
HAL Id: tel-01535560
https://theses.hal.science/tel-01535560

Submitted on 9 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nouvelles approches pour les communications
multichemins
Matthieu Coudron

To cite this version:
Matthieu Coudron. Nouvelles approches pour les communications multichemins. Networking and
Internet Architecture [cs.NI]. Université Pierre et Marie Curie - Paris VI, 2016. English. �NNT :
2016PA066514�. �tel-01535560�

https://theses.hal.science/tel-01535560
https://hal.archives-ouvertes.fr

UNIVERSITÉ PIERRE ET MARIE CURIE
Laboratoire d’Informatique de Paris 6

Nouvelles Approches pour les Communications
Multichemins

Doctoral Dissertation of:
Matthieu Coudron

Advisor:
Dr Stefano Secci

2016

Thèse
Présentée pour obtenir le grade de docteur

de l’Université Pierre et Marie Curie
Spécialité: Informatique

Matthieu COUDRON
Nouvelles Approches pour les

Communications Multichemins

Soutenue le 12 décembre 2016 devant le jury composé de:
Rapporteurs Prof. Catherine ROSENBERG Université de Waterloo, Canada

Prof. André-Luc BEYLOT ENSEEIHT, France

Examinateurs Dr Christophe LOHR Télécom Bretagne, France.
Dr Mathieu BOUET Thales Communications & Security, France.
Prof. Guy PUJOLLE Université Pierre et Marie Curie, France.

Directeur de Dr Stefano SECCI Université Pierre et Marie Curie, France.
thèse

UNIVERSITÉ PIERRE ET MARIE CURIE
Laboratoire d’Informatique de Paris 6

Novel Approaches for Multipath Communications

Author: Matthieu COUDRON

Defended on December 12, 2016, in front of the committee composed of:

Referees: Prof. Catherine ROSENBERG (University of Waterloo, Canada).
Prof. André-Luc BEYLOT (ENSEEIHT, France)

Examiners: Dr. Christophe LOHR (Télécom Bretagne, France)
Dr Mathieu BOUET (Thales Communications & Security, France).
Prof. Guy PUJOLLE (Université Pierre et Marie Curie, France).

Advisor: Dr Stefano SECCI (Université Pierre et Marie Curie, France).

Remerciements

J’adresse mes remerciements aux personnes qui m’ont aidé et soutenu tout
au long de ces presque quatre années de thèse.

En premier lieu, je remercie mon directeur de thèse M. Stefano Secci,
maître de conférence à l’université Pierre et Marie Curie pour m’avoir guidé
et conseillé tout au long de ces années dans les arcanes du monde de la
recherche.

Je remercie M. Guy Pujolle, professeur à l’université Pierre et Marie
Curie et responsable de l’équipe PHARE (ProcHAine génération de RE-
seaux), qui m’a accueilli à bras ouvert au sein de son équipe.

Je remercie M. Achille Pattavina et M. Guido Maier pour leur chaleureux
accueil au sein du département d’électronique et de l’information de Poly-
technique Milan, en tout particulier à Marco Savi pour son enthousiasme.

Je remercie M. Olivier Bonaventure ainsi que toute son équipe à l’Université
Catholique de Louvain, Benjamin Hesmans, Fabien Duschenes, Nicolas Lau-
rent, Raphaël Bauduin, Vanessa Maons. . . sans qui je n’aurai peut être ja-
mais usurpé l’identité de Saint Nicolas pendant les cours magistraux de
master. Je remercie Christophe Paasch, Sebastien Barré et Gregory Detaal
pour leur aide précieuse autour du noyau MPTCP. Sans eux, Multipath
TCP ne serait pas ce qu’il est aujourd’hui.

Je remercie Tom Henderson, Tommaso Pecarolla, Hajime Takizaki, Peter
Barnes pour leur aide sur NS-3.

Je remercie Evan Huus, Peter Wu et Alexis La Goutte pour m’avoir aidé
tout au long du processus d’adoption au sein du programme wireshark de
mes améliorations liées à Multipath TCP (MPTCP).

Je remercie tous mes collègues de l’équipe PHARE, en particuler Patrick
Raad, Dallal Bellabed, Mamadou Tahirou Bah, Dung Phung Chi, Oussama
Stiti, Jennifer Torres pour avoir enchanté notre lieu de travail.

Je remercie Coffee Man alias Bruno Martin, le thermos sur le coeur,

I

pour m’avoir aidé à développer puis entretenir une addiction au café.
Je remercie aussi ma famille, mes parents mais aussi mes neveux Antoine

et Olivier qui me rappellent régulièrement ce qui compte le plus au monde:
les dinosaures bien sûr !

Abstract

The criticity of the Internet keeps increasing with a very high number of
services depending on its infrastructure. The Internet is expected to support
services with an increasing tangible impact on the physical world such as
the Internet of Things (IoT) or autonomous vehicles. It is thus important
to address the current infrastructure shortcomings in terms of scalability,
confidentiality and reliability.

Multipath communications are one possible solution to address this chal-
lenge. The transition towards multipath technologies is not obvious, there
are several challenges ahead. Some network devices block unknown proto-
cols, thus preventing the emergence of new technologies, which plays a part
in what is often referred to as the ossification of the Internet. Moreover,
due to technical reasons, there are cases for which multipath technologies
perform worse than their single path counterpart. In this thesis, we are
interested in addressing some of these cases and limit their impact, so that
multipath communications perform better than single path communications
as often as possible. More specifically, we propose enhancements to Multi-
path TCP (MPTCP).

After a detailed survey of multipath communications across all layers,
we propose an answer as to the question of how many paths to use and how
to ensure proper forwarding. Moreover, motivated by the intuition that
packet arrival disorder can be mitigated by the knowledge of one way la-
tencies, we propose a latency estimator with sender-side modifications only.
Furthermore, as throughput maximization is in general solved regardless of
the interface cost or user preferences, we elaborate a framework capable of
presenting more complex strategies if for instance the user wants to enforce
throughput even on less efficient paths. Finally, we develop and present a
complete simulation model of MPTCP.

III

IV

Résumé en langue française

La dépendance des différentes infrastructures vis-à-vis du réseau Internet
va croissant. D’abord la convergence des médias mais bientôt l’Internet des
objets ou les véhicules autonomes peut-être vont contribuer à augmenter la
criticité d’Internet. Il est donc important de résoudre les problèmes liés à
l’infrastructure actuelle, en terme de passage à l’échelle, de confidentialité
ou bien de fiabilité.

Les communications multichemins font partie des possibilités pour atta-
quer ce défi. Pour autant la transition vers ces technologies n’est pas sans
difficulté. En effet certains équipements bloquent les protocoles inconnus,
empêchant ainsi l’émergence de nouvelles technologies. C’est un phénomène
en partie responsable de l’ossification d’internet. D’autres considérations
techniques limitent l’intérêt de recourir à des technologies multichemins
dans certains cas, puisque celles-ci peuvent alors présenter des performances
moindres que les technologies monochemins.
Dans le cadre de cette thèse, nous proposons des réponses à certains de ces
cas afin de maximiser le spectre d’application des technologies multichemins,
en particulier du protocole Multipath TCP (MPTCP).

Plus précisémement, après une revue détaillée du domaine des commu-
nications multichemins, nous proposons une réponse au problème de décou-
verte des chemins. De plus, motivés par l’intuition que les ordonnanceurs
peuvent s’appuyer sur les latences unidirectionelles, afin de lutter contre
l’arrivé de paquets dans le désordre, nous proposons une technique qui ne
modifie que l’envoyeur de données pour estimer cette métrique. En outre,
nous proposons un outil qui maximise le débit tout en prenant en compte des
politiques utilisateur par exemple pour forcer l’envoi d’une partie du trafic
sur un chemin peu performant mais qui va coûter moins cher à l’utilisateur.
Finalement, nous développons et évaluons un modèle de MPTCP.

V

VI

Contents

Remerciements I

Abstract III

Contents VII

List of Figures XIII

List of Tables XVII

Glossary XIX

List of Software XXV

1 Introduction 1
1.1 Multipath communications: Incentives 1

1.1.1 Reliability . 2
1.1.2 Bandwidth aggregation 3
1.1.3 Confidentiality . 3
1.1.4 An alternative vision to Resource Pooling 3

1.2 Challenges . 4
1.2.1 Deployment concerns 4
1.2.2 Heterogeneous Networks 4
1.2.3 Pareto-optimality . 5
1.2.4 Resource Consumption 5

1.3 Contributions . 5
1.4 Structure of the dissertation 7

VII

VIII CONTENTS

2 Related work 9
2.1 Introduction . 9

2.1.1 Organization, Structure, and Research Problems . . . 12
2.2 Multipath Transmission . 13

2.2.1 Link Layer Bonding 16
2.2.2 IP Layer Bandwidth Aggregation 20

IP-in-IP Encapsulation 22
Network Address Translation Traversal 25
Identity/locator Split 27

2.2.3 Transport Layer Multipath Transmission 29
Quick UDP Internet Connections 31
SCTP based on Multipath Transmission 33
TCP based Multipath Transmission 42

2.2.4 Application Layer Multipath Capability 59
Multiple Connections over the Same Path 61
Multiple Connections over Different Paths 62
HTTP based Multipath Media Streaming 63
Session layer Multipath Capability 64

2.2.5 Summary . 67
Packet Reordering . 67
Layer-dependent scheduling algorithms 69
Cross-layer Support 71
Compatibility . 72
Evolution of Research Problems 74

2.3 Summary . 76

3 Presentation of MPTCP 79
3.1 High level design of MPTCP 79
3.2 Connection process . 83

3.2.1 Initiation . 83
3.2.2 Addition and closure of other subflows 85

3.3 Transmission of the flow of data 86
3.3.1 Congestion control . 87
3.3.2 Scheduling . 89

3.4 MPTCP state machine . 89
3.5 Associated challenges . 91
3.6 Summary . 92

CONTENTS IX

4 A multipathed crosslayer network architecture 95
4.1 Introduction . 96
4.2 General Architecture . 96

4.2.1 Cloud Network Elements 97
4.2.2 Functional blocks . 98
4.2.3 Multipath Communication Signaling 100

4.3 A design using MPTCP, LISP and TRILL 102
4.3.1 Locator/Identifier Separation Protocol 103
4.3.2 Transparent Interconnection of a Lot of Links 104

4.4 Specific Architecture . 105
4.5 Cross-Layer MPTCP-LISP cooperation implementation . . . 109

4.5.1 Augmented Multipath TCP path discovery 110
4.5.2 Signaling requirements and implementation aspects . . 112
4.5.3 LISP multipath forwarding requirements 114
4.5.4 Experimental results 116

Network test bed . 116
Open Source Nodes 117
Transfer times . 118
Data-plane overhead 120

4.5.5 TRILL and LISP unification for distributed DC net-
working . 120

4.6 Summary . 121

5 OWD difference estimation 123
5.1 Introduction . 123
5.2 Related work . 124

5.2.1 Clock synchronization in packet switched networks . . 125
5.2.2 TCP variations . 126
5.2.3 Multipath control techniques 127

5.3 Proposed OWD estimator . 128
5.3.1 Delay model . 128
5.3.2 Algorithm . 130

5.4 Simulation results . 135
5.4.1 Results . 137
5.4.2 Discussion . 138

5.5 Summary . 139

X CONTENTS

6 Window and buffer dimensioning for MPTCP 141
6.1 Introduction . 141
6.2 Presentation of can compute optimal congestion windows for

a specific connection . 144
6.2.1 Implementation . 146

6.3 Running modes and Results 147
6.3.1 Minimize the Multipath TCP buffer size 147
6.3.2 Maximize the estimated throughput 151

6.4 Limitations and future work 154
6.4.1 Addition of new constraints 154
6.4.2 Support of proposed MPTCP features 155
6.4.3 Integration with an MPTCP stack 155
6.4.4 More evolved trade offs 155
6.4.5 Taking into account the RTT variance 156

6.5 Summary . 156

7 MPTCP in NS-3: implementation and evaluation 159
7.1 Introduction . 159
7.2 Simulation frameworks and testbeds 161

7.2.1 Mininet . 161
7.2.2 Discrete time event-driven simulations 162

Presentation of NS-3 162
DCE: a bridge between simulators and emulators . . . 163
Discussion . 164

7.3 An MPTCP implementation in NS-3 166
7.3.1 Why a simulator ? . 166
7.3.2 Related work . 168
7.3.3 Supported and missing features 169

7.4 Evaluation . 171
7.4.1 Semantic analysis of MPTCP packet captures 171
7.4.2 Presentation of mptcpanalyzer 173
7.4.3 Comparison with linux MPTCP on a 2-link topology . 174
7.4.4 Open Problems . 178

7.5 Summary . 178

CONTENTS XI

8 Conclusion and Perspectives 181
8.1 Recollections . 181

8.1.1 Future Work . 182
8.1.2 Support of Time Distribution Protocols Scenarios in

DCE . 183
8.1.3 Improving sockets Application Programming Interface 185
8.1.4 Better Theoretical Models 186

8.2 Conclusion . 188

Own publications 191

Software contributions 193

Bibliography 195

XII CONTENTS

List of Figures

1.1 An example of server and client multihoming 2

2.1 Structure of Section 2.1.1 . 11
2.2 Milestones in the evolution of multipath transmission. 14
2.3 Link aggregation between Ethernet switches. SW: Switch. . . 17
2.4 IP-in-IP tunneling between two multi-homed hosts. 23
2.5 System architecture with a MAR router 25
2.6 Head-of-Line blocking (HoL): the receive buffer cannot ac-

commodate other chunks any more before the arrival of the
head-of-line chunk (chunk 1). 37

2.7 Resource pooling . 41
2.8 MPTCP architecture . 50
2.9 Static full-mesh of possible network paths between two MPTCP

enabled hosts . 57
2.10 Multipath transmission at the application layer 60

3.1 Simplified representation of the MPTCP handshake 80
3.2 Middlebox interference . 81
3.3 MPTCP: a shim layer in the stack 82
3.4 Illustration of used notations for two subflows. 86
3.5 MPTCP state machine. 90

4.1 Representation of the Cloud Networking Context. 98
4.2 A signaling example in the case of extra-DC multipath com-

munication. 101
4.3 LISP communications example. 103
4.4 Example of a multihomed data center and associated MPTCP

subflows. 103

XIII

XIV LIST OF FIGURES

4.5 Signaling process chronology. 113
4.6 Cloud network test bed scenario. 115
4.7 Completion times for different file sizes. 119
4.8 Transfer times for two subflows with and without Locator/I-

dentifier Separation Protocol (LISP). 120

5.1 Illustration of used notations for two subflows. 129
5.2 An example of Head-of-Line blocking. 131
5.3 Early probing: ∆̃FOWD is too low. 132
5.4 Late probing: ∆̃FOWD is too high. 132
5.5 Identical forward and backward fast subflows.

The algorithm has converged to a valid ∆̃FOWD. 133
5.6 Different forward and backward fast subflows.

The algorithm has converged to a valid ∆̃FOWD. 133
5.7 Test topology with asymmetric paths. 137
5.8 Real and estimated ∆OWDs (forward and backward). 138
5.9 Real and estimated forward One Way Delays (OWDs). 139

6.1 An overall run of the mptcpnumerics program. 145
6.2 Inputs and outputs for the buffer computation program. Dot-

ted frames are optional constraints. 150
6.3 Required buffer sizes in number of MSS with different schedulers150
6.4 Inputs/Outputs in congestion window mode 153
6.5 Global throughput and subflow contributions 154

7.1 Implementation structure in NS-3 code. 167
7.2 The new wireshark MPTCP analysis section. 172
7.3 Topology used for the simulations 175
7.4 Results for the single path topology. 176
7.5 MPTCP Linux kernel and NS-3 iperf2 throughputs with two

paths. 177
7.6 Repartition of sequence numbers across two subflows with the

NS-3 round robin scheduler. 177
7.7 Repartition of sequence numbers across two subflows with the

linux round robin scheduler. 178
7.8 Interarrival Data Sequence Number (DSN) latencies in a two

path network with the round robin scheduler. 179

LIST OF FIGURES XV

8.1 OWD distribution estimation on real traces. 183

XVI LIST OF FIGURES

List of Tables

2.1 Classification of the research work based on the Internet Pro-
tocol (IP) layers. 11

2.2 Key algorithms for link layer bonding 15
2.3 Summary of Link Layer Bonding Approaches. 15
2.4 Schemes used on IP level for bandwidth aggregation. 20
2.5 Key algorithms for IP layer bandwidth aggregation (sorted

according to their order mentioned in Table 2.6). 21
2.6 Summary of IP Level Bandwidth Aggregation Approaches. . 22
2.7 Comparison of problems addressed by SCTP and TCP based

multipath transmission approaches. 31
2.8 Key algorithms for Stream Control Transmission Protocol

(SCTP) based concurrent multipath transmission 34
2.9 Concurrent Multipath Transfer Protocols based on SCTP. . . 35
2.10 Key algorithms for TCP based CMT. 43
2.11 Concurrent Multipath Transfer Protocols based on TCP. . . . 44
2.12 Key algorithms for application layer multipath capability (sorted

according to their order mentioned in Table 2.13). 59
2.13 Concurrent Multipath Transfer Applications. 60
2.14 Cross-layer Support for Multipath Transmission. 70
2.15 Compatibility evaluation . 72
2.16 Research Problems per Layer 75

3.1 Exhaustive list of MPTCP options 84

6.1 Parameter and variable summary. 152

7.1 Comparison between experimentation technologies. 164
7.2 Comparison between NS-3 MPTCP simulators. 168

XVIII LIST OF TABLES

7.3 List of supported and missing features. 170

Glossary

ACK ACKnowledgements.

ALTO Application Layer Traffic Optimization.

AOLIA Adapted Opportunistic Linked Increases Algorithm.

APDU Application Protocol Data Unit.

API Application Programming Interface.

AS Autonomous System.

ATLB Arrival-Time matching Load-Balancing.

BBR Bottleneck Bandwidth and RTT.

BDP Bandwidth Delay-Product.

BERP Bandwidth Estimation Based Resource Pooling.

BFS Backward Fast Subflow.

BGP Border Gateway Protocol.

BMP Buffer Management Policy.

BSD Berkeley Software Distribution.

CMT Concurrent Multipath Transfer.

CMT Concurrent Multipath Transport.

CPU Central Processing Unit.

CWA Congestion Window Adaptation.

XIX

XX Glossary

DAC Delayed ACK for CMT.

DACK Data Acknowledgment.

DBAS Deplorable Bandwidth Aggregation System.

DC Data Center.

DCCP Datagram Congestion Control Protocol.

DFZ Domain Free Zone.

DHCP Dynamic Host Configuration Protocol.

DNS Domain Name System.

DSN Data Sequence Number.

DSS Data Sequence Signal.

DWC Dynamic Window Coupling.

ECMP Equal Cost Multipath.

ECN Explicit Congestion Notification.

ECT Equal Cost Tree.

EDPF Earliest Delivery Path First.

EID Endpoint Identifier.

ELP Explicit Locator Path.

FEC Forward Error Correction.

FFS Forward Fast Subflow.

FOSM Flow-Oriented Scheduling Mode.

FPS Forward Prediction Scheduling.

FQDN Full Qualified Domain Name.

FSM Finite State Machine.

GPL General Public License.

Glossary XXI

GPS Global Positioning System.

GSB GapAck-Induced Sender Buffer Blocking.

HE Happy Eyeballs.

HIP Host Identity Protocol.

HoL Head-of-Line blocking.

HTTP-RP HTTP Request Pipelining.

HTTP-RRR HTTP Range Retrieval Request.

HTTP/2 HyperText Transfer Protocol 2.

I2RS Interface to the Routing System.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

ILP Integer Linear Programming.

IoT Internet of Things.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

ISP Internet Service Provider.

ITR Ingress Tunnel Router.

JSON JavaScript Object Notation.

KCM Kernel Connection Multiplexor.

LACP Link Aggregation Control Protocol.

LAN Local Area Network.

LEDBAT Low Extra Delay Background Transport.

LIA Linked Increase Algorithm.

XXII Glossary

LISP Locator/Identifier Separation Protocol.

LTE Long Term Evolution.

MPLOT Multi-Path LOss-Tolerant protocol.

MPTCP Multipath TCP.

MR Map Resolver.

MS Map Server.

MSS Maximum Segment Size.

MTU Maximum Transmission Unit.

NAT Network Address Translation.

NIC Network Interface Controller.

NR-SACK Non-Renegotiable Selective Acknowledgments.

NSC Network Simulation Cradle.

NTP Network Time Protocol.

OF OpenFlow.

OLIA Opportunistic Linked Increase Algorithm.

OOO Out of Order.

OR Opportunistic Retransmission.

OS Operating System.

OWD One Way Delay.

PAT Port Address Translation.

PCA Per-Conversation Allocation.

PCE Path Computation Element.

PCEP PCE communication Protocol.

PET Packet-Pair based EDPF for TCP applications.

Glossary XXIII

PFA Per-Flow Allocation.

POSIX Portable Operating System Interface.

POSM Packet-Oriented Scheduling Mode.

pTCP parallel TCP.

PTP Precision Time Protocol.

QoE Quality of Experience.

QoS Quality of Service.

QUIC Quick UDP Internet Connections.

RAN Radio Access Network.

RLOC Routing LOCator.

RP Resource Pooling.

RR Round Robin.

RRB Reordering-Induced Receiver Buffer Blocking.

RTO Retransmission Timeout.

RTR Reencapsulating Tunnel Router.

RTT Round-Trip Time.

RWB Window-Induced Receiver Buffer Blocking.

SACK Selective Acknowledgment.

SCTP Stream Control Transmission Protocol.

SDN Software Defined Network.

SPB Shortest Path Bridging.

SPTCP Single Path TCP.

SSN Subflow Sequence Number.

STP Spanning Tree Protocol.

XXIV Glossary

TAPS Transport Area Protocol Services.

TCP Transmission Control Protocol.

TDF Time Dilation Factor.

TED Traffic Engineering Database.

TLS Transport Layer Security.

TRILL Transparent Interconnection of a Lot of Links.

TSB Transmission-Induced Sender Buffer Blocking.

TSN Transmission Sequence Number.

TSO TCP Segmentation Offload.

TTL Time To Live.

TTM Test Traffic Measurement.

UCL Université Catholique de Louvain.

UDP User Datagram Protocol.

VM Virtual Machine.

VoIP Voice over IP.

WAN Wide Area Network.

WRR Weighted Round Robin.

XMP eXplicit MultiPath.

List of Software

DIG the Domain Information Groper, a tool to query DNS servers.

LIG the Internet Groper, a tool to query Map Servers.

mptcpanalyzer is a tool to help analyze packet capture files..

mptcpnumerics can compute optimal congestion windows for a specific
connection.

mptcptrace a program to help analyze MPTCP packet captures.

wireshark a network protocol analyzer available at www.wireshark.org.

DCE Direct Code Execution; allows to execute unmodified C code in NS-3.

GCC the GNU C compiler.

iperf2 a multi-platform C program to do active network measurements
available at http://iperf.sourceforge.net/.

libnl a Netlink C library.

LibOS a fork of the Linux kernel that can run in DCE.

Linux a C kernel widely deployed through Android devices and servers.

LISPmob a userspace Linux LISP router.

Mathematica A commercial symbolic mathematical computation program.

Mininet an emulator based Linux containers.

Mininet Hi-Fi High Fidelity version of mininet enforcing a better isolation
of the host resources.

XXV

www.wireshark.org
http://iperf.sourceforge.net/

XXVI List of Software

MPTCP Linux kernel a fork of Linux that implements MPTCP.

NS-2 is a network simulator now made obsolete by NS-3..

NS-3 is a popular GPL discrete time event-based network simulator..

NTP client the reference client that illustrates the NTP RFCs.

OpenLISP a FreeBSD LISP router with a kernel dataplane.

OpenVSwitch A multilayer virtual switch.

OWAMP does active measurement to determine one way measurement
between hosts (http://software.internet2.edu/owamp/).

QEMU a generic and open source machine emulator and virtualizer.

tstat A TCP packet capture analysis program.

VMSimInt Controls I/O of Qemu to run real code in discrete time.

http://software.internet2.edu/owamp/

Chapter 1

Introduction

Smart devices or servers equipped with multiple network interfaces are be-
coming commonplace. Nevertheless, even though multiple interfaces can be
used to connect to the Internet, their capabilities have not been fully utilized
yet because the default TCP/IP stack supports only a single interface for
communication.

The criticity of the Internet keeps increasing with ever more services de-
pending on its infrastructure. The digital convergence today mostly trans-
ports information but in the future, the Internet might support services with
a more direct impact on the physical world such as the IoT autonomous ve-
hicles. It is thus important to be able to address the current infrastructure
shortcomings in terms of scalability, confidentiality, reliability. Multipath
communications are one possibility to do so.

1.1 Multipath communications: Incentives

The original Internet was designed as a two-connected network to intrinsi-
cally support multipath transmission. Nevertheless, computers with multi-
ple network interfaces were not an immediate design priority at the early
stage. Only the routers were equipped with several physical network in-
terfaces. However, the Internet has since then evolved significantly. For
example, most servers are equipped with more than one network interface
nowadays. The abundance of network resources from the server domain has
spurred the adoption of multipath transmission in data center networks.
In the consumer electronics domain, the proliferation of mobile devices
equipped with cellular (e.g., 3G and Long Term Evolution) and WiFi in-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: An example of server and client multihoming (Source: Cisco
documentation).

terfaces, represented by smart phones, brings with it a growing number of
multi-homed hosts onto the Internet. Even desktop computers often pro-
pose WiFi along with wired connectivity as pictured in Figure 1.1: a laptop
utilizes its interfaces A1 and A2 to exchange data over several paths (i.e.,
“subflows”) with the server.

Thus, there exists a mismatch between single-path transport and the
multitude of available network paths: according to Agarwal, Chuah, and
Katz [1], at least 60% of the stub domains are multihomed to two or more
providers. Even when Border Gateway Protocol (BGP) reduces the adver-
tised path diversity as it selects a single best route towards the destination,
flows might follow different paths as shown in [2]. Those multi-interface
devices require multipath capability to improve end-to-end communication
performance and resilience.

Meanwhile, technological advancement has shown benefits from multi-
path transmission. We list some of the major benefits as follows.

1.1.1 Reliability

Multipath transmission can enhance the reliability of data transfer because
additional paths can continue to keep the connection alive in the case of a
low path performance or even partial path failure. For instance, MPTCP
supports break before make scenarios, i.e., it can lose the connectivity on

1.1. MULTIPATH COMMUNICATIONS: INCENTIVES 3

all its paths, buffer the packets from the application while reestablishing
connectivity on another path and finally resume the connection. This is
especially useful in the context of mobility where the user can not always
predict connectivity loss.

1.1.2 Bandwidth aggregation

One of the most attractive benefits of multipath transmission is to utilize
multiple flows, initiated from different TCP/IP layers, for bandwidth aggre-
gation. Expectedly, the bandwidth aggregation can potentially multiply the
experienced throughput by the number of available paths. If efficient band-
width aggregation can be achieved in this manner, a multi-homed device
can obtain a much better throughput.

1.1.3 Confidentiality

If a single flow of data is split and forwarded on different paths, it should
become harder for a malicious adversary to reconstruct the flow since it
would need several probes to capture all traffic or one probe on a shared
hop by all paths.

1.1.4 An alternative vision to Resource Pooling

Engineers have designed over the years several mechanisms such as load
balancing, statistical multiplexing, failure resilience in order to increase re-
liability, flexibility and efficiency. These approaches can be considered as
Resource Pooling (RP) approaches as they try to make a collection of re-
sources behave like a single pool of resource. These different mechanisms are
not perfect: as an example it has been demonstrated that injecting more
specific prefixes to support multihoming does not scale[3], also in general
they require a few seconds to recover from failures (e.g., hard handover,
routing convergence). Instead of handling per path resource independently,
a revised multipath vision of the RP principle advocates to harness the
responsiveness of multipath-capable end systems, making improved use of
multiple path resources by allowing separate paths to act as if they were a
single large resource. This approach solves most of the previously mentioned
problems. It is a significant step towards a practical multipath-aware end

4 CHAPTER 1. INTRODUCTION

system, especially when joint congestion control algorithms were introduced
to offer both RP and TCP-friendliness features.

As a short summary, the demand from the abundance of network re-
sources from the server and mobile devices domain, and the drive of techno-
logical advancements, has made multipath transmission a hot topic in recent
years.

1.2 Challenges

While multipath communications exhibit interesting advantages, their de-
ployment is hampered by several factors we describe thereafter. Also, some
features presented as incentives can also impede deployment depending on
the point of view: the ability to escape a single point of surveillance we
previously labeled as an increase in confidentiality can be seen as a danger
from a company perspective.

1.2.1 Deployment concerns

The difficulty of deploying new protocols in the current Internet is not a
problem specific to multipath communications, yet it has proved to be a
real problem and has had much influence on the design of the most recent
protocols MPTCP and Quick UDP Internet Connections (QUIC). Internet
Protocol version 6 (IPv6) was hard to deploy because of the low incentive
compared to the risk of upgrading the hardware and software. A protocol
such as SCTP should have been easier to deploy as it was end-to-end, yet
number of middleboxes (Network Address Translation (NAT), firewalls) ei-
ther modify or drop suspicious packets, i.e., a packet that is neither User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP).

1.2.2 Heterogeneous Networks

By heterogeneous networks, we refer to paths with different RTTs or loss
rates. For some protocols who were designed to deliver data in order, sending
successive segments of data on different paths increase the change of Out
of Order (OOO) arrivals. For window-based protocols, the system needs to
buffer these out of order packets with the possibility, depending on the buffer
size, of Head-of-Line blocking (HoL). In this situation, multipath protocols
may in fact decrease the throughput.

1.3. CONTRIBUTIONS 5

1.2.3 Pareto-optimality

To be the most convincing, multipath protocols should be Pareto-optimal [4],
i.e., upgraded users should always benefit from multipath transport with-
out making any single user worse off. One way to measure the quality of
communications is to measure the throughput. As in this thesis, we are
mostly interested in transport multipath protocols, Pareto-optimality gains
are conditioned by the notion of fairness, which is very relative. The cur-
rent accepted notion of fairness implies that each TCP flow should get the
same share of the bandwidth. As a consequence simply utilizing multiple
flows results in an “unfair” share of the bandwidth at the bottleneck; for ex-
ample, n TCP flows get approximately n times throughput as a competing
Single Path TCP (SPTCP) flow does. Therefore in order to comply with
the current TCP fairness, multipath transport protocols should consume at
bottlenecks the same amount of router buffer than a SPTCP flow. As the
detection of shared bottlenecks is a difficult problem, the current MPTCP
stance is to be conservative and consider that all paths should be considered
to share a bottleneck. This situation obviously makes the aggregation goal
harder to reach.

1.2.4 Resource Consumption

The use of multiple paths consume more resources since there are more
states to track. This increase in resource usage should be compensated for
by the increase of another metric such as the throughput. For instance, it
has been shown [5] that enabling multipath for short communications was
counterproductive in terms of energy efficiency: in a mobile configuration, a
smartphone would power on the energy-hungry cellular interface to enable
multipath right before the end of the connection, resulting in an increased
energy consumption for no throughput gain. Buffer size is also a resource to
monitor carefully as it is directly linked with the number of paths one can
use.

1.3 Contributions

Among the challenges we mentioned, some are more relevant than others.
The high switching cost might be one of the reasons why the SCTP protocol
did not get deployed as much as initially intended: it was a new protocol and

6 CHAPTER 1. INTRODUCTION

as such was blocked by middleboxes. Also it required to modify applications.
Tunneling is a first workaround, at the expense of the Maximum Transmis-
sion Unit (MTU), and is used in SCTP/WebRTC combination. The other
approach is to look like TCP (for MPTCP) or UDP (for QUIC) and seems
to work fine as well.

These two protocols operate at the transport layer. Multipath commu-
nications can be envisioned from different point of views and places in the
network stack.

While there has been propositions for layer 2 multipath protocols, the
transport and application layer seems the most relevant to operate in a
multipath context since they have the most information about path het-
erogeneity, RTTs, information useful to mitigate multipath problems. We
intentionally leave out all work that focuses on multipath routing, i.e. the
control plane problem of how to compute and select the routes. We refer
the readers to articles and recent surveys that cover such work [6]–[10].

In this thesis we focus mostly on the transport layer, more specifically the
Multipath TCP protocol, with its associated problems. First and foremost,
the transport layer operates at endhost which do not know the path diversity
or the path characteristics, which makes it difficult to deduce an efficient
number of paths to reach either the confidentiality or throughput goals.

We are interested in identifying these cases and propose solutions to
limit their impact, so that multipath communications perform better than
single path technologies as often as possible, more specifically Multipath
TCP (MPTCP). Our contributions can be resumed as follows:

• We propose a large survey of multipath technologies at the different
layers, and present why the transport and application layers appear
as the most adequate for such technologies.

• We propose a cross-layer virtual network overlay architecture to ensure
maximally disjoint paths and gives MPTCP more visibility on the
overlay network topology.

• we propose a integer linear programming framework aimed at deter-
mining the optimal receive buffer sizes and optimal congestion windows
in order to reach the best throughput under some constraints.

• The previous items show the importance of one way latencies in mul-
tipath communications, hence we also propose a technique to compute

1.4. STRUCTURE OF THE DISSERTATION 7

the difference in delays between different paths with sender-side mod-
ifications only.

• All these contributions showed how difficult experimentation and anal-
ysis of multipath protocols could be, hence we decided to implement
and share a simulation model along with tools to help with the analysis
of MPTCP capture files.

1.4 Structure of the dissertation

The remainder of this dissertation is as follows:

• Chapter 2 surveys related work around multipath technologies across
layers.

• Chapter 3 describes more in detail the signaling and different aspects
of Multipath TCP.

• Chapter 4 describes an architecture to achieve maximally disjoint
paths and illustrates it with a partial implementation based on LISP
and MPTCP.

• Chapter 5 describes one sided sender-only modification to estimate
the difference in path OWDs, a metric that can improve the perfor-
mance of Concurrent Multipath Transport (CMT) protocols.

• Chapter 6 presents a discrete time event-based simulator that gen-
erates two different Integer Linear Programming (ILP) to help with
MPTCP window and buffer sizing.

• Chapter 7 describes our implementation of MPTCP in NS-3 along
with some tools to help with MPTCP capture packets analysis.

• Chapter 8 concludes the dissertation and opens up perspectives for
future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

Even though the adoption of concurrent multipath protocols can be consid-
ered quite recent, these protocols were designed with the experience learned
from past trials and errors. In this chapter, we present the context that led
to the current design of protocols, regardless of whether we used them in
the rest of the dissertation1.

2.1 Introduction

The Internet was originally designed as a two-connected network to guaran-
tee that no single failure would cause any non-failed portion of the network
to lose connectivity [12]. In essence, any source-destination pair needs to
maintain more than one path to assure the reliability and resiliency of the
network. Although the rich resources have been existing in the Internet,
they have not been fully utilized since the birth of the Internet. The reason
lies in the fact that, by default, the conventional TCP/IP only uses a single
“best” path according to certain routing metrics; the other available paths
remain standby only for backup and recovery purposes.

Nonetheless, this situation has been changing in the past few years,
which is indicated by several trends from the standardization organization,
academia, and industry. From the standardization perspective, both Insti-
tute of Electrical and Electronics Engineers (IEEE) and Internet Engineering

1The contents presented in this chapter have been published in [11]. As co-authors, we
mostly contributed to the transport and application layers aspects, as well as the aspects
related to the coordination between network overlays and transport protocols.

9

10 CHAPTER 2. RELATED WORK

Task Force (IETF) are active on concurrent multipath transmission. There
have been several working groups dedicating on the standardization, for
example, [13]–[22] 2. From the academia, hundreds of scientific articles re-
volving around multipath transmission have been published, covering differ-
ent network stack layers on various aspects ranging from packet reordering,
scheduling to buffer management, fairness, RP. From the industry, several
companies have implemented their own link layer aggregation schemes, such
as [23]–[25]. Deutsche Telekom offers hybrid access by bundling Digital
Subscriber Line (DSL)-line with Long Term Evolution (LTE) in its port-
folio [26]. Tessares company [27] tried to develop new innovative network
services on top of MPTCP. For example, its first product aims to aggre-
gate the bandwidths of different infrastructure (LTE/DSL). In 2015, OVH
company [28] announced a new product called Overthebox. This product
combines MPTCP and SOCKS proxies to enable users to bond different
DSL lines together. Apple has implemented a variant of MPTCP on part of
their Siri servers and allows iOS 7 users to use it in their iPhones [29]. At
IETF’93 in 2015, KT Corporation presented Gigapath, a commercial service
which can achieve high bandwidth (800 Mbps and more) by combining LTE
and WiFi networks on Multipath TCP enabled smart phones [30].

There already exist a few survey articles focusing on different aspects of
multipath transmission. For example, [6]–[10] mainly focused on the control
plane problem (i.e., multipath routing of how to compute and select paths).
[31] covered the control plane problem as well as the data plane problem
(i.e., how to split the flow on the chosen paths) in wired networks. [32] as-
sumed multiple paths had been established by routing protocols and focused
on load distribution in terms of traffic splitting and path selection. [33] and
[34] considered multipath transmission in wireless and wired networks re-
spectively. [35] investigated the common features of various approaches and
classified the features into layer-dependent and layer-independent features.
In addition, [35] also abstracted common design patterns and proposed a uni-
fied networking architecture to enable mobile nodes to make context-aware
decisions about how and when to use each or a combination of networks.

We provide a comprehensive survey of multipath transmission, covering
various aspects on different layers. Towards that direction, we make several

2[22] gives an overview of bandwidth aggregation mechanisms discussed in the context
of Banana mailing list https://www.ietf.org/mailman/listinfo/banana

https://www.ietf.org/mailman/listinfo/banana

2.1. INTRODUCTION 11

Table 2.1: Classification of the research work based on the IP layers.
Stack position Research work
Link Multi-Link PPP (MP) [36], [37], strIPe [38], [39], FatVAP [40], IEEE 802.1AX-2008 [13],

EtherChannel [23], Aggregated Ethernet [24], Multi-Link Trunking [25], IEEE 802.1AX-
2008 [13], OpenFlow [41], [42], IEEE 802.1aq [14], TRILL [18], SPB [43]

Network Phatak et al. [44], [45], BAG [46], [47], PRISM [48], [49], ETOM [50], MAR [51], IN-
TELiCON [52], MLP [53], SIMA [54], mHIP[55], [56], Sun et al. [57], LISP [17], OS-
CAR [58], LISP-HA [20]

Transport BA-SCTP [59], W-SCTP [60], CMT-SCTP [61]–[70], LS-SCTP [71], [72], cmpTCP [73],
WiMP-SCTP [74], cmpSCTP [75], mSCTP-CMT [76], FPS-SCTP [77], R-MTP [78],
Lee et al. [79], pTCP [80]–[82], R2CP [83], [84], Cetinkaya et al. [85], mTCP [86], M-
TCP [87], M/TCP [88], R-M/TCP [89], cTCP [90], MPLOT [91], [92], JOSCH [93],
Super-aggregate [94], BMC [95], MPTCP [96]–[108], Han et al. [109], NC-MPTCP [110],
FMTCP[111], [112], QoS-MPTCP [113], CWA-MPTCP [114], Openflow-MPTCP [115],
Balia [116], [117], A-MPTCP [118], Yang et al. [119], SC-MPTCP [120], MPTCP-MA [121],
EW-MPTCP [122], Yang and Amer [123], DRePaS [124], Coudron et al. [125]

Application XFTP [126], PSockets [127], GridFTP [128], PA [129], ATLB [130], [131], Tavarua [132],
SBAM [133], DMP [134], [135], MultiTCP [136], PATTHEL [137], Kaspar et al. [138],
[139], Evensen et al. [140]–[142], Miyazaki et al. [143], DBAS [144], [145], G-DBAS [146],
OPERETTA [147], MPTS-AR [19], [148]

Cross-layer PRISM [48], [49], MPTCP-MA [121], ATLB [130], [131], Tavarua [132], SBAM [133], Mul-
tiTCP [136], PATTHEL [137], DBAS [144], [145], G-DBAS [146], OPERETTA [147], A-
MPTCP [118], Openflow-MPTCP [115]

P6: Buffer impact

P5: Pareto-optimality

P3: Fairness

P4: Resource pooling

 Sec. III Multipath Transmission

C. Transport-layer
Multipath Transmission

D. Application-layer
Multipath Capability

B. IP-layer Bandwidth
Aggregation

A. Link-layer Bonding

Table III Algorithms
Table IV Approaches

Table IX, XI Algorithms
Table X, XII Approaches

Table XIII Algorithms
Table XIV Approaches

E. Summary

P3: Cross-layer support

P4: Compatibility

P1: Packet reordering

P2: Layer-dependent scheduling

Table XV Algorithm evaluation
Table XVI Cross-layer approaches
Table XVII Compatibility evaluation
Table XVIII Research evolution

P5: Research evolution

1) SCTP based
2) TCP based

P1: Load sharing

P2: Packet reordering

P2: Packet reordering

P1: Load sharing

1) IP-in-IP encapsulation
2) NAT traversal
3) Identity/locator split

P1: Load sharing

P2: Packet reordering

P3: Fairness

1) Same path
2) Different paths
3) HTTP based
4) Middleware

P1: Load sharing

P2: Packet reordering

Table VI Algorithms
Table VII Approaches

P7: Path Diversity

Table V Tunneling schemes Table VIII Problems compare

Figure 2.1: Structure of Section 2.1.1 and research problems (P) to address.

12 CHAPTER 2. RELATED WORK

key contributions and summarize them as follows: (1) a complete taxonomy
regarding multipath transmission is presented, covering various protocol lay-
ers including link layer, network layer, transport layer, application layer and
cross layer; (2) the state-of-the-art for each layer is surveyed, the problems
addressed by layer specific approaches are investigated, and comprehensive
comparisons among them are made; (3) the standardization efforts from
various parties are summarized, including working groups from IETF and
IEEE.

2.1.1 Organization, Structure, and Research Problems

Grouping and discussing multipath transmission approaches according to
their stack position are beneficial for researchers and practitioners to under-
stand the benefits and trade-offs from each layer, and make an all-around
decision. Therefore, we survey the state-of-the-art multipath transmission
from layer-specific perspectives. Table 2.1 shows the classification of the
research work according to the stack position.

The structure of the survey is organized as follows. In Section 2.2, var-
ious approaches are classified based on their network stack position and
cross-layer approaches are discussed separately (see table 2.1). Figure 2.1
illustrates the structure and coverage of Section 2.2. In each discussion of
the layer specific approaches, we investigate the problems the approaches on
that layer aim to address. Some problems are common to all layers, such
as the load sharing and packet reordering problems. Some are addressed
only on certain layers. For example, the fairness problem is addressed only
on IP and transport layers. Compared with other layers, transport layer
approaches have more problems to address including RP, buffer impact,
Pareto-optimality and path diversity. The discussion of approaches follows
a chronological order except that we group some research work which has
similarity or progression. In addition, two tables are used to summarize
the key algorithms and approaches respectively. The approach table is con-
nected to the key algorithm table by the means of listing the key algorithms
used in each approach as well as the intended network environments of the
algorithms. Note that the same algorithms, which are used on different
layers, are not repeatedly described in different key algorithm tables. In-
stead, we only provide explanation in the table when the algorithm is first
discussed. Following the discussion of the approaches on specific layers, we

2.2. MULTIPATH TRANSMISSION 13

make a summary to present a comprehensive comparison from five perspec-
tives. Finally, we conclude the survey in Section 2.3.

First of all, we investigate multipath transmission in wired and wireless
networks In addition, we focus solely on the data plane problem of how to
split data on multiple paths and intentionally leave out all work that focuses
on multipath routing, i.e. the control plane problem of how to compute and
select the routes, as well as security-related issues. Such issues are covered
in [6]–[10].

Compared with surveys on multipath routing, surveys on the data plane
problems are less popular. There are only a few surveys [10], [31]–[35], [149]
that touch on the topic. In a somewhat old but still relevant survey [33],
Ramaboli et al. reviewed some bandwidth aggregation approaches in het-
erogeneous wireless networks which consist of a variety of integrated and
jointly managed radio access technologies. They found that packet reorder-
ing is the most dominant challenge because it can introduce undesirable
delays for real-time applications and unnecessary retransmissions for TCP
applications.

We summarize the key algorithms used on all the other layers except
the physical layer (we refer the readers to [150], [151] for multipath trans-
mission at the physical layer) and associate the algorithms to the problems
they were designed to address. We extract the scheduling algorithms and
compare their efficiency in terms of packet reordering and load sharing capa-
bilities without considering their layer dependency. The approaches based
on a cross-layer design are summarized and discussed in a separate section.
The approaches on different layers are also evaluated from the viewpoint of
compatibility capability. We also discuss the evolution of the research ques-
tions on multipath transmission and found that only the transport layer
approaches following a nice evolution.

2.2 Multipath Transmission

Before we dig into the technical details of multipath transmission, we present
the timeline of its milestones in Figure 2.2 in order to give readers a general
picture of its development. The first paper on TCP was published in 1974.
In the following year, Dr. Maxemchuck proposed Dispersity Routing [152]
in his Ph.D. dissertation to concurrently transmit data over multiple paths.

14 CHAPTER 2. RELATED WORK

1980 1990 2000 2010

1974: first
paper on TCP

1975: first reference
 to concurrent MT

1991: HTTP V0.9

1995: build
MT into TCP

1996: link
layer bunding

1996: FTP supports
multiple connections

2000: IETF
SCTP

2000: MT library

2002: IP-in-IP
 MT tunneling

2002: first 3G network

2004:
CMT-SCTP

2006: MT fluid-flow
 modeling

2007: HTTP with
 MT support

2008: resource
pooling

2009: IETF
MPTCP

2010: MPTCP in DCN

2012: MPTCP
pareto-optimality

2011: OpenFlow V1.1

Figure 2.2: Milestones in the evolution of multipath transmission. MT:
Multipath Transmission, DCN: Data Center Network, MPTCP: Multipath
TCP.

From that point onward, various forms of multipath transmission have been
proposed. For example, the idea of building multipath capability into TCP
was, to the best of our knowledge, first suggested by Huitema [15] as an
Internet draft in IETF in 1995. In 2006, Key et al. [153] used fluid-flow
modeling to demonstrate that multipath transport can provide not only ro-
bustness but also balanced congestion in a stable manner. In the same year,
Shakkottai, Altman, and Kumar [154] used a non-cooperative pricing game
to show that multihoming outperforms unihoming in terms of throughput
and profit to the Internet Service Providers (ISPs). In 2008, Wischik, Hand-
ley, and Braun [155] investigated the RP principle, which makes a collection
of resources behave like a single pooled resource. This principle is a sig-
nificant step towards a practical multipath-aware end system. From 2009,
IETF started to define and standardize MPTCP, which employs a coupled
congestion control algorithm to achieve RP principle.

In the remainder of this section, the state-of-the-art multipath transmis-
sion schemes are classified according to which layer of the protocol stack the
proposed approach performs at: link layer, network layer, transport layer
and application layer.

2.2. MULTIPATH TRANSMISSION 15

Table 2.2: Key algorithms for link layer bonding .
Algorithm Problems to ad-

dress
Description

WRR (Weighted Round
Robin)

Load sharing It is designed to better distribute data onto paths
with different capabilities. Each path is assigned
a weight which indicates the path’s transmission
capability in terms of bandwidth, delay and packet
loss (or partial of them). Data is distributed over
different paths proportionally to their transmission
capability.

FLSA (Fair Load-Sharing
Algorithm), FQA (Fair-
Queuing Algorithm)

Load sharing A FLSA is obtained by transforming the operations
of a Fair-Queuing Algorithm (FQA) in a time re-
versed manner. FLSA and the corresponding FQA
need to run at the sender and the receiver respec-
tively to provide a fair load sharing in the pres-
ence of variable sized packets and variable capacity
channels.

PCA (Per-Conversation Al-
location)

Load sharing, packet
reordering

It allocates frames on a per conversation basis. For
example, frames belonging to the same conversa-
tion is distributed only onto the same path. Mul-
tiple different conversations could share the same
path.

PFA (Per-Flow Allocation) Load sharing, packet
reordering

It allocates traffic on a flow-by-flow basis. For ex-
ample, traffic belonging to the same TCP flow is
distributed only onto the same path. Multiple dif-
ferent flows could share the same path.

ECT (Equal Cost Tree) Load sharing It allows shortest path forwarding in an Ethernet
mesh network context utilizing multiple equal cost
trees. ECT supports much larger layer-two topolo-
gies than per-hop based ECMP.

ECMP (Equal Cost Multi-
path)

Load sharing It is a routing strategy where next-hop packet for-
warding to a single destination can occur over mul-
tiple “best paths”. ECMP is a per-hop decision
that is limited to a single router.

RR (Round Robin) Load sharing This simple scheduling algorithm orders paths and
sends each piece of data on the next available/pos-
sible path in circular order.

Table 2.3: Summary of Link Layer Bonding Approaches.
Scheme Year Algorithm and

Protocol
Network Envi-
ronment

Re-sequence
Header

MP [36] 1996 WRR ISDN Yes
strIPe [38], [39] 1996,

1999
FLSA, FQA General Support

LQB [37] 1999 WRR WWANs Yes
LACP [13], [156] 2000,

2008
PCA Ethernet No

FatVAP [40] 2008 PFA WAPs No
SPB
IEEE802.1aq [43]

2012 PFA, ECT Ethernet No

TRILL [18] 2014 PFA, ECMP General No
OpenFlow [41], [42] 2014,

2015
PCA Ethernet, data

center
No

16 CHAPTER 2. RELATED WORK

2.2.1 Link Layer Bonding

High end workstations and data centers can easily saturate existing Local
Area Networks (LANs). On the link layer, multipath transmission is typi-
cally called bonding or link aggregation because multiple physical channels
are bundled (or aggregated) into a single logical channel. The primary goal
of link layer bundling is to coordinate multiple independent links between
a fixed pair of systems, providing a virtual link with a larger bandwidth
than what a single link can sustain. Figure 2.3 shows a simplified example
of link aggregation between two Ethernet switches (SW1 and SW6). These
switches can obtain increased throughput by striping data across multiple
interfaces.

In the following discussion, we use Table 2.2 and Table 2.3 to summarize
the key algorithms and approaches respectively. The approaches in Table 2.3
are sorted in chronological order. The algorithms in Table 2.2 are sorted
according to their order mentioned in Table 2.3. Note that the algorithms
in Table 2.2 may be not only adopted by approaches on the link layer, but
may also be used by those on other layers. In this survey, we will not
elaborate the algorithms that have been discussed previously. This same
rule is applicable for all other algorithm tables.

Multi-Link PPP (MP) [36], designed for Integrated Services for Digital
Network (ISDN), aggregates multiple links using the PPP protocol [157]. In
order to detect fragment loss and disorder, MP uses a 4-byte re-sequencing
header (RSH) for synchronization and detecting lost fragments at the re-
ceiver. Therefore, a reorder buffer is required at the receiver to accommo-
date the out-of-order fragments caused by link aggregation. MP suggests
a Weighted Round Robin (WRR) scheduling scheme so that data can be
distributed proportionally to the transmission rates of the links. To achieve
this goal, two methods for fragmentation have been proposed. The first
one divides packets into segments with sizes proportional to the transmis-
sion rates of different paths. The other method divides packets into many
small equal sized fragments and distributes the number of the fragments
proportionally to the transmission rates of different paths.

Adiseshu et al. [38], [39] added a “strIPe" layer, a virtual IP interface
below the IP layer and above the data link layer, to aggregate multiple data
links. The stripe layer implements the striping algorithm at the sender and
the fair queuing algorithm at the receiver. The authors first showed how

2.2. MULTIPATH TRANSMISSION 17

Host	
B	

Host	
A	

SW2	

SW3	

SW4	

SW5	

SW6	SW1	

Figure 2.3: Link aggregation between Ethernet switches. SW: Switch.

a fair-queuing algorithm (FQA) can be transformed to a fair load-sharing
algorithm (FLSA), and then proposed that the FQA should run in a reversed
manner of the load-sharing algorithm in order to solve the load sharing issue
with variable packet size. It implies that identical equipment (or of the same
vendor) is required on both sides of the aggregation. They also dealt with
the FIFO delivery issue for two separate cases. For example, if a RSH can
be added to each packet, the issue can be solved by using the additional
reordering number; if no header can be added, they proposed a way of
synchronization in the event of frame loss to provide quasi-FIFO delivery.

An implementation of MP in Wide Area Networks (WANs) was discussed
by Snoeren et al. in [37]. They proposed a Link Quality Balancing (LQB)
scheme to bundle multiple channels of the same Wide-area Wireless Access
Network (WWAN) technology. In order to adjust traffic striping across bun-
dled links according to their transmission capabilities, LQB adapts the MTU
of each link in proportion to its available bandwidth (short-term averages
of the observed throughput). A link layer receive buffer is also required to
reorder fragments.

FatVAP (an 802.11 driver design) [40] is another work in a wireless en-
vironment for link bonding. FatVAP aggregates the bandwidth available at
multiple wireless access points (WAPs) that are worth connecting to and
balances their loads by scheduling traffic to different APs according to their
available bandwidth. In order to continue delivering the sum of the band-
widths available across all APs, FatVAP uses a constant estimation of both
end-to-end and wireless bandwidth to react to changes within a few seconds.

18 CHAPTER 2. RELATED WORK

Note that FatVAP uses a Per-Flow Allocation (PFA) strategy to distribute
traffic over APs. For example, when a new flow arrives, FatVAP determines
which AP to assign this flow to and records the mapping in a hash table.
Subsequent packets in the flow are simply sent through the AP recorded in
the hash table.

Within IEEE specifications, the Link Aggregation Control Protocol (LACP)
allows multiple links of Ethernet to be aggregated together to form a Link
Aggregation Group (LAG). As such, the Media Access Control (MAC) client
can treat the LAG as a single link. LACP allows a network device to nego-
tiate an automatic bundling of links by sending LACP packets to the peer.
LACP was initially released as 802.3ad [156] in 2000. Nearly every network
vendor quickly adopted this standard over their proprietary standards. In
2008, the protocol was transferred to the 802.1 group with the publication of
IEEE 802.1AX-2008 [13]. In LACP, a Frame Collector (FC) at the receiver
is responsible for maintaining any frame ordering constraint. In order to
avoid frame reordering, the Frame Distributor (FD) at the sender transmits
all frames that compose a given conversation3 only to a single link, which is a
Per-Conversation Allocation (PCA) strategy (very similar to PFA strategy).
Therefore, no frame reordering scheme or reordering buffer is required at the
FC. In addition to the IEEE link aggregation standards, there are a num-
ber of proprietary aggregation schemes, including EtherChannel [23] from
Cisco, Aggregated Ethernet [24] from Juniper, Multi-Link Trunking [25]
from AVAYA. These proprietary aggregation schemes and IEEE 802.3ad
standards are very similar and accomplish the same goal.

Since the version 1.1 [158], OpenFlow (OF) has supported multi-link ag-
gregation on layer-2. The specification of OF switch has introduced Link
Aggregation (LA) to obtain the ability for one port to point to a group of
other ports. Using LACP for exchanging dynamic information between LA-
supported devices, the OpenFlow controller has full control over the switches
on how frames are distributed and collected on multiple links. Nguyen-Duc
et al. [41] investigated the operation of LA in OpenFlow switches and found
that LACP on OpenFlow switch provides a slightly lower throughput than
the one on a conventional switch. Thus, OpenFlow switches need to be
further optimized to achieve equivalent performance. Subedi et al. [42] pre-

3A set of frames transmitted from one end station to another, where all of the frames
form an ordered sequence, and where the communicating end stations require the ordering
to be maintained among the set of frames exchanged.

2.2. MULTIPATH TRANSMISSION 19

sented an adaptive multipath forwarding architecture in a layer-2 OpenFlow
data center network. In the architecture, all-to-all forwarding paths are set
up proactively among the edge nodes. Aggregated bandwidth is achieved
by using all the available paths simultaneously. To avoid the out-of-order
delivery issue due to using all available paths, a PCA style scheduling al-
gorithm is used in [41], [42]. Specifically, the algorithm excludes the paths
whose path length exceeds the shortest path length significantly.

In the last few years, there are notable new protocols designed to support
multipath forwarding at link-layer in IEEE and IETF standards, e.g., Short-
est Path Bridging (SPB) [43] (specified in the IEEE 802.1aq standard [14])
and IETF Transparent Interconnection of a Lot of Links (TRILL) [18]. SPB
and TRILL are potential successors of the Spanning Tree Protocol (STP).
SPB now supports multipath forwarding by using Equal Cost Multipath
(ECMP) and Equal Cost Tree (ECT) routing strategies. TRILL currently
only supports multipath forwarding by using ECMP routing strategy. In
both ECMP and ECT strategies, if multiple equal cost paths are present to-
wards a destination, network traffic is distributed over those multiple paths.
In order to avoid reordering and path MTU discovery problems, similar to
FatVAP, both TRILL and SPB use per-flow multipath forwarding. Specifi-
cally, frames belonging to the same data flow take the same path and frames
belonging to other flows can take the other paths.

From Table 2.2, we find that the main problems the algorithms trying to
address are load sharing and packet reordering. Among all the algorithms,
the simplest one is Round Robin (RR) where the sender allocates fragments
among all the available links in equal portions and in an ordered fashion.
In the long run, RR scheduling provides a fair share of fragments as long as
these fragments are of the same size. Nevertheless, the basic RR scheduling
strategy is rarely used in practice because it provides no load sharing with
either variable sized fragments or different link capacities. In order to solve
these issues, the Weighted RR variations are the more widely used scheduling
strategies.

The main advantage of link-layer bonding is that the signaling rate of
the channel is relatively stable and can be utilized to mitigate reordering.
However, link-layer approaches only work on a point-to-point link and even
require dedicated Ethernet cards installed on both sides. Thus, they are
not applicable in general scenarios of end-to-end communications where the

20 CHAPTER 2. RELATED WORK

different domains involved are controlled by different providers.

2.2.2 IP Layer Bandwidth Aggregation

Table 2.4: Schemes used on IP level for bandwidth aggregation.
Scheme Description Update
IP-in-IP encapsu-
lation

No Proxy: The client and server open a TCP connection with
an agreed IP for each other. When a packet is sent through
interfaces with IPs other than the agreed one, the packet is
encapsulated in another packet with the agreed IP.

Endpoints

One proxy at the client side: A proxy is required. IP-in-IP
encapsulation is running between the proxy and the client to
hide the usage of multiple IPs from TCP. The server which
is unaware of the client’s multiple IPs communicates with the
proxy using normal TCP.

Client,
network

Two proxies at the both sides: Two proxies on the client and
server sides are required. IP-in-IP encapsulation is running
between the proxy client and server. Each endpoint commu-
nicates with the proxy (client or server) with normal TCP.
The usage of their multiple connections is hidden from both
endpoints.

Network

NAT (Network
Address Transla-
tion)

No Proxy: The client and server agree with one IP for each
other. The source and destination IPs at the client are re-
placed with the agreed ones. Upon receiving a packet, the
server reverses its source and destination IPs using the agreed
ones before forwarding it to TCP.

Endpoints

One proxy at the client side: One proxy is required. NATing
is running between the proxy and the client to hide the usage
of multiple IPs from TCP. The server which is unaware of the
client’s multiple IPs communicates with the NAT box using
normal TCP.

Client,
network

Two proxies at the both sides: A proxy client and sever are
required. NATing is running between the proxy client and
server. Each endpoint communicates with the proxy (client or
server) with normal TCP. The usage of multiple connections
between proxies is hidden from both endpoints.

Network

Identity/Locator
Split

Host-level: The identity of a host is separated from its location
(i.e., IP address). Each host uses its globally valid identity
to shield the presence of its multiple IPs from transport and
application layers.

Endpoints

Network-level: The IP space is separated into two spaces, one
for identity of a host and the other for locator of a border
router. A mapping system is required to provide mapping be-
tween the identity and locator. Multipath transmission could
be provided between source and destination border routers for
the purpose of traffic engineering.

Network

The IP layer, originally proposed to handle global addressing and rout-
ing, is a natural candidate to host the multipath capability to enhance end-
to-end communication. A network approach has the advantage of being
transparent to transport protocols and applications, making wide spread
deployment much easier. In theory, each packet of a TCP flow can be sent
over a different path, and the IP protocol ensures that all packets reach
their destination. For example, Sun et al. [57] explored the use of multipath
routing to reduce the file transmission delay in a wireless network. Specif-
ically, they proposed taking advantage of packet level erasure code (e.g.,

2.2. MULTIPATH TRANSMISSION 21

Table 2.5: Key algorithms for IP layer bandwidth aggregation (sorted ac-
cording to their order mentioned in Table 2.6).
Algorithm Problems to ad-

dress
Description

PET (Packet-Pair based EDPF
for TCP applications)

Load sharing,
packet reordering

It sends TCP packet-pairs on each path period-
ically to compute inter-arrival time between the
hosts, and schedules packets on the path that de-
livers it the earliest. PET is a variant of EDPF.

BMP (Buffer Management Policy) Spurious retrans-
mission, packet
reordering

It is designed to hide any residual reordering from
TCP at the data receiver side so that unneces-
sary retransmissions are avoided. For instance,
the receiver buffers out-of-order data packets at
the network layer before passing them to TCP in
order.

EDPF (Earliest Delivery Path
First)

Load sharing,
packet reordering

It estimates the delivery time of the packets on
each path, and schedules each packet on the path
that delivers it the earliest. This approach is used
to minimize reordering and thereby the delay and
jitter experienced by the application.

RPC (Reverse Path Controller) Spurious retrans-
mission, packet
reordering

It is designed to handle spurious duplicated
ACKs in the data sender side so that unneces-
sary retransmissions are avoided. For example,
RPC exploits TCP’s control information carried
by ACKs, determine the meaning of duplicated
ACKs, corrects them if necessary.

SACK (Selective Acknowledg-
ment)

TCP performance It is sent from the receiver to the sender informing
the sender of the out of order data that has been
received. The sender can then retransmit only the
missing data segments.

DATA/ACK SEP TCP performance It separates the forward (DATA) and the back-
ward (ACK) traffic on different paths.

PBCS (Piggy-Backing for Control
Signaling)

Path status It adds piggy-backing extra information on pack-
ets before injecting them into the networking
stack for transmission. The information is
stripped out at the recipient.

TFCC (TCP-Friendly Congestion
Control)

Fairness It restricts the subflows of one TCP connection to
use more bandwidth than normal TCP does at a
shared bottleneck.

PRM (Packet Reordering Mod-
ule)

Spurious retrans-
mission, packet
reordering

It runs at both sides of a communication to han-
dle packet reordering issue. Specifically, it delays
the data packets at the receiver and their ACKs
at the sender before forwarding them to the up-
per layer. To avoid over-protection, it only delays
forwarding them before the timeout.

digital fountain code) to transmit data file with redundancy over a set of
paths. They obtained the intuitive understanding of the trade-off between
the code rate and delay reduction. Their research was made for a special
network environment where a source and destination pair has a rich set of
identical and disjoint paths, hence no packet reordering issue introduced.
Nevertheless, in most practical network environments, when packets inside
one connection taking more than one path, they can experience different
propagation delay and arrive out of order. The TCP receiver sends dupli-
cate acknowledgments (ACKs) to the sender, which causes the TCP sender
mistakenly interprets packet reordering as packet loss. The results found in

22 CHAPTER 2. RELATED WORK

Table 2.6: Summary of IP Level Bandwidth Aggregation Approaches.
Scheme Year Tunneling Proxies

or Up-
dated
Routers

Algorithm
and Protocol

FairnessNetwork En-
vironment

Sequence
Space

Phatak et
al. [44], [45]

2002,
2003

IP-in-IP encap-
sulation

0 WRR No Mobile Single

MAR [51] 2004 NAT 1 or 2 WRR, PFA No Mobile Single
BAG [47] 2005 IP-in-IP encap-

sulation
1 PET, BMP No Wireless access Single

PRISM [48],
[49]

2005,
2007

IP-in-IP encap-
sulation

1 EDPF, RPC,
SACK

No Mobile collabo-
rative

Single

BAG [46] 2006 IP-in-IP encap-
sulation

1 EDPF No Wireless access Single

SIMA [54] 2006 Identity/locator
split

0 PFA No HIP-enabled Double

INTELiCON [52]2008 NAT 0 DATA/ACK
SEP, PBCS

No Wireless access Single

mHIP [55] 2009 Identity/locator
split

0 EDPF No HIP-enabled Double

MLP [53] 2009 NAT 1 WRR No Wireless access Single
mHIP [56] 2011 Identity/locator

split
0 TFCC Yes HIP-enabled Double

ETOM [50] 2012 IP-in-IP encap-
sulation

2 EDPF, BMP No Wireless Double

LISP [17] 2013 Identity/locator
split

2 WRR No General Single

OSCAR [58] 2014 NAT 0 PRM, PFA,
WRR

No Mobile collabo-
rative

Single

LISP-HA [20] 2015 Identity/locator
split

2 PFA No Hybrid access Single

[48], [159], [160] show that TCP suffers significant performance degradation
due to frequent packet reordering. Thus, the use of multiple paths with
varying characteristics deteriorates the problem.

In the following discussion, the state-of-the-art is divided into three cat-
egories: IP-in-IP encapsulation, NAT traversal, and Identity/locator split.
We summarize their features in Table 2.4 and discuss each category accord-
ing to the order they show in the table. Table 2.5 and Table 2.6 are used to
summarize the key algorithms and approaches respectively. The “Proxies or
Updated Routers" in Table 2.6 indicates the required number of proxies or
updated routers.

IP-in-IP Encapsulation

A widely used IP layer approach for aggregating bandwidth of multiple IP
paths is to use tunneling mechanisms which transparently redirect packets
between two hosts on routing level. For example, Phatak et al. [44], [45]
proposed using IP-in-IP encapsulation [161] to split a data flow across mul-
tiple network interfaces. As shown in Figure 2.4, at the source (A), the

2.2. MULTIPATH TRANSMISSION 23

Host	
A	

A1	

A2	

A3	

Internet	 Host	
B	

B1	

B2	
Internet	

A2:B1	 A1:B1	

A3:B2	 A1:B1	

A1:B1	

extra	header	

extra	header	

Figure 2.4: IP-in-IP tunneling between two multi-homed hosts.

transport layer assembles all packets as if they were going through A1 and
addressed to B1. The packets going out on interface A2 get encapsulated in
new IP packets each with an extra header having destination B1 and source
A2. Likewise, each packet going out on interface A3 can be encapsulated in
a new IP packet having destination B2 and source A3. The destination (B)
can then recognize IP-in-IP packets and strip the outer header. This leaves
the original packets with source A1 and destination B1 to be delivered up
the network stack to TCP in a transparent manner. The same encapsulation
scheme is used for tunneling in the mobile IP standard [162]. In order to
avoid fast retransmission, Phatak et al. used a WRR style scheduler, which
distributes packets proportionally to the effective rates of the paths.

Chebrolu et al. [46] presented a network layer architecture to aggregate
bandwidth on multiple paths for real-time applications. They made the
assumption that an infrastructure proxy (like the Home-Agent in Mobile
IP [163]) is aware of the multiple interfaces of the client, and tunnels the
captured packets to the client using IP-in-IP encapsulation. The advantage
of a proxy solution is that it is fully controllable and allows servers to remain
unchanged and hide using multiple IPs from TCP. Chebrolu et al. proposed
a scheduling algorithm, Earliest Delivery Path First (EDPF), to ensure that
packets meet their playback deadlines by scheduling packets based on the
estimated delivery time of the packets. To improve the overall performance
of IP-in-IP tunneling based bandwidth aggregation by the means of mini-
mizing packet reordering, Chebrolu et al. in [47] proposed a two-pronged
approach. Firstly, a scheduling policy Packet-Pair based EDPF for TCP
applications (PET) was used to partition traffic onto different paths. The
design of PET has the same concept of EDPF but with idealized delay and

24 CHAPTER 2. RELATED WORK

bandwidth values replacing the estimates. Secondly, working together with
the scheduling policy, a receiver-side Buffer Management Policy (BMP) was
used to delay forwarding the out-of-order packets to TCP and to detect
losses, so that a variety of adverse effects can be hidden.

Kim et al. [48], [49] introduced PRISM, another proxy based approach
that enables TCP to efficiently utilize the WWAN connections from com-
munity members. The proxy can be a trusted party or a community mem-
ber. PRISM uses a cross-layer approach that involves support from both
transport and network layer. We classify PRISM as network layer approach
because the PRISM proxy, which is the main entity for multipath support,
is located on the network layer. PRISM uses a packet-scheduling algorithm,
i.e., Adaptive Scheduler (ADAS), to maintain up-to-date path state. Using
the up-to-state information, ADAS sends packets according to their expected
arrival time (a variant of EDPF algorithm) to reduce packet reordering.
ADAS also uses the path state to adjust path weight by using the Additive
Increase and Multiplicative Decrease (AIMD) strategy from TCP, so that
ADAS can dynamically react to congestion from partial paths and control
the amount of traffic to be allocated on those paths. Moreover, PRISM
masks the effects of out-of-order delivery by identifying spurious duplicate
ACKs and re-sequencing them so that a TCP sender receives correctly se-
quenced ACKs.

Lan et al. [50] designed a different proxy based multipath network proto-
col called Enhancements for TCP On a Multi-homed mobile router (ETOM)
that runs transparently to both clients and servers. ETOM involves two
proxy components instead of one kind: MR (Mobile Router) and HA (Home
Agent). The client and the MR (as well as the server and the HA) use nor-
mal single-path connection, whereas all packets traveling between MR and
HA are IP-in-IP encapsulated. ETOM uses a reordering buffer to eliminate
packet reordering. For example, out-of-order packets are buffered at the HA
until the missing packets are received, and packets are then sent out in order
to the destination. ETOM also uses a variant of EDPF algorithm to fur-
ther reduce packet reordering. Note that unlike other IP layer approaches,
ETOM employs a subflow sequence number in the inner IP header to detect
packet loss between MR and HA.

2.2. MULTIPATH TRANSMISSION 25

Local	area		
wireless	interfaces	

WiFi	

Bluetooth	

Ethernet	

MAR	
router	

Base-sta9on	1	

Base-sta9on	2	

WLAN	AP	

MAR	
Proxy-server	PDN	

Remote	servers	

server	Internet	

Figure 2.5: MAR [51] system architecture where the MAR router is placed
in public mobile vehicles and data traffic is sent from remote servers to local
devices. PDN: Public Data Network, AP: Access Point.

Network Address Translation Traversal

Unlike the previous approach that relies on IP encapsulation, there exist
several approaches taking advantage of NAT instead of tunneling.

Rodriguez et al. [51] introduced MAR system (see Figure 2.5), a com-
muter mobile access NAT router that provides a set of local interfaces and a
number of wide-area wireless interfaces. The former provides access to local
mobile devices and the latter accommodates a variety of wide-area wireless
technologies. The MAR router acts as a NAT box that is located in the
middle and translates IP addresses and ports of packets for two directions.
A MAR router can work alone or cooperate with a MAR proxy-server. With
such a proxy-server, the Packet-Oriented Scheduling Mode (POSM) is used
where the packets of the same TCP flow can be delivered over multiple paths
and a MAR router can implement intelligent optimization including avoid-
ing TCP 3-way handshake, slow-start, spurious timeouts and so on. When
the proxy-server is absent, the Flow-Oriented Scheduling Mode (FOSM) is
used where a per-flow allocation strategy schedules all packets belonging
to the same TCP flow onto the same path. MAR provides an API that
can accommodate any custom purpose-built scheduling protocol. But the
scheduling protocol itself is not part of the MAR architecture. MAR is also
designed to determine the weight that should be assigned to each interface
to properly perform load balancing (e.g. dynamically shifts load from poor
quality to better quality channels). Note that the MAR router was supposed
to be placed in moving vehicles, where users can use their devices for web-
browsing and audio/video streaming. Therefore, the traffic load-balanced is

26 CHAPTER 2. RELATED WORK

only in one direction (i.e., from remote servers to local devices).

Manousakis et al. [52] proposed INTELiCON to allow devices to exploit
wireless access diversity. At the sending side, a Packet Processing module
manipulates the content of packets, e.g., modifying IP headers and Piggy-
Backing for Control Signaling (PBCS) (e.g., timestamp and customized se-
quence numbers). At the receiving side, the piggy-backed information can
be utilized to smooth out the arrival sequence of incoming packets. The
extra information is stripped out at the Packet Processing module before
the packets are forwarded to the upper layer. Moreover, INTELiCON uses
a DATA/ACK separation (SEP) scheme to reduce contention on shared me-
dia. For example, it transmits the DATA and ACK packets on different
paths.

Evensen et al. [53] proposed a Multilink Proxy (MLP) that makes use of
a NAT proxy to rewrite the default destination IP address and port to the
address of the other additional interfaces. The client does the inverse address
translation of the packets arriving at non-default interfaces and forwards
the packets internally. In order to mitigate packet reordering, Evensen et
al. uses a WRR based scheduler in the NAT to distribute packets according
to estimated throughput ratio of available paths.

Habak et al. [58] proposed OSCAR architecture that works in a dis-
tributed environment. An OSCAR-enabled node can share and use the
bandwidth available from its OSCAR-enabled neighbors to connect to both
legacy and OSCAR-enabled servers. OSCAR has a NAT module at both
sides of a connection. At the sender, the NAT module replaces the source
and destination IP addresses with the used IPs for transmission. Upon re-
ceiving a packet, the NAT module at the receiver reverses the source and
destination IPs by replacing them with the negotiated ones before delivering
the packet to TCP. When a connection goes through a shared neighbor to
a legacy server, the neighbor also needs to have a NAT module that con-
ducts the address translation operation. OSCAR uses a Packet Reordering
Module (PRM) to handle packet reordering issues. Specifically, it delays the
packets and their ACKs on both sides respectively before forwarding them
to the upper layer. OSCAR has two scheduling modes: POSM and FOSM.
FOSM is used if the server is a legacy server, where PFA is used. POSM
is used if the server is OSCAR-enabled such that a WRR style scheduler is
used.

2.2. MULTIPATH TRANSMISSION 27

Some of the IP-in-IP encapsulation and NAT based approaches, e.g., [46]–
[51], [53], assume the presence of a proxy infrastructure in the network. Nev-
ertheless, such approaches work only for plain-text TCP communication and
fail in the presence of IPsec encryption or authentication mechanisms. When
TCP packets are protected with IPsec, the proxy is not able to observe or
modify the packet headers. Next we discuss certain bandwidth aggregation
approaches that use IPSec encapsulation for tunneling.

Identity/locator Split

Host Identity Protocol (HIP) [164]4 and Site Multihoming by IPv6 Inter-
mediation (SHIM6) [165] have been proposed and implemented to provide
multihoming support for failover with the possibility of flow-based load bal-
ancing. SHIM6 is architecturally related to HIP in that they both introduce
an additional addressing layer to allow changing IP addresses on network
interfaces, while keeping constant transport-layer identifiers. These two pro-
tocols enable IP packet flows to dynamically change paths in the presence
of link failure. Thus, they naturally shield the presence of multiple paths
from transport and application layers, presenting only the global identity of
the peer host. Nevertheless, HIP and SHIM6 do not support simultaneous
multipath transmission without additional extensions.

SIMA [54] is an extension of HIP to use multihoming for assigning sep-
arate TCP connections independently to different paths. Like FatVAP [40],
TRILL [18], SPB [43], MAR [51] and OSCAR [58], SIMA also uses PFA
multipath forwarding strategy where flow bonding rules are created to de-
fine the usage of the local interfaces. SIMA does not define any additional
sending or receiving policies to mitigate reordering issue, instead it uses the
IPsec Encapsulating Security Payload (ESP) packet processing unit built
in HIP to handle each data packet, as specified in [166]. Gurtov et al. [55]
designed and implemented Multipath HIP (mHIP), a multipath scheduler
based on HIP, to distribute traffic over multiple available paths. Utilizing a
EDPF scheduling algorithm, they striped packets within a TCP connection
to multiple paths to mitigate packet reordering. Nevertheless, they found
that EDPF algorithm is only effective against packet reordering with sta-
ble paths in terms of bandwidth and delay. In order to react to dynamic

4HIP may not be considered as a strict IP layer approach; however, its functions related
to multipath transmission are best suited to this layer.

28 CHAPTER 2. RELATED WORK

path characteristics, a Marking Technique is used as a part of the multipath
congestion avoidance scheme, so that changes of path characteristics can be
detected in one RTT.

Polishchuk and Gurtov [56] proposed a TCP-friendly congestion control
algorithm for mHIP to prevent stealing bandwidth from legacy TCP flows
at the shared bottleneck. Specifically, they proposed a two-level congestion
control scheme (removing the Marking Technique): per-path congestion con-
trol, and global congestion control on top of it. The global congestion con-
troller coordinates the individual per-path controllers and balances traffic
load among the paths based on their available capacity. The per-path con-
trollers are connected so that the aggregated congestion window is the sum
of per-flow congestion windows. The goal of this twofold congestion con-
trol scheme is to automatically redirect traffic from congested paths to the
ones that have available capacity. The concept of joint congestion control
algorithm adopted in [56] is also used by certain transport layer approaches
(which will be discussed in the next section). Thus, the concern is that
the reordering and congestion avoidance algorithms used on the IP layer (or
between IP and TCP, like HIP) may need to repeatedly design additional
mechanisms that are already existing on the transport layer.

When ESP is used with HIP, a 64-bit sequence number must be used.
Therefore, HIP based bandwidth aggregation approaches such as SIMA [54]
and mHIP [55], [56] all have a double sequence space design. However,
instead of being used for packet reordering, the additional sequence number
in HIP is used for the purpose of anti-replay.

Unlike HIP and shim6 which focus on host-level identity and locator sep-
aration, LISP [17] is an identity and locator separation protocol working on
the network-level to improve the scalability of the routing system. LISP cre-
ates two numbering spaces and uses two IP addresses: Endpoint Identifiers
(EIDs) (assigned to end-hosts) and Routing LOCators (RLOCs) (typically
assigned to border routers). To achieve the separation of identification and
localization, LISP follows a map-and-encapsulate scheme. Specifically, upon
reception of a packet from the local network to an outer EID, the border
router is responsible for looking up and retrieving the mapping (from a map-
ping system) between EID and RLOC and this process is invisible to the
endpoints. Then the router encapsulates the packet with a LISP header
and an outer IP header with the destination RLOC as the destination IP

2.2. MULTIPATH TRANSMISSION 29

address. When the packet reaches the border router assigned with the des-
tination RLOC, the router decapsulates the outer headers and forwards the
inner packet to the destination EID. LISP has two metrics to support mul-
tipath transmission: RLOC priority and RLOC weight. If equal priority is
sent on the , the RLOC weight could be used for the load-balancing ratio.
Under such a setting, an IP-level aggregate flow (e.g., the same destination
prefix) would use different paths. For a more detailed presentation of LISP,
refer to page 103.

Locator/Identifier Separation Protocol - Hybrid Access (LISP-HA) [20]
is a mechanism to provide simultaneous hybrid access (e.g., DSL-line and
LTE) based on LISP technology in both upstream and downstream direc-
tion. LISP by itself has basic capabilities to support hybrid access with
static load balancing. However, static load balancing may lead to statisti-
cal variations [167] so that some paths are already overloaded while others
are underutilized. Instead, LISP-HA can perform dynamic per-flow load-
balancing, which increases the efficiency of hybrid access. The basic idea is
to obtain feedback about path-specific packet loss and delay, and leverage
this information for improved load balancing. In addition, LISP-HA also
supports dynamic per-packet load-balancing. Currently, the challenge is the
packet reordering problem in the case that paths have different delay.

As summarized in Table 2.5, packet reordering is one of the main chal-
lenges for all IP layer approaches. These approaches use various scheduling
algorithms to minimize the reordering effect. In table 2.6, we have several
observations. First, most of the approaches were proposed either for mobile
networks or wireless networks. Second, there are two primary scheduling
schemes: EDPF and WRR. Third, some buffer management strategies are
used to compensate for the inefficiency of the scheduling algorithm in the
scenario of dynamically changing networks.

2.2.3 Transport Layer Multipath Transmission

Compared with IP layer based approaches, transport layer approaches have
certain inherent benefits because congestion control can be used as a mech-
anism for resource allocation in a network. At this layer, end-systems can
easily obtain information about each path: capability, latency, loss rate and
congestion state. This information can then be used to react to congestion
in the network by moving traffic away from the congested paths. Cur-

30 CHAPTER 2. RELATED WORK

rent connection-oriented transport protocols, e.g., TCP, SCTP [168], and
Datagram Congestion Control Protocol (DCCP), transmit data only over a
single path between a source and a destination at any given time. Numer-
ous attempts have been made to tune these existing transport protocols for
multipath capability. Currently, Concurrent Multipath Transfer (CMT) for
TCP and SCTP are in the process of IETF standardization.

Like bandwidth aggregation on network layer, concurrent multipath trans-
mission at the transport layer introduces an increase in the occurrence of
packet reordering due to different path characteristics, including run-time
throughput, RTT, loss, and error. Specifically, if a connection is striped
over multiple network paths, the overall throughput may potentially be even
worse than the throughput available on any one of the paths [106], [124].
There are two main causes of it. The first comes from the impact of het-
erogeneous RTT. For example, TCP expects a first-in-first-out delivery of
packets through the network. Packet reordering at the receiver results in the
reception of duplicate ACKs at the sender. The sender will fast retransmit
the “missing” packet that may still be on its way over a high RTT path.
Due to the misunderstanding of packet reordering, the overall throughput
may degrade significantly. The second cause is the receive buffer blocking
due to path heterogeneity or path failing. We provide more detail about the
receive buffer blocking problem in later discussion on CMT-SCTP.

In this section, we classify the state-of-the-art according to their base
protocols, in the order of QUIC, SCTP and TCP. In each discussion of SCTP
and TCP based approaches, we further divide them into two categories: with
and without considering fairness. In Table 2.7, we make a comparison of
the general problems addressed by approaches in each category. In addition
to the fairness issue, we also analyze the buffer impact, Pareto-efficiency,
and path diversity of the TCP based approach MPTCP. In the end, we give
a comparison between two representative approaches based on SCTP and
TCP (i.e., CMT-SCTP and MPTCP).

Tables 2.8 and 2.9 (sorted according to their mentioned order respec-
tively in Table 2.9 and Table 2.11) are used to summarize the key algorithms
and approaches of SCTP based multipath transmission respectively. Like-
wise, Table 2.10 and Table 2.11 are used to summarize the key algorithms
and approaches of TCP based multipath transmission respectively.

2.2. MULTIPATH TRANSMISSION 31

Table 2.7: Comparison of problems addressed by SCTP and TCP based
multipath transmission approaches.

SCTP based approaches TCP based approaches
No fair-
ness • Maximize throughput

• Spurious retransmission

• Head-of-line Blocking
(HLB)

• Maximize throughput

• Spurious retransmission

• Head-of-line Blocking (HLB)

Fairness
• SCTP-friendly at the

same bottleneck

• Resource pooling (RP)

• Avoid establishing multiple subflows at
the same bottleneck

• Maximize throughput at different bottle-
necks

• TCP-friendly at a shared bottleneck

• Resource pooling (RP)

• Incast collapse

• Quality-of-service for multimedia applica-
tions

• Trade-off between responsiveness and
friendliness

Quick UDP Internet Connections

QUIC is a transport protocol started in 2013 by Google but recently taken
over by the IETF working group (started in October 2016 [169]). Because
TCP is implemented in operating system kernels, and middlebox firmware,
making significant changes to TCP is next to impossible. However, since
QUIC is built on top of UDP, it suffers from no such limitations and was
devised by Google as a way to quickly experiment different technologies,
and potentially encourage their adoption in TCP. QUIC is embedded in
the Google Chrome browser and enabled when visiting Google servers with
QUIC support.

The first time a QUIC client connects to a server, the client must perform
a 1-round-trip handshake in order to acquire the necessary information to
complete the handshake. The client sends an empty client hello message,
the server sends a rejection message with the information the client needs to
make forward progress, including the source address token and the server’s
certificates. The next time the client sends a hello, it can use the cached
credentials from the previous connection to immediately send encrypted

32 CHAPTER 2. RELATED WORK

requests to the server.
The protocol supports a set multiplexed connections over UDP, and

was designed to provide security protection equivalent to Transport Layer
Security (TLS), along with reduced connection and transport latency, i.e.,
when the server cryptographic details are in the cache, QUIC is capable of
sending cyphered data in the first packet. TCP is capable of sending payload
in the initial SYN packet with the experimental option Fast Open [170] but
it can be replayed and makes SYN flood attacks more efficient.

The multiplexing aspect of QUIC plays an important role in minimizing
the latency of HyperText Transfer Protocol 2 (HTTP/2) applications as a
loss only impacts one stream, hence one element of the loaded page.

In order to support mobility scenarios, QUIC connections are identified
by a 64 bit connection ID, randomly generated by the client. This means
that contrary to TCP where a client changing IP addresses (for example,
by moving out of Wi-Fi range and switching over to cellular) or ports (if
a NAT box loses and rebinds the port association), would lose any active
connections, a QUIC client can continue to use the old connection ID from
the new IP address without interrupting any in-flight requests. Using the
ID rather than the TCP tuple also allows in practice to use different paths
as MPTCP would.

QUIC has adopted the TCP Cubic [171] congestion control along with
a set of techniques under review to avoid congestion. By comparison, TCP
employs a single technique, congestion windows, which are unforgiving to
multiplexed connections. Among the techniques being tested are packet
pacing and proactive speculative retransmission. The packet pacing is also
used by Google in their TCP Bottleneck Bandwidth and RTT (BBR) con-
gestion control which was made public in December 2016 [172]. While not
explicit, QUIC may have played a role in testing the congestion control
beforehand. A distinctive feature from TCP is that each packet, even re-
transmitted, carries a new sequence number which allows a QUIC sender
to distinguish acknowledgments between the original and the retransmitted
packet. Acknowledgments explicitly carry the receiver processing time to
allow for accurate RTT computation at the sender. ACK frames also sup-
port up to 256 ranges of missing data, to compare with the 4 TCP Selective
Acknowledgment (SACK) ranges.

As for proactive speculative retransmission, it amounts to sending du-

2.2. MULTIPATH TRANSMISSION 33

plicate copies of the most important packets, such as the initial encryption
negotiation packets or lost packets. Losing either of these packet types trig-
gers a snowball effect, so selectively duplicating them can serve as insurance.

Among the innovative features (i.e., deployed at such a scale) is the use
of Forward Error Correction (FEC) to recover from lost packets without
waiting for a retransmission: QUIC can complement a group of packets
with an FEC packet. If one of the packets in the group is lost, the contents
of that packet can be recovered from the FEC packet and the remaining
packets in the group. The sender may decide whether to send FEC packets
to optimize specific scenarios

SCTP based on Multipath Transmission

SCTP standardization started in 2000 [173] as a general-purpose, connection-
oriented unicast transport protocol. An association denotes a SCTP con-
nection denotes. The user data is segmented into units of so called DATA
chunks5, which are identified by unique Transmission Sequence Number
(TSN) 6. The SACK [174] mechanism is used as default to acknowledge
received data chunks and report gaps (i.e., missing data chunks indicated
by their TSNs) to the sender. and has similar characteristics and applica-
tions as TCP, but includes some important improvements:

1. No head-of-line blocking: TCP imposes a strict data ordering. How-
ever, if a user data message is lost during transit, all subsequent mes-
sages are delayed until the lost message is received. Depending on the
Retransmission Timeout (RTO), this situation can lead to HoL. Some
applications do not require strict ordering of messages (bulk transfer),
in such cases, this HoL artificially hurts the connection.

2. Embedded message framing: TCP is stream-oriented, meaning that a
tcp stack transmits received bytes in-order to the application. While
this allows to support all applications, this can unnecessarily degrade
the connection to seen in the previous items. It also means that
each application has to implement a framing protocol. In compari-
son, SCTP is message oriented, it preserves message boundaries using
its own message framing protocol, application messages (Application

5Corresponding to segments in TCP.
6TSN serves the same function in SCTP as the sequence number does in TCP.

34 CHAPTER 2. RELATED WORK

Table 2.8: Key algorithms for SCTP based CMT.
Algorithm Problems to ad-

dress
Description

WRR-PULL Scheduling It is a congestion window based data allocation with-
out estimation of each path’s available bandwidth. Data
packets are stored in a shared sending buffer and are
pulled by sub-flows when the sub-flows have congestion
windows space to transmit data.

UCCSB (Unified
Congestion Control
for flows sharing the
Same Bottleneck)

Fairness First identifies the bottlenecks shared by flows from the
same connection, and then performs an unified conges-
tion control for those flows so that they compete for the
bottleneck bandwidth fairly with other TCP flows.

SFR-CACC (Split
Fast Retransmit
Changeover Aware
Congestion Control)

Spurious retrans-
mission

Introduces a per destination virtual queue within the
senderâĂŹs retransmission queue. The sender uses SACK
along with history information in the retransmission
queue to deduce missing reports for a segment by inferring
cumulative ACK and gap reports per destination.

Cwnd Updates Cwnd slow growth First tracks the earliest outstanding Transmission Se-
quence Number (TSN) per destination and then uses
SACKs and history information to deduce missing reports
for a segment by inferring cumulative ACK and gap re-
ports per destination. Therefore, the algorithm can up-
date the cwnd even in the absence of new cumulative
ACKs.

DAC (Delayed ACK
for CMT)

Spurious retrans-
mission

Delays sending an ACK if an out-of-order segment arrives
at the receiver.

RTX-LCS (Lossrate,
Congestion window
and Slow start thresh-
old)

Spurious retrans-
mission

Prioritizes the retransmission through the subflow with
the largest cwnd. If subflows have the same cwnd, the re-
transmission is made through the subflow with the largest
ssthresh. If subflows have equal ssthresh, the retransmis-
sion is sent through the subflow with the lowest loss rate.
Otherwise, a subflow is selected randomly.

FCCS (Flow and Con-
gestion Control Sepa-
ration)

Load sharing Separates the association (or connection) flow control
from congestion control. The flow control is on associ-
ation basis. Both endpoints use their association buffer
to hold the data chunks from all paths. Congestion con-
trol is performed on per path basis. Thus, the sender has
a separate congestion control for each path.

CMT-PF (CMT
Potentially Failed
scheme)

Packet reordering Marks a path that experiences a single timeout as a “po-
tentially failed" path so that no further data transmission
is allowed on that path. To detect its status, the sender
sends heartbeat packets to the receiver. Upon heartbeat
ACKs, the sender re-enables the path for data transmis-
sion again.

Buffer Splitting Packet reordering Splits the shared sender buffer size into n (i.e. number
of paths) fixed per-path sections. A new chunk on a path
can only be sent if its own buffer share has available space.

Chunk Rescheduling Packet reordering For each retransmission, searches the first chunk block-
ing the removal of chunks on the path from the sender
buffer. That chunk is rescheduled on the path immedi-
ately when the congestion window has available space.
Chunk Rescheduling is triggered when the path blocks
more than half of the path’s buffer share.

Smart Fast Retrans-
mission

Spurious retrans-
mission

Does not consider chunks that are moved from a path in
the decision about fast retransmissions on a new path.

Multi-streaming Packet reordering Assigns each message a stream identifier. Each stream
is sent over a certain path. It only needs to restore the
sequence of streams belonging together. Hence, after a
packet loss only messages of the affected streams have to
be delayed to restore the sequence.

CMT/RP (CMT/Re-
source Pooling)

RP Takes the interaction of the congestion controls on dif-
ferent subflows into account instead of handling them in-
dependently. One of its key operations, for example, is
that it incorporates the possibility of shared bottlenecks
by trying to halve the overall congestion window on the
lossy path. Valid only if paths have similar characteris-
tics.

FPS (Forward Predic-
tion Scheduling)

Packet reordering Takes account of the transmission delay of each path and
schedules the specific data unit accordingly on each path
so that the data arrive at the receiver in order.

Buffer Splittingv2 Packet reordering Splits the shared sender buffer space dynamically. For
instance, it grants more buffer space to faster paths so
that they become more likely to send data.

CMT/RPv2
(CMT/Resource
Pooling Version 2)

RP Overcome CMT/RP-SCTP limitations by considering dif-
ferent path characteristics.

BERP (Bandwidth
Estimation Based
Resource Pooling)

RP Applies the RP principle based upon the bandwidth esti-
mates obtained by observing the data flow on the paths.

2.2. MULTIPATH TRANSMISSION 35

Table 2.9: Concurrent Multipath Transfer Protocols based on SCTP.
Scheme Year Algorithm and Proto-

col
Paths Receive

Buffer
RP &
Fair-
ness

Sequence
Space

Network
Environ-
ment

BA-
SCTP [59]

2003 WRR-PULL, UCCSB,
SACK

General Constrained Fairness Single General

W-SCTP [60] 2004 EDPF, SACK, Westwood Disjoint Not speci-
fied

No Single General

CMT-
SCTP [61]

2004 SFR-CACC, Cwnd Up-
dates, DAC, SACK

Independent Infinite No Single General

CMT-
SCTP [62]

2004 Retransmission policies,
SACK

Independent Infinite No Single General

LS-
SCTP [71],
[72]

2004 FCCS, WRR, SACK General Constrained No Double

CMT-
SCTP [63]

2006 SFR-CACC, Cwnd Up-
dates, DAC, Retransmis-
sion policies, SACK

Independent Constrained No Single General

cmpTCP [73] 2006 WRR, SACK Independent Infinite No Single General
WiMP-
SCTP [74]

2007 WRR, SACK Independent Not speci-
fied

No Single Wireless

CMT-
SCTP [64]

2008 RTX-LCS, SACK General Constrained No Single General

cmpSCTP [75] 2008 FCCS, SACK, WRR General Constrained No Double General
mSCTP-
CMT [76]

2009 SACK, CMT-PF Disjoint Constrained No Single Wireless

CMT-
SCTP [65]

2010 Buffer Splitting, Chunk
Rescheduling, Smart Fast
Retransmission, SACK

General Constrained No Single General

CMT-
SCTP [66]

2010 Multi-streaming, SACK General Constrained No Single General

CMT-
SCTP [67]

2010 CMT/RP, SACK Similar
paths

Not speci-
fied

Yes Single General

FPS-
SCTP [77]

2010 FPS, SACK Disjoint Constrained No Single Mobile

CMT-
SCTP [68]

2011 Buffer Splittingv2, SACK General Constrained No Single General

CMT-
SCTP [69]

2011 CMT/RPv2, SACK General Constrained Yes Single General

CMT-
SCTP [70]

2011 BERP, SACK General Not speci-
fied

Yes Single Wireless

Protocol Data Unit (APDU)) are “bundled”in data “chunks ”along
with SCTP control (“chunks ”). A control chunk can be a cumula-
tive acknowledgment for instance. Contrary to TCP or UDP pack-
ets with control information in the header and then an optional data
field, SCTP packets consist in a simple header (Source and destination
ports, verification tag and checksum) followed by one or more chunks
of either control or data information.

3. multihoming. High-availability application looking at increasing their
availability may want to open several connections in parallel, prefer-
ably with different ips as most likely IPs are Network Interface Con-
troller (NIC)-bound and different interfaces are also more likely to
increase disjointness and path diversity.

36 CHAPTER 2. RELATED WORK

SCTP embeds many features that previously had to be implemented by
applications. Obviously this does not come for free and require existing ap-
plications to be upgraded to use the new Application Programming Interface
(API). This drawback along with middlebox interference have inhibited its
success, yet it allowed its successors to learn from this and influenced the
design of its successors QUIC and MPTCP. Vanilla SCTP uses multihom-
ing for redundancy purpose (network fault tolerance) but CMT extensions
exist.

In this section, we divide the approaches into two groups differentiated
by whether they have considered fairness.

Multipath Transmission without Considering Fairness:

Unlike TCP, SCTP was designed with multihoming in mind that an
SCTP association allows multi-homed source and destination endpoints.
Nevertheless, SCTP uses only one primary path and switches to another
path for retransmission of lost packets, or as a backup in the case of fail-
ure from the primary path. Note that SCTP uses a single buffer struc-
ture on both endpoints, but maintains several states per destination: sep-
arate congestion window (cwnd), slow start threshold (ssthresh), retrans-
mission timer, and RTT estimate. Several SCTP extensions, such as BA-
SCTP [59], W-SCTP [60], CMT-SCTP [21], [61]–[64], LS-SCTP [71], [72],
WiMP-SCTP [74], cmpSCTP [75], mSCTP-CMT [76] and FPS-SCTP[77],
enable SCTP to transmit data over multiple paths simultaneously.

Argyriou et al. [59] proposed BA-SCTP, a bandwidth aggregation proto-
col based on SCTP. BA-SCTP implements a mechanism for identifying bot-
tlenecks that are shared by flows from the same aggregate connection. Based
on this mechanism, BA-SCTP performs a unified congestion control algo-
rithm for the flows that share the same bottleneck (we name this algorithm
UCCSB) instead of applying congestion control for each flow separately.
This design guarantees that BA-SCTP flows are fair with the other TCP
flows sharing the same bottleneck. BA-SCTP employs a WRR style schedul-
ing strategy, a congestion window based data allocation strategy where each
subflow pulls data from the shared sending buffer whenever the subflow has
congestion window space to send data. This strategy assumes the congestion
window to be a true representative of the bandwidth-delay product of the
subflow compared to an estimated product. In the rest of the thesis, we use

2.2. MULTIPATH TRANSMISSION 37

1	2	3	4	5	

Path	1	

Path	2	

Next	

1	

Next	

Sending	 Receiving	

1	2	3	4	5	

Figure 2.6: Head-of-Line blocking (HoL): the receive buffer cannot accom-
modate other chunks any more before the arrival of the head-of-line chunk
(chunk 1).

WRR-PULL to denote congestion window based data allocation strategy.
Casetti et al. [60] proposed W-SCTP, a Westwood [175] flavored SCTP

to exploit bandwidth aggregation. The authors believed that Westwood
style congestion control could fully exploit the advantages of bandwidth
estimation which could be utilized for traffic allocation among multiple flows.
W-SCTP uses a EDPF style scheduler that chooses the path for next packet
by predicting whether it can deliver the packet the fastest to the destination.

Iyengar et al. [61], [63] proposed integrating CMT capability into SCTP,
namely CMT-SCTP. CMT-SCTP utilizes the multihoming feature from
SCTP to correctly transfer data between multi-homed end hosts. They iden-
tified three negative side-effects of CMT, and proposed algorithms to solve
them accordingly. First, they proposed a Split Fast Retransmit Changeover
Aware Congestion Control (SFR-CACC) algorithm to eliminate the unnec-
essary fast retransmissions by using a different interpretation of SACK in-
formation. Second, they used a congestion window (cwnd) growth algorithm
to track the earliest outstanding TSN per destination and update the cwnd,
even in the absence of new cum ACKs. Third, they proposed a new Delayed
ACK algorithm for CMT-SCTP, namely Delayed ACK for CMT (DAC).
The algorithm allows the receiver to delay sending ACK of an out-of-order
segment. In [62], [63], they proposed five retransmission policies for CMT.
They demonstrated the occurrence of spurious retransmissions with all of
those policies, and proposed amendment algorithms to avoid them.

There has been a considerable amount of work on the core CMT-SCTP [63]
to overcome its defect and improve performance. In [64], Liu et al. found

38 CHAPTER 2. RELATED WORK

that all of the five retransmission policies may cause throughput degrada-
tion due to receive buffer blocking. This blocking problem is also named
HoL. Figure 2.6 illustrates a simplified example of it. As shown in the fig-
ure, a CMT-SCTP receiver maintains a single receive buffer which is shared
across two sub-association flows in an association. The C1 (chunk 1) is
transmitted through the path 2 and is lost due to traffic congestion or path
failure. During the time period of C1’s retransmission, the receive buffer can-
not accommodate any other packets due to flow control so that the overall
throughput degrades. To solve the problem, Liu et al. proposed a compound
parameter retransmission policy named RTX-LCS. It limits the retransmis-
sion path selection by considering three common conditions: cwnd, ssthresh,
and loss rate. Dreibholz and Adhari et al. [65], [66], [68] examined the chal-
lenges of CMT-SCTP over dissimilar paths. They identified the issues of
sender and receiver queue blocking, which may lead to poor overall perfor-
mance. In order to improve performance, Dreibholz [65] proposed multiple
mechanisms accordingly, including Buffer Splitting, Chunk Rescheduling,
and Smart Fast Retransmission. Buffer Splitting is used to avoid one path
occupying too much buffer space, which prevents other paths from sending
out new chunks. Chunk Rescheduling copes with the problem of certain
delayed or lost chunks stalling the whole transmission. Smart Fast Retrans-
mission deals with spurious fast retransmission bursts. For example, it does
not consider chunks being moved from another path in the decision about
fast retransmissions on the new path. In [68], they presented an optimized
buffer handling technique to further improve performance. Specifically, they
proposed to use the shared buffer space dynamically so that a faster path
can have the possibility to send more data by granting it more buffer space.
We use Buffer Splittingv2 to denote this updated version of Buffer Splitting
mechanism. Moreover, in [66], they proposed using the Multi-streaming fea-
ture of SCTP to mitigate the HoL problem. Specifically, each message is
assigned an identifier to indicate a stream. With this identifier, the pro-
tocol only needs to restore the sequence of messages belonging together.
Hence, after a packet loss, only the messages of the affected streams have
to be delayed to restore the sequence. The other messages can be processed
immediately without delay.

The authors in LS-SCTP [71], [72] and cmpSCTP [75] proposed separat-
ing the association flow control from per path congestion control (denoted

2.2. MULTIPATH TRANSMISSION 39

as FCCS). The congestion control is performed per path, whereas the flow
control is performed per association. In order to achieve this goal, LS-
SCTP uses two different sequence numbers. The first one is the Association
Sequence Number (ASN) that is used to reorder the received data at the
receiver association buffer. The second one is the Path Sequence Number
(PSN) that is used for reliability and congestion control on each path. The
scheduling module of LS-SCTP uses the current congestion window (cwnd)
of each path as an estimate of its current bandwidth-delay product. For
example, it assigns data to the paths according to the cwnd/RTT of each
path. cmpSCTP distributes data over available paths based on real-time
bandwidth estimation of each path. Similar to LS-SCTP, cmpSCTP also
distributes the data on the available paths based on the estimation of the
available bandwidth of each path. Thus, they all use a WRR style data
scheduler.

Sarkar [73] proposed Concurrent Multipath TCP (cmparallel TCP (pTCP)),
an extension of SCTP. cmpTCP splits packets concurrently over all available
paths from a shared sending buffer. cmpTCP maintains a virtual retrans-
mission queue (RTxQ) on each path to control the number of outstanding
bytes on the path. The receiver sends back ACKs on the same path on which
the packets are received. These two designs may help to ignore spurious gap
reports and eliminate unnecessary packet retransmissions. Sarkar also de-
veloped a Markov model in cmpTCP to estimate the data transport rate on
each path when the transmission has reached a steady state. cmpTCP uses
a WRR style scheduler by considering the number of outstanding bytes and
congestion window size.

Huang et al. [74] proposed Wireless Multi-Path SCTP (WiMP-SCTP),
which devised two data transmission modes, i.e., Data-striping Mode and
Data-duplicating Mode, for multipath transmission in multiple wireless ac-
cess networks. When the network status is good, the Data-striping Mode
is selected to aggregate bandwidth. On the other hand, when the network
status becomes bad, the Data-duplicating Mode is selected to increase des-
tination reachability. To switch between the two modes, a mode selection
scheme that determines the status of these multiple paths was proposed.
Specifically, it designed a HEARTBEAT scheme where heartbeat chunks
are sent periodically on the paths. The transmission error counter increases
when a heartbeat is not acknowledged within one retransmission timeout

40 CHAPTER 2. RELATED WORK

interval. If the number of transmission error counter plus the number of con-
secutive retransmissions exceeds a certain threshold, the Data-duplicating
Mode is switched on. Otherwise, the Data-striping mode is used. Neverthe-
less, Huang et al. did not present a complete explanation of the scheduling
algorithm used byWiMP-SCTP. They only mentioned that the sender trans-
mits data as soon as the corresponding receive window at the receiver side
allows data to be sent. We speculate that this is a variant of the WRR style
scheduling algorithm.

Budzisz et al. [76] proposed an mSCTP-CMT protocol to investigate
the applicability of using CMT-SCTP to distribute data between two paths
during the handover transition process. They emphasized the consequence
of a sender-introduced reordering and its effect on congestion control. The
authors found that in CMT-SCTP the receive buffer may be filled with out-
of-order data caused by complete or short-term failures during handover.
Although handover is out of the scope of this survey, the handover scenario is
very similar to the worst case in CMT where a path experiences a long delay
suddenly. To solve this problem, they proposed using Potentially Failed
(CMT-PF) scheme that a path experiencing a single timeout is marked
as “potentially failed” and no further data transmission is allowed on that
path. They utilized a heartbeat scheme to probe whether the potentially-
failed path has got back to a positive state in the case of successful heartbeat
acknowledgment.

Mirani et al. [77] proposed a multipath Forward Prediction Scheduling
(FPS) for SCTP, namely FPS-SCTP. In order to reduce the number of out-
of-order packets, it estimates the arrival time of each packet in advance and
decides which packet is to be sent through a certain path so that the packets
can arrive at the destination in order. They used roughly a half of the
RTT on a subflow to estimate the one trip time from data leaving the send
buffer to being received at the receiver. This prediction is an approximation
considered as too coarse because previous studies have shown that a majority
of Internet connections experience latency asymmetry [176], [177].

Multipath Transmission Considering Fairness:

The work discussed previously on CMT-SCTP performs independent
congestion control on each path, and considers little about the fairness
against other single-path flows. For example, in the case of n CMT-SCTP

2.2. MULTIPATH TRANSMISSION 41

(a)	 (b)	

Figure 2.7: RP (a) a single path shares its resource fairly to competing flows
(b) multiple paths are treated as a single pooled resource. RP: Resource
Pooling.

paths, the association will get n times the bandwidth share of a competing
non-CMT SCTP or TCP flow over the same bottleneck.

The concept of RP [155] is a milestone for multipath transmission ag-
gressiveness control. In the context of multipath transmission, it makes a
collection of resources behave like a single resource by balancing traffic across
multiple paths. As shown in Figure 2.7, when several TCP flows compete
for a single path, TCP can share the path’s capacity fairly among them.
When the flows go through more than one path, the paths are treated as
a single pooled resource. With appropriate coordination, traffic can move
away from more congested paths to less congested ones, and larger bursts
can be accommodated.

Dreibholz et al. [67] proposed a RP congestion control for CMT-SCTP
denoted as CMT/RP-SCTP by combining CMT-SCTP with the concept of
RP. The goal of CMT/RP-SCTP is to improve the data throughput while
still remaining fair to concurrent single-path flows on the shared bottle-
neck. For example, when two paths are used concurrently for data transmis-
sion and they share a bottleneck link, the overall throughput obtained by a
CMT/RP-SCTP association should be similar as that of a standard SCTP.
However, CMT/RP-SCTP assumes similar paths, i.e., paths having very
similar characteristics in terms of bandwidth, delay and loss rate. Dreib-
holz et al. [69] proposed an updated version of CMT/RP-SCTP (denoted as
CMT/RPv2-SCTP) to overcome the limitations of CMT/RP-SCTP by con-
sidering path bandwidths. They studied the behavior of CMT/RPv2-SCTP
on dissimilar paths and found that CMT/RPv2-SCTP achieves the goals of
RP. Furthermore, they observed that compared with MPTCP (which will be

42 CHAPTER 2. RELATED WORK

discussed later), CMT/RPv2-SCTP distributes bandwidth to flows equally
when possible regardless of the number of paths used for transport.

Note that both CMT/RP-SCTP and CMT/RPv2-SCTP apply RP prin-
ciple only during the congestion control phase. Shailendra et al. [70] argued
that this strategy is not optimum on heterogeneous networks with wireless
links because losses in wireless links may happen because of reasons other
than congestion. Hence they considered the resources to be as a single
pool of resources during the congestion detection phase as well. To achieve
this goal, they proposed a Bandwidth Estimation Based Resource Pooling
(BERP) algorithm which applies the RP principle based upon the band-
width estimates obtained by observing the data flow on the paths.

TCP based Multipath Transmission

In contrast to SCTP, which was designed with multihoming support in na-
ture, TCP is unaware of multiple interfaces and allows only a single IP
address per endpoint. Nevertheless, TCP has dominated the Internet traffic
and has sparked a lot of interests in enabling TCP to support simultane-
ous multipath transmission. In this section, we divide the approaches in
four groups. The grouping principle is influenced by the research issues the
approaches aim to address, such as fairness, buffer impact on performance,
Pareto-optimality and path diversity. Although some approaches may cover
more than one research issue, we only discuss them in the group which we
believe the approaches are best fit into. In our study, we found that SCTP
and MPTCP share many similar issues and certain algorithms. At the end
of this section, we summarize their common features as well as their differ-
ences.

Multipath Transmission without Considering Fairness:

Magalhaes et al. [78] proposed Reliable Multiplexing Transport Proto-
col (R-MTP), which is a rate-based reliable transport protocol multiplexing
data across multiple network interfaces (i.e., a WRR style scheduler). It
relies on explicit bandwidth probing via the packet pair method [178] to
estimate bandwidth in order to adjust the rate on the available paths ac-
cordingly. For example, it measures packet inter-arrival times and jitter
to sense bandwidth scarcity. The probing period should occur on a fine
time-scale to reflect the fluctuation of the available bandwidth.

2.2. MULTIPATH TRANSMISSION 43

Table 2.10: Key algorithms for TCP based CMT.
Scheme Year Algorithm and Pro-

tocol
Paths Receive

Buffer
Fairness Sequence

Space
Network
Environ-
ment

R-MTP [78] 2001 SACK, WRR Disjoint Not speci-
fied

No Single Mobile

Lee et al. [79] 2002 IFRT, DACv2, PFA General Not speci-
fied

No Single General

pTCP [80]–[82] 2002,
2005

WRR-PULL, Delayed
Binding, Packet Re-
striping, Redundant
Striping, SACK

IndependentConstrained No Double Mobile

R2CP [83], [84] 2003,
2005

EDPF, Packet Re-
striping

General Constrained No Double Wireless

Cetinkaya et
al. [85]

2004 OMS IndependentConstrained No Single General

mTCP [86] 2004 WRR, Shared Conges-
tion Detection

Disjoint Constrained Yes Single General

M-TCP [87] 2004 Duplicate Transmission Disjoint Not speci-
fied

No Single Ad hoc

M/TCP [88] 2004 OWTT, WRR, Dupli-
cate Transmission, Du-
plicated ACK, Dupli-
cated & Delayed ACK

IndependentNot speci-
fied

No Single General

R-M/TCP [89] 2005 OWTT, WRR, Du-
plicate Transmission,
RCC

IndependentConstrained No Single General

cTCP [90] 2007 WRR, Duplicated ACK
classifier

IndependentConstrained No Single General

MPLOT [91], [92] 2008,
2012

Packet coding, ECN,
EDPF

General Not speci-
fied

No Single Lossy

JOSCH [93] 2009 WRR IndependentConstrained No Single Wireless
Super-
aggregate [94]

2009 Selective Offloading,
IP-in-IP encapsulation,
Duplicate Transmission

IndependentConstrained No Single Mobile

BMC [95] 2009 WCC General Not speci-
fied

Yes Single General

MPTCP [96]–[98] 2009 LIA, WRR General Constrained Yes Double General
MPTCP [99] 2010 LIA, WRR General Constrained Yes Double Data cen-

ter
MPTCP [100] 2011 LIA, WRR-PULL General Constrained Yes Double General
Hassayoun et
al. [101]

2011 DWC, WRR-PULL General Constrained Yes Double General

MPTCP [103],
[104]

2012,
2013

OLIA, WRR-PULL General Constrained Yes Double General

Han et al. [109] 2012 EDPF IndependentConstrained Yes Double General
NC-MPTCP [110] 2012 Packet coding, FPS IndependentConstrained Yes Double General
FMTCP[111],
[112]

2012,
2014

Packet coding, FPS IndependentConstrained Yes Double General

MPTCP [102] 2012 Opportunistic Retrans-
mission (OR), Penaliz-
ing slow subflows

General Constrained Yes Double General

QoS-
MPTCP [113]

2012 Partial Reliability Independent Infinite Yes Double General

Peng et al. [117] 2013 Balia General General Yes Double General
MPTCP/OF [115] 2013 OF IndependentGeneral Yes Double General
MPTCP [105] 2013 New Delayed ACK,

packet coding
IndependentConstrained Yes Double General

MPTCP [106] 2013 Penalizing slow sub-
flows (Improved)

General Constrained Yes Double General

CWA-
MPTCP [114]

2013 CWA, FPS General Constrained Yes Double General

Singh et al. [107] 2013 AOLIA, EDWC,
PSPLH

General Constrained Yes Double General

Yang et al. [119] 2013 NR-SACKs General Constrained
(Send
buffer)

Yes Double General

Lim et al. [121] 2014 Detect MAC-Layer
path status

General General Yes Double Wireless

Ferlin et al. [124] 2014 DRePaS General General Yes Double Wireless
SC-MPTCP [120] 2014 Packet coding, FPS IndependentConstrained Yes Double General
EW-
MPTCP [122]

2014 WCC IndependentConstrained Yes Double General

Yang and Amer
[123]

2014 FPS Independent Infinite Yes Double General

Le et al. [108] 2015 FPS Independent Infinite Yes Double General

44 CHAPTER 2. RELATED WORK

Table 2.11: Concurrent Multipath Transfer Protocols based on TCP.
Scheme Year Algorithm and Pro-

tocol
Paths Receive

Buffer
Fairness Sequence

Space
Network
Environ-
ment

R-MTP [78] 2001 SACK, WRR Disjoint Not speci-
fied

No Single Mobile

Lee et al. [79] 2002 IFRT, DACv2, PFA General Not speci-
fied

No Single General

pTCP [80]–[82] 2002,
2005

WRR-PULL, Delayed
Binding, Packet Re-
striping, Redundant
Striping, SACK

IndependentConstrained No Double Mobile

R2CP [83], [84] 2003,
2005

EDPF, Packet Re-
striping

General Constrained No Double Wireless

Cetinkaya et
al. [85]

2004 OMS IndependentConstrained No Single General

mTCP [86] 2004 WRR, Shared Conges-
tion Detection

Disjoint Constrained Yes Single General

M-TCP [87] 2004 Duplicate Transmission Disjoint Not speci-
fied

No Single Ad hoc

M/TCP [88] 2004 OWTT, WRR, Dupli-
cate Transmission, Du-
plicated ACK, Dupli-
cated & Delayed ACK

IndependentNot speci-
fied

No Single General

R-M/TCP [89] 2005 OWTT, WRR, Du-
plicate Transmission,
RCC

IndependentConstrained No Single General

cTCP [90] 2007 WRR, Duplicated ACK
classifier

IndependentConstrained No Single General

MPLOT [91], [92] 2008,
2012

Packet coding, ECN,
EDPF

General Not speci-
fied

No Single Lossy

JOSCH [93] 2009 WRR IndependentConstrained No Single Wireless
Super-
aggregate [94]

2009 Selective Offloading,
IP-in-IP encapsulation,
Duplicate Transmission

IndependentConstrained No Single Mobile

BMC [95] 2009 WCC General Not speci-
fied

Yes Single General

MPTCP [96]–[98] 2009 LIA, WRR General Constrained Yes Double General
MPTCP [99] 2010 LIA, WRR General Constrained Yes Double Data cen-

ter
MPTCP [100] 2011 LIA, WRR-PULL General Constrained Yes Double General
Hassayoun et
al. [101]

2011 DWC, WRR-PULL General Constrained Yes Double General

MPTCP [103],
[104]

2012,
2013

OLIA, WRR-PULL General Constrained Yes Double General

Han et al. [109] 2012 EDPF IndependentConstrained Yes Double General
NC-MPTCP [110] 2012 Packet coding, FPS IndependentConstrained Yes Double General
FMTCP[111],
[112]

2012,
2014

Packet coding, FPS IndependentConstrained Yes Double General

MPTCP [102] 2012 OR, Penalizing slow
subflows

General Constrained Yes Double General

QoS-
MPTCP [113]

2012 Partial Reliability Independent Infinite Yes Double General

Peng et al. [117] 2013 Balia General General Yes Double General
MPTCP/OF [115] 2013 OF IndependentGeneral Yes Double General
MPTCP [105] 2013 New Delayed ACK,

packet coding
IndependentConstrained Yes Double General

MPTCP [106] 2013 Penalizing slow sub-
flows (Improved)

General Constrained Yes Double General

CWA-
MPTCP [114]

2013 CWA, FPS General Constrained Yes Double General

Singh et al. [107] 2013 AOLIA, EDWC,
PSPLH

General Constrained Yes Double General

Yang et al. [119] 2013 NR-SACKs General Constrained
(Send
buffer)

Yes Double General

Lim et al. [121] 2014 Detect MAC-Layer
path status

General General Yes Double Wireless

Ferlin et al. [124] 2014 DRePaS General General Yes Double Wireless
SC-MPTCP [120] 2014 Packet coding, FPS IndependentConstrained Yes Double General
EW-
MPTCP [122]

2014 WCC IndependentConstrained Yes Double General

Yang and Amer
[123]

2014 FPS Independent Infinite Yes Double General

Le et al. [108] 2015 FPS Independent Infinite Yes Double General

2.2. MULTIPATH TRANSMISSION 45

Lee et al. supported two transmission modes in their work [79]: FOSM
and POSM. In POSM, they investigated multiple schemes to address the
spurious retransmissions by modifying two TCP operations: 1) Increasing
the Fast Retransmit Threshold (IFRT) and 2) enabling Delayed ACKs for
out-of-order packets as well as sending immediately ACKs for retransmitted
packets. The second modified operation is like an advanced version of DAC
used in [61], [63], thus, we name it DACv2. IFRT makes the TCP sender
wait for more than triple duplicate ACKs, which reduces the number of the
fast retransmission and the fast recovery events. DACv2 enhances perfor-
mance because when ACKs are being delayed, new packets may fill the gap
and change the out of order packets in order.

PTCP [80]–[82] functions as a wrapper around a modified version of
TCP. It opens multiple TCP flows, one for each interface in use. pTCP
performs data-striping across multiple micro-flows (TCP flows) by consid-
ering their bandwidth difference. Specifically, pTCP uses cwnd/RTT ratio,
a WRR-PULL scheduler, to allocate traffic proportionally to path capacity.
In addition, pTCP has several other strategies addressing specific problems.
For example, the congestion window could be an over-estimate especially
just before congestion occurs. This can result in an undesirable hold up
of data in subflows. Instead of reassigning data to other subflows later on,
pTCP uses a Delayed Binding strategy to adapt to instantaneous changes
in path capacity. Specifically, it pulls data from the shared sending buffer
only when the data is scheduled to send out immediately through a subflow.
In order to avoid an overflow of the receive buffer, pTCP uses a Packet Re-
striping strategy to retransmit a packet through a different subflow instead
of the subflow which transmitted that packet earlier, and uses a Redundant
Striping strategy to send a duplicated packet on one subflow to another.
Moreover, pTCP uses SACK feedback mechanism to recover a lost packet
in a much shorter time period.

Reception Control Protocol (RCP) [83], [84] is a receiver-centric trans-
port protocol with a minimized sender design. The receiver controls all the
key functions in RCP. To support CMT, a multi-state extension of RCP,
i.e., Radial RCP (R2CP), was proposed. R2CP maintains one RCP pipe
(the same as a TCP flow) per end-to-end path with congestion control be-
ing handled by individual RCP pipes. Traffic is scheduled to each RCP pipe
based on the (estimated) time the requested segment will arrive through the

46 CHAPTER 2. RELATED WORK

concerned pipe (a variant of EDPF). Note that each RCP pipe maintains
a local sequence number space internally to facilitate loss detection and re-
covery. The local sequence number can be converted to the global sequence
number, and vice versa.

Chen et al. [87] proposed M-TCP that uses a Duplicate Transmission
mode for the lossy wireless environment with high interference. In this
transmission mode, multiple copies of the same packet are sent on different
paths so that the chance that all copies are lost is much reduced. Un-
fortunately, they only present sending-side modification without addressing
duplicate ACKs due to multiple copies of the same packet.

Rojviboonchai and Hitoshi [88] proposed a multipath Transmission Con-
trol Protocol (M/TCP). M/TCP uses OWD [179], a similar method as FPS,
at the sender to estimate the delay time of the forward path and reverse path
separately in order to calculate per path RTO timer. In addition, M/TCP
employs two mechanisms to deal with packet loss. In the case of fast re-
transmission, M/TCP uses Duplicate Transmission policy, i.e., duplicating
the missing segment and sending each copy through all paths so that a
quick and reliable retransmission can be desirable; in the case of timeout
retransmission, the missing segment on a flow is sent through the other
flows. Moreover, M/TCP uses two algorithms for the receiver to transmit
an ACK in the case of CMT. Namely, using Duplicated ACK algorithm,
an M/TCP receiver sends an ACK immediately upon the receipt of a data
segment to more than one path; using Duplicated & Delayed ACK, the re-
ceiver transmits an ACK for every other data segments through more than
one path. Rojviboonchai et al. proposed R-M/TCP [89] as an extension of
their previous work M/TCP. R-M/TCP is a rate-based M/TCP that per-
forms congestion control in a rate-based and loss avoidance manner (we use
RCC to denote it) to avoid packet loss by adjusting the congestion window
before buffer overflows. Specifically, R-M/TCP schedules data packets in a
WRR manner while it estimates the queue length at the bottleneck link. If
the queue length grows beyond a predefined threshold, the sender recalcu-
lates a new congestion window to achieve a fair share at the bottleneck.

Cetinkaya and Knightly [85] proposed an Opportunistic Multipath Sched-
uler (OMS) that follows a traffic splitting policy that favors low-delay high-
throughput paths opportunistically for a short term variations in path qual-
ity. To avoid violating path weights of the routing protocol and potentially

2.2. MULTIPATH TRANSMISSION 47

leading to oscillation, OMS ensures that over longer time scales traffic is
split according to the ratios determined by the routing protocol.

Dong, Pissinou, and Wang [90] proposed that uses a single congestion
window to control the global throughput and a single sending buffer to be
shared among all paths. It uses Credit-Weighted Round-Robin (a variant of
WRR) as the scheduling algorithm. Each time an ACK comes back to the
sender, the capacity estimation of that path is updated, and a new sending
credit (similar to the congestion window size) is added to the sender. The
new credit is for all the paths combined, and it is further divided into each
path. cTCP uses the path credit (similar to the path capacity) to distribute
data among the available paths. Furthermore, cTCP adopts a duplicated
ACK classifier that handles packet reordering by differentiating whether a
duplicated ACK is likely caused by CMT or a real duplicated ACK.

Sharma et al. [91], [92] proposed Multi-Path LOss-Tolerant protocol
(MPLOT) to provide multipath transmission on multiple heterogeneous,
highly lossy paths. MPLOT uses erasure based FEC packet coding. The
major benefit of packet coding stems from its ability to compensate for miss-
ing packets from redundancy. This makes data transmission over lossy net-
works robust and efficient. To counter against packet reordering, MPLOT
estimates path parameters (i.e., loss rate, capacity, and RTT) continuously
to provide adaptive FEC coding. In particular, MPLOT performs latency-
aware packet mapping, a variant of EDPF. For example, it maps packets
that are not required immediately to paths with long delays, while mapping
the more immediately useful packets to paths with short delays. MPLOT
uses Explicit Congestion Notification (ECN) [180] to distinguish congestion
losses from those due to faulty/lossy links.

Wang et al. [93] proposed a segment-based adaptive Joint Session Schedul-
ing (JOSCH) mechanism. The main goal is to restrain the delay difference
among multiple Radio Access Networks (RANs)s (RANs) by means of al-
locating the traffic to different RANs dynamically with reasonable ratios.
Specifically, JOSCH obtains network conditions by a segment-based feed-
back approach, where a “segment” is defined as a predetermined size of
data block. Its size is configurable according to the delay sensitivities of
different services. After each segment transmission, the receiver sends feed-
back to the sender. According to the feedback, the sender adjusts traffic
allocation dynamically according to the estimated transmission rates and

48 CHAPTER 2. RELATED WORK

delays.
Tsao and Sivakumar [94] argued that aggregated bandwidth of two wire-

less interfaces (3G and WiFi) is a Simple Aggregation due to path het-
erogeneity. For example, the low bandwidth interface (e.g., 3G with 100-
500Kbps) can only achieve negligible bandwidth compared to the high band-
width interface (e.g., WiFi with 2-54Mbps). They proposed a super-aggregation
to achieve performance that is better than the sum of throughput achievable
through each of the interfaces individually by the means of three mecha-
nisms: Selective Offloading, Proxying, and Mirroring. In spite of the fact
that an interface may have a relatively small amount of bandwidth, these
mechanisms can provide considerable performance improvement. Specifi-
cally, the Selective Offloading mechanism is to receive TCP data segments
over a comparably high-speed WiFi and return ACKs over a low-speed 3G
path to address self-contention in WiFi networks. The Proxying mechanism,
following IP-in-IP encapsulation, allows a 3G path to notify the TCP sender
about blackout events on the WiFi path. The Mirroring mechanism (i.e.,
Duplicate Transmission) establishes an addition TCP connection through
3G to fetch the missing segments due to random loss on the WiFi path.

Multipath Transmission Considering Fairness:

Similar to the early development of SCTP based CMT, at the early stage,
TCP based multipath transmission was only used for utilizing multiple TCP
flows with intelligent scheduling algorithms to mitigate packet reordering.
Nevertheless, it was found that simply utilizing multiple TCP flows concur-
rently at a bottleneck would result in a fairness issue, i.e., an unfair share
of the bandwidth at a bottleneck link. For example, NewReno [181] is the
most common TCP congestion control variant as it yields an equal share of
the congested link. This equal share outcome of NewReno results in an un-
fair share of the bandwidth if more than one TCP flow is active for a single
multipath transmission connection at the bottleneck link. From the litera-
ture review we have made, we find that multipath transmission approaches
based on TCP in recent years have also started to make fairness a necessary
feature.

To the best of our knowledge, mTCP [86] proposed by Zhang et al. is
among the earliest proposals that have taken fairness issue into consideration
for TCP based multipath transmission. To address the fairness issue, they

2.2. MULTIPATH TRANSMISSION 49

proposed not establishing multiple flows through the same bottleneck. For
example, to alleviate the aggressiveness problem, Zhang et al. integrated
a shared congestion detection mechanism into mTCP so as to identify and
suppress subflows that traverse the same set of congested links. For example,
mTCP detects shared congestion by examining the correlations among the
fast retransmit times of the subflows. mTCP also uses a scheduler in a WRR
manner. For example, it maintains a counter, i.e., pipei, to represent the
number of outstanding packets on the ith path. pipei is incremented by 1
when the sender either sends or retransmits a packet over the ith path, and is
decremented by 1 when an incoming ACK indicates that a packet previously
sent has been received. The sender associates a score, i.e., pipei/cwndi, for
each path. The path with the minimum score has priority to send the next
packet.

Instead of avoiding shared bottlenecks, Honda et al. [95] proposed Bidimensional-
Probe Multipath Congestion Control (BMC) to address the fairness issue.
Specifically, BMC uses a Weighted Congestion Control (WCC) approach
that applies the weight to each subflow so that the throughput of each sub-
flow is in proportion to its weight. In addition, WCC maintains the sum
of the weight so that a bundle of subflows in the multipath connection is
kept as aggressive as one TCP flow. WCC can achieve not only fair resource
allocation at the shared bottleneck, but also RP [155] along the disjoint
bottlenecks. For example, multiple different connections can obtain fair
resource allocation across distinct bottlenecks.

Approximately in 2009, MPTCP [96]–[98] was proposed with the fair-
ness property as well as RP feature in mind. Specifically, MPTCP, under
discussion of IETF, has the following set of goals to achieve:

• Improve throughput: MPTCP should perform at least as a single TCP
flow running on the best path.

• Do no harm: MPTCP subflows should not take more capacity than a
single TCP flow would get at a shared bottleneck.

• Balance congestion: MPTCP should utilize the least congested path
the most.

Figure 2.8 shows the architecture of MPTCP. It is a major extension to
TCP and allows a pair of hosts to use several paths to exchange the segments

50 CHAPTER 2. RELATED WORK

src:A1				dst:B1	
sp:x						dp:y	

master	subsock	

src:A1				dst:B1	
sp:x						dp:y	socket	

App	
Applica7ons	

Networking	stack	

src:A1				dst:B2	
sp:x						dp:y	

		slave	subsock	
src:A2				dst:B1	
sp:x						dp:y	

		slave	subsock	
src:A2				dst:B2	
sp:x						dp:y	

		slave	subsock	

Data	 Data	 Data	 Data	

meta-socket	

Figure 2.8: The architecture of MPTCP, which has the application compat-
ibility by keeping the standard socket API to legacy applications. MPTCP:
Multipath TCP, src: Source IP address, dst: Destination IP address, sp:
Source Port, dp: Destination Port, APP: Application.

that carry the data from a single connection. MPTCP presents a standard
TCP socket API to the upper layer so that legacy applications can run upon
MPTCP transparently. A Coupled Congestion Control (CCC) algorithm,
Linked Increase Algorithm (LIA) [182], is used to guarantee fair resource
allocation on multiple paths and provide RP feature among them. Its RP
feature can shift traffic away from more congested paths to less congested
ones. In addition to the joint congestion control algorithm, MPTCP also
has a few other design features. For example, MPTCP adds connection-level
sequence numbers in order to reassemble the data stream in-order from mul-
tiple subflows. A Data Sequence Signal (DSS) option [183] specifies a full
mapping from the connection-level sequence number to the subflow sequence
number. In the early stage of MPTCP, a PUSH style WRR scheduling strat-
egy is used where the scheduler tries to fill all subflows when there is data
coming from the application. Later, MPTCP adopts a WRR-PULL man-
ner scheduler [100], a similar design adopted by pTCP [80]–[82] where the
application data stored in a shared connection-level sending buffer is pulled
by subflows whenever they have space in their congestion window. Both
PUSH and WRR-PULL scheduling strategies are variants of WRR. Their
difference lies in the fact that WRR-PULL strategy uses less time waiting

2.2. MULTIPATH TRANSMISSION 51

in a subflow queue before its actual transmission on the wire. Although this
time period seems minor, the path properties may change during that time.
For the latest development of MPTCP in IETF, we refer readers to RFCs
such as [16], [182], [183].

Raiciu et al. [99] were the first proposing a natural evolution of data
center transport from TCP to MPTCP. They demonstrated that MPTCP
could efficiently and seamlessly use available bandwidth, provide improved
throughput and better fairness compared to single path TCP. The same au-
thors further investigated what caused these benefits in [184]. They found
that using MPTCP allows to rethink data center networks and approach
them with a different mindset as to the relationship between transport pro-
tocols, routing, and topology. One of the challenges of deploying MPTCP in
data centers is the Incast effect, a behavior of MPTCP as well as TCP that
results in the gross under-utilization of link capacity in certain many-to-one
traffic patterns [185]–[188]. Incast collapse is not specific to MPTCP, but
is inherited from TCP. Li et al. [122] investigated how to share network re-
sources among different MPTCP flows by performing an additional weighted
congestion control based on the coupled congestion control mechanism.

Although LIA ensures MPTCP subflows to be no more aggressive than
a competing TCP flow, LIA is not able to differentiate whether the subflows
share the same bottleneck or different ones. This may cause sub-optimal
performance of MPTCP. Hassayoun, Iyengar, and Ros [101] proposed a
Dynamic Window Coupling (DWC) algorithm to address it by detecting
distinct bottlenecks and only coupling those that share a common bottle-
neck, while allowing other subflows to use separate congestion control. For
example, DWC uses a loss congestion event to trigger an alert while us-
ing either the Delay or Loss congestion event to group subflows. Singh et
al. [107] proposed an extension of the DWC algorithm, denoted as EDWC.
This extension uses a delay congestion to trigger an alert while either delay
or loss congestion is used to group and couple subflows. The concept be-
hind DWC and EDWC algorithms is similar to that of UCCSB algorithm
used in BA-SCTP [59] because they both identify the shared bottleneck and
guarantee that the aggregated flows on the bottleneck is TCP-friendly.

Diop et al. [113] proposed QoS-oriented MPTCP that takes advantage of
the two sub-layers architecture of MPTCP to use Quality of Service (QoS)
techniques for multimedia applications over multiple paths. MPTCP orig-

52 CHAPTER 2. RELATED WORK

inally offers a fully reliable and fully ordered service. Nevertheless, full
reliability may not be required by certain multimedia applications. Diop et
al. investigated the QoS benefits induced by the implementation of the Par-
tial Reliability [189] feature in MPTCP for interactive video applications.
Partial Reliability is an important concept for multimedia transmission over
IP networks and is defined as the possibility to not recover losses under a
threshold in order to improve QoS.

Peng et al. [116], [117] presented a fluid model to investigate a few exist-
ing congestion control algorithms designed for MPTCP, and identified design
criteria that guarantees the existence, uniqueness, and stability of system
equilibrium. They characterized algorithm parameters for TCP friendli-
ness and proved that there is an inevitable trade-off between responsive-
ness and friendliness. Based on the study, in [117] they proposed a new
congestion control algorithm, Balia (balanced linked adaptation). This al-
gorithm generalizes existing algorithms and strikes a good balance among
TCP-friendliness, responsiveness, and window oscillation.

Lim et al. proposed MPTCP-MA [121] to improve MPTCP performance
during intermittent path connectivity in wireless environment. MPTCP-MA
exploits MAC-Layer information to estimate path status, and suspends/re-
leases a path based on the estimation. By quickly detecting path failure
and recovery, MPTCP-MA can avoid unnecessary losses and utilize recov-
ered paths more quickly.

Buffer Impact on MPTCP:

Although MPTCP was designed with several merits such as fairness, RP,
and Pareto-optimality in mind, buffer size has significant impact on MPTCP
performance. This problem stems from the packet reordering issue due to
heterogeneous path characteristics. We now discuss the related work which
has explicitly examined the impact of buffer size on MPTCP. Note that the
impact of buffer size is not limited to MPTCP but on all other approaches
using POSM.

Barré, Paasch, and Bonaventure [100] evaluated the impact of heteroge-
neous paths on the receive buffer and aggregated throughput. The experi-
ment result shows that losses on one subflow have a limited impact on the
performance of the other subflows. Nevertheless, this observation is based on
the assumption that the reordering buffer is big enough to accommodate all

2.2. MULTIPATH TRANSMISSION 53

the out-of-order data. Nguyen et al. [190], [191] evaluated the performance
of MPTCP in terms of load sharing and throughput optimization with and
without LIA respectively. The results show that the context of mismatched
path characteristics has a great impact on the performance of MPTCP with
constrained receive buffers. Han et al. [109] proposed a reordering scheme
that considers packet scheduling algorithm at the sender to reduce the re-
ceive buffer. The main idea is to estimate packet arrival time and schedule
packets accordingly. The sender maintains a per path time table including
calculated values of receiving time at the receiver from now for each packet.
When the sender has opportunity to send a new packet, it chooses the path
that can deliver the packet faster than others. Thus, it is a EDPF style
scheduling algorithm.

The impact of buffer size on MPTCP performance has also been observed
in [105], [110]–[112], [120], which proposed packet coding based approaches
to address it. For example, in [110] Li et al. proposed NC-MPTCP that
introduces packet coding to some but not all subflows. The regular sub-
flows deliver original packets while the coding subflows deliver linear coded
packets. The coded packets are used to compensate for the lost and much
delayed packets in order to avoid receive buffer blocking. They used an
out-of-order scheduler that calculates the expected packet arriving time by
taking RTT, throughput, and loss ratio into account. Thus, the packets that
are sent out of order are expected to arrive at the receiver in order. This
scheduling algorithm is the same as the FPS algorithm used in [77]. In [120],
Li et al. proposed SC-MPTCP to mitigate the packet reordering issue with
constrained receive buffer. In SC-MPTCP, they proposed to make use of
coded packets only as redundancy to compensate for expensive retransmis-
sions while minimizing the encoding/decoding operations. The redundancy
is provisioned in both proactive and reactive manners. Specifically, SC-
MPTCP transmits proactive redundancy first and then delivers the original
packets. The proactive redundancy is continuously updated according to
the estimated aggregate retransmission ratio. In order to avoid the proac-
tive redundancy being underestimated, a pre-blocking warning mechanism is
utilized to retrieve the reactive redundancy from the sender. Cui et al. [111],
[112] proposed applying the fountain code for multipath scheduling to miti-
gate the impact of path heterogeneity. They also designed a data allocation
algorithm based on the expected packet arriving time and decoding demand

54 CHAPTER 2. RELATED WORK

to coordinate the transmissions of different subflows. Li et al. in [105] dealt
with the packet reordering issue from a different perspective. They demon-
strated that the traditional Delayed ACK mechanism can lead to significant
performance degradation in the presence of timeouts. Thus, they proposed
a New Delayed ACK (NDA) for MPTCP aiming to remove the Minimum
RTO constraint at the sender while to reserve the Delayed ACK function at
the receiver.

Raiciu et al. [102] proposed schemes of opportunistic retransmission and
penalizing slow subflows to avoid the reordering problem. If a subflow holds
up a packet at the trailing edge of the receive window, the opportunistic
retransmission allows the sender to resend the packet that is previously sent
on another subflow. This scheme is similar to the Packet Re-striping used
in [80]–[84] and Pre-blocking warning used in [120]. These three similar
schemes are used in different scenarios but for the same purpose. OR is
used only if the connection is receive-window limited. Packet Re-striping is
employed in the case of path capacity fluctuations. Pre-blocking warning
is triggered if the proactive redundancy is underestimated. The penalizing
scheme of [102] is used to slow down the slow subflows. For example, if a
subflow has caused too many out-of-order packets in the reordering buffer,
the congestion window of that subflow is reduced by half and its slow-start
threshold is set to the current congestion window. But if that subflow has
been in the slow-start phase already, the reordering problem may become
worse because the penalization mechanism will set its slow-start threshold to
a smaller value. Paasch, Khalili, and Bonaventure [106] proposed improving
the penalization mechanism by adjusting the slow-start threshold only when
a subflow is not in its slow-start phase. However, they also identified that
the penalization mechanism is far from perfect because a subflow at full
sending speed may still overflow the receive buffer while another subflows is
in slow-start.

Ferlin et al. [124] argued that the opportunistic retransmission scheme
does not reduce the effect of extreme RTT heterogeneity. Instead, they pro-
posed a Dynamic Relative Path Scoring (DRePaS) algorithm to dynamically
score the paths relative to the best path and adapt the scheduling accord-
ingly. Specifically, when the score of a path is less than a threshold, no
payload is scheduled over that path until its score is larger than the thresh-
old measured by probing traffic. Note that the standard MPTCP uses the

2.2. MULTIPATH TRANSMISSION 55

congestion window as an estimation of path capacity. In contrast, Ferlin
et al. believed that the smoothed in-flight data on each path reflects the
behavior of the connection more dynamically than the congestion window.

Chen et al. [192] explored the performance of MPTCP over wireless net-
works. In order to avoid performance degradation, they set the receive buffer
up to 8 MB, which is not feasible in practice for many devices. Shamsza-
man et al. [193] analyzed the feasibility of MPTCP for big data applica-
tions. They found that constrained receive buffer leads to poor performance
of MPTCP. Zhou et al. [114] proposed CWA-MPTCP that examines the
goodput of MPTCP with bounded receive buffers. They found that if the
paths have similar end-to-end delays, the MPTCP goodput is near optimal,
otherwise the goodput will be degraded significantly. For a wireless environ-
ment, they proposed a Congestion Window Adaptation (CWA) algorithm
that can adjust the congestion window dynamically for each TCP subflow
so as to mitigate the variation of end-to-end path delay, maintaining similar
end-to-end delays over multiple paths. The primary idea behind CWA is
that a large delay ratio indicates that the high-delay path is overloaded. Its
congestion window needs to be decreased to relieve traffic and reduce path
delay. For wired environment with stable end-to-end delay they proposed
using a delay-aware scheduling algorithm to predict the receiving sequence,
i.e., a FPS manner scheduler, so that packets can arrive at the receiver in
order.

Paasch, Ferlin, Alay, et al. [194] designed and implemented a generic
modular scheduler framework that enables testing of different schedulers
for MPTCP. Using this framework, they evaluated different schedulers for
MPTCP and provided an in-depth performance analysis. They identified the
impact of scheduling decisions on the performance of MPTCP and illustrated
the underlying root cause for the observed behavior. For example, they
discovered that a bad scheduling decision triggers two packet reordering
effects. First, EDPF based scheduler is more efficient than simple RR in
terms of avoiding the HoL problem. Second, receive-window limitation may
prevent the subflows from being fully utilized.

In the last few years, several articles visited how to use delay-aware
scheduling algorithms in MPTCP to improve the receive buffer utilization.
Yang and Amer [123] used one-way communication delay of a TCP connec-
tion to design an MPTCP scheduler that transmits data out-of-order over

56 CHAPTER 2. RELATED WORK

multiple paths such that their arrival is in-order. Le et al. [108] dealt with the
packet reordering problem of MPTCP using a Forward-Delay-based packet
scheduling algorithm. Its main idea is that the sender distributes packets via
multiple paths according to their estimated forward delay and throughput
difference. This scheduling algorithm is an advanced version of FPS because
it took throughput difference into consideration.

The MPTCP performance is not only impacted by the receive buffer but
also by the send buffer. [119] Yang et al. found that in an MPTCP connec-
tion with several high-BDP subflows, send buffer blocking can occur and se-
riously decrease the overall throughput. They introduced Non-Renegotiable
Selective Acknowledgments (NR-SACK) too MPTCP. The idea is that once
a data packet has been sacked, it can’t be removed from the receive buffer.
Thus, the sender can free the sacked data sooner than the advance of the
MPTCP level cumulative acknowledgment. Arzani et al. [195] found that
the send buffer size has significant impact on the performance of MPTCP.
For example, MPTCP provides higher performance gains with a larger send
buffer. However, they did not propose any method to address the problem.

Pareto-efficient MPTCP:

Khalili et al. [4], [103] demonstrated that MPTCP is not Pareto-optimal
because they found that MPTCP users can be excessively aggressive toward
TCP users over congested paths even without any benefit to the MPTCP
users. They attributed the problem to the LIA of MPTCP. To deal with
the problem, they proposed an Opportunistic Linked Increase Algorithm
(OLIA) as an alternative for LIA and proved that OLIA is Pareto-optimal
and satisfies the three design goals of MPTCP. Like LIA, OLIA is a window-
based congestion-control algorithm that couples the increase of congestion
windows and uses unmodified TCP behavior in the case of loss. The increase
part of OLIA has two terms. The first term provides the Pareto optimal-
ity. The second term guarantees non-flappiness7 as MPTCP with LIA and
responsiveness (i.e., the rate of algorithm convergence). OLIA also compen-
sates for different RTTs by adapting the window increases as a function of
RTTs. However, Singh et al. [107] found that OLIA of MPTCP still has per-
formance issues. They presented Adapted Opportunistic Linked Increases

7Flappiness means that MPTCP would use one path almost exclusively for a while,
then flip to another path, and then repeat.

2.2. MULTIPATH TRANSMISSION 57

Algorithm (AOLIA) to ensure controlled aggressiveness of the MPTCP sub-
flows. In order to minimize the packet reordering delay, they also proposed
a Push-Pull-Hybrid (PSPLH) scheduler where Pull strategy is used to allo-
cate data segments to multiple flows, and Push strategy is used to tune the
size of the segments dynamically.

Path Diversity for MPTCP:

Host	
A	

A1	

A2	

A3	

Host	
B	

B1	

B2	

Internet	

Figure 2.9: Static full-mesh of possible network paths between two MPTCP
enabled hosts: A1:B1, A1:B2, A2:B1, A2:B2, A3:B1, A3:B2.

By default, MPTCP uses a fullmesh manager to create static full-mesh
of possible network paths among the available IP addresses (see Figure 2.9).
This path management may not only lead to a large number of subflows
being established but also ignore the benefits the path diversity could offer.
van der Pol et al. [115] combined MPTCP and OF to dynamically exploit
path diversity (choose disjoint paths) between two endpoints to improve
stability (in the case of partial path failure) and obtain higher throughput.
Specifically, in [115] OF is used to discover the topology of the network,
calculate multiple disjoint paths and configure these paths. MPTCP is used
to distribute the traffic across the selected paths.

Comparison between CMT-SCTP and MPTCP

SCTP and TCP are the main base protocols widely used to support
multipath transportation. Currently, CMT-SCTP and MPTCP are in the
focus of the IETF and academia. In the following discussion, we make a
comparison of them.

58 CHAPTER 2. RELATED WORK

Although CMT enabled SCTP shares the same issues with MPTCP in
terms of fairness, reordering, and retransmission policies, moving legacy
applications from TCP to SCTP involves a number of challenges such as
making SCTP work through NATs, the need to modify applications, and
the lack of an easy way to negotiate SCTP versus TCP between a client and
a server. None of the issues are insurmountable, but together they make
adoption of SCTP as a TCP alternative a challenge. From the previous
discussion, we found that MPTCP instead of CMT-SCTP has become the
main stream of multipath transportation solution. In this section, we discuss
the reason behind it.

By comparing the key algorithms used by CMT-SCTP and MPTCP (see
Table 2.9 and Table 2.11), we found that the two protocols have shared the
same or similar key algorithms. Therefore, algorithm is not the primary fac-
tor that determines which protocol could become the mainstream because
the algorithms are not specific to any base protocols but could be used
on any of them with minor adaptation. We believe that the reason mainly
comes from their difference in terms of backward compatibility and sequence
number design. For example, unlike SCTP which modifies the interfaces of
legacy TCP to applications, MPTCP presents a single TCP interface to
the application layer (see fig. 2.8). This seemingly minor difference makes
MPTCP compatible with all legacy applications. As such, the implementa-
tion of multipath in TCP, which dominates Internet traffic, is a much more
attractive deployment strategy.

The sequence space design is another primary difference. To make a fair
comparison, we assume that SCTP has been widely deployed as TCP has,
otherwise CMT-SCTP packets would be dropped by legacy middleboxes.
As summarized in Table 2.9, CMT-SCTP keeps using one single sequence
space as SCTP does. Therefore, a new SACK mechanism and its interpreta-
tion accordingly are required to avoid spurious retransmissions. Moreover,
single sequence space makes bytestream discontinuous on multiple paths so
that certain middleboxes may break such associations [102]. In contrast, in
MPTCP the sequence numbers carried in the TCP headers are separate on
each path so that the interpretation of out-of-order packets and ACKs re-
main the same as before. Hesmans et al. [196] and Honda et al. [197] found
that MPTCP could traverse most of the middleboxes because of its double
sequence space design. Furthermore, with checksums MPTCP can detect

2.2. MULTIPATH TRANSMISSION 59

middleboxes interference and fallback to legacy TCP. To allow clients to ben-
efit from MPTCP in its early deployment (e.g., servers have not upgraded
to support MPTCP), Detal et al. [198] proposed a protocol converter, MIM-
Box, to translate MPTCP to TCP and vice versa. MPTCP is not only little
influenced by middleboxes but is even extended to explicitly add specified
middleboxes in the middle of an ongoing communication. For example, the
proposed solution in [199] used MPTCP to implement connection acrobatics
(i.e., the ability to explicitly redirect connections via a middle point and the
ability to migrate the endpoint of a connection). Therefore, MPTCP con-
nections can be redirected to middleboxes located anywhere in the Internet
to improve services like load balancing, DDoS filtering and anycast.

One more difference between CMT-SCTP and MPTCP lies in the path
management strategy. By default, MPTCP creates a full-mesh of possible
network paths among the available IP addresses, whereas CMT-SCTP only
uses pairs of addresses to set up communication paths (creating only one
additional path per additional source address). Becke et al. [200] found that
MPTCP’s path management strategy performs significantly better than that
of CMT-SCTP in the case of asymmetric paths.

2.2.4 Application Layer Multipath Capability

Table 2.12: Key algorithms for application layer multipath capability (sorted
according to their order mentioned in Table 2.13).
Algorithm Problems to address Description
HTTP Range Retrieval Re-
quest (HTTP-RRR)

Request segments over
multiple paths

It commonly makes a halted download to proceed
with the outstanding portion at a later time. In
multipath transmission, it could be used to down-
load unique segments of a file at the server. Note
that each request must be sequentially handled
before the next request could be sent out.

HTTP Request Pipelining
(HTTP-RP)

Concurrent HTTP-RRR It generates multiple requests from the client
without waiting for each response from the server.

Provisioning multipath capability at the application layer has received a
lot of attention because the approaches are almost independent of the under-
lying access technologies and network-layer routing. It is a common practice
that an application establishes multiple transport connections, binds them
to different IP addresses, and distributes the data in proportion to the avail-
able path capacity over these connections (see Figure 2.10). To reassemble
the data delivered over different connections, each packet or a group of pack-

60 CHAPTER 2. RELATED WORK

Table 2.13: Concurrent Multipath Transfer Applications.
Scheme Year Algorithm and Protocol Path(s) Network Environment
XFTP [126] 1996 WRR Same Satellite channel
PSockets [127] 2000 Middleware, RR Same General
GridFTP [128] 2001 Fair share (RR) Same Bottleneck link
PA [129] 2002 WRR Different Many senders and one receiver
ATLB [130],
[131]

2005, 2007 Middleware, WRR, FPS Different General

Tavarua [132] 2006 Middleware, WRR Different Cellular uplink channel
SBAM [133] 2006 Middleware, WRR Different Wireless access
DMP [134],
[135]

2007, 2009 WRR-PULL Different General

MultiTCP [136] 2008 Receiver-driven rate control Different Insufficient bandwidth due to
traffic bursts

PATTHEL [137] 2009 Middleware, WRR General General
Kaspar et
al. [138]

2010 WRR, HTTP-RRR Different Wireless

Kaspar et
al. [139]

2010 WRR, HTTP-RRR, HTTP-RP Different Wireless

Evensen et
al. [140]

2010 HTTP-RRR, HTTP-RP, Re-
quest scheduler, WRR

Different Wireless

Evensen et
al. [141], [142]

2011, 2012 HTTP-RRR and HTTP-RP,
Improved Request scheduler,
WRR

Different Wireless

Miyazaki et
al. [143]

2012 Middleware, EDPF Different Wireless

DBAS [144],
[145]

2012, 2013 Middleware, WRR, PFA Different Wireless

G-DBAS [146] 2012 Middleware, Energy-awareness
Scheduling, WRR, PFA

Different Wireless

OPERETTA [147] 2012 Middleware, Energy-awareness
Scheduling, WRR

Different Wireless

MPTS-AR [19],
[148]

2014, 2015 OpenPath, MPTP Different General

src:A1				dst:B1	
sp:x						dp:y	

socket	

App	

Applica4ons	

Networking	stack	

src:A1				dst:B2	
sp:x						dp:y	

src:A2				dst:B1	
sp:x						dp:y	

src:A2				dst:B2	
sp:x						dp:y	

Data	 Data	 Data	 Data	

middleware	library	

socket	 socket	socket	

Figure 2.10: Multipath transmission at the application layer. It is assumed
that each host has two interfaces. src: Source IP address, dst: Destination
IP address, sp: Source Port, dp: Destination Port, APP: Application.

2.2. MULTIPATH TRANSMISSION 61

ets are usually assigned additional sequence numbers.

In the rest of this section, we also divide the approaches into four groups.
The first group discusses approaches using the same path. The second group
discusses approaches using different paths. The third group investigates ap-
proaches based on HTTP in order to highlight the importance of the com-
bination of HTTP and multipath transmission. The fourth group exploits
middleware approaches. Table 2.12 and Table 2.13 are used to summarize
the key algorithms and approaches respectively.

Multiple Connections over the Same Path

In the early stage of research work on application layer multipath trans-
mission, the focus was on bandwidth aggregation using multiple TCP con-
nections over the same physical path. For instance, Allman et al. [126]
developed a new application called XFTP, a modified version of FTP [201],
to improve the poor performance of TCP over long-fat satellite channels.
XFTP creates multiple TCP connections. To send a file, XFTP divides
the file into records, reads the file from local storage one record at a time,
and sends each record over whichever connection has resource available for
transmission. To reassemble the records into the correct order, XFTP uses
an additional 4-byte sequence number to each record. GridFTP [128] is
another extension of the FTP protocol implemented for bulk data transfer,
where parallel TCP connections are created to increase the throughput in
a bottleneck link. Specifically, GridFTP divides the data to be transferred
into multiple portions and transfers each portion with a separate TCP con-
nection. When competing with non-GridFTP connections over a bottleneck
link, the GridFTP connections will be less likely to be selected to drop their
packets. Hacker et al. [202] examined the effects of using parallel TCP flows
to improve end-to-end network performance. They found that in the ab-
sence of congestion, the use of parallel TCP connections is equivalent to
using a large Maximum Segment Size (MSS) on a single connection. In ad-
dition, they addressed the question of how to select the maximum number of
connections to maximize the overall throughput while avoiding congestion.
For example, if the selected value is too large, the aggregate flow may cause
network congestion and throughput will not be optimized.

62 CHAPTER 2. RELATED WORK

Multiple Connections over Different Paths

The approaches mentioned above aim to increase application throughput
by using multiple TCP connections through the same physical path. Nev-
ertheless, if they are used for striping data over different physical paths,
the reordering issue at the receiver would render them inefficient because
they do not take into consideration the reordering issue caused by heteroge-
neous paths. In the 2000s, researchers started to seek solutions to provide
bandwidth aggregation over different physical paths. A simple approach to
achieve this goal is to directly add support for multiple interfaces to a given
application by opening multiple TCP sockets (one for each active interface),
and performing striping of data across different sockets. If the interfaces
of a client are connected to independent networks, the simultaneous use of
multiple paths can achieve a total throughput close to the sum of all the
throughput from individual interfaces.

Given that popular files are often replicated on multiple servers, it be-
comes natural for clients to connect in parallel to several mirror servers to
retrieve a file (i.e., many-to-one fashion). Golubchik et al. in [203] inves-
tigated the potential benefits of an application layer multipath streaming
approach between a set of senders and a receiver. They found that multi-
path streaming exhibits better loss characteristics than single path stream-
ing. Rodriguez and Biersack in [129] described a parallel-access (PA) scheme
that allows users to fetch different portions of a file from multiple servers
at the same time and reassemble the file locally. The PA scheme allows
dynamic load sharing among all servers so that faster servers will deliver
bigger portions of a file while slower ones will deliver smaller portions.

Shiwen et al. proposed Multiflow Real-time Transport Protocol (MRTP) [204]
which is a multipath transmission extension to Realtime Transport Protocol
(RTP) [205] for real-time applications. MRTP supports multimedia services
by exploring multipath transport in mobile ad hoc networks, where link
bandwidth may fluctuate and paths are unreliable. The authors studied the
impact of traffic partitioning on congestion at bottleneck links and found
that the bandwidth utilization of a bottleneck node could be much improved
by two strategies (thinning and striping [206]). Furthermore, they showed
analytically that most of the performance improvement can be achieved with
a few paths (e.g., two or three paths), while only marginal improvement is
gained by further increase in the number of paths.

2.2. MULTIPATH TRANSMISSION 63

Wang et al. [134], [135] proposed Dynamic MPath-Streaming (DMP), a
scheme for live streaming over multiple TCP connections. DMP allocates
packets over multiple paths according to their current throughput. DMP
does not use an explicit probing scheme for bandwidth estimation on each
path. Instead, it uses the WRR-PULL scheduler to allow each connection
to pull data from a shared queue whenever it has opportunity to send data.
Thus, the paths with higher throughput deliver more packets than others.

Tullimas et al. [136] proposed MultiTCP for multimedia streaming. It
aims at providing resilience against short term insufficient bandwidth due to
traffic bursts by using multiple TCP connections for the same application.
MultiTCP is a “smart” application that allows the application to control
the desired sending rate during congestion periods. MultiTCP achieves rate
control by the means of adjusting the receiver window.

Zhang et al. [148] proposed a general framework of multipath transport
system based on application-level relay (MPTS-AR), currently under the
standardization within the IETF [19]. This framework defines three logical
entities and two protocols. The entities include user agent, relay server, and
relay controller. The protocols are OpenPath and MPTP (Multipath Trans-
port Protocol), which are used in control plane to manage relay paths and
in data plane to facilitate multipath data transport respectively. However,
they left a few key functions we concern the most out of the scope. For
example, how to split the original data stream into several substreams, how
to mitigate the reordering issue at the receiving side, how to provide path
diversity among all available paths, and how to obtain the performance of
overlay paths are all out of the scope.

HTTP based Multipath Media Streaming

In addition to multipath approaches for specific applications, HTTP [207]
with multipath capability is currently one of the most common protocols for
streaming video on the Internet through multiple paths. Kaspar et al. [138],
[139] and Evensen et al. [140]–[142] presented HTTP-based methods for
downloading multimedia content simultaneously over multiple network in-
terfaces.

Kaspar et al. [138] proposed an HTTP-based on-demand streaming ser-
vice over multiple wireless access networks. They presented a proof-of-
concept implementation of a progressive download service, which uses HTTP-

64 CHAPTER 2. RELATED WORK

RRR capability [207] to download specific segments of a file from a media
server. The drawback of the range retrieval request is that each request
must be handled sequentially by the server before the client can send the
next request. Thus, an average time overhead of one RTT is introduced
for each request. In order to avoid waiting for each response, in [139] they
presented an improved version of their work by using an additional HTTP
capability, i.e., HTTP-RP [207]. The request pipelining function of HTTP
allows a client to make multiple requests simultaneously. In [138], they stud-
ied the effect of file segmentation on the buffer requirements and found that
there exists an optimal segment size for which the aggregation efficiency is
maximized. In [139], they found that due to the use of request pipelining,
very small segments can provide efficient throughput aggregation.

Evensen et al. [140] introduced an adaptive, WRR-PULL based scheduler
that achieves smooth playback by scheduling requests for video segments of
different quality levels over multiple interfaces simultaneously. Like their
previous work in [138], they still utilized HTTP-RRR and HTTP-RP func-
tions to support multipath transmission. In order to avoid video deadline
misses, they proposed an additional request scheduler in [140]. The sched-
uler is mainly used for estimation of the aggregated throughput for chosen
video quality level and request of segments over the available interfaces.
However, the weakness of the request scheduler is that the segments are
divided into fixed-sized subsegments, which may lead to low performance
with constrained receive buffer. Evensen et al. [141], [142] proposed im-
proving the request scheduler by loosing the segment size constraint. For
example, the segment sizes are dynamically calculated on the fly based on
the capability of each path.

Session layer Multipath Capability

Unlike application layer approaches discussed previously, some approaches
open multiple TCP flows without any change to existing applications by pro-
viding specialized middleware or virtual sockets at the session layer between
the application and transport layer.

Sivakumar et al. proposed PSockets (Parallel Sockets) in [127]. PSock-
ets is a library that transparently partitions upper layer data into multiple
transport streams through the same physical path. The principal idea is to
split data equally across several open sockets without application upgrade.

2.2. MULTIPATH TRANSMISSION 65

PSockets has the same Application Programming Interfaces (APIs) as those
of a regular socket. Note that this work was published in the year 2000.
Back then, the TCP window size had to be tuned manually for high-speed
networks at both the source and the destination in order to achieve the max-
imum throughput. Differently, PSockets allowed applications to achieve the
best performance without tuning the window size.

Yohei et al. [130], [131] proposed an Arrival-Time matching Load-Balancing
(ATLB) layer between the application layer and TCP layer. ATLB consists
of a distributed data transfer method and a path-failure detection/recovery
method. In order to mitigate the reordering effect at the receiver, ATLB
calculates the data arrival time for each path. It considers the time that
data segments spend in the TCP queue at a sender and the time needed for
data segments to pass through the network.

Qureshi et al. presented a prototype system Tavarua in [132]. Tavarua
is a middleware for providing network striping capability to applications
with high demands on uplink throughput. Note that Tavarua runs upon
UDP. In an effort to mitigate the impact of variations in bandwidth, an ap-
plication can use feedback information to estimate the maximum available
data transmission rate. Then the bit-rate at which the video is encoded
is adapted dynamically. The middleware also handles low-level issues re-
lated to the network interfaces (e.g., congestion control, disconnections, and
reconnections).

Sakakibara et al. [133] proposed a Socket-level Bandwidth Aggregation
Mechanism (SBAM) to offer aggregated bandwidth. SBAM is located at
the socket layer (close to TCP) so that it can collect system resources effi-
ciently. For example, it has a network monitoring function to collect delay
and available bandwidth of each path. Using this information, the traffic
scheduler decides the amount of data to fill the bandwidth-delay product of
each path.

Like the other middleware approaches, Parallel TCP Transfers Helper
(PATTHEL) [137] also provides APIs for applications. The difference of
PATTHEL lies in two facts. First, PATTHEL incorporates a separate data
connection and control connection, where the control connection is created
first to manage the other data connections for the entire communication
period. Second, PATTHEL is a cross-layer protocol because it adds an
entrance to the routing table in order to deliver data over a certain channel.

66 CHAPTER 2. RELATED WORK

Miyazaki et al. [143] examined how much receive buffer is needed in
various scenarios and found that the buffer size is proportional to the ratio
of the bandwidth of the two interfaces. A larger bandwidth difference leads
to a bigger receive buffer and vice versa. The scheduling algorithm used in
[143] is EDPF.

Habak et al. [144], [145] proposed a Deplorable Bandwidth Aggregation
System (DBAS) middleware architecture for multi-interface enabled devices.
Like the work in [51], [58], [79], DBAS also supports both FOSM and POSM.
In FOSM where the server is not DBAS enabled, DBAS schedules different
connections to the interfaces such that a connection can be assigned to only
one of the available interfaces. If both sides are DBAS enabled, POSM
is used so that each packet can be scheduled independently on a different
interface. To make better scheduling decisions, DBAS estimates the charac-
teristics of the applications dynamically based on their behavior and stores
them in a database for history track. DBAS focuses on the actual implemen-
tation of the basic core system. The authors presented an extended work
based on DBAS, a Green DBAS (G-DBAS) [146] to balance overall through-
put with energy consumption. For example, they introduced a new utility
based scheduler that takes energy consumption of each interface into ac-
count in order to balance the trade-off between maximizing throughput and
minimizing power consumption. Note that G-DBAS only works in FOSM.
OPERETTA [147] is an extension of G-DBAS to support POSM.

Application layer approaches split a single file or byte stream into seg-
ments that are transmitted concurrently over different paths. These kind
of approaches seem to be simple in the sense that the applications are in
full control of the striping decisions. Thus, it does not require any proto-
col change at lower layers so that clients and servers can find an optimal
way to collaborate. Nevertheless, the complexity and overhead at the ap-
plication layer are considerable. For example, an application-level sequence
number has to be included in each of the application defined headers. Mean-
while, the application has to explicitly ensure that the application layer data
units, which carry unique application-level sequence numbers, do not get
fragmented during transmission. Moreover, a dedicated resequencing mech-
anism is required to reassemble the data at the receiver. In practice, different
paths may have diverse characteristics, and the striping ratio may not ex-
actly match the ratio of data rate from different paths. A large receive buffer

2.2. MULTIPATH TRANSMISSION 67

(on the application level) is required to accommodate the out-of-order data.
Finally, in order to split intelligently, the application has to implement a
bandwidth estimation mechanism redundantly despite the same mechanism
has been employed by TCP through its congestion control mechanism.

The middleware approaches are very similar to application-layer ap-
proaches. They also face the same challenges, for example, the reordering
issue. The advantage of middleware approaches is that although it still
requires client and server-side modifications, applications usually are not
required to be upgraded.

2.2.5 Summary

In this section, we summarize the issues that are common to the approaches
from all layers we have covered in this survey. Specifically, we first discuss
the packet reordering problem and how effective the widely used scheduling
algorithms are to mitigate it. After that, we present the approaches which
have adopted the cross-layer design. Next, we compare the approaches’ com-
patibility capability, which is inherently determined by their stack positions.
At last, we summarize the research problem evolution on each layer.

Packet Reordering

When packets travel through different paths which may have mismatched
characteristics, they may arrive at the destination out of order. All the
presented approaches deal, to some extent, with the reordering issue on
the layer which they are located at. If they ignore or have no control over
the reordering mechanism on the transport layer, their approach may suffer
from performance degradation because of the misinterpretation of out-of-
order packets. We group and sort them according to their effectiveness in
terms of packet reordering and load-sharing capability.

The first group includes PCA [13], [41], [42], [156], PFA [18], [20], [40],
[43], [51], [54], [58], [79], [144]–[146], and Multi-streaming [66]. They are the
most effective mechanisms which can completely eliminate packet reorder-
ing incurred by multipath transmission because the data units required se-
quencing at the destination are assigned only to the same path. However,
a multipath transmission protocol with them usually performs worse than
without them in terms of load sharing. For example, if the number of flows

68 CHAPTER 2. RELATED WORK

is less than that of available paths, there would exist paths which cannot be
fully utilized.

FPS [77], [108], [110]–[112], [114], [120], [123], [130], [131] breaks the
in-order scheduling rule at the source. Whenever a path has opportunity to
send a new packet, it estimates that path’s capacity and chooses a new data
block accordingly so that out-of-order sent out packets could arrive at the
receiver in-order.

In EDPF [60], [83], [84], [91], [92], [109], [143] and PET [46], the scheduler
first sends data on a path with lowest RTT until it has filled its congestion
window. Then, the data is sent on the subflow with the next lowest RTT.
The larger the RTT difference is, the more out-of-order packets arrive at the
destination. Moreover, EDPF and PET consider only path bandwidth and
latency, ignoring packet loss rate caused by congestion. Therefore, it may
achieve sub-optimal load-balancing in the presence of high losses or heavy
congestion.

WRR [4], [17], [36], [37], [44], [45], [51], [53], [58], [59], [71]–[75], [78], [80]–
[82], [86], [88]–[90], [93], [96], [99]–[101], [103], [126], [129]–[135], [137]–[142],
[144]–[147] is the most widely used scheduling algorithm on all layers with
maximizing the overall throughput as its first priority. It could achieve the
goal if the multiple paths have similar characteristics. Otherwise, it would
cause significant out-of-order packets at the receiver because it considers
little about its impact on packet reordering. Therefore, WRR works better
on link layer than other layers because link layer has relatively stable link
state. Like FPS, WRR could fully utilize the available path capacity.

In practical network environments where path characteristics may change
dynamically, the scheduling algorithms except PFA, PCA andMulti-streaming
may fail to counter against packet reordering. Several additional mecha-
nisms have been proposed to work coherently with the scheduling algorithms,
such as ACK manipulation [48], [52], [58], [61], [79], [88], [90], [105], buffering
management [47], [50], [58], [65], [68], packet coding [91], [105], [110], [111],
[120], blocking warning and fast retrieving [80]–[84], [102], [120], slow-path
penalization [102], [106], [124] and so on. The comparison of various com-
binations of the scheduling algorithms is out of the scope of our knowledge
because they may be used in various network environments, triggered by
different conditions, and supported by diverse assumptions.

To make a conclude on the discussion of packet reordering, the choice

2.2. MULTIPATH TRANSMISSION 69

of the best scheduling policy depends on path characteristics. There is
no single scheduling mechanism which can handle all scenarios. To adapt
to different network environments, several approaches, such as [51], [58],
[79], [144], [145], could support both flow level scheduling and packet level
scheduling strategies.

Layer-dependent scheduling algorithms

In our previous discussion, we could find that many scheduling algorithms
are shared by different approaches on various layers. For example, FPS
variants are used on transport (including [77], [108], [110]–[112], [114], [120],
[123]) and application layers (including [130], [131]). EDPF variants are used
on network layer (including [46], [48]–[50], [55]), transport layer (including
[60], [83], [84], [91], [92], [109]) and application layer (including [143]). WRR
variants are used from link to application layers. However, we argue that
it does not imply that these scheduling algorithms are layer-independent.
Instead, they are mostly layer-dependent.

Running a scheduling algorithm usually requires measuring bandwidth,
delay, loss, or jitter to provide best effort or even QoS guarantees. No single
measurement on a certain layer could always give accurate measurements.
The measurements may even vary on different layers. Although how to
measure those metrics is an entire problem unto its own, the efficiency of
the algorithm is closely connected to the correctness of the measurements.
Therefore, we argue that the scheduling algorithms which rely on the esti-
mation of certain path characteristics are layer-dependent.

We discuss WRR as an example to support our argument. The same
principle is applicable to other algorithms which rely on the estimation of
path characteristics. WRR is the most widely used scheduling algorithm.
Although each layer adopts many variants of the WRR algorithm, its effec-
tiveness highly depends on how correctly the path capability is estimated
in a dynamic fashion. For example, using the congestion window size on
the transport layer to estimate the path capability is a more lightweight
and accurate way than those using various probing methods on other lay-
ers. Furthermore, WRR works much better on link layer than upper layers
because link layer has more stable link status.

70 CHAPTER 2. RELATED WORK

Table 2.14: Cross-layer Support for Multipath Transmission.
Scheme Year Base

Layer
Additional
Layers

Description

PRISM [48],
[49]

2005,
2007

Network Transport 1) Use the transport-layer information carried
in ACKs to mask adverse effects of out-of-order
packet deliveries. 2) tune the TCP congestion con-
trol mechanism to handle, at a sender side, packet
losses.

ATLB [130],
[131]

2005,
2007

Application Transport Use the TCP connection’s throughput history to
calculate the queuing delay in the sending buffer
and use TCP’s smoothed RTT to calculate the net-
work path delay.

Tavarua [132] 2006 Application Transport,
Link

Handle low-level issues related to congestion con-
trol and interface disconnection/reconnection.

SBAM [133] 2006 Application Network, link 1) Send ICMP packets to periodically measure path
delays. 2) read routing functionality to route pack-
ets through different network interfaces. 3) mon-
itor link status information on both sides, for ex-
ample, available network interfaces as well as their
up/down status.

MultiTCP [136] 2008 Application Transport Dynamically change the receiver’s TCP window
size to control the throughput of each TCP con-
nection.

PATTHEL [137] 2009 Application Network Add entrances to the routing table in order to de-
liver data over a certain path.

G-
DBAS [146]

2012 Application Link Estimate the characteristics of each network inter-
face as well as the energy consumption of each in-
terface.

OPERETTA [147]2012 Application Link Estimate the available bandwidth and the energy
consumption of each interface.

DBAS [144],
[145]

2012,
2013

Application Link Estimate the characteristics of each network in-
terface, for example, the available bandwidth and
packet error rate.

OpenFlow-
MPTCP [115]

2013 Transport Link Use OpenFlow to discover the topology of the net-
work, calculate multiple paths and configure these
paths on the OpenFlow network. MPTCP dis-
tributes the load across the selected paths.

A-
MPTCP [118]

2013 Transport Network Use LISP [17] to give better knowledge of the un-
derlying IP topology to MPTCP enabled endpoints
in cloud networks.

MPTCP-
MA [121]

2014 Transport Link Use MAC information to estimate the path status
so as to suspend or release a path based on the
estimation.

2.2. MULTIPATH TRANSMISSION 71

Cross-layer Support

In this survey, we define that any attempt to violate the TCP/IP reference
model is considered a cross-layer design. Among the approaches we have
discussed previously, several of them have explicitly involved cross-layer in-
teraction for purposes of estimating path status to avoid packet delays and
losses, scheduling traffic over multiple paths according to their capacity, ex-
ploring path diversity to obtain high throughput, achieving better QoS for
multimedia applications, and so on. Due to these benefits the cross-layer
design may offer, there has been increased interest in protocols with interac-
tions between various layers of the network stack. In the rest of this section,
we discuss the cross-layer approaches based on our previous discussion and
give a few observations on them without our own judgment. Instead, we
refer readers to Kawadia and Kumar’s work [208] which calls for a caution-
ary approach to cross-layer design. Although [208] examined the issue of
cross-layer design in wireless networks, we believe the same principle is also
applicable for multipath transmission.

Table 2.14 shows approaches based on a cross-layer design. The “Base
Layer" indicates the layer where the data splitting is initiated, and the “Ad-
ditional Layers" indicate which layers are required to provide support to the
base layer. From the table, we observe that the transport and application
layers are the main base layers. From 2005 to 2013, it was drawn most of
the attention to implement the base layer on the application level. Some
applications obtain low layer information to optimize their behavior in terms
of interface selection, load balancing, and energy efficiency. The informa-
tion includes throughput history and smoothed RTT from transport level,
routing table from IP level, and link status (e.g., energy consumption, avail-
able bandwidth, and bit error rate). Some applications can even change the
low layer protocol behaviors such as changing TCP window size to control
the throughput, modifying the routing table to optimize path selection, and
disconnecting/reconnecting certain interfaces for energy efficiency or partial
failure. In most recent years, it has become more attractive to use transport
layer as the base layer with additional support from network and link layers.
Although transport layer approaches have advantages from the congestion
control mechanism, they lack the choice of path diversity to free the con-
straint of fairness control. The path optimization support from network and
link layers can compensate for the weakness in network and Ethernet levels

72 CHAPTER 2. RELATED WORK

respectively. In addition, some transport layers can suspend or release a
path based on the estimated MAC information.

We can also find that the interaction of cross-layer design may not be
limited to adjacent protocol layers. Instead, it allows vertical communication
to take place between nonadjacent layers. The cross-layer design approaches
are actually not limited to the ones listed in Table 2.14 because although
many approaches above the network layer did not mention or specify how
packets are delivered through multiple interfaces, the cross-layer support
from routing function on network layer may be assumed implicitly.

Compatibility

Table 2.15: Compatibility Evaluation (
√

means being supported).
Compatibility Link Network

(no
proxy)

Network
(1
proxy)

Network
(2 prox-
ies)

mptcp CMT-
SCTP

Session Application

Application
√ √ √ √ √ √

Backward
√ √ √ √ √ √ √

Middlebox
√ √ √ √

Host
√

Infrastructure
√ √ √ √ √ √

In this section, we evaluate the compatibility capacity of the approaches
on different layers. The evaluation is made in general because there may be
exceptions in certain approaches. Table 2.15 presents the evaluation where
we separate network layer approaches into three categories according to how
many proxies required in each category. We use MPTCP and CMT-SCTP
to represent the transport layer approaches and evaluate their compatibility
separately. Likewise, we also separate session layer approaches from appli-
cation layer approaches.

Application compatibility means that the lower layer changes do not re-
quire the legacy applications to be upgraded. Obviously, the link layer and
all the network layer approaches are compatible with the legacy applications
because they do not change the socket interface between the legacy appli-
cations and transport layer protocols. MPTCP presents a standard TCP
socket API to the application so that legacy applications can run upon
MPTCP transparently. However, the legacy applications running on TCP
have to upgrade in order to take advantage of CMT-SCTP. Session layer
approaches usually keep the same socket API to applications (e.g, PSock-
ets [127]) so that they require no changes to the legacy applications. Applica-

2.2. MULTIPATH TRANSMISSION 73

tion layer approaches have a serious application compatibility issue because
the multipath transmission property needs to be implemented for specific
applications.

An updated approach has backward compatibility if it can either work
with its communicating peer which uses the standard approach or automat-
ically fallback to the standard approach if the communicating peer does not
support the new features. Link layer approaches generally do not main-
tain the backward compatibility because most of them are proprietary ap-
proaches and require dedicated setup on both sides. Therefore, we mark
that the link layer approaches are not backwards compatible. Network layer
approaches with no proxy usually employ some of the fields in protocol head-
ers (e.g., [44], [45], [52], [54], [55], [58]) to negotiate multiple IP addresses
to be used or piggy-back information so as to provide backward compatibil-
ity. Network layer approaches with one proxy has backward compatibility
because the communicating peer is unaware of the multipath transmission
between the client and the proxy. The network layer approaches requiring
two proxies are also backwards compatible because both sides are unaware of
the multipath transmission between the two proxies. MPTCP is backwards
compatible with plain TCP because it can fallback to single-path TCP if the
communicating host does not support the extensions. CMT-SCTP related
articles did mention at all whether it can fallback to SCTP if the server
is not CMT-SCTP enabled. We believe CMT-SCTP could also fallback to
SCTP if the server does not support concurrent multipath transfer. But any-
way, CMT-SCTP has inherited the backward compatibility issue of SCTP
itself. For example, if the server is only aware of TCP operations, a CMP-
SCTP client may fail to create connection with the server. Session layer
and application layer approaches are generally backwards compatible with
the legacy applications. When connecting to a server, a client application
usually specifies two different TCP ports, a probe one and a fallback one.
First, the client tries to establish a connection using the probe port to check
whether the server is upgraded. If the operation fails, another attempt is
made by using the fallback port to create a standard connection.

The compatibility with existing middleboxes, such as firewalls and NATs,
affects whether the “new” packets are able to traverse the legacy middle-
boxes. First of all, link layer approaches generally would not have this issue
because the communication paths or trees are well designed between ded-

74 CHAPTER 2. RELATED WORK

icated multipath-aware devices. Most network layer approaches (with and
without proxies) split bytestream over multiple paths. Therefore, the single
sequence space across more than one path leaves gaps in the sequence space
seen on any individual path, which may upset certain middleboxes. To solve
this issue, the double sequence space design was proved to be an effective
solution [102], [197]. However, how to use the double space also influenced
the outcome. For example, HIP based multipath transmission adopts double
sequence space. But the additional sequence space is used for the purpose
of anti-replay instead of resequencing. In contrast, MPTCP packets, which
carry double sequence numbers for resequencing on two levels, can traverse
most of the middleboxes. CMT-SCTP packets may fail to traverse through
certain middleboxes due to its single sequence space design. Session and
application layer approaches create multiple standalone TCP flows so that
their TCP flows can travel through various middleboxes as normal TCP
does.

Host compatibility means whether the approaches require changes in
hosts. We found that all approaches need changes on hosts except the net-
work layer approaches with two proxies because the multipath transmission
between the two proxies are unknown to both communicating peers.

Infrastructure compatibility means whether an approach needs addi-
tional network infrastructure such as NAT box and proxy. We found that
only the network layer approaches with the proxy support require additional
infrastructure.

According to the previous discussion, it is hard to implement a generic
multipath solution which can satisfy all the compatibility requirements. As
summarized in Table 2.15, we have a few more observations. For example,
MPTCP and session layer approaches have more compatibility support than
others. CMT-SCTP has inherited SCTP’s application compatibility issue,
which becomes the major obstacle of its real deployment. Network layer
approaches lack discussion on backward compatibility.

Evolution of Research Problems

Table 2.16 presents the research problems the approaches on each layer have
tried to address. In the early stage of multipath transmission research, most
approaches emphasized only bandwidth aggregation with various schedul-
ing and packet reordering algorithms. Few of them considered the fairness

2.2. MULTIPATH TRANSMISSION 75

Table 2.16: Research Problems on Each Layer (
√

means having tried to
address).

Research
Problems

Link Network Transport Application

Bandwidth
aggregation

√ √ √ √

Packet reorder-
ing

√ √ √ √

Fairness
√ √

RP
√

Path diversity
√ √

Pareto-
optimality

√

and RP features. Today, these two problems as well as Pareto-optimality
problem have become challenges along with the revolutionary development
of multipath transmission.

The fairness requirement on multipath transmission was unclear in the
beginning. For example, the early research on multipath transmission fo-
cused on bandwidth aggregation by taking advantage of the resources through
multiple interfaces. The target in the research community matched the po-
tential expectation of end users because an end user can benefit from the
aggregated bandwidth if they have paid for both accesses. Thus, the fair-
ness emphasized the fairness of each individual subflow; for example, each
subflow gets as much bandwidth as a standalone TCP flow does. In recent
years, the research focus was on the fairness of the multiple subflows as a
whole at shared bottlenecks. The principle is that a multipath transmission
should behave as a single TCP flow at shared bottlenecks. Coordinated
congestion control algorithms are used as a powerful tool to achieve it.

The concept of RP [155] was proposed in 2008. The early approaches be-
fore it also proposed using less congested paths more, which is one of the RP
principles. From the congestion control algorithm viewpoint, the difference
between these approaches and the approaches after 2008 is that the latter
ones use coordinated congestion control algorithms instead of independently
tuning each path’s congestion control behavior.

The Pareto-optimality is a state of resource allocation in which there is
no alternative state that would make some people better off without making
anyone worse off. MPTCP with LIA [96]–[98], [100] fails to satisfy the
Pareto-optimality because upgrading some regular TCP users to MPTCP
can reduce the throughput of other users without any benefit to the upgraded
users. OLIA [4], [103] as an alternative for LIA could make MPTCP Pareto-

76 CHAPTER 2. RELATED WORK

optimal and satisfy the three design goals of MPTCP.
In Table 2.16, we observe that the multipath transmission follows an

evolutionary way mostly on the transport layer. We believe this is deter-
mined by the stack position at which the proposed approaches are located.
For example, the fairness, RP, and Pareto-optimality features are achieved
by the means of congestion control, which as default is managed on the
transport layer. The link layer and application layer cannot intervene con-
gestion control without breaking the protocol stack layered structure. In
our literature review, mHIP [56] is the only protocol which provides fairness
feature on network layer. However, mHIP is actually located on a middle
layer between network and transport layers. Therefore, because of its close-
ness to transport layer, mHIP is able to manipulate the congestion control
operations. The link layer and network layer can provide path diversity for
cross-layer approaches. For example, OpenFlow and TRILL can provide
Ethernet level path diversity [115], and LISP can provide routing level path
diversity [118].

2.3 Summary

From the evolution of end-to-end multipath transmission viewpoint, we ob-
serve that multipath has become increasingly popular at the transport layer
with features such as load balancing, fairness control, congestion control and
Pareto-optimality. As a major extension to TCP which has not changed very
much in the last decades, MPTCP has attracted more and more attention
in recent years. Conventional TCP/IP always uses a single “best”path ac-
cording to certain routing metrics, even if there may be more than one path
between two endpoints. This behavior results in under-utilization of the
available network resources. The proliferation of mobile devices equipped
with multiple interfaces, represented by smart phones, brings with it a grow-
ing number of multi-homed hosts onto the Internet. Thus, this deteriorates
the mismatch between single-path transport and the multitude of avail-
able network paths. Multipath transmission comes into the picture as a
natural solution with several salient features, such as reliability, fairness,
confidentiality and RP. As shown in Figure 2.2, MPTCP was proposed at
an opportune time to draw the experience gathered in previous work and
correcting the past mistakes. For example, MPTCP was designed with the

2.3. SUMMARY 77

backward compatibility to legacy applications and middleboxes (see Ta-
ble 2.15), which makes MPTCP instead of CMT-SCTP a big step towards
being widely acceptable. In addition to solving the compatibility issue,
MPTCP goes further in addressing issues in fairness and RP by joint in-
crease and decrease rules (e.g., the coupled congestion control algorithm
LIA [96]). Apart from the technical aspects, we believe the following factors
also contribute to the success of MPTCP: kernel implementation in Linux,
support from Internet standards organization (e.g., IETF), active and public
academic community8, and incentives from industry [27], [29], [30].

Despite these past progress, a few problems have yet to be overcame to
allow for a wider deployment of CMT. First of all, some mechanisms need
to be devised to better communicate and enforce the path diversity: there
are many different network environments for multipath transmission. For
example, in modern data centers, there are usually more than one path avail-
able between any pair of endpoints. The same applies to access networks,
the core of the Internet, and ISPs. Nevertheless, these domains are usually
autonomous and isolated from each other. There are specialized network
entities, e.g., border gateway, to guarantee the autonomy of each domain.
The downside of this network topology is that even though there might
be abundant multipath resources available locally within each domain, the
globally available multi-path resources are limited to the border gateways.
Thus, how to break the border of each autonomous domain to enrich the
multipath resources significantly is not only a technical problem, but also a
management problem. It requires efforts from multiple domains, including
ISPs, policymakers and end users.

As throughput aggregation is one of the main driver for MPTCP deploy-
ment, the respect of Pareto-optimality might be the most critical aspect of
CMT. Even though work has been done on this topic (OLIA [103] and AO-
LIA [107]), in practice, it is not guaranteed yet as MPTCP sometimes still
perform worse than TCP ([5], [209]).

Currently, most work has been using one single scheduling algorithm all
the time, which would definitely lead to low performance in certain net-
work conditions. Therefore, context-aware scheduling policy is required to
dynamically detect the network context and switch to the best performing

8MPTCP has an active mail list (mptcp-dev@listes.uclouvain.be) for sharing experi-
ence.

78 CHAPTER 2. RELATED WORK

scheduling algorithm accordingly. The concept of context-aware scheduling
is not new. Some initial work has been conducted. For example, WiMP-
SCTP [74] has two data transmission scheduling algorithms used for different
network conditions. When the network condition is good, the data-striping
algorithm is selected to aggregate bandwidth. When the network condi-
tion becomes bad, the data-duplicating algorithm is switched on to increase
destination reachability. In [51], [58], there are two scheduling algorithms
which are used for legacy destination and updated destination respectively.
Similar work can be found in [79], [144], [145]. However, from a user’s per-
spective, boosting the throughput of a multi-homed mobile device may not
be the first-priority goal all the time. Instead, some users may be willing to
use cheap subscriptions in order to save a few dollars. Others would rather
use the low energy-consumption interface(s) to save the battery life or on
the contrary maximize the number of used paths to increase the security.
Therefore, multipath transmission strategies which take user policies (price,
energy. . .) into consideration should be provided to users so that they can
choose from different transmission strategies to satisfy their demands.

Chapter 3

Presentation of MPTCP

MPTCP is a TCP extension enabling end-to-end multipath communications,
with an emphasis on backward compatibility. As it is our main protocol of
interest during this thesis, diving into more details than in the previous
chapter can be of interest. We give first a brief overview of MPTCP in
Section 3.1, then we present the connection initiation in Section 3.2, the
transmission of the data is explained in Section 3.3 and some of the current
challenges in Section 3.5.

3.1 High level design of MPTCP

MPTCP is a TCP extension formalized in RFC 6824 [183]; the MPTCP
working group at the IETF was formed in October 2009; since the beginning
it emphasizes backwards compatibility with the network and applications.
This is an aspect to keep in mind when looking at some design decisions
that may seem as counter intuitive at first. As a result, TCP applications
can run unmodified with MPTCP.

An Application Programming Interface (API) is proposed to give the
applications more control and finer tuning over MPTCP behaviors but it is
not mandatory: the system falls back on default heuristics instead for its
operations.

MPTCP signaling relies on the use of one TCP option in the three-way
handshake, and of another TCP option during the connection to open and
close subflows as a function of connection, subflow and network states, as
depicted in fig. 3.1.

79

80 CHAPTER 3. PRESENTATION OF MPTCP

Figure 3.1: Simplified representation of the MPTCP handshake
(Source: [210]).

Listing 3.1: The DSS option format.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------+---------------+-------+----------------------+
| Kind | Length |Subtype| (reserved) |F|m|M|a|A|
+---------------+---------------+-------+----------------------+
| Data ACK (4 or 8 octets, depending on flags) |
+--+
| Data sequence number (4 or 8 octets, depending on flags) |
+--+
| Subflow Sequence Number (4 octets) |
+-------------------------------+------------------------------+
| Data-Level Length (2 octets) | Checksum (2 octets) |
+-------------------------------+------------------------------+

As explained in [210] nowadays, many middleboxes (e.g., TCP Optimiz-
ers, firewalls, Port Address Translation (PAT) NAT) to modify the TCP
header (e.g., change sequence number) or drop the packets (e.g., if it de-
tects unknown protocols), and thus can hinder TCP extensions deployment.
A list of known TCP fields tampered with by middleboxes can be seen in
Figure 3.2.

3.1. HIGH LEVEL DESIGN OF MPTCP 81

If any problem of the kind is detected by MPTCP, it falls back to legacy
TCP, as it is the case if the remote endhost is not MPTCP compliant. In
order to ease the work for firewalls, MPTCP defines only one TCP option
but defines several subtypes as seen in the TCP option packet format in the
verbatim 3.1.

Figure 3.2: List of TCP fields possibly changed by middleboxes in red
(Source: [210]).

Once an MPTCP connection is established, endhosts can advertise com-
binations of (IP, TCP port), add or remove MPTCP subflows anytime.
These subflows, which we could define as TCP connections children of a
more comprehensive parent TCP connection, can be used to achieve greater
throughput or resiliency (indeed with the “backup” flag, MPTCP can create
a subflow used only in case other subflows stop transmitting). It is worth
noting that a host can create/advertise subflows with a same IP address,
but with a different port number. The main challenge of such a protocol is
the congestion control mechanism. It should not be more aggressive than

82 CHAPTER 3. PRESENTATION OF MPTCP

Figure 3.3: MPTCP: a shim layer in the stack. Subflows can share the IP
address (using a different port) or have different IPs.

MPTCP, but at the same time it should use the unused capacity; it should
balance the load over different paths, but without causing too much packet
disordering so that TCP buffering can reorder them. Adequate path discov-
ery is part of the solution and that is where LISP can help.

MPTCP consists in a shim layer as it can be seen on Figure 3.3, it is
built between the application and the TCP stack that unifies several TCP
connections, called “subflows” in the MPTCP context. A subflow is a TCP
connection characterized by a tuple (IPsource, TCP portsource, IPdestination,
TCP portdestination) and is assigned a unique subflow id generated by the
MPTCP stack. We can alternatively define an MPTCP connection as a set
of one or many subflows aggregated to feature at least the same set of service
as a single path TCP communication.

MPTCP signals information with its peer through the use of TCP op-
tions. All the MPTCP options share the TCP option number 30 but the
MPTCP option is further distinguished by one of the MPTCP subtype num-
ber listed in table 3.1.

The RFC6182 [211] lists a few functional goals that are deemed manda-
tory for a wide deployment of the protocol:

• MPTCP must support the concurrent use of multiple paths. The
resulting throughput should be no worse than the throughput of a
single TCP connection over the best among these paths.

• MPTCP must allow to (re)send unacknowledged segments on any path
to provide resiliency in case of failure. It is advised to support “break-

3.2. CONNECTION PROCESS 83

before-make” scenarii, e.g. buffer the data when a (mobile) user loses
temporarily all connectivity, to allow resuming the communication as
soon as a new subflow gets available.

Rather than adding new features as SCTP does, MPTCP guidelines focus
at not being worse than TCP and on wide deployment problems. [211] also
lists three compatibility goals:

• The applications must be able to work with MPTCP without being
changed, for instance via an operating system upgrade. It also implies
that MPTCP keeps the in-order, reliable, and byte-oriented delivery1.

• MPTCP should work with the Internet as it is composed today, that
is with middleboxes blocking unusual payloads or even modifying the
payload such as internet accelerators, Network Address Translator
(NAT) etc. The best way to do this is to appear as a singlepath
TCP flow to the middleboxes. Hence MPTCP relies on TCP options
for signaling. TCP option space is scarce (40 bytes maximum per
packet).

• MPTCP should be fair to single path TCP flows at shared bottlenecks,
i.e. not be greedier. At the same time, MPTCP still shall perform
better.

3.2 Connection process

3.2.1 Initiation

Supposing that the MPTCP extension is not disabled, and that the applica-
tion remained unchanged, the MPTCP connection is initiated through the
TCP socket interface via the connect system call. As per the MPTCP
Linux system nomenclature, we call this first TCP connection the master
connection. This call must generate a random key to be used during the
TCP handshake as can be seen on fig. 3.4. This key is later hashed (only
SHA-1 is standardized at the time of writing) and used by MPTCP to au-
thenticate additional subflows.

1Nevertheless an extended API is being standardized in [212] for applications to squeeze
more out of MPTCP.

84 CHAPTER 3. PRESENTATION OF MPTCP

Table 3.1: Exhaustive list of MPTCP options as presented in RFC6182 [211].
Subtype name Subtype id Description
MP_CAPABLE 0 This is the first option ever sent by TCP and must be present

at each step of the initial handshake. It carries the crypto-
graphic key that is used to identify the MPTCP connection
and authenticate additional subflows.

MP_JOIN 1 This can be used to open new subflows once the first subflow
connection has been completed, i.e., once a data ack has been
received on the first subflow as shown in fig. 3.4.

DSS 2 The Data Sequence Signaling option can transport several in-
formation - concurrently - depending on the flags field. It can
convey one mapping between DSN and SSN, e.g., the DSN
3000-3100 maps to the SSN range 420-520. It can convey the
data ack that would acknowledge good reception of DSN up to
3100. When the FIN field is set, it also signals to the peer the
final DSN of the connection.

MP_ADD_ADDR 3 This allows any host to advertise additional ports or IPs to-
wards which the peer could initiate a subflow. The Linux im-
plementation lets by default the client initiate new subflows in
case there is a Network Address Translator on path.

MP_REMOVE_ADDR 4 This is the opposite of the previous option. In case the device
loses an IP because of mobility (e.g., the access point became
out of range), it may want to update its peer information

MP_PRIO 5 The sender of this option advertises a binary preference whether
it prefers to receive data on this subflow or not. For instance a
user connected via both wifi and 3G may prefer to prevent the
other host . The receiver of this option is free to ignore it or to
take into account

MP_FAIL 6 MPTCP provides optional checksum to detect network med-
dling with the packets. If such interference is detected (i.e.,
a wrong checksum), the subflow must be closed with an
MP_FAIL option that indicates the last valid MPTCP se-
quence number received

MP_FASTCLOSE 7 Equivalent to a TCP RST, it signals to the peer the immediate
closure of the connection and that it does not accept new data

3.2. CONNECTION PROCESS 85

Once other subflows are established, the master subflow can be removed
as any other and holds no specificity. Upon SYN reception, the server gen-
erates also a key which is reflected by the client in the final TCP handshake
ack. This allows the server to operate in stateless mode. Indeed an MPTCP
stack needs to allocate more data structures than a legacy TCP connection
to save the key, the list of subflows, their ids etc. For efficiency, the alloca-
tion of these data structures can be deferred until the moment the MPTCP
negotiation succeeds.

As part of the network compatibility goal, MPTCP should provide an
automatic way to negotiate its use, and upon failure of such a negotiation,
fall back to legacy TCP. This fall back is also possible even after successful
completion of the MPTCP handshake, in case no data ack is received during
a certain time, or checksums are invalid.

3.2.2 Addition and closure of other subflows

The host can open a new subflow as soon as a DSS option with a data
ack is received, which requires at least two RTTs since the very first hand-
shake. Hence, the choice of the initial subflow can have an impact on the
throughput, all the more important for short connections. Both the client
and the server can create new subflows. Either the host initiates the new
connection or it advertises a couple (IP, port) that the peer can choose to
connect to. As a matter of fact, MPTCP map IPs to an id to convey subflow
related advertisements since IPs are not reliable: they may be rewritten by
external middleboxes. The policies are local and for instance in the Linux
implementation, the server advertises its ports but let the subflow creation
initiative to the client because of NATs that could invalidate It is worth
noting that several subflows can be created from the same IP address with
different ports. As a consequence, MPTCP refers to IPs with an identifier
rather than by the IP in order to prevent the confusion induced by Address
Translators (PAT/NAT). This may prove worthwhile to exploit the network
path diversity, in case the network runs load-balancing and is exploited
in Chapter 4.

There is no standard procedure and the subflow opening/closing strat-
egy depends on local policies. It may be wiser to let clients initiate the
connection though due to the presence of NATs. Subflow control can also
be delegated to a third party controller [213], [214].

86 CHAPTER 3. PRESENTATION OF MPTCP

MPTCP supports in theory break before make scenarios, i.e., it can lose
the connectivity of all its subflows, create a new one and resume the connec-
tion via the retransmission on this very subflow of the lost segments. This
is especially useful in the context of mobility where the user can not always
predict connectivity loss.

Figure 3.4: Illustration of used notations for two subflows.

3.3 Transmission of the flow of data

MPTCP allows an application to transmit a single flow of data, hence
MPTCP needs a single Data Sequence Number (DSN) namespace to be
able to split this flow of data across several subflows and later reassemble
it. An immediate idea is to write the DSNs in the TCP sequence number
field but as some middleboxes rewrite the TCP sequence numbers (for se-
curity reasons) or check that they are in-order (e.g., firewalls), MPTCP can
not use the TCP vanilla sequence number. MPTCP solves this dilemma by
adding a global DSN namespace shared among subflows and map the DSN
to the TCP vanilla sequence number, then called Subflow Sequence Number

3.3. TRANSMISSION OF THE FLOW OF DATA 87

(SSN), of the subflow(s) they are sent. The mappings are exchanged through
TCP options called DSSs (see Table 3.1). A similar approach needs to be
undertaken for the acknowledgment of the DSN: we refer to MPTCP-level
ACKnowledgements (ACK) as Data Acknowledgment (DACK) in the rest
of this dissertation. They are exchanged through the same DSS option.

3.3.1 Congestion control

TCP fairness can be a controversial topic: a malicious TCP user who wants
more bandwidth can create additional TCP connections (as many download
accelerators do) to increase its share at the bottleneck. In the following, we
consider well-behaved hosts since this is the usual framework priori to any
congestion control reasoning.

Without specific congestion control algorithm, a multipath transport
protocol would adopt a similar behavior at the bottleneck since being an
end-to-end technology, it has no information over the topology. TCP users
would see their bandwidth decrease and MPTCP deployment hindered. Un-
der these conditions, how to achieve both the fairness and higher throughput
? Knowing if two subflows share/make use of a same resource (e.g., a link
or a router) would allow to run a congestion control on sets of subflows.
Clustering techniques ([215], [216] for instance) have been developed to de-
tect bottlenecks based on delay and loss patterns. These techniques need
to be foolproof as false negatives generate bandwidth stealing. This is a
difficult task without help from the network as the heuristics need to work
across a wide range of configurations, such as the router buffering policies
etc. . . Their efficiency is also difficult to evaluate for the same reasons but
even if a perfect scheme existed, relying on it depends on the fairness notion.

This conservative approach considers that all subflows share a bottle-
neck and that their additive component should be coupled. MPTCP cur-
rent congestion control standards only modify the congestion avoidance
phase of TCP: the decrease phase remains the same as in TCP but they
couple the increase MPTCP congestion window with the congestion win-
dow of its subflows. Several congestion control have been proposed such as
LIA (Oda, Hisamatsu, and Noborio [217]), OLIA (Khalili, Gast, Popovic,
et al. [4]), MPCubic (a variant of Cubic for TCP [218]) wVeigas (weighted
Veigas [219]), eXplicit MultiPath (XMP) [220]. XMP is interesting
because it uses external information (i.e., ECN signaling) to influence traf-

88 CHAPTER 3. PRESENTATION OF MPTCP

fic splitting. This can be useful to relay congestion information as loss
events can be very damaging to MPTCP communications. Similarly, CWA-
MPTCP [114] relays radio signal strength to the stack to dynamically adjust
the window sizes. This allows to take active instead of reactive measures.

From our literature survey, LIA and OLIA seem to be the most popular
congestion controls so we present the formulas used to update its congestion
window. First for LIA:

• wi = wi + min(a
wi
, 1

wr
) per acknowledgment on path i

• wi = wi
2 per congestion event on path i

with a being an aggressiveness factor updated once in a while (per window
a priori) and equal to:

a =
maxr(wi

rtt2
i
)∑ wi

rtti

2 ∗
∑

i

wi

with : wi the window size on path i

rtti the round trip time on path i
(3.1)

The min in the first equation ensures that MPTCP is never more ag-
gressive than TCP on a single path.

It is important to remember that the advertised receive window is shared
between subflows. As such there may be cases where a subflow is capable
of sending data, i.e. has free space in its congestion window, but there is
no more space in the receive window. To mitigate these instances of HoL,
a feature called Opportunistic Retransmission (OR) was implemented [221]
in the Linux kernel, which in such cases retransmits data hoping to solve
the head of line blocking. OR can be used in conjunction with slow sub-
flow penalization: if a subflow holds up the advancement of the window,
MPTCP can reduce forcefully its congestion window along with its slow
start threshold.

MPTCP is said to be more efficient for long communications because of
the subflow overhead, yet Chen, Lim, Gibbens, et al. [222] see a positive
effect. The results are surprising but the data is not available. The authors
explain that the congestion control being uncoupled during the slow start
phase, MPTCP does allow to carry more packets (when the subflows follow
disjoint paths). On the contrary, this very behavior can be detrimental when

3.4. MPTCP STATE MACHINE 89

the subflows share a bottleneck as the successive slow start bursts may create
congestion events. A solution proposed in [223] and being studied by the
MPTCP working group is to couple also the slow start phase.

3.3.2 Scheduling

The scheduler chooses when and on which subflow to send which packets.
A good scheduler should attempt to reduce the probability of HoL. For
instance opportunistic retransmission and penalization are reactive mecha-
nisms that waste bandwidth. The Linux implementation we used included
two schedulers:

• The ‘default ’scheduler sorts subflows according to their RTT and
sends packets on the first subflow with free window.

• A round robin scheduler that forwards packets in a cyclic manner on
the first subflow with free window available.

Retransmission timeouts (RTO and delayed acks) need to be chosen
with great care since a subflow RTO or out of order arrivals can provoke
HoL blocking faster than in the single path case, as also explained in [224].
For instance, some of the state of the art schedulers propose to send packets
out of order so that they can arrive in order [225].

3.4 MPTCP state machine

As a preliminary step before implementing MPTCP in NS-3 (See Chap-
ter 7), we formalize the current status of the specifications. We extended
the connection closure Finite State Machine (FSM) described in [183] to
cover the whole protocol in Figure 3.5, i.e. while the active and passive
close are presented as a diagram in [183], we extended the visual descrip-
tion to our interpretation of the standard. While being similar to TCP, we
chose to split the ESTABLISHED state into the M_ESTA_WAIT and
M_ESTA_MP states to distinguish between a state where MPTCP waits
for a first Data Acknowledgment (DACK) (M_ESTA_WAIT) before be-
ing fully established (M_ESTA_MP) and be able to create additional
subflows. We also mapped for each MPTCP state the states in which TCP
subflows can be as well as which MPTCP options could possibly be sent.
The tabulated study report is available online [226].

90 CHAPTER 3. PRESENTATION OF MPTCP

Figure 3.5: MPTCP state machine.

3.5. ASSOCIATED CHALLENGES 91

3.5 Associated challenges

We already mentioned a few challenges in the previous sections. Our stance
is that MPTCP is already robust enough by design to fulfill the network and
application compatibility goals (as confirmed by the trust of several compa-
nies such as OVH, Apple, Citrix that developed MPTCP-based products).

The resiliency goal has also been proved to work, i.e. when one link fails,
retransmission of the packets is done on another subflow. The main obstacle
to MPTCP and multipath deployment protocols today remains the through-
put and fairness goals. While there are examples of increased throughput
through the use of MPTCP (e.g., the fastest TCP connection was done with
MPTCP [227]), this requires specific conditions such as enough buffer and
homogeneous paths; there are also cases, as in [209], where MPTCP per-
forms worse than TCP (in terms of throughput) on the best available path.
This does not comply with the objective of doing always better than TCP.
MPTCP must acquire the intelligence to distinguish when and which sub-
flows to use to perform well. Reaching this goal is made even harder with
the throughput goal since MPTCP is less aggressive than TCP on every
subflow.

As for the latency criteria, in latency sensitive applications such as Voice
over IP (VoIP) applications, path heterogeneity with MPTCP can lead to
higher jitter and decrease Quality of Experience (QoE) metrics. In [5], Wifi
and LTE used in a single path context generate a latency variation between
12 and 24ms. When both channels are combined with MPTCP it led to a
97ms application latency variation.

Path management is also a problem - though less studied - since cre-
ating many subflows with the hope of exploiting path diversity can hurt
the performance (due to competition between subflows). The problem is
threefold:

1. transport protocols being end-to-end, hosts do not know the topology;

2. even if the hosts knew the topology, they can not enforce a forwarding
path. Segmented routing may provide a partial solution in this regard.

3. As shown in Nikravesh, Guo, Qian, et al. [5], some services such as
Domain Name System (DNS) may try to answer differently depending
on the user location, retrieved from its IP. This can lead to suboptimal

92 CHAPTER 3. PRESENTATION OF MPTCP

answers.

As for wide area networks topologies, there usually is more than one
path between source and destination. It can be because of intra-redundancy
or because several ISPs compete on the same path. There is ongoing work
to exchange topology information between nodes that could solve Item 1,
for instance with Path Computation Elements (PCEs) or at the Application
Layer Traffic Optimization (ALTO) working group [228].

Topology is a critical information that operators may not be fond of
leaking, hence some approaches look at how to provide an overview of the
topology through sparsification techniques [229]. From the previous tech-
nologies, a host can deduce an optimal number of subflows, but this may
prove pointless if the forwarding problem 2 is not solved. As such, solutions
in locally controlled environments such as an Software Defined Network
(SDN) datacenter seem appropriate.

If the throughput goal 3.1 constraint is relaxed, one can imagine a realm
of other possibilities for multipath protocols. Multipath incentives do not
stop to throughput aggregation and as such one could imagine modes where
the cost of an interface helps choosing over which interface to send packets
as in Secci, Pujolle, Nguyen, et al. [230]. The cost could be given by the
energy consumption of the interface or depending on its fare rate. The user
could also set trade offs such as losing 30% of the optimal throughput if it
allows for a fairer distribution between subflows. Ledbat-multipath [231] is
one of such alternative modes. Information that used to be of little interest
with one path are now helpful in a multipath context. For instance, if
the MPTCP layer is aware of the data emission profile, it can adapt the
scheduling to favor throughput (bulk transfer) or schedule packets so that
they arrive early at the receiver (at the end of a burst).

3.6 Summary

Though simple at first sight, MPTCP embeds several mechanisms to work
across a variety of network and middlebox-related difficulties. According to
[232], this is successful as only 5% of the Apple voice recognition system fall
back to legacy TCP. This compatibility implies that MPTCP features only
a subset of SCTP does but it also increases the implementation complexity
as MPTCP is by nature intertwined with TCP. The network stack needs

3.6. SUMMARY 93

to handle not only the seemingly one MPTCP option but at least the eight
subtypes visible in Table 3.1, plus the different fallback mechanisms as well
as mapping DSNs to their respective sequence number.

Choosing the optimal number of active (MPTCP can create more sub-
flows but mark them as backup subflows) subflows remains an open problem.
The path management problem also explains why many of the commercial
products embed MPTCP into proxy middleboxes (Gigapath2, OVH3, Tes-
sares4); certainly they grant the benefits of MPTCP to legacy clients, but
the middle boxes also know more about the network diversity. The schedul-
ing and congestion control aspects are closely related but require more work
to reach Pareto-optimality.

2https://www.ietf.org/proceedings/91/slides/slides-91-mptcp-5.pdf.
3https://www.ovhtelecom.fr/overthebox/.
4http://www.tessares.net.

https://www.ietf.org/proceedings/91/slides/slides-91-mptcp-5.pdf
https://www.ovhtelecom.fr/overthebox/
http://www.tessares.net

94 CHAPTER 3. PRESENTATION OF MPTCP

Chapter 4

A multipathed crosslayer
network architecture

The added value of each path increases with its disjointness relative to the
previous path(s): otherwise, the forementioned increased confidentiality, re-
liability do not happen. Many challenges are easier to solve in a Data Center
(DC) as the whole architecture is owned by a single tenant, who can adapt
its infrastructure as it sees fit. In a first step we propose a crosslayer ar-
chitecture to ensure end-to-end disjoint multipath communications within
the DC. External reliability in data-center networking is today commonly
reached via forms of provider multihoming, so as to guarantee higher service
availability rates. In parallel, Internet users also resort to multihoming via
the different interfaces (Wi-fi, 3G, Wired) of their device. Both practices
add path diversity between Internet users and servers: it is difficult for end-
systems to influence the forwarding path within the Internet but it remains
possible to influence the edge routers. Thus in a second step we present
a holistic end-to-end multipath architecture for Cloud access and inter-DC
communications, and defend its possible implementation using three recent
protocols at the state of the art functionally acting at three different layers:
MPTCP, LISP and TRILL1.

1The contents presented in this chapter have been published in[213], [233].

95

96 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

4.1 Introduction

Multipath communications represent both a chance and a hassle for the
current Internet. On the one hand, legacy Internet protocols have mainly
been designed with a single active path paradigm in mind. On the other
hand, multihoming practices at both endpoint and network levels can offer
path diversity to data connections, potentially allowing effective end-to-end
load-balancing and multipath communications [234]. Cloud networking is
at the forefront of this trend. Indeed it increases Cloud availability guar-
antee via different techniques: the external interconnection of DCs with
multiple independent provider links, the deployment of intra-DC multipath
layer-2 protocols and IP endpoint multihoming. We tackle the challenge of
establishing coordinated multipath communications in a Cloud environment
composed of multihomed data-center networks and users.

We adopt a protocol interoperability perspective, aiming at increasing
throughput and resiliency of Cloud communications, within and across ad-
ministration domains. We present both stateless and stateful solutions to
end-to-end path diversity management, involving novel protocols standard-
ized in the last months: the Multipath TCP (MPTCP) [183], Locator/Iden-
tifier Separation Protocol (LISP) [235] and the Transparent Interconnection
of a Lot of Links (TRILL) protocol [236].

In the first sections we describe the architecture in an abstract way, then
in Sections 4.5 and 4.5.5 we present concrete implementation and results of
in order a LISP-MPTCP cooperation, and LISP-TRILL cooperation.

4.2 General Architecture

Our goal is to resort to multipath communication to improve cloud access
and inter-cloud performance, more precisely to increase throughput . De-
creasing transfer times improves the user QoE, and boosts storage synchro-
nization and virtual machine migration as well. As depicted in fig. 4.1, the
envisioned network environment involves Cloud service users, potentially
mobile, and data-center networks, with user-Cloud, intra-DC and inter-DC
communications. Under this perspective, there are major challenges to ad-
dress: How to send and receive data packets along different paths without
disturbing applications? How to select disjoints paths in order to provide
higher resiliency and to avoid bottlenecks? How to ensure packets really

4.2. GENERAL ARCHITECTURE 97

follow disjoint paths?
It is worth noting that using different paths in a uncoordinated way, TCP

performance can be decreased rather than increased, namely because packet
arrival disorder may trigger retransmission that may disturb the applica-
tion workflow. Moreover, selecting Internet-wide end-to-end disjoint paths
is commonly considered as an unrealistic dream, given the high heterogene-
ity and versatility of the Internet ecosystem. However, in the following we
present rather simple functional blocks and protocol coordination mecha-
nisms that are one step toward this goal, under realistic assumption and
partially already available functionalities.

In the following, MPTCP is considered as the transport layer protocol, as
it is undoubtedly more scalable than other proposed alternatives and already
deployed, even if mostly at an experimental extent for the moment. MPTCP
[183] is a TCP extension making use of several TCP subflows when possible
to improve throughput and resiliency. It first asserts if the destination is
MPTCP compliant (middleboxes such as firewalls might prevent the use
of unknown TCP extensions), otherwise it falls back to legacy TCP. Once
an MPTCP connection is established, endhosts can advertise their ips, add
or remove TCP subflows at anytime. Basically a subflow could be defined
as a TCP connection embedded in a more comprehensive TCP connection.
MPTCP can mark a subflow as backup only and will use it only if the other
subflows stop transmitting. Joint congestion control techniques using many
subflows are documented in standardization documents.

4.2.1 Cloud Network Elements

The Cloud network architecture we envision should be sufficiently flexible
to be extended and adapted to different technologies. The key role is taken
by four node types:

• Virtualization Cloud servers, with MPTCP enabled at the hypervisor
level.

• Cloud users, able to establish MPTCP connections even when single-
homed.

• Border nodes, i.e., routers at the DC and user borders with its Internet
Service Providers.

98 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

Figure 4.1: Representation of the Cloud Networking Context.

• Cloud Controllers, managing a DC network, enabling path discovery
and establishment.

The implementation of MPTCP at the hypervisor level allows its scalable
deployment: it represents a sort of TCP optimizer and allows virtual ma-
chines to be MPTCP agnostic. MPTCP can open multiple TCP subflows for
a single TCP connection. These subflows differ with respect to their source
or destination IP (if node(s) multihomed), or via the subflow (in case one
server is singlehomed). Our proposition is an advanced yet simple protocol
architecture that basically stitches MPTCP subflows to Ethernet- and IP-
level paths, which are as much disjoint as possible. The delivered network
service improves resiliency and throughput, but comes at a cost: finding
diverse paths adds an overhead in processing time as well as in latency that
may impede performance and scalability. Therefore, we foresee a special
treatment only for flows for which the pros outweighs the cons, as described
hereafter.

4.2.2 Functional blocks

A generic crosslayer multipath protocol architecture should implement the
following blocks:

4.2. GENERAL ARCHITECTURE 99

• Flow Qualification Service: at the Controller or hypervisor level, it
identifies which connection benefits from a multipath communication.
The online classification ranks different metrics of a flow, e.g., jitter,
latency, throughput, security, so that if needed we can sort flows ac-
cording to policies. For instance, it appears appropriate to distinguish
elephant flows (i.e., long-lived flows) from mice (i.e., short-lived) flows.
The hypervisor triggers signaling for multipath communication for ele-
phant flows only.

• Flow Monitoring Service: at the Controller or hypervisor level, the
state of either the network or the application might evolve during a
communication, thus becoming obsolete. If a physical path becomes
unreachable or underperforms, one may want to update the multipath
configuration.

• Path Discovery Service: this service can be considered as a Traffic
Engineering Database (TED) service; at the Controller or hypervisor
level, it collects various information about the available path diver-
sity, such as DC Link States, MTUs, load-balancers, DC and Internet
topology, multipath capabilities, between the Cloud servers and users
through border nodes . While DC-level discovery can be performed us-
ing existing operational tools, retrieving Internet path information can
be difficult due to various factors: high versatility, unreliable knowl-
edge of the topology, loose paths, etc. . . A major obstacle might be
the reluctance of ISPs to share their topology with potential attack-
ers, i.e., outsiders. This can be mitigated through techniques such as
sparsification topologies, i.e., you apply transformations to your graph
in order to hide the detailed topology while answering the question
answered as is done in Scharf, Wilfong, and Zhang [229]. In practice,
the service is to be decomposed into an Intradomain Discovery Service
(i.e., a controlled network scope, such as a DC network), and an Inter-
domain Discovery Service. SDN technologies or the recent Interface
to the Routing System (I2RS) IETF working group [237], [238] are
ways to share the routing system information. One might also want
to replicate the TED as a distributed database or cache, splitting it
per layer or per subdomain, each using a pull or push discovery (these
considerations are out of the scope of this document).

100 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

• Path Computation Service: at the Controller or hypervisor level, this
service is in charge of selecting paths to assign to flows when requested.
The decision process takes into account constraints specified in the
request (e.g., a jitter-sensitive path), and uses the Traffic Engineering
Database (TED) to resolve matching paths and node capabilities.

• Path Enforcement Service: once paths are computed, packets have
to use these paths. This is possible through stateful and stateless
modesÂă:

• Stateful signaling: network path setup on per flow basis, e.g., using
SDN or MPLS-based architectures.

• Stateful explicit forwarding: the source (i.e., the Cloud server’s hyper-
visor, actively or passively via the Controller) lists in each packet the
nodes the packet must pass through.

• Stateless forwarding: the source exploits network load-balancing algo-
rithms and crafts packets headers so that they follow foreseen paths
[239].

4.2.3 Multipath Communication Signaling

Figure 4.2 highlights the signaling process and the associated functional
blocks. For example, a TCP connection is established between two Virtual
Machines (VMs) in two different DCs in site A and site B. The hypervisor
hosting the VM at site A detects the flow and queries the Flow Qualifica-
tion process (could be a process running at the hypervisor, or an external
controller). If the flow qualifies for a multipath connection. The hypervisor
acting as an MPTCP proxy verifies if endpoint B is MPTCP capable (or
its hypervisor is); if yes, it queries the Controller for multipath capabilities
to its destination. Controllers at the two sites may be able to collabo-
rate in the computation of the paths. The Controller(s) compute(s) and
enforce(s) the paths based on the information recovered by the Path Dis-
covery Service (running ex-ante in a push mode or ex-post in a pull mode).
In the stateful mode, intra-DC paths are stitched with MPTCP subflows
by the hypervisor, and at border nodes inter-DC (loose) paths are stitched
with intra-DC paths. In the stateless mode, the hypervisor can be informed

4.2. GENERAL ARCHITECTURE 101

Figure 4.2: A signaling example in the case of extra-DC multipath commu-
nication.

about the presence of load-balancers and possibly of the available path diver-
sity at intra-DC and/or inter-DC segments. Data is eventually transferred
using the multiple end-to-end paths. Guaranteeing a level of disjointness
at the intra-DC and/or inter-DC level can allow boosting throughput, thus
reducing transfer times. Appearance of network events such as node/link
congestions/failures/additions could trigger respective hypervisors, causing
subflow deletion or addition, possibly path re-computation and enforcement.

In case the endpoint B is a user terminal, the right side of fig. 4.2 does
not apply: there is no need for path stitching at site B. On top of that if
the user terminal is multihomed, the more access interfaces there are the
higher number of subflows can be opened. It is worth noting that neither
the user terminal nor the DC nor the Cloud virtualization server need to
be all multihomed: to open more than one subflow path, just one segment
needs to have path diversity, where the segments are the intra-DC segment
between Cloud servers and DC border nodes, the extra-DC segment between

102 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

border nodes, and the end-to-end transport segment between terminal inter-
faces. , At each Cloud network segment, different protocols can act, hence
interoperability between them is needed to propagate path diversity across
segments. One solution could be having SDN protocols such as OpenFlow
as ubiquitously as possible between source and destination, with however
important scalability concerns. A reasonable alternative is to rely on three
new protocols recently defined to independently handling path diversity at
each segment, with an adequate coordination as proposed hereafter.

4.3 A design using MPTCP, LISP and TRILL

In this section, we present one possible peculiar implementation of the pre-
vious architecture making use of three novel protocols: apart the already
mentioned MPTCP [183] at the end-to-end transport segment, LISP [235]
handles path diversity at the extra-DC segment between border nodes, and
TRILL [236] can enable multipath Ethernet-layer communications within
the DC. All these protocols emphasize compatibility with existing infras-
tructure and incremental deployment.

Our intention by using these protocols is to address all the previously
described use-cases as well as distributing path diversity across layers in a
scalable and practical way. A key factor for this purpose is the multipath
ability they all offer (though optional in TRILL). These protocols do have
also in common the functionality of mapping one upper layer logical point to
many lower-layer logical points: one application port to many IP interfaces
for MPTCP, one IP address to many IP routing locators for LISP, one MAC
address to many Ethernet routing locators for TRILL. None of them are fully
standardized, yet they have all been implemented to some degree: many ven-
dors have started commercializing TRILL since a few months (e.g., Cisco,
Huawei, Fujitsu); a TRILL OpenSolaris opensource version exists, and a
Linux version is expected to be released closely. FreeBSD (OpenLISP) and
Linux (LISPmob) versions of LISP are available; LISP is also already avail-
able in Cisco routers. Finally, a stable Linux version of MPTCP exists,
adaptable to Android smartphones, so having it implemented at customer
end-points and Cloud virtualization servers is not unrealistic. In the follow-
ing, we first synthetically describe LISP and TRILL in Sections 4.3.1 and
4.3.2, and then discuss cross-layer coordination in the specific architecture.

4.3. A DESIGN USING MPTCP, LISP AND TRILL 103

Figure 4.3: LISP communications example.

Figure 4.4: Example of a multihomed data center and associated MPTCP
subflows.

Finally, we present the results of partial experimentations.

4.3.1 Locator/Identifier Separation Protocol

IP addresses assume today two functions: localization and identification of
its owner, which induces a few problems one of which is scalability. IP
addresses need to be distributed according to the network topology, which
conflicts with ease of use. Provider independent addresses as well as the In-
ternet growth tend to increase global Border Gateway Protocols forwarding
information databases, thus slowing lookups and increasing device costs.

Consider the example in fig. 4.3: the traffic sent to the 2.2.2.2 host is
encapsulated by the source’s Ingress Tunnel Router (ITR) toward one of
the two destination’s RLOCs. The one with the best (lowest) priority met-
ric is selected, which at reception acts as Egress Tunnel Router (ETR) and

104 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

decapsulates the packet, before sending it to the destination. On the way
back to 1.1.1.1, RLOC4 queries a mapping system and gets two RLOCs with
equal priorities, hence performs load-balancing as suggested by the weight
metric (RLOC1 is selected in the example’s packet). In order to guarantee
EID reachability, LISP uses a mapping system that includes a Map Resolver
(MR) and a Map Server (MS). Typically merged as a single MS/MR node as
depicted in fig. 4.3, a Map Resolver holds a mapping database, accepts map-
requests from xTRs and handles EID-to-RLOC lookups. A Map Server
receives map-registers from ITRs and registers EID-to-RLOC in the map-
ping database. In practice, many MRs are geographically distributed and
relay map-request messages using a specific protocol called LISP Dele-
gated Database Tree (LISP-DDT) protocol. This is the case of the LISP
Beta Network testbed2.

As a backward compatibility feature, if a source (or destination) site is
not yet LISP compliant, the traffic might get encapsulated (or decapsulated)
by a Proxy ITR (or ETR). Furthermore, the usage of RLOC priorities and
weights in the mapping system allows inbound traffic engineering, suggesting
a best RLOC or an explicit load-balancing. In short, LISP routers are border
nodes that advertise their RLOCs so that a remote LISP site knows it needs
to tunnel packets to those routers to reach hosts in that remote site (i.e. an
EID). LISP allows IP mobility (i.e., a machine keeps its EID but updates
its RLOCs, for both mobile users and mobile virtual machines [240]), and
also give hints if the site is multihomed or not, i.e., if the site is reachable
by different providers. In the case the RLOCs of a site belong to different
prefixes, they could belong to different providers, and the site is said to be
multihomed. In this case, it would be interesting to have additional MPTCP
subflows, whose path is split at the LISP site border, since they could follow
different Internet paths, if not end-to-end, at least along a segment of the
Internet path.

4.3.2 Transparent Interconnection of a Lot of Links

TRILL implements a logic close to LISP’s at the Ethernet layer in order to
solve switching tables scalability problems and improve network efficiency
for DC environments. As LISP, TRILL uses data encapsulation with an
outer standard header and a shim specific header, and it tunnels data units

2LISP Beta Network testbed (website): http://www.lisp4.net

http://www.lisp4.net

4.4. SPECIFIC ARCHITECTURE 105

from an ingress node to an egress node, with a mapping system to update as-
sociation of endpoint (MAC) addresses to network locator (MAC) addresses
(this is a key feature as VM are migrated across DC racks, hence their lo-
cation can be updated). On the other hand it differs from LISP since it
integrates a multi-hop routing logic between ingress and egress nodes based
on IS-IS (though LCAF somehow fills this gap). This is the reason why
TRILL bridges are called “RBridges ”(Routing Bridges). It is incrementally
deployable: RBridge may be incrementally deployed, with standard Ether-
net segments between RBridges, with each RBridge terminating a spanning
tree instance. Multipath communications are therefore possible between
RBridges at the Ethernet layer. It is worth mentioning that alternative
Ethernet routing protocols exist, namely the IEEE 802.1aq SPB and Open-
Flow, which do allow Ethernet multipathing too, yet both require a complete
deployment at all bridges and especially for this reason they are, for the mo-
ment, considered as less scalable and versatile.

4.4 Specific Architecture

In an heterogeneous Cloud environment with MPTCP, LISP and TRILL,
the Cloud network has MPTCP enabled at both endpoints, at the DC side
either directly in the VM or (more reasonably) as a virtual middle-box in the
hypervisor. TRILL is deployed between the Cloud virtualization servers and
the DC border nodes, noting that an increasing interest in standardization
activities is given to the implementation of RBridges also as virtual bridges
at the hypervisor level. LISP is implemented at DC border IP routers, and
it can be implemented by user endpoints (see [241]) handling each access in-
terface as an RLOC, hence complementing MPTCP with an inbound traffic
engineering control-plane when both are enabled in the user endpoint.

Therefore, from the one hand (DC side) TRILL and MPTCP coexist
at the hypervisor level, and from the other hand (access side) LISP and
MPTCP coexist at the user mobile node. It is also worth noting that, since
a few weeks, the LISP data-plane is implemented in the well-known virtual
bridge called OpenVSwitch, hence pushing down to the hypervisor LISP
encapsulation/decapsulation and letting the three protocols coexist in the
same DC node. While MPTCP capability at the endpoints is mandatory
in order to enable multipath communications to the application layer, our

106 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

architecture does not require LISP or TRILL to be implemented concur-
rently; a partial deployment with at least one of them is needed to associate
loosely diverse path to subflows, yet both together would allows reaching
higher performance. Finally, about the Cloud Controller, it can be based
on classical Network Management Systems and the like, or on an SDN open
controller accessed for instance via OpenFlow, or on a PCE [241] generalized
for non-MPLS environments, or a mix of these technologies.

In the following, for each component described in the Functional Blocks
section of the general architecture, we associate a specific solution based on
MPTCP, LISP, TRILL and peculiar functionalities to close the gap between
theory and practice.

Flow qualification: the process can be implemented either as collocated
with the hypervisor or as external server. The advantage of the latter case is
to exploit network-level information and offload the hypervisor by excessive
signaling, and also to implement advanced qualification criteria for example
based on destination’s information and white/black lists. However, if simple
criteria are used, e.g., a binary classification as elephant or Âămice flow, the
implementation in the hypervisor does not need external information and
appears as more appropriate. In such a case, a possible solution could be
Mahout [242] implemented at the hypervisor level; basically, whether the
socket fills up quicker than its emission rate, it marks the flow as elephant.
In this case, we pursue the process, and proceed as explained in fig. 4.2.

Flow Monitoring: it is left to the MPTCP congestion control mechanism
using per-subflow windowing. Upon failure of a TCP subflow (i.e. window
size inferior to a threshold during a certain period of time), the cloud server
may request a new path to the Controller in order to replace this subflow
with a new subflow following a new path. This request may notify the defi-
cient path to the discovery service which may update the states about that
specific path. As the MPTCP congestion control mechanism is per subflow,
it is important that a subflow keeps using paths of equivalent quality; in-
deed, a change to a path of lesser quality may decrease the window, yet it
takes time to recover the original window value.

Path Discovery: it can be decomposed into two sub-services with differ-
ent constraints. intra-DC discovery service: in DC environments, the as-

4.4. SPECIFIC ARCHITECTURE 107

signment of VMs to servers should be orchestrated by a Cloud Management
System that knows where each VM is placed. TRILL support this through
an oracle-like system (non mandatory) called ”directory system”[243], which
returns the destination RBridge associated with a MAC, instead of resorting
to ARP flooding, thus reducing L2 broadcast traffic. Associated to this in-
formation, the IS-IS substratum readily allows TRILL campus topology syn-
chronization at RBridges, which can be enriched with TE metrics adopting
the ISIS-TE extensions defined for IP networks [244] to TRILL-based Eth-
ernet networks. Interdomain discovery service: MPTCP discovery is quite
straightforward; if the distant host does not answer with the MPTCP capa-
ble option, then the connection falls back to legacy TCP. If both hosts are
MPTCP compliant, they can either advertise their different IP interfaces to
the other host, or directly try to open new subflows with these EIDs. As far
as LISP is concerned, the hypervisor or the Controller can be easily enabled
to query mapping servers to retrieve the RLOCs of the local site and the
destination, along with LISP load-sharing information. Moreover, we may
also try to rank Internet paths between xTRs, for example adding a TED
companion to the LISP mapping information, using providers’ services such
as [245] or PCE-based [241], knowing however that Internet path informa-
tion accuracy can be low. The Controller could manage a single TED built
merging TE metrics related to TRILL Ethernet routing tables, LISP RLOC
metrics and inter-domain path metrics, as a separate database regularly and
on-demand pulling data from TRILL, LISP and external databases.

Path Computation: this service will use the information gathered by the
Path Discovery Service to compute a number of paths according to differ-
ent constraints, which might be passed in the request (e.g., latency, jitter,
throughput, bottleneck bandwidth). In the case of inter-cloud communi-
cations, the PCE communication Protocol (PCEP) [241] could be used to
allow distributed computation between DCs, including also the possibility
to involve the PCEs of external ISPs. The extra-DC path computation
between LISP endpoints can include the possibility of involving Reencapsu-
lating Tunnel Routers (RTRs) between the ITR and the ETR [246] if LCAF
is enabled.

Path Enforcement: both stateful and stateless methods are conceivable.

108 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

• Stateful mode: the computed path is enforced in a source-routing
fashion. The way this can be implemented in TRILL and LISP does
not rely on end-to-end reservation as in MPLS networks, but it im-
plies the hypervisor is able to craft TRILL and LISP packets. This
is proposed by [247] for TRILL: the hypervisor, called “TRILL smart
endnode” directly queries the TRILL directory and encapsulates the
packet with a TRILL header to lighten the load on the next RBridge.
Even if not proposed elsewhere, with the above mentioned implemen-
tation of the LISP data-plane in virtual bridges such as OpenVSwitch,
the hypervisor could become a “LISP smart endnode” as well. Con-
versely, explicit path prepending is described for LISP with RTRs and
LCAF [239][246], allowing the enforcement of multihop xTR chains,
and is currently not offered by TRILL. On the other hand, TRILL
supports extensions, so we can imagine a similar feature implemented
at RBridges.

• Stateless mode: with TRILL, we cannot use VLANs anymore to force
a physical path, since any VLAN can get encapsulated in shared trans-
port VLANs by the TRILL campus. However, with multipath load-
balancing enabled, one can carefully compute the TRILL header’s
Time To Live (TTL) field so that packets with the same TTL follow the
same path as of the result of hashing functions used in load-balancing,
similarly to how described in [236]. This technique allows Controllable
per-flow load-balancing and prevents packet disorder. Similarly, the
TTL in the IP header can also be tuned to enforce extra-DC egress
load-balancing at ITRs.

To sum up, the stateful method adds LISP and TRILL headers overhead
to packets, but in a controlled environment such as a DC, the MTU should
not be a problem. As for the stateless method, enough LISP and TRILL
nodes need to share the same hashing algorithm to make it interesting,
which is a reasonable assumption. However middleboxes may also change the
TTL value, thus nullifying the effect. Finally, in this specific architecture,
hypervisors can implement all the services, but the heaviest ones such as the
Path Discovery and the Path Computation Services that shall be taken on
by the Controller.

4.5. CROSS-LAYER MPTCP-LISP COOPERATION IMPLEMENTATION 109

4.5 Cross-Layer MPTCP-LISP cooperation imple-
mentation

At the time of writing (2013), there was no open source TRILL implemen-
tation as there is today [248]. On the other hand, two open source LISP
routers were available as well as a MPTCP linux kernel.

The purpose of the implementation concerns the establishment of addi-
tional subflows between MPTCP servers and users in a Cloud network where,
at least at one side, path diversity is available at the IP layer, but not us-
able with native protocols. More precisely, we propose a specific cross-layer
signaling to allow a MPTCP endpoint to profit from path diversity offered
by a LISP [235] network. LISP can give hints to MPTCP about the Wide
Area Network (WAN) paths diversity between two MPTCP endpoints. By
allowing sharing of such an information among endpoints, we influence the
number of subflows to create.

The current MPTCP path discovery does not explicitly limit the number
of subflows to create, so current implementations create by default a mesh
of subflows between two hosts’ IPs. Most of the times, the more the sub-
flows, the higher connection throughput, under appropriate congestion con-
trol. (note that there are also cases in which this default mechanism would
prevent MPTCP from increasing the throughput, and cases where fewer sub-
flows could provide the same gain by using fewer network resources). We
target the specific case where more subflows could be created if intermedi-
ate multipath forwarding nodes (at the border between the local site and
the WAN) can be used to split subflows over different WAN paths, under
the hypothesis that the connection throughput is limited by WAN capacity
rather than by LAN capacity.

In the following, we describe how the MPTCP path discovery can be
augmented in this sense in a LISP network. Then we present the required
signaling between MPTCP and LISP network elements, and the possible
methods to perform the required multipath subflow forwarding.

in certain cases where the current MPTCP implementations would not
obtain any gain.

110 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

4.5.1 Augmented Multipath TCP path discovery

The MPTCP specification - see the path management section in [211] -
states that the path discovery mechanism should remain modular so that it
can be changed with “no significant changes to the other functional compo-
nents”. We leverage on this specific part of the MPTCP protocol to define
an augmented subflow discovery module taking profit of LISP capabilities,
to augment MPTCP performance while preserving endhost resources.

Figure 4.4 presents a Cloud access situation where MPTCP could per-
form better if its path discovery module were informed of LISP path diversity
and forwarding capability when creating subflows. In the example situation,
there is one IP on the client host and one IP on the server; as such, the legacy
MPTCP mechanism creates only one subflow. Under the assumption that
commonly connection throughput is limited by WAN capacity rather than
by LAN capacity, limiting to a single subflow prevents from benefiting of the
WAN path diversity and the likely greater throughput achievable if forms
of multipath forwarding at intermediate nodes exist. A LISP network of-
fers the signaling capabilities to retrieve path diversity information, and the
switching mechanisms to ensure multipath forwarding. In the fig. 4.4 exam-
ple, this is possible establishing two subflows instead of one, assuming each
subflow is forwarded to a different IP transit path (guaranteed as explained
next) thanks to the LISP-capable border router. It is worth highlighting
that as of the specifications - and as implemented in the MPTCP Linux im-
plementation [102] - different MPTCP subflows can share the same source
IP provided that they use different TCP ports. This subflow identification
mode should be used to create the additional LISP-enabled subflows.

More generally than the fig. 4.4 example, the number of MPTCP sub-
flows can be significantly increased thanks to LISP capabilities in the case
the endpoints dispose of multiple interfaces. We assume communications be-
tween hosts are strongly asymmetric, the largest volume being from server
to client, so that the client-to-server flow essentially consists in acknowledg-
ments. Let l1 and l2 be the number of interfaces of server endpoint (or of the
hosting hypervisor in case of VM server) and client endpoints, respectively.
A LISP site can be served by one or many LISP routers, each disposing
of one or many RLOCs. Let Lr

1 and Lr
2 be the number of locators of the

rth LISP border router at site 1 (Server side) and 2 (Client side), respec-
tively. Therefore, the maximum number of subflows that can be opened by

4.5. CROSS-LAYER MPTCP-LISP COOPERATION IMPLEMENTATION 111

legacy MPTCP is l1l2. Following the design choice to route only one sub-
flow over one RLOC-to-RLOC inter-site path to avoid bottlenecks and other
management issue in the WAN segment, the number of maximum number
of subflows that could be opened thanks to LISP multipath forwarding is
(∑r L

r
1)(∑r L

r
2). Then we can distinguish two cases:

• if the LISP site network allows full reachability between endpoints and
corresponding ITRs, and endpoint’s traffic reaches any corresponding
ITR in a non deterministic way, then the maximum number of subflows
that shall be opened is:

Na = max{l1l2; (
∑

r

Lr
1)(

∑
r

Lr
2)}. (4.1)

LISP-based augmentation would likely be effective only if the second
term is higher than the first. The non deterministic interconnection
between the endpoint and its ITRs can be due, for instance, to adaptive
L1/L2/L3 traffic engineering changing routes and egress points from
time to time even for a same application flow, or load-balancing such
as equal-cost multipath L2/L3 routing so that different subflows may
exit by different ITRs. It is worth highlighting that (4.1) is only a
suggested upper bound; in the case the right term is the maximum, in
such non deterministic situations there is no guarantee the N WAN
paths will be used, especially if l1 < L1 or l2 < L2.

• if each of the endpoint’s interfaces can have its traffic routed via one
single ITR, then we can take the maximum profit from the LISP path
diversity. The best situation is when l1 = L1 and l2 = L2; functionally,
it is like if the endpoint’s interfaces were virtualized in a number of
interfaces equal to the number of the RLOCs of the ITR it is linked to.
Such a setting is the de-facto setting when the user is a LISP mobile
node MPTCP-capable user; for the Cloud server side, it is technically
relatively easy to create a number of virtual interfaces and bind them
to different egress routers via virtual LAN mechanisms and the like.
In such configurations, the maximum number of subflows that shall be
opened is:

Nb = l1(
∑

r

Lr
1)(

∑
r

Lr
2)l2 (4.2)

The situations described in the previous points can hold only at one
site or even only partially within each site. (4.1) and (4.2) are indeed upper

112 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

bounds. Nevertheless, it does not hurt creating a number of subflows slightly
higher than the number of paths, at the expense of a higher processing and
signaling burden on the network. Therefore, (4.1) or (4.2) can be used
to compute the number of subflows for the MPTCP-LISP augmentation,
depending on the situation, upon appropriate customization of the path
discovery module settings.

4.5.2 Signaling requirements and implementation aspects

From a mere signaling perspective, the requirement is therefore that the
MPTCP endpoint be able to query the LISP mapping system to get the
RLOCs of the other endpoint (the number of interfaces being already trans-
ported via MPTCP options). Standard LISP control-plane messages can
natively assume this task (i.e., map-request and map-reply messages).
Once this information is obtained, the number of subflows to be opened can
be computed, and the MPTCP endpoint can either advertise these possible
subflows to the other endpoint or initiate the required subflows following a
procedure such as the one we propose hereafter.

Let us describe in higher detail the different steps, depicted in fig. 4.5,
needed by the MPTCP host to retrieve the adequate number of local and re-
mote RLOCs, allowing to compute the number of subflows to create. In our
implementation, these communications are managed by a specific module
at the kernel level. In the case of servers hosted in VMs, the MPTCP logic
and our path discovery module could be implemented via an MPTCP proxy
(see [249]) at the hypervisor level. In the following, we also give necessary
hints on implementation aspects related to each step.

1. endpoint C (Client) first establishes an MPTCP connection with end-
point S (Server). Once endpoint S is assessed as MPTCP compliant,
the path discovery process can start.

2. The kernel of endpoint C calls a function of the previously loaded
MPTCP kernel module, with as parameters the current MPTCP con-
nection identifier and the EID we want to find the RLOCs associated
to.

3. Upon reception, the kernel module translates it into a Netlink message
and sends it to the MPTCP Netlink multicast group (Netlink is the

4.5. CROSS-LAYER MPTCP-LISP COOPERATION IMPLEMENTATION 113

Figure 4.5: Signaling process chronology.

networking protocol used by the linux kernel space to communicate
with user space and vice-versa).

4. A specific daemon in the user space is registered with the MPTCP
netlink group. Upon reception of the Netlink message, it sends a
Map-Request to the LISP router C, i.e., the daemon asks for the
RLOCs responsible for the EID (i.e., the IP of Server S). Note that
normally one should send a Map-Request to a Map Resolver, which
in existing vendors implementations can be collocated in a LISP router;
in our implementation, we modified an open source LISP router for
this purpose. Also note that an ad-hoc DC network controller could
do this job too.

5. The LISP router C queries its configured map-resolver if the answer is
not in its cache. It then sends to that user space daemon a Map-Reply
listing RLOCs responsible for the requested EID, thus retrieving the
number of RLOCs.

6. Upon reception of the Map-Reply, the userspace daemon forwards
the answer via Netlink to the kernel module.

7. Finally the module relays the information to the kernel, triggering the
creation of new TCP subflows.

114 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

It is worth noting that the described process is expected to be efficient
only for long-lived flows. Indeed, on the one hand short flows may finish
before the procedure; on the other hand, the different requests sent from the
hosts to the routers consume bandwidth and add an avoidable load to the
router. Caching associations between endpoint identifiers and the number
of subflows to create mappings in the source host could alleviate signaling
traffic. To avoid applying our proposed cross-layer interaction to any flow,
a system that triggers the procedure only for long-lived flows would be very
reasonable, for example based on a whitelist or a dynamic recognition system
such as the one described in [242]. In the case of servers hosted in a VM,
this could be implemented at the hypervisor level.

4.5.3 LISP multipath forwarding requirements

In order to ensure that subflows indeed follow different WAN paths, it is pos-
sible to implement both stateful and stateless load balancing mechanisms.

• A possible stateful solution would be to resort to the LISP-Traffic En-
gineering (LISP-TE) feature described in [246]. This feature allows
enforcing an “Explicit Locator Path (ELP)” via the LISP control-
plane, i.e., with little or no impact on data-plane packet crafting. For
a given EID, the mapping systems can build a LISP overlay using in-
termediate LISP routers between the ITR and the ETR, as RTRs),
which decapsulate the incoming LISP packet and re-encapsulate it to-
ward the next RTR (or the ETR) in a xTR path. In the context of
all subflows being addressed to the same destination EID, the usage of
options in the packet header (e.g., using the LISP Canonical Address
Format, LCAF, features [239]) can allow routing concurrently multiple
subflows via different xTR paths. However, in the case LISP is imple-
mented at the hypervisor level, hence without touching the source host
(VM), the LISP-TE encapsulation with LCAF options can be defined
as a switching rule in virtual switches such as OpenVSwitch – know-
ing that OpenVSwitch already implements basic LISP encapsulation
as switching rule since a few months3.

• A stateless solution could be to carefully choose IP or TCP header
fields so that IP packets follow a foreseen IP path. The computation

3See: http://openvswitch.org/pipermail/git/2013-February/003666.html.

http://openvswitch.org/pipermail/git/2013-February/003666.html.

4.5. CROSS-LAYER MPTCP-LISP COOPERATION IMPLEMENTATION 115

Figure 4.6: Cloud network test bed scenario.

of these fields (for instance the TTL value in IP packets or source port
in TCP packets) require the knowledge of both the topology and the
load-balancing algorithms running in the nodes to be able to correctly
choose the path. Nodes usually use an hash function over IP and some
TCP fields to compute a unique flow identifier that decides the egress
interface. Hashing functions, by construction, make it hard to foresee
the egress interface of a packet. On the contrary, invertible functions
can prove helpful as explained in [250].

In our implementation detailed hereafter, we opted for the second option
as the first is not yet available in any LISP implementation to date. At
the last step in the previous subsection, subflows source ports are chosen so
that their port number modulo the number of disjoint paths are all different.
The LISP router can then deterministically route each subflow to a specific
path. For instance, in the case of 2 paths, we need to have one subflow
whose (source + destination port number) % 2 equals 0 and the second
subflow (source + destination port number) % 2 equals 1. This mechanism
could be replaced with a more scalable solution as those described in [250],
yet it was easier to implement. The load balancing is fully effective when
installed on both remote and local sites (as in the experiment). Still, in case
communications are asymmetric, it can perform well even if installed only
on the side sending data (in this case the server side).

It is worth mentioning that other strategies could be adopted according

116 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

to the level of control we have on the different nodes. In case only the
DC-side is under control, the server could advertise the same IP until the
client creates subflows with adequate source ports. Or it could accept enough
communications to ensure that some of them will go through different paths;
the MPTCP congestion mechanism would then send data only on the best
subflows, which will likely follow different paths.

The stateless approach is not limited to L3 routing; it can also apply
to L2 routing protocols disposing of additional fields (e.g., the hop-count)
such as the Transparent Interconnection of a Lot of Links (TRILL) [236]
and Shortest Path Bridging (SPB) [251] protocols.

In DC controlled environments, for packet-based intra-DC communica-
tions, the computation of the different fields could be left to an advanced
layer-2 fabrics allowing DC traffic engineering such as TRILL, SPB or Open-
Flow. As for the extra-DC segment, stateless solutions do not allow enough
control to choose paths. The LISP-TE features could thus prove helpful
since it explicitly encodes some LISP nodes to go through, but requires the
usage of a wide enough WAN operational LISP network to prevent packets
from making a prejudicial detour because they have to go through LISP
routers.

4.5.4 Experimental results

In this section, we report and discuss the results obtained performing several
MPTCP communications over the experimental test bed. First, we present
the test bed setting and the developed node features we publish as open
source code, then we assess the achievable gain with our solution, and finally
we qualify the data-plane overhead of the cross-layer interaction.

Network test bed

Let us illustrate the experimental test bed we used for the experimentation
of our solution, displayed in fig. 4.6. It implements our basic reference aug-
mented TCP scenario described in fig. 4.4. We used a MPTCP-capable vir-
tual machine hosted in the Paris-Est DC of the French NU@GE project [252],
disposing of two Internet Service Providers, Neo Telecom (AS 8218) and Al-
phalink (AS 25540). On the other side, we use a single-homed and MPTCP-
capable Cloud user. The Internet-working between the VM and user is such
that two disjoint Internet paths are used down to the user’s ISPs, and such

4.5. CROSS-LAYER MPTCP-LISP COOPERATION IMPLEMENTATION 117

that the two intra-DC paths between the VM’s hypervisor and the DC bor-
der LISP router are disjoint ones.

In such a configuration, the highest improvements can be reached when
the Cloud user’s provider access and transit links are not congested. The
test bed scenario can be considered as quite representative for real cases,
where typically Cloud users are not multihomed and the DC has a few ISPs.
Moreover, by targeting the more basic configuration with only two subflows
we can more precisely demonstrate the benefit of our LISP-MPTCP cross-
layer cooperation solution.

Open Source Nodes

In terms of open source software, we used the open source MPTCP Linux
implementation [102] and the LISPmob [253] implementation (preferred over
the BSD OpenLISP router [254], [255] because more easily customizable
as it runs in userspace). We then applied these necessary modifications
to the open source nodes. We published the patches in an open source
repository [226].

• to the MPTCP kernel, to add our path discovery feature that retrieves
the number of local and remote RLOCs for each destination it is talk-
ing to as previously described;

• to the LISPmob router so that: (i) it acts as a Mapping Resolver
too; (ii) it balances the two subflows deterministically between its two
RLOCs. For (ii), instead of resorting to a hash of the tuple (source
IP, destination IP, Source port, Destination Port, TTL), we replaced
the load balancing mechanism by a single modulo (number of remote
RLOCs) on the TCP source port and force MPTCP to start TCP
subflows with certain source port numbers.

To ease the development and to decorrelate the path discovery mecha-
nism from other MPTCP mechanisms a stated in [183], we minimized the
modifications to the kernel and instead created a kernel module called by
the kernel each time MPTCP establishes a new connection. We also inte-
grated an existing user space program named LIG (LISP Internet Groper,
[256], [257]) to request EID-to-RLOC mappings (equivalent of DIG but for
LISP networks), using map-request and map-reply control-plane mes-
sages. The LISP nodes were connected to the LISP Beta Network test

118 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

bed [258]. In order to retrieve a list of RLOCs responsible for an EID (and
implicitly their number), we created a user space python daemon listening
to requests transmitted by the kernel module, which then interacts with the
LIG program. In the following, we do not differentiate between the two user
space programs since it is just a matter of implementation.

Transfer times

In order to demonstrate the previously described architecture, we worked
on the same topology as in fig. 4.4. A single homed client (with one link
to AS3215) downloads 30 files from a single homed server (one link to a
LISP software router) in a dual-homed data center (both links active, one
towards AS25540, another one towards AS6453). Each transferred file is
set bigger than the previous one by an increment of 256KB to assess the
performance for different volumes. We record 20 transfer completion times
for each file. We set net.ipv4.tcp_no_metrics_save to true so that linux
discards tcp metrics at the end of experiment rather than caching them to
improve throughput. We repeat this whole procedure using four different
configurations:

• legacy TCP: with no cooperation with LISP, and a single TCP flow.

• MPTCP: with no cooperation with LISP, and a single MPTCP sub-
flow.

• LISP + MPTCP: with cross-layer cooperation, creating as many sub-
flows as the product of remote and local RLOCs, i.e., 2 subflows.

• LISP + MPTCP: we manually override the daemon result to create 3
subflows instead of 2

One can reasonable expect the cases 1 and 2 to be very similar in the pro-
vided configuration since MPTCP should use one flow only. During our tests,
the server upload speed could fill the client download speed (8 Mbit/sec,
corresponds to RLOC 3 in Figure 4.6) with a single TCP connection. In
order to exhibit an increase in throughput via the use of several subflows,
we limited RLOC 1 and 2 throughput via the linux QoS utilities so that
each each RLOC could send no more then 4Mbit/sec. On fig. 4.7, we see
as expected that unassisted MPTCP (i.e., MPTCP without LISP support,
marked ‘MPTCP’) and TCP transfer times are quite close, MPTCP being a

4.5. CROSS-LAYER MPTCP-LISP COOPERATION IMPLEMENTATION 119

little slower than TCP; the cause being the additional 20 bytes overhead per
packet introduced by MPTCP. More importantly, we can see that our solu-
tion (marked ‘LISP+MPTCP’) performs significantly better. For almost all
file sizes, we get a gain close to 90%, i.e., with the additional LISP-enabled
subflow we can nearly halve the transfer time. This very clearly shows the
important benefit we can reach with the MPTCP-LISP cross-layer cooper-
ation module we propose.

We also get an interesting result by forcing the creation of three MPTCP
subflows even if there are only two RLOCs at the server side. We notice
that the throughput is in average worse than for 2 subflows, but it sometimes
does perform better than with 2 subflows only. The decreased throughput
makes sense as having three subflows going out 2 RLOCs means at least
2 of the subflows compete for bandwidth on some part of the WAN. The
improvement is likely due to some further load-balancing occurring on the
WAN, hence not as deterministic as in the two subflows case.

It is worth noting that due to the use of linux QoS utilities to cap the
bandwidth, it would induce from times to times some latency (the RTT
changing between 60ms to 300ms on each path) during the transfers without
much impact on MPTCP.

Figure 4.7: Completion times for different file sizes.

120 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

Figure 4.8: Transfer times for two subflows with and without LISP.

Data-plane overhead

From a data-plane forwarding perspective, we recall that LISP performs an
IP-in-IP encapsulation with shim UDP and LISP headers. In order to get
an idea of the LISP overhead, we recorded the transfer times in two cases.
A first case with two MPTCP subflows enabled via LISP, and a second case
with the same two MPTCP subflows, but manually configured, without
LISP, hence avoiding data-plane encapsulation overheads. The results are
shown in fig. 4.8. At a first look one can immediately notice that the
overhead is most of the time negligible. It is worth noting that neither
our connection or LISPmob allowed us to test higher rates (Nevertheless,
we suspect that at higher rates, we might see a more important processing
overhead of LISP traffic since the UDP encapsulation prevents the system
from offloading TCP segmentation to the NIC).

4.5.5 TRILL and LISP unification for distributed DC net-
working

The master student Roua Touhiri undertook as part of her internship to
partially unify the LISP and TRILL control planes. The proposed setup is
a usecase of interest for the hosting company Alphalink4, several DC are
connected via a TRILL network overlay. The different DCs are accessible

4www.alphalink.fr

www.alphalink.fr

4.6. SUMMARY 121

via LISP ETRs as well. One fundamental hypothesis is that the inter-DC
latencies dominate over the DC access latency. As a consequence, the LISP
egress point is of utmost importance to improve the QoS. As TRILL has the
information about the internal overlay metrics, it can communicate them to
the LISP control place, which in turn can advertise these metrics as LISP
priorities to influence the user traffic. In [259], the authors implement an
agent installed at the hypervisor level so that it can monitor a change in
TRILL metrics due to a link failure or on the contrary generate a metric
update because of a VM migration. In both cases, the agent computes
the new cost from the LISP router to the hypervisor and propagates this
information to the xTR. The xTR must then update the MSs so that user of
this VM can be notified of the new optimal ETR and use it. The evaluation
of the agent during a network impairment resulted in a 13 fold improvement
in latency compared to the vanilla solution (absence of cooperation between
LISP and TRILL); with a third quartile from 26,9ms to 2 ms overall latency.

4.6 Summary

Multipath communications remain a complex networking research field due
to the necessary coordination between network layers and protocols. The
architecture we propose unifies the different control planes thanks to the
controller knowledge and coordinated routing mechanisms. Multipath com-
munications are becoming essential to augment Cloud communications; for
instance, very recent experiments have shown that significant throughput
could be achieved either locally, a local MPTCP throughput of 51.8Gbit/s
between 2 servers containing each 3 dual-port 10 Gig NICs has recently
been proved [227] or on long distancesÂă: an intercontinental testbed [260]
achieved a throughput of 15Gbits/s from Geneva to Salt Lake City. Our
cross-layer multipath architecture can potentially overcome these values so
as to further push network innovation at Internet edges.

Indeed, coordination between the MPTCP, TRILL and LISP protocols,
splitting flows at the transport, network and Ethernet layers, can allow
carefully selecting communication paths while controlling the computational
load and guaranteeing a semi-distributed reliable nature to the communi-
cation environment. At the same time, the presented coordination can also
lead to the Braess paradox, i.e., partially optimal routing may lead to worse

122 CHAPTER 4. A MULTIPATHED CROSSLAYER NETWORK ARCHITECTURE

overall network performance [261] so some form of formal analysis must be
undertaken to ensure the validity of the cooperation.

We have shown that MPTCP can achieve better performance thanks to a
better knowledge of the underlying IP topology gathered via LISP protocol
in a LISP network.

Our experimentations on a real large-scale test bed involving one data-
center network show that the throughput, hence the transfer time, can be
greatly improved, thanks to the cross-layer MPTCP-LISP protocol coop-
eration. We show that with just one additional LISP-enabled subflow, a
transport-layer connection spanning the Internet via disjoint Autonomous
System (AS) paths can terminate file transfers twice faster. It is therefore
reasonable to generalize these results stating that, in absence of middle-
boxes filtering the MPTCP signaling, the achievable gain is directly propor-
tional to the number of additional LISP-enabled subflows. Hence the higher
the multi-homing degree of Cloud clients and data-centers, the higher the
achievable gain.

While our path manager only supported the connection events, a sim-
ilar but more comprehensive Netlink approach with the support for more
MPTCP events was published in [262] and is used by Tessares5. The same
authors also concurrently implemented a complementary MPTCP API [263].
The API allows the application to have full control but the Netlink module
remains a valid solutions to enforce policies on applications that have not
been upgraded yet.

Ironically, the existence of middleboxes heavily influenced the design of
MPTCP but the mainstream industrial approach to MPTCP is to propose
MPTCP proxies as it is done at OVH6, tessares7 and visible in the IETF
drafts [264]. The advantage of the middlebox is that it usually has a better
knowledge of the path diversity and does not require the specific signaling
we used in this chapter. Relying on Dynamic Host Configuration Proto-
col (DHCP) as is proposed in Boucadair, Jacquenet, and Reddy [265] is
a lightweight way to convey the source path diversity but may need more
tweaking to take into account destination diversity as we did.

5www.tessares.net
6https://www.ovhtelecom.fr/overthebox/
7www.tessares.net

www.tessares.net
https://www.ovhtelecom.fr/overthebox/
www.tessares.net

Chapter 5

Pacing on multiple paths to
estimate difference in
One-Way Delays

In this chapter, we propose sender-only modifications to obtain an estima-
tion of the difference in OWDs between different paths, motivated by its
utility for multipath transport protocols such as MPTCP and SCTP1. A
high-level description of the estimator is as follows: the sender sends a se-
ries of MPTCP packets according to a specific schedule; if there are no
losses, the sender should receive the matching acknowledgments, it can thus
analyze the acknowledgments pattern to deduce a difference in path delay.

5.1 Introduction

Accurate estimations of OWD in networks could improve network utilization
and in particular user’s QoE: applications such as voice-over-IP or video
streaming depend more on the forward time delay than the reverse one, for
example.

As another example, the TCP Vegas [267] family of congestion control
algorithms rely on RTT inflation to detect congestion but is unable to distin-
guish between forward or reverse path inflation. Including congestion control
also on ACKs and not only on data packets could improve TCP performance
as noted by Aylene and Weigle [268]. and [269]. In those experiments, dis-

1The contents presented in this chapter have been published in [266].

123

124 CHAPTER 5. OWD DIFFERENCE ESTIMATION

abling delayed ACKs resulted in an increased number of ACKs, that entered
into competition for buffer space, incurring more ACK loss and a degraded
throughput. In the case of multipath transport protocols, being informed
about OWDs could permit sending ACKs over the best path and hence lead
to finer latency sensibility and higher performance.

In particular, throughput increase, though an important driver for multi-
path transport protocols, is harder to achieve than it seems. Indeed, sending
packets along heterogeneous paths (e.g., paths that differ in latencies, loss
rates, etc) can result in head of line blocking, which decreases throughput,
to the extent that sometimes MPTCP, e.g., would achieve even less than
a legacy TCP connection [5], [209]. The OWD knowledge - or rather the
∆OWD between subflows - is then even more crucial in multipath commu-
nications than in single path communications, knowing the forward ∆OWD

allows to reduce in-arrival packet disorder, thus reducing buffer requirements
or increasing throughput. In Kaspar [270], taking into account ∆OWD in
a multipath UDP scheduler leads to a 30% increase in throughput. A re-
cent MPTCP scheduler [271] achieves a similar gain via modifying both the
sender and the receiver.

As for the reverse ∆OWD, knowing which is the fastest reverse path
lets the multipath transport protocol the possibility to acknowledge pack-
ets on the fastest path. Coupled with non-renegable selective acknowledg-
ments, this allows to free sooner the send buffer in order to send fresh data
faster [272].

While the benefits of knowing ∆OWDs look interesting, propositions to
retrieve the information rely either on clock synchronization or some form
of cooperation, none of them being standardized. With these constraints
in mind, we elaborate an alternative to estimate the difference in OWDs
between subflows of two end hosts.

The rest of the chapter is organized as follows. Section 5.2 describes re-
lated work on OWD estimation. Section 5.3 precisely describes our solution.
Finally, in Section 5.4 we expose and discuss simulation results.

5.2 Related work

In this section we present OWD and ∆OWD online estimation techniques
for the single path case first, followed by techniques specific to multipath

5.2. RELATED WORK 125

protocols. Offline OWD estimation techniques (i.e., where transit times
are corrected a posteriori, as in Paxson [273]) also exist but they require
cooperation from the network, or clock synchronization between end hosts.
Thus we only consider in the following online techniques, able to dynamically
adjust scheduling parameters.

From a practical point of view, the presented techniques may better
apply to Wide Area Network (WAN) communications than to Local Area
Network (LAN) communications (or intra-datacenter communications) as
LAN smaller RTTs require more precision. It is also worth noting that until
the linux kernel 3.15, the linux network stack resolution was 125 µs, while
it is now set to one µs 2.

5.2.1 Clock synchronization in packet switched networks

The dissemination of clock synchronization information in packet-switching
networks can be achieved through different protocols, with different precision
levels. The most adopted solutions being the Global Positioning System
(GPS) [274], the Precision Time Protocol (PTP) [275] and the Network
Time Protocol (NTP) [276].

A GPS terminal can infer the clock by correlating the positioning signals
from a constellation of satellites, each satellite embarking several atomic
clocks, reaching a precision skew of a few nanoseconds only. GPS receivers
are precise but expansive, thus not all computers can be equipped with one:
time has to be distributed.

PTP [275] is able to distribute this time in packet-switched networks
through continuous offset correction between a grandmaster clock and hier-
archy of master-slave clocks. With sub-microsecond accuracy, this approach
allows reaching very high precision, suitable for 4G base station synchro-
nization.

Similarly NTP relies on a hierarchy of clocks, the higher the stratum, the
lower the precision, which is in the order of a milliseconds at the endhost.

NTP assumes that OWDs are half the RTT, which is an approximation
considered as too coarse by many studies [277], [278]. As noted in Paxson
[279], when applied to Internet connections, this approximation may lead
to noticeable errors as the Internet does not guarantee symmetric routing.

2https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=740b0f1841f6e39085b711d41db9ffb07198682b.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=740b0f1841f6e39085b711d41db9ffb07198682b
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=740b0f1841f6e39085b711d41db9ffb07198682b

126 CHAPTER 5. OWD DIFFERENCE ESTIMATION

Even when routing is symmetric, there can still be noticeable differences
between OWDs: because directions may have different characteristics (loss
rates, capacities) due to policies (e.g., different resource reservation levels
in cellular networks) or physical constraints (e.g., asymmetric bandwidth in
ADSL networks).

5.2.2 TCP variations

Some variations of TCP such as TCP Vegas [267], FAST TCP [280] try to
infer the congestion level of the network from the evolution of the RTT.
TCP Illinois and TCP Compound[281], [282] are hybrid approaches taking
into account both the delay and losses.

Two ways exist to retrieve the RTT for a TCP sender:

1. Compute the time needed to send a full window and receive the match-
ing acknowledgments.

2. Use the TCP Timestamp option [283].

The TCP timestamp option can be used for RTT measurement. Its usage
must be negotiated between the end-hosts during the connection establish-
ment. Once negotiated, each host records the time at which it created
a packet into this very packet. Upon reception of that packet, the receiver
puts its own timestamp along the received one and returns the packet. Upon
reception of the acknowledgment, the TCP sender retrieves the timestamp
it previously sent and subtracts its value to the current node time.

There is little one host can deduce from the remote host timestamps
since the standard only guarantees the remote TCP clock to be ‘monotone-
increasing’ [283]. Alternatively, propositions exist to negotiate the clock
skew during the connection establishment, as presented in [284]. This would
allow each host to interpret the timestamp of the remote host. Knowledge
of the receiver skew allows the sender to correct the remote timestamp so
that the duration matches its local skew. It also gives an indication on the
possible precision. The major drawback of TCP variations relying on RTT
estimations is that TCP takes a coarse decision based on the maximum level
of congestion between the forward and backward paths.

Choi and Yoo [285] modify the roles of the fields in the timestamp op-
tion: timestamps are replaced with the actual RTT values measured by the
different nodes. Providing both hosts relayed RTTs to their peer since the

5.2. RELATED WORK 127

beginning of the communication, the OWDs can be computed analytically
with a precision depending on the value guessed for the first OWD. Gure-
witz and Sidi [286] take another approach that requires cooperation from
the network for the forwarding aspect, but no clock synchronization. To re-
move the uncertainty about an untrusted remote clock, a node sends probes
through different paths in the network (there must be some mechanism to
enforce these paths, e.g., source routing, traffic engineering) that must come
back to the initial sender. The different values obtained through the use of
the probes add constraints over the values of the different OWDs. When
enough constraints have been harvested to solve the system of equations, the
algorithm tries to determine the OWDs that yield the least square error.

Some studies [287]–[289] show that there can be a low correlation be-
tween delay and losses which can raise some skepticism about the use of
delay for congestion control. These concerns are balanced with other real
experimentation McCullagh and Leith [290] or the recent TCP BBR from
Google [291] which seems to obtain good results 3 even for aggregated flows.

5.2.3 Multipath control techniques

For a multipath transport protocol such as MPTCP, multiple connection
‘subflows’ can be opened between the end-hosts, regardless of the number of
interfaces. Having an estimation of the difference between subflow OWDs
(noted as ∆FOWD for the forward delta OWDs, and ∆BOWD for the
backward delta OWDs in the rest of the article) would already allow some
improvements. Moreover, in case of low traffic, this knowledge should be
needed by delay-sensitive applications to send packets on the fastest path
(provided loss ratios are similar).

As for the ∆BOWD, the faster an ACK reaches the sender, the faster
the sender can free space in its send buffer and send new data packets. The
knowledge of the fastest reverse path would thus let a multipath transport
protocol such as MPTCP the possibility to acknowledge packets on the
fastest path, as explained in Ribeiro and Leung [292].

Relying on [284], authors in [293] assume clock skew synchronization
based on the TCP timestamp option. The sender, instead of discarding re-
ceiver timestamps, saves them; in this way, it can deduce the difference in
arrival time at the receiver between packets that followed different paths.

3http://blog.cerowrt.org/post/bbrs_basic_beauty/.

http://blog.cerowrt.org/post/bbrs_basic_beauty/

128 CHAPTER 5. OWD DIFFERENCE ESTIMATION

The difference in backward and forward delay can easily be deduced after-
wards by the sender.

In [294], Zhou et al. propose to deduce the OWDs of two subflows from
the size of the receiver input buffer. The upside is that it does not require
any receiver modification or network cooperation but it assumes constant
transmission rates and no loss. It also requires several measurements to get
an accurate value.

5.3 Proposed OWD estimator

The primary objective of our estimator is to provide a practical estimation
of forward ∆OWDs to a multipath transport protocol. The desirable OWD
estimator shall thus:

• not require clock synchronization nor network cooperation; timing
should be done on the sender’s clock exclusively;

• be able to deliver an estimation within a few RTTs since most connec-
tions are short-lived.

Briefly, the OWD estimator algorithm we propose is such that once it
judges its ∆̃FOWD estimation as accurate enough, it is able to identify
the backward slow path and provide improved estimations of OWDs, as
compared to halving the RTT.

In the following, we first present a few notations related to our delay
model, then we present our algorithm.

5.3.1 Delay model

This section exposes a few notations for a baseline 2-subflow case. We make
no assumption about the number of interfaces of the host (mono or multi-
homed) or the physical paths followed by the subflows (i.e., partially or fully
disjoint). The disjoint case seems popular though, as it is likely to exhibit a
higher difference between the OWDs, as it is the case for smartphones with
both cellular and wifi interfaces.

Let i ∈ {1, 2} be the subflow index, fi and ri be respectively the forward
and reverse transfer delay on subflow i.

5.3. PROPOSED OWD ESTIMATOR 129

Figure 5.1: Illustration of used notations for two subflows.

The following notations are illustrated in Figure 5.1, let the OWD of the
Forward Fast Subflow (FFS), the Forward Slow Subflow (FSS), the Back-
ward Fast Subflow (BFS) and the Backward Slow Subflow (BSS) be respec-
tively:

fF F S = mini(fi) (5.1)
fF SS = maxi(fi) (5.2)
rBF S = mini(ri) (5.3)
rBSS = maxi(ri) (5.4)

It is worth noting that the Forward Fast Subflow (FFS) can be a BSS,
i.e., a subflow is not necessary the shortest in both forward and backward
directions. Obviously, the RTT of subflow i can be computed as:

RTT i = fi + processing delay + ri (5.5)

fi and ri can be decomposed into a deterministic and a stochastic part.

130 CHAPTER 5. OWD DIFFERENCE ESTIMATION

The deterministic part corresponds to the time needed for a bit to propa-
gate through its medium (supposing the route does not change during the
connection) while the stochastic part refers to generic queuing delays.

The queuing delay is the sum of several queuing events that can stem
from network queuing but also the host processing delay. For the algorithm
to work better, all source of noise in the measurement should be avoided.
By analogy with TCP, this means that the Nagle algorithm [295] (which
prevents TCP from sending many small packets) and delayed ACKs [296]
(TCP receiver waits a certain amount of received packets or a timeout be-
fore acknowledging packets) should be disabled to keep the processing delay
negligible. Likewise, TCP Segmentation Offload (TSO) can add noise to the
measurement with no relation to the congestion level. TSO is atechnique
where the network stack hands over huge segments to the NIC so that NIC
converts these into smaller packets. In general the NIC waits for a timeout
before forwarding these packets, which results in increased burstiness and
queuing delay. The sending buffer should also be empty for the same rea-
son, except if hardware timestamping is in use. Duplicate acknowledgments
caused by probes should not trigger retransmissions either (it is already true
in MPTCP). Packet loss of any packet during a round can be detected and
results from the round dismissed. The forward and backward delta delay
are then defined as:

∆FOWD = fF SS − fF F S (5.6)
∆BOWD = rBSS − rBF S (5.7)

Both values are computed so that they are not negative.
The sender can easily retrieve the RTT, but it does not know fi or ri and

traditionally assumes that fi = ri = RTTi/2. In the following paragraph,
we describe our estimator algorithm allowing to alleviate this issue.

5.3.2 Algorithm

As mentioned above, we aim to rely only on the sender’s clock and require
no cooperation with network elements. Before describing the algorithm, we
need to highlight the following assumptions:

1. The clock precision is at least one magnitude higher than the maximum
RTT.

5.3. PROPOSED OWD ESTIMATOR 131

2. The hosts can send packets at a locally precise determined time.

3. The server acknowledges every received packet immediately.

4. Timestamps can be embedded into packets.

1) ensures that we can measure accurately enough the time we want to
estimate. 2) may be more or less feasible, but is required to pace packet
emission. 3) is assumed for convenience, but the algorithm could work with
this additional constraint at the expense of precision. 4) ensures the host
can identify each probe, to detect and discard rounds where probes arrive
in disorder or are lost.

Figure 5.2: An example of Head-of-Line blocking.

The first objective of the algorithm is to compute ∆̃FOWD, then it
can compute a reverse ∆̃BOWD value and finally provide an estimation for
OWDs. The key idea to deduce the ∆FOWD is to forcefully create and
detect head of line blocking at the receiver from the sender side, as depicted
in fig. 5.2 (the receive buffer is represented between square brackets). This is
done by sending a packet on the FSS, the sender then waits for the currently
estimated ∆̃FOWD and sends a train of probes on the FFS until these

132 CHAPTER 5. OWD DIFFERENCE ESTIMATION

probes match either the head of line blocking pattern in fig. 5.5 or that in
fig. 5.6, i.e. packets sent on the FFS frame the packet arrival on the FSS.
Every probe embed its own unique timestamp in order to identify itself.

Figure 5.3: Early probing: ∆̃FOWD is too low.

Figure 5.4: Late probing: ∆̃FOWD is too high.

More precisely, the algorithm runs in two steps:

5.3. PROPOSED OWD ESTIMATOR 133

Figure 5.5: Identical forward and backward fast subflows.
The algorithm has converged to a valid ∆̃FOWD.

Figure 5.6: Different forward and backward fast subflows.
The algorithm has converged to a valid ∆̃FOWD.

134 CHAPTER 5. OWD DIFFERENCE ESTIMATION

1. the sender needs to determine which subflow is the FFS. To do so,
it sends two packets (one on each subflow) with consecutive sequence
numbers at the same time. The server acknowledges each packet with
the highest in-order sequence number. Thus it is possible for the sender
to deduce from the ACKs which packet arrived first at the remote host.
Note that the FFS can be the BSS, i.e., the first packet to come back
to the sender is not necessarily the one that arrived first at the remote
node. This step is quite straightforward and can be obtained in one
RTT as described in the algorithm 1 line 2.

2. the sender then computes ∆̃FOWD. This is an iterative process that
can run as long as FFS and FSS remain the same, e.g., the algorithm
could restart if RTT varies too much. To achieve this, the sender sends
a packet with sequence number X + 1 on the FSS, then sends probes
(two for instance in Figure 5.3) with sequence number X on the FFS
with a delay close to the current estimation of ∆FOWD. In order to
increase the change of getting proper values, one could choose to send
probes when the application does not send any traffic, or as in [291],
pace the traffic beforehand to free some space in the network queues.
There are four different patterns of packet arrival order at the receiver
Depending on the case, the current ∆̃FOWD is updated accordingly:

• On Figure 5.3, all probes arrive before the packet on the FSS.
The sender can deduce it from the head of line blocking exhibited
by the acknowledgments of the probes. If the packet on the slow
subflow arrives before any of the probes on the FFS, then the
server would acknowledge that probe with the sequence number
three. The sender can deduce from this that the current delay
before sending the probe is underestimated.

• Contrary to the previous case, in Figure 5.4 all probes arrive
after the packet on the FSS. The sender receives an out-of-order
ACK on the FSS. This means that all probes arrived after the
packet on the FSS, i.e., the current ∆̃FOWD is too high and
should be decreased.

• In Figure 5.5 are the cases that allow to deduce more precisely
the ∆FOWD, i.e., probes framing the arrival of the packet on the
FSS. The sender identifies these cases when it receives successive

5.4. SIMULATION RESULTS 135

probes with different ACK numbers. To compute the forward
delay of the FFS, we consider that the ACKs on each path were
concurrently sent by the server as shown on the similar Figure 5.1
- so the estimations change as follows:

f̃F F S = RTTF F S

2 (5.8a)

∆̃FOWD = TS2− TS1 (5.8b)

where TS2 and TS1 are the timestamps exposed in fig. 5.1. Re-
verse OWDs are then deduced from the RTTs as shown later.

• Figure 5.6 case differs from fig. 5.5 case in that the FFS is the
BSS. To compute the forward delay of the FFS, we consider that
the ACKs on each path were concurrently sent by the server so
the FFS OWD estimation becomes:

f̃F F S = RTTF SS − ∆̃FOWD

2 (5.9)

To summarize, when probes frame the packet arrival on the FSS, the value
∆̃FOWD may be considered as correct and allows to compute estimations
for the following values:

f̃F F S = min(RTTF F S , RTTF SS − ∆̃FOWD) (5.10)
f̃F SS = ∆̃FOWD + f̃F F S (5.11)
r̃BF S = RTTF F S − f̃F F S (5.12)
r̃BSS = RTTF SS − f̃F SS (5.13)

5.4 Simulation results

We have chosen to implement the algorithm in a network simulator rather
than doing real experiments because comparing delay estimations require
very high precision values, we would have needed either synchronized clocks
or complex tunneling to use the same host as client and server. Both are
no easy task so we have implemented the algorithm in a slightly modified
version of the NS-3 [297] (version 3.20). NS-3 is a well-maintained open-
source event-driven packet-level network simulator.

136 CHAPTER 5. OWD DIFFERENCE ESTIMATION

Algorithm 1 Instance of the algorithm with three probes.
1: interval← 3ms . Time interval between probes on FFS

2: procedure FindForwardFastSubflow(seqNb) . Returns a tuple (FFS, FSS)
3: SendPacket(1, seqNb)
4: SendPacket(2, seqNb + 1)
5: Wait for both acks
6: if (Ack received on path 0) = seqNb then return (1, 2)
7: else return (2, 1)
8: end if
9: end procedure

10: procedure SendPacket(pathId, seq)
11: Send sequence number seq on path pathId

12: end procedure

13: procedure StartEstimationRound(F F S, F SS, deltaEstimation)
14: SendPacket(F SS, roundLowestSeqNb + 1, 0)
15: Wait for Max(deltaEstimation− interval, 0) . Wait for a positive duration
16: SendPacket(F F S, roundLowestSeqNb)
17: Wait for interval

18: SendPacket(F F S, roundLowestSeqNb)
19: Wait for interval

20: SendPacket(F F S, roundLowestSeqNb)
21: end procedure

22: Begin
23: roundLowestSeqNb← 0
24: ∆̃f OW D = 0 . Start with an estimation of 0
25: F F S, F SS ← FindForwardFastSubflow(roundLowestSeqNb)
26: while no drastic change in RTT do
27: roundLowestSeqNb← roundLowestSeqNb + 2
28: StartEstimationRound(F F S, F SS, ∆̃f OW D)
29: Wait for all acknowledgments

. In case of losses, a timeout restarts a new round
30: situation← DeduceSituationFromAcks

31: if situation = F igure 5.3 then . Early probes
32: ∆̃f OW D ← ∆̃f OW D + interval

33: else if situation = F igure 5.4 then . Late probes
34: ∆̃f OW D ← ∆̃f OW D − interval

35: else . Probes on FFS framed packet arrival on FSS
36: ∆̃f OW D ← Average delay of the 2 framing probes
37: end if
38: end while
39: Restart algorithm from the beginning
40: End

5.4. SIMULATION RESULTS 137

Figure 5.7: Test topology with asymmetric paths.

MPTCP being unavailable in vanilla NS-3, we simulated its behavior via
two custom applications - client and server - over UDP. The client applica-
tion sends timestamped packets with a sequence number over the different
subflows. Upon reception, the server generates a reply containing the re-
ceived timestamp, plus the server own timestamp and the highest in-order
sequence number it received. The server timestamps allow the computation
of the real OWDs (i.e. these values are used for plotting but are ignored by
the algorithm).

On the Internet, the asymmetry in OWDs can originate from several
reasons, asymmetric bandwidths or asymmetric propagation delays. We
test both of them via binding one on/off TCP application on each client
interface, to create jitter. The topology used is visible on fig. 5.7 and
the queue size of the routers is set in packet unit. The source code of the
simulation is available at [298].

5.4.1 Results

While fig. 5.8 displays ∆̃FOWD at all times in order to better under-
stand the estimation update process, it is worth noting that this estimation
should be considered valid only when ∆̃BOWD is plotted as well. This is
particularly visible from rounds 40 to 50. Around round 40, we simulate
a rerouting event by adding a 30ms delay from R1 to R2. The algorithm
detects the situation in fig. 5.3 and reacts according to the algorithm 1 line
31 and thus increases the ∆̃FOWD. Notice that no backward estimation
is plotted at that time, which means the algorithm has not converged yet

138 CHAPTER 5. OWD DIFFERENCE ESTIMATION

and that the current estimation sets only a minimum. In the range 40
to 50, where the FFS is different from the BFS, rounds last as much as
max(RTTF SS , ∆̃FOWD + RTTF F S) which should be close to the RTT1.
Thus the algorithm converged to the new ∆FOWD in ten RTTs. While
our parameters adopted a conservative approach (starting with an estima-
tion equal to zero, constant delay between probes), a dichotomic or cubic
approach may allow for a faster convergence.

In fig. 5.9 the estimations are closer to the real OWD than halving
the RTT - when they exist. For instance in round 60, the forward delay
estimation on path one is 10ms more precise. Under low-jitter conditions,
this should be true for all situations where the FFS is the same as the
Backward Fast Subflow (BFS), else it depends on the per-direction delay
difference between subflows. The more difference there is, the more gain the
algorithm should exhibit compared to halving the RTT.

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

T
im

e
 (

m
s)

Round number

Real forward difference in OWD
Real reverse difference in OWD

Estimated forward difference in OWD
Estimated reverse difference in OWD

Figure 5.8: Real and estimated ∆OWDs (forward and backward).
.

5.4.2 Discussion

Our original algorithm causes sporadic packet arrival disorder in order to
deduce the ∆̃FOWD. This information then allows the sender to prevent
constant packet arrival disorder. This may look contradictory at first but

5.5. SUMMARY 139

 30

 40

 50

 60

 70

 80

 90

 100

-20 -10 0 10 20 30 40 50 60 70 80

T
im

e
 (

m
s)

Round number

Real forward OWD 1
Estimated forward OWD 1

Half RTT on path 1
Real forward OWD 2

Estimated forward OWD 2
Half RTT on path 2

Figure 5.9: Real and estimated forward OWDs.

the packet arrival disorder provoked by the algorithm should occur less fre-
quently then it would without the algorithm, thus proving beneficial in the
long run. To mitigate the consequences of packet arrival disorder, one can
envision the use of an MPTCP SACK option.

If we consider the adoption of such a scheme in MPTCP, the standard as
well as its Linux implementation, integrating the described algorithm would
require no compatibility breaking change since the linux implementation
already acknowledges each packet. Pacing requires the sender to send pack-
ets according to a precise timing, which may be impaired by the numerous
batching mechanisms in place at the different layers, be it Nagle algorithm
or TCP segmentation offload. This may represent an additional concern.

5.5 Summary

More precision in the estimation of OWDs could improve the performance
of various protocols. While single path protocols are limited in options
to improve and use that estimation, multipath protocols that require an
even more correct estimation hopefully provide additional possibilities. We
devised a novel mechanism which has few requirements and tested it against
asymmetric delays in the network simulator NS-3. While the algorithm was

140 CHAPTER 5. OWD DIFFERENCE ESTIMATION

applied to two subflows, it could run with more subflows, either running
on appropriate pairs of subflows or sending concurrent probes on several
subflows.

Chapter 6

Window Management and
Buffer Dimensioning for
Multipath TCP

MPTCP might improve throughput provided that the TCP buffers are big
enough, otherwise the opposite may happen. When facing a situation with
many paths available, it might be efficient for MPTCP not to use all of them
to prevent throughput degradation because of HoL. How many paths should
be used remains an open question. Depending on the use case, it may be
important to keep a path alive for confidentiality reasons or because of the
financial cost associated with transmitting over the other paths.

We document the mptcpnumerics tool we designed with two roles in
mind: first to compute a new MPTCP buffer size depending on the traffic,
scheduling and topology. The second role consists in, considering a fixed
buffer size, computing the traffic distribution that maximizes the throughput
and respect user wishes, e.g., a user can request mptcpnumerics to send a
maximum (or a minimum) 40% of the data over a specific subflow1.

6.1 Introduction

In our era of rich network topologies and multihomed devices (e.g., WiFi/Eth-
ernet for laptops or WiFi/cellular for smartphones), sending data concur-
rently on multiple paths has become reasonable from a hardware perspective.

1The contents presented in this chapter have been published in [299].

141

142 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

Concurrent multipath transmission promises to make better use of the
network, increasing the throughput via bandwidth aggregation. It inciden-
tally also allows for smoother device mobility as when one path breaks,
instead of losing and creating a brand new connection, the communication
can keep going on an alternate path. However, the throughput aggregation
expectation has to be re-considered as concurrent multipath transmissions
traditionally generate packet reordering (besides possible fairness problems).

MPTCP being backward compatible with TCP, the receiver can de-
liver only in-order data to the application. Asymmetry in the RTTs among
the paths or losses can thus easily provoke HoL, especially in case of small
buffers. From a protocol perspective, these problems appear to be best
solved at the transport or application layers since these layers have the
most information about RTTs, and possibly also about the traffic pattern
as explained in [300]. On the other hand, SCTP is a powerful protocol that
raised to provide applications with a specific API to use multiple paths; it
is available in the vanilla linux kernel but requires to update applications as
well as middleboxes that would block by default new protocols. These diffi-
culties seem to have impeded SCTP development so far. MPTCP, instead,
takes a backward compatible approach in which applications do not need to
be rewritten to benefit from MPTCP. In fact, MPTCP appears as a legacy
TCP socket and uses TCP options to inform the distant host to enable
MPTCP, if available, otherwise the connection falls back to legacy TCP. In
case MPTCP is in use, it can be considered as a shim layer protocol between
the application and the (possibly several) underlying TCP connections, also
called subflows. Nevertheless, contrary to SCTP, MPTCP cannot disable
in-order delivery of data; combined with a small enough buffer, this can de-
grade the communication to a lower goodput than a legacy TCP connection
as shown in [209].

Hence we can summarize several challenges faced by multipath transport
protocols:

1. First of all, there is a fairness problem - how should MPTCP users
compete with plain TCP users? Should the congestion control fake a
single TCP connection over the complete set of subflows, or on sets of
subflows sharing a bottleneck (as in [216])?

2. Within an unmodified application, the transport layer does not know
the traffic pattern or profile. This makes some optimization difficult,

6.1. INTRODUCTION 143

for instance for short lived communications, establishing additional
subflows might end up as a superfluous overhead as the data trans-
mission may end before or short the handshake completion.

3. As mentioned previously, the MPTCP receiver has to deliver in-order
data to the application. Depending on the network configuration,
concurrent multipath communication can generate out of order packet
arrival (due to heterogeneous RTTs for instance) and as such generate
HoL, thus resulting in decreased throughput.

4. The previous point limits the number of subflows an MPTCP connec-
tion is capable of effectively using. This is even more true if you take
into consideration RTOs: for the MPTCP connection to run at full
speed during an RTO, it means the receive buffer should be as large
as to contain the Bandwidth Delay-Product (BDP) of each subflow for
the duration of the RTO + one RTT as explained in [224].

Some of the previously mentioned challenges have full or partial solu-
tions. The fairness issue has been refereed by the MPTCP working group
in favor of running backward compatible congestion control on the full set
of subflows. The traffic pattern can be characterized using a foreign system
(e.g., doing a lookup on TCP ports and/or destination ips as in [262]). Even
in an ideal situation where the previous problems are solved, with a high
diversity of available paths, some challenges remain, for instance how to
learn or infer the degree of path diversity (a potential solution is to consult
a network oracle with more information as in [213]).

MPTCP opens up several new scenarios that might benefit the user. For
instance, for security or network cost reasons, an application may want to
spread the load evenly or in an arbitrary way over all subflows, hence re-
gardless of subflow quality, or trading performance with cost (as suggested
in [230]). We thus developed a tool that can help arbitrating some of the
previous questions, more precisely how to size buffers to withstand a RTO,
i.e., to continue to send new data without HoL? The tool can also com-
pute congestion windows that maximize the throughput under some user
constraints (e.g., to better split the load).

In the following, we first present the tool section 6.2, and we then present
the results in in section 6.3. Section 6.4 discusses its current limitations.

144 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

6.2 Presentation of can compute optimal conges-
tion windows for a specific connection

MPTCP can be seen as a shim layer between the application and TCP con-
nections that is enabled only if both hosts support MPTCP, otherwise the
communication falls back to legacy TCP. Once the first TCP connection
is established and both hosts acknowledge that MPTCP options are not
blocked by the network, it is possible for the MPTCP stack to open addi-
tional connections called “subflows” (typically a full-mesh between the client
and the server IP addresses). Hosts exchange MPTCP signaling through
TCP options.

The more subflows, the better it shall be in terms of path diversity,
however too many subflows increase the likelihood of packet arrival disorder
and consequently HoL. Thus in some situations, it may be wise to limit the
number of subflows actually in use (they can remain as backup subflows),
ideally keeping the best subflows. A subflow can be better than the others
for various reasons: it can exhibit a good BDP or because it enhances the
path diversity (for instance a user might consider that a cellular subflow is
less likely to share nodes along its path with its wired subflow than with a
WiFi subflow).

When dealing with a wide choice of subflows to schedule data to, it can be
interesting to have a tool to help refereeing such trade offs. mptcpnumerics
is such a tool; it accepts as inputs a scheduler, a network configuration along
with some constraints added by the user.

The network configuration input gives the size of the send and receive
buffers, a description of each subflow in terms of OWDs, MSS, etc as shown
in listing 1. There are currently three greedy schedulers available - they
send data on a subflow as soon as possible, and their behavior differ in the
way they sort subflows during the simulation setup (based on the OWD for
instance). The source code for mptcpnumerics is available at [301].

mptcpnumerics works under two different modes:

1. The first mode advises a buffer size to accommodate the MPTCP flow
control constraints and can help to parameterize its operating system
to maximize the MPTCP throughput. Optionally the user can ask the
program to cap the maximum congestion window so that a RTO does
not trigger a HoL.

6.2. PRESENTATION OF CAN COMPUTE OPTIMAL CONGESTION WINDOWS FOR A
SPECIFIC CONNECTION 145

Figure 6.1: An overall run of the mptcpnumerics program.

2. The second mode computes the congestion window that allows for
a maximum goodput within the boundaries the different user con-
straints, given the size of the receive buffer. For an instance, a user
may suggest that a subflow contributes to 40% of the throughput.

The two modes are detailed in section 6.3.
An example of a program run is pictured in fig. 6.1.
Ideally such values could be computed in closed form formulas but this

appears challenging due to the non-linear behavior of the window and the
multiple features to take into account.

On the other hand, implementations such as [227] or time discrete sim-
ulators such as [302] just react to events and do not anticipate values for
the congestion windows. mptcpnumericscan help an underlying MPTCP
stack to schedule the data stream depending on the congestion window tar-
gets computed. To achieve this, mptcpnumerics makes a few hypotheses
that are presented in the next section.

146 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

6.2.1 Implementation

mptcpnumerics is a minimal discrete event simulator written in python,
just enough to be able to simulate TCP flow control, packet acknowledgment
and out of order arrival.

It loads the network setup via a JavaScript Object Notation (JSON)
configuration file which contains the size of the receive buffer, a description
of each subflow in terms of OWDs, MSS as shown in listing 1. The user
can then interactively add several constraints such as limiting the maximum
congestion window on a subflow or on the contrary make sure a subflow is
used via setting a minimum window.

mptcpnumerics is not meant to replace discrete time simulators such
as [302]: its objective is to foresee a coarse view of what would happen in
a nominal state so as to help the MPTCP stack prioritize subflows over
others (schedule more often or use a more aggressive window growth). The
simulator in [302] only reacts to events without trying to establish a strategy
beforehand. In the MPTCP context, capping the share of some subflows can
prove rewarding in the long run as it allows the congestion control to be more
aggressive on the preferred subflows.

The objective of the simulator is to look for the desired state of the
system in a situation where the hosts are buffer limited rather than net-
work limited, i.e., there are no losses due to congestion and the congestion
windows are capped because of buffer constraints. As such the simulator
does not simulate TCP window growth and congestion control issues are
not taken into consideration. Subflows do not experience losses except when
enforced to simulate a RTO event. As in [304], we suppose that windows
are sent in rounds and that in-order packets are forwarded immediately to
the application. When applied to MPTCP, it implies that the transmission
of a subflow window must be negligible compared to any of the OWD. In
order to keep these hypotheses reasonable, the simulation duration is short
and consists of the least common multiple between RTTs. When a RTO is
simulated, the minimum simulation duration is set to RTO + RTT of the
subflow experiencing the timeout.

It mostly relies on two open source Python libraries:

• SymPy [305] is a library for symbolic mathematics, which allows us to
generate flow control constraints as well as user constraints without
any concrete values.

6.3. RUNNING MODES AND RESULTS 147

• pulp [306] is a linear programming modeler that can delegate the prob-
lem to several linear programming solvers such as cplex 2, glpk 3, Cbc
(Coin-or branch and cut) [307].

As the number of constraints is limited, the performance of the different
solvers should not be relevant hence we chose to rely on the default one
(Cbc). Indeed the number of possible subflows on Linux is currently limited
to eight and the simulation needs only to be updated when a parameter
referenced in Table 6.1 significantly changes (e.g., the measured RTT on a
path).

One difficulty we met is that SymPy and pulp variables are not com-
patible with one another, the program has to convert SymPy expressions to
pulp expressions, mapping each variable to its twin in the other library.

6.3 Running modes and Results

mptcpnumerics can run with two different objectives: in the first mode
it minimizes the buffer, while in the second mode it maximizes the esti-
mated throughput, constrained by subflow-specific policies. Depending on
the mode, certain values of listing 1 are ignored and replaced with a more
precise mathematical notation resumed in table 6.1. Parameters and vari-
able are presented in table 6.1.

6.3.1 Minimize the Multipath TCP buffer size

The official guidelines (see [211]) recommend to use a buffer γ of size:

γ ≥ 2
N∑
i

BWi ∗max
i
RTTi (6.1)

to deal with fast retransmits (hence the factor ‘2 ’), N being the number
of subflows and BWi the bandwidth of the subflow i. Similarly, to prevent
HoL one needs:

γ ≥
N∑
i

BWi ∗max
i
RTOi (6.2)

2http://www.cplex.com/
3http://www.gnu.org/software/glpk/glpk.html

http://www.cplex.com/
http://www.gnu.org/software/glpk/glpk.html

148 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

An RTO is defined in the TCP RFC793 [308] as:

RTTV AR = (1− β) ∗ rttvar′ + β|srtt− rtt|

SRTT = (1− α) ∗ SRTT ′ + α ∗RTT

RTO = max(SRTT + 4 ∗RTTV ar,RTOmin)

The recommended values in Jacobson [309] for α and β are respectively 0.125
and 0.25 with RTOmin default is of 200ms on linux. The previous constraint
can end up requiring a huge buffer to handle the worst case of a bulk transfer
but for burstier traffic patterns, it might possible to run without HoL with
smaller buffers, especially in lossless networks. The buffer upper bound then
depends on the scheduling and the various TCP options in use. Requiring
a smaller buffer is desirable on constrained devices such as sensors or hand-
held devices. Even for a server, using smaller buffers might allow to accepts
more connections.

In this mode, mptcpnumerics helps to size the buffers depending on the
scheduler and the topology. We describe the expected inputs and outputs
of the program in fig. 6.2. First, the program needs a configuration similar
to listing 1, from which it discards the rcv_buffer and send_buffer pa-
rameters since these are the values it is meant to compute. The parameters
“cwnd” are used as the maximum congestion windows wmax

i and “mss” as
mssi in ??. In practice, the maximum congestion window value could be
set to the maximum value witnessed during the subflow existence for exam-
ple. The second optional input enforces a loss on a specific subflow. Under
our assumptions, this is equivalent to losing the whole subflow window and
triggers a RTO. This allows to find the buffer size to accommodate a RTO
on a specific subflow. It is thus possible to find the subflow most likely to
trigger HoL and discard it from the pool of active subflows.

minγ
∀i ∈ [0;N]

mssi · cwndmax
i ≤γ −

N∑
j=1

∑
p∈P j(t)

1inflight(p) ·mssj · cwndmax
j

(6.3)

In particular, 1inflight(p) is a boolean parameters that holds 1 if the
packet p ∈ P i(t) is in flight (i.e., sent but unacknowledged).

6.3. RUNNING MODES AND RESULTS 149

The optimization problem is solved at time d, d being the duration of
the simulation during which constraints are generated.

Thus we run our program on three different network configurations: the
first one with 2 subflows, the second with 3 subflows and the last with
6 subflows. The subflows have the same congestion window set to 20 MSS
and the same RTT of 40ms. Only the repartition of the RTT differs between
the forward and the backward OWDs such that owdforward + owdbackward =
RTT . Each of these configurations is then run against three different basic
schedulers:

• the increasing (‘Inc.’) scheduler sorts subflows according to their for-
ward OWD before sending data. Notwithstanding the variance in
delay, it means that the data arrives in order and can be acknowl-
edged immediately, then passed to the upper application thus freeing
the receive buffer.

• the decreasing (‘Dec.’) scheduler does the opposite, i.e., it sorts sub-
flows from the biggest to the lowest forward OWD. It exhibits the
worse results as packets systematically arrive in disorder: the buffer
can only be freed with the last packet.

• the default scheduler just forwards data on the subflows in the order
they appear in the configuration file. Its performance is in-between
the two others.

Figure 6.3 reports the results of the simulation. The recommended
buffers for fast retransmit (Eq. 6.1) and RTO (Eq. 6.2) situations (respec-
tively ‘FR’ and ‘RTO’ in fig. 6.3) are plotted for reference (they are not
directly comparable with the previous results as they take into account po-
tential losses but, even so, lower bounds are possible if the application does
not transmit continuously). We can observe that the difference between the
Inc. and Dec. matches the size of the out of order windows. In the ‘2 sub-
flow’simulation, using Dec. doubles the required size compared to the Inc.
scheduler because subflow windows are equal. These results show the im-
portance of taking OWDs into consideration during the scheduling process.
Most schemes rely on the RTT because OWDs are difficult to obtain and
less reliable [266], but even a difference between OWDs is enough to help
schedule packets for in order arrival.

150 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

Figure 6.2: Inputs and outputs for the buffer computation program. Dotted
frames are optional constraints.

Figure 6.3: Required buffer sizes in number of MSS with different schedulers
(Inc. stands for Increasing scheduler, Dec. for Decreasing scheduler, and
‘Manual’ means the subflows are used in file order).

6.3. RUNNING MODES AND RESULTS 151

6.3.2 Maximize the estimated throughput

Contrary to the previous mode, in the following mode buffer sizes are fixed.
The objective is to compute what could be optimal congestion windows for
an MPTCP connection in congestion avoidance mode.

Imposing constraints on some subflows to prevent HoL has already been
used in the literature: for instance in [310], the authors propose an online
scheduler that computes if there is enough free buffer to account for out of
order packets if such subflow is used. An alternate approach (for SCTP) is
to keep per subflow buffers [311].

Compared to the previous examples, we add some constraints to force
traffic on otherwise discarded subflows, to improve the supposedly path di-
versity, which can be interesting from a security point of view. Alternatively
it can be interesting for a user to limit the throughput of a well-performing
subflow in case transmitting on this subflow represents some cost for the
user (energy or financial cost, ideally MPTCP should allow for [230]).

We describe the expected inputs and outputs of the program in fig. 6.4.
The first two options are the same as in fig. 6.2. The inputs (3) and (4)
allows respectively to set the αi and βi to impose restrictions on subflow i

contribution. First, the program needs a configuration similar to listing 1,
then it accepts an optional flag to enforce a loss on a specific subflow.

Once the MPTCP stack recovers the target congestion windows, it can
create different sets as is done in OLIA [4]. Legacy OLIA sorts subflows into
different sets, and adapts the congestion control aggressiveness according to
the set. In our case, once a subflow reaches its target congestion window, its
aggressiveness could be reduced or even capped in favor of other subflows
whose congestion windows have not yet reached their optimal value.

152 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

Table 6.1: Parameter and variable summary.
Variable Description
T ∈ N The global throughput of the connection.
Ti ∈ N The throughput of the subflow i.

γ ∈ N
The buffer size common to both hosts. In the
buffer mode, it is a variable to minimize.

Parameter Description
N ∈ N The number of subflows

αi ∈ [0; 1] Let the user limit subflow i throughput.

βi ∈ [0; 1] Let the user enforce a minimal throughput contri-
bution from subflow i.

ni ∈ N
The number of acknowledged windows on subflow
i during the simulation.

mssi ∈ N
The MSS on subflow i. Always set to one in the
experiments, hence the throughput can be read as
a number of packets.

cwndmax
i ∈ N

The maximum window available on subflow i. Its
value is read from the field “cwnd ”as can be seen
in the configuration file in listing 1. In number of
MSS.

γ ∈ N
The buffer size common to both hosts. In the
congestion window mode, it is read from the con-
figuration file.

P i(t) The chronological set of packets pi sent on subflow
i before time t.

1inflight(p) boolean value that holds 1 if the packet p ∈ P i(t)
is in flight (i.e., sent but unacknowledged), else 0.

6.3. RUNNING MODES AND RESULTS 153

max cwndi
T

T =
N∑

i=1
Ti

∀i ∈ [0, N] Ti =ni · cwndi ·mssi

∀i ∈ [0;N] Ti ≤αi · T

∀i ∈ [0;N] Ti ≥βi ∗ T

∀i ∈ [0;N] 0 ≤ cwndi ≤cwndmax
i

∀i ∈ [0;N] mssi · cwndi ≤γ −
N∑

j=1

∑
p∈P j(t)

1inflight(p) ·mssj · cwndj

(6.4)

Figure 6.4: Inputs and outputs for the congestion window computation pro-
gram. Dotted frames represent optional constraints.

In fig. 6.5, we compare the outcome of the program in two network
configurations and with different constraints;

• Simulations 1, 2 and 3 are done with the same configuration of listing 1,
which consists of 2 subflows, one slow subflow with twice the RTT of
the slower subflow. The buffer sizes are fixed, as well as the maximum
congestion window on each subflow. In simulation one without any
constraints, we see that only the first subflow is used. In simulation 2,
we added a constraint so that the contribution of the first subflow does
not exceed 40% of the total throughput. As it is the best performing
subflow, the limit of 40% is reached and mechanically the second sub-
flow contributes for 60% of the total MPTCP throughput. We notice
that the global throughput suffers a net loss. In simulation 3, we this

154 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

Figure 6.5: Global throughput right-most bar (MSS/ms) preceded by sub-
flow contributions to this throughput in percentage.

time set a minimum contribution of 50% for subflow 2. The results
are pretty similar to simulation 2.

• In simulations 4 and 5, we use a 4-subflow topology with the second
subflow with a higher maximum congestion window. In simulation 4,
we see that this subflow contributes more than the others to the global
throughput. In simulation 5, we request a minimal contribution of
20% for the first and third subflow. The global throughput does not
change but the traffic is more spread on these 2 subflows compared to
simulation 4.

6.4 Limitations and future work

In this section we describe how mptcpnumerics can be further improved.

6.4.1 Addition of new constraints

In [310], the authors take into account that applications are not solely about
bulk transfer but can also be latency sensitive, as such they propose a con-
straint delay (static or dynamic) that discards a subflow from the scheduling

6.4. LIMITATIONS AND FUTURE WORK 155

process even when this subflow would not cause HoL.

6.4.2 Support of proposed MPTCP features

Any technique related to alleviate the impact of RTOs is likely to dramati-
cally increase the worst case performance as it is the case with opportunistic
retransmission scheme [102]. When a subflow suffers from a Transmission-
Induced Sender Buffer Blocking (see [311]), rather than waiting for the ac-
knowledgments on the slow paths, it reinjects the unacknowledged data with
the hope of freeing the sending window sooner. Non-Renegotiable Selective
Acknowledgments (NR-SACK) [272] is also an interesting feature to help
alleviating the sender blocking that could be added.

6.4.3 Integration with an MPTCP stack

Eventually, mptcpnumerics should be able to communicate with a real
stack. While the buffer mode can be used offline to compute in advance
the required buffer size, the congestion window mode is best run online as
network characteristics such as RTTs or loss rates can evolve during the
connection; even subflows can be created or deleted, especially in mobility
scenarios. To accommodate an online scenario, our program would need to
learn from the underlying MPTCP stack the network context (number of
subflows, RTTs), do its computation and then return the per subflow target
windows. The interface between user-space and kernel-space is the netlink
interface. An easier path might be first to interface mptcpnumerics with
the user-space simulator [302], as it allows to use user-space utilities.

6.4.4 More evolved trade offs

In our previous scenarios, we would emphasize to force traffic over other-
wise disabled subflows to improve the path diversity or to reduce an overall
cost. These constraints are explicitly set on a subflow basis but a friendlier
approach could rely on an utility framework or let the user set a thresh-
old, for instance, the user could allow a decrease of 20% of the anticipated
throughput to better spread the traffic.

156 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

6.4.5 Taking into account the RTT variance

A variance in RTT can generate further delay in the receive buffer because
of out of order packets, i.e., a higher variance in RTT leads to worse worst
case situations. We should also be able to set a different send and receive
buffer size so that schedulers can take this difference into account to decide
to pace packet transmission (if the sender buffer is bigger than the receive
buffer).

6.5 Summary

We created a program that can assist a MPTCP stack in realizing more
elaborated scenarios than just looking at increasing throughput. Our pro-
gram, called mptcpnumerics, is also capable of providing lower limits for
the buffer size taking into account scheduling possibilities. It makes a few
strong hypotheses that can be considered reasonable in respect to the goal
of the program, i.e., to provide targets for congestion windows. We plan to
interface it with the NS-3 MPTCP simulator [302] to measure how accurate
our estimations can be, despite the model approximations.

6.5. SUMMARY 157

1 {
2 "name": "mytopology",
3 "sender": {
4 "snd_buffer": 40,
5 "capabilities": ["NR-SACK"]
6 },
7 "receiver": {
8 "rcv_buffer": 40,
9 "capabilities": []

10 },
11 "subflows": {
12 "subflow0":
13 {
14 "cwnd": 20,
15 "mss": 1,
16 "var": 10,
17 "fowd": 19,
18 "bowd": 20
19 },
20 "subflow1":
21 {
22 "cwnd": 20,
23 "mss": 1,
24 "var": 10,
25 "fowd": 20,
26 "bowd": 20
27 }
28 }
29 }

Listing 1: A typical network configuration file (JSON format [303]) as used
in fig. 6.3.

158 CHAPTER 6. WINDOW AND BUFFER DIMENSIONING FOR MPTCP

Chapter 7

MPTCP in NS-3:
implementation and
evaluation

When working on the topic described in Chapters 4 and 5, we realized how
long and difficult it could be to prepare an experiment and then interpret
the results without any tool understanding the MPTCP protocol. We would
have liked to analyze and plot some metrics such as the OWD or Data Se-
quence Number (DSN) inter-arrival durations, both inter and intra subflows
but we were unable to do it in a straightforward manner.

This motivated us to look into ways to ease the analysis of MPTCP
traffic as well as ways to speed up the prototyping phase1.

7.1 Introduction

The MPTCP technology being still recent, the related software ecosystem
used to be scarce and overall still is. All the automation expected from the
environment (for instance the Operating System (OS)) - such as routing
tables autoconfiguration to leverage all interfaces - is non-existent, and to
our knowledge still is.

Likewise when confronted with trace analysis, the packet analyzer wire-
shark would only translate the MPTCP bytes to a human readable string:
the very basic operation of mapping TCP subflows to their respective MPTCP

1The contents presented in this chapter have been exposed in [302].

159

160 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

connections remained unavailable.

The lack of support is consubstantial to innovative technologies. In the
case of communication protocols though, the burden is made true that even
if you tweak positively your environment, the procedure has to be replicated
over the communicating nodes. Industry has started relying on tools such
as 2, Chef, Ansible 3, Salt 4 etc. . . which require to setup installation scripts
once to automate deployment. These solutions profitability grow with the
scale of the deployment. As for typical researchers whose experiments typi-
cally concern pairs of host, the gain is hypothetical.

These shortcomings make MPTCP experimentation very costly as we
witnessed first hand during our experimentations in Section 4.5.

Consequently developing features and testing features for the MPTCP
linux kernel proved time consuming. Hence we decided to rely on existing
MPTCP models for discrete time simulators for our experiments as it allows
to run reproducible self-contained experiments. While experimenting and
modifying with the most complete available implementation at the time, we
realized that many aspects of the protocol were missing and that the current
architecture would not allow for wide adoption of the implementation, which
we see as critical for a software to improve and develop. Thus we ended up
spending considerably more time than anticipated on the implementation.
In a second time, we found another tool called DCE that provided an in-
teresting middle ground between the solutions, i.e., the ability to run the
proved linux implementation in a discrete time simulator. We decided to ex-
ploit this to assess our new model. Towards the end of the PhD, we learned
of yet another promising simulation technique to bridge the gap between
discrete time simulations and real hardware experimentation.

Our goal is to allow researchers develop and evaluate new features of
MPTCP using our simulator much faster than they would with a kernel
implementation, hence boosting MPTCP research.

In Section 7.2, we introduce different concepts like simulators and testbeds
with a few chosen examples of interest.

2www.puppetlabs.com.
3www.ansible.com.
4www.saltstack.com.

www.puppetlabs.com
www.ansible.com
www.saltstack.com

7.2. SIMULATION FRAMEWORKS AND TESTBEDS 161

7.2 Simulation frameworks and testbeds

As we investigated frameworks that we could use for MPTCP simulations,
we discovered a rich diversity of available tools, each software filling a niche.
Commonly used platforms in networking systems research include simula-
tors, testbeds, and emulators.

Testbeds are in general a shared infrastructure (such as PlanetLab [312]
or GENI [313]) which allow to engage experiments on real hardware but are
expansive to maintain and in general with an uneasy access.

There are two main aspects to take into consideration:

• Functional realism: the scenario relies on the same functionalities im-
plemented in real hardware and can execute the exact same code.
Functional realism narrows the gap between emulation/simulation and
real deployment.

• Timing realism: The timing behavior of the system must be close
enough to the behavior of deployed hardware such that the researchers
should reach the same conclusions.

There are other more prosaic characteristics to consider such as ease of
use.

Realtime simulators are simulators that can run at the same rate as the
actual "wall clock" time. For instance, the real-time simulation of a ten
minute transfer runs for ten minutes in the real world.

7.2.1 Mininet

Mininet [314]5 is an emulator that leverages the so-called linux “contain-
ers”to create virtual networks, hundreds of virtual nodes running real code
within a real linux kernel on a single machine. Linux containers, similarly
to Berkeley Software Distribution (BSD) jails, provide a lightweight form of
OS virtualization: the creation of virtual bridges, virtual filesystems, etc. . . is
thus possible with a limited cost. Mininet exhibits functional realism as it
runs unmodified applications.

The main problem with emulators such as Mininet concerns timing re-
alism: even if OS virtualization lowers the cost compared to traditional

5http://mininet.org/.

http://mininet.org/

162 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

virtualization, it still exists and it is difficult to imagine that a single ma-
chine emulating bulk transfer between hundreds of nodes can reach the same
results as a hundreds machines. Nevertheless for simpler scenarios, Mininet
Hi-Fi [315] mitigates some of the problems with the original Mininet via
the addition of resource isolation and monitoring. This is accomplished via
the linux ‘cgroups’that allow to limit the Central Processing Unit (CPU)
consumption on a per virtual node basis. The linux tool tc is also used to
control network links characteristics such as loss, variance, throughput.

The claimed objective of the Mininet authors is to demonstrate that
network research can be made repeatable, ideally in a simple click (to launch
the Mininet script). In order to polish their emulator along these guidelines,
the Mininet research group asked a class to reproduce published results with
Mininet 6. While it is successful at being a one-click launcher for research
experiments, there are still reports of unrealistic results under high-load
experiments as reported in [316], [317].

7.2.2 Discrete time event-driven simulations

Discrete time event-based simulators first the simulator selects the next
available event, then it updates its internal counter (i.e., clock) to the sched-
uled time of the selected event. Compared with realtime simulators which
increase their counter with a constant step, this approach allows to skip
periods of time where nothing happens to speed up the simulation run. It
also provides - per construction - frequency and time synchronization.

Presentation of NS-3

NS-3 [297] is the successor of NS-2 a popular network simulator in the re-
search community, which organic development threatened the simulation
quality. NS-3 success is likely due to its General Public License (GPL) and
also because the technical base as well and the support team are trustwor-
thy. It is best described as a C++ discrete time simulator, i.e. events are
scheduled in the simulator time and once all events at the specific time are
processed, the simulator updates the current time with the time of the next
scheduled events.

6https://reproducingnetworkresearch.wordpress.com/.

https://reproducingnetworkresearch.wordpress.com/

7.2. SIMULATION FRAMEWORKS AND TESTBEDS 163

There are many NS-3 extensions, some of them providing interesting new
features:

• [318] allows to connect Mininet nodes via NS-3 links, providing more
accurate traffic patterns

• Network Simulation Cradle (NSC) [319] extracts the network stack
from OSs like FreeBSD so that it can used in the simulator.

It allows the simulator clock to be independent from the wall clock, most of
the times faster.

DCE: a bridge between simulators and emulators

DCE is a NS-3 extension that allows to load applications compiled with
specific options within the NS-3 environment. The advantage is that the
simulation runs in discrete time and thus provides results independent of
the host CPU, i.e., perfectly equal whatever the processing power and even
across hosts.

More precisely a binary executed by DCE perceives time and space of
NS-3, rather than the real environment.

To do this, DCE does a job equivalent to an OS like:

• DCE loads in memory the code and data of executable,

• DCE plays the role of intermediary between the executable and the
environment through the systems functions called by executables,

• DCE manages and monitors the execution of processes and handles
liberate the memory and close open files when the stop process.

• DCE manages the scheduling of the various virtual processes and
threads.

C programs typically rely on a few C libraries such as:

• the C standard library also called ‘libc‘ for system related operations;
for instance memory-related functions like malloc, free. . .)

• libm for maths operations ("ceil", "floor" ...)

• libpthread to manage Portable Operating System Interface (POSIX)
threads ("pthread_create")

164 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

DCE generates shim libraries which aim at providing the same C symbols
(function names). Some of these symbols are just wrappers for the original
function while other functions are implemented so that programs can work
in the simulator. As an example, it makes sense in a discrete time simulators
to override all functions related to time management such as gettimeofday
or setitimer.

Even more interesting, DCE is capable of running a fork of the linux
kernel called LibOS [320] which once combined with the MPTCP kernel al-
lows to run a linux MPTCP kernel in NS-3. This is this precise feature we
leverage in Section 7.4 in order to compare fairly our implementation to the
linux one. DCE proposes an interesting middle ground between pure limita-
tion and real experimentation. There is still an overhead as some functions
have to be reimplemented, also the official implementation is only compliant
with a specific compiler (GCC) extension which limited the portability and
caused several failures depending on the system. We spent a bit more than
a month to adapt DCE to our platform.

Discussion

Table 7.1: Comparison between experimentation technologies.
Functional Realism Timing realism Ease of debugging Ease of setup

Container emulation
√ √

1 3
DCE

√ √
3 1

VMSimInt [321]
√ √

2 0
NS-3-like simulators

√
3 3

We summarized the current state of the different approaches in Table 7.1.
We ranked the ease of debugging and ease of setup between 0 (harder) and
3 (easier). Though in theory DCE, can run real code, in practice software
often needs to be slightly patched to deal with bugs related to 0-duration
operations (due to the time discrete environment), and recompiled with
specific compiler flags to match DCE expectations. DCE itself is a complex
program reimplementing a virtualization layer but in a way different as
QEMU for instance, as it needs to map NS-3 API to the POSIX standard.
The ease of setup mark for VMSimInt is currently the lowest because the
software itself is not documented, not updated The ease of debugging should
be similar between VMSimInt and container emulation, notwithstanding the
additional possibility ability of VMSimInt to debug kernels without making

7.2. SIMULATION FRAMEWORKS AND TESTBEDS 165

its host crash.

On the one hand, emulators allow for faster transition between in-lab
experiments and real-world experiments. On the other hand, timing realism
is not always guaranteed. Results may be trusted for small scale experiments
but the boundaries defining small scale experiments are not exactly defined.
A practical solution would be for the system to detect when timing realism
is violated and warn the researcher. Yet we do not know of emulators with
such a capability. An interesting approach is to bias the time perceived
by the applications or virtual nodes with a Time Dilation Factor (TDF) in
a technique called time dilution first presented in [322] and then applied
to Mininet in [317]. It allows to trade wallclock time against fidelity, i.e.,
the experiments run longer because with higher fidelity. Advanced emulators
monitor resources such as CPU utilization and can adjust the Time Dilation
Factor (TDF) accordingly.

Discrete time simulators are still popular with the two main contenders
being OMNet++ [323] and NS-3. The functional realism these simulators
lack is partially balanced by the timing realism they achieve and also the
perfect reproducibility. With equal randomization generator parameters,
consecutive runs yield the exact same results which makes it easier for re-
searchers to understand the results. The downside is that you need to pre-
pare two sets of code, one for your simulator and one for the real world
experiment.

Hopefully, there is a clear trend to blend the two approaches. The front
runner of this approach is DCE, an extension to NS-3 which allows to run
real code within NS-3, even a linux kernel. It is the most mature solution
we could find, even with its many shortcomings: code needs to be compiled
with specific options, some programs may need to be - slightly - patched.
An interesting solution similar to DCE with fewer limitations seems to be
VMSimInt: instead of reimplementing the POSIX layer as DCE does, it
delegates the virtualization to a discretized version of QEMU [324]. We are
not aware of any related user apart from its creators but the potential is
real.

The tendency seems to let simulators handle link-level simulations as wifi
or LTE communications since this is unavailable in host OSs and coordinate
the scheduling of packets accordingly in some virtualization layer: original
for DCE or outsourced (QEMU) for VMSimInt.

166 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

More elaborate features can emerge from combining some of these tech-
niques. For instance, a smartphone user may enable both LTE and WiFi to
benefit from the mobility advantage and at the same time limit the cellular
throughput to save some battery or because WiFi is actually cheaper. Some
other user may choose to trade some of the aggregation benefit in exchange
for higher confidentiality.

Information such as the RTT or the packet sequence number are critical
to mitigate these problems and are already available at the transport layer.
While the application layer could provide a similar or even better service,
having a standard multipath transport protocol allows to mutualize the
knowledge and should ease multipath communications deployment.

7.3 An MPTCP implementation in NS-3

A few MPTCP implementations already exist, some used in production
environments such as Apple’s voice recognition system Siri. Among the im-
plementations, Linux7 is the oldest one with some impressive achievements
(Fastest TCP connection [227]). Work is also done to improve the MPTCP
support on other operating systems such as Solaris8 and FreeBSD9, Hence
asking why developing a MPTCP simulator is a legitimate question. In this
section we describe our motivations and the technical aspects of the imple-
mentation. We also present a few tools we developed to ease testing and
analysis of related MPTCP traces.

7.3.1 Why a simulator ?

Simulation traditionally comes handy for two reasons:

1. Running experiments in a simulated testbed allows for faster repro-
ducibility avoiding hardware costs.

2. Focusing on the algorithmic part rather than implementation complex-
ity. Implementation details can have an impact on the overall fidelity

7http://multipath-tcp.org.
8https://mailarchive.ietf.org/arch/msg/multipathtcp/

ugMIu566McQMn8YCju-CTjW9beY.
9http://caia.swin.edu.au/urp/newtcp/mptcp/.

http://multipath-tcp.org
https://mailarchive.ietf.org/arch/msg/multipathtcp/ugMIu566McQMn8YCju-CTjW9beY
https://mailarchive.ietf.org/arch/msg/multipathtcp/ugMIu566McQMn8YCju-CTjW9beY
http://caia.swin.edu.au/urp/newtcp/mptcp/

7.3. AN MPTCP IMPLEMENTATION IN NS-3 167

Figure 7.1: Implementation structure in NS-3 code.

of the model. Hence being able to compare with a simpler model be-
forehand can help find out if the difference in performance stems from
implementation details or from the algorithm.

Experimenting with MPTCP in the real world can be complex depending
on the scenario. Mobility is a major use case and usually requires access to
LTE and wifi. Not only does it have a cost but LTE is not ubiquitous and
experiments involving wireless channels are time consuming because of the
variability and care their setup require. Other experiments rely on accurate
time measurements (e.g. to measure one-way delays as in [266]), which can
prove challenging in real setups but are straightforward in discrete time
simulators.

Simulations can help find and solve a problem before the real test and
result in a huge time gain. Running an experiment in a time discrete event
simulator such as NS-3 can also be faster than running its real time equiv-
alent.

Point 1) alone does not justify yet another implementation since testing
can also be realized through alternative means. In simple cases, container-
based simulations such as Mininet testbeds can be enough but at higher
throughput, hardware limits (e.g. processor speed) can spoil the results:
switching to discrete time solution such as DCE (see section 7.2.2) makes
sense in that case.

The point 2) can be considered as the stronger motivation, especially
when looking back at the number of use cases described in section 3.5.

168 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

Table 7.2: Comparison between NS-3 MPTCP simulators.
Chihani Kheirkhah Our

Features et al. [325] et al. [326] implement.

Option Partial Partial Full
serialization
Standard Connection Connection Full
compliance phase phase
Backward No No Yes

Compatibility
Ack-aware No No Yes
buffer mgnt
Comparison No No Yes

to OS implem.

Implementing such solutions into current operating systems usually means
adding the features into the kernel. While simulation results may lose fi-
delity compared to a reasonable kernel implementation, we argue that kernel
development complexity can generate bad implementations that can not be
easily verified and may not be representative of expected results/analyti-
cal models. In those cases, developing a simulation model beforehand is
reasonably faster and can help realize problems ahead of time.

As a side effect, we also think the implementation can serve for education
purposes since the model only deals with MPTCP essentials, thus reducing
the learning complexity.

7.3.2 Related work

We found one advertised MPTCP public model developed for NS-2 but NS-2
is an obsolete simulator and the model was lacking in many ways. We have
been able to access two previous MPTCP implementations, [325] and [326],
both done using NS-3 as well. These two implementations are similar in
many aspects and are compared with ours in table 7.2.

Recent developments in NS-3 such as TCP option support and generic
packet serialization in a wire format made it possible for NS-3 to communi-
cate with real stacks. Contrary to previous NS-3 implementations that sup-
port a subset of the options, ours support full (de)serialization of MPTCP
options, which means it can handle a higher variety in options (e.g., 32 and
64 bits encoding for DSNs).

7.3. AN MPTCP IMPLEMENTATION IN NS-3 169

To allow the communication with an external stack such as the linux
one, we also implemented standard compliant connection and closing phases,
which is another differentiating point from [325] and [326]. Thus our imple-
mentation is capable of generating valid tokens based on the sha1 hash of
a random key, and closing a connection requires the sending and acknowl-
edgment of a DSS with the data fin bit. While the implementation is not
robust enough yet to handle all cases, it managed to exchange a file with an
external linux MPTCP stack with the use of DCE as reported hereafter.

Contrary to [325], [326], our implementation is backward compatible
with existing NS-3 TCP scripts, following MPTCP’s spirit. Thus in our
implementation, the connection phase starts with a legacy TCP socket (more
precisely a ’TcpSocketBase’ see fig. 7.1) and only once an MPTCP option
is received it evolves into an MPTCP socket (see ’MpTcpTcpSocketBase’ in
Figure 7.1). This allows for better integration with the general framework,
and adds the additional benefit of allowing the MPTCP connection to fall
back to TCP. Our hope is to be able to upstream this implementation so
that improvements can then be added incrementally: we have started steps
in that direction in January 2016 but this requires many changes to the core
and is particularly hard to iron out details to obtain a consensus on how to
ingrate this work in NS-3.

We also respected an aspect of the specification that could affect the
simulation fidelity, i.e., data can not be removed from the subflow sockets
until it is acknowledged at both the TCP and MPTCP levels.

Finally, our implementation is also the first to our knowledge to be eval-
uated against an operating system stack in comparable conditions as de-
scribed later in section 7.4.

7.3.3 Supported and missing features

The implementation was developed in ns-3.23 while giving care to perfor-
mance and algorithmic aspects. As such, the fallback capabilities (MP_FAIL
option, infinite mapping and checksums) of the protocol have not been im-
plemented with the exception of the initial fallback, when the server does not
answer with an MP_CAPABLE option, i.e. it does not support MPTCP
and the client falls back to legacy TCP. This was made possible by extending
the existing NS-3 code infrastructure; for instance in Figure 7.1, only the
structures starting with “MpTcp ” were added. It also spares some resources

170 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

Table 7.3: List of supported and missing features.
SHA1 support We added an optional SHA1 support in NS-3 to generate valid

MPTCP tokens and initial DSNs. This allows to communicate
with a real stack and also proved necessary for wireshark to be
able to analyze the communication.

Scheduling The fastest RTT and round robin schedulers are available.
Congestion con-
trol

Subflows can be configured to run TCP ones such as NewReno
or LIA.

Mappings As in the standard, data is kept in-buffer as long as the full
mapping is received. This is necessary when checksums are
used, otherwise this can be disabled to forward the data faster.

Subflow handling It is done directly by the application that can choose to adver-
tise/remove/initiate/close a subflow at anytime if it is permit-
ted by the protocol.

Packet
(de)serialization

Packets generated along with MPTCP options can be read-
/written to a wire, allowing an NS-3 MPTCP stack to interact
with other MPTCP stacks, such as a linux one.

Fallback If the server does not answer with an MP_CAPABLE option,
the client falls back to legacy TCP. Other failures are not han-
dled, e.g. infinite mapping or MP_FAIL handling as simulating
these features is of little interest.

Buffer space Buffer space is not shared between subflows, data is replicated
between the subflow and the meta send/receive buffers rather
than moved.

Path manage-
ment

We drifted away from the specifications in order to be able to
identify a subflow specifically, i.e., we associate a subflow id
to the combination of the IP and the TCP port. Nevertheless
the implementation is modular so it is possible to replace the
subflow id allocation with a standard scheme.

during the simulation. Indeed the ability to enable dynamically MPTCP on
a per connection basis means that our implementation works with all the
other TCP scripts. We focused our work on implementing the aspects that
could have an impact on the performance such as how data is freed from
the buffers: MPTCP requires the full mapping to be received before be-
ing able to free the buffer. We established a list of the key features of our
implementation in table 7.3.

Compared to the linux implementation, a major shortcoming of the NS-3
mptcp implementation is the lack of the penalization mechanism reducing
the window of a subflow that blocks the MPTCP window and the oppor-
tunistic retransmission feature. Like the Linux implementation and contrary
to the two previous models, our scheduler follows the object oriented pro-

7.4. EVALUATION 171

gramming principles, i.e., the user can develop and use its own scheduler
without modifying NS-3. This is aligned with our intention to ease testing.

Also contrary to linux that generates DSS mappings just in time to
be able to adapt to network conditions, we designed the scheduler to be
able to delay the decision until the last minute or to create mappings in
advance. Creating mappings in advance has the advantage of being able to
generate mappings that cover several packets. While the throughput gain is
negligible, it can spare some of the scarce TCP option space.

7.4 Evaluation

We chose not to run quantitative tests with the previous NS-3 implementa-
tions since they are based on NS-3 versions that date back from late 2009
for [325] (ns-3.6) and December 2013 for [326] (ns-3.19). This gap in ver-
sions make the practical evaluation a challenge as well as the interpretation
of results as the NS-3 TCP implementation evolved a lot in the meantime.
Conversely, we compare the linux version to our NS-3 stack in a simple but
we believe fair setup. We looked for tools that would allow for seamless test-
ing and analysis between the kernel and NS-3 stacks to lighten the analysis
workload but could not find any. Hence we did some more development to
unify the linux and NS-3 evaluation, leveraging on the standardized “pcap
”format. We first introduce these tools in 7.4.1 and 7.4.2.

7.4.1 Semantic analysis of MPTCP packet captures

As far as MPTCP signaling and data analysis is concerned, there is cur-
rently little choice with only one tool we are aware of: mptcptrace [327].
Mptcptrace is interesting for bulk analysis but we wanted to be able to
look at the packet level to ease debugging. Thus we chose to improve the
MPTCP support of wireshark [226], which specializes in packet-level net-
work protocol analysis. A capture is visible in fig. 7.2. We mainly added
the following features:

• MPTCP connection identification: ability to map TCP subflows to-
gether based on the key and tokens respectively sent in the MP_CAPABLE
and MP_JOIN options.

• Verification of the initial DSN based on the MPTCP key.

172 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

• Display relative DSN, i.e. the first MPTCP sequence number sent
being considered as 0.

• Computation of the latency between the arrival of new data through-
out all subflows.

• Detection of DSS mappings spanning several packets.

• Detected retransmissions across subflows.

We want to construct a data structure so that we can efficiently retrieve
all intervals (i.e., DSS) overlapping another interval or point, to map TCP
sequence numbers to DSNs (valid also for DACKs). Thus we have introduced
augmented interval trees support in wireshark backend. Given a set of n
intervals, queries require O(logn+m) time, with n being the total number of
intervals and m being the number of reported results. Construction requires
O(nlogn) time, and storage requires O(n) space.

Wireshark analyzes packets on the fly, as they are captured, hence in-
stead of being able to count the number of packets beforehand and allocate
the correct amount of memory we build the tree in the worst possible man-
ner as packets mostly arrive in order and force successive rotations in order

Figure 7.2: The new wireshark MPTCP analysis section. Framed in red
some of our additions.

7.4. EVALUATION 173

to balance the tree. Compared to a linked-list, it means the structure con-
struction is more expensive but the search should be faster.

7.4.2 Presentation of mptcpanalyzer

The linux kernel has a mechanism named OR composed of a static reinjection
policy: it retransmits (i.e., reinjects) a segment on another subflow only if
the connection is receive-window limited. This reinjected segment (several
can be reinjected as well) acknowledgment may arrive before the initial one
(because of a loss on the initial subflow or because the reinjections were
made on a faster subflow), thus the sender may receive an ACK with a bigger
advertised window sooner than without the reinjection. As a consequence,
this reduces HoL occurrence in exchange of a little overhead. Reinjections
occur for several reasons: in case of handover, excessive losses over one
subflow or because the Opportunistic Retransmission (OR) [328] kicks in.

Improving the reinjection policy might be one of the most sensible way
to improve MPTCP performance since it does not require any protocol
change and directly addresses the HoL problem with non-negligible gains:
Nikravesh, Guo, Qian, et al. [5] reached an average decrease in the down-
load time of 10% when re-injecting segments on a subflow timeout and when
the receive window exceeded a 75% threshold (chosen empirically). The
paroxysm of reinjection is reached with the redundant scheduler described
in Lopez, Aguado, Pinedo, et al. [329] which duplicates all segments on
all paths to increase reliability. The lack of a tool capable of accurately
analyzing the contribution of each subflow limits the research possibilities.

A better characterization of the different types of buffer blocking could
help choose the previous threshold or devise when to reinject. Adhari, Dreib-
holz, Becke, et al. [311] established the following taxonomy of buffer blocking
issues for SCTP, which also apply to MPTCP:

• Window-Induced Receiver Buffer Blocking corresponds to the phe-
nomenon we just described.

• Reordering-Induced Receiver Buffer Blocking implies that packets re-
main in the receive buffer because they are out-of-order and can not
be forwarded to the application and acknowledged.

• GapAck-Induced Sender Buffer Blocking is related to the Non-Renegotiable
Selective Acknowledgments (NR-SACK) feature: NR-SACK is not

174 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

standardized for MPTCP even though a IETF draft [330] was pro-
posed. GapAck-Induced Sender Buffer Blocking (GSB) occurs when
the sender is send-window limited because of NR-SACK’ed data.

HoL can be a combination of these issues, and in order to investigate the
events, we need ways to detect and visualize them, if possible in a way that
works across OSs. Otherwise it is difficult to compute the contribution of
each subflow to the global throughput as the reinjected bytes would count
twice. Programs working on packet captures (i.e., pcap files) allow such
analysis.

We thus developed a program called mptcpanalyzer [331] to help in
that regard; with MPTCP analysis, automate plotting of various parameters
such as DSNs from pcap files. Contrary to mptcptrace that does both the
analysis and plotting of capture files, mptcpanalyzer leverages as much as
possible the analysis generated by wireshark. As wireshark is a widely
used software, its dissection may be more trustworthy in the long term. As
far as we are aware, there are very few applications that can measure OWDs,
most notably OWAMP (Open source) [332] from the Internet2 project10.
Yet all these applications do active measurements but we are not aware
of any application that can for instance correlate packets of a single TCP
connection, between two packet traces, and compute OWDs.

Passive measurements of OWDs allows to measure the parameters with
real traffic contrary to OWAMP, which generates its own traffic. It would
allow to distinguish useful reinjections from wasted ones as similar anal-
ysis is done by tstat [333] for RTOs. Hence we added this capability in
mptcpanalyzer.

We used mptcpanalyzer to produce the plots presented in the next
section 7.4.3.

7.4.3 Comparison with linux MPTCP on a 2-link topology

We present in the following a few simulations to compare the linux kernel
running in DCE 1.7 to our NS-3 implementation. In order to minimize the
differences due to the environment and for the ease of reproducibility, we
chose to compare the linux and NS-3 MPTCP implementations within the
DCE framework. This means that nodes, routers and links are created by

10http://www.internet2.edu/

http://www.internet2.edu/

7.4. EVALUATION 175

Figure 7.3: The topology used for the simulations. First hop is the 2Mbps
bottleneck, with a variable propagation delay.

NS-3. Every node can be configured with a specific network stack. We
always install linux stacks in the routers.

When running hybrid simulations, i.e. with both MPTCP Linux kernel
and NS-3 stacks, the kernel will drop packets if the checksums are invalid so
NS-3 should be configured to generate them or checksum validation should
be disabled.

The BDP refers to the number of unacknowledged bytes that can be in
flight. It is generally advised to set the BDP higher thanRTT∗bottleneck capacity
to account for queuing delays in both the networks and the hosts. Note that
in this case, as DCE runs in discrete time, kernel operations are virtually
instantaneous if not programmed otherwise so only network latency impact
the RTT. On one path with a bottleneck of 2Mbps and a RTT of 60ms,
the BDP is 120kbits. We run the experiments with LibOS [320] applied
against the linux mptcp kernel v0.89. Moreover:

• Scheduler is set to round robin.

• Number of paths is set to one (Figure 7.4), then two (Figure 7.5).

• Forward and backward one way delays are set to 30ms on each path.

• We launch several runs with different receiver windows.

We ran five seconds iperf2 11 sessions between the two hosts without any
background traffic on the topology of fig. 7.3.

11http://iperf.sourceforge.net/

http://iperf.sourceforge.net/

176 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

Figure 7.4: Results for the single path topology.
The size of the router buffers is the default one for the Linux version 3.X

kernel, i.e., it starts at 87380 bytes up to (with Linux buffer autotuning, it
can go up to 4MB).

On fig. 7.4, we notice that both stacks make the maximum use of the
paths except when it is window limited as for the 10KB case. We can also
notice that the throughput is a little more than the maximum throughput.
We believe it is due to iperf2. Compared to the one path case, we can the
expected doubling in throughput in the two paths case on fig. 7.5 when we
add a path when the window is big enough. It also seems that the NS-3
version is greedier as in the 30KB window.

In order to check the behavior of the scheduler and thanks to mptcp-
analyzer [226], we were able to plot the relative MPTCP sequence numbers
transmitted on every subflow for a 40KB setup. We establish that DSNs
are indeed sent in a round robin manner in both the linux (fig. 7.7) and the
NS-3 cases (fig. 7.6). There are more sequence number for the NS-3 case
because the throughput was higher for that setup.

7.4. EVALUATION 177

Figure 7.5: MPTCP Linux kernel and NS-3 iperf2 throughputs with two
paths.

Figure 7.6: Repartition of sequence numbers across two subflows with the
NS-3 round robin scheduler.

178 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

Figure 7.7: Repartition of sequence numbers across two subflows with the
linux round robin scheduler.
7.4.4 Open Problems

The current buffer handling in NS-3 currently copies data back and forth be-
tween the subflows and the meta socket instead of sharing a pool of memory.
This is the main difference with other implementations and could impact the
simulation fidelity in tight buffer simulations. It is a problem we chose to
notify to the NS-3 development team rather than fixing it ourselves as it
implied many modifications across the NS-3 source code. One promising
solution is NR-SACK [272]; sadly the source is not available and this would
require NS-3 to implement SACK first.

7.5 Summary

We presented the MPTCP protocol and its new implementation in the NS-
3 that conforms to many of the features described by the standard. The
source code is available at https://github.com/lip6-mptcp and seem-
ingly raised interest in the community considering the number of questions
asked. Sharing with the research community also helped in finding and fixing
bugs. We hope our effort will allow to develop new schemes in an easier way
to improve or find new ways of using a multipath communication. MPTCP
represents a subset of how multipath protocols could improve our future

https://github.com/lip6-mptcp

7.5. SUMMARY 179

communications and may represent a bridge between TCP and SCTP for
instance. Indeed some developers may want to modify their application to
better leverage MPTCP features, hopefully instead of doing so via a direct
use of the MPTCP API, they could use the Transport Area Protocol Ser-
vices (TAPS) API to painlessly switch afterwards to possibly more powerful
multipath transport protocols, for instance SCTP.

The profusion of simulation frameworks and emulators results in a lot
of duplicated work. Working with real stacks require an expertise and is
time consuming as it involves low level details annex to the researcher con-
sideration such as kernel workqueues, which explains why researchers may
divert their attention to simpler models such as the ones in typical simu-
lators. Nevertheless results obtained from real measurements are necessary
to validate results obtained from models. Hence any solution that can help
researchers quickly prototype and deploy their solutions is welcome. DCE or
VMSimInt [321] are promising solutions in that regard. Another approach
that is increasingly popular as more and more researchers work on the net-
work stack is to move it from kernel to user space. While this approach
would, there are concerns that it would favor the emergence of greedy con-
gestion controls and endanger the Internet stability 12. Reproducibility is
paramount to good research and the high pace of development of network
stacks may hinder this because of a change in the default configuration for
instance or simply because of an error, hence it seems important to do inter-
version testing for either simulators or kernels. Paasch et al. made a valuable
contribution in applying experimental design [106] to test the Linux stack
over a large combination of configurations (buffer size, delay, loss, etc) with
MPTCP in Mininet. We hope these experiment could be ported to DCE,
which would remove the bias seen for high loads in Mininet and also take
into consideration the kernel version as a parameter.

12https://lwn.net/Articles/691887/.

https://lwn.net/Articles/691887/

180 CHAPTER 7. MPTCP IN NS-3: IMPLEMENTATION AND EVALUATION

Chapter 8

Conclusion and Perspectives

Network research is at the crossroad between different disciplines; mathe-
matics, physics, computer science, politics. Its distributed nature makes
backward compatibility a real challenge leading to suboptimal solutions in
the technical sense. The scientist must reconcile these different approaches
in a perspective similar to engineering. As an example of this irony, MPTCP
was created due to middlebox interference and now, the technology itself has
become the source of new middleboxes in order to benefit better from the
path diversity. In the following, we critically revise our work and highlight
future work that may derive from it.

8.1 Recollections

The initial goal of the thesis was to look for ways to improve cloud ac-
cess with multipath protocols. Upon first analysis, TRILL, LISP, SCTP
and MPTCP appeared as protocols easier to work with, thanks to an open
standardization process at the IETF, contrary to for instance SPB. TRILL
success seemed assured with constructors backing it up and a trusted creator
Radia Perlman; LAN based protocols allowed for local testing and combined
with Cloud environment raise interesting challenges in terms of latency or
scaling but TRILL had no open source implementation (Gandi1 now released
a version to upstream in the Linux kernel). On the other hand, OpenLISP
and LISPmob were available along with MPTCP Linux kernel. Hence we
realized the LISP and MPTCP architecture described in Chapter 4. This

1http://www.gandi.net/

181

http://www.gandi.net/

182 CHAPTER 8. CONCLUSION AND PERSPECTIVES

proved instructive in a sense that it made clear how hard crosslayer ar-
chitectures are and why the concept of different layers was successful. It
became clear that the gain should be high to justify a crosslayer implemen-
tation, and that it would be possible only in highly skilled environments.
The LISP infrastructure was not very stable and this made our experiments
difficult. Hopefully our LISP router was co-hosted with client hence we
could to some extent understand what was going wrong but it also made
clear that in a proper context with LISP running at the edge, it would be
even more difficult. From a deployment perspective, it was also unclear how
successful the protocol could be when major constructors refused to adopt
it. In the end, we decided to focus on MPTCP since it seemed with better
odds of being successful. Also the Pareto-optimality problem seemed also
like a problem worth solving. In retrospective, it seems like a good choice
as several companies have shown their interest in MPTCP for bandwidth
aggregation mostly (first Proximus, then OVH, Ericsson. . .) The help from
skilled researchers at Université Catholique de Louvain (UCL) also reassured
researchers hesitating to study MPTCP and helped creating a community
around the protocol. After the experiments 109, we chose to rely on simu-
lators to do our work. The ability to have a deterministic outcome with the
same inputs is really helpful in the prototyping phase. This can be done at
the expense of realism though, which is the reason why the DCE approach
is interesting: it reconciles both worlds and makes the transition between
prototyping and experimentation easier.

8.1.1 Future Work

Concurrent multipath communications are challenging in many ways. There
is room for improvements at several levels. Network coding is an active
area of research, which could improve MPTCP characteristics [334], yet
network coding can also be the source of issue: additional latency because
of the computational and throughput overhead. Its performance depends on
problems similar to what already affect the raw protocol: traffic pattern and
scheduling. Hence even if network coding is promising, improvements have
to be done at the transport layer as well. During our studies, while working
on OWD estimation we got sidetracked at some point by the simulation of
clock skew, which we would like to resume in the future as explained in
Section 8.1.2. A strong reason for our work initial interest was to analyze

8.1. RECOLLECTIONS 183

Figure 8.1: Mixture distributions approximations of a 1-month dataset of
OWDs between two RIPE probes.

analytically the performance. This requires a deep understanding of the
protocol inner working and data to choose the correct models and hypotheses
. We present the reasons why we have not succeeded yet in Section 8.1.4.

8.1.2 Support of Time Distribution Protocols Scenarios in
DCE

While working on Chapter 5, we realized the technique could also apply
to time distribution protocols under certain conditions, specifically with
multihomed servers. Network Time Protocol (NTP) as a protocol is mildly
complex but the official NTP client is very complex, resorting both to math-
ematical theory mixed with computer science and specific techniques to im-
prove the clock precision. Despite these efforts, in a 1997 survey [335], out
of the 20.000 surveyed peers, 1200 were considered unsynchronized (with
a phase offset superior 128ms). The synchronized set exhibited a median of
7,45m and a mean of 15,87ms. We tried to obtain detailed data in order
to model OWD distribution: we could only find the Test Traffic Measure-
ment (TTM) project which closed in 20142. Through email exchanges, we
have been able to write a script to download four months of raw data rep-
resenting OWD measurements between dozens of pair of probes (16GBytes
of data). We were able to clean the data for a month and approximate the
OWD distribution with a few mixture distribution proposed by a configured
Mathematica as shown in: A common hypothesis is to model latencies as a
shifted gamma distribution [336], [337], yet the approximations in Figure 8.1
are not, further analysis of this data was then given up as it could justify a

2https://www.ripe.net/analyse/archived-projects/ttm/ttm-data

https://www.ripe.net/analyse/archived-projects/ttm/ttm-data

184 CHAPTER 8. CONCLUSION AND PERSPECTIVES

PhD by itself.
. When a NTP client receives a timestamp T1, it should adjust it to add

the propagation delay and set its clock to T1 + f1, but it can not measure
it and assumes f1 = 0.5 ∗ RTT hence the NTP client updates its clock
with the value T1 + RT T

2/ (the real algorithm runs many algorithms, this is
a simplified approach).

Under the assumption that packets are sent at the same time from the
NTP peer, intra-subflow RTT variations could be compared with the inter-
subflow ∆OW D variations to deduce if the variations in RTT were due to
the forward or backward congestion. For instance if both NTP hosts are
connected via two paths and the RTT of the fast path increases while the
slow path RTT remains constant as well as their ∆FOWD, then it means
the congestion happened on the backward path and the NTP client, instead
of assuming setting the estimation of the forward propagation delay to 40%
of the RTT instead of the presently static 50%.

Time distribution experiments are very demanding since you can only
measure your error with the precision of your best clock, most likely a hard-
ware clock. This hardware clock will most likely need to be instrumented
and connected to a computer hence care must be taken not to lose precision
because of the physical channel or because of the software.

Hence we though it could be of interest to have perfectly reproducible
NTP experiments via the use of discrete time simulators. Such simulations
require that nodes can run their own clock, which for instance is not the
case in NS-3 where the virtual time is exactly the same for each node.

As a consequence we added per node clocks in NS-3 which raised some
interest in the IoT community. Indeed in order to save energy, the IoT
community was looking forward to schedule wake up timers before putting
nodes to sleep. On real hardware, clock skew generate problems since nodes
may wake up at different times even with their alarms set to the same time.
Without our modifications, upstream NS-3 would wake up the nodes at the
exact same time, hiding the problem.

As a second step, we proceeded to let NTP run in DCE. The interaction
between the two softwares exhibited a few interesting aspects of NTP. For
instance, in order to deduce the resolution of the host clock, the ntp client
would request several times in a loop until some precision can be deduced.
As syscalls in DCE are virtually instantaneous, this check would fail and the

8.1. RECOLLECTIONS 185

NTP client abort. It also exhibited the limit of the DCE approach consisting
in reimplementing kernel interfaces: the NTP client client expected infor-
mation conveyed by the linux kernel that DCE did not disclose. The final
step to allow for NTP simulations would have been to add the ntp-related
syscalls to DCE, such as ntp_adjtime or adjtimex. The obvious choice is to
forward those calls to a real kernel not to duplicate code. The linux kernel
maintains a ‘jiffy’ counter which is currently kept in synchronization with
the simulator time via DCE. One of the challenge was to change this direct
update of the counter to let the syscalls update it as it is done on real sys-
tems. To achieve this, DCE mainly needed to mimic two linux components
responsible for timekeeping: Linux maintains a counter called jiffies that is
governed by two entities: a hardware clock called clocksource in charge of
remembering the epoch, and a clockevent device in charge of generating reg-
ular interrupts to update the jiffie counter. The jiffie counter used to have a
10ms precision but in recent linux kernels, the default is set to 1ns. Vanilla
DCE bypasses those previous mechanisms to keep the linux jiffie counter
perfectly synchronized with the NS-3 clock, which prevents any skew to
propagate to the kernel. Our proposition is to let the linux jiffie counter be
updated by the conventional means so that NTP adjustments can also affect
the jiffie counter via calls to the kernel function xtime_update, function in
charge of applying the NTP correction. One of the problems though is that
xtime_update accepts as input the elapsed jiffies since the last update and
if it exceeds a certain threshold then the nominal NTP algorithms are not
used. One solution we did not implement should be to call this function
several times with a number of jiffies inferior to the threshold.

Even if we could not run NTP with the NTP kernel disciplines, we
published the work accomplished thus far in [338] and hope to complete this
final missing block later.

8.1.3 Improving sockets Application Programming Interface

As engineers and researchers try to optimize applications, there is a clear
demand on having better information on the traffic patterns: is the applica-
tion latency rather than throughput sensitive ? Should the service occupy
only the unused bandwidth (lower than best effort as depicted in Low Ex-
tra Delay Background Transport (LEDBAT) [339]) ? Is there any interface
preference ? Is the connection short lived or long lived ?

186 CHAPTER 8. CONCLUSION AND PERSPECTIVES

A list of suggested characterizations has been proposed by Schmidt, En-
ghardt, Khalili, et al. [340] under the name of ‘socket intents’. If we reminisce
the problems mentioned throughout the thesis, it is easy to understand how
to exploit this information. One of the MPTCP problem is to distinguish
between short lived and long lived subflows to prevent MPTCP from wast-
ing resources on unused subflows (especially relevant with cellular interfaces
as shown in [5]). For latency sensitive applications, it would allow to con-
figure the MPTCP stack with more aggressive reinjection policies, or even
allow for full duplication over several subflows of the DSN. Information on
interface preferences could be fed into mptcpnumerics to help with traffic
scheduling.

Such information is currently obtained either via predefined configura-
tion policies (Full Qualified Domain Name (FQDN)/port lists for instance)
or reactive solutions based on heuristics such as mahout [242] but it has
become very relevant in multiple access connectivity environments.

Technologies such as SCTP, websockets, MPTCP extend the set of avail-
able transport services. However application programmers often face diffi-
culties when they use protocols other than TCP or UDP. An IETF group
has been formed around to tackle this problem: the Transport Area Protocol
Services (TAPS) working group [341] intends to make the use of alternate
transport protocols easier.

This is very likely to require application programmers to use a richer API
than the Berkeley socket-like APIs exposed by every major OS. Berkeley
sockets have been little changed since the time they were devised, in the
nineties. Thinking of a wrapper or extensions to the API to take into account
the effective outbreak of multipath communications seems reasonable but
choosing the correct abstractions is crucial and challenging.

8.1.4 Better Theoretical Models

This is one of the most important point in our opinion since experimentation
can not prove but only confirm or refute hypotheses. The variants of TCP
are numerous, each variant performing strongly in an environment but rarely
in an optimal way, thus very few are used in practice. The proliferation of
schedulers and congestion control is a possibility for MPTCP as the space
of states is even bigger. We believe it is important to compare the new
scheduler or congestion controls over the full states and pay attention to

8.1. RECOLLECTIONS 187

the Pareto-optimality aspect. There has been relatively few attempts at
modeling the throughput of concurrent multipath transport protocol. We
mainly list Wallace and Shami [342] who models the CMT-SCTP throughput
via 2 methods: a Markov model and renewable theory.

Still for SCTP, Sarkar [343] propose a Markov model to estimate the
expected window size on each path depending on a loss rate, then deduces
the datarate and sums up the datarates across paths to compute the commu-
nication throughput. As for MPTCP, [344] studies the impact of the choice
in the first subflow over the rest of the communications in the 2-subflow
case and compares the result with Mininet. Peng, Walid, and Low [345]
use fluid modeling to model the behavior of MPTCP and test the results
against NS-2, which has a wrong MPTCP model, basically running several
TCP flows in parallel with no mapping or coupled congestion control.

The difficulty of modeling CMT can be a reason for having little liter-
ature. TCP modeling already is complex to model as can be seen in the
seminal paper [304]. A good model needs to take into account fast re-
transmissions, RTOs, and the maximum possible window for throughput
modeling. Depending on the lossrate of the link, some hypotheses become
invalid (a lossrate close to 0 is simplified in several models) and require
another approach. The model is also dependent on the chosen congestion
control. Taking into account the RTT variance is another challenge. To
analyze short connections, models have to consider the slow start instead
or complementary to the congestion avoidance state as is done in Mellia,
Stoica, and Zhang [346].

With CMT, there are even more variables like the number of subflows,
the scheduling strategy, the coupling between windows. Previous works
compute the throughput but as shown in [5], [102], it is clear that model-
ing reinjections or even NR-SACK [272] matters hence one should model
goodput rather than throughput to find ways to optimize the duplication
of segments for MPTCP. It might be interesting to devise more metrics in
order to compare the different variants of CMTs, for instance to improve the
stability of the throughput when a subflow is lost.

Even as CMT modeling progresses, experimentation remains mandatory
and approaches such as the experimental design applied in [106] allows to
cover many networks configurations and see the influence of each variable
on the final result.

188 CHAPTER 8. CONCLUSION AND PERSPECTIVES

8.2 Conclusion

People directly or indirectly concerned by the maintenance of the Internet
have recently been facing an increasing number of problems: the transition
from Internet Protocol version 4 (IPv4) to IPv6, the ever growing number
of routes exchanged in the Domain Free Zone (DFZ), the bufferbloat,. . . The
urgency of some problems has started to overcome the reluctance of address-
ing these problems, due to the fear of breaking a complex and unpredictable
network such as the Internet. For instance, the bufferbloat project 3 has
lead to the successful deployment of the Codel queuing discipline in millions
of Linux hosts, Apple has enabled ECN by default on its systems. The
ossification of the Network does not seem as a fatality anymore. The expe-
rience gained along the years allowed the networking community to realize,
advertise and partially or fully address problems related to multipath com-
munications. The deployment problem known with SCTP helped design
MPTCP in a more backward compatible way.

The Happy Eyeballs mechanism thought initially for the IPv4 to IPv6
transition has also been applied to SCTP as a solution to probe for the
peer SCTP support and fallback or legacy TCP for instance. Using dis-
joint paths is an interesting possibility for CMT, with a direct benefit on
reliability and confidentiality, yet it can not be achieved without some sort
of cooperation with the network as hosts ignore the path diversity between
them. Some practical propositions exist to distribute hints about the path
diversity via DHCP or some oracle but even so endhosts have little control
over the forwarding. Hence choosing the number of subflow with the hope of
creating disjoint subflows remains an open problem. This decision is made
even harder when taking into consideration buffer constraints. Indeed TCP
flow control puts a limit on the number of subflows that can be used con-
currently to send data. This limit is hard to find as network characteristics
evolve, and depend on many parameters such as the traffic pattern and the
scheduler. Traffic pattern is indeed valuable information, even more than in
single path communications since you have more possibilities to deal with
different patterns. A latency-sensitive duplication could choose to fully or
partially duplicate segments on several paths. While heuristics exist to find
this information, having this explicit could be an improvement, especially

3https://www.bufferbloat.net/

https://www.bufferbloat.net/

8.2. CONCLUSION 189

for short flows. The drawback is that it most likely requires an upgrade of
applications but this can also be considered as an opportunity to improve
applications even further. In this regard, the TAPS IETF working group
proposes to abstract network services via a new socket APIs. The applica-
tion would detail a few networking-related characteristic and the underlying
mechanism would choose the appropriate network protocol and protocol
options that fit the features. TAPS would allow to improve network perfor-
mance while shifting most of the burden off the application developers to
the OS, making the evolution of services easier and globally customizable.
A host could configure Happy Eyeballs (HE) or tunneling according to the
policy in place. Also MPTCP might become widely adopted considering
the current industrial enthusiasm, but it is a subset of SCTP feature-wise
with an emphasis on ease of deployment. Relaxing some constraints such as
the ordered delivery makes sense for bulk transfers and relying on a TAPS
API could provide a smoother transition from single path communications
to CMT.

190 CHAPTER 8. CONCLUSION AND PERSPECTIVES

Own publications

International Journals with peer review

• M. Li, A. Lukyanenko, Z. Ou, A. Yla-Jaaski, S. Tarkoma, M. Coudron,
S. Secci, “Multipath Transmission for the Internet: A Survey”, IEEE
Communications Survey & Tutorials, Vol. 18, No. 4, pp: 2887-2925,
Dec. 2016.

International conferences with peer review

• M. Coudron, S. Secci, G. Pujolle, P. Raad, P. Gallard, “Cross-layer Co-
operation to Boost Multipath TCP Performance in Cloud Networks”,
in Proc. of 2013 IEEE Int. Conference in Cloud Networking (CLOUD-
NET 2013), Nov. 11-13, 2013, San Francisco, USA.

• M. Coudron, S. Secci, G. Maier, G. Pujolle, A. Pattavina, “Boost-
ing Cloud Communications Through A Crosslayer Multipath Proto-
col Architecture”, in Proc. of 2013 IEEE Worskshop on Software
Defined Networks for Future Networking Services (IEEE SDN4FNS
2013), Nov. 11-13, 2013, Trento, Italy.

• M. Coudron, S. Secci, G. Pujolle, “Augmented Multipath TCP Com-
munications”, in Proc. of 2013 IEEE Int. Conference on Network
Protocols (ICNP 2013), Poster session, Oct. 7-11, 2013, Gottingen,
Germany. Peer review.

• M. Coudron, G. Pujolle, S. Secci, “Differentiated Pacing on Multi-
ple Paths to Improve One Way Delay Estimations”, in Proc. of 2015
IEEE/IFIP International Symposium on Integrated Network Manage-
ment (IEEE/IFIP IM 2015), May 11-15, 2015, Ottawa, Canada.

191

192 CHAPTER 8. CONCLUSION AND PERSPECTIVES

• M. Coudron, S. Secci, “Per Node Clocks to Simulate Clock Desyn-
chronization in ns-3”, 2016 Workshop on Network Simulator 3 (WNS3
2016), June 15-16, 2016, Seattle, USA.

• M. Coudron, D. Nguyen, S. Secci, “On buffer and window manage-
ment for Multipath TCP”, Proc. of 2016 Int. Conference on the
Network of the Future (NOF 2016), Buzios, Brazil, Nov. 14-16, 2016.

Submitted

• M. Coudron, S. Secci, “MPTCP in NS3: Implementation Evaluation”,
submitted to Computer Networks, major revision.

Software contributions

To paraphrase the Mininet authors “a scientific publication is not the schol-
arship itself, it is merely advertising of the scholarship. The actual schol-
arship is the complete software development environment and the complete
set of instructions which generated the figures.” [315]. This is key to reaffirm
trust in scientific results. The access to datasets is also very valuable but
there are many understandable reasons, among which confidentiality, which
make it more difficult to share. We faced early on the problems of replicat-
ing experiments. After studying some articles with interesting results, we
wanted to extend or improve the mechanisms at work. Yet often, the source
code is not shared and re-implementing from scratch represents too high a
cost.

Too often we wanted to build upon the work of others either to examine
how they processed their data or simply to compare our solution with previ-
ous solutions and were unable to. In order not to create a similar frustration,
we open sourced all the source code used in our experiments with the hope
they get refined further and ease the work of other researchers. Over the
past years, we have invested a lot of effort to upstream our changes in their
original software. This increases reproducibility as well as democratize the
analysis to a broader scope then academic research.

Our main contributions either merged in their original codebase or avail-
able as standalone:

• Semantic support of Multipath TCP in wireshark (www.wireshark.
org), i.e., it makes wireshark capable of mapping TCP subflows to
their respective MPTCP connections.

• mptcpanalyzer: a program to generate plots based on MPTCP
packet capture files (https://github.com/lip6-mptcp/mptcpanalyzer).

193

www.wireshark.org
www.wireshark.org
https://github.com/lip6-mptcp/mptcpanalyzer

194 CHAPTER 8. CONCLUSION AND PERSPECTIVES

• Our work on MPTCP support in NS-3 is available https://github.
com/lip6-mptcp/ns3mptcp and is being reworked for inclusion in the
main simulator.

• The entire source code used for the experimentation in ?? is available
at https://github.com/lip6-mptcp/mptcpnetlink. This includes
modifications made to the LISPmob router, the kernel modifications,
the kernel module acting as path-manager and finally the userspace
daemon in charge of communicating with the LISP router.

• mptcpnumerics generates an ILP from a network configuration and
solves it to find optimal congestion window targets or buffer sizes.

We have also several pending contributions made to the software either to
fix bugs (as in the libnl netlink library) or to provide additional capabilities.

https://github.com/lip6-mptcp/ns3mptcp
https://github.com/lip6-mptcp/ns3mptcp
https://github.com/lip6-mptcp/mptcpnetlink

Bibliography

[1] S. Agarwal, C. N. Chuah, and R. H. Katz, “OPCA: Robust inter-
domain policy routing and traffic control”, 2003 IEEE Conference
on Open Architectures and Network Programming Proceedings, OPE-
NARCH 2003, pp. 55–64, 2003.

[2] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush, “From Paris to
Tokyo”, in Proceedings of the 2013 conference on Internet measure-
ment conference - IMC ’13, 2013, pp. 427–432.

[3] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang, “IPv4
address allocation and the BGP routing table evolution”, ACM SIG-
COMM Computer Communication Review, vol. 35, no. 1, p. 71, 2005.

[4] R. Khalili, N. Gast, M. Popovic, and J.-y. Le Boudec, “MPTCP Is
Not Pareto-Optimal: Performance Issues and a Possible Solution”,
IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1651–
1665, 2013.

[5] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen, “An in-depth
understanding of multipath TCP on mobile devices”, in Proceedings
of the 22nd Annual International Conference on Mobile Computing
and Networking - MobiCom ’16, New York, New York, USA: ACM
Press, 2016, pp. 189–201.

[6] M. Kun, Y. Jingdong, and R. Zhi, “The research and simulation
of multipath-OLSR for mobile ad hoc network”, in IEEE Interna-
tional Symposium on Communications and Information Technology
(ISCIT), IEEE, vol. 1, 2005, pp. 540–543.

[7] X. Huang and Y. Fang, “Multiconstrained QoS multipath routing in
wireless sensor networks”, Wireless Networks, vol. 14, no. 4, pp. 465–
478, 2008.

195

196 BIBLIOGRAPHY

[8] I. Van Beijnum, J. Crowcroft, F. Valera, and M. Bagnulo, “Loop-
freeness in multipath BGP through propagating the longest path”,
in IEEE International Conference on Communications (ICC) Work-
shops, 2009, pp. 1–6.

[9] K. Sha, J. Gehlot, and R. Greve, “Multipath Routing Techniques in
Wireless Sensor Networks: A Survey”, Wireless Personal Communi-
cations, vol. 70, no. 2, pp. 807–829, 2013.

[10] J. Qadir, A. Ali, Y. Kok-Lim, A. Sathiaseelan, and J. Crowcroft,
“Exploiting the power of multiplicity: a holistic survey of network-
layer multipath”, IEEE Communications Surveys Tutorials, 2015.

[11] M. Li, A. Lukyanenko, Z. Ou, A. Yla-Jaaski, S. Tarkoma, M. Coudron,
and S. Secci, “Multipath Transmission for the Internet: A Survey”,
IEEE Communications Surveys & Tutorials, pp. 1–1, 2016.

[12] K. Leonard, “An early history of the Internet ”, IEEE Communica-
tions Magazine, vol. 48, no. 8, pp. 26–36, 2010.

[13] “IEEE Standard for Local and Metropolitan Area Networks - Link
Aggregation”, IEEE Std 802.1AX-2008, pp. c1–145, 2008.

[14] “Ieee standard for local and metropolitan area networks–media ac-
cess control (mac) bridges and virtual bridged local area networks–
amendment 20: Shortest path bridging”, IEEE Std 802.1aq-2012,
pp. 1–340, 2012.

[15] C. Huitema, “Multi-homed TCP”, IETF Internet-Draft (Expired),
1995.

[16] A Ford, C Raiciu, M Handley, S Barre, and J Iyengar, “Architectural
guidelines for multipath {TCP} development”, RFC6182 (March 2011),
www. ietf. ort/rfc/6182, 2011.

[17] D. Farinacci, D. Lewis, D. Meyer, and V. Fuller, “The locator/ID
separation protocol (LISP)”, IETF RFC 6830, 2013.

[18] D Eastlake, M Zhang, A Ghanwani, V Manral, and A Banerjee,
“Transparent Interconnection of Lots of Links (TRILL): Clarifica-
tions, Corrections, and Updates”, IETF RFC 7180, May, 2014.

[19] W. Lei, W. Zhang, and S. Liu, “A Framework of Multipath Trans-
port System Based on Application-Level Relay (MPTS-AR)”, IETF
Internet-Draft (Experimental), July, 2015.

BIBLIOGRAPHY 197

[20] M. Menth, A. Stockmayer, and M. Schmidt, “LISP Hybrid Access”,
Draft-menth-lisp-ha-00 (Experimental), Internet-Draft, IETF, 2015.

[21] P. Amer, M. Becke, T. Dreibholz, N. Ekiz, J. Iyengar, P. Natarajan,
R. Stewart, and M. Tuexen, “Load Sharing for the Stream Control
Transmission Protocol (SCTP)”, Draft-tuexen-tsvwg-sctp-multipath-
10 (Experimental), Internet-Draft, IETF, 2015.

[22] M. Cullen, N. Leymann, C. Heidemann, M. Boucadair, H. Deng, and
B. Sarikaya, “Problem Statement: Bandwidth Aggregation for In-
ternet Access”, Draft-zhang-banana-problem-statement-01 (Informa-
tional), Internet-Draft, IETF, 2015.

[23] Cisco, “EtherChannels”, 2003, http://www.cisco.com/c/en/us/
td/docs/switches/lan/catalyst3550/software/release/12-1_
13_ea1/configuration/guide/3550scg/swethchl.html [Available
Online].

[24] Juniper, “Aggregated Ethernet”, 2014, http://www.juniper.net/
documentation/en_US/junos14.1/topics/task/configuration/
link-aggregation-cli.html [Available Online].

[25] AVAYA, “ Multi-Link Trunking”, 2011, https://downloads.avaya.
com/css/P8/documents/100134063 [Available Online].

[26] Deutsche Telekom, “Hybrid Access - a promising approach to in-
crease bandwidth of DSL-lines”, 2014, http://www.laboratories.
telekom.com/public/english/newsroom/news/pages/hybrid-
access.aspx [Available Online].

[27] “Hybrid Internet Access Bonding”, http : / / www . tessares . net
[Available Online].

[28] OVH company, “Overthebox”, 2015, https://www.ovhtelecom.fr/
overthebox [Available Online].

[29] “iOS: Multipath TCP Support in iOS 7”, 2015, https://support.
apple.com/en-us/HT201373 [Available Online].

[30] O Bonaventure, “In Korean, Multipath TCP is pronounced GIGA
Path”, 2015, http://blog.multipath-tcp.org/blog/html/2015/
07/24/korea.html [Available Online].

http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3550/software/release/12-1_13_ea1/configuration/guide/3550scg/swethchl.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3550/software/release/12-1_13_ea1/configuration/guide/3550scg/swethchl.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3550/software/release/12-1_13_ea1/configuration/guide/3550scg/swethchl.html
http://www.juniper.net/documentation/en_US/junos14.1/topics/task/configuration/link-aggregation-cli.html
http://www.juniper.net/documentation/en_US/junos14.1/topics/task/configuration/link-aggregation-cli.html
http://www.juniper.net/documentation/en_US/junos14.1/topics/task/configuration/link-aggregation-cli.html
https://downloads.avaya.com/css/P8/documents/100134063
https://downloads.avaya.com/css/P8/documents/100134063
http://www.laboratories.telekom.com/public/english/newsroom/news/pages/hybrid-access.aspx
http://www.laboratories.telekom.com/public/english/newsroom/news/pages/hybrid-access.aspx
http://www.laboratories.telekom.com/public/english/newsroom/news/pages/hybrid-access.aspx
http://www.tessares.net
https://www.ovhtelecom.fr/overthebox
https://www.ovhtelecom.fr/overthebox
https://support.apple.com/en-us/HT201373
https://support.apple.com/en-us/HT201373
http://blog.multipath-tcp.org/blog/html/2015/07/24/korea.html
http://blog.multipath-tcp.org/blog/html/2015/07/24/korea.html

198 BIBLIOGRAPHY

[31] S. Singh, T. Das, and A. Jukan, “A Survey on Internet Multipath
Routing and Provisioning”, IEEE Communications Surveys Tutori-
als, 2015.

[32] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato, “On load dis-
tribution over multipath networks”, IEEE Communications Surveys
& Tutorials, vol. 14, no. 3, pp. 662–680, 2012.

[33] A. L. Ramaboli, O. E. Falowo, and A. H. Chan, “Bandwidth ag-
gregation in heterogeneous wireless networks: A survey of current
approaches and issues”, Journal of Network and Computer Applica-
tions, vol. 35, no. 6, pp. 1674–1690, 2012.

[34] J. Domżał, Z. Duliński, M. Kantor, J. Rzasa, R. Stankiewicz, K.
Wajda, and R. Wójcik, “A survey on methods to provide multipath
transmission in wired packet networks”, Computer Networks, vol. 77,
pp. 18–41, 2015.

[35] S. Addepalli, H. G. Schulzrinne, A. Singh, and G. Ormazabal, “Het-
erogeneous Access: Survey and Design Considerations”, Columbia
University Academic Commons, Technical Report, 2013, http : / /
dx.doi.org/10.7916/D8QJ7F8P.

[36] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The
PPP Multilink Protocol (MP)”, IETF RFC 1990, 1996.

[37] A. C. Snoeren, “Adaptive inverse multiplexing for wide-area wireless
networks”, in Proceedings of the Global Telecommunications Confer-
ence (GLOBECOM ’99), IEEE, vol. 3, 1999, pp. 1665–1672.

[38] H. Adiseshu, G. Parulkar, and G. Varghese, “A reliable and scalable
striping protocol”, in Proceedings of the Applications, technologies,
architectures, and protocols for computer communications, ACM, vol. 26,
1996, pp. 131–141.

[39] A. Hari, G. Varghese, and G. Parulkar, “An Architecture for Packet-
striping Protocols”,ACM Transactions on Computer Systems (TOCS),
vol. 17, no. 4, pp. 249–287, 1999.

[40] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and D. Katabi, “FatVAP:
Aggregating AP Backhaul Capacity to Maximize Throughput”, in
Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, vol. 8, 2008, pp. 89–104.

http://dx.doi.org/10.7916/D8QJ7F8P
http://dx.doi.org/10.7916/D8QJ7F8P

BIBLIOGRAPHY 199

[41] T. Nguyen-Duc, H. Tran-Viet, K. Nguyen, Q. T. Minh, S. H. Ngo,
and S. Yamada, “Investigating the Performance of Link Aggregation
on OpenFlow Switches”, in Testbeds and Research Infrastructure: De-
velopment of Networks and Communities, Springer, 2014, pp. 194–
202.

[42] T. N. Subedi, K. K. Nguyen, and M. Cheriet, “OpenFlow-based in-
network Layer-2 adaptive multipath aggregation in data centers”,
Computer Communications, vol. 61, pp. 58–69, 2015.

[43] D Fedyk, P Ashwood-Smith, D Allan, A Bragg, and P Unbehagen,
“IS-IS Extensions Supporting IEEE 802.1 aq Shortest Path Bridg-
ing”, IETF RFC 6329, 2012.

[44] D. S. Phatak and T. Goff, “A novel mechanism for data streaming
across multiple IP links for improving throughput and reliability in
mobile environments”, in Proceedings of the 21st Annual Joint Con-
ference of the IEEE Computer and Communications Societies (IN-
FOCOM ’02), vol. 2, 2002, pp. 773–781.

[45] D. S. Phatak, T. Goff, and J. Plusquellic, “IP-in-IP tunneling to
enable the simultaneous use of multiple IP interfaces for network level
connection striping”, Computer Networks, vol. 43, no. 6, pp. 787–804,
2003.

[46] K. Chebrolu and R. R. Rao, “Bandwidth aggregation for real-time
applications in heterogeneous wireless networks”, IEEE Transactions
on Mobile Computing, vol. 5, no. 4, pp. 388–403, 2006.

[47] K. Chebrolu, B. Raman, and R. R. Rao, “A network layer approach
to enable TCP over multiple interfaces”, Wireless Networks, vol. 11,
no. 5, pp. 637–650, 2005.

[48] K.-H. Kim and K. G. Shin, “Improving TCP performance over wire-
less networks with collaborative multi-homed mobile hosts”, in Pro-
ceedings of the 3rd international conference on Mobile systems, ap-
plications, and services, ACM, 2005, pp. 107–120.

[49] ——, “PRISM: improving the performance of inverse-multiplexed
TCP in wireless networks”, IEEE Transactions on Mobile Comput-
ing, vol. 6, no. 12, pp. 1297–1312, 2007.

200 BIBLIOGRAPHY

[50] K.-c. Lan and C.-Y. Li, “Improving TCP performance over an on-
board multi-homed network”, in IEEE Wireless Communications and
Networking Conference (WCNC), IEEE, 2012, pp. 2961–2966.

[51] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and S. Baner-
jee, “MAR: A commuter router infrastructure for the mobile Inter-
net”, in Proceedings of the 2nd international conference on Mobile
systems, applications, and services, ACM, 2004, pp. 217–230.

[52] K. Manousakis and D. Famolari, “INTELiCON: A Framework for
the Simultaneous Utilization of Multiple Interfaces and its Applica-
tion on TCP”, in International Wireless Communications and Mobile
Computing Conference, 2008 (IWCMC ’08), 2008, pp. 976–981.

[53] K. Evensen, D. Kaspar, P. Engelstad, A. F. Hansen, C. Griwodz,
and P. Halvorsen, “A network-layer proxy for bandwidth aggregation
and reduction of IP packet reordering”, in Proceedings of the IEEE
34th Conference on Local Computer Networks (LCN), IEEE, 2009,
pp. 585–592.

[54] S. Pierrel, P. Jokela, and J. Melen, “Simultaneous Multi-Access exten-
sion to the Host Identity Protocol”, Draft-pierrel-hip-sima-00 (work
in process), Internet-Draft, IETF, 2006.

[55] A. Gurtov and T. Polishchuk, “Secure multipath transport for legacy
Internet applications”, in Proceedings of the 6th International Confer-
ence on Broadband Communications, Networks, and Systems, 2009,
pp. 1–8.

[56] T. Polishchuk and A. Gurtov, “Improving TCP-friendliness and Fair-
ness for mHIP”, Inforcommunications Journal, vol. 3, no. 1, 2011.

[57] J. Sun, Y. Wen, and L. Zheng, “On file-based content distribution
over wireless networks via multiple paths: Coding and delay trade-
off”, in Proceedings of the IEEE INFOCOM, 2011, pp. 381–385.

[58] K. Habak, K. A. Harras, and M. Youssef, “OSCAR: A Collaborative
Bandwidth Aggregation System”, ArXiv preprint arXiv:1401.1258,
2014.

[59] A. Argyriou and V. Madisetti, “Bandwidth aggregation with SCTP”,
in Proceedings of the 2003 IEEE Global Telecommunications Confer-
ence (GLOBECOM ’03), IEEE, vol. 7, 2003, pp. 3716–3721.

BIBLIOGRAPHY 201

[60] C Casetti and W Gaiotto, “Westwood SCTP: load balancing over
multipaths using bandwidth-aware source scheduling”, in Proceed-
ings of the 2004 Vehicular Technology Conference (VTC ’04), IEEE,
vol. 4, 2004, pp. 3025–3029.

[61] J. Iyengar, K Shah, P Amer, and R. Stewart, “Concurrent multi-
path transfer using SCTP multihoming”, in Proceedings of the Inter-
national Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS ’04), 2004.

[62] J. R. Iyengar, P. D. Amer, and R. Stewart, “Retransmission poli-
cies for concurrent multipath transfer using SCTP multihoming”, in
Proceedings of the 12th IEEE International Conference on Networks
(ICON ’04), IEEE, vol. 2, 2004, pp. 713–719.

[63] ——, “Concurrent multipath transfer using SCTP multihoming over
independent end-to-end paths”, IEEE/ACM Transactions on Net-
working, vol. 14, no. 5, pp. 951–964, 2006.

[64] J. Liu, H. Zou, J. Dou, and Y. Gao, “Rethinking Retransmission Pol-
icy In Concurrent Multipath Transfer”, in Proceedings of the Interna-
tional Conference on Intelligent Information Hiding and Multimedia
Signal Processing (IIHMSP ’08), IEEE, 2008, pp. 1005–1008.

[65] T. Dreibholz, M. Becke, E. P. Rathgeb, and M Tuxen, “On the use of
concurrent multipath transfer over asymmetric paths”, in Proceedings
of the IEEE Global Telecommunications Conference (GLOBECOM
’10), 2010, pp. 1–6.

[66] T. Dreibholz, R Seggelmann, M Tuexen, and E. Rathgeb, “Transmis-
sion scheduling optimizations for concurrent multipath transfer”, in
Proceedings of the 8th International Workshop on Protocols for Fu-
ture, Large-Scale and Diverse Network Transports (PFLDNeT ’10),
vol. 8, 2010.

[67] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, “Apply-
ing TCP-friendly congestion control to Concurrent Multipath Trans-
fer”, in Proceedings of the 24th IEEE International Conference on Ad-
vanced Information Networking and Applications (AINA ’10), IEEE,
2010, pp. 312–319.

202 BIBLIOGRAPHY

[68] H. Adhari, T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen,
“Evaluation of concurrent multipath transfer over dissimilar paths”,
in IEEE Workshops of International Conference on Advanced Infor-
mation Networking and Applications (WAINA ’11), 2011, pp. 708–
714.

[69] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “On the
impact of congestion control for Concurrent Multipath Transfer on
the transport layer”, in Proceedings of the 11th IEEE International
Conference on Telecommunications (ConTEL ’11), 2011, pp. 397–
404.

[70] S. Shailendra, R Bhattacharjee, and S. K. Bose, “Improving conges-
tion control for Concurrent Multipath Transfer through bandwidth
estimation based resource pooling”, in Proceedings of the 8th Interna-
tional Conference on Information, Communications and Signal Pro-
cessing (ICICS ’11), IEEE, 2011, pp. 1–5.

[71] A. Abd El Al, T. Saadawi, and M. Lee, “LS-SCTP: a bandwidth ag-
gregation technique for stream control transmission protocol”, Com-
puter Communications, vol. 27, no. 10, pp. 1012–1024, 2004.

[72] A. Abd, T. Saadawi, and M. Lee, “Improving throughput and re-
liability in mobile wireless networks via transport layer bandwidth
aggregation”, Computer Networks, vol. 46, no. 5, pp. 635–649, 2004.

[73] D. Sarkar, “A Concurrent Multipath TCP and Its Markov Model”,
in Proceedings of the IEEE International Conference on Communi-
cations (ICC ’06), 2006, pp. 615–620.

[74] C.-M. Huang and C.-H. Tsai, “WiMP-SCTP: Multi-path transmis-
sion using stream control transmission protocol (SCTP) in wireless
networks”, in Proceedings of the 21st IEEE International Conference
on Advanced Information Networking and Applications Workshops
(AINAW ’07), vol. 1, 2007, pp. 209–214.

[75] J. Liao, J. Wang, and X. Zhu, “cmpSCTP: An extension of SCTP
to support concurrent multi-path transfer”, in Proceedings of the
IEEE International Conference on Communications (ICC ’08), 2008,
pp. 5762–5766.

BIBLIOGRAPHY 203

[76] L. Budzisz, R. Ferrús, F. Casadevall, and P. Amer, “On concurrent
multipath transfer in SCTP-based handover scenarios”, in Proceed-
ings of the IEEE International Conference on Communications (ICC
’09), 2009, pp. 1–6.

[77] F. H. Mirani, N. Boukhatem, and M. A. Tran, “A data-scheduling
mechanism for multi-homed mobile terminals with disparate link la-
tencies”, in Proceedings of the 72nd IEEE Vehicular Technology Con-
ference Fall (VTC ’10), IEEE, 2010, pp. 1–5.

[78] L. Magalhaes and R. Kravets, “Transport level mechanisms for band-
width aggregation on mobile hosts”, in Proceedings of the 9th IEEE
International Conference on Network Protocols, 2001, pp. 165–171.

[79] Y. Lee, I. Park, and Y. Choi, “Improving TCP performance in multi-
path packet forwarding networks”, Journal of Communications and
Networks, vol. 4, pp. 148–157, 2002.

[80] H.-Y. Hsieh and R. Sivakumar, “A Transport Layer Approach for
Achieving Aggregate Bandwidths on Multi-homed Mobile Hosts”, in
Proceedings of the 8th Annual International Conference on Mobile
Computing and Networking (MobiCom ’02), ACM, 2002, pp. 83–94.

[81] ——, “pTCP: An end-to-end transport layer protocol for striped con-
nections”, in Proceedings of the 10th IEEE International Conference
on Network Protocols, 2002, pp. 24–33.

[82] ——, “A transport layer approach for achieving aggregate band-
widths on multi-homed mobile hosts”, Wireless Networks, vol. 11,
no. 1-2, pp. 99–114, 2005.

[83] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, and R. Sivakumar, “A Receiver-
centric Transport Protocol for Mobile Hosts with HeterogeneousWire-
less Interfaces”, in Proceedings of the 9th Annual International Con-
ference on Mobile Computing and Networking (MobiCom ’03), 2003,
pp. 1–15.

[84] K.-H. Kim, Y. Zhu, R. Sivakumar, and H.-Y. Hsieh, “A receiver-
centric transport protocol for mobile hosts with heterogeneous wire-
less interfaces”, Wireless Networks, vol. 11, no. 4, pp. 363–382, 2005.

204 BIBLIOGRAPHY

[85] C. Cetinkaya and E. W. Knightly, “Opportunistic traffic scheduling
over multiple network paths”, in Proceedings of the 23td Annual Joint
Conference of the IEEE Computer and Communications Societies
(INFOCOM ’04), IEEE, vol. 3, 2004, pp. 1928–1937.

[86] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, and R. Y.
Wang, “A Transport Layer Approach for Improving End-to-End Per-
formance and Robustness Using Redundant Paths”, in Proceedings
of the General Track: USENIX Annual Technical Conference, 2004,
pp. 99–112.

[87] J. Chen, K. Xu, and M. Gerla, “Multipath tcp in lossy wireless envi-
ronment”, in Proceedings of IFIP 3rd Annual Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net ’04), 2004, pp. 263–270.

[88] K. Rojviboonchai and A. Hitoshi, “An evaluation of multi-path trans-
mission control protocol (M/TCP) with robust acknowledgement schemes”,
IEICE transactions on communications, vol. 87, no. 9, pp. 2699–2707,
2004.

[89] K. Rojviboonchai, T. Osuga, and H. Aida, “RM/TCP: protocol for
reliable multi-path transport over the Internet”, in Proceedings of the
19th International Conference on Advanced Information Networking
and Applications (AINA ’05), vol. 1, 2005, pp. 801–806.

[90] Y. Dong, N. Pissinou, and J. Wang, “Concurrency Handling in TCP”,
in Proceedings of the 5th Annual Conference on Communication Net-
works and Services Research (CNSR ’07), 2007, pp. 255–262.

[91] V. Sharma, S. Kalyanaraman, K. Kar, K. Ramakrishnan, and V. Sub-
ramanian, “MPLOT: A transport protocol exploiting multipath di-
versity using erasure codes”, in Proceedings of the 27th IEEE Confer-
ence on Computer Communications (INFOCOM ’08), 2008, pp. 121–
125.

[92] V. Sharma, K. Kar, K. Ramakrishnan, and S. Kalyanaraman, “A
transport protocol to exploit multipath diversity in wireless net-
works”, IEEE/ACM Transactions on Networking (TON), vol. 20, no.
4, pp. 1024–1039, 2012.

BIBLIOGRAPHY 205

[93] X. Wang, Z. Feng, D. Fan, Y. Xue, and V. Le, “A Segment-Based
Adaptive Joint Session Scheduling Mechanism in HeterogeneousWire-
less Networks”, in Proceedings of the 70th IEEE Vehicular Technology
Conference Fall (VTC ’09), IEEE, 2009, pp. 1–5.

[94] C.-L. Tsao and R. Sivakumar, “On effectively exploiting multiple
wireless interfaces in mobile hosts”, in Proceedings of the 5th inter-
national conference on Emerging networking experiments and tech-
nologies (CoNEXT ’09), ACM, 2009, pp. 337–348.

[95] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Mul-
tipath congestion control for shared bottleneck”, in Proceedings of
Workshop on Protocols for Fast Long-Distance Networks (PFLDNeT
09 ’), 2009, pp. 19–24.

[96] C. Raiciu, D. Wischik, and M. Handley, “Practical congestion con-
trol for multipath transport protocols”, University College of London
Technical Report, 2009.

[97] C. Raiciu, M. Handley, and D. Wischik, “Coupled Multipath-Aware
Congestion Control”, IETF Internet-Draft, 2009, https://tools.
ietf.org/html/draft-raiciu-mptcp-congestion-00.

[98] A. Ford, C. Raiciu, M. Handley, and S. Barre, “TCP Extensions
for Multipath Operation with Multiple Addresses”, IETF Internet-
Draft, 2009, https://tools.ietf.org/html/draft-ford-mptcp-
multiaddressed-00.

[99] C. Raiciu, C. Pluntke, S. Barré, A. Greenhalgh, D. Wischik, and
M. Handley, “Data center networking with multipath TCP”, in Pro-
ceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, 2010, p. 10.

[100] S. Barré, C. Paasch, and O. Bonaventure, “MultiPath TCP: From
Theory to Practice”, in Proceedings of the 10th International IFIP
TC 6 Conference on Networking - Volume Part I, ser. NETWORK-
ING ’11, Springer-Verlag, 2011, pp. 444–457.

[101] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling
for multipath congestion control”, in Proceedings of the 19th IEEE
International Conference on Network Protocols (ICNP ’11), IEEE,
2011, pp. 341–352.

https://tools.ietf.org/html/draft-raiciu-mptcp-congestion-00
https://tools.ietf.org/html/draft-raiciu-mptcp-congestion-00
https://tools.ietf.org/html/draft-ford-mptcp-multiaddressed-00
https://tools.ietf.org/html/draft-ford-mptcp-multiaddressed-00

206 BIBLIOGRAPHY

[102] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing
and implementing a deployable multipath tcp”, in Presented as part
of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), San Jose, CA: USENIX, 2012, pp. 399–
412.

[103] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec,
“MPTCP is Not Pareto-optimal: Performance Issues and a Possi-
ble Solution”, in Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’12),
ACM, 2012, pp. 1–12.

[104] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP Is
Not Pareto-Optimal: Performance Issues and a Possible Solution”,
IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1651–
1665, 2013.

[105] M. Li, L. Andrey, S. Tarkoma, and A. Ylä-Jääski, “The Delayed
ACK evolution in MPTCP”, in Global Communications Conference
(GLOBECOM), 2013 IEEE, IEEE, 2013, pp. 2282–2288.

[106] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of apply-
ing experimental design to improve multipath TCP”, in Proceedings
of the ninth ACM conference on Emerging networking experiments
and technologies - CoNEXT ’13, New York, New York, USA: ACM
Press, 2013, pp. 393–398.

[107] A. Singh, M. Xiang, A. Konsgen, C. Goerg, and Y. Zaki, “Enhancing
fairness and congestion control in multipath TCP”, in Proceedings
of the 6th Joint IFIP Wireless and Mobile Networking Conference
(WMNC ’13), 2013, pp. 1–8.

[108] T.-A. Le and L. X. Bui, “Forward Delay-based Packet Scheduling
Algorithm for Multipath TCP”, ArXiv preprint arXiv:1501.03196,
2015.

[109] H. A. Kim, B. hwan Oh, and J. Lee, “Improvement of MPTCP Per-
formance in heterogeneous network using packet scheduling mecha-
nism”, in Proceedings of the 18th Asia-Pacific Conference on Com-
munications (APCC ’12), 2012, pp. 842–847.

BIBLIOGRAPHY 207

[110] M. Li, L. Andrey, and Y. Cui, “Network coding based multipath
TCP”, in 2012 IEEE Conference on Computer Communications Work-
shops (INFOCOM workshop), 2012, pp. 25–30.

[111] Y. Cui, X. Wang, H. Wang, G. Pan, and Y. Wang, “FMTCP: A
Fountain Code-Based Multipath Transmission Control Protocol”, in
2012 IEEE 32nd International Conference on Distributed Computing
Systems, IEEE, 2012, pp. 366–375.

[112] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP:
A Fountain Code-Based Multipath Transmission Control Protocol”,
IEEE/ACM Transactions on Networking (TON), 2014.

[113] C. Diop, G. Dugue, C. Chassot, and E. Exposito, “QoS-oriented
MPTCP Extensions for Multimedia Multi-homed Systems”, in Pro-
ceedings of the 26th International Conference on Advanced Informa-
tion Networking and Applications Workshops (WAINA ’12), 2012,
pp. 1119–1124.

[114] Dizhi Zhou, Wei Song, and Minghui Shi, “Goodput improvement for
multipath TCP by congestion window adaptation in multi-radio de-
vices”, in 2013 IEEE 10th Consumer Communications and Network-
ing Conference (CCNC), IEEE, 2013, pp. 508–514.

[115] R. van der Pol, M. Bredel, A. Barczyk, B. Overeinder, N. van Adrichem,
and F. Kuipers, “Experiences with MPTCP in an intercontinental
OpenFlow network”, in Proceedings of the 29th TERENA Network
Conference (TNC ’13), 2013.

[116] Q. Peng, A. Walid, and S. H. Low, “Multipath TCP Algorithms:
Theory and Design”, ACM SIGMETRICS Performance Evaluation
Review, vol. 41, no. 1, pp. 305–316, 2013.

[117] Q. Peng, A. Walid, and S. H. Low, “Multipath TCP: Analysis, Design
and Implementation”, CoRR, vol. abs/1308.3119, 2013.

[118] M. Coudron, S. Secci, G. Pujolle, P. Raad, and P. Gallard, “Cross-
layer cooperation to boost multipath TCP performance in cloud net-
works”, in Proceedings of the 2013 IEEE 2nd International Confer-
ence on Cloud Networking (CloudNet ’13), 2013, pp. 58–66.

208 BIBLIOGRAPHY

[119] F. Yang and P. Amer, “Non-renegable Selective Acknowledgments
(NR-SACKs) for MPTCP”, in In proceedings of the 27th Interna-
tional Conference on Advanced Information Networking and Appli-
cations Workshops (WAINA), 2013, pp. 1113–1118.

[120] M. Li, L. Andrey, S. Tarkoma, Y. Cui, and A. Ylä-Jääski, “Tolerating
path heterogeneity in multipath TCP with bounded receive buffers”,
Computer Networks, vol. 64, pp. 1–14, 2014.

[121] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and K.-W. Lee,
“Cross-layer path management in multi-path transport protocol for
mobile devices”, in Proceedings of the Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), IEEE,
2014, pp. 1815–1823.

[122] M. Li, L. Andrey, S. Tarkoma, and A. Ylä-Jääski, “MPTCP incast
in data center networks”, Communications, China, vol. 11, no. 4,
pp. 25–37, 2014.

[123] F. Yang and P. Amer, “Work in progress: Using one-way communica-
tion delay for in-order arrival MPTCP scheduling”, in Proceedings of
the 9th International Conference on Communications and Network-
ing in China (CHINACOM), 2014, pp. 122–125.

[124] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over
heterogeneous wireless networks: Does it really pay off?”, in Pro-
ceedings of IEEE Global Communications Conference (GLOBECOM
’14), 2014, pp. 4807–4813.

[125] M. Coudron, S. Secci, and G. Pujolle, “Differentiated pacing on mul-
tiple paths to improve one-way delay estimations”, in Proceedings of
IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM), 2015, pp. 672–678.

[126] M. Allman, H. Kruse, and S. Ostermann, “An application-level solu-
tion to TCPâĂŹs satellite inefficiencies”, in Proceedings of the 1st In-
ternational Workshop on Satellite-based Information Services (WOS-
BIS ’96), 1996.

[127] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The case for
application-level network striping for data intensive applications us-
ing high speed wide area networks”, in Proceedings of the ACM/IEEE

BIBLIOGRAPHY 209

conference on Supercomputing (CDROM ’00), IEEE Computer Soci-
ety, 2000, p. 37.

[128] Jason Lee and Dan Gunter and Brian Tierney and Bill Allcock and
Joe Bester and John Bresnahan and Steve Tuecke, “Applied Tech-
niques for High Bandwidth Data Transfers across Wide Area Net-
works”, in Proceedings of the International Conference on Computing
in High Energy and Nuclear Physics, 2001.

[129] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to repli-
cated content in the Internet”, IEEE/ACM Transactions on Network-
ing (TON), vol. 10, no. 4, pp. 455–465, 2002.

[130] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and T. Murase,
“Improved data distribution for multipath TCP communication”,
in Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM ’05), 2005.

[131] ——, “Deployable multipath communication scheme with sufficient
performance data distribution method”, Computer Communications,
vol. 30, no. 17, pp. 3285–3292, 2007.

[132] A. Qureshi, J. Carlisle, and J. Guttag, “Tavarua: Video Streaming
with WWAN Striping”, in Proceedings of the 14th annual ACM in-
ternational conference on Multimedia, ACM, 2006, pp. 327–336.

[133] H. Sakakibara, M. Saito, and H. Tokuda, “Design and implementa-
tion of a socket-level bandwidth aggregation mechanism for wireless
networks”, in Proceedings of the 2nd annual international workshop
on Wireless internet, ACM, 2006, p. 11.

[134] B. Wang, W. Wei, Z. Guo, and D. Towsley, “Multipath Live Stream-
ing via TCP: Scheme, Performance and Benefits”, in Proceedings of
the 3rd ACM International Conference on emerging Networking EX-
periments and Technologies (CoNEXT ’07), New York, New York:
ACM, 2007, 11:1–11:12.

[135] ——, “Multipath live streaming via TCP: scheme, performance and
benefits”, ACM Transactions on Multimedia Computing, Communi-
cations, and Applications (TOMCCAP ’09), vol. 5, no. 3, p. 25, 2009.

210 BIBLIOGRAPHY

[136] S. Tullimas, T. Nguyen, R. Edgecomb, and S.-c. Cheung, “Multi-
media streaming using multiple TCP connections”, ACM Transac-
tions on Multimedia Computing, Communications, and Applications
(TOMCCAP), vol. 4, no. 2, p. 12, 2008.

[137] A. Baldini, L. De Carli, and F. Risso, “Increasing performances of
TCP data transfers through multiple parallel connections”, in Pro-
ceedings of IEEE Symposium on Computers and Communications
(ISCC), 2009, pp. 630–636.

[138] D. Kaspar, K. Evensen, P. Engelstad, A. F. Hansen, P. Halvorsen,
and C. Griwodz, “Enhancing video-on-demand playout over multiple
heterogeneous access networks”, in Proceedings of the 7th IEEE Con-
sumer Communications and Networking Conference (CCNC ’10),
IEEE, 2010, pp. 1–5.

[139] D. Kaspar, K. Evensen, P. Engelstad, and A. F. Hansen, “Using
HTTP pipelining to improve progressive download over multiple het-
erogeneous interfaces”, in Proceedings of the IEEE International Con-
ference on Communications (ICC ’10), IEEE, 2010, pp. 1–5.

[140] K. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz,
“Quality-adaptive scheduling for live streaming over multiple access
networks”, in Proceedings of the 20th international workshop on Net-
work and operating systems support for digital audio and video, ACM,
2010, pp. 21–26.

[141] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. Hansen, and P.
Engelstad, “Improving the Performance of Quality-Adaptive Video
Streaming over Multiple Heterogeneous Access Networks”, in Pro-
ceedings of the 2nd annual ACM conference on Multimedia systems,
ACM, 2011, pp. 57–68.

[142] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen,
and P. Engelstad, “Using bandwidth aggregation to improve the per-
formance of quality-adaptive streaming”, Signal Processing: Image
Communication, vol. 27, no. 4, pp. 312–328, 2012.

[143] E. Miyazaki and M. Oguchi, “Evaluation of Middleware for Band-
width Aggregation using Multiple Interface in Wireless Communica-
tion”, International Journal On Advances in Networks and Services,
vol. 4, no. 3 and 4, pp. 343–352, 2012.

BIBLIOGRAPHY 211

[144] K. Habak, M. Youssef, and K. A. Harras, “DBAS: A Deployable
Bandwidth Aggregation System”, in Proceedings of the 5th Interna-
tional Conference on New Technologies, Mobility and Security (NTMS
’12), IEEE, 2012, pp. 1–6.

[145] ——, “An optimal deployable bandwidth aggregation system”, Com-
puter Networks, vol. 57, no. 15, pp. 3067–3080, 2013.

[146] K. Habak, M. Youssef, and K. Harras, “G-DBAS: A Green and
Deployable Bandwidth Aggregation System”, in Proceedings of the
IEEE Wireless Communications and Networking Conference (WCNC
’12), 2012, pp. 3290–3295.

[147] K. Habak, K. A. Harras, and M. Youssef, “OPERETTA: An opti-
mal energy efficient bandwidth aggregation system”, in Proceedings
of the 9th Annual IEEE Communications Society Conference on Sen-
sor, Mesh and Ad Hoc Communications and Networks (SECON ’12),
IEEE, 2012, pp. 121–129.

[148] W. Zhang, W. Lei, S. Liu, and G. Li, “A general framework of mul-
tipath transport system based on application-level relay”, Computer
Communications, vol. 51, pp. 70–80, 2014.

[149] K. Habak, K. A. Harras, and M. Youssef, “Bandwidth aggregation
techniques in heterogeneous multi-homed devices: A survey”, ArXiv
preprint arXiv:1309.0542, 2013.

[150] Y. Wen and V. Chan, “Ultra-reliable Communication over Vulner-
able All-Optical Networks via Lightpath Diversity”, IEEE Journal
on Selected Areas in Communications, Optical Communications and
Networking, vol. 23, no. 8, pp. 1572–1587, 2005.

[151] X. Chen, A. Jukan, A. Drummond, and N. da Fonseca, “A multipath
routing mechanism in optical networks with extremely high band-
width requests”, in Global Telecommunications Conference, 2009.
GLOBECOM 2009. IEEE, 2009, pp. 1–6.

[152] N. F. Maxemchuk, “DISPERSITY ROUTING IN STORE-AND-FORWARD
NETWORKS”, Available as http://repository.upenn.edu/dissertations/
AAI7524101, PhD thesis, University of Pennsylvania, 1975.

http://repository.upenn.edu/dissertations/AAI7524101
http://repository.upenn.edu/dissertations/AAI7524101

212 BIBLIOGRAPHY

[153] P. Key, L. Massoulié, and D. Towsley, “Combining multipath routing
and congestion control for robustness”, in Proceedings of the 40th An-
nual Conference on Information Sciences and Systems, IEEE, 2006,
pp. 345–350.

[154] S. Shakkottai, E. Altman, and A. Kumar, “The Case for Non-Cooperative
Multihoming of Users to Access Points in IEEE 802.11 WLANs”, in
Proceedings of the 25th IEEE International Conference on Computer
Communications (INFOCOM ’06), 2006.

[155] D. Wischik, M. Handley, and M. B. Braun, “The resource pooling
principle”, ACM SIGCOMM Computer Communication Review, vol.
38, no. 5, pp. 47–52, 2008.

[156] IEEE, “IEEE 802.ad Link Aggregation Task Force”, 2000, http :
//www.ieee802.org/3/ad/ [Available Online].

[157] W. Simpson, “The Point-to-Point Protocol (PPP)”, IETF RFC 1661,
1994.

[158] T. Consortium et al., Openflow switch specification/version 1.1. 0,
2011.

[159] E. Blanton and M. Allman, “On making TCP more robust to packet
reordering”,ACM SIGCOMM Computer Communication Review, vol.
32, no. 1, pp. 20–30, 2002.

[160] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: a reordering-
robust TCP with DSACK”, in Proceedings of the 11th IEEE Inter-
national Conference on Network Protocols, 2003, pp. 95–106.

[161] C. Perkins, “IP Encapsulation within IP”, IETF RFC 2003, 1996.

[162] C. Perkins, “IP Mobility Support for IPv4, Revised”, IETF RFC
5944, 2010.

[163] C. E. Perkins, “Mobile IP”, IEEE Communications Magazine, vol.
35, no. 5, pp. 84–99, 1997.

[164] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host iden-
tity protocol”, IETF RFC 5201, 2008.

[165] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming shim
protocol for IPv6”, IETF RFC 5533, 2009.

[166] P. Jokela, “Using the encapsulating security payload (ESP) transport
format with the host identity protocol (HIP)”, IETF RFC 5202, 2008.

http://www.ieee802.org/3/ad/
http://www.ieee802.org/3/ad/

BIBLIOGRAPHY 213

[167] J. Milbrandt, K. Humm, and M. Menth, “Adaptive bandwidth al-
location: impact of routing and load balancing on tunnel capacity
requirements”, in Next Generation Internet Design and Engineering
(NGI ’06), IEEE, 2006, 8–pp.

[168] R. Stewart, “Stream control transmission protocol”, IETF RFC 4960,
2007.

[169] R. Hamilton, J. Iyengar, I. Sweet, and A. Wilk, QUIC: A UDP-Based
Secure and Reliable Transport for HTTP/2, 2016.

[170] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, TCP Fast Open,
2014.

[171] S. Ha and I. Rhee, “CUBIC : A New TCP-Friendly High-Speed TCP
Variant”, ACM SIGOPS Operating Systems Review - Research and
developments in the Linux kernel, vol. 42, no. 5, pp. 64–74, 2008.

[172] N. Cardwell, Y. Cheng, S. C. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR Congestion-Base Congestion Control”, ACM queue, vol. 14, no.
December, pp. 24–30, 2016.

[173] R. Stewart, Stream Control Transmission Protocol, 2007.

[174] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgment options”, Tech. Rep., 1996.

[175] S. Mascolo, L. A. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli,
“Performance evaluation of Westwood+ TCP congestion control”,
Performance Evaluation, vol. 55, no. 1, pp. 93–111, 2004.

[176] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush, “A Measure-
ment Study on the Impact of Routing Events on End-to-end Internet
Path Performance”, in Proceedings of the 2006 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM ’06), ACM, 2006, pp. 375–386.

[177] A. Pathak, H. Pucha, Y. Zhang, Y. Hu, and Z. Mao, “A Measurement
Study of Internet Delay Asymmetry”, in PASSIVE AND ACTIVE
NETWORK MEASUREMENT, ser. Lecture Notes in Computer Sci-
ence, vol. 4979, Springer, 2008, pp. 182–191.

[178] S. Keshav, “A control-theoretic approach to flow control”, ACM SIG-
COMM Computer Communication Review, vol. 25, no. 1, pp. 188–
201, 1995.

214 BIBLIOGRAPHY

[179] K Rojviboonchai, N Watanabe, and H Aida, “One-way-trip time
(OWTT) measurement and retransmission policy for congestion con-
trol in M/TCP”, in Proceedings of the Annual Conference of IPSJ,
2002.

[180] K Ramakrishnan, S. Floyd, D Black, et al., “The addition of explicit
congestion notification (ECN) to IP”, IETF RFC 3168, 2001.

[181] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
modification to TCPâĂŹs fast recovery algorithm”, IETF RFC 6582,
2012.

[182] C Raiciu, M Handley, and D Wischik, “Coupled congestion control
for multipath transport protocols”, IETF RFC 6356, 2011.

[183] A Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Exten-
sions for Multipath Operation with Multiple Addresses”, 2013.

[184] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and M.
Handley, “Improving datacenter performance and robustness with
multipath TCP”, in Proceedings of the ACM SIGCOMM conference,
vol. 41, 2011, pp. 266–277.

[185] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
storage cluster: Delivering scalable high bandwidth storage”, in Pro-
ceedings of the ACM/IEEE conference on Supercomputing, IEEE Com-
puter Society, 2004, p. 53.

[186] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and Analy-
sis of TCP Throughput Collapse in Cluster-based Storage Systems”,
in Proceedings of the 6th USENIX Conference on File and Storage
Technologies (FAST ’08), vol. 8, 2008, pp. 1–14.

[187] A. S.-W. Tam, K. Xi, Y. Xu, and H. J. Chao, “Preventing TCP incast
throughput collapse at the initiation, continuation, and termination”,
in Proceedings of the 20th IEEE International Workshop on Quality
of Service, IEEE Press, 2012, p. 29.

[188] T. Das and K. M. Sivalingam, “TCP improvements for data cen-
ter networks”, in Proceedings of the 5th International Conference
on Communication Systems and Networks (COMSNETS ’13), IEEE,
2013, pp. 1–10.

BIBLIOGRAPHY 215

[189] P. D. Amer, C. Chassot, T. J. Connolly, M. Diaz, and P. Conrad,
“Partial-order transport service for multimedia and other applica-
tions”, IEEE/ACM Transactions on Networking (TON), vol. 2, no.
5, pp. 440–456, 1994.

[190] S. C. Nguyen and T. M. T. Nguyen, “Evaluation of multipath TCP
load sharing with coupled congestion control option in heterogeneous
networks”, in Proceedings of the Global Information Infrastructure
Symposium (GIIS ’11), 2011, pp. 1–5.

[191] S. C. Nguyen, X. Zhang, T. M. T. Nguyen, and G. Pujolle, “Eval-
uation of throughput optimization and load sharing of multipath
tcp in heterogeneous networks”, in Proceedings of the 8th Interna-
tional Conference on Wireless and Optical Communications Networks
(WOCN ’11), IEEE, 2011, pp. 1–5.

[192] Y.-C. Chen, Y. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A Measurement-based Study of Multipath TCP Per-
formance over Wireless Networks”, in Proceedings of the 2013 ACM
Conference on Internet Measurement Conference (IMC ’13), 2013,
pp. 455–468.

[193] Z. Shamszaman, S. Ara, and I. Chong, “Feasibility considerations of
multipath TCP in dealing with big data application”, in International
Conference on Information Networking (ICOIN ’13), 2013, pp. 708–
713.

[194] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers”, in Proceedings of the 2014
ACM SIGCOMM workshop on Capacity sharing workshop, ACM,
2014, pp. 27–32.

[195] B. Arzani, A Gurney, S. Cheng, R. Guerin, and B. T. Loo, “Im-
pact of Path Characteristics and Scheduling Policies on MPTCP
Performance”, in Proceedings of the 28th International Conference
on Advanced Information Networking and Applications Workshops
(WAINA), 2014, pp. 743–748.

[196] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaventure,
“Are TCP extensions middlebox-proof?”, in Proceedings of the 2013
workshop on Hot topics in middleboxes and network function virtu-
alization, 2013, pp. 37–42.

216 BIBLIOGRAPHY

[197] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?”, in Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement con-
ference, ACM, 2011, pp. 181–194.

[198] G. Detal, C. Paasch, and O. Bonaventure, “Multipath in the Mid-
dle(Box)”, in Proceedings of the 2013 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization (HotMiddlebox ’13),
2013, pp. 1–6.

[199] C. Nicutar, C. Paasch, M. Bagnulo, and C. Raiciu, “Evolving the In-
ternet with connection acrobatics”, in Proceedings of the 2013 work-
shop on Hot topics in middleboxes and network function virtualiza-
tion, ACM, 2013, pp. 7–12.

[200] M. Becke, H. Adhari, E. P. Rathgeb, F. Fa, X. Yang, and X. Zhou,
“Comparison of Multipath TCP and CMT-SCTP based on Inter-
continental Measurements”, in Proceedings of the 2013 IEEE Global
Communications Conference (GLOBECOM ’13), IEEE, 2013, pp. 1360–
1366.

[201] J. Postel and J. Reynolds, “File transfer protocol”, IETF RFC 959,
1985.

[202] T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-area network”,
in Proceedings of the International Parallel and Distributed Process-
ing Symposium (IPDPS ’02), IEEE, 2002, pp. 434–443.

[203] L. Golubchik, J. C. S. Lui, T. F. Tung, A. L. Chow, W.-J. Lee,
G. Franceschinis, and C. Anglano, “Multi-path continuous media
streaming: What are the benefits?”, Performance Evaluation, vol.
49, no. 1, pp. 429–449, 2002.

[204] S. Mao, D. Bushmitch, S. Narayanan, and S. S. Panwar, “MRTP: a
multiflow real-time transport protocol for ad hoc networks”, IEEE
Transactions on Multimedia, vol. 8, no. 2, pp. 356–369, 2006.

[205] H. Schulzrinne, S. Casner, R Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications”, IETF RFC 3550,
2003.

BIBLIOGRAPHY 217

[206] D. Bushmitch, S. Panwar, and A. Pal, “Thinning, striping and shuf-
fling: traffic shaping and transport techniques for variable bit rate
video”, in Proceedings of the 2002 IEEE Global Telecommunications
Conference (GLOBECOM ’02), vol. 2, 2002, pp. 1485–1491.

[207] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, Hypertext transfer protocol–HTTP/1.1, 1999.

[208] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross-
layer design”, IEEE Wireless Communications, vol. 12, no. 1, pp. 3–
11, 2005.

[209] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over het-
erogeneous wireless networks: Does it really pay off?”, in 2014 IEEE
Global Communications Conference, IEEE, 2014, pp. 4807–4813.

[210] O. Bonaventure. (2012). Multipath TCP, Tutorial, IEEE CloudNet
2012, [Online]. Available: http://www-phare.lip6.fr/cloudnet12/
Multipath-TCP-tutorial-cloudnet.pptx.

[211] A Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “RFC6182
Architectural guidelines for Multipath TCP Development”, RFC6182,
2011.

[212] M. Scharf and A. Ford, Multipath TCP (MPTCP) Application Inter-
face Considerations, RFC 6897 (Informational), Internet Engineering
Task Force, Mar. 2013.

[213] M. Coudron, S. Secci, G. Pujolle, P. Raad, and P. Gallard, “Cross-
layer cooperation to boost multipath TCP performance in cloud net-
works”, in 2013 IEEE 2nd International Conference on Cloud Net-
working (CloudNet), IEEE, 2013, pp. 58–66.

[214] R. van der Pol, S. Boele, F. Dijkstra, A. Barczyk, G. van Malen-
stein, J. H. Chen, and J. Mambretti, “Multipathing with MPTCP and
OpenFlow”, in 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, IEEE, 2012, pp. 1617–1624.

[215] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic Window Coupling
for multipath congestion control”, in 2011 19th IEEE International
Conference on Network Protocols, IEEE, 2011, pp. 341–352.

http://www-phare.lip6.fr/cloudnet12/Multipath-TCP-tutorial-cloudnet.pptx
http://www-phare.lip6.fr/cloudnet12/Multipath-TCP-tutorial-cloudnet.pptx

218 BIBLIOGRAPHY

[216] S. Ferlin, O. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revis-
iting congestion control for multipath TCP with shared bottleneck
detection”, in IEEE INFOCOM 2016 - The 35th Annual IEEE In-
ternational Conference on Computer Communications, IEEE, 2016,
pp. 1–9.

[217] H. Oda, H. Hisamatsu, and H. Noborio, “Design, Implementation
and Evaluation of Congestion Control Mechanism for Video Stream-
ing”, International Journal of Computer Networks & Communica-
tions, 2011.

[218] T. A. Le, C. S. Hong, and S. Lee, “MPCubic: An extended cubic TCP
for multiple paths over high bandwidth-delay networks”, in ICTC
2011, IEEE, 2011, pp. 34–39.

[219] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for mul-
tipath TCP”, 2012 20th IEEE International Conference on Network
Protocols (ICNP), pp. 1–10, 2012.

[220] Y. Cao, M. Xu, X. Fu, and E. Dong, “Explicit multipath congestion
control for data center networks”, in Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies -
CoNEXT ’13, New York, New York, USA: ACM Press, 2013, pp. 73–
84.

[221] C. Paasch, “Improving Multipath TCP”, PhD thesis, 2014.

[222] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of MultiPath TCP perfor-
mance over wireless networks”, Proceedings of the 2013 conference on
Internet measurement conference - IMC ’13, pp. 455–468, 2013.

[223] R. Barik, M. Welzl, S. Ferlin, and O. Alay, “LISA: A linked slow-start
algorithm for MPTCP”, in 2016 IEEE International Conference on
Communications (ICC), IEEE, 2016, pp. 1–7. arXiv: arXiv:1011.
1669v3.

[224] Ming Li, A. Lukyanenko, S. Tarkoma, and A. Yla-Jaaski, “The De-
layed ACK evolution in MPTCP”, in 2013 IEEE Global Communi-
cations Conference (GLOBECOM), IEEE, 2013, pp. 2282–2288.

http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3

BIBLIOGRAPHY 219

[225] F. H. Mirani and N. Boukhatem, “Evaluation of forward prediction
scheduling in heterogeneous access networks”, in 2012 IEEE Wireless
Communications and Networking Conference (WCNC), IEEE, 2012,
pp. 1811–1816.

[226] M. Coudron. (). MPTCP simulator source, [Online]. Available: https:
//github.com/lip6-mptcp.

[227] C. Paasch, G. Detal, S. Barré, F. Duchêne, and O. Bonaventure.
(2013). The fastest TCP connection with Multipath TCP, [Online].
Available: http : / / multipath - tcp . org / pmwiki . php ? n = Main .
50Gbps.

[228] (). The Application Layer Traffic Optimization (ALTO), [Online].
Available: http://datatracker.ietf.org/wg/alto/charter/.

[229] M. Scharf, G. Wilfong, and L. Zhang, “Sparsifying network topologies
for application guidance”, in 2015 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), IEEE, 2015, pp. 234–
242.

[230] S. Secci, G. Pujolle, T. M. T. Nguyen, and S. C. Nguyen, “Performance-
Cost Trade-Off Strategic Evaluation of Multipath TCP Communica-
tions”, IEEE Transactions on Network and Service Management, vol.
11, no. 2, pp. 250–263, 2014.

[231] H. Adhari, S. Werner, T. Dreibholz, and E. P. Rathgeb, “LEDBAT-
MP – On the Application of Lower-than-Best-Effort for Concurrent
Multipath Transfer”, in 2014 28th International Conference on Ad-
vanced Information Networking and Applications Workshops, IEEE,
2014, pp. 765–771.

[232] . (2016), [Online]. Available: https : / / www . ietfjournal . org /
multipath-tcp-deployments/.

[233] M. Coudron, S. Secci, G. Maier, G. Pujolle, and A. Pattavina, “Boost-
ing Cloud Communications through a Crosslayer Multipath Protocol
Architecture”, in 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), IEEE, 2013, pp. 1–8.

[234] A. Akella, B. Maggs, S. Seshan, and A. Shaikh, “On the Performance
Benefits of Multihoming Route Control”, IEEE/ACM Transactions
on Networking, vol. 16, no. 1, pp. 91–104, 2008.

https://github.com/lip6-mptcp
https://github.com/lip6-mptcp
http://multipath-tcp.org/pmwiki.php?n=Main.50Gbps
http://multipath-tcp.org/pmwiki.php?n=Main.50Gbps
http://datatracker.ietf.org/wg/alto/charter/
https://www.ietfjournal.org/multipath-tcp-deployments/
https://www.ietfjournal.org/multipath-tcp-deployments/

220 BIBLIOGRAPHY

[235] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, The Locator/ID
Separation Protocol, 2013.

[236] R. Perlman, “Rbridges: transparent routing”, in IEEE INFOCOM
2004, vol. 2, IEEE, 2004, pp. 1211–1218.

[237] A. Atlas, T. Nadeau, and D. Ward, Problem Statement for the Inter-
face to the Routing System, 2016.

[238] A. Atlas, J. Halpern, S. Hares, D. Ward, and T. Nadeau, An Archi-
tecture for the Interface to the Routing System This, 2016.

[239] D. Farinacci, D. Meyer, and J. Snijders, LISP Canonical Address
Format (LCAF), 2016.

[240] P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G.
Pujolle, “Achieving Sub-Second Downtimes in Large-Scale Virtual
Machine Migrations with LISP”, IEEE Transactions on Network and
Service Management, vol. 11, no. 2, pp. 133–143, 2014.

[241] A. Farrel, J. P. Vasseur, and J Ash, “A Path Computation Element
(PCE)-Based Architecture”, pp. 1–40, 2006.

[242] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detec-
tion”, in 2011 Proceedings IEEE INFOCOM, IEEE, 2011, pp. 1629–
1637.

[243] L. Dunbar, D. Eastlake, R. Perlman, and I. Gashinsky, “Directory
Assistance Problem and High-Level Design Proposal”, pp. 1–15, 2013.

[244] T. Li and H. Smit, “IS-IS Extensions for Traffic Engineering Status”,
pp. 1–17, 2008.

[245] D. Saucez, B. Donnet, and O. Bonaventure, “Implementation and
preliminary evaluation of an ISP-driven informed path selection”, in
Proceedings of the 2007 ACM CoNEXT conference on - CoNEXT
’07, New York, New York, USA: ACM Press, 2007, p. 1.

[246] D. Farinacci, M. Kowal, and P. Lahiri, LISP Traffic Engineering Use-
Cases, 2017.

[247] R. Perlman, H. Fangwei, D. Eastlake, K. Krupakaran, and T. Liao,
“TRILL Smart Endnodes”, pp. 1–16, 2017.

[248] (). A linux kernel TRILL implementation., [Online]. Available: https:
//github.com/Gandi/ktrill.

https://github.com/Gandi/ktrill
https://github.com/Gandi/ktrill

BIBLIOGRAPHY 221

[249] K. Sriganesh, ““Multipath Transmission Control Protocol Proxy”WIPO
Patent No. 2012049631. 20 Apr. 2012.”,

[250] G. Detal, C. Paasch, S. van der Linden, P. Mérindol, G. Avoine,
and O. Bonaventure, “Revisiting flow-based load balancing: Stateless
path selection in data center networks”, Computer Networks, vol. 57,
no. 5, pp. 1204–1216, 2013.

[251] D. Allan, P. Ashwood-Smith, N. Bragg, J. Farkas, D. Fedyk, M. Ouel-
lete, M. Seaman, and P. Unbehagen, “Shortest path bridging: Effi-
cient control of larger ethernet networks”, IEEE Communications
Magazine, vol. 48, no. 10, pp. 128–135, 2010.

[252] (2013). “NU@GE project ”, [Online]. Available: http://www.nuage-
france.fr.

[253] (2016). LISPmob open source LISP node, [Online]. Available: {http:
//www.lispmob.org}.

[254] L. Iannone, D. Saucez, and O. Bonaventure, “Implementing the Loca-
tor/ID Separation Protocol: Design and experience”, Computer Net-
works, vol. 55, no. 4, pp. 948–958, 2011.

[255] D. Phung, S. Secci, D. Saucez, and L. Iannone, “The OpenLISP con-
trol plane architecture”, IEEE Network, vol. 28, no. 2, pp. 34–40,
2014.

[256] Farinacci, D. and Meyer, D., “The LISP Internet Groper”RFC 6835,
2016.

[257] ——, (2016). The lisp internet groper (lig) open source version, [On-
line]. Available: https://github.com/davidmeyer/lig.

[258] No Title.

[259] R. Touihri, P. Raad, N. Turpault, F. Cachereul, and S. Secci, “Unify-
ing LISP and TRILL control-planes for distributed data-center net-
working”, in NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium, IEEE, 2016, pp. 925–930.

[260] R. V. D. Pol and M. Bredel, “Experiences with MPTCP in an in-
tercontinental multipathed OpenFlow network”, . . . Education Net-
working . . ., no. November 2012, 2013.

http://www.nuage-france.fr
http://www.nuage-france.fr
{http://www.lispmob.org}
{http://www.lispmob.org}
https://github.com/davidmeyer/lig

222 BIBLIOGRAPHY

[261] D. Acemoglu, R. Johari, and A. Ozdaglar, “Partially Optimal Rout-
ing”, IEEE Journal on Selected Areas in Communications, vol. 25,
no. 6, pp. 1148–1160, 2007.

[262] B. Hesmans, G. Detal, S. Barré, R. Bauduin, and O. Bonaventure,
“SMAPP : Towards Smart Multipath TCP-enabled APPlications”,
in CoNEXT ’15, 2015.

[263] B. Hesmans and O. Bonaventure, “An enhanced socket API for Mul-
tipath TCP”, in Proceedings of the 2016 workshop on Applied Net-
working Research Workshop - ANRW 16, New York, New York, USA:
ACM Press, 2016, pp. 1–6.

[264] M. Boucadair, C. Jacquenet, D. Behaghel, stefano.secci@lip6.fr, W.
Henderickx, R. Skog, O. Bonaventure, S. Vinapamula, S. Seo, W.
Cloetens, U. Meyer, L. M. Contreras, and B. Peirens, “An MPTCP
Option for Network-Assisted MPTCP”, Internet Engineering Task
Force, Internet-Draft draft-boucadair-mptcp-plain-mode-09, Oct. 2016,
Work in Progress, 23 pp.

[265] M. Boucadair, C. Jacquenet, and T. Reddy,DHCP Options for Network-
Assisted Multipath TCP, 2016.

[266] M. Coudron, S. Secci, and G. Pujolle, “Differentiated pacing on multi-
ple paths to improve one-way delay estimations”, in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
IEEE, 2015, pp. 672–678.

[267] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New Techniques for Congestion Detection and Avoidance”, in Con-
ference on Communications architectures, protocols and applications
(SIGCOMM), 1994.

[268] M. Aylene and C. Weigle, “Investigating the Use of Synchronized
Clocks in TCP Congestion Control”, PhD thesis, University of North
Carolina at Chapel Hill, 2003.

[269] S. Floyd, A. Arcia, D. Ros, and J. Iyengar, Adding Acknowledgement
Congestion Control to TCP Abstract, 2010.

[270] D. Kaspar, “Multipath Aggregation of Heterogeneous Access Net-
works”, PhD thesis, Faculty of Mathematics and Natural Sciences at
the University of Oslo, 2012.

BIBLIOGRAPHY 223

[271] F. Yang and P. Amer, “Using One-way Communication Delay for
In-order Arrival MPTCP Scheduling”, in Proceedings of Chinacom,
2014.

[272] Fan Yang and P. Amer, “Non-renegable Selective Acknowledgments
(NR-SACKs) for MPTCP”, in 2013 27th International Conference
on Advanced Information Networking and Applications Workshops,
IEEE, 2013, pp. 1113–1118.

[273] V. Paxson, “On calibrating measurements of packet transit times”, in
ACM SIGMETRICS Performance Evaluation Review, vol. 26, 1998,
pp. 11–21.

[274] Global positioning system standard positioning service performance
standard 4, 2008.

[275] Precision Time Protocol (IEEE 1588).

[276] D. Mills, U. Delaware, J. Martin, J. Burbank, and W. Kasch, “Net-
work Time Protocol Version 4: Protocol and Algorithms Specifica-
tion”, RFC5905, pp. 1–110, 2010.

[277] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, and Z. M. Mao, “A mea-
surement study of internet delay asymmetry”, in Lecture Notes in
Computer Science, vol. 4979 LNCS, 2008, pp. 182–191.

[278] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush, “A measurement
study on the impact of routing events on end-to-end internet path
performance”, Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communica-
tions (SIGCOMM), 2006.

[279] V Paxson, “Measurements and analysis of end-to-end Internet dy-
namics”, PhD thesis, University of California at Berkeley, 1998.

[280] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
Architecture, Algorithms, Performance”, IEEE/ACM Transactions
on Networking, vol. 14, no. 6, pp. 1246–1259, 2006.

[281] S. Liu, T. BaÅ§ar, and R. Srikant, “TCP-Illinois: A loss- and delay-
based congestion control algorithm for high-speed networks”, Perfor-
mance Evaluation, vol. 65, no. 6-7, pp. 417–440, 2008.

224 BIBLIOGRAPHY

[282] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “Compound TCP : A
Scalable and TCP-Friendly Congestion Control for High-speed Net-
works”, Proceedings 25th Conference on Computer Communications
(InfoCom 2006), pp. 23–29, 2006.

[283] V Jacobson, R. Bradeb, and D. Borman, “TCP Extensions for High
Performance”, RFC1323, 1992.

[284] R. Scheffenegger, M. Kuehlewind, and B. Trammell, “Additional ne-
gotiation in the TCP Timestamp Option field during the TCP hand-
shake”, Draft-scheffenegger-tcpm-timestamp-negotiation-05, 2013.

[285] J.-H.C.J.-H. Choi and C. Y. C. Yoo, “Analytic end-to-end estima-
tion for the one-way delay and its variation”, in Second Consumer
Communications and Networking Conference (CCNC), IEEE, 2005.

[286] O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-
path delay measurements”, in Conference on Computer Communica-
tions (INFOCOM), IEEE, 2001.

[287] S. Biaz and N. H. Vaidya, “Is the round-trip time correlated with the
number of packets in flight?”, in Proceedings of the 2003 ACM SIG-
COMM conference on Internet measurement - IMC ’03, New York,
New York, USA: ACM Press, 2003, p. 273.

[288] S. Rewaskar, J. Kaur, and D. Smith, “Why Don’t Delay-based Con-
gestion Estimators Work in the Real-world?”, 2006.

[289] J. Martin, A. Nilsson, and Injong Rhee, “Delay-based congestion
avoidance for TCP”, IEEE/ACM Transactions on Networking, vol.
11, no. 3, pp. 356–369, 2003.

[290] G McCullagh and D. Leith, “Delay-based congestion control: Sam-
pling and correlation issues revisited”, . . . University of Ireland, Maynooth,
Tech. Rep, pp. 1–12, 2008.

[291] Google, “BBR: Congestion-Based Congestion Control”,

[292] E. P. Ribeiro and V. C. M. Leung, “Asymmetric path delay optimiza-
tion in mobile multi-homed SCTP multimedia transport”, Proceed-
ings of the 1st ACM workshop on Wireless multimedia networking
and performance modeling - WMuNeP, 2005.

BIBLIOGRAPHY 225

[293] F. Song, H. Zhang, S. Zhang, F. Ramos, and J. Crowcroft, “An esti-
mator of forward and backward delay for multipath transport”, Tech-
nical report, University of Cambridge, no. 747, 2009.

[294] D. Zhou, H. Li, and J. Li, “Analysis of re-sequencing buffer overflow
probability based on stochastic delay characteristics”, IEEE 24th An-
nual International Symposium on Personal, Indoor, and Mobile Ra-
dio Communications (PIMRC), 2013.

[295] J. Nagle, Congestion Control in IP/TCP Internetworks, RFC 896,
Internet Engineering Task Force, Jan. 1984.

[296] R. Braden, Requirements for Internet Hosts - Communication Lay-
ers, RFC 1122 (INTERNET STANDARD), Updated by RFCs 1349,
4379, 5884, 6093, 6298, 6633, 6864, Internet Engineering Task Force,
Oct. 1989.

[297] Ns3 official website.

[298] Ns3 simulation source code.

[299] M. Coudron, N. Ho, D. Duy, and S. Secci, “On buffer and window
management for Multipath TCP”, in Network of the Future (NoF),
2016.

[300] M. Li, A. Lukyanenko, Z. Ou, A. Yla-Jaaski, S. Tarkoma, M. Coudron,
and S. Secci, “Multipath Transmission for the Internet: A Survey”,
IEEE Communications Surveys & Tutorials, pp. 1–1, 2016.

[301] M. Coudron. (2016). mptcpnumerics, [Online]. Available: https://
github.com/lip6-mptcp/mptcpnumerics.

[302] M. Coudron and S. Secci, “Multipath TCP in ns-3: Implementation
Evaluation”, HAL report number <hal-01382907>, 2016.

[303] Json Development Team. (2016). Introducing json, [Online]. Avail-
able: http://www.json.org.

[304] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Reno performance: a simple model and its empirical validation”,
IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 133–145,
2000.

[305] SymPy Development Team. (2016). Sympy: Python library for sym-
bolic mathematics, [Online]. Available: http://www.sympy.org.

https://github.com/lip6-mptcp/mptcpnumerics
https://github.com/lip6-mptcp/mptcpnumerics
http://www.json.org
http://www.sympy.org

226 BIBLIOGRAPHY

[306] S. Mitchell, S. M. Consulting, and I. Dunning. (2011). Pulp: A lin-
ear programming toolkit for python, [Online]. Available: https://
github.com/coin-or/pulp.

[307] T. Schoenemann, “Computing optimal alignments for the ibm-3 trans-
lation model”, in Proceedings of the Fourteenth Conference on Com-
putational Natural Language Learning, CoNLL 2010, Uppsala, Swe-
den, July 15-16, 2010, 2010, pp. 98–106.

[308] Transmission Control Protocol RFC 793, 1981.

[309] V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM
Computer Communication Review, vol. 18, no. 4, pp. 314–329, 1988.

[310] B.-H. Oh and J. Lee, “Constraint-based proactive scheduling for
MPTCP in wireless networks”, Computer Networks, vol. 91, pp. 548–
563, 2015.

[311] H. Adhari, T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen,
“Evaluation of Concurrent Multipath Transfer over Dissimilar Paths”,
in 2011 IEEE Workshops of International Conference on Advanced
Information Networking and Applications, IEEE, 2011, pp. 708–714.

[312] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman, “PlanetLab”, ACM SIGCOMM Computer
Communication Review, vol. 33, no. 3, p. 3, 2003.

[313] (). Global Environment for Network Innovations., [Online]. Available:
http://www.geni.net/.

[314] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop”, in
Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics
in Networks - Hotnets ’10, New York, New York, USA: ACM Press,
2010, pp. 1–6.

[315] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKe-
own, “Reproducible network experiments using container-based emu-
lation”, Proceedings of the 8th international conference on Emerging
networking experiments and technologies - CoNEXT ’12, p. 253, 2012.

[316] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti,
andW. Dabbous, “Direct Code Execution : Revisiting Library OS Ar-
chitecture for Reproducible Network Experiments”, COnference on

https://github.com/coin-or/pulp
https://github.com/coin-or/pulp
http://www.geni.net/

BIBLIOGRAPHY 227

Emerging networking experiments and technologies (CONext), pp. 217–
228, 2013.

[317] J. Yan and D. Jin, “A Virtual Time System for Linux-container-
based Emulation of Software-defined Networks”, in Proceedings of
the 3rd ACM Conference on SIGSIM-Principles of Advanced Discrete
Simulation - SIGSIM-PADS ’15, New York, New York, USA: ACM
Press, 2015, pp. 235–246.

[318] (). Link modeling using ns 3, [Online]. Available: https://github.
com/mininet/mininet/wiki.

[319] S. Jansen and A. McGregor, “Simulation with Real World Network
Stacks”, in Proceedings of the Winter Simulation Conference, 2005.,
IEEE, pp. 2454–2463.

[320] T. Hajime, R. Nakamura, and Y. Sekiya, “Library Operating System
with Mainline Linux Network Stack”, in Netdev0.1, 2015.

[321] T. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz, and D. Wag-
ner, “VMSimInt: A Network Simulation Tool Supporting Integration
of Arbitrary Kernels and Applications”, in Proceedings of the Seventh
International Conference on Simulation Tools and Techniques, ICST,
2014.

[322] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and
G. M. Voelker, “To infinity and beyond”, in Proceedings of the twen-
tieth ACM symposium on Operating systems principles - SOSP ’05,
New York, New York, USA: ACM Press, 2005, p. 1.

[323] (). OMNet++, [Online]. Available: https://omnetpp.org/.

[324] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator”, in
USENIX.

[325] B. Chihani and D. Collange, “A Multipath TCP model for ns-3 sim-
ulator”, in Workshop on ns-3 held in conjunction with SIMUTools,
2011. arXiv: 1112.1932.

[326] M. Kheirkhah, I. Wakeman, and G. Parisis, “Multipath-TCP in ns-
3”, in Ns3 workshop, 2014.

https://github.com/mininet/mininet/wiki
https://github.com/mininet/mininet/wiki
https://omnetpp.org/
http://arxiv.org/abs/1112.1932

228 BIBLIOGRAPHY

[327] B. Hesmans and O. Bonaventure, “Tracing multipath TCP connec-
tions”, in Proceedings of the 2014 ACM conference on SIGCOMM
- SIGCOMM ’14, New York, New York, USA: ACM Press, 2014,
pp. 361–362.

[328] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O
Bonaventure, M. Handley, U. P. Bucuresti, and U. C. D. Louvain,
“How Hard Can It Be? Designing and Implementing a Deployable
Multipath TCP”, no. 1, 1995.

[329] I. Lopez, M. Aguado, C. Pinedo, and E. Jacob, “SCADA Systems in
the Railway Domain: Enhancing Reliability through Redundant Mul-
tipathTCP”, in 2015 IEEE 18th International Conference on Intelli-
gent Transportation Systems, vol. 2015-Octob, IEEE, 2015, pp. 2305–
2310.

[330] Z. Deng, Non-Renegable Selective Acknowledgements (NR-SACKs)
for MPTCP, 2013.

[331] M. Coudron. (2016). mptcpanalyzer: mptcpanalyzer: a multipath TCP
analysis tool, [Online]. Available: http://dx.doi.org/10.5281/
zenodo.55288.

[332] S. Shalunov and B. Teitelbaum, One-way Active Measurement Pro-
tocol (OWAMP) Requirements, RFC 3763 (Informational), Internet
Engineering Task Force, Apr. 2004.

[333] JTelecommunication Networks Group - Politecnico di Torino. (). Tstat:
Tcp statistic and analysis tool, [Online]. Available: http://tstat.
polito.it/.

[334] Ming Li, A. Lukyanenko, and Yong Cui, “Network coding based
multipath TCP”, in 2012 Proceedings IEEE INFOCOM Workshops,
IEEE, 2012, pp. 25–30.

[335] D. L. Mills, NTP Performance Analysis, 2004.

[336] V. Paxson and L. Berkeley, “End-to-End Internet Packet Dynamics”,

[337] Sunggon Kim, Ju Yong Lee, and Dan Keun Sung, “A shifted gamma
distribution model for long-range dependent Internet traffic”, IEEE
Communications Letters, vol. 7, no. 3, pp. 124–126, 2003.

http://dx.doi.org/10.5281/zenodo.55288
http://dx.doi.org/10.5281/zenodo.55288
http://tstat.polito.it/
http://tstat.polito.it/

[338] M. Coudron and S. Secci, “Per node clocks to simulate time desyn-
chronization in networks”, in Workshop on ns-3 (WNS3), Seattle,
2016, p. 6.

[339] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlwind, Low Extra
Delay Background Transport (LEDBAT), 2012.

[340] P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann, “Socket
intents”, in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies - CoNEXT ’13, New York,
New York, USA: ACM Press, 2013, pp. 295–300.

[341] Transport Services (TAPS).

[342] T. D. Wallace and A. Shami, “Concurrent Multipath Transfer us-
ing SCTP: Modelling and Congestion Window Management”, IEEE
Transactions on Mobile Computing, vol. 1233, no. c, pp. 1–1, 2014.

[343] D. Sarkar, “A Concurrent Multipath TCP and Its Markov Model”,
vol. 00, no. c, pp. 615–620, 2006.

[344] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo, “Decon-
structing MPTCP Performance”, in 22nd International Conference
on Network Protocols (ICNP), 2014, pp. 269–274.

[345] Q. Peng, A. Walid, and S. H. Low, “Multipath TCP: Analysis and
Design”, pp. 1–14,

[346] M. Mellia, I. Stoica, and H. Zhang, “TCP Model for Short Lived
Flows”, vol. 6, no. 2, pp. 85–87, 2002.

230 BIBLIOGRAPHY

BIBLIOGRAPHY 231

UNIVERSITÉ PIERRE ET MARIE CURIE
LABORATOIRE D’INFORMATIQUE DE PARIS 6

4 PLACE JUSSIEU, 75005 PARIS

	Remerciements
	Abstract
	Contents
	List of Figures
	List of Tables
	Glossary
	List of Software
	Introduction
	Multipath communications: Incentives
	Reliability
	Bandwidth aggregation
	Confidentiality
	An alternative vision to RP

	Challenges
	Deployment concerns
	Heterogeneous Networks
	Pareto-optimality
	Resource Consumption

	Contributions
	Structure of the dissertation

	Related work
	Introduction
	Organization, Structure, and Research Problems

	Multipath Transmission
	Link Layer Bonding
	IP Layer Bandwidth Aggregation
	IP-in-IP Encapsulation
	nat Traversal
	Identity/locator Split

	Transport Layer Multipath Transmission
	quic
	sctp based on Multipath Transmission
	TCP based Multipath Transmission

	Application Layer Multipath Capability
	Multiple Connections over the Same Path
	Multiple Connections over Different Paths
	HTTP based Multipath Media Streaming
	Session layer Multipath Capability

	Summary
	Packet Reordering
	Layer-dependent scheduling algorithms
	Cross-layer Support
	Compatibility
	Evolution of Research Problems

	Summary

	Presentation of MPTCP
	High level design of MPTCP
	Connection process
	Initiation
	Addition and closure of other subflows

	Transmission of the flow of data
	Congestion control
	Scheduling

	MPTCP state machine
	Associated challenges
	Summary

	A multipathed crosslayer network architecture
	Introduction
	General Architecture
	Cloud Network Elements
	Functional blocks
	Multipath Communication Signaling

	A design using MPTCP, LISP and TRILL
	lisp
	trill

	Specific Architecture
	Cross-Layer MPTCP-LISP cooperation implementation
	Augmented mptcp path discovery
	Signaling requirements and implementation aspects
	LISP multipath forwarding requirements
	Experimental results
	Network test bed
	Open Source Nodes
	Transfer times
	Data-plane overhead

	TRILL and LISP unification for distributed DC networking

	Summary

	OWD difference estimation
	Introduction
	Related work
	Clock synchronization in packet switched networks
	TCP variations
	Multipath control techniques

	Proposed OWD estimator
	Delay model
	Algorithm

	Simulation results
	Results
	Discussion

	Summary

	Window and buffer dimensioning for MPTCP
	Introduction
	Presentation of can compute optimal congestion windows for a specific connection
	Implementation

	Running modes and Results
	Minimize the mptcp buffer size
	Maximize the estimated throughput

	Limitations and future work
	Addition of new constraints
	Support of proposed mptcp features
	Integration with an MPTCP stack
	More evolved trade offs
	Taking into account the rtt variance

	Summary

	MPTCP in NS-3: implementation and evaluation
	Introduction
	Simulation frameworks and testbeds
	Mininet
	Discrete time event-driven simulations
	Presentation of NS-3
	DCE: a bridge between simulators and emulators
	Discussion

	An MPTCP implementation in NS-3
	Why a simulator ?
	Related work
	Supported and missing features

	Evaluation
	Semantic analysis of MPTCP packet captures
	Presentation of toto
	Comparison with linux MPTCP on a 2-link topology
	Open Problems

	Summary

	Conclusion and Perspectives
	Recollections
	Future Work
	Support of Time Distribution Protocols Scenarios in DCE
	Improving sockets api
	Better Theoretical Models

	Conclusion

	Own publications
	Software contributions
	Bibliography

