform FMM.
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B.1. Geometries with various heterogeneity

Here we give advanced statistics on various distributions of points w.r.t. to the geometry
and the depth of the octree.

B.1 Geometries with various heterogeneity
Figure B.1 represents actual distribution of points for all geometries considered in this thesis.
It also shows associated 2D distributions inside a quadtree with L̄ = 3, 4, 5. This gives an
estimation of the filling of the tree in each case, as well as the number of nearfield and
farfield interactions.

3D grid L̄ = 3 L̄ = 4 L̄ = 5

Figure B.1: Uniform distribu on of par cles in the unit cube (top), the unit sphere (center) and the prolate sphere with ra o 10
(bo om).

B.2 Statistics on the octree
The evolution of number of non-empty cells w.r.t. the number of level for n = 106 particles
is represented on Figure B.2. In particular, we observe that the unit cube is fully populated
up to L̄ = 6 then the filling rate decreases with the tree depth. Meanwhile filling rates of the
unit and prolate spheres have similar decreasing speed, but as expected the prolate sphere
has more empty leaves than the unit sphere. Figure B.3 represents the total and average
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Appendix B. Distribution of particles on various geometries

number of nearfield and farfield interactions w.r.t. to the tree depth L̄. When the particles
are distributed in the unit cube, the number of points is not high enough to have a sufficient
density and maintain the filling rate.
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Figure B.2: Le : Filling rate at the leaf level w.r.t. to tree depth L̄ for various geometries. When the points are distributed on
a surface, e.g., the unit sphere or the prolate sphere, the tree is very sparse (low filling rate). Indeed, the number of non-empty
leaves differs significantly from the maximum number of leaves, i.e., 8L̄. Right: Average number of par cles per leaf w.r.t. to
L̄ for various geometries with n = 106 par cles. In prac ce, leaves contain between 10 and 500 par cles in average (green
area) depending on the applica on, i.e., on the nature of the kernel, the accuracy and the expansion technique.
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Figure B.3: Total and average number of leaf-level M2L and P2P operators for various distribu ons of par cles (n = 106) w.r.t.
L̄. Observa ons: The average number of operators stays rela vely constant for all geometries, in par cular we quickly reach
the maximum number of operators for the unit cube, namely 27 P2P and 189 M2L, while the unit sphere only has 15 P2P and
50 M2L in average. The prolate sphere exhibit 2 regimes, namely L̄ ≤ 4 or L̄ ≥ 5, whether farfield interac ons are considered
between par cles lying on the small sec on or not.
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C.1. Numerical benchmarks

C.1 Numerical benchmarks

Here we present comparative results on the convergence of the multi-rhs ufmm and smooth-
ufmm w.r.t. the interpolation order p for various geometries: the unit sphere, a cube and a
prolate sphere. In particular we analyze the effect of the length scale on the error of the Fast
Multipole Method (FMM) for the Gaussian correlation kernel for ℓ = 0.5 or ℓ = 1.0. All
computations were performed on a cluster computer, namely plafrim/mirabelle: Hexa-core
Westmere Intel Xeon X5670 @ 2.93GHz with 96GB ram and 12MB L3 Cache. Results are
presented on Figure C.1 for the cube, Figure C.1 for the unit sphere and Figure C.1 for the
prolate sphere. They show the computational time of a fast multipole matrix multiplication
per rhs for a total of 10 rhs.

C.2 Performance of the ufmm and the smooth-ufmm.

The ufmm and the smooth-ufmm exhibit similar performances if the tree depth is set to
the same value. However, as the depth decreases, the smooth-ufmm becomes significantly
cheaper. Hence, the results presented here corroborate the one discussed in Section 5.4.
Precomputing the P2P operators takes about 3 to 8 seconds depending on the geometry and
the tree depth, which is approximately the time required to apply the ufmm to 1 rhs with
an intermediate accuracy.
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Figure C.1: Running me of a mul -rhs FMM w.r.t. the rela ve error magnitude using various algorithms: ufmm and smooth-
ufmm with p = 2 . . . 11, and global with p = 6 . . . 14. We used 72.000 par cles randomly distributed in a cube.
Observa ons: ufmm and smooth-ufmm have approximately the same cost when they share the same tree depth. The smooth-
ufmm is significantly faster if we choose an op mal tree depth, e.g., L̄ = 3 represented in solid brown lines. If the Gaussian
decreases sufficiently slow, i.e., the rank is sufficiently low, then the cost of the global is similar to the op mal smooth-ufmm.
However, the global exhibits an instability for the highest interpola on order.
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Appendix C. Performance of the multi-rhs Uniform FMM

C.3 Performance of the global fft
The global fft will always have the same cost at a given interpolation order, since this
method is oblivious of the shape of the distribution. On the other hand, the cost of the
hierarchical methods may vary significantly from one distribution to another. Let us for
instance consider a Gaussian correlation with ℓ = 0.5. If the particles are distributed in the
cube (i.e., an homogeneous distribution) the cost of the global fft lies between the ufmm
and the smooth-ufmm with optimal L̄, see Figure C.1. If the particles are distributed on
a sphere (i.e., an heterogeneous distribution) then the hierarchical methods become faster
than the global fft, see Figure C.2.
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Figure C.2: Running me of a mul -rhs FMM w.r.t. the rela ve error magnitude using various algorithms: ufmm and smooth-
ufmm with p = 2 . . . 11, and global with p = 6 . . . 14. We used 72.000 par cles randomly distributed on the unit sphere.
Observa ons: ufmm and smooth-ufmm have approximately the same cost when they share the same tree depth. The smooth-
ufmm is significantly faster if we choose an op mal tree depth, e.g., L̄ = 3 represented in brown. If the Gaussian decreases
sufficiently slow (i.e., the rank is sufficiently low), then the cost of the global is slightly lower than the ufmm but the op mal
smooth-ufmm s ll performs be er.

C.4 Other distributions
Fig. C.3 confirms the previous observations on the prolate sphere, i.e., a highly heterogeneous
distribution. The associated octree has larger depths (L̄ = 6) than that of the unit sphere
(L̄ = 4), however in the lowest level a large number of cells are empty. Consequently, the
running times are only slightly larger than for the unit sphere.
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Prolate Sphere
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Figure C.3: Running me of a mul -rhs FMM w.r.t. the rela ve error magnitude using various algorithms: ufmm and smooth-
ufmm with p = 2 . . . 11, and global with p = 6 . . . 14. We used 72.000 par cles randomly distributed on a prolate
sphere (ra o 1:1:10). Observa ons: ufmm and smooth-ufmm have approximately the same cost when they share the same tree
depth. The smooth-ufmm is significantly faster if we choose an op mal tree depth, e.g., L̄ = 4 represented in brown. If the
Gaussian decreases sufficiently slow (i.e., the rank is sufficiently low), then the global performs rela vely well compared to
the hierarchical variants.
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D.1. M2L-Optimized stress computation

D.1 M2L-Optimized stress computation

In this section we start by introducing an existing approach used to optimize the number
of M2L operators and operations per interaction in the case of isotropic elastic forces com-
putation. Then, we present the principle of our new method based on refactoring the M2L
operations. Finally, we apply our method on the evaluation of the isotropic elastic energy.

D.1.1 Existing approach

Arsenlis approach In [8] the isotropic elastic stress field (2.4) is written as a combination
of permutation symbols and a 5th-order tensor Gijklm defined as

Gijklm(x) =

∮
C

R,klm(x− y)bidyj (D.1)

Therefore, the contributions to the elastic stress read as

σA
ij(x) = εjmkGkimpp(x) (D.2)

σB
ij (x) = εnmkGknmij(x) (D.3)

Let us determine the number of independent components of G that are actually involved
in the computation of σ. First of all, given the symmetries of R,klm only the following 10
components (instead of 33 = 27) of Gij... need to be computed for all (i, j) ∈ {1, . . . , 3}2

Gij111 Gij122 Gij133 Gij123

Gij211 Gij222 Gij233

Gij311 Gij322 Gij333

Besides only the following components of G...lm for all (l,m) ∈ {1, . . . , 3}2 are actually
required when the permutation symbols are applied:

σA
11 =−G213pp +G312pp, σA

12 =−G311pp +G113pp, σA
13 =+G211pp −G112pp,

σA
21 =−G223pp +G322pp, σA

22 =−G321pp +G123pp, σA
23 =+G221pp −G122pp,

σA
31 =−G233pp +G332pp, σA

32 =−G331pp +G133pp, σA
33 =+G231pp −G132pp,

σB
lm = +G231lm −G321lm −G132lm +G312lm +G123lm −G213lm,

The other components are multiplied by 0. If we combine these 2 optimizations we can
reduce the set of computed components from 35 = 243 to n = nA + nB − nAinterB =

18× 3 + 6× 6− (6× 3 + 6) = 66. In fact,

• The computation of σA
ij for all (i, j) ∈ {1, . . . , 3}2 involves the following (3×6)×3 = 54
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components of G

G213pp G312pp G311pp G113pp G211pp G112pp

G223pp G322pp G321pp G123pp G221pp G122pp

G233pp G332pp G331pp G133pp G231pp G132pp

• While the computation of σB
ij for all (i, j) ∈ {1, . . . , 3}2 with i < j involves the following

6× 6 = 36 components of G

G21312 G21313 G21323 G31212 G31213 G31223

G21123 G21133 G21233 G31122 G31123 G31322

G32112 G32113 G32123 G12312 G12313 G12323

G32211 G32311 G32123 G12123 G12133 G12233

G23112 G23113 G23123 G13212 G13213 G13223

G23211 G23311 G23123 G13122 G13123 G13322

• The 24 components shared by σA
ij and σB

ij are colored in grey.

We could not recover the factor of 6 mentioned in [8], i.e., the 40 components out of 35 = 243

using this approach. Even considering σA
ij + σA

ji instead of σA
ij does not seem to change the

result. Moreover, Arsenlis et al. [8] affirms that none of the elements of Giiklm, Gijkli and
Gijklj are required in the computation, but we found that it is only true for the computation
of σB. On the other hand, Gijill is indeed not involved in the computation of either σA or
σB. The aforementioned paper is known to contain a few typos, therefore we developed our
own approach. Besides we do not think this is the most relevant way of optimizing M2L
operations, especially when considering polynomial interpolation.

D.1.2 Refactoring M2L operations

Principle In order to define an efficient summation scheme, we want to identify the op-
timal definition of the multipole expansions that leads to the minimum number of M2L
operations. Our method consists in rewriting the full expression of each component of σ
and refactoring it w.r.t. to the components of R. Let us first denote Gijklm = GIJ with
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D.1. M2L-Optimized stress computation

Iij ∈ [0, 8] and Jklm ∈ [0, 9]. We also denote m the multipole such that GIJ = RJmI .

σA
0 =−G36 −G37 −G38 +G63 +G64 +G65

σA
1 =−G60 −G61 −G62 +G06 +G07 +G08

σA
2 =+G30 +G31 +G32 −G03 −G04 −G05

σA
3 =−G46 −G47 −G48 +G73 +G74 +G75

σA
4 =−G70 −G71 −G72 +G16 +G17 +G18

σA
5 =+G40 −G41 −G42 −G13 −G14 −G15

σA
6 =−G56 −G57 −G58 +G83 +G84 +G85

σA
7 =−G80 −G81 −G82 +G26 +G27 +G28

σA
8 =+G50 +G51 +G52 −G23 −G24 −G25

Computing σA
ij and summing with the transposed matrix may be a good idea in order to

obtain σA′
ij = σA

ij + σA
ji but it is actually a little slower than computing σA′

ij directly as

σA′

0 =− 2m3R6 − 2m3R7 − 2m3R8 + 2m6R3 + 2m6R4 + 2m6R5

σA′

1 =m7R3 +m7R4 +m7R5 −m6R0 −m6R1 −m6R2

+ (m0 −m4)R6 + (m0 −m4)R7 + (m0 −m4)R8

σA′

2 =+m3R0 +m3R1 +m3R2 −m5R6 −m5R7 −m5R8

+ (m8 −m0)R3 + (m8 −m0)R4 + (m8 −m0)R5

σA′

3 =− 2m7R0 − 2m7R1 − 2m7R2 + 2m1R6 + 2m1R7 + 2m1R8

σA′

4 =+m2R6 +m2R7 +m2R8 −m1R3 −m1R4 −m1R5

+ (m4 −m8)R0 + (m4 −m8)R1 + (m4 −m8)R3

σA′

5 =+ 2m5R0 + 2m5R1 + 2m5R2 − 2m2R3 − 2m2R4 − 2m2R5

Similarly, for σB we have

σB
0 =+ (m5 −m7)R0 + (m6 −m2)R3 + (m1 −m3)R6

σB
1 =+ (m5 −m7)R3 + (m6 −m2)R1 + (m1 −m3)R9

σB
2 =+ (m5 −m7)R6 + (m6 −m2)R9 + (m1 −m3)R2

σB
3 =+ (m5 −m7)R1 + (m6 −m2)R4 + (m1 −m3)R7

σB
4 =+ (m5 −m7)R9 + (m6 −m2)R7 + (m1 −m3)R5

σB
5 =+ (m5 −m7)R2 + (m6 −m2)R5 + (m1 −m3)R8
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Appendix D. Optimized Fast Multipole DD simulations

Finally, the expression of the elastic stress field σ = σA′
+ cbσ

B′ (with cb = 2/(1− ν)) reads
as

σ0 =− 2m3R6 + 2m6R3

− cb(m5 −m7)R1 − (cb(m6 −m2)− 2m6)R4 − (2m3 + cb(m1 −m3))R7

− cb(m5 −m7)R2 − (cb(m6 −m2)− 2m6)R5 − (2m3 + cb(m1 −m3))R8

σ1 =+m7R4 +m7R5 −m6R0 −m6R2 + (m0 −m4)R6 + (m0 −m4)R7 + (m0 −m4)R8

+ (cb(m5 −m7) +m7)R3 + (cb(m6 −m2)−m6)R1 + cb(m1 −m3)R9

σ2 =+m3R0 +m3R1 −m5R7 −m5R8 + (m8 −m0)R3 + (m8 −m0)R4 + (m8 −m0)R5

+ (cb(m5 −m7)−m5)R6 + cb(m6 −m2)R9 + (cb(m1 −m3) +m3)R2

σ3 =− 2m7R1 + 2m1R7 + 2m1R8

− (cb(m5 −m7) + 2m7)R0 − cb(m6 −m2)R3 − (cb(m1 −m3)− 2m1)R6

− (cb(m5 −m7) + 2m7)R2 − cb(m6 −m2)R5 − (cb(m1 −m3)− 2m1)R8

σ4 =+ cb(m5 −m7)R9 + cb(m6 −m2)R7 + cb(m1 −m3)R5

σ5 =− cb(m5 −m7)R0 − cb(m6 −m2)R3 − cb(m1 −m3)R6

− cb(m5 −m7)R1 − cb(m6 −m2)R4 − cb(m1 −m3)R7

Using the previous forms of σA and σB the applications of the M2L operators are optimal
in the sense that the minimum number of R...-to-m.. products is performed, namely 46, and
the minimum number of multipole expansions is stored, namely the 9 components of m.
Until now this is the cheapest method in term of memory requirements, however it requires
assembling the term in front of each component of R just before the application of the M2L
operator, i.e., approximately 189 times per cell for a full octree.

Final formulation A good compromise can be found in order to accelerate the M2L step,
while minimizing the memory requirements. First of all, if we transfer the contributions to
σA′ and σB independently at the M2L step, we only need to store a total of 12 multipole
components, namely (mi) for i ∈ {1, 2, 3, 5, 6, 7}, (m0 −m4), (m8 −m0) and (m8 −m4) for
σA′ , and (m5 − m7), (m6 − m2) and (m1 − m3) for σB. Then, we can still assemble the
local contributions to σ into 6 local expansions after the M2L. Finally, if we allow the storage
of 3 extra components of R, namely Ripp for i ∈ {1, . . . , 3}, we reduce the number of M2L
operations to 3× 5 = 15 for σA′ , i.e., a total of 51 M2L operations for σ.
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D.2 M2L-Optimized energy computation

Here, we present our implementation of the farfield contributions to the isotropic elastic
energy, whose expression is recalled in Section 2.2.2. In order to remain consistent with
formula already implemented in OptiDis, we used the formula from [28]. However, the
efficient fast multipole implementation is more challenging than that of the stress field,
therefore we propose to use a different formula in order to reduce the cost of computing the
energy using Fast Multipole Method (FMM).

D.2.1 Fast Multipole computation of the isotropic energy

Interpolation If we replace the expression (6.3) of the interpolant k̃ in (2.8) we get an
approximation of the elastic energy field σ, that reads as

E((C)) ≈ Ẽ((C)) = − µ

8π
(ẼA +

2

1− ν
(ẼB − ẼC + νẼD)) (D.4)

where contributions ẼA, ẼB, ẼC and ẼD are defined as

ẼA =
∑

|α|≤p+1

∮
(C)

Sα(x)bidxi

∑
|β|≤p+1

(
K̄αβ

)
ℓℓ

∮
(C)

Sβ(x
′)b′jdx

′
j

ẼB =
∑

|α|≤p+1

∮
(C)

Sα(x)bjdxℓ

∑
|β|≤p+1

(
K̄αβ

)
ij

∮
(C)

Sβ(x
′)b′idx

′
ℓ

ẼC =
∑

|α|≤p+1

∮
(C)

Sα(x)bidxj

∑
|β|≤p+1

(
K̄αβ

)
ℓℓ

∮
(C)

Sβ(x
′)b′idx

′
j

ẼD =
∑

|α|≤p+1

∮
(C)

Sα(x)bjdxi

∑
|β|≤p+1

(
K̄αβ

)
ℓℓ

∮
(C)

Sβ(x
′)b′idx

′
j (D.5)

These 4 contributions can also be expressed as the sum of the contributions of each segment
composing the network.

Fast Multipole summation scheme Equation (D.4) can be computed using a fast
multipole summation scheme, that consists in the following steps:

• First, aggregate segments contributions at interpolation nodes

(Mβ)ij =

∫
[x1x2]

Sβ(x
′)b′it

′
jdx

′ (P2M-E)
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• Then, transfer multipole expansion to local expansion for EC or ED

LA
α =

∑
|β|≤p+1

(
K̄αβ

)
kk
(Mβ)ii (M2L-EA)

(LB
α)jk =

∑
|β|≤p+1

(
K̄αβ

)
ij
(Mβ)ik (M2L-EB)

(LC,D
α )ij =

∑
|β|≤p+1

(
K̄αβ

)
kk
(Mβ)ij (M2L-ECD)

• Finally, accumulate contributions at target points

EA(
[
x1x2

]
,
[
x3x4

]
) =

∑
|α|≤p+1

∫
[x3x4]

Sα(x)bjtjLA
αdx (L2P-EA)

EB(
[
x1x2

]
,
[
x3x4

]
) =

∑
|α|≤p+1

∫
[x3x4]

Sα(x)bjtk(LB
α)jkdx (L2P-EB)

EC(
[
x1x2

]
,
[
x3x4

]
) =

∑
|α|≤p+1

∫
[x3x4]

Sα(x)bitj(LC,D
α )ijdx (L2P-EC)

ED(
[
x1x2

]
,
[
x3x4

]
) =

∑
|α|≤p+1

∫
[x3x4]

Sα(x)bjti(LC,D
α )jidx (L2P-ED)

All terms share the same multipole expansions, namely

Mβ =

∮
C

Sβ(y)b⊗ tdx′, (D.6)

while the L2P, resp. M2L, step differs for each term except EB and EC , resp. EC and ED.

Cost estimation In order to perform this summation, we need to store 7 M2L components,
namely 6 for ẼB and 1 for the other terms. Moreover, we need to store 9 components of
Mβ. On the other hand, one need to apply 47 M2L operations in order to compute all terms
of the energy, namely 1 for ẼA, 27 for ẼB and 9 for ẼC,D.

D.2.2 Efficient implementation
Direct Approach In order to evaluate the isotropic elastic energy via FMM we need to
compute 9 multipole expansions at the P2M step, namely

Mij =

∮
(C)

S(x′)bidx
′
j, for i, j = 0 . . . 2

Then, apply R,kk to each of these expansions, i.e., 9 M2L operations, and store the results in
9 local expansions in order to compute EA, EC and ED at the L2P step. For EB, we need to
apply each R,ij to the Mjk expansions, i.e., (3× 3)× 3 = 27 M2L operations, and store the
results in (3 × 3) = 9 local expansions. Let us use the superscript A for all operators used
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for computing EA,C,D and B for EB. Hence, i, j = 0 . . . 2 the local expansions reads as

LA
ij = RkkMij and LB

jk = RijMjk

If we denote Iij ∈ [0, 6] the index mapping from [0, 2] × [0, 2] to the set of symmetric
components indices plus one index for the trace of R, namely Rkk, then LA

I = R6MI and

LB
0 = R0M0 +R1M3 +R2M6, LB

3 = R1M0 +R3M3 +R4M6, LB
6 = R2M0 +R4M3 +R5M6,

LB
1 = R0M1 +R1M4 +R2M7, LB

4 = R1M1 +R3M4 +R4M7, LB
7 = R2M1 +R4M4 +R5M7,

LB
2 = R0M2 +R1M5 +R2M8, LB

5 = R1M2 +R3M5 +R4M8, LB
8 = R2M2 +R4M5 +R5M8,

In conclusion, for the approach based on Cai’s formula, the local expansions are stored in a
vector of size 18 and involve 36 M2L operations with 9 different multipole expansions:

L′
I = LB

I and L′
9+I = LA

I = R6MI , I = 0 . . . 8

Mura’s variant Let us recall the equation of the energy derived from Mura’s formula

Mij =

∮
S(x′)b′jdx

′
i

LAB
nj = RkkMnj and LC

i = RijεjmnMnm

In this variant, 2 different local expansions have to be stored and contribute to the 3 terms
of the energy. The first one is equal to the LA in Cai’s variant and can thus be written as

LAB
I = R6MI

Let us denote M ′
i = −εimnMmn then the second kind of local expansion reads as

LC
0 = R00M

′
0 +R01M

′
1 +R02M

′
2

LC
1 = R10M

′
0 +R11M

′
1 +R12M

′
2

LC
2 = R20M

′
0 +R21M

′
1 +R22M

′
2

In conclusion, for the approach based on Mura’s formula, the local expansions are stored in
a vector of size 12 and involve 18 M2L operations with 12 different multipole expansions:

L′
0 = R0(M7 −M5) +R1(M2 −M6) +R2(M3 −M1)

L′
1 = R1(M7 −M5) +R3(M2 −M6) +R4(M3 −M1)

L′
2 = R2(M7 −M5) +R4(M2 −M6) +R5(M3 −M1)

L′
3+I = R6MI , I = 0 . . . 8
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D.3 Numerical/analytical integration over segments
In this subsection we discuss the evaluation of the integral over the segments. The elastic
stress field (2.3), respectively the force field (2.7) and energy (2.8) involves 1, respectively 2
successive, integrals over a line inR3. The evaluation of the integrand is done via polynomial
interpolation, hence the numerical integration can be achieved exactly using a Gaussian
quadrature with a well adjusted size. Let us recall the integral of an interpolated function
in 1D over a subinterval [x1, x2] of a larger interval [a, b]∫

[x1,x2]

f(x)dx ≈ Ip =

∫
[x1,x2]

p∑
m=0

Sp(Φ−1(x), x̄m)f(Φ(x̄m))dx

=

p∑
m=0

f(Φ(x̄m))

∫
[x1,x2]

Sp(Φ−1(x), x̄m)dx

A usual method to compute such integrals numerically is to use a Gaussian quadrature.
This requires to map the interval of integration to [−1, 1] first

Ip =

p∑
m=0

f(Φ(x̄m))

∫
[−1,1]

Sp(Φ−1(
x2 − x1

2
X +

x1 + x2

2
), x̄m)

x1 + x2

2
dX

=

p∑
m=0

f(Φ(x̄m))

∫
[−1,1]

Sp(Φ−1(
L

2
X + cS), x̄m)

L

2
dX

=

p∑
m=0

f(Φ(x̄m))

∫
[−1,1]

Sp(
2

b− a
((
L

2
X + cS)−

a+ b

2
), x̄m)

L

2
dX

=

p∑
m=0

f(Φ(x̄m))

∫
[−1,1]

Sp(
2

W
((
L

2
X + cS)− cB), x̄m)

L

2
dX

Once this is done the integral is computed by summing the results of evaluating the integrand
at Gauss point Xq weighted by corresponding Gauss weights wq such that

∫
[−1,1]

g(X)dX ≈
Q∑

q=1

wqg(Xq) (D.7)

where Q denotes the size of the quadrature. Gaussian quadrature of size Q can achieve
exact integration for polynomial integrands of order at most 2Q+ 1 which make them very
competitive.
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