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Abstract 
_____________________________________________________________ 
Population dynamics can be defined as the study of the forces responsible for the size 
and structure of a population. Several factors influencing population dynamics have 
already been identified. These factors can be categorized according to their level of 
influence. Some factors have a population-wide influence, such as climate change or 
population density, while others affect the individual level such as age or sex. Recently, 
many studies have emphasized the importance of this age structure for population 
dynamics. 
In social species, an additional level of structuring of the population is the group. 
However, the consequences of this social group structuring are still poorly understood. 
In this thesis, I try to answer this question in different ways. I first studied how the 
individual demographic parameters were influenced by the size and composition of the 
group. I was able to highlight in particular a negative effect of the number of juvenile 
females present during development on the probability of becoming dominant once in 
adulthood. In a second step, I studied the importance of interactions between groups by 
quantifying the impact of a change of dominant on the dispersion of subordinates. 
Finally, I also quantified the influence of different groups within the population showing 
that large groups contribute relatively less to the population growth rate. These various 
results are then discussed in a context of evolutionary demography and new avenues of 
research are proposed. 

 

Résumé 
_____________________________________________________________ 
La dynamique des populations peut être définie comme l'étude des forces responsables 
de la taille et de la structure d'une population. Plusieurs facteurs influençant la 
dynamique des populations ont déjà été identifiés. Ces facteurs peuvent être classés de 
par leur niveau d'influence, d'une influence à l'échelle de la population toute entière, 
comme par exemple les changements climatiques ou la densité de population, jusqu'à 
des facteurs individuels comme l'âge ou le sexe. Récemment, de nombreuses études ont 
insisté sur l'importance de la structure en âge pour cette dynamique. 
Chez les espèces sociales, un niveau supplémentaire de structuration de la population est 
le groupe. Cependant, les conséquences de cette structuration en groupes sociaux est 
encore mal connue. 
Au cours de ma thèse, j'ai tenté de répondre à cette question de différentes manières. J'ai 
tout d'abord étudié comment les paramètres démographiques individuels étaient 
influencés par la taille et la composition du groupe. J'ai pu notamment mettre en 
évidence un effet négatif du nombre de juvéniles femelles présents lors du 
développement sur la probabilité de devenir dominant une fois à l'âge adulte. Dans un 
deuxième temps, j'ai étudié l'importance des interactions entre groupes en quantifiant 
l'impact d'un changement de dominant sur la dispersion des subordonnés. Enfin, j'ai 
également quantifié l'influence des différents groupes au sein de la population 
démontrant que les grands groupes contribuent relativement moins au taux de croissance 
de la population. Ces différents résultats sont ensuite discutés dans un cadre de 
démographie évolutive et de nouvelles pistes de recherche sont proposées. 
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Et puis il y a Marine… 
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“All evolutionary biologists  
  know that variation itself is  
  nature's only irreducible essence...  
  I had to place myself amidst the variation.” 
 
 S. J. Gould  
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Prologue 

When I started my PhD formation in October 2013, I joined the Evolution, Adaptation 

and Behaviour research team within the LBBE. However, I got the opportunity to start 

working for Prof. D. Allainé and Dr. A.Cohas a few years before, as a field work 

volunteer. I first came to the Grande Sassière nature reserve during the summer 2010 

where I had my first close encounter with this fascinating mammal that is the Alpine 

marmot. At least fascinating enough to make me come back the following summer. 

Later on, and thanks to Dr. A. Cohas, I got to meet another fascinating mammal during 

my master internship: Dr. R. Pradel who introduced me to the world of Capture-

Recapture methods and more generally to the universe of population ecology modelling. 

Following this, the three of them were kind enough to support my application for 

a PhD thesis. As for all theses (or most of the theses at least), it did not go exactly 

according to the original plan, but in the end, I found myself going places I never 

thought I would go and working on topics I never thought I would be able to work on. 

Not to mention I enjoyed it! Starting from a main focus in ethology and behavioural 

ecology, with a particular interest in contemplating animals in their natural habitat, I 

ended up working hours and hours on programming obscure linear mixture models, 

whose existence I didn't suspect few months before. And I liked it! This manuscript 

compiles the work I did in the last three and a half years, almost in a chronological 

order, and I think it reflects quite well the evolution of my PhD subject but also my 

personal evolution (and understanding of the researchers' work).  

 In the first chapter, I give a general overview of the topic of my PhD journey: 

“The influence of sociality on the population dynamics, the case of the Alpine marmot”.  

One of the easiest and most efficient ways to circumscribe a subject is by giving its 

terms clear definitions. The structure of this introduction will thus be articulated around 

some definitions of the most important terms that are “population dynamics”, “sociality” 

and “influence”. I will start by introducing the concepts associated to population 

dynamics relevant to this study. The second part will introduce the different forms of 

sociality and especially the different features of social living susceptible to impact the 

population dynamics of species. In the third part of the introduction, I will briefly point 

out the importance of using appropriate methods to answer specific questions, with a 

focus on challenges related to population biology studies. Finally, a fourth part will be 

dedicated to the presentation of the different chapters of this thesis. 
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1. « Population Dynamics » 

 1.1. What is population dynamics? 

“Population dynamics is the study of how and why population numbers change in time 

and space” (Turchin 2003). Even though humans surely noticed and cared about the 

fluctuations in animals’ numbers since the first ages (probably more so than we do now), 

population ecology became a scientific discipline on its own only in the 1920s 

(Kingsland 1995). At that time, ecology was largely dominated by both individual-level 

studies, with a particular focus on physiological responses to the environment, and 

community-level studies describing patterns of species associations, mostly among 

plants (Moore 1920). The “omission” of the population level is particularly obvious in a 

paper published in 1915 by V.E. Shelford, the first president of the Ecological Society of 

America. In this paper entitled “Principles and problems of ecology as illustrated  by 

animals”, Shelford dedicated the first two parts to individuals, with topics such as the 

“characteristic physiological life history” while the four remaining parts of the 

publication were devoted to animal communities and how they compare to plant 

communities.  

But both the individual and community levels are not sufficient to understand 

patterns at the population level, and population ecology began to receive much attention, 

partly because of the strong associated interests in agricultural and natural resources 

management (Kingsland 1995). It is therefore not surprising that among the first 

population dynamics articles published were studies on the populations of fur-bearing 

animals, of great economic interest at that time. These pioneering studies in the field of 

population dynamics are often traced back to the works of Elton (1924), Lotka (1925), 

Volterra (1926) or Nicholson (1954) (although Malthus' essay (1798) on the exponential 

growth rate and population regulation is often given credit as the first demographic study 

of importance). While Charles Elton was a naturalist above all who got interested in the 

periodic fluctuations in the abundance of Norwegian lemmings, Alfred Lotka was a 

mathematician and physical chemist by training and Vito Volterra was a physicist and 

mathematician. It is particularly interesting to note that population ecology, and 

especially population dynamics, brought together biology (and mainly zoology) and 

mathematics from the very beginning (although in practice both disciplines developed 

separately and their respective supporters were reluctant towards the other approach for 

quite a long time; Cooper 2007) .  
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 Historically, as exemplified by the famous examples of Elton’s work on 

lemmings’ cycles or Canadian lynx (Elton & Nicholson 1942), population dynamicists 

were interested in quantifying the number of individuals present in a population and in 

describing the variation of these numbers in time. However, as noted by Lebreton 

(1981), the term “dynamics”, comes from the branch of mechanics and supposes “the 

study of the forces or properties which stimulate growth, development, or change within 

a system or process.” (Oxford dictionary). It appears very clearly from this definition 

that the discipline of population dynamics is not limited to the measure of population 

size and its temporal variation but contains in its own etymology the motivations to 

study the forces responsible for the changes observed in natural populations. Gaillard 

(1988) identified three different levels in the study of populations:  

(i) Population size. Starting at the larger scale, this level is also the first 

historically. Counts data and time series of population size estimates may well inform 

about the general trend of a population and its potential susceptibility to extinction but it 

says nothing about the processes underlying the observed population changes. 

Nowadays, most studies on population size are either conservation studies trying to 

provide a general overview of a poorly known species (Botero-Delgadillo et al. 2015), 

of the efficiency of conservation measures (Ruegg et al. 2013) or population genetics 

studies with a focus on effective population size and genetic diversity (Palstra & Fraser 

2012). 

(ii) Demographic rates. Ultimately, as emphasized by Tuljapurkar & Caswell 

(1997), population dynamics result from the combination of individuals’ capacity to 

survive, move and reproduce, and the rates at which these processes occur are the true 

determinants of population dynamics. Identifying variation in demographic rates 

between individuals is thus necessary to a thorough understanding of population 

dynamics (Benton et al. 2006). Notably, any variation in the population size or structure 

results from a variation in at least one of the demographic rates while the opposite is not 

true. Hence, the importance of population dynamics studies considering this level. 

(iii) Factors affecting demographic rates. The relative influence of these different 

factors will be responsible for the variation in demographic rates and therefore 

population changes. Identifying and understanding the mechanisms through which these 

factors are responsible for the observed variation in demographic rates is thus the best 

way to characterize and understand population dynamics of animal species. 
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Accordingly, recent studies in population dynamics focused more and more on 

identifying these drivers of demographic rates (level three; León-Ortega et al. 2016), 

quantifying the relationships existing between these factors and the different 

demographic rates (levels two and three; Rézouki et al. 2016) and quantifying to what 

extent the overall population dynamic will be sensitive to these factors (levels one, two 

and three; Coulson et al. 2005).  

1.2. Drivers of population dynamics  

Since the first population dynamics studies, great theoretical and methodological 

progress has been made (Tuljapurkar & Caswell 1997; Caswell 2001; Turchin 2003). 

Many of the factors affecting demographic rates, and ultimately population size and/or 

growth rate, were identified. These factors are often presented following a dichotomy: 

density-dependent vs. density-independent, biotic vs. abiotic, endogen vs. exogen and 

these different classifications sometimes overlap making it more difficult to understand. 

Hereafter, I present an overview of some of the factors affecting population dynamics 

based on their nature and on the scale of their influence, from internal factors affecting a 

single individual to large-scale factors affecting a whole population or even several 

species at the same time.  

Age/sex/stage structure. Quite obviously, individuals in a population differ in 

many aspects (age, size, sex, developmental stage, physiology…). Even more obviously, 

these differences are translated into differences in demographic rates. Think for example 

about the reproductive rate of juvenile individuals or the survival probabilities of old-

infected-stressed individuals. These differences in survival and/or reproduction between 

individuals are almost universal in animals. This leads to populations being structured 

and it has been shown that populations under the same environmental conditions but 

with different age structure will display different dynamics (Coulson 2001; Cameron & 

Benton 2004). Considering differences among individuals according to their 

age/sex/stage instead of demographic rates averaged over the whole population has 

proven very useful, and the study of structured populations considerably developed in 

the last 20 years (Tuljapurkar & Caswell 1997; Caswell 2001). 

Density dependence. Another largely studied driver of population dynamics is 

population density. This was notably the subject of a famous debate that took place at 

the Cold Spring Harbor symposium in 1957. In this debate, Nicholson claimed that 

natural populations were self-regulated and that competition among conspecifics 
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increases with their number, thus leading to a decrease in the demographic rates at high 

densities. Since then, this population regulation mechanism was proven to be true under 

many circumstances (Clutton-Brock et al. 1987; Forchhammer et al. 1998). In addition, 

later research on this topic of density-dependence led to the proposition of a potential 

inverse density-dependence at low densities, known as the Allee effect (Allee et al. 

1949). Several mechanisms have been proposed to explain this negative effect of low 

densities, such as genetic inbreeding and consecutive loss of genetic diversity, 

demographic stochasticity and social facilitation (Courchamp et al. 1999). 

Interspecific interactions. Factors affecting population dynamics may also stem 

from interactions with other species. Predator/prey relationships were identified as a 

potential driver of population dynamics in the earliest studies on population dynamics. It 

was for example suggested as the main driver of the periodic fluctuations observed in 

lynx (Lynx cancadiensis) population size by Elton & Nicholson (1942) and it was 

studied from a mathematical point of view with the famous Lotka-Volterra equations 

(Lotka 1925; Volterra 1926). But interspecific interactions are not limited to 

predator/prey relationships. It also encompasses parasites/hosts interactions (Dobson 

2004) or exclusive competition (Gurnell et al. 2004) amongst others and many examples 

of population dynamics driven by interspecific interactions were published in the last 

fifty years (Tilman & Kareiva 1997; Durrett & Levin 1998; Fenner 2000). 

Environmental variation. Although the term “environment” is rather unclear and 

may apply to very different concepts, I refer here to abiotic factors such as temperature, 

precipitation, sun exposure… Although food resources availability is often classified as 

an environmental factor, I think it should rather be considered as belonging to the 

interspecific-interaction category. This is for example the case for vegetation-grazers 

dynamics (Pachzelt et al. 2013). This precision being made, variation in abiotic factors 

may affect demographic rates at very different scales, from local differences in chemical 

components in the soil (Dahlgren & Ehrlén 2009) to worldwide climate change (Grøtan 

et al. 2005; Wilmers & Getz 2005; Jenouvrier et al. 2005). The influence of these abiotic 

factors was also identified long ago. The opponents of the density-dependent population 

regulation during the 1957 Cold Spring Harbor symposium for instance, argued that 

survival and reproduction variations were mainly driven by abiotic conditions and 

notably the weather (Birch 1957). In addition, recent research on this topic highlighted 
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the importance of the variability of these abiotic factors for population dynamics 

(Frederiksen et al. 2008; Tuljapurkar 2013). 

Nowadays, it is widely accepted that these different factors will not act separately 

and that observed population dynamics instead emerge from the interaction of numerous 

factors (Benton et al. 2006; Stopher et al. 2008a; Oro 2013). Additionally, a potential 

factor that is still largely overlooked in the context of population dynamics (but see 

Bateman 2013), and might have important effects on different demographic rates and 

population dynamics is sociality. 

2. « Sociality » 

 2.1. What is sociality? 

Sociality can be broadly defined as the tendency of individuals to live in groups. 

However, this very vague definition hides the multiplicity of social systems displayed by 

a multiplicity of animal species in nature. Comparable social systems may be found in 

very distinct taxa such as insects, birds, and mammals while closely related species may 

present very different social systems (Trivers 1985). For example, among primates, 

gorillas live in single-male harem systems, chimpanzees live in large 

multimale/multifemale groups and orangutans present a solitary lifestyle, even if the 

territory of a male may overlap several females territories (Kappeler & Schaik 2002), 

not to mention the variety of social systems in humans (Ségurel 2010). 

The diversity of social systems ranges from eusociality in insects (and in naked 

mole rats Heterocephalus glaber, the mammal exception) or cooperative breeding in 

vertebrates to solitary life in many mammalian species. For a better definition, social 

systems are usually described using three different aspects: social organization, mating 

system, and social structure (Kappeler & Schaik 2002). Following the definitions given 

by Kappeler& Schaik, (i) social organization refers to the size, sexual composition and 

spatiotemporal cohesion of a group of individuals. (ii) mating system describes which 

males and females mate inside each group. Recent studies in birds and mammals showed 

that the social mating system may differ from the genetic mating system (Cohas et al. 

2006). The social mating system describes pattern of association between males and 

females, namely mating couples, whereas the genetic mating system refers to the 

effective number of individuals of each sex who successfully reproduced. (iii) social 

structure is defined by the pattern of behavioural interactions and the resulting 
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relationships among the members of a society. The essentials of a social system can then 

be defined by combining these three components (Tab.I.1). 

Table I.1. Classification and description of social systems  (from Berger 2015) 
Social systems description 

Solitary      no interactions between adult 
individuals except for reproduction 

Gregarious 

     group formation  
 no interactions between adults  

  
 groups may last or exist only during 

mating season 
     allo-parental care may occur 

Colonial 
     pair formation (sometimes for life)  

     few interactions between pairs 

Social 
groups 

Plural 
breeders 

absence of 
allo-parental 

care 

 group living  

 cooperative interactions 

 overlap of generations 

allo-parental 
care 

 group living  

 cooperative interactions 

 overlap of generations 

 allo-parental care 

communal 
breeders 

 group living 

 cooperative interactions  

 overlap of generations  
 synchronisation of reproduction  
 equally shared parental care 

Singular 
breeders 

cooperative 
breeders 

 group living  

 overlap of generations 
 reproduction monopolized by 

dominant individuals 
 delayed dispersal of subordinates  
 allo-parental-care provided by 

subordinates 

eusocial 

 group living 

 labour division 
 reproduction monopolized by one 

or few individuals  
 subordinates are sterile  
 allo-parental-care 
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Sociality in animals is most often considered from an evolutionary point of view.  

Group formation comes at a cost since individuals have to compete against each other 

for resources but it can also provide benefits. The balance between these costs and 

benefits in a given environment will determine the social system displayed by species. 

Female lions for example, are more efficient together to hunt and protect the young and 

the net fitness benefit they can expect is higher when living together even if they have to 

share the product of the hunt and compete for reproduction with other females of the 

group (Packer et al. 1990; Stander 1992). Similarly, colonial birds may suffer from the 

close proximity with conspecifics because of competition for nest locations but they will 

benefit from a better detection and defence against predators (Brown et al. 1990). 

Accordingly, Serrano et al. (2005) showed that lesser kestrels (Falco naumanni) living 

in larger colonies had higher survival rates than individuals of smaller colonies as a 

result of decreased predation pressure. They also found that larger colonies were more 

attractive with dispersal probabilities from small to large colonies being much higher 

than from large to small colonies. The emergence of group living is thus well explained 

in the context of natural selection by the balance between costs and benefits associated 

to group living.  

 While low levels of sociality are easily explained by the individual net benefits in 

terms of survival and/or reproduction provided by group living, the existence of costly 

behaviours (i.e. altruism) in species with high levels of sociality seemed paradoxical to 

biologists for a long time. Darwin himself considered the existence of altruistic 

behaviours as a direct threat to his theory: “It represents one special difficulty, which at 

first appeared to me as insuperable and actually fatal to my whole theory. I allude to the 

neuters or sterile females in insect communities: for these neuters often differ widely in 

instinct and in structure from both the males and fertile females, and yet, from being 

sterile, they cannot propagate their kind” (Darwin 1859). Since then, many theories were 

proposed too explain the evolution of altruism in highly social species. One of the most 

well-known theories is the kin-selection theory by (Hamilton 1964a,b). In his papers, 

Hamilton demonstrates that altruistic behaviours can be selected for because of the 

indirect fitness benefits one can obtain by helping a kin-related individual to reproduce. 

Because kin-related individuals share parts of their genomes, by helping a kin to 

reproduce, one will also transmit some of its genes, hence indirectly increasing its 

representation in the population, i.e. its fitness value. This explanation is contained in the 
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surprisingly simple formula known as Hamilton’s rule: B.r > C, where B is the fitness 

benefit of the recipient of the behaviour, r is the relatedness between considered 

individuals, and C is the cost incurred by the altruist individual (although in the original 

paper, Hamilton used a different formulation: k > 1/r where k is the ratio of gain to loss 

for the individual displaying a costly behaviour). Kin-selection theory proved very 

useful to explain apparently costly behaviours in social animals (e.g. Queller & 

Strassmann 1998; Covas et al. 2006; Hughes et al. 2008). However, other theories have 

been proposed to explain the existence of costly behaviours without involving the 

genetic relatedness between individuals. For example, individuals might help other 

members of their social group at their expense if they are likely to receive help from 

others in return (delayed reciprocity: Wiley & Rabenold 1984; Kokko et al. 2001). This 

is for example the case in vampire bats (Desmondus rotondus) that regurgitate blood to 

feed un-related individuals in need when they can expect to be fed in return when 

needed (Wilkinson 1990). 

 2.2. Sociality and population dynamics 

As shown in the previous paragraph, for sociality to evolve, it must confer a net fitness 

benefit to the individuals living in groups compared to solitary individuals. It follows 

that, in social species, survival, reproduction or both are affected by the characteristics 

of the social groups, i.e. the social organization (group size, composition and stability). 

It is therefore expected that demographic rates will vary according to the social 

organization displayed by a species. A great deal of studies (mainly interested in the 

evolution of sociality) identified relationships between group size (McGuire et al. 2002), 

composition (Silk 2007), or stability (Baird & Whitehead 2000) and different 

demographic parameters (survival, reproduction, dispersal). 

 These different studies highlighted the link between social groups’ characteristics 

and the performances of individuals within their group. These relationships will 

determine the number of individuals to survive and the number of young produced by 

each group, thus being responsible for the dynamic of the group. However, in a 

population, social groups are not isolated from each other and the overall population 

dynamics cannot be fully understood without considering the interactions between the 

different social groups of the population. In social species, the grouping of individuals 

will thus generate an additional level of structuration in the population, in between the 
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individual and the population level, and the potential for interactions between these 

social structures through dispersal events. In this aspect, population dynamics of social 

species may be compared to the dynamic of a meta-population with social groups 

playing the role of local populations (Bateman et al. 2013). 

The population dynamics of social species is therefore expected to be much more 

complex than that of solitary species. Demographic rates will vary both within social 

groups because of the differences in age/sex and group composition but also between 

social groups. By contrast, these interactions between social groups were largely ignored 

despite their potential importance for the overall population dynamic. Understanding the 

population dynamics of social species thus requires to understand both interactions 

between individuals (responsible for group dynamics), and group-level interactions 

(linked to dispersal between groups). 

3. « The Influence » 

Once the topic has been clearly defined, another issue arises. This issue concerns the 

“how to” part of the research. Namely, how can one quantify the influence of sociality 

on population dynamics? I already argued that the best scale at which to proceed is the 

individual level since it allows identifying the mechanisms responsible for the variation 

in demographic parameters and consequently for the overall population dynamics. 

Because these factors are susceptible to vary in their influence and intensity with the age 

of individuals (e.g. the age specific pattern of survival), data should be gathered over the 

lifetime of individuals. We therefore require data covering the entire life of individuals 

from the species we wish to study. Finally, and obviously, we need data on the social 

organization of the species under study. 

3.1. Long-term individual-based studies 

In a recent review, Clutton-Brock & Sheldon (2010) stressed out the importance of long-

term individual-based studies in both ecology and evolutionary biology. They pointed 

out six characteristics of these studies that are of great importance in ecology and 

evolution; (i) it provides the necessary information to study age-related changes in 

demographic rates and potentially the differences between individuals in these patterns 

(Nussey et al. 2008); (ii) longitudinal studies allow to relate events at one stage during 

life to those at another such as early-life carry on effects (Lindström 1999); (iii) 

individual-based studies provide opportunities to assess the social interactions between 
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individuals and the kinship structure of populations and its effect on demographic 

parameters (Clutton-Brock 2016); (iv) it allows to quantify to what extent breeding 

success varies between individuals and sexes, i.e. to study the reproductive skew in 

animal populations (Allainé 2000a); (v) long-term studies over several cohorts enable 

different selection gradients to be calculated, thus providing unique opportunities to 

witness changes in selection strength and eventually direction; and (vi) when these 

studies extend over several generations, it makes it possible to study the quantitative 

genetics of phenotypic traits in wild populations (Kruuk et al. 2008). 

However, and despite their tremendous potential and scientific importance, these 

long-term individual-based data sets are also faced with many challenges. The first (and 

probably most important) challenge is the difficulty to run and maintain these programs 

because of logistical problems. These limitations include providing accommodation for a 

large number of field workers, sometimes for a long time, sometimes in remote areas, 

dealing with changing governance policies during the course of the studies, changing 

protocols (implied by temporary experiments for examples), and funding inconsistency, 

just to name but a few. In addition, different methodological challenges are contingent to 

these long-term individual-based studies. 

 3.2. Capture-recapture methods 

Indeed, in practice, it is (almost) always impossible to follow a large number of 

individuals over a long time period without missing some of them from time to time. 

Hence, some information is missing in the data and analyses ignoring this source of error 

will lead to flawed inference of the relationships between the factors under study and the 

demographic rates (Gimenez et al. 2008). In the last 30 years, Capture-Recapture 

methods were developed to account for this imperfection of the data. Present day 

Capture-Recapture models are very powerful and allow to model very complex life 

cycles (e.g. different survival, dispersal and reproductive rates according to age, sex, 

developmental stage, hierarchical state). This enables the estimation of unbiased 

demographic parameters in relation to covariates of interest, depending on the 

population dynamics question we wish to answer (e.g. the influence of sex and age on 

survival in Tavecchia et al. 2001; influence of previous breeding success on dispersal in 

Cam et al. 2004; influence of food availability on adult survival and emigration in Oro et 

al. 2004). The strength of Capture-Recapture methods is to simultaneously account for 
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the potential flaws in the data that can lead to mis-estimations of demographic 

parameters; whether it is unequal time intervals between capture occasions (White & 

Burnham 1999), heterogeneity in recapture probabilities (Bonner 2008a), uncertainty in 

observations (Pradel 2005). Capture-Recapture methods are thus the most appropriate 

tool to quantify how sociality will affect the different demographic parameters.  

4. Organization of the thesis 

In the following chapters, I will present the different studies I conducted to determine 

the influence of sociality on Alpine marmots population dynamics. The choice of the 

Alpine marmot as biological model to answer this question was motivated by several 

reasons: 

(i) Alpine marmots are highly social (Allainé 2000a; Armitage 2014). They are 

socially monogamous cooperative breeders organized in family groups.  This 

social system implies strong differences among individuals inside each 

family group and a strong differentiation between social groups, thus a 

putatively strong influence on population dynamics. 

(ii) Social groups in this species are highly variable (ranging from 2 to 20 

individuals, with variable sex-compositions) thus allowing us to relate the 

variation in demographic rates due to the variation in group composition. 

(iii) The availability of a long-term individual-based data for this species (26 

years of study, see https://thealpinemarmotproject.org/) ensured the 

feasibility of this project by making it possible to study the influence of 

sociality with sufficient power and details in the analyses to draw reliable 

conclusions. 

(iv) The Marmota genus and the Alpine marmot especially have been extensively 

studied from very different angles (e.g. Cohas et al. 2006; Lardy et al. 2013; 

Ferrandiz-Rovira 2015; Berger 2015; Rézouki et al. 2016) thus providing a 

solid foundation for this study, and allowing enlightening comparisons with 

previous studies. 

Over the course of my PhD formation, I was thus able to make the most of the 

long-term individual-based dataset on Alpine marmots from La Grande Sassière (chapter 

II) to conduct a first study on the influence of the early social context on the ability of 

individuals to access reproductive status later in life (chapter III). I then took advantage 
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of the latest developments in terms of Capture-Recapture methods to propose an 

Integrated Capture-Recapture model to rigorously study dispersal (chapter IV.A) and 

tested for the effect of an intrusion by a new dominant individual on the group dynamics 

of Alpine marmots (chapter IV.B). To understand the consequences of sociality at the 

level of the population, I used a measure of individuals’ contribution to population 

growth rate. To do so, I had to develop a new formulation of linear mixture models and 

tested it by quantifying the influence of age on individuals’ contributions to population 

growth rate (chapter V.A). Based on these results, I derived a measure of group 

contribution to population growth rate from the same metric to analyse how the size and 

composition of a social group impacted its contribution to the overall population 

dynamic (chapter V.B). Finally, I end this manuscript by a discussion of the relevance of 

these results to the understanding social species’ population dynamics and propose 

further lines of inquiry (chapter VI).   
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Chapter II 

Material & methods 
 

 

Marmota marmota 

and the Grande Sassière population 

 
Abstract: In this chapter, I present the biological model I used all along this study to answer 
questions about the influence of sociality on population dynamics: the Alpine marmot Marmota 
marmota. The Alpine marmot belongs to the Sciuridae family, the Marmotini tribe and the 
Marmota genus. Recent phylogenetical analyses considered this genus as composed of 15 
species of marmots. These species differ mostly in their geographical distribution and variable 
social systems, from the solitary woodchuck to the highly social Alpine marmot.  
The Alpine marmot is a socially monogamous and hibernating rodent living in family groups. 
Social status is clearly defined in each social group with dominant individuals monopolizing 
reproduction. The fact that subordinate males help the dominants’ pups to survive qualifies this 
species as a cooperative breeder. 
This species has been extensively studied in the French Alps thanks to an individual-based long-
term monitoring program running for 26 years now. The study area is situated in the Grande 
Sassière nature reserve (Savoie, France) and increased from 11 to 34 family territories between 
1990 and 2016. Each year, individuals are captured, measured, weighed and group compositions 
are determined by behavioural observations. In addition, genetic analyses based on biopsies and 
hair samples allow determining the reproductive success of all individuals each year.  

Keywords: Marmota marmota · phylogeography · socio-spatial structure · CMR protocol · 
Sciurid rodent  

  



20 
 



21 
 

5. The Alpine marmot 

5.1. The Marmota genus 

Although the name “marmots” was applied to very different species until the XIXth and 

even early XXth centuries (Fig.II.1), it is now widely accepted that marmots are all 

species belonging to the same monophyletic clade subsequently called Marmota. This 

genus belongs to the Mammalia class, Rodentia order, Sciuridae family and Marmotini 

tribe. It originated in North America, spread into Eurasia during the Pliocene and further 

dispersed during the Pleistocene. 15 species are now recognised in this genus (Steppan 

et al. 2011) with six species located in North America and nine in Eurasia (Fig II.2). 

.  

Figure II.1. “Marmots” plate from the Johnson’s Household book of Nature: 
Containing Full and Interesting Descriptions of the Animal Kingdom. (1880). Credit: 
https://commons.wikimedia.org 
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Figure II.2. Geographical distribution of the genus Marmota. Fifteen currently 
recognized species are labelled. Stippling (M. flaviventris) and darkest shading (M. 
caligata) are used to distinguish two species with overlapping ranges. Dots represent the 
locations of the samples sequenced in the original study by Steppan et al. (2011). See 
also fig II.4. for a more precise description of the Alpine marmot distribution. 

All species of this genus share common morphological characteristics among 

which the two rodent-specific pairs of ever-growing incisors, a large and compact body 

with relatively short legs, a relatively short bushy tail (compared to other squirrels) and 

small round ears (Fig.II.3). Marmots are the largest of the ground squirrels. They are 

usually considered as monomorphic although some slight differences in size and weights 

exist between sexes and among species (Tab.II.1). Females tend to be smaller and lighter 

in all species and mean adult weight at the end of the active season varies from 

approximately 4 kg for M. flaviventris to up to 11 kg for M . olympus (Edelman 2003). 

 Another shared characteristic of marmot species is their use of burrows. These 

burrows have three functions, (i) provide shelter from heat, predators and/or antagonistic 

conspecifics; (ii) provide a place to rear young and (iii) serve as a place to hibernate, i.e. 

a hibernaculum (Armitage 2014). These three functions are most often distributed 

among different burrows. Marmots generally use the same burrow system over several 

years, sometimes for many generations thus defining territories with highly stable 

boundaries. For instance, Armitage (2014) reported that in a 41-year study on Yellow-
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bellied marmots the same major burrows were used year after year. Similarly, in the rare 

cases of new territory creations, Alpine marmots of the population we studied generally 

converted existent peripheral burrows rather than excavating new ones (personal 

observation). A territory is usually composed of several burrows, with the hibernaculum 

usually located in a place where the snow cover is the thickest to provide a good 

insulation during winter, the main burrow (used during the active period) where young 

are raised situated at the centre of the territory and numerous auxiliary flight burrows 

disseminated near the edges of the territory (Armitage 2014). 

 
Figure II.3. Examples of marmot species showing the characteristic morphology of the 
Marmota genus. Clockwise from the top left: adult M. monax in up-alert posture, adult 
M. flaviventris, adult M. olympus sun-bathing, adult M. himalayana on the look-out 
while feeding, two adult M. caudata in nose to nose greeting and adult M. caligata 
resting on a rock. Photo credits: http://thealpinemarmotproject.org 

Marmots occupy a wide range of open habitats, from flat and well-drained 

steppes in central Eurasia to cultivated croplands and high altitude alpine meadows. The 

only exception is M. kastschenkoi, which is the only forest-dwelling marmot. Even 

though they occupy very different habitats, all marmot species inhabit regions with 

marked seasonality and very cold winters. Marmots typically cope with these harsh 

winters through hibernation. The length of the hibernation phase varies among species 

but also according to a latitudinal and/or altitudinal gradient with higher elevation and/or 

higher latitude populations emerging later. Barash (1989) reported examples of Hoary 

marmot (M. caligata) populations only active four months (from mid-May to mid-

September) while some woodchuck (M. monax) populations in southern Illinois may 
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Table II.1. Body mass of adult females and hibernation length of Marmota species. 
From Armitage (2014) 

Body mass (g) 

Species Immergence Emergence Length of hibernation 
(months) 

Subgenus Petromarmota 
         M. caligata 6187 3283 7.5 
         M. flaviventris 3431 2422 7.5 
         M. olympus 5550 4110 7.5 
         M. vancouverensis 5328 3899 7.0 
Subgenus Marmota 
         M. broweri 3094 2055 7.5 
         M. baibacina 5583 3978 7.0 
         M. bobak 4120 2910 7.7 
         M. camtschatica 4748 2900 8.2 
         M. caudata 3923 2631 7.6 
         M. himalayana 6420 3445 7.5 
         M. kastschenkoi 4600 3450 7.5 
         M. marmota 3987 2825 6.5 
         M. menzbieri 3760 2321 8.0 
         M.monax 4804 3084 4.5 
         M. sibirica 3960 2550 6.6 

 
Table II.2. Sociality in the Marmota genus.1: Allainé (2000); 2: Blumstein & Armitage 
(1999); 3: Schwartz et al. (1998); 4: Armitage (2014); 5: Berger et al. (2015) 

Species Social structure Sociality References 

M. monax Solitary Solitary 1,4 

M. flaviventris Matriline Social groups without 
allo-parental care 2,3,4 

M. caligata 

Restricted families 

Social groups without     
allo-parental care 

Dispersal at the age of 
sexual maturity 

4 
M. olympus 4 
M. vancouverensis 4 
M. broweri 4 
M. baibacina 4 
M. bobac 4 
M. camtschatica 4 
M. caudata 

Extended families Cooperative breeders 
Delayed dispersal 

1,4 
M. himalayana 1 
M. kastschenkoi NA 
M. marmota 1,4,5 
M. menzbieri 1,4 
M. sibirica 1,4 
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stay active for more than ten months a year. Because of this hibernation phase, all 

marmot species also display a characteristic pattern of annual weight gain and loss, with 

a continuous gain of weight during the active season and an important weight lost during 

hibernation (Tab.II.1). 

Winter mortality is generally considered as the main mortality cause in marmot 

species, the two others main causes being antagonistic interactions and predation 

(Armitage 2014). Predators of marmots consist in terrestrial mammals, mostly canids 

(e.g. coyotes (Canis latrans) in North America or red foxes (Vulpes vulpes) in Europe), 

and aerial predators such as the golden eagle (Aquila chrysaetos). Most of the time, only 

disappearances of individuals are recorded on the fields thus making it very difficult to 

assess the relative contribution of these different mortality causes to the overall 

population dynamics. However, some studies were able to quantify the importance of 

predation for marmots by showing that summer mortality was mainly driven by 

predation in yellow-bellied marmots (Van vuren 2001), Vancouver Island marmots 

(Bryant & Page 2005) and Olympic marmots (Griffin 2007), leading to drastic 

population declines in the last two cases. 

Social structure is highly variable among marmot species and often presented in 

four different categories: solitary species (M. monax), matrilines (M. flaviventris), 

restricted families and extended families (Tab.II.2). These differences in social structure 

and mating system likely evolved in response to the harsh wintering conditions 

encountered by the different species (Arnold 1990; Allainé 2000 and see below). 

5.2. Marmota marmota 

5.2.1. Generalities  

Alpine marmots can be found in most of European mountain chains between 1000 and 

3000 meters a.s.l. Its natural geographical distribution encompasses both the Alps (from 

France, Italy, Swiss and Germany to Austria) and the Carpathian Mountains where a 

sub-species has been described (M. marmota latirostris, Kratochvil 1961) It was 

successfully introduced in the Pyrenees between 1948 and 1988 from different Alpine 

populations (see Appendix I) and the Pyrenean population now constitutes the second in 

size after the Alpine one (López et al. 2010). Other introductions occurred in the Massif 

Central (France), in the Black Forest (Germany) and in the Apennines (Italy) (Fig.II.4).  
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Figure II.4. Contemporaneous distribution of the Alpine marmot. Yellow areas: natural 
populations; purple areas: introduced populations. Image credit: http://iucnredlist.org  

Alpine marmots are characterized by their brown coat with orange marking on 

the back, beige to orange belly, brown muzzle with a grey-white band between the 

muzzle and the eyes (Fig.II.5). As all marmots, they possess small ears and short legs 

and a bushy brown tail with a black tip. Adult Alpine marmots measure between 45 and 

68 cm without the tail (between 13 and 16 cm). Their body mass is highly variable 

throughout the year with a minimum weight at the emergence from hibernation in April 

(around 2.2 kg for adults) and a maximum weight around 6.5 kg at the entry into 

hibernation (Körtner & Heldmaier 1995).  

The average lifespan of a marmot is around seven years but strongly depends on 

the hierarchical status of the individual. In the population under study, no subordinate 

individual was captured older than seven years whereas dominant individual of up to 15 

years for males and 16 years old for females were identified. The small number of 

individuals attaining such old ages is explained by the survival senescence that was 

evidenced for dominant individuals after approximately seven years of age (see 

Appendix II). Alpine marmots are herbivorous and sometimes insectivorous although 

rare cases of carnivory and/or cannibalism have been reported in this species (Ferrari et 

al. 2012 and S. Pardonnet, personal communication).  
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Figure II.5. Male adult Alpine marmot sun-bathing. Photo credit: Marie-Léa Travert 

5.2.2. Life cycle 

The Alpine marmot annual life cycle revolves around hibernation. From approximately 

mid-October to early April, all members of a family group hibernate in the same burrow 

chamber. Hibernation is characterized by alternate periods of torpor (characterised by a 

very low physiological activity and body temperature) and euthermia (characterised by 

wakefulness and an increase of body temperature; Fig.II.6). Reproduction takes place 

just after the awakening from hibernation. Females are only receptive during a short 24-

hour period within 15 days after the end of hibernation (Müller-Using 1957). After 

approximately 30 days of gestation, dominant females give birth to a litter of one to 

seven pups. The altricial young are born hairless, blind, weigh about 30 g and are 

entirely dependent on their mother. The female nurses them (approximately 40 days) 

until their emergence from the burrows around the end of June. At that time, they weigh 

around 350 g and start to feed on plants. The rest of the active season is dedicated to 

foraging in order to accumulate enough fat reserves for hibernation. Because of the 

shortness of the active season, all late litters are doomed to fail and one litter at most is 

produced each year. This demonstrates how the life cycle, and especially reproduction, 

is highly constrained in Alpine marmots. As the active season passes, daily activity 

rhythm decreases and becomes clearly divided: marmots are active at the beginning and 
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end of the day while they rest for long periods near the entrance or inside the burrow in 

the middle of the day (Perrin & Berre 1993). Finally, individuals immerge around mid-

October, hibernation starts again, and another cycle begins. 

5.2.3. Social organization and mating system 

Most marmot species display high levels of sociality compared to the other members of 

the Sciuridae family (composed of squirrels, chipmunks and prairie dogs). The social 

systems displayed by the different species of this genus are thought to be mainly related 

to the harshness of winter conditions and therefore to hibernation. Because of the short 

active season, hibernators have relatively slow life-histories; they grow and reproduce at 

lower rates compared to non-hibernators of similar size (Turbill et al. 2011). As a 

consequence, in Alpine marmots, age at sexual maturity is delayed until two years old 

and full adult size is only achieved at three years of age. Because of this delay, the 

young remain with their parents at least until two years of age thus creating the 

conditions for a more complex social system to evolve.  

By comparison, the only solitary species of the Marmota genus, M. monax, lives 

in a milder environment and hibernates for a shorter period of time (Tab.II.1). The 

growing period is thus long enough for juveniles to become independent and disperse in 

their first summer. In addition, dispersal in Alpine marmots is delayed, in the sense that 

it generally occurs at least one year beyond the age of sexual maturity. Some individuals 

may even never leave their natal territory. The resulting social organization of the 

Alpine marmot is often called an extended family group (Armitage 2014). A typical 

Alpine marmot social group thus consists of a dominant couple with variable numbers of 

subordinates, i.e. adults that delayed dispersal (two years and older), yearlings (one-

year-old) and juveniles of both sexes (pups of the year).   

 Previous studies on sociality in Alpine marmots showed that in each family 

group, the dominant couple monopolizes reproduction but some subordinate males 

might escape reproductive suppression through extra-pair copulations (Cohas et al. 

2006). When extra-pair copulations occur, the dominant male may lose all or only some 

of the paternities. Most extra-pair paternities were the fact of transient individuals. 

Approximately 14% of the litters contain at least one extra-pair young. Altogether, these 

extra-pair young account for 7% of all pups produced in the population (Ferrandiz-

Rovira et al. 2016). 
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Figure II.6. Alpine marmot annual life cycle and annual core temperature and activity 
profiles of an adult male Alpine marmot from La Garnde Sassière population (profiles 
courtesy of Benjamin Rey). 
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The mating system of the Alpine marmot can thus be described as socially 

monogamous but genetically facultative polyandrous. Both the probability to 

successfully monopolize reproduction and the dominance tenure of dominant males 

decrease with the number of subordinate males present in the family group (Allainé & 

Theuriau 2004; Lardy et al. 2012). Dominant females are also influenced by the 

presence of same-sex subordinates in the family group. Although dominant females 

always manage to monopolize reproduction (with the exception of one sister and one 

daughter of two different dominant females that reproduced once in 26 years of study), 

their probability to lose dominance increases with the number of female subordinates 

(Lardy et al. 2013). These results indicate high levels of intra-sexual competition in the 

Alpine marmot.   

But the presence of male subordinates is also associated to an increased survival 

of juveniles. During hibernation, Alpine marmots periodically arise for euthermia bouts 

during which their body temperature increases sharply (Fig.II.6). These bouts, although 

physiologically necessary for the survival of individuals, are very costly and most of the 

fat reserves are consumed during these body-temperature increase. By producing heat 

when they arise, subordinate males will allow pups to save energy and thus increase 

their survival. Subordinate males may thus be considered as helpers because of their role 

in social thermoregulation increasing juvenile survival (Arnold 1993). Because pup 

survival is highly correlated to the number of subordinate males present in the family 

group during their first hibernation (Allainé & Theuriau 2004) a trade-off exists between 

the juvenile survival benefits and lost reproduction costs for dominant males.  

6. Data collection 

6.1. La Grande Sassière  

The Alpine marmot population monitoring in the Grande Sassière Nature reserve 

(French Alps, 45°29′N, 6°59′E) started in 1990. The nature reserve is situated in a small 

glacial valley oriented along the East-West axis of the National Park “La Vanoise” close 

to the Italian border (Fig.II.7). The study area only concerns a subpart of the reserve. 

The size of the study area increased with the number of family territories monitored 

between 1990 and 2016. Nowadays, it covers approximately 60 ha between 2300 and 

2450 m a.s.l. and contains up to 34 marmot families monitored every year.  
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The climate presents typical Alpine characteristics, with low temperatures, strong 

daily and annual temperature amplitude and marked precipitations. The flora is 

composed of Alpine and sub-Alpine grass types and hosts a profusion of flowers during 

late spring (early June). The fauna includes many emblematic Alpine species, among 

which the chamois (Rupricapra rupricapra), the Alpine ibex (Ibex ibex), the bearded 

vulture (Gypeatus barbatus), the ermine (Mustela ermine) or the snow vole (Chyonomis 

nivalis). It also includes marmot predators such as the golden eagle and the red fox. The 

intensity of predation pressure could not be assessed since predation is almost never 

observed. However, the rarity of predation events observed despite the relatively intense 

observation pressure tends to indicate that predation only plays a minor role in shaping 

the Grande Sassière population dynamics (personal observation). 

6.2. Capture –Recapture protocol 

Each year between mid-May and mid-July, individuals living in the study area are 

captured using two-door live traps baited with dandelions (Taraxacum densleonis). 

Traps are placed near the entrance of the main burrows of each territory to easily assign 

captured individual to their family group (Fig.II.8). Once captured, marmots are put in a 

Hessian bag and tranquilized with Zolétil 100 (0.1 mL.kg-1). Individuals are then sexed 

based on their ano-genital distance, aged from their size (up to three years) and weighed. 

Dominance status is determined based on morphological characteristics visible testis for 

dominant males and developed teats for dominant females (Hackländer et al. 2003). All 

marmots captured for the first time are marked with a transponder chip (Trovan Ltd, 

Germany) injected under the neck skin and a metal tags on the ear. The metal ring is 

placed on the right ear for females and left ear for males for easier sex determination in 

further observations. In addition, dominant individuals are marked with a family-specific 

coloured plastic tag on the opposite ear. Around the end of June, burrows are scrutinized 

to determine the exact date of the first emergence of pups. Since pups are very naive at 

that time, they can be captured by hand within few days of their emergence. They are 

subsequently marked with both transponders and ear-tags. 
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Figure II.7. Three dimensional view and photograph taken from the entrance of the 
Grande Sassière nature reserve. Orange area on the 3D view represents the study area. 
Photo credit: Carole & Denis Favre-Bonvin. 

Additional handlings at capture include morphological measurements, skin 

biopsies, hair and blood samples and anal, jugal and buccal glands secretion samples. 

Microsatellite genotyping of all captured individuals based on hair samples or skin 

biopsies allowed parentage analyses to be run, allowing us to precisely determine 

kinship among individuals from a family group (details on the genetic and parentage 

analyses can be found in Cohas et al. (2006) or Ferrandiz-Rovira (2015)). Because all 

pups from the study area are captured at emergence, the parentage analyses also allowed 

us to determine with certainty individuals that successfully reproduced each year. 
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 During the entirety of the field season, behavioural observations are conducted 

on a daily basis to determine group compositions and sizes (Fig.II.8). To avoid 

disturbing the animals, behavioural observations are performed from the distance using 

binoculars. This setting does not allow reading the unique numbered ear-tag and 

therefore the exact identification of the animals but the size of the individuals and the 

side of their ear-tag allows us to determine the number of individuals in each age class 

(juveniles, yearlings, two-years or adults) and of each sex. In addition, any immigration 

event is detected by the arrival of an un-marked individual in the family group. Scent-

marking and antagonistic behaviours are also reported, allowing us to confirm the 

hierarchical status of the different individuals (Bel et al. 1995). See also 

http://thealpinemarmotproject.org for more information about the study area.  

 

 
Figure II.8. Two Alpine marmots near a trap situated on the earth and rock mound 
formed during the burrow excavation. Photo credit: http://thealpinemarmotproject.org. 
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Chapter III 

Sociality & early life 
consequences 

 

Litter sex composition influences  

dominance status in the Alpine marmot 
Abstract: In social species, the hierarchical status of an individual has important consequences 
for its fitness. While many studies have focused on individual condition to explain access to 
dominance, very few have investigated the influence of the social environment, especially 
during early life. Yet it is known that environmental conditions early in life may influence 
several traits at adulthood. Here, we examine the influence of early social environment on 
accession to dominance by investigating the influence of litter size and sex composition on 
survival and the probability of ascending to dominance later in life using a 20-year dataset 
from a wild population of Alpine marmots (Marmota marmota). Although litter size had no 
effect on the fate of individuals, litter sex composition affected male juvenile survival and both 
male and female probabilities of reaching dominant status when adult. Male juveniles incur 
lower survival when the number of male juveniles in the litter increases, and individuals of 
both sexes from male-biased litters are more likely to become dominant than individuals from 
female-biased litters. However, the absolute number of sisters in the litter, rather than the sex 
ratio, seems to be an important predictor of the probability of acquiring dominant status: pups 
having more sisters are less likely to become dominant. Several potential mechanisms to explain 
these results are discussed. 

Keywords: Delayed effects· Group composition· Multi-event models· Reproduction access· 
Rodent· Social context  

Dupont, P., Pradel, R., Lardy, S., Allainé, D., & Cohas, A. (2015). Litter sex composition 
influences dominance status of Alpine marmots (Marmota marmota). Oecologia, 179(3), 753-
763. 
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7.1. Introduction 

In animal societies, the hierarchical status an individual can reach has important 

implications. It may affect many aspects of its life, such as access to food (Baker et al, 

1981), health and physiology (Sapolsky 2005) or reproductive success (Ellis 1995; Creel 

et al. 1997), therefore entailing serious fitness consequences. Many factors have been 

proposed to favour access to dominance, e.g. body condition (Poisbleau et al. 2006), 

genetic factors (Dewsbury 1990) or experience (Hansen & Slagsvold 2004). In long-

lived mammals, another potential factor affecting the ability to reach dominant status is 

the environmental conditions encountered early in life. However, few studies have 

evaluated the influence of early conditions on access to dominance. Most have 

investigated the effect of early conditions on other traits later in life (e.g. growth, 

survival, habitat selection, sexual attractiveness; reviewed in Lindström 1999), and focus 

has been mainly on early environmental conditions (Cam et al. 2003; Lee et al. 2013; 

Douhard et al. 2013), whereas social factors have been largely overlooked. Nevertheless, 

some laboratory studies have highlighted the impact of early social conditions on 

individual performances (Zielinski et al. 1992; Correa et al. 2013). Particularly, a 

negative link between litter size and body size/mass has been evidenced in mammals 

(Charnov et al. 2006). In litter-bearing mammals, Mendi (1988) has shown that 

offspring from small litters usually weigh more, have a higher growth rate and faster 

physical development, and that these differences may last beyond the end of the 

lactation period. Other studies have shown that larger and/or bigger animals have a 

higher survival probability and are more likely to become dominant (Clutton-Brock et 

al. 1986; Jonart et al. 2007). Litter size can thus impact future body size and/or mass and 

therefore future hierarchical status. 

In addition, litter composition can potentially influence the future hierarchical 

status of an individual through different pre- or post-natal mechanisms. Before 

parturition, the composition of the litter may directly affect the development of 

individuals because androgens, secreted by male foetuses, and oestrogens, secreted by 

female foetuses, diffuse across the foetal membranes in utero (Vom Saal et al. 1999). 

These hormones, particularly testosterone, affect the differentiation of morphological, 

physiological and behavioural traits such as ano-genital distance, oestrous cycle length 

or aggressiveness (Clemens et al. 1978; Even et al. 1992). Thus, the sex ratio of the 

litter, which is often used as a proxy of prenatal exposure to testosterone (Uller et al. 
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2004; Monclús & Blumstein 2012; Hackländer & Arnold 2012), may have long-term 

consequences on access to dominance by impacting juvenile survival and/or competitive 

abilities (Monclús et al. 2014). After birth, the sex of surrounding siblings can also 

influence the fate of juveniles since the levels of competition and/or cooperation among 

same-sex siblings can differ between males and females. In spotted hyenas (Crocuta 

crocuta), for instance, intra-sexual competition is higher among young females than 

among young males.  This higher level of competition among young females results in a 

higher rate of siblicide in all- female litters, and leads in turn to lower survival of young 

females (Golla et al. 1999). Conversely, in African lions (Panthera leo), kin-related 

males cooperate and coalitions between male siblings are frequently observed. This 

particular form of cooperation allows them to secure access to a group of females, 

therefore ensuring a dominant position and high reproductive success (Packer et al. 

1991). Such sex-specific interactions can thus influence the probability to survive to 

adulthood and/or to hold a dominant position. 

The aim of this study is to investigate whether early social conditions, i.e. litter 

size and composition, can influence individual probability of acquiring a dominant 

position later in life. For this purpose, data from a 20-year study on the Alpine marmot 

(Marmota marmota) in the French Alps was used. The Alpine marmot is well suited for 

such a study because reproduction is strongly constrained by social status as the 

dominant pair monopolizes reproduction in the social group (Goossens et al. 1998a; 

Cohas et al. 2006), and litters exhibit high variability in size (from 1 to 7 pups) and sex 

composition (from exclusively male to exclusively female litters; Allainé et al. 2000). 

We investigated whether individuals from small litters, assumed to be in better condition 

than those from large litters, were more likely to survive and to become dominant. As 

for the effect of litter composition, we considered the following three possibilities. First, 

we investigated whether the sex ratio of the litter influenced the fate of individuals of 

both sexes, i.e. whether individuals born to male-biased litters were more prone to 

become dominant. Second, we examined the possibility that intra-sexual competition 

between siblings decreases the probability of further access to dominance either by 

decreasing juvenile survival or the probability of reaching a dominant position. Thus, 

females with many sisters and males with many brothers should display lower overall 

probabilities to become dominant. Third, we considered the possibility that cooperation 

between siblings of the same sex (formation of coalitions, for instance) outweigh the 
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effect of intra- sexual competition within litters. In this case, individuals with numerous 

same-sex siblings should be more likely to become dominant. 

7.2. Materials and methods 

7.2.1. Study species 

The Alpine marmot is a hibernating ground-dwelling squirrel. This territorial and social 

mammal lives in family groups composed of a dominant couple, sexually mature and 

immature subordinates of both sexes, and pups born that year (Allainé 2000a). Pups stay 

together as subordinates in their natal group at least until they reach sexual maturity at 2 

years old. From this age, both males and females can reach dominance either by 

replacing the dominant of their natal territory when he/she dies or by dispersing and 

displacing a dominant of a neighbouring territory. Dispersal is often limited in space 

since more than 80 % of the dominant individuals captured were born in the study area 

and dominant individuals coming from outside the study area settled in its periphery. 

Dispersal patterns differ between sexes. Females inherit their dominant position more 

often than males do with, respectively, 35 % of the dominant females and 15 % of the 

dominant males which occupy their natal territory (Lardy et al. 2012a). In addition, 

males seem to disperse further away than females. Since dispersing individuals never 

become subordinates in a new family group, they are at a high risk of death and very 

rarely survive overwinter if they do not reach dominance during the active season 

(winter mortality of 0.9; Grimm et al. 2003). Male subordinates that delay dispersal are 

considered as helpers since their presence greatly increases the survival probability of 

pups during their first hibernation (Arnold 1988; Allainé & Theuriau 2004).  

Within family groups, reproduction is monopolized by the dominant couple. 

After 35 days of gestation, the dominant female gives birth to a litter of 1–7 pups in the 

second half of May. Given the gestation and weaning length, only one litter can be 

produced each year. A few sexually mature males manage to partially escape the 

reproductive control of the dominant male. Hence, while dominant females generally 

monopolize all reproduction, dominant males may lose some paternities (Cohas et al. 

2006). Individuals of both sexes may stay dominant for several years (up to 11 for males 

and 14 for females in the study population), until natural death or eviction by a 

challenger (Lardy et al. 2011). Eviction of one of the dominants further leads to the loss 
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of the litter produced, either by infanticide or by abandonment of the pups, and to the 

death of the evicted individual in most cases (Hackländer et al. 2003; Lardy et al. 2011). 

7.2.2. Study site and data collection 

Individuals were captured in a wild population of Alpine marmots located in the 

Grande Sassière nature reserve (2340 m a.s.l., French Alps, 45°29′N, 6°59′E) from 1990 

to 2010. Marmots from up to 24 territories (five territories were created while one 

disappeared during the study) were monitored, from mid-April to mid-July each year, 

using both capture–mark–recapture and observations. Marmots were captured using 

two-door live-capture traps baited with dandelion Taraxacum densleonis. Traps were 

placed near the entrances of the main burrows to easily assign each captured individual 

to its family group. Juveniles were counted and caught by hand within the 3 days 

following their first emergence from the burrows, (i.e. approximately 40 days after their 

birth). Captured animals were tranquillized with Zolétil 100 and marked with a 

transponder (Trovan™, Germany) and a numbered ear tag. At each capture, marmots 

were aged from their size in three age classes (pups, yearlings and adults), sexed and 

their social status was determined according to scrotal development for males and teats 

development for females (Hackländer & Arnold 1999; Hackländer et al. 2003). Thanks 

to daily observations, the number of individuals of each sex and age class was further 

assessed for each family and scent-marking behaviour was used to confirm the identity 

of the dominant pair (Bel et al. 1995).  

7.2.3. Litter characteristics 

The exact composition of every litter and the identity of individuals that reproduced each 

year were determined using microsatellite markers and kinship analyses (Supplementary 

Material III.1). Litter size was calculated as the total number of pups from the same 

mother emerging a given year. The litter sex ratio was calculated as the number of males 

in a litter divided by the litter size. The number of brothers was calculated as the number 

of male pups in a litter minus one when the focal individual was a male. The same 

procedure was used to determine the number of sisters for each individual.  
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7.2.4. Capture–recapture analysis 

We considered 806 individuals first captured as pups between 1990 and 2010 for which 

the litter size, litter sex ratio, number of brothers and number of sisters were known. 

Model structure. Multi-Event Capture–Recapture models (ME-CR; Pradel 2005) 

were used to investigate the influence of the litter size and composition on marmot 

survival (φ) and access to dominance (ψ) because recapture probability (p) of individuals 

was lower than 1 (recapture probability varying from 0.380 to 0.886; Cohas et al. 2007). 

We defined 3 states: subordinate (s), dominant (D), and dead or permanent emigrant 

from the study site (†). We further incorporated information about the reproductive 

status (E) of each individual to refine the estimation of the probability to access 

dominance. Since the probability to reproduce is strongly linked to the dominant status 

(only 20 of the 806 pups studied were produced by subordinates), there is a high 

probability that an individual that successfully reproduced a given year was dominant 

even when its dominance status could not be determined. Thus, the different observable 

events retained were: no information (event 0), individual with uncertain dominance 

status that successfully reproduced, i.e. with its pups captured (event 1), individual 

captured as dominant but no reproduction observed, i.e. no pups captured (event 2), 

individual captured as dominant that successfully reproduced (event 3), individual 

captured as subordinate without pups of its own observed (event 4), individual captured 

as subordinate that successfully reproduced (event 5). Based on these events, recapture 

histories were then constructed for each individual (Supplementary Material III.2). The 

constructed multi-events model can be summarised by a transition matrix and associated 

vectors of survival, capture and successful reproduction probabilities (see Fig.III.1 and 

Supplementary Material III.3 for further details on the model construction). For pups, 

the model reduces to a single survival parameter because they cannot stay as pups more 

than 1 year and they are not able to reproduce or to become dominant. For yearlings, the 

model reduces to the estimation of probabilities of capture, survival, and access to 

dominance the following year. They are never captured as dominant and are not yet 

sexually mature. For older individuals, since dominant individuals never revert to the 

subordinate status (Farand et al. 2002; Stephens et al. 2002a; Grimm et al. 2003a), the 

model reduces for older individuals to two capture parameters, two survival parameters 
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(one for subordinate and one for dominant individuals) and to the probability to access 

dominance when they are still subordinate. 

 

Figure III.1.  Life cycle of Alpine marmots with three age classes (a1 pup, a2 yearling, 
a3 adult) and two social status (s subordinate and D dominant); arrows represent the 
transition from one age class to the next with its associated probability: Φ represents 
survival probabilities and ψ represents transition from the subordinate to the dominant 
status. ψ is conditional on Φ. 

Preliminary analysis. Data analyses were performed following three steps 

(Lebreton et al. 1992a). We first tested whether a general model, namely the Cormack–

Jolly–Seber model (Pollock et al. 1985), fitted our data. To this purpose, goodness-of-fit 

(GOF) tests were performed using the program U-CARE (Choquet et al. 2009a). 

Following Burnham & Anderson (2002), the second step was to select the most 

parsimonious model, hereafter called the root model, among a set of models built by 

considering only a priori biological hypotheses based on our field experience and the 

literature (Arnold 1993; Allainé 2000a; Farand et al. 2002; Stephens et al. 2002a; 

Grimm et al. 2003a). We thus considered age, year, sex effects and their interactions on 

all capture, survival, state transition and reproduction probabilities (Tab.III.1). In 

addition, we considered an effect of the number of male helpers on juvenile survival 

during their first hibernation since it has been demonstrated to be an important factor 

(Arnold 1993; Allainé & Theuriau 2004). To do this, the logarithm of the number of 

male helpers [log(helpm)] was used as an individual covariate because the effect of male 

helpers was found to be non-linear (Allainé & Theuriau 2004). Following a step-down 

approach, models were sequentially fitted with constrained parameterizations for 
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recapture, survival, transitions and reproduction probabilities, in that order. We then 

checked that the root model could not be improved by exploring all neighbouring 

models. Model selection relied on the Akaike Information Criterion corrected for small 

sample sizes (AICc; Burnham & Anderson 2002).  Model selection and parameters’ 

estimation were performed using the program E-SURGE 1.8.5 (Choquet et al. 2009b).  

Table III.1. Abbreviations used in model notations 
Abbreviations Meanings 
p recapture probability 
Φ survival probability 
1- Φ mortality probability (encompass both mortality and dispersal probabilities 

for individuals older than 2 years of age) 
ᴪ state transition probability (conditional on survival) 
E event probability (probability of successful reproduction)  
Subscript  
a all age classes (1 to 3) 
a1 age from 0 to 1 year 
a2 age from 1 to 2 years 
a3 age more than 2 years 
ax,y age classes x and y 
sex f,m sex (f: female; m: male) 
t Time as the number of years from the beginning of the study 
* interactive effect 
+ additive effect 
sex ratio litter sex ratio at emergence 
litter size litter size at emergence 
brothers number of male pups from the same mother in a litter 
sisters number of female pups from the same mother in a litter 
helpm number of male helpers present during the first hibernation 
Superscript  
s subordinate status 
D dominant status 
† dead 

Effect of litter characteristics. Once the root model was obtained, we investigated 

in the final step whether the early social conditions affected both the survival rate and 

the probability to access dominance. To test our hypotheses on juvenile survival, we 

built a model including every retained effect on probabilities to access dominance 

(model R1, Tab.III.2) while the parameterization of all other parameters was set as in the 

root model. We then added an effect of the tested litter characteristic (i.e. litter size, litter 

sex ratio, number of brothers or number of sisters) as a logit linear relationship with the 

juvenile survival in a separate model. In addition, whenever a litter characteristic was 
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found to influence juvenile survival, models with an effect of this covariate on yearling 

and adult subordinate survival were built to account for possible long-lasting effects. 

They were compared to a model with the effect of the litter characteristic considered on 

the juvenile survival only (model R2, Tab.III.3). Because the main effects of the litter 

characteristics are likely to be on juvenile survival, we did not investigate the effect of 

the early conditions on yearling and adult survivals whenever no effect on juvenile 

survival was found. Similarly, to test the same hypotheses on the probability to access 

dominance, we built model R3 (Tab.III.4) that included all retained effects on survival, 

and compared it to models with a logit linear effect of the litter characteristic to test on 

the probability to access dominance for both yearlings and adults. Finally, models with a 

sex-specific effect of the different covariates were constructed and compared to models 

without sex effects to test for a sex-specific competition or cooperation. 

The importance of the tested litter characteristic was then assessed by comparing 

model using AICc weights (Wi, Burnham et al. 2011) Estimates and standard errors for 

the different regression slopes given in the results are on the logit scale. All other 

parameters are given on the natural scale. 

7.3. Results 

Mean litter size was 4.15 ± 0.05 pups in the population, ranging from 1 to 7. Mean sex-

ratio was 0.53 ± 0.01 among all litters. Mean number of brothers was 1.66 ± 0.04 (from 

0 to 5) while the mean number of sisters was 1.44 ± 0.04 (from 0 to 4). Correlation 

coefficients between the different litter characteristics are given in Tab.III.5. 

7.3.1. Preliminary analysis 

After checking for the goodness of fit of the model and AICc-based model selection (see 

Online Resource 4 for more details on the GOF tests and root model selection), the root 

model was ps
a.y+sex Φs a1.sex.log(helpm); a2,3 Es

a3, pD
a3.y+sex ΦD

a3 ED
a3 ψsD

a2,a3.  

Recapture probabilities varied with year, sex, age and hierarchical status. The 

average recapture rate decreased with age, from yearlings (0.87 ± 0.06 for females; 0.83 

± 0.09 for males) to adults (subordinates 0.68 ± 0.11 for females; 0.60 ± 0.15 for males; 

dominants 0.64 ± 0.09 for females; 0.57 ± 0.10 for males).  
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Survival probabilities varied with age and status and male helpers had a strong 

sex-specific effect on juvenile survival. Juvenile survival varied from 0.38 ± 0.04 in the 

absence of helpers to over 0.80 ± 0.04 when five helpers or more were present for 

females and from 0.24 ± 0.05 to 0.93 ± 0.03 for males. Yearling survival rate was 0.77 ± 

0.04, dominant adults survival rate was 0.81 ± 0.02. The apparent subordinate survival 

rate was much lower (0.53 ± 0.03) due to dispersal outside the study area that could not 

be distinguished from mortality. Access to dominance (0.04 ± 0.01 for yearlings and 

0.49 ± 0.04 for adults) and annual reproduction probabilities (0.02 ± 0.01 for 

subordinates and 0.64 ± 0.03 for dominants) were found to be constant over time and 

sex. 

Table III.2. Model selection for the effects of litter size, litter sex ratio, number of 
brothers and number of sisters in the litter on the juvenile survival probability of Alpine 
marmots marked from 1990 to 2010; all other parameters' constraint structure fixed as in 
the root model: psa*t+sex Φs a2,3  Esa3, pDa3*t+sex ΦDa3 ED a3 ᴪsDa2 , a3*sisters  (n = 
806 individuals; AICc: Akaike Information Criterion corrected for small sample sizes; k: 
number of identifiable parameters;  ΔAICc: difference in AICc with the best model of 
the set; Wi: AICc weight ; bold characters indicate the best model of the set and the root 
model for comparison). 

Juvenile survival models Deviance k AICc ΔAICc Wi 

B1.3 Φa1*sexm*(log(helpm)+brothers) 
+ sexf*log(helpm) 3617.04 72 3767.56 0.00 0.31 

B1.1 Φ a1+brothers+sex*log(helpm) 3618.74 72 3769.08 1.52 0.14 

B1.2 Φ a1*sex*(log(helpm)+brothers) 3616.93 73 3769.63 2.07 0.11 

R1 Φ a1*sex*log(helpm) 3621.41 71 3769.75 2.19 0.10 

L1.1 Φ a1+litter size+sex*log(helpm) 3619.06 72 3769.85 2.29 0.10 

SR1.1 Φ a1+sex ratio+ sex*log(helpm) 3620.60 72 3770.93 3.37 0.06 

L1.2 Φ a1*sex*(log(helpm)+litter size) 3618.48 73 3771.18 3.62 0.05 

B1.4 Φa1*sexm*log(helpm)+ 
sexf*(log(helpm)+brothers) 3621.30 72 3771.63 4.07 0.04 

S1.1 Φ a1+sisters +sex*log(helpm) 3621.39 72 3771.73 4.17 0.04 

SR1.2 Φ a1*sex*(log(helpm)+sex ratio) 3619.85 73 3772.55 4.99 0.03 

S1.2 Φ a1*sex*(log(helpm)+sisters) 3620.32 73 3773.02 5.46 0.02 
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7.3.2. Effect of litter size 

No effect of the litter size was evidenced, neither on survival nor on the probability to 

become dominant. All models including an effect of litter size performed poorly 

compared to the root model (R1 vs. L1.1 and L1.2, Tab.III.2; R3 vs. L3.1 and 3.2, 

Tab.III.4). 

7.3.3. Effect of litter composition 

Sex ratio effect. The litter sex ratio did not affect the juvenile survival (models 

SR1.1 and SR1.2 vs. R1, Table 2). It was found to influence the probability to access 

dominance for adults but not for yearlings (models SR3.2 vs. SR3.1, Tab.III.4). The 

probability for an adult to access dominance increased with the sex ratio from 0.35 ± 

0.08 when no males were present to 0.63 ± 0.09 for an all-male litter (Model SR3.2, 

Tab.III.4; βadults = 1.15 ± 0.64; Fig.III.3a).  

Table III.3. Model selection for the effect of number of brothers in the litter on the 
yearling and subordinate adult survival probability of Alpine marmots marked from 
1990 to 2010; all other parameters' constraint structure fixed as in the root model: 
psa*t+sex Φsa1*sexm*(log(helpm)+brothers) + sexf*log(helpm) Esa3, pDa3*t+sex ΦDa3 
ED a3 ᴪsDa2 , a3*sisters  (n = 806 individuals; AICc: Akaike Information Criterion 
corrected for small sample sizes; k: number of identifiable parameters;  ΔAICc: 
difference in AICc with the best model of the set; Wi: AICc weight; bold characters 
indicate the best model of the set). 
Yearling and adult survival models Deviance k AICc ΔAICc Wi 

R2 Φs a2,3 3617.04 72 3767.56 0.00 0.47 

B2.2 Φs a2, a3*sexm* brothers+sexf 3615.64 73 3768.15 0.59 0.35 

B2.1 Φs a2*sexm* brothers + sexf , a3 3616.99 73 3769.5 1.94 0.18 

Sex specific effects. The number of brothers negatively affected male juvenile 

survival (model B1.3 vs. R1, Tab.III.2). It decreased from 0.64 ± 0.07 to 0.28 ± 0.13 

when the number of brothers in the litter increased from 0 to 5 (βmales = −0.26 ± 0.12; 

Fig.III.2) for an average number of helpers (3.6 in our population). This effect was no 

longer detected on the yearling or adult subordinate survival (R2 vs. B2.1 and B2.2, 

Tab.III.3). The number of brothers did not influence male dominance access probability 

(models B3.3, B3.2 and B3.1 vs. R3, Tab.III.4). The number of sisters had no effect on 

juvenile survival (models S1.1 and S1.2 vs; R1, Tab.III.3) but negatively affected the 

probability that adult females (but not yearlings) accessed to dominance (model S3.1. vs. 
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S3.2, Tab.III.4). Interestingly, this effect was not sex-specific (S3.3 vs. S3.2, Tab.III.4), 

and male dominance access probability was also found to be negatively related to the 

number of sisters in the litter. The dominance access probability decreased from 0.61 ± 

0.08 to 0.30 ± 0.09 as the number of sisters increased from 0 to 4 (Model S3.2, Tab.III.4; 

βadults = −0.32 ± 0.17; Fig.III.3b). 

Table III.4. Model selection for the effects of litter size, litter sex ratio, number of 
brothers and number of sisters in the litter on the probability to become dominant of 
Alpine marmots marked from 1990 to 2010; all other parameters' constraint structure 
fixed as in the root model: psa*t+sex Φs a1*sexm*(log(helpm)+brothers) + 
a1*sexf*log(helpm); a2,3 Esa3, pDa3*t+sex ΦDa3 ED a3. (n = 806 individuals; AICc: 
Akaike Information Criterion corrected for small sample sizes; k: number of identifiable 
parameters; ΔAICc: difference in AICc with the best model of the set; Wi: AICc weight; 
bold characters indicate the best model of the set and the root model for comparison). 
Transition models Deviance k AICc ΔAICc Wi 

S3.2 ᴪsDa2, a3*sisters 3617.04 72 3767.56 0.00 0.23 

SR3.2 ᴪsDa2, a3*sex ratio 3617.41 72 3767.93 0.37 0.19 

S3.1 ᴪsDa2,3*sisters 3616.23 73 3768.93 1.37 0.12 

R3 ᴪsDa2,3 3620.90 71 3769.24 1.68 0.10 

SR3.1 ᴪsDa2,3*sex ratio 3617.34 73 3770.04 2.48 0.07 

B3.2 ᴪsDa2, a3*brothers 3619.80 72 3770.32 2.76 0.06 

L3.2 ᴪsDa2, a3*litter size 3620.66 72 3771.18 3.62 0.04 

B3.1 ᴪsDa2,3*brothers 3618.58 73 3771.28 3.72 0.04 

S3.3 ᴪsDa2, a3*sex*sisters 3616.64 74 3771.53 3.97 0.03 

SR3.3 ᴪsDa2, a3*sex*sex ratio 3616.58 74 3771.47 3.91 0.03 

L3.1 ᴪsDa2,3*litter size 3620.50 73 3773.20 5.64 0.01 

B3.3 ᴪsDa2, a3*sex*brothers 3619.03 74 3773.92 6.36 0.01 

7.4. Discussion 

Our results confirm that the dominance status in Alpine marmots was influenced by the 

early social conditions encountered and more specifically by the composition of the litter 

in which an individual is born. The probability of becoming dominant was found not to 

be related to the litter size. Instead, our results indicate that the sex composition of the 

litter, in interaction with the sex of the focal individual, did impact future social status 

via an impact on both juvenile survival and dominance access probability. 
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In most litter-bearing mammals, single pups are usually heavier with a faster 

growth rate and development than pups born with littermates (Mendi 1988). These litter 

size effects on body mass can persist until adulthood and may largely determine the 

hierarchical status (Poisbleau et al. 2006; Hodge et al. 2008). In accordance in Alpine 

marmots, both mass at emergence and post-weaning growth rate decrease as the litter 

size  

 
Figure III.2. Effect of the number of brothers in the litter at weaning on juvenile 
survival probability of males. Solid line indicates the estimated survival probabilities 
from model B1.2; dashed lines represent the 95% confidence interval. 

increases (Allainé et al. 1998), but we did not find any effect of the litter size, either on 

the juvenile survival or on the probability to become dominant once sexually mature. 

Pups from large litters instead had as many chances as singletons to survive and to later 

become dominant. Several mechanisms may explain this result. First, the expected effect 

of litter size on juvenile survival may exist but may not be detected if it takes place 

before weaning (i.e. before emergence from the natal burrow), for example via a 

competition for teats access and/or maternal care. In this scenario, the pups captured at 

weaning are only those that survived to this early competition between siblings. Thus, 

the effect of litter size on survival may not be visible in our data. An alternative 

explanation is that juveniles growing with several littermates may profit from their 

presence, like in rabbits (Oryctolagus cuniculus), where pups have a higher body 

temperature and consequently a higher survival when experimentally raised with 
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littermates compared to their siblings raised alone (Bautista et al. 2003). This 

thermoregulation effect can be of great importance, especially for a hibernating species 

like the Alpine marmot in which social thermoregulation has already been evidenced 

(Arnold 1988), and may explain why a single pup, even though heavier, does not survive 

better than pups raised with littermates. Although many studies have high- lighted the 

negative consequences of a poor start on reproduction-related traits later in life 

(Metcalfe & Monaghan 2001; Yearsley et al. 2004), no effect of the litter size was found 

on the probability to reach dominance. Further studies are thus needed to investigate 

whether these early differences in mass and growth rate impact other traits related to 

fitness such as reproduction onset, number of offspring produced per litter or lifetime 

reproductive success. 

 
Figure III.3. Effect of (a) the litter sex ratio (model SR3.2) and (b) number of sisters in 
the litter (model S3.2) at weaning on annual transition probability from the subordinate 
to the dominant status for individuals of more than 2 years. Solid line indicates the 
estimated transition probabilities; dashed lines represent the 95% confidence interval. 

Conversely, the litter composition had important effects on male juvenile 

survival and male and female probabilities to reach a dominant status. Neither the 

juvenile survival nor the probability to access dominance were positively affected by the 

number of same-sex littermates. Thus, our third hypothesis suggesting that cooperation 

between same-sex littermates may outweigh the possible cost of intra-sexual 

competition can be discarded. Our second hypothesis was partly supported. Indeed, only 

male pups had reduced chance to survive when raised with numerous brothers. 

However, this effect did not last after the first year of life. A higher level of competition 
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among male than among female littermates may explain the negative effect of same-sex 

littermates on male juvenile survival. Alternatively, a higher requirement of male 

compared to female pups may also explain this pattern. In such a case, the mother of 

numerous males may not always fulfil their needs and male pups might reach 

hibernation in a poorer body condition, thus reducing their chances to survive 

overwinter. However, the reason for such a differential requirement in a monomorphic 

species remains unclear.  

Once they reach adulthood, females had lower probabilities to reach dominance 

when raised with numerous sisters. A high proportion of females becomes dominant by 

inheriting their mother position (35 % of the dominant females). Consequently, the more 

sisters a female pup has, the higher the competition for a single dominant position. A 

high number of sisters is therefore a disadvantage for female pups. No such an acute 

intra-sexual competition is expected for males with numerous brothers since most of 

them reach dominance by dispersing and displacing another dominant in a neighbouring 

territory (88 % of the dominant males). Accordingly, no effect of the number of brothers 

was detected on the probability to reach a dominant position. 

However, males also had lower probabilities to reach dominance when raised 

with numerous sisters. Males as well as females can suffer from the presence of 

numerous sisters because of long-lasting effects of the exposition to in utero hormones. 

The fact that models including sex ratio were well ranked is in accordance with this 

hypothesis. Recently, Hackländer & Arnold (2012) reported that female Alpine marmots 

from male-biased litters were more likely to become dominant. In our study, this 

relationship was not limited to females, and males were also more likely to become 

dominant when born in a male-biased litter, thus supporting our first hypothesis. Such an 

effect of sex ratio is generally interpreted as a potential masculinisation due to pre-natal 

androgens exposure (Monclús et al. 2014). Being born in a male-biased litter results in a 

higher probability to develop adjacent to males in utero and thus coincides with higher 

levels of circulating testosterone and higher testosterone sensitivity, which in turn have 

several morphological, physiological and behavioural consequences (Ryan & 

Vandenbergh 2002). For instance, female Alpine marmots born in male-biased litters are 

more aggressive (Hackländer & Arnold 2012), while female yellow-bellied marmots 
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(Marmota flaviventris) disperse more (Monclús & Blumstein 2012), two features 

favouring the access to dominance in Alpine marmots. 

The number of brothers in the litter can also be considered as a proxy of the 

intrauterine exposition to androgens. Sex-ratio and the number of brothers within the 

litter are correlated but they do not match perfectly (see Tab.III.5), and hence do not 

contain the exact same information. According to (Even et al. 1992), the testosterone 

produced by a male foetus diffuses to the surrounding foetuses through the foetal 

membrane and the quantity of hormone approximately decreases by half when the 

distance to the secreting foetus increases by one foetus. Thus, an individual with a large 

number of brothers is thought to be generally exposed to a high amount of additional 

testosterone, whatever its position in utero. Interestingly, the absence of any effect of the 

number of brothers in the litter on access to dominance contradicts this general 

interpretation, and suggests that dominance status of Alpine marmots might not only be 

determined by the in utero exposure to testosterone and that other effects are likely to 

play a role. 

Table III.5. Correlation coefficients between the different covariates tested 
 Sex ratio Brothers Sisters 

Litter size 0.01 0.64 0.53 

Sex ratio  0.62 -0.63 

Brothers   -0.28 

Instead, our results highlighted the effect of the number of sisters on the 

probability of becoming dominant. Following the same reasoning as for the number of 

brothers and the quantity of androgens, we can suppose that the number of sisters 

increases the probability to develop between two female foetuses, and thus the quantity 

of oestrogens received in utero. Although poorly studied, examples of oestrogen-

mediated long-lasting effects can be found in the literature. For example, Vom Saal et al. 

(1990) showed that female mice (Mus musculus) that developed between two other 

females had higher levels of circulating oestradiol and consequently affected 

reproductive traits, such as shorter  oestrous  cycle  length,  and  Fadem & Tesoriero 

(1986) demonstrated  that  exposition  to  oestrogens  during an early period of 

development could block testicular development in male gray opossum (Monodelphis 
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domestica), while exposition to testosterone had no impact on both males and females. 

Thus, Alpine marmots born with many sisters may become dominant less often because 

they present more feminised characteristics due to higher levels of circulating 

oestrogens. However, our results do not allow us to disentangle the different 

mechanisms proposed here and further studies assessing the levels of circulating 

oestrogens and testosterone would be of great interest to understand the underlying 

mechanisms of such long-lasting effects of the early social environment. 

Finally, even though our results do not take into account dispersal outside and 

into the study area, it seems rather unlikely that the impact of the litter composition 

(particularly the number of sisters and litter sex ratio) on the probability to access 

dominance would be different when doing so. We believe that, for several reasons, litter 

composition does not impact differently on the individuals permanently emigrating 

outside the study area. First, when dispersing, Alpine marmots settle in a vast majority in 

a neighbouring territory and only one individual dispersed further than four territories 

from its natal territory in 20 years. Thus, within the study area, all the range of dispersal 

distances usually encountered in this species is covered and successful longer distance 

dispersal seems at best to occur very rarely in the Alpine marmot. Second, if litter 

composition influenced the propensity of individuals to disperse outside the study area, a 

positive effect would have been detected on the apparent subordinate mortality since it 

includes both the actual mortality of subordinate individuals and the survival of 

individuals that left the study area and were never encountered again. Thus, if 

individuals with a certain litter composition dispersed more, they should have a lower 

apparent survival. No such effect was found in our data. 

In summary, the survival and later hierarchical status of Alpine marmots are 

influenced by social conditions encountered during the early stages of life. More 

specifically, these results suggest that they are influenced by the sex composition of the 

litter. The number of female juveniles present during the development seems to have 

long- lasting effects on Alpine marmots’ ability to reach a dominant position for both 

males and females despite potential differences in the underlying mechanisms. In 

addition, males seem to suffer from the presence of other males in the litter inducing a 

reduced survival when juveniles. It therefore appears that males’ fitness expectancies are 

probably higher when raised alone while females seem to benefit from the presence of 
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male siblings. These results provide new insights on the costs and benefits of a litter 

composition and should be taken into account when studying the pay offs parents can 

expect from their offspring. 
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7.5. Supplementary material 

7.5.1. Genetic analyses and kinship analysis 

For genetic analyses, hairs and skin biopsies were collected from all captured individuals 

since 1992. From these samples, all individuals were typed at 16 microsatellite loci: SS-

Bibl1, SS-Bibl4, SS-Bibl18, SS-Bibl20, SS-Bibl31 (Klinkicht, 1993), MS41, MS45, 

MS47, MS53, MS56, MS6, ST10 (Hanslik & Kruckenhauser, 2000), Ma002, Ma018, 

Ma066, Ma091 (Da Silva et al., 2003). Details on microsatellite characteristics and 

methods can be found in Cohas et al. (2008). 

Genetic exclusion was used to confirm kinship relationships. The genotypes of 

each pup were compared with those of the dominant pair to check maternity. 

From16x806 mother-pup comparisons, no mismatch between the putative mother and its 

pups were found. The dominant male was considered as the father whenever no 

mismatch was observed with the dominant male genotype (753 of 806 pups). The 53 

pups having at least one mismatch with the dominant male genotype (one to nine 

mismatches) were not considered as fathered by the dominant male. Several reasons 

allowed us to exclude the dominant male even when only one mismatch was found. 

First, genotyping error rate was low (probability of finding an error for one allele should 

not exceed 0.0003, for details see Cohas et al., 2008). Second, all these pups and their 

parents were retyped and their genotypes confirmed. Third, the average mutation rate for 

microsatellites is low (1.67x10-4 per generation in Marmota marmota) according to 

Rassmann et al. (1994) and finally, no mismatch with the putative mother has been 

found (see above). We thus compared the genotypes of these pups to the genotypes of all 

known sexually mature males in the family group. Among the 53 pups not fathered by 

the dominant male, 21 had genotypes compatible with that of a subordinate male in their 

family and 32 had a genotype incompatible with all subordinate males of their family. 

 A second parentage analysis was conducted on all 806 pups using the software 

CERVUS 3.0.3 (Kalinowski et al., 2007) with 20 candidate fathers per pup, 95% of 

candidate parents sampled, an error rate of 1% to allow for mistyping and for mutations 

or null alleles, and assignment at a 95% confidence level. The parentage analysis was 

run with the mother identity known and all sexually mature males present a given year in 

the population as putative fathers. The previous results were confirmed except for 14 

pups where paternity could be assigned to both the dominant and a subordinate male. 
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However, MHC markers (Ferrandiz et al., 2015) confirmed the dominant male to be the 

father of six pups. In the last eight cases the pup could still be assigned to both the 

dominant and a subordinate male. However, the sexual organs of the putative 

subordinate father showed no sign of development at capture, and all the other pups of 

the litter were assigned with no ambiguity to the dominant male. Thus, we 

parsimoniously considered these eight pups as fathered by the dominant male. Among 

the 32 pups that were neither fathered by the dominant male nor by a subordinate of the 

groups, 13 were found to be fathered by an individual born in our study population in 

dispersal while the other 19 were fathered by unknown males. 
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7.5.2 Fate diagram and recapture histories construction. 

 

Figure III.4. Fate diagram illustrating the different observable events for a subordinate 
(s) or dominant (D) marmot and associated probabilities and codes as used in the 
recapture histories. 

 

H: H: H: H: H: H: H: H: H: S: $COV:sex COV:sisters COV:logHm 
0 0 4 4 0 5 0 0 0 1 f 2 0.477 

0 0 0 4 0 4 0 0 0 1 f 2 0.124 

4 4 4 4 0 1 3 0 0 1 f 2 0.477 

4 4 0 2 3 2 0 0 0 1 f 2 0.477 

0 0 4 0 0 0 0 0 0 1 f 2 0.602 

             
Figure III.5. Subset of the "headed" format recapture histories file built from the fate 
diagram above. For more details, see E-SURGE 1.8.5 user's manual (Choquet et al., 
2009). Column names are: "H:" for each occasion of capture, "S:" for the number of 
individual with a given capture history, "$COV:" for categorical variables, "COV:" for 
quantitative variables 
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7.5.3. Multi-Event model construction using E-SURGE 

The constructed multi-events model can be summarized by a transition matrix and 

associated vectors of survival, capture and successful reproduction probabilities (only 

the two live states are shown since the dead state parameters are trivially fixed to: p†= 0; 

Ψ††= 1; E†= 0). 

 

where capture (p), survival (Φ), reproduction (E) and state transition conditional on 

survival (Ψ) probabilities are defined as: px
y, the probability that an individual in state x 

was captured during the year y; Φx
y, the probability that an individual in state x in year y 

survived and did not permanently emigrate from the study area between y and y+1; 

Ψxz
y, the probability that an individual in state x in year y is in state z in year y+1 given 

that it survived and did not permanently emigrate from the study area between y and y+1 

and Ex
y , the probability that an individual in state x at time y had successfully 

reproduced this same year. 

Given that pups are not able to reproduce or to become dominant, transition 

probability and reproduction parameter are null for pups. Moreover, since individuals in 

the pup class cannot stay as pups more than one year, no recapture parameter is 

estimable for pups. The model thus reduces for pups to a single survival parameter: 

 

For older individuals, since dominant individuals never revert to subordinate 

state (Farand et al. 2002; Stephens et al. 2002; Grimm et al. 2003), the transition 

probability from the dominant to the subordinate state was fixed to 0 (ΨDs = 0), thus 

constraining the state transition probability from dominant to dominant to 1. Hence, only 

one state transition probability was to be estimated (i.e. the probability of becoming 

dominant = ΨsD= 1 - Ψss). Moreover, given that yearlings are never captured as 

dominant and are not yet sexually mature, the dominant state was removed and the 
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annual reproduction probability was fixed to 0 for yearlings (Es = ED = 0 for yearlings). 

It is to be noticed that, since transition probability is conditional on survival, yearlings 

can become dominant only if they survived. They are then aged two years, and thus 

sexually mature, while adults becoming dominant are at least three years old. Thus the 

model for yearlings simplifies to:  

 
Finally, for individuals older than 2 years of age, the model can be written: 

 

Below are the different matrices ("Transition pattern" box) and how they are constrained 

using the GEMACO language ("Model definition" box) as implemented in E-SURGE 

(Choquet et al. 2009)  to define the best model of the study (model S3.2, Table 4). All 

matrices are row stochastic (the sum of each row equals one) and the complementary 

parameter is indicated by *.  
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The first elementary matrix (S) draws the survival probabilities between time y and y+1 

for each state. The survival parameter is constrained to be linearly related to the 

logarithm of the number of helpers for female juvenile individuals and to the logarithm 

of the number of helpers and the number of brothers for male juveniles ("juv" class) 

while it is constrained to be separately estimated for adults in each state.  
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The second elementary matrix (T) draws the transition probabilities from the 

subordinate to the dominant state conditional on survival between time y and y+1, which 

is the only transition possible. The transition parameter is constrained to be linearly 

related to the number of sisters for adults and independently estimated for yearlings and 

juveniles. Since juveniles cannot become dominant, the juvenile transition parameter is 

then fixed to 0 when initiating the model (IVFV step, Choquet et al., 2009). 
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The third elementary matrix (C) draws the first capture and recapture probabilities at 

each occasion y. The first capture probability (firste) is fixed to 1. Recapture 

probabilities are set to differ between age classes (yearlings and adults only since all 

juveniles captures are first captures given the model structure), between states for adults, 

between sexes and from year to year. 

 

 

 



62 
 

The last elementary matrix (E) draws the probability of having a successful reproduction 

at each time y for every individual, whether it is captured or not. "psub" and "pdom" 

represent the probability for a subordinate and for a dominant to have a successful 

reproduction a given year. These probabilities only apply to the adult age class since 

juveniles and yearlings are not sexually mature. The juvenile and yearling probability to 

reproduce is thus set to 0 at the following IVFV step. 
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7.5.4. Goodness-of-fit tests and root model selection 

The overall GOF test of the Cormack-Jolly-Seber model was significant (χ2 = 149.9; d.f. 

= 74; P < 0.01) particularly in its transience (test 3SR; χ2 = 32.67; d.f. = 19; P = 0.03) 

and trap-dependence (test 2CT; χ2 = 31.73; d.f. = 18; P = 0.02) components. This can be 

due to the known lower survival of pups as compared to more aged individuals and, if 

so, can easily be treated by fitting a model with specific survival and capture parameters 

for pups. To know if this interpretation was correct and hence if the incorporation of 

specific pup survivals would be an adequate treatment of the lack of fit, we examined 

the remaining of the capture histories once the pup observation has been taken out. The 

overall GOF test run on the sole juvenile and adult parts of the capture histories was no 

longer significant (χ2 = 37.42; d.f. = 59; P = 0.10). Hence, the lack of fit was indeed 

limited to the first year of life and was adequately treated by incorporating an age effect 

in both capture and survival parameters. The results of the root model selection are 

shown in the tables 1 to 4. For a greater clarity, only the models with every parameter 

constant, full time and sex dependent parameters and those with a non-zero AICc weight 

are presented. After AICc-based model selection, the root model was: psa*y+sex Φs 

a1*sex*log(helpm); a2,3 Esa3, pDa3*y+sex ΦDa3 ED a3 ᴪsDa2,3. 

Table III.6. Model selection for the effects of age, time and sex on the recapture 
probabilities of Alpine marmots marked from 1990 to 2010; all other parameters' 
constraint structure fixed as in the root model: Φs a1*sex*log(helpm) ; a2,3 Esa3, ΦDa3 
ED a3 ᴪsDa2,3. (n = 806 individuals; AICc: Akaike Information Criterion corrected for 
small sample sizes; k: number of identifiable parameters; AICc: difference in AICc with 
the best model of the set; Wi: AICc weight; bold characters indicate the best model of 
the set). 

Recapture models Deviance k AICc ΔAICc Wi 

psa*y+sex , pDa3*y+sex 3625.25 70 3772.12 0.00 0.85 

psa*y , pDa3*y 3631.52 69 3776.39 4.27 0.10 

psa+y  , pDa3*sex+y 3704.44 34 3779.31 7.19 0.02 

psa+y+sex, pDa3+y+sex 3704.91 34 3779.78 7.66 0.02 

psa2+y, a3*sex+y  , pDa3*sex+y 3703.57 35 3780.44 8.32 0.01 

psa*y*sex , pDa3*y*sex 3558.25 125 3815.12 43.13 0.00 

p constant 3838.70 12 3869.57 97.45 0.00 
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Table III.7. Model selection for the effects of age, time, sex and number of male 
helpers on survival probabilities of Alpine marmots marked from 1990 to 2010 ; all 
other parameters' constraint structure fixed as in the global model : psa*y+sex , a2,3 
Esa3, pDa3*y+sex , EDa3 , ᴪsDa2,3(n = 806 individuals; AICc: Akaike Information 
Criterion corrected for small sample sizes; k: number of identifiable parameters; AICc: 
difference in AICc with the best model of the set; Wi: AICc weight; bold characters 
indicate the best model of the set). 

Survival Models Deviance k AICc ΔAICc Wi 

Φs a1*sex*log(helpm), a2,3,  ΦDa3 3625.25 70 3772.12 0.00 0.95 

Φs a1*log(helpm), a2,3,  ΦDa3 3636.12 68 3778.99 6.87 0.03 

Φs a1*helpm, a2,3,  ΦDa3 3638.12 68 3780.99 8.87 0.01 

Φs a , ΦDa3 3698.78 67 3839.65 67.53 0.00 

Φ constant 3766.92 64 3901.79 129.67 0.00 

Φs a*y*sex , ΦDa3*y*sex 3549.29 201 3958.16 186.04 0.00 

 
 
Table III.8. Model selection for the effects of age, time and sex on the probability to 
become dominant of Alpine marmots marked from 1990 to 2010 ; all other parameters' 
constraint structure fixed as in the global model : psa*y+sex , Φs a1*sex*log(helpm), 
a2,3 Esa3, pDa3*y+sex , ΦDa3 , EDa3 . (n = 806 individuals; AICc: Akaike Information 
Criterion corrected for small sample sizes; k: number of identifiable parameters; AICc: 
difference in AICc with the best model of the set; Wi: AICc weight; bold characters 
indicate the best model of the set). 

Transition models Deviance k AIC ΔAICc Wi 

ᴪsDa2-3 3625.25 70 3772.12 0.00 0.49 

ᴪsDa2*sex, a3 3625.11 71 3773.98 1.86 0.19 

ᴪsDa2, a3*sex 3625.23 71 3774.10 1.98 0.18 

ᴪsDa2-3*sex 3625.09 72 3775.96 3.84 0.07 

ᴪsDa2-3+sex 3625.16 72 3776.03 3.91 0.07 

ᴪsDa2-3*y*sex 3552.12 139 3836.99 64.87 0.00 

ᴪ constant 3739.20 69 3886.07 113.95 0.00 
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Table III.9. Model selection for the effects of age, time and sex on annual 
reproduction probabilities of Alpine marmots marked from 1990 to 2010 ; all other 
parameters' constraint structure fixed as in the global model : psa*y+sex , Φs 
a1*sex*log(helpm), a2,3, pDa3*y+sex , ΦDa3 , ᴪsDa2,3. (n = 806 individuals; AICc: 
Akaike Information Criterion corrected for small sample sizes; k: number of 
identifiable parameters; AICc: difference in AICc with the best model of the set; Wi: 
AICc weight; bold characters indicate the best model of the set). 
Event models Deviance k AIC ΔAICc Wi 

Esa3  , EDa3 3625.25 70 3772.12 0.00 0.44 

Esa3, EDa3*sex 3624.08 71 3772.95 0.83 0.29 

Esa3*sex , EDa3 3625.24 71 3774.14 1.99 0.16 

Esa3*sex , EDa3*sex 3624.07 72 3774.94 2.82 0.11 

Esa3+y , EDa3+y 3597.41 88 3780.28 8.16 0.01 

Esa3*y*sex , EDa3*y*sex 3561.23 139 3846.10 73.98 0.00 

E constant 4516.36 70 4663.23 891.11 0.00 
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Chapter IV.A 

Sociality & Dispersal 
 

Joint estimation of natal dispersal, inheritance and 
true survival in the Alpine marmot 

Abstract: Natal dispersal has long been recognised as one of the main driver of population 
dynamics and evolution of species. However, studying dispersal in natural populations has 
always proved difficult since dispersing individuals may leave the study area and never be re-
encountered. In this situation, demographic parameters estimated using Capture Recapture (CR) 
methods only account for the processes occurring within the study area and survival estimates, 
for example, are only “apparent survival”, i.e. the probability of an individual to survive and not 
emigrate outside the study area between two capture occasions. Similarly, dispersal estimates 
obtained from most CR studies are “apparent dispersal” that under-estimate the true dispersal 
probability since individuals settling outside the study area when dispersing are 
undistinguishable from dead individuals.  
Here, we elaborated on recent methodological advances in population ecology to build an 
integrated multi-event dispersal model. This model was designed to account for permanent 
emigration outside the study area and simultaneously estimate true survival, inheritance, natal 
dispersal probability and natal dispersal distances distribution. We tested for the ability of our 
model to return unbiased estimates as the mean dispersal distance increases using simulated data 
sets and compared it to a classical multi-event model and a two-step model that was proposed as 
a solution to the “apparent survival” problem. To illustrate the usefulness of our model, we 
present an analysis of the sex-specific dispersal in the Alpine marmot as a case study. 
Our model returned unbiased estimates of survival, dispersal probability and mean dispersal 
distance for a large range of dispersal patterns. The analysis of the Alpine marmot data set 
indicates higher levels of philopatry in females compared to males. We further discuss the 
validity and limits of these results and propose future developments.    

Keywords: Capture-Recapture · Integrated Population Models · Sex-biased dispersal · Bayesian 
modelling · Dispersal distance distribution ·  

Dupont, P., Allainé, D. & Pradel, R. (2016).  An Integrated Multi-Event Dispersal model to assess true survival and 
natal dispersal in the Alpine marmot (Marmota marmota). (Draft) 
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8.1. Introduction 

Capture Recapture (CR) models are now widely recognized as powerful and essential 

tools in many fields of biological sciences (Thomson et al. 2009). The main advantage 

of CR methods resides in the possibility to disentangle biological processes, e.g. survival 

(Tavecchia et al. 2001b), dispersal (Bennetts et al. 2001) or reproduction (Rivalan et al. 

2005), from detection processes. In the most classic CR model, the Cormack-Jolly-Seber 

model (CJS model: Cormack 1964; Jolly 1965; Seber 1965), the repetition of capture 

occasions allows to estimate the proportion of individuals actually dead among those no 

longer captured. In other words, it allows to estimate the survival probability separately 

from the detection probability. Because of the power of such an approach, many 

developments have appeared to account for the complexity of both biological and 

detection processes. Models accounting for individual heterogeneity in survival 

(Choquet et al. 2011) and/or in recapture probabilities (Bonner 2008b), for instance, 

have been proposed allowing to answer more complex questions in a more accurate way.  

One currently remaining limitation of CR methods is the well-known “apparent 

survival” problem. During dispersal, some individuals may leave the study area and 

settle permanently outside its boundaries. These emigrating individuals are then never 

recaptured and are undistinguishable from dead individuals. In this situation, survival 

estimates returned by CR models correspond in fact to the probability to survive and not 

leave the study area, which has been called “apparent survival” (Lebreton et al. 1992b). 

Despite this recognised limitation, most studies use apparent survival to draw 

conclusions about the biology of the species under study (Hagen et al. 2005; Blake & 

Loiselle 2008). This limitation is even more salient in studies on dispersal. Since only a 

fraction of dispersing individuals can be recaptured inside the study area, any dispersal 

measure obtained in these conditions is an “apparent dispersal”, which underestimates 

true dispersal. Even in the case of CR data including multiple sites, dispersal estimates 

only concern transitions between the monitored sites and all individuals dispersing 

elsewhere will be confused with dead individuals if no additional information is 

available (e.g. recoveries of dead individuals or count surveys; Péron et al. 2010). 

Yet, as emphasized by Dobson (2013), dispersal, and especially natal dispersal, is 

one of the most fundamental and widespread process in biology. All organisms are faced 

with the “decision” to move and spread, or to stay and try to access reproduction on their 
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natal site. This “decision” entails strong fitness consequences and understanding the 

causes and consequences of natal dispersal is thus of prime importance in evolution and 

population dynamics studies (Bowler & Benton 2005). It is therefore crucial to deal with 

the issue of “apparent dispersal” in CR studies to study natal dispersal efficiently. 

In most CR studies, ancillary information about dispersal is readily available, 

since the location of an individual is generally recorded when recaptured. This source of 

information is usually neglected but the emergence of integrated population models 

(IPM: Schaub & Abadi 2011) and/or spatial capture-recapture models (S-CR models: 

Borchers & Efford 2008) together with the democratisation of highly flexible software 

for Bayesian analyses using Markov Chain Monte Carlo (MCMC) methods (BUGS: 

Lunn et al. (2000), JAGS: Plummer (2003)) recently motivated several attempts to use 

this additional information in order to solve the problem of “apparent survival”.  

Among these attempts, two different approaches can be distinguished: (i) the 

two-step approach in which residency probability, i.e. the probability for an individual to 

remain within the study area when dispersing, is first estimated from the dispersal data 

only, either at the individual (Gilroy et al. 2012) or at the population level (Taylor et al. 

2015), and then used to correct the apparent survival estimated using traditional CR 

models (Gilroy et al. 2012; Taylor et al. 2015); (ii) the integrated approach, developed in 

a CJS framework by Schaub & Royle (2014) and in a spatial-robust-design framework 

by Ergon & Gardner (2014), where the phenomenons of dispersal and survival are 

modelled simultaneously. In this latter approach, the location of a surviving individual is 

modelled at each time step to determine if it is currently inside or outside the study area.  

 Here, we elaborated on these previous studies to propose an integrated CR model 

that estimates natal dispersal by correcting for permanent emigration outside the study 

area. To do so, we conceived a multi-event dispersal model based on the life cycle of the 

Alpine marmot. Because natal dispersal in this species is a single event and because it is 

associated to a change in social status, Alpine marmot is a perfectly suited model to 

study natal dispersal. We started by comparing three different implementations of this 

multi-event approach and assessed their relative performances in a simulation study. The 

first implementation is an ordinary multi-event model returning only “apparent 

dispersal” and “apparent survival” estimates. The second implementation takes up the 

two-step approach of Gilroy et al. (2012) while the last one is inspired by the integrated 
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approach of Ergon & Gardner (2014) and Schaub & Royle (2014). In a second time, we 

ran the best implementation of the three on a long term data set of Alpine marmots to 

perform an analysis of the sex-specific natal dispersal of this monogamous mammal. 

Finally, we discuss the advantages and limitations of the different approaches, propose 

further developments and discuss their ability to detect sex differences in both survival 

and dispersal patterns. 

8.2. Material & Methods 

 8.2.1. Multi-event marmot models 

 Alpine marmot's life cycle. All along this study, we considered the life cycle of 

Alpine marmots (Fig.IV.1). The Alpine marmot is a hibernating, territorial and 

cooperatively breeding mammal living in family groups composed of a dominant couple, 

adult subordinates (age > 2), yearlings and pups born that year. In each family, 

reproduction is monopolized by the dominant couple (with the exception of few 

subordinate males reproducing through extra-pair copulation (Hackländer et al. 2003; 

Cohas et al. 2006), and therefore, reproductive status is generally confounded with 

dominance status. Offspring produced by the dominant couple stay on their natal 

territory at least until sexual maturity at two years of age. From this age, they can either 

stay as subordinate and help raise subsequent pups produced by the dominant couple, or 

disperse (Stephens et al. 2002b). Subordinates that stay in the family group can get a 

dominant status by inheriting the position in the natal territory after the death of the 

same-sex dominant while dispersers reach dominance by evicting the same-sex 

dominant in another territory. A third possibility is the creation of a new territory by a 

couple of dispersing individuals (but this is highly unlikely in the saturated population 

under study). Once a subordinate “decided” to disperse, it cannot come back to its natal 

territory nor be accepted as a subordinate in another family group. Thus, in case of 

failure in reaching the dominant status, it becomes a floater, i.e. a wandering individual 

forced to hibernate alone and thus exposed to a very high risk of mortality (Magnolon & 

Jacques 1999). Because family territories are highly variable in size, we considered 

dispersal distances as the number of territories in straight line between the natal site and 

settlement territory (discrete distance) instead of the linear distance between the centres 

of the natal and settlement territory. Once the dominant position secured, a marmot stays 

dominant until death or eviction by a new incomer. Dispersal in the Alpine marmot is 
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therefore exclusively natal dispersal. When evicted, the dominant individual becomes a 

floater and is thus subject to a very high risk of mortality too (Grimm et al. 2003b).  

Figure IV.1. Schematic representation of the Alpine marmot’s life cycle as used in the 
multi-event model. Solid lines indicate transitions between observable states while 
dotted lines indicate transitions to un-observable states (dead or outside of the study 
area). Complementary parameters (i.e.1-x for parameter x) are not indicated for two-
years and adult age-classes for readability reasons.  

Multi-event models. To fit the life cycle of Alpine marmots, we constructed a 

multi-event model (Pradel 2005) with four states; a subordinate state S (encompassing 

pups, yearlings and subordinate adults), a locally-recruited-breeder state LB (individuals 

that became dominant on their natal territory by inheritance), an immigrant-breeder state 

IB (individuals that became dominant inside the study area after dispersal), and a dead 

state D.  

Since individuals cannot always be observed, or observations may be incomplete, 

the state of an individual cannot always be determined with certainty (e.g. if an 

individual was seen a given year but its dominance status could not be determined) and 

the data at hand is thus composed of observable events instead of true state records. The 

goal of multi-event models is to infer the underlying state (and ultimately the 

demographic parameters related to this state) from a sequence of observed events 

recorded on the field. To do so, each observable event was given a number: 1 when the 

focal individual was captured and identified as a subordinate, 2 when it was captured 

and identified as a locally-recruited-breeder, 3 when it was captured and identified as an 
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immigrant breeder and 4 when no information about the focal individual was available. 

This type of encoding allowed us to construct capture-histories for all individuals 

captured at least once during the study duration, e.g. 1141443343 for an individual 

captured and marked as a subordinate for the first time on the first year of the study, 

recaptured as a subordinate on the second and fourth years, recaptured as an immigrant 

breeder on the seventh, eighth and tenth years and not recaptured on the third, fifth, sixth 

and ninth years.  

Multi-event models can be decomposed in a state-transition and an observation 

process. The state-transition process models the transition of an individual between 

states from one capture occasion to the next while the observation process links the 

observed event at a given capture occasion to the underlying state of the individual. 

These state-transition and observation processes can be represented by two matrices 

containing the different parameters of the model (Pradel 2005). In the following 

sections, we describe these matrices and the parameters they contain for the three 

different models we wish to compare. 

The Apparent Dispersal model (AD). In this model, emigration outside the study 

area is not taken into account and only apparent natal dispersal and apparent survival 

parameters can be estimated for subordinate individuals. Because dominant individuals 

no longer disperse, their survival estimates are not biased and are thus true survival 

estimates. The state-transition process of the model can be described by a four by four 

matrix with departure states in rows and arrival states in columns, where ΦS
i,t is the 

probability that a subordinate individual i at time t survived and did not leave the study 

area between t and t+1,  ΦLB
i,t is the survival probability of the locally recruited breeder i 

between t and t+1, ΦIB
i,t is the survival probability of the immigrant breeder i between t 

and t+1, di,t is the probability (conditional on survival) that subordinate individual i 

dispersed, became a dominant and did not leave the study area between t and t+1 and hi,t 

the probability (conditional on survival and non-dispersal) that subordinate individual i 

accessed dominance on its natal territory between t and t+1.  
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Since four different observable events were retained, the observation matrix is also a 

four by four matrix where the rows represent the underlying states and columns 

represent the observable events. The observation parameter is px
i,t the recapture 

probability of individual i in state x at time t:  

 

The Two-step Dispersal model (TD). This model takes up the approach 

developed by Gilroy et al. (2012). The apparent dispersal (dapp) of subordinates in the 

previous AD model is in fact a composite-parameter. It can be expressed as the product 

of the dispersal (dcor) and residency probability (rcor), i.e. the probability to not emigrate 

outside the study area when dispersing to become dominant: dapp = dcor * rcor. We can 

then construct a new model with a modified state-transition matrix (SM): 
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However, because no information in the data allows differentiating between dead 

and emigrated individuals, rcor, ΦS
cor and dcor parameters are not separately identifiable 

under this parametrisation and these probabilities cannot be estimated from capture-

recapture data only. The residency probability thus needs to be estimated in a first step 

before being used in the CR model to allow the estimation of survival and dispersal 

parameters. 

 The residency probability of an individual depends on: (i) the direction of 

dispersal; (ii) the location of the natal territory of the individual relative to the edge of 

the study area and (iii) the distance travelled during dispersal (Gilroy et al. 2012). To 

simplify, we considered dispersal as homogeneous in direction, i.e. individuals have the 

same probability to choose any direction when dispersing. Given that the location of the 

natal site si was known for all individuals born within the study area, the only missing 

information was the individual dispersal distance, measured as the number of territories 

crossed between the natal territory and the territory where the individual became 

dominant. This distance was only recorded for individuals that settled inside the study 

area and had to be inferred for individuals that emigrated and became dominant outside 

the study area. To estimate this individual dispersal distance lcor,i, we used the known 

dispersal distances recorded inside the study area and construct a vector L of length lmax, 

the longest distance between two territories inside the study area, containing the 

frequencies of observed dispersal distances. The distance an individual travelled during 

natal dispersal was then sampled from this observed distribution: 

 lcor,i ~ dcat (L) 

The individual residency probability was then easily calculated as: 

rcor,i =  =  

where nsi,li is the number of territories inside the study area situated at a distance lcor,i  

from the natal territory si and Nsi,li is the total number of territories situated at a distance 

lcor,i  from the natal territory si. Because we considered territories as discretely and 

homogeneously distributed both inside and outside the study area, the total number of 

territories situated at a distance li from any territory si was Nsi,li  = 8*lcor,i . In other words, 

the residency probability for an individual dispersing a given distance li was equal to the 

proportion of territories situated at a distance li from its natal site si that are situated 
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within the study area. This proportion was determined based on a grid map M of the 

study area (Fig.IV.2). Because the maximum dispersal distance observable inside the 

study area is equal to lmax, the distribution of dispersal distances contained in L was 

truncated and biased towards short distances (Taylor et al., 2015). The dispersal distance 

lcor,i was then under-estimated and the residency probability rcor was in turn over-

estimated. Hence, the survival and natal dispersal estimates returned by this model are 

not true but only corrected estimates. The remaining part of the TD model, i.e. the 

observation process, was identical to the AD model. 

 
Figure IV.2 Example of a study area map as used in the simulation study. The study 
area is represented by the light blue and green areas. Each number represents a family 
group territory where trapping occurs. Yellow and red areas represent territories outside 
the study area. The residency probability of an individual born on territory 20 crossing 
two territories when dispersing is equal to 7/16= 0.44 (of all 16 territories situated at a 
distance of two (red and green territories), seven belong to the study area (green 
territories)). 

 The Integrated Dispersal model (ID). This last implementation is based on the 

integrated approach of Ergon & Gardner (2014) and Schaub & Royle (2014). It aims at 

estimating simultaneously the dispersal kernel and the demographic parameters and thus 

solving the problem of truncated dispersal distances of the two-step model. The only 

difference with the TD parametrisation presented above is that individual dispersal 

distance is integrated in the model as a random variable whose distributional parameters 

are to be estimated. In other words, instead of using the observed and biased dispersal 

kernel, the dispersal distances distribution becomes part of the model and has to be 

estimated. Since dispersal distance in the Alpine marmot is discrete and strictly positive, 
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we used a Poisson distribution. The Poisson distribution also presents the advantage of 

requiring only one parameter, its mean τ. The individual dispersal distance is described 

by: 

li ~ dpois (τ) + 1 

Because non-dispersing individuals (i.e. dispersal distance of zero) are modelled 

elsewhere in the model (with the S and LB states), the minimal dispersal distance 

possible is one territory, hence the addition of one to the random Poisson sample. The 

state-transition matrix of the model is identical to the TD formulation, but the 

interpretation of the parameters is slightly different. Provided the Poisson distribution 

used to describe the dispersal distances is representative of the reality (a limitation 

common to all dispersal distribution studies), the parameters of this formulation are now 

the true subordinate survival (noted ΦS), true natal dispersal (d) and true residency (r) 

probabilities: 

 
The observation process is identical to the one in the AD and TD model (see 

supplementary material 8.5.1.1 for BUGS scripts of the different models). 

Model implementation. The different models were then fitted using Markov 

Chain Monte Carlo (MCMC) simulations with the computer program JAGS (Plummer 

2003) called through R3.2.5 (R core team 2016) with the R package jagsUI (Kellner 

2014). At each iteration, the underlying state of an individual i at the following time step 

t+1, zi,t+1 is sampled in the categorical distribution defined by the probability vector 

contained in the row of the state-transition matrix (SM) corresponding to the current 

state, zi,t. The associated observable event, as recorded in the capture history, yi,t+1 is 

sampled from the categorical distribution defined by the row of the observation matrix 

(OM) corresponding to the underlying state zi,t+1 :  



80 
 

zi,t+1  ~ dcat ( SM [zi,t , ] ) 

yi,t+1  ~ dcat ( OM [zi,t+1 , ] ) 

All parameter priors were chosen to be un-informative. All survival, dispersal, 

inheritance and recapture probabilities were given uniform priors, dunif(0,1). Prior for 

the Poisson mean in the ID model was given a vague gamma distribution 

dgamma(0.0001,0.0001). Because convergence was obtained faster for simulated data 

sets compared to the Alpine marmot data set, all models in the simulation study were 

fitted by running three chains independently for 10000 iterations with a burning period 

of 6000 iterations and a thinning rate of 1 while for the case study on Alpine marmots, 

three chains of 15000 iterations were needed with a burning period of 10000 iterations. 

 8.2.2. Simulation study 

 To compare the different models, we constructed several data sets with 

increasing mean dispersal distance. We considered a simple situation where the survival 

probability was equal and high for both breeder states (ΦIB = ΦLB = 0.95), slightly lower 

for subordinates (ΦS = 0.85) and recapture probabilities differed between dominants and 

subordinates (pIB = pLB = 0.65 and pS = 0.95). Finally, dispersal probability d  was fixed 

to 0.4 and inheritance probability h to 0.12. To avoid effects due to its shape, the study 

area was randomly generated by sampling 35 different cells in a 10 × 6 grid for each 

simulated data set, i.e. 35 territories where trapping occurs were randomly selected out 

of 60 possible locations for each simulated data set. Each individual’s initial location 

was then randomly sampled among the 35 territories. We considered the landscape as 

homogeneous, i.e. the habitat was suitable for settlement anywhere inside or outside the 

study area. Based on this map, a matrix containing the residency probabilities for each 

territory and dispersal distance was constructed (see supplementary material 8.5.1.2 for 

the script used to generate the residency probability matrix). Because dispersal was 

limited to a single transition from the S to the IB state, individual dispersal distance was 

sampled a priori for all individuals from a Poisson distribution. Given its natal territory 

and individual dispersal distance, each individual was then assigned a residency 

probability ri from the residency probability matrix. State-transition and observation 

matrices similar to those in the ID model were then filled with these different 

probabilities. Individuals capture histories were constructed by sampling the individual 

underlying state and observed event for each time step in the corresponding state-

transition and observation process matrix based on its previous state. The initial location 
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was known for all simulated individuals but dispersal distances were kept only for 

individuals that did not disperse outside the study area to mimic true capture-recapture 

data (see supplementary material 8.5.1.3 for a data simulation script).  

We simulated data sets with increasing mean dispersal distance τ from 0 to 12 

territories with steps 0.5 and repeated the simulation process 100 times for each value of 

τ, leading to a total of 2500 simulated data sets. Each data set was composed of twenty 

capture occasions, with 40 individuals entering the data set at each occasion (except for 

the last one), leading to a total of 760 individuals per data set. 

 8.2.3. Sex-specific dispersal in the Alpine marmot 

Finally, we applied the integrated dispersal model to a real Alpine marmot data set to 

obtain estimates of sex-specific survival and dispersal. The data set was composed of 

1270 individuals captured over 26 years (from 1990 to 2015) in the Grande Sassière 

nature reserve (Parc National de la Vanoise, France). During this period, 172 dispersal 

events were recorded with a maximum dispersal distance of six territories crossed. In the 

same time, the study area increased and the number of family territories under study 

changed from 13 to 35 (Fig.IV.3). Consequently, the probability for an individual to 

emigrate outside the study area decreased and the probability to observe a dispersal 

event inside the study area increased simultaneously. To account for this change in the 

study area size and shape, we used annual maps representative of the territories relative 

positions for each time step.  

Also, because the study area is situated at the bottom of a small valley 

surrounded by high altitude mountain tops, where habitat is unsuitable for Alpine 

marmots (snow, rocks and very little vegetation), the landscape could not be considered 

as homogeneous and dispersal was not equally possible in all directions. Because the 

structure of the landscape outside the study area strongly influences survival and 

dispersal estimates (see supplementary material 8.5.2 for a simulation study of the 

impact on survival and dispersal estimates of the heterogeneity of the landscape), we 

used a satellite picture to construct the maps of the study area and its surroundings and 

discarded rocky and high altitude areas from the potential settlement territories (see 

Fig.IV.4 for an example of grid map with 34 territories and unsuitable habitat discarded 

from the possible dispersal locations).  
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Figure IV.3. Schematic map of the family territories under study in the Grande Sassière 
nature reserve for the period 2012-2014 (2340 m a.s.l., French Alps, 45°29′N, 6°59′E) 
Orange area is followed since 1990. Yellow territories were added in 2013. 

  Following the results of previous CR studies on the same population (Dupont et 

al. 2015b; Berger et al. 2016; Rézouki et al. 2016), we incorporated time as a factor with 

additive age and sex effects on the recapture probabilities. In addition to the sex-effect in 

which we were interested, we accounted for age-specific subordinate survival and 

transitions probabilities by considering four age classes: juvenile (from zero to one-year-

old), yearling (from one to two), two-year (from two to three) and adult (three years old 

and older). Since it has been shown to be an important driver of juvenile survival, we 

incorporated an effect of the logarithm of the number of male helpers on the juvenile 

survival (Allainé & Theuriau 2004; Dupont et al. 2015). Because no individual attained 

a dominant status before two years old, only the two last age classes were used for 

dominant individuals. In addition, we considered sex-specific dispersal patterns, i.e. two 

distinct Poisson distributions with sex-specific mean. The parameters of the model were 

then pt,age,sex the time, age and sex-specific recapture probabilities, ΦIB
age,sex and ΦLB

age,sex 

the age and sex-specific survival probabilities of dominant individuals, ΦS
age,sex the age 

and sex-specific survival probabilities of subordinate individuals, dage,sex the age and sex-

specific dispersal probabilities, hage,sex the age and sex-specific inheritance probabilities 

and τsex the sex-specific means of the dispersal distances distribution for the integrated 

model. 
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Figure IV.4. Study area map of the Grande Sassière nature reserve based on a satellite 
picture. Light blue colour represents the study area. Numbers represent family territories 
where trapping occurs. Yellow area stands for territories outside the study area suitable 
for Alpine marmots. Grey area represents unsuitable habitat (rocky and snowy areas). 

8.3. Results 

 8.3.1. Simulation study 

The posterior means ± se obtained using all three models were very similar and unbiased 

for recapture probabilities (AD model: pS = 0.95 ± 0.01 and pIB = pLB = 0.65 ± 0.02; TD: 

pS = 0.95 ± 0.01 and pIB = pLB = 0.65 ± 0.02; ID: pS = 0.95 ± 0.01 and pIB = pLB = 0.65 ± 

0.02), inheritance probability (AD: h = 0.12 ± 0.01; TD: h = 0.12 ± 0.01; ID: h = 0.12 ± 

0.12) and breeder survival probabilities (AD: ΦIB = ΦLB = 0.95 ± 0.01; TD: ΦIB = ΦLB 

=0.95 ± 0.01; IS: ΦIB = ΦLB =0.95 ± 0.01), under all scenarios. 

 Subordinate survival and dispersal estimates, on the other hand, varied 

considerably among the three models. Both posterior mean estimates given by the AD 

model were much lower than the simulated values and this difference increased with the 

mean simulated dispersal distance (Fig.IV.5) until a lower plateau was reached for 

values of mean dispersal distance higher than the maximum length of the study area lmax. 

The difference between the simulated value and the posterior mean of the apparent 

dispersal probability dapp increased from 26% to 99% of the simulated value when mean 

dispersal distance increased from 0 to 12 territories, while the difference between the 

simulated and the apparent subordinate survival estimate ΦS
app varied from 15% to 40% 
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of the simulated value in the same interval. Notably, at the extreme, when the mean 

simulated dispersal distance was higher than lmax, the apparent dispersal probability 

estimates tended towards zero.  

Negative bias was also observed but to a lesser extent for both the two-step and 

integrated models. For the TD model, the difference between dcor
 and the simulated 

value of d varied from 0% to 87% of the simulated value and the difference between 

ΦS
cor and the simulated survival value varied from 0% to 36%. For the ID model, 

observed differences were always lower, varying from 0% to 84% for the dispersal 

probability and from 0% to 30% for the subordinate survival estimate. 

Figure IV.5. Estimates of dispersal probability (left) and subordinate survival 
probability (right) given by the three different models; ID: Integrated Dispersal model, 
TD: Two-step Dispersal model and AD: Apparent Dispersal model. Coloured lines 
represent the mean estimates, shaded areas represent the standard error of the mean 
associated to each parameter and dashed lines represent simulated values. 

Most importantly, the difference between estimated and simulated values 

obtained with the ID model was virtually null for mean dispersal distances lower than 

half of the study area length (difference between simulated and estimated value of d < 

1% and difference between the simulated and estimated value of ΦS < 1% of the 

simulated value) and relatively small (under 10%) for mean dispersal distances lower 

than 75% of the study area length. In comparison, the difference between simulated and 

estimated values of both dispersal and subordinate survival was always higher than 10% 

for the AD model. For the TD model, this difference was higher than 10% as soon as 

mean dispersal distance exceeded one territory. This difference is also visible for the 
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mean dispersal distance τ. The integrated model was able to return the true mean 

dispersal distance for a large range of simulated values while the difference between the 

simulated and observed mean dispersal distance used in the two-step model continuously 

increased (Fig.IV.6). Interestingly, the estimated value of mean dispersal distance τ 

returned by the integrated model decreased dramatically when the mean simulated 

dispersal distance was higher than the maximum length of the study area. 

 
Figure IV.6. Mean dispersal distance as used in the Two-step Dispersal (TD: observed 
values inside the study area) and estimated by the Integrated Dispersal (ID: estimated 
mean value ± se of the mean) models for increasing values of simulated mean dispersal 
distance. Horizontal and vertical dashed lines indicates the longest distance between two 
territories inside the study area. 

 8.3.2. Sex-specific dispersal in the Alpine marmot 

The 95% confidence intervals of the posterior mean estimates returned by the ID model 

indicated that recapture probabilities varied with time and decreased with age (difference 

in recapture probabilities between yearlings and two-years Δptwo = -1.40 [-1.91; -0.94] 

and difference between yearlings and adults Δpad = -1.90 [-2.37; -1.50] on the logit 

scale). The recapture probabilities were also higher for females than for males 

(difference in recapture probabilities between females and males Δpsex = -0.28 [-0.55; -

0.02] on the logit scale). The dispersal distances distribution did not differ between 

males and females (mean dispersal distance for females lfemales = 1.69 [1.55; 1.85] and 

mean dispersal distance for males lmales = 1.71 [1.56; 1.86], see Fig IV.7). Juvenile 

subordinate survival increased with the logarithm of the number of male subordinates 
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present during hibernation for both sexes (βhelp_m = 0.41 [0.33; 0.49] for females and 0.53 

[0.44; 0.61] for males on the logit scale). Subordinate survival increased with age but did 

not vary significantly between sexes although two-year subordinate males tended to 

have a lower survival than females (Fig. IV.8 upper panel and Table IV.1). Dispersal 

probabilities increased with age similarly for both sexes (Fig. IV.8 middle panel and 

Tab.IV.1). Inheritance probabilities also varied with age and a sex difference was found 

for the two-year age class (Fig. IV.8 lower panel and Table IV.1). Because inheritance is 

conditional on survival and dispersal, this indicates that females in their third year of life 

had more chances to inherit a dominant position than males. To summarize these results, 

the fate of subordinate individuals in the population was represented as the cumulative 

proportions of subordinate individuals in each state predicted by the model (Fig IV.9). 

For dominants, survival probabilities of young dominants, i.e. two-year age class, were 

higher than those of adults but no sex difference was evidenced for both locally recruited 

and immigrant breeders (Table IV.1). In addition, no difference between locally 

recruited and immigrant breeders was evidenced (difference in survival between locally 

recruited and immigrant two-year breeders ΔΦsub LB = 10.43 [-34.32; 64.69] on a logit 

scale) and older dominants (difference in survival between locally recruited and 

immigrant adult breeders ΔΦad LB = 0.14 [-0.36; 0.63] on a logit scale). 

 
Figure IV.7.  Histogram of observed (grey) and estimated (coloured) dispersal distances 
distribution for female (red) and male (blue) Alpine marmots. τ represents the sex-
specific mean of the estimated Poisson distribution, the mean number of territories 
crossed for a sex during dispersal is equal to 1 + mean of the sex-specific Poisson 
distribution. 
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Table IV.1. Mean posterior estimates (standard deviation) of survival, dispersal and 
inheritance probabilities for the ID model. Overlap indicates whether the credible 
interval of the difference between males and females for this parameter includes 0, i.e. it 
indicates if the parameter does not differ significantly between sexes. 

parameters females males overlap 

ΦS
juv 0.56 (0.03) 0.55 (0.02) YES 

ΦS
year 0.71 (0.04) 0.74 (0.04) YES 

ΦS
two 0.97 (0.05) 0.84 (0.11) YES 

ΦS
ad 0.99 (0.01) 0.99 (0.01) YES 

ΦLB
two 0.99 (0.04) 0.99 (0.07) YES 

ΦLB
ad 0.78 (0.03) 0.70 (0.04) YES 

ΦIB
two 0.99 (0.06) 0.99 (0.10) YES 

ΦIB
ad 0.80 (0.03) 0.77 (0.03) YES 

djuv 0.00 (0.00) 0.00 (0.00) YES 

dyear 0.10 (0.03) 0.11 (0.03) YES 

dtwo 0.58 (0.06) 0.57 (0.06) YES 

dad 0.58 (0.06) 0.58 (0.05) YES 

hjuv 0.00 (0.00) 0.00 (0.00) YES 

hyear 0.01 (0.01) 0.01 (0.01) YES 

htwo 0.32 (0.06) 0.09 (0.04) NO 

had 0.59 (0.09) 0.58 (0.07) YES 

8.4. Discussion 

8.4.1. Approaches comparison 

The results of the different simulations indicated that the AD model strongly 

underestimated both survival and dispersal even in the case of short dispersal distance. 

The two-step model of Gilroy et al. (2012) allowed to severely decrease this bias but not 

to delete it. The integrated approach proposed by Ergon & Gardner (2014) and Schaub 

& Royle (2014) on the other hand, returned unbiased estimates of both survival and 

dispersal as long as the coverage of the study area is relatively large compared to the 

mean dispersal distance.  

Our results confirm and complete previous studies on the problematic of 

“apparent survival” in different ways (Gilroy et al. 2012; Ergon & Gardner 2014; 

Schaub & Royle 2014; Taylor et al. 2015). In these previous studies, authors compared 
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either a two-step model or an integrated model to a classical CJS model, but none of 

them compared all three approaches together. Here, we showed that incorporating 

information about dispersal, as Gilroy et al. (2012) or Taylor et al. (2015) did, is a good 

way to reduce the bias in the different demographic parameters but it does not allow to 

reach the true values of the demographic parameters. It is known that the 

underestimation of survival and dispersal is directly linked to the proportion of the 

dispersal distances distribution sampled in the dispersal data (Gilroy et al, 2012), but this 

proportion remains unknown to researchers most of the time. Using such models can be 

tricky since it gives estimates of demographic parameters in between the “apparent 

value”, for which we have a clear definition, and “true value”. In such situation, we 

therefore know that estimates are biased but not to what extent. To overcome this 

problem, Taylor et al. (2015) proposed to correct the observed dispersal distances 

distribution before using it to calculate residency probabilities by applying a 

Barrowclough correction (Barrowclough 1978). However, this correction is based on the 

assumption of a homogeneous and circular study area, a disposition highly unlikely in 

natural conditions. To draw conclusions on the evolution of dispersal in a species or to 

propose population management recommendations based on such models is thus highly 

risky and should be avoided. 

The integrated approach on the other hand provides reliable estimates of both 

survival (Ergon & Gardner 2014; Schaub & Royle 2014) and natal dispersal (this study). 

In addition, as noted by Schaub & Royle (2014), modelling the dispersal process within 

a CR model allows estimating the error associated to the dispersal kernel. We therefore 

obtain at the same time a good description of the true dispersal pattern and a 

quantification of the uncertainty associated to this dispersal pattern given the data at 

hand. The integrated approach is thus more rigorous and more accurate from a statistical 

point of view. However, the integrated approach still has some limitations. First, it 

returns accurate estimates of true survival and dispersal only to a certain extent. Notably, 

the performance of the model is related to the ratio of the size of the study area relative 

to the mean dispersal distance. Indeed, when the number of dispersal events observed 

within the study area compared to the total number of dispersal events becomes too 

small, the model is not able to correctly identify the parameters of the dispersal distance 

distribution, and demographic parameters are also misestimated. This problem is truly  
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the problem of the quality of the data available and, as noted by Schaub & Royle (2014): 

“if censoring becomes too strong (dispersal distances very large relative to the size of the 

study area), [the] model is not successful anymore in correctly estimating dispersal and 

consequently survival. But it is hard to imagine that any model would succeed in 

obtaining meaningful estimates in this case.” A second limitation of this kind of 

integrated models (but also true for the two-step models) lies in the specification of the 

dispersal kernel. By extrapolating on the dispersal events observed inside the study area, 

we may miss an important part of the dispersal kernel. Long distance dispersal events, 

for example, will be likely missed in the observed dispersal events despite their 

recognised importance for population dynamics (Nathan  2005). Hence, the dispersal 

distribution has to be chosen a priori based on the knowledge about dispersal in the 

species under study but, to our knowledge, no test exists to determine whether the 

chosen distribution is representative of the true dispersal process. This was also stressed 

out by the other studies on the same topic: “inferences about true survival will always be 

model-dependent to some degree” (Ergon & Gardner 2014). 

8.4.2. Integrated Multi-Event Dispersal model 

 Although they share the same general approach, our formulation of the ID model 

presents several differences with the other integrated models, i.e. the Robust-Design 

Spatial-Capture-Recapture model (RD-SCR: Ergon & Gardner, 2014) and the Spatial 

Cormack-Jolly-Seber (S-CJS: Schaub & Royle, 2014), making it more suited to the 

study of natal dispersal. In studies mentioned above, dispersing and non-dispersing 

individuals were not differentiated and thus shared the same demographic parameters. In 

practice, this means that the distribution of dispersal distances contains zero values to 

account for individuals that did not move between two time steps. For this reason, 

Schaub and Royle used a Normal distribution centred on zero as dispersal kernel. This 

represents a strong assumption because, given the shape of the Normal distribution, the 

proportion of non-dispersers (individuals with dispersal distances between -1 and 1 in 

their model) is related to the distance travelled by dispersers and vice-versa. In other 

words, the dispersal probability of an individual is made dependent on the distance 

travelled by other individuals. Ergon & Gardner (2014) circumvented this problem by 

using zero-inflated distributions for the dispersal kernel. The proportion of non-

dispersing individuals (related to the value of the inflation parameter) is then 

independent of the dispersal distance distribution. However, the dispersal probability of 
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an individual is not explicitly modelled and the assumption of identical survival between 

dispersers and non-dispersers holds despite numerous evidence that dispersers are not a 

random sample of the population (Clobert et al. 2009). Dispersers are thus highly likely 

to possess specific demographic parameters. Here we took these different possibilities 

into account by modelling natal dispersal as a transition between two states in a multi-

event context. Hence, our formulation allows (i) natal dispersal probability to be 

explicitly modelled and easily related to covariates of interest if needed, and (ii) different 

survival probabilities to be estimated and compared for subordinates before dispersal, 

philopatric dominants and dominant individuals that dispersed. The main advantage of 

our approach is thus its completeness and its flexibility. Any incorporation of age, sex, 

spatial or any type of individual covariates is straightforward, the number of dispersing 

individuals (given by the dispersal probability) is estimated independently of the 

dispersal kernel, and separate demographic parameters can be estimated and compared 

for dispersers and non-dispersers.  

Finally, another advantage resides in the way residency probabilities are 

calculated. In the models of Schaub & Royle (2014) or Ergon & Gardner (2014), the 

position of each individual at each time step is modelled and compared one by one with 

all possible locations in the study area  to check if the individual is still inside the study 

area. Instead, we calculated the residency probability matrix beforehand based on a map 

of the study area and therefore only needed to model the dispersal distance for each 

individual, thus drastically load-lightening the model. 

8.4.3. Further developments 

 The integrated dispersal model we developed here was constructed to study natal 

dispersal only with dispersal being limited to a single transition between the subordinate 

and locally-recruited-breeder state. By comparison, dispersal is allowed between each 

recapture occasions in Schaub & Royle (2014) and between each primary occasions in 

Ergon & Gardner (2014). However, our model can be easily modified to incorporate this 

kind of breeding dispersal. The only modification concerns the state-transition matrix 

with the addition of two parameters: one allowing for the transition from the LB state to 

the IB state indicating the individual dispersed between two successive reproductive 

events, and a second transition parameter from IB to LB indicating the individual stayed 

on the same site between two reproductive events. Such model would be rather complete 
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for the study of dispersal since it would give access simultaneously to the natal dispersal 

probability (transition from S to IB), the dispersal probability of previously dispersed 

individuals (transition from IB to IB), the probability to stay on the same site for a 

previously dispersed individual (transition from IB to LB), the dispersal probability of an 

individual that did not move during the previous time step (transition from LB to IB) and 

the probability to stay on the same site for an individual that did not move during the 

previous time step (transition from LB to LB).   

In addition, the multi-event formulation ensures straightforward incorporation of 

state uncertainty and/or additional information. It can be easily implemented by 

modifying the observation process matrix (see Pradel (2005) for an example of state 

uncertainty and Dupont et al. (2015) for the incorporation of additional information 

about the reproductive state). Our formulation also allowed relaxing both assumptions of 

homogeneous dispersal direction and homogeneous landscape. It is very easy to 

incorporate the spatial structure outside the study area such as unsuitable habitat patches 

or preferred dispersal corridors, in the dispersal estimation. It only requires modifying 

the map of the study area by specifying different weights for the different territories and 

then recalculating the residency probabilities: 

rs,l  =  

where wk,s,l is the weight of the kieth site situated inside the study area at a distance l from 

site s, K is the total number of sites situated inside the study area at a distance l from site 

s, and Ws,l is the sum of weights of  all sites situated at a distance l from site s. 

Attributing unsuitable sites a weight of zero is then equivalent to not consider them as 

potential settlement territory for a dispersing individual (see supplementary material 

8.5.2. for a simulation study of the impact of landscape structure outside the study area 

on survival and dispersal estimates), and attributing a given site a weight higher than one 

is equivalent to consider it as favoured over other territories situated at the same distance 

(e.g. because of the presence of large quantities of food and/or mating opportunities).   

 8.4.4. Sex-specific dispersal in the Alpine marmot 

The application of the ID model to the Grande Sassière data set revealed the “true” natal 

dispersal and survival pattern of Alpine marmots. As expected from the results of the 

simulation study, the estimates of recapture probabilities, juvenile survival and dominant 
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survival we obtained were consistent with the results of previous studies on the same 

population that did not take into account emigration outside the study area (e.g. Cohas et 

al. 2009; Dupont et al. 2015; Berger et al. 2016; Rézouki et al. 2016). By contrast, our 

results shed light on the natal dispersal and inheritance processes in the Alpine marmot 

and gave new insights on the survival of subordinate individuals. It appears the low 

apparent subordinate survival of previous studies (e.g. 0.53 in Dupont et al. 2015) is 

almost entirely due to dispersal outside the study area of two-year individuals (Fig.IV.8).  

 
Figure IV.9. Cumulative proportions of subordinate individuals in each state (S: 
subordinates, IB: immigrant breeders, LB: locally-recruited breeders, D: dead) according 
to sex (blue: males; red: females) and age as predicted by the integrated dispersal (ID) 
model. 

The annual probability to become dominant was also lower in previous studies 

(0.45 in Rézouki et al. 2016) in spite of the fact that no difference was made between 

inheritance and dispersal. Our results indicate that the vast majority of subordinate 

individuals are in fact able to become dominant once they survived their two first 

winters. In addition, the probability to become dominant did not differ between sexes but 

we were able to identify a difference in inheritance between two-year males and females, 
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with females having a probability to inherit the dominant position of their mother more 

than three times the inheritance probability of males. 

Contrary to what is generally reported in the literature for mammals, neither the 

proportion of dispersers (i.e. the age-specific dispersal probability) nor the dispersal 

pattern (i.e. the mean dispersal distance) differed between sexes (Dobson 2013). This 

absence of sex-specific dispersal pattern is not so surprising for a monogamous and 

monomorphic mammal such as the Alpine marmot (Lukas & Clutton-Brock 2012). 

However, this absence of sex-difference in dispersal probability should be considered 

with caution, given that in the formulation of our model, dispersal probability only 

reflects successful dispersal, i.e. individuals that dispersed and became dominant in 

another territory. Hence, it does not reflect the dispersal “decision”, i.e. the probability 

that an individual leaves its natal territory, independently of the success of this dispersal. 

This probability cannot be estimated using our model because no information was 

available about dispersing individuals that failed to become dominant. These 

unsuccessful dispersers disappeared from the data set and most likely died in the process 

(Lardy et al. 2011). The difference observed in the proportion of dead males and females 

(Fig.IV.9) likely reflect this fact, and thus would tend to indicate that a greater number 

of males leave their natal territory after their second winter compared to females. It 

would also indicate a lower probability of success and therefore a higher cost of 

dispersal for males. This alleged male-biased dispersal, although unexpected for a 

monogamous mammal, might be explained in Alpine marmots by the possibility of 

extra-pair paternities. In agreement with this hypothesis, Cohas et al. (2008) found that 

most extra-pair paternities in the Grande Sassière population were produced due to 

dispersing individuals (80% of litters containing extra-pair young). Because of this 

possibility for males to access reproduction through extra-pair copulation even when 

failing to secure a dominant position, the expected fitness of dispersing males will be 

higher than that of females. Accordingly, the lower two-year subordinate survival of 

males may indicate higher levels of competition among males to disperse and access 

reproduction. Finally, the higher proportion of females inheriting the dominant position 

from their mother (Fig.IV.9) also supposes female-biased philopatry (and therefore 

male-biased dispersal) in the Alpine marmot. However, further research on the dispersal 

decision and costs in this species is needed to confirm these predictions. 
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To determine whether males truly dispersed more than females would require to 

take into account the success of the dispersal event for each individual, i.e. disentangle 

“natural mortality” from “dispersal related mortality”. Such model would require 

additional information about the state of individuals during dispersal (e.g. a robust-

design framework where mortality between primary occasions would refer to “natural 

survival” while mortality within primary occasions would refer to “dispersal related 

mortality”) or about the fate of individuals (e.g. spatial dead-recovery data where the 

dispersal status of individuals could be confirmed when individuals are found dead away 

from their natal territory). In the absence of such data, a last possibility, inspired by the 

work of Barthold et al. (2016) would be to assess the dispersal-related mortality by 

making the assumption that subordinate and dominant individuals follow the same age-

related survival pattern. Constraining subordinate survival this way would allow the 

dispersal-based mortality to be estimated as the difference between the observed 

mortality (as in our model) and the “natural mortality” (as constrained by the age-related 

pattern).  

 In the end, the integrated multi-event dispersal model we presented here is a new 

step towards a more complete (and less biased) assessment of dispersal and its drivers 

for which biologists of many fields have a great interest. As all models, it presents some 

limitations, but, with a clear understanding of its limitations in mind, it allows to 

considerably increase the knowledge about the central phenomenon in population 

biology that is dispersal, and opens new research and development areas.  

  



96 
 

 

  



97 
 

8.5. Supplementary material 

8.5.1. Dispersal models & Simulation scripts 

8.5.1.1. Dispersal models BUGS scripts 

################################ 
 ## Apparent Dispersal model        ## 
 ################################ 
sink("AD.bug") 
cat(" 
model  
{ 
# Priors and constraints 
for (i in 1:nind) 
 { 
    for (t in f[i]:(n.occ-1)) 
  { 
        phiS[i,t] <- mean.phiS 
  phiB[i,t] <- mean.phiB 
  d[i,t] <- mean.d 
        h[i,t] <- mean.h  
        PS[i,t] <- mean.pS 
        pB[i,t] <- mean.pB 
   }  
    }    
mean.phiS ~ dunif(0,1)   
mean.phiB ~ dunif(0,1) 
mean.d ~ dunif(0,1)            
mean.h ~ dunif(0,1)    
mean.pS ~ dunif(0,1) 
mean.pB ~ dunif(0,1) 
     
# Define state-transition and observation matrices 
for (i in 1:nind) 
 { 
    for (t in f[i]:(n.occ-1)) 
  {              
     # Define probabilities of state S(t+1) given S(t)    
        ps[1,i,t,1] <- phiS[i,t] * (1-d[i,t]) * (1-h[i,t])  
        ps[1,i,t,2] <- phiS[i,t] * (1-d[i,t]) * h[i,t] 
        ps[1,i,t,3] <- phiS[i,t] * d[i,t]  
  ps[1,i,t,4] <- 1-phiS[i,t]  
        ps[2,i,t,1] <- 0 
        ps[2,i,t,2] <- phiB[i,t]  
        ps[2,i,t,3] <- 0 
  ps[2,i,t,4] <- (1-phiB[i,t])  
        ps[3,i,t,1] <- 0 
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        ps[3,i,t,2] <- 0 
        ps[3,i,t,3] <- phiB[i,t] 
        ps[3,i,t,4] <- (1-phiB[i,t]) 
  ps[4,i,t,1] <- 0 
        ps[4,i,t,2] <- 0 
        ps[4,i,t,3] <- 0 
        ps[4,i,t,4] <- 1 
 
  # Define probabilities of O(t) given S(t) 
        po[1,i,t,1] <- pS[i,t] 
        po[1,i,t,2] <- 0 
        po[1,i,t,3] <- 0 
        po[1,i,t,4] <- 1-pS[i,t] 
       po[2,i,t,1] <- 0 
       po[2,i,t,2] <- pB[i,t] 
       po[2,i,t,3] <- 0 
       po[2,i,t,4] <- 1-pB[i,t] 
       po[3,i,t,1] <- 0 
       po[3,i,t,2] <- 0 
       po[3,i,t,3] <- pB[i,t] 
      po[3,i,t,4] <- 1-pB[i,t] 
       po[4,i,t,1] <- 0 
       po[4,i,t,2] <- 0 
       po[4,i,t,3] <- 0 
       po[4,i,t,4] <- 1 
       }  
    }  
# Likelihood  
for (i in 1:nind) 
 { 
 z[i,f[i]] ~ dcat(y[i,f[i]])  
 for (t in (f[i]+1):n.occ) 
  { 
        z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ])    
  y[i,t] ~ dcat(po[z[i,t], i, t-1, ])     
        }  
    }  
} 
",fill = TRUE) 
sink() 

 
####################################################################### 
################################ 
## Two-step Dispersal model             ## 
################################ 
sink("TD.bug") 
cat(" 
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model  
{ 
# Priors and constraints 
for (i in 1:nind){ 
 dist[i] ~ dcat(L[]) ## L: vector of observed dispersal distances frequencies 
 D[i] <- step(dmax-dist[i])+1 
 DIST[i,1] <- dmax 
 DIST[i,2] <- dist[i] 
    for (t in f[i]:(n.occ-1)) { 
        phiS[i,t] <- mean.phiS 
  phiB[i,t] <- mean.phiB 
  d[i,t] <- mean.d 
        h[i,t] <- mean.h  
        pS[i,t] <- mean.pS 
        pB[i,t] <- mean.pB 
  r[i,t] <- prob.mat[site[i],DIST[i,D[i]]] 
   }  
    }    
mean.phiS ~ dunif(0,1)   
mean.phiB ~ dunif(0,1) 
mean.d ~ dunif(0,1)            
mean.h ~ dunif(0,1)    
mean.pS ~ dunif(0,1) 
mean.pB ~ dunif(0,1) 
      
# Define state-transition and observation matrices 
for (i in 1:nind) 
 { 
    for (t in f[i]:(n.occ-1)) 
  {              
     # Define probabilities of state S(t+1) given S(t)    
        ps[1,i,t,1] <- phiS[i,t] * (1-d[i,t]) * (1-h[i,t])  
        ps[1,i,t,2] <- phiS[i,t] * (1-d[i,t]) * h[i,t] 
        ps[1,i,t,3] <- phiS[i,t] * d[i,t] * r[i,t] 
  ps[1,i,t,4] <- 1-phiS[i,t] + phiS[i,t] * d[i,t] * (1-r[i,t]) 
        ps[2,i,t,1] <- 0 
        ps[2,i,t,2] <- phiB[i,t]  
        ps[2,i,t,3] <- 0 
  ps[2,i,t,4] <- (1-phiB[i,t])  
        ps[3,i,t,1] <- 0 
        ps[3,i,t,2] <- 0 
        ps[3,i,t,3] <- phiB[i,t] 
        ps[3,i,t,4] <- (1-phiB[i,t]) 
  ps[4,i,t,1] <- 0 
        ps[4,i,t,2] <- 0 
        ps[4,i,t,3] <- 0 
        ps[4,i,t,4] <- 1 
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  # Define probabilities of O(t) given S(t) 
        po[1,i,t,1] <- pS[i,t] 
        po[1,i,t,2] <- 0 
        po[1,i,t,3] <- 0 
        po[1,i,t,4] <- 1-pS[i,t] 
       po[2,i,t,1] <- 0 
       po[2,i,t,2] <- pB[i,t] 
       po[2,i,t,3] <- 0 
       po[2,i,t,4] <- 1-pB[i,t] 
       po[3,i,t,1] <- 0 
       po[3,i,t,2] <- 0 
       po[3,i,t,3] <- pB[i,t] 
      po[3,i,t,4] <- 1-pB[i,t] 
       po[4,i,t,1] <- 0 
       po[4,i,t,2] <- 0 
       po[4,i,t,3] <- 0 
       po[4,i,t,4] <- 1 
       }  
    }  
# Likelihood  
for (i in 1:nind) 
 { 
 z[i,f[i]] ~ dcat(y[i,f[i]])  
 for (t in (f[i]+1):n.occ) 
  { 
        z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ])    
  y[i,t] ~ dcat(po[z[i,t], i, t-1, ])   
        }  
    }  
} 
",fill = TRUE) 
sink() 
#######################################################################
################################ 
## Integrated Dispersal model        ## 
################################ 
sink("ID.bug") 
cat(" 
model  
{ 
# Priors and constraints 
for (i in 1:nind) 

{ 
dist[i] ~ dpois(tau) 
DD[i] <- step(dmax-(dist[i]+1)) 
D[i] <- DD[i]+1 
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DIST[i,1] <- dmax 
DIST[i,2] <- dist[i]+1 
for (t in f[i]:(n.occ-1)) 

  { 
       phiS[i,t] <- mean.phiS  
  phiB[i,t] <- mean.phiB 
  d[i,t] <- mean.d 
        h[i,t] <- mean.h 
        pS[i,t] <- mean.pS 
        pB[i,t] <- mean.pB 
  r[i,t] <- prob.mat[site[i],DIST[i,D[i]]] 
        } 

}  
mean.phiS ~ dunif(0,1) 
mean.phiB ~ dunif(0,1) 
mean.d ~ dunif(0,1)      
mean.h ~ dunif(0,1) 
mean.pS ~ dunif(0,1) 
mean.pB ~ dunif(0,1) 
tau ~ dgamma(0.01,0.01)I(0.00001,100) 
 
# Define state-transition and observation matrices 
for (i in 1:nind) 
 { 
    for (t in f[i]:(n.occ-1)) 
  {          
     # Define probabilities of state S(t+1) given S(t)    
       ps[1,i,t,1] <- phiS[i,t] * (1-d[i,t]) * (1-h[i,t])  
        ps[1,i,t,2] <- phiS[i,t] * (1-d[i,t]) * h[i,t] 
        ps[1,i,t,3] <- phiS[i,t] * d[i,t] * r[i,t] 
  ps[1,i,t,4] <- 1-phiS[i,t] + phiS[i,t]*d[i,t]*(1-r[i,t])  
        ps[2,i,t,1] <- 0 
        ps[2,i,t,2] <- phiB[i,t]  
        ps[2,i,t,3] <- 0 
  ps[2,i,t,4] <- (1-phiB[i,t])  
        ps[3,i,t,1] <- 0 
        ps[3,i,t,2] <- 0 
        ps[3,i,t,3] <- phiB[i,t] 
        ps[3,i,t,4] <- (1-phiB[i,t]) 
  ps[4,i,t,1] <- 0 
        ps[4,i,t,2] <- 0 
        ps[4,i,t,3] <- 0 
        ps[4,i,t,4] <- 1 
 
  # Define probabilities of O(t) given S(t) 
  po[1,i,t,1] <- pS[i,t] 
        po[1,i,t,2] <- 0 
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        po[1,i,t,3] <- 0 
        po[1,i,t,4] <- 1-pS[i,t] 
       po[2,i,t,1] <- 0 
       po[2,i,t,2] <- pB[i,t] 
       po[2,i,t,3] <- 0 
       po[2,i,t,4] <- 1-pB[i,t] 
       po[3,i,t,1] <- 0 
       po[3,i,t,2] <- 0 
       po[3,i,t,3] <- pB[i,t] 
      po[3,i,t,4] <- 1-pB[i,t] 
       po[4,i,t,1] <- 0 
       po[4,i,t,2] <- 0 
       po[4,i,t,3] <- 0 
       po[4,i,t,4] <- 1 
       }  
 }  
 
# Likelihood  
for (i in 1:nind) 
 { 
    z[i,f[i]] ~ dcat(y[i,f[i]]) 
 for (t in (f[i]+1):n.occ) 
  { 
        z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ]) 
  y[i,t] ~ dcat(po[z[i,t], i, t-1, ]) 
        }  
    }  
} 
",fill = TRUE) 
sink() 
####################################################################### 
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8.5.1.2. Residency probability matrix generation function 

n.site <- 35    ## Number of territories 
x <- 6     ## Width of the study area  
y <- 10     ## Length of the study area  
pos <- sample(x*y,n.site,replace=F) ## Random sample of territories coordinates 
pos <- pos[sort.list(pos)] 
SA <- matrix(0,x,y)    
SA[pos] <- 1:n.site    ## Map of the study area 
 
## Create study area and residence proba matrix 
P.DIST <- function(SA) 
{ 
SA[is.na(SA)==T] <- 0                 
S <- max(SA)       ## Number of territories on the map 
Dmax <- max(dim(SA))  ## Maximum length of the study area  
## Create an enlarged map with Dmax territories on each side of the study area  
pos <- as.data.frame(which(SA != 0, arr.ind = TRUE)) 
X <- pos[,1]+Dmax+1 
Y <- pos[,2]+Dmax+1 
grid.mat <- matrix(0,max(X)+Dmax+1,max(Y)+Dmax+1) 
for (i in 1:S) 
 { 
 grid.mat[X[i],Y[i]] <- i 
 } 
## Create the residence probabilities matrix 
prob.mat <- matrix(NA, S, Dmax) 
n <- 8*(1:Dmax) 
for (s in 1:S) 
 { 
 for (d in 1:Dmax) 
  { 
  Xmax <- which(grid.mat[X[s]+d,(Y[s]-d):(Y[s]+d-1)]!= 0) 
  Xmin <- which(grid.mat[X[s]-d,(Y[s]-d+1):(Y[s]+d)]!= 0) 
  Ymax <- which(grid.mat[(X[s]-d+1):(X[s]+d),Y[s]+d]!= 0) 
  Ymin <- which(grid.mat[(X[s]-d):(X[s]+d-1),Y[s]-d]!= 0) 
  around <-c(Xmax,Xmin,Ymax,Ymin)  
  prob.mat[s,d] <- length(around)/n[d] 
  } 
 } 
return(prob.mat) 
} 
prob.mat <- P.DIST(SA) 
####################################################################### 
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8.5.1.3. Data simulation script 

# General parameters 
n.occ <- 20     ## Number of capture occasions 
n.states <- 4     ## Number of states    
n.obs <- 4     ## Number of events (observable states) 
marked <- rep(40, n.occ-1)     ## Marked individuals at each occasion 
n <- sum(marked)    ## Total number of individuals 
f <- rep(1:length(marked),marked)  ## Vector of first capture occasions 
 
#CR parameters 
phiS <- 0.85     ## Non-breeder survival    
phiB <- 0.95     ## Breeder survival 
h <- 0.12     ## Inheritance probability 
d <- 0.4     ## Dispersal probability 
pS <- 0.90     ## Non-breeder recapture probability 
pD <- 0.65     ## Breeder recapture probability 
 
#Dispersal parameters 
tau <- 2     ## Mean dispersal distance 
D <- r <- rep(NA,1)     
for (i in 1:n) 
 { 
 D[i] <- rpois(1,tau)+1   ## Individual dispersal distance 
 r[i] <- ifelse(D[i]<= dim(prob.mat)[2],prob.mat[site[i],D[i]],0)    

## Associated individual residence probability  
 } 
 
# 1. State process matrix 
PSI.STATE <- array(NA, dim=c(n.states, n.states, n, n.occ-1))    
for (i in 1:n) 
 { 
    for (t in 1:(n.occ-1)) 
  { 
        PSI.STATE[ , ,i,t] <- matrix(c( 
        phiS*(1-d)*(1-h), phiS*(1-d)*h , phiS*d*r[i]  , 1-phiS+phiS*d*(1-r[i]) , 
       0                  , phiD              , 0               , 1-phiD                           ,  
       0                         , 0                    , phiD         ,1-phiD                            , 
  0                  , 0                      , 0              , 1                   
  ), nrow = n.states, byrow = TRUE) 
        }  
 } 
 
# 2.Observation process matrix 
PSI.OBSERV <- array(NA, dim=c(n.states, n.obs, n, n.occ-1))     
for (i in 1:n) 
 { 
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    for (t in 1:(n.occ-1)) 
  { 
        PSI.OBSERV[ , ,i,t] <- matrix(c( 
        pS, 0     , 0     , (1-pS), 
       0  , pD  , 0     , (1-pD), 
       0  , 0     , pD  , (1-pD),   
  0  , 0     , 0     , 1                                 
  ), nrow = n.states, byrow = TRUE) 
        }  
    }  
 
## Simulation function 
simul.disp.me <- function(PSI.STATE, PSI.OBS, marked, prob.mat, site) 
{ 
   n.occ <- dim(PSI.STATE)[4] + 1 
   n <- sum(marked) 
   f <- rep(1:length(marked),marked) 
   CH <- CH.TRUE <- matrix(NA, ncol = n.occ, nrow = n)  
   for (i in 1:n) 
 { 
       # Initial state 
       CH[i,f[i]] <- CH.TRUE[i,f[i]] <- 1 
      for (t in (f[i]+1):n.occ) 
  { 
         if (f[i]== n.occ) next 
           state <- which(rmultinom(1, 1, PSI.STATE[CH.TRUE[i,t-1],,i,t-1])==1) 
  CH.TRUE[i,t] <- state         
     event <- which(rmultinom(1, 1, PSI.OBS[CH.TRUE[i,t],,i,t-1])==1) 
           CH[i,t] <- event        
           }  
       }  
  CH[is.na(CH)] <- dim(PSI.OBS)[2]  
  Dprim <- rep(NA,n)           
  Dprim[which(CH==3,arr.ind=TRUE)[,1]] <- D[which(CH==3,arr.ind=TRUE)[,1]] 
  return(list(CH=CH, CH.TRUE=CH.TRUE,site = site, f=f, D=Dprim, e=e)) 
  # CH: capture histories to be used 
  # CH.TRUE: capture histories with perfect detection 
  # site: birth site 
  # D: vector of known dispersal distances 
  # r: vector of individual residence probabilities  
  # f: vector of first capture occasions 
} 
####################################################################### 
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8.5.2. Landscape heterogeneity analysis 

  8.5.2.1. Simulation study 

We performed this additional analysis to determine the consequences of ignoring the 

landscape structure when using the Integrated Dispersal model (ID). Indeed, if the 

landscape is heterogeneous outside the study area, with certain patches of habitat 

unsuitable for the organism under study, this will impact the residency probabilities of 

dispersers and consequently the estimation of the other demographic parameters when 

compared to a homogeneous landscape. However, to what degree these demographic 

parameters will be impacted is not clear. To answer this question, we simulated and 

analysed with the ID model different data sets with varying landscape structures. 

The landscape for each simulation was constructed in two steps. First, we 

constructed a study area by randomly sampling 35 cells in a 10 × 6 grid. Because any 

individual dispersing further than the largest distance inside the study area (lmax) will 

never be recaptured, residency probabilities need not be calculated for distances larger 

than lmax. Thus, calculating the different residency probabilities only requires knowledge 

of the landscape in a radius of lmax around the study area. The second step of the 

landscape simulation therefore consisted in creating an enlarged grid map with lmax 

territories added on each side of the study area. We thus obtained a grid map of 

dimensions 30 × 26 cells centred on the territories composing the study area (Fig 

IV.10.). Territories outside the study area were then randomly assigned as suitable or 

unsuitable following the proportion of unsuitable habitat to be tested. The residency 

probability matrix was constructed based on the simulated landscape, and filled with rsi,li 

 rsi,li =  

where nsi,li is the number of territories inside the study area situated at a distance li  from 

territory si and Nsi,li is the total number of suitable habitat territories situated at a distance 

li  from territory si. Each individual was randomly attributed one of the territories inside 

the study area as its natal territory. The individual dispersal distance was then sampled 

from a Poisson distribution. We fixed the mean of the Poisson distribution to one 

because we know from previous simulations (simulation study above) that the ID model 

performs well for such mean dispersal distance. Finally, given its natal territory and 

individual dispersal distance, each individual was assigned a residency probability rsi,li. 

from the residency probability matrix.  
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Figure IV.10. Example of a randomly generated study area map as used in the 
simulation study. The study area is represented by the light blue area. Each number 
represents a territory where trapping occurs. Yellow area represents suitable habitat 
patches outside the study area and grey area represents unsuitable territories.  

All other parameters of the simulation were fixed, with values close to those 

obtained by previous studies on Alpine marmots (Dupont et al. 2015; Berger et al. 2016; 

Rézouki et al. 2016). Breeders survival was set to ΦIB = ΦLB = 0.95 and subordinate 

survival to ΦS = 0.85. Recapture probabilities differed between dominants and 

subordinates (pIB = pLB = 0.65 and pS = 0.95). Dispersal probability was set to d = 0.4 

and inheritance probability to h = 0.12. 

The capture histories were constructed by sampling the individual underlying 

state and observed event at each time capture occasion in the corresponding state-

transition and observation process matrix of the ID model. The location of the natal 

territory was kept for all individuals but dispersal distances were kept only for 

individuals that did not disperse outside the study area to mimic true capture-recapture 

data. Each simulated data set consisted of 20 capture occasions with 40 individuals 

marked at each occasion (except for the last one), leading to a total of 760 capture 

histories per data set. 

We simulated data sets with increasing proportion of unsuitable habitat outside 

the study area (P) from 0 to 0.9 with steps 0.1. The simulation process was repeated 100 

times for each value of P, leading to a total of 1000 simulated data sets. We then fitted 

two different models to each data set, one with the true residency probability matrix as 
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generated in the simulation process (the heterogeneity model) and one with the residency 

probability matrix ignoring the heterogeneity of the habitat (i.e. with all territories 

outside the study area considered as suitable: the homogeneity model). All models were 

fitted using Markov Chain Monte Carlo (MCMC) simulations with the computer 

program JAGS (Plummer 2003) through R3.2.5 (R core team 2016) with the R package 

jagsUI (Kellner 2014). Three chains were run independently for 10000 iterations with a 

burning period of 6000 iterations and a thinning rate of 1. 

8.5.1.2. Results 

The posterior means ± se of the different recapture, dominant survival and inheritance 

probabilities were identical and equal to the simulated values for both models and for all 

values of P (heterogeneous model: pS = 0.95 ± 0.01; pIB = pLB = 0.65 ± 0.02; ΦIB = ΦLB = 

0.95 ± 0.02; h = 0.12 ± 0.01 and homogeneous model: pS = 0.95 ± 0.01; pIB = pLB = 0.65 

± 0.02; ΦIB = ΦLB = 0.95 ± 0.01; h = 0.12 ± 0.02). As expected, the amount of unsuitable 

habitat outside the study area impacted both the subordinate survival and dispersal 

estimates but also the mean dispersal distance (Fig.IV.11). Because the number of 

territories available for settlement were over-estimated when the landscape was 

supposed homogeneous, the residency probabilities were artificially under-estimated and 

survival, dispersal and mean dispersal distance were in turn over-estimated. Subordinate 

survival was over-estimated by as much as 18% of the simulated value when a large part 

of the landscape outside the study area was unsuitable. This bias was up to 25% for the 

dispersal probability and much lower with only 10% for the mean dispersal distance. It 

is to be noticed that the lower bias observed in the mean dispersal distance was 

associated to a large variance of the estimate. In addition, the standard error of the mean 

seems to slightly decreased when the proportion of unsuitable habitat increases, and that 

both for the homogeneous and heterogeneous models.  

These results demonstrate the importance of taking into account the structure of 

the landscape outside the study area when using spatial capture-recapture models. 

Indeed, if the landscape structure is unknown and homogeneity is supposed, the 

estimates returned by such models will be over-estimations of the true demographic 

parameters. This can have important consequences, especially in studies with population 

management purposes where misestimating dispersal or survival probabilities can lead to 

deleterious management decisions being taken.  
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Figure IV.11. Subordinate survival 
(upper panel), dispersal (middle 
panel) and mean dispersal distance 
(lower panel) for increasing 
proportions of unsuitable habitat 
outside the study area returned by 
the Integrated Survival model 
under the assumption of 
homogeneous (light blue) and 
heterogeneous (dark blue) 
landscapes. Shaded areas represent 
the associated standard error of the 
mean. 
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Although these models are very efficient and allow to estimate otherwise unattainable 

estimates of true survival and dispersal parameters, which are of primary importance for 

a large range of studies in evolution and population dynamics, they rely on strong 

assumptions concerning both the shape of the dispersal kernel (e.g. in Gilroy et al. 2012; 

Ergon & Gardner 2014 or Schaub & Royle 2014) and the structure of the landscape 

outside the study area (this study). The limitations imposed by the shape of the dispersal 

kernel might be severely reduced, if not suppressed when the study area is large enough 

to observe a large number of dispersal events but the structure of the landscape 

obligatory requires additional information collected outside the study area. As a 

conclusion, although we highly encourage the use of integrated models because of their 

accuracy and ability to return true demographic parameters, we also recommend to be 

very cautious when using such models. In particular, we advise users to fully 

acknowledge the information available in their data sets and therefore the underlying 

assumptions and limitations of their model. 
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Chapter IV.B  

Sociality & Dispersal 
 

 
Dominance change and group dynamics 

in the cooperatively breeding Alpine marmot 

Abstract: In cooperatively breeding species, individual demographic rates result from the 
balance between costs and benefits in terms of fitness for the different group members according 
to their age, sex and social status, but also according to the composition of the group the live in. 
The characteristics of the group (i.e. group size and sex composition) are thus expected to 
strongly influence the group dynamics in such species. But the group dynamics may alos arise 
from the interaction of social groups among them inside the population. However, to date, very 
few studies looked at the influence of dispersal between social groups on both individual 
demographic rates and resulting group dynamics. 
In this chapter, I used the Integrated Multi-Event Dispersal model developed earlier to study the 
consequences of immigration into the family group by a new dominant on survival, dispersal and 
reproduction and inferred the consquences of such changes for the group dynamics.   
I found that both survival and dispersal of subordinate individuals were strongly impacted by the 
arrival of an un-related dominant into the family group. Specifically, immigration of a new 
dominant led to the majority of same-sex subordinates leaving the group, resulting in a strong 
decrease in group size and a strong modification of the group sex-composition. This crash in the 
group dynamic is likely to result also from the suppression of reproduction following the arrival 
of a new dominant but our model failed to detect such effect.  
I conclude by discussing the potential implications of such group dynamics pattern for the 
overall population dynamics and the different limits of the approach, as well as future 
developments. 

Keywords: Cooperative breeder · Capture-Mark-Recapture · Dispersal · Integrated Population 
Models · Social dominance ·  

(Preliminary results) 
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9.1. Introduction 

Nowadays, the paradigm in population dynamics states that the patterns observed at the 

population level arise from the combination of individuals’ capacity to survive, disperse 

and reproduce (Sutherland 1996). To understand the mechanisms responsible for the 

overall population dynamics, one should therefore work at the individual level to 

identify the factors responsible for the variation in individuals’ demographic rates and 

characterize the ways in which they affect these rates (Benton et al. 2006). 

In social, group-living species, population dynamics is expected to differ from 

this framework. In these species, population is often highly structured in age and sex 

classes but also in hierarchical states due to dominance relationships (Bateman et al. 

2013). In addition, individuals interact preferentially with some conspecifics rather than 

others according to the associated fitness gain they can expect, thus leading to the 

formation of distinct social groups in the population (Trivers 1985). The resulting 

imbalance between interactions among group members and interactions between 

members of different groups will lead social groups to display dynamics of their own. 

Presented in such a manner, group-living species dynamics is very much alike 

metapopulations dynamics (Hanski & Gilpin 1991). In group-living animals, population 

dynamics therefore cannot be inferred solely from the combination of individual 

demographic rates because of the intermediate level of structuration in the population, 

i.e. the group level. Instead, as in metapopulations, the combination of individual vital 

rates will be responsible mainly for the social group/local population dynamics and the 

overall population dynamics will emerge from the combination of the different social 

groups/local populations dynamics. Thus, to understand the population dynamics of 

group living species, one must (i) understand the factors affecting the group dynamics 

and (ii) understand how groups interact to produce the overall dynamic (Bateman 2013). 

 Most research on social species until now focused on the evolution of the 

different social systems. Extensive bibliography is therefore available on the relative 

fitness costs and benefits of group living (e.g. McGuire et al. 2002; Covas et al. 2006; 

Silk 2007; Armitage 2014). These costs/benefits were most of the time expressed in 

terms of survival, reproduction and, to a lesser extent, dispersal of individuals, and 

related to the size and/or composition of social groups, sometimes in interactions with 

other drivers of population dynamics (e.g. climate: Rézouki et al. 2016; predation: 
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Marino 2010). For example, Covas et al. (2008) found that reproductive performance in 

the cooperatively breeding sociable weavers (Philetairus socius) depended mostly on 

nests predation and rainfall, but that the negative effect of rainfall was lowered by a 

social factor, i.e. the presence of non-reproductive helpers. Although these studies did 

not specifically use a population dynamics approach, their results are very relevant to the 

question of group dynamics since they quantified the influence of different social factors 

on individual vital rates (although not considered as such but rather as fitness 

components). Among the exceptions, we can cite the study by Bateman et al. (2012) on 

the influence of group size on the social group dynamics in meerkats (Suricata 

suricatta). In this paper, they explicitly tackled the question of density-dependence in 

social group dynamics and found that group growth rate decreased with increasing group 

size especially after years of low rainfall.  

By contrast, interactions between social groups were largely overlooked. These 

interactions between groups, mediated through dispersal, are nevertheless likely to have 

important effects on the group dynamics and ultimately on the population dynamics, as 

exemplified by studies on metapopulations that highlighted the importance of the 

connectivity between local populations, and the importance of emigration (dispersal 

decision) and immigration (settlement after dispersal) in these processes (Hanski 1991). 

While most studies on dispersal in social species were interested in revealing factors 

affecting the decision to leave the group and eventually their impact on the group 

dynamics (e.g. Armitage et al. 2011; Bateman et al. 2013; McGuire et al. 2013), the 

consequences of immigration of new individuals into a social group are still poorly 

understood. 

 Here, we try to fill this gap by looking at the consequences of immigration into a 

social group on individual demographic rates in the Alpine marmot (Marmota marmota). 

Alpine marmots are cooperative breeders living in family groups where the reproduction 

is monopolized by a couple of dominant individuals. Subordinate individuals, and 

particularly male subordinates, are considered as helpers because of their role in 

increasing survival of younger relatives during hibernation (Arnold 1988; Allainé & 

Theuriau 2004). Alpine marmots provide an excellent model to investigate this question: 

(i) groups are highly territorial and do not overlap allowing movements between groups 

to be easily determined, (ii) immigration in a social group in this species is limited to the 

immigrant taking over the dominant position thus entailing potentially important 
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consequences and (iii) a detailed long-term individual based dataset is available for this 

species. Based on this data set, we constructed an integrated multi-event dispersal model 

to test for the consequences of a new dominant arrival on survival, dispersal and 

reproduction in Alpine marmots’ social groups. Two alternative (but not exclusive) 

scenarios may be considered: (i) because the new dominant (hereafter the immigrant) is 

most likely un-related to other group members, relatedness between subordinate 

individuals of the group and subsequent offspring will be lowered. Following kin 

selection theory (Hamilton 1964a,b), the inclusive fitness benefits of subordinates 

obtained through the increased survival of the dominant’s offspring will also be lowered 

(divided by two). This will increase the likelihood that subordinates, and especially 

males, the helping sex, are more inclined to disperse rather than helping half-sibs, and 

then try to maximize their direct fitness by reaching a dominant position on their own. 

Under this scenario, we expect dispersal probabilities of subordinates of both sexes to 

increase following the arrival of an immigrant. We also expect subordinate males to be 

more prone to dispersal because of the higher cost of helping they endure during 

hibernation (Arnold 1988); (ii) because of intra-sexual competition, the presence of 

same-sex subordinates has been shown to be costly for dominant individuals. 

Dominance tenure, for example, decreases when the number of same-sex subordinates 

increases (Lardy et al. 2012a, 2013) and the risk of losing paternities to extra-pair 

copulations increases in the same time for dominant individuals (Cohas et al. 2006; 

Lardy et al. 2012a). The immigrant dominant is thus expected to expel same-sex 

individuals out of the group in order to maximize its dominance tenure, its reproduction 

and ultimately its fitness. In such case, a higher dispersal probability should be detected 

for subordinate individuals but only of the same-sex that the immigrant dominant. In 

addition, replacement of one of the dominant in Alpine marmots is associated to an 

absence of reproduction that year, due to infanticide (Lardy et al. 2011). Thus, we expect 

reproduction probability to be much lower following the arrival of an immigrant 

dominant for both sexes. 

9.2. Material and methods 

 9.2.1. Alpine marmots, dispersal & dominance change  

The Alpine marmot is a socially monogamous and territorial mammal living in family 

groups composed of up to 20 individuals. Each family group is composed of a dominant 
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couple, adult subordinates (age > 2), yearlings and pups born that year (Allainé 2000a). 

In each family, reproduction is monopolized by the dominant couple but some 

subordinate males may access reproduction via extra-pair copulation (Hackländer et al. 

2003; Cohas et al. 2006). Offspring produced by the dominant couple stay on their natal 

territory at least until sexual maturity at two years of age. From this age, natal dispersal 

occurs in both sexes. Dispersal rate increases until the age of three when around 58 % of 

subordinates of both sexes reach a dominant position by dispersing to a neighbouring 

territory (mean dispersal distance = 1.7 territories ; chapter IV.A). Dispersers can secure 

a dominant position either by immigrating in an existing family group and evicting the 

same-sex dominant or by creating a new territory. However, the latter is quite rare in the 

saturated population under study (only 5 territory creations in 25 years). Once a 

subordinate “decided” to disperse, it cannot come back to its natal territory nor being 

accepted as a subordinate in another family group. Thus, in case of failure, it becomes a 

floater, i.e. a wandering individual forced to hibernate alone and thus being exposed to a 

very high risk of mortality (Magnolon 1999). Subordinates that delayed dispersal can 

also become dominant by inheriting the position in their natal territory after the death of 

the same-sex dominant (32 % of three year-old females vs. 9 % of three year-old males). 

Once the dominant position secured, an Alpine marmot stays dominant until death or 

eviction by a new incomer. Dispersal in the Alpine marmot is therefore exclusively natal 

dispersal. When evicted, the dominant individual becomes a floater and is thus subject to 

a very high risk of mortality too (Grimm et al. 2003b). . 

 9.2.2. Study site and data collection 

The data set was composed of 1270 individuals captured in the Alpine marmot 

population located in the Grande Sassière nature reserve (2340 m a.s.l., French Alps, 

45°29′N, 6°59′E) between 1990 and 2015. Marmots from up to 34 territories were 

monitored, from mid-May to mid-July each year, using both a capture–recapture 

protocol and behavioural observations. Because Alpine marmots are highly territorial, 

the main burrows of each family group are easily determined by observation. Traps were 

placed near the entrance of these burrows so that all individuals captured at a given trap 

are automatically assigned to their family group. All pups were captured by hand and 

marked at weaning i.e. at their first emergence from the burrows, approximately 40 days 

after their birth. Captured animals were tranquillized with Zolétil 100 and marked with a 
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transponder (Trovan™, Germany) and a numbered ear tag. At each capture, marmots 

were aged from their size in four age classes (pups, yearlings, two-years and adults), 

sexed and their social status was determined according to scrotal development for males 

and teats development for females (Hackländer & Arnold 1999; Hackländer et al. 2003). 

The exact size and composition (sex and age class) of all family groups was assessed by 

behavioural observations. Notably, scent-marking behaviour was used to confirm the 

identity of the dominant pair (Bel et al. 1995). This allowed us to determine when a new 

individual (the immigrant) managed to evict one of the dominants (the resident). Hair 

and blood samples collected at capture allowed for kinship analyses (details on the 

different genetic analyses can be found elsewhere; Cohas et al. 2006; Ferrandiz-Rovira 

2015). Based on these kinship analyses, parents of all pups captured at weaning could be 

identified, determining which individuals successfully reproduced each year. 

 9.2.3. The Alpine marmot integrated model 

We used an integrated multi-event model designed to analyse the influence of the 

replacement of a dominant by an immigrating individual on the vital rates of social 

group members in Alpine marmots. Our integrated model is composed of two sub-

models combined through the construction of a joint likelihood (Schaub & Abadi 2011). 

The integration of both sub-models allows the estimation of demographic parameters 

otherwise unidentifiable. Here, we were able to account for emigration outside the study 

area and therefore estimate true survival and dispersal probabilities instead of apparent 

estimates (see chapter IV.A) The first component models dispersal distance travelled by 

an individual during dispersal and the second component is a multi-event capture-

recapture model (Pradel 2005) designed to fit the Alpine marmot’s life cycle.  

The dispersal model. This component models the movement realized by an 

individual Alpine marmot when dispersing. Since we considered dispersal to be equally 

likely in any direction, we only needed to model the distance travelled during dispersal. 

Dispersal distance in the Alpine marmot is measured as the number of territories in 

straight lines between the natal and settlement territories. Because of the discrete nature 

of the measure, we used a Poisson distribution to describe it. The dispersal distance of an 

individual (li) was then simply a random realization of a Poisson process (plus one 

because this is the minimal dispersal distance possible) whose mean τ needed to be 

estimated: 
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li ~ dpois(τ) + 1 

The multi-event model. To account for the different possibilities in the life cycle 

of Alpine marmots, our multi-event model contained four states; a subordinate state S 

(encompassing pups, yearlings and subordinate adults), a locally-recruited-breeder state 

LB (individuals that became dominant on their natal territory by inheritance), an 

immigrant-breeder state IB (individuals that became dominant after dispersal), and a 

dead state D. Thanks to the genetic analyses, we were able to determine with certainty 

whether an individual successfully reproduced inside the study area a given year (Cohas 

et al. 2008; Ferrandiz-Rovira et al. 2016), even if the individual was not captured that 

year. Because reproduction is highly correlated to the dominance status in Alpine 

marmots, we incorporated this additional source of information in the model to precise 

the state of the individuals. The different observations available from the data set 

allowed us to consider 9 events, numbered as follow: 1 when the focal individual was 

not captured but reproduced on its natal territory, 2 when it was not captured but 

reproduced on another territory, 3 when it was captured as a subordinate and did not 

reproduce, 4 when it was captured as a subordinate and reproduced on its natal territory, 

5 when it was captured as locally-recruited-breeder but did not reproduce, 6 when it was 

captured as locally-recruited-breeder and reproduced on its natal territory, 7 when it was 

capture as immigrant breeder but did not reproduce, 8 when it was captured as 

immigrant breeder and reproduced on another territory and 9 when no information about 

the focal individual was available. This type of encoding allowed us to construct 

capture-histories for all individuals captured at least once during the study duration, e.g. 

993397898899 for an individual captured and marked as a subordinate for the first time 

on the third year of the study, recaptured as subordinate on the fourth year, recaptured as 

an immigrant breeder that did not reproduce on the sixth year, recaptured as an 

immigrant breeder that reproduced on the seventh, ninth and tenth years and not 

recaptured, nor reproduced on the fifth, eighth, eleventh and twelfth years.  

The multi-event model can be described using two matrices. The first one 

represents the state-transition process from one capture occasion to the next and the 

second one represents the observation process at a given capture occasion, i.e. the 

possible associations between the observed event and the underlying state of an 

individual at that same capture occasion. The state-transition matrix reads as state at time 
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t in rows and state a time t+1 in column. It contains the demographic parameters in 

which we are interested: Φx
i,t the probability that individual i in state x at time t survived 

to time t+1, di,t the probability (conditional on survival) that individual i dispersed and 

became dominant between t and t+1, hi,t the probability (conditional on non-dispersal) 

that individual i inherited a dominant position on its natal territory between t and t+1 and 

ri,li the probability that individual i did not leave the study area when dispersing, given 

the distance li travelled.  

 
 The observation matrix reads as state at time t in rows and possible observable 

events at time t in columns. It contains the recapture and reproduction parameters: px
i,t 

the probability that individual i in state x was captured at time t and ψx
i,t the probability 

that individual i in state x successfully reproduced between t and t+1.  

 

To take into account the variation in recapture probabilities from one year to the 

other, and following results of previous CR studies on the same population (Dupont et 

al. 2015; Berger et al. 2016; Rézouki et al. 2016), we considered time, age and sex 

effects on the recapture probabilities. To account for the age structure in the population, 

we considered four age-classes: juvenile (from zero to one-year-old), yearling (from one 

to two), two-year (from two to three) and adult (three years old and older) for all 



122 
 

survival, dispersal, inheritance and reproduction probabilities. Following previous 

results (see chapter IV.A) we considered the same survival probability for locally-

recruited and immigrant breeders (ΦLB= ΦIB= ΦB) and used a single Poisson distribution 

to model the dispersal distances distribution of both sexes.  

9.2.4. Dominance change consequences 

In order to study if the eviction of a resident dominant by an immigrant 

individual affected the group dynamics, we tested for the effect of immigration on the 

different vital rates of group members. To test the validity of the different scenarios we 

proposed, we compared three models.  

Kin selection model: because their genetic relatedness with subsequent offspring 

produced by the immigrant dominant will be much lower (and consequently their 

inclusive fitness expectation), we expect subordinate individuals to leave their natal 

territory and try to gain a dominant position in another territory in order to maximize 

their direct fitness. Because un-successful dispersers most likely die the following winter 

(Magnolon 1999; Grimm et al. 2003b), they are never re-encountered and are 

indistinguishable from individuals dying during hibernation. Given our data, it is 

therefore impossible to estimate the probability to leave the natal territory and our model 

only returns estimates of successful dispersal. The hypothetical increase in the numbers 

of dispersing individuals may therefore translate into an increased in dispersal 

probability (if most individuals succeed) and/or a decrease in survival probability (if 

they fail). Additionally, it has been shown that subordinate males suffered from the 

presence of pups during hibernation, in terms of increased weight loss (Arnold 1993). 

Because of this additional cost, male subordinates are expected to disperse more than 

females when one of the dominants is replaced. In order to take these different 

possibilities into account, we constructed a model with different dispersal and survival 

probabilities between cases where an immigrant arrived in the group and cases where the 

dominant pair did not change. In addition, we considered sex-specific dispersal and 

survival probabilities of subordinates in both cases to determine whether subordinate 

males dispersed more than females following the arrival of an immigrant dominant. 

Because of the occurrence of infanticides and the impossibility to produce a second litter 

a given year, the reproduction probability of the newly formed dominant couple should 

be lower following an immigration event.  We therefore implemented different dominant 
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reproduction probabilities whether an immigrant arrived or not. Parameters of the model 

were then pt,age,sex the time, age and sex-specific recapture probabilities, ΦB
age,sex the age 

and sex-specific survival probabilities of dominant individuals, ΦS
age,sex,kin the age and 

sex-specific survival probabilities of subordinate individuals in the presence and in the 

absence of immigration, dage,sex,kin the age and sex-specific dispersal probabilities in the 

presence and absence of immigration, hage,sex the age and sex-specific inheritance 

probabilities, rS
age,sex,kin the age and sex-specific reproductive success probability of 

subordinate individuals in the presence and in the absence of immigration and rB
age,sex,kin 

the age and sex-specific reproductive success of dominant individuals in the presence 

and in the absence of immigration. 

 Intra-sexual competition: because of increasing sex-specific competition, 

dominant individuals in Alpine marmots are more likely to lose dominance when the 

number of same-sex subordinates increases in the family group (Lardy et al. 2012a, 

2013). An immigrant dominant should thus avoid this risk by expulsing same-sex 

subordinates when taking over a new family group. In this scenario, subordinate 

dispersal is not a choice and should translate in higher levels of dispersal and/or lower 

levels of survival only for subordinates of the same sex than the immigrant. Concerning 

the reproduction probability, the expected outcome of a new dominant take-over is 

similar to the previous model. The parameters of the models were then pt,age,sex the time, 

age and sex-specific recapture probabilities, ΦB
age,sex the age and sex-specific survival 

probabilities of dominant individuals, ΦS
age,sex,comp the age and sex-specific survival 

probabilities of subordinate individuals in the presence and in the absence of 

immigration by a same-sex dominant, dage,sex,comp the age and sex-specific dispersal 

probabilities in the presence and in the absence of immigration by a same-sex dominant, 

hage,sex the age and sex-specific inheritance probabilities, rS
age,sex,comp the age and sex-

specific reproductive success probability of subordinate individuals in the presence and 

in the absence of immigration and rB
age,sex,comp the age and sex-specific reproductive 

success of dominant individuals in the presence and in the absence of immigration. 

These models were then compared to a simple model with no effect of the 

immigration of a new dominant (the root model). All three models were run using JAGS 

via R with the package jagsUI and models were compared based on the Deviance 

Information Criterion (Spiegelhalter et al. 2002a). To ensure full convergence, models 
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were fitted by running three chains independently for 100000 iterations with a burning 

period of 10000 iterations and a thinning rate of 1. 

9.3. Results 

The intra-sexual competition model was the best of the set according to DIC (intra-

sexual competition model: deviance = 3958.6; DIC = 5379.9) and the kin-selection 

model ranked last (kin-selection model: deviance =3971.8; DIC=5514.3; root model: 

deviance = 3973.2; DIC = 5401.9). Because the kin-selection model was so poorly 

supported, in the following section we focus on the results obtained with the intra-sexual 

competition model only (see Supporting Material 9.5 for detailed results of all three 

models).   

Recapture probabilities varied with the year of study (between 1.36 [0.44; 2.2] 

and 4.39 [3.46; 5.49] on a logit scale for female yearlings), decreased with age 

(difference in recapture probabilities between yearlings and two-year individuals Δptwo = 

-1.41 [-1.85; -0.90] and difference between yearlings and adults Δpad = -1.88 [-2.25; -

1.62] on a logit scale). Recapture probabilities were also higher for females than for 

males (difference in recapture probabilities between females and males Δpsex = -0.27 [-

0.45; -0.12] on the logit scale).  

 
Figure IV.12. Dominant reproduction probabilities in the presence or absence of 
immigration by a same-sex new dominant for all dominant age classes. Left panel 
represents female dominants and right panels, males. Coloured lines represent the mean 
estimates and shaded areas represent the associated confidence interval. 
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Dominant survival varied with age and sex. Two-year old dominants had a lower 

survival than adults for both sexes (ΦB
two, females = 0.76 ± 0.12 and ΦB

ad, females = 0.81 ± 

0.02; ΦB
two, males = 0.71 ± 0.12 and ΦB

ad, males = 0.76 ± 0.02). Reproduction probabilities 

tended to be lower for males when an immigrant individual took the dominant position 

while two-year dominant females seemed to have a higher reproduction probability in 

the same situation (Fig.IV.12). However, the very large confidence interval associated to 

the reproduction of two-year dominant individuals of both sexes in the presence of 

immigration (most likely because very few individuals are in such situation) forces us to 

consider these results with caution. 

 
Figure IV.13. Subordinate survival, dispersal and reproduction probabilities in the 
presence or absence of immigration by a new same-sex dominant for all age classes. Left 
panels represent female subordinates and right panels, males. Coloured lines represent 
the mean estimates and shaded areas represent the associated confidence interval. 



126 
 

The influence of same-sex immigration on subordinate survival differed both 

with sex and age. Mean subordinate survival was always lower when a same-sex 

immigrant settled in the group and this difference was more pronounced for male 

yearlings (Fig.IV.13, upper panels). Male dispersal probability was not affected by 

immigration in all age classes. For females, dispersal probability increased strongly for 

juveniles and yearlings but nor for two-years and adults (Fig.IV.13, middle panels). 

Reproduction probability was never different from zero for females while it was at the 

highest for two-year old subordinate males (rS
two,males = 0.10 ± 0.04 and Fig.IV.13 lower 

panels) but immigration had no significant effect. Finally, inheritance probability 

increased with age and it was highest for two-year females (htwo,females =  0.32 ± 0.06 vs.  

htwo,males = 0.10 ± 0.04; had,females = 0.15 ± 0.09 vs. had,males = 0.21 ± 0.07). 

9.4. Discussion 

Our results demonstrate that the immigration of a new dominant individual and 

associated eviction of one of the resident dominants has important consequences, both 

for the fate of individual group members and for the group dynamics. The fact that the 

kin-selection model performed poorly compared to the root model and intra-sexual 

competition model tend to indicate that consequences of immigration by a new dominant 

are sex-specific according to our second hypothesis. 

9.4.1. Individual vital rates 

Dominants. The first consequence of immigration by a new dominant is obviously the 

eviction of the previous dominant. However, our model did not test for this effect 

because of its parametrization. Indeed, we investigated the consequences of immigration 

and therefore considered an effect on demographic rates after the immigrating individual 

took over the dominant position. To test for the capacity of an evicted dominant 

individual to survive and become dominant again in another group would instead require 

testing for an effect of immigration on the resident dominant survival during the 

previous time interval. Although a very low survival of evicted dominants is always 

assumed in studies on Alpine marmots (e.g. Stephens et al. 2002; Grimm et al. 2003), to 

our knowledge no study was able to estimate precisely the capacity of evicted dominants 

to survive and secure a new dominant position. Our model provides a good framework 

for testing such effects and further investigations will be conducted on this aspect.   
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Contrary to what was expected, the reproduction probability of dominant 

individuals did not strongly decrease following immigration. The reason for this 

surprising result actually lies in a lousy parametrization of this part of the model. Instead 

of testing for the effect of any change in the dominant couple on the remaining dominant 

reproduction probability, we tested for the effect of male immigration on male 

reproduction only and for the effect of female immigration on female reproduction only 

(see the scripts in the supplementary material 9.5.1). Because of that, the “no-

immigration” situation of a male, for example, encompasses both situations where no 

immigration occurred and situations where the female dominant was evicted, and 

conversely for females. The immigration situation is also quite irrelevant since it 

actually confounds the reproduction probability of both the immigrating and evicted 

individuals. New analyses are thus required to truly determine the effect of immigration 

in the social group on reproduction, and more generally for dominants. 

Subordinates. When a new male immigrated in a social group and evicted the resident 

dominant, this was accompanied by a decrease in the survival of male subordinates, 

especially important for yearlings. Successful dispersal probability of subordinate males, 

on the other hand, was not affected by immigration. Taken together, the survival and 

dispersal patterns of subordinate males tell us precisely about the effect produced by the 

immigration of a new dominant male within the social group. The decline in survival, 

particularly important in yearlings, suggests that the majority of subordinate males will 

be forced to leave the territory even if they do not have the necessary physical condition 

to acquire dominant status after dispersal. Since in the Alpine marmot adult size is not 

reached before the emergence from the third hibernation (two-year-olds having 

survived), yearlings generally remain in their natal territory at least until that time 

(Arnold 1990 and chapter IV.A). Here, the much lower survival of yearlings following 

immigration indicates that a vast majority of these yearlings will still disperse despite the 

very low chances of success, thus giving hints that dispersal is not voluntary but rather 

forced by the new dominant male. In addition, our model provides information about 

extra-pair copulations, indicating that most subordinate males that produced pups did so 

at the age of two when most individuals disperse, confirming that dispersing subordinate 

males may access to reproduction even if they do not access to the dominant status 

(Cohas et al. 2006). 
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As for males, female subordinate survival strongly decreased when an 

immigrating female took over the dominant position and, unlike males, successful 

dispersal probability of female subordinates was also affected. It was especially true for 

female yearlings, in which successful dispersal sharply increased following the 

immigration of a new dominant female. In the same way as for males, patterns of 

survival and dispersal of subordinate females tend to show that it is indeed the 

immigrating dominant female that forces subordinate females to leave their natal 

territory. It is particularly interesting to note that female yearlings have a higher 

probability of becoming dominant by dispersing following immigration by a new 

dominant female. It would then appear that subordinate females delay dispersal as much 

as they can, even if they possess the physical capacities to disperse and become 

dominant. This confirms previous results (chapter IV.A) which indicated that females 

were likely to be more philopatric than males in the Alpine marmot. A potential 

explanation for the higher level of female philopatry is that differences in dispersal 

patterns between males and females result from the impossibility for female 

subordinates to access reproduction through extra-pair copulations, as evidenced here by 

the null reproduction probability of subordinate females.  

Altogether, the results tend to confirm our second proposal, i.e. the immigrating 

dominant will evict not only the resident dominant but also the subordinates of the same 

sex to avoid intra-sexual competition. This pattern of eviction by the new dominant 

individual is not unusual in singular breeders and it is well explained by the costs 

incurred by dominant individuals in the presence of same-sex rivals related to higher 

levels of competition for reproduction, breeding sites or other resources (Clutton-Brock 

& Huchard 2013a,b). In meerkats for example, dominant females commonly evict 

temporarily subordinate females from the social group (Young & Clutton-Brock 2006). 

The benefits associated to these evictions for dominant females are two-fold: (i) in 

meerkats, pregnant females regularly kill pups born to other females in the days 

following parturition. By evicting subordinate pregnant females, the dominant female 

thus avoids the risk of infanticide on its pups; (ii) following eviction, pregnant females 

frequently abort and may subsequently participate in suckling pups born to the dominant 

female, therefore increasing benefits to the dominant. In Alpine marmots also, high 

levels of intra-sexual competition can be very costly for dominant individuals. More 

precisely, dominance tenure and reproduction monopolization (for dominant males) was 
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found to be negatively related to the number of same-sex subordinates present in the 

social group (Lardy et al. 2012a, 2013). It is therefore not surprising that the new 

dominant chases same-sex subordinates out of the group. On the contrary, this raises the 

question of why previous dominants tolerated many same-sex subordinates when it was 

shown to be highly costly. The answer is likely to be related to kin-selection theory 

(Hamilton 1964b) since subordinates in Alpine marmot family groups are most often 

offspring of the resident dominant (Allainé 2000a). It is indeed expected from kin-

selection theory that dominants should be more tolerant towards their subordinates if 

they are kin-related (Smith 2014). This was found to be true in many mammal species 

(Clutton-Brock & Huchard 2013b) and, accordingly, Arnold & Dittami (1997) found 

that dominant male Alpine marmots were more aggressive with unrelated subordinates. 

This higher tolerance towards relatives clearly accounts for the pattern observed in 

marmots and explains the difference in dispersal observed after immigration.  

However, the reasons for this higher tolerance of kin-related subordinates are still 

unclear and different hypotheses may be advanced. Dominants may tolerate the presence 

of subordinate males because of their strong positive effect on juvenile survival during 

hibernation compensating partly for the cost of losing dominance and paternities 

(Allainé & Theuriau 2004). However, this explanation would be valid only if 

subordinate males helped preferentially related juveniles. Accordingly, Arnold (1990) 

found that pups mortality was lower in groups where all subordinates were potentially 

full sibs. However, this does not explain the tolerance of the dominant female towards 

subordinate females. Alternatively, dominant individuals may tolerate a large number of 

subordinates to allow them time to become competitive enough and thus increase the 

probability that they become dominant in turn. The direct costs of having numerous 

subordinates in the group would then be compensated by later high fitness benefits 

provided by an offspring becoming dominant. This scenario is highly probable in Alpine 

marmots because of the time required to complete growth (marmots only reach their 

adult size when three years old) and because dispersal is very costly (Arnold 1990b) but 

further research is needed to clearly identify the mechanisms responsible for increased 

social tolerance towards kins in Alpine marmots. 
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 9.4.2. Group dynamics implications 

Because of the implications for subordinate demographic rates, the group dynamics will 

also be strongly impacted by immigration. To illustrate this fact, we can look at the 

mean probabilities to stay in the social group after the arrival of an immigrating 

dominant for individuals of each sex and age class and compare them to the estimates 

when no change of dominant occurred. To do so, we only need to multiply the survival 

probability and the probability to not disperse in each situation (Φ.(1-d) ).  

When no change occurs, 56% of male and female juveniles will survive and 

remain in the social group the following year, 72% of female and male yearlings, 38% of 

two-year-old females, 34% of two-year-old males, 31 % of females 3 years and older 

and 34% of males 3 years and older. Depending on the age-structure of the group, the 

group growth rate is thus highly likely to vary a lot. However, given the high probability 

of producing a litter each year (around 0.65 for dominants three years and older) and the 

mean litter size in the population (4.15 ± 0.05 pups; Dupont et al. 2015), group growth 

rate is much likely to be positive. 

By comparison, when a new dominant female immigrates into the social group, 

only 35% of female juveniles will survive and stay in the group the following year, 31% 

of female yearlings, 29% of two-year-old females and 11% of females three years and 

older. In case it is a dominant male that immigrates, 39% of male juveniles will remain 

in the group, 43% of yearlings, 29% of two-year-old males and 14% of males of three 

years and more. In total, more than 50% of individuals of all age classes will leave the 

social group (or die). Adding to these low proportions, the very low probability to 

produce a litter when a dominance change happens (Lardy et al. 2011; sadly not 

evidenced using our model yet), it becomes obvious that the group size will suffer a 

drastic decrease following the arrival of a new dominant.  

Put together, our results outline the following group dynamics in Alpine 

marmots: after the settlement of a new dominant, the family group will likely grow until 

one of the resident dominants is evicted again, after which the group will undergo a 

dramatic decrease due to the eviction of the majority of subordinates of one sex. This 

cyclic dynamic is quite different from what was evidenced in other cooperative species. 
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In meerkats, for example, the group dynamics was shown to be mainly driven by group 

density dependence in interaction with climatic factors. More precisely, the group 

growth rate declined with increasing group size and this negative effect of group size 

was stronger in years of low rainfalls. Because of the increase in intra-sexual 

competition with subordinate numbers in Alpine marmots, group size is also likely to 

play a role in Alpine marmots’ group dynamics and further studies should investigate the 

influence of group size and composition on group dynamics. 

9.4.3 Conclusion 

Our results shed light on the consequences of immigration by a new dominant into the 

social group, both at the individual and group level. At the individual level, it appears 

that resident dominants tolerate a much higher number of same-sex subordinates than 

immigrating individuals, probably because of the relatedness between the resident 

dominant and associated subordinates. It is likely to be advantageous for the dominant to 

tolerate a large number of same-sex subordinates until they are fit enough to disperse 

and become dominant, thus providing the dominant with fitness benefits, rather than 

chasing them away earlier in order to avoid the costs related to intra-sexual competition.  

 At the group level, we highlighted the importance of group interactions on group 

dynamics of cooperatively breeding species. More specifically, we identified a potential 

mechanism responsible for large modifications in the group composition and swift 

declines in group size without the action of any biotic factors. Our results stress out the 

fact that in social species, groups are not isolated entities and interactions between these 

groups may be very important for the overall population dynamics of the species. 



132 
 

9.5. Supporting Material  

 9.5.1 Root model script and results 

sink("IMED_ROOT.bug") 
> cat(" 
+     model  
+     { 
+     # Priors and constraints 
+     for (i in 1:nind) 
+     { 
+     dist[i] ~ dpois(tau) 
+     DD[i] <- step(dmax -(dist[i]+1)) 
+     D[i] <- DD[i]+1 
+     DIST[i,1] <- dmax 
+     DIST[i,2] <- dist[i]+1 
+      
+     for (t in f[i]:(n.occ-1)) 
+     { 
+     pi[i,t]    <- mean.pi[age[i,t]] 
+     pS1[i,t]   <- mean.pS1[sex[i]] 
+     pD1[i,t]   <- mean.pD1[sex[i]] 
+     phiS[i,t]  <- mean.phiS[sex[i],age[i,t]]  
+     phiD[i,t]  <- mean.phiD[sex[i],age[i,t]] 
+     d[i,t]     <- mean.d[sex[i],age[i,t]] 
+     h[i,t]     <- mean.h[sex[i],age[i,t]] 
+     p[i,t]     <- mean.p[age[i,t+1], sex[i], t] 
+     rDS[i,t]   <- mean.rDS[sex[i], age[i,t]] 
+     rDB[i,t]  <- mean.rDB[sex[i], age[i,t]] 
+     r[i,t]     <- prob.mat[site[i],DIST[i,D[i]]] 
+     }  
+     }    
+     tau ~ dgamma(0.01,0.01)I(0.00001,100) 
+      
+     mean.pi[1] ~ dunif(0,1) 
+     mean.pi[2] ~ dunif(0,1) 
+     mean.pi[3] ~ dunif(0,1) 
+     mean.pi[4] ~ dunif(0,1) 
+      
+     mean.pS1[1] ~ dunif(0,1) 
+     mean.pS1[2] ~ dunif(0,1) 
+      
+     mean.pD1[1] ~ dunif(0,1) 
+     mean.pD1[2] ~ dunif(0,1) 
+      
+     for (a in 1:4) 
+     { 
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+     mean.phiS[1,a] ~ dunif(0,1) 
+     mean.phiS[2,a] ~ dunif(0,1) 
+      
+     mean.phiD[1,a] ~ dunif(0,1) 
+     mean.phiD[2,a] ~ dunif(0,1) 
+      
+     mean.d[1,a] ~ dunif(0,1) 
+     mean.d[2,a] ~ dunif(0,1) 
+  
+     mean.h[1,a] ~ dunif(0,1) 
+     mean.h[2,a] ~ dunif(0,1) 
+      
+     mean.rDS[1,a] ~ dunif(0,1) 
+     mean.rDS[2,a] ~ dunif(0,1) 
+      
+     mean.rDB[1,a] ~ dunif(0,1) 
+     mean.rDB[2,a] ~ dunif(0,1) 
+     } 
+      
+     for (t in 1:(n.occ-1)) 
+     { 
+     logit(mean.p[2,1,t]) <- P[t] 
+     logit(mean.p[2,2,t]) <- P[t]+d.P 
+     logit(mean.p[3,1,t]) <- P[t]+d.trois 
+     logit(mean.p[3,2,t]) <- P[t]+d.P+d.trois 
+     logit(mean.p[4,1,t]) <- P[t]+d.quatre 
+     logit(mean.p[4,2,t]) <- P[t]+d.P+d.quatre 
+     P[t] ~ dnorm(0,0.001) 
+     } 
+     d.trois ~ dnorm(0,0.001) 
+     d.quatre ~ dnorm(0,0.001) 
+     d.P ~ dnorm(0,0.001) 
+      
+     # Define state-transition and observation matrices 
+     for (i in 1:nind) 
+     { 
+     for (t in f[i]:(n.occ-1)) 
+     {  
+     # Define probabilities of state S at first capture 
+     ps1[i,t,1] <- pi[i,t] 
+     ps1[i,t,2] <- 0 
+     ps1[i,t,3] <- 1-pi[i,t] 
+      
+     # Define probabilities of O given S at first capture 
+     po1[1,i,t,1] <- (1-pS1[i,t])*rDS[i,t] 
+     po1[1,i,t,2] <- 0 
+     po1[1,i,t,3] <- pS1[i,t]*(1-rDS[i,t]) 
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+     po1[1,i,t,4] <- pS1[i,t]*rDS[i,t] 
+     po1[1,i,t,5] <- 0 
+     po1[1,i,t,6] <- 0 
+     po1[1,i,t,7] <- 0 
+     po1[1,i,t,8] <- 0 
+     po1[1,i,t,9] <- 0 
+     po1[2,i,t,1] <- (1-pD1[i,t])*rDB[i,t] 
+     po1[2,i,t,2] <- 0 
+     po1[2,i,t,3] <- 0 
+     po1[2,i,t,4] <- 0 
+     po1[2,i,t,5] <- pD1[i,t]*(1-rDB[i,t]) 
+     po1[2,i,t,6] <- pD1[i,t]*rDB[i,t] 
+     po1[2,i,t,7] <- 0  
+     po1[2,i,t,8] <- 0 
+     po1[2,i,t,9] <- 0 
+     po1[3,i,t,1] <- 0 
+     po1[3,i,t,2] <- (1-pD1[i,t])*rDB[i,t] 
+     po1[3,i,t,3] <- 0 
+     po1[3,i,t,4] <- 0 
+     po1[3,i,t,5] <- 0 
+     po1[3,i,t,6] <- 0 
+     po1[3,i,t,7] <- pD1[i,t]*(1-rDB[i,t]) 
+     po1[3,i,t,8] <- pD1[i,t]*rDB[i,t] 
+     po1[3,i,t,9] <- 0    
+      
+     # Define probabilities of state S(t+1) given S(t)    
+     ps[1,i,t,1] <- phiS[i,t] * (1-d[i,t]) * (1-h[i,t])  
+     ps[1,i,t,2] <- phiS[i,t] * (1-d[i,t]) * h[i,t] 
+     ps[1,i,t,3] <- phiS[i,t] * d[i,t] * r[i,t] 
+     ps[1,i,t,4] <- 1-phiS[i,t] + phiS[i,t]*d[i,t]*(1-r[i,t]) 
+     ps[2,i,t,1] <- 0 
+     ps[2,i,t,2] <- phiD[i,t]  
+     ps[2,i,t,3] <- 0 
+     ps[2,i,t,4] <- (1-phiD[i,t])  
+     ps[3,i,t,1] <- 0 
+     ps[3,i,t,2] <- 0 
+     ps[3,i,t,3] <- phiD[i,t] 
+     ps[3,i,t,4] <- (1-phiD[i,t]) 
+     ps[4,i,t,1] <- 0 
+     ps[4,i,t,2] <- 0 
+     ps[4,i,t,3] <- 0 
+     ps[4,i,t,4] <- 1 
+      
+     # Define probabilities of O(t) given S(t) 
+     po[1,i,t,1] <- (1-p[i,t])*rDS[i,t] 
+     po[1,i,t,2] <- 0 
+     po[1,i,t,3] <- p[i,t]*(1-rDS[i,t]) 
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+     po[1,i,t,4] <- p[i,t]*rDS[i,t] 
+     po[1,i,t,5] <- 0 
+     po[1,i,t,6] <- 0 
+     po[1,i,t,7] <- 0 
+     po[1,i,t,8] <- 0 
+     po[1,i,t,9] <- (1-p[i,t])*(1-rDS[i,t]) 
+     po[2,i,t,1] <- (1-p[i,t])*rDB[i,t] 
+     po[2,i,t,2] <- 0 
+     po[2,i,t,3] <- 0 
+     po[2,i,t,4] <- 0 
+     po[2,i,t,5] <- p[i,t]*(1-rDB[i,t]) 
+     po[2,i,t,6] <- p[i,t]*rDB[i,t] 
+     po[2,i,t,7] <- 0 
+     po[2,i,t,8] <- 0 
+     po[2,i,t,9] <- (1-p[i,t])*(1-rDB[i,t]) 
+     po[3,i,t,1] <- 0 
+     po[3,i,t,2] <- (1-p[i,t])*rDB[i,t] 
+     po[3,i,t,3] <- 0 
+     po[3,i,t,4] <- 0 
+     po[3,i,t,5] <- 0 
+     po[3,i,t,6] <- 0 
+     po[3,i,t,7] <- p[i,t]*(1-rDB[i,t]) 
+     po[3,i,t,8] <- p[i,t]*rDB[i,t] 
+     po[3,i,t,9] <- (1-p[i,t])*(1-rDB[i,t]) 
+     po[4,i,t,1] <- 0 
+     po[4,i,t,2] <- 0 
+     po[4,i,t,3] <- 0 
+     po[4,i,t,4] <- 0 
+     po[4,i,t,5] <- 0 
+     po[4,i,t,6] <- 0 
+     po[4,i,t,7] <- 0 
+     po[4,i,t,8] <- 0 
+     po[4,i,t,9] <- 1 
+     }  
+     }  
+     # Likelihood  
+     for (i in 1:nind) 
+     { 
+     z[i,f[i]] ~ dcat(ps1[i,f[i],]) 
+     y[i,f[i]] ~ dcat(po1[z[i,f[i]], i, f[i], ]) 
+     for (t in (f[i]+1):n.occ) 
+     { 
+     z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ]) 
+     y[i,t] ~ dcat(po[z[i,t], i, t-1, ]) 
+     }   }   } 
+    ",fill = TRUE) 
> sink() 
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Table IV.2. parameter estimates from the root model 
  mean sd 2.5% 50% 97.5% overlap0 f Rhat 
mean.pi[1] 0.999 0.001 0.996 0.999 1.000 FALSE 1.000 1 
mean.pi[2] 0.984 0.011 0.955 0.986 0.998 FALSE 1.000 1 
mean.pi[3] 0.939 0.041 0.837 0.948 0.992 FALSE 1.000 1 
mean.pi[4] 0.288 0.043 0.209 0.287 0.375 FALSE 1.000 1 
mean.pS1[1] 0.762 0.180 0.345 0.799 0.992 FALSE 1.000 1 
mean.pS1[2] 0.845 0.127 0.532 0.877 0.995 FALSE 1.000 1 
mean.pD1[1] 0.659 0.086 0.486 0.662 0.818 FALSE 1.000 1 
mean.pD1[2] 0.852 0.059 0.721 0.859 0.947 FALSE 1.000 1 
mean.phiS[1,1] 0.549 0.024 0.502 0.549 0.597 FALSE 1.000 1 
mean.phiS[2,1] 0.539 0.023 0.495 0.539 0.583 FALSE 1.000 1 
mean.phiS[1,2] 0.750 0.036 0.679 0.750 0.821 FALSE 1.000 1 
mean.phiS[2,2] 0.757 0.036 0.687 0.757 0.827 FALSE 1.000 1 
mean.phiS[1,3] 0.692 0.053 0.590 0.692 0.796 FALSE 1.000 1 
mean.phiS[2,3] 0.654 0.052 0.553 0.653 0.757 FALSE 1.000 1 
mean.phiS[1,4] 0.678 0.093 0.495 0.678 0.860 FALSE 1.000 1 
mean.phiS[2,4] 0.661 0.068 0.528 0.661 0.795 FALSE 1.000 1 
mean.phiD[1,1] 0.502 0.288 0.026 0.502 0.975 FALSE 1.000 1 
mean.phiD[2,1] 0.500 0.289 0.025 0.500 0.975 FALSE 1.000 1 
mean.phiD[1,2] 0.671 0.234 0.163 0.713 0.988 FALSE 1.000 1 
mean.phiD[2,2] 0.497 0.288 0.025 0.495 0.975 FALSE 1.000 1 
mean.phiD[1,3] 0.789 0.115 0.533 0.802 0.971 FALSE 1.000 1 
mean.phiD[2,3] 0.700 0.123 0.441 0.708 0.913 FALSE 1.000 1 
mean.phiD[1,4] 0.808 0.018 0.772 0.809 0.842 FALSE 1.000 1 
mean.phiD[2,4] 0.763 0.020 0.724 0.764 0.801 FALSE 1.000 1 
mean.d[1,1] 0.007 0.007 0.000 0.005 0.024 FALSE 1.000 1 
mean.d[2,1] 0.005 0.005 0.000 0.004 0.020 FALSE 1.000 1 
mean.d[1,2] 0.088 0.025 0.045 0.086 0.142 FALSE 1.000 1 
mean.d[2,2] 0.103 0.027 0.057 0.101 0.161 FALSE 1.000 1 
mean.d[1,3] 0.454 0.056 0.343 0.454 0.564 FALSE 1.000 1 
mean.d[2,3] 0.499 0.054 0.391 0.500 0.604 FALSE 1.000 1 
mean.d[1,4] 0.600 0.090 0.415 0.603 0.764 FALSE 1.000 1 
mean.d[2,4] 0.554 0.070 0.414 0.555 0.687 FALSE 1.000 1 
mean.h[1,1] 0.004 0.004 0.000 0.003 0.014 FALSE 1.000 1 
mean.h[2,1] 0.003 0.003 0.000 0.002 0.013 FALSE 1.000 1 
mean.h[1,2] 0.038 0.016 0.012 0.036 0.075 FALSE 1.000 1 
mean.h[2,2] 0.010 0.007 0.001 0.009 0.028 FALSE 1.000 1 
mean.h[1,3] 0.323 0.061 0.210 0.321 0.447 FALSE 1.000 1 
mean.h[2,3] 0.102 0.039 0.038 0.098 0.191 FALSE 1.000 1 
mean.h[1,4] 0.152 0.091 0.022 0.136 0.367 FALSE 1.000 1 
mean.h[2,4] 0.208 0.073 0.085 0.201 0.369 FALSE 1.000 1 
P[1] 3.319 0.706 2.069 3.272 4.843 FALSE 1.000 1 
P[2] 1.341 0.456 0.451 1.340 2.238 FALSE 0.998 1 
P[3] 2.676 0.449 1.830 2.665 3.589 FALSE 1.000 1 
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P[4] 2.574 0.355 1.898 2.568 3.289 FALSE 1.000 1 
P[5] 3.107 0.371 2.404 3.098 3.857 FALSE 1.000 1 
P[6] 2.478 0.358 1.797 2.471 3.203 FALSE 1.000 1 
P[7] 3.639 0.444 2.813 3.623 4.554 FALSE 1.000 1 
P[8] 1.850 0.348 1.182 1.845 2.545 FALSE 1.000 1 
P[9] 2.289 0.336 1.648 2.283 2.965 FALSE 1.000 1 
P[10] 1.981 0.329 1.351 1.976 2.641 FALSE 1.000 1 
P[11] 2.441 0.350 1.769 2.435 3.145 FALSE 1.000 1 
P[12] 2.105 0.346 1.441 2.100 2.800 FALSE 1.000 1 
P[13] 1.782 0.331 1.144 1.778 2.441 FALSE 1.000 1 
P[14] 1.828 0.322 1.210 1.824 2.472 FALSE 1.000 1 
P[15] 1.019 0.304 0.429 1.016 1.622 FALSE 1.000 1 
P[16] 2.584 0.314 1.985 2.577 3.216 FALSE 1.000 1 
P[17] 2.198 0.317 1.589 2.194 2.834 FALSE 1.000 1 
P[18] 1.975 0.299 1.403 1.971 2.572 FALSE 1.000 1 
P[19] 3.405 0.377 2.693 3.395 4.172 FALSE 1.000 1 
P[20] 3.299 0.357 2.619 3.292 4.022 FALSE 1.000 1 
P[21] 3.716 0.439 2.897 3.700 4.616 FALSE 1.000 1 
P[22] 3.738 0.433 2.936 3.722 4.632 FALSE 1.000 1 
P[23] 4.247 0.489 3.352 4.225 5.272 FALSE 1.000 1 
P[24] 4.418 0.516 3.489 4.389 5.512 FALSE 1.000 1 
P[25] 3.494 0.394 2.762 3.481 4.301 FALSE 1.000 1 
d.P -0.261 0.125 -0.506 -0.261 -0.016 FALSE 0.982 1 
d.trois -1.511 0.244 -1.997 -1.508 -1.042 FALSE 1.000 1 
d.quatre -1.838 0.212 -2.266 -1.835 -1.434 FALSE 1.000 1 
mean.rDS[1,1] 0.001 0.001 0.000 0.001 0.004 FALSE 1.000 1 
mean.rDS[2,1] 0.001 0.001 0.000 0.001 0.004 FALSE 1.000 1 
mean.rDS[1,2] 0.009 0.008 0.000 0.008 0.029 FALSE 1.000 1 
mean.rDS[2,2] 0.003 0.003 0.000 0.002 0.012 FALSE 1.000 1 
mean.rDS[1,3] 0.014 0.014 0.000 0.010 0.052 FALSE 1.000 1 
mean.rDS[2,3] 0.084 0.032 0.032 0.080 0.156 FALSE 1.000 1 
mean.rDS[1,4] 0.036 0.035 0.001 0.025 0.130 FALSE 1.000 1 
mean.rDS[2,4] 0.060 0.033 0.013 0.055 0.139 FALSE 1.000 1 
mean.rDB[1,1] 0.476 0.288 0.021 0.464 0.971 FALSE 1.000 1 
mean.rDB[2,1] 0.488 0.289 0.023 0.482 0.974 FALSE 1.000 1 
mean.rDB[1,2] 0.470 0.114 0.253 0.468 0.694 FALSE 1.000 1 
mean.rDB[2,2] 0.328 0.113 0.133 0.319 0.569 FALSE 1.000 1 
mean.rDB[1,3] 0.433 0.059 0.320 0.432 0.550 FALSE 1.000 1 
mean.rDB[2,3] 0.541 0.066 0.412 0.541 0.671 FALSE 1.000 1 
mean.rDB[1,4] 0.660 0.023 0.614 0.660 0.704 FALSE 1.000 1 
mean.rDB[2,4] 0.635 0.024 0.588 0.635 0.681 FALSE 1.000 1 
tau 0.604 0.067 0.480 0.602 0.743 FALSE 1.000 1 
deviance 3973.180 53.456 3871.893 3972.086 4081.250 FALSE 1.000 1 
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 9.5.2. Kin-selection model script and results 

sink("IMED_KIN.bug") 
> cat(" 
+     model  
+     { 
+     # Priors and constraints 
+     for (i in 1:nind) 
+     { 
+     dist[i] ~ dpois(tau) 
+     DD[i] <- step(dmax -(dist[i]+1)) 
+     D[i] <- DD[i]+1 
+     DIST[i,1] <- dmax 
+     DIST[i,2] <- dist[i]+1 
+      
+     for (t in f[i]:(n.occ-1)) 
+     { 
+     pi[i,t]    <- mean.pi[age[i,t]] 
+     pS1[i,t]   <- mean.pS1[sex[i]] 
+     pD1[i,t]   <- mean.pD1[sex[i]] 
+     phiS[i,t]  <- mean.phiS[sex[i], age[i,t], chg[i,t] ]  
+     phiD[i,t]  <- mean.phiD[sex[i], age[i,t]] 
+     d[i,t]     <- mean.d[sex[i], age[i,t], chg[i,t] ] 
+     h[i,t]     <- mean.h[sex[i], age[i,t]] 
+     p[i,t]     <- mean.p[age[i,t+1], sex[i], t] 
+     rDS[i,t]   <- mean.rDS[sex[i], age[i,t], chg[i,t] ] 
+     rDB[i,t]  <- mean.rDB[sex[i], age[i,t], chg[i,t] ] 
+     r[i,t]     <- prob.mat[site[i],DIST[i,D[i]]] 
+     }    } 
+     tau ~ dgamma(0.01,0.01)I(0.00001,100) 
+      
+     mean.pi[1] ~ dunif(0,1) 
+     mean.pi[2] ~ dunif(0,1) 
+     mean.pi[3] ~ dunif(0,1) 
+     mean.pi[4] ~ dunif(0,1) 
+      
+     mean.pS1[1] ~ dunif(0,1) 
+     mean.pS1[2] ~ dunif(0,1) 
+      
+     mean.pD1[1] ~ dunif(0,1) 
+     mean.pD1[2] ~ dunif(0,1) 
+      
+     for (a in 1:4) 
+     { 
+     mean.phiS[1,a,1] ~ dunif(0,1) 
+     mean.phiS[2,a,1] ~ dunif(0,1) 
+     mean.phiS[1,a,2] ~ dunif(0,1) 
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+     mean.phiS[2,a,2] ~ dunif(0,1) 
+      
+     mean.phiD[1,a] ~ dunif(0,1) 
+     mean.phiD[2,a] ~ dunif(0,1) 
+      
+     mean.d[1,a,1] ~ dunif(0,1) 
+     mean.d[1,a,2] ~ dunif(0,1) 
+     mean.d[2,a,1] ~ dunif(0,1) 
+     mean.d[2,a,2] ~ dunif(0,1) 
+      
+     mean.h[1,a] ~ dunif(0,1) 
+     mean.h[2,a] ~ dunif(0,1) 
+      
+     mean.rDS[1,a,1] <-0 
+     mean.rDS[2,a,1] ~ dunif(0,1) 
+     mean.rDS[1,a,2] <-0 
+     mean.rDS[2,a,2] ~ dunif(0,1) 
+      
+     mean.rDB[1,a,1] ~ dunif(0,1) 
+     mean.rDB[2,a,1] ~ dunif(0,1) 
+     mean.rDB[1,a,2] ~ dunif(0,1) 
+     mean.rDB[2,a,2] ~ dunif(0,1) 
+     } 
+      
+     for (t in 1:(n.occ-1)) 
+     { 
+     logit(mean.p[2,1,t]) <- P[t] 
+     logit(mean.p[2,2,t]) <- P[t]+d.P 
+     logit(mean.p[3,1,t]) <- P[t]+d.trois 
+     logit(mean.p[3,2,t]) <- P[t]+d.P+d.trois 
+     logit(mean.p[4,1,t]) <- P[t]+d.quatre 
+     logit(mean.p[4,2,t]) <- P[t]+d.P+d.quatre 
+     P[t] ~ dnorm(0,0.001) 
+     } 
+     d.trois ~ dnorm(0,0.001) 
+     d.quatre ~ dnorm(0,0.001) 
+     d.P ~ dnorm(0,0.001) 
+      
+     # Define state-transition and observation matrices 
+     for (i in 1:nind) 
+     { 
+     for (t in f[i]:(n.occ-1)) 
+     {  
+     # Define probabilities of state S at first capture 
+     ps1[i,t,1] <- pi[i,t] 
+     ps1[i,t,2] <- 0 
+     ps1[i,t,3] <- 1-pi[i,t] 
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+      
+     # Define probabilities of O given S at first capture 
+     po1[1,i,t,1] <- (1-pS1[i,t])*rDS[i,t] 
+     po1[1,i,t,2] <- 0 
+     po1[1,i,t,3] <- pS1[i,t]*(1-rDS[i,t]) 
+     po1[1,i,t,4] <- pS1[i,t]*rDS[i,t] 
+     po1[1,i,t,5] <- 0 
+     po1[1,i,t,6] <- 0 
+     po1[1,i,t,7] <- 0 
+     po1[1,i,t,8] <- 0 
+     po1[1,i,t,9] <- 0 
+     po1[2,i,t,1] <- (1-pD1[i,t])*rDB[i,t] 
+     po1[2,i,t,2] <- 0 
+     po1[2,i,t,3] <- 0 
+     po1[2,i,t,4] <- 0 
+     po1[2,i,t,5] <- pD1[i,t]*(1-rDB[i,t]) 
+     po1[2,i,t,6] <- pD1[i,t]*rDB[i,t] 
+     po1[2,i,t,7] <- 0  
+     po1[2,i,t,8] <- 0 
+     po1[2,i,t,9] <- 0 
+     po1[3,i,t,1] <- 0 
+     po1[3,i,t,2] <- (1-pD1[i,t])*rDB[i,t] 
+     po1[3,i,t,3] <- 0 
+     po1[3,i,t,4] <- 0 
+     po1[3,i,t,5] <- 0 
+     po1[3,i,t,6] <- 0 
+     po1[3,i,t,7] <- pD1[i,t]*(1-rDB[i,t]) 
+     po1[3,i,t,8] <- pD1[i,t]*rDB[i,t] 
+     po1[3,i,t,9] <- 0    
+      
+     # Define probabilities of state S(t+1) given S(t)    
+     ps[1,i,t,1] <- phiS[i,t] * (1-d[i,t]) * (1-h[i,t])  
+     ps[1,i,t,2] <- phiS[i,t] * (1-d[i,t]) * h[i,t] 
+     ps[1,i,t,3] <- phiS[i,t] * d[i,t] * r[i,t] 
+     ps[1,i,t,4] <- 1-phiS[i,t] + phiS[i,t]*d[i,t]*(1-r[i,t]) 
+     ps[2,i,t,1] <- 0 
+     ps[2,i,t,2] <- phiD[i,t]  
+     ps[2,i,t,3] <- 0 
+     ps[2,i,t,4] <- (1-phiD[i,t])  
+     ps[3,i,t,1] <- 0 
+     ps[3,i,t,2] <- 0 
+     ps[3,i,t,3] <- phiD[i,t] 
+     ps[3,i,t,4] <- (1-phiD[i,t]) 
+     ps[4,i,t,1] <- 0 
+     ps[4,i,t,2] <- 0 
+     ps[4,i,t,3] <- 0 
+     ps[4,i,t,4] <- 1 
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+      
+     # Define probabilities of O(t) given S(t) 
+     po[1,i,t,1] <- (1-p[i,t])*rDS[i,t] 
+     po[1,i,t,2] <- 0 
+     po[1,i,t,3] <- p[i,t]*(1-rDS[i,t]) 
+     po[1,i,t,4] <- p[i,t]*rDS[i,t] 
+     po[1,i,t,5] <- 0 
+     po[1,i,t,6] <- 0 
+     po[1,i,t,7] <- 0 
+     po[1,i,t,8] <- 0 
+     po[1,i,t,9] <- (1-p[i,t])*(1-rDS[i,t]) 
+     po[2,i,t,1] <- (1-p[i,t])*rDB[i,t] 
+     po[2,i,t,2] <- 0 
+     po[2,i,t,3] <- 0 
+     po[2,i,t,4] <- 0 
+     po[2,i,t,5] <- p[i,t]*(1-rDB[i,t]) 
+     po[2,i,t,6] <- p[i,t]*rDB[i,t] 
+     po[2,i,t,7] <- 0 
+     po[2,i,t,8] <- 0 
+     po[2,i,t,9] <- (1-p[i,t])*(1-rDB[i,t]) 
+     po[3,i,t,1] <- 0 
+     po[3,i,t,2] <- (1-p[i,t])*rDB[i,t] 
+     po[3,i,t,3] <- 0 
+     po[3,i,t,4] <- 0 
+     po[3,i,t,5] <- 0 
+     po[3,i,t,6] <- 0 
+     po[3,i,t,7] <- p[i,t]*(1-rDB[i,t]) 
+     po[3,i,t,8] <- p[i,t]*rDB[i,t] 
+     po[3,i,t,9] <- (1-p[i,t])*(1-rDB[i,t]) 
+     po[4,i,t,1] <- 0 
+     po[4,i,t,2] <- 0 
+     po[4,i,t,3] <- 0 
+     po[4,i,t,4] <- 0 
+     po[4,i,t,5] <- 0 
+     po[4,i,t,6] <- 0 
+     po[4,i,t,7] <- 0 
+     po[4,i,t,8] <- 0 
+     po[4,i,t,9] <- 1 
+     }  
+     }  
+      
+     # Likelihood  
+     for (i in 1:nind) 
+     { 
+     z[i,f[i]] ~ dcat(ps1[i,f[i],]) 
+     y[i,f[i]] ~ dcat(po1[z[i,f[i]], i, f[i], ]) 
+     for (t in (f[i]+1):n.occ) 
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+     { 
+     z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ]) 
+     y[i,t] ~ dcat(po[z[i,t], i, t-1, ]) 
+     }  
+     }  
+     } 
+     ",fill = TRUE) 
> sink() 
 
 
Table IV.3. parameter estimates from the kin-selection model. 
  mean sd 2.5% 50% 97.5% overlap0 f Rhat 
mean.pi[1] 0.999 0.001 0.996 0.999 1.000 FALSE 1.000 1.000 
mean.pi[2] 0.984 0.012 0.954 0.986 0.998 FALSE 1.000 1.000 
mean.pi[3] 0.940 0.041 0.839 0.948 0.992 FALSE 1.000 1.000 
mean.pi[4] 0.288 0.043 0.208 0.287 0.376 FALSE 1.000 1.000 
mean.pS1[1] 0.829 0.139 0.489 0.863 0.995 FALSE 1.000 1.000 
mean.pS1[2] 0.873 0.108 0.599 0.902 0.996 FALSE 1.000 1.000 
mean.pD1[1] 0.654 0.087 0.478 0.656 0.814 FALSE 1.000 1.000 
mean.pD1[2] 0.848 0.060 0.714 0.854 0.946 FALSE 1.000 1.000 
mean.phiS[1,1,1] 0.586 0.026 0.535 0.586 0.637 FALSE 1.000 1.000 
mean.phiS[2,1,1] 0.568 0.025 0.519 0.567 0.616 FALSE 1.000 1.000 
mean.phiS[1,2,1] 0.809 0.037 0.735 0.810 0.881 FALSE 1.000 1.000 
mean.phiS[2,2,1] 0.815 0.039 0.739 0.815 0.890 FALSE 1.000 1.000 
mean.phiS[1,3,1] 0.736 0.061 0.617 0.736 0.854 FALSE 1.000 1.000 
mean.phiS[2,3,1] 0.684 0.060 0.567 0.684 0.803 FALSE 1.000 1.000 
mean.phiS[1,4,1] 0.667 0.112 0.449 0.666 0.885 FALSE 1.000 1.000 
mean.phiS[2,4,1] 0.746 0.079 0.588 0.747 0.897 FALSE 1.000 1.000 
mean.phiS[1,1,2] 0.384 0.058 0.274 0.382 0.500 FALSE 1.000 1.000 
mean.phiS[2,1,2] 0.420 0.053 0.319 0.419 0.526 FALSE 1.000 1.000 
mean.phiS[1,2,2] 0.464 0.081 0.313 0.461 0.629 FALSE 1.000 1.000 
mean.phiS[2,2,2] 0.503 0.075 0.362 0.502 0.654 FALSE 1.000 1.000 
mean.phiS[1,3,2] 0.615 0.091 0.441 0.614 0.795 FALSE 1.000 1.000 
mean.phiS[2,3,2] 0.574 0.094 0.397 0.572 0.764 FALSE 1.000 1.000 
mean.phiS[1,4,2] 0.613 0.156 0.316 0.611 0.919 FALSE 1.000 1.000 
mean.phiS[2,4,2] 0.438 0.119 0.225 0.432 0.687 FALSE 1.000 1.000 
mean.phiD[1,1,1] 0.500 0.289 0.024 0.500 0.975 FALSE 1.000 1.000 
mean.phiD[2,1,1] 0.499 0.288 0.025 0.499 0.974 FALSE 1.000 1.000 
mean.phiD[1,2,1] 0.671 0.235 0.161 0.713 0.988 FALSE 1.000 1.000 
mean.phiD[2,2,1] 0.498 0.288 0.025 0.497 0.975 FALSE 1.000 1.000 
mean.phiD[1,3,1] 0.709 0.147 0.396 0.721 0.954 FALSE 1.000 1.000 
mean.phiD[2,3,1] 0.798 0.119 0.528 0.814 0.979 FALSE 1.000 1.000 
mean.phiD[1,4,1] 0.810 0.021 0.767 0.811 0.850 FALSE 1.000 1.000 
mean.phiD[2,4,1] 0.769 0.024 0.721 0.769 0.813 FALSE 1.000 1.000 
mean.phiD[1,1,2] 0.499 0.289 0.024 0.497 0.975 FALSE 1.000 1.000 
mean.phiD[2,1,2] 0.500 0.289 0.025 0.500 0.975 FALSE 1.000 1.000 
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mean.phiD[1,2,2] 0.497 0.289 0.025 0.496 0.974 FALSE 1.000 1.000 
mean.phiD[2,2,2] 0.496 0.289 0.024 0.495 0.975 FALSE 1.000 1.000 
mean.phiD[1,3,2] 0.828 0.144 0.467 0.866 0.995 FALSE 1.000 1.000 
mean.phiD[2,3,2] 0.394 0.205 0.064 0.375 0.823 FALSE 1.000 1.000 
mean.phiD[1,4,2] 0.801 0.039 0.720 0.803 0.873 FALSE 1.000 1.000 
mean.phiD[2,4,2] 0.745 0.042 0.659 0.747 0.824 FALSE 1.000 1.000 
mean.d[1,1,1] 0.008 0.008 0.000 0.005 0.028 FALSE 1.000 1.000 
mean.d[2,1,1] 0.006 0.006 0.000 0.004 0.022 FALSE 1.000 1.000 
mean.d[1,2,1] 0.075 0.025 0.033 0.072 0.131 FALSE 1.000 1.000 
mean.d[2,2,1] 0.113 0.030 0.061 0.111 0.178 FALSE 1.000 1.000 
mean.d[1,3,1] 0.555 0.062 0.429 0.556 0.672 FALSE 1.000 1.000 
mean.d[2,3,1] 0.509 0.061 0.389 0.510 0.626 FALSE 1.000 1.000 
mean.d[1,4,1] 0.603 0.111 0.373 0.608 0.801 FALSE 1.000 1.000 
mean.d[2,4,1] 0.570 0.078 0.412 0.572 0.716 FALSE 1.000 1.000 
mean.d[1,1,2] 0.049 0.046 0.001 0.035 0.170 FALSE 1.000 1.000 
mean.d[2,1,2] 0.040 0.038 0.001 0.029 0.140 FALSE 1.000 1.000 
mean.d[1,2,2] 0.235 0.096 0.075 0.226 0.444 FALSE 1.000 1.000 
mean.d[2,2,2] 0.102 0.066 0.013 0.089 0.261 FALSE 1.000 1.000 
mean.d[1,3,2] 0.231 0.090 0.080 0.224 0.425 FALSE 1.000 1.000 
mean.d[2,3,2] 0.468 0.110 0.253 0.469 0.679 FALSE 1.000 1.000 
mean.d[1,4,2] 0.473 0.163 0.156 0.476 0.776 FALSE 1.000 1.000 
mean.d[2,4,2] 0.510 0.151 0.210 0.514 0.790 FALSE 1.000 1.000 
mean.h[1,1,1] 0.004 0.004 0.000 0.003 0.016 FALSE 1.000 1.000 
mean.h[2,1,1] 0.004 0.004 0.000 0.003 0.015 FALSE 1.000 1.000 
mean.h[1,2,1] 0.025 0.015 0.003 0.023 0.061 FALSE 1.000 1.000 
mean.h[2,2,1] 0.011 0.008 0.001 0.009 0.030 FALSE 1.000 1.000 
mean.h[1,3,1] 0.363 0.080 0.215 0.360 0.525 FALSE 1.000 1.000 
mean.h[2,3,1] 0.099 0.044 0.031 0.093 0.199 FALSE 1.000 1.000 
mean.h[1,4,1] 0.244 0.130 0.041 0.228 0.534 FALSE 1.000 1.000 
mean.h[2,4,1] 0.226 0.084 0.086 0.218 0.411 FALSE 1.000 1.000 
mean.h[1,1,2] 0.034 0.033 0.001 0.024 0.121 FALSE 1.000 1.000 
mean.h[2,1,2] 0.025 0.025 0.001 0.018 0.092 FALSE 1.000 1.000 
mean.h[1,2,2] 0.138 0.073 0.030 0.126 0.310 FALSE 1.000 1.000 
mean.h[2,2,2] 0.044 0.039 0.001 0.032 0.147 FALSE 1.000 1.000 
mean.h[1,3,2] 0.285 0.092 0.126 0.279 0.481 FALSE 1.000 1.000 
mean.h[2,3,2] 0.126 0.082 0.017 0.110 0.327 FALSE 1.000 1.000 
mean.h[1,4,2] 0.142 0.123 0.004 0.109 0.455 FALSE 1.000 1.000 
mean.h[2,4,2] 0.253 0.149 0.036 0.230 0.596 FALSE 1.000 1.000 
P[1] 3.197 0.701 1.951 3.150 4.710 FALSE 1.000 1.000 
P[2] 1.308 0.457 0.414 1.307 2.210 FALSE 0.998 1.000 
P[3] 2.600 0.449 1.751 2.588 3.513 FALSE 1.000 1.000 
P[4] 2.543 0.357 1.860 2.535 3.262 FALSE 1.000 1.000 
P[5] 3.074 0.376 2.363 3.066 3.838 FALSE 1.000 1.000 
P[6] 2.368 0.357 1.689 2.360 3.090 FALSE 1.000 1.000 
P[7] 3.546 0.444 2.717 3.531 4.460 FALSE 1.000 1.000 
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P[8] 1.857 0.350 1.185 1.852 2.558 FALSE 1.000 1.000 
P[9] 2.214 0.340 1.565 2.207 2.898 FALSE 1.000 1.000 
P[10] 1.933 0.329 1.302 1.928 2.589 FALSE 1.000 1.000 
P[11] 2.390 0.351 1.719 2.384 3.097 FALSE 1.000 1.000 
P[12] 2.013 0.345 1.351 2.007 2.702 FALSE 1.000 1.000 
P[13] 1.752 0.333 1.111 1.749 2.417 FALSE 1.000 1.000 
P[14] 1.787 0.322 1.170 1.783 2.429 FALSE 1.000 1.000 
P[15] 0.972 0.302 0.389 0.969 1.570 FALSE 0.999 1.000 
P[16] 2.520 0.313 1.922 2.515 3.149 FALSE 1.000 1.000 
P[17] 2.221 0.323 1.601 2.216 2.868 FALSE 1.000 1.000 
P[18] 1.897 0.303 1.313 1.892 2.500 FALSE 1.000 1.000 
P[19] 3.313 0.379 2.595 3.304 4.081 FALSE 1.000 1.000 
P[20] 3.217 0.361 2.529 3.209 3.944 FALSE 1.000 1.000 
P[21] 3.605 0.442 2.782 3.590 4.516 FALSE 1.000 1.000 
P[22] 3.692 0.435 2.887 3.676 4.595 FALSE 1.000 1.000 
P[23] 4.201 0.491 3.301 4.178 5.228 FALSE 1.000 1.000 
P[24] 4.338 0.516 3.412 4.309 5.438 FALSE 1.000 1.000 
P[25] 3.376 0.392 2.645 3.362 4.183 FALSE 1.000 1.000 
mean.rDS[1,1,1] 0.001 0.001 0.000 0.001 0.005 FALSE 1.000 1.000 
mean.rDS[2,1,1] 0.001 0.001 0.000 0.001 0.005 FALSE 1.000 1.000 
mean.rDS[1,2,1] 0.014 0.010 0.001 0.012 0.038 FALSE 1.000 1.000 
mean.rDS[2,2,1] 0.004 0.004 0.000 0.003 0.014 FALSE 1.000 1.000 
mean.rDS[1,3,1] 0.022 0.022 0.001 0.015 0.081 FALSE 1.000 1.000 
mean.rDS[2,3,1] 0.055 0.029 0.013 0.050 0.125 FALSE 1.000 1.000 
mean.rDS[1,4,1] 0.056 0.054 0.001 0.040 0.200 FALSE 1.000 1.000 
mean.rDS[2,4,1] 0.057 0.038 0.007 0.049 0.151 FALSE 1.000 1.000 
mean.rDS[1,1,2] 0.008 0.008 0.000 0.006 0.031 FALSE 1.000 1.000 
mean.rDS[2,1,2] 0.007 0.007 0.000 0.005 0.025 FALSE 1.000 1.000 
mean.rDS[1,2,2] 0.032 0.031 0.001 0.023 0.116 FALSE 1.000 1.000 
mean.rDS[2,2,2] 0.024 0.023 0.001 0.017 0.085 FALSE 1.000 1.000 
mean.rDS[1,3,2] 0.044 0.042 0.001 0.031 0.156 FALSE 1.000 1.000 
mean.rDS[2,3,2] 0.223 0.094 0.069 0.213 0.432 FALSE 1.000 1.000 
mean.rDS[1,4,2] 0.097 0.089 0.003 0.071 0.333 FALSE 1.000 1.000 
mean.rDS[2,4,2] 0.124 0.082 0.016 0.108 0.325 FALSE 1.000 1.000 
tau 0.617 0.068 0.492 0.614 0.757 FALSE 1.000 1.001 
deviance 3987.792 55.255 3882.818 3986.716 4099.130 FALSE 1.000 1.000 
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 9.5.3. Intra-sexual competition model script and results 

sink("IMED_INTRA_SEX.bug") 
> cat(" 
+     model  
+     { 
+     # Priors and constraints 
+     for (i in 1:nind) 
+       { 
+       dist[i] ~ dpois(tau) 
+       DD[i] <- step(dmax -(dist[i]+1)) 
+       D[i] <- DD[i]+1 
+       DIST[i,1] <- dmax 
+       DIST[i,2] <- dist[i]+1 
+      
+       for (t in f[i]:(n.occ-1)) 
+       { 
+       pi[i,t]    <- mean.pi[age[i,t]] 
+       pS1[i,t]   <- mean.pS1[sex[i]] 
+       pD1[i,t]   <- mean.pD1[sex[i]] 
+       phiS[i,t]  <- mean.phiS[sex[i], age[i,t], chg[i,t,sex[i]] ]  
+       phiD[i,t]  <- mean.phiD[sex[i], age[i,t]] 
+       d[i,t]     <- mean.d[sex[i], age[i,t], chg[i,t,sex[i]] ] 
+       h[i,t]     <- mean.h[sex[i], age[i,t]] 
+       p[i,t]     <- mean.p[age[i,t+1], sex[i], t] 
+       rDS[i,t]   <- mean.rDS[sex[i], age[i,t], chg[i,t,sex[i]] ] 
+       rDB[i,t]  <- mean.rDB[sex[i], age[i,t], chg[i,t,sex[i]] ] 
+       r[i,t]     <- prob.mat[site[i],DIST[i,D[i]]] 
+       }  
+     } 
+      
+     tau ~ dgamma(0.01,0.01)I(0.00001,100) 
+      
+     mean.pi[1] ~ dunif(0,1) 
+     mean.pi[2] ~ dunif(0,1) 
+     mean.pi[3] ~ dunif(0,1) 
+     mean.pi[4] ~ dunif(0,1) 
+  
+     mean.pS1[1] ~ dunif(0,1) 
+     mean.pS1[2] ~ dunif(0,1) 
+  
+     mean.pD1[1] ~ dunif(0,1) 
+     mean.pD1[2] ~ dunif(0,1) 
+  
+     for (a in 1:4) 
+       { 
+       mean.phiS[1,a,1] ~ dunif(0,1) 
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+       mean.phiS[2,a,1] ~ dunif(0,1) 
+       mean.phiS[1,a,2] ~ dunif(0,1) 
+       mean.phiS[2,a,2] ~ dunif(0,1) 
+  
+       mean.phiD[1,a] ~ dunif(0,1) 
+       mean.phiD[2,a] ~ dunif(0,1) 
+  
+       mean.d[1,a,1] ~ dunif(0,1) 
+       mean.d[1,a,2] ~ dunif(0,1) 
+       mean.d[2,a,1] ~ dunif(0,1) 
+       mean.d[2,a,2] ~ dunif(0,1) 
+  
+       mean.h[1,a] ~ dunif(0,1) 
+       mean.h[2,a] ~ dunif(0,1) 
+  
+       mean.rDS[1,a,1] <-0 
+       mean.rDS[2,a,1] ~ dunif(0,1) 
+       mean.rDS[1,a,2] <-0 
+       mean.rDS[2,a,2] ~ dunif(0,1) 
+  
+       mean.rDB[1,a,1] ~ dunif(0,1) 
+       mean.rDB[2,a,1] ~ dunif(0,1) 
+       mean.rDB[1,a,2] ~ dunif(0,1) 
+       mean.rDB[2,a,2] ~ dunif(0,1) 
+       } 
+  
+       for (t in 1:(n.occ-1)) 
+         { 
+         logit(mean.p[2,1,t]) <- P[t] 
+         logit(mean.p[2,2,t]) <- P[t]+d.P 
+         logit(mean.p[3,1,t]) <- P[t]+d.trois 
+         logit(mean.p[3,2,t]) <- P[t]+d.P+d.trois 
+         logit(mean.p[4,1,t]) <- P[t]+d.quatre 
+         logit(mean.p[4,2,t]) <- P[t]+d.P+d.quatre 
+         P[t] ~ dnorm(0,0.001) 
+         } 
+       d.trois ~ dnorm(0,0.001) 
+       d.quatre ~ dnorm(0,0.001) 
+       d.P ~ dnorm(0,0.001) 
+  
+     # Define state-transition and observation matrices 
+     for (i in 1:nind) 
+       { 
+       for (t in f[i]:(n.occ-1)) 
+         {  
+         # Define probabilities of state S at first capture 
+         ps1[i,t,1] <- pi[i,t] 
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+         ps1[i,t,2] <- 0 
+         ps1[i,t,3] <- 1-pi[i,t] 
+      
+         # Define probabilities of O given S at first capture 
+         po1[1,i,t,1] <- (1-pS1[i,t])*rDS[i,t] 
+         po1[1,i,t,2] <- 0 
+         po1[1,i,t,3] <- pS1[i,t]*(1-rDS[i,t]) 
+         po1[1,i,t,4] <- pS1[i,t]*rDS[i,t] 
+         po1[1,i,t,5] <- 0 
+         po1[1,i,t,6] <- 0 
+         po1[1,i,t,7] <- 0 
+         po1[1,i,t,8] <- 0 
+         po1[1,i,t,9] <- 0 
+         po1[2,i,t,1] <- (1-pD1[i,t])*rDB[i,t] 
+         po1[2,i,t,2] <- 0 
+         po1[2,i,t,3] <- 0 
+         po1[2,i,t,4] <- 0 
+         po1[2,i,t,5] <- pD1[i,t]*(1-rDB[i,t]) 
+         po1[2,i,t,6] <- pD1[i,t]*rDB[i,t] 
+         po1[2,i,t,7] <- 0  
+         po1[2,i,t,8] <- 0 
+         po1[2,i,t,9] <- 0 
+         po1[3,i,t,1] <- 0 
+         po1[3,i,t,2] <- (1-pD1[i,t])*rDB[i,t] 
+         po1[3,i,t,3] <- 0 
+         po1[3,i,t,4] <- 0 
+         po1[3,i,t,5] <- 0 
+         po1[3,i,t,6] <- 0 
+         po1[3,i,t,7] <- pD1[i,t]*(1-rDB[i,t]) 
+         po1[3,i,t,8] <- pD1[i,t]*rDB[i,t] 
+         po1[3,i,t,9] <- 0    
+      
+         # Define probabilities of state S(t+1) given S(t)    
+         ps[1,i,t,1] <- phiS[i,t] * (1-d[i,t]) * (1-h[i,t])  
+         ps[1,i,t,2] <- phiS[i,t] * (1-d[i,t]) * h[i,t] 
+         ps[1,i,t,3] <- phiS[i,t] * d[i,t] * r[i,t] 
+         ps[1,i,t,4] <- 1-phiS[i,t] + phiS[i,t]*d[i,t]*(1-r[i,t]) 
+         ps[2,i,t,1] <- 0 
+         ps[2,i,t,2] <- phiD[i,t]  
+         ps[2,i,t,3] <- 0 
+         ps[2,i,t,4] <- (1-phiD[i,t])  
+         ps[3,i,t,1] <- 0 
+         ps[3,i,t,2] <- 0 
+         ps[3,i,t,3] <- phiD[i,t] 
+         ps[3,i,t,4] <- (1-phiD[i,t]) 
+         ps[4,i,t,1] <- 0 
+         ps[4,i,t,2] <- 0 
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+         ps[4,i,t,3] <- 0 
+         ps[4,i,t,4] <- 1 
+      
+         # Define probabilities of O(t) given S(t) 
+         po[1,i,t,1] <- (1-p[i,t])*rDS[i,t] 
+         po[1,i,t,2] <- 0 
+         po[1,i,t,3] <- p[i,t]*(1-rDS[i,t]) 
+         po[1,i,t,4] <- p[i,t]*rDS[i,t] 
+         po[1,i,t,5] <- 0 
+         po[1,i,t,6] <- 0 
+         po[1,i,t,7] <- 0 
+         po[1,i,t,8] <- 0 
+         po[1,i,t,9] <- (1-p[i,t])*(1-rDS[i,t]) 
+         po[2,i,t,1] <- (1-p[i,t])*rDB[i,t] 
+         po[2,i,t,2] <- 0 
+         po[2,i,t,3] <- 0 
+         po[2,i,t,4] <- 0 
+         po[2,i,t,5] <- p[i,t]*(1-rDB[i,t]) 
+         po[2,i,t,6] <- p[i,t]*rDB[i,t] 
+         po[2,i,t,7] <- 0 
+         po[2,i,t,8] <- 0 
+         po[2,i,t,9] <- (1-p[i,t])*(1-rDB[i,t]) 
+         po[3,i,t,1] <- 0 
+         po[3,i,t,2] <- (1-p[i,t])*rDB[i,t] 
+         po[3,i,t,3] <- 0 
+         po[3,i,t,4] <- 0 
+         po[3,i,t,5] <- 0 
+         po[3,i,t,6] <- 0 
+         po[3,i,t,7] <- p[i,t]*(1-rDB[i,t]) 
+         po[3,i,t,8] <- p[i,t]*rDB[i,t] 
+         po[3,i,t,9] <- (1-p[i,t])*(1-rDB[i,t]) 
+         po[4,i,t,1] <- 0 
+         po[4,i,t,2] <- 0 
+         po[4,i,t,3] <- 0 
+         po[4,i,t,4] <- 0 
+         po[4,i,t,5] <- 0 
+         po[4,i,t,6] <- 0 
+         po[4,i,t,7] <- 0 
+         po[4,i,t,8] <- 0 
+         po[4,i,t,9] <- 1 
+         }  
+       }  
+      
+     # Likelihood  
+     for (i in 1:nind) 
+       { 
+       z[i,f[i]] ~ dcat(ps1[i,f[i],]) 
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+       y[i,f[i]] ~ dcat(po1[z[i,f[i]], i, f[i], ]) 
+       for (t in (f[i]+1):n.occ) 
+         { 
+         z[i,t] ~ dcat(ps[z[i,t-1], i, t-1, ]) 
+         y[i,t] ~ dcat(po[z[i,t], i, t-1, ]) 
+         }  
+       }  
+     } 
+     ",fill = TRUE) 
> sink() 
 
Table IV.4. Parameter estimates from the intra-sexual competition model. 
  mean sd 2.5% 50% 97.5% overlap0 f Rhat 
mean.pi[1] 0.999 0.001 0.996 0.999 1.000 FALSE 1.000 1.000 
mean.pi[2] 0.984 0.011 0.955 0.986 0.998 FALSE 1.000 1.000 
mean.pi[3] 0.939 0.041 0.838 0.948 0.992 FALSE 1.000 1.000 
mean.pi[4] 0.288 0.043 0.208 0.287 0.375 FALSE 1.000 1.000 
mean.pS1[1] 0.499 0.288 0.025 0.499 0.975 FALSE 1.000 1.000 
mean.pS1[2] 0.873 0.108 0.600 0.902 0.996 FALSE 1.000 1.000 
mean.pD1[1] 0.656 0.086 0.480 0.658 0.816 FALSE 1.000 1.000 
mean.pD1[2] 0.848 0.060 0.713 0.854 0.946 FALSE 1.000 1.000 
mean.phiS[1,1,1] 0.560 0.025 0.512 0.560 0.609 FALSE 1.000 1.000 
mean.phiS[2,1,1] 0.557 0.024 0.510 0.557 0.604 FALSE 1.000 1.000 
mean.phiS[1,2,1] 0.767 0.037 0.694 0.767 0.839 FALSE 1.000 1.000 
mean.phiS[2,2,1] 0.813 0.038 0.737 0.813 0.888 FALSE 1.000 1.000 
mean.phiS[1,3,1] 0.711 0.053 0.608 0.711 0.816 FALSE 1.000 1.000 
mean.phiS[2,3,1] 0.674 0.057 0.562 0.673 0.787 FALSE 1.000 1.000 
mean.phiS[1,4,1] 0.704 0.097 0.514 0.705 0.893 FALSE 1.000 1.000 
mean.phiS[2,4,1] 0.729 0.076 0.579 0.730 0.875 FALSE 1.000 1.000 
mean.phiS[1,1,2] 0.400 0.099 0.218 0.396 0.603 FALSE 1.000 1.000 
mean.phiS[2,1,2] 0.419 0.064 0.298 0.418 0.547 FALSE 1.000 1.000 
mean.phiS[1,2,2] 0.538 0.133 0.293 0.534 0.808 FALSE 1.000 1.000 
mean.phiS[2,2,2] 0.468 0.081 0.317 0.466 0.632 FALSE 1.000 1.000 
mean.phiS[1,3,2] 0.481 0.178 0.176 0.467 0.863 FALSE 1.000 1.000 
mean.phiS[2,3,2] 0.569 0.109 0.366 0.565 0.790 FALSE 1.000 1.000 
mean.phiS[1,4,2] 0.450 0.234 0.071 0.428 0.928 FALSE 1.000 1.000 
mean.phiS[2,4,2] 0.420 0.138 0.180 0.411 0.713 FALSE 1.000 1.000 
mean.phiD[1,1] 0.500 0.289 0.025 0.500 0.975 FALSE 1.000 1.000 
mean.phiD[2,1] 0.501 0.289 0.025 0.502 0.976 FALSE 1.000 1.000 
mean.phiD[1,2] 0.673 0.234 0.165 0.714 0.988 FALSE 1.000 1.000 
mean.phiD[2,2] 0.498 0.289 0.025 0.496 0.975 FALSE 1.000 1.000 
mean.phiD[1,3] 0.760 0.116 0.507 0.771 0.952 FALSE 1.000 1.000 
mean.phiD[2,3] 0.701 0.124 0.440 0.709 0.917 FALSE 1.000 1.000 
mean.phiD[1,4] 0.808 0.018 0.772 0.808 0.842 FALSE 1.000 1.000 
mean.phiD[2,4] 0.763 0.020 0.723 0.763 0.801 FALSE 1.000 1.000 
mean.d[1,1,1] 0.007 0.007 0.000 0.005 0.026 FALSE 1.000 1.000 



150 
 

mean.d[2,1,1] 0.006 0.006 0.000 0.004 0.022 FALSE 1.000 1.000 
mean.d[1,2,1] 0.068 0.023 0.029 0.065 0.119 FALSE 1.000 1.000 
mean.d[2,2,1] 0.112 0.029 0.062 0.110 0.174 FALSE 1.000 1.000 
mean.d[1,3,1] 0.464 0.057 0.351 0.464 0.575 FALSE 1.000 1.000 
mean.d[2,3,1] 0.503 0.058 0.387 0.503 0.615 FALSE 1.000 1.000 
mean.d[1,4,1] 0.562 0.094 0.371 0.565 0.736 FALSE 1.000 1.000 
mean.d[2,4,1] 0.535 0.076 0.382 0.537 0.679 FALSE 1.000 1.000 
mean.d[1,1,2] 0.115 0.101 0.003 0.087 0.375 FALSE 1.000 1.000 
mean.d[2,1,2] 0.058 0.054 0.002 0.042 0.200 FALSE 1.000 1.000 
mean.d[1,2,2] 0.417 0.146 0.150 0.413 0.705 FALSE 1.000 1.000 
mean.d[2,2,2] 0.074 0.067 0.002 0.054 0.249 FALSE 1.000 1.000 
mean.d[1,3,2] 0.398 0.191 0.071 0.388 0.779 FALSE 1.000 1.000 
mean.d[2,3,2] 0.501 0.127 0.252 0.503 0.741 FALSE 1.000 1.000 
mean.d[1,4,2] 0.749 0.205 0.248 0.802 0.992 FALSE 1.000 1.000 
mean.d[2,4,2] 0.657 0.162 0.305 0.674 0.918 FALSE 1.000 1.000 
mean.h[1,1] 0.004 0.004 0.000 0.003 0.014 FALSE 1.000 1.000 
mean.h[2,1] 0.003 0.003 0.000 0.002 0.013 FALSE 1.000 1.000 
mean.h[1,2] 0.047 0.016 0.021 0.045 0.083 FALSE 1.000 1.000 
mean.h[2,2] 0.010 0.007 0.001 0.008 0.028 FALSE 1.000 1.000 
mean.h[1,3] 0.322 0.061 0.209 0.320 0.447 FALSE 1.000 1.000 
mean.h[2,3] 0.102 0.039 0.038 0.097 0.191 FALSE 1.000 1.000 
mean.h[1,4] 0.148 0.088 0.022 0.133 0.355 FALSE 1.000 1.000 
mean.h[2,4] 0.207 0.073 0.085 0.200 0.369 FALSE 1.000 1.000 
P[1] 3.247 0.697 2.005 3.201 4.743 FALSE 1.000 1.000 
P[2] 1.336 0.460 0.440 1.335 2.241 FALSE 0.998 1.000 
P[3] 2.644 0.451 1.793 2.633 3.561 FALSE 1.000 1.000 
P[4] 2.585 0.357 1.906 2.577 3.307 FALSE 1.000 1.000 
P[5] 3.126 0.374 2.420 3.117 3.885 FALSE 1.000 1.000 
P[6] 2.423 0.356 1.745 2.415 3.141 FALSE 1.000 1.000 
P[7] 3.602 0.443 2.775 3.586 4.513 FALSE 1.000 1.000 
P[8] 1.878 0.351 1.204 1.872 2.582 FALSE 1.000 1.000 
P[9] 2.274 0.339 1.625 2.268 2.955 FALSE 1.000 1.000 
P[10] 1.970 0.330 1.336 1.965 2.632 FALSE 1.000 1.000 
P[11] 2.413 0.352 1.741 2.407 3.119 FALSE 1.000 1.000 
P[12] 2.067 0.346 1.401 2.061 2.761 FALSE 1.000 1.000 
P[13] 1.782 0.334 1.140 1.778 2.444 FALSE 1.000 1.000 
P[14] 1.808 0.324 1.187 1.803 2.456 FALSE 1.000 1.000 
P[15] 1.001 0.304 0.411 0.999 1.607 FALSE 1.000 1.000 
P[16] 2.566 0.315 1.963 2.561 3.199 FALSE 1.000 1.000 
P[17] 2.228 0.320 1.611 2.223 2.868 FALSE 1.000 1.000 
P[18] 1.956 0.301 1.378 1.952 2.557 FALSE 1.000 1.000 
P[19] 3.352 0.380 2.634 3.342 4.126 FALSE 1.000 1.000 
P[20] 3.286 0.360 2.601 3.279 4.015 FALSE 1.000 1.000 
P[21] 3.652 0.439 2.840 3.636 4.555 FALSE 1.000 1.000 
P[22] 3.749 0.437 2.938 3.732 4.653 FALSE 1.000 1.000 
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P[23] 4.220 0.491 3.323 4.196 5.246 FALSE 1.000 1.000 
P[24] 4.389 0.517 3.463 4.358 5.486 FALSE 1.000 1.000 
P[25] 3.463 0.394 2.731 3.451 4.277 FALSE 1.000 1.000 
mean.rDS[1,1,1] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,1,1] 0.001 0.001 0.000 0.001 0.005 FALSE 1.000 1.000 
mean.rDS[1,2,1] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,2,1] 0.004 0.004 0.000 0.003 0.014 FALSE 1.000 1.001 
mean.rDS[1,3,1] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,3,1] 0.102 0.038 0.040 0.098 0.188 FALSE 1.000 1.000 
mean.rDS[1,4,1] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,4,1] 0.077 0.041 0.017 0.070 0.175 FALSE 1.000 1.000 
mean.rDS[1,1,2] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,1,2] 0.010 0.010 0.000 0.007 0.036 FALSE 1.000 1.000 
mean.rDS[1,2,2] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,2,2] 0.031 0.031 0.001 0.022 0.113 FALSE 1.000 1.000 
mean.rDS[1,3,2] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,3,2] 0.063 0.060 0.002 0.045 0.222 FALSE 1.000 1.000 
mean.rDS[1,4,2] 0.000 0.000 0.000 0.000 0.000 FALSE 1.000 NA 
mean.rDS[2,4,2] 0.079 0.074 0.002 0.057 0.277 FALSE 1.000 1.000 
mean.rDB[1,1,1] 0.470 0.287 0.021 0.454 0.970 FALSE 1.000 1.000 
mean.rDB[2,1,1] 0.488 0.288 0.024 0.482 0.973 FALSE 1.000 1.000 
mean.rDB[1,2,1] 0.460 0.117 0.242 0.457 0.695 FALSE 1.000 1.000 
mean.rDB[2,2,1] 0.331 0.113 0.135 0.323 0.571 FALSE 1.000 1.000 
mean.rDB[1,3,1] 0.417 0.059 0.305 0.416 0.537 FALSE 1.000 1.000 
mean.rDB[2,3,1] 0.574 0.070 0.437 0.575 0.709 FALSE 1.000 1.000 
mean.rDB[1,4,1] 0.667 0.024 0.618 0.667 0.713 FALSE 1.000 1.000 
mean.rDB[2,4,1] 0.653 0.026 0.601 0.653 0.704 FALSE 1.000 1.000 
mean.rDB[1,1,2] 0.497 0.289 0.025 0.495 0.975 FALSE 1.000 1.000 
mean.rDB[2,1,2] 0.490 0.288 0.024 0.485 0.973 FALSE 1.000 1.000 
mean.rDB[1,2,2] 0.654 0.181 0.270 0.671 0.944 FALSE 1.000 1.000 
mean.rDB[2,2,2] 0.464 0.287 0.021 0.446 0.969 FALSE 1.000 1.000 
mean.rDB[1,3,2] 0.738 0.198 0.278 0.781 0.991 FALSE 1.000 1.000 
mean.rDB[2,3,2] 0.367 0.149 0.116 0.354 0.686 FALSE 1.000 1.000 
mean.rDB[1,4,2] 0.598 0.072 0.454 0.599 0.735 FALSE 1.000 1.000 
mean.rDB[2,4,2] 0.568 0.051 0.468 0.568 0.666 FALSE 1.000 1.000 
tau 0.614 0.068 0.488 0.611 0.753 FALSE 1.000 1.000 
deviance 3958.565 53.319 3857.937 3957.301 4066.803 FALSE 1.000 1.000 
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Chapter V.A 

Sociality, Group 
contribution & Fitness 

 

 

Testing determinants of the annual individual fitness:  

an overall-mean mixture-model for de-lifing data 

 
Abstract: The de-lifing method (Coulson et al. 2006), though very promising for studying 
ecological and evolutionary changes, has yet to be used to identify factors influential on fitness. 
Through simulations representative of a variety of iteroparous species, we establish that a two-
component normal mixture usually provides a much better representation of de-lifing data than 
the single normal distribution assumed in linear models. To analyse factors acting on de-lifing 
data, we propose the Overall Mean Mixture Model (O3M), a mixture model parameterized in 
terms of the overall mean, the measure of annual individual fitness on which we seek to examine 
the influence of social status, sex, age…We compare the performances and accuracy of the O3M 
with that of a classical linear model on simulated finite normal mixture distributions for different 
regression shapes and variance structure, and apply it to a real data set to study how the annual 
individual fitness varies with age in Alpine marmots. The O3M improves considerably the 
precision of the estimates and the power of the analysis. We discuss the adaptation of the O3M 
model to more complex distributions and advise on its use. 
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Dupont P., Allainé D., Cohas A. & Pradel R. (2016) Testing determinants of the annual 
individual fitness: an overall-mean mixture-model for de-lifing data. MEE (under revision). 

  



154 
 

 



155 
 

10.1. Introduction 

When working on evolution and/or selection in natural conditions, most studies either 

use generation-based proxies for fitness, such as Lifetime Reproductive Success (LRS: 

Clutton-Brock 1988), or fitness-related traits, such as age-state specific survival or 

reproductive rates, clutch size, life expectancy, age at first reproduction and so on (see 

Kingsolver et al. 2001 for a review). However, such measures present theoretical and 

empirical pitfalls. Fitness related traits, for instance, may not be impacted with the same 

strength and in the same direction by a given factor (Lande 1982). Because trade-offs 

occur between traits, one can hardly extrapolate conclusions regarding one trait to 

general conclusions regarding evolutionary changes. LRS, on the other hand, does 

incorporate both survival and fecundity but it has been shown to suffer from other 

problems in species with overlapping generations or when ecological variation occurs 

during the lifespan of an individual (Coulson et al. 2003). In addition, LRS requires to 

record individual performance for the entire lifespan, which makes it hard to collect 

sufficient and comparable data, especially for long-lived species. 

To overcome such problems, different non-generational fitness measures have 

been proposed, including de-lifing (Coulson et al. 2006a). This recent method, derived 

from the jackknife technique (Miller 1974), estimates an individual’s contribution to the 

population growth rate over a period of time shorter than a generation. This contribution 

to population growth rate can be considered as the realized fitness of an individual 

during this time interval, usually a year, and offers great opportunities to empirically 

study ecological and evolutionary changes in stochastic environments (Coulson et al. 

2006a). This method offers both theoretical and practical advantages. First, contrary to 

fitness related traits it integrates both survival and reproduction. Second, contrary to 

LRS based approaches, it offers the possibility to calculate fitness for individuals with 

incomplete life histories. Lastly but most importantly, it allows for the consideration that 

selection is a continuous process acting at any time and that the realized fitness of an 

individual is inherently relative to the changes in environment and to the performance of 

potential competitors, i.e. relative to the population size and composition at any given 

time. It is then possible to calculate selection gradients by regressing the values of a trait 

of interest on the individual fitness values, and thus determine how this trait might 

evolve and be an important fitness determinant when accounting for variations in the 

population during the time interval under study. 
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Despite the original paper being largely cited (114 citations registered on Web of 

Sciencetm as of June 2016), the method was scarcely applied to actual data. Fifteen 

studies only were able to calculate and analyse the individuals’ contributions to growth 

rate of wild populations (Tab.V.1). The need for detailed long-term survival, 

reproductive data and population size estimates might be responsible for the rarity of 

studies using this powerful tool. However, such datasets exist and the method is 

applicable to incomplete data. Instead, we believe that analytical difficulties might 

prevent researchers from using this method. Indeed, in many cases, the individual fitness 

data display a strong bimodal distribution. Therefore, commonly used statistical tools 

from the generalized linear model family (linear models in a broad sense, including but 

not limited to glm, glmm, gamm…) cannot be used without considerable violations of 

the underlying assumptions, potentially leading to invalid diagnoses and biased 

estimates, hence leading to inaccurate conclusions (Jarque & Bera 1987).  

Here, we propose a linear model derived from the mixture modelling framework 

(McLachlan & Peel 2004), called the Overall Mean Mixture Model (O3M). It was 

specifically designed to study the determinants of individual fitness, calculated as the 

individual contribution to population growth rate, in wild populations. Mixture models 

have already proven very useful in ecological and evolutionary studies where individuals 

are often distributed among different unrecorded or unobserved states (e.g. zero-inflated 

ecological data, Martin et al. 2005; uncertain class of abundance for amphibians, Royle 

& Link 2005; different growth trajectories of roe deer, Hamel et al. 2016). However, our 

aim here is quite different. We believe the multimodality of the de-lifing data is an 

inherent distributional property of this fitness metric and does not reflect biologically 

relevant clusters of individuals. That is to say, the different modes of the fitness 

distribution do not represent distinct classes of individuals in different states but are 

contingent on random events in a given year. Hence, we do not wish to identify how the 

individuals in the population are distributed among different clusters and independently 

impacted by a set of covariates (as already implemented mixture models do, i.e. FlexMix 

R package, Leisch 2004). Instead, we wish to estimate how the annual fitness 

expectancy of an individual in the population, hence the overall mean of the bimodal 

distribution, covaries with a set of independent variables while accounting for the 

bimodality of the data.  
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Table V.1. Publications to use the de-lifing method. NA means the individual annual 
fitness were calculated for descriptive reasons, but were not analysed using any 
statistical model. 

Publication Type of 
model Explanatory variables Study species 

(Cockburn et 
al. 2008) 

glm & gam Week in year nuptial plumage 
attained 

Superb fairy wrens 
(Malurus cyaneus) 

(Di Fonzo et 
al. 2011) 

multiple 
regression 

Body weight, Fecal eggs count 
Heterozygosity & year 

Soay sheep                 
(Ovis aries) 

(Ezard et al. 
2007) 

gamm & 
glmm 

Laying date, arrival date & mass Common terns         
(Sterna hirundo) 

(Foerster et 
al. 2007) 

bivariate 
animal model 

Relatedness Red deer                
(Cervus elaphus) 

(Grange et al. 
2009) 

glm Population size Camargue horses     
(Equus caballus) 

(Gratten et al. 
2008)  

animal model Relatedness & presence/absence 
of alleles 

Soay sheep                
(Ovis aries) 

(Höner et al. 
2010) 

glm Population size & rank of the 
mother 

Spotted hyenas     
(Crocuta crocuta) 

(Höner et al. 
2012) 

NA NA Spotted hyenas     
(Crocuta crocuta) 

(Moyes et al. 
2009) 

PCA NA Red deer                 
(Cervus elaphus) 

(Nicolai et al. 
2014) 

NA NA Black brant geese   
(Branta bernicla 
nigricans) 

(Pelletier et 
al. 2007a) 

gam Body weight, hind leg length & 
birth weight 

Soay sheep                 
(Ovis aries) 

(Pelletier et 
al. 2007b) 

gam Body mass Bighorn sheep            
(Ovis canadensis) 

(Schroeder et 
al. 2011) 

MCMC glmm Pit treatment, sex, age & year 
(random) 

House sparrow       
(Passer domesticus) 

(Schroeder et 
al. 2012) 

MCMC glmm Age & year House sparrow       
(Passer domesticus) 

(Stopher et al. 
2008b) 

NA NA Red deer                 
(Cervus elaphus) 
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We start by presenting a simulation study to show that a two-class mixture 

distribution better describes de-lifing data than a single Gaussian one. Then we present 

the O3M model and compare it to a classical linear model to demonstrate its usefulness. 

To do so, we simulated data sets following different scenarios where the mean of a two-

components normal mixture distribution was dependent on a hypothetical variable, and 

we compared the results obtained by the O3M and a classical linear model. Finally, we 

illustrate the usefulness of our model on real data with an analysis of the relationship 

between annual realized fitness calculated using the de-lifing method and age in a 

cooperatively breeding mammal, the Alpine marmot (Marmota marmot). We end by 

discussing the strengths and limitations of our approach, by providing general advice on 

how and when to use it, and discussing further developments.  

10.2. Material and methods 

10.2.1. De-lifing data distribution 

According to (Coulson et al. 2006a), the annual individual fitness of individual i is 

measured by its contribution pti to the growth rate of the population between t and t+1. 

  (1) 

where is the survival of individual i between t and t+1 (1 if it survived and 0 

otherwise),  is the mean survival rate in the population between t and t+1;  is the 

fecundity of individual i defined as the number of offspring born between t and t+1 and 

still alive at t +1;  is the mean fecundity in the population between t and t+1 and  is 

the population size at t. 

In order to analyse the distributional properties of individual fitness calculated 

using the de-lifing method, we simulated several data sets under different 

parameterizations. These parameterizations covered a wide range of biological scenarios 

on the slow-fast continuum (Gaillard et al. 2005), from species with high survival, high 

reproductive skew and small litter size to species with low survival, evenly distributed 

reproduction and large number of offspring. For each simulation, individual annual 

survival (Sti) and reproductive status (Rti) were sampled from a Bernoulli with different 

rates (low = 0.2, medium = 0.5 or high = 0.8). The number of recruits per individual 

(NRti) that survive to the next time step were sampled either from a Gaussian or Poisson 
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distribution (mean = 1 or 6 and standard deviation = 0.05 or 2 for the Gaussian). The 

fecundity used in the calculation (Fti) was calculated as the product Rti * NRti. To account 

for between-year population size fluctuation, the annual population size (Nt) was 

sampled from a Gaussian distribution with mean 20 and standard deviation of 0.2 (stable 

population) or 2 (fluctuating population). Finally, we calculated the individual fitness 

values  following equation 1 for 20 years for each scenario leading to a mean of 400 

individual.year per data set. Each simulation scenario was repeated ten times leading to a 

total of 1080 simulated data sets. 

We then fitted a two-component mixture of normal distributions to each 

simulated data set and compared it to a single normal distribution to test if  

distributions were best approximated by a mixture of two normal distributions or by a 

single normal distribution. Both distributions were fitted with a burning period of 6000 

and a total number of iterations of 10000 (see supplementary material 10.6.1 for the 

simulation and distributions fitting R-scripts).  

10.2.2. Overall-Mean Mixture Model 

The classical linear model can be described by: 

(y|μ, ) with μ = α + β.x  (2) 

where y is the random variable we wish to explain, i.e. the annual fitness in our case, μ 

and σ2 are respectively the mean and variance of the normal conditional density of y, x is 

the vector of independent variables we wish to relate y to, α is the intercept and β is the 

vector of variable-specific coefficients. Here, we replace the normal distribution with a 

mixture of two normal distributions: 

( |μ1, μ1, , σ1
2, σ2

2) = . ( | μ1, σ1
2) + (1 − ). ( | μ2, σ2

2) (3) 

where π is the mixture weight of the first component and μk and σk
2
 are the mean and 

variance of the kth component.  

Following Everitt (1981), the mean and variance of the normal mixture are:  

μ = π. 1 + (1 − ). 2           (4.1) 

 = .[ 1
2 + ( 1 − μ)2] + (1 − ).[ 2

2 + ( 2 − μ)2]      (4.2)  
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The mean of the mixture distribution  is thus the weighted mean of the different 

component-specific means and the variance of the mixture distribution σ2 is the sum of 

the mean of the component-specific variances and the variance of the component-

specific means. We refer to this mean and variance as the “overall mean” and “overall 

variance” of the mixture distribution.  

Here we aim at estimating the overall mean of the mixture distribution μ and see 

how it relates to a set of independent covariates. To do so, we express  as a linear 

combination of the independent covariates and express the component-specific means as 

functions of the overall mean , the mixture weight π, and the difference between the 

two component-specific means Δ: 

 = α + β.x   (5.1) 

1 =  – (1 – ). Δ  (5.2) 

2 =  + . Δ     (5.3) 

with Δ = 2 – 1 

The same reasoning could be applied to obtain a linear expression of the overall variance 

, by expressing the two component-specific variances as (slightly more complicated) 

expressions of the overall variance, the mixture weight, the difference between the 

component-specific variances, the overall mean and the component-specific means. 

However, we did not consider this case in our model since we had no a priori 

hypotheses about the overall variance. For full flexibility, we consider the case where Δ 

and  are allowed to vary with the same set of independent variables x as . Since  is a 

probability, we use a logit-linear relationship to relate  and x. To avoid a common 

practical problem in mixture modelling known as “label switching”(Lunn et al. 2012), 

we constrain one component-specific variance to be larger than the second one by 

specifying a positive difference between the two: 

( | μ, Δ, , σ1
2, σ2

2) = . ( |  ,Δ, σ1
2) + (1 − ). ( |  ,Δ, σ2

2)  (6.1) 

with  = α + β. x  (6.2) 

logit( ) = α  + β . x  (6.3) 
Δ = αΔ + βΔ. x   (6.4) 

with σ1
2  > σ2

2 
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The parameters of the model are then the different intercepts α, α , αΔ, the regression 

coefficients β, β , βΔ and the two component-specific variance parameters 2
2 and 1

2.  

10.2.3. Parameters estimation 

Specifying the mixture normal rather than a simple normal distribution entails a price in 

terms of number of parameters and model complexity. To test whether the gain was 

worth the additional complexity, we compared the performance of the O3M to a linear 

model on simulated two-component normal mixture distributions. The data sets were 

simulated to mimic the distribution of de-lifing-like data driven by a covariate (e.g. 

discrete age classes in our case). The data simulation process was as follow. First, we 

sampled a covariate value xi from a Poisson distribution with a mean of 4 for each of 

1000 simulated individuals. Given this value, the individual probability i to belong to 

the first component of the mixture was calculated as i = logit-1(α  + β .xi) and the 

component to which the individual belonged was sampled from a Bernoulli distribution 

Ci = Bern( i). Conditionally on Ci, the fitness value of an individual was sampled from 

the corresponding normal; N( 1,σ1
2) if Ci = 0 (individual i belongs to the first component 

of the mixture) with 1 = i – i.Δi and σ1
2 the first component-specific variance, and 

N( 2,σ2
2) if Ci = 1 with 2 = i + (1 – i).Δi and σ2

2 the second component-specific 

variance,  where  i  is the general mean of the mixture distribution  i =  α + β.xi and Δi is 

the difference between the mean of the two components. For a given value of xi, Δi = αΔ 

+ βΔ.xi.  

We produced different data sets of increasing complexity to cover a wide range 

of possibilities, from constant overall mean  mixture weight  and difference Δ (i.e. no 

effect of the variable xi) to quadratic relationships between and x, linearly increasing Δ 

and logit-linearly increasing  (Tab.V.2). We then fitted the O3M model and a classical 

linear model independently ten times for each scenario with a burning period of 6000 

and a total number of iterations of 10000 to determine the accuracy of the parameter 

estimates (see supplementary material 10.6.2 for the simulation and O3M scripts). To be 

able to analyse the results from the different simulations together, we worked on the 

difference between the simulated and the estimated value of the regression parameters of 

the mean for each run of each simulation for both the O3M and the linear model. To 

determine whether the linear model was able to recover the simulated parameters 

although the specified distribution violates the linear models assumptions, we tested if 
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these differences between the simulated values and the estimated parameters were 

significantly different between the O3M and the linear model using Wilcoxon signed 

rank tests. We then tested if the precision of the estimates differed between the two 

models by testing if the standard deviations associated to the different regression 

parameters differed between the O3M and the linear model using Wilcoxon signed rank 

tests. 

Table V.2. Summary of parameters used in the simulations for the second analysis. 
A - CLUSTERING PARAMETERS 
 1 - Component-means difference   
      Slight difference αΔ = 2   
      Large difference αΔ = 10   
      Variable difference αΔ = 2 βΔ = 1  
 2 - Component-specific standard deviation    
      Identical σ1 = σ2 = 1   
      Component-specific σ1 = 1.5  σ2 = 0.5  
 3 - Proportion of individuals in each cluster    
      Balanced απ = 0  (π = 0.5) 
      Unbalanced απ = 1  (π = 0.27) 
      Variable απ = -0.6 βπ = 0.9 (π ϵ [0.35;1]) 
B - REGRESSION PARAMETERS  
     Constant α = 0     
    Linear α = 0 β = 1  
     Quadratic α = 0 β = 1 β2 = -0.1 

10.2.4. Real data application: Fitness variation with age in the Alpine marmot 

To illustrate the usefulness of our model in evolutionary studies, we applied it to data 

from a long-term field study on Alpine marmots. We studied how the individual annual 

fitness calculated with the de-lifing method varies with age using the O3M, and 

compared our results to those obtained with a classical linear model. From 1990, 

individuals from the population located in the Grande Sassière Nature Reserve (Vanoise, 

France) were captured each summer between May 15th and July 15th.  At first capture, 

individuals were permanently marked using both pit-tags and metal ear tags for later 

identification by recapture and/or resighting (Cohas et al. 2008b). Each individual’s 

annual survival (Sti) and reproductive status (Rti) was determined either from capture-

recapture data or from observations. The annual number of recruits per individual (NRti) 

was estimated as the number of offspring produced per individual (determined by 
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genetic kinship analyses) that survived the first hibernation. Because the study area and 

the recapture pressure increased during the study period, and for the de-lifing calculation 

to be coherent with time, we limited our analysis to a subset of the complete data set, i.e. 

the data concerning the central location of the study area during the years 1994-2014, 

leading to a total sample size of 1417 individual.years. More details on the study species, 

the study area, and the genetic analyses can be found elsewhere (Allainé & Theuriau 

2004; Cohas et al. 2007; Ferrandiz-Rovira et al. 2016 and chapter II). 

We calculated the annual individual fitness  following equation 1 and tested 

whether the annual fitness of Alpine marmots varied with age. We expected annual 

fitness to increase in the first years of age because of low juvenile survival and 

progressive access to reproduction (marmots are sexually mature at 2 years of age, 

Allainé & Theuriau 2004) and to decrease in older ages because of senescence (Berger et 

al. 2016). Therefore, we accounted for a quadratic effect of age on fitness in our model. 

Social status is strongly differentiated in Alpine marmots (dominant individuals 

monopolize reproduction for example, Goossens et al. 1998) and sex differences in 

fitness are most likely to exist (male dominants turn-over is higher than females’ one and 

male subordinates may access reproduction via extra-pair paternities (Cohas et al. 2007; 

Lardy et al. 2012). We then included both factors in the model. For the same reasons, we 

expected the distribution of fitness to vary with the social status and sex. Therefore, we 

incorporated different variance structures according to sex and status in our model: 

pti = α(Status,Sex) + β(Status,Sex).ageti + β2
(Status,Sex).(ageti)² + εti 

with εti ~ . (0, σ1
2 ) + (1 − ). (0, σ2

2) 

Thus, the O3M model was: 

(pti|age, Status, Sex) = . (pti | ti ,Δ, σ1
2

(Status,Sex)) + (1 − ). (pti | ti , Δ, σ2
2

(Status,Sex)) 

with ti = α(Status,Sex) + β(Status,Sex).ageti + β2
(Status,Sex).(ageti)² 

logit ( ) = α (Status,Sex) + β (Status,Sex).ageti 

and Δ = αΔ(Status,Sex) + βΔ(Status,Sex).ageti 

For comparison, the linear model was: 

N(pti | λti, ) 

with λti = α(Status,Sex) + β(Status,Sex).ageti + *β2
(Status,Sex).(ageti)² 
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We calculated the residuals of both models to check a posteriori if the underlying 

assumptions of both models were respected. In the case of the linear models, the 

residuals εi,t =  ti – pti are supposed to be normally distributed. In the case of the O3M, 

residuals are calculated according to each component εi,t =  μk ,ti – pti and are thus 

normally distributed only within each component. Thus, if we look at the overall 

distribution of the O3M residuals, we should obtain a mixture of two normal 

distributions centered on zero with a mixing proportion π. 

All simulations and statistical tests were conducted using R 3.2.5 (R 

Development Core Team 2008). The different models (O3Ms and linear models) were 

written using the BUGS language and parameters estimation was performed using jags 

(Plummer 2003b) from R with the jagsUI package (Kellner 2014). Model selection was 

done based on DIC values (Spiegelhalter et al. 2002b). 

10.3. Results 

10.3.2. De-lifing data distribution 

According to the DIC, the two-component normal mixture distribution fitted best the 

simulated de-lifing data under almost every scenario (Fig.V.1a and V.1b). In 91% of the 

simulations, the DIC difference was larger than two supporting the O3M as the best of 

the two models (see supplementary material 10.6.3 for a table with complete results). A 

single normal distribution better approximated de-lifing data in only 10 out of the 108 

simulated data sets. Although no clear pattern emerged when looking at the relationships 

between the parameters in the simulations and the DIC difference between the two 

models (Fig.V.2), data sets better fitted by a Normal distribution corresponded to one of 

two situations. First, when de-lifing data tended to be uni-modally and normally 

distributed (Fig.V.1c), second when individual fitness data presented three distinct 

modes (Fig.V.1d).   

10.3.3. Parameters estimation 

As expected, for all simulated data sets, the O3M gave unbiased estimates of the 

parameters of interest, i.e. the regression parameters of the overall mean (α, β and β2, 

Fig.V.3). More surprising, the linear model also gave unbiased regression coefficients. 

Indeed, the mean estimates did not significantly differ between both models (Wilcoxon 

signed rank tests for α: W = 1212, p-value = 0.131; β: W = 1595, p-value = 0.403; β2: W 
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= 1529, p-value = 0.666). However, the variance in the estimates of the regression 

parameters was always lower using the O3M model. Most importantly, the standard 

deviation associated to each of the three regression parameters was always smaller using 

the O3M (Fig.V.4) as demonstrated by the one-sided Wilcoxon signed rank tests 

between the standard deviations of the different regression parameters (sdb0: W = 64, p-

value < 0.001; sdb1: W = 7, p-value < 0.001; sdb2: W = 2, p-value < 0.001).  

 
Figure V.1. Histogram of simulated data and models fit. Blue curves represent the fitted 
Normal distribution; Red curves represent the fitted O3M. (a) and (b) represent cases 
where the two-normal mixture distribution has the best fit; (c) and (d) represent cases 
where the normal distribution has the best fit. 
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Figure V.2. Boxplots of DIC difference between the two-component normal mixture 
distribution and the Normal model. A positive ΔDIC indicates the two-component normal 
mixture fits the data better than the linear model. S: survival probability (low: 0.2, 
medium: 0.5, high: 0.8); R: reproductive success probability (low: 0.2, medium: 0.5, 
high: 0.8); sd.NR: standard deviation of the number of recruits produced (low: 0.05 or 
high: 2 for the Gaussian distribution, sd = for the Poisson); mean.NR: mean 
number of recruits per individual.year-1; sd.N: standard deviation of the annual 
population size (low: 0.2 or high: 2). 

10.3.4. Fitness variation with age in the Alpine marmot 

The O3M performed better than the classical linear model as indicated by the DIC (DIC 

difference between the linear model and the O3M = 186). We analysed the residuals of 

the models to check the assumption of normality. The residuals for dominants departed 

from the assumed normal distribution when using the linear model (Fig.V.5b and V.5d; 

Shapiro-Wilk tests, dominant males: W = 0.986, p-value = 0.023 and dominant females: 

W = 0.991, p-value = 0.045). This departure was especially apparent for subordinate 

individuals as can be visually asserted given the bimodality of these residuals (Fig.V.5f 

and V.5h, Shapiro-Wilk tests, subordinate males: W = 0.913, p-value < 0.0001 and 

subordinate females: W = 0.911, p-value < 0.0001). On the contrary, residuals for the 

O3M seemed to fit well the underlying two-component normal distributions assumed by 

the model (Fig.V.5a, V.5c, V.5e and V.5g). 

Following our previous results, the estimates obtained using the O3M and the 

linear model were not qualitatively different and only little quantitatively different. 

However, the standard deviations associated to the different parameters in the model 
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were always smaller with the O3M (Tab.V.3 and V.4). Both male and female 

dominants’ annual fitness significantly increased with age until approximately seven 

years of age and decreased thereafter (Fig.V.6a and V.6b). For female subordinates, both 

the linear and quadratic terms were not significantly different from zero contrary to the 

intercept, indicating that the annual fitness was constant with age and always negative 

(Fig.V.6c). For male subordinates, the intercept and the quadratic terms were 

significantly different from zero, indicating an increase in fitness accelerating with age 

(Fig.V.6d). Note that the linear model gave qualitatively different (although 

quantitatively close) estimates for the subordinate males. The linear effect for 

subordinate males was negative and different from zero with the linear model (Tab.V.4), 

thus indicating a significant decrease in fitness in the first years of life followed by an 

accelerating increase after 3 years of age. On the contrary, it was null with the O3M 

indicating no decrease in the first years of age (Tab.V.3). 

 
Figure V.3. Boxplot of the regression parameter differences between the simulated 
value and the estimated value for both the Overall Mean Mixture Model (O3M) and a 
classical linear model (LM). A parameter difference of zero indicates the value of the 
parameter estimates exactly equals the value of the parameter used in the simulation. 
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Figure V.4. Standard deviation associated to the regression parameters estimated for 
both the Overall Mean Mixture Model (O3M) and the classical linear model (LM).   

10.4. Discussion 

10.4.2. Overall Mean Mixture Model 

Our results indicate that the O3M is a powerful and well-designed model for analysing 

fitness data calculated using the de-lifing method. Our simulations show that the 

distribution of such fitness data are most often bimodal, thus violating the underlying 

assumptions of classical regression models such as the generalized linear model family. 

We also showed that these distributions could be approximated by a finite mixture of 

Gaussian distributions and therefore analysed in a mixture modelling framework using 

the Overall-Mean Mixture Model.  

When de-lifing data follow a mixture of two normal distributions, as is most 

often the case (as demonstrated in the first analysis and in the example on Alpine 

marmots), the O3M was able to accurately recover the different parameters used in the 

simulations. Contrary to our expectations, the linear model also gave good estimations of 

the simulated values. However, the O3M estimates were much more precise than the 

linear model ones, i.e. the confidence intervals associated to the regression parameters 

were always smaller with the O3M. 
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Table V.3. JAGS Output for the Alpine marmot individual fitness with age analysis 
using the O3M. Rhat indicates convergence (inferior to 1.1), n.eff is a measure of 
effective sample size, overlap0 checks if 0 falls in the parameter's 95% credible interval, 
f is the proportion of the posterior with the same sign as the mean; i.e., our confidence 
that the parameter is positive or negative. 
parameter mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff 
αDom♀ 0.139 0.202 -0.253 0.139 0.532 TRUE 0.753 1.017 123 
αDom♂ 0.165 0.181 -0.186 0.161 0.526 TRUE 0.817 1.020 103 
αSub♀ -0.572 0.091 -0.752 -0.570 -0.401 FALSE 1.000 1.007 309 
αSub♂ -0.555 0.126 -0.808 -0.553 -0.310 FALSE 1.000 1.006 322 
βDom♀ 0.240 0.079 0.090 0.240 0.397 FALSE 0.999 1.016 133 
βDom♂ 0.174 0.071 0.037 0.175 0.310 FALSE 0.993 1.009 233 
βSub♀ -0.092 0.077 -0.245 -0.092 0.057 TRUE 0.884 1.001 1281 
βSub♂ -0.235 0.127 -0.487 -0.233 0.011 TRUE 0.967 1.003 689 
β2

Dom♀ -0.020 0.007 -0.033 -0.020 -0.007 FALSE 0.999 1.012 184 
β2

Dom♂ -0.015 0.006 -0.027 -0.015 -0.002 FALSE 0.989 1.002 856 
β2

Sub♀ 0.007 0.017 -0.026 0.007 0.040 TRUE 0.660 1.003 772 
β2

Sub♂ 0.066 0.028 0.014 0.065 0.123 FALSE 0.996 1.001 1979 
αPDom♀ -0.177 0.287 -0.750 -0.176 0.374 TRUE 0.732 1.014 212 
αPDom♂ -0.202 0.301 -0.787 -0.200 0.386 TRUE 0.746 1.009 548 
αPSub♀ 0.002 0.204 -0.418 0.004 0.384 TRUE 0.508 1.007 283 
αPSub♂ 0.293 0.202 -0.081 0.288 0.707 TRUE 0.934 1.018 124 
βPDom♀ 0.372 0.081 0.222 0.367 0.548 FALSE 1.000 1.023 96 
βPDom♂ 0.427 0.094 0.251 0.423 0.628 FALSE 1.000 1.008 611 
βPSub♀ 0.013 0.104 -0.192 0.011 0.215 TRUE 0.543 1.021 104 
βPSub♂ -0.442 0.125 -0.701 -0.433 -0.215 FALSE 1.000 1.020 231 
αΔDom♀ -0.109 0.226 -0.588 -0.096 0.290 TRUE 0.661 1.044 58 
αΔDom♂ -0.120 0.230 -0.587 -0.117 0.321 TRUE 0.683 1.057 41 
αΔSub♀ 0.102 0.118 -0.135 0.110 0.315 TRUE 0.796 1.048 69 
αΔSub♂ 0.416 0.119 0.159 0.421 0.634 FALSE 1.000 1.045 60 
βΔDom♀ 0.010 0.047 -0.074 0.006 0.116 TRUE 0.554 1.069 42 
βΔDom♂ -0.040 0.050 -0.146 -0.036 0.050 TRUE 0.783 1.065 36 
βΔSub♀ 0.100 0.049 0.005 0.101 0.194 FALSE 0.982 1.043 59 
βΔSub♂ -0.173 0.066 -0.302 -0.174 -0.045 FALSE 0.996 1.046 52 
sdDom♀1 0.223 0.038 0.160 0.221 0.307 FALSE 1.000 1.005 559 
sdDom♂1 0.178 0.038 0.101 0.177 0.258 FALSE 1.000 1.008 1231 
sdSub♀1 0.753 0.058 0.647 0.751 0.878 FALSE 1.000 1.005 622 
sdSub♂1 0.959 0.048 0.871 0.957 1.059 FALSE 1.000 1.003 599 
sdDom♀2 1.610 0.071 1.480 1.607 1.755 FALSE 1.000 1.001 1700 
sdDom♂2 1.602 0.070 1.471 1.600 1.749 FALSE 1.000 1.001 6000 
sdSub♀2 0.199 0.014 0.170 0.200 0.226 FALSE 1.000 1.007 370 
sdSub♂2 0.173 0.013 0.149 0.173 0.200 FALSE 1.000 1.001 2645 
deviance 2929.1 54.37 2825.02 2929.43 3035.60 FALSE 1.000 1.004 729 
DIC 4403.7         
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Table V.4. JAGS Output for the Alpine marmot individual fitness with age analysis 
using a classical linear model. Rhat indicates convergence (inferior to 1.1), n.eff is a 
measure of effective sample size, overlap0 checks if 0 falls in the parameter's 95% 
credible interval, f is the proportion of the posterior with the same sign as the mean; i.e., 
our confidence that the parameter is positive or negative.  
parameter mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff 
αDom♀ -0.190 0.225 -0.634 -0.193 0.249 TRUE 0.797 1.000 5760 
αDom♂ -0.099 0.222 -0.533 -0.102 0.340 TRUE 0.669 1.000 6000 
αSub♀ -0.551 0.173 -0.897 -0.550 -0.204 FALSE 1.000 1.001 2734 
αSub♂ -0.409 0.172 -0.739 -0.409 -0.065 FALSE 0.992 1.000 6000 
βDom♀ 0.363 0.079 0.216 0.362 0.511 FALSE 1.000 1.000 6000 
βDom♂ 0.276 0.077 0.126 0.277 0.429 FALSE 1.000 1.000 6000 
βSub♀ -0.071 0.173 -0.409 -0.071 0.268 TRUE 0.659 1.001 2216 
βSub♂ -0.393 0.170 -0.720 -0.394 -0.059 FALSE 0.989 1.000 6000 
β2

Dom♀ -0.029 0.006 -0.040 -0.029 -0.018 FALSE 1.000 1.000 6000 
β2

Dom♂ -0.022 0.006 -0.035 -0.022 -0.010 FALSE 1.000 1.000 6000 
β2

Sub♀ -0.007 0.039 -0.084 -0.007 0.071 TRUE 0.573 1.001 2243 
β2

Sub♂ 0.101 0.037 0.030 0.102 0.172 FALSE 0.996 1.000 6000 
sd 1.217 0.023 1.172 1.217 1.262 FALSE 1.000 1.001 4245 
deviance 4577.000 5.002 4568.941 4576.415 4588.346 FALSE 1.000 1.000 6000 
DIC 4589.509         

This result is very important since all tests or indicators for decision-making are 

based on such confidence intervals of the estimators. In a Bayesian context, for example, 

one will look at the confidence interval of a slope estimate associated to a covariate to 

determine if that covariate has an effect. The covariate will not be retained in the model, 

or not considered as having a significant effect, if its confidence interval overlaps zero. 

Hence, in such situation one may retain and discuss the effect of a tested covariate when 

using the O3M while dismissing it if using a classical linear model. Using a classical 

linear model instead of the O3M model to study bimodally distributed fitness data can 

therefore lead not to detect an effect because of a lack of power. 

However, and even though the two-normal mixture distribution fitted best the 

simulated data in almost every cases, it appeared that the O3M was not always 

necessary. In some cases, individual fitness data are unimodal and their distribution 

approaches a Gaussian one. Hence, in this situation, a two-component mixture 

distribution is over-parameterized and therefore useless. Based on the results of our first 

simulation study it is difficult to determine in which conditions such a situation arises 

but it seems that de-lifing data are more likely to be unimodal and tend to follow a single 
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normal distribution when the variance in the different demographic parameters is large 

and population size highly variable. On the contrary, individual fitness data sometimes 

present three distinct modes. This situation occurs when population size varies little 

between years and the number of recruited offspring per individual is close to one. Then, 

these three modes correspond to the three possible outcomes for an individual a given 

year: either an individual will survive and produce one offspring, in which case its 

fitness will be positive, or it will die before reproducing, in which case its fitness will be 

negative. Finally, it can either survive and not reproduce, or reproduce but not survive, 

in which case the outcome will be the same and its fitness will be close to zero. The 

mean survival and reproductive rates determined the relative height of the three modes. 

In this situation, and even though a two-components normal mixture distribution is 

preferred over a single normal, both distributions are a poor fit and a three-components 

mixture distribution should be tested. It is therefore very important to check the 

distribution of the data to be analysed to decide what kind of model to use. In some 

cases, visual inspection of the data might be sufficient to determine whether the data are 

distributed following one, two or three modes, but in most cases, a careful inspection of 

the fit of the model a posteriori is recommended. Such inspection can be done using the 

residuals of the models. If the data are distributed in accordance with the model 

assumptions (i.e. a two-component normal mixture distribution in our case), then the 

residuals should be unimodal and centred on zero. As soon as the residuals are 

multimodal, this indicates that the data do not follow the assumed Gaussian distribution. 

A more complex O3M with more than two components should then be considered. 

However, the development of such a model is not straightforward and requires the model 

to be reformulated since the weight of the second component cannot be simply written as 

the complement of the first one. Similarly, the definition of delta, the difference between 

the two components means is no longer valid and needs to be re-considered. Hopefully, 

de-lifing data are most often bimodal and the O3M with two components should be 

sufficient most of the time. 

Finally, some practical downsides are to be taken into account. First and 

foremost, the Gibbs samplers we used, either in BUGS (Lunn et al. 2009) or JAGS 

(Plummer 2003b), are not algorithms specifically designed for such mixture models. 

Thus, the O3M model converges slower than conventional linear models and the model 

failed to converge in certain situations, because of local maxima or absorbing states (e.g. 
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when all individuals are randomly assigned to the same component during one iteration). 

This can be circumvented in most cases by using informative priors, notably priors for 

the component assignment probability π. It can easily be constrained to be different from 

0 or 1 by stating a uniform distribution ranging from 0.01 to 0.99 for example. This is 

easily done when π is constant but much more complicated when the proportion of 

individuals varies with the variables considered in the model. We therefore recommend 

being very cautious when choosing the priors distributions and run several replicates of 

the same model with different initial values to ensure “true” convergence. In the near 

future, some mixture-model specific algorithms (such as the Expectation-Maximization 

algorithm used in the FlexMix package, Leisch 2004) could be modified to fit the O3M 

and thus improve both the convergence efficiency and speed. However, even in the 

current configuration, we believe the time lost during slow converging MCMC runs, or 

in hard-writing an overall mean mixture model specific to the research question one 

wants to address is largely compensated by the gain in power and the precision of the 

results provided by the flexibility of the O3M. 

10.4.3. Fitness variation with age in the Alpine marmot 

The de-lifing method is really well adapted to study how fitness varies with age. To our 

knowledge, it is the only fitness metric including both survival and reproduction that 

takes into account the current environment (represented by the population size here), and 

calculated on a yearly basis. Our results indicate that in our population of Alpine 

marmots, annual fitness does not follow a Gaussian distribution, and is largely 

influenced by age, sex and social status.  

The residuals of the linear model clearly indicate that the distribution of fitness is 

not normal, especially in subordinate individuals. This is easily understandable given 

that subordinates never (females) or very rarely (males) reproduce (Goossens et al. 

1998; Cohas et al. 2007). Subordinates contribution to the population growth rate is only 

through their own survival (positive contribution) or death (negative contribution). The 

extent to which a subordinate survival will affect the population and thus its fitness then 

depends on the population size and on the mean survival rate that year. It is therefore not 

surprising that subordinate fitness display a strong bimodality. In opposition, the 

distribution of annual fitness of dominant individuals is unimodal, although not normal. 

This distribution presents a narrow peak around the mean most likely representing the 
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dominant individuals that survive but do not reproduce. Those individuals are numerous 

since dominant survival is really high (around 0.8) in Alpine marmots and around 65% 

of the dominant individuals reproduce each year (King & Allainé 2002; Dupont et al. 

2015). The rest of the distribution represents the individuals who reproduced and/or died 

a given year. This part of the distribution is less skewed because of various possible 

sources of variation (litter size variation, juvenile survival variation, population size 

variation, yearly mean survival and reproduction variation…). The O3M correctly 

captures this variation, thanks to the two components, and the estimates we obtain are 

thus trustworthy.  

As expected, annual fitness presents a quadratic pattern for dominant individuals 

of both sexes, with the fitness increasing until approximately 7 years of age and 

decreasing thereafter. The senescence in fitness observed after 7 years of age is in 

agreement with actuarial senescence occurring between 6 and 8 years of age (Berger et 

al. 2016). The curvature seems to be slightly steeper for dominant females than for 

dominant males, with the annual dominant females’ fitness increasing faster but also 

decreasing faster than males’. This suggests a faster rate of senescence in fitness in 

dominant females. However, no sex effect occurs in actuarial senescence (Berger et al. 

2016). Then, competing models specifically designed to test this possible sex-difference 

in senescence in fitness are needed before drawing any conclusion. For subordinate 

individuals, the fitness/age pattern was also sex-specific. The fitness expectancy of 

subordinate females was negative and constant across all ages while it increased for 

males. This difference could result from the possibility for male subordinates to access 

reproduction via extra-pair copulations (Goossens et al. 1998) while subordinate females 

do not reproduce (with the exception of one subordinate female in 1995, Fig.V.6c) 

(Hackländer et al. 2003; Cohas et al. 2007). Then, they contribute little to the population 

growth rate and relatively less than dominant individuals, a fact explaining their constant 

negative fitness. The increase in fitness with age observed in subordinate males suggests 

that the probability to gain extra-pair paternity increases with age. Young subordinate 

males (sexual maturity is reached at two years old) are likely unable to gain extra-pair 

paternity probably because they are less competitive than older experimented males. 
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Figure V.5. Histograms of the residuals of the O3M (left panel) and the linear model 
(right panel) for the different social status and sexes. (a) and (b): dominant males, (c) 
and (d): dominant females, (e) and (f): subordinate males and (g) and (h): subordinate 
females. Red curves indicate the residuals distributions assumed by the models.  
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Figure V.6. Individual fitness as a function of age in Alpine marmots for both sexes and 
social status. (a) dominant females; (b) dominant males; (c) subordinate females; (d) 
subordinate males. Lines represent the predictions of the O3M. Dashed lines represent 
the associated standard errors. Open circles represent raw data and filled circles with 
error bars represent the mean fitness value per age with the associated standard 
deviation. 

Due to viability selection, the proportion of high quality individuals gradually 

increases with age and only high quality individuals are responsible for the survival 

pattern at old ages (Péron et al. 2010a). This likely also occurs when considering the 

pattern of fitness with age. Thus, it is of primary importance to incorporate individual 

random effects on the intercepts and/or on the slopes to account for the differences in 

individual quality and subsequent differences in trajectories. This could be easily 

implemented in the O3M by stating that the intercept and slopes of the overall mean 

differ between individuals and are actually sampled from a normal distribution. The 

mean of this normal distribution will then be the mean estimate for the population and its 
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associated standard deviation will give an idea of the difference in individual quality that 

exists in the population. 

10.5. Conclusion 

The O3M proved to be very useful and powerful for studying fitness data calculated with 

the de-lifing method. More generally, this relatively new, theoretically sound, fitness 

metric, combined with the appropriate modelling framework opens new perspectives in 

ecological and evolutionary studies. It is especially well fitted for microevolution studies 

by allowing for smaller scale and theoretically coherent analyses. In the context of 

ongoing climatic changes for example, we believe such metrics might be of great 

importance to study how populations respond to rapid changes in their environment in 

terms of fitness and therefore how species will be able to adapt (or not). We therefore 

encourage its use in a variety of contexts, from theoretical evolution to applied 

conservation studies.  

  



177 
 

10.6. Supplementary Material 

10.6.1. De-lifing distribution analysis; R and jags scripts 

## De-lifing data simulation 
pt <- NULL     ## Vector of individual fitness 
St.mean<- 0.5     ## Mean survival probability 
Rt.mean<- 0.5     ## Mean reproduction probability 
NRt.mean <- 6     ## Mean number of recruits per reproducer 
Nt.mean <- 20     ## Mean population size 
Nt.sd <- 2     ## Population size standard deviation 
for (t in 1:20)     ## Loop over 20 time steps 
 { 
 Nt <- trunc(rnorm(1,Nt.mean,Nt.sd)) ## Sample of population size at t 
 Sti <- rbinom(Nt,1,St.mean)   ## Sample of individual survival 
 S.bar <- mean(Sti)    ## Mean survival between t and t+1 
 Rti <- rpois(Nt,NRt.mean)   ## Sample of the number of recruits 
 Fti <- rbinom(Nt,1,Rt.mean)*Rti  ## Individual reproductive success 
 F.bar <- mean(Fti)    ## Mean reproductive success 
 pti <- ((Sti-St.bar)+(Fti-F.bar))/(Nt-1)  ## Individual fitness 
 pt <- c(pt,pti)    ## Pools the different time steps together 
 } 
####################################################################### 
## Normal distribution fitting 
cat(file = "Normal.txt","   ## Specify model in BUGS language 
model         
{ 
sd  ~ dunif(0,100)    ## standard deviation prior 
tau <- 1/pow(sd,2)    ## link between sd and precision 
mu ~ dunif(-100,100)    ## prior for the mean of the normal  
for (i in 1:N)     ## Loop over individuals    
   { 
   pt[i] ~ dnorm(mu,tau)   ## Individual fitness sampled from 

}      ## a normal distribution  
}") 
data <- list(pt = pt, N = length(pt))      ## Bundle data 
inits <- function() list(sd = runif(1,0,100), mu = runif(1,-100,100))  ## Initial values 
params <- c("mu","sd")      ## Parameters  
ni <- 10000  ;   nt <- 1   ;   nb <- 6000  ;  nc <- 3   ## MCMC settings 
## Call Jags from R  
library(jagsUI) 
normal <- jags(data, inits, params, "Normal.txt", n.chains = nc, n.thin = nt, n.iter = ni,  

n.burnin = nb, debug = TRUE) 
print(normal, digits = 3)     ## prints the results 
####################################################################### 
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## Two-component normal mixture distribution fitting 
cat(file = "MixNorm.txt","    # Specify model in BUGS language 
model         
{ 
pi ~ dunif(0,1)      ## Prior probability for component 1 
lambda[1] ~ dnorm(0, 0.1)    ## Mean of component 1 
specification 
delta ~ dunif(0,100)     ## Prior for difference of means 
lambda[2] <- lambda[1] + delta   ## Mean of component 2 
specification   
sd[1] ~ dunif(0,100)     ## Component 1 standard deviation 
sd[2] ~ dunif(0,100)     ## Component 2 standard deviation 
tau[1] <- 1/pow(sd[1],2)    ## Component 1 precision  
tau[2] <- 1/pow(sd[2],2)    ## Component 2 precision 
for (i in 1:N)      ## Loop over individuals  
   { 
   pt[i] ~ dnorm(mu[i], theta[i])   ## individual fitness sample 
    T[i] ~ dbern(pi)    ## Component sample (0 or 1)  
 component[i] <- T[i]+1   ## Component identifier (1 or 2) 

mu[i] <- lambda[component[i]]  ## Individual mean and precision are  
 theta[i] <- tau[component[i]]   ## conditional on its component 
   } 
} ") 
data <- list(pt = pt, N = length(pt))            
inits <- function() list(pi = runif(1,0,1), delta = runif(1,0,10),sd = runif(2,0,5)) 
params <- c("p", "lambda","sd")    
ni <- 10000  ;   nt <- 1   ;   nb <- 6000  ;  nc <- 3 
## Call Jags from R  
library(jagsUI) 
MixNorm <- jags(data, inits, params, "MixNorm.txt", n.chains = nc, n.thin = nt, n.iter = 
ni, n.burnin = nb, debug = TRUE) 
print(MixNorm, digits = 3) 
####################################################################### 
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10.6.2. Overall Mean Mixture Model.  

The two-component normal mixture distributions simulation and Overall-Mean Mixture 
Model fitting R and jags script. The fitness data are simulated such that the mean of the 
distribution (MU) is linearly related to a hypothetical covariate (cov). 

##Data simulation : creation of the binorm function 
binorm <- function(N=1000, a=0, b=0, b2=0 , aP=0, bP=0, aD=0, bD=0, mean.cov=0, 
sd1=1, sd2=1) 
{  
cov <- rpois(N,mean.cov)  ## Sample of the individual covariate value 
p <- 1/(1+exp(-aP-bP*cov))  ## Definition of the prior probability π 
class <- rbinom(N,1,p)  ## Sample of the component 
delta <- aD + bD*cov   ## Definition of the between-components 
difference 
MU <- a + b*cov + b2*(cov^2) ## Definition of the overall mean 
mu2 <- MU +(1-p)*delta  ## first component mean 
mu1 <- mu2 – delta   ## second component mean 
mu <- ifelse(class==0,mu1,mu2) 
sd <- ifelse(class==0,sd1,sd2) 
pt <- rnorm(N,mu,sd)   ## sample of the individual fitness value 
 
return(list(cov = cov, p = p, class = class, delta = delta, MU = MU, mu1 = mu1, mu2 = 
mu2, pt = pt, aP = aP, bP = bP, aD = aD, bD = bD, a = a, b = b, b2 = b2, sd1 = sd1, sd2 = 
sd2)) 
} 
bin <- binorm(N=1000, a=0, b=1, b2=-0.1, aD=4, bD=2, aP=-0.5, bP=1.2, 
sd1=0.5,sd2=0.3, mean.cov=4) 
####################################################################### 
## Overall-Mean Mixture Model 
# Specify model in BUGS language 
cat(file = "O3M.txt","model { 
# Priors 
 aP ~ dnorm(0,0.01)  ## prior for the intercept of π 
 bP  ~ dnorm(0,0.01)  ## prior for the slope of π    
    aD ~ dnorm(0,0.01)  ## prior for the intercept of Δ  
 bD ~ dnorm(0,0.01)  ## prior for the slope of Δ         
    alpha ~ dnorm(0,0.01) ## prior for the intercept of μ    
 beta ~ dnorm(0,0.01)  ## prior for the slope of μ  
 beta2 ~ dnorm(0,0.01) ## prior for the quadratic slope of μ   
 sd[1] ~ dunif(0,100)  ## prior for the first component standard deviation 
 diff ~ dunif(0,100)  ## prior for the difference in standard deviation  

sd[2] <- sd[1] + diff  ## second component standard deviation 
tau[1] <- 1/pow(sd[1],2)    

  tau[2] <- 1/pow(sd[2],2) 
 
## Likelihood       
for (i in 1:N)       ## loop over individuals (N)  
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   { 
   pt[i] ~ dnorm(mu[i],theta[i])    ## sample of the individual 
fitness  

T[i] ~ dbern(pi[i])     ## sample of the individual’s 
component  

component[i] <- T[i]+1    ## component identifier 
   

mu[i] <- lambda[i,component[i]]   ## component specific mean 
  

theta[i] <- tau[component[i]]    ## component specific 
precision 
    MU[i] <- alpha + beta*cov[i] +beta2*pow(cov[i],2) ## overall mean 
 lambda[i,1] <- lambda[i,2] - delta[i]   ## component 1 mean 
 lambda[i,2] <- MU[i] + (1-p[i])*delta[i]  ## component 2 mean 

pi[i] <- 1/(1+exp(-rateP[i]))    ## individual π 
 rateP[i] <- aP + bP*cov[i]    ## rate of π 
 delta[i] <- aD + bD*cov[i]    ## individual Δ  
 residuals[i] <- pt[i] - mu[i]    ## residuals of the model 
   } 
}") 
# Bundle Data 
data <- list(pt = bin$pt, N = length(bin$pt), cov = bin$cov)  
# Initial values 
inits <- function() list(alpha=rnorm(1,0,0.1), beta=rnorm(1,0,0.1), beta2=rnorm(1,0,0.1),  
aD=rnorm(1,0,0.1), bD= , aP = rnorm(1,0,0.1), bP = rnorm(1,0,0.1))   
# Parameters monitored 
params <- c( "alpha", "beta", "beta2", "aP", "bP", "aD", "bD", "sd", "residuals") 
# MCMC settings 
ni <- 10000 ;   nt <- 1   ;   nb <- 6000  ;  nc <- 3  
## Call jags from R  
O3M <- jags(data, inits, params, "O3M.txt", n.chains = nc, n.thin = nt, n.iter = ni, 
n.burnin = nb) 
print(O3M, digits = 3)  ## prints the results 
plot(O3M) ## to visualise the convergence of the chains and the 

parameters distributions 
####################################################################### 
## Classical Linear Model (Gaussian) for comparison  
cat(file = "LM.txt","model { 
# Priors 
     ALPHA ~ dnorm(0,0.1)         
    BETA ~ dnorm(0,0.1) 
 BETA2~ dnorm(0,0.1) 
 sd ~ dunif(0,100)         
 tau <- 1/pow(sd,2)        
# Likelihood       
for (i in 1:N)           
   { 
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   pt[i] ~ dnorm(mu[i],tau)       
    mu[i] <- ALPHA + BETA*cov[i] + BETA2*pow(cov[i],2)   
 residuals[i] <- pt[i] - mu[i]  
 }      
}") 
# Bundle Data 
data <- list(pt = bin$pt, N = length(bin$pt),cov = bin$cov)  
# Initial values 
inits <- function() list(ALPHA = rnorm(1,0,0.1), BETA = rnorm(1,0,0.1), BETA2 = 
rnorm(1,0,0.1), sd = rnorm(1,0,0.1)) 
# Parameters monitored 
params <- c( "ALPHA", "BETA","BETA2", "sd") 
# MCMC settings 
ni <- 10000   ;   nt <- 1   ;   nb <- 6000  ;  nc <- 3  
## Call jags from R  
LM <- jags(data, inits, params, "LM.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = 
nb) 
print(LM, digits = 3) 
plot(LM) 
####################################################################### 
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10.6.3. De-lifing distribution analysis; Simulation results 

Table V.5. De-lifing simulated data sets analysis. The parameters averaged over ten 
replicates for each simulation are given as well as the deviance and DIC for both the 
Normal distribution fit (DevNorm and DICNorm) and the O3M fit (DevO3M and DICO3M). 
ΔDIC is the mean difference between the DIC for the normal distribution and the O3M 
specification. Simulations that were best fitted by the normal distribution are in bold. 

Sti Rti NRti sd(NRti) Nt sd(Nt) DevNorm DICNorm DevO3M DICO3M ΔDIC 
0.2 0.2 1.0 0.05 20.0 0.2 -861.9 -860.0 -1301.3 -1286.0 426.0 
0.2 0.2 1.0 0.05 20.0 2.0 -848.3 -846.1 -1205.6 -1121.4 275.3 
0.2 0.2 1.0 2.0 20.0 0.2 -821.8 -819.8 -1171.0 -1074.1 254.3 
0.2 0.2 1.0 2.0 20.0 2.0 -855.5 -853.6 -1482.1 -1477.2 623.6 
0.2 0.2 1.0 Pois. 20.0 0.2 -254.8 -252.7 -819.4 -815.1 562.4 
0.2 0.2 1.0 Pois. 20.0 2.0 -788.7 -786.8 -1221.1 -1114.2 327.4 
0.2 0.2 6.0 0.05 20.0 0.2 -262.1 -260.0 -704.3 -699.7 439.7 
0.2 0.2 6.0 0.05 20.0 2.0 -236.9 -234.9 -753.1 -748.9 514.0 
0.2 0.2 6.0 2.0 20.0 0.2 -554.7 -552.7 -807.6 -623.7 71.0 
0.2 0.2 6.0 2.0 20.0 2.0 -633.8 -631.9 -959.8 -873.2 241.3 
0.2 0.2 6.0 Pois. 20.0 0.2 -699.3 -697.3 -893.9 -748.2 50.9 
0.2 0.2 6.0 Pois. 20.0 2.0 -210.6 -208.6 -667.8 -660.3 451.7 
0.2 0.5 1.0 0.05 20.0 0.2 -199.2 -197.2 -628.7 -622.3 425.1 
0.2 0.5 1.0 0.05 20.0 2.0 -271.9 -269.8 -627.1 -474.7 204.9 
0.2 0.5 1.0 2.0 20.0 0.2 -215.4 -213.2 -570.05 -475.1 261.9 
0.2 0.5 1.0 2.0 20.0 2.0 -309.6 -307.7 -732.0 -725.4 417.7 
0.2 0.5 1.0 Pois. 20.0 0.2 -794.1 -792.1 -1196.8 -1136.4 344.3 
0.2 0.5 1.0 Pois. 20.0 2.0 -872.9 -871.0 -1307.5 -1337.0 466.0 
0.2 0.5 6.0 0.05 20.0 0.2 -838.0 -835.9 -1073.0 -900.9 65.0 
0.2 0.5 6.0 0.05 20.0 2.0 -798.2 -796.0 -1282.3 -1216.5 420.5 
0.2 0.5 6.0 2.0 20.0 0.2 -260.3 -258.4 -763.8 -759.6 501.2 
0.2 0.5 6.0 2.0 20.0 2.0 -272.8 -270.7 -806.6 -802.2 531.5 
0.2 0.5 6.0 Pois. 20.0 0.2 -324.2 -322.2 -743.8 -739.3 417.1 
0.2 0.5 6.0 Pois. 20.0 2.0 -288.2 -286.3 -844.2 -840.05 553.8 
0.2 0.8 1.0 0.05 20.0 0.2 -696.6 -694.5 -860.6 -695.1 0.6 
0.2 0.8 1.0 0.05 20.0 2.0 -661.08 -659.2 -1389.8 -1072.1 412.9 
0.2 0.8 1.0 2.0 20.0 0.2 -699.2 -697.1 -901.0 -775.2 78.1 
0.2 0.8 1.0 2.0 20.0 2.0 -688.5 -686.5 -935.7 -826.7 140.2 
0.2 0.8 1.0 Pois. 20.0 0.2 -238.8 -236.7 -713.9 -704.9 468.2 
0.2 0.8 1.0 Pois. 20.0 2.0 -768.3 -766.2 -1134.2 -1013.0 246.8 
0.2 0.8 6.0 0.05 20.0 0.2 -215.4 -213.3 -656.3 -648.5 435.2 
0.2 0.8 6.0 0.05 20.0 2.0 -287.4 -285.3 -669.8 -648.0 362.7 
0.2 0.8 6.0 2.0 20.0 0.2 -727.1 -725.2 -1004.5 -862.2 137.0 
0.2 0.8 6.0 2.0 20.0 2.0 -649.1 -647.2 -1034.2 -979.0 331.8 
0.2 0.8 6.0 Pois. 20.0 0.2 -673.3 -671.3 -1052.1 -884.1 212.8 
0.2 0.8 6.0 Pois. 20.0 2.0 -286.3 -284.2 -653.3 -547.0 262.8 
0.5 0.2 1.0 0.05 20.0 0.2 -246.5 -244.5 -656.0 -637.9 393.4 
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0.5 0.2 1.0 0.05 20.0 2.0 -195.4 -193.3 -554.9 -548.0 354.7 
0.5 0.2 1.0 2.0 20.0 0.2 -208.4 -206.5 -653.9 -644.9 438.4 
0.5 0.2 1.0 2.0 20.0 2.0 -181.8 -179.7 -566.2 -522.3 342.6 
0.5 0.2 1.0 Pois. 20.0 0.2 -788.6 -786.5 -1220.0 -1104.9 318.4 
0.5 0.2 1.0 Pois. 20.0 2.0 -921.6 -919.6 -1221.4 -1103.9 184.3 
0.5 0.2 6.0 0.05 20.0 0.2 -768.4 -766.4 -1133.9 -1014.8 248.4 
0.5 0.2 6.0 0.05 20.0 2.0 -695.5 -693.5 -1019.3 -870.8 177.3 
0.5 0.2 6.0 2.0 20.0 0.2 -210.7 -208.8 -667.8 -660.05 451.3 
0.5 0.2 6.0 2.0 20.0 2.0 -253.4 -251.5 -670.0 -627.3 375.8 
0.5 0.2 6.0 Pois. 20.0 0.2 -286.4 -284.4 -654.1 -550.4 266.0 
0.5 0.2 6.0 Pois. 20.0 2.0 -280.2 -278.2 -689.7 -683.5 405.3 
0.5 0.5 1.0 0.05 20.0 0.2 -1557.7 -1555.6 -2308.5 -2131.5 575.9 
0.5 0.5 1.0 0.05 20.0 2.0 -1578.0 -1576.0 -2170.5 -1762.8 186.8 
0.5 0.5 1.0 2.0 20.0 0.2 -467.9 -465.8 -1481.6 -1477.1 1011.3 
0.5 0.5 1.0 2.0 20.0 2.0 -478.6 -476.5 -1449.2 -1445.0 968.5 
0.5 0.5 1.0 Pois. 20.0 0.2 -1279.0 -1276.9 -1579.7 -1299.5 22.6 
0.5 0.5 1.0 Pois. 20.0 2.0 -1207.5 -1205.6 -1430.9 -1190.0 -15.7 
0.5 0.5 6.0 0.05 20.0 0.2 -492.3 -490.3 -1174.4 -996.5 506.2 
0.5 0.5 6.0 0.05 20.0 2.0 -478.2 -476.3 -1226.1 -1096.2 620.0 
0.5 0.5 6.0 2.0 20.0 0.2 -1560.7 -1558.6 -2229.0 -2018.9 460.3 
0.5 0.5 6.0 2.0 20.0 2.0 -1554.7 -1552.8 -2148.7 -1745.1 192.3 
0.5 0.5 6.0 Pois. 20.0 0.2 -500.6 -498.5 -1349.3 -1344.6 846.1 
0.5 0.5 6.0 Pois. 20.0 2.0 -418.4 -416.4 -1374.8 -1370.3 953.9 
0.5 0.8 1.0 0.05 20.0 0.2 -1221.3 -1219.3 -1480.0 -1265.2 45.9 
0.5 0.8 1.0 0.05 20.0 2.0 -1183.3 -1181.3 -1472.0 -1293.7 112.4 
0.5 0.8 1.0 2.0 20.0 0.2 -383.5 -381.5 -1192.3 -1183.1 801.5 
0.5 0.8 1.0 2.0 20.0 2.0 -469.9 -468.1 -1277.3 -1261.8 793.8 
0.5 0.8 1.0 Pois. 20.0 0.2 -1555.2 -1553.2 -2219.1 -1963.4 410.2 
0.5 0.8 1.0 Pois. 20.0 2.0 -1566.0 -1563.8 -2422.5 -2307.4 743.6 
0.5 0.8 6.0 0.05 20.0 0.2 -328.8 -326.8 -1463.9 -1459.7 1132.8 
0.5 0.8 6.0 0.05 20.0 2.0 -358.2 -356.2 -1354.6 -1348.7 992.5 
0.5 0.8 6.0 2.0 20.0 0.2 -478.0 -475.9 -1224.9 -1067.0 591.1 
0.5 0.8 6.0 2.0 20.0 2.0 -1223.5 -1221.6 -1483.2 -1415.9 194.3 
0.5 0.8 6.0 Pois. 20.0 0.2 -323.2 -321.2 -946.2 -835.9 514.7 
0.5 0.8 6.0 Pois. 20.0 2.0 -246.5 -244.4 -736.6 -332.4 88.0 
0.8 0.2 1.0 0.05 20.0 0.2 -1583.8 -1581.6 -2048.1 -1712.5 130.9 
0.8 0.2 1.0 0.05 20.0 2.0 -1552.1 -1550.05 -1995.4 -1632.3 82.2 
0.8 0.2 1.0 2.0 20.0 0.2 -376.0 -373.7 -1232.7 -1211.8 838.1 
0.8 0.2 1.0 2.0 20.0 2.0 -348.6 -346.7 -1378.5 -1374.3 1027.6 
0.8 0.2 1.0 Pois. 20.0 0.2 -908.8 -906.7 -1106.6 -829.4 -77.3 
0.8 0.2 1.0 Pois. 20.0 2.0 -921.6 -919.6 -1221.9 -1106.9 187.3 
0.8 0.2 6.0 0.05 20.0 0.2 -332.0 -329.9 -1091.1 -1050.0 720.0 
0.8 0.2 6.0 0.05 20.0 2.0 -216.1 -214.1 -1079.1 -1064.8 850.7 
0.8 0.2 6.0 2.0 20.0 0.2 -1483.2 -1481.1 -1919.7 -1600.7 119.6 
0.8 0.2 6.0 2.0 20.0 2.0 -328.3 -326.2 -1355.5 -1351.6 1025.4 
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0.8 0.2 6.0 Pois. 20.0 0.2 -1066.1 -1064.1 -1321.5 -1024.2 -39.9 
0.8 0.2 6.0 Pois. 20.0 2.0 -302.5 -300.4 -965.1 -884.0 583.6 
0.8 0.5 1.0 0.05 20.0 0.2 -1509.8 -1507.7 -1872.2 -1312.1 -195.6 
0.8 0.5 1.0 0.05 20.0 2.0 -366.5 -364.5 -1363.2 -1358.9 994.4 
0.8 0.5 1.0 2.0 20.0 0.2 -1017.7 -1015.6 -1243.0 -1030.9 15.4 
0.8 0.5 1.0 2.0 20.0 2.0 -210.3 -208.3 -604.5 370.7 -579.0 
0.8 0.5 1.0 Pois. 20.0 0.2 -1500.6 -1498.7 -1826.9 -1317.7 -181.0 
0.8 0.5 1.0 Pois. 20.0 2.0 -1441.4 -1439.6 -2044.4 -1484.5 44.9 
0.8 0.5 6.0 0.05 20.0 0.2 -480.9 -478.8 -1264.7 -1128.9 650.05 
0.8 0.5 6.0 0.05 20.0 2.0 -441.5 -439.5 -1235.9 -1194.1 754.6 
0.8 0.5 6.0 2.0 20.0 0.2 -1428.6 -1426.5 -1759.7 -1374.4 -52.1 
0.8 0.5 6.0 2.0 20.0 2.0 -1550.0 -1548.1 -1937.8 -1295.4 -252.7 
0.8 0.5 6.0 Pois. 20.0 0.2 -524.2 -522.2 -1324.4 -1280.3 758.1 
0.8 0.5 6.0 Pois. 20.0 2.0 -421.6 -419.6 -1149.4 -1113.3 693.7 
0.8 0.8 1.0 0.05 20.0 0.2 -1336.0 -1334.1 -1844.9 -1731.6 397.5 
0.8 0.8 1.0 0.05 20.0 2.0 -1249.3 -1247.2 -1417.5 -1286.7 39.4 
0.8 0.8 1.0 2.0 20.0 0.2 -179.4 -177.4 -796.1 -639.3 461.9 
0.8 0.8 1.0 2.0 20.0 2.0 -302.2 -300.05 -1114.0 -1100.9 800.8 
0.8 0.8 1.0 Pois. 20.0 0.2 -1344.2 -1342.3 -1810.4 -1542.1 199.8 
0.8 0.8 1.0 Pois. 20.0 2.0 -695.5 -693.5 -987.2 -848.5 155.0 
0.8 0.8 6.0 0.05 20.0 0.2 -383.5 -381.5 -868.0 -521.4 139.9 
0.8 0.8 6.0 0.05 20.0 2.0 -273.4 -271.3 -1164.8 -1157.1 885.8 
0.8 0.8 6.0 2.0 20.0 0.2 -1321.6 -1319.7 -1582.1 -1217.5 -102.2 
0.8 0.8 6.0 2.0 20.0 2.0 -217.7 -215.6 -833.1 -711.3 495.7 
0.8 0.8 6.0 Pois. 20.0 0.2 -1325.2 -1323.4 -1512.3 -1227.1 -96.3 
0.8 0.8 6.0 Pois. 20.0 2.0 -280.2 -278.0 -689.7 -683.6 405.6 

 

  



185 
 

 
 
 
 
 
 
  



186 
 

  



187 
 

 

 

Chapter V.B. 

Sociality, Group 
contribution & Fitness 

 

The more (not) the merrier? 
Group contribution and individual fitness 

in the Alpine marmot 

Abstract:  In cooperative breeders, the size and composition of the group are very 
important for most aspects of an individual life. It will influence its survival, 
reproduction and potentially dispersal. At the higher level, these variations in 
demographic rates are expected to contribute differently to the overall population 
dynamics of the species.  
In this chapter, I studied the consequences of varying group size and/or composition for 
the group dynamics and overall population dynamics by studying how different social 
groups contribute to the population growth rate based on a long-term individual-based 
data set on Alpine marmots (Marmota marmota).  
Surprisingly, group contribution to population growth rate steadily decreased with group 
size. This pattern can be explained by looking at the differences between subordinate 
and dominant contributions to the overall population growth rate. The increase in 
dominant contribution to population growth rate with the number of subordinate males 
in the groups we found is not sufficient to counter-balance the accumulation of 
subordinate negative contributions due to reproductive suppression, hence leading to the 
observed pattern at the group level. Further implications of this result for thepopulation 
dynamics are discussed. 

Keywords: Group contribution to population growth rate · Group dynamics · Annual individual 
fitness·  

(Preliminary results).  
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11.1. Introduction 

In social, cooperatively breeding species, the size and composition of the group are very 

important for most aspects of an individual life. In these species, only a subset of 

individuals reproduces but the young benefit from the care provided by all (or a large 

part) of the group members (Clutton-Brock 2002). This is, for example, the case in 

meerkats (Suricata suricatta) where pups produced by the dominant female of the group 

are fed by all subordinates over 3 months of age. As a result, these pups enjoy a higher 

survival as the number of helpers in the group increases (Clutton-Brock et al. 2001). But 

in some species, not all individuals contribute equally to rearing the young. This is the 

case in Alpine marmots (Marmota marmota) where the presence of male subordinates 

(and not females) during hibernation has been shown to be associated to higher juvenile 

survival (Allainé & Theuriau 2004). In other cooperatively breeding species, the 

presence of helpers may not directly benefit the young but rather the parents by reducing 

the costs associated to reproduction (i.e. the load lightening hypothesis; Crick 1992). In 

sociable weavers (Philetairus socius), for example, dominant females produce smaller 

eggs when helpers are present, but the additional care provided by helpers compensate 

for the reduction in egg size (Paquet et al. 2013). This compensation mechanism ensures 

an equivalent fledgling mass between nestlings raised with and without helpers. 

Accordingly, in superb fairy wrens (Malurus cyaneus), female with helpers invest less in 

eggs and therefore increase their probability to survive to the next breeding season 

(Russell et al. 2003)).  

 But this kind of social system also entails different costs for individuals because 

of the higher level of competition for resources and mating opportunities among group 

members resulting from living in close proximity. These costs will notably depend on 

the dominance status of the individual considered (Heinsohn & Legge 1999). The most 

obvious cost of cooperative breeding is certainly the suppression of reproduction in 

subordinate individuals, imposed by dominant individuals (Arnold & Dittami 1997; 

O’Riain et al. 2000; Hackländer et al. 2003a). This reproductive suppression may take 

different forms, from behavioural harassment leading to hormonal sterilization (Creel 

2001), to direct infanticide by the dominant individuals (O’Riain et al. 2000). In 

addition, costs associated to cooperative breeding for subordinate individuals are not 

limited to reproductive costs and may include reduced body condition, reduced survival 

and reduced future fecundity (Clutton-Brock 2016). Accordingly, meerkat helpers lose 
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weight when babysitting (looking after pups to avoid predation) and their weight loss 

increases as the group size decreases.  

Dominant individuals will also bear variable costs depending on the 

characteristics of their social group.  In meerkats, the probability of pups born to the 

dominant female to survive their first four days was considerably lower in the presence 

of a pregnant subordinate female, indicating that infanticide by pregnant subordinates 

can account for a substantial proportion of the reproductive failure suffered by 

dominants. In Alpine marmots, both male and female dominants have been shown to 

suffer from lower survival and male dominants are less likely to monopolize 

reproduction as the number of same-sex subordinates in the group increases, (Lardy et 

al. 2012a, 2013). 

Depending on their age, sex, size and/or composition of the social group, 

different costs and benefits will therefore apply to individuals according to their age, sex 

and social status. Altogether, these studies indicate that group size and/or composition 

will have outstanding consequences for individuals’ survival and reproduction, and 

consequently for their fitness (McGuire et al. 2002; Silk 2007; Berger et al. 2015). From 

a population dynamics perspective, this very large variation in individual vital rates 

according to group size/composition will most likely lead different social groups to 

display very different group dynamics. At the higher level, it is thus expected that social 

groups of various size and/or composition contribute differently to the population 

dynamic.  

Despite its potential importance for the population dynamics of cooperatively 

breeding species, very few studies looked at the influence of group size and/or 

composition on group dynamics and at its consequences for the overall population 

dynamics (but see Bateman 2013). Here, we propose to study the consequences of 

varying group size and/or composition for the overall population dynamics by studying 

how different social groups contribute to the population growth rate based on a long-

term dataset on Alpine marmots (Marmota marmota).  

Answering this question can be quite challenging because social groups are not 

fixed entities and can vary greatly, both in size and composition, with time (Allainé & 

Theuriau 2004; Bateman et al. 2012). To overcome this limitation, we measured the 

contribution of social groups to the population growth rate of the population on a yearly 
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basis using a slightly modified version of the de-lifing method proposed by Coulson et 

al. (2006). This method was originally proposed to quantify the contribution of an 

individual to the population growth rate as the difference between the observed growth 

rate between two times steps (usually a year), and the growth rate of the same population 

only with the focal individual removed. Similarly, we calculated the contribution of a 

group a given year as the difference between the observed growth rate and a virtual 

growth rate calculated with all individuals of the focal group removed from the 

population. Additionally, we performed the same analysis at the individual level, both 

for dominant and subordinate individuals, in order to better understand the relationships 

existing between the individual level, the group level and the overall dynamic of the 

population. 

11.2. Material and methods  

 11.2.1. The Alpine marmot data set 

From 1990 on, the population of Alpine marmots situated in the Grande Sassière nature 

reserve was monitored using a capture-recapture protocol. Every year between mid-May 

and mid-July, marmots were captured and blood and hair sampled for genetic analyses 

(for more details on genetic analyses see Cohas et al. 2008; Ferrandiz-Rovira et al. 

2016). All pups were captured by hand within three days of their first emergence from 

the natal burrow and parentage analyses were performed to determine which individual 

successfully reproduced each year. In addition to these captures, behavioural 

observations allowed us to determine the size and composition of the different social 

groups each year. We considered group size and group composition at the end of the 

field season to not differ before the entrance into in hibernation The composition of the 

group was described as the number of subordinates of each sex present in the group at 

the emergence from hibernation, i.e. before pups’ emergence. Because survival, 

dispersal, and reproduction of all individuals had to be known with certainty, as well as 

the corresponding group size and composition, we discarded the first years of the study 

and peripheral territories because the quality of the date was insufficient for the analysis. 

The dataset was then composed of 333 group.year and 1417 individual.year from 18 

territories between 1994 and 2015. Population size was calculated as the sum of the 

group sizes each year.  
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11.2.2. Group contribution calculation 

To measure how much a group contributed to the population dynamics, we used a 

slightly modified version of the de-lifing method (Coulson, 2006): 

ptG = (εtG - Gt.ωt) / (Nt - Gt) 

where ptG is the contribution of group G to the population growth rate between time t 

and t+1, εtG is the group performance between t and t+1, i.e. the number of individuals 

present in the group at time t and still alive at time t+1 plus the number of offspring 

produced by group members between t and t+1 that are still alive at t+1, Gt is the group 

size at t, ωt is the population growth rate between t and t+1 (ωt =Nt+1/Nt) and Nt is the 

population size at time t. To identify through which demographic rate groups contributed 

the most to population growth rate, group contribution to population growth rate was 

decomposed in its survival and recruitment components. In addition, the group survival 

contribution can further be decomposed in its philopatric survival and dispersal 

components since individuals that survive can either stay in their natal group or disperse 

and found or take over another group. These two different behaviours are likely to be 

differently influenced by social factors and are worth analysing apart. The group 

contribution can thus be written as the sum of the group contributions to mean survival, 

mean dispersal rate and mean recruitment: 

ptG =  

where StG is the number of individuals present in group G at time t and still present in 

group G at time t+1, DtG is the number of individuals present in group G at time t that 

dispersed and are found alive elsewhere at time t+1 and FtG is the number of offspring 

produced between t and t+1 that are still alive and recruited at time t+1. ,  and  are 

respectively the mean philopatric survival rate, mean dispersal success rate and mean 

recruitment in the population between time t and t+1.  

 11.2.3. Individual contribution calculation. 

To further analyse the influence of group living in the Alpine marmot, we calculated 

individuals’ contribution to population growth rate as:  

pti =  
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where Sti is the philopatric survival of individual i (1 if it survived and stayed on its natal 

territory and 0 otherwise) between time t and t+1, Dti is the successful dispersal of 

individual i (1 if it dispersed and settled as a dominant inside the study area and 0 

otherwise) between time t and t+1 and Fti is the number of offspring produced by 

individual i between t and t+1 that are still alive at time t+1 (divided by 2 because both 

sexes are considered).  ,  and  still represent the mean philopatric survival rate, 

mean dispersal success rate and mean fecundity.  

 11.2.4. Statistical analyses 

Because de-lifing data are rarely normally distributed, we used overall-mean mixture-

models (O3M; see chapter V.A) to analyse how the group size and composition 

influenced the group and individual contributions to population growth rate (see 

supplementary material 11.5 for the complete model selection procedure). 

11.3. Results  

 De-lifing values distributions were better approximated by a single Gaussian and 

therefore modelled using a classical linear model for: group contribution to population 

growth rate (hereafter group contribution), group contribution to mean survival rate 

(hereafter group survival), group contribution to mean recruitment (hereafter group 

recruitment), dominant contribution to population growth rate (hereafter dominant 

contribution), dominant contribution to mean recruitment (hereafter dominant 

recruitment), subordinate contribution to population growth rate (hereafter subordinate 

contribution) and subordinate contribution to mean survival rate (hereafter subordinate 

survival). On the other hand, de-lifing values were better approximated by a mixture of 

two normal distributions using the O3M for: group contribution to mean dispersal rate 

(hereafter group dispersal), dominant contribution to mean survival rate (hereafter 

dominant survival), dominant contribution to mean dispersal rate (hereafter dominant 

dispersal), subordinate contribution to mean dispersal rate (hereafter subordinate 

dispersal) and subordinate contribution to mean recruitment (hereafter subordinate 

recruitment)(see supplementary material 11.5.1 for the complete variance-structure 

model selection). 
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11.3.1. Group contributions 

After DIC model selection, the only covariate retained to explain variation in group 

contributions was group size (see supplementary material 11.5.2.1). Mean group 

contribution was found to be quadratically related to group size (Fig.V.7a; regression 

coefficients ± sd: β = -0.077 ± 0.422 and β² = -0.072 ± 0.038). Group contribution to 

population growth rate was positive for all groups under 5 individuals and negative over 

5 individuals. The same general pattern was found for mean group recruitment, except 

that the transition from positive to negative contributions took place around 4 individuals 

(Fig.V.7d; β=-0.086±0.301 and β²= -0.045±0.027). Mean group survival also decreased 

but linearly with group size (Fig.V.7b; β=-0.457±0.058). Finally, mean group dispersal 

was not related to group size but slightly increased with the number of male subordinates 

present in the group (Fig.V.7c; β=0.127±0.0.045).  

 
Figure V.7. Group contribution to population growth rate (a), to mean survival (b), to 
mean dispersal (c) and to mean recruitment (d) according to group size and/or 
composition. Filled dots with vertical bars represent mean observed values with 
associated standard deviations. Lines and shaded areas represent the models predictions 
with associated standard deviations. For practical reasons, contributions values were 
multiplied by 100 before analysis 
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 11.3.2. Dominant contributions 

Overall, the contribution of dominant individuals to population growth rate was positive 

and did not differ between sexes. Dominant contribution, dominant dispersal and 

dominant recruitment variations were best explained by the number of subordinate males 

while dominant survival was found to be related to group size but not to the group 

composition (Fig.V.8 and see supplementary material 11.5.2.2). Mean dominant 

contribution increased linearly with the number of male subordinates present in the 

group (Fig.V.8a; β = 0.084 ± 0.048). The increase of dominant contribution with the 

number of male subordinates followed the pattern of dominant recruitment (Fig.V.8d; β 

= 0.104 ± 0.039) while mean dominant survival decreased with the number of male 

helpers (Fig.V.8b; β = -0.010 ± 0.005).  Finally, mean dominant dispersal slightly 

increased until 3 male subordinates and decreased thereafter (Fig.V.8c; β = 0.036 ± 

0.010 and β² = -0.006 ± 0.002).  

11.3.3. Subordinate contributions 

 By contrast, subordinate contributions were not found to be related to group size or to 

the number of male subordinates. The only covariate retained to explain variation in 

subordinate contributions to growth rate, survival, dispersal and recruitment was the 

number of subordinate females present in the group (see supplementary material 

11.5.2.3). In addition, the effect of female subordinates was found to be sex-specific for 

the contribution to growth rate and for the contribution to mean survival. Mean 

subordinate contribution decreased faster for males than for females with the number of 

female subordinates in the group (Fig.V.9a; βfemales = -0.059 ± 0.037 and βmales = -0.145 ± 

0.035). Contrary to group contributions and dominant contributions, the pattern of 

subordinate contribution did not follow the pattern of subordinate recruitment but the 

pattern of subordinate survival. Subordinate males’ survival suffered more than females’ 

one from the presence of subordinates females (Fig.V.9b; βfemales = -0.057 ± 0.035 and 

βmales = -0.075 ± 0.034). Mean subordinate dispersal on the other hand, was found to be 

constant for all group sizes and compositions (Fig.V.9c; intercept = 0.14 ± 0.04). 

Finally, mean subordinate recruitment slowly decreased until 3 female subordinates and 

increased thereafter (Fig.V.9d; β = -0.063 ± 0.016 and β²= 0.008±0.003).  
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Figure V.8. Individual contribution of dominants to population growth rate (a), 
individual contribution of dominants to mean survival (b), individual contribution of 
dominants to mean dispersal (c) and individual contribution of dominants to mean 
recruitment (d) according to group size and/or composition. Grey open dots represent 
single dominant.year contributions. Filled dots with vertical bars represent mean 
observed values with associated standard deviations. Lines and shaded areas represent 
the models predictions with associated standard deviations. For practical reasons, 
contributions values were multiplied by 100 before analysis. 

11.4. Discussion  

Our results indicate that the larger the social group, the more negative its contribution to 

population growth rate. More specifically, groups of more than five individuals 

contributed negatively to growth rate, meaning that the average contribution of an 

individual in a family group over five individuals was below the average individual 

contribution in the population, i.e. below the population growth rate. In other words, the 

mean annual individual performance of an Alpine marmot living in a large group is 
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lower than the mean annual individual performance of a marmot living in a small group. 

This result seems paradoxical at first sight because sociality is expected to evolve only 

when it provides individuals with benefits larger than costs (Trivers 1985). To better 

understand this result, one needs to look at the influence of group characteristics at the 

individual level. 

 
Figure V.9. Individual contribution of subordinates to population growth rate (a), 
individual contribution of subordinates to mean survival (b), individual contribution of 
subordinates to mean dispersal (c) and individual contribution of subordinates to mean 
recruitment (d) according to group size and/or composition. Blue open dots represent 
subordinate males, red open dots represent females and grey open dots represent single 
subordinate.year contributions without sex differences. Filled dots with vertical bars 
represent the mean observed contribution values with associated standard deviations. 
Lines and shaded areas represent the best model prediction with associated standard 
deviation. For practical reasons, contributions values were multiplied by 100 before 
analysis. 
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 11.4.1. Group composition and individual fitness 

Following previous results (Allainé & Theuriau 2004; Cohas et al. 2006; Lardy et al. 

2012, 2013), the individual fitness of dominant individuals was overall positively linked 

to group characteristics (Fig V.8a). Dominants with a large number of male helpers 

benefited from higher juvenile survival (Allainé & Theuriau 2004), thus contributing to 

increase the mean recruitment rate in the population (Fig V.8d). Dominants in groups of 

intermediate sizes were most likely to become dominant again after being evicted from 

their group but the difference in dispersal success was too low to affect the overall 

contribution of a dominant individual to population growth (Fig V.8c). On the other 

hand, when too many individuals are present in the group, competition increases, 

dominants are more likely to be evicted and their survival probability decreases (Lardy 

et al. 2012a, 2013). Accordingly, we found that dominants living in large groups 

contributed negatively to the mean survival rate in the population (Fig V.8b). However, 

since survival costs increase with group size slower than recruitment benefits increase 

with the number of subordinate males, group size has an overall positive effect on 

dominants’ annual contribution to population growth rate, i.e. dominants’ annual fitness. 

From this result, it seems that natural selection will favour dominants in ever increasing 

groups which contradicts most studies on social animals that found an optimal group 

size and/or composition maximizing the dominant fitness (Hill et al. 2000; McGuire et 

al. 2002; Mosser & Packer 2009; Lardy et al. 2015). The discrepancy between their 

results and ours probably lies in the fact that we only looked at the annual fitness in 

relation to annual group size and composition instead of lifetime fitness proxies in 

relation to group characteristics averaged over the whole tenure length of the dominant 

(e.g. lifetime reproductive success). This tenure length was shown to be very important 

for the overall fitness in many social animals (Ellis 1995; Setchell et al. 2006; Lardy et 

al. 2015). Factors affecting dominant survival, while relatively un-important for the 

annual performance, will therefore be crucial for the lifetime fitness of an individual and 

trade-offs (Stearns 1992) between immediate performance and later dominance tenure 

might explain why we did not find an optimal group size for dominant annual fitness. 

For subordinates, costs associated to sociality are quite obvious but no positive 

effect of sociality was evidenced (Fig V.9a). Since subordinates have little (males) or no 

(females) access to reproduction, their contribution to population growth rate depends 
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solely on their ability to survive, whether they dispersed or not. Our results show that 

both male and female contributions to mean survival decreased with increasing numbers 

of subordinate females in the family group (Fig V.9b). The negative effect of the 

presence of female subordinates for female subordinates is probably due to intra-sexual 

competition between females. On the other hand, the lower survival rate of subordinate 

males in the presence of many females in the group confirms previous studies which 

showed that the presence of subordinate females in the hibernaculum during hibernation 

led to a greater weight loss of males. This higher energetic cost incurred by males is due 

to the fact that females awaken later and produce less heat during periods of euthermia, 

causing the males to produce more heat and therefore spend more energy in order to 

survive (Arnold 1993; Allainé & Theuriau 2004). Because they do not produce any 

offspring, female subordinates’ contribution to recruitment can only be negative (or at 

best null). Surprisingly, we did not find any sex difference in subordinate recruitment 

despite the occurrence of extra-pair paternities potentially allowing subordinate males to 

have a much higher recruitment value (Fig V.9d). Finally, no effect of social group size 

and/or composition was found on the contribution to mean dispersal rate indicating that 

marmots leaving large groups were not more successful when dispersing than marmots 

from small groups (Fig V.9c). Subordinate individuals therefore seem to suffer rather 

than benefit from living in large groups. These different costs result in an overall 

negative selective pressure on subordinates living in large groups and also reveal a 

conflict over group size between subordinates and dominants in Alpine marmots as is 

expected from theory (Vehrencamp 1983b). However, the measure of annual fitness 

presented here does not take into account indirect fitness benefits gained by related 

subordinates when the dominant individual reproduces. The evolutionary conflict 

between dominant and subordinate individuals over group size is then likely to be less 

pronounced than expected or even deleted when considering the annual fitness benefits 

gained by subordinates thanks to the higher contribution to recruitment of dominants 

living in large groups.  

 11.4.2. Group composition and group dynamics 

From a group dynamic perspective, these differences in selective pressures between 

subordinates and dominants will result in the group growth rate being strongly density-

dependent. Indeed, if we consider survival, the average survival rate within the group 
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will decrease as group size increases as a result of decreased subordinate survival with 

increasing numbers of females and decreasing dominant survival with increasing group 

size (Fig V.7a, V.8a and V.9a). Similarly, the per capita recruitment rate will also 

decrease when group size increases (Fig V.7d). Finally, the dispersal rate will increase 

with the number of male subordinates as males tend to disperse more than females in 

Alpine marmots (Fig V.7c and chapter IV). As a consequence, large groups will lose a 

large proportion of their members each year because of a decrease in survival and an 

increase in dispersal while the number of pups recruited per individual in the groups 

strongly decreases. The group growth rate will therefore decrease sharply as its size 

increases. Among the few studies that were interested in group dynamics in social 

species, Bateman et al. (2012) also found a strong negative effect of group size on group 

growth rate in meerkats although they hypothesized group dynamics in this species 

should be subjected to an Allee effect because of the positive effect of group size on 

individual survival (Courchamp et al. 1999). In Alpine marmots also, small groups were 

expected to perform less well because of lower rates of recruitment due to less efficient 

social thermoregulation during hibernation (Allainé & Theuriau 2004).  Together, these 

results highlight the importance of taking into account the group-level processes and the 

idea that those processes may display conflicting patterns with individual processes.  

 11.4.3. Group composition and population dynamics 

At the population level, it appears that large groups will contribute negatively to 

population growth while small groups will contribute positively. Once again, this 

counter-intuitive pattern can be explained by the difference in costs and benefits 

associated to group living between subordinate and dominant individuals. While 

dominant individuals’ fitness gain will increase with increasing group size, subordinate 

costs will add up in the same time (Vehrencamp 1983b,a). In large groups, the positive 

effect of sociality that benefits dominants will be therefore erased by the accumulation 

of costs for subordinates. As a consequence, the population dynamics is expected to vary  

greatly according to its groups composition. Two populations with the same number of 

individuals but distributed differently in the social groups will likely differ in their 

growth rate and overall population trajectories just like populations with different age or 

sex structures may display different population dynamics (Tuljapurkar & Caswell 1997). 

To be more specific, a population composed of mainly small groups should display a 
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high growth rate, because of all the small groups displaying high growth rate, before 

showing signs of slowing down as mean group size increases in the population. Such 

population with synchronized group dynamics would therefore display overall density-

dependence. On the other hand, if groups in the populations are highly variable, their 

different group dynamics are expected to compensate and the overall population may 

seem stationary while groups vary a lot. This discrepancy between individual benefits of 

sociality, group dynamics and their consequences at the population level confirms the 

particularity of social species population dynamics and the importance of the group 

structure in the population for the overall population dynamics (Bateman 2013). 

However, further studies are still needed to better understand the links between 

individual costs and benefits, group composition and population dynamics. Notably, the 

costs and benefits for subordinate individuals according to group characteristics should 

be better analysed by taking into account potentially important indirect fitness benefits 

when helping a related dominant to reproduce. 
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11.5. Supplementary material 

 11.5.1. Model selection 

Overall-mean mixture-models (O3M) are linear models designed to account for bi-

modally distributed data. The variance structure in such models is modelled using a 

mixture of two normal distributions instead of the Gaussian distribution assumed in 

classical linear models. It can write as: 

( | μ, Δ,  σ1
2, σ2

2) = . ( | ,Δ, σ1
2) + (1 − ). ( | ,Δ, σ2

2) 

with = α + . x 

logit ( ) = α  + . x 

Δ = αΔ + Δ. x 

where y is the random variable we wish to explain, i.e. the group contribution to 

population growth rate in our case, μ is the mean of the two-normal mixture density of y, 

x is the vector of independent variables we wish to relate y to, i.e. the group size and 

composition in our case, α is the intercept, β is the vector of variable-specific 

coefficients, Δ is the difference between the means of the two components and π is the 

mixture weight of the first component.  

  Although linear models are very robust to non-normality, O3M are more 

powerful when data strongly deviate from normality (see chapter V.A.). To determine 

what group characteristics affected group, dominant and subordinate contributions to the 

population dynamics, we tested for linear and quadratic effects of group size, number of 

subordinate males and number of subordinate females in interaction with the sex of the 

focal individual. Because group size is highly correlated to the number of subordinates 

of both sexes, we did not include group size and subordinate numbers in the same model 

to avoid collinearity issues.  

Model selection was performed in two steps. Based on DIC values, we first 

selected for the model that best accounted for the variance structure in the data by 

comparing models of decreasing complexity, starting from a full model where both 

mixture weight (π) and difference between the two mixture-components’ means (Δ) 

were allowed to vary with the covariate of interest. We also included a classical linear 

model in the comparison. In a second step, once the variance structure had been selected, 

we tested for all possible combinations of covariates and sex-effects and selected the 

best model based on DIC.  
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11.5.1.1. Group contributions 

Table V.6. Variance-structure model selection for group contributions to population 
growth rate. π: mixture weight; Δ: difference between the two component-specific 
means; cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 

lm lm 1562,7 1566,7 
cst cst 1568,8 1575,3 
helpm+helpf helpm+helpf 1569 1575,4 
helpm helpm 1569,3 1575,6 
cst helpm 1569 1575,9 
helpm helpm+helpf 1569,2 1576 
helpm+helpf helpf 1568,8 1576,4 
helpf cst 1569,3 1576,4 
helpf helpm+helpf 1569,1 1576,5 
cst helpm+helpf 1569,1 1576,6 
helpf helpm 1569 1576,6 
helpm helpf 1569 1576,6 
cst helpf 1568,8 1576,6 
helpm+helpf helpm 1568,9 1576,7 
helpm+helpf cst 1568,9 1576,8 
helpm cst 1569,1 1576,9 
helpf helpf 1569,1 1577,2 
GS cst 1537,8 1769,1 
GS GS 1422,4 1926,4 
cst GS 1459 2618,6 

Table V.7. Variance-structure model selection for group contributions to mean survival 
rate. π: mixture weight; Δ: difference between the two component-specific means; cst: 
constant; helpm: number of male subordinates; helpf: number of females subordinates; 
GS: group size; lm: classical linear model 

π Δ deviance DIC 

lm lm 1219,3 1223,3 
cst GS 1114,2 1232,3 
GS GS 1113,8 1238,9 
GS cst 1113 1251,2 
cst cst 1113,2 1253,3 
helpf cst 1111,2 1285,1 
helpm cst 1118,2 1292 
helpf helpm+helpf 1124,1 1293,7 
helpm helpm 1124,1 1296,7 
cst helpm+helpf 1125 1299,7 
helpf helpm 1118,7 1304 
cst helpm 1123,3 1307,3 
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helpm+helpf helpm 1121,1 1307,9 
helpm+helpf cst 1114,7 1310,1 
cst helpf 1122,6 1310,8 
helpf helpf 1117,8 1311 
helpm+helpf helpf 1121 1319,5 
helpm helpf 1118,6 1339,9 
helpm+helpf helpm+helpf 1124 1345,2 
helpm helpm+helpf 1124,2 1380 

Table V.8. Variance-structure model selection for group contributions to mean dispersal 
rate. π: mixture weight; Δ: difference between the two component-specific means; cst: 
constant; helpm: number of male subordinates; helpf: number of females subordinates; 
GS: group size; lm: classical linear model 

π Δ deviance DIC 

helpm helpf 697,4 826,1 
cst helpf 697,8 828,1 
helpm+helpf helpf 697,1 828,4 
helpf helpf 698,7 829,4 
cst GS 716,7 832,8 
helpm+helpf helpm+helpf 698,8 834,7 
GS GS 716,9 835,1 
helpm helpm+helpf 699,3 835,3 
cst helpm+helpf 699,2 836,4 
helpf helpm+helpf 700,5 837,4 
helpf cst 711,8 844,4 
cst cst 710,3 854,2 
helpm+helpf cst 709,6 855,3 
helpf helpm 712,4 856,5 
GS cst 721,5 857,8 
cst helpm 711,2 866,6 
helpm helpm 711,2 866,8 
helpm+helpf helpm 709,7 867,6 
helpm cst 731,1 892 
lm lm 985,2 989,2 

Table V.9. Variance-structure model selection for group contributions to mean 
fecundity. π: mixture weight; Δ: difference between the two component-specific means; 
cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 

lm lm 1373,1 1377,1 
helpf helpm+helpf 1375,9 1382,6 
helpf helpm 1376,3 1382,6 
helpm+helpf helpf 1376,2 1382,6 
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helpf helpf 1376,3 1382,6 
helpm+helpf cst 1376,8 1382,6 
helpf cst 1376,3 1382,6 
helpm helpf 1375,7 1383,6 
helpm helpm+helpf 1375,6 1383,7 
cst helpf 1376,2 1383,7 
cst cst 1376,2 1383,7 
helpm helpm 1376,2 1384 
helpm+helpf helpm+helpf 1375,3 1384,6 
helpm cst 1375,7 1385,4 
cst helpm 1376,4 1386,1 
helpm+helpf helpm 1376,3 1388,4 
cst helpm+helpf 1375,7 1390,1 
GS GS 1133 1453,5 
cst GS 1139 1464,2 
GS cst 1140,7 1472,3 

 

11.5.1.2. Dominant contributions 

Table V.10. Variance-structure model selection for dominant contributions to 
population growth rate. π: mixture weight; Δ: difference between the two component-
specific means; cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
lm lm 2065,7 2072,8 
cst helpm+helpf 2065,4 2079 
helpm+helpf helpm 2063,7 2081,4 
helpf helpm+helpf 2065,7 2082,4 
helpm helpf 2065,1 2082,4 
helpf helpf 2064,9 2082,4 
helpm helpm 2065,3 2083,4 
cst helpm 2065,2 2083,8 
helpm+helpf helpf 2065,7 2085,4 
cst helpf 2065,3 2085,9 
helpm cst 2065,3 2086,8 
helpm+helpf cst 2064,2 2086,9 
helpm+helpf helpm+helpf 2064,5 2087,4 
helpm helpm+helpf 2065 2088,4 
helpf cst 2065,7 2089,2 
helpf helpm 2064,9 2090 
cst cst 2065,5 2095,9 
GS GS 1771,2 2119,7 
cst cst 1763,5 2186,3 
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GS cst 1765 2188,5 
cst GS 1819,8 2292,9 

Table V.11. Variance-structure model selection for dominant contributions to mean 
survival rate. π: mixture weight; Δ: difference between the two component-specific 
means; cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
GS GS -355,2 -344,3 
cst cst -356 -346,3 
GS cst -356 -346,1 
cst GS -355,1 -344,3 
helpm+helpf cst -352,6 -338,7 
helpf cst -353,6 -338,6 
helpm cst -352,6 -338,5 
helpm+helpf helpm -351,9 -336,8 
helpf helpm -351,9 -336,8 
helpm+helpf helpf -351,8 -336,8 
helpm helpf -351,9 -336,8 
helpm helpm -351,8 -336,7 
cst helpm -351,7 -336,6 
helpf helpf -351,9 -336,6 
cst helpf -351,8 -336,6 
cst helpm+helpf -352,1 -336,4 
helpm helpm+helpf -353,9 -334,8 
helpf helpm+helpf -353 -333,8 
helpm+helpf helpm+helpf -354,2 -333,2 
lm lm 1140,5 1147,6 
lm lm 1141,3 1152,5 

Table V.12. Variance-structure model selection for dominant contributions to mean 
dispersal rate. π: mixture weight; Δ: difference between the two component-specific 
means; cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
helpm+helpf cst -1132,4 -1116,3 
helpm cst -1130,5 -1114,4 
helpm+helpf helpf -1133,4 -1114,1 
cst cst -1121 -1110,9 
helpm+helpf helpm -1130,7 -1110,5 
GS cst -1121,2 -1110,2 
helpm helpf -1130,1 -1109,3 
GS GS -1120,7 -1106,4 
helpm+helpf helpm+helpf -1133 -1106 
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cst GS -1120,5 -1105,9 
cst cst -1119,5 -1104,5 
helpf cst -1118,9 -1102,9 
helpm helpm -1126,8 -1102,8 
cst helpf -1121,2 -1102,7 
helpf helpf -1120,8 -1101,4 
helpm helpm+helpf -1128,8 -1101,1 
cst helpm -1117,7 -1098,5 
helpf helpm -1117,1 -1097,3 
cst helpm+helpf -1120,5 -1095,8 
helpf helpm+helpf -1120,4 -1093,5 
lm lm -213,1 -201,9 

Table V.13. Variance-structure model selection for dominant contributions to mean 
fecundity. π: mixture weight; Δ: difference between the two component-specific means; 
cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
lm lm 1836,5 1843,7 
GS GS 1668,8 1964,6 
helpm helpm 1678,4 2031,6 
helpf helpm+helpf 1544,5 2032,3 
helpf helpm 1678,7 2033,4 
cst helpm+helpf 1559,4 2033,8 
helpm+helpf helpm 1678,7 2033,8 
cst helpm 1679,1 2036,7 
GS cst 1673,8 2078,5 
cst GS 1703,9 2079,1 
helpm helpm+helpf 1543,1 2081,6 
cst cst 1674,4 2085,6 
helpm+helpf helpf 1691,8 2088,6 
helpm helpf 1692,4 2091,8 
helpm cst 1676,7 2118,8 
helpf cst 1676,7 2120,1 
helpm+helpf cst 1676,9 2123,1 
helpf helpf 1590,1 2123,4 
cst cst 1677,9 2126,8 
helpm+helpf helpm+helpf 1543,1 2178,2 
cst helpf 1693,1 2230,2 
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11.5.1.3. Subordinate contributions 

Table V.14. Variance-structure model selection for subordinate contributions to 
population growth rate. π: mixture weight; Δ: difference between the two component-
specific means; cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
lm lm 1585,9 1597,3 
helpf helpf 1537 1607,4 
cst cst 1531,011 1612,2 
cst helpm+helpf 1530,1 1612,3 
helpm helpm+helpf 1528,2 1615,4 
helpf helpm+helpf 1545,7 1615,5 
helpf cst 1528,5 1617,5 
helpm+helpf helpm+helpf 1525,4 1619,0 
cst helpm 1543,1 1620,0 
helpm+helpf helpf 1546,1 1620,4 
helpf helpm 1542,9 1622,4 
helpm helpm 1531,2 1629,8 
helpm+helpf helpm 1533,6 1630,3 
helpm helpf 1540,3 1632,9 
cst helpf 1534,2 1640,7 
helpm cst 1525,4 1643,3 
helpm+helpf cst 1524,8 1643,8 
cst GS 1526,3 1657,5 
GS GS 1524,9 1658,0 
GS cst 1525,5 1661,5 

Table V.15. Variance-structure model selection for subordinate contributions to mean 
survival rate. π: mixture weight; Δ: difference between the two component-specific 
means; cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
lm lm 1534,5 1541,6 
cst helpm+helpf 1535 1546,4 
cst helpm 1535 1546,5 
cst helpf 1535 1546,5 
helpf helpf 1535 1546,9 
helpm cst 1535,4 1547,1 
helpm helpm 1535,6 1547,2 
helpm+helpf cst 1536 1547,3 
helpf helpm+helpf 1535,5 1547,5 
helpm+helpf helpm 1535,5 1547,5 
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helpm helpm+helpf 1535,4 1547,6 
helpm helpf 1536,3 1547,6 
helpf helpm 1535,7 1547,7 
helpm+helpf helpf 1535,8 1547,7 
cst cst 1535,9 1547,8 
helpf cst 1536,2 1548 
helpm+helpf helpm+helpf 1535,6 1548,6 
GS GS 1008,4 1622,7 
GS cst 1028,4 1779,5 
cst GS 1021,9 1980,8 

Table V.16. Variance-structure model selection for subordinate contributions to mean 
dispersal rate. π: mixture weight; Δ: difference between the two component-specific 
means; cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
cst GS -994,5 -984 
GS GS -994,5 -983,9 
GS cst -990,5 -981,2 
helpf cst -993,8 -980,3 
cst cst -993,8 -980,3 
helpm cst -993,9 -980,2 
helpm+helpf cst -993,8 -980,1 
helpm+helpf helpm -996,3 -979,9 
helpm helpf -994,2 -979,9 
helpm helpm+helpf -997,1 -979,8 
cst helpm -996 -979,8 
helpm+helpf helpf -994,3 -979,8 
helpm helpm -996,5 -979,7 
helpf helpm -996,2 -979,6 
helpf helpf -994,1 -979,6 
helpm+helpf helpm+helpf -997,1 -979,5 
cst helpf -994,2 -979,1 
cst helpm+helpf -996,5 -978,9 
helpf helpm+helpf -996,7 -978,7 
lm lm 1175,4 1182,6 

Table V.17. Variance-structure model selection for subordinate contributions to mean 
fecundity. π: mixture weight; Δ: weight difference between the two component-specific 
means; cst: constant; helpm: number of male subordinates; helpf: number of females 
subordinates; GS: group size; lm: classical linear model 

π Δ deviance DIC 
cst cst -68,7 -28,03 
cst helpm -67,2 -24,4 



210 
 

cst helpf -67 -24,1 
helpm helpf -66,8 -22,2 
helpf helpm+helpf -66,5 -19,7 
cst helpm+helpf -65,3 -19,2 
cst GS -62,2 -19,2 
helpm helpm+helpf -65,4 -18,7 
helpf helpm -66,9 -18,7 
helpf helpf -67,1 -18,7 
helpm+helpf cst -66,7 -17,5 
helpm cst -66,4 -15,5 
helpm+helpf helpm+helpf -65,6 -13,4 
helpm+helpf helpf -64,8 -11,2 
helpm+helpf helpm -65,6 -9,9 
GS GS -61,6 -9,1 
helpm helpm -65,1 -7,4 
helpf cst -64,4 -7,3 
GS cst -61,7 -0,8 
lm lm 475,6 482,7 

 

11.5.2. Group size and composition model selection 

11.5.2.1. Group contributions 

Table V.18. Group size and composition model selection for group contributions to 
population growth rate. cst: constant; helpm: number of male subordinates; helpf: 
number of females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
GS+GS² 1562,7 1566,7 
GS 1565,2 1568,2 
helpm + helpf 1568,1 1572,2 
helpm²+helpf 1568,5 1573,6 
helpm + helpf² 1568,6 1573,7 
helpm² + helpf² 1569,1 1575,2 
cst + helpf 1572,6 1575,7 
cst + helpf² 1573,5 1577,5 
helpm 1600,3 1603,4 
helpm² 1601,2 1605,3 
cst 1620,5 1622,5 
cst 1620,5 1622,6 

Table V.19. Group size and composition model selection for group contributions to 
mean survival rate. cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
GS 1218,9 1221,9 
GS+GS² 1219,3 1223,9 
helpm + helpf 1225,3 1229,3 
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helpm²+helpf 1226,3 1231,4 
helpm + helpf² 1226,3 1231,5 
helpm² + helpf² 1227,3 1233,5 
cst + helpf 1236,1 1239,1 
cst + helpf² 1236,7 1240,8 
helpm 1247,4 1250,4 
helpm² 1248,2 1252,3 
cst 1275,2 1277,2 
cst 1275,2 1277,3 

Table V.20. Group size and composition model selection for group contributions to 
mean dispersal rate. cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
GS 716,7 832,8 
GS+GS² 721,1 834,5 
helpm 696,2 802,8 
helpm + helpf 697,2 808 
helpm² 696,8 811,4 
helpm²+helpf 698 815,4 
cst 696,1 817,2 
helpm + helpf² 697,7 818,8 
cst + helpf 700,1 819,4 
cst 718,1 821 
cst + helpf² 701,2 821,2 
helpm² + helpf² 697,8 828,1 

Table V.21. Group size and composition model selection for group contributions to 
mean fecundity. cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
GS+GS² 1373,1 1377,1 
GS 1374,7 1377,7 
helpm + helpf 1376,5 1380,6 
helpm + helpf² 1376,3 1381,4 
helpm²+helpf 1376,3 1381,5 
helpm² + helpf² 1376,3 1382,4 
cst + helpf 1381,7 1384,8 
cst + helpf² 1382,2 1386,3 
helpm 1403,8 1406,9 
helpm² 1404,3 1408,4 
cst 1424 1426 
cst 1424 1426,1 
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11.5.2.3. Dominant contributions 

Table V.22. Group size and composition model selection for dominant contributions to 
population growth rate. cst: constant; helpm: number of male subordinates; helpf: 
number of females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
hlp_m 2062,1 2065,2 
hlp_m*sex 2060,8 2065,9 
hlp_m+hlp_f 2062,1 2066,1 
cst 2064,1 2066,1 
cst 2064,1 2066,2 
sex 2063,6 2066,6 
sex 2063,6 2066,6 
hlp_m² 2062,9 2066,9 
GS 2064,5 2067,6 
hlp_m²+hlp_f 2062,9 2068 
hlp_f 2065,1 2068,1 
hlp_m+hlp_f² 2063,1 2068,2 
GS*sex 2063,9 2069 
(hlp_m+hlp_f)*sex 2061,9 2069,1 
GS+GS² 2065,4 2069,5 
hlp_m²*sex 2062,5 2069,6 
hlp_f*sex 2065,1 2070,1 
hlp_f² 2066,1 2070,1 
hlp_m²+hlp_f² 2063,9 2070,2 
(GS+GS²)*sex 2065,7 2072,7 
(hlp_m²+hlp_f)*sex 2063,5 2072,8 
(hlp_m+hlp_f²)*sex 2063,8 2073,2 
hlp_f²*sex 2067 2074,3 
(hlp_m²+hlp_f²)*sex 2065,4 2076,8 

Table V.23. Group size and composition model selection for dominant contributions to 
mean survival rate. cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
GS -359,5 -351,9 
hlp_m -359,3 -351,8 
cst -356,3 -350,8 
hlp_f -357,6 -350,3 
GS+GS² -358,7 -350,2 
cst -356,1 -349,7 
hlp_f²+hlp_m -358,6 -349,7 
hlp_m² -358,1 -349,5 
hlp_f² -357,2 -349,3 



213 
 

hlp_f+hlp_m -358,8 -348,8 
hlp_f+hlp_m² -358 -348,7 
GS*sex -357,5 -347,9 
sex -355,1 -347,7 
hlp_f*sex -355,6 -347,4 
sex -355,1 -347,3 
hlp_m*sex -357,1 -346,9 
hlp_f²+hlp_m² -357,3 -346,7 
(GS+GS²)*sex -355,8 -344 
(hlp_f+hlp_m)*sex -355,9 -343,9 
hlp_m²*sex -355,4 -343,6 
hlp_f²*sex -353,9 -341,8 
(hlp_f²+hlp_m)*sex -354,5 -341,6 
(hlp_f+hlp_m²)*sex -353,8 -339,4 
(hlp_f²+hlp_m²)*sex -352,4 -336,5 

Table V.24. Group size and composition model selection for dominant contributions to 
mean dispersal rate. cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
hlp_m² -1137,3 -1126,3 
hlp_m²+hlp_f² -1131,9 -1122 
hlp_m²+hlp_f -1131,7 -1121,1 
cst -1125,3 -1118,9 
hlp_m+hlp_f² -1128,8 -1117,6 
cst -1124,9 -1117,6 
sex -1124,4 -1117,2 
GS -1121,7 -1116,8 
sex -1124,2 -1116,4 
(hlp_m²+hlp_f²)*sex -1132,4 -1116,3 
hlp_m²*sex -1128,9 -1115,9 
GS+GS² -1123,8 -1115,8 
hlp_f² -1126,4 -1115,7 
hlp_f -1123 -1114,4 
(hlp_m²+hlp_f)*sex -1127,9 -1113,1 
hlp_m -1124,2 -1113 
GS*sex -1122,7 -1113 
hlp_m+hlp_f -1123,4 -1112,1 
(GS+GS²)*sex -1121 -1110,9 
hlp_m*sex -1121,9 -1110,3 
(hlp_m+hlp_f²)*sex -1125,2 -1110,2 
hlp_f*sex -1121 -1109,4 
hlp_f²*sex -1123,1 -1108,7 
(hlp_m+hlp_f)*sex -1120,4 -1107 
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Table V.25. Group size and composition model selection for dominant contributions to 
mean fecundity. cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
hlp_m 1831 1834,1 
hlp_m*sex 1830,5 1835,6 
hlp_m+hlp_f 1831,6 1835,7 
hlp_m² 1831,7 1835,8 
hlp_m+hlp_f² 1832 1837,1 
hlp_m²+hlp_f 1832,3 1837,5 
GS 1835,2 1838,2 
hlp_m²+hlp_f² 1832,7 1838,9 
cst 1837,2 1839,2 
(hlp_m+hlp_f)*sex 1832,1 1839,3 
cst 1837,2 1839,3 
hlp_m²*sex 1832,2 1839,4 
GS+GS² 1835,6 1839,6 
sex 1837 1840 
sex 1837 1840 
GS*sex 1835,1 1840,2 
hlp_f 1838 1841,2 
hlp_f² 1837,5 1841,7 
(hlp_m+hlp_f²)*sex 1833,5 1842,7 
(hlp_m²+hlp_f)*sex 1833,9 1843,2 
(GS+GS²)*sex 1836,5 1843,7 
hlp_f*sex 1838,6 1843,7 
hlp_f²*sex 1839,1 1846,3 
(hlp_m²+hlp_f²)*sex 1835,3 1846,6 

11.5.2.3. Subordinate contributions 

Table V.26. Group size and composition model selection for subordinate contributions 
to population growth rate. cst: constant; helpm: number of male subordinates; helpf: 
number of females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
hlp_f*sex 1587,7 1592,7 
hlp_f² 1589,1 1593,3 
hlp_f²*sex 1586,5 1593,7 
hlp_f 1591,1 1594,1 
hlp_m+hlp_f² 1590 1595 
(hlp_m+hlp_f)*sex 1588,3 1595,3 
hlp_m²+hlp_f 1592,4 1595,4 
GS 1592,6 1595,6 
hlp_m+hlp_f 1591,8 1595,9 
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(hlp_m²+hlp_f)*sex 1586,8 1596,1 
GS+GS² 1592,4 1596,5 
(hlp_m+hlp_f²)*sex 1587,5 1596,6 
hlp_m²+hlp_f² 1590,4 1596,6 
(hlp_m²+hlp_f²)*sex 1585,8 1596,9 
GS+GS²*sex 1591,6 1598,7 
GS*sex 1594 1599,1 
cst 1603,7 1605,7 
hlp_m 1604 1607 
sex 1604,6 1607,6 
hlp_m² 1604,9 1609 
hlp_m²*sex 1603,3 1610,5 
hlp_m*sex 1605,7 1610,9 

Table V.27. Group size and composition model selection for subordinate contributions 
to mean survival rate. cst: constant; helpm: number of male subordinates; helpf: number 
of females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
hlp_f*sex  1535,4 1539,4 
GS+GS² 1532,8 1539,9 
hlp_f²*sex 1535,2 1540,2 
GS 1538,5 1541,5 
GS+GS²*sex 1534,5 1541,6 
GS*sex 1536,5 1541,6 
(hlp_m²+hlp_f²)*sex 1532 1543,4 
(hlp_m+hlp_f²)*sex 1534,3 1543,5 
hlp_f 1540,5 1543,7 
hlp_f² 1539,7 1543,8 
(hlp_m+hlp_f)*sex 1537 1544,1 
(hlp_m²+hlp_f)*sex 1535,1 1544,3 
sex 1541,4 1544,5 
hlp_m+hlp_f 1540,8 1545 
hlp_m+hlp_f² 1540,1 1545,1 
cst 1543,9 1545,8 
hlp_m²+hlp_f 1540,8 1546 
hlp_m²+hlp_f² 1539,9 1546,1 
hlp_m 1543,7 1546,7 
hlp_m²*sex 1540,4 1547,4 
hlp_m*sex 1542,8 1547,8 
hlp_m² 1544,2 1548,3 

Table V.28. Group size and composition model selection for subordinate contributions 
to mean dispersal rate.cst: constant; helpm: number of male subordinates; helpf: number 
of females subordinates; GS: group size; lm: classical linear model 
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covariates deviance DIC 
cst -995,9 -990,6 
sex -996,3 -990,1 
hlp_f² -995,4 -989,6 
GS -994,9 -988,6 
GS+GS² -994,5 -987,1 
hlp_m+hlp_f² -994,3 -987 
hlp_f²*sex -995,9 -986,3 
GS*sex -994,3 -986 
hlp_m²+hlp_f² -994,1 -985,6 
hlp_m² -989,5 -985,2 
hlp_f -990,4 -985 
GS+GS²*sex -994,5 -984 
hlp_m -989,6 -984 
(hlp_m+hlp_f²)*sex -995 -983,2 
hlp_m+hlp_f -989,5 -983,1 
hlp_m*sex -990,1 -982,8 
hlp_f*sex -989,5 -981,7 
hlp_m²+hlp_f -989,2 -981,7 
(hlp_m²+hlp_f²)*sex -993,8 -980,3 
hlp_m²*sex -989,1 -979,6 
(hlp_m+hlp_f)*sex -988,6 -979,6 
(hlp_m²+hlp_f)*sex -987,7 -976,5 

Table V.29. Group size and composition model selection for subordinate contributions 
to mean fecundity. cst: constant; helpm: number of male subordinates; helpf: number of 
females subordinates; GS: group size; lm: classical linear model 

covariates deviance DIC 
hlp_f² -64 -34,7 
hlp_m+hlp_f² -68,9 -33,6 
(hlp_m²+hlp_f²)*sex -69,3 -31,9 
hlp_f²*sex -64,7 -31,3 
(hlp_m+hlp_f²)*sex -67,6 -31,2 
hlp_m²+hlp_f² -68,2 -30,3 
GS -63 -28,9 
GS+GS² -63,5 -28,3 
(hlp_m²+hlp_f)*sex -63,9 -27,4 
hlp_m²+hlp_f -61,7 -26,9 
hlp_m+hlp_f -62 -26,4 
GS+GS²*sex -64,3 -26,2 
hlp_f -56,2 -24,9 
GS*sex -60,4 -24,1 
(hlp_m+hlp_f)*sex -62,3 -23,5 
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hlp_f*sex -57,2 -23,4 
hlp_m -25,7 -16,7 
hlp_m*sex -52,1 -16,5 
hlp_m²*sex -53,8 -15,6 
cst -45,4 -13,4 
hlp_m² -51,6 -13,1 
sex -44,2 -11,2 
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Chapter VI. 

General Discussion, 
Perspectives & 

Conclusion 
 

Population dynamics of Alpine marmots: 

beyond sociality 
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12. Overview 

Population dynamics of social species is expected to differ from the population 

dynamics of solitary species because of the higher level of structuration they display. In 

highly social species, such as cooperative breeders, populations are structured not only 

according to age and sex but also according to breeding status because of dominance 

relationships within social groups (Lukas & Clutton-Brock 2012). Because the costs and 

benefits of group living depend on the group characteristics, demographic rates are 

expected to vary with the group size/composition. These differences in individual vital 

rates will in turn lead to social groups displaying different group dynamics and the 

overall population dynamics will in turn emerge from the combination of these different 

social group dynamics. Understanding the population dynamics of social species thus 

requires understanding the mechanisms responsible for the differences in individual 

demographic rates responsible for the group dynamics but also the mechanisms 

responsible for the interactions between social groups. 

In this thesis, I tried to better understand the consequences of this structuration in 

different hierarchical levels for social species’ population dynamics. To do so, I took 

advantage of a detailed long term individual-based data set on Alpine marmots 

(Marmota marmota) to study the influence of sociality on population dynamics. In this 

cooperatively breeding species, sociality is characterized by a life in territorial family 

groups where the dominant couple monopolizes reproduction and subordinate 

individuals are most often offspring of the dominant couple. Using recently developed 

statistical methods, I investigated the consequences of this particular social system at all 

levels, from individuals to the population. 

In chapter III, thanks to the duration of the population monitoring program in the 

Grande Sassière nature reserve, I was able to test for the long term influence of early-life 

social conditions on the probability to reach a dominant status later in life. The 

composition of the birth litter was shown to be a major determinant of the ability to 

reach dominance. Notably, the presence of numerous females was associated to lower 

probabilities of becoming dominant, potentially because of feminizing hormone transfers 

during in utero development. This study reveals that sociality can have long-lasting 

effects on individuals’ capacity to reach a dominance status and therefore higher fitness 

values.  
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In chapter IV, I developed an integrated multi-event dispersal model in order to 

obtain true survival and natal dispersal estimates. By jointly modelling dispersal 

movements and demographic parameters in an integrated modelling framework, the 

model allowed us to accurately study the complex life cycle of Alpine marmots. This 

model was then used to study the interactions between social groups and their 

consequences for individual vital rates and subsequent group dynamics. The 

immigration of a new dominant resulted in the forced dispersal of most of the same-sex 

subordinates to avoid costs linked to intra-sexual competition between un-related 

individuals. This phenomenon led to a severe decrease in group size and a strong 

modification of the group composition. These results highlight the importance of groups’ 

interactions not only for individuals’ survival and reproduction but also for group 

dynamics in cooperative breeders. 

In chapter V, I used the de-lifing method to analyze how the size and 

composition of social groups affected their contribution to the overall population 

dynamics. To do so, I first developed a mixture model to study variations in the mean of 

bimodally distributed de-lifing data and exemplified its use with an analysis of age-

specific fitness variation in Alpine marmots. Group contribution to population growth 

was found to be negatively correlated to group size while dominant contributions were 

positively related to the presence of male subordinates and subordinate contributions to 

population growth rate were negatively related to the presence of subordinate females. 

By decomposing group contributions into contributions of dominant and subordinate 

individuals, I showed that social group dynamics were regulated through density-

dependent mechanisms. At the population level, these results highlight the importance of 

the population composition in terms of groups of different size/compositions for the 

overall dynamics. 

Altogether, these different results shed light on the functioning of Alpine 

marmots’ populations and more generally on the complexity of cooperative breeders’ 

population dynamics. Contrary to solitary species, population dynamics of group-living 

cannot be directly inferred from the mathematical combination of individual 

demographic rates and the different results presented here tend to depict population 

dynamics of social species as an emergent property of these populations in the sense 

that: “it is necessary to study not only parts and processes in isolation, but also to solve 

the decisive problems found in organization and order unifying them, resulting from 
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dynamic interaction of parts, and making the behavior of the parts different when studied 

in isolation or within the whole.” (Von Bertalanffy 1969). In the same way, we have 

found here that individual demographic rates will depend on the group characteristics 

(size and composition in particular; chapter III and previous studies on the same 

population), thus leading to social groups displaying density-dependent group dynamics. 

But group dynamics does not entirely depend on its own constitution and it will also be 

subject to the influence of neighboring groups which can strongly influence the 

characteristics of the focal group through dispersal events (chapter IV). The dynamic of 

a group studied in isolation will therefore be very different from the dynamic of the 

same group studied inside a given population (chapter V). Additionally, while I focused 

only on the consequences of sociality per se on social organization and group 

performances, the influence of sociality on individual demographic rates, group 

dynamics and ultimately population dynamics may also result from indirect effects 

involving other factors. 

13. Perspectives 

 13.1. Climatic factors 

Many studies on social species have shown that sociality had the potential to strongly 

mediate the influence of ecological factors, and particularly climatic factors. In 

meerkats, for example, Bateman et al. (2013) showed that the social structure of the 

population will determine the population response to environmental variation. 

Specifically, they found that seasons of low rainfalls were responsible for a decrease in 

reproductive success leading to a modification of social groups’ age structure the 

following years, thus increasing subordinate emigration probabilities and therefore 

contributing to crashes in group dynamics. In common mole rats (Cryptomys hottentotus 

hottentotus), it has been shown that the decision to leave a colony was also strongly 

influenced by climatic conditions in interaction with group size (Spinks et al. 2000). 

More precisely, dispersal rates increased as a function of colony size but this relationship 

was modulated by the aridity of the surrounding environment. 

Similarly, in Alpine marmots, recent studies have highlighted the impact of 

changing climatic conditions on individual demographic rates and therefore on social 

group structure. It has been evidenced that the decreasing snow depths during winter led 

to a decrease in litter size (Tafani et al. 2013) while juvenile survival decreased between 
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1990 and 2012 because of the interactive effect between winter conditions and the 

presence of subordinate males during hibernation (Rézouki et al. 2016). 

 Climatic factors, and particularly climate change, is therefore expected to 

strongly affect the social structure of the Alpine marmot population and consequently its 

population dynamics. Accordingly, a preliminary analysis we conducted using the de-

lifing method shows a strong increasing trend in the relationship between group size and 

group contribution to population growth rate between 1990 and 2014 (Fig.VI.1). This 

change in the influence of group size on group contribution to growth rate seems in turn 

directly related to an evolution of the relationship between dominant contributions and 

group size (Fig VI.2). Interestingly, we also found that dominant contribution to 

population growth rate was exactly matching the pattern of dominant recruitment. 

 

Figure VI.1. Time series of the effect of group size on group contribution to population 
growth rate between 1994 and 2014 in the Grande Sassière nature reserve population. 
Points represent the slope of the linear regression of group contribution to growth rate 
according to its size. Data for each year were transformed prior to analysis to have a 
mean of zero and a standard deviation of one.  
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Figure VI.2. Time series of the group size effect on dominant contribution to population 
growth rate (purple) and on dominant contribution to recruitment (blue) between 1994 
and 2014 in the Grande Sassière nature reserve population. Points represent the slope of 
the linear regressions of group size on dominant annual fitness or recruitment. Data for 
each year were transformed prior to analysis to have a mean of zero and a standard 
deviation of one. 

In the same time, the relationship between subordinate contribution to population growth 

rate and group size does not show any significant temporal trend. Altogether, these 

results indicate that the balance between cost and benefits associated to group size and 

composition for dominant individuals is likely to be impacted by ongoing climate 

change. The effect of climate change in Alpine marmots therefore seems to be mediated 

through the effect of sociality on demographic rates.  

 Further research should therefore integrate this climate change dimension in 

order to fully understand the population dynamics of Alpine marmots. 
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Figure VI.3. Time series of the group size effect on subordinate contribution to 
population growth rate between 1994 and 2014 in the Grande Sassière nature reserve 
population. Points represent the slope of the linear regressions of group size on dominant 
annual fitness or recruitment. Data for each year were transformed prior to analysis to 
have a mean of zero and a standard deviation of one. 

 13.2. Individual Based Model 

One possible way further to better describe and understand the mechanisms driving 

population dynamics in Alpine marmots would be the development and use of an 

individual based model (Judson 1994). By combining the results of the numerous studies 

on Alpine marmots (e.g. Allainé et al. 2004, Cohas et al. 2008; Tafani et al. 2013; 

Dupont et al. 2015; Berger et al. 2016 and this thesis), we could construct a model that 

fully accounts for social influences on individual demographic rates and see if the 

resulting groups and population dynamics match the observed population dynamics. The 

use of individual based model is particularly fit to study social species because it allows 

to explicitly incorporate interactions between individuals within social groups but also 
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(potentially spatially explicit) interactions between social groups, two features that do 

not possess matrix models (Caswell 2001). 

 In addition, the analysis of such individual-based model would allow to quantify 

the relative importance of the different effects of sociality for the overall population 

dynamics. Indeed, the different results reported here do not take into account the effect 

size associated with it and some social effects might only marginally affect the overall 

population dynamics of Alpine marmots. By varying the values and intensity of these 

effects, an individual based model constructed after these results would allow us to 

identify and contrast the main drivers of the population dynamics. As an example, this 

could allow us to determine whether the effect of early-life social context (chapter III) is 

really important for individuals to reach dominance compared to other factors affecting 

dominance access like, say, dispersal (chapter IV). The results obtained in Chapter V 

may already give us clues as to the importance of these different factors. It seems, that 

the main driver of group contributions to the population growth rate is the recruitment, 

largely influenced by group size, and more specifically by the presence of male helpers 

(Allainé & Theuriau 2004), indicating that juvenile survival is probably a key process in 

the overall population dynamics of Alpine marmots However, this result only holds for 

the yearly growth rate and does not allow for testing of delayed effects, contrary to a 

thorough analysis of an individual based model constructed with great caution. 

14. Conclusion 

In this thesis, I have presented different studies aiming at the same general goal: 

understanding the consequences of group-living from the individual to the population 

level. With these different studies (some of which are only beginning), I tried to bring 

together results of previous research on the Alpine marmots and provide new results 

about little-known aspects of this cooperative breeder. Notably, I started by highlighting 

the presence of long-term developmental consequences on the ability to reach a 

dominant status potentially entailing important fitness consequences. 

A large part of my work also focused in developing new models to be able to 

make the most out of the long-term individual-based data set at hand in order to answer 

new questions. This concern about methodological issues allowed me to study the causes 

and consequences of dispersal in Alpine marmots, a part of its life history porrly known 

until now. Following this I was able to quantify the important consequences of dispersal 
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at both the individual and group levels. Additionally, this work has paved the way for 

other studies on dispersal in Alpine marmots and notably further studies should look at 

the influence of group composition on the probability to leave the natal territory and 

succeed in becoming dominant for both males and females. 

I also presented the first study linking the composition of the family groups to the 

overall population dynamics in Alpine marmots and showed how it was related to 

individual demographic rates. However, further studies are required to better understand 

the relationship between lifetime individual fitness conditioning the decisions of 

dominants and subordinates and how it relates to optimal group composition and group 

dynamics. 

 Finally, understanding the relationships between individuals within groups and 

between groups in the Alpine marmot will help understand the reasons that led to the 

evolution of such social systems and how it may evolve in the future. The Alpine 

marmot system also provides this unique opportunity to study evolutionary changes in 

ecological times (to paraphrase Coulson et al. (2006)) and the evolutionary demography 

of Alpine marmots should be a very prolific field of study in the near future. 
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Appendices 
 

A. Age-specific survival in the socially monogamous 
alpine marmot (Marmota marmota): evidence of 

senescence  

B. Phylogeographic history of the Alpine marmot 

 
Abstract:  In this last section, I present two additional articles published by the research 
team to which I contributed during my thesis.  
The first article was published as part of the thesis of Dr. Berger entitled “Senescence 
and sociality: the example of the Alpine marmot (Marmota marmota)”. My contribution 
to this article was mainly in helping developing and analysing multi-event capture-
recapture models to study the sex-specific survival trajectories of dominant Alpine 
marmots. 
The second article was published as part of the post-doctoral project of Dr. Bichet called 
“Intra and inter-populations genetic diversity in the Alpine marmot (Marmota 
marmota)”. My contribution to this project was mainly in gathering data and managing 
the field-work team in the Aussois population in the Vanoise National Park. I also 
participated in revising the manuscript. 

Keywords: Senescence patterns · Threshold models · Genetic differentiation · Phylogeographic 
history·  
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Age-specific survival in the socially monogamous alpine marmot 
(Marmota marmota): evidence of senescence

VÉRANE BERGER, JEAN-FRANÇOIS LEMAÎTRE, PIERRE DUPONT, DOMINIQUE ALLAINÉ, JEAN-MICHEL GAILLARD, AND 
AURÉLIE COHAS*

Université de Lyon, F-69000, Lyon; Université Lyon 1;  CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive,  
F-69622, Villeurbanne, France

* Correspondent: aurelie.cohas@univ-lyon1.fr

We investigated age-specific variation in survival of dominant individuals in a long-lived and monogamous 
mammal, the alpine marmot (Marmota marmota), from a large dataset collected during a 24-year intensive 
monitoring of a free-ranging population. We found evidence of actuarial senescence in dominant individuals 
for both sexes. Survivorship was constant with age until dominant marmots were between 6 and 8 years of age 
and declined markedly thereafter. No between sex differences occurred in the intensity of actuarial senescence, 
which might be related to the weak intensity of sexual selection in this socially monogamous mammal. More 
investigations are needed to know whether cooperative breeding, hibernation, and monogamy, which are key 
features of the alpine marmot life history, could have shaped the patterns of actuarial senescence we report.

Key words: ageing, cooperative breeder, multievent models, sciurids
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Actuarial senescence is defined as the increase in annual mor-
tality with age (Ricklefs 1998; Nussey et al. 2008). It has been 
argued that actuarial senescence has evolved because of the 
decline of natural selection forces with increasing age, as dem-
onstrated by pioneer works (Medawar 1952; Williams 1957; 
Hamilton 1966). During the last century, it was believed that 
ageing does not occur in wild populations because individuals 
die before the occurrence of any sign of senescence (Medawar 
1952; Comfort 1956). However, thanks to the detailed analyses 
of long-term individual monitoring, actuarial senescence has 
been widely documented in free-ranging and age-structured 
populations during the last 2 decades, especially in vertebrates 
(review in Nussey et al. 2013). In addition, there is now com-
pelling evidence that senescence displays highly variable pat-
terns across the tree of life (Jones et al. 2014).

As senescence is grounded into life history evolution (Jones 
et al. 2008; Lemaître et al. 2015), having a comprehensive view of 
senescence patterns allows understanding factors shaping popula-
tion dynamics. To date, most senescence studies have focused on 
the analysis of the rate of senescence (e.g., Ricklefs 2010), which 
has been shown to vary greatly among individuals (Bouwhuis 
et al. 2010), populations (Lemaître et al. 2013), and species 
(Jones et al. 2008). However, variation in the age at the onset of 
senescence also contributes to shape senescence patterns (Péron 
et al. 2010; Gamelon et al. 2014). Although both Williams (1957) 

and Hamilton (1966) explicitly stated that actuarial senescence 
should set on after the age at 1st breeding, accumulating empirical 
evidence indicates that it is not the case (Péron et al. 2010). For 
example, in alpine ibex (Capra ibex), the age at 1st reproduction 
is between 2 and 3 years old, whereas actuarial senescence only 
occurs from 7 years of age onward (Toïgo et al. 2007).

Studying senescence in the wild requires longitudinal data on 
known-aged individuals over their entire lifespan. Mammalian 
species that are monogamous and cooperative breeders have 
rarely been the target of such long-term studies, which leads 
our understanding of actuarial senescence in these species to be 
currently limited. To date, only 5 studies have investigated the 
age-specific variation in survival using transversal (Alouatta 
palliata—Froehlich et al. 1981, Castor canadensis—Bergerud 
and Miller 1977) or longitudinal (Helogale parvula—Waser 
et al. 1995, Lycaon pictus—Creel and Creel 2002, Rhabdomys 
pumilio—David and Jarvis 1985, Alouatta seniculus 
—Larson et al. 2016) data. On the contrary, mammals in which 
only mothers care for young have been the subject of many 
detailed analyses of actuarial senescence (reviewed in Nussey 
et al. 2013). Yet, cooperative breeder species, where nonparent 
individuals help in raising young of dominants (Jennions and 
Macdonald 1994), display typical life histories with delayed 
age at 1st reproduction and decreased environmentally driven 
mortality risks that could shape senescence.

Journal of Mammalogy, xx(x):1–9, 2016
DOI:10.1093/jmammal/gyw028
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Additionally, a growing number of studies provide evi-
dence that in mammals, sex is an important cause of vari-
ation in actuarial senescence (e.g., Loison et al. 1999; 
Descamps et al. 2008; Greiner et al. 2013; Gamelon et al. 
2014; Tidière et al. 2015). Williams (1957) predicted that 
senescence should be more rapid for the sex with the high-
est mortality rate and argued that males should display 
faster actuarial senescence. Indeed, the costs associated 
with fights for mating, with growing large secondary sexual 
characteristics, and with monopolizing resources, should all 
be higher in males than in females. Such sex differences 
led Bonduriansky et al. (2008) to launch the term for male 
life history strategy referred to as “live fast-die young”. 
However, some species do not display any sex difference 
in ageing patterns (see Clutton-Brock and Isvaran 2007; 
Tidière et al. 2015 for some interspecific analyses). Our 
current empirical knowledge then indicates that the influ-
ence of sex on ageing patterns is more complex and is still 
poorly understood.

Since 1990, a free-ranging population of alpine marmots 
(Marmota marmota) has been monitored on an individual 
basis. The alpine marmot is a socially monogamous species 
breeding cooperatively (Arnold 1990). This species displays 
a long lifespan in the wild, as the oldest individual observed 
in our population was 16 years of age. Previous studies of 
this population have pointed out the complexity of senescence 
patterns in life history traits of alpine marmots. Tafani et al. 
(2013) found that male body mass peaks at 8 years of age 
and declines thereafter, whereas female body mass does not 
show any sign of senescence. Likewise, Berger et al. (2015) 
found that litter size remains constant with age until females 
reach 10 years of age and declines thereafter, whereas mass 
of pups does not show any evidence of senescence. As new 
evidence suggests that senescence in traits associated with 
individual fitness might show heterochrony (Nussey et al. 
2013; Hayward et al. 2015), it is crucial to analyze both 
demographic and phenotypic traits to have a comprehensive 
view of ageing processes within a given species. However, to 
date, age-specific changes in survival have not been yet inves-
tigated in this species.

Using an exceptional long-term individual monitoring 
of an alpine marmot population, we estimated age-specific 
changes of survival in dominant individuals and tested for 
sex differences of the rate of senescence. In our population, 
no subordinate individual older than 6 years of age was ever 
observed. All subordinates either died or become domi-
nant before being old enough to show senescence. Based 
on previous analyses of age-specific variation in body mass 
that provided evidence of sex-specific senescence pattern 
(Tafani et al. 2013), we expected that actuarial senescence 
should be more intense in males than in females, assuming 
that body mass is a good indicator of condition and survi-
vorship in this species, similarly to what has been reported 
for other mammals (e.g., Gaillard et al. 2000 in large 
herbivores, Ozgul et al. 2010 in yellow-bellied marmots, 
Marmota flaviventris).

MATERIALS AND METHODS

Study Species

Alpine marmots live in family groups of 2–16 individuals 
composed of a dominant couple, sexually mature (individu-
als from 2 years of age onward) and immature subordinates of 
both sexes (yearlings), and offspring of the year (Allainé 2000). 
Alpine marmots are territorial. The territory is shared by all 
family members but is mainly defended by the dominant pair.

The status of dominance is established for several years until 
the dominant marmot will be evicted by another individual or 
will die (Lardy et al. 2011). Dominant marmots mate during 
the 15 days following the emergence from hibernation (i.e., 
from early to late April). After 30 days of gestation, dominant 
females give birth to the sole litter of the year. The altricial off-
spring stay in the natal burrow during 40 days and once weaned 
emerge above ground between mid-June and mid-July (Psenner 
1956, 1960). At sexual maturity (i.e., 2 years of age), an indi-
vidual can stay as a subordinate in its natal group or attempt to 
become dominant by either inheriting the dominance status in 
its natal group or dispersing to gain dominance in another terri-
tory. A dispersing individual never joins a new family group as 
a subordinate (Magnolon 1999).

Dominant marmots monopolize reproduction by physiologi-
cally suppressing reproduction of almost all mature subordi-
nates of both sexes (Arnold and Dittami 1997; Hackländer et al. 
2003). However, when the group size increases, the control of 
subordinates through aggressive behaviors is less effective. 
Therefore, in large family groups, some subordinate males 
unrelated to the dominant female can escape the control of the 
dominant and mate with the dominant female. Moreover, when 
subordinate males disperse to try to reach the dominant posi-
tion in another territory, they can mate during dispersal with 
dominant females unbeknownst to the dominant males. In these 
2 cases, the dominant female can give birth to young fathered 
by both the subordinate or transient male and the dominant 
male (Cohas et al. 2006).

Hibernation is characterized by a cyclic process with alter-
nate hypothermia and euthermia phases (Arnold 1990). Group 
members hibernate together from mid-October to early April, 
and produce heat during periodic arousal, a phenomenon called 
social thermoregulation (Arnold 1990). However, all members 
of a family group do not have the same length and rhythm of 
hibernation. In particular, at each cycle, subordinate males 
wake up earlier and have longer euthermic periods than other 
family members, leading them to warm the burrow more than 
other group members (Arnold 1993). Consequently, subordi-
nate males act as helpers and their presence in a family group 
increases the probability of offspring to survive their 1st hiber-
nation (Allainé and Theuriau 2004), while they pay the costs in 
terms of body mass loss (Arnold 1988).

Study Site and Data Collection

Marmots were captured in a free-ranging population located 
in the Grande Sassière Nature Reserve (2,340 meters above 
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sea level, French Alps, 45°29′N, 6°59′E), from 1990 to 2013. 
Every year, marmots from 24 territories were monitored, from 
mid-April to mid-July, using both capture-mark-recapture and 
observations. Marmots were captured using 2-door live-cap-
ture traps baited with dandelions (Taraxacum officinale). Traps 
were placed near the entrances of the main burrows to assign 
easily each captured individual to its family group. Juveniles 
were counted and captured by hand within the 3 days following 
their 1st emergence from the natal burrow (i.e., approximately 
40 days after their birth). Captured animals were tranquillized 
with Zolétil 100 (Vibrac Corporation, St. Louis, Visconsin). At 
1st capture, unmarked individuals were implanted with a PIT-
tag (Trovan Ltd, www.Trovan.com, Cologne, Germany), and 
marked with a numbered ear tag. Tags were put on the right 
ear of females and on the left ear of males. In addition, a col-
ored plastic ear tag was placed on the opposite ear of dominant 
marmots. At each capture, marmots were sexed and their social 
status was determined (assessed as dominant when testes reach 
the bottom of the scrotum [males] and when large mammary 
glands were present [females]). Daily observations were con-
ducted and we further assessed the number of individuals of 
each sex and age class (pup, yearling, and adult) for each fam-
ily. Scent-marking behavior was used to confirm the identity of 
the dominant pair (Bel et al. 1995).

We measured age (in years) from birth and assigned the age 
of 0 to offspring. We knew the exact age of dominant individu-
als born on the study site (84 females, 82 males), but not the 
age of immigrants (29 females, 47 males). As most marmots 
disperse at 2 years of age and almost never reproduce before 
3 years of age (no female among the 84 females of known age, 
3 males among the 82 males of known age), we assigned the 
age of 3 to immigrants when they first reproduce.

Genetic analyses were performed to assess the certainty of 
the maternity and paternity of individuals. When an individual 
was not captured in a given year, its survival could be accessed 
through genetic analyses by revealing a pup production for a 
given year. Details about genetic and kinship analyses are pro-
vided in Dupont et al. (2015).

Capture–Recapture Analysis

Model structure.—Between 1990 and 2013, 242 marmots 
were captured as dominant individuals (113 females and 
129 males). We used multievent capture–recapture models 
(ME-CR—Pradel 2005) to investigate the influence of age on 
survival of dominant marmots because recapture probability of 
individuals was much lower than 1 (recapture probability vary-
ing from 0.380 to 0.886—Cohas et al. 2007) and not accounting 
for imperfect detection indeed leads to biased survival estimates 
(Gimenez et al. 2008). In these models, as in multistate models 
(Lebreton et al. 2009), each individual can only be in 1 of the 
3 following states: subordinate (s), dominant (D), or dead (†). 
Therefore, we were able to estimate different probabilities of 
survival for animals in the 2 live states and of transition prob-
abilities from one state to another (Fig. 1). In addition, multi-
event models allow taking into account uncertainty about the 
state of individuals and/or any additional information. Here, we 

incorporated additional information about the reproductive sta-
tus. Indeed, based on kinship analyses, we were able to deter-
mine whether an individual successfully reproduced (i.e., young 
emerging from the burrows) or not in a given year, even when 
the individual was not captured that year, thus allowing us to 
refine the survival estimates (Dupont et al. 2015). The different 
observable events retained were no information (event 0), indi-
vidual not captured but its pups were captured (event 1), indi-
vidual captured as dominant but none of its pups were captured 
(event 2), individual captured as dominant with its pups captured 
(event 3), individual captured as subordinate but none of its pups 
were captured (event 4), and individual captured as subordinate 
with its pups captured (event 5). Based on these events, capture–
recapture histories were constructed for each individual.

The constructed multievent model can be summarized by a 
transition matrix and associated vectors of survival, capture, 
and successful reproduction probabilities (only the 2 live states 
are shown since the parameters of the dead state are fixed to 
p† = 0; Ψ†† = 1; E† = 0, see Table 1 for the glossary of abbrevia-
tions and their meanings).
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where probabilities of capture (p), survival (Φ), reproduction 
(E) and state transition conditional on survival (Ψ) are defined 

Fig. 1.—Age-specific variation in survival of dominant adult marmots 
(Marmota marmota). The solid line represents survival estimated from 
model averaging of the 3 competitive models (in bold in Table 2) and 
the dashed lines the associated standard errors. The grey circles and 
the associated error bars represent the age-specific survival estimates 
and their associated confidence intervals for females, while the black 
triangles and the associated error bars represent the age-specific sur-
vival estimates and their associated confidence intervals for males.
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as: pt
x
, the probability that an individual in state x was captured 

during the year t; Φ t
x , the probability that an individual in state 

x in year t survived and did not permanently emigrate from the 
study area between t and t + 1; Ψt

xy , the probability that an 
individual in state x in year t is in state y in year t + 1 given that 
it survived and did not permanently emigrate from the study 
area between t and t + 1 and Et

x , the probability that an indi-
vidual in state x at time t had successfully reproduced this same 
year. Since dominant individuals never revert to subordinate 
state (Grimm et al. 2003), the transition probability from the 
dominant state to the subordinate state was fixed to 0 (ΨsD = 0), 
thus constraining the state transition probability from dominant 
to 1. Additionally, we fixed to 0 the transition probability from 
subordinate to dominant between 1 and 2 years of age and after 
6 years of age.

Model selection.—To investigate the influence of age on 
survival, we followed 3 steps as proposed by Lebreton et al. 
(1992):

1. Goodness-of-fit tests: We 1st tested whether a general 
model compatible with our biological knowledge fitted 
our data. To this purpose, we performed goodness-of-
fit (GOF) tests (Pradel et al. 2005) using the program 
U-CARE (Choquet et al. 2009a).

2. Obtaining a baseline model: Next, we selected the most 
parsimonious model, starting from a general model. 
Following Burnham and Anderson (2002), we built the 
general model by considering only a priori biological 
hypotheses based on literature (Arnold 1993; Farand et al. 
2002; Stephens et al. 2002; Grimm et al. 2003; Cohas et al. 
2008; Dupont et al. 2015). We thus considered effects of 
age, time, sex, and their 2-way interactions on all capture, 
state transition, and reproduction probabilities. For sur-
vival, we also considered the effects of time, sex, and the 
simplest age structure in 3 classes for subordinates (year-
ling, 2 years old, and aged from 2 to 6) and age structure 
in 2 classes for dominants (2 year old and aged from 3 to 
6). In addition, we considered an effect of the number of 
male helpers since a high number of these latter groups 
appeared to be beneficial in terms of juvenile survival 
(Allainé and Theuriau 2004). Consequently, we denoted 
the most general model as follows:

p a a t a a a a t

E a t

s s
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2 3 7 1 2 3 4 7

3 7

; * * * ; ; ; * *

* *
− −

−

( ) ( )sex helpm sex
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  Φ
eex sex sex
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p a t a a t

E a t a

D D

D sD
3 7 3 4 17

3 17

− −

−

( ) ( )
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* * ; * *

* *

Φ
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 Following a step-down approach, models were sequen-
tially fitted with constrained parameterizations for recap-
ture, survival, transitions, and reproduction probabilities, 
in that order. We then checked that the best model could 
not be improved by exploring all nested models differing 
by only 1 effect.

3. Testing for age-specific survival: To test for age-specific 
variation in survival we fitted age-specific models by 

considering age as a linear or quadratic covariate, or as a 
categorical factor. We further fitted threshold models by 
holding survival constant until a threshold age, beyond 
which it linearly depended on age. The tested threshold 
age varied between 5 and 15 years. For each of these mod-
els, we also included a possible sex effect. Model selection 
and parameter estimation were performed using the pro-
gram E-SURGE 1.8.5 (Choquet et al. 2009b). Estimates 
and standard errors of regression slopes reported in the 
result section are on the logit scale. All other parameters 
are given on the absolute scale. The associated standard 
errors were obtained by the delta method (Burnham and 
Anderson 2002). When several candidate models were 
competitive (i.e., differences in Akaike Information 
Criterion [AIC] less than 2), we performed a multimodel 
inference based on AIC weights (w

i
) to produce mean esti-

mates averaged across the different models of interest.

Comparing the onset of actuarial senescence estimated 
in marmots with the expectation based on early life history 
traits.—The onset of actuarial senescence in alpine marmots 
has not been previously investigated. Péron et al. (2010) pro-
vided a life history model that allows predicting the onset of 
actuarial senescence across bird and mammal species based 
on their early life history traits. From a dataset included spe-
cies studied using capture-mark-recapture and after accounting 
for potentially confounding effects of phylogeny, Péron et al. 
(2010) found that the onset of actuarial senescence is expected 
to be equal to

Onset  exp 22 log   1 78 34 2= +( . ( ) . / ( ). .0 0 0 0A F S A

where A is the age at 1st reproduction, F the annual prime age 
fecundity, and S the juvenile survival (between birth and 1 year 
of age).

We included A, F, and S values that we got from our studied 
population of alpine marmots to calculate the age at the onset 
of senescence expected for marmots. We then compared this 
expected value to the value obtained from the survival analysis 
of our studied population.

RESULTS

Goodness-of-fit tests.—The overall goodness-of-fit (GOF) 
test of the Cormack–Jolly–Seber model (i.e., the fully time-
dependent model) was statistically significant (χ2 = 159.58, 
d.f. = 79, P < 0.01) due to transience detected by the 3SR com-
ponent test or also called the Brownie–Robson test (χ2 = 93.55; 
d.f. = 22, P < 0.01). Individuals considered as transients were 
in fact pups that did not survive to their 1st hibernation and 
were thus captured only once. A 2nd GOF test was thus run on 
a dataset from which the 1st occasion of capture for individu-
als caught as pups was removed. The overall GOF test was no 
longer statistically significant (χ2 = 28.87, d.f. = 56, P = 0.99) 
nor was the transience test (test 3SR; χ2 = 21.55, d.f. = 22, 
P = 0.49). Yet, taking into account age classes in the baseline 
model solved the initial problem of apparent transience.
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Baseline model.—After selection using AIC (see Supporting 
Information S1), the baseline model was

p a a a a t sex a helpm a a a

t E a a a

s s

s
1 2 3 4 7 1 2 3 4 7
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Survival varied over time, between status, and age classes. 
Dominant adults had a higher survival (0.773 ± 0.016) than sub-
ordinate adults (0.550 ± 0.024), which can result from natal dis-
persal of subordinates outside the study site (Magnolon 1999) 
that cannot be distinguished from death.

Age-specific survival.—Dominant alpine marmots dis-
played clear evidence of senescence in survival (Table 2). 
Both linear and quadratic models performed poorly com-
pared to the baseline model. Our results rather showed a 
threshold pattern of survival where survival remained con-
stant until a threshold age and declined thereafter (Fig. 1). 
Three threshold models received strong support with an age 
at the onset of senescence at 6, 7, and 8 years of age, respec-
tively. As these models provided similar fit, we performed a 
model-averaging procedure to estimate the constant survival 
during early ages and the rate of actuarial senescence, and 
thereby age-specific survival estimates. Survival remained 
constant at 0.79 ± 0.02 from 3 years of age until the thresh-
old age (in females: 0.82 ± 0.02; in males: 0.78 ± 0.02) until 
6 years of age and then declined to 0.31 at 16 years of age 
(βaveraged = −0.25; Fig. 1; see Supporting Information 
S2). Neither early adulthood survival nor the rate of senes-
cence differed between sexes (Table 2). As expected, the 

number of individuals monitored decreased with increasing 
age, which led error bars from the full dependent age model 
to be larger for old than for young individuals, especially 
in males.

DISCUSSION

Survival starts to decrease from 6 to 8 years of age in dominant 
alpine marmots, which is quite similar to the value obtained 
from the model in Péron et al. (2010) based on the covariation 
among early life history traits across bird and mammal spe-
cies. Indeed, model in Péron et al. (2010) predicts an onset of 
actuarial senescence of marmots at 6.5 years of age. However, 
as most marmots start reproducing at 3 years of age, the onset 
of actuarial senescence of alpine marmots is delayed compared 
to the theoretical assumption that actuarial senescence should 
start at the age at 1st reproduction (Williams 1957; Hamilton 
1966). Although the age-specific survival patterns we report in 
alpine marmots does not fit with theoretical expectations, sev-
eral iteroparous species showed similar patterns (e.g., Stolen 
and Barlow 2003; Toïgo et al. 2007; Descamps et al. 2008; 
Bronikowski et al. 2011). Our case study on alpine marmots 
thus contributes to the growing empirical evidence supporting 
that the synchrony between the age at 1st reproduction and the 
age at the onset of senescence is rather the exception than the 
rule. Finally, contrary to our expectation based on senescence 
patterns observed in body mass, the rate of actuarial senescence 
did not differ between sexes.

The absence of sex difference in the strength of actuarial 
senescence we report for alpine marmots does not support the 
expected “live fast, die young” life history strategy expected 
to be displayed by males (Bonduriansky et al. 2008). Indeed, 
our finding markedly contrasts with studies of other mammal 
species that reported earlier or stronger senescence in males 
compared to females (e.g., Gaillard et al. 2003; Lemaître and 
Gaillard 2013). However, these studies included polygynous 
species for which reproductive effort is much greater in males 
than in females (Clutton-Brock and Isvaran 2007; Bonduriansky 
et al. 2008; but see Greiner et al. 2013). In polygynous spe-
cies, the intensity of sexual selection is expected to drive the 
magnitude of sex differences in actuarial senescence (Clutton-
Brock and Isvaran 2007; but see Tidière et al. 2014). On the 
contrary, in monogamous species, like the alpine marmot, the 
intrasexual competition is similar in both sexes and sex-specific 
differences in ageing should not be marked in monogamous 
species (Bonduriansky et al. 2008), which is supported by sev-
eral empirical studies (Clutton-Brock and Isvaran 2007; Larson 
et al. 2016).

In females, the onset of actuarial senescence is consistent 
with the onset of senescence reported for reproductive success 
(approximately 8 years of age—Berger et al. 2015) but mark-
edly differs from the senescence pattern reported in body mass 
(with an absence of senescence—Tafani et al. 2013). In males, 
no information on age-specific variation in reproduction is 
available but body mass starts to decrease from about 8 years 
of age, which is consistent with the onset of actuarial senes-
cence we report here. Surprisingly, alpine marmots displayed 

Table 1.—Abbreviations used in model notations.

Abbreviations Meanings

P Recapture probability
Φ Survival probability
ΦD Survival probability of  

dominant individuals
1 − Φ Mortality probability (encompassing both  

mortality and dispersal probabilities for  
individuals older than 2 years of age)

Ψ State transition probability (conditional 
on survival)

E Event probability (probability of  
successful reproduction)

Subscript
a

1
Age from 0 to 1 year

a
2

Age from 1 to 2 years
a

x-y
Age from x to y

a
x+...+y

Age classes x+...+y
Sex Sex
T Time effect (years)
* Interactive effects
+ Additive effects
Helpm Number of male helpers present  

during the 1st hibernation
Superscript
S Subordinate status
D Dominant status
† Dead
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sex differences in body mass senescence, which involves the 
decline of body mass with increasing age in males but only a 
last year effect in females (Tafani et al. 2013), whereas no sex 
difference occurred in the rate of actuarial senescence. Two 
possible explanations may explain this pattern. First, in the 
alpine marmot, the senescence in body mass is independent 
of the senescence in other traits, as expected if fitness-related 
traits show heterochrony in their senescence patterns (Nussey 
et al. 2013). Such variable patterns of senescence have been 
recently reported in Soay sheep (Ovis aries) across 20 pheno-
typic traits (Hayward et al. 2015). Second, the senescence in 
body mass has implications for senescence in fitness traits, but 
could target reproduction rather than survival in marmots. As 
males consume more energy than do females during hibernation 
(Arnold 1986, 1988), sex differences in body mass could result 
from highest costs of hibernation in males and one can specu-
late that this may potentially strengthen reproductive senescence 
(i.e., the decline of reproductive output, including probability 

to give birth, litter size, or offspring size, with increasing age). 
However, in monogamous species such as the alpine marmot in 
which reproduction of dominant males is strongly associated to 
that of females and the loss of dominance (reproduction) is asso-
ciated to death in both sexes (Lardy et al. 2011), it is not easy 
to understand why reproductive senescence could be stronger 
in males than in females. However, assessing sex differences in 
reproductive senescence is required to assess a potential heter-
ochrony of senescence among demographic traits.

The pattern of actuarial senescence in alpine marmots we 
report could result from the high level of sociality of this spe-
cies. In cooperative breeders, individuals in the family group 
help, warn, defend, or check the territory, which leads to 
decrease environmentally driven mortality (Komdeur 2010). 
Moreover, in cooperative breeders, both dispersal and repro-
duction are delayed for several years (Koenig et al. 1992). 
Additionally, helpers may contribute to decrease the reproduc-
tive effort of dominant individuals (Crick 1992). Cooperative 

Table 2.—Model selection for the effects of age on survival of dominant alpine marmots (Marmota marmota) marked from 1990 to 2013 
(N = 242). ΦD corresponds to survival of dominant individuals. T

i
 corresponds to a constant survival until the threshold age (i) followed by a linear 

decline of survival with increasing age. Φa
D

2 16
 corresponds to a linear decrease of survival from age 2 to age 16. Φa a

D

2 16
 corresponds to the full 

age-dependent model. All other parameters (transition, capture, and reproduction) are fixed as in the baseline model. AICc: Akaike Information 
Criterion corrected for small sample sizes; k: number of identifiable parameters; ΔAICc: difference in AICc between the candidate model and the 
model of the set with the lowest AICc; AICw: AICc weight. The selected model including an age effect is in bold and is highlighted with gray shad-
ing, and the competitive candidate models are in bold.

Model notation Deviance k AIC AIC AICw

ΦΦ ++T
D t
8

6,108.39 113 6,334.39 0 0.25

ΦΦ ++T
D t
7

6,108.48 113 6,334.48 0.09 0.24

ΦΦ ++T
D t
6

6,110.36 113 6,336.36 1.97 0.09

Φ +T7

D * sex t 6,106.55 115 6,336.55 2.16 0.08

Φ +T8

D sex t* 6,106.56 115 6,336.56 2.17 0.08

Φ +T
D t
9

6,110.78 113 6,336.78 2.39 0.07

Φ +T
D sex t
6
* 6,108.38 115 6,338.38 3.99 0.03

Φ +T
D t
5

6,112.54 113 6,338.54 4.15 0.03

Φa
D t
2 16−
+ 6,112.80 113 6,338.8 4.41 0.03

Φ +T
D * sex t
9

6,109.08 115 6,339.08 4.69 0.02

Φ +T
D t
10

6,113.97 113 6,339.97 5.58 0.01

Φ +T
D * t
5

sex 6,110.55 115 6,340.55 6.16 0.01

Φ + Φa
D

a
D + t

2 16 2 16
6,110.64 115 6,340.64 6.25 0.01

Φ +a
D * sex t
2 16

6,110.89 115 6,340.89 6.5 < 0.01

Φ +T
D * sex t
5

6,112.42 115 6,342.42 8.03 < 0.01

Φ +T
D t
11

6,116.44 113 6,342.44 8.05 < 0.01

Φ +T
D t
14

6,117.74 113 6,343.74 9.35 < 0.01

Φ +T
D t
15

6,117.94 113 6,343.94 9.55 < 0.01

Φ +T
D t
12

6,118.39 113 6,344.39 10 < 0.01

Φ + Φa
D

a

D* sex * sex t
2 16 2 16

2 + 6,108.67 118 6,344.67 10.28 < 0.01

Φ +T
D t
13

6,118.81 113 6,344.81 10.42 < 0.01

Φ +T
D * sex t
11

6,115.03 115 6,345.03 10.64 < 0.01

ΦT
D * sex t
14

+ 6,115.89 115 6,345.89 11.5 < 0.01

ΦT
D * sex t
15

+ 6,116.68 115 6,346.68 12.29 < 0.01

Φ +T
D * sex t
12

6,117.14 115 6,347.14 12.75 < 0.01

Φ +T
D * sex t
13

6,117.53 115 6,347.53 13.14 < 0.01

Φ ++ +a a
D t
2 16

6,097.49 127 6,351.49 17.1 < 0.01

Φ ++ +a a
D * sex t
2 16

6,077.17 142 6,361.17 26.78 < 0.01
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breeding influences biological times (i.e., by delaying age at 
1st reproduction) and leads the species-specific pace of life to 
slow down, which might ultimately delay the onset of actu-
arial senescence (e.g., Jones et al. 2008). Indeed, the released 
energy costs of reproduction for breeders offered by helpers 
can be allocated in somatic maintenance and can potentially 
delay senescence (Bourke 2007). At the intraspecific level, 
the evidence for associations between sociality and actuarial 
senescence is scarce (e.g., Paquet et al. 2015). Although further 
investigation is required, we suggest that a high level of social-
ity should delay the onset of actuarial senescence in coopera-
tive breeders.

Moreover, hibernation is also expected to shape the actuarial 
senescence pattern in alpine marmots. Hibernation is an energy-
saving tactic that strongly affects life history strategies (Turbill 
et al. 2011). Thus, from a comparative analysis across mam-
mals, Turbill et al. (2011) showed that hibernation slows down 
the pace of life. In particular, they found that small hibernat-
ing mammals have longer maximum longevities (50% greater), 
survive better over the winter (by 15%), reproduce at slower 
rates, mature at older ages, and have longer generation times 
than nonhibernating mammals of similar size. In other words, 
hibernation slows down the pace of life. As senescence is 
strongly linked with the pace of life (Jones et al. 2008), hiberna-
tion should also strongly impact senescence patterns. In Alpine 
marmots, all members of the family group hibernate altogether. 
Males enter first at each cycle in euthermia phases and warm 
the hibernaculum, providing heat for the other members of the 
family group. The phenomenon is called social thermoregula-
tion (sensu—Arnold 1990). The energy saved during the winter 
through social thermoregulation during hibernation could thus 
be reallocated into somatic maintenance. Social thermoregu-
lation during hibernation could thus also shape senescence in 
alpine marmots. However, further research is required to know 
whether such reallocation mechanisms allowed by hibernation 
takes place in the alpine marmot.

We showed that actuarial senescence does occur in dominant 
alpine marmots of both sexes from about 6 years of age. The 
alpine marmot displays a delayed senescence relatively to the 
age at 1st reproduction that might come from the sociality of 
this species and/or the social thermoregulation during hiberna-
tion, an energy-saving strategy. The absence of sex differences 
in senescence patterns we report on alpine marmots could be 
associated with the weak intensity of sexual selection experi-
enced by monogamous species.
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