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Population dynamics can be defined as the study of the forces responsible for the size and structure of a population. Several factors influencing population dynamics have already been identified. These factors can be categorized according to their level of influence. Some factors have a population-wide influence, such as climate change or population density, while others affect the individual level such as age or sex. Recently, many studies have emphasized the importance of this age structure for population dynamics.

In social species, an additional level of structuring of the population is the group. However, the consequences of this social group structuring are still poorly understood. In this thesis, I try to answer this question in different ways. I first studied how the individual demographic parameters were influenced by the size and composition of the group. I was able to highlight in particular a negative effect of the number of juvenile females present during development on the probability of becoming dominant once in adulthood. In a second step, I studied the importance of interactions between groups by quantifying the impact of a change of dominant on the dispersion of subordinates. Finally, I also quantified the influence of different groups within the population showing that large groups contribute relatively less to the population growth rate. These various results are then discussed in a context of evolutionary demography and new avenues of research are proposed.

Résumé _____________________________________________________________

La dynamique des populations peut être définie comme l'étude des forces responsables de la taille et de la structure d'une population. Plusieurs facteurs influençant la dynamique des populations ont déjà été identifiés. Ces facteurs peuvent être classés de par leur niveau d'influence, d'une influence à l'échelle de la population toute entière, comme par exemple les changements climatiques ou la densité de population, jusqu'à des facteurs individuels comme l'âge ou le sexe. Récemment, de nombreuses études ont insisté sur l'importance de la structure en âge pour cette dynamique. Chez les espèces sociales, un niveau supplémentaire de structuration de la population est le groupe. Cependant, les conséquences de cette structuration en groupes sociaux est encore mal connue. Au cours de ma thèse, j'ai tenté de répondre à cette question de différentes manières. J'ai tout d'abord étudié comment les paramètres démographiques individuels étaient influencés par la taille et la composition du groupe. J'ai pu notamment mettre en évidence un effet négatif du nombre de juvéniles femelles présents lors du développement sur la probabilité de devenir dominant une fois à l'âge adulte. Dans un deuxième temps, j'ai étudié l'importance des interactions entre groupes en quantifiant l'impact d'un changement de dominant sur la dispersion des subordonnés. Enfin, j'ai également quantifié l'influence des différents groupes au sein de la population démontrant que les grands groupes contribuent relativement moins au taux de croissance de la population. Ces différents résultats sont ensuite discutés dans un cadre de démographie évolutive et de nouvelles pistes de recherche sont proposées.
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In the first chapter, I give a general overview of the topic of my PhD journey:

"The influence of sociality on the population dynamics, the case of the Alpine marmot".

One of the easiest and most efficient ways to circumscribe a subject is by giving its terms clear definitions. The structure of this introduction will thus be articulated around some definitions of the most important terms that are "population dynamics", "sociality"

and "influence". I will start by introducing the concepts associated to population dynamics relevant to this study. The second part will introduce the different forms of sociality and especially the different features of social living susceptible to impact the population dynamics of species. In the third part of the introduction, I will briefly point out the importance of using appropriate methods to answer specific questions, with a focus on challenges related to population biology studies. Finally, a fourth part will be dedicated to the presentation of the different chapters of this thesis.

« Population Dynamics »

What is population dynamics?

"Population dynamics is the study of how and why population numbers change in time and space" [START_REF] Turchin | Complex population dynamics: a theoretical/empirical synthesis[END_REF]. Even though humans surely noticed and cared about the fluctuations in animals' numbers since the first ages (probably more so than we do now), population ecology became a scientific discipline on its own only in the 1920s [START_REF] Kingsland | Modeling Nature[END_REF]. At that time, ecology was largely dominated by both individual-level studies, with a particular focus on physiological responses to the environment, and community-level studies describing patterns of species associations, mostly among plants [START_REF] Moore | The Ecological Society and Its Opportunity[END_REF]. The "omission" of the population level is particularly obvious in a paper published in 1915 by V.E. Shelford, the first president of the Ecological Society of America. In this paper entitled "Principles and problems of ecology as illustrated by animals", Shelford dedicated the first two parts to individuals, with topics such as the "characteristic physiological life history" while the four remaining parts of the publication were devoted to animal communities and how they compare to plant communities.

But both the individual and community levels are not sufficient to understand patterns at the population level, and population ecology began to receive much attention, partly because of the strong associated interests in agricultural and natural resources management [START_REF] Kingsland | Modeling Nature[END_REF]. It is therefore not surprising that among the first population dynamics articles published were studies on the populations of fur-bearing animals, of great economic interest at that time. These pioneering studies in the field of population dynamics are often traced back to the works of [START_REF] Elton | Periodic fluctuations in the numbers of animals: their causes and effects[END_REF], [START_REF] Lotka | Elements of Physical Biology[END_REF], [START_REF] Volterra | Fluctuations in the Abundance of a Species considered Mathematically[END_REF] or [START_REF] Nicholson | An outline of the dynamics of animal populations[END_REF] (although Malthus' essay (1798) on the exponential growth rate and population regulation is often given credit as the first demographic study of importance). While Charles Elton was a naturalist above all who got interested in the periodic fluctuations in the abundance of Norwegian lemmings, Alfred Lotka was a mathematician and physical chemist by training and Vito Volterra was a physicist and mathematician. It is particularly interesting to note that population ecology, and especially population dynamics, brought together biology (and mainly zoology) and mathematics from the very beginning (although in practice both disciplines developed separately and their respective supporters were reluctant towards the other approach for quite a long time; [START_REF] Cooper | The Science of the Struggle for Existence: On the Foundations of Ecology[END_REF] .

Historically, as exemplified by the famous examples of Elton's work on lemmings' cycles or Canadian lynx [START_REF] Elton | The Ten-Year Cycle in Numbers of the Lynx in Canada[END_REF], population dynamicists were interested in quantifying the number of individuals present in a population and in describing the variation of these numbers in time. However, as noted by [START_REF] Lebreton | Contribution à la dynamique des populations d'oiseaux: modèles mathématiques en temps discret[END_REF], the term "dynamics", comes from the branch of mechanics and supposes "the study of the forces or properties which stimulate growth, development, or change within a system or process." (Oxford dictionary). It appears very clearly from this definition that the discipline of population dynamics is not limited to the measure of population size and its temporal variation but contains in its own etymology the motivations to study the forces responsible for the changes observed in natural populations. [START_REF] Gaillard | Contribution à la dynamique des populations de grands mammifères : l'exemple du chevreuil (Capreolus capreolus)[END_REF] identified three different levels in the study of populations:

(i) Population size. Starting at the larger scale, this level is also the first historically. Counts data and time series of population size estimates may well inform about the general trend of a population and its potential susceptibility to extinction but it says nothing about the processes underlying the observed population changes.

Nowadays, most studies on population size are either conservation studies trying to provide a general overview of a poorly known species [START_REF] Botero-Delgadillo | An assessment of the distribution, population size and conservation status of the Santa Marta Foliage-gleaner Automolus rufipectus: a Sierra Nevada de Santa Marta endemic[END_REF], of the efficiency of conservation measures [START_REF] Ruegg | Long-term population size of the North Atlantic humpback whale within the context of worldwide population structure[END_REF] or population genetics studies with a focus on effective population size and genetic diversity [START_REF] Palstra | Effective/census population size ratio estimation: a compendium and appraisal[END_REF].

(ii) Demographic rates. Ultimately, as emphasized by Tuljapurkar & Caswell (1997), population dynamics result from the combination of individuals' capacity to survive, move and reproduce, and the rates at which these processes occur are the true determinants of population dynamics. Identifying variation in demographic rates between individuals is thus necessary to a thorough understanding of population dynamics [START_REF] Benton | Complex population dynamics and complex causation: devils, details and demography[END_REF]. Notably, any variation in the population size or structure results from a variation in at least one of the demographic rates while the opposite is not true. Hence, the importance of population dynamics studies considering this level.

(iii) Factors affecting demographic rates. The relative influence of these different factors will be responsible for the variation in demographic rates and therefore population changes. Identifying and understanding the mechanisms through which these factors are responsible for the observed variation in demographic rates is thus the best way to characterize and understand population dynamics of animal species.

Accordingly, recent studies in population dynamics focused more and more on identifying these drivers of demographic rates (level three; [START_REF] León-Ortega | Factors affecting survival in Mediterranean populations of the Eurasian eagle owl[END_REF], quantifying the relationships existing between these factors and the different demographic rates (levels two and three; [START_REF] Rézouki | Socially mediated effects of climate change decrease survival of hibernating Alpine marmots (T. Boulinier[END_REF] and quantifying to what extent the overall population dynamic will be sensitive to these factors (levels one, two and three; [START_REF] Coulson | Decomposing the variation in population growth into contributions from multiple demographic rates[END_REF].

Drivers of population dynamics

Since the first population dynamics studies, great theoretical and methodological progress has been made (Tuljapurkar & Caswell 1997;[START_REF] Caswell | Matrix Population Models[END_REF][START_REF] Turchin | Complex population dynamics: a theoretical/empirical synthesis[END_REF].

Many of the factors affecting demographic rates, and ultimately population size and/or growth rate, were identified. These factors are often presented following a dichotomy: density-dependent vs. density-independent, biotic vs. abiotic, endogen vs. exogen and these different classifications sometimes overlap making it more difficult to understand.

Hereafter, I present an overview of some of the factors affecting population dynamics based on their nature and on the scale of their influence, from internal factors affecting a single individual to large-scale factors affecting a whole population or even several species at the same time.

Age/sex/stage structure. Quite obviously, individuals in a population differ in many aspects (age, size, sex, developmental stage, physiology…). Even more obviously, these differences are translated into differences in demographic rates. Think for example about the reproductive rate of juvenile individuals or the survival probabilities of oldinfected-stressed individuals. These differences in survival and/or reproduction between individuals are almost universal in animals. This leads to populations being structured and it has been shown that populations under the same environmental conditions but with different age structure will display different dynamics [START_REF] Coulson | Age, Sex, Density, Winter Weather, and Population Crashes in Soay Sheep[END_REF][START_REF] Cameron | Stage-structured harvesting and its effects: an empirical investigation using soil mites[END_REF]). Considering differences among individuals according to their age/sex/stage instead of demographic rates averaged over the whole population has proven very useful, and the study of structured populations considerably developed in the last 20 years (Tuljapurkar & Caswell 1997;[START_REF] Caswell | Matrix Population Models[END_REF].

Density dependence. Another largely studied driver of population dynamics is population density. This was notably the subject of a famous debate that took place at the Cold Spring Harbor symposium in 1957. In this debate, Nicholson claimed that natural populations were self-regulated and that competition among conspecifics increases with their number, thus leading to a decrease in the demographic rates at high densities. Since then, this population regulation mechanism was proven to be true under many circumstances [START_REF] Clutton-Brock | Early Development and Population Dynamics in Red Deer. I. Density-Dependent Effects on Juvenile Survival[END_REF][START_REF] Forchhammer | Population dynamics of Norwegian red deer: density-dependence and climatic variation[END_REF]. In addition, later research on this topic of density-dependence led to the proposition of a potential inverse density-dependence at low densities, known as the Allee effect [START_REF] Allee | Principles of animal ecology[END_REF]). Several mechanisms have been proposed to explain this negative effect of low densities, such as genetic inbreeding and consecutive loss of genetic diversity, demographic stochasticity and social facilitation [START_REF] Courchamp | Inverse density dependence and the Allee effect[END_REF].

Interspecific interactions. Factors affecting population dynamics may also stem from interactions with other species. Predator/prey relationships were identified as a potential driver of population dynamics in the earliest studies on population dynamics. It was for example suggested as the main driver of the periodic fluctuations observed in lynx (Lynx cancadiensis) population size by [START_REF] Elton | The Ten-Year Cycle in Numbers of the Lynx in Canada[END_REF] and it was studied from a mathematical point of view with the famous Lotka-Volterra equations [START_REF] Lotka | Elements of Physical Biology[END_REF][START_REF] Volterra | Fluctuations in the Abundance of a Species considered Mathematically[END_REF]. But interspecific interactions are not limited to predator/prey relationships. It also encompasses parasites/hosts interactions [START_REF] Dobson | Population Dynamics of Pathogens with Multiple Host Species[END_REF] or exclusive competition [START_REF] Gurnell | Alien species and interspecific competition: effects of introduced eastern grey squirrels on red squirrel population dynamics[END_REF]) amongst others and many examples of population dynamics driven by interspecific interactions were published in the last fifty years [START_REF] Tilman | Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions[END_REF][START_REF] Durrett | Spatial Aspects of Interspecific Competition[END_REF][START_REF] Fenner | Seeds: The Ecology of Regeneration in Plant Communities[END_REF].

Environmental variation. Although the term "environment" is rather unclear and may apply to very different concepts, I refer here to abiotic factors such as temperature, precipitation, sun exposure… Although food resources availability is often classified as an environmental factor, I think it should rather be considered as belonging to the interspecific-interaction category. This is for example the case for vegetation-grazers dynamics [START_REF] Pachzelt | Coupling a physiological grazer population model with a generalized model for vegetation dynamics[END_REF]. This precision being made, variation in abiotic factors may affect demographic rates at very different scales, from local differences in chemical components in the soil [START_REF] Dahlgren | Linking environmental variation to population dynamics of a forest herb[END_REF] to worldwide climate change [START_REF] Grøtan | Climate causes large-scale spatial synchrony in population fluctuations of a temperate herbivore[END_REF][START_REF] Wilmers | Gray Wolves as Climate Change Buffers in Yellowstone[END_REF][START_REF] Jenouvrier | Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate[END_REF]. The influence of these abiotic factors was also identified long ago. The opponents of the density-dependent population regulation during the 1957 Cold Spring Harbor symposium for instance, argued that survival and reproduction variations were mainly driven by abiotic conditions and notably the weather [START_REF] Birch | The Role of Weather in Determining the Distribution and Abundance of Animals[END_REF]). In addition, recent research on this topic highlighted the importance of the variability of these abiotic factors for population dynamics [START_REF] Frederiksen | The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird[END_REF][START_REF] Tuljapurkar | Population Dynamics in Variable Environments[END_REF].

Nowadays, it is widely accepted that these different factors will not act separately and that observed population dynamics instead emerge from the interaction of numerous factors [START_REF] Benton | Complex population dynamics and complex causation: devils, details and demography[END_REF]Stopher et al. 2008a;[START_REF] Oro | Grand challenges in population dynamics[END_REF]). Additionally, a potential factor that is still largely overlooked in the context of population dynamics (but see [START_REF] Bateman | Population dynamics in meerkats, Suricata suricatta[END_REF], and might have important effects on different demographic rates and population dynamics is sociality.

« Sociality »

What is sociality?

Sociality can be broadly defined as the tendency of individuals to live in groups.

However, this very vague definition hides the multiplicity of social systems displayed by a multiplicity of animal species in nature. Comparable social systems may be found in very distinct taxa such as insects, birds, and mammals while closely related species may present very different social systems [START_REF] Trivers | Social evolution[END_REF]. For example, among primates, gorillas live in single-male harem systems, chimpanzees live in large multimale/multifemale groups and orangutans present a solitary lifestyle, even if the territory of a male may overlap several females territories [START_REF] Kappeler | Evolution of Primate Social Systems[END_REF], not to mention the variety of social systems in humans [START_REF] Ségurel | Mode de vie et diversité génétique dans les populations humaines d'Asie Centrale[END_REF].

The diversity of social systems ranges from eusociality in insects (and in naked mole rats Heterocephalus glaber, the mammal exception) or cooperative breeding in vertebrates to solitary life in many mammalian species. For a better definition, social systems are usually described using three different aspects: social organization, mating system, and social structure [START_REF] Kappeler | Evolution of Primate Social Systems[END_REF]. Following the definitions given by Kappeler& Schaik, (i) social organization refers to the size, sexual composition and spatiotemporal cohesion of a group of individuals. (ii) mating system describes which males and females mate inside each group. Recent studies in birds and mammals showed that the social mating system may differ from the genetic mating system (Cohas et al. 2006). The social mating system describes pattern of association between males and females, namely mating couples, whereas the genetic mating system refers to the effective number of individuals of each sex who successfully reproduced. (iii) social structure is defined by the pattern of behavioural interactions and the resulting relationships among the members of a society. The essentials of a social system can then be defined by combining these three components (Tab.I.1). Sociality in animals is most often considered from an evolutionary point of view.

Group formation comes at a cost since individuals have to compete against each other for resources but it can also provide benefits. The balance between these costs and benefits in a given environment will determine the social system displayed by species.

Female lions for example, are more efficient together to hunt and protect the young and the net fitness benefit they can expect is higher when living together even if they have to share the product of the hunt and compete for reproduction with other females of the group [START_REF] Packer | Why Lions Form Groups: Food is Not Enough[END_REF][START_REF] Stander | Foraging dynamics of lions in a semi-arid environment[END_REF]. Similarly, colonial birds may suffer from the close proximity with conspecifics because of competition for nest locations but they will benefit from a better detection and defence against predators [START_REF] Brown | Choice of colony size in birds[END_REF]).

Accordingly, [START_REF] Serrano | Colony size selection determines adult survival and dispersal preferences: Allee effects in a colonial bird[END_REF] showed that lesser kestrels (Falco naumanni) living in larger colonies had higher survival rates than individuals of smaller colonies as a result of decreased predation pressure. They also found that larger colonies were more attractive with dispersal probabilities from small to large colonies being much higher than from large to small colonies. The emergence of group living is thus well explained in the context of natural selection by the balance between costs and benefits associated to group living.

While low levels of sociality are easily explained by the individual net benefits in terms of survival and/or reproduction provided by group living, the existence of costly behaviours (i.e. altruism) in species with high levels of sociality seemed paradoxical to biologists for a long time. Darwin himself considered the existence of altruistic behaviours as a direct threat to his theory: "It represents one special difficulty, which at first appeared to me as insuperable and actually fatal to my whole theory. I allude to the neuters or sterile females in insect communities: for these neuters often differ widely in instinct and in structure from both the males and fertile females, and yet, from being sterile, they cannot propagate their kind" (Darwin 1859). Since then, many theories were proposed too explain the evolution of altruism in highly social species. One of the most well-known theories is the kin-selection theory by (Hamilton 1964a,b). In his papers,

Hamilton demonstrates that altruistic behaviours can be selected for because of the indirect fitness benefits one can obtain by helping a kin-related individual to reproduce.

Because kin-related individuals share parts of their genomes, by helping a kin to reproduce, one will also transmit some of its genes, hence indirectly increasing its representation in the population, i.e. its fitness value. This explanation is contained in the surprisingly simple formula known as Hamilton's rule: B.r > C, where B is the fitness benefit of the recipient of the behaviour, r is the relatedness between considered individuals, and C is the cost incurred by the altruist individual (although in the original paper, Hamilton used a different formulation: k > 1/r where k is the ratio of gain to loss for the individual displaying a costly behaviour). Kin-selection theory proved very useful to explain apparently costly behaviours in social animals (e.g. [START_REF] Queller | Kin Selection and Social Insects Social insects provide the most surprising predictions and satisfying tests of kin selection[END_REF][START_REF] Covas | Kin associations and direct vs indirect fitness benefits in colonial cooperatively breeding sociable weavers Philetairus socius[END_REF][START_REF] Hughes | Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality[END_REF]. However, other theories have been proposed to explain the existence of costly behaviours without involving the genetic relatedness between individuals. For example, individuals might help other members of their social group at their expense if they are likely to receive help from others in return (delayed reciprocity: [START_REF] Wiley | The Evolution of Cooperative Breeding by Delayed Reciprocity and Queuing for Favorable Social Positions[END_REF][START_REF] Kokko | The evolution of cooperative breeding through group augmentation[END_REF]). This is for example the case in vampire bats (Desmondus rotondus) that regurgitate blood to feed un-related individuals in need when they can expect to be fed in return when needed [START_REF] Wilkinson | Food sharing in vampire bats[END_REF]).

Sociality and population dynamics

As shown in the previous paragraph, for sociality to evolve, it must confer a net fitness benefit to the individuals living in groups compared to solitary individuals. It follows that, in social species, survival, reproduction or both are affected by the characteristics of the social groups, i.e. the social organization (group size, composition and stability).

It is therefore expected that demographic rates will vary according to the social organization displayed by a species. A great deal of studies (mainly interested in the evolution of sociality) identified relationships between group size [START_REF] Mcguire | Fitness consequences of sociality in prairie voles, Microtus ochrogaster: influence of group size and composition[END_REF], composition [START_REF] Silk | Social components of fitness in primate groups[END_REF], or stability [START_REF] Baird | Social organization of mammal-eating killer whales: group stability and dispersal patterns[END_REF] and different demographic parameters (survival, reproduction, dispersal).

These different studies highlighted the link between social groups' characteristics and the performances of individuals within their group. These relationships will determine the number of individuals to survive and the number of young produced by each group, thus being responsible for the dynamic of the group. However, in a population, social groups are not isolated from each other and the overall population dynamics cannot be fully understood without considering the interactions between the different social groups of the population. In social species, the grouping of individuals will thus generate an additional level of structuration in the population, in between the individual and the population level, and the potential for interactions between these social structures through dispersal events. In this aspect, population dynamics of social species may be compared to the dynamic of a meta-population with social groups playing the role of local populations [START_REF] Bateman | Social structure mediates environmental effects on group size in an obligate cooperative breeder, Suricata suricatta[END_REF].

The population dynamics of social species is therefore expected to be much more complex than that of solitary species. Demographic rates will vary both within social groups because of the differences in age/sex and group composition but also between social groups. By contrast, these interactions between social groups were largely ignored despite their potential importance for the overall population dynamic. Understanding the population dynamics of social species thus requires to understand both interactions between individuals (responsible for group dynamics), and group-level interactions (linked to dispersal between groups).

« The Influence »

Once the topic has been clearly defined, another issue arises. This issue concerns the "how to" part of the research. Namely, how can one quantify the influence of sociality on population dynamics? I already argued that the best scale at which to proceed is the individual level since it allows identifying the mechanisms responsible for the variation in demographic parameters and consequently for the overall population dynamics.

Because these factors are susceptible to vary in their influence and intensity with the age of individuals (e.g. the age specific pattern of survival), data should be gathered over the lifetime of individuals. We therefore require data covering the entire life of individuals from the species we wish to study. Finally, and obviously, we need data on the social organization of the species under study.

Long-term individual-based studies

In a recent review, Clutton-Brock & Sheldon (2010) stressed out the importance of longterm individual-based studies in both ecology and evolutionary biology. They pointed out six characteristics of these studies that are of great importance in ecology and evolution; (i) it provides the necessary information to study age-related changes in demographic rates and potentially the differences between individuals in these patterns (Nussey et al. 2008); (ii) longitudinal studies allow to relate events at one stage during life to those at another such as early-life carry on effects [START_REF] Lindström | Early development and fitness in birds and mammals[END_REF](iii) individual-based studies provide opportunities to assess the social interactions between individuals and the kinship structure of populations and its effect on demographic parameters (Clutton-Brock 2016); (iv) it allows to quantify to what extent breeding success varies between individuals and sexes, i.e. to study the reproductive skew in animal populations (Allainé 2000a); (v) long-term studies over several cohorts enable different selection gradients to be calculated, thus providing unique opportunities to witness changes in selection strength and eventually direction; and (vi) when these studies extend over several generations, it makes it possible to study the quantitative genetics of phenotypic traits in wild populations [START_REF] Kruuk | New Answers for Old Questions: The Evolutionary Quantitative Genetics of Wild Animal Populations[END_REF].

However, and despite their tremendous potential and scientific importance, these long-term individual-based data sets are also faced with many challenges. The first (and probably most important) challenge is the difficulty to run and maintain these programs because of logistical problems. These limitations include providing accommodation for a large number of field workers, sometimes for a long time, sometimes in remote areas, dealing with changing governance policies during the course of the studies, changing protocols (implied by temporary experiments for examples), and funding inconsistency, just to name but a few. In addition, different methodological challenges are contingent to these long-term individual-based studies.

Capture-recapture methods

Indeed, in practice, it is (almost) always impossible to follow a large number of individuals over a long time period without missing some of them from time to time.

Hence, some information is missing in the data and analyses ignoring this source of error will lead to flawed inference of the relationships between the factors under study and the demographic rates [START_REF] Gimenez | The Risk of Flawed Inference in Evolutionary Studies When Detectability Is Less than One[END_REF]). In the last 30 years, Capture-Recapture methods were developed to account for this imperfection of the data. Present day Capture-Recapture models are very powerful and allow to model very complex life cycles (e.g. different survival, dispersal and reproductive rates according to age, sex, developmental stage, hierarchical state). This enables the estimation of unbiased demographic parameters in relation to covariates of interest, depending on the population dynamics question we wish to answer (e.g. the influence of sex and age on survival in [START_REF] Tavecchia | Sex-and Age-Related Variation in Survival and Cost of First Reproduction in Greater Flamingos[END_REF]; influence of previous breeding success on dispersal in [START_REF] Cam | Assessment of hypotheses about dispersal in a long-lived seabird using multistate capture-recapture models[END_REF]; influence of food availability on adult survival and emigration in Oro et al. 2004). The strength of Capture-Recapture methods is to simultaneously account for the potential flaws in the data that can lead to mis-estimations of demographic parameters; whether it is unequal time intervals between capture occasions [START_REF] White | Program MARK: survival estimation from populations of marked animals[END_REF], heterogeneity in recapture probabilities (Bonner 2008a), uncertainty in observations (Pradel 2005). Capture-Recapture methods are thus the most appropriate tool to quantify how sociality will affect the different demographic parameters.

Organization of the thesis

In the following chapters, I will present the different studies I conducted to determine the influence of sociality on Alpine marmots population dynamics. The choice of the Alpine marmot as biological model to answer this question was motivated by several reasons:

(i) Alpine marmots are highly social (Allainé 2000a;[START_REF] Armitage | Marmot Biology: Sociality, Individual Fitness, and Population Dynamics[END_REF]. They are socially monogamous cooperative breeders organized in family groups. This social system implies strong differences among individuals inside each family group and a strong differentiation between social groups, thus a putatively strong influence on population dynamics.

(ii) Social groups in this species are highly variable (ranging from 2 to 20 individuals, with variable sex-compositions) thus allowing us to relate the variation in demographic rates due to the variation in group composition.

(iii) The availability of a long-term individual-based data for this species (26 years of study, see https://thealpinemarmotproject.org/) ensured the feasibility of this project by making it possible to study the influence of sociality with sufficient power and details in the analyses to draw reliable conclusions.

(iv)

The Marmota genus and the Alpine marmot especially have been extensively studied from very different angles (e.g. Cohas et al. 2006;[START_REF] Lardy | Intrasexual competition and female dominance in a singular breeding mammal, the Alpine marmot[END_REF][START_REF] Ferrandiz-Rovira | The role of the major histocompatibility complex in the wild : the case of the Alpine marmot (Marmota marmota)[END_REF][START_REF] Berger | Senescence and sociality: the example of the alpine marmot (Marmota marmota)[END_REF][START_REF] Rézouki | Socially mediated effects of climate change decrease survival of hibernating Alpine marmots (T. Boulinier[END_REF] Chapter II

Material & methods

Marmota marmota and the Grande Sassière population

Abstract: In this chapter, I present the biological model I used all along this study to answer questions about the influence of sociality on population dynamics: the Alpine marmot Marmota marmota. The Alpine marmot belongs to the Sciuridae family, the Marmotini tribe and the Marmota genus. Recent phylogenetical analyses considered this genus as composed of 15 species of marmots. These species differ mostly in their geographical distribution and variable social systems, from the solitary woodchuck to the highly social Alpine marmot. The Alpine marmot is a socially monogamous and hibernating rodent living in family groups. Social status is clearly defined in each social group with dominant individuals monopolizing reproduction. The fact that subordinate males help the dominants' pups to survive qualifies this species as a cooperative breeder. This species has been extensively studied in the French Alps thanks to an individual-based longterm monitoring program running for 26 years now. The study area is situated in the Grande Sassière nature reserve (Savoie, France) and increased from 11 to 34 family territories between 1990 and 2016. Each year, individuals are captured, measured, weighed and group compositions are determined by behavioural observations. In addition, genetic analyses based on biopsies and hair samples allow determining the reproductive success of all individuals each year.

Keywords: Marmota marmota • phylogeography • socio-spatial structure • CMR protocol • Sciurid rodent

The Alpine marmot

The Marmota genus

Although the name "marmots" was applied to very different species until the XIX th and even early XX th centuries (Fig All species of this genus share common morphological characteristics among which the two rodent-specific pairs of ever-growing incisors, a large and compact body with relatively short legs, a relatively short bushy tail (compared to other squirrels) and small round ears (Fig. II.3). Marmots are the largest of the ground squirrels. They are usually considered as monomorphic although some slight differences in size and weights exist between sexes and among species (Tab.II.1). Females tend to be smaller and lighter in all species and mean adult weight at the end of the active season varies from approximately 4 kg for M. flaviventris to up to 11 kg for M . olympus [START_REF] Edelman | Marmota olympus[END_REF].

Another shared characteristic of marmot species is their use of burrows. These burrows have three functions, (i) provide shelter from heat, predators and/or antagonistic conspecifics; (ii) provide a place to rear young and (iii) serve as a place to hibernate, i.e.

a hibernaculum [START_REF] Armitage | Marmot Biology: Sociality, Individual Fitness, and Population Dynamics[END_REF]. These three functions are most often distributed among different burrows. Marmots generally use the same burrow system over several years, sometimes for many generations thus defining territories with highly stable boundaries. For instance, [START_REF] Armitage | Marmot Biology: Sociality, Individual Fitness, and Population Dynamics[END_REF] reported that in a 41-year study on Yellow-bellied marmots the same major burrows were used year after year. Similarly, in the rare cases of new territory creations, Alpine marmots of the population we studied generally converted existent peripheral burrows rather than excavating new ones (personal observation). A territory is usually composed of several burrows, with the hibernaculum usually located in a place where the snow cover is the thickest to provide a good insulation during winter, the main burrow (used during the active period) where young are raised situated at the centre of the territory and numerous auxiliary flight burrows disseminated near the edges of the territory (Armitage 2014). though they occupy very different habitats, all marmot species inhabit regions with marked seasonality and very cold winters. Marmots typically cope with these harsh winters through hibernation. The length of the hibernation phase varies among species but also according to a latitudinal and/or altitudinal gradient with higher elevation and/or higher latitude populations emerging later. [START_REF] Barash | Marmots: Social Behavior and Ecology[END_REF] reported examples of Hoary marmot (M. caligata) populations only active four months (from mid-May to mid-September) while some woodchuck (M. monax) populations in southern Illinois may restricted families and extended families (Tab.II.2). These differences in social structure and mating system likely evolved in response to the harsh wintering conditions encountered by the different species (Arnold 1990;Allainé 2000 and see below).

Marmota marmota

Generalities

Alpine marmots can be found in most of European mountain chains between 1000 and 3000 meters a.s.l. Its natural geographical distribution encompasses both the Alps (from ). As all marmots, they possess small ears and short legs and a bushy brown tail with a black tip. Adult Alpine marmots measure between 45 and 68 cm without the tail (between 13 and 16 cm). Their body mass is highly variable throughout the year with a minimum weight at the emergence from hibernation in April (around 2.2 kg for adults) and a maximum weight around 6.5 kg at the entry into hibernation [START_REF] Körtner | Body Weight Cycles and Energy Balance in the Alpine Marmot (Marmota marmota)[END_REF].

The average lifespan of a marmot is around seven years but strongly depends on the hierarchical status of the individual. In the population under study, no subordinate individual was captured older than seven years whereas dominant individual of up to 15 years for males and 16 years old for females were identified. The small number of individuals attaining such old ages is explained by the survival senescence that was evidenced for dominant individuals after approximately seven years of age (see Appendix II). Alpine marmots are herbivorous and sometimes insectivorous although rare cases of carnivory and/or cannibalism have been reported in this species (Ferrari et al. 2012 and S. Pardonnet, personal communication). end of the day while they rest for long periods near the entrance or inside the burrow in the middle of the day [START_REF] Perrin | Socio-spatial Organization and Activity Distribution of the Alpine Marmot Marmota marmota: Preliminary Results[END_REF]. Finally, individuals immerge around mid-October, hibernation starts again, and another cycle begins.

Social organization and mating system

Most marmot species display high levels of sociality compared to the other members of the Sciuridae family (composed of squirrels, chipmunks and prairie dogs). The social systems displayed by the different species of this genus are thought to be mainly related to the harshness of winter conditions and therefore to hibernation. Because of the short active season, hibernators have relatively slow life-histories; they grow and reproduce at lower rates compared to non-hibernators of similar size (Turbill et al. 2011). As a consequence, in Alpine marmots, age at sexual maturity is delayed until two years old and full adult size is only achieved at three years of age. Because of this delay, the young remain with their parents at least until two years of age thus creating the conditions for a more complex social system to evolve.

By comparison, the only solitary species of the Marmota genus, M. monax, lives in a milder environment and hibernates for a shorter period of time (Tab.II.1). The growing period is thus long enough for juveniles to become independent and disperse in their first summer. In addition, dispersal in Alpine marmots is delayed, in the sense that it generally occurs at least one year beyond the age of sexual maturity. Some individuals may even never leave their natal territory. The resulting social organization of the Alpine marmot is often called an extended family group [START_REF] Armitage | Marmot Biology: Sociality, Individual Fitness, and Population Dynamics[END_REF]. A typical Alpine marmot social group thus consists of a dominant couple with variable numbers of subordinates, i.e. adults that delayed dispersal (two years and older), yearlings (oneyear-old) and juveniles of both sexes (pups of the year).

Previous studies on sociality in Alpine marmots showed that in each family group, the dominant couple monopolizes reproduction but some subordinate males might escape reproductive suppression through extra-pair copulations (Cohas et al. 2006). When extra-pair copulations occur, the dominant male may lose all or only some of the paternities. Most extra-pair paternities were the fact of transient individuals.

Approximately 14% of the litters contain at least one extra-pair young. Altogether, these extra-pair young account for 7% of all pups produced in the population [START_REF] Ferrandiz-Rovira | Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?[END_REF].

Figure II.6. Alpine marmot annual life cycle and annual core temperature and activity profiles of an adult male Alpine marmot from La Garnde Sassière population (profiles courtesy of Benjamin Rey).

The mating system of the Alpine marmot can thus be described as socially monogamous but genetically facultative polyandrous. Both the probability to successfully monopolize reproduction and the dominance tenure of dominant males decrease with the number of subordinate males present in the family group (Allainé & Theuriau 2004;[START_REF] Lardy | Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal[END_REF]. Dominant females are also influenced by the presence of same-sex subordinates in the family group. Although dominant females always manage to monopolize reproduction (with the exception of one sister and one daughter of two different dominant females that reproduced once in 26 years of study), their probability to lose dominance increases with the number of female subordinates [START_REF] Lardy | Intrasexual competition and female dominance in a singular breeding mammal, the Alpine marmot[END_REF]. These results indicate high levels of intra-sexual competition in the Alpine marmot.

But the presence of male subordinates is also associated to an increased survival of juveniles. During hibernation, Alpine marmots periodically arise for euthermia bouts during which their body temperature increases sharply (Fig. II.6). These bouts, although physiologically necessary for the survival of individuals, are very costly and most of the fat reserves are consumed during these body-temperature increase. By producing heat when they arise, subordinate males will allow pups to save energy and thus increase their survival. Subordinate males may thus be considered as helpers because of their role in social thermoregulation increasing juvenile survival (Arnold 1993). Because pup survival is highly correlated to the number of subordinate males present in the family group during their first hibernation (Allainé & Theuriau 2004) a trade-off exists between the juvenile survival benefits and lost reproduction costs for dominant males.

Data collection

La Grande Sassière

The the Grande Sassière population dynamics (personal observation).

Capture -Recapture protocol

Each year between mid-May and mid-July, individuals living in the study area are captured using two-door live traps baited with dandelions (Taraxacum densleonis).

Traps are placed near the entrance of the main burrows of each territory to easily assign captured individual to their family group (Fig. II.8). Once captured, marmots are put in a

Hessian bag and tranquilized with Zolétil 100 (0.1 mL.kg -1 ). Individuals are then sexed based on their ano-genital distance, aged from their size (up to three years) and weighed.

Dominance status is determined based on morphological characteristics visible testis for dominant males and developed teats for dominant females (Hackländer et al. 2003). All marmots captured for the first time are marked with a transponder chip (Trovan Ltd, Germany) injected under the neck skin and a metal tags on the ear. The metal ring is placed on the right ear for females and left ear for males for easier sex determination in further observations. In addition, dominant individuals are marked with a family-specific coloured plastic tag on the opposite ear. Around the end of June, burrows are scrutinized to determine the exact date of the first emergence of pups. Since pups are very naive at that time, they can be captured by hand within few days of their emergence. They are subsequently marked with both transponders and ear-tags. 

Chapter III

Sociality & early life consequences

Litter sex composition influences dominance status in the Alpine marmot Abstract: In social species, the hierarchical status of an individual has important consequences for its fitness. While many studies have focused on individual condition to explain access to dominance, very few have investigated the influence of the social environment, especially during early life. Yet it is known that environmental conditions early in life may influence several traits at adulthood. Here, we examine the influence of early social environment on accession to dominance by investigating the influence of litter size and sex composition on survival and the probability of ascending to dominance later in life using a 20-year dataset from a wild population of Alpine marmots (Marmota marmota). Although litter size had no effect on the fate of individuals, litter sex composition affected male juvenile survival and both male and female probabilities of reaching dominant status when adult. Male juveniles incur lower survival when the number of male juveniles in the litter increases, and individuals of both sexes from male-biased litters are more likely to become dominant than individuals from female-biased litters. However, the absolute number of sisters in the litter, rather than the sex ratio, seems to be an important predictor of the probability of acquiring dominant status: pups having more sisters are less likely to become dominant. Several potential mechanisms to explain these results are discussed.

Keywords: Delayed effects• Group composition• Multi-event models• Reproduction access• Rodent• Social context
Dupont, P., Pradel, R., Lardy, S., Allainé, D., & Cohas, A. (2015). Litter sex composition influences dominance status of Alpine marmots (Marmota marmota). Oecologia, 179(3), 753-763.

Introduction

In animal societies, the hierarchical status an individual can reach has important implications. It may affect many aspects of its life, such as access to food (Baker et al, 1981), health and physiology [START_REF] Sapolsky | The Influence of Social Hierarchy on Primate Health[END_REF] or reproductive success [START_REF] Ellis | Dominance and reproductive success among nonhuman animals: A cross-species comparison[END_REF][START_REF] Creel | Rank and reproduction in cooperatively breeding African wild dogs: behavioral and endocrine correlates[END_REF], therefore entailing serious fitness consequences. Many factors have been proposed to favour access to dominance, e.g. body condition [START_REF] Poisbleau | Social dominance correlates and family status in wintering dark-bellied brent geese, Branta bernicla bernicla[END_REF], genetic factors [START_REF] Dewsbury | Fathers and sons: genetic factors and social dominance in deer mice, Peromyscus maniculatus[END_REF] or experience [START_REF] Hansen | Early learning affects social dominance: interspecifically cross-fostered tits become subdominant[END_REF]. In longlived mammals, another potential factor affecting the ability to reach dominant status is the environmental conditions encountered early in life. However, few studies have evaluated the influence of early conditions on access to dominance. Most have investigated the effect of early conditions on other traits later in life (e.g. growth, survival, habitat selection, sexual attractiveness; reviewed in Lindström 1999), and focus has been mainly on early environmental conditions [START_REF] Cam | Long-term fitness consequences of early conditions in the kittiwake[END_REF][START_REF] Lee | Enduring consequences of early experiences: 40 year effects on survival and success among African elephants (Loxodonta africana)[END_REF][START_REF] Douhard | Variation in adult body mass of roe deer: early environmental conditions influence early and late body growth of females[END_REF], whereas social factors have been largely overlooked. Nevertheless, some laboratory studies have highlighted the impact of early social conditions on individual performances [START_REF] Zielinski | The effect of intrauterine position on the survival, reproduction and home range size of female house mice (Mus musculus)[END_REF][START_REF] Correa | Social dominance and behavioral consequences of intrauterine position in female groups of the social rodent Octodon degus[END_REF]. Particularly, a negative link between litter size and body size/mass has been evidenced in mammals [START_REF] Charnov | The Offspring Size/Clutch Size Trade Off in Mammals[END_REF]. In litter-bearing mammals, [START_REF] Mendi | The effects of litter size variation on mother-offspring relationships and behavioural and physical development in several mammalian species (principally rodents)[END_REF] has shown that offspring from small litters usually weigh more, have a higher growth rate and faster physical development, and that these differences may last beyond the end of the lactation period. Other studies have shown that larger and/or bigger animals have a higher survival probability and are more likely to become dominant [START_REF] Clutton-Brock | Great expectations: dominance, breeding success and offspring sex ratios in red deer[END_REF][START_REF] Jonart | Fighting ability and motivation: determinants of dominance and contest strategies in females of a passerine bird[END_REF]). Litter size can thus impact future body size and/or mass and therefore future hierarchical status.

In addition, litter composition can potentially influence the future hierarchical status of an individual through different pre-or post-natal mechanisms. Before parturition, the composition of the litter may directly affect the development of individuals because androgens, secreted by male foetuses, and oestrogens, secreted by female foetuses, diffuse across the foetal membranes in utero [START_REF] Vom Saal | Intrauterine position phenomenon[END_REF].

These hormones, particularly testosterone, affect the differentiation of morphological, physiological and behavioural traits such as ano-genital distance, oestrous cycle length or aggressiveness [START_REF] Clemens | Prenatal endogenous androgenic influences on masculine sexual behavior and genital morphology in male and female rats[END_REF][START_REF] Even | Transport of steroids between fetuses via amniotic fluid in relation to the intrauterine position phenomenon in rats[END_REF]. Thus, the sex ratio of the litter, which is often used as a proxy of prenatal exposure to testosterone [START_REF] Uller | Long-Lasting Fitness Consequences of Prenatal Sex Ratio in a Viviparous Lizard[END_REF][START_REF] Monclús | Litter sex composition affects life-history traits in yellow-bellied marmots[END_REF][START_REF] Hackländer | Litter sex ratio affects lifetime reproductive success of free-living female Alpine marmots Marmota marmota †[END_REF], may have long-term consequences on access to dominance by impacting juvenile survival and/or competitive abilities [START_REF] Monclús | Long-term effects of litter sex ratio on female reproduction in two iteroparous mammals[END_REF]. After birth, the sex of surrounding siblings can also influence the fate of juveniles since the levels of competition and/or cooperation among same-sex siblings can differ between males and females. In spotted hyenas (Crocuta crocuta), for instance, intra-sexual competition is higher among young females than among young males. This higher level of competition among young females results in a higher rate of siblicide in all-female litters, and leads in turn to lower survival of young females [START_REF] Golla | Within-litter sibling aggression in spotted hyaenas: effect of maternal nursing, sex and age[END_REF]. Conversely, in African lions (Panthera leo), kin-related males cooperate and coalitions between male siblings are frequently observed. This particular form of cooperation allows them to secure access to a group of females, therefore ensuring a dominant position and high reproductive success [START_REF] Packer | A molecular genetic analysis of kinship and cooperation in African lions[END_REF]. Such sex-specific interactions can thus influence the probability to survive to adulthood and/or to hold a dominant position.

The aim of this study is to investigate whether early social conditions, i.e. litter size and composition, can influence individual probability of acquiring a dominant position later in life. For this purpose, data from a 20-year study on the Alpine marmot (Marmota marmota) in the French Alps was used. The Alpine marmot is well suited for such a study because reproduction is strongly constrained by social status as the dominant pair monopolizes reproduction in the social group (Goossens et al. 1998a;Cohas et al. 2006), and litters exhibit high variability in size (from 1 to 7 pups) and sex composition (from exclusively male to exclusively female litters; [START_REF] Allainé | Male-biased sex ratio in litters of Alpine marmots supports the helper repayment hypothesis[END_REF].

We investigated whether individuals from small litters, assumed to be in better condition than those from large litters, were more likely to survive and to become dominant. As for the effect of litter composition, we considered the following three possibilities. First, we investigated whether the sex ratio of the litter influenced the fate of individuals of both sexes, i.e. whether individuals born to male-biased litters were more prone to become dominant. Second, we examined the possibility that intra-sexual competition between siblings decreases the probability of further access to dominance either by decreasing juvenile survival or the probability of reaching a dominant position. Thus, females with many sisters and males with many brothers should display lower overall probabilities to become dominant. Third, we considered the possibility that cooperation between siblings of the same sex (formation of coalitions, for instance) outweigh the effect of intra-sexual competition within litters. In this case, individuals with numerous same-sex siblings should be more likely to become dominant.

Materials and methods

Study species

The Alpine marmot is a hibernating ground-dwelling squirrel. This territorial and social mammal lives in family groups composed of a dominant couple, sexually mature and immature subordinates of both sexes, and pups born that year (Allainé 2000a). Pups stay together as subordinates in their natal group at least until they reach sexual maturity at 2 years old. From this age, both males and females can reach dominance either by replacing the dominant of their natal territory when he/she dies or by dispersing and displacing a dominant of a neighbouring territory. Dispersal is often limited in space since more than 80 % of the dominant individuals captured were born in the study area and dominant individuals coming from outside the study area settled in its periphery.

Dispersal patterns differ between sexes. Females inherit their dominant position more often than males do with, respectively, 35 % of the dominant females and 15 % of the dominant males which occupy their natal territory (Lardy et al. 2012a). In addition, males seem to disperse further away than females. Since dispersing individuals never become subordinates in a new family group, they are at a high risk of death and very rarely survive overwinter if they do not reach dominance during the active season (winter mortality of 0.9; Grimm et al. 2003). Male subordinates that delay dispersal are considered as helpers since their presence greatly increases the survival probability of pups during their first hibernation (Arnold 1988;Allainé & Theuriau 2004).

Within family groups, reproduction is monopolized by the dominant couple.

After 35 days of gestation, the dominant female gives birth to a litter of 1-7 pups in the second half of May. Given the gestation and weaning length, only one litter can be produced each year. A few sexually mature males manage to partially escape the reproductive control of the dominant male. Hence, while dominant females generally monopolize all reproduction, dominant males may lose some paternities (Cohas et al. 2006). Individuals of both sexes may stay dominant for several years (up to 11 for males and 14 for females in the study population), until natural death or eviction by a challenger (Lardy et al. 2011). Eviction of one of the dominants further leads to the loss of the litter produced, either by infanticide or by abandonment of the pups, and to the death of the evicted individual in most cases (Hackländer et al. 2003;Lardy et al. 2011).

Study site and data collection

Individuals were captured in a wild population of Alpine marmots located in the Grande Sassière nature reserve (2340 m a.s.l., French Alps, 45°29′N, 6°59′E) from 1990

to 2010. Marmots from up to 24 territories (five territories were created while one disappeared during the study) were monitored, from mid-April to mid-July each year, using both capture-mark-recapture and observations. Marmots were captured using two-door live-capture traps baited with dandelion Taraxacum densleonis. Traps were placed near the entrances of the main burrows to easily assign each captured individual to its family group. Juveniles were counted and caught by hand within the 3 days following their first emergence from the burrows, (i.e. approximately 40 days after their birth). Captured animals were tranquillized with Zolétil 100 and marked with a transponder (Trovan™, Germany) and a numbered ear tag. At each capture, marmots were aged from their size in three age classes (pups, yearlings and adults), sexed and their social status was determined according to scrotal development for males and teats development for females [START_REF] Hackländer | Male-caused failure of female reproduction and its adaptive value in alpine marmots (Marmota marmota)[END_REF]Hackländer et al. 2003). Thanks to daily observations, the number of individuals of each sex and age class was further assessed for each family and scent-marking behaviour was used to confirm the identity of the dominant pair (Bel et al. 1995).

Litter characteristics

The exact composition of every litter and the identity of individuals that reproduced each year were determined using microsatellite markers and kinship analyses (Supplementary Material III.1). Litter size was calculated as the total number of pups from the same mother emerging a given year. The litter sex ratio was calculated as the number of males in a litter divided by the litter size. The number of brothers was calculated as the number of male pups in a litter minus one when the focal individual was a male. The same procedure was used to determine the number of sisters for each individual.

Capture-recapture analysis

We considered 806 individuals first captured as pups between 1990 and 2010 for which the litter size, litter sex ratio, number of brothers and number of sisters were known.

Model structure. Multi-Event Capture-Recapture models (ME-CR; Pradel 2005) were used to investigate the influence of the litter size and composition on marmot survival (φ) and access to dominance (ψ) because recapture probability (p) of individuals was lower than 1 (recapture probability varying from 0.380 to 0.886; Cohas et al. 2007).

We defined 3 states: subordinate (s), dominant (D), and dead or permanent emigrant from the study site ( †). We further incorporated information about the reproductive status (E) of each individual to refine the estimation of the probability to access dominance. Since the probability to reproduce is strongly linked to the dominant status (only 20 of the 806 pups studied were produced by subordinates), there is a high probability that an individual that successfully reproduced a given year was dominant even when its dominance status could not be determined. Thus, the different observable events retained were: no information (event 0), individual with uncertain dominance status that successfully reproduced, i.e. with its pups captured (event 1), individual (Farand et al. 2002;Stephens et al. 2002a;Grimm et al. 2003a), the model reduces for older individuals to two capture parameters, two survival parameters (one for subordinate and one for dominant individuals) and to the probability to access dominance when they are still subordinate. Preliminary analysis. Data analyses were performed following three steps (Lebreton et al. 1992a). We first tested whether a general model, namely the Cormack-Jolly-Seber model [START_REF] Pollock | Goodness-of-Fit Tests for Open Capture-Recapture Models[END_REF], fitted our data. To this purpose, goodness-of-fit (GOF) tests were performed using the program U-CARE (Choquet et al. 2009a).

Following Burnham & Anderson (2002), the second step was to select the most parsimonious model, hereafter called the root model, among a set of models built by considering only a priori biological hypotheses based on our field experience and the literature (Arnold 1993;Allainé 2000a;Farand et al. 2002;Stephens et al. 2002a;Grimm et al. 2003a). We thus considered age, year, sex effects and their interactions on all capture, survival, state transition and reproduction probabilities (Tab.III.1). In addition, we considered an effect of the number of male helpers on juvenile survival during their first hibernation since it has been demonstrated to be an important factor (Arnold 1993;Allainé & Theuriau 2004). To do this, the logarithm of the number of male helpers [log(helpm)] was used as an individual covariate because the effect of male helpers was found to be non-linear (Allainé & Theuriau 2004). Following a step-down approach, models were sequentially fitted with constrained parameterizations for recapture, survival, transitions and reproduction probabilities, in that order. We then checked that the root model could not be improved by exploring all neighbouring models. Model selection relied on the Akaike Information Criterion corrected for small sample sizes (AICc; Burnham & Anderson 2002). Model selection and parameters' estimation were performed using the program E-SURGE 1.8.5 (Choquet et al. 2009b). They were compared to a model with the effect of the litter characteristic considered on the juvenile survival only (model R2, Tab.III.3). Because the main effects of the litter characteristics are likely to be on juvenile survival, we did not investigate the effect of the early conditions on yearling and adult survivals whenever no effect on juvenile survival was found. Similarly, to test the same hypotheses on the probability to access dominance, we built model R3 (Tab.III.4) that included all retained effects on survival, and compared it to models with a logit linear effect of the litter characteristic to test on the probability to access dominance for both yearlings and adults. Finally, models with a sex-specific effect of the different covariates were constructed and compared to models without sex effects to test for a sex-specific competition or cooperation.

The importance of the tested litter characteristic was then assessed by comparing model using AICc weights (Wi, [START_REF] Burnham | AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons[END_REF] Estimates and standard errors for the different regression slopes given in the results are on the logit scale. All other parameters are given on the natural scale.

Results

Mean litter size was 4.15 ± 0.05 pups in the population, ranging from 1 to 7. Mean sexratio was 0.53 ± 0.01 among all litters. Mean number of brothers was 1.66 ± 0.04 (from 0 to 5) while the mean number of sisters was 1.44 ± 0.04 (from 0 to 4). Correlation coefficients between the different litter characteristics are given in Tab.III.5.

Preliminary analysis

After 

Discussion

Our results confirm that the dominance status in Alpine marmots was influenced by the early social conditions encountered and more specifically by the composition of the litter in which an individual is born. The probability of becoming dominant was found not to be related to the litter size. Instead, our results indicate that the sex composition of the litter, in interaction with the sex of the focal individual, did impact future social status via an impact on both juvenile survival and dominance access probability.

In most litter-bearing mammals, single pups are usually heavier with a faster growth rate and development than pups born with littermates [START_REF] Mendi | The effects of litter size variation on mother-offspring relationships and behavioural and physical development in several mammalian species (principally rodents)[END_REF]. These litter size effects on body mass can persist until adulthood and may largely determine the hierarchical status [START_REF] Poisbleau | Social dominance correlates and family status in wintering dark-bellied brent geese, Branta bernicla bernicla[END_REF][START_REF] Hodge | Determinants of reproductive success in dominant female meerkats[END_REF]. In accordance in Alpine increases [START_REF] Allainé | Postweaning mass gain in juvenile alpine marmots Marmota marmota[END_REF]), but we did not find any effect of the litter size, either on the juvenile survival or on the probability to become dominant once sexually mature.

Pups from large litters instead had as many chances as singletons to survive and to later become dominant. Several mechanisms may explain this result. First, the expected effect of litter size on juvenile survival may exist but may not be detected if it takes place before weaning (i.e. before emergence from the natal burrow), for example via a competition for teats access and/or maternal care. In this scenario, the pups captured at weaning are only those that survived to this early competition between siblings. Thus, the effect of litter size on survival may not be visible in our data. An alternative explanation is that juveniles growing with several littermates may profit from their presence, like in rabbits (Oryctolagus cuniculus), where pups have a higher body temperature and consequently a higher survival when experimentally raised with littermates compared to their siblings raised alone [START_REF] Bautista | Thermal benefit of sibling presence in the newborn rabbit[END_REF]. This thermoregulation effect can be of great importance, especially for a hibernating species like the Alpine marmot in which social thermoregulation has already been evidenced (Arnold 1988), and may explain why a single pup, even though heavier, does not survive better than pups raised with littermates. Although many studies have high-lighted the negative consequences of a poor start on reproduction-related traits later in life [START_REF] Metcalfe | Compensation for a bad start: grow now, pay later?[END_REF][START_REF] Yearsley | Delayed costs of growth and compensatory growth rates[END_REF], no effect of the litter size was found on the probability to reach dominance. Further studies are thus needed to investigate whether these early differences in mass and growth rate impact other traits related to fitness such as reproduction onset, number of offspring produced per litter or lifetime reproductive success. Conversely, the litter composition had important effects on male juvenile survival and male and female probabilities to reach a dominant status. Neither the juvenile survival nor the probability to access dominance were positively affected by the number of same-sex littermates. Thus, our third hypothesis suggesting that cooperation between same-sex littermates may outweigh the possible cost of intra-sexual competition can be discarded. Our second hypothesis was partly supported. Indeed, only male pups had reduced chance to survive when raised with numerous brothers.

However, this effect did not last after the first year of life. A higher level of competition among male than among female littermates may explain the negative effect of same-sex littermates on male juvenile survival. Alternatively, a higher requirement of male compared to female pups may also explain this pattern. In such a case, the mother of numerous males may not always fulfil their needs and male pups might reach hibernation in a poorer body condition, thus reducing their chances to survive overwinter. However, the reason for such a differential requirement in a monomorphic species remains unclear.

Once they reach adulthood, females had lower probabilities to reach dominance when raised with numerous sisters. A high proportion of females becomes dominant by inheriting their mother position (35 % of the dominant females). Consequently, the more sisters a female pup has, the higher the competition for a single dominant position. A high number of sisters is therefore a disadvantage for female pups. No such an acute intra-sexual competition is expected for males with numerous brothers since most of them reach dominance by dispersing and displacing another dominant in a neighbouring territory (88 % of the dominant males). Accordingly, no effect of the number of brothers was detected on the probability to reach a dominant position.

However, males also had lower probabilities to reach dominance when raised with numerous sisters. Males as well as females can suffer from the presence of numerous sisters because of long-lasting effects of the exposition to in utero hormones.

The fact that models including sex ratio were well ranked is in accordance with this hypothesis. Recently, [START_REF] Hackländer | Litter sex ratio affects lifetime reproductive success of free-living female Alpine marmots Marmota marmota †[END_REF] reported that female Alpine marmots from male-biased litters were more likely to become dominant. In our study, this relationship was not limited to females, and males were also more likely to become dominant when born in a male-biased litter, thus supporting our first hypothesis. Such an effect of sex ratio is generally interpreted as a potential masculinisation due to pre-natal androgens exposure [START_REF] Monclús | Long-term effects of litter sex ratio on female reproduction in two iteroparous mammals[END_REF]. Being born in a male-biased litter results in a higher probability to develop adjacent to males in utero and thus coincides with higher levels of circulating testosterone and higher testosterone sensitivity, which in turn have several morphological, physiological and behavioural consequences [START_REF] Ryan | Intrauterine position effects[END_REF]. For instance, female Alpine marmots born in male-biased litters are more aggressive [START_REF] Hackländer | Litter sex ratio affects lifetime reproductive success of free-living female Alpine marmots Marmota marmota †[END_REF], while female yellow-bellied marmots (Marmota flaviventris) disperse more [START_REF] Monclús | Litter sex composition affects life-history traits in yellow-bellied marmots[END_REF], two features favouring the access to dominance in Alpine marmots.

The number of brothers in the litter can also be considered as a proxy of the intrauterine exposition to androgens. Sex-ratio and the number of brothers within the litter are correlated but they do not match perfectly (see Tab.III.5), and hence do not contain the exact same information. According to [START_REF] Even | Transport of steroids between fetuses via amniotic fluid in relation to the intrauterine position phenomenon in rats[END_REF], the testosterone produced by a male foetus diffuses to the surrounding foetuses through the foetal membrane and the quantity of hormone approximately decreases by half when the distance to the secreting foetus increases by one foetus. Thus, an individual with a large number of brothers is thought to be generally exposed to a high amount of additional testosterone, whatever its position in utero. Interestingly, the absence of any effect of the number of brothers in the litter on access to dominance contradicts this general interpretation, and suggests that dominance status of Alpine marmots might not only be determined by the in utero exposure to testosterone and that other effects are likely to play a role. (1990) showed that female mice (Mus musculus) that developed between two other females had higher levels of circulating oestradiol and consequently affected reproductive traits, such as shorter oestrous cycle length, and [START_REF] Fadem | Inhibition of testicular development and feminization of the male genitalia by neonatal estrogen treatment in a marsupial[END_REF] demonstrated that exposition to oestrogens during an early period of development could block testicular development in male gray opossum (Monodelphis domestica), while exposition to testosterone had no impact on both males and females.

Thus, Alpine marmots born with many sisters may become dominant less often because they present more feminised characteristics due to higher levels of circulating oestrogens. However, our results do not allow us to disentangle the different mechanisms proposed here and further studies assessing the levels of circulating oestrogens and testosterone would be of great interest to understand the underlying mechanisms of such long-lasting effects of the early social environment.

Finally, even though our results do not take into account dispersal outside and into the study area, it seems rather unlikely that the impact of the litter composition (particularly the number of sisters and litter sex ratio) on the probability to access dominance would be different when doing so. We believe that, for several reasons, litter composition does not impact differently on the individuals permanently emigrating outside the study area. First, when dispersing, Alpine marmots settle in a vast majority in a neighbouring territory and only one individual dispersed further than four territories from its natal territory in 20 years. Thus, within the study area, all the range of dispersal distances usually encountered in this species is covered and successful longer distance dispersal seems at best to occur very rarely in the Alpine marmot. Second, if litter composition influenced the propensity of individuals to disperse outside the study area, a positive effect would have been detected on the apparent subordinate mortality since it includes both the actual mortality of subordinate individuals and the survival of individuals that left the study area and were never encountered again. Thus, if individuals with a certain litter composition dispersed more, they should have a lower apparent survival. No such effect was found in our data.

In summary, the survival and later hierarchical status of Alpine marmots are influenced by social conditions encountered during the early stages of life. More specifically, these results suggest that they are influenced by the sex composition of the litter. The number of female juveniles present during the development seems to have long-lasting effects on Alpine marmots' ability to reach a dominant position for both males and females despite potential differences in the underlying mechanisms. In addition, males seem to suffer from the presence of other males in the litter inducing a reduced survival when juveniles. It therefore appears that males' fitness expectancies are probably higher when raised alone while females seem to benefit from the presence of male siblings. These results provide new insights on the costs and benefits of a litter composition and should be taken into account when studying the pay offs parents can expect from their offspring.

Supplementary material

Genetic analyses and kinship analysis

For genetic analyses, hairs and skin biopsies were collected from all captured individuals since 1992. From these samples, all individuals were typed at 16 microsatellite loci: SS-Bibl1, SS-Bibl4, SS-Bibl18, SS-Bibl20, SS-Bibl31 [START_REF] Klinkicht | Untersuchugen zum paarungssystem des Alpenmurmeltiers, Marmota M. marmota mittels DNA fingerprinting[END_REF], MS41, MS45, MS47, MS53, MS56, MS6, ST10 [START_REF] Hanslik | Microsatellite loci for two European sciurid species (Marmota marmota, Spermophilus citellus)[END_REF]), Ma002, Ma018, Ma066, Ma091 (Da Silva et al., 2003). Details on microsatellite characteristics and methods can be found in Cohas et al. (2008).

Genetic exclusion was used to confirm kinship relationships. The genotypes of each pup were compared with those of the dominant pair to check maternity.

From16x806 mother-pup comparisons, no mismatch between the putative mother and its pups were found. The dominant male was considered as the father whenever no mismatch was observed with the dominant male genotype (753 of 806 pups). The 53 pups having at least one mismatch with the dominant male genotype (one to nine mismatches) were not considered as fathered by the dominant male. Several reasons allowed us to exclude the dominant male even when only one mismatch was found.

First, genotyping error rate was low (probability of finding an error for one allele should not exceed 0.0003, for details see Cohas et al., 2008). Second, all these pups and their parents were retyped and their genotypes confirmed. Third, the average mutation rate for microsatellites is low (1.67x10-4 per generation in Marmota marmota) according to [START_REF] Rassmann | Low genetic variability in a natural Alpine marmot population (Marmota marmota, Sciuridae) revealed by DNA fingerprinting[END_REF] and finally, no mismatch with the putative mother has been found (see above). We thus compared the genotypes of these pups to the genotypes of all known sexually mature males in the family group. Among the 53 pups not fathered by the dominant male, 21 had genotypes compatible with that of a subordinate male in their family and 32 had a genotype incompatible with all subordinate males of their family.

A second parentage analysis was conducted on all 806 pups using the software CERVUS 3.0.3 [START_REF] Kalinowski | Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment[END_REF] with 20 candidate fathers per pup, 95% of candidate parents sampled, an error rate of 1% to allow for mistyping and for mutations or null alleles, and assignment at a 95% confidence level. The parentage analysis was run with the mother identity known and all sexually mature males present a given year in the population as putative fathers. The previous results were confirmed except for 14 pups where paternity could be assigned to both the dominant and a subordinate male.

However, MHC markers [START_REF] Ferrandiz-Rovira | The role of the major histocompatibility complex in the wild : the case of the Alpine marmot (Marmota marmota)[END_REF] confirmed the dominant male to be the father of six pups. In the last eight cases the pup could still be assigned to both the dominant and a subordinate male. However, the sexual organs of the putative subordinate father showed no sign of development at capture, and all the other pups of the litter were assigned with no ambiguity to the dominant male. Thus, we parsimoniously considered these eight pups as fathered by the dominant male. Among the 32 pups that were neither fathered by the dominant male nor by a subordinate of the groups, 13 were found to be fathered by an individual born in our study population in dispersal while the other 19 were fathered by unknown males. 
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Figure III.5. Subset of the "headed" format recapture histories file built from the fate diagram above. For more details, see E-SURGE 1.8.5 user's manual (Choquet et al., 2009). Column names are: "H:" for each occasion of capture, "S:" for the number of individual with a given capture history, "$COV:" for categorical variables, "COV:" for quantitative variables

Multi-Event model construction using E-SURGE

The constructed multi-events model can be summarized by a transition matrix and associated vectors of survival, capture and successful reproduction probabilities (only the two live states are shown since the dead state parameters are trivially fixed to: p † = 0;

Ψ † † = 1; E † = 0).
where capture (p), survival (Φ), reproduction (E) and state transition conditional on survival (Ψ) probabilities are defined as: p x y , the probability that an individual in state x was captured during the year y; Φ x y , the probability that an individual in state x in year y survived and did not permanently emigrate from the study area between y and y+1;

Ψ xz y , the probability that an individual in state x in year y is in state z in year y+1 given that it survived and did not permanently emigrate from the study area between y and y+1 and E x y , the probability that an individual in state x at time y had successfully reproduced this same year.

Given that pups are not able to reproduce or to become dominant, transition probability and reproduction parameter are null for pups. Moreover, since individuals in the pup class cannot stay as pups more than one year, no recapture parameter is estimable for pups. The model thus reduces for pups to a single survival parameter:

For older individuals, since dominant individuals never revert to subordinate state (Farand et al. 2002;Stephens et al. 2002;Grimm et al. 2003), the transition probability from the dominant to the subordinate state was fixed to 0 (Ψ Ds = 0), thus constraining the state transition probability from dominant to dominant to 1. Hence, only one state transition probability was to be estimated (i.e. the probability of becoming dominant = Ψ sD = 1 -Ψ ss ). Moreover, given that yearlings are never captured as dominant and are not yet sexually mature, the dominant state was removed and the annual reproduction probability was fixed to 0 for yearlings (E s = E D = 0 for yearlings).

It is to be noticed that, since transition probability is conditional on survival, yearlings can become dominant only if they survived. They are then aged two years, and thus sexually mature, while adults becoming dominant are at least three years old. Thus the model for yearlings simplifies to:

Finally, for individuals older than 2 years of age, the model can be written:

Below are the different matrices ("Transition pattern" box) and how they are constrained using the GEMACO language ("Model definition" box) as implemented in E-SURGE (Choquet et al. 2009) to define the best model of the study (model S3.2, Table 4). All matrices are row stochastic (the sum of each row equals one) and the complementary parameter is indicated by * .

The first elementary matrix (S) draws the survival probabilities between time y and y+1

for each state. The survival parameter is constrained to be linearly related to the logarithm of the number of helpers for female juvenile individuals and to the logarithm of the number of helpers and the number of brothers for male juveniles ("juv" class)

while it is constrained to be separately estimated for adults in each state.

The second elementary matrix (T) draws the transition probabilities from the subordinate to the dominant state conditional on survival between time y and y+1, which is the only transition possible. The transition parameter is constrained to be linearly related to the number of sisters for adults and independently estimated for yearlings and juveniles. Since juveniles cannot become dominant, the juvenile transition parameter is then fixed to 0 when initiating the model (IVFV step, Choquet et al., 2009).

The third elementary matrix (C) draws the first capture and recapture probabilities at each occasion y. The first capture probability (firste) is fixed to 1. Recapture probabilities are set to differ between age classes (yearlings and adults only since all juveniles captures are first captures given the model structure), between states for adults, between sexes and from year to year.

The last elementary matrix (E) draws the probability of having a successful reproduction at each time y for every individual, whether it is captured or not. "psub" and "pdom" represent the probability for a subordinate and for a dominant to have a successful reproduction a given year. These probabilities only apply to the adult age class since juveniles and yearlings are not sexually mature. The juvenile and yearling probability to reproduce is thus set to 0 at the following IVFV step.

Goodness-of-fit tests and root model selection

The overall GOF test of the Cormack-Jolly-Seber model was significant (χ2 = 149.9; d.f.

= 74; P < 0.01) particularly in its transience (test 3SR; χ2 = 32.67; d.f. = 19; P = 0.03)

and trap-dependence (test 2CT; χ2 = 31.73; d.f. = 18; P = 0.02) components. This can be due to the known lower survival of pups as compared to more aged individuals and, if so, can easily be treated by fitting a model with specific survival and capture parameters for pups. To know if this interpretation was correct and hence if the incorporation of specific pup survivals would be an adequate treatment of the lack of fit, we examined the remaining of the capture histories once the pup observation has been taken out. The overall GOF test run on the sole juvenile and adult parts of the capture histories was no longer significant (χ2 = 37.42; d.f. = 59; P = 0.10). Hence, the lack of fit was indeed Abstract: Natal dispersal has long been recognised as one of the main driver of population dynamics and evolution of species. However, studying dispersal in natural populations has always proved difficult since dispersing individuals may leave the study area and never be reencountered. In this situation, demographic parameters estimated using Capture Recapture (CR) methods only account for the processes occurring within the study area and survival estimates, for example, are only "apparent survival", i.e. the probability of an individual to survive and not emigrate outside the study area between two capture occasions. Similarly, dispersal estimates obtained from most CR studies are "apparent dispersal" that under-estimate the true dispersal probability since individuals settling outside the study area when dispersing are undistinguishable from dead individuals.

Here, we elaborated on recent methodological advances in population ecology to build an integrated multi-event dispersal model. This model was designed to account for permanent emigration outside the study area and simultaneously estimate true survival, inheritance, natal dispersal probability and natal dispersal distances distribution. We tested for the ability of our model to return unbiased estimates as the mean dispersal distance increases using simulated data sets and compared it to a classical multi-event model and a two-step model that was proposed as a solution to the "apparent survival" problem. To illustrate the usefulness of our model, we present an analysis of the sex-specific dispersal in the Alpine marmot as a case study.

Our model returned unbiased estimates of survival, dispersal probability and mean dispersal distance for a large range of dispersal patterns. The analysis of the Alpine marmot data set indicates higher levels of philopatry in females compared to males. We further discuss the validity and limits of these results and propose future developments. In other words, it allows to estimate the survival probability separately from the detection probability. Because of the power of such an approach, many developments have appeared to account for the complexity of both biological and detection processes. Models accounting for individual heterogeneity in survival [START_REF] Choquet | A semi-Markov model to assess reliably survival patterns from birth to death in freeranging populations[END_REF]) and/or in recapture probabilities (Bonner 2008b), for instance, have been proposed allowing to answer more complex questions in a more accurate way.

Keywords

One currently remaining limitation of CR methods is the well-known "apparent survival" problem. During dispersal, some individuals may leave the study area and settle permanently outside its boundaries. These emigrating individuals are then never recaptured and are undistinguishable from dead individuals. In this situation, survival estimates returned by CR models correspond in fact to the probability to survive and not leave the study area, which has been called "apparent survival" (Lebreton et al. 1992b).

Despite this recognised limitation, most studies use apparent survival to draw conclusions about the biology of the species under study [START_REF] Hagen | Age-specific variation in apparent survival rates of male lesser prairie-chickens[END_REF][START_REF] Blake | Estimates of Apparent Survival Rates for Forest Birds in Eastern Ecuador: Survival Rates in Tropical Birds[END_REF]. This limitation is even more salient in studies on dispersal. Since only a fraction of dispersing individuals can be recaptured inside the study area, any dispersal measure obtained in these conditions is an "apparent dispersal", which underestimates true dispersal. Even in the case of CR data including multiple sites, dispersal estimates only concern transitions between the monitored sites and all individuals dispersing elsewhere will be confused with dead individuals if no additional information is available (e.g. recoveries of dead individuals or count surveys; Péron et al. 2010).

Yet, as emphasized by [START_REF] Dobson | The enduring question of sex-biased dispersal: Paul J. Greenwood's (1980) seminal contribution[END_REF], dispersal, and especially natal dispersal, is one of the most fundamental and widespread process in biology. All organisms are faced with the "decision" to move and spread, or to stay and try to access reproduction on their natal site. This "decision" entails strong fitness consequences and understanding the causes and consequences of natal dispersal is thus of prime importance in evolution and population dynamics studies [START_REF] Bowler | Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics[END_REF]. It is therefore crucial to deal with the issue of "apparent dispersal" in CR studies to study natal dispersal efficiently.

In most CR studies, ancillary information about dispersal is readily available, since the location of an individual is generally recorded when recaptured. This source of information is usually neglected but the emergence of integrated population models this additional information in order to solve the problem of "apparent survival".

Among these attempts, two different approaches can be distinguished: (i) the two-step approach in which residency probability, i.e. the probability for an individual to remain within the study area when dispersing, is first estimated from the dispersal data only, either at the individual [START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF] or at the population level [START_REF] Taylor | Using local dispersal data to reduce bias in annual apparent survival and mate fidelity[END_REF], and then used to correct the apparent survival estimated using traditional CR models [START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF][START_REF] Taylor | Using local dispersal data to reduce bias in annual apparent survival and mate fidelity[END_REF]; (ii) the integrated approach, developed in a CJS framework by [START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF] and in a spatial-robust-design framework by [START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF], where the phenomenons of dispersal and survival are modelled simultaneously. In this latter approach, the location of a surviving individual is modelled at each time step to determine if it is currently inside or outside the study area.

Here, we elaborated on these previous studies to propose an integrated CR model that estimates natal dispersal by correcting for permanent emigration outside the study area. To do so, we conceived a multi-event dispersal model based on the life cycle of the Alpine marmot. Because natal dispersal in this species is a single event and because it is associated to a change in social status, Alpine marmot is a perfectly suited model to study natal dispersal. We started by comparing three different implementations of this multi-event approach and assessed their relative performances in a simulation study. The first implementation is an ordinary multi-event model returning only "apparent dispersal" and "apparent survival" estimates. The second implementation takes up the two-step approach of [START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF] while the last one is inspired by the integrated approach of [START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF] and [START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF]. In a second time, we ran the best implementation of the three on a long term data set of Alpine marmots to perform an analysis of the sex-specific natal dispersal of this monogamous mammal.

Finally, we discuss the advantages and limitations of the different approaches, propose further developments and discuss their ability to detect sex differences in both survival and dispersal patterns. Since individuals cannot always be observed, or observations may be incomplete, the state of an individual cannot always be determined with certainty (e.g. if an individual was seen a given year but its dominance status could not be determined) and the data at hand is thus composed of observable events instead of true state records. The goal of multi-event models is to infer the underlying state (and ultimately the demographic parameters related to this state) from a sequence of observed events recorded on the field. To do so, each observable event was given a number: 1 when the focal individual was captured and identified as a subordinate, 2 when it was captured and identified as a locally-recruited-breeder, 3 when it was captured and identified as an immigrant breeder and 4 when no information about the focal individual was available.

Material & Methods

Multi-event marmot models

This type of encoding allowed us to construct capture-histories for all individuals captured at least once during the study duration, e.g. 1141443343 for an individual captured and marked as a subordinate for the first time on the first year of the study, recaptured as a subordinate on the second and fourth years, recaptured as an immigrant breeder on the seventh, eighth and tenth years and not recaptured on the third, fifth, sixth and ninth years.

Multi-event models can be decomposed in a state-transition and an observation process. The state-transition process models the transition of an individual between states from one capture occasion to the next while the observation process links the observed event at a given capture occasion to the underlying state of the individual.

These state-transition and observation processes can be represented by two matrices containing the different parameters of the model (Pradel 2005). In the following sections, we describe these matrices and the parameters they contain for the three different models we wish to compare.

The Apparent Dispersal model (AD).

In this model, emigration outside the study area is not taken into account and only apparent natal dispersal and apparent survival parameters can be estimated for subordinate individuals. Because dominant individuals no longer disperse, their survival estimates are not biased and are thus true survival estimates. The state-transition process of the model can be described by a four by four matrix with departure states in rows and arrival states in columns, where Φ S i,t is the probability that a subordinate individual i at time t survived and did not leave the study area between t and t+1, Φ LB i,t is the survival probability of the locally recruited breeder i between t and t+1, Φ IB i,t is the survival probability of the immigrant breeder i between t and t+1, di,t is the probability (conditional on survival) that subordinate individual i dispersed, became a dominant and did not leave the study area between t and t+1 and hi,t the probability (conditional on survival and non-dispersal) that subordinate individual i accessed dominance on its natal territory between t and t+1.

Since four different observable events were retained, the observation matrix is also a four by four matrix where the rows represent the underlying states and columns represent the observable events. The observation parameter is p x i,t the recapture probability of individual i in state x at time t:

The Two-step Dispersal model (TD). This model takes up the approach developed by [START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF]. The apparent dispersal (dapp) of subordinates in the previous AD model is in fact a composite-parameter. It can be expressed as the product of the dispersal (dcor) and residency probability (rcor), i.e. the probability to not emigrate outside the study area when dispersing to become dominant: dapp = dcor * rcor. We can then construct a new model with a modified state-transition matrix (SM):

However, because no information in the data allows differentiating between dead and emigrated individuals, rcor, Φ S cor and dcor parameters are not separately identifiable under this parametrisation and these probabilities cannot be estimated from capturerecapture data only. The residency probability thus needs to be estimated in a first step before being used in the CR model to allow the estimation of survival and dispersal parameters.

The residency probability of an individual depends on: (i) the direction of dispersal; (ii) the location of the natal territory of the individual relative to the edge of the study area and (iii) the distance travelled during dispersal [START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF]. To simplify, we considered dispersal as homogeneous in direction, i.e. individuals have the same probability to choose any direction when dispersing. Given that the location of the natal site si was known for all individuals born within the study area, the only missing information was the individual dispersal distance, measured as the number of territories crossed between the natal territory and the territory where the individual became dominant. This distance was only recorded for individuals that settled inside the study area and had to be inferred for individuals that emigrated and became dominant outside the study area. To estimate this individual dispersal distance lcor,i, we used the known dispersal distances recorded inside the study area and construct a vector L of length lmax, the longest distance between two territories inside the study area, containing the frequencies of observed dispersal distances. The distance an individual travelled during natal dispersal was then sampled from this observed distribution:

lcor,i ~ dcat (L)
The individual residency probability was then easily calculated as:

rcor,i = =
where nsi,li is the number of territories inside the study area situated at a distance lcor,i from the natal territory si and Nsi,li is the total number of territories situated at a distance lcor,i from the natal territory si. Because we considered territories as discretely and homogeneously distributed both inside and outside the study area, the total number of territories situated at a distance li from any territory si was Nsi,li = 8*lcor,i . In other words, the residency probability for an individual dispersing a given distance li was equal to the proportion of territories situated at a distance li from its natal site si that are situated All parameter priors were chosen to be un-informative. All survival, dispersal, inheritance and recapture probabilities were given uniform priors, dunif(0,1). Prior for the Poisson mean in the ID model was given a vague gamma distribution dgamma(0.0001,0.0001). Because convergence was obtained faster for simulated data sets compared to the Alpine marmot data set, all models in the simulation study were fitted by running three chains independently for 10000 iterations with a burning period of 6000 iterations and a thinning rate of 1 while for the case study on Alpine marmots, three chains of 15000 iterations were needed with a burning period of 10000 iterations.

Simulation study

To compare the different models, we constructed several data sets with increasing mean dispersal distance. We considered a simple situation where the survival probability was equal and high for both breeder states (Φ IB = Φ LB = 0.95), slightly lower for subordinates (Φ S = 0.85) and recapture probabilities differed between dominants and subordinates (p IB = p LB = 0.65 and p S = 0.95). Finally, dispersal probability d was fixed to 0.4 and inheritance probability h to 0.12. To avoid effects due to its shape, the study We simulated data sets with increasing mean dispersal distance τ from 0 to 12 territories with steps 0.5 and repeated the simulation process 100 times for each value of τ, leading to a total of 2500 simulated data sets. Each data set was composed of twenty capture occasions, with 40 individuals entering the data set at each occasion (except for the last one), leading to a total of 760 individuals per data set. additive age and sex effects on the recapture probabilities. In addition to the sex-effect in which we were interested, we accounted for age-specific subordinate survival and transitions probabilities by considering four age classes: juvenile (from zero to one-yearold), yearling (from one to two), two-year (from two to three) and adult (three years old and older). Since it has been shown to be an important driver of juvenile survival, we incorporated an effect of the logarithm of the number of male helpers on the juvenile survival (Allainé & Theuriau 2004;Dupont et al. 2015) 
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Results

Simulation study

The posterior means ± se obtained using all three models were very similar and unbiased for recapture probabilities (AD model: p S = 0.95 ± 0.01 and p IB = p LB = 0.65 ± 0.02; TD: p S = 0.95 ± 0.01 and p IB = p LB = 0.65 ± 0.02; ID: p S = 0.95 ± 0.01 and p IB = p LB = 0.65 ± 0.02), inheritance probability (AD: h = 0.12 ± 0.01; TD: h = 0.12 ± 0.01; ID: h = 0.12 ± 0.12) and breeder survival probabilities (AD: Φ IB = Φ LB = 0.95 ± 0.01; TD: Φ IB = Φ LB =0.95 ± 0.01; IS: Φ IB = Φ LB =0.95 ± 0.01), under all scenarios.

Subordinate survival and dispersal estimates, on the other hand, varied considerably among the three models. Both posterior mean estimates given by the AD model were much lower than the simulated values and this difference increased with the mean simulated dispersal distance (Fig.IV.5) until a lower plateau was reached for values of mean dispersal distance higher than the maximum length of the study area lmax.

The difference between the simulated value and the posterior mean of the apparent dispersal probability dapp increased from 26% to 99% of the simulated value when mean dispersal distance increased from 0 to 12 territories, while the difference between the simulated and the apparent subordinate survival estimate Φ S app varied from 15% to 40% of the simulated value in the same interval. Notably, at the extreme, when the mean simulated dispersal distance was higher than lmax, the apparent dispersal probability estimates tended towards zero.

Negative bias was also observed but to a lesser extent for both the two-step and integrated models. For the TD model, the difference between dcor and the simulated value of d varied from 0% to 87% of the simulated value and the difference between Φ S cor and the simulated survival value varied from 0% to 36%. For the ID model, observed differences were always lower, varying from 0% to 84% for the dispersal probability and from 0% to 30% for the subordinate survival estimate. Most importantly, the difference between estimated and simulated values obtained with the ID model was virtually null for mean dispersal distances lower than half of the study area length (difference between simulated and estimated value of d < 1% and difference between the simulated and estimated value of Φ S < 1% of the simulated value) and relatively small (under 10%) for mean dispersal distances lower than 75% of the study area length. In comparison, the difference between simulated and estimated values of both dispersal and subordinate survival was always higher than 10% for the AD model. For the TD model, this difference was higher than 10% as soon as mean dispersal distance exceeded one territory. This difference is also visible for the 
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The 95% confidence intervals of the posterior mean estimates returned by the ID model indicated that recapture probabilities varied with time and decreased with age (difference in recapture probabilities between yearlings and two-years Δptwo = -1.40 [-1.91; -0.94] and difference between yearlings and adults Δpad = -1.90 [-2.37; -1.50] on the logit scale). The recapture probabilities were also higher for females than for males (difference in recapture probabilities between females and males Δpsex = -0.28 [-0.55; -0.02] on the logit scale). The dispersal distances distribution did not differ between males and females (mean dispersal distance for females lfemales = 1. 69 [1.55; 1.85 For dominants, survival probabilities of young dominants, i.e. two-year age class, were higher than those of adults but no sex difference was evidenced for both locally recruited and immigrant breeders (Table IV.1). In addition, no difference between locally recruited and immigrant breeders was evidenced (difference in survival between locally recruited and immigrant two-year breeders ΔΦsub LB = 10.43 [-34.32; 64.69] 

Approaches comparison

The results of the different simulations indicated that the AD model strongly underestimated both survival and dispersal even in the case of short dispersal distance.

The two-step model of [START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF] Barrowclough correction [START_REF] Barrowclough | Sampling bias in dispersal studies base on finite area[END_REF]). However, this correction is based on the assumption of a homogeneous and circular study area, a disposition highly unlikely in natural conditions. To draw conclusions on the evolution of dispersal in a species or to propose population management recommendations based on such models is thus highly risky and should be avoided.

The integrated approach on the other hand provides reliable estimates of both survival [START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF][START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF] and natal dispersal (this study).

In addition, as noted by [START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF], modelling the dispersal process within a CR model allows estimating the error associated to the dispersal kernel. We therefore obtain at the same time a good description of the true dispersal pattern and a quantification of the uncertainty associated to this dispersal pattern given the data at hand. The integrated approach is thus more rigorous and more accurate from a statistical point of view. However, the integrated approach still has some limitations. First, it returns accurate estimates of true survival and dispersal only to a certain extent. Notably, the performance of the model is related to the ratio of the size of the study area relative to the mean dispersal distance. Indeed, when the number of dispersal events observed within the study area compared to the total number of dispersal events becomes too small, the model is not able to correctly identify the parameters of the dispersal distance distribution, and demographic parameters are also misestimated. This problem is truly the problem of the quality of the data available and, as noted by [START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF]:

"if censoring becomes too strong (dispersal distances very large relative to the size of the study area), [the] model is not successful anymore in correctly estimating dispersal and consequently survival. But it is hard to imagine that any model would succeed in obtaining meaningful estimates in this case." A second limitation of this kind of integrated models (but also true for the two-step models) lies in the specification of the dispersal kernel. By extrapolating on the dispersal events observed inside the study area, we may miss an important part of the dispersal kernel. Long distance dispersal events, for example, will be likely missed in the observed dispersal events despite their recognised importance for population dynamics [START_REF] Nathan | Long-distance dispersal research: building a network of yellow brick roads[END_REF]. Hence, the dispersal distribution has to be chosen a priori based on the knowledge about dispersal in the species under study but, to our knowledge, no test exists to determine whether the chosen distribution is representative of the true dispersal process. This was also stressed out by the other studies on the same topic: "inferences about true survival will always be model-dependent to some degree" [START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF].

Integrated Multi-Event Dispersal model

Although they share the same general approach, our formulation of the ID model presents several differences with the other integrated models, i. 

Further developments

The integrated dispersal model we developed here was constructed to study natal dispersal only with dispersal being limited to a single transition between the subordinate and locally-recruited-breeder state. By comparison, dispersal is allowed between each recapture occasions in [START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF] and between each primary occasions in [START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF]. However, our model can be easily modified to incorporate this kind of breeding dispersal. The only modification concerns the state-transition matrix with the addition of two parameters: one allowing for the transition from the LB state to the IB state indicating the individual dispersed between two successive reproductive events, and a second transition parameter from IB to LB indicating the individual stayed on the same site between two reproductive events. Such model would be rather complete for the study of dispersal since it would give access simultaneously to the natal dispersal probability (transition from S to IB), the dispersal probability of previously dispersed individuals (transition from IB to IB), the probability to stay on the same site for a previously dispersed individual (transition from IB to LB), the dispersal probability of an individual that did not move during the previous time step (transition from LB to IB) and the probability to stay on the same site for an individual that did not move during the previous time step (transition from LB to LB).

In addition, the multi-event formulation ensures straightforward incorporation of state uncertainty and/or additional information. It can be easily implemented by modifying the observation process matrix (see Pradel (2005) for an example of state uncertainty and Dupont et al. (2015) for the incorporation of additional information about the reproductive state). Our formulation also allowed relaxing both assumptions of homogeneous dispersal direction and homogeneous landscape. It is very easy to incorporate the spatial structure outside the study area such as unsuitable habitat patches or preferred dispersal corridors, in the dispersal estimation. It only requires modifying the map of the study area by specifying different weights for the different territories and then recalculating the residency probabilities:

rs,l = where wk,s,l is the weight of the kieth site situated inside the study area at a distance l from site s, K is the total number of sites situated inside the study area at a distance l from site s, and Ws,l is the sum of weights of all sites situated at a distance l from site s.

Attributing unsuitable sites a weight of zero is then equivalent to not consider them as potential settlement territory for a dispersing individual (see supplementary material 8.5.2. for a simulation study of the impact of landscape structure outside the study area on survival and dispersal estimates), and attributing a given site a weight higher than one is equivalent to consider it as favoured over other territories situated at the same distance (e.g. because of the presence of large quantities of food and/or mating opportunities).

Sex-specific dispersal in the Alpine marmot

The application of the ID model to the Grande Sassière data set revealed the "true" natal dispersal and survival pattern of Alpine marmots. As expected from the results of the simulation study, the estimates of recapture probabilities, juvenile survival and dominant survival we obtained were consistent with the results of previous studies on the same population that did not take into account emigration outside the study area (e.g. [START_REF] Cohas | Age-specific effect of heterozygosity on survival in alpine marmots, Marmota marmota[END_REF]Dupont et al. 2015;[START_REF] Berger | Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence[END_REF][START_REF] Rézouki | Socially mediated effects of climate change decrease survival of hibernating Alpine marmots (T. Boulinier[END_REF]. By contrast, our winters. In addition, the probability to become dominant did not differ between sexes but we were able to identify a difference in inheritance between two-year males and females, with females having a probability to inherit the dominant position of their mother more than three times the inheritance probability of males.

Contrary to what is generally reported in the literature for mammals, neither the proportion of dispersers (i.e. the age-specific dispersal probability) nor the dispersal pattern (i.e. the mean dispersal distance) differed between sexes [START_REF] Dobson | The enduring question of sex-biased dispersal: Paul J. Greenwood's (1980) seminal contribution[END_REF]. This absence of sex-specific dispersal pattern is not so surprising for a monogamous and monomorphic mammal such as the Alpine marmot [START_REF] Lukas | Cooperative breeding and monogamy in mammalian societies[END_REF].

However, this absence of sex-difference in dispersal probability should be considered with caution, given that in the formulation of our model, dispersal probability only reflects successful dispersal, i.e. individuals that dispersed and became dominant in another territory. Hence, it does not reflect the dispersal "decision", i.e. the probability that an individual leaves its natal territory, independently of the success of this dispersal.

This probability cannot be estimated using our model because no information was available about dispersing individuals that failed to become dominant. These unsuccessful dispersers disappeared from the data set and most likely died in the process (Lardy et al. 2011). The difference observed in the proportion of dead males and females (Fig.IV.9) likely reflect this fact, and thus would tend to indicate that a greater number of males leave their natal territory after their second winter compared to females. It would also indicate a lower probability of success and therefore a higher cost of dispersal for males. This alleged male-biased dispersal, although unexpected for a monogamous mammal, might be explained in Alpine marmots by the possibility of extra-pair paternities. In agreement with this hypothesis, Cohas et al. (2008) found that most extra-pair paternities in the Grande Sassière population were produced due to dispersing individuals (80% of litters containing extra-pair young). Because of this possibility for males to access reproduction through extra-pair copulation even when failing to secure a dominant position, the expected fitness of dispersing males will be higher than that of females. Accordingly, the lower two-year subordinate survival of males may indicate higher levels of competition among males to disperse and access reproduction. Finally, the higher proportion of females inheriting the dominant position from their mother (Fig.IV.9) also supposes female-biased philopatry (and therefore male-biased dispersal) in the Alpine marmot. However, further research on the dispersal decision and costs in this species is needed to confirm these predictions.

To determine whether males truly dispersed more than females would require to take into account the success of the dispersal event for each individual, i.e. disentangle "natural mortality" from "dispersal related mortality". Such model would require additional information about the state of individuals during dispersal (e.g. a robustdesign framework where mortality between primary occasions would refer to "natural survival" while mortality within primary occasions would refer to "dispersal related mortality") or about the fate of individuals (e.g. spatial dead-recovery data where the dispersal status of individuals could be confirmed when individuals are found dead away from their natal territory). In the absence of such data, a last possibility, inspired by the work of [START_REF] Barthold | Bayesian estimates of male and female African lion mortality for future use in population management[END_REF] would be to assess the dispersal-related mortality by making the assumption that subordinate and dominant individuals follow the same agerelated survival pattern. Constraining subordinate survival this way would allow the dispersal-based mortality to be estimated as the difference between the observed mortality (as in our model) and the "natural mortality" (as constrained by the age-related pattern).

In the end, the integrated multi-event dispersal model we presented here is a new step towards a more complete (and less biased) assessment of dispersal and its drivers for which biologists of many fields have a great interest. As all models, it presents some limitations, but, with a clear understanding of its limitations in mind, it allows to considerably increase the knowledge about the central phenomenon in population biology that is dispersal, and opens new research and development areas. 

################################ ## Apparent Dispersal model ## ################################ sink("AD.bug") cat(" model { # Priors and constraints for (i in 1:nind) { for (t in f[i]:(n.occ-1)) { phiS[i,t] <-mean.phiS phiB[i,t] <-mean.phiB d[i,t] <-mean.d h[i,t] <-mean.h PS[i,t] <-mean.pS pB[i,t] <-mean.pB } }
mean.phiS ~ dunif(0,1) mean.phiB ~ dunif(0,1) mean.d ~ dunif(0,1) mean.h ~ dunif(0,1) mean.pS ~ dunif(0,1) mean.pB ~ dunif(0,1) # Define state-transition and observation matrices for (i in 1 

:nind) { for (t in f[i]:(n.occ-1)) { # Define probabilities of state S(t+1) given S(t) ps[1,i,t,1] <-phiS[i,t] * (1-d[i,t]) * (1-h[i,t]) ps[1,i,t,2] <-phiS[i,t] * (1-d[i,t]) * h[i,t] ps[1,i,t,3] <-phiS[i,t] * d[i,t] ps[1,i,t,4] <-1-phiS[i,t] ps[2,i,t,1] <-0 ps[2,i,t,2] <-phiB[i,t] ps[2,i,t,3] <-0 ps[2,i,t,4] <-(1-phiB[i,t]) ps[3,i,t,1] <-0 ps[3,i,t,2] <-0 ps[3,i,t,3] <-phiB[i,t] ps[3,i,t,4] <-(1-phiB[i,t]) ps[4,i,t,1] <-0 ps[4,i,t,2] <-0 ps[4,i,t,3] <-0 ps[4,i,t,4] <-1 # Define probabilities of O(t) given S(t) po[1,i,t,1] <-pS[i,t] po[1,i,t,2] <-0 po[1,i,t,3] <-0 po[1,i,t,4] <-1-pS[i,t] po[2,i,t,1] <-0 po[2,i,t,2] <-pB[i,t] po[2,i,t,3] <-0 po[2,i,t,4] <-1-pB[i,t] po[3,i,t,1] <-0 po[3,i,t,2] <-0 po[3,i,t,3] <-pB[i,t] po[3,i,t,4] <-1-pB[i,t] po[4,i,t,1] <-0 po[4,i,t,2] <-0 po[4,i,t,3] <-0 po[4,i,t,4] <-1 } } # Likelihood for (i in 1:nind) { z[i,f[i]] ~ dcat(y[i,f[i]]) for (t in (f[i]+1):n.occ) { z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ]) y[i,t] ~ dcat(po[z[i,t], i, t-1, ]) } } } ",fill = TRUE) sink() ####################################################################### ################################ ## Two-step Dispersal model ## ################################ sink("TD.bug") cat(" model { # Priors and constraints for (i in 1:nind){ dist[i] ~ dcat(L[]) ## L: vector of observed dispersal distances frequencies D[i] <-step(dmax-dist[i])+1 DIST[i,1] <-dmax DIST[i,2] <-dist[i] for (t in f[i]:(n.occ-1)) { phiS[i,t] <-mean.phiS phiB[i,t] <-mean.phiB d[i,t] <-mean.d h[i,t] <-mean.h pS[i,t] <-mean.pS pB[i,t] <-mean.pB r[i,t] <-prob.mat[site[i],DIST[i,D[i]]] } } mean.phiS ~ dunif(0,
(t) ps[1,i,t,1] <-phiS[i,t] * (1-d[i,t]) * (1-h[i,t]) ps[1,i,t,2] <-phiS[i,t] * (1-d[i,t]) * h[i,t] ps[1,i,t,3] <-phiS[i,t] * d[i,t] * r[i,t] ps[1,i,t,4] <-1-phiS[i,t] + phiS[i,t] * d[i,t] * (1-r[i,t]) ps[2,i,t,1] <-0 ps[2,i,t,2] <-phiB[i,t] ps[2,i,t,3] <-0 ps[2,i,t,4] <-(1-phiB[i,t]) ps[3,i,t,1] <-0 ps[3,i,t,2] <-0 ps[3,i,t,3] <-phiB[i,t] ps[3,i,t,4] <-(1-phiB[i,t]) ps[4,i,t,1] <-0 ps[4,i,t,2] <-0 ps[4,i,t,3] <-0 ps[4,i,t,4] <-1 # Define probabilities of O(t) given S(t) po[1,i,t,1] <-pS[i,t] po[1,i,t,2] <-0 po[1,i,t,3] <-0 po[1,i,t,4] <-1-pS[i,t] po[2,i,t,1] <-0 po[2,i,t,2] <-pB[i,t] po[2,i,t,3] <-0 po[2,i,t,4] <-1-pB[i,t] po[3,i,t,1] <-0 po[3,i,t,2] <-0 po[3,i,t,3] <-pB[i,t] po[3,i,t,4] <-1-pB[i,t] po[4,i,t,1] <-0 po[4,i,t,2] <-0 po[4,i,t,3] <-0 po[4,i,t,4] <-1 } } # Likelihood for (i in 1:nind) { z[i,f[i]] ~ dcat(y[i,f[i]]) for (t in (f[i]+1):n.occ) { z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ]) y[i,t] ~ dcat(po[z[i,t], i, t-1, ]) } } } ",fill = TRUE) sink() ####################################################################### ################################ ## Integrated Dispersal model ## ################################ sink("ID.bug") cat(" model { # Priors and constraints for (i in 1:nind) { dist[i] ~ dpois(tau) DD[i] <-step(dmax-(dist[i]+1)) D[i] <-DD[i]+1 DIST[i,1] <-dmax DIST[i,2] <-dist[i]+1 for (t in f[i]:(n.occ-1)) { phiS[i,t] <-mean.phiS phiB[i,t] <-mean.phiB d[i,t] <-mean.d h[i,t] <-mean.h pS[i,t] <-mean.pS pB[i,t] <-mean.pB r[i,t] <-prob.mat[site[i],DIST[i,D[i]]] } } mean.phiS ~ dunif(0,
,i,t,1] <-phiS[i,t] * (1-d[i,t]) * (1-h[i,t]) ps[1,i,t,2] <-phiS[i,t] * (1-d[i,t]) * h[i,t] ps[1,i,t,3] <-phiS[i,t] * d[i,t] * r[i,t] ps[1,i,t,4] <-1-phiS[i,t] + phiS[i,t]*d[i,t]*(1-r[i,t]) ps[2,i,t,1] <-0 ps[2,i,t,2] <-phiB[i,t] ps[2,i,t,3] <-0 ps[2,i,t,4] <-(1-phiB[i,t]) ps[3,i,t,1] <-0 ps[3,i,t,2] <-0 ps[3,i,t,3] <-phiB[i,t] ps[3,i,t,4] <-(1-phiB[i,t]) ps[4,i,t,1] <-0 ps[4,i,t,2] <-0 ps[4,i,t,3] <-0 ps[4,i,t,4] <-1 # Define probabilities of O(t) given S(t) po[1,i,t,1] <-pS[i,t] po[1,i,t,2] <-0 po[1,i,t,3] <-0 po[1,i,t,4] <-1-pS[i,t] po[2,i,t,1] <-0 po[2,i,t,2] <-pB[i,t] po[2,i,t,3] <-0 po[2,i,t,4] <-1-pB[i,t] po[3,i,t,1] <-0 po[3,i,t,2] <-0 po[3,i,t,3] <-pB[i,t] po[3,i,t,4] <-1-pB[i,t] po[4,i,t,1] <-0 po[4,i,t,2] <-0 po[4,i,t,3] <-0 po[4,i,t,4] <-1 } } # Likelihood for (i in 1:nind) { z[i,f[i]] ~ dcat(y[i,f[i]]) for (t in (f[i]+1):n.occ) { z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ]) y[i,t] ~ dcat(po[z[i,t], i, t-1, ]) } } } ",fill = TRUE) sink() #######################################################################
!= 0) Xmin <-which(grid.mat[X[s]-d,(Y[s]-d+1):(Y[s]+d)]!= 0) Ymax <-which(grid.mat[(X[s]-d+1):(X[s]+d),Y[s]+d]!= 0) Ymin <-which(grid.mat[(X[s]-d):(X[s]+d-1),Y[s]-d]!= 0) around <-c(Xmax,Xmin,Ymax,Ymin) prob.mat[s,d] <-length(around)/n[d] } } return(prob.mat) } prob.mat <-P.DIST(SA) #######################################################################
(i in 1:n) { for (t in 1:(n.occ-1)) { PSI.STATE[ , ,i,t] <-matrix(c( phiS*(1-d)*(1-h), phiS*(1-d)*h , phiS*d*r[i] , 1-phiS+phiS*d*(1-r[i]) , 0 , phiD , 0 , 1-phiD , 0 , 0 , phiD ,1-phiD , 0
, 0 , 0 , 1 ), nrow = n.states, byrow = TRUE) } } # 2.Observation process matrix PSI.OBSERV <-array(NA, dim=c(n.states, n.obs, n, n.occ-1)) for (i in 1:n) { for (t in 1:(n.occ-1)) { PSI.OBSERV[ , ,i,t] <-matrix(c( pS, 0 , 0 , (1-pS), 0 , pD , 0 , (1-pD), 0 , 0 , pD , (1-pD), 0 , 0 , 0 , 1 ), nrow = n.states, byrow = TRUE) } } ## Simulation function simul.disp.me <-function(PSI.STATE, PSI.OBS, marked, prob.mat, site) { n.occ <-dim(PSI.STATE) [START_REF] Hanslik | Microsatellite loci for two European sciurid species (Marmota marmota, Spermophilus citellus)[END_REF] 

+ 1 n <-sum(marked) f <-rep(1:length(marked),marked) CH <-CH.TRUE <-matrix(NA, ncol = n.occ, nrow = n) for (i in 1:n) { # Initial state CH[i,f[i]] <-CH.TRUE[i,f[i]] <-1 for (t in (f[i]+1):n.occ) { if (f[i]== n.occ) next state <-which(rmultinom(1, 1, PSI.STATE[CH.TRUE[i,t-1],,i,t-1])==1) CH.TRUE[i,t] <-state event <-which(rmultinom(1, 1, PSI.OBS[CH.TRUE[i,t],,i,t-1])==1) CH[i,t] <-event } } CH[is.na(CH)] <-dim(PSI.OBS)[2] Dprim <-rep(NA,n) Dprim[which(CH==3,arr.ind=TRUE)[,1]] <-D[which(CH==3,arr.ind=TRUE)[,1]]
return(list(CH=CH, CH.TRUE=CH.TRUE,site = site, f=f, D=Dprim, e=e)) # CH: capture histories to be used # CH.TRUE: capture histories with perfect detection # site: birth site # D: vector of known dispersal distances # r: vector of individual residence probabilities # f: vector of first capture occasions

} #######################################################################

Landscape heterogeneity analysis

Simulation study

We performed this additional analysis to determine the consequences of ignoring the landscape structure when using the Integrated Dispersal model (ID). Indeed, if the landscape is heterogeneous outside the study area, with certain patches of habitat unsuitable for the organism under study, this will impact the residency probabilities of dispersers and consequently the estimation of the other demographic parameters when compared to a homogeneous landscape. However, to what degree these demographic parameters will be impacted is not clear. To answer this question, we simulated and analysed with the ID model different data sets with varying landscape structures.

The landscape for each simulation was constructed in two steps. First, we constructed a study area by randomly sampling 35 cells in a 10 × 6 grid. Because any individual dispersing further than the largest distance inside the study area (lmax) will never be recaptured, residency probabilities need not be calculated for distances larger than lmax. Thus, calculating the different residency probabilities only requires knowledge of the landscape in a radius of lmax around the study area. The second step of the landscape simulation therefore consisted in creating an enlarged grid map with lmax territories added on each side of the study area. We thus obtained a grid map of dimensions 30 × 26 cells centred on the territories composing the study area (Fig IV.10.). Territories outside the study area were then randomly assigned as suitable or unsuitable following the proportion of unsuitable habitat to be tested. The residency probability matrix was constructed based on the simulated landscape, and filled with rsi,li rsi,li = where nsi,li is the number of territories inside the study area situated at a distance li from territory si and Nsi,li is the total number of suitable habitat territories situated at a distance li from territory si. Each individual was randomly attributed one of the territories inside the study area as its natal territory. The individual dispersal distance was then sampled from a Poisson distribution. We fixed the mean of the Poisson distribution to one because we know from previous simulations (simulation study above) that the ID model performs well for such mean dispersal distance. Finally, given its natal territory and individual dispersal distance, each individual was assigned a residency probability rsi,li.

from the residency probability matrix. We simulated data sets with increasing proportion of unsuitable habitat outside the study area (P) from 0 to 0.9 with steps 0.1. The simulation process was repeated 100 times for each value of P, leading to a total of 1000 simulated data sets. We then fitted two different models to each data set, one with the true residency probability matrix as generated in the simulation process (the heterogeneity model) and one with the residency probability matrix ignoring the heterogeneity of the habitat (i.e. with all territories outside the study area considered as suitable: the homogeneity model). All models were fitted using Markov Chain Monte Carlo (MCMC) simulations with the computer program JAGS [START_REF] Plummer | JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling[END_REF]) through R3.2.5 (R core team 2016) with the R package jagsUI [START_REF] Kellner | jagsUI: Run JAGS from R (an alternative user interface for rjags)[END_REF]. Three chains were run independently for 10000 iterations with a burning period of 6000 iterations and a thinning rate of 1.

Results

The posterior means ± se of the different recapture, dominant survival and inheritance probabilities were identical and equal to the simulated values for both models and for all values of P (heterogeneous model: p S = 0.95 ± 0.01; p IB = p LB = 0.65 ± 0.02; Φ IB = Φ LB = 0.95 ± 0.02; h = 0.12 ± 0.01 and homogeneous model: p S = 0.95 ± 0.01; p IB = p LB = 0.65 ± 0.02; Φ IB = Φ LB = 0.95 ± 0.01; h = 0.12 ± 0.02). As expected, the amount of unsuitable habitat outside the study area impacted both the subordinate survival and dispersal estimates but also the mean dispersal distance (Fig. IV.11). Because the number of territories available for settlement were over-estimated when the landscape was supposed homogeneous, the residency probabilities were artificially under-estimated and survival, dispersal and mean dispersal distance were in turn over-estimated. Subordinate survival was over-estimated by as much as 18% of the simulated value when a large part of the landscape outside the study area was unsuitable. This bias was up to 25% for the dispersal probability and much lower with only 10% for the mean dispersal distance. It is to be noticed that the lower bias observed in the mean dispersal distance was associated to a large variance of the estimate. In addition, the standard error of the mean seems to slightly decreased when the proportion of unsuitable habitat increases, and that both for the homogeneous and heterogeneous models.

These results demonstrate the importance of taking into account the structure of the landscape outside the study area when using spatial capture-recapture models.

Indeed, if the landscape structure is unknown and homogeneity is supposed, the estimates returned by such models will be over-estimations of the true demographic parameters. This can have important consequences, especially in studies with population management purposes where misestimating dispersal or survival probabilities can lead to deleterious management decisions being taken. Although these models are very efficient and allow to estimate otherwise unattainable estimates of true survival and dispersal parameters, which are of primary importance for a large range of studies in evolution and population dynamics, they rely on strong assumptions concerning both the shape of the dispersal kernel (e.g. in [START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF][START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF][START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF]) and the structure of the landscape outside the study area (this study). The limitations imposed by the shape of the dispersal kernel might be severely reduced, if not suppressed when the study area is large enough to observe a large number of dispersal events but the structure of the landscape obligatory requires additional information collected outside the study area. As a conclusion, although we highly encourage the use of integrated models because of their accuracy and ability to return true demographic parameters, we also recommend to be very cautious when using such models. In particular, we advise users to fully acknowledge the information available in their data sets and therefore the underlying assumptions and limitations of their model.

Chapter IV.B

Sociality & Dispersal Dominance change and group dynamics in the cooperatively breeding Alpine marmot

Abstract: In cooperatively breeding species, individual demographic rates result from the balance between costs and benefits in terms of fitness for the different group members according to their age, sex and social status, but also according to the composition of the group the live in. The characteristics of the group (i.e. group size and sex composition) are thus expected to strongly influence the group dynamics in such species. But the group dynamics may alos arise from the interaction of social groups among them inside the population. However, to date, very few studies looked at the influence of dispersal between social groups on both individual demographic rates and resulting group dynamics. In this chapter, I used the Integrated Multi-Event Dispersal model developed earlier to study the consequences of immigration into the family group by a new dominant on survival, dispersal and reproduction and inferred the consquences of such changes for the group dynamics. I found that both survival and dispersal of subordinate individuals were strongly impacted by the arrival of an un-related dominant into the family group. Specifically, immigration of a new dominant led to the majority of same-sex subordinates leaving the group, resulting in a strong decrease in group size and a strong modification of the group sex-composition. This crash in the group dynamic is likely to result also from the suppression of reproduction following the arrival of a new dominant but our model failed to detect such effect. I conclude by discussing the potential implications of such group dynamics pattern for the overall population dynamics and the different limits of the approach, as well as future developments. 

Keywords

Introduction

Nowadays, the paradigm in population dynamics states that the patterns observed at the population level arise from the combination of individuals' capacity to survive, disperse and reproduce [START_REF] Sutherland | From Individual Behaviour to Population Ecology[END_REF]. To understand the mechanisms responsible for the overall population dynamics, one should therefore work at the individual level to identify the factors responsible for the variation in individuals' demographic rates and characterize the ways in which they affect these rates [START_REF] Benton | Complex population dynamics and complex causation: devils, details and demography[END_REF].

In social, group-living species, population dynamics is expected to differ from this framework. In these species, population is often highly structured in age and sex classes but also in hierarchical states due to dominance relationships [START_REF] Bateman | Social structure mediates environmental effects on group size in an obligate cooperative breeder, Suricata suricatta[END_REF]). In addition, individuals interact preferentially with some conspecifics rather than others according to the associated fitness gain they can expect, thus leading to the formation of distinct social groups in the population [START_REF] Trivers | Social evolution[END_REF]. The resulting imbalance between interactions among group members and interactions between members of different groups will lead social groups to display dynamics of their own. Presented in such a manner, group-living species dynamics is very much alike metapopulations dynamics [START_REF] Hanski | Metapopulation dynamics: brief history and conceptual domain[END_REF]. In group-living animals, population dynamics therefore cannot be inferred solely from the combination of individual demographic rates because of the intermediate level of structuration in the population, i.e. the group level. Instead, as in metapopulations, the combination of individual vital rates will be responsible mainly for the social group/local population dynamics and the overall population dynamics will emerge from the combination of the different social groups/local populations dynamics. Thus, to understand the population dynamics of group living species, one must (i) understand the factors affecting the group dynamics and (ii) understand how groups interact to produce the overall dynamic [START_REF] Bateman | Population dynamics in meerkats, Suricata suricatta[END_REF].

Most research on social species until now focused on the evolution of the different social systems. Extensive bibliography is therefore available on the relative fitness costs and benefits of group living (e.g. [START_REF] Mcguire | Fitness consequences of sociality in prairie voles, Microtus ochrogaster: influence of group size and composition[END_REF][START_REF] Covas | Kin associations and direct vs indirect fitness benefits in colonial cooperatively breeding sociable weavers Philetairus socius[END_REF][START_REF] Silk | Social components of fitness in primate groups[END_REF][START_REF] Armitage | Marmot Biology: Sociality, Individual Fitness, and Population Dynamics[END_REF]). These costs/benefits were most of the time expressed in terms of survival, reproduction and, to a lesser extent, dispersal of individuals, and related to the size and/or composition of social groups, sometimes in interactions with other drivers of population dynamics (e.g. climate: [START_REF] Rézouki | Socially mediated effects of climate change decrease survival of hibernating Alpine marmots (T. Boulinier[END_REF]predation: Marino 2010). For example, [START_REF] Covas | Helpers in colonial cooperatively breeding sociable weavers Philetairus socius contribute to buffer the effects of adverse breeding conditions[END_REF] found that reproductive performance in the cooperatively breeding sociable weavers (Philetairus socius) depended mostly on nests predation and rainfall, but that the negative effect of rainfall was lowered by a social factor, i.e. the presence of non-reproductive helpers. Although these studies did not specifically use a population dynamics approach, their results are very relevant to the question of group dynamics since they quantified the influence of different social factors on individual vital rates (although not considered as such but rather as fitness components). Among the exceptions, we can cite the study by [START_REF] Bateman | Density dependence in group dynamics of a highly social mongoose, Suricata suricatta[END_REF] on the influence of group size on the social group dynamics in meerkats (Suricata suricatta). In this paper, they explicitly tackled the question of density-dependence in social group dynamics and found that group growth rate decreased with increasing group size especially after years of low rainfall.

By contrast, interactions between social groups were largely overlooked. These interactions between groups, mediated through dispersal, are nevertheless likely to have important effects on the group dynamics and ultimately on the population dynamics, as exemplified by studies on metapopulations that highlighted the importance of the connectivity between local populations, and the importance of emigration (dispersal decision) and immigration (settlement after dispersal) in these processes [START_REF] Hanski | Single-species metapopulation dynamics: concepts, models and observations[END_REF].

While most studies on dispersal in social species were interested in revealing factors affecting the decision to leave the group and eventually their impact on the group dynamics (e.g. [START_REF] Armitage | Proximate causes of natal dispersal in female yellow-bellied marmots, Marmota flaviventris[END_REF][START_REF] Bateman | Social structure mediates environmental effects on group size in an obligate cooperative breeder, Suricata suricatta[END_REF][START_REF] Mcguire | Social dynamics and dispersal in free-living prairie voles (Microtus ochrogaster)[END_REF], the consequences of immigration of new individuals into a social group are still poorly understood.

Here, we try to fill this gap by looking at the consequences of immigration into a social group on individual demographic rates in the Alpine marmot (Marmota marmota).

Alpine marmots are cooperative breeders living in family groups where the reproduction is monopolized by a couple of dominant individuals. Subordinate individuals, and particularly male subordinates, are considered as helpers because of their role in increasing survival of younger relatives during hibernation (Arnold 1988;Allainé & Theuriau 2004). Alpine marmots provide an excellent model to investigate this question:

(i) groups are highly territorial and do not overlap allowing movements between groups to be easily determined, (ii) immigration in a social group in this species is limited to the immigrant taking over the dominant position thus entailing potentially important consequences and (iii) a detailed long-term individual based dataset is available for this species. Based on this data set, we constructed an integrated multi-event dispersal model to test for the consequences of a new dominant arrival on survival, dispersal and reproduction in Alpine marmots' social groups. Two alternative (but not exclusive) scenarios may be considered: (i) because the new dominant (hereafter the immigrant) is most likely un-related to other group members, relatedness between subordinate individuals of the group and subsequent offspring will be lowered. Following kin selection theory (Hamilton 1964a,b), the inclusive fitness benefits of subordinates obtained through the increased survival of the dominant's offspring will also be lowered (divided by two). This will increase the likelihood that subordinates, and especially males, the helping sex, are more inclined to disperse rather than helping half-sibs, and then try to maximize their direct fitness by reaching a dominant position on their own. Under this scenario, we expect dispersal probabilities of subordinates of both sexes to increase following the arrival of an immigrant. We also expect subordinate males to be more prone to dispersal because of the higher cost of helping they endure during hibernation (Arnold 1988); (ii) because of intra-sexual competition, the presence of same-sex subordinates has been shown to be costly for dominant individuals. Dominance tenure, for example, decreases when the number of same-sex subordinates increases (Lardy et al. 2012a[START_REF] Lardy | Intrasexual competition and female dominance in a singular breeding mammal, the Alpine marmot[END_REF] and the risk of losing paternities to extra-pair copulations increases in the same time for dominant individuals (Cohas et al. 2006;Lardy et al. 2012a). The immigrant dominant is thus expected to expel same-sex individuals out of the group in order to maximize its dominance tenure, its reproduction and ultimately its fitness. In such case, a higher dispersal probability should be detected for subordinate individuals but only of the same-sex that the immigrant dominant. In addition, replacement of one of the dominant in Alpine marmots is associated to an absence of reproduction that year, due to infanticide (Lardy et al. 2011). Thus, we expect reproduction probability to be much lower following the arrival of an immigrant dominant for both sexes.

Material and methods

Alpine marmots, dispersal & dominance change

The Alpine marmot is a socially monogamous and territorial mammal living in family groups composed of up to 20 individuals. Each family group is composed of a dominant transponder (Trovan™, Germany) and a numbered ear tag. At each capture, marmots were aged from their size in four age classes (pups, yearlings, two-years and adults), sexed and their social status was determined according to scrotal development for males and teats development for females [START_REF] Hackländer | Male-caused failure of female reproduction and its adaptive value in alpine marmots (Marmota marmota)[END_REF]Hackländer et al. 2003).

The exact size and composition (sex and age class) of all family groups was assessed by behavioural observations. Notably, scent-marking behaviour was used to confirm the identity of the dominant pair (Bel et al. 1995). This allowed us to determine when a new individual (the immigrant) managed to evict one of the dominants (the resident). Hair and blood samples collected at capture allowed for kinship analyses (details on the different genetic analyses can be found elsewhere; Cohas et al. 2006;[START_REF] Ferrandiz-Rovira | The role of the major histocompatibility complex in the wild : the case of the Alpine marmot (Marmota marmota)[END_REF]. Based on these kinship analyses, parents of all pups captured at weaning could be identified, determining which individuals successfully reproduced each year.

The Alpine marmot integrated model

We used an integrated multi-event model designed to analyse the influence of the replacement of a dominant by an immigrating individual on the vital rates of social group members in Alpine marmots. Our integrated model is composed of two submodels combined through the construction of a joint likelihood [START_REF] Schaub | Integrated population models: a novel analysis framework for deeper insights into population dynamics[END_REF].

The integration of both sub-models allows the estimation of demographic parameters otherwise unidentifiable. Here, we were able to account for emigration outside the study The multi-event model. To account for the different possibilities in the life cycle of Alpine marmots, our multi-event model contained four states; a subordinate state S (encompassing pups, yearlings and subordinate adults), a locally-recruited-breeder state LB (individuals that became dominant on their natal territory by inheritance), an immigrant-breeder state IB (individuals that became dominant after dispersal), and a dead state D. Thanks to the genetic analyses, we were able to determine with certainty whether an individual successfully reproduced inside the study area a given year (Cohas et al. 2008;[START_REF] Ferrandiz-Rovira | Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?[END_REF], even if the individual was not captured that year. Because reproduction is highly correlated to the dominance status in Alpine marmots, we incorporated this additional source of information in the model to precise the state of the individuals. The different observations available from the data set allowed us to consider 9 events, numbered as follow: 1 when the focal individual was not captured but reproduced on its natal territory, 2 when it was not captured but reproduced on another territory, 3 when it was captured as a subordinate and did not reproduce, 4 when it was captured as a subordinate and reproduced on its natal territory, 5 when it was captured as locally-recruited-breeder but did not reproduce, 6 when it was captured as locally-recruited-breeder and reproduced on its natal territory, 7 when it was capture as immigrant breeder but did not reproduce, 8 when it was captured as immigrant breeder and reproduced on another territory and 9 when no information about the focal individual was available. This type of encoding allowed us to construct capture-histories for all individuals captured at least once during the study duration, e.g. 993397898899 for an individual captured and marked as a subordinate for the first time on the third year of the study, recaptured as subordinate on the fourth year, recaptured as an immigrant breeder that did not reproduce on the sixth year, recaptured as an immigrant breeder that reproduced on the seventh, ninth and tenth years and not recaptured, nor reproduced on the fifth, eighth, eleventh and twelfth years.

The multi-event model can be described using two matrices. The first one represents the state-transition process from one capture occasion to the next and the second one represents the observation process at a given capture occasion, i.e. the possible associations between the observed event and the underlying state of an individual at that same capture occasion. The state-transition matrix reads as state at time t in rows and state a time t+1 in column. It contains the demographic parameters in which we are interested: Φ x i,t the probability that individual i in state x at time t survived to time t+1, di,t the probability (conditional on survival) that individual i dispersed and became dominant between t and t+1, hi,t the probability (conditional on non-dispersal) that individual i inherited a dominant position on its natal territory between t and t+1 and ri,li the probability that individual i did not leave the study area when dispersing, given the distance li travelled.

The observation matrix reads as state at time t in rows and possible observable events at time t in columns. It contains the recapture and reproduction parameters: p x i,t the probability that individual i in state x was captured at time t and ψ x i,t the probability that individual i in state x successfully reproduced between t and t+1.

To take into account the variation in recapture probabilities from one year to the other, and following results of previous CR studies on the same population (Dupont et al. 2015;[START_REF] Berger | Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence[END_REF][START_REF] Rézouki | Socially mediated effects of climate change decrease survival of hibernating Alpine marmots (T. Boulinier[END_REF], we considered time, age and sex effects on the recapture probabilities. To account for the age structure in the population, we considered four age-classes: juvenile (from zero to one-year-old), yearling (from one to two), two-year (from two to three) and adult (three years old and older) for all survival, dispersal, inheritance and reproduction probabilities. Following previous results (see chapter IV.A) we considered the same survival probability for locallyrecruited and immigrant breeders (Φ LB = Φ IB = Φ B ) and used a single Poisson distribution to model the dispersal distances distribution of both sexes.

Dominance change consequences

In order to study if the eviction of a resident dominant by an immigrant individual affected the group dynamics, we tested for the effect of immigration on the different vital rates of group members. To test the validity of the different scenarios we proposed, we compared three models.

Kin selection model: because their genetic relatedness with subsequent offspring produced by the immigrant dominant will be much lower (and consequently their inclusive fitness expectation), we expect subordinate individuals to leave their natal territory and try to gain a dominant position in another territory in order to maximize their direct fitness. Because un-successful dispersers most likely die the following winter [START_REF] Magnolon | La dispersion natale chez la marmotte alpine (Marmota marmota). Modalités et effets de quelques facteurs proximaux[END_REF]Grimm et al. 2003b), they are never re-encountered and are indistinguishable from individuals dying during hibernation. Given our data, it is therefore impossible to estimate the probability to leave the natal territory and our model only returns estimates of successful dispersal. The hypothetical increase in the numbers of dispersing individuals may therefore translate into an increased in dispersal probability (if most individuals succeed) and/or a decrease in survival probability (if they fail). Additionally, it has been shown that subordinate males suffered from the presence of pups during hibernation, in terms of increased weight loss (Arnold 1993).

Because of this additional cost, male subordinates are expected to disperse more than females when one of the dominants is replaced. In order to take these different possibilities into account, we constructed a model with different dispersal and survival probabilities between cases where an immigrant arrived in the group and cases where the dominant pair did not change. In addition, we considered sex-specific dispersal and survival probabilities of subordinates in both cases to determine whether subordinate males dispersed more than females following the arrival of an immigrant dominant.

Because of the occurrence of infanticides and the impossibility to produce a second litter a given year, the reproduction probability of the newly formed dominant couple should be lower following an immigration event. We therefore implemented different dominant were fitted by running three chains independently for 100000 iterations with a burning period of 10000 iterations and a thinning rate of 1.

Results

The intra-sexual competition model was the best of the set according to DIC (intrasexual competition model: deviance = 3958.6; DIC = 5379.9) and the kin-selection model ranked last (kin-selection model: deviance =3971.8; DIC=5514.3; root model: deviance = 3973.2; DIC = 5401.9). Because the kin-selection model was so poorly supported, in the following section we focus on the results obtained with the intra-sexual competition model only (see Supporting Material 9.5 for detailed results of all three models).

Recapture probabilities varied with the year of study (between 1.36 [0.44; 2.2] and 4.39 [3.46; 5.49] on a logit scale for female yearlings), decreased with age (difference in recapture probabilities between yearlings and two-year individuals Δptwo = -1.41 [-1.85; -0.90] and difference between yearlings and adults Δpad = -1.88 [-2.25; -1.62] on a logit scale). Recapture probabilities were also higher for females than for males (difference in recapture probabilities between females and males Δpsex = -0.27 [-0.45; -0.12] on the logit scale). Dominant survival varied with age and sex. Two-year old dominants had a lower survival than adults for both sexes (Φ B two, females = 0.76 ± 0.12 and Φ B ad, females = 0.81 ± 0.02; Φ B two, males = 0.71 ± 0.12 and Φ B ad, males = 0.76 ± 0.02). Reproduction probabilities tended to be lower for males when an immigrant individual took the dominant position Reproduction probability was never different from zero for females while it was at the highest for two-year old subordinate males (r S two,males = 0.10 ± 0.04 and Fig.

IV.13 lower panels) but immigration had no significant effect. Finally, inheritance probability increased with age and it was highest for two-year females (htwo,females = 0.32 ± 0.06 vs. htwo,males = 0.10 ± 0.04; had,females = 0.15 ± 0.09 vs. had,males = 0.21 ± 0.07).

Discussion

Our results demonstrate that the immigration of a new dominant individual and associated eviction of one of the resident dominants has important consequences, both for the fate of individual group members and for the group dynamics. The fact that the kin-selection model performed poorly compared to the root model and intra-sexual competition model tend to indicate that consequences of immigration by a new dominant are sex-specific according to our second hypothesis.

Individual vital rates

Dominants. The first consequence of immigration by a new dominant is obviously the eviction of the previous dominant. However, our model did not test for this effect because of its parametrization. Indeed, we investigated the consequences of immigration and therefore considered an effect on demographic rates after the immigrating individual took over the dominant position. To test for the capacity of an evicted dominant individual to survive and become dominant again in another group would instead require testing for an effect of immigration on the resident dominant survival during the previous time interval. Although a very low survival of evicted dominants is always assumed in studies on Alpine marmots (e.g. Stephens et al. 2002;Grimm et al. 2003), to our knowledge no study was able to estimate precisely the capacity of evicted dominants to survive and secure a new dominant position. Our model provides a good framework for testing such effects and further investigations will be conducted on this aspect.

Contrary to what was expected, the reproduction probability of dominant individuals did not strongly decrease following immigration. The reason for this surprising result actually lies in a lousy parametrization of this part of the model. Instead of testing for the effect of any change in the dominant couple on the remaining dominant reproduction probability, we tested for the effect of male immigration on male reproduction only and for the effect of female immigration on female reproduction only (see the scripts in the supplementary material 9.5.1). Because of that, the "noimmigration" situation of a male, for example, encompasses both situations where no immigration occurred and situations where the female dominant was evicted, and conversely for females. The immigration situation is also quite irrelevant since it actually confounds the reproduction probability of both the immigrating and evicted individuals. New analyses are thus required to truly determine the effect of immigration in the social group on reproduction, and more generally for dominants.

Subordinates. When a new male immigrated in a social group and evicted the resident dominant, this was accompanied by a decrease in the survival of male subordinates, especially important for yearlings. Successful dispersal probability of subordinate males, on the other hand, was not affected by immigration. Taken together, the survival and dispersal patterns of subordinate males tell us precisely about the effect produced by the immigration of a new dominant male within the social group. The decline in survival, particularly important in yearlings, suggests that the majority of subordinate males will be forced to leave the territory even if they do not have the necessary physical condition to acquire dominant status after dispersal. Since in the Alpine marmot adult size is not reached before the emergence from the third hibernation (two-year-olds having survived), yearlings generally remain in their natal territory at least until that time (Arnold 1990 and chapter IV.A). Here, the much lower survival of yearlings following immigration indicates that a vast majority of these yearlings will still disperse despite the very low chances of success, thus giving hints that dispersal is not voluntary but rather forced by the new dominant male. In addition, our model provides information about extra-pair copulations, indicating that most subordinate males that produced pups did so at the age of two when most individuals disperse, confirming that dispersing subordinate males may access to reproduction even if they do not access to the dominant status (Cohas et al. 2006).

As for males, female subordinate survival strongly decreased when an immigrating female took over the dominant position and, unlike males, successful dispersal probability of female subordinates was also affected. It was especially true for female yearlings, in which successful dispersal sharply increased following the immigration of a new dominant female. In the same way as for males, patterns of survival and dispersal of subordinate females tend to show that it is indeed the immigrating dominant female that forces subordinate females to leave their natal territory. It is particularly interesting to note that female yearlings have a higher probability of becoming dominant by dispersing following immigration by a new dominant female. It would then appear that subordinate females delay dispersal as much as they can, even if they possess the physical capacities to disperse and become dominant. This confirms previous results (chapter IV.A) which indicated that females were likely to be more philopatric than males in the Alpine marmot. A potential explanation for the higher level of female philopatry is that differences in dispersal patterns between males and females result from the impossibility for female subordinates to access reproduction through extra-pair copulations, as evidenced here by the null reproduction probability of subordinate females.

Altogether, the results tend to confirm our second proposal, i.e. the immigrating dominant will evict not only the resident dominant but also the subordinates of the same sex to avoid intra-sexual competition. This pattern of eviction by the new dominant individual is not unusual in singular breeders and it is well explained by the costs incurred by dominant individuals in the presence of same-sex rivals related to higher levels of competition for reproduction, breeding sites or other resources (Clutton-Brock & Huchard 2013a,b). In meerkats for example, dominant females commonly evict temporarily subordinate females from the social group [START_REF] Young | Infanticide by subordinates influences reproductive sharing in cooperatively breeding meerkats[END_REF].

The benefits associated to these evictions for dominant females are two-fold: (i) in meerkats, pregnant females regularly kill pups born to other females in the days following parturition. By evicting subordinate pregnant females, the dominant female thus avoids the risk of infanticide on its pups; (ii) following eviction, pregnant females frequently abort and may subsequently participate in suckling pups born to the dominant female, therefore increasing benefits to the dominant. In Alpine marmots also, high levels of intra-sexual competition can be very costly for dominant individuals. More precisely, dominance tenure and reproduction monopolization (for dominant males) was found to be negatively related to the number of same-sex subordinates present in the social group (Lardy et al. 2012a[START_REF] Lardy | Intrasexual competition and female dominance in a singular breeding mammal, the Alpine marmot[END_REF]. It is therefore not surprising that the new dominant chases same-sex subordinates out of the group. On the contrary, this raises the question of why previous dominants tolerated many same-sex subordinates when it was shown to be highly costly. The answer is likely to be related to kin-selection theory (Hamilton 1964b) since subordinates in Alpine marmot family groups are most often offspring of the resident dominant (Allainé 2000a). It is indeed expected from kinselection theory that dominants should be more tolerant towards their subordinates if they are kin-related [START_REF] Smith | Hamilton's legacy: kinship, cooperation and social tolerance in mammalian groups[END_REF]. This was found to be true in many mammal species (Clutton-Brock & Huchard 2013b) and, accordingly, Arnold & Dittami (1997) found that dominant male Alpine marmots were more aggressive with unrelated subordinates. This higher tolerance towards relatives clearly accounts for the pattern observed in marmots and explains the difference in dispersal observed after immigration.

However, the reasons for this higher tolerance of kin-related subordinates are still unclear and different hypotheses may be advanced. Dominants may tolerate the presence of subordinate males because of their strong positive effect on juvenile survival during hibernation compensating partly for the cost of losing dominance and paternities (Allainé & Theuriau 2004). However, this explanation would be valid only if subordinate males helped preferentially related juveniles. Accordingly, Arnold (1990) found that pups mortality was lower in groups where all subordinates were potentially full sibs. However, this does not explain the tolerance of the dominant female towards subordinate females. Alternatively, dominant individuals may tolerate a large number of subordinates to allow them time to become competitive enough and thus increase the probability that they become dominant in turn. The direct costs of having numerous subordinates in the group would then be compensated by later high fitness benefits provided by an offspring becoming dominant. This scenario is highly probable in Alpine marmots because of the time required to complete growth (marmots only reach their adult size when three years old) and because dispersal is very costly (Arnold 1990b) but further research is needed to clearly identify the mechanisms responsible for increased social tolerance towards kins in Alpine marmots.

Group dynamics implications

Because of the implications for subordinate demographic rates, the group dynamics will also be strongly impacted by immigration. To illustrate this fact, we can look at the mean probabilities to stay in the social group after the arrival of an immigrating dominant for individuals of each sex and age class and compare them to the estimates when no change of dominant occurred. To do so, we only need to multiply the survival probability and the probability to not disperse in each situation (Φ.(1-d) ).

When no change occurs, 56% of male and female juveniles will survive and remain in the social group the following year, 72% of female and male yearlings, 38% of two-year-old females, 34% of two-year-old males, 31 % of females 3 years and older and 34% of males 3 years and older. Depending on the age-structure of the group, the group growth rate is thus highly likely to vary a lot. However, given the high probability of producing a litter each year (around 0.65 for dominants three years and older) and the mean litter size in the population (4.15 ± 0.05 pups; Dupont et al. 2015), group growth rate is much likely to be positive.

By comparison, when a new dominant female immigrates into the social group, only 35% of female juveniles will survive and stay in the group the following year, 31% of female yearlings, 29% of two-year-old females and 11% of females three years and older. In case it is a dominant male that immigrates, 39% of male juveniles will remain in the group, 43% of yearlings, 29% of two-year-old males and 14% of males of three years and more. In total, more than 50% of individuals of all age classes will leave the social group (or die). Adding to these low proportions, the very low probability to produce a litter when a dominance change happens (Lardy et al. 2011; sadly not evidenced using our model yet), it becomes obvious that the group size will suffer a drastic decrease following the arrival of a new dominant.

Put together, our results outline the following group dynamics in Alpine marmots: after the settlement of a new dominant, the family group will likely grow until one of the resident dominants is evicted again, after which the group will undergo a dramatic decrease due to the eviction of the majority of subordinates of one sex. This cyclic dynamic is quite different from what was evidenced in other cooperative species. In meerkats, for example, the group dynamics was shown to be mainly driven by group density dependence in interaction with climatic factors. More precisely, the group growth rate declined with increasing group size and this negative effect of group size was stronger in years of low rainfalls. Because of the increase in intra-sexual competition with subordinate numbers in Alpine marmots, group size is also likely to play a role in Alpine marmots' group dynamics and further studies should investigate the influence of group size and composition on group dynamics.

Conclusion

Our results shed light on the consequences of immigration by a new dominant into the social group, both at the individual and group level. At the individual level, it appears that resident dominants tolerate a much higher number of same-sex subordinates than immigrating individuals, probably because of the relatedness between the resident dominant and associated subordinates. It is likely to be advantageous for the dominant to tolerate a large number of same-sex subordinates until they are fit enough to disperse and become dominant, thus providing the dominant with fitness benefits, rather than chasing them away earlier in order to avoid the costs related to intra-sexual competition.

At the group level, we highlighted the importance of group interactions on group dynamics of cooperatively breeding species. More specifically, we identified a potential mechanism responsible for large modifications in the group composition and swift declines in group size without the action of any biotic factors. Our results stress out the fact that in social species, groups are not isolated entities and interactions between these groups may be very important for the overall population dynamics of the species. 
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Sociality, Group contribution & Fitness Testing determinants of the annual individual fitness: an overall-mean mixture-model for de-lifing data

Abstract: The de-lifing method [START_REF] Coulson | Estimating individual contributions to population growth: evolutionary fitness in ecological time[END_REF], though very promising for studying ecological and evolutionary changes, has yet to be used to identify factors influential on fitness. Through simulations representative of a variety of iteroparous species, we establish that a twocomponent normal mixture usually provides a much better representation of de-lifing data than the single normal distribution assumed in linear models. To analyse factors acting on de-lifing data, we propose the Overall Mean Mixture Model (O3M), a mixture model parameterized in terms of the overall mean, the measure of annual individual fitness on which we seek to examine the influence of social status, sex, age…We compare the performances and accuracy of the O3M with that of a classical linear model on simulated finite normal mixture distributions for different regression shapes and variance structure, and apply it to a real data set to study how the annual individual fitness varies with age in Alpine marmots. The O3M improves considerably the precision of the estimates and the power of the analysis. We discuss the adaptation of the O3M model to more complex distributions and advise on its use. 
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Introduction

When working on evolution and/or selection in natural conditions, most studies either use generation-based proxies for fitness, such as Lifetime Reproductive Success (LRS: [START_REF] Clutton-Brock | Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems[END_REF], or fitness-related traits, such as age-state specific survival or reproductive rates, clutch size, life expectancy, age at first reproduction and so on (see [START_REF] Kingsolver | The Strength of Phenotypic Selection in Natural Populations[END_REF] for a review). However, such measures present theoretical and empirical pitfalls. Fitness related traits, for instance, may not be impacted with the same strength and in the same direction by a given factor [START_REF] Lande | A Quantitative Genetic Theory of Life-History Evolution[END_REF]. Because trade-offs occur between traits, one can hardly extrapolate conclusions regarding one trait to general conclusions regarding evolutionary changes. LRS, on the other hand, does incorporate both survival and fecundity but it has been shown to suffer from other problems in species with overlapping generations or when ecological variation occurs during the lifespan of an individual [START_REF] Coulson | Estimating selection on neonatal traits in red deer using elasticity path analysis[END_REF]. In addition, LRS requires to record individual performance for the entire lifespan, which makes it hard to collect sufficient and comparable data, especially for long-lived species.

To overcome such problems, different non-generational fitness measures have been proposed, including de-lifing (Coulson et al. 2006a). This recent method, derived from the jackknife technique [START_REF] Miller | The jackknife-a review[END_REF], estimates an individual's contribution to the population growth rate over a period of time shorter than a generation. This contribution to population growth rate can be considered as the realized fitness of an individual during this time interval, usually a year, and offers great opportunities to empirically study ecological and evolutionary changes in stochastic environments (Coulson et al. 2006a). This method offers both theoretical and practical advantages. First, contrary to fitness related traits it integrates both survival and reproduction. Second, contrary to LRS based approaches, it offers the possibility to calculate fitness for individuals with incomplete life histories. Lastly but most importantly, it allows for the consideration that selection is a continuous process acting at any time and that the realized fitness of an individual is inherently relative to the changes in environment and to the performance of potential competitors, i.e. relative to the population size and composition at any given time. It is then possible to calculate selection gradients by regressing the values of a trait of interest on the individual fitness values, and thus determine how this trait might evolve and be an important fitness determinant when accounting for variations in the population during the time interval under study.

Despite the original paper being largely cited (114 citations registered on Web of

Science tm as of June 2016), the method was scarcely applied to actual data. Fifteen studies only were able to calculate and analyse the individuals' contributions to growth rate of wild populations (Tab.V.1). The need for detailed long-term survival, reproductive data and population size estimates might be responsible for the rarity of studies using this powerful tool. However, such datasets exist and the method is applicable to incomplete data. Instead, we believe that analytical difficulties might prevent researchers from using this method. Indeed, in many cases, the individual fitness data display a strong bimodal distribution. Therefore, commonly used statistical tools from the generalized linear model family (linear models in a broad sense, including but not limited to glm, glmm, gamm…) cannot be used without considerable violations of the underlying assumptions, potentially leading to invalid diagnoses and biased estimates, hence leading to inaccurate conclusions [START_REF] Jarque | A Test for Normality of Observations and Regression Residuals[END_REF].

Here, we propose a linear model derived from the mixture modelling framework [START_REF] Hamel | Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists[END_REF]. However, our aim here is quite different. We believe the multimodality of the de-lifing data is an inherent distributional property of this fitness metric and does not reflect biologically relevant clusters of individuals. That is to say, the different modes of the fitness distribution do not represent distinct classes of individuals in different states but are contingent on random events in a given year. Hence, we do not wish to identify how the individuals in the population are distributed among different clusters and independently impacted by a set of covariates (as already implemented mixture models do, i.e. FlexMix R package, [START_REF] Leisch | FlexMix: A general framework for finite mixture models and latent glass regression in R[END_REF]. Instead, we wish to estimate how the annual fitness expectancy of an individual in the population, hence the overall mean of the bimodal distribution, covaries with a set of independent variables while accounting for the bimodality of the data. The mean of the mixture distribution is thus the weighted mean of the different component-specific means and the variance of the mixture distribution σ 2 is the sum of the mean of the component-specific variances and the variance of the componentspecific means. We refer to this mean and variance as the "overall mean" and "overall variance" of the mixture distribution.

Here we aim at estimating the overall mean of the mixture distribution μ and see how it relates to a set of independent covariates. To do so, we express as a linear combination of the independent covariates and express the component-specific means as functions of the overall mean , the mixture weight π, and the difference between the two component-specific means Δ:

= α + β.x (5.1) 1 = -(1 -). Δ (5.2) 2 = + . Δ (5.3) with Δ = 2 -1
The same reasoning could be applied to obtain a linear expression of the overall variance , by expressing the two component-specific variances as (slightly more complicated) expressions of the overall variance, the mixture weight, the difference between the component-specific variances, the overall mean and the component-specific means.

However, we did not consider this case in our model since we had no a priori hypotheses about the overall variance. For full flexibility, we consider the case where Δ and are allowed to vary with the same set of independent variables x as . Since is a probability, we use a logit-linear relationship to relate and x. To avoid a common practical problem in mixture modelling known as "label switching" [START_REF] Lunn | The BUGS Book: A Practical Introduction to Bayesian Analysis[END_REF],

we constrain one component-specific variance to be larger than the second one by specifying a positive difference between the two:

( | μ, Δ, , σ1 2 , σ2 2 ) = . ( | ,Δ, σ1 2 ) + (1 -). ( | ,Δ, σ2 2 ) (6.1) with = α + β. x (6.2) logit( ) = α + β . x (6.3) Δ = αΔ + βΔ. x (6.4)
with σ1 2 > σ2 2 genetic kinship analyses) that survived the first hibernation. Because the study area and the recapture pressure increased during the study period, and for the de-lifing calculation to be coherent with time, we limited our analysis to a subset of the complete data set, i.e.

the data concerning the central location of the study area during the years 1994-2014,

leading to a total sample size of 1417 individual.years. More details on the study species, the study area, and the genetic analyses can be found elsewhere (Allainé & Theuriau 2004;Cohas et al. 2007;Ferrandiz-Rovira et al. 2016 and chapter II).

We calculated the annual individual fitness following equation 1 and tested whether the annual fitness of Alpine marmots varied with age. We expected annual fitness to increase in the first years of age because of low juvenile survival and progressive access to reproduction (marmots are sexually mature at 2 years of age, Allainé & Theuriau 2004) and to decrease in older ages because of senescence [START_REF] Berger | Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence[END_REF]. Therefore, we accounted for a quadratic effect of age on fitness in our model.

Social status is strongly differentiated in Alpine marmots (dominant individuals monopolize reproduction for example, [START_REF] Goossens | Extra-pair paternity in the monogamous Alpine marmot revealed by nuclear DNA microsatellite analysis[END_REF]) and sex differences in fitness are most likely to exist (male dominants turn-over is higher than females' one and male subordinates may access reproduction via extra-pair paternities (Cohas et al. 2007;[START_REF] Lardy | Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal[END_REF]. We then included both factors in the model. For the same reasons, we expected the distribution of fitness to vary with the social status and sex. Therefore, we incorporated different variance structures according to sex and status in our model:

pti = α(Status,Sex) + β(Status,Sex).ageti + β 2 (Status,Sex).(ageti)² + εti with εti ~ . (0, σ1 2 ) + (1 -). (0, σ2 2 )
Thus, the O3M model was: We calculated the residuals of both models to check a posteriori if the underlying assumptions of both models were respected. In the case of the linear models, the residuals εi,t = ti -pti are supposed to be normally distributed. In the case of the O3M, residuals are calculated according to each component εi,t = μk ,ti -pti and are thus normally distributed only within each component. Thus, if we look at the overall distribution of the O3M residuals, we should obtain a mixture of two normal distributions centered on zero with a mixing proportion π.

(pti|age, Status, Sex) = . (pti | ti ,Δ, σ1 2 (Status,Sex)) + (1 -). (pti | ti , Δ, σ2 2 (Status,Sex)) with ti = α(Status,Sex) + β(Status,Sex).ageti + β 2 (Status,Sex).(ageti)² logit ( ) = α (Status,Sex) + β (Status,Sex).ageti
All simulations and statistical tests were conducted using R 3.2.5 (R Development Core Team 2008). The different models (O3Ms and linear models) were written using the BUGS language and parameters estimation was performed using jags (Plummer 2003b) from R with the jagsUI package [START_REF] Kellner | jagsUI: Run JAGS from R (an alternative user interface for rjags)[END_REF]. Model selection was done based on DIC values (Spiegelhalter et al. 2002b).

Results

De-lifing data distribution

According to the DIC, the two-component normal mixture distribution fitted best the simulated de-lifing data under almost every scenario (Fig.

V.1a and V.1b). In 91% of the simulations, the DIC difference was larger than two supporting the O3M as the best of the two models (see supplementary material 10.6.3 for a table with complete results). A single normal distribution better approximated de-lifing data in only 10 out of the 108 simulated data sets. Although no clear pattern emerged when looking at the relationships between the parameters in the simulations and the DIC difference between the two models (Fig. 

Fitness variation with age in the Alpine marmot

The O3M performed better than the classical linear model as indicated by the DIC (DIC difference between the linear model and the O3M = 186). We analysed the residuals of the models to check the assumption of normality. The residuals for dominants departed from the assumed normal distribution when using the linear model ( Following our previous results, the estimates obtained using the O3M and the linear model were not qualitatively different and only little quantitatively different.

However, the standard deviations associated to the different parameters in the model were always smaller with the O3M (Tab.V.3 and V.4). Both male and female dominants' annual fitness significantly increased with age until approximately seven years of age and decreased thereafter (Fig.V.6a and V.6b). For female subordinates, both the linear and quadratic terms were not significantly different from zero contrary to the intercept, indicating that the annual fitness was constant with age and always negative 

Discussion

Overall Mean Mixture Model

Our results indicate that the O3M is a powerful and well-designed model for analysing fitness data calculated using the de-lifing method. Our simulations show that the distribution of such fitness data are most often bimodal, thus violating the underlying assumptions of classical regression models such as the generalized linear model family.

We also showed that these distributions could be approximated by a finite mixture of Gaussian distributions and therefore analysed in a mixture modelling framework using the Overall-Mean Mixture Model.

When de-lifing data follow a mixture of two normal distributions, as is most often the case (as demonstrated in the first analysis and in the example on Alpine marmots), the O3M was able to accurately recover the different parameters used in the simulations. Contrary to our expectations, the linear model also gave good estimations of the simulated values. However, the O3M estimates were much more precise than the linear model ones, i.e. the confidence intervals associated to the regression parameters were always smaller with the O3M. Table V.3. JAGS Output for the Alpine marmot individual fitness with age analysis using the O3M. Rhat indicates convergence (inferior to 1.1), n.eff is a measure of effective sample size, overlap0 checks if 0 falls in the parameter's 95% credible interval, f is the proportion of the posterior with the same sign as the mean; i.e., our confidence that the parameter is positive or negative. This result is very important since all tests or indicators for decision-making are based on such confidence intervals of the estimators. In a Bayesian context, for example, one will look at the confidence interval of a slope estimate associated to a covariate to determine if that covariate has an effect. The covariate will not be retained in the model, or not considered as having a significant effect, if its confidence interval overlaps zero.

Hence, in such situation one may retain and discuss the effect of a tested covariate when using the O3M while dismissing it if using a classical linear model. Using a classical linear model instead of the O3M model to study bimodally distributed fitness data can therefore lead not to detect an effect because of a lack of power.

However, and even though the two-normal mixture distribution fitted best the simulated data in almost every cases, it appeared that the O3M was not always necessary. In some cases, individual fitness data are unimodal and their distribution approaches a Gaussian one. Hence, in this situation, a two-component mixture distribution is over-parameterized and therefore useless. Based on the results of our first simulation study it is difficult to determine in which conditions such a situation arises but it seems that de-lifing data are more likely to be unimodal and tend to follow a single normal distribution when the variance in the different demographic parameters is large and population size highly variable. On the contrary, individual fitness data sometimes present three distinct modes. This situation occurs when population size varies little between years and the number of recruited offspring per individual is close to one. Then, these three modes correspond to the three possible outcomes for an individual a given year: either an individual will survive and produce one offspring, in which case its fitness will be positive, or it will die before reproducing, in which case its fitness will be negative. Finally, it can either survive and not reproduce, or reproduce but not survive, in which case the outcome will be the same and its fitness will be close to zero. The mean survival and reproductive rates determined the relative height of the three modes.

In this situation, and even though a two-components normal mixture distribution is preferred over a single normal, both distributions are a poor fit and a three-components mixture distribution should be tested. It is therefore very important to check the distribution of the data to be analysed to decide what kind of model to use. In some cases, visual inspection of the data might be sufficient to determine whether the data are distributed following one, two or three modes, but in most cases, a careful inspection of the fit of the model a posteriori is recommended. Such inspection can be done using the residuals of the models. If the data are distributed in accordance with the model assumptions (i.e. a two-component normal mixture distribution in our case), then the residuals should be unimodal and centred on zero. As soon as the residuals are multimodal, this indicates that the data do not follow the assumed Gaussian distribution.

A more complex O3M with more than two components should then be considered.

However, the development of such a model is not straightforward and requires the model to be reformulated since the weight of the second component cannot be simply written as the complement of the first one. Similarly, the definition of delta, the difference between the two components means is no longer valid and needs to be re-considered. Hopefully, de-lifing data are most often bimodal and the O3M with two components should be sufficient most of the time.

Finally, some practical downsides are to be taken into account. First and foremost, the Gibbs samplers we used, either in BUGS [START_REF] Lunn | The BUGS project: Evolution, critique and future directions[END_REF] or JAGS (Plummer 2003b), are not algorithms specifically designed for such mixture models.

Thus, the O3M model converges slower than conventional linear models and the model failed to converge in certain situations, because of local maxima or absorbing states (e.g. when all individuals are randomly assigned to the same component during one iteration).

This can be circumvented in most cases by using informative priors, notably priors for the component assignment probability π. It can easily be constrained to be different from 0 or 1 by stating a uniform distribution ranging from 0.01 to 0.99 for example. This is easily done when π is constant but much more complicated when the proportion of individuals varies with the variables considered in the model. We therefore recommend being very cautious when choosing the priors distributions and run several replicates of the same model with different initial values to ensure "true" convergence. In the near future, some mixture-model specific algorithms (such as the Expectation-Maximization algorithm used in the FlexMix package, [START_REF] Leisch | FlexMix: A general framework for finite mixture models and latent glass regression in R[END_REF]) could be modified to fit the O3M and thus improve both the convergence efficiency and speed. However, even in the current configuration, we believe the time lost during slow converging MCMC runs, or in hard-writing an overall mean mixture model specific to the research question one wants to address is largely compensated by the gain in power and the precision of the results provided by the flexibility of the O3M.

Fitness variation with age in the Alpine marmot

The de-lifing method is really well adapted to study how fitness varies with age. To our knowledge, it is the only fitness metric including both survival and reproduction that takes into account the current environment (represented by the population size here), and calculated on a yearly basis. Our results indicate that in our population of Alpine marmots, annual fitness does not follow a Gaussian distribution, and is largely influenced by age, sex and social status.

The residuals of the linear model clearly indicate that the distribution of fitness is not normal, especially in subordinate individuals. This is easily understandable given that subordinates never (females) or very rarely (males) reproduce [START_REF] Goossens | Extra-pair paternity in the monogamous Alpine marmot revealed by nuclear DNA microsatellite analysis[END_REF]Cohas et al. 2007). Subordinates contribution to the population growth rate is only through their own survival (positive contribution) or death (negative contribution). The extent to which a subordinate survival will affect the population and thus its fitness then depends on the population size and on the mean survival rate that year. It is therefore not surprising that subordinate fitness display a strong bimodality. In opposition, the distribution of annual fitness of dominant individuals is unimodal, although not normal.

This distribution presents a narrow peak around the mean most likely representing the dominant individuals that survive but do not reproduce. Those individuals are numerous since dominant survival is really high (around 0.8) in Alpine marmots and around 65% of the dominant individuals reproduce each year [START_REF] King | Social, maternal, and environmental influences on reproductive success in female Alpine marmots ( Marmota marmota )[END_REF]Dupont et al. 2015). The rest of the distribution represents the individuals who reproduced and/or died a given year. This part of the distribution is less skewed because of various possible sources of variation (litter size variation, juvenile survival variation, population size variation, yearly mean survival and reproduction variation…). The O3M correctly captures this variation, thanks to the two components, and the estimates we obtain are thus trustworthy.

As expected, annual fitness presents a quadratic pattern for dominant individuals of both sexes, with the fitness increasing until approximately 7 years of age and decreasing thereafter. The senescence in fitness observed after 7 years of age is in agreement with actuarial senescence occurring between 6 and 8 years of age [START_REF] Berger | Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence[END_REF]. The curvature seems to be slightly steeper for dominant females than for dominant males, with the annual dominant females' fitness increasing faster but also decreasing faster than males'. This suggests a faster rate of senescence in fitness in dominant females. However, no sex effect occurs in actuarial senescence [START_REF] Berger | Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence[END_REF]. Then, competing models specifically designed to test this possible sex-difference in senescence in fitness are needed before drawing any conclusion. For subordinate individuals, the fitness/age pattern was also sex-specific. The fitness expectancy of subordinate females was negative and constant across all ages while it increased for males. This difference could result from the possibility for male subordinates to access reproduction via extra-pair copulations [START_REF] Goossens | Extra-pair paternity in the monogamous Alpine marmot revealed by nuclear DNA microsatellite analysis[END_REF] Due to viability selection, the proportion of high quality individuals gradually increases with age and only high quality individuals are responsible for the survival pattern at old ages (Péron et al. 2010a). This likely also occurs when considering the pattern of fitness with age. Thus, it is of primary importance to incorporate individual random effects on the intercepts and/or on the slopes to account for the differences in individual quality and subsequent differences in trajectories. This could be easily implemented in the O3M by stating that the intercept and slopes of the overall mean differ between individuals and are actually sampled from a normal distribution. The mean of this normal distribution will then be the mean estimate for the population and its associated standard deviation will give an idea of the difference in individual quality that exists in the population.

Conclusion

The O3M proved to be very useful and powerful for studying fitness data calculated with the de-lifing method. More generally, this relatively new, theoretically sound, fitness metric, combined with the appropriate modelling framework opens new perspectives in ecological and evolutionary studies. It is especially well fitted for microevolution studies by allowing for smaller scale and theoretically coherent analyses. In the context of ongoing climatic changes for example, we believe such metrics might be of great importance to study how populations respond to rapid changes in their environment in terms of fitness and therefore how species will be able to adapt (or not). We therefore encourage its use in a variety of contexts, from theoretical evolution to applied conservation studies.

## Two-component normal mixture distribution fitting cat(file = "MixNorm.txt"," # Specify model in BUGS language model { pi ~ dunif(0,1) ## Prior probability for component 1 lambda

[1] ~ dnorm(0, 0.1) ## Mean of component 1 specification delta ~ dunif(0,100) ## Prior for difference of means lambda[2] <-lambda[1] + delta ## Mean of component 2 specification sd[1] ~ dunif(0,100) ## Component 1 standard deviation sd[2] ~ dunif(0,100) ## Component 2 standard deviation tau[1] <-1/pow(sd[1],2) ## Component 1 precision tau[2] <-1/pow(sd[2],2) ## Component 2 precision for (i in 1:N) ## Loop over individuals { pt[i] ~ dnorm(mu[i], theta[i]) ## individual fitness sample T[i] ~ dbern(pi) ## Component sample (0 or 1) component[i] <-T[i]+1 ## Component identifier (1 or 2) mu[i] <-lambda[component[i]]
## Individual mean and precision are theta

[i] <-tau[component[i]]
## conditional on its component } } ") data <-list(pt = pt, N = length(pt)) inits <-function() list(pi = runif(1,0,1), delta = runif(1,0,10),sd = runif(2,0,5)) params <-c("p", "lambda","sd") ni <-10000 ; nt <-1 ; nb <-6000 ; nc <-3 ## Call Jags from R library(jagsUI) MixNorm <-jags(data, inits, params, "MixNorm.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE) print(MixNorm, digits = 3)

####################################################################### 10.6.2. Overall Mean Mixture Model.
The two-component normal mixture distributions simulation and Overall-Mean Mixture Model fitting R and jags script. The fitness data are simulated such that the mean of the distribution (MU) is linearly related to a hypothetical covariate (cov). 

####################################################################### ## Overall-Mean Mixture Model
# Specify model in BUGS language cat(file = "O3M.txt","model { # Priors aP ~ dnorm(0,0.01) ## prior for the intercept of π bP ~ dnorm(0,0.01) ## prior for the slope of π aD ~ dnorm(0,0.01) ## prior for the intercept of Δ bD ~ dnorm(0,0.01) ## prior for the slope of Δ alpha ~ dnorm(0,0.01) ## prior for the intercept of μ beta ~ dnorm(0,0.01) ## prior for the slope of μ beta2 ~ dnorm(0,0.01) ## prior for the quadratic slope of μ sd[1] ~ dunif(0,100) ## prior for the first component standard deviation diff ~ dunif(0,100) ## prior for the difference in standard deviation sd

[2] <-sd[1] + diff ## second component standard deviation tau[1] <-1/pow(sd[1],2) tau[2] <-1/pow(sd[2],2) ## Likelihood for (i in 1:N) ## loop over individuals (N) pt[i] ~ dnorm(mu[i],tau) mu[i] <-ALPHA + BETA*cov[i] + BETA2*pow(cov[i],2) residuals[i] <-pt[i] -mu[i] } }")
# Bundle Data data <-list(pt = bin$pt, N = length(bin$pt),cov = bin$cov) # Initial values inits <-function() list(ALPHA = rnorm(1,0,0.1), BETA = rnorm(1,0,0.1), BETA2 = rnorm(1,0,0.1), sd = rnorm(1,0,0.1)) # Parameters monitored params <-c( "ALPHA", "BETA","BETA2", "sd") # MCMC settings ni <-10000 ; nt <-1 ; nb <-6000 ; nc <-3 ## Call jags from R LM <-jags (data, inits, params, "LM.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin 

= nb) print(LM, digits = 3) plot(LM) #######################################################################

De-lifing distribution analysis; Simulation results

Table V.5. De-lifing simulated data sets analysis. The parameters averaged over ten replicates for each simulation are given as well as the deviance and DIC for both the Normal distribution fit (DevNorm and DICNorm) and the O3M fit (DevO3M and DICO3M). ΔDIC is the mean difference between the DIC for the normal distribution and the O3M specification. Simulations that were best fitted by the normal distribution are in bold. 
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Introduction

In social, cooperatively breeding species, the size and composition of the group are very important for most aspects of an individual life. In these species, only a subset of individuals reproduces but the young benefit from the care provided by all (or a large part) of the group members [START_REF] Clutton-Brock | Breeding Together: Kin Selection and Mutualism in Cooperative Vertebrates[END_REF]. This is, for example, the case in meerkats (Suricata suricatta) where pups produced by the dominant female of the group are fed by all subordinates over 3 months of age. As a result, these pups enjoy a higher survival as the number of helpers in the group increases [START_REF] Clutton-Brock | Effects of Helpers on Juvenile Development and Survival in Meerkats[END_REF]. But in some species, not all individuals contribute equally to rearing the young. This is the case in Alpine marmots (Marmota marmota) where the presence of male subordinates (and not females) during hibernation has been shown to be associated to higher juvenile survival (Allainé & Theuriau 2004). In other cooperatively breeding species, the presence of helpers may not directly benefit the young but rather the parents by reducing the costs associated to reproduction (i.e. the load lightening hypothesis; Crick 1992). In sociable weavers (Philetairus socius), for example, dominant females produce smaller eggs when helpers are present, but the additional care provided by helpers compensate for the reduction in egg size [START_REF] Paquet | Maternal Effects in Relation to Helper Presence in the Cooperatively Breeding Sociable Weaver[END_REF]. This compensation mechanism ensures an equivalent fledgling mass between nestlings raised with and without helpers.

Accordingly, in superb fairy wrens (Malurus cyaneus), female with helpers invest less in eggs and therefore increase their probability to survive to the next breeding season [START_REF] Russell | Cost minimization by helpers in cooperative vertebrates[END_REF]).

But this kind of social system also entails different costs for individuals because of the higher level of competition for resources and mating opportunities among group members resulting from living in close proximity. These costs will notably depend on the dominance status of the individual considered [START_REF] Heinsohn | The cost of helping[END_REF]. The most obvious cost of cooperative breeding is certainly the suppression of reproduction in subordinate individuals, imposed by dominant individuals (Arnold & Dittami 1997;[START_REF] O'riain | Reproductive suppression and inbreeding avoidance in wild populations of co-operatively breeding meerkats (Suricata suricatta)[END_REF]Hackländer et al. 2003a). This reproductive suppression may take different forms, from behavioural harassment leading to hormonal sterilization [START_REF] Creel | Social dominance and stress hormones[END_REF], to direct infanticide by the dominant individuals (O' Riain et al. 2000). In addition, costs associated to cooperative breeding for subordinate individuals are not limited to reproductive costs and may include reduced body condition, reduced survival and reduced future fecundity (Clutton-Brock 2016). Accordingly, meerkat helpers lose weight when babysitting (looking after pups to avoid predation) and their weight loss increases as the group size decreases. Dominant individuals will also bear variable costs depending on the characteristics of their social group. In meerkats, the probability of pups born to the dominant female to survive their first four days was considerably lower in the presence of a pregnant subordinate female, indicating that infanticide by pregnant subordinates can account for a substantial proportion of the reproductive failure suffered by dominants. In Alpine marmots, both male and female dominants have been shown to suffer from lower survival and male dominants are less likely to monopolize reproduction as the number of same-sex subordinates in the group increases, (Lardy et al. 2012a(Lardy et al. , 2013)).

Depending on their age, sex, size and/or composition of the social group, different costs and benefits will therefore apply to individuals according to their age, sex and social status. Altogether, these studies indicate that group size and/or composition will have outstanding consequences for individuals' survival and reproduction, and consequently for their fitness [START_REF] Mcguire | Fitness consequences of sociality in prairie voles, Microtus ochrogaster: influence of group size and composition[END_REF][START_REF] Silk | Social components of fitness in primate groups[END_REF]Berger et al. 2015). From a population dynamics perspective, this very large variation in individual vital rates according to group size/composition will most likely lead different social groups to display very different group dynamics. At the higher level, it is thus expected that social groups of various size and/or composition contribute differently to the population dynamic.

Despite its potential importance for the population dynamics of cooperatively breeding species, very few studies looked at the influence of group size and/or composition on group dynamics and at its consequences for the overall population dynamics (but see [START_REF] Bateman | Population dynamics in meerkats, Suricata suricatta[END_REF]. Here, we propose to study the consequences of varying group size and/or composition for the overall population dynamics by studying how different social groups contribute to the population growth rate based on a longterm dataset on Alpine marmots (Marmota marmota).

Answering this question can be quite challenging because social groups are not fixed entities and can vary greatly, both in size and composition, with time (Allainé & Theuriau 2004;[START_REF] Bateman | Density dependence in group dynamics of a highly social mongoose, Suricata suricatta[END_REF]. To overcome this limitation, we measured the contribution of social groups to the population growth rate of the population on a yearly basis using a slightly modified version of the de-lifing method proposed by Coulson et al. (2006). This method was originally proposed to quantify the contribution of an individual to the population growth rate as the difference between the observed growth rate between two times steps (usually a year), and the growth rate of the same population only with the focal individual removed. Similarly, we calculated the contribution of a group a given year as the difference between the observed growth rate and a virtual growth rate calculated with all individuals of the focal group removed from the population. Additionally, we performed the same analysis at the individual level, both for dominant and subordinate individuals, in order to better understand the relationships existing between the individual level, the group level and the overall dynamic of the population.

Material and methods

The Alpine marmot data set

From 1990 on, the population of Alpine marmots situated in the Grande Sassière nature reserve was monitored using a capture-recapture protocol. Every year between mid-May and mid-July, marmots were captured and blood and hair sampled for genetic analyses (for more details on genetic analyses see Cohas et al. 2008;[START_REF] Ferrandiz-Rovira | Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?[END_REF]. All pups were captured by hand within three days of their first emergence from the natal burrow and parentage analyses were performed to determine which individual successfully reproduced each year. In addition to these captures, behavioural observations allowed us to determine the size and composition of the different social groups each year. We considered group size and group composition at the end of the field season to not differ before the entrance into in hibernation The composition of the group was described as the number of subordinates of each sex present in the group at the emergence from hibernation, i.e. before pups' emergence. Because survival, dispersal, and reproduction of all individuals had to be known with certainty, as well as the corresponding group size and composition, we discarded the first years of the study and peripheral territories because the quality of the date was insufficient for the analysis.

The dataset was then composed of 333 group.year and 1417 individual.year from 18 territories between 1994 and 2015. Population size was calculated as the sum of the group sizes each year.

Dominant contributions

Overall, the contribution of dominant individuals to population growth rate was positive and did not differ between sexes. Dominant contribution, dominant dispersal and dominant recruitment variations were best explained by the number of subordinate males while dominant survival was found to be related to group size but not to the group composition (Fig. 

Subordinate contributions

By contrast, subordinate contributions were not found to be related to group size or to the number of male subordinates. The only covariate retained to explain variation in subordinate contributions to growth rate, survival, dispersal and recruitment was the number of subordinate females present in the group (see supplementary material 11.5.2.3). In addition, the effect of female subordinates was found to be sex-specific for the contribution to growth rate and for the contribution to mean survival. Mean 

Discussion

Our results indicate that the larger the social group, the more negative its contribution to population growth rate. More specifically, groups of more than five individuals contributed negatively to growth rate, meaning that the average contribution of an individual in a family group over five individuals was below the average individual contribution in the population, i.e. below the population growth rate. In other words, the mean annual individual performance of an Alpine marmot living in a large group is

Group composition and individual fitness

Following previous results (Allainé & Theuriau 2004;Cohas et al. 2006;[START_REF] Lardy | Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal[END_REF][START_REF] Lardy | Intrasexual competition and female dominance in a singular breeding mammal, the Alpine marmot[END_REF], the individual fitness of dominant individuals was overall positively linked to group characteristics (Fig V .8a). Dominants with a large number of male helpers benefited from higher juvenile survival (Allainé & Theuriau 2004), thus contributing to increase the mean recruitment rate in the population (Fig V .8d). Dominants in groups of intermediate sizes were most likely to become dominant again after being evicted from their group but the difference in dispersal success was too low to affect the overall contribution of a dominant individual to population growth (Fig V .8c). On the other hand, when too many individuals are present in the group, competition increases, dominants are more likely to be evicted and their survival probability decreases (Lardy et al. 2012a[START_REF] Lardy | Intrasexual competition and female dominance in a singular breeding mammal, the Alpine marmot[END_REF]. Accordingly, we found that dominants living in large groups contributed negatively to the mean survival rate in the population (Fig V .8b). However, since survival costs increase with group size slower than recruitment benefits increase with the number of subordinate males, group size has an overall positive effect on dominants' annual contribution to population growth rate, i.e. dominants' annual fitness.

From this result, it seems that natural selection will favour dominants in ever increasing groups which contradicts most studies on social animals that found an optimal group size and/or composition maximizing the dominant fitness [START_REF] Hill | Ecological and social determinants of birth intervals in baboons[END_REF][START_REF] Mcguire | Fitness consequences of sociality in prairie voles, Microtus ochrogaster: influence of group size and composition[END_REF][START_REF] Mosser | Group territoriality and the benefits of sociality in the African lion, Panthera leo[END_REF][START_REF] Lardy | Sex-specific determinants of fitness in a social mammal[END_REF]. The discrepancy between their results and ours probably lies in the fact that we only looked at the annual fitness in relation to annual group size and composition instead of lifetime fitness proxies in relation to group characteristics averaged over the whole tenure length of the dominant (e.g. lifetime reproductive success). This tenure length was shown to be very important for the overall fitness in many social animals [START_REF] Ellis | Dominance and reproductive success among nonhuman animals: A cross-species comparison[END_REF][START_REF] Setchell | Life history in male mandrills (Mandrillus sphinx): Physical development, dominance rank, and group association[END_REF]Lardy et al. 2015). Factors affecting dominant survival, while relatively un-important for the annual performance, will therefore be crucial for the lifetime fitness of an individual and trade-offs [START_REF] Stearns | The evolution of life histories[END_REF]) between immediate performance and later dominance tenure might explain why we did not find an optimal group size for dominant annual fitness.

For subordinates, costs associated to sociality are quite obvious but no positive effect of sociality was evidenced (Fig V.9a). Since subordinates have little (males) or no (females) access to reproduction, their contribution to population growth rate depends solely on their ability to survive, whether they dispersed or not. Our results show that both male and female contributions to mean survival decreased with increasing numbers of subordinate females in the family group (Fig V.9b). The negative effect of the presence of female subordinates for female subordinates is probably due to intra-sexual competition between females. On the other hand, the lower survival rate of subordinate males in the presence of many females in the group confirms previous studies which showed that the presence of subordinate females in the hibernaculum during hibernation led to a greater weight loss of males. This higher energetic cost incurred by males is due to the fact that females awaken later and produce less heat during periods of euthermia, causing the males to produce more heat and therefore spend more energy in order to survive (Arnold 1993;Allainé & Theuriau 2004). Because they do not produce any offspring, female subordinates' contribution to recruitment can only be negative (or at best null). Surprisingly, we did not find any sex difference in subordinate recruitment despite the occurrence of extra-pair paternities potentially allowing subordinate males to have a much higher recruitment value (Fig V .9d). Finally, no effect of social group size and/or composition was found on the contribution to mean dispersal rate indicating that marmots leaving large groups were not more successful when dispersing than marmots from small groups (Fig V .9c). Subordinate individuals therefore seem to suffer rather than benefit from living in large groups. These different costs result in an overall negative selective pressure on subordinates living in large groups and also reveal a conflict over group size between subordinates and dominants in Alpine marmots as is expected from theory (Vehrencamp 1983b). However, the measure of annual fitness presented here does not take into account indirect fitness benefits gained by related subordinates when the dominant individual reproduces. The evolutionary conflict between dominant and subordinate individuals over group size is then likely to be less pronounced than expected or even deleted when considering the annual fitness benefits gained by subordinates thanks to the higher contribution to recruitment of dominants living in large groups.

Group composition and group dynamics

From a group dynamic perspective, these differences in selective pressures between subordinates and dominants will result in the group growth rate being strongly densitydependent. Indeed, if we consider survival, the average survival rate within the group will decrease as group size increases as a result of decreased subordinate survival with increasing numbers of females and decreasing dominant survival with increasing group size (Fig V .7a, V.8a and V.9a). Similarly, the per capita recruitment rate will also decrease when group size increases (Fig V.7d). Finally, the dispersal rate will increase with the number of male subordinates as males tend to disperse more than females in Alpine marmots (Fig V .7c and chapter IV). As a consequence, large groups will lose a large proportion of their members each year because of a decrease in survival and an increase in dispersal while the number of pups recruited per individual in the groups strongly decreases. The group growth rate will therefore decrease sharply as its size increases. Among the few studies that were interested in group dynamics in social species, [START_REF] Bateman | Density dependence in group dynamics of a highly social mongoose, Suricata suricatta[END_REF] also found a strong negative effect of group size on group growth rate in meerkats although they hypothesized group dynamics in this species should be subjected to an Allee effect because of the positive effect of group size on individual survival [START_REF] Courchamp | Inverse density dependence and the Allee effect[END_REF]. In Alpine marmots also, small groups were expected to perform less well because of lower rates of recruitment due to less efficient social thermoregulation during hibernation (Allainé & Theuriau 2004). Together, these results highlight the importance of taking into account the group-level processes and the idea that those processes may display conflicting patterns with individual processes.

Group composition and population dynamics

At the population level, it appears that large groups will contribute negatively to population growth while small groups will contribute positively. Once again, this counter-intuitive pattern can be explained by the difference in costs and benefits associated to group living between subordinate and dominant individuals. While dominant individuals' fitness gain will increase with increasing group size, subordinate costs will add up in the same time (Vehrencamp 1983b,a). In large groups, the positive effect of sociality that benefits dominants will be therefore erased by the accumulation of costs for subordinates. As a consequence, the population dynamics is expected to vary greatly according to its groups composition. Two populations with the same number of individuals but distributed differently in the social groups will likely differ in their growth rate and overall population trajectories just like populations with different age or sex structures may display different population dynamics (Tuljapurkar & Caswell 1997).

To be more specific, a population composed of mainly small groups should display a high growth rate, because of all the small groups displaying high growth rate, before

showing signs of slowing down as mean group size increases in the population. Such population with synchronized group dynamics would therefore display overall densitydependence. On the other hand, if groups in the populations are highly variable, their different group dynamics are expected to compensate and the overall population may seem stationary while groups vary a lot. This discrepancy between individual benefits of sociality, group dynamics and their consequences at the population level confirms the particularity of social species population dynamics and the importance of the group structure in the population for the overall population dynamics [START_REF] Bateman | Population dynamics in meerkats, Suricata suricatta[END_REF].

However, further studies are still needed to better understand the links between individual costs and benefits, group composition and population dynamics. Notably, the costs and benefits for subordinate individuals according to group characteristics should be better analysed by taking into account potentially important indirect fitness benefits when helping a related dominant to reproduce. 

Group contributions

Overview

Population dynamics of social species is expected to differ from the population dynamics of solitary species because of the higher level of structuration they display. In highly social species, such as cooperative breeders, populations are structured not only according to age and sex but also according to breeding status because of dominance relationships within social groups [START_REF] Lukas | Cooperative breeding and monogamy in mammalian societies[END_REF]. Because the costs and benefits of group living depend on the group characteristics, demographic rates are expected to vary with the group size/composition. These differences in individual vital rates will in turn lead to social groups displaying different group dynamics and the overall population dynamics will in turn emerge from the combination of these different social group dynamics. Understanding the population dynamics of social species thus requires understanding the mechanisms responsible for the differences in individual demographic rates responsible for the group dynamics but also the mechanisms responsible for the interactions between social groups.

In this thesis, I tried to better understand the consequences of this structuration in different hierarchical levels for social species' population dynamics. To do so, I took interactions not only for individuals' survival and reproduction but also for group dynamics in cooperative breeders.

In chapter V, I used the de-lifing method to analyze how the size and composition of social groups affected their contribution to the overall population dynamics. To do so, I first developed a mixture model to study variations in the mean of bimodally distributed de-lifing data and exemplified its use with an analysis of agespecific fitness variation in Alpine marmots. Group contribution to population growth was found to be negatively correlated to group size while dominant contributions were positively related to the presence of male subordinates and subordinate contributions to population growth rate were negatively related to the presence of subordinate females.

By decomposing group contributions into contributions of dominant and subordinate individuals, I showed that social group dynamics were regulated through densitydependent mechanisms. At the population level, these results highlight the importance of the population composition in terms of groups of different size/compositions for the overall dynamics.

Altogether, these different results shed light on the functioning of Alpine marmots' populations and more generally on the complexity of cooperative breeders' population dynamics. Contrary to solitary species, population dynamics of group-living cannot be directly inferred from the mathematical combination of individual demographic rates and the different results presented here tend to depict population dynamics of social species as an emergent property of these populations in the sense that: "it is necessary to study not only parts and processes in isolation, but also to solve the decisive problems found in organization and order unifying them, resulting from dynamic interaction of parts, and making the behavior of the parts different when studied in isolation or within the whole." (Von Bertalanffy 1969). In the same way, we have found here that individual demographic rates will depend on the group characteristics (size and composition in particular; chapter III and previous studies on the same population), thus leading to social groups displaying density-dependent group dynamics.

But group dynamics does not entirely depend on its own constitution and it will also be subject to the influence of neighboring groups which can strongly influence the characteristics of the focal group through dispersal events (chapter IV). The dynamic of a group studied in isolation will therefore be very different from the dynamic of the same group studied inside a given population (chapter V). Additionally, while I focused only on the consequences of sociality per se on social organization and group performances, the influence of sociality on individual demographic rates, group dynamics and ultimately population dynamics may also result from indirect effects involving other factors.

Perspectives

Climatic factors

Many studies on social species have shown that sociality had the potential to strongly mediate the influence of ecological factors, and particularly climatic factors. In meerkats, for example, [START_REF] Bateman | Social structure mediates environmental effects on group size in an obligate cooperative breeder, Suricata suricatta[END_REF] showed that the social structure of the population will determine the population response to environmental variation.

Specifically, they found that seasons of low rainfalls were responsible for a decrease in reproductive success leading to a modification of social groups' age structure the following years, thus increasing subordinate emigration probabilities and therefore contributing to crashes in group dynamics. In common mole rats (Cryptomys hottentotus hottentotus), it has been shown that the decision to leave a colony was also strongly influenced by climatic conditions in interaction with group size [START_REF] Spinks | Comparative patterns of philopatry and dispersal in two common mole-rat populations: implications for the evolution of mole-rat sociality[END_REF].

More precisely, dispersal rates increased as a function of colony size but this relationship was modulated by the aridity of the surrounding environment.

Similarly, in Alpine marmots, recent studies have highlighted the impact of changing climatic conditions on individual demographic rates and therefore on social group structure. It has been evidenced that the decreasing snow depths during winter led to a decrease in litter size (Tafani et al. 2013) while juvenile survival decreased between 1990 and 2012 because of the interactive effect between winter conditions and the presence of subordinate males during hibernation [START_REF] Rézouki | Socially mediated effects of climate change decrease survival of hibernating Alpine marmots (T. Boulinier[END_REF].

Climatic factors, and particularly climate change, is therefore expected to strongly affect the social structure of the Alpine marmot population and consequently its population dynamics. Accordingly, a preliminary analysis we conducted using the delifing method shows a strong increasing trend in the relationship between group size and 

Individual Based Model

One possible way further to better describe and understand the mechanisms driving population dynamics in Alpine marmots would be the development and use of an individual based model [START_REF] Judson | The rise of the individual-based model in ecology[END_REF]. By combining the results of the numerous studies on Alpine marmots (e.g. Allainé et al. 2004, Cohas et al. 2008;Tafani et al. 2013;Dupont et al. 2015;Berger et al. 2016 and this thesis), we could construct a model that fully accounts for social influences on individual demographic rates and see if the resulting groups and population dynamics match the observed population dynamics. The use of individual based model is particularly fit to study social species because it allows to explicitly incorporate interactions between individuals within social groups but also (potentially spatially explicit) interactions between social groups, two features that do not possess matrix models [START_REF] Caswell | Matrix Population Models[END_REF]).

In the main driver of group contributions to the population growth rate is the recruitment, largely influenced by group size, and more specifically by the presence of male helpers (Allainé & Theuriau 2004), indicating that juvenile survival is probably a key process in the overall population dynamics of Alpine marmots However, this result only holds for the yearly growth rate and does not allow for testing of delayed effects, contrary to a thorough analysis of an individual based model constructed with great caution.

Conclusion

In this thesis, I have presented different studies aiming at the same general goal:

understanding the consequences of group-living from the individual to the population level. With these different studies (some of which are only beginning), I tried to bring together results of previous research on the Alpine marmots and provide new results about little-known aspects of this cooperative breeder. Notably, I started by highlighting the presence of long-term developmental consequences on the ability to reach a dominant status potentially entailing important fitness consequences.

A large part of my work also focused in developing new models to be able to make the most out of the long-term individual-based data set at hand in order to answer new questions. This concern about methodological issues allowed me to study the causes and consequences of dispersal in Alpine marmots, a part of its life history porrly known until now. Following this I was able to quantify the important consequences of dispersal at both the individual and group levels. Additionally, this work has paved the way for other studies on dispersal in Alpine marmots and notably further studies should look at the influence of group composition on the probability to leave the natal territory and succeed in becoming dominant for both males and females.

I also presented the first study linking the composition of the family groups to the overall population dynamics in Alpine marmots and showed how it was related to individual demographic rates. However, further studies are required to better understand the relationship between lifetime individual fitness conditioning the decisions of dominants and subordinates and how it relates to optimal group composition and group dynamics.

Finally, understanding the relationships between individuals within groups and between groups in the Alpine marmot will help understand the reasons that led to the evolution of such social systems and how it may evolve in the future. The Alpine marmot system also provides this unique opportunity to study evolutionary changes in ecological times (to paraphrase [START_REF] Coulson | Estimating individual contributions to population growth: evolutionary fitness in ecological time[END_REF]) and the evolutionary demography of Alpine marmots should be a very prolific field of study in the near future. We investigated age-specific variation in survival of dominant individuals in a long-lived and monogamous mammal, the alpine marmot (Marmota marmota), from a large dataset collected during a 24-year intensive monitoring of a free-ranging population. We found evidence of actuarial senescence in dominant individuals for both sexes. Survivorship was constant with age until dominant marmots were between 6 and 8 years of age and declined markedly thereafter. No between sex differences occurred in the intensity of actuarial senescence, which might be related to the weak intensity of sexual selection in this socially monogamous mammal. More investigations are needed to know whether cooperative breeding, hibernation, and monogamy, which are key features of the alpine marmot life history, could have shaped the patterns of actuarial senescence we report.

Key words: ageing, cooperative breeder, multievent models, sciurids © 2016 American Society of Mammalogists, www.mammalogy.org Actuarial senescence is defined as the increase in annual mortality with age [START_REF] Ricklefs | Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span[END_REF]Nussey et al. 2008). It has been argued that actuarial senescence has evolved because of the decline of natural selection forces with increasing age, as demonstrated by pioneer works [START_REF] Medawar | An unsolved problem of biology[END_REF][START_REF] Williams | Pleiotropy, natural selection and the evolution of senescence[END_REF][START_REF] Hamilton | The moulding of senescence by natural selection[END_REF]. During the last century, it was believed that ageing does not occur in wild populations because individuals die before the occurrence of any sign of senescence [START_REF] Medawar | An unsolved problem of biology[END_REF][START_REF] Comfort | The biology of senescence[END_REF]). However, thanks to the detailed analyses of long-term individual monitoring, actuarial senescence has been widely documented in free-ranging and age-structured populations during the last 2 decades, especially in vertebrates (review in [START_REF] Nussey | Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology[END_REF]). In addition, there is now compelling evidence that senescence displays highly variable patterns across the tree of life [START_REF] Jones | Diversity of ageing across the tree of life[END_REF]).

As senescence is grounded into life history evolution [START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF][START_REF] Lemaître | Early-late life trade-offs and the evolution of ageing in the wild[END_REF], having a comprehensive view of senescence patterns allows understanding factors shaping population dynamics. To date, most senescence studies have focused on the analysis of the rate of senescence (e.g., [START_REF] Ricklefs | Life-history connections to rates of aging in terrestrial vertebrates[END_REF], which has been shown to vary greatly among individuals [START_REF] Bouwhuis | Individual variation in rates of senescence: natal origin effects and disposable soma in a wild bird population[END_REF], populations (Lemaître et al. 2013), and species [START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF]). However, variation in the age at the onset of senescence also contributes to shape senescence patterns (Péron et al. 2010;[START_REF] Gamelon | Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?[END_REF]. Although both [START_REF] Williams | Pleiotropy, natural selection and the evolution of senescence[END_REF] and [START_REF] Hamilton | The moulding of senescence by natural selection[END_REF] explicitly stated that actuarial senescence should set on after the age at 1st breeding, accumulating empirical evidence indicates that it is not the case (Péron et al. 2010). For example, in alpine ibex (Capra ibex), the age at 1st reproduction is between 2 and 3 years old, whereas actuarial senescence only occurs from 7 years of age onward [START_REF] Toïgo | Sex-and age-specific survival of the highly dimorphic Alpine ibex: evidence for a conservative life-history tactic[END_REF].

Studying senescence in the wild requires longitudinal data on known-aged individuals over their entire lifespan. Mammalian species that are monogamous and cooperative breeders have rarely been the target of such long-term studies, which leads our understanding of actuarial senescence in these species to be currently limited. To date, only 5 studies have investigated the age-specific variation in survival using transversal (Alouatta palliata- Froehlich et al. 1981, Castor canadensis-Bergerud and[START_REF] Bergerud | Population dynamics of Newfoundland beaver[END_REF] or longitudinal (Helogale parvula- [START_REF] Waser | in Serengeti II: dynamics, management and conservation of an ecosystem[END_REF], Lycaon pictus-Creel and Creel 2002, Rhabdomys pumilio-David and Jarvis 1985, Alouatta seniculus -Larson et al. 2016) data. On the contrary, mammals in which only mothers care for young have been the subject of many detailed analyses of actuarial senescence (reviewed in [START_REF] Nussey | Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology[END_REF]). Yet, cooperative breeder species, where nonparent individuals help in raising young of dominants [START_REF] Jennions | Cooperative breeding in mammals[END_REF], display typical life histories with delayed age at 1st reproduction and decreased environmentally driven mortality risks that could shape senescence.

Additionally, a growing number of studies provide evidence that in mammals, sex is an important cause of variation in actuarial senescence (e.g., [START_REF] Loison | Age-specific survival in five populations of ungulates: evidence of senescence[END_REF][START_REF] Descamps | Age-specific variation in survival, reproductive success and offspring quality in red squirrels: evidence of senescence[END_REF][START_REF] Greiner | Sex-biased senescence in a polygynous bat species[END_REF][START_REF] Gamelon | Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?[END_REF][START_REF] Tidière | Does sexual selection shape sex differences in longevity and senescence patterns across vertebrates? A review and new insights from captive ruminants[END_REF]. [START_REF] Williams | Pleiotropy, natural selection and the evolution of senescence[END_REF] predicted that senescence should be more rapid for the sex with the highest mortality rate and argued that males should display faster actuarial senescence. Indeed, the costs associated with fights for mating, with growing large secondary sexual characteristics, and with monopolizing resources, should all be higher in males than in females. Such sex differences led [START_REF] Bonduriansky | Sexual selection, sexual conflict and the evolution of ageing and life span[END_REF] to launch the term for male life history strategy referred to as "live fast-die young". However, some species do not display any sex difference in ageing patterns (see [START_REF] Clutton-Brock | Sex differences in ageing in natural populations of vertebrates[END_REF][START_REF] Tidière | Does sexual selection shape sex differences in longevity and senescence patterns across vertebrates? A review and new insights from captive ruminants[END_REF] for some interspecific analyses). Our current empirical knowledge then indicates that the influence of sex on ageing patterns is more complex and is still poorly understood.

Since 1990, a free-ranging population of alpine marmots (Marmota marmota) has been monitored on an individual basis. The alpine marmot is a socially monogamous species breeding cooperatively (Arnold 1990). This species displays a long lifespan in the wild, as the oldest individual observed in our population was 16 years of age. Previous studies of this population have pointed out the complexity of senescence patterns in life history traits of alpine marmots. Tafani et al. (2013) found that male body mass peaks at 8 years of age and declines thereafter, whereas female body mass does not show any sign of senescence. Likewise, Berger et al. (2015) found that litter size remains constant with age until females reach 10 years of age and declines thereafter, whereas mass of pups does not show any evidence of senescence. As new evidence suggests that senescence in traits associated with individual fitness might show heterochrony [START_REF] Nussey | Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology[END_REF][START_REF] Hayward | Asynchrony of senescence among phenotypic traits in a wild mammal population[END_REF], it is crucial to analyze both demographic and phenotypic traits to have a comprehensive view of ageing processes within a given species. However, to date, age-specific changes in survival have not been yet investigated in this species.

Using an exceptional long-term individual monitoring of an alpine marmot population, we estimated age-specific changes of survival in dominant individuals and tested for sex differences of the rate of senescence. In our population, no subordinate individual older than 6 years of age was ever observed. All subordinates either died or become dominant before being old enough to show senescence. Based on previous analyses of age-specific variation in body mass that provided evidence of sex-specific senescence pattern (Tafani et al. 2013), we expected that actuarial senescence should be more intense in males than in females, assuming that body mass is a good indicator of condition and survivorship in this species, similarly to what has been reported for other mammals (e.g., [START_REF] Gaillard | Temporal variation in fitness components and population dynamics of large herbivores[END_REF] in large herbivores, [START_REF] Ozgul | Coupled dynamics of body mass and population growth in response to environmental change[END_REF] in yellow-bellied marmots, Marmota flaviventris).

MATERIALS AND METHODS

Study Species

Alpine marmots live in family groups of 2-16 individuals composed of a dominant couple, sexually mature (individuals from 2 years of age onward) and immature subordinates of both sexes (yearlings), and offspring of the year (Allainé 2000). Alpine marmots are territorial. The territory is shared by all family members but is mainly defended by the dominant pair.

The status of dominance is established for several years until the dominant marmot will be evicted by another individual or will die (Lardy et al. 2011). Dominant marmots mate during the 15 days following the emergence from hibernation (i.e., from early to late April). After 30 days of gestation, dominant females give birth to the sole litter of the year. The altricial offspring stay in the natal burrow during 40 days and once weaned emerge above ground between mid-June and mid-July [START_REF] Psenner | Neue Beobachtungen zur Fortpflanzungsbiologie des Murmeltieres[END_REF][START_REF] Psenner | Das Verhalten der Murmeltiere (Marmota m. marmota), insbesondere von Mutter und Jungen, im Bau[END_REF]. At sexual maturity (i.e., 2 years of age), an individual can stay as a subordinate in its natal group or attempt to become dominant by either inheriting the dominance status in its natal group or dispersing to gain dominance in another territory. A dispersing individual never joins a new family group as a subordinate [START_REF] Magnolon | La dispersion natale chez la marmotte alpine (Marmota marmota). Modalités et effets de quelques facteurs proximaux[END_REF].

Dominant marmots monopolize reproduction by physiologically suppressing reproduction of almost all mature subordinates of both sexes (Arnold and Dittami 1997;Hackländer et al. 2003). However, when the group size increases, the control of subordinates through aggressive behaviors is less effective. Therefore, in large family groups, some subordinate males unrelated to the dominant female can escape the control of the dominant and mate with the dominant female. Moreover, when subordinate males disperse to try to reach the dominant position in another territory, they can mate during dispersal with dominant females unbeknownst to the dominant males. In these 2 cases, the dominant female can give birth to young fathered by both the subordinate or transient male and the dominant male (Cohas et al. 2006).

Hibernation is characterized by a cyclic process with alternate hypothermia and euthermia phases (Arnold 1990). Group members hibernate together from mid-October to early April, and produce heat during periodic arousal, a phenomenon called social thermoregulation (Arnold 1990). However, all members of a family group do not have the same length and rhythm of hibernation. In particular, at each cycle, subordinate males wake up earlier and have longer euthermic periods than other family members, leading them to warm the burrow more than other group members (Arnold 1993). Consequently, subordinate males act as helpers and their presence in a family group increases the probability of offspring to survive their 1st hibernation (Allainé and Theuriau 2004), while they pay the costs in terms of body mass loss (Arnold 1988).

Study Site and Data Collection

Marmots were captured in a free-ranging population located in the Grande Sassière Nature Reserve (2,340 meters above sea level, French Alps, 45°29′N, 6°59′E), from 1990 to 2013. Every year, marmots from 24 territories were monitored, from mid-April to mid-July, using both capture-mark-recapture and observations. Marmots were captured using 2-door live-capture traps baited with dandelions (Taraxacum officinale). Traps were placed near the entrances of the main burrows to assign easily each captured individual to its family group. Juveniles were counted and captured by hand within the 3 days following their 1st emergence from the natal burrow (i.e., approximately 40 days after their birth). Captured animals were tranquillized with Zolétil 100 (Vibrac Corporation, St. Louis, Visconsin). At 1st capture, unmarked individuals were implanted with a PITtag (Trovan Ltd, www.Trovan.com, Cologne, Germany), and marked with a numbered ear tag. Tags were put on the right ear of females and on the left ear of males. In addition, a colored plastic ear tag was placed on the opposite ear of dominant marmots. At each capture, marmots were sexed and their social status was determined (assessed as dominant when testes reach the bottom of the scrotum [males] and when large mammary glands were present [females]). Daily observations were conducted and we further assessed the number of individuals of each sex and age class (pup, yearling, and adult) for each family. Scent-marking behavior was used to confirm the identity of the dominant pair (Bel et al. 1995).

We measured age (in years) from birth and assigned the age of 0 to offspring. We knew the exact age of dominant individuals born on the study site (84 females, 82 males), but not the age of immigrants (29 females, 47 males). As most marmots disperse at 2 years of age and almost never reproduce before 3 years of age (no female among the 84 females of known age, 3 males among the 82 males of known age), we assigned the age of 3 to immigrants when they first reproduce.

Genetic analyses were performed to assess the certainty of the maternity and paternity of individuals. When an individual was not captured in a given year, its survival could be accessed through genetic analyses by revealing a pup production for a given year. Details about genetic and kinship analyses are provided in Dupont et al. (2015).

Capture-Recapture Analysis Model structure.-Between 1990 and 2013, 242 marmots were captured as dominant individuals (113 females and 129 males). We used multievent capture-recapture models (ME-CR-Pradel 2005) to investigate the influence of age on survival of dominant marmots because recapture probability of individuals was much lower than 1 (recapture probability varying from 0.380 to 0.886- Cohas et al. 2007) and not accounting for imperfect detection indeed leads to biased survival estimates [START_REF] Gimenez | The Risk of Flawed Inference in Evolutionary Studies When Detectability Is Less than One[END_REF]. In these models, as in multistate models [START_REF] Lebreton | Modeling individual animal histories with multistate capture-recapture models[END_REF], each individual can only be in 1 of the 3 following states: subordinate (s), dominant (D), or dead ( †). Therefore, we were able to estimate different probabilities of survival for animals in the 2 live states and of transition probabilities from one state to another (Fig. 1). In addition, multievent models allow taking into account uncertainty about the state of individuals and/or any additional information. Here, we incorporated additional information about the reproductive status. Indeed, based on kinship analyses, we were able to determine whether an individual successfully reproduced (i.e., young emerging from the burrows) or not in a given year, even when the individual was not captured that year, thus allowing us to refine the survival estimates (Dupont et al. 2015). The different observable events retained were no information (event 0), individual not captured but its pups were captured (event 1), individual captured as dominant but none of its pups were captured (event 2), individual captured as dominant with its pups captured (event 3), individual captured as subordinate but none of its pups were captured (event 4), and individual captured as subordinate with its pups captured (event 5). Based on these events, capturerecapture histories were constructed for each individual.

The constructed multievent model can be summarized by a transition matrix and associated vectors of survival, capture, and successful reproduction probabilities (only the 2 live states are shown since the parameters of the dead state are fixed to p † = 0; Ψ † † = 1; E † = 0, see Table 1 for the glossary of abbreviations and their meanings). as: p t x , the probability that an individual in state x was captured during the year t; Φ t x , the probability that an individual in state x in year t survived and did not permanently emigrate from the study area between t and t + 1; Ψ t xy , the probability that an individual in state x in year t is in state y in year t + 1 given that it survived and did not permanently emigrate from the study area between t and t + 1 and E t

x , the probability that an individual in state x at time t had successfully reproduced this same year. Since dominant individuals never revert to subordinate state (Grimm et al. 2003), the transition probability from the dominant state to the subordinate state was fixed to 0 (Ψ sD = 0), thus constraining the state transition probability from dominant to 1. Additionally, we fixed to 0 the transition probability from subordinate to dominant between 1 and 2 years of age and after 6 years of age.

Model selection.-To investigate the influence of age on survival, we followed 3 steps as proposed by Lebreton et al. (1992):

1. Goodness-of-fit tests: We 1st tested whether a general model compatible with our biological knowledge fitted our data. To this purpose, we performed goodness-offit (GOF) tests [START_REF] Pradel | Principles and interest of GOF tests for multistate capture-recapture models[END_REF]) using the program U-CARE (Choquet et al. 2009a). 2. Obtaining a baseline model: Next, we selected the most parsimonious model, starting from a general model. Following Burnham and Anderson (2002), we built the general model by considering only a priori biological hypotheses based on literature (Arnold 1993;Farand et al. 2002;Stephens et al. 2002;Grimm et al. 2003;Cohas et al. 2008;Dupont et al. 2015). We thus considered effects of age, time, sex, and their 2-way interactions on all capture, state transition, and reproduction probabilities. For survival, we also considered the effects of time, sex, and the simplest age structure in 3 classes for subordinates (yearling, 2 years old, and aged from 2 to 6) and age structure in 2 classes for dominants (2 year old and aged from 3 to 6). In addition, we considered an effect of the number of male helpers since a high number of these latter groups appeared to be beneficial in terms of juvenile survival (Allainé and Theuriau 2004) 
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Following a step-down approach, models were sequentially fitted with constrained parameterizations for recapture, survival, transitions, and reproduction probabilities, in that order. We then checked that the best model could not be improved by exploring all nested models differing by only 1 effect.

3. Testing for age-specific survival: To test for age-specific variation in survival we fitted age-specific models by considering age as a linear or quadratic covariate, or as a categorical factor. We further fitted threshold models by holding survival constant until a threshold age, beyond which it linearly depended on age. The tested threshold age varied between 5 and 15 years. For each of these models, we also included a possible sex effect. Model selection and parameter estimation were performed using the program E-SURGE 1.8.5 (Choquet et al. 2009b). Estimates and standard errors of regression slopes reported in the result section are on the logit scale. All other parameters are given on the absolute scale. The associated standard errors were obtained by the delta method (Burnham and Anderson 2002). When several candidate models were competitive (i.e., differences in Akaike Information Criterion [AIC] less than 2), we performed a multimodel inference based on AIC weights (w i ) to produce mean estimates averaged across the different models of interest.

Comparing the onset of actuarial senescence estimated in marmots with the expectation based on early life history traits.-The onset of actuarial senescence in alpine marmots has not been previously investigated. Péron et al. (2010) provided a life history model that allows predicting the onset of actuarial senescence across bird and mammal species based on their early life history traits. From a dataset included species studied using capture-mark-recapture and after accounting for potentially confounding effects of phylogeny, Péron et al. (2010) found that the onset of actuarial senescence is expected to be equal to 
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where A is the age at 1st reproduction, F the annual prime age fecundity, and S the juvenile survival (between birth and 1 year of age). We included A, F, and S values that we got from our studied population of alpine marmots to calculate the age at the onset of senescence expected for marmots. We then compared this expected value to the value obtained from the survival analysis of our studied population.

RESULTS

Goodness-of-fit tests.-The overall goodness-of-fit (GOF) test of the Cormack-Jolly-Seber model (i.e., the fully timedependent model) was statistically significant (χ 2 = 159.58, d.f. = 79, P < 0.01) due to transience detected by the 3SR component test or also called the Brownie-Robson test (χ 2 = 93.55; d.f. = 22, P < 0.01). Individuals considered as transients were in fact pups that did not survive to their 1st hibernation and were thus captured only once. A 2nd GOF test was thus run on a dataset from which the 1st occasion of capture for individuals caught as pups was removed. The overall GOF test was no longer statistically significant (χ 2 = 28.87, d.f. = 56, P = 0.99) nor was the transience test (test 3SR; χ 2 = 21.55, d.f. = 22, P = 0.49). Yet, taking into account age classes in the baseline model solved the initial problem of apparent transience. [START_REF] Magnolon | La dispersion natale chez la marmotte alpine (Marmota marmota). Modalités et effets de quelques facteurs proximaux[END_REF] that cannot be distinguished from death.

Age-specific survival.-Dominant alpine marmots displayed clear evidence of senescence in survival (Table 2). Both linear and quadratic models performed poorly compared to the baseline model. Our results rather showed a threshold pattern of survival where survival remained constant until a threshold age and declined thereafter (Fig. 1). Three threshold models received strong support with an age at the onset of senescence at 6, 7, and 8 years of age, respectively. As these models provided similar fit, we performed a model-averaging procedure to estimate the constant survival during early ages and the rate of actuarial senescence, and thereby age-specific survival estimates. Survival remained constant at 0.79 ± 0.02 from 3 years of age until the threshold age (in females: 0.82 ± 0.02; in males: 0.78 ± 0.02) until 6 years of age and then declined to 0.31 at 16 years of age (βaveraged = -0.25; Fig. 1; see Supporting Information S2). Neither early adulthood survival nor the rate of senescence differed between sexes (Table 2). As expected, the number of individuals monitored decreased with increasing age, which led error bars from the full dependent age model to be larger for old than for young individuals, especially in males.

DISCUSSION

Survival starts to decrease from 6 to 8 years of age in dominant alpine marmots, which is quite similar to the value obtained from the model in Péron et al. (2010) based on the covariation among early life history traits across bird and mammal species. Indeed, model in Péron et al. (2010) predicts an onset of actuarial senescence of marmots at 6.5 years of age. However, as most marmots start reproducing at 3 years of age, the onset of actuarial senescence of alpine marmots is delayed compared to the theoretical assumption that actuarial senescence should start at the age at 1st reproduction [START_REF] Williams | Pleiotropy, natural selection and the evolution of senescence[END_REF][START_REF] Hamilton | The moulding of senescence by natural selection[END_REF]. Although the age-specific survival patterns we report in alpine marmots does not fit with theoretical expectations, several iteroparous species showed similar patterns (e.g., [START_REF] Stolen | A model life table for bottlenose dolphins (Tursiops truncatus) from the Indian river lagoon system, Florida, U.S.A[END_REF][START_REF] Toïgo | Sex-and age-specific survival of the highly dimorphic Alpine ibex: evidence for a conservative life-history tactic[END_REF][START_REF] Descamps | Age-specific variation in survival, reproductive success and offspring quality in red squirrels: evidence of senescence[END_REF][START_REF] Bronikowski | Aging in the natural world: comparative data reveal similar mortality patterns across primates[END_REF]. Our case study on alpine marmots thus contributes to the growing empirical evidence supporting that the synchrony between the age at 1st reproduction and the age at the onset of senescence is rather the exception than the rule. Finally, contrary to our expectation based on senescence patterns observed in body mass, the rate of actuarial senescence did not differ between sexes.

The absence of sex difference in the strength of actuarial senescence we report for alpine marmots does not support the expected "live fast, die young" life history strategy expected to be displayed by males [START_REF] Bonduriansky | Sexual selection, sexual conflict and the evolution of ageing and life span[END_REF]. Indeed, our finding markedly contrasts with studies of other mammal species that reported earlier or stronger senescence in males compared to females (e.g., [START_REF] Gaillard | Ecological correlates of life span in populations of large herbivorous mammals[END_REF]Lemaître and Gaillard 2013). However, these studies included polygynous species for which reproductive effort is much greater in males than in females [START_REF] Clutton-Brock | Sex differences in ageing in natural populations of vertebrates[END_REF][START_REF] Bonduriansky | Sexual selection, sexual conflict and the evolution of ageing and life span[END_REF]; but see [START_REF] Greiner | Sex-biased senescence in a polygynous bat species[END_REF]. In polygynous species, the intensity of sexual selection is expected to drive the magnitude of sex differences in actuarial senescence (Clutton-Brock and Isvaran 2007; but see [START_REF] Tidière | Males do not senesce faster in large herbivores with highly seasonal rut[END_REF]). On the contrary, in monogamous species, like the alpine marmot, the intrasexual competition is similar in both sexes and sex-specific differences in ageing should not be marked in monogamous species [START_REF] Bonduriansky | Sexual selection, sexual conflict and the evolution of ageing and life span[END_REF], which is supported by several empirical studies [START_REF] Clutton-Brock | Sex differences in ageing in natural populations of vertebrates[END_REF][START_REF] Larson | Age and sex-specific mortality of wild and captive populations of a monogamous pair-bonded primate (Aotus azarae)[END_REF].

In females, the onset of actuarial senescence is consistent with the onset of senescence reported for reproductive success (approximately 8 years of age- Berger et al. 2015) but markedly differs from the senescence pattern reported in body mass (with an absence of senescence- Tafani et al. 2013). In males, no information on age-specific variation in reproduction is available but body mass starts to decrease from about 8 years of age, which is consistent with the onset of actuarial senescence we report here. Surprisingly, alpine marmots displayed sex differences in body mass senescence, which involves the decline of body mass with increasing age in males but only a last year effect in females (Tafani et al. 2013), whereas no sex difference occurred in the rate of actuarial senescence. Two possible explanations may explain this pattern. First, in the alpine marmot, the senescence in body mass is independent of the senescence in other traits, as expected if fitness-related traits show heterochrony in their senescence patterns [START_REF] Nussey | Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology[END_REF]. Such variable patterns of senescence have been recently reported in Soay sheep (Ovis aries) across 20 phenotypic traits [START_REF] Hayward | Asynchrony of senescence among phenotypic traits in a wild mammal population[END_REF]. Second, the senescence in body mass has implications for senescence in fitness traits, but could target reproduction rather than survival in marmots. As males consume more energy than do females during hibernation [START_REF] Arnold | Sozioökologie des Alpenmurmeltieres[END_REF](Arnold , 1988)), sex differences in body mass could result from highest costs of hibernation in males and one can speculate that this may potentially strengthen reproductive senescence (i.e., the decline of reproductive output, including probability to give birth, litter size, or offspring size, with increasing age). However, in monogamous species such as the alpine marmot in which reproduction of dominant males is strongly associated to that of females and the loss of dominance (reproduction) is associated to death in both sexes (Lardy et al. 2011), it is not easy to understand why reproductive senescence could be stronger in males than in females. However, assessing sex differences in reproductive senescence is required to assess a potential heterochrony of senescence among demographic traits.

The pattern of actuarial senescence in alpine marmots we report could result from the high level of sociality of this species. In cooperative breeders, individuals in the family group help, warn, defend, or check the territory, which leads to decrease environmentally driven mortality [START_REF] Komdeur | Helpers and reproductive behavior in birds and mammals[END_REF]. Moreover, in cooperative breeders, both dispersal and reproduction are delayed for several years [START_REF] Koenig | The evolution of delayed dispersal in cooperative breeders[END_REF]). Additionally, helpers may contribute to decrease the reproductive effort of dominant individuals (Crick 1992). Cooperative breeding influences biological times (i.e., by delaying age at 1st reproduction) and leads the species-specific pace of life to slow down, which might ultimately delay the onset of actuarial senescence (e.g., [START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF]. Indeed, the released energy costs of reproduction for breeders offered by helpers can be allocated in somatic maintenance and can potentially delay senescence [START_REF] Bourke | Kin selection and the evolutionary theory of aging[END_REF]. At the intraspecific level, the evidence for associations between sociality and actuarial senescence is scarce (e.g., [START_REF] Paquet | Antagonistic effect of helpers on breeding male and female survival in a cooperatively breeding bird[END_REF]. Although further investigation is required, we suggest that a high level of sociality should delay the onset of actuarial senescence in cooperative breeders. Moreover, hibernation is also expected to shape the actuarial senescence pattern in alpine marmots. Hibernation is an energysaving tactic that strongly affects life history strategies (Turbill et al. 2011). Thus, from a comparative analysis across mammals, Turbill et al. (2011) showed that hibernation slows down the pace of life. In particular, they found that small hibernating mammals have longer maximum longevities (50% greater), survive better over the winter (by 15%), reproduce at slower rates, mature at older ages, and have longer generation times than nonhibernating mammals of similar size. In other words, hibernation slows down the pace of life. As senescence is strongly linked with the pace of life [START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF], hibernation should also strongly impact senescence patterns. In Alpine marmots, all members of the family group hibernate altogether. Males enter first at each cycle in euthermia phases and warm the hibernaculum, providing heat for the other members of the family group. The phenomenon is called social thermoregulation (sensu -Arnold 1990). The energy saved during the winter through social thermoregulation during hibernation could thus be reallocated into somatic maintenance. Social thermoregulation during hibernation could thus also shape senescence in alpine marmots. However, further research is required to know whether such reallocation mechanisms allowed by hibernation takes place in the alpine marmot.

We showed that actuarial senescence does occur in dominant alpine marmots of both sexes from about 6 years of age. The alpine marmot displays a delayed senescence relatively to the age at 1st reproduction that might come from the sociality of this species and/or the social thermoregulation during hibernation, an energy-saving strategy. The absence of sex differences in senescence patterns we report on alpine marmots could be associated with the weak intensity of sexual selection experienced by monogamous species.
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  Ceux de Lyon : Yaelle et Balam, Ben et Irene, Gillou et Judith, Albu et Fred, Aldo, Clara, Julia, Flo, Agathe et Sophie qui m'ont tous nourri et supporté, chacun leur tour ou tous ensembles… Mais celle qui remporte la palme du « supportage » c'est bien Anne, qui n'en demandait pas tant en venant s'installer à deux rues de chez moi ! Ceux plus loin : les LUSS bien sûr, la deuxième famille, qui, comme la première (Claire et Manu en tout cas), préfère se foutre de mes marmottes tout juste bonnes à mettre du chocolat dans du papier d'alu plutôt que d'apprendre la différence entre une nonnette et une cravant ! Merci…des fois, il faut… Dianou, qui m'a pas mal supporté et psychanalysé aussi (presque autant que le contraire c'est dire...) Flo, Jeanne et la p'tite Maïna qui prennent le vent là-bas en Bretonnie très occidentale ! L'autre Flo, celui des baleines de l'univers, qui est tout autant à l'ouest ! Il y a aussi les parents qui ont bien du courage et que je n'ai pas ménagé…Merci ! Et puis il y a Marine… "All evolutionary biologists know that variation itself is nature's only irreducible essence... I had to place myself amidst the variation." my PhD formation in October 2013, I joined the Evolution, Adaptation and Behaviour research team within the LBBE. However, I got the opportunity to start working for Prof. D. Allainé and Dr. A.Cohas a few years before, as a field work volunteer. I first came to the Grande Sassière nature reserve during the summer 2010

  thus providing a solid foundation for this study, and allowing enlightening comparisons with previous studies. Over the course of my PhD formation, I was thus able to make the most of the long-term individual-based dataset on Alpine marmots from La Grande Sassière (chapter II) to conduct a first study on the influence of the early social context on the ability of individuals to access reproductive status later in life (chapter III). I then took advantage of the latest developments in terms of Capture-Recapture methods to propose an Integrated Capture-Recapture model to rigorously study dispersal (chapter IV.A) and tested for the effect of an intrusion by a new dominant individual on the group dynamics of Alpine marmots (chapter IV.B). To understand the consequences of sociality at the level of the population, I used a measure of individuals' contribution to population growth rate. To do so, I had to develop a new formulation of linear mixture models and tested it by quantifying the influence of age on individuals' contributions to population growth rate (chapter V.A). Based on these results, I derived a measure of group contribution to population growth rate from the same metric to analyse how the size and composition of a social group impacted its contribution to the overall population dynamic (chapter V.B). Finally, I end this manuscript by a discussion of the relevance of these results to the understanding social species' population dynamics and propose further lines of inquiry (chapter VI).

  Figure II.1. "Marmots" plate from the Johnson's Household book of Nature: Containing Full and Interesting Descriptions of the Animal Kingdom. (1880). Credit: https://commons.wikimedia.org

Figure II. 3 .

 3 Figure II.3. Examples of marmot species showing the characteristic morphology of the Marmota genus. Clockwise from the top left: adult M. monax in up-alert posture, adult M. flaviventris, adult M. olympus sun-bathing, adult M. himalayana on the look-out while feeding, two adult M. caudata in nose to nose greeting and adult M. caligata resting on a rock. Photo credits: http://thealpinemarmotproject.org

France,

  Italy, Swiss and Germany to Austria) and the Carpathian Mountains where a sub-species has been described (M. marmota latirostris, Kratochvil 1961) It was successfully introduced in the Pyrenees between 1948 and 1988 from different Alpine populations (see Appendix I) and the Pyrenean population now constitutes the second in size after the Alpine one (López et al. 2010). Other introductions occurred in the Massif Central (France), in the Black Forest (Germany) and in the Apennines (Italy) (Fig.II.4).

Figure II. 4 .

 4 Figure II.4. Contemporaneous distribution of the Alpine marmot. Yellow areas: natural populations; purple areas: introduced populations. Image credit: http://iucnredlist.org

Figure II. 5 .

 5 Figure II.5. Male adult Alpine marmot sun-bathing. Photo credit: Marie-Léa Travert

  Alpine marmot population monitoring in the Grande Sassière Nature reserve (French Alps, 45°29′N, 6°59′E) started in 1990. The nature reserve is situated in a small glacial valley oriented along the East-West axis of the National Park "La Vanoise" close to the Italian border (Fig.II.7). The study area only concerns a subpart of the reserve.The size of the study area increased with the number of family territories monitored between 1990 and 2016. Nowadays, it covers approximately 60 ha between 2300 and 2450 m a.s.l. and contains up to 34 marmot families monitored every year.The climate presents typical Alpine characteristics, with low temperatures, strong daily and annual temperature amplitude and marked precipitations. The flora is composed of Alpine and sub-Alpine grass types and hosts a profusion of flowers during late spring (early June). The fauna includes many emblematic Alpine species, among which the chamois (Rupricapra rupricapra), the Alpine ibex (Ibex ibex), the bearded vulture (Gypeatus barbatus), the ermine (Mustela ermine) or the snow vole (Chyonomis nivalis). It also includes marmot predators such as the golden eagle and the red fox. The intensity of predation pressure could not be assessed since predation is almost never observed. However, the rarity of predation events observed despite the relatively intense observation pressure tends to indicate that predation only plays a minor role in shaping

Figure II. 7 .

 7 Figure II.7. Three dimensional view and photograph taken from the entrance of the Grande Sassière nature reserve. Orange area on the 3D view represents the study area. Photo credit: Carole & Denis Favre-Bonvin. Additional handlings at capture include morphological measurements, skin biopsies, hair and blood samples and anal, jugal and buccal glands secretion samples.Microsatellite genotyping of all captured individuals based on hair samples or skin biopsies allowed parentage analyses to be run, allowing us to precisely determine kinship among individuals from a family group (details on the genetic and parentage analyses can be found inCohas et al. (2006[START_REF] Ferrandiz-Rovira | The role of the major histocompatibility complex in the wild : the case of the Alpine marmot (Marmota marmota)[END_REF]). Because all pups from the study area are captured at emergence, the parentage analyses also allowed us to determine with certainty individuals that successfully reproduced each year.

Figure II. 8 .

 8 Figure II.8. Two Alpine marmots near a trap situated on the earth and rock mound formed during the burrow excavation. Photo credit: http://thealpinemarmotproject.org.

Figure III. 1 .

 1 Figure III.1. Life cycle of Alpine marmots with three age classes (a 1 pup, a 2 yearling, a 3 adult) and two social status (s subordinate and D dominant); arrows represent the transition from one age class to the next with its associated probability: Φ represents survival probabilities and ψ represents transition from the subordinate to the dominant status. ψ is conditional on Φ.

  Figure III.2. Effect of the number of brothers in the litter at weaning on juvenile survival probability of males. Solid line indicates the estimated survival probabilities from model B1.2; dashed lines represent the 95% confidence interval.

Figure III. 3 .

 3 Figure III.3. Effect of (a) the litter sex ratio (model SR3.2) and (b) number of sisters in the litter (model S3.2) at weaning on annual transition probability from the subordinate to the dominant status for individuals of more than 2 years. Solid line indicates the estimated transition probabilities; dashed lines represent the 95% confidence interval.

  7.5.2 Fate diagram and recapture histories construction.

Figure III. 4 .

 4 Figure III.4. Fate diagram illustrating the different observable events for a subordinate (s) or dominant (D) marmot and associated probabilities and codes as used in the recapture histories.

  limited to the first year of life and was adequately treated by incorporating an age effect in both capture and survival parameters. The results of the root model selection are shown in the tables 1 to 4. For a greater clarity, only the models with every parameter constant, full time and sex dependent parameters and those with a non-zero AICc weight are presented. After AICc-based model selection, the root model was: p s a*y+sex Φ s a 1 *sex*log(helpm); a 2,3 E s a 3 , p D a 3 *y+sex Φ D a 3 E D a 3 ᴪ sD a 2,3 .

:

  Capture-Recapture • Integrated Population Models • Sex-biased dispersal • Bayesian modelling • Dispersal distance distribution • Dupont, P., Allainé, D. & Pradel, R. (2016). An Integrated Multi-Event Dispersal model to assess true survival and natal dispersal in the Alpine marmot (Marmota marmota). (Draft)8.1. IntroductionCapture Recapture (CR) models are now widely recognized as powerful and essential tools in many fields of biological sciences(Thomson et al. 2009). The main advantage of CR methods resides in the possibility to disentangle biological processes, e.g. survival(Tavecchia et al. 2001b), dispersal[START_REF] Bennetts | Methods for estimating dispersal probabilities and related parameters using marked animals[END_REF] or reproduction[START_REF] Rivalan | Trade-off between current reproductive effort and delay to next reproduction in the leatherback sea turtle[END_REF], from detection processes. In the most classic CR model, theCormack-Jolly-Seber model (CJS model: Cormack 1964;[START_REF] Jolly | Explicit Estimates from Capture-Recapture Data with Both Death and Immigration-Stochastic Model[END_REF][START_REF] Seber | A Note on the Multiple-Recapture Census[END_REF], the repetition of capture occasions allows to estimate the proportion of individuals actually dead among those no longer captured.

(

  IPM: Schaub & Abadi 2011) and/or spatial capture-recapture models (S-CR models: Borchers & Efford 2008) together with the democratisation of highly flexible software for Bayesian analyses using Markov Chain Monte Carlo (MCMC) methods (BUGS: Lunn et al. (2000), JAGS: Plummer (2003)) recently motivated several attempts to use

  Alpine marmot's life cycle. All along this study, we considered the life cycle of Alpine marmots (Fig.IV.1). The Alpine marmot is a hibernating, territorial and cooperatively breeding mammal living in family groups composed of a dominant couple, adult subordinates (age > 2), yearlings and pups born that year. In each family, reproduction is monopolized by the dominant couple (with the exception of few subordinate males reproducing through extra-pair copulation(Hackländer et al. 2003; Cohas et al. 2006), and therefore, reproductive status is generally confounded with dominance status. Offspring produced by the dominant couple stay on their natal territory at least until sexual maturity at two years of age. From this age, they can either stay as subordinate and help raise subsequent pups produced by the dominant couple, or disperse(Stephens et al. 2002b). Subordinates that stay in the family group can get a dominant status by inheriting the position in the natal territory after the death of the same-sex dominant while dispersers reach dominance by evicting the same-sex dominant in another territory. A third possibility is the creation of a new territory by a couple of dispersing individuals (but this is highly unlikely in the saturated population under study). Once a subordinate "decided" to disperse, it cannot come back to its natal territory nor be accepted as a subordinate in another family group. Thus, in case of failure in reaching the dominant status, it becomes a floater, i.e. a wandering individual forced to hibernate alone and thus exposed to a very high risk of mortality[START_REF] Magnolon | The natal dispersal of alpine marmot (Marmota marmota). Patterns and the influence of some proximal factors[END_REF]. Because family territories are highly variable in size, we considered dispersal distances as the number of territories in straight line between the natal site and settlement territory (discrete distance) instead of the linear distance between the centres of the natal and settlement territory. Once the dominant position secured, a marmot stays dominant until death or eviction by a new incomer. Dispersal in the Alpine marmot is therefore exclusively natal dispersal. When evicted, the dominant individual becomes a floater and is thus subject to a very high risk of mortality too(Grimm et al. 2003b).

Figure IV. 1 .

 1 Figure IV.1. Schematic representation of the Alpine marmot's life cycle as used in the multi-event model. Solid lines indicate transitions between observable states while dotted lines indicate transitions to un-observable states (dead or outside of the study area). Complementary parameters (i.e.1-x for parameter x) are not indicated for twoyears and adult age-classes for readability reasons.

  within the study area. This proportion was determined based on a grid map M of the study area (Fig.IV.2). Because the maximum dispersal distance observable inside the study area is equal to lmax, the distribution of dispersal distances contained in L was truncated and biased towards short distances[START_REF] Taylor | Using local dispersal data to reduce bias in annual apparent survival and mate fidelity[END_REF]. The dispersal distance lcor,i was then under-estimated and the residency probability rcor was in turn overestimated. Hence, the survival and natal dispersal estimates returned by this model are not true but only corrected estimates. The remaining part of the TD model, i.e. the observation process, was identical to the AD model.

Figure IV. 2

 2 Figure IV.2 Example of a study area map as used in the simulation study. The study area is represented by the light blue and green areas. Each number represents a family group territory where trapping occurs. Yellow and red areas represent territories outside the study area. The residency probability of an individual born on territory 20 crossing two territories when dispersing is equal to 7/16= 0.44 (of all 16 territories situated at a distance of two (red and green territories), seven belong to the study area (green territories)).

  area was randomly generated by sampling 35 different cells in a 10 × 6 grid for each simulated data set, i.e. 35 territories where trapping occurs were randomly selected out of 60 possible locations for each simulated data set. Each individual's initial location was then randomly sampled among the 35 territories. We considered the landscape as homogeneous, i.e. the habitat was suitable for settlement anywhere inside or outside the study area. Based on this map, a matrix containing the residency probabilities for each territory and dispersal distance was constructed (see supplementary material 8.5.1.2 for the script used to generate the residency probability matrix). Because dispersal was limited to a single transition from the S to the IB state, individual dispersal distance was sampled a priori for all individuals from a Poisson distribution. Given its natal territory and individual dispersal distance, each individual was then assigned a residency probability ri from the residency probability matrix. State-transition and observation matrices similar to those in the ID model were then filled with these different probabilities. Individuals capture histories were constructed by sampling the individual underlying state and observed event for each time step in the corresponding statetransition and observation process matrix based on its previous state. The initial location was known for all simulated individuals but dispersal distances were kept only for individuals that did not disperse outside the study area to mimic true capture-recapture data (see supplementary material 8.5.1.3 for a data simulation script).

  Fig.IV.4 for an example of grid map with 34 territories and unsuitable habitat discarded from the possible dispersal locations).

Figure IV. 3 .

 3 Figure IV.3. Schematic map of the family territories under study in the Grande Sassière nature reserve for the period 2012-2014 (2340 m a.s.l., French Alps, 45°29′N, 6°59′E) Orange area is followed since 1990. Yellow territories were added in 2013.

  and τsex the sex-specific means of the dispersal distances distribution for the integrated model.

Figure IV. 4 .

 4 Figure IV.4. Study area map of the Grande Sassière nature reserve based on a satellite picture. Light blue colour represents the study area. Numbers represent family territories where trapping occurs. Yellow area stands for territories outside the study area suitable for Alpine marmots. Grey area represents unsuitable habitat (rocky and snowy areas).

Figure IV. 5 .

 5 Figure IV.5. Estimates of dispersal probability (left) and subordinate survival probability (right) given by the three different models; ID: Integrated Dispersal model, TD: Two-step Dispersal model and AD: Apparent Dispersal model. Coloured lines represent the mean estimates, shaded areas represent the standard error of the mean associated to each parameter and dashed lines represent simulated values.

  mean dispersal distance τ. The integrated model was able to return the true mean dispersal distance for a large range of simulated values while the difference between the simulated and observed mean dispersal distance used in the two-step model continuously increased (Fig.IV.6). Interestingly, the estimated value of mean dispersal distance τreturned by the integrated model decreased dramatically when the mean simulated dispersal distance was higher than the maximum length of the study area.

Figure IV. 6 .

 6 Figure IV.6. Mean dispersal distance as used in the Two-step Dispersal (TD: observed values inside the study area) and estimated by the Integrated Dispersal (ID: estimated mean value ± se of the mean) models for increasing values of simulated mean dispersal distance. Horizontal and vertical dashed lines indicates the longest distance between two territories inside the study area.

  Fig. IV.8 middle panel and Tab.IV.1). Inheritance probabilities also varied with age and a sex difference was found for the two-year age class (Fig. IV.8 lower panel and Table IV.1). Because inheritance is conditional on survival and dispersal, this indicates that females in their third year of life had more chances to inherit a dominant position than males. To summarize these results, the fate of subordinate individuals in the population was represented as the cumulative proportions of subordinate individuals in each state predicted by the model (Fig IV.9).

  on a logit scale) and older dominants (difference in survival between locally recruited and immigrant adult breeders ΔΦad LB = 0.14 [-0.36; 0.63] on a logit scale).

Figure IV. 7 .

 7 Figure IV.7. Histogram of observed (grey) and estimated (coloured) dispersal distances distribution for female (red) and male (blue) Alpine marmots. τ represents the sexspecific mean of the estimated Poisson distribution, the mean number of territories crossed for a sex during dispersal is equal to 1 + mean of the sex-specific Poisson distribution.

  e. the Robust-Design Spatial-Capture-Recapture model (RD-SCR:[START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF] and the Spatial Cormack-Jolly-Seber (S-CJS:[START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF], making it more suited to the study of natal dispersal. In studies mentioned above, dispersing and non-dispersing individuals were not differentiated and thus shared the same demographic parameters. In practice, this means that the distribution of dispersal distances contains zero values to account for individuals that did not move between two time steps. For this reason, Schaub and Royle used a Normal distribution centred on zero as dispersal kernel. This represents a strong assumption because, given the shape of the Normal distribution, the proportion of non-dispersers (individuals with dispersal distances between -1 and 1 in their model) is related to the distance travelled by dispersers and vice-versa. In other words, the dispersal probability of an individual is made dependent on the distance travelled by other individuals.[START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF] circumvented this problem by using zero-inflated distributions for the dispersal kernel. The proportion of nondispersing individuals (related to the value of the inflation parameter) is then independent of the dispersal distance distribution. However, the dispersal probability of an individual is not explicitly modelled and the assumption of identical survival between dispersers and non-dispersers holds despite numerous evidence that dispersers are not a random sample of the population[START_REF] Clobert | Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations[END_REF]. Dispersers are thus highly likely to possess specific demographic parameters. Here we took these different possibilities into account by modelling natal dispersal as a transition between two states in a multievent context. Hence, our formulation allows (i) natal dispersal probability to be explicitly modelled and easily related to covariates of interest if needed, and (ii) different survival probabilities to be estimated and compared for subordinates before dispersal, philopatric dominants and dominant individuals that dispersed. The main advantage of our approach is thus its completeness and its flexibility. Any incorporation of age, sex, spatial or any type of individual covariates is straightforward, the number of dispersing individuals (given by the dispersal probability) is estimated independently of the dispersal kernel, and separate demographic parameters can be estimated and compared for dispersers and non-dispersers.Finally, another advantage resides in the way residency probabilities are calculated. In the models of[START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF] or[START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF], the position of each individual at each time step is modelled and compared one by one with all possible locations in the study area to check if the individual is still inside the study area. Instead, we calculated the residency probability matrix beforehand based on a map of the study area and therefore only needed to model the dispersal distance for each individual, thus drastically load-lightening the model.

  results shed light on the natal dispersal and inheritance processes in the Alpine marmot and gave new insights on the survival of subordinate individuals. It appears the low apparent subordinate survival of previous studies (e.g. 0.53 in Dupont et al. 2015) is almost entirely due to dispersal outside the study area of two-year individuals (Fig.IV.8).

Figure IV. 9 .

 9 Figure IV.9. Cumulative proportions of subordinate individuals in each state (S: subordinates, IB: immigrant breeders, LB: locally-recruited breeders, D: dead) according to sex (blue: males; red: females) and age as predicted by the integrated dispersal (ID) model.

  1) mean.phiB ~ dunif(0,1) mean.d ~ dunif(0,1) mean.h ~ dunif(0,1) mean.pS ~ dunif(0,1) mean.pB ~ dunif(0,1) # Define state-transition and observation matrices for (i in 1:nind) { for (t in f[i]:(n.occ-1)) { # Define probabilities of state S(t+1) given S

  1) mean.phiB ~ dunif(0,1) mean.d ~ dunif(0,1) mean.h ~ dunif(0,1) mean.pS ~ dunif(0,1) mean.pB ~ dunif(0,1) tau ~ dgamma(0.01,0.01)I(0.00001,100) # Define state-transition and observation matrices for (i in 1:nind) { for (t in f[i]:(n.occ-1)) { # Define probabilities of state S(t+1) given S(t) ps[1

  of the study area pos <-sample(x*y,n.site,replace=F) ## Random sample of territories coordinates pos <-pos[sort.list(pos)] SA <-matrix(0,x,y) SA[pos] <-1:n.site ## Map of the study area ## Create study area and residence proba matrix P.DIST <-function(SA) { SA[is.na(SA)==T] <-0 S <-max(SA) ## Number of territories on the map Dmax <-max(dim(SA)) ## Maximum length of the study area ## Create an enlarged map with Dmax territories on each side of the study area pos <-as.data.frame(which(SA != 0, arr.ind = TRUE)) X <-pos[,1]+Dmax+1 Y <-pos[,2]+Dmax+1 grid.mat <-matrix(0,max(X)+Dmax+1,max(Y)+Dmax+1) for (i in 1:S) { grid.mat[X[i],Y[i]] <-i } ## Create the residence probabilities matrix prob.mat <-matrix(NA, S, Dmax) n <-8*(1:Dmax) for (s in 1:S) { for (d in 1:Dmax) { Xmax <-which(grid.mat[X[s]+d,(Y[s]-d):(Y[s]+d-1)]

  dispersal distance r[i] <-ifelse(D[i]<= dim(prob.mat)[2],prob.mat[site[i],D[i]],0) ## Associated individual residence probability } # 1. State process matrix PSI.STATE <-array(NA, dim=c(n.states, n.states, n, n.occ-1)) for

Figure

  Figure IV.10. Example of a randomly generated study area map as used in the simulation study. The study area is represented by the light blue area. Each number represents a territory where trapping occurs. Yellow area represents suitable habitat patches outside the study area and grey area represents unsuitable territories.

Figure

  Figure IV.11. Subordinate survival (upper panel), dispersal (middle panel) and mean dispersal distance (lower panel) for increasing proportions of unsuitable habitat outside the study area returned by the Integrated Survival model under the assumption of homogeneous (light blue) and heterogeneous (dark blue) landscapes. Shaded areas represent the associated standard error of the mean.

:

  Cooperative breeder • Capture-Mark-Recapture • Dispersal • Integrated Population Models • Social dominance • (Preliminary results)

  area and therefore estimate true survival and dispersal probabilities instead of apparent estimates (see chapter IV.A) The first component models dispersal distance travelled by an individual during dispersal and the second component is a multi-event capturerecapture model (Pradel 2005) designed to fit the Alpine marmot's life cycle. The dispersal model. This component models the movement realized by an individual Alpine marmot when dispersing. Since we considered dispersal to be equally likely in any direction, we only needed to model the distance travelled during dispersal. Dispersal distance in the Alpine marmot is measured as the number of territories in straight lines between the natal and settlement territories. Because of the discrete nature of the measure, we used a Poisson distribution to describe it. The dispersal distance of an individual (li) was then simply a random realization of a Poisson process (plus one because this is the minimal dispersal distance possible) whose mean τ needed to be estimated: li ~ dpois(τ) + 1

Figure IV. 12 .

 12 Figure IV.12. Dominant reproduction probabilities in the presence or absence of immigration by a same-sex new dominant for all dominant age classes. Left panel represents female dominants and right panels, males. Coloured lines represent the mean estimates and shaded areas represent the associated confidence interval.

  while two-year dominant females seemed to have a higher reproduction probability in the same situation (Fig.IV.12). However, the very large confidence interval associated to the reproduction of two-year dominant individuals of both sexes in the presence of immigration (most likely because very few individuals are in such situation) forces us to consider these results with caution.

Figure IV. 13 .

 13 Figure IV.13. Subordinate survival, dispersal and reproduction probabilities in the presence or absence of immigration by a new same-sex dominant for all age classes. Left panels represent female subordinates and right panels, males. Coloured lines represent the mean estimates and shaded areas represent the associated confidence interval.

:

  Ecology and Evolution • Fitness • Mixture modelling • Multi-modal distributions • Linear modelling Dupont P., Allainé D., Cohas A. & Pradel R. (2016) Testing determinants of the annual individual fitness: an overall-mean mixture-model for de-lifing data. MEE (under revision).

(

  McLachlan & Peel 2004), called the Overall Mean Mixture Model (O3M). It was specifically designed to study the determinants of individual fitness, calculated as the individual contribution to population growth rate, in wild populations. Mixture models have already proven very useful in ecological and evolutionary studies where individuals are often distributed among different unrecorded or unobserved states (e.g. zero-inflated ecological data, Martin et al. 2005; uncertain class of abundance for amphibians, Royle & Link 2005; different growth trajectories of roe deer,

  and Δ = αΔ(Status,Sex) + βΔ(Status,Sex).ageti For comparison, the linear model was: N(pti | λti, ) with λti = α(Status,Sex) + β(Status,Sex).ageti + *β 2 (Status,Sex).(ageti)²

  Fig.V.3). More surprising, the linear model also gave unbiased regression coefficients. Indeed, the mean estimates did not significantly differ between both models (Wilcoxon signed rank tests for α: W = 1212, p-value = 0.131; β: W = 1595, p-value = 0.403; β 2 : W

Figure V. 1 .

 1 Figure V.1. Histogram of simulated data and models fit. Blue curves represent the fitted Normal distribution; Red curves represent the fitted O3M. (a) and (b) represent cases where the two-normal mixture distribution has the best fit; (c) and (d) represent cases where the normal distribution has the best fit.

Figure V. 2 .

 2 Figure V.2. Boxplots of DIC difference between the two-component normal mixture distribution and the Normal model. A positive ΔDIC indicates the two-component normal mixture fits the data better than the linear model. S: survival probability (low: 0.2, medium: 0.5, high: 0.8); R: reproductive success probability (low: 0.2, medium: 0.5, high: 0.8); sd.NR: standard deviation of the number of recruits produced (low: 0.05 or high: 2 for the Gaussian distribution, sd = for the Poisson); mean.NR: mean number of recruits per individual.year -1 ; sd.N: standard deviation of the annual population size (low: 0.2 or high: 2).

  Fig.V.5b and V.5d; Shapiro-Wilk tests, dominant males: W = 0.986, p-value = 0.023 and dominant females: W = 0.991, p-value = 0.045). This departure was especially apparent for subordinate individuals as can be visually asserted given the bimodality of these residuals (Fig.V.5f and V.5h, Shapiro-Wilk tests, subordinate males: W = 0.913, p-value < 0.0001 and subordinate females: W = 0.911, p-value < 0.0001). On the contrary, residuals for the O3M seemed to fit well the underlying two-component normal distributions assumed by the model (Fig.V.5a, V.5c, V.5e and V.5g).

(

  Fig.V.6c). For male subordinates, the intercept and the quadratic terms were significantly different from zero, indicating an increase in fitness accelerating with age (Fig.V.6d). Note that the linear model gave qualitatively different (although quantitatively close) estimates for the subordinate males. The linear effect for subordinate males was negative and different from zero with the linear model (Tab.V.4), thus indicating a significant decrease in fitness in the first years of life followed by an accelerating increase after 3 years of age. On the contrary, it was null with the O3M indicating no decrease in the first years of age (Tab.V.3).

Figure V. 3 .

 3 Figure V.3. Boxplot of the regression parameter differences between the simulated value and the estimated value for both the Overall Mean Mixture Model (O3M) and a classical linear model (LM). A parameter difference of zero indicates the value of the parameter estimates exactly equals the value of the parameter used in the simulation.

Figure V. 4 .

 4 Figure V.4. Standard deviation associated to the regression parameters estimated for both the Overall Mean Mixture Model (O3M) and the classical linear model (LM).

  while subordinate females do not reproduce (with the exception of one subordinate female in 1995, Fig.V.6c)(Hackländer et al. 2003; Cohas et al. 2007). Then, they contribute little to the population growth rate and relatively less than dominant individuals, a fact explaining their constant negative fitness. The increase in fitness with age observed in subordinate males suggests that the probability to gain extra-pair paternity increases with age. Young subordinate males (sexual maturity is reached at two years old) are likely unable to gain extra-pair paternity probably because they are less competitive than older experimented males.

Figure V. 5 .

 5 Figure V.5. Histograms of the residuals of the O3M (left panel) and the linear model (right panel) for the different social status and sexes. (a) and (b): dominant males, (c) and (d): dominant females, (e) and (f): subordinate males and (g) and (h): subordinate females. Red curves indicate the residuals distributions assumed by the models.

Figure V. 6 .

 6 Figure V.6. Individual fitness as a function of age in Alpine marmots for both sexes and social status. (a) dominant females; (b) dominant males; (c) subordinate females; (d) subordinate males. Lines represent the predictions of the O3M. Dashed lines represent the associated standard errors. Open circles represent raw data and filled circles with error bars represent the mean fitness value per age with the associated standard deviation.

##

  Data simulation : creation of the binorm function binorm <-function(N=1000, a=0, b=0, b2=0 , aP=0, bP=0, aD=0, bD=0, mean.cov=0, sd1=1, sd2=1) { cov <-rpois(N,mean.cov) ## Sample of the individual covariate value p <-1/(1+exp(-aP-bP*cov)) ## Definition of the prior probability π class <-rbinom(N,1,p) ## Sample of the component delta <-aD + bD*cov ## Definition of the between-components difference MU <-a + b*cov + b2*(cov^2) ## Definition of the overall mean mu2 <-MU +(1-p)*delta ## first component mean mu1 <-mu2 -delta ## second component mean mu <-ifelse(class==0,mu1,mu2) sd <-ifelse(class==0,sd1,sd2) pt <-rnorm(N,mu,sd) ## sample of the individual fitness value return(list(cov = cov, p = p, class = class, delta = delta, MU = MU, mu1 = mu1, mu2 = mu2, pt = pt, aP = aP, bP = bP, aD = aD, bD = bD, a = a, b = b, b2 = b2, sd1 = sd1, sd2 = sd2)) } bin <-binorm(N=1000, a=0, b=1, b2=-0.1, aD=4, bD=2, aP=-0.5, bP=1.2, sd1=0.5,sd2=0.3, mean.cov=4) 

  V.8 and see supplementary material 11.5.2.2). Mean dominant contribution increased linearly with the number of male subordinates present in the group (Fig.V.8a; β = 0.084 ± 0.048). The increase of dominant contribution with the number of male subordinates followed the pattern of dominant recruitment (Fig.V.8d; β = 0.104 ± 0.039) while mean dominant survival decreased with the number of male helpers (Fig.V.8b; β = -0.010 ± 0.005). Finally, mean dominant dispersal slightly increased until 3 male subordinates and decreased thereafter (Fig.V.8c; β = 0.036 ± 0.010 and β² = -0.006 ± 0.002).

  subordinate contribution decreased faster for males than for females with the number of female subordinates in the group (Fig.V.9a; βfemales = -0.059 ± 0.037 and βmales = -0.145 ± 0.035). Contrary to group contributions and dominant contributions, the pattern of subordinate contribution did not follow the pattern of subordinate recruitment but the pattern of subordinate survival. Subordinate males' survival suffered more than females' one from the presence of subordinates females (Fig.V.9b; βfemales = -0.057 ± 0.035 and βmales = -0.075 ± 0.034). Mean subordinate dispersal on the other hand, was found to be constant for all group sizes and compositions (Fig.V.9c; intercept = 0.14 ± 0.04). Finally, mean subordinate recruitment slowly decreased until 3 female subordinates and increased thereafter (Fig.V.9d; β = -0.063 ± 0.016 and β²= 0.008±0.003).

Figure V. 8 .

 8 Figure V.8. Individual contribution of dominants to population growth rate (a), individual contribution of dominants to mean survival (b), individual contribution of dominants to mean dispersal (c) and individual contribution of dominants to mean recruitment (d) according to group size and/or composition. Grey open dots represent single dominant.year contributions. Filled dots with vertical bars represent mean observed values with associated standard deviations. Lines and shaded areas represent the models predictions with associated standard deviations. For practical reasons, contributions values were multiplied by 100 before analysis.

  advantage of a detailed long term individual-based data set on Alpine marmots (Marmota marmota) to study the influence of sociality on population dynamics. In this cooperatively breeding species, sociality is characterized by a life in territorial family groups where the dominant couple monopolizes reproduction and subordinate individuals are most often offspring of the dominant couple. Using recently developed statistical methods, I investigated the consequences of this particular social system at all levels, from individuals to the population.In chapter III, thanks to the duration of the population monitoring program in the Grande Sassière nature reserve, I was able to test for the long term influence of early-life social conditions on the probability to reach a dominant status later in life. The composition of the birth litter was shown to be a major determinant of the ability to reach dominance. Notably, the presence of numerous females was associated to lower probabilities of becoming dominant, potentially because of feminizing hormone transfers during in utero development. This study reveals that sociality can have long-lasting effects on individuals' capacity to reach a dominance status and therefore higher fitness values.In chapter IV, I developed an integrated multi-event dispersal model in order to obtain true survival and natal dispersal estimates. By jointly modelling dispersal movements and demographic parameters in an integrated modelling framework, the model allowed us to accurately study the complex life cycle of Alpine marmots. This model was then used to study the interactions between social groups and their consequences for individual vital rates and subsequent group dynamics. The immigration of a new dominant resulted in the forced dispersal of most of the same-sex subordinates to avoid costs linked to intra-sexual competition between un-related individuals. This phenomenon led to a severe decrease in group size and a strong modification of the group composition. These results highlight the importance of groups'

  group contribution to population growth rate between 1990 and 2014 (Fig.VI.1). This change in the influence of group size on group contribution to growth rate seems in turn directly related to an evolution of the relationship between dominant contributions and group size (Fig VI.2). Interestingly, we also found that dominant contribution to population growth rate was exactly matching the pattern of dominant recruitment.

Figure VI. 1 .

 1 Figure VI.1. Time series of the effect of group size on group contribution to population growth rate between 1994 and 2014 in the Grande Sassière nature reserve population.Points represent the slope of the linear regression of group contribution to growth rate according to its size. Data for each year were transformed prior to analysis to have a mean of zero and a standard deviation of one.

Figure VI. 2 .

 2 Figure VI.2. Time series of the group size effect on dominant contribution to population growth rate (purple) and on dominant contribution to recruitment (blue) between 1994 and 2014 in the Grande Sassière nature reserve population. Points represent the slope of the linear regressions of group size on dominant annual fitness or recruitment. Data for each year were transformed prior to analysis to have a mean of zero and a standard deviation of one.

Figure VI. 3 .

 3 Figure VI.3. Time series of the group size effect on subordinate contribution to population growth rate between 1994 and 2014 in the Grande Sassière nature reserve population. Points represent the slope of the linear regressions of group size on dominant annual fitness or recruitment. Data for each year were transformed prior to analysis to have a mean of zero and a standard deviation of one.

  addition, the analysis of such individual-based model would allow to quantify the relative importance of the different effects of sociality for the overall population dynamics. Indeed, the different results reported here do not take into account the effect size associated with it and some social effects might only marginally affect the overall population dynamics of Alpine marmots. By varying the values and intensity of these effects, an individual based model constructed after these results would allow us to identify and contrast the main drivers of the population dynamics. As an example, this could allow us to determine whether the effect of early-life social context (chapter III) is really important for individuals to reach dominance compared to other factors affecting dominance access like, say, dispersal (chapter IV). The results obtained in Chapter V may already give us clues as to the importance of these different factors. It seems, that
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  probabilities of capture (p), survival (Φ), reproduction (E) and state transition conditional on survival (Ψ) are defined

Fig. 1 .

 1 Fig. 1.-Age-specific variation in survival of dominant adult marmots (Marmota marmota). The solid line represents survival estimated from model averaging of the 3 competitive models (in bold in Table2) and the dashed lines the associated standard errors. The grey circles and the associated error bars represent the age-specific survival estimates and their associated confidence intervals for females, while the black triangles and the associated error bars represent the age-specific survival estimates and their associated confidence intervals for males.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table I .

 I 1. Classification and description of social systems (from[START_REF] Berger | Senescence and sociality: the example of the alpine marmot (Marmota marmota)[END_REF] 

	Social systems		description
	Solitary		no interactions between adult individuals except for reproduction
			group formation
			no interactions between adults
	Gregarious		groups may last or exist only during
			mating season
			allo-parental care may occur
	Colonial		pair formation (sometimes for life)
			few interactions between pairs
		absence of	group living
		allo-parental	cooperative interactions
		care	overlap of generations
			group living
		allo-parental	cooperative interactions
	Plural	care	overlap of generations
	breeders		allo-parental care
			group living
		communal	cooperative interactions
		breeders	overlap of generations
	Social groups		synchronisation of reproduction equally shared parental care
			group living
			overlap of generations
		cooperative breeders	reproduction monopolized by dominant individuals
			delayed dispersal of subordinates
	Singular breeders		allo-parental-care provided by subordinates
			group living
			labour division
		eusocial	reproduction monopolized by one
			or few individuals
			subordinates are sterile
			allo-parental-care

Table II .

 II 1. Body mass of adult females and hibernation length of Marmota species. From[START_REF] Armitage | Marmot Biology: Sociality, Individual Fitness, and Population Dynamics[END_REF] Body mass (g) stay active for more than ten months a year. Because of this hibernation phase, all marmot species also display a characteristic pattern of annual weight gain and loss, with a continuous gain of weight during the active season and an important weight lost during hibernation (Tab.II.1). Canis latrans) in North America or red foxes (Vulpes vulpes) in Europe),and aerial predators such as the golden eagle (Aquila chrysaetos). Most of the time, only disappearances of individuals are recorded on the fields thus making it very difficult to

	Winter mortality is generally considered as the main mortality cause in marmot
	species, the two others main causes being antagonistic interactions and predation
	(Armitage 2014). Predators of marmots consist in terrestrial mammals, mostly canids
	(e.g. coyotes (

assess the relative contribution of these different mortality causes to the overall population dynamics. However, some studies were able to quantify the importance of predation for marmots by showing that summer mortality was mainly driven by predation in yellow-bellied marmots (Van vuren 2001), Vancouver Island marmots

[START_REF] Bryant | Timing and causes of mortality in the endangered Vancouver Island marmot (Marmota vancouverensis)[END_REF] 

and Olympic marmots

[START_REF] Griffin | Demography and ecology of a declining endemic: the Olympic marmot[END_REF]

), leading to drastic population declines in the last two cases. Social structure is highly variable among marmot species and often presented in four different categories: solitary species (M. monax), matrilines (M. flaviventris),

Table III

 III 

	found to influence juvenile survival, models with an effect of this covariate on yearling
	and adult subordinate survival were built to account for possible long-lasting effects.
	.1. Abbreviations used in model notations
	Abbreviations	Meanings
	p	recapture probability
	Φ	survival probability
	1-Φ	mortality probability (encompass both mortality and dispersal probabilities
		for individuals older than 2 years of age)
	ᴪ	state transition probability (conditional on survival)
	E	event probability (probability of successful reproduction)
	Subscript	
	a	all age classes (1 to 3)
	a 1	age from 0 to 1 year
	a 2	age from 1 to 2 years
	a 3	age more than 2 years
	a x,y	age classes x and y
	sex f,m	sex (f: female; m: male)
	t	Time as the number of years from the beginning of the study
	*	interactive effect
	+	additive effect
	sex ratio	litter sex ratio at emergence
	litter size	litter size at emergence
	brothers	number of male pups from the same mother in a litter
	sisters	number of female pups from the same mother in a litter
	helpm	number of male helpers present during the first hibernation
	Superscript	
	s	subordinate status
	D	dominant status
	†	dead
	Effect of litter characteristics. Once the root model was obtained, we investigated
	in the final step whether the early social conditions affected both the survival rate and
	the probability to access dominance. To test our hypotheses on juvenile survival, we
	built a model including every retained effect on probabilities to access dominance
	(model R1, Tab.III.2) while the parameterization of all other parameters was set as in the
	root model. We then added an effect of the tested litter characteristic (i.e. litter size, litter
	sex ratio, number of brothers or number of sisters) as a logit linear relationship with the
	juvenile survival in a separate model. In addition, whenever a litter characteristic was

Juvenile survival models Deviance k AICc ΔAICc Wi B1.3 Φa 1 *sex m *(log(helpm)+brothers) + sex f *log(helpm) 3617.04 72 3767.56 0.00 0.31

  checking for the goodness of fit of the model and AICc-based model selection (see

	Survival probabilities varied with age and status and male helpers had a strong
	sex-specific effect on juvenile survival. Juvenile survival varied from 0.38 ± 0.04 in the
	absence of helpers to over 0.80 ± 0.04 when five helpers or more were present for
	females and from 0.24 ± 0.05 to 0.93 ± 0.03 for males. Yearling survival rate was 0.77 ±
	0.04, dominant adults survival rate was 0.81 ± 0.02. The apparent subordinate survival
	rate was much lower (0.53 ± 0.03) due to dispersal outside the study area that could not
	be distinguished from mortality. Access to dominance (0.04 ± 0.01 for yearlings and
	0.49 ± 0.04 for adults) and annual reproduction probabilities (0.02 ± 0.01 for
	subordinates and 0.64 ± 0.03 for dominants) were found to be constant over time and
	sex.			
	Table III.2. Model selection for the effects of litter size, litter sex ratio, number of
	brothers and number of sisters in the litter on the juvenile survival probability of Alpine
	marmots marked from 1990 to 2010; all other parameters' constraint structure fixed as in
	the root model: p s a*t+sex Φ s a 2,3 E s a 3 , p D a 3 *t+sex Φ D a 3 E D a 3 ᴪ sD a 2 , a 3 *sisters (n =
	806 individuals; AICc: Akaike Information Criterion corrected for small sample sizes; k:
	number of identifiable parameters; ΔAICc: difference in AICc with the best model of
	the set; Wi: AICc weight ; bold characters indicate the best model of the set and the root
	model for comparison).		
	B1.1 Φ a 1 +brothers+sex*log(helpm)	3618.74 72 3769.08	1.52	0.14
	B1.2 Φ a 1 *sex*(log(helpm)+brothers) 3616.93 73 3769.63	2.07	0.11
	Online Resource 4 for more details on the GOF tests and root model selection), the root
	model was p s a.y+sex Φ s	a1.sex.log(helpm); a2,3 E s a3, p D a3.y+sex Φ D a3 E D a3 ψ sD a2,a3.	
	Recapture probabilities varied with year, sex, age and hierarchical status. The
	average recapture rate decreased with age, from yearlings (0.87 ± 0.06 for females; 0.83
	± 0.09 for males) to adults (subordinates 0.68 ± 0.11 for females; 0.60 ± 0.15 for males;
	dominants 0.64 ± 0.09 for females; 0.57 ± 0.10 for males).	

R1 Φ a 1 *sex*log(helpm) 3621.41 71 3769.75 2.19 0.10

  

	7.3.2. Effect of litter size			
	No effect of the litter size was evidenced, neither on survival nor on the probability to
	become dominant. All models including an effect of litter size performed poorly
	compared to the root model (R1 vs. L1.1 and L1.2, Tab.III.2; R3 vs. L3.1 and 3.2,
	Tab.III.4).				
	7.3.3. Effect of litter composition			
	Sex ratio effect. The litter sex ratio did not affect the juvenile survival (models
	SR1.1 and SR1.2 vs. R1, Table 2). It was found to influence the probability to access
	dominance for adults but not for yearlings (models SR3.2 vs. SR3.1, Tab.III.4). The
	probability for an adult to access dominance increased with the sex ratio from 0.35 ±
	0.08 when no males were present to 0.63 ± 0.09 for an all-male litter (Model SR3.2,
	Tab.III.4; βadults = 1.15 ± 0.64; Fig.III.3a).			
	Table III.3. Model selection for the effect of number of brothers in the litter on the
	yearling and subordinate adult survival probability of Alpine marmots marked from
	1990 to 2010; all other parameters' constraint structure fixed as in the root model:
	p s a*t+sex Φ s a 1 *sex m *(log(helpm)+brothers) + sex f *log(helpm) E s a 3 , p D a 3 *t+sex Φ D a 3
	E D a 3 ᴪ sD a 2 , a 3 *sisters (n = 806 individuals; AICc: Akaike Information Criterion
	corrected for small sample sizes; k: number of identifiable parameters; ΔAICc:
	difference in AICc with the best model of the set; Wi: AICc weight; bold characters
	indicate the best model of the set).			
	L1.1	Φ a 1 +litter size+sex*log(helpm)	3619.06 72 3769.85	2.29	0.10
	SR1.1 Φ a 1 +sex ratio+ sex*log(helpm)	3620.60 72 3770.93	3.37	0.06
	L1.2	Φ a 1 *sex*(log(helpm)+litter size) 3618.48 73 3771.18	3.62	0.05
	B1.4	Φa 1 *sex m *log(helpm)+ sex f *(log(helpm)+brothers)	3621.30 72 3771.63	4.07	0.04
	S1.1	Φ a 1 +sisters +sex*log(helpm)	3621.39 72 3771.73	4.17	0.04
	SR1.2 Φ a 1 *sex*(log(helpm)+sex ratio) 3619.85 73 3772.55	4.99	0.03
	S1.2	Φ a 1 *sex*(log(helpm)+sisters)	3620.32 73 3773.02	5.46	0.02

Yearling and adult survival models Deviance k AICc ΔAICc Wi R2 Φ s a 2,3 3617.04 72 3767.56 0.00 0.47

  

	S3.2, Tab.III.4). Interestingly, this effect was not sex-specific (S3.3 vs. S3.2, Tab.III.4),
	and male dominance access probability was also found to be negatively related to the
	number of sisters in the litter. The dominance access probability decreased from 0.61 ±
	0.08 to 0.30 ± 0.09 as the number of sisters increased from 0 to 4 (Model S3.2, Tab.III.4;
	βadults = -0.32 ± 0.17; Fig.III.3b).			
	Table III.4. Model selection for the effects of litter size, litter sex ratio, number of
	brothers and number of sisters in the litter on the probability to become dominant of
	Alpine marmots marked from 1990 to 2010; all other parameters' constraint structure
	fixed as in the root model: p s a*t+sex Φ s a 1 *sex m *(log(helpm)+brothers) +
	a 1 *sex f *log(helpm); a 2,3 E s a 3 , p D a 3 *t+sex Φ D a 3 E D a 3 . (n = 806 individuals; AICc:
	Akaike Information Criterion corrected for small sample sizes; k: number of identifiable
	parameters; ΔAICc: difference in AICc with the best model of the set; Wi: AICc weight;
	bold characters indicate the best model of the set and the root model for comparison).
	B2.2 Φ s a 2 , a 3 *sex m * brothers+sex f	3615.64	73 3768.15 0.59	0.35
	B2.1 Φ s a 2 *sex m * brothers + sex f , a 3 3616.99	73 3769.5 1.94	0.18
	Sex specific effects. The number of brothers negatively affected male juvenile
	survival (model B1.3 vs. R1, Tab.III.2). It decreased from 0.64 ± 0.07 to 0.28 ± 0.13
	when the number of brothers in the litter increased from 0 to 5 (βmales = -0.26 ± 0.12;
	Fig.III.2) for an average number of helpers (3.6 in our population). This effect was no
	longer detected on the yearling or adult subordinate survival (R2 vs. B2.1 and B2.2,
	Tab.III.3). The number of brothers did not influence male dominance access probability
	(models B3.3, B3.2 and B3.1 vs. R3, Tab.III.4). The number of sisters had no effect on
	juvenile survival (models S1.1 and S1.2 vs; R1, Tab.III.3) but negatively affected the
	probability that adult females (but not yearlings) accessed to dominance (model S3.1. vs.

Transition models Deviance k AICc ΔAICc Wi S3.2 ᴪ sD a 2 , a 3 *sisters 3617.04 72 3767.56 0.00 0.23

  

	SR3.2	ᴪ sD a 2 , a 3 *sex ratio	3617.41	72 3767.93 0.37	0.19
	S3.1	ᴪ sD a 2,3 *sisters	3616.23	73 3768.93 1.37	0.12

R3 ᴪ sD a 2,3 3620.90 71 3769.24 1.68 0.10

  

	SR3.1	ᴪ sD a 2,3 *sex ratio	3617.34	73 3770.04 2.48	0.07
	B3.2	ᴪ sD a 2 , a 3 *brothers	3619.80	72 3770.32 2.76	0.06
	L3.2	ᴪ sD a 2 , a 3 *litter size	3620.66	72 3771.18 3.62	0.04
	B3.1	ᴪ sD a 2,3 *brothers	3618.58	73 3771.28 3.72	0.04
	S3.3	ᴪ sD a 2 , a 3 *sex*sisters	3616.64	74 3771.53 3.97	0.03
	SR3.3	ᴪ sD a 2 , a 3 *sex*sex ratio	3616.58	74 3771.47 3.91	0.03
	L3.1	ᴪ sD a 2,3 *litter size	3620.50	73 3773.20 5.64	0.01
	B3.3	ᴪ sD a 2 , a 3 *sex*brothers	3619.03	74 3773.92 6.36	0.01

Table III

 III 

		Sex ratio	Brothers	Sisters
	Litter size	0.01	0.64	0.53
	Sex ratio		0.62	-0.63
	Brothers			-0.28

.5. Correlation coefficients between the different covariates tested Instead, our results highlighted the effect of the number of sisters on the probability of becoming dominant. Following the same reasoning as for the number of brothers and the quantity of androgens, we can suppose that the number of sisters increases the probability to develop between two female foetuses, and thus the quantity of oestrogens received in utero. Although poorly studied, examples of oestrogenmediated long-lasting effects can be found in the literature. For example, Vom Saal et al.

Table III
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	Recapture models	Deviance	k	AICc ΔAICc	Wi
	p s a*y+sex , pDa3*y+sex	3625.25	70	3772.12	0.00	0.85
	p s a*y , p D a 3 *y	3631.52	69	3776.39	4.27	0.10
	p s a+y , p D a 3 *sex+y	3704.44	34	3779.31	7.19	0.02
	p s a+y+sex, pDa3+y+sex	3704.91	34	3779.78	7.66	0.02
	p s a 2 +y, a 3 *sex+y , p D a 3 *sex+y	3703.57	35	3780.44	8.32	0.01
	p 3558.25	125	3815.12 43.13	0.00
	p constant	3838.70	12	3869.57 97.45	0.00

.6. Model selection for the effects of age, time and sex on the recapture probabilities of Alpine marmots marked from 1990 to 2010; all other parameters' constraint structure fixed as in the root model: Φ s a 1 *sex*log(helpm) ; a 2,3 E s a 3 , Φ D a 3 E D a 3 ᴪ sD a 2,3 . (n = 806 individuals; AICc: Akaike Information Criterion corrected for small sample sizes; k: number of identifiable parameters; AICc: difference in AICc with the best model of the set; Wi: AICc weight; bold characters indicate the best model of the set). s a*y*sex , p D a 3 *y*sex

Table III .

 III 7. Model selection for the effects of age, time, sex and number of male helpers on survival probabilities of Alpine marmots marked from 1990 to 2010 ; all other parameters' constraint structure fixed as in the global model : p s a*y+sex , a 2,3 E s a 3 , p D a 3 *y+sex , E D a 3 , ᴪ sD a 2,3 (n = 806 individuals; AICc: Akaike Information Criterion corrected for small sample sizes; k: number of identifiable parameters; AICc: difference in AICc with the best model of the set; Wi: AICc weight; bold characters indicate the best model of the set).

	Survival Models	Deviance	k	AICc ΔAICc	Wi
	Φ s a 1 *sex*log(helpm), a 2,3 , Φ D a 3	3625.25	70	3772.12	0.00	0.95
	Φ s a 1 *log(helpm), a 2,3 , Φ D a 3	3636.12	68	3778.99	6.87	0.03
	Φ s a 1 *helpm, a 2,3 , Φ D a 3	3638.12	68	3780.99	8.87	0.01
	Φ s a , Φ D a 3	3698.78	67	3839.65 67.53	0.00
	Φ constant	3766.92	64	3901.79 129.67	0.00
	Φ s a*y*sex , Φ D a 3 *y*sex	3549.29	201	3958.16 186.04	0.00
	Transition models	Deviance k		AIC	ΔAICc Wi
	ᴪsDa2-3	3625.25 70	3772.12 0.00	0.49
	ᴪsDa2*sex, a3	3625.11 71	3773.98 1.86	0.19
	ᴪsDa2, a3*sex	3625.23 71	3774.10 1.98	0.18
	ᴪ sD a 2-3 *sex	3625.09 72	3775.96 3.84	0.07
	ᴪ sD a 2-3 +sex	3625.16 72	3776.03 3.91	0.07
	ᴪ sD a 2-3 *y*sex	3552.12 139	3836.99 64.87	0.00
	ᴪ constant	3739.20 69	3886.07 113.95 0.00

Table III.8. Model selection for the effects of age, time and sex on the probability to become dominant of Alpine marmots marked from 1990 to 2010 ; all other parameters' constraint structure fixed as in the global model : p s a*y+sex , Φ s a 1 *sex*log(helpm), a 2,3 E s a 3 , p D a 3 *y+sex , Φ D a 3 , E D a 3 . (n = 806 individuals; AICc: Akaike Information Criterion corrected for small sample sizes; k: number of identifiable parameters; AICc: difference in AICc with the best model of the set; Wi: AICc weight; bold characters indicate the best model of the set).

Table III .

 III 9. Model selection for the effects of age, time and sex on annual reproduction probabilities of Alpine marmots marked from 1990 to 2010 ; all other parameters' constraint structure fixed as in the global model : p s a*y+sex , Φ s a 1 *sex*log(helpm), a 2,3 , p D a 3 *y+sex , Φ D a 3 , ᴪ sD a 2,3 . (n = 806 individuals; AICc: Akaike Information Criterion corrected for small sample sizes; k: number of identifiable parameters; AICc: difference in AICc with the best model of the set; Wi: AICc weight; bold characters indicate the best model of the set).

		Chapter IV.A	
	Event models	Deviance k	AIC	ΔAICc Wi
	E s a 3 , E D a 3 E s a 3 , E D a3*sex Sociality & Dispersal 3625.25 70 3772.12 0.00 0.44 3624.08 71 3772.95 0.83 0.29
	E s a 3 *sex , E D a 3	3625.24 71	3774.14 1.99	0.16
	E s a 3 *sex , E D a 3 *sex	3624.07 72	3774.94 2.82	0.11
	E s a 3 +y , E D a 3 +y	3597.41 88	3780.28 8.16	0.01
	E s a 3 *y*sex , E D a 3 *y*sex	3561.23 139	3846.10 73.98	0.00
	E constant	4516.36 70	4663.23 891.11 0.00

Joint estimation of natal dispersal, inheritance and true survival in the Alpine marmot

  

  S age,sex the age and sex-specific survival probabilities of subordinate individuals, dage,sex the age and sexspecific dispersal probabilities, hage,sex the age and sex-specific inheritance probabilities

. Because no individual attained a dominant status before two years old, only the two last age classes were used for dominant individuals. In addition, we considered sex-specific dispersal patterns, i.e. two distinct Poisson distributions with sex-specific mean. The parameters of the model were then pt,age,sex the time, age and sex-specific recapture probabilities, Φ IB age,sex and Φ LB age,sex the age and sex-specific survival probabilities of dominant individuals, Φ

  ] and mean dispersal distance for males lmales = 1.71 [1.56; 1.86], see Fig IV.7). Juvenile subordinate survival increased with the logarithm of the number of male subordinates present during hibernation for both sexes (βhelp_m = 0.41 [0.33; 0.49] for females and 0.53 [0.44; 0.61] for males on the logit scale). Subordinate survival increased with age but did not vary significantly between sexes although two-year subordinate males tended to have a lower survival than females (Fig. IV.8 upper panel and Table IV.1). Dispersal probabilities increased with age similarly for both sexes (

Table IV . 1 .

 IV1 Mean posterior estimates (standard deviation) of survival, dispersal and inheritance probabilities for the ID model. Overlap indicates whether the credible interval of the difference between males and females for this parameter includes 0, i.e. it indicates if the parameter does not differ significantly between sexes.

	parameters	females	males	overlap
	Φ S	juv	0.56 (0.03)	0.55 (0.02)	YES
	Φ S	year	0.71 (0.04)	0.74 (0.04)	YES
	Φ S	two	0.97 (0.05)	0.84 (0.11)	YES
	Φ S	ad	0.99 (0.01)	0.99 (0.01)	YES
	Φ LB	two	0.99 (0.04)	0.99 (0.07)	YES
	Φ LB	ad	0.78 (0.03)	0.70 (0.04)	YES
	Φ IB	two	0.99 (0.06)	0.99 (0.10)	YES
	Φ IB	ad	0.80 (0.03)	0.77 (0.03)	YES
	djuv	0.00 (0.00)	0.00 (0.00)	YES
	dyear	0.10 (0.03)	0.11 (0.03)	YES
	dtwo	0.58 (0.06)	0.57 (0.06)	YES
	dad	0.58 (0.06)	0.58 (0.05)	YES
	hjuv	0.00 (0.00)	0.00 (0.00)	YES
	hyear	0.01 (0.01)	0.01 (0.01)	YES
	htwo	0.32 (0.06)	0.09 (0.04)	NO
	had	0.59 (0.09)	0.58 (0.07)	YES
	8.4. Discussion

  -step model or an integrated model to a classical CJS model, but none of them compared all three approaches together. Here, we showed that incorporating information about dispersal, as[START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF] or[START_REF] Taylor | Using local dispersal data to reduce bias in annual apparent survival and mate fidelity[END_REF] did, is a good way to reduce the bias in the different demographic parameters but it does not allow to reach the true values of the demographic parameters. It is known that the underestimation of survival and dispersal is directly linked to the proportion of the dispersal distances distribution sampled in the dispersal data[START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF], but this proportion remains unknown to researchers most of the time. Using such models can be tricky since it gives estimates of demographic parameters in between the "apparent value", for which we have a clear definition, and "true value". In such situation, we

	allowed to severely decrease this bias but not
	to delete it. The integrated approach proposed by Ergon & Gardner (2014) and Schaub
	& Royle (2014) on the other hand, returned unbiased estimates of both survival and
	dispersal as long as the coverage of the study area is relatively large compared to the
	mean dispersal distance.

Our results confirm and complete previous studies on the problematic of "apparent survival" in different ways

[START_REF] Gilroy | A new approach to the 'apparent survival' problem: estimating true survival rates from mark-recapture studies[END_REF][START_REF] Ergon | Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data (E. Cooch[END_REF][START_REF] Schaub | Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models[END_REF][START_REF] Taylor | Using local dispersal data to reduce bias in annual apparent survival and mate fidelity[END_REF]

. In these previous studies, authors compared either a twotherefore know that estimates are biased but not to what extent. To overcome this problem,

[START_REF] Taylor | Using local dispersal data to reduce bias in annual apparent survival and mate fidelity[END_REF] 

proposed to correct the observed dispersal distances distribution before using it to calculate residency probabilities by applying a

Table IV .

 IV 

	P[4]	2. parameter estimates from the root model 2.574 0.355 1.898 2.568	3.289	FALSE 1.000
	P[5]		mean 3.107	sd	2.5% 0.371 2.404	50% 97.5% 3.098 3.857	overlap0 f FALSE 1.000 Rhat
	mean.pi[1] P[6]	0.999 2.478	0.001 0.996 0.358 1.797	0.999 2.471	1.000 3.203	FALSE 1.000 FALSE 1.000
	mean.pi[2] P[7]	0.984 3.639	0.011 0.955 0.444 2.813	0.986 3.623	0.998 4.554	FALSE 1.000 FALSE 1.000
	mean.pi[3] P[8]	0.939 1.850	0.041 0.837 0.348 1.182	0.948 1.845	0.992 2.545	FALSE 1.000 FALSE 1.000
	mean.pi[4] P[9]	0.288 2.289	0.043 0.209 0.336 1.648	0.287 2.283	0.375 2.965	FALSE 1.000 FALSE 1.000
	mean.pS1[1] P[10]	0.762 1.981	0.180 0.345 0.329 1.351	0.799 1.976	0.992 2.641	FALSE 1.000 FALSE 1.000
	mean.pS1[2] P[11]	0.845 2.441	0.127 0.532 0.350 1.769	0.877 2.435	0.995 3.145	FALSE 1.000 FALSE 1.000
	mean.pD1[1] P[12]	0.659 2.105	0.086 0.486 0.346 1.441	0.662 2.100	0.818 2.800	FALSE 1.000 FALSE 1.000
	mean.pD1[2] P[13]	0.852 1.782	0.059 0.721 0.331 1.144	0.859 1.778	0.947 2.441	FALSE 1.000 FALSE 1.000
	mean.phiS[1,1] 0.549 P[14] 1.828	0.024 0.502 0.322 1.210	0.549 1.824	0.597 2.472	FALSE 1.000 FALSE 1.000
	mean.phiS[2,1] 0.539 P[15] 1.019	0.023 0.495 0.304 0.429	0.539 1.016	0.583 1.622	FALSE 1.000 FALSE 1.000
	mean.phiS[1,2] 0.750 P[16] 2.584	0.036 0.679 0.314 1.985	0.750 2.577	0.821 3.216	FALSE 1.000 FALSE 1.000
	mean.phiS[2,2] 0.757 P[17] 2.198	0.036 0.687 0.317 1.589	0.757 2.194	0.827 2.834	FALSE 1.000 FALSE 1.000
	mean.phiS[1,3] 0.692 P[18] 1.975	0.053 0.590 0.299 1.403	0.692 1.971	0.796 2.572	FALSE 1.000 FALSE 1.000
	mean.phiS[2,3] 0.654 P[19] 3.405	0.052 0.553 0.377 2.693	0.653 3.395	0.757 4.172	FALSE 1.000 FALSE 1.000
	mean.phiS[1,4] 0.678 P[20] 3.299	0.093 0.495 0.357 2.619	0.678 3.292	0.860 4.022	FALSE 1.000 FALSE 1.000
	mean.phiS[2,4] 0.661 P[21] 3.716	0.068 0.528 0.439 2.897	0.661 3.700	0.795 4.616	FALSE 1.000 FALSE 1.000
	mean.phiD[1,1] 0.502 P[22] 3.738	0.288 0.026 0.433 2.936	0.502 3.722	0.975 4.632	FALSE 1.000 FALSE 1.000
	mean.phiD[2,1] 0.500 P[23] 4.247	0.289 0.025 0.489 3.352	0.500 4.225	0.975 5.272	FALSE 1.000 FALSE 1.000
	mean.phiD[1,2] 0.671 P[24] 4.418	0.234 0.163 0.516 3.489	0.713 4.389	0.988 5.512	FALSE 1.000 FALSE 1.000
	mean.phiD[2,2] 0.497 P[25] 3.494	0.288 0.025 0.394 2.762	0.495 3.481	0.975 4.301	FALSE 1.000 FALSE 1.000
	mean.phiD[1,3] 0.789 d.P -0.261	0.115 0.533 0.125 -0.506	0.802 -0.261	0.971 -0.016	FALSE 1.000 FALSE 0.982
	mean.phiD[2,3] 0.700 d.trois -1.511	0.123 0.441 0.244 -1.997	0.708 -1.508	0.913 -1.042	FALSE 1.000 FALSE 1.000
	mean.phiD[1,4] 0.808 d.quatre -1.838	0.018 0.772 0.212 -2.266	0.809 -1.835	0.842 -1.434	FALSE 1.000 FALSE 1.000
	mean.phiD[2,4] 0.763 mean.rDS[1,1] 0.001	0.020 0.724 0.001 0.000	0.764 0.001	0.801 0.004	FALSE 1.000 FALSE 1.000
	mean.d[1,1] mean.rDS[2,1] 0.001 0.007	0.007 0.000 0.001 0.000	0.005 0.001	0.024 0.004	FALSE 1.000 FALSE 1.000
	mean.d[2,1] mean.rDS[1,2] 0.009 0.005	0.005 0.000 0.008 0.000	0.004 0.008	0.020 0.029	FALSE 1.000 FALSE 1.000
	mean.d[1,2] mean.rDS[2,2] 0.003 0.088	0.025 0.045 0.003 0.000	0.086 0.002	0.142 0.012	FALSE 1.000 FALSE 1.000
	mean.d[2,2] mean.rDS[1,3] 0.014 0.103	0.027 0.057 0.014 0.000	0.101 0.010	0.161 0.052	FALSE 1.000 FALSE 1.000
	mean.d[1,3] mean.rDS[2,3] 0.084 0.454	0.056 0.343 0.032 0.032	0.454 0.080	0.564 0.156	FALSE 1.000 FALSE 1.000
	mean.d[2,3] mean.rDS[1,4] 0.036 0.499	0.054 0.391 0.035 0.001	0.500 0.025	0.604 0.130	FALSE 1.000 FALSE 1.000
	mean.d[1,4] mean.rDS[2,4] 0.060 0.600	0.090 0.415 0.033 0.013	0.603 0.055	0.764 0.139	FALSE 1.000 FALSE 1.000
	mean.d[2,4] mean.rDB[1,1] 0.476 0.554	0.070 0.414 0.288 0.021	0.555 0.464	0.687 0.971	FALSE 1.000 FALSE 1.000
	mean.h[1,1] mean.rDB[2,1] 0.488 0.004	0.004 0.000 0.289 0.023	0.003 0.482	0.014 0.974	FALSE 1.000 FALSE 1.000
	mean.h[2,1] mean.rDB[1,2] 0.470 0.003	0.003 0.000 0.114 0.253	0.002 0.468	0.013 0.694	FALSE 1.000 FALSE 1.000
	mean.h[1,2] mean.rDB[2,2] 0.328 0.038	0.016 0.012 0.113 0.133	0.036 0.319	0.075 0.569	FALSE 1.000 FALSE 1.000
	mean.h[2,2] mean.rDB[1,3] 0.433 0.010	0.007 0.001 0.059 0.320	0.009 0.432	0.028 0.550	FALSE 1.000 FALSE 1.000
	mean.h[1,3] mean.rDB[2,3] 0.541 0.323	0.061 0.210 0.066 0.412	0.321 0.541	0.447 0.671	FALSE 1.000 FALSE 1.000
	mean.h[2,3] mean.rDB[1,4] 0.660 0.102	0.039 0.038 0.023 0.614	0.098 0.660	0.191 0.704	FALSE 1.000 FALSE 1.000
	mean.h[1,4] mean.rDB[2,4] 0.635 0.152	0.091 0.022 0.024 0.588	0.136 0.635	0.367 0.681	FALSE 1.000 FALSE 1.000
	mean.h[2,4] tau	0.208 0.604	0.073 0.085 0.067 0.480	0.201 0.602	0.369 0.743	FALSE 1.000 FALSE 1.000
	P[1] deviance	3.319 3973.180 53.456 3871.893 3972.086 4081.250 FALSE 1.000 0.706 2.069 3.272 4.843 FALSE 1.000
	P[2]		1.341	0.456 0.451	1.340	2.238	FALSE 0.998
	P[3]		2.676	0.449 1.830	2.665	3.589	FALSE 1.000
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 IV 

	mean.phiD[1,2,2] 0.497 P[8] 1.857 + mean.phiS[2,a,1] ~ dunif(0,1) 0.289 0.025 0.350 1.185	0.496 1.852	0.974 2.558	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,2,2] 0.496 P[9] 2.214 + mean.phiS[1,a,2] ~ dunif(0,1) 0.289 0.024 0.340 1.565	0.495 2.207	0.975 2.898	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,3,2] 0.828 P[10] 1.933 + mean.phiS[2,a,2] ~ dunif(0,1) 0.144 0.467 0.329 1.302	0.866 1.928	0.995 2.589	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,3,2] 0.394 P[11] 2.390 +	0.205 0.064 0.351 1.719	0.375 2.384	0.823 3.097	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,4,2] 0.801 P[12] 2.013 + mean.phiD[1,a] ~ dunif(0,1) 0.039 0.720 0.345 1.351	0.803 2.007	0.873 2.702	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,4,2] 0.745 P[13] 1.752 + mean.phiD[2,a] ~ dunif(0,1) 0.042 0.659 0.333 1.111	0.747 1.749	0.824 2.417	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.d[1,1,1] P[14] +	0.008 1.787	0.008 0.000 0.322 1.170	0.005 1.783	0.028 2.429	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.d[2,1,1] P[15] + mean.d[1,a,1] ~ dunif(0,1) 0.006 0.006 0.000 0.972 0.302 0.389	0.004 0.969	0.022 1.570	FALSE 1.000 1.000 FALSE 0.999 1.000
	mean.d[1,2,1] P[16] + mean.d[1,a,2] ~ dunif(0,1) 0.075 0.025 0.033 2.520 0.313 1.922	0.072 2.515	0.131 3.149	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.d[2,2,1] P[17] + mean.d[2,a,1] ~ dunif(0,1) 0.113 0.030 0.061 2.221 0.323 1.601 .3. parameter estimates from the kin-selection model. 0.111 0.178 2.216 2.868 mean sd 2.5% 50% 97.5% mean.pi[1] 0.999 0.001 0.996 0.999 1.000 mean.pi[2] 0.984 0.012 0.954 0.986 0.998 mean.pi[3] 0.940 0.041 0.839 0.948 0.992 mean.pi[4] 0.288 0.043 0.208 0.287 0.376 mean.pS1[1] 0.829 0.139 0.489 0.863 0.995 mean.pS1[2] 0.873 0.108 0.599 0.902 0.996 mean.pD1[1] 0.654 0.087 0.478 0.656 0.814 mean.pD1[2] 0.848 0.060 0.714 0.854 0.946 mean.phiS[1,1,1] 0.586 0.026 0.535 0.586 0.637 mean.phiS[2,1,1] 0.568 0.025 0.519 0.567 0.616 mean.phiS[1,2,1] 0.809 0.037 0.735 0.810 0.881 mean.phiS[2,2,1] 0.815 0.039 0.739 0.815 0.890 mean.phiS[1,3,1] 0.736 0.061 0.617 0.736 0.854 mean.phiS[2,3,1] 0.684 0.060 0.567 0.684 0.803 mean.phiS[1,4,1] 0.667 0.112 0.449 0.666 0.885 mean.phiS[2,4,1] 0.746 0.079 0.588 0.747 0.897 mean.d[1,3,1] 0.555 0.062 0.429 0.556 0.672 mean.d[2,3,1] 0.509 0.061 0.389 0.510 0.626 mean.d[1,4,1] 0.603 0.111 0.373 0.608 0.801 mean.d[2,4,1] 0.570 0.078 0.412 0.572 0.716 mean.d[1,1,2] 0.049 0.046 0.001 0.035 0.170 mean.d[2,1,2] 0.040 0.038 0.001 0.029 0.140 mean.d[1,2,2] 0.235 0.096 0.075 0.226 0.444 mean.d[2,2,2] 0.102 0.066 0.013 0.089 0.261 mean.d[1,3,2] 0.231 0.090 0.080 0.224 0.425 mean.d[2,3,2] 0.468 0.110 0.253 0.469 0.679 mean.d[1,4,2] 0.473 0.163 0.156 0.476 0.776 mean.d[2,4,2] 0.510 0.151 0.210 0.514 0.790 mean.h[1,1,1] 0.004 0.004 0.000 0.003 0.016 mean.h[2,1,1] 0.004 0.004 0.000 0.003 0.015 mean.h[1,2,1] 0.025 0.015 0.003 0.023 0.061 mean.h[2,2,1] 0.011 0.008 0.001 0.009 0.030 mean.h[1,3,1] 0.363 0.080 0.215 0.360 0.525 P[18] 1.897 0.303 1.313 1.892 2.500 + mean.d[2,a,2] ~ dunif(0,1) P[19] 3.313 0.379 2.595 3.304 4.081 + P[20] 3.217 0.361 2.529 3.209 3.944 + mean.h[1,a] ~ dunif(0,1) P[21] 3.605 0.442 2.782 3.590 4.516 + mean.h[2,a] ~ dunif(0,1) P[22] 3.692 0.435 2.887 3.676 4.595 + P[23] 4.201 0.491 3.301 4.178 5.228 + mean.rDS[1,a,1] <-0 P[24] 4.338 0.516 3.412 4.309 5.438 + mean.rDS[2,a,1] ~ dunif(0,1) P[25] 3.376 0.392 2.645 3.362 4.183 + mean.rDS[1,a,2] <-0 mean.rDS[1,1,1] 0.001 0.001 0.000 0.001 0.005 + mean.rDS[2,a,2] ~ dunif(0,1) mean.rDS[2,1,1] 0.001 0.001 0.000 0.001 0.005 + mean.rDS[1,2,1] 0.014 0.010 0.001 0.012 0.038 + mean.rDB[1,a,1] ~ dunif(0,1) mean.rDS[2,2,1] 0.004 0.004 0.000 0.003 0.014 + mean.rDB[2,a,1] ~ dunif(0,1) mean.rDS[1,3,1] 0.022 0.022 0.001 0.015 0.081 + mean.rDB[1,a,2] ~ dunif(0,1) mean.rDS[2,3,1] 0.055 0.029 0.013 0.050 0.125 + mean.rDB[2,a,2] ~ dunif(0,1) mean.rDS[1,4,1] 0.056 0.054 0.001 0.040 0.200 + } mean.rDS[2,4,1] 0.057 0.038 0.007 0.049 0.151 + mean.rDS[1,1,2] 0.008 0.008 0.000 0.006 0.031 + for (t in 1:(n.occ-1)) + { mean.phiS[1,1,2] 0.384 0.058 0.274 0.382 0.500 mean.h[2,3,1] 0.099 0.044 0.031 0.093 0.199 mean.rDS[2,1,2] 0.007 0.007 0.000 0.005 0.025 + logit(mean.p[2,1,t]) <-P[t] mean.phiS[2,1,2] 0.420 0.053 0.319 0.419 0.526 mean.h[1,4,1] 0.244 0.130 0.041 0.228 0.534 mean.rDS[1,2,2] 0.032 0.031 0.001 0.023 0.116 + logit(mean.p[2,2,t]) <-P[t]+d.P mean.phiS[1,2,2] 0.464 0.081 0.313 0.461 0.629 mean.h[2,4,1] 0.226 0.084 0.086 0.218 0.411 mean.rDS[2,2,2] 0.024 0.023 0.001 0.017 0.085 + logit(mean.p[3,1,t]) <-P[t]+d.trois mean.phiS[2,2,2] 0.503 0.075 0.362 0.502 0.654 mean.h[1,1,2] 0.034 0.033 0.001 0.024 0.121 mean.rDS[1,3,2] 0.044 0.042 0.001 0.031 0.156 + logit(mean.p[3,2,t]) <-P[t]+d.P+d.trois mean.h[2,1,2] 0.025 0.025 0.001 0.018 0.092 mean.rDS[2,3,2] 0.223 0.094 0.069 0.213 0.432 + logit(mean.p[4,1,t]) <-P[t]+d.quatre	FALSE 1.000 1.000 FALSE 1.000 1.000 overlap0 f Rhat
	mean.phiS[1,3,2] 0.615 mean.h[1,2,2] 0.138 mean.rDS[1,4,2] 0.097 + logit(mean.p[4,2,t]) <-P[t]+d.P+d.quatre 0.091 0.441 0.614 0.073 0.030 0.126 0.089 0.003 0.071	0.795 0.310 0.333	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,3,2] 0.574 mean.h[2,2,2] 0.044 mean.rDS[2,4,2] 0.124 + P[t] ~ dnorm(0,0.001) 0.094 0.397 0.039 0.001 0.082 0.016	0.572 0.032 0.108	0.764 0.147 0.325	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,4,2] 0.613 mean.h[1,3,2] 0.285 tau 0.617 + }	0.156 0.316 0.092 0.126 0.068 0.492	0.611 0.279 0.614	0.919 0.481 0.757	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.001
	mean.phiS[2,4,2] 0.438 mean.h[2,3,2] 0.126 deviance 3987.792 55.255 3882.818 3986.716 4099.130 FALSE 1.000 1.000 0.119 0.225 0.432 0.687 FALSE 1.000 1.000 0.082 0.017 0.110 0.327 FALSE 1.000 1.000 + d.trois ~ dnorm(0,0.001)
	mean.phiD[1,1,1] 0.500 mean.h[1,4,2] 0.142 + d.quatre ~ dnorm(0,0.001) 0.289 0.024 0.123 0.004	0.500 0.109	0.975 0.455	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,1,1] 0.499 mean.h[2,4,2] 0.253 + d.P ~ dnorm(0,0.001)	0.288 0.025 0.149 0.036	0.499 0.230	0.974 0.596	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,2,1] 0.671 P[1] 3.197 +	0.235 0.161 0.701 1.951	0.713 3.150	0.988 4.710	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,2,1] 0.498 P[2] 1.308 + # Define state-transition and observation matrices 0.288 0.025 0.497 0.457 0.414 1.307	0.975 2.210	FALSE 1.000 1.000 FALSE 0.998 1.000
	mean.phiD[1,3,1] 0.709 P[3] 2.600 + for (i in 1:nind)	0.147 0.396 0.449 1.751	0.721 2.588	0.954 3.513	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,3,1] 0.798 P[4] 2.543 + {	0.119 0.528 0.357 1.860	0.814 2.535	0.979 3.262	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,4,1] 0.810 P[5] 3.074 + for (t in f[i]:(n.occ-1))	0.021 0.767 0.376 2.363	0.811 3.066	0.850 3.838	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,4,1] 0.769 P[6] 2.368 + {	0.024 0.721 0.357 1.689	0.769 2.360	0.813 3.090	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,1,2] 0.499 P[7] 3.546 + # Define probabilities of state S at first capture 0.289 0.024 0.497 0.444 2.717 3.531	0.975 4.460	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,1,2] 0.500	0.289 0.025	0.500	0.975	FALSE 1.000 1.000
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 IV4 Parameter estimates from the intra-sexual competition model.

	mean.d[2,1,1]	0.006	0.006 0.000	0.004		0.022	FALSE 1.000 1.000
	mean.d[1,2,1]	0.068	0.023 0.029	0.065		0.119	FALSE 1.000 1.000
	mean.d[2,2,1]	0.112	0.029 0.062	0.110		0.174	FALSE 1.000 1.000
	mean.d[1,3,1] mean.d[2,3,1]	0.464 0.503	0.057 0.351 0.058 0.387 Chapter V.A 0.464 0.575 0.503 0.615	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.d[1,4,1]	0.562	0.094 0.371	0.565		0.736	FALSE 1.000 1.000
	mean.d[2,4,1]	0.535	0.076 0.382	0.537		0.679	FALSE 1.000 1.000
	mean.d[1,1,2]	0.115	0.101 0.003	0.087		0.375	FALSE 1.000 1.000
	mean.d[2,1,2]	0.058	0.054 0.002	0.042		0.200	FALSE 1.000 1.000
	mean.d[1,2,2]	0.417	0.146 0.150	0.413		0.705	FALSE 1.000 1.000
	mean.d[2,2,2]	0.074	0.067 0.002	0.054		0.249	FALSE 1.000 1.000
	mean.d[1,3,2]	0.398	0.191 0.071	0.388		0.779	FALSE 1.000 1.000
	mean.d[2,3,2]	mean 0.501	sd 0.127 0.252 2.5%	0.503	50% 97.5% 0.741	overlap0 f FALSE 1.000 1.000 Rhat
	mean.pi[1] mean.d[1,4,2]	0.999 0.749	0.001 0.996 0.205 0.248	0.999 0.802	1.000 0.992	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.pi[2] mean.d[2,4,2]	0.984 0.657	0.011 0.955 0.162 0.305	0.986 0.674	0.998 0.918	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.pi[3] mean.h[1,1]	0.939 0.004	0.041 0.838 0.004 0.000	0.948 0.003	0.992 0.014	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.pi[4] mean.h[2,1]	0.288 0.003	0.043 0.208 0.003 0.000	0.287 0.002	0.375 0.013	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.pS1[1] mean.h[1,2] mean.rDS[1,4,2] 0.000 0.499 0.047	0.288 0.025 0.016 0.021 0.000 0.000	0.499 0.045 0.000	0.975 0.083 0.000	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 NA
	mean.pS1[2] mean.h[2,2] mean.rDS[2,4,2] 0.079 0.873 0.010	0.108 0.600 0.007 0.001 0.074 0.002	0.902 0.008 0.057	0.996 0.028 0.277	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.pD1[1] mean.h[1,3] mean.rDB[1,1,1] 0.470 0.656 0.322	0.086 0.480 0.061 0.209 0.287 0.021	0.658 0.320 0.454	0.816 0.447 0.970	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.pD1[2] mean.h[2,3] mean.rDB[2,1,1] 0.488 0.848 0.102	0.060 0.713 0.039 0.038 0.288 0.024	0.854 0.097 0.482	0.946 0.191 0.973	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,1,1] 0.560 mean.h[1,4] 0.148 mean.rDB[1,2,1] 0.460	0.025 0.512 0.088 0.022 0.117 0.242	0.560 0.133 0.457	0.609 0.355 0.695	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,1,1] 0.557 mean.h[2,4] 0.207 mean.rDB[2,2,1] 0.331	0.024 0.510 0.073 0.085 0.113 0.135	0.557 0.200 0.323	0.604 0.369 0.571	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,2,1] 0.767 P[1] 3.247 mean.rDB[1,3,1] 0.417	0.037 0.694 0.697 2.005 0.059 0.305	0.767 3.201 0.416	0.839 4.743 0.537	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,2,1] 0.813 P[2] 1.336 mean.rDB[2,3,1] 0.574	0.038 0.737 0.460 0.440 0.070 0.437	0.813 1.335 0.575	0.888 2.241 0.709	FALSE 1.000 1.000 FALSE 0.998 1.000 FALSE 1.000 1.000
	mean.phiS[1,3,1] 0.711 P[3] 2.644 mean.rDB[1,4,1] 0.667	0.053 0.608 0.451 1.793 0.024 0.618	0.711 2.633 0.667	0.816 3.561 0.713	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,3,1] 0.674 P[4] 2.585 mean.rDB[2,4,1] 0.653	0.057 0.562 0.357 1.906 0.026 0.601	0.673 2.577 0.653	0.787 3.307 0.704	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,4,1] 0.704 P[5] 3.126 mean.rDB[1,1,2] 0.497	0.097 0.514 0.374 2.420 0.289 0.025	0.705 3.117 0.495	0.893 3.885 0.975	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,4,1] 0.729 P[6] 2.423 mean.rDB[2,1,2] 0.490	0.076 0.579 0.356 1.745 0.288 0.024	0.730 2.415 0.485	0.875 3.141 0.973	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,1,2] 0.400 P[7] 3.602 mean.rDB[1,2,2] 0.654	0.099 0.218 0.443 2.775 0.181 0.270	0.396 3.586 0.671	0.603 4.513 0.944	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,1,2] 0.419 P[8] 1.878 mean.rDB[2,2,2] 0.464	0.064 0.298 0.351 1.204 0.287 0.021	0.418 1.872 0.446	0.547 2.582 0.969	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,2,2] 0.538 P[9] 2.274 mean.rDB[1,3,2] 0.738	0.133 0.293 0.339 1.625 0.198 0.278	0.534 2.268 0.781	0.808 2.955 0.991	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,2,2] 0.468 P[10] 1.970 mean.rDB[2,3,2] 0.367	0.081 0.317 0.330 1.336 0.149 0.116	0.466 1.965 0.354	0.632 2.632 0.686	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,3,2] 0.481 P[11] 2.413 mean.rDB[1,4,2] 0.598	0.178 0.176 0.352 1.741 0.072 0.454	0.467 2.407 0.599	0.863 3.119 0.735	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,3,2] 0.569 P[12] 2.067 mean.rDB[2,4,2] 0.568	0.109 0.366 0.346 1.401 0.051 0.468	0.565 2.061 0.568	0.790 2.761 0.666	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[1,4,2] 0.450 P[13] 1.782 tau 0.614	0.234 0.071 0.334 1.140 0.068 0.488	0.428 1.778 0.611	0.928 2.444 0.753	FALSE 1.000 1.000 FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiS[2,4,2] 0.420 P[14] 1.808 deviance 3958.565 53.319 3857.937 3957.301 4066.803 FALSE 1.000 1.000 0.138 0.180 0.411 0.713 FALSE 1.000 1.000 0.324 1.187 1.803 2.456 FALSE 1.000 1.000
	mean.phiD[1,1] 0.500 P[15] 1.001	0.289 0.025 0.304 0.411	0.500 0.999	0.975 1.607	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,1] 0.501 P[16] 2.566	0.289 0.025 0.315 1.963	0.502 2.561	0.976 3.199	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,2] 0.673 P[17] 2.228	0.234 0.165 0.320 1.611	0.714 2.223	0.988 2.868	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,2] 0.498 P[18] 1.956	0.289 0.025 0.301 1.378	0.496 1.952	0.975 2.557	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,3] 0.760 P[19] 3.352	0.116 0.507 0.380 2.634	0.771 3.342	0.952 4.126	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,3] 0.701 P[20] 3.286	0.124 0.440 0.360 2.601	0.709 3.279	0.917 4.015	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[1,4] 0.808 P[21] 3.652	0.018 0.772 0.439 2.840	0.808 3.636	0.842 4.555	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.phiD[2,4] 0.763 P[22] 3.749	0.020 0.723 0.437 2.938	0.763 3.732	0.801 4.653	FALSE 1.000 1.000 FALSE 1.000 1.000
	mean.d[1,1,1]	0.007	0.007 0.000	0.005	0.026	FALSE 1.000 1.000

Table V . 1 .

 V1 Publications to use the de-lifing method. NA means the individual annual fitness were calculated for descriptive reasons, but were not analysed using any statistical model.

	Publication	Type of model	Explanatory variables	Study species
	(Cockburn et	glm & gam	Week in year nuptial plumage	Superb fairy wrens
	al. 2008)		attained	(Malurus cyaneus)
	(Di Fonzo et	multiple	Body weight, Fecal eggs count	Soay sheep
	al. 2011)	regression	Heterozygosity & year	(Ovis aries)
	(Ezard et al.	gamm &	Laying date, arrival date & mass Common terns
	2007)	glmm		(Sterna hirundo)
	(Foerster et	bivariate	Relatedness	Red deer
	al. 2007)	animal model		(Cervus elaphus)
	(Grange et al.	glm	Population size	Camargue horses
	2009)			(Equus caballus)
	(Gratten et al.	animal model Relatedness & presence/absence	Soay sheep
	2008)		of alleles	(Ovis aries)
	(Höner et al.	glm	Population size & rank of the	Spotted hyenas
	2010)		mother	(Crocuta crocuta)
	(Höner et al.	NA	NA	Spotted hyenas
	2012)			(Crocuta crocuta)
	(Moyes et al.	PCA	NA	Red deer
	2009)			(Cervus elaphus)
	(Nicolai et al.	NA	NA	Black brant geese
	2014)			(Branta bernicla
				nigricans)
	(Pelletier et	gam	Body weight, hind leg length &	Soay sheep
	al. 2007a)		birth weight	(Ovis aries)
	(Pelletier et	gam	Body mass	Bighorn sheep
	al. 2007b)			(Ovis canadensis)
	(Schroeder et	MCMC glmm Pit treatment, sex, age & year	House sparrow
	al. 2011)		(random)	(Passer domesticus)
	(Schroeder et	MCMC glmm Age & year	House sparrow
	al. 2012)			(Passer domesticus)
	(Stopher et al.	NA	NA	Red deer
	2008b)			(Cervus elaphus)

Table V . 4 .

 V4 JAGS Output for the Alpine marmot individual fitness with age analysis using a classical linear model. Rhat indicates convergence (inferior to 1.1), n.eff is a measure of effective sample size, overlap0 checks if 0 falls in the parameter's 95% credible interval, f is the proportion of the posterior with the same sign as the mean; i.e., our confidence that the parameter is positive or negative.

	parameter mean parameter mean	sd sd	2.5% 2.5%	50% 50%	97.5% overlap0 97.5% overlap0	f	f	Rhat n.eff Rhat n.eff
	αDom♀ αDom♀	0.139 -0.190 0.225 -0.634 0.202 -0.253	0.139 -0.193	0.532 0.249	TRUE TRUE 0.797 1.000 5760 0.753 1.017
	αDom♂ αDom♂	0.165 -0.099 0.222 -0.533 0.181 -0.186	0.161 -0.102	0.526 0.340	TRUE TRUE 0.669 1.000 6000 0.817 1.020
	αSub♀ αSub♀	-0.572 0.091 -0.752 -0.551 0.173 -0.897	-0.570 -0.550	-0.401 -0.204	FALSE 1.000 1.007 FALSE 1.000 1.001 2734
	αSub♂ αSub♂	-0.555 0.126 -0.808 -0.409 0.172 -0.739	-0.553 -0.409	-0.310 -0.065	FALSE 1.000 1.006 FALSE 0.992 1.000 6000
	βDom♀ βDom♀	0.240 0.363 0.079 0.216 0.079 0.090	0.240 0.362	0.397 0.511	FALSE 0.999 1.016 FALSE 1.000 1.000 6000
	βDom♂ βDom♂	0.174 0.276 0.077 0.126 0.071 0.037	0.175 0.277	0.310 0.429	FALSE 0.993 1.009 FALSE 1.000 1.000 6000
	βSub♀ βSub♀	-0.092 0.077 -0.245 -0.071 0.173 -0.409	-0.092 -0.071	0.057 0.268	TRUE TRUE 0.659 1.001 2216 0.884 1.001 1281
	βSub♂ βSub♂	-0.235 0.127 -0.487 -0.393 0.170 -0.720	-0.233 -0.394	0.011 -0.059	TRUE FALSE 0.989 1.000 6000 0.967 1.003
	β 2 Dom♀ Dom♀ β 2 β 2 Dom♂ β 2 Dom♂ β 2 Sub♀ β 2 Sub♀ β 2 Sub♂ β 2 Sub♂	-0.020 0.007 -0.033 -0.029 0.006 -0.040 -0.015 0.006 -0.027 -0.022 0.006 -0.035 0.007 0.017 -0.026 -0.007 0.039 -0.084 0.066 0.028 0.014 0.101 0.037 0.030	-0.020 -0.029 -0.015 -0.022 0.007 -0.007 0.065 0.102	-0.007 -0.018 -0.002 -0.010 0.040 0.071 0.123 0.172	FALSE 0.999 1.012 FALSE 1.000 1.000 6000 FALSE 0.989 1.002 FALSE 1.000 1.000 6000 TRUE 0.660 1.003 TRUE 0.573 1.001 2243 FALSE 0.996 1.001 1979 FALSE 0.996 1.000 6000
	αPDom♀ αPDom♂ αPSub♀ deviance sd αPSub♂ DIC	-0.177 0.287 -0.750 1.217 0.023 1.172 -0.202 0.301 -0.787 0.002 0.204 -0.418 4577.000 5.002 4568.941 4576.415 4588.346 FALSE 1.000 1.000 6000 -0.176 0.374 TRUE 0.732 1.014 1.217 1.262 FALSE 1.000 1.001 4245 -0.200 0.386 TRUE 0.746 1.009 0.004 0.384 TRUE 0.508 1.007 0.293 0.202 -0.081 0.288 0.707 TRUE 0.934 1.018 4589.509
	βPDom♀	0.372	0.081	0.222	0.367	0.548	FALSE 1.000 1.023 96
	βPDom♂	0.427	0.094	0.251	0.423	0.628	FALSE 1.000 1.008
	βPSub♀	0.013	0.104 -0.192	0.011	0.215	TRUE	0.543 1.021
	βPSub♂	-0.442 0.125 -0.701	-0.433	-0.215	FALSE 1.000 1.020
	αΔDom♀	-0.109 0.226 -0.588	-0.096	0.290	TRUE	0.661 1.044 58
	αΔDom♂	-0.120 0.230 -0.587	-0.117	0.321	TRUE	0.683 1.057 41
	αΔSub♀	0.102	0.118 -0.135	0.110	0.315	TRUE	0.796 1.048 69
	αΔSub♂	0.416	0.119	0.159	0.421	0.634	FALSE 1.000 1.045 60
	βΔDom♀	0.010	0.047 -0.074	0.006	0.116	TRUE	0.554 1.069 42
	βΔDom♂	-0.040 0.050 -0.146	-0.036	0.050	TRUE	0.783 1.065 36
	βΔSub♀	0.100	0.049	0.005	0.101	0.194	FALSE 0.982 1.043 59
	βΔSub♂	-0.173 0.066 -0.302	-0.174	-0.045	FALSE 0.996 1.046 52
	sdDom♀1	0.223	0.038	0.160	0.221	0.307	FALSE 1.000 1.005
	sdDom♂1	0.178	0.038	0.101	0.177	0.258	FALSE 1.000 1.008 1231
	sdSub♀1	0.753	0.058	0.647	0.751	0.878	FALSE 1.000 1.005
	sdSub♂1	0.959	0.048	0.871	0.957	1.059	FALSE 1.000 1.003
	sdDom♀2	1.610	0.071	1.480	1.607	1.755	FALSE 1.000 1.001 1700
	sdDom♂2	1.602	0.070	1.471	1.600	1.749	FALSE 1.000 1.001 6000
	sdSub♀2	0.199	0.014	0.170	0.200	0.226	FALSE 1.000 1.007
	sdSub♂2	0.173	0.013	0.149	0.173	0.200	FALSE 1.000 1.001 2645
	deviance	2929.1 54.37 2825.02 2929.43 3035.60 FALSE 1.000 1.004
	DIC	4403.7						

NRti sd(NRti) Nt sd(Nt) DevNorm DICNorm DevO3M DICO3M ΔDIC

  

	0.5 0.2 0.8 0.2	6.0	1.0	0.05 Pois.	20.0 2.0 20.0 0.2	-195.4 -1066.1 -1064.1 -1321.5 -1024.2 -39.9 -193.3 -554.9 -548.0 354.7
	0.5 0.2 0.8 0.2	6.0	1.0	2.0 Pois.	20.0 0.2 20.0 2.0	-208.4 -302.5	-206.5 -300.4	-653.9 -965.1	-644.9 438.4 -884.0 583.6
	0.5 0.2 0.8 0.5	1.0	1.0	2.0 0.05	20.0 2.0 20.0 0.2	-181.8 -1509.8 -1507.7 -1872.2 -1312.1 -195.6 -179.7 -566.2 -522.3 342.6
	0.5 0.2 0.8 0.5	1.0	1.0	Pois. 0.05	20.0 0.2 20.0 2.0	-788.6 -366.5	-786.5 -1220.0 -1104.9 318.4 -364.5 -1363.2 -1358.9 994.4
	0.5 0.2 0.8 0.5	1.0	1.0	Pois. 2.0	20.0 2.0 20.0 0.2	-921.6 -1017.7 -1015.6 -1243.0 -1030.9 15.4 -919.6 -1221.4 -1103.9 184.3
	0.5 0.2 0.8 0.5	1.0	6.0	0.05 2.0	20.0 0.2 20.0 2.0	-768.4 -210.3	-766.4 -1133.9 -1014.8 248.4 -208.3 -604.5 370.7 -579.0
	0.5 0.2 0.8 0.5	1.0	6.0	0.05 Pois.	20.0 2.0 20.0 0.2	-695.5 -1500.6 -1498.7 -1826.9 -1317.7 -181.0 -693.5 -1019.3 -870.8 177.3
	0.5 0.2 0.8 0.5	1.0	6.0	2.0 Pois.	20.0 0.2 20.0 2.0	-210.7 -1441.4 -1439.6 -2044.4 -1484.5 44.9 -208.8 -667.8 -660.05 451.3
	0.2 0.2 0.5 0.2 0.8 0.5	1.0 6.0	6.0	0.05 2.0 0.05	20.0 0.2 20.0 2.0 20.0 0.2	-861.9 -253.4 -480.9	-860.0 -1301.3 -1286.0 426.0 -251.5 -670.0 -627.3 375.8 -478.8 -1264.7 -1128.9 650.05
	0.2 0.2 0.5 0.2 0.8 0.5	1.0 6.0	6.0	0.05 Pois. 0.05	20.0 2.0 20.0 0.2 20.0 2.0	-848.3 -286.4 -441.5	-846.1 -1205.6 -1121.4 275.3 -284.4 -654.1 -550.4 266.0 -439.5 -1235.9 -1194.1 754.6
	0.2 0.2 0.5 0.2 0.8 0.5	1.0 6.0	6.0	2.0 Pois. 2.0	20.0 0.2 20.0 2.0 20.0 0.2	-821.8 -280.2 -1428.6 -1426.5 -1759.7 -1374.4 -52.1 -819.8 -1171.0 -1074.1 254.3 -278.2 -689.7 -683.5 405.3
	0.2 0.2 0.5 0.5 0.8 0.5	1.0 6.0	1.0	2.0 0.05 2.0	20.0 2.0 20.0 0.2 20.0 2.0	-855.5 -1557.7 -1555.6 -2308.5 -2131.5 575.9 -853.6 -1482.1 -1477.2 623.6 -1550.0 -1548.1 -1937.8 -1295.4 -252.7
	0.2 0.2 0.5 0.5 0.8 0.5	1.0 6.0	1.0	Pois. 0.05 Pois.	20.0 0.2 20.0 2.0 20.0 0.2	-254.8 -1578.0 -1576.0 -2170.5 -1762.8 186.8 -252.7 -819.4 -815.1 562.4 -524.2 -522.2 -1324.4 -1280.3 758.1
	0.2 0.2 0.5 0.5 0.8 0.5	1.0 6.0	1.0	Pois. 2.0 Pois.	20.0 2.0 20.0 0.2 20.0 2.0	-788.7 -467.9 -421.6	-786.8 -1221.1 -1114.2 327.4 -465.8 -1481.6 -1477.1 1011.3 -419.6 -1149.4 -1113.3 693.7
	0.2 0.2 0.5 0.5 0.8 0.8	6.0 1.0	1.0	0.05 2.0 0.05	20.0 0.2 20.0 2.0 20.0 0.2	-262.1 -478.6 -1336.0 -1334.1 -1844.9 -1731.6 397.5 -260.0 -704.3 -699.7 439.7 -476.5 -1449.2 -1445.0 968.5
	0.2 0.2 0.5 0.5 0.8 0.8	6.0 1.0	1.0	0.05 Pois. 0.05	20.0 2.0 20.0 0.2 20.0 2.0	-236.9 -1279.0 -1276.9 -1579.7 -1299.5 22.6 -234.9 -753.1 -748.9 514.0 -1249.3 -1247.2 -1417.5 -1286.7 39.4
	0.2 0.2 0.5 0.5 0.8 0.8	6.0 1.0	1.0	2.0 Pois. 2.0	20.0 0.2 20.0 2.0 20.0 0.2	-554.7 -1207.5 -1205.6 -1430.9 -1190.0 -15.7 -552.7 -807.6 -623.7 71.0 -179.4 -177.4 -796.1 -639.3 461.9
	0.2 0.2 0.5 0.5 0.8 0.8	6.0 1.0	6.0	2.0 0.05 2.0	20.0 2.0 20.0 0.2 20.0 2.0	-633.8 -492.3 -302.2	-631.9 -490.3 -1174.4 -996.5 506.2 -959.8 -873.2 241.3 -300.05 -1114.0 -1100.9 800.8
	0.2 0.2 0.5 0.5 0.8 0.8	6.0 1.0	6.0	Pois. 0.05 Pois.	20.0 0.2 20.0 2.0 20.0 0.2	-699.3 -478.2 -1344.2 -1342.3 -1810.4 -1542.1 199.8 -697.3 -893.9 -748.2 50.9 -476.3 -1226.1 -1096.2 620.0
	0.2 0.2 0.5 0.5 0.8 0.8	6.0 1.0	6.0	Pois. 2.0 Pois.	20.0 2.0 20.0 0.2 20.0 2.0	-210.6 -1560.7 -1558.6 -2229.0 -2018.9 460.3 -208.6 -667.8 -660.3 451.7 -695.5 -693.5 -987.2 -848.5 155.0
	0.2 0.5 0.5 0.5 0.8 0.8	1.0 6.0	6.0	0.05 2.0 0.05	20.0 0.2 20.0 2.0 20.0 0.2	-199.2 -1554.7 -1552.8 -2148.7 -1745.1 192.3 -197.2 -628.7 -622.3 425.1 -383.5 -381.5 -868.0 -521.4 139.9
	0.2 0.5 0.5 0.5 0.8 0.8	1.0 6.0	6.0	0.05 Pois. 0.05	20.0 2.0 20.0 0.2 20.0 2.0	-271.9 -500.6 -273.4	-269.8 -498.5 -1349.3 -1344.6 846.1 -627.1 -474.7 204.9 -271.3 -1164.8 -1157.1 885.8
	0.2 0.5 0.5 0.5 0.8 0.8	1.0 6.0	6.0	2.0 Pois. 2.0	20.0 0.2 20.0 2.0 20.0 0.2	-215.4 -418.4 -1321.6 -1319.7 -1582.1 -1217.5 -102.2 -213.2 -570.05 -475.1 261.9 -416.4 -1374.8 -1370.3 953.9
	0.2 0.5 0.5 0.8 0.8 0.8	1.0 6.0	1.0	2.0 0.05 2.0	20.0 2.0 20.0 0.2 20.0 2.0	-309.6 -1221.3 -1219.3 -1480.0 -1265.2 45.9 -307.7 -732.0 -725.4 417.7 -217.7 -215.6 -833.1 -711.3 495.7
	0.2 0.5 0.5 0.8 0.8 0.8	1.0 6.0	1.0	Pois. 0.05 Pois.	20.0 0.2 20.0 2.0 20.0 0.2	-794.1 -1183.3 -1181.3 -1472.0 -1293.7 112.4 -792.1 -1196.8 -1136.4 344.3 -1325.2 -1323.4 -1512.3 -1227.1 -96.3
	0.2 0.5 0.5 0.8 0.8 0.8	1.0 6.0	1.0	Pois. 2.0 Pois.	20.0 2.0 20.0 0.2 20.0 2.0	-872.9 -383.5 -280.2	-871.0 -1307.5 -1337.0 466.0 -381.5 -1192.3 -1183.1 801.5 -278.0 -689.7 -683.6 405.6
	0.2 0.5 0.5 0.8	6.0	1.0	0.05 2.0	20.0 0.2 20.0 2.0	-838.0 -469.9	-835.9 -1073.0 -900.9 -468.1 -1277.3 -1261.8 793.8 65.0
	0.2 0.5 0.5 0.8	6.0	1.0	0.05 Pois.	20.0 2.0 20.0 0.2	-798.2 -1555.2 -1553.2 -2219.1 -1963.4 410.2 -796.0 -1282.3 -1216.5 420.5
	0.2 0.5 0.5 0.8	6.0	1.0	2.0 Pois.	20.0 0.2 20.0 2.0	-260.3 -1566.0 -1563.8 -2422.5 -2307.4 743.6 -258.4 -763.8 -759.6 501.2
	0.2 0.5 0.5 0.8	6.0	6.0	2.0 0.05	20.0 2.0 20.0 0.2	-272.8 -328.8	-270.7 -326.8 -1463.9 -1459.7 1132.8 -806.6 -802.2 531.5
	0.2 0.5 0.5 0.8	6.0	6.0	Pois. 0.05	20.0 0.2 20.0 2.0	-324.2 -358.2	-322.2 -356.2 -1354.6 -1348.7 992.5 -743.8 -739.3 417.1
	0.2 0.5 0.5 0.8	6.0	6.0	Pois. 2.0	20.0 2.0 20.0 0.2	-288.2 -478.0	-286.3 -475.9 -1224.9 -1067.0 591.1 -844.2 -840.05 553.8
	0.2 0.8 0.5 0.8	1.0	6.0	0.05 2.0	20.0 0.2 20.0 2.0	-696.6 -1223.5 -1221.6 -1483.2 -1415.9 194.3 -694.5 -860.6 -695.1 0.6
	0.2 0.8 0.5 0.8	1.0	6.0	0.05 Pois.	20.0 2.0 20.0 0.2	-661.08 -323.2	-659.2 -1389.8 -1072.1 412.9 -321.2 -946.2 -835.9 514.7
	0.2 0.8 0.5 0.8	1.0	6.0	2.0 Pois.	20.0 0.2 20.0 2.0	-699.2 -246.5	-697.1 -244.4	-901.0 -736.6	-775.2 -332.4	78.1 88.0
	0.2 0.8 0.8 0.2	1.0	1.0	2.0 0.05	20.0 2.0 20.0 0.2	-688.5 -1583.8 -1581.6 -2048.1 -1712.5 130.9 -686.5 -935.7 -826.7 140.2
	0.2 0.8 0.8 0.2	1.0	1.0	Pois. 0.05	20.0 0.2 20.0 2.0	-238.8 -1552.1 -1550.05 -1995.4 -1632.3 82.2 -236.7 -713.9 -704.9 468.2
	0.2 0.8 0.8 0.2	1.0	1.0	Pois. 2.0	20.0 2.0 20.0 0.2	-768.3 -376.0	-766.2 -1134.2 -1013.0 246.8 -373.7 -1232.7 -1211.8 838.1
	0.2 0.8 0.8 0.2	6.0	1.0	0.05 2.0	20.0 0.2 20.0 2.0	-215.4 -348.6	-213.3 -346.7 -1378.5 -1374.3 1027.6 -656.3 -648.5 435.2
	0.2 0.8 0.8 0.2	6.0	1.0	0.05 Pois.	20.0 2.0 20.0 0.2	-287.4 -908.8	-285.3 -906.7 -1106.6 -829.4 -77.3 -669.8 -648.0 362.7
	0.2 0.8 0.8 0.2	6.0	1.0	2.0 Pois.	20.0 0.2 20.0 2.0	-727.1 -921.6	-725.2 -1004.5 -862.2 137.0 -919.6 -1221.9 -1106.9 187.3
	0.2 0.8 0.8 0.2	6.0	6.0	2.0 0.05	20.0 2.0 20.0 0.2	-649.1 -332.0	-647.2 -1034.2 -979.0 331.8 -329.9 -1091.1 -1050.0 720.0
	0.2 0.8 0.8 0.2	6.0	6.0	Pois. 0.05	20.0 0.2 20.0 2.0	-673.3 -216.1	-671.3 -1052.1 -884.1 212.8 -214.1 -1079.1 -1064.8 850.7
	0.2 0.8 0.8 0.2	6.0	6.0	Pois. 2.0	20.0 2.0 20.0 0.2	-286.3 -1483.2 -1481.1 -1919.7 -1600.7 119.6 -284.2 -653.3 -547.0 262.8
	0.5 0.2 0.8 0.2	1.0	6.0	0.05 2.0	20.0 0.2 20.0 2.0	-246.5 -328.3	-244.5 -326.2 -1355.5 -1351.6 1025.4 -656.0 -637.9 393.4

Table V

 V 

	helpm+helpf helpm helpf helpf		1121,1 1307,9 1376,3 1382,6
	.6. Variance-structure model selection for group contributions to population helpm+helpf cst 1114,7 1310,1 helpm+helpf cst 1376,8 1382,6
	growth rate. π: mixture weight; Δ: difference between the two component-specific cst helpf 1122,6 1310,8 helpf cst 1376,3 1382,6
	means; cst: constant; helpm: number of male subordinates; helpf: number of females helpf helpf 1117,8 1311 helpm helpf 1375,7 1383,6
	subordinates; GS: group size; lm: classical linear model helpm+helpf helpf 1121 1319,5 helpm helpm+helpf 1375,6 1383,7
	π helpm cst	Δ helpf helpf		deviance 1118,6 1339,9 DIC 1376,2 1383,7
	lm helpm+helpf helpm+helpf lm cst cst		1562,7 1566,7 1124 1345,2 1376,2 1383,7
	cst helpm helpm	cst helpm+helpf helpm		1568,8 1575,3 1124,2 1380 1376,2 1384
	helpm+helpf helpm+helpf helpm+helpf helpm+helpf helpm helpm cst helpm helpm helpm+helpf Table V.8. Variance-structure model selection for group contributions to mean dispersal 1375,3 1384,6 1569 1575,4 1569,3 1575,6 1569 1575,9 1569,2 1576 helpm cst 1375,7 1385,4 rate. π: mixture weight; Δ: difference between the two component-specific means; cst: cst helpm 1376,4 1386,1 constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model helpm+helpf helpm 1376,3 1388,4
	π	helpm+helpf helpf Δ cst helpm+helpf deviance DIC 1568,8 1576,4 1375,7 1390,1
	helpf helpf cst helpf helpm GS cst cst helpm+helpf helpf cst helpm+helpf helpm+helpf helpm helpf GS helpf GS GS cst helpm helpf helpf helpf cst helpf helpm+helpf helpm helpm+helpf cst helpm cst helpf helpf GS cst GS GS cst GS helpm+helpf cst cst cst helpf cst helpf helpm+helpf cst helpm+helpf helpm helpm+helpf GS GS helpm+helpf helpm+helpf cst GS 11.5.1.2. Dominant contributions	1569,3 1576,4 1569,1 1576,5 1569,1 1576,6 1133 1453,5 697,4 826,1 1139 1464,2 697,8 828,1 1140,7 1472,3 697,1 828,4 1569 1576,6 698,7 829,4 1569 1576,6 709,6 855,3 1459 2618,6 710,3 854,2 1422,4 1926,4 711,8 844,4 1537,8 1769,1 700,5 837,4 1569,1 1577,2 699,2 836,4 1569,1 1576,9 699,3 835,3 1568,9 1576,8 716,9 835,1 1568,9 1576,7 698,8 834,7 1568,8 1576,6 716,7 832,8
	Table V.7. Variance-structure model selection for group contributions to mean survival helpf helpm 712,4 856,5
	rate. π: mixture weight; Δ: difference between the two component-specific means; cst: GS cst 721,5 857,8
	constant; helpm: number of male subordinates; helpf: number of females subordinates; cst helpm 711,2 866,6
	GS: group size; lm: classical linear model helpm helpm		711,2 866,8
	π helpm+helpf helpm Δ		deviance 709,7 867,6 DIC
	lm helpm	lm cst		1219,3 1223,3 731,1 892
	cst lm	GS lm		1114,2 1232,3 985,2 989,2
	GS GS Table V.9. Variance-structure model selection for group contributions to mean GS 1113,8 1238,9 cst 1113 1251,2 cst cst fecundity. π: mixture weight; Δ: difference between the two component-specific means; 1113,2 1253,3 cst: constant; helpm: number of male subordinates; helpf: number of females
	helpf subordinates; GS: group size; lm: classical linear model cst 1111,2 1285,1
	π	helpm	Δ	cst	1118,2 1292 deviance DIC
	helpf helpm cst helpf lm helpf helpf cst helpm+helpf helpf helpm+helpf helpm lm helpm+helpf helpm+helpf helpm helpm helpm	1124,1 1293,7 1373,1 1377,1 1124,1 1296,7 1375,9 1382,6 1125 1299,7 1376,3 1382,6 1118,7 1304 1123,3 1307,3 1376,2 1382,6

Table V

 V 

	GS cst helpm cst helpm²+helpf cst GS helpm+helpf helpf 1226,3 1231,4 1765 2188,5 -1120,5 -1105,9 1535,4 1547,6 -67 -24,1
	cst Table V.11. Variance-structure model selection for dominant contributions to mean GS 1819,8 2292,9 survival rate. π: mixture weight; Δ: difference between the two component-specific means; cst: constant; helpm: number of male subordinates; helpf: number of females cst cst -1119,5 -1104,5 helpf cst -1118,9 -1102,9 helpm helpm -1126,8 -1102,8 cst helpf -1121,2 -1102,7 helpf helpf -1120,8 -1101,4 helpm helpf 1536,3 1547,6 helpm helpf -66,8 -22,2 helpm + helpf² 1226,3 1231,5 11.5.1.3. Subordinate contributions Table V.14. Variance-structure model selection for subordinate contributions to population growth rate. π: mixture weight; Δ: difference between the two component-helpf helpm 1535,7 1547,7 helpm+helpf helpf 1535,8 1547,7 cst cst 1535,9 1547,8 helpf helpm+helpf helpm² + helpf² 1227,3 1233,5 -66,5 -19,7 cst helpm+helpf cst + helpf 1236,1 1239,1 -65,3 -19,2 cst GS cst + helpf² 1236,7 1240,8 -62,2 -19,2 helpm 1247,4 1250,4 specific means; cst: constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model helpf cst 1536,2 1548 helpm helpm+helpf -65,4 -18,7 helpm² 1248,2 1252,3 subordinates; GS: group size; lm: classical linear model π Δ deviance DIC GS GS -355,2 -344,3 cst cst -356 -346,3 GS cst -356 -346,1 cst GS -355,1 -344,3 helpm+helpf cst -352,6 -338,7 helpf cst -353,6 -338,6 helpm cst -352,6 -338,5 helpm+helpf helpm -351,9 -336,8 helpf helpm -351,9 -336,8 helpm+helpf helpf -351,8 -336,8 helpm helpf -351,9 -336,8 helpm helpm+helpf -1128,8 -1101,1 cst helpm -1117,7 -1098,5 helpf helpm -1117,1 -1097,3 cst helpm+helpf -1120,5 -1095,8 helpf helpm+helpf -1120,4 -1093,5 lm lm -213,1 -201,9 Table V.13. Variance-structure model selection for dominant contributions to mean fecundity. π: mixture weight; Δ: difference between the two component-specific means; cst: constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model π Δ deviance DIC lm lm 1836,5 1843,7 π Δ helpm+helpf helpm+helpf 1535,6 1548,6 helpf helpm -66,9 -18,7 cst 1275,2 1277,2 deviance DIC lm lm GS GS 1008,4 1622,7 helpf helpf -67,1 -18,7 cst 1275,2 1277,3 1585,9 1597,3 helpf helpf 1537 1607,4 cst cst 1531,011 1612,2 cst helpm+helpf 1530,1 1612,3 helpm helpm+helpf 1528,2 1615,4 helpf helpm+helpf 1545,7 1615,5 helpf cst 1528,5 1617,5 helpm+helpf helpm+helpf 1525,4 1619,0 cst helpm 1543,1 1620,0 helpm+helpf helpf 1546,1 1620,4 helpf helpm 1542,9 1622,4 GS cst 1028,4 1779,5 cst GS 1021,9 1980,8 Table V.16. Variance-structure model selection for subordinate contributions to mean helpm+helpf cst -66,7 -17,5 helpm cst Table V.20. Group size and composition model selection for group contributions to -66,4 -15,5 helpm+helpf helpm+helpf mean dispersal rate. cst: constant; helpm: number of male subordinates; helpf: number of -65,6 -13,4 helpm+helpf helpf females subordinates; GS: group size; lm: classical linear model -64,8 -11,2 covariates deviance DIC dispersal rate. π: mixture weight; Δ: difference between the two component-specific means; cst: constant; helpm: number of male subordinates; helpf: number of females helpm+helpf helpm -65,6 -9,9 GS GS -61,6 GS 716,7 832,8 -9,1 GS+GS² 721,1 834,5 subordinates; GS: group size; lm: classical linear model π Δ deviance helpm helpm -65,1 -7,4 helpm 696,2 802,8 DIC cst GS -994,5 helpf cst -64,4 -7,3 helpm + helpf 697,2 808 -984 GS GS GS cst -61,7 helpm² 696,8 811,4 -0,8 -994,5 -983,9 GS cst -990,5 -981,2 lm lm helpm²+helpf 698 815,4 475,6 482,7 cst 696,1 817,2
	helpm GS helpm helpf	helpm GS helpm cst helpm + helpf²	-351,8 -336,7 1668,8 1964,6 1531,2 1629,8 -993,8 -980,3 697,7 818,8
	π lm helpf cst cst cst helpm helpm helpf helpf cst helpm+helpf helpm Δ lm helpm helpf helpf helpm+helpf helpm+helpf helpm helpm+helpf helpm helpm+helpf helpm+helpf helpm helpm helpf cst helpf helpm cst helpm+helpf cst cst cst 11.5.2. Group size and composition model selection deviance 2065,7 2072,8 DIC -351,7 -336,6 -351,9 -336,6 -351,8 -336,6 -352,1 -336,4 -353,9 -334,8 1678,4 2031,6 1544,5 2032,3 1678,7 2033,4 1559,4 2033,8 1678,7 2033,8 1533,6 1630,3 1540,3 1632,9 1534,2 1640,7 1525,4 1643,3 1524,8 1643,8 cst + helpf 700,1 819,4 -993,8 -980,3 helpm cst -993,9 -980,2 helpm+helpf cst cst 718,1 821 11.5.2.1. Group contributions cst + helpf² 701,2 821,2 -993,8 -980,1 helpm+helpf helpm Table V.18. Group size and composition model selection for group contributions to helpm² + helpf² 697,8 828,1 -996,3 -979,9 helpm helpf population growth rate. cst: constant; helpm: number of male subordinates; helpf: -994,2 -979,9 number of females subordinates; GS: group size; lm: classical linear model Table V.21. Group size and composition model selection for group contributions to
	cst helpm+helpf helpm helpm+helpf helpf helpm+helpf helpf helpm+helpf helpm+helpf helpm+helpf lm lm cst helpm GS cst cst GS cst GS GS GS GS cst helpm helpm+helpf cst helpm helpm+helpf helpf covariates deviance -354,2 -333,2 2065,4 2079 2063,7 2081,4 -353 -333,8 1140,5 1147,6 1679,1 2036,7 1673,8 2078,5 1703,9 2079,1 1526,3 1657,5 1524,9 1658,0 1525,5 1661,5 -997,1 -979,8 -996 -979,8 -994,3 -979,8 mean fecundity. cst: constant; helpm: number of male subordinates; helpf: number of DIC GS+GS² females subordinates; GS: group size; lm: classical linear model 1562,7 1566,7 GS 1565,2 1568,2 covariates deviance DIC 2065,7 2082,4 helpm helpf 2065,1 2082,4 helpf helpf 2064,9 2082,4 helpm helpm 2065,3 2083,4 cst helpm 2065,2 2083,8 helpm+helpf helpf 2065,7 2085,4 cst helpf 2065,3 2085,9 helpm cst 2065,3 2086,8 helpm+helpf cst 2064,2 2086,9 helpm+helpf helpm+helpf 2064,5 2087,4 helpm helpm+helpf 2065 2088,4 helpf cst 2065,7 2089,2 lm lm 1141,3 1152,5 Table V.12. Variance-structure model selection for dominant contributions to mean dispersal rate. π: mixture weight; Δ: difference between the two component-specific means; cst: constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model π Δ deviance DIC helpm+helpf cst -1132,4 -1116,3 helpm cst -1130,5 -1114,4 helpm+helpf helpf -1133,4 -1114,1 cst cst -1121 -1110,9 helpm+helpf helpm -1130,7 -1110,5 helpm helpm+helpf 1543,1 2081,6 cst cst 1674,4 2085,6 helpm+helpf helpf 1691,8 2088,6 helpm helpf 1692,4 2091,8 helpm cst 1676,7 2118,8 helpf cst 1676,7 2120,1 helpm+helpf cst 1676,9 2123,1 helpf helpf 1590,1 2123,4 cst cst Table V.15. Variance-structure model selection for subordinate contributions to mean survival rate. π: mixture weight; Δ: difference between the two component-specific means; cst: constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model π Δ deviance DIC lm lm helpm helpm helpm + helpf 1568,1 1572,2 GS+GS² 1373,1 1377,1 -996,5 -979,7 helpf helpm helpm²+helpf 1568,5 1573,6 GS 1374,7 1377,7 -996,2 -979,6 helpf helpf helpm + helpf² 1568,6 1573,7 helpm + helpf 1376,5 1380,6 -994,1 -979,6 helpm+helpf helpm+helpf helpm² + helpf² 1569,1 1575,2 helpm + helpf² 1376,3 1381,4 -997,1 -979,5 cst helpf cst + helpf helpm²+helpf 1376,3 1381,5 1572,6 1575,7 -994,2 -979,1 cst helpm+helpf cst + helpf² helpm² + helpf² 1376,3 1382,4 1573,5 1577,5 -996,5 -978,9 helpm 1600,3 1603,4 cst + helpf 1381,7 1384,8 1534,5 1541,6 cst helpm+helpf helpf helpm+helpf -996,7 -978,7 helpm² 1601,2 1605,3 cst + helpf² 1382,2 1386,3 1535 1546,4 cst helpm 1535 1546,5 lm lm cst 1620,5 1622,5 helpm 1403,8 1406,9 1175,4 1182,6 cst 1620,5 1622,6 helpm² 1404,3 1408,4 1677,9 2126,8 helpm+helpf helpm+helpf cst helpf 1535 1546,5 Table V.17. Variance-structure model selection for subordinate contributions to mean cst 1424 1426 1543,1 2178,2 cst helpf helpm cst 1535,4 1547,1 means; cst: constant; helpm: number of male subordinates; helpf: number of females mean survival rate. cst: constant; helpm: number of male subordinates; helpf: number of 1693,1 2230,2 helpf helpf 1535 1546,9 fecundity. π: mixture weight; Δ: weight difference between the two component-specific Table V.19. Group size and composition model selection for group contributions to cst 1424 1426,1
	helpf cst helpm GS helpm subordinates; GS: group size; lm: classical linear model helpm 2064,9 2090 cst 2065,5 2095,9 cst -1121,2 -1110,2 helpf -1130,1 -1109,3 helpm females subordinates; GS: group size; lm: classical linear model 1535,6 1547,2 helpm+helpf cst 1536 1547,3 π Δ deviance DIC covariates deviance DIC
	GS cst helpm+helpf helpm+helpf GS cst GS GS helpf helpm+helpf helpm+helpf helpm cst cst GS 1218,9 1221,9 1771,2 2119,7 1763,5 2186,3 -1120,7 -1106,4 -1133 -1106 1535,5 1547,5 1535,5 1547,5 -68,7 -28,03 cst helpm GS+GS² 1219,3 1223,9 -67,2 -24,4 helpm + helpf 1225,3 1229,3

.10. Variance-structure model selection for dominant contributions to population growth rate. π: mixture weight; Δ: difference between the two componentspecific means; cst: constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model

Table V .

 V 22.Group size and composition model selection for dominant contributions to population growth rate. cst: constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model

	Table V.25. Group size and composition model selection for dominant contributions to (hlp_m²+hlp_f)*sex 1586,8 1596,1
	mean fecundity. cst: constant; helpm: number of male subordinates; helpf: number of GS+GS² 1592,4 1596,5
	females subordinates; GS: group size; lm: classical linear model (hlp_m+hlp_f²)*sex 1587,5 1596,6
	covariates hlp_m²+hlp_f²	deviance 1590,4 1596,6 DIC
	covariates hlp_m (hlp_m²+hlp_f²)*sex deviance 1831 1834,1 DIC 1585,8 1596,9
	hlp_m hlp_m*sex GS+GS²*sex hlp_m*sex hlp_m+hlp_f GS*sex hlp_m+hlp_f hlp_m² cst cst hlp_m+hlp_f² hlp_m cst hlp_m²+hlp_f sex sex GS hlp_m² sex hlp_m²+hlp_f² hlp_m²*sex hlp_m² cst hlp_m*sex GS (hlp_m+hlp_f)*sex hlp_m²+hlp_f cst Table V.27. Group size and composition model selection for subordinate contributions 1830,5 1835,6 1591,6 1598,7 2062,1 2065,2 1831,6 1835,7 1594 1599,1 2060,8 2065,9 1831,7 1835,8 1603,7 1605,7 2062,1 2066,1 1832 1837,1 1604 1607 2064,1 2066,1 1832,3 1837,5 1604,6 1607,6 2064,1 2066,2 1835,2 1838,2 1604,9 1609 2063,6 2066,6 1832,7 1838,9 1603,3 1610,5 2063,6 2066,6 1837,2 1839,2 1605,7 1610,9 2062,9 2066,9 1832,1 1839,3 2064,5 2067,6 1837,2 1839,3 2062,9 2068 hlp_f 2065,1 2068,1 hlp_m+hlp_f² 2063,1 2068,2 GS*sex hlp_m²*sex to mean survival rate. cst: constant; helpm: number of male subordinates; helpf: number 1832,2 1839,4 GS+GS² of females subordinates; GS: group size; lm: classical linear model 1835,6 1839,6 sex covariates deviance DIC 1837 1840 2063,9 2069 (hlp_m+hlp_f)*sex sex 1837 1840 hlp_f*sex 1535,4 1539,4 2061,9 2069,1 GS+GS² GS*sex 1835,1 1840,2 GS+GS² 1532,8 1539,9 2065,4 2069,5 hlp_m²*sex hlp_f 1838 1841,2 hlp_f²*sex 1535,2 1540,2 2062,5 2069,6 hlp_f*sex hlp_f² 1837,5 1841,7 GS 1538,5 1541,5 2065,1 2070,1 hlp_f² (hlp_m+hlp_f²)*sex 1833,5 1842,7 GS+GS²*sex 1534,5 1541,6 2066,1 2070,1 hlp_m²+hlp_f² (hlp_m²+hlp_f)*sex 1833,9 1843,2 GS*sex 1536,5 1541,6 2063,9 2070,2 (GS+GS²)*sex (GS+GS²)*sex 1836,5 1843,7 (hlp_m²+hlp_f²)*sex 1532 1543,4 2065,7 2072,7 (hlp_m²+hlp_f)*sex hlp_f*sex 1838,6 1843,7 (hlp_m+hlp_f²)*sex 1534,3 1543,5 2063,5 2072,8 (hlp_m+hlp_f²)*sex hlp_f²*sex 1839,1 1846,3 hlp_f 1540,5 1543,7 2063,8 2073,2 hlp_f²*sex (hlp_m²+hlp_f²)*sex 1835,3 1846,6 hlp_f² 1539,7 1543,8 2067 2074,3 (hlp_m²+hlp_f²)*sex (hlp_m+hlp_f)*sex 1537 1544,1 2065,4 2076,8 11.5.2.3. Subordinate contributions (hlp_m²+hlp_f)*sex 1535,1 1544,3
	Table V.23. Group size and composition model selection for dominant contributions to Table V.26. Group size and composition model selection for subordinate contributions sex 1541,4 1544,5
	mean survival rate. cst: constant; helpm: number of male subordinates; helpf: number of to population growth rate. cst: constant; helpm: number of male subordinates; helpf: hlp_m+hlp_f 1540,8 1545
	females subordinates; GS: group size; lm: classical linear model number of females subordinates; GS: group size; lm: classical linear model hlp_m+hlp_f² 1540,1 1545,1
	covariates covariates cst	deviance DIC deviance DIC 1543,9 1545,8
	GS hlp_f*sex hlp_m²+hlp_f	-359,5 -351,9 1587,7 1592,7 1540,8 1546
	hlp_m hlp_f² hlp_m²+hlp_f²	-359,3 -351,8 1589,1 1593,3 1539,9 1546,1
	cst hlp_f²*sex hlp_m	-356,3 -350,8 1586,5 1593,7 1543,7 1546,7
	hlp_f hlp_f hlp_m²*sex	-357,6 -350,3 1591,1 1594,1 1540,4 1547,4
	GS+GS² hlp_m+hlp_f² hlp_m*sex	-358,7 -350,2 1590 1595 1542,8 1547,8
	cst (hlp_m+hlp_f)*sex hlp_m²	-356,1 -349,7 1588,3 1595,3 1544,2 1548,3
	hlp_f²+hlp_m hlp_m²+hlp_f	-358,6 -349,7 1592,4 1595,4
	hlp_m² GS	-358,1 -349,5 1592,6 1595,6
	hlp_f² hlp_m+hlp_f	-357,2 -349,3 1591,8 1595,9

Table V

 V 

	hlp_f*sex	-57,2 -23,4
	hlp_m	-25,7 -16,7
	hlp_m*sex	-52,1 -16,5
	hlp_m²*sex	-53,8 -15,6
	cst	-45,4 -13,4
	hlp_m²	-51,6 -13,1
	sex	-44,2 -11,2

.28. Group size and composition model selection for subordinate contributions to mean dispersal rate.cst: constant; helpm: number of male subordinates; helpf: number of females subordinates; GS: group size; lm: classical linear model

  . Consequently, we denoted the most general model as follows:

	p a a s 2 3 7 ; -(	)	t * *	sex	Φ	s	(	a 1	*	a a a 2 3 ; ; ; helpm	4 7 -	)	t * *	sex
	E a s 3 7 -	t * *	s	e ex	p a D 3 7 -( )	t * *	sex	Φ	D	(	a a 3 ;	4 17 -	)	t * *	s e x
	E a D 3 17 -(	)	t * *	sex	a Ψ 1 1 7 1 7 2 3 6 s D : ; ; a a a --	* * t

  Baseline model.-After selection using AIC (see Supporting Information S1), the baseline model was Survival varied over time, between status, and age classes. Dominant adults had a higher survival (0.773 ± 0.016) than subordinate adults (0.550 ± 0.024), which can result from natal dispersal of subordinates outside the study site

	p a a a a s 1 2 3 ; ; ; (	4 7 -	t sex )+ +	Φ	s	(	a helpm a a a 1 2 3 * ; ; ;	4 7 -	) +
	t E a a a s 3 4 5 ; ;	--	7	( p a a 3 D ;	-47	)+ + t
	sex	Φ	D	(	3 a a ;	-4 1 7	)+	t	Ψ	s D	1 a a :	-7 1 7	2 a a a 3 ; ; ;	-4 7

Table 1 .

 1 -Abbreviations used in model notations.

Table 2 .

 2 -Model selection for the effects of age on survival of dominant alpine marmots (Marmota marmota) marked from 1990 to 2013 (N = 242). Φ D corresponds to survival of dominant individuals. T i corresponds to a constant survival until the threshold age (i) followed by a linear decline of survival with increasing age. Φ a D 2 16 corresponds to a linear decrease of survival from age 2 to age 16. Φ a corresponds to the full age-dependent model. All other parameters (transition, capture, and reproduction) are fixed as in the baseline model. AIC c : Akaike Information Criterion corrected for small sample sizes; k: number of identifiable parameters; ΔAIC c : difference in AIC c between the candidate model and the model of the set with the lowest AIC c ; AIC w : AIC c weight. The selected model including an age effect is in bold and is highlighted with gray shading, and the competitive candidate models are in bold.

	D	
	2	a 1 6

Journal of Mammalogy Advance Access published March 12, 2016 by guest on March 13, 2016 http://jmammal.oxfordjournals.org/ Downloaded from

by guest on March 13, 2016 http://jmammal.oxfordjournals.org/ Downloaded from

1 6 6,077.17 142 6,361.17 26.78 < 0.01 by guest on March 13, 2016 http://jmammal.oxfordjournals.org/ Downloaded from

Acknowledgements

First, I would like to thank the members of the jury, Prof. Tim Coulson, Prof. Daniel Oro, Prof. Emmanuelle Cam and Dr. Claire Doutrelant, for agreeing to be a part of this work by reviewing it and giving their informed opinion on it. It means a lot to me to have been able to receive comments and critics from people whose work is a great source of inspiration.

ACKNOWLEDGMENTS

We thank all students involved in the trapping of marmots and Earthwatch for volunteers. We also thank R. Pradel and R. Choquet for their help in the use of E-Surge software and 3 anonymous reviewers for insightful comments on a previous draft of that paper. Financial support was received from the Agence Nationale de la Recherche (project ANR-13-JSV7-0005), the Centre National de la Recherche Scientifique (CNRS) and Earthwatch Institute. We greatly acknowledge the support of Centre for Advanced Study in Oslo, Norway, that funded and hosted the research project ("Climate effects on harvested large mammal populations") and AC was participating to it in during the academic year of 2015-2016. The fieldwork conducted was undertaken after the acceptance of the project by the Vanoise National Park, and deliverance of the permit number AP n82010/121 by the Préfecture de la Savoie. A. Cohas is authorized for experimentation with animals (diploma n8R45GRETAF110). The protocol has been approved by the ethical committee of the University of Claude Bernard Lyon 1 (n8BH2012-92 V1).

List of appendices

Appendix A. Bichet, C., Sauzet, S., Averty, L., Dupont, P., Ferrandiz-Rovira, M., Ferrari, C., ... & Cohas, A (2016). Multiple geographic origins and high genetic differentiation of the Alpine marmots reintroduced in the Pyrenees. Conservation Genetic ......................................................................................................................... 251 Appendix B. Berger, V., Lemaître, J. F., [START_REF] Berger | Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence[END_REF]. Age-specific survival in the socially monogamous alpine marmot (Marmota marmota): evidence of senescence. Journal of mammalogy ...................... 264 couple, adult subordinates (age > 2), yearlings and pups born that year (Allainé 2000a).

In each family, reproduction is monopolized by the dominant couple but some subordinate males may access reproduction via extra-pair copulation (Hackländer et al. 2003;Cohas et al. 2006). Offspring produced by the dominant couple stay on their natal territory at least until sexual maturity at two years of age. From this age, natal dispersal occurs in both sexes. Dispersal rate increases until the age of three when around 58 % of subordinates of both sexes reach a dominant position by dispersing to a neighbouring territory (mean dispersal distance = 1.7 territories ; chapter IV.A). Dispersers can secure a dominant position either by immigrating in an existing family group and evicting the same-sex dominant or by creating a new territory. However, the latter is quite rare in the saturated population under study (only 5 territory creations in 25 years). Once a subordinate "decided" to disperse, it cannot come back to its natal territory nor being accepted as a subordinate in another family group. Thus, in case of failure, it becomes a floater, i.e. a wandering individual forced to hibernate alone and thus being exposed to a very high risk of mortality [START_REF] Magnolon | La dispersion natale chez la marmotte alpine (Marmota marmota). Modalités et effets de quelques facteurs proximaux[END_REF]. Subordinates that delayed dispersal can also become dominant by inheriting the position in their natal territory after the death of the same-sex dominant (32 % of three year-old females vs. 9 % of three year-old males).

Once the dominant position secured, an Alpine marmot stays dominant until death or eviction by a new incomer. Dispersal in the Alpine marmot is therefore exclusively natal dispersal. When evicted, the dominant individual becomes a floater and is thus subject to a very high risk of mortality too (Grimm et al. 2003b). .

Study site and data collection

The data set was composed of 1270 individuals captured in the Alpine marmot population located in the Grande Sassière nature reserve (2340 m a.s.l., French Alps, 45°29′N, 6°59′E) between 1990 and 2015. Marmots from up to 34 territories were monitored, from mid-May to mid-July each year, using both a capture-recapture protocol and behavioural observations. Because Alpine marmots are highly territorial, the main burrows of each family group are easily determined by observation. Traps were placed near the entrance of these burrows so that all individuals captured at a given trap are automatically assigned to their family group. All pups were captured by hand and marked at weaning i.e. at their first emergence from the burrows, approximately 40 days after their birth. Captured animals were tranquillized with Zolétil 100 and marked with a reproduction probabilities whether an immigrant arrived or not. Parameters of the model were then pt,age,sex the time, age and sex-specific recapture probabilities, Φ B age,sex the age and sex-specific survival probabilities of dominant individuals, Φ S age,sex,kin the age and sex-specific survival probabilities of subordinate individuals in the presence and in the absence of immigration, dage,sex,kin the age and sex-specific dispersal probabilities in the presence and absence of immigration, hage,sex the age and sex-specific inheritance probabilities, r S age,sex,kin the age and sex-specific reproductive success probability of subordinate individuals in the presence and in the absence of immigration and r B age,sex,kin the age and sex-specific reproductive success of dominant individuals in the presence and in the absence of immigration.

Intra-sexual competition: because of increasing sex-specific competition, dominant individuals in Alpine marmots are more likely to lose dominance when the number of same-sex subordinates increases in the family group (Lardy et al. 2012a[START_REF] Lardy | Intrasexual competition and female dominance in a singular breeding mammal, the Alpine marmot[END_REF]). An immigrant dominant should thus avoid this risk by expulsing same-sex subordinates when taking over a new family group. In this scenario, subordinate dispersal is not a choice and should translate in higher levels of dispersal and/or lower levels of survival only for subordinates of the same sex than the immigrant. Concerning the reproduction probability, the expected outcome of a new dominant take-over is similar to the previous model. These models were then compared to a simple model with no effect of the immigration of a new dominant (the root model). All three models were run using JAGS via R with the package jagsUI and models were compared based on the Deviance Information Criterion (Spiegelhalter et al. 2002a). To ensure full convergence, models 9.5. Supporting Material

Root model script and results

sink("IMED_ROOT.bug") > cat(" + model + { + # Priors and constraints + for (i in 1:nind) [4,i,t,1] <-0 + ps [4,i,t,2] <-0 + ps [4,i,t,3] <-0 + ps [4,i,t,4] [4,i,t,1] <-0 + po [4,i,t,2] <-0 + po [4,i,t,3] <-0 + po [4,i,t,4] <-0 + po [4,i,t,5] <-0 + po [4,i,t,6] <-0 + po [4,i,t,7] <-0 + po [4,i,t,8] <-0 + po [4,i,t,9] 

Kin-selection model script and results

sink("IMED_KIN.bug") > cat(" + model + { + # Priors and constraints + for (i in 1:nind) [1,a,1] ~ dunif(0,1) + mean.d[1,a,2] ~ dunif(0,1) + mean.d[2,a,1] ~ dunif(0,1) + mean.d[2,a,2] ~ dunif(0,1 [4,i,t,3] <-0 + ps [4,i,t,4] 

Intra-sexual competition model script and results

sink("IMED_INTRA_SEX.bug") > cat(" + model + { + # Priors and constraints + for (i in 1:nind) We start by presenting a simulation study to show that a two-class mixture distribution better describes de-lifing data than a single Gaussian one. Then we present the O3M model and compare it to a classical linear model to demonstrate its usefulness.

To do so, we simulated data sets following different scenarios where the mean of a twocomponents normal mixture distribution was dependent on a hypothetical variable, and we compared the results obtained by the O3M and a classical linear model. Finally, we illustrate the usefulness of our model on real data with an analysis of the relationship between annual realized fitness calculated using the de-lifing method and age in a cooperatively breeding mammal, the Alpine marmot (Marmota marmot). We end by discussing the strengths and limitations of our approach, by providing general advice on how and when to use it, and discussing further developments.

Material and methods

De-lifing data distribution

According to (Coulson et al. 2006a), the annual individual fitness of individual i is measured by its contribution pti to the growth rate of the population between t and t+1.

(1)

where is the survival of individual i between t and t+1 (1 if it survived and 0 otherwise), is the mean survival rate in the population between t and t+1; is the fecundity of individual i defined as the number of offspring born between t and t+1 and still alive at t +1; is the mean fecundity in the population between t and t+1 and is the population size at t.

In order to analyse the distributional properties of individual fitness calculated using the de-lifing method, we simulated several data sets under different parameterizations. These parameterizations covered a wide range of biological scenarios on the slow-fast continuum [START_REF] Gaillard | Generation Time: A Reliable Metric to Measure Life History Variation among Mammalian Populations[END_REF], from species with high survival, high reproductive skew and small litter size to species with low survival, evenly distributed We then fitted a two-component mixture of normal distributions to each simulated data set and compared it to a single normal distribution to test if distributions were best approximated by a mixture of two normal distributions or by a single normal distribution. Both distributions were fitted with a burning period of 6000 and a total number of iterations of 10000 (see supplementary material 10.6.1 for the simulation and distributions fitting R-scripts).

Overall-Mean Mixture Model

The classical linear model can be described by:

where y is the random variable we wish to explain, i.e. the annual fitness in our case, μ and σ 2 are respectively the mean and variance of the normal conditional density of y, x is the vector of independent variables we wish to relate y to, α is the intercept and β is the vector of variable-specific coefficients. Here, we replace the normal distribution with a mixture of two normal distributions:

where π is the mixture weight of the first component and μk and σk 2 are the mean and variance of the k th component.

Following [START_REF] Everitt | Finite Mixture Distributions[END_REF], the mean and variance of the normal mixture are:

The parameters of the model are then the different intercepts α, α , αΔ, the regression coefficients β, β , βΔ and the two component-specific variance parameters 2 2 and 1 2 .

Parameters estimation

Specifying the mixture normal rather than a simple normal distribution entails a price in We produced different data sets of increasing complexity to cover a wide range of possibilities, from constant overall mean mixture weight and difference Δ (i.e. no effect of the variable xi) to quadratic relationships between and x, linearly increasing Δ and logit-linearly increasing (Tab.V.2). We then fitted the O3M model and a classical linear model independently ten times for each scenario with a burning period of 6000 and a total number of iterations of 10000 to determine the accuracy of the parameter estimates (see supplementary material 10.6.2 for the simulation and O3M scripts). To be able to analyse the results from the different simulations together, we worked on the difference between the simulated and the estimated value of the regression parameters of the mean for each run of each simulation for both the O3M and the linear model. To determine whether the linear model was able to recover the simulated parameters although the specified distribution violates the linear models assumptions, we tested if these differences between the simulated values and the estimated parameters were significantly different between the O3M and the linear model using Wilcoxon signed rank tests. We then tested if the precision of the estimates differed between the two models by testing if the standard deviations associated to the different regression parameters differed between the O3M and the linear model using Wilcoxon signed rank tests. 

Real data application: Fitness variation with age in the Alpine marmot

To illustrate the usefulness of our model in evolutionary studies, we applied it to data from a long-term field study on Alpine marmots. We studied how the individual annual fitness calculated with the de-lifing method varies with age using the O3M, and compared our results to those obtained with a classical linear model. From 1990, individuals from the population located in the Grande Sassière Nature Reserve (Vanoise, France) were captured each summer between May 15 th and July 15 th . At first capture, individuals were permanently marked using both pit-tags and metal ear tags for later identification by recapture and/or resighting (Cohas et al. 2008b) 

## Specify model in BUGS language model { sd ~ dunif(0,100) ## standard deviation prior tau <-1/pow(sd,2) ## link between sd and precision mu ~ dunif (-100,100) ## prior for the mean of the normal for (i in 1

## Bundle data inits <-function() list(sd = runif(1,0,100), mu = runif(1,-100,100)) ## Initial values params <-c("mu","sd") ## Parameters ni <-10000 ; nt <-1 ; nb <-6000 ; nc <-3 ## MCMC settings ## Call Jags from R library(jagsUI) normal <-jags (data, inits, params, "Normal.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE) print(normal, digits = 3) ## prints the results

## residuals of the model } }") # Bundle Data data <-list(pt = bin$pt, N = length(bin$pt), cov = bin$cov) # Initial values inits <-function() list(alpha=rnorm(1,0,0.1), beta=rnorm(1,0,0.1), beta2=rnorm(1,0,0.1), aD=rnorm(1,0,0.1), bD= , aP = rnorm(1,0,0.1), bP = rnorm(1,0,0.1)) # Parameters monitored params <-c( "alpha", "beta", "beta2", "aP", "bP", "aD", "bD", "sd", "residuals") # MCMC settings ni <-10000 ; nt <-1 ; nb <-6000 ; nc <-3 ## Call jags from R O3M <-jags(data, inits, params, "O3M.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) print(O3M, digits = 3) ## prints the results plot(O3M) ## to visualise the convergence of the chains and the parameters distributions 

Sociality, Group contribution & Fitness

The more (not) the merrier?

Group contribution and individual fitness in the Alpine marmot

Abstract: In cooperative breeders, the size and composition of the group are very important for most aspects of an individual life. It will influence its survival, reproduction and potentially dispersal. At the higher level, these variations in demographic rates are expected to contribute differently to the overall population dynamics of the species. In this chapter, I studied the consequences of varying group size and/or composition for the group dynamics and overall population dynamics by studying how different social groups contribute to the population growth rate based on a long-term individual-based data set on Alpine marmots (Marmota marmota). Surprisingly, group contribution to population growth rate steadily decreased with group size. This pattern can be explained by looking at the differences between subordinate and dominant contributions to the overall population growth rate. The increase in dominant contribution to population growth rate with the number of subordinate males in the groups we found is not sufficient to counter-balance the accumulation of subordinate negative contributions due to reproductive suppression, hence leading to the observed pattern at the group level. Further implications of this result for thepopulation dynamics are discussed.

Keywords:

Group contribution to population growth rate • Group dynamics • Annual individual fitness• (Preliminary results).

Group contribution calculation

To measure how much a group contributed to the population dynamics, we used a slightly modified version of the de-lifing method (Coulson, 2006):

where ptG is the contribution of group G to the population growth rate between time t and t+1, εtG is the group performance between t and t+1, i.e. the number of individuals present in the group at time t and still alive at time t+1 plus the number of offspring produced by group members between t and t+1 that are still alive at t+1, Gt is the group size at t, ωt is the population growth rate between t and t+1 (ωt =Nt+1/Nt) and Nt is the population size at time t. To identify through which demographic rate groups contributed the most to population growth rate, group contribution to population growth rate was decomposed in its survival and recruitment components. In addition, the group survival contribution can further be decomposed in its philopatric survival and dispersal components since individuals that survive can either stay in their natal group or disperse and found or take over another group. These two different behaviours are likely to be differently influenced by social factors and are worth analysing apart. The group contribution can thus be written as the sum of the group contributions to mean survival, mean dispersal rate and mean recruitment:

where StG is the number of individuals present in group G at time t and still present in group G at time t+1, DtG is the number of individuals present in group G at time t that dispersed and are found alive elsewhere at time t+1 and FtG is the number of offspring produced between t and t+1 that are still alive and recruited at time t+1. , and are respectively the mean philopatric survival rate, mean dispersal success rate and mean recruitment in the population between time t and t+1.

Individual contribution calculation.

To further analyse the influence of group living in the Alpine marmot, we calculated individuals' contribution to population growth rate as:

where Sti is the philopatric survival of individual i (1 if it survived and stayed on its natal territory and 0 otherwise) between time t and t+1, Dti is the successful dispersal of individual i (1 if it dispersed and settled as a dominant inside the study area and 0 otherwise) between time t and t+1 and Fti is the number of offspring produced by individual i between t and t+1 that are still alive at time t+1 (divided by 2 because both sexes are considered). , and still represent the mean philopatric survival rate, mean dispersal success rate and mean fecundity.

Statistical analyses

Because de-lifing data are rarely normally distributed, we used overall-mean mixturemodels (O3M; see chapter V.A) to analyse how the group size and composition influenced the group and individual contributions to population growth rate (see supplementary material 11.5 for the complete model selection procedure). This result seems paradoxical at first sight because sociality is expected to evolve only when it provides individuals with benefits larger than costs [START_REF] Trivers | Social evolution[END_REF]. To better understand this result, one needs to look at the influence of group characteristics at the individual level. 

Results

De

Supplementary material

Model selection

Overall-mean mixture-models (O3M) are linear models designed to account for bimodally distributed data. The variance structure in such models is modelled using a mixture of two normal distributions instead of the Gaussian distribution assumed in classical linear models. It can write as:

where y is the random variable we wish to explain, i.e. the group contribution to population growth rate in our case, μ is the mean of the two-normal mixture density of y,

x is the vector of independent variables we wish to relate y to, i.e. the group size and composition in our case, α is the intercept, β is the vector of variable-specific coefficients, Δ is the difference between the means of the two components and π is the mixture weight of the first component.