Keywords: Image-based rendering and modeling, Rendering, Bayes methods, Estimation, MVS reconstruction Shape-preserving Warp, Superpixels, Deep Learning

In the period of working for my doctoral studies And lastly producing this written document, Many people have been involved. For all of them I present my gratitude. However I would like to highlight three people without whom, this thesis would not be possible: My supervisor George Drettakis and my colleagues Abdelaziz Djelouah and Gaurav Chaurasia. All of them are not only science-wise role models but also kind people that worry about the well-being of everybody around them. My acknowledgment and deep admiration to them. I do not want to miss the name of anyone. I am grateful to the members of the CR-PLAY consortium and the EU commission who financially funded my thesis. Grateful to my

Chapter 1

In computer graphics, rendering refers to the process of generating 2D images from a model of the scene, with applications in video games, film industry, scientific visualization among others. Traditionally, the model of the scene is composed by 3D geometry, material properties (including textures, normal maps, bump maps etc.), lights and animations for dynamic scenes. Rendering algorithms are then applied to produce the final image. Two well-known techniques are Scan-line Rasterization and Ray Tracing. Scan-line Rasterization geometrically projects the scene to an image plane while Ray Tracing algorithms intersect rays emanating from the camera with the geometry of the scene to find the visible point at each pixel. Global illumination algorithms often use ray-tracing to implement physically-based techniques and simulate the interaction between light and materials [START_REF] Pharr | Physically based rendering: From theory to implementation[END_REF]. Nowadays, with exhaustive detailed modeling of the scene, ray tracing algorithms are very close to achieving one of the most important goal of computer graphics: realism (see Fig. 1.1). The process of modeling geometry, defining and assigning materials and lights is very complex. Depending of the size of the scene, it requires weeks of laborious work and expertise to precisely define material properties, geometric details, etc. The degree of realism is heavily influenced by the number of primitives used in describing the scene. Some automatic methods have been developed to overcome manual efforts of creating scenes.

For geometry capture, examples include technologies for precise surface acquisition, like laser scanners, which however are still inaccessible to casual users and are too expensive for small business. Others, like Kinect-based solutions, present problems in open exterior spaces; the resulting meshes often need to be refined and completed by skillful artists. Another option is image-based reconstruction which might not offer enough accuracy and completeness for high-quality photo-realistic rendering, and currently does not easily allow material capture.

Material capture has also evolved in recent years, allowing acquisition of some properties from photographs. Most such solutions however involve controlled lighting, or laboratory setups and are not yet mature enough to substitute manual material creation for synthetic scenes. Overall, current techniques for geometry and material capture do not allow easy creation of synthetic digital assets and manual work of the artist is still central.

Once the scene is prepared, global illumination algorithms can render views from a desired camera position and direction. These algorithms require an enormous computational effort. Per single frame, it may take hours to simulate indirect light since a huge number of samples is required for accurate computation. Consequently, precise geometry plays a primary role in the simulation. For interactive graphics application, global illumination is still very expensive. Normally, such methods have been use off-line, for example, for film production.

In summary, correctly creating a scene for realistic rendering is a long process that requires expertise and long manual treatment. Despite many recent advances in rendering algorithms, expensive lighting simulation is still required to achieve realism. Content creation for traditional renderers face a trade-off between detailed complex models and time-to-deliver while rendering algorithms always provide a trade-off between rendering time and final image quality.

In this thesis, we focus on image-based rendering algorithms which avoid both the time-consuming content creation phase and expensive lighting simulation. Evidently, such approaches suffer from limitations, namely reduced image quality when moving away from input views, and large memory requirements. We provide new solutions to address these limitations.

Context and Motivation

In this context, content creation for rendering has evolved to more casual procedures, making graphics technologies available to wide number of users. For example, Computer Assisted Design (CAD) tools like SketchUp 1 allow easy creation of rough 3D graphics. With applications like Autodesk 123D 2 everyone can obtain 3D models of real objects 1.1. Context and Motivation 3 from a set of photographs taken with mobile phones. The Tango project3 enables mobile devices with an on-board Time-of-Flight camera to provide point clouds of the scene. Large databases of 3D objects with semantic annotations are continuously increasing like ShapeNet4 and Objectnet3D5 . All these are examples of new sources of content that can be potentially used for high-quality rendering. With this heterogeneous content, rendering algorithms have to adapt to integrate these kind of models into the rendering process and deal with imperfect geometric data. Image-based Rendering (IBR) presents an alternative in such scenarios where the difficulty of producing realistic models of real environments is greatly reduced by replacing the entire rendering process with image interpolation, assisted by 3D reconstruction from images. Instead of relying on 3D geometry, predefined material characteristics and a subsequent complex lighting simulation, IBR uses information contained in photographs to synthesize novel view-points of the scene. Another way to see the IBR paradigm is that "Nature already simulates light and material interactions with the right model for free". This is one of the informal principles of IBR, namely that 3D geometry plays a secondary role while 2D images are directly used at rendering time to look up information of possible novel view appearance.

How we sample this information (rays, pixels, superpixels), where we take the information (which cameras, which regions?) and how we blend that information are central elements of the different IBR approaches. Another important component is how much geometry is involved in this process.

In Fig. 1.3 we present an abstraction of the general IBR process. By encoding the model in photographs, IBR tries to solve core problems of computer graphics: First, the need for simpler modeling techniques so the representation becomes independent from scene complexity. Second, the need to dissociate the rendering time from scene complexity.

A very popular -but simplistic -IBR application is Google Street View, where the user can move to discrete locations to see environment maps of streets. Microsoft has also developed successful IBR commercial applications with Photosynth6 and Hyperlapse7 . In the former, the user can interpolate between the photographs. In the latter, an algorithm optimizes a smooth camera trajectory and synthesizes a smooth video sequence from very shaky time lapses. All applications mentioned above restrict the rendering path to the positions of input views, while IBR methods that allow free-view point navigation make assumptions about the scene geometry. For instance, Street View assumes spherical projections of the world, while in Photosynth the user must use "a type of shooting" (spin, panorama, wall, walk) and thus making assumptions about scene geometry.

Recent IBR algorithms try to compensate for geometric errors by adapting the scene geometry in preprocessing or regularizing the synthesized view at render time. The key concept is visual plausibility: a generated view does not need to be physically correct but plausible to the human eye [START_REF] Zitnick | Stereo for image-based rendering using image over-segmentation[END_REF]. Methods that correct misalignments can be based on optical flow [START_REF] Eisemann | Floating Textures[END_REF], interpolate in world space from 2D correspondences [START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF], or use piece-wise regularization to preserve local shape [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. All of them process an initial approximate and incomplete 3D reconstruction; the creation of this "proxy" is considered a preprocessing step of the IBR algorithm.

In recent years, concurrently with this thesis, we have seen an accelerated progress of image synthesis using machine learning techniques. [START_REF] Rematas | Image-based synthesis and re-synthesis of viewpoints guided by 3d models[END_REF] and [START_REF] Zhou | View Synthesis by Appearance Flow[END_REF] have attempted to predict the appearance of novel views. Although their contributions have applications for inpainting and other vision tasks, their results are not good enough for high quality graphics as we can be seen in Fig. 1.4. Nonetheless, deep learning algorithms have reached a high level of robustness and accuracy for detection tasks. Thus, they can be used as a powerful tool to interpret image content and can be used in conjunction with large sources of available 2D and 3D data collections in order to enhance rendering.

Image-based rendering is related to, but quite different from Image-based modeling (IBM) [START_REF] Xiao | Image-based façade modeling[END_REF][START_REF] Xiao | Image-based street-side city modeling[END_REF][START_REF] Micusik | Piecewise planar city 3D modeling from street view panoramic sequences[END_REF]. The latter refers to the use of images to drive the creation of explicit 3D models with textures mapped on this 3D model, consistently with the reference views. For IBM the rendering algorithm is a separate and independent process. As mentioned previously, IBM assets usually require manual post-processing (e.g., addition of materials) before being used in a traditional rendering engine. The Vanishing of Ethan Carter8 is an example of a video game where most assets where acquired with IBM. Although IBR and IBM are orthogonal subjects, the natural way to acquire the scene geometry is through IBM, particularly, we are interested in acquisition with consumer level hand-held cameras due the simplicity and availability which might extend the range of users who use IBM.

Problem Statement

Problem Statement

In spite of the big advances in free view-point IBR during the current decade there is still room for improvement. In a standard pipeline for IBR without user intervention, the process starts with camera calibration, multi-view stereo and mesh reconstruction. In reality, each of theses steps can be incomplete and includes inaccuracies and errors. Even under perfect reconstruction information, one would ideally need an infinite number of photographs to freely render every view-point of the scene. In this thesis, we are interested in sparse casual capture, for example 10 to 30 photographs for a walk-through of 10-30 meters. Reconstructions and IBR methods have to make assumptions about the world to fill the lack of information. The relationships of all mentioned process with the final rendered image are very complex with many interdependent components.

In this thesis, we are interesting in urban scenes that represent a special challenge and use case because:

• Such scenes contain complex geometry (e.g. vegetation, specularities, transparencies, etc.) with complex appearance of different objects.

• Active cameras do not work in exteriors and so, multi-view stereo is required.

• Urban scenes need scalability. Scene size is large (compared for example to single-object capture), the number of cameras must be limited and the result should not require manual intervention.

Under these conditions, the goal of this thesis is to propose new approaches to improve high-quality image-based rendering of urban scenes acquired with hand-held cameras and free-viewpoint navigation. The unique restriction we have to capture is a static scene with fixed illumination. We address three main problems:

• Given a set of IBR algorithms, each of them has different quality/speed trade-offs and no single algorithm is better than all others. We investigate how to combine them so the final image has the best quality-speed trade-off.

• We investigate how to improve rendering of poorly reconstructed objects for IBR scenes given databases of 3D CAD models.

• We provide some initial results on identifying and correcting poorly reconstructed regions in IBR scenes.

Contributions and Overview

The rest of this thesis is structured as follows. In Chapter 2 we review the history of image-based rendering methods and group them in a taxonomic classification. In chapter Chapter 3 we present a principled way to choose amongst a set of IBR algorithms for each image region. This allows to maximize rendering quality while keeping or increasing the speed. Our real-time implementation has low computational requirements which allowed high quality Image-based Rendering on mobile platforms. In chapter Chapter 4 we present the first approach able to automatically augment IBR using objects from 3D databases.

In per-processing, a 3D CAD model is selected from a database. The model is aligned to image content and morphed to finely adapt it to image silhouettes. We applied our methods to cars which are often poorly reconstructed, and the resulting IBR quality is greatly improved. In chapter Chapter 5 we attempt to identify unreliable reconstruction information that affects rendering. We discuss two different approaches. First we use an image descriptor that detects regions with extra or missing geometry. In the second approach, we train a deep network with synthetic data to identify imprecise reconstruction.

Chapter 6 concludes the thesis, and presents some possible directions for future work.

Thesis context This thesis was in the context of the EU project CR-PLAY 9 , which focused on providing a usable IBR system for game development. As we will describe 9 www.cr-play.eu in Chapter 3, our work was actually used by game developers as part of an evaluation workshop, and provided concrete evidence of the potential of IBR in a real-world application.

Chapter It has been more than two decades since Image-Based Rendering has emerged as an alternative to polygon-based rendering. Since then, although IBR has been an active field of research, few surveys have been presented [START_REF] Shum | Review of image-based rendering techniques[END_REF][START_REF] Zhang | A survey on image-based rendering -Representation, sampling and compression[END_REF][START_REF] Shum | Image-based rendering[END_REF][START_REF] Lipski | Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality[END_REF]. Usually, IBR taxonomies are presented according to the accuracy and amount of geometry required by the different algorithms. The spectrum of methods varies from algorithms that do not require any geometry, IBR methods that use image correspondences (implicit geometry) to methods that require detailed explicit geometry (see Fig. 2.1). This continuum reveals that the number of reference views needed is inversely proportional to the available geometry.

Another way to classify IBR input data requirements is by considering the capture setup. IBR capture setups have been heavily influenced by the evolution of Computer Vision (3D reconstruction and image analysis). We could divide IBR methods circa the Chapter 2. Previous Work year 2000. Initial methods (see Section 2.1) either used synthetic images or involved a specific setup, often with user intervention. Low complex scenes or very restricted navigation were also common. In Section 2.2 we mention some reconstruction algorithms that influenced an evolution to unstructured casual captures with more complex scenarios and greater freedom in viewpoints permitted for navigation. Then, in Section 2.3 we present modern algorithms more related to our context.

Initial IBR Methods

In a systematic way, [START_REF] Adelson | The plenoptic function and the elements of early vision[END_REF] tried to derive the early visual cues1 that are involved in the human vision process. Their work influenced researchers in the Computer Vision and Graphics communities during the 90's [START_REF] Levoy | Light field rendering[END_REF][START_REF] Gortler | The Lumigraph[END_REF][START_REF] Mcmillan | Plenoptic modeling: An image-based rendering system[END_REF][START_REF] Shum | Rendering with concentric mosaics[END_REF][START_REF] Chai | Plenoptic sampling[END_REF]. Adelson and Bergen showed that all the basic visual measurements can be characterized as local changes of a single function called the plenoptic function2 . The plenoptic function P(V x , V y , V z , θ, φ, λ, t) has 7 dimensions and describes the radiance perceived from all positions (V x , V y , V z) and directions (θ, φ) for every possible wavelength λ at the time t. If we only consider static scenes (thus dropping t) with fixed light conditions (dropping λ), it takes the form: P(V x , V y , V z , θ, φ) see Fig. [START_REF] Gortler | The Lumigraph[END_REF].

Initial IBR approaches tried to explicitly sample the plenoptic function [START_REF] Mcmillan | Plenoptic modeling: An image-based rendering system[END_REF][START_REF] Levoy | Light field rendering[END_REF][START_REF] Gortler | The Lumigraph[END_REF]. Previously, [START_REF] Chen | View interpolation for image synthesis[END_REF] and [START_REF] Laveau | 3-D scene representation as a collection of images[END_REF] had demonstrated that sequences of synthetic images can be used to represent a scene as in Fig. 2.3. In between novel views could be created by interpolating the color and position of pixels for which dense optical flow was known beforehand. [START_REF] Mcmillan | Plenoptic modeling: An image-based rendering system[END_REF] were the first to use real scene photographs. They captured cylindrical panoramic (see top view in Fig. 2.2b). They could render cylindrical projection at discrete locations by stitching photographs, similarly to QuickTime VR [START_REF] Chen | Quicktime VR: An image-based approach to virtual environment navigation[END_REF]. These systems are only capable of describe image variations due to view rotations. View translations can only be approximated by "jumping" discretely from one environment map to another (location of the capture) comparable to what is nowadays Google Street View. [START_REF] Levoy | Light field rendering[END_REF] and [START_REF] Gortler | The Lumigraph[END_REF] simultaneously presented a 4D parametrization of the plenoptic function called Light Field or Lumigraph respectively. They encoded the scene's light rays by their intersection with two parallel planes stplane (near to cameras locations) and UVplane (behind the object of interest). Levoy & Hanrahan acquisition was done by densely sampling a regular grid on the st plane. Novel views could be render by querying rays and interpolating between them. Some commercial implementation of Light Fields cameras (Lytro camera3) allow to focus in different points of the photographs after the photo has been taken. While Levoy & Hanrahan used an electronic setup to regularly acquire photographs, Gortler et al. allowed a semi-unstructured capture around the object (see Fig. 2.2c) and marker-based calibration cameras to map camera positions toward the st plane. They also allowed the use of approximate geometry to restrict and correct the queried rays (to alleviate self-occlusions and quantization error). Thanks to this parametrization and capture setup, Light fields and Lumigraph systems can navigate around objects contained in between the two planes (Fig. 2.2d). For Lambertian surfaces this representation has a high degree of redundancy because they store many rays that intersect the object surface at the same point and therefore, represent the same color.

Another group of methods use explicit geometry in the form of polygonal meshes [START_REF] Debevec | Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach[END_REF] or dense depth [START_REF] Mark | Post-rendering 3D warping[END_REF], [START_REF] Shade | Layered depth images[END_REF]. Debevec et al. recover a scene "proxy", i.e., a simple geometric representation, from geometric primitives drawn by users. The accuracy of the recovered model is improved by computing re-projection offsets. This rendering algorithm texture mapped the recovered geometry with blending weights depending on the novel camera position. That was called View-Dependent Texture Mapping (VDTM) [START_REF] Debevec | Efficient view-dependent image-based rendering with projective texture-mapping[END_REF] and it is still used in The afore-mentioned IBR methods involved complicated capture (or use of synthetic data) and tedious user intervention. At the same time, they are restrictive in the navigation. Before going into more modern IBR systems, in Section 2.2 we give a brief overview of some reconstruction algorithms that allowed the evolution of IBR system.

Implicit and Explicit Reconstruction for IBR

In general, image-based rendering approaches that use geometry produce better rendering results. As mentioned before, geometric information could be presented implicitly in the form of correspondences between pairs of images (in Section 2.2.2) or explicitly with 3D reconstructions (in Section 2.2.1). In both cases, the natural way to obtain the scene geometry for IBR is through conventional photographs themselves without any further user intervention or specific device. At early stages, for each image, implicit and explicit reconstruction approaches detect interest points, match them and filter outliers. SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and SURF [START_REF] Bay | Surf: Speeded up robust features[END_REF] are well established local descriptors for interest points due to their invariance to image transformations. Inspired from SIFT, [START_REF] Tola | Daisy: An efficient dense descriptor applied to wide-baseline stereo[END_REF] designed a fast descriptor for dense matching that reports remarkable robustness for wide baseline camera setups. With a set of matched features, what is done after depends on the type of desired geometry. Correspondence methods use matched features to seed and propagate dense pixel-wise matches. 3D reconstruction methods use matched features to firstly calibrate input cameras and generate a sparse set of depth samples, then iteratively expand and filter 3D samples (stereopsis) and finally generate a mesh that approximates the scene geometry (proxy).

3D Reconstruction (Explicit geometry)

To be consistent with IBR, image-based reconstruction systems leverage only the information available in photographs. They start with a set of calibrated input views. Parameters of calibrated cameras are usually estimated with Structure from Motion (SfM). Structure from motion [START_REF] Tomasi | Shape and motion from image streams under orthography: a factorization method[END_REF] provides 3D point correspondences given 2D point matches in two or more images, and provides the camera matrices for these views.

The output of a SfM system is a sparse set of 3D points (structure) and camera parameters (motion). It was not until [START_REF] Snavely | Photo tourism: exploring photo collections in 3D[END_REF] presented a system called Photo tourism that SfM reached maturity and robustness to be used effectively with outdoor urban scenarios. Photo tourism allows navigation in a large collection of community photographs, with transitions from one view to another depending on their relative position. [START_REF] Snavely | Photo tourism: exploring photo collections in 3D[END_REF] iteratively refined the SfM optimization by minimizing re-projection error (Bundle adjustment4). Parallel implementations of SIFT feature detection [START_REF] Wu | SiftGPU: A GPU implementation of scale invariant feature transform (SIFT)[END_REF] and Bundle adjustment [START_REF] Wu | Multicore bundle adjustment[END_REF] are available in the VisualSFM5 tool. Other implementations of recent SfM methods that report more precision and robustness by automatically adapting SfM parameters [START_REF] Moulon | Adaptive structure from motion with a contrario model estimation[END_REF] are available in the library OpenMVG6 .

Given a set of calibrated cameras, recovering the static 3D information of a scene is one of the most active areas in Computer Vision. For complete and well known reviews of two-view and multi-view stereo techniques, see [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] and [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF] respectively.

Multi-View Stereo

The baseline of a stereo system is the relative distance between the cameras's optical centers with respect to the depth of the scene. In Fig. 2.5 we can see two different baseline configurations. [START_REF] Okutomi | A multiple-baseline stereo[END_REF] showed that using wider baselines produces several local minima on the matching score along epipolar lines. They proposed a window-based search along the corresponding epipolar line and as a search parameter (window size), they used inverse depth relative to the reference image. To resolve ambiguities, Okutomi & Kanade searched along the epipolar line of more than one neighboring view. Since then, stereo systems use multiple views (Multi-View) [START_REF] Furukawa | Accurate, Dense, and Robust Multi-View Stereopsis[END_REF][START_REF] Goesele | Multi-view stereo for community photo collections[END_REF][START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF] to improve matching robustness. As a drawback, this strategy implies to choose a reference view (which could be virtual) and to deal with occlusions.

Beside window-based stereo reconstruction, contour-based or voxel-based methods have been explored. An example of these alternatives is the Space Carving algorithm [START_REF] Kutulakos | A theory of shape by space carving[END_REF] that relies on silhouette extraction and initialization of a bounding box around an object of interest. Also, Space Carving needs to close the loop of capture; it is thus not suitable for open spaces as in street views reconstructions and requires more views than patch-based algorithms.

For IBR, rather than accuracy of reconstruction, desirable properties are robustness and scalability. [START_REF] Goesele | Multi-view stereo for community photo collections[END_REF] were able to extract dense depth maps from community photograph collections with high variability in the photo content. A globally consistent point cloud was obtained by merging depth maps. Another popular reconstruction was presented by [START_REF] Furukawa | Accurate, Dense, and Robust Multi-View Stereopsis[END_REF], 2010). From the center of calibrated cameras and starting with a sparse set of initial matches, they iteratively expand matches to nearby locations toward the exterior of the images while using visibility constraints to filter out false matches. If we would like to represent surfaces as triangular meshes we could use the point or patch clouds resulted from Goesele et al. or Furukawa & Ponce to feed a surface reconstruction algorithm as Floating Scale [START_REF] Fuhrmann | Floating scale surface reconstruction[END_REF] or traditional Poisson reconstruction [START_REF] Kazhdan | Poisson surface reconstruction[END_REF].

Although Goesele et al., Furukawa & Ponce and other approaches proposed different algorithms, the final 3D reconstructions are fairly similar (see Fig. 2.6b and Fig. 2.6c) because they all assume diffuse materials (Lambertian model) and thus they measure photo-consistency validity. "Holes" usually appear in specular surface such as the windows and car in Fig. 2.6a and in busy texture such as the tree and bushes in Fig. 2.6a.

The power of IBR is precisely to be able to render view dependent effects and complex surfaces without having a detailed 3D model. By definition these surfaces are not photo-consistent. Even though they are poorly supported in the point cloud, they represent real parts of the scene. [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF] can roughly approximate weakly supported surfaces by leveraging visual-hulls to reconstruct them. Improvement in reconstruction of these non photo-consistent surfaces can be seen in Fig. 2.6d. Piece-wise Planar Man-made scenes present strong regularities that can be approximated with piece-wise geometry. Also, planarity assumptions overcome the challenge when reconstructing texture-less surfaces. With this in mind, [START_REF] Zitnick | Stereo for image-based rendering using image over-segmentation[END_REF] and [START_REF] Sinha | Piecewise planar stereo for image-based rendering[END_REF] presented two approaches designed specifically for image-based rendering. Instead of trying to extract physically correct depth, Zitnick & Kang observed that one can synthesize plausible views from view-dependent piece-wise planar depth maps. They also observed that preserving contours was crucial for plausible view synthesis and thus they presented a color based over-segmentation algorithm to precisely delineate object boundaries. Dividing input images in a regular grid (seeds), they grouped neighboring pixels color using a simple K-means clustering. Although this superpixel over-segmentation was originally presented by Zitnick & Kang, the version of [START_REF] Achanta | Slic superpixels[END_REF][START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF], named SLIC -Simple Linear Iterative Clustering, became popular due the availability and efficient implementation limiting the range of search of K-means. Depth estimation at the superpixel level is more robust than at the pixel level. For each segment, Zitnick & Kang estimate depth solving a MRF on superpixel segments. For rendering, they assumed fronto-parallel segments with respect to the input camera where they belong. Vanishing directions serve to reconstruct 3D lines that will support the 3D planes. Finally they solve a graph-cut energy to assign pixels to planes with photo-consistency, depth and visibility cues. For rendering they used VDPM [START_REF] Debevec | Efficient view-dependent image-based rendering with projective texture-mapping[END_REF]. These reconstructions can appear incorrect for non planar objects such as vegetation and clutter.

To overcome this problem, [START_REF] Gallup | Piecewise planar and non-planar stereo for urban scene reconstruction[END_REF] generate plane hypothesis from depth maps with traditional top-down RANSAC. They fuse overlapping maps across the views to obtain a globally consistent set of plane hypothesis. To assign pixels to planes, Gallup et al. minimizes a graph-cut labeling energy that includes a non-planar label. The non-planar label was found with supervised learning, trained with hand-labeled non-planar regions using traditional Computer Vision features.

Correspondences (Implicit geometry)

Per-pixel correspondences between photos is still an unsolved problem in natural scenarios. Dense optical flow works only for very narrow baselines. Wider baselines require awareness of preserving spatial discontinuities and tolerance to appearance changes. Analogous to dense optical flow, SIFT flow [START_REF] Liu | Sift flow: Dense correspondence across scenes and its applications[END_REF] matches densely sampled, pixel-wise SIFT features between two images. Many false matches makes this method not good enough for rendering purposes by itself, but it has been used in hybrid algorithm [START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF].

The group of M. Magnor has developed several methods for view synthesis by interpolation, using correspondences based on geometry. Motivated by the way humans perceive motion, [START_REF] Stich | View and time interpolation in image space[END_REF][START_REF] Stich | Perception-motivated interpolation of image sequences[END_REF] presented a piece-wise homography warp. The most important properties to create convincing smooth transitions were: keep exact edge correspondences and homogeneous region correspondences. That is because the motion of edges can be easily detected by the human eye while in homogeneous regions this is more difficult. They could interpolate space and time directly in image space without the need of synchronized or calibrated cameras, however, to apply this method directly to real images with no user intervention would be challenging. Hence, their laboratory7 has produced some tools for interactive correction of correspondences [START_REF] Klose | Flowlab-an interactive tool for editing dense image correspondences[END_REF] and tools to introduce depth information into dense correspondences [START_REF] Ruhl | Integrating approximate depth data into dense image correspondence estimation[END_REF]. Their tools were applied to hybrid implicit-explicit IBR renderings [START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF].

Discussion Explicit geometry allows IBR algorithms to have a more generic camera configuration and navigation with wider baselines than algorithms that use implicit geometry. On the other hand, implicit representations are better suited for dynamic scenes8 because the number of primitives (pixels) remains constant regardless of changes in the structure. Acquisition in both representation schemes might fail and rendering algorithms should be robust to such representation inaccuracies.

Pure image-based algorithms for camera selection and color blending could integrate geometric proxies from other sources such as a scanner [START_REF] Pulli | View-based rendering: Visualizing real objects from scanned range and color data[END_REF]. In principle, reconstruction methods should be orthogonal to IBR approaches. However, quality and performance of modern IBR methods are tightly related to the way geometry is represented (see Section 2.3).

Unstructured-capture IBR

Calibrated cameras combined with approximate scene geometry provide powerful information for novel view synthesis in unstructured capture situations. Often, unstructured capture also means less restrictive navigation. With that in mind, [START_REF] Heigl | Plenoptic modeling and rendering from image sequences taken by a hand-held camera[END_REF] and further improvements [START_REF] Koch | Image-based rendering from uncalibrated lightfields with scalable geometry[END_REF][START_REF] Pollefeys | Visual modeling with a hand-held camera[END_REF] used hand held video sequences (dense sampling) to capture IBR scenes. After calibrating cameras and performing stereo reconstruction, they project input camera's centers into the virtual image. They triangulate these projections and each triangle is texture mapped with the cameras from which the triangle vertices originated. The final color is drawn as a weighted sum of view-dependent textured triangles (see Fig. 2.8a). Due to their camera selection procedure, they could render only novel view "behind" the input ones. The pipeline presented by Heigl et al. globally represents what casual-capture for free view-point navigation IBR systems employ even today: scene batch preparation (SfM camera calibration and stereo reconstruction) and a view synthesis algorithm (view selection, color mapping and blending).

We can classify algorithms according to the way they map color information to synthesize rays, pixels or entire regions. We can distinguish two kinds of IBR methods. The first use re-projection (backward map) to look up color, (e.g. [START_REF] Debevec | Efficient view-dependent image-based rendering with projective texture-mapping[END_REF][START_REF] Buehler | Unstructured lumigraph rendering[END_REF]. The second set of methods use forward color mapping from inputs to target views in image space (e.g. [START_REF] Zitnick | High-quality video view interpolation using a layered representation[END_REF][START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. Both types of methods count on geometric information to drive their mappings and will be discussed in Section 2.3.1 and Section 2.3.2 respectively.

Re-projection Methods

To build a novel view, re-projection approaches ask the question: starting from this pixel/ray of the novel camera, from where can we take color information to "draw" the pixel/ray? Or what are the nearest rays/pixels that give the best support to synthesize the novel color? The notion of proximity was determined uniquely by the camera configuration in initial IBR methods (in Section 2.1 except for [START_REF] Debevec | Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach[END_REF]. The final rendered image would strongly depend on the structure of the capture. It should depend on both camera configuration and the available geometry.

With the proxy and input cameras, minimal angular deviation 9 gives an effective measure of closeness to render rays with view-dependent effects. [START_REF] Buehler | Unstructured lumigraph rendering[END_REF] reviewed this and other desired properties that all IBR methods should fulfill resulting in the Unstructured-Lumigraph Rendering (ULR) algorithm, that has greatly influenced this domain. Equivalent ray consistency 10 and sensibility to image resolution are some of the desired properties. To enforce them, Buehler et al. designed an heuristic without trying to further explain the physical phenomena involved. From each ray of the novel view and guided by the scene proxy, they look up color in input cameras. With minimal angle and resolution measures, their heuristic assigns a weight to each back-projected source of color (camera).

To ensure continuity, Buehler et al. stored camera weights in a continuous Blending 9 Source image rays with similar angles to the desired ray should be used 10 A ray along the line of sight of an empty regions should be reconstructed consistently regardless of the virtual view position. Field data structure (see Fig. In some regions where the geometry is incomplete (see Fig. 2.9b), the reconstruction process cannot commit to a single depth because of ambiguity and uncertainty in the matching. [START_REF] Goesele | Ambient point clouds for view interpolation[END_REF] randomly sample the epipolar line of pixels with no depth to distribute multiple depth samples along segments of the viewing ray in the direction of uncertainty. They called this representation Ambient Point Cloud. Combined with the mesh, ambient point clouds create a of more appealing transition, although they produce a non photo-realistic blur effect in image transitions.

I V Float I V 1 I V 2 V I V 1 C 2 C 1 G A P P 1 P 2 (a) P 1 P 2 V I V C 1 C 2 P=P 1 +b(P 2 -P 1) (b)
In re-projection IBR algorithms, the selection of content from input photographs is largely guided by a globally consistent representation. The global representation allows selection of content from all input views for each ray of the novel view. In this thesis, we do not commit to global geometric representations which can be inaccurate and incomplete. Instead, we prefer approaches with view-dependent representations. These approaches usually transform views from input views toward the novel one as we will see in Section 2.3.2.

Forward-mapping Methods

Different from re-projection approaches, forward mapping methods start from input cameras and transform these inputs toward the novel view position. Inspired by Layered Depth Images [START_REF] Shade | Layered depth images[END_REF], [START_REF] Zitnick | High-quality video view interpolation using a layered representation[END_REF] the contour of warped regions, however, they completely rely on accurate dense depth estimation which would make difficult the application of their system to complex outdoor environments quite challenging.

Similarly Zheng et al. (2009a) use depth maps, over-segmentation and matting -but in a joint optimization -to keep consistency of segments and depths. They merge superpixel segments if they contain one single depth. On top of each superpixel they construct a 2D mesh. In rendering, they choose which segments should be mapped and their contribution (blending weights) from the three spatially closest cameras. Zheng et al. (2009a) use 3D warp and blending with soft z-buffer to resolve depth inconsistencies. They also extend color of segments to fill holes produced by dis-occlusion. The over-segmentation without shape regularization degraded the quality, therefore they presented an off-line version with depth guided inpainting to fill holes. Their rendering method was used in Zheng et al. (2009b) to create parallax effect from still photographs.

The quality of previous approaches heavily depends on the accuracy of reconstructed geometry. To deal with cases when we have a sparse set of 3D points, [START_REF] Chaurasia | Silhouette-Aware Warping for Image-Based Rendering[END_REF] introduced a variational warping that avoids distortion of image content with piece-wise regularization. The inputs to the rendering algorithm are a sparse set of calibrated input views, 3D points and user annotated relevant silhouettes (around foreground objects). With ULR blending weights, the novel view is rendered blending intermediate warped views and filling holes left by the forward mapping. To implement the variational warp, Chaurasia et al. perform 2D Delaunay triangulation on the photos with uniformly distributed vertices except in predefined silhouettes, where they density vertex samples. With more vertices in contours they create an elastic band to resolve distortions caused by the transformation and simulate occlusion and dis-occlusion. The warp optimizes the position of vertices given by this band, and regularizes by a piece-wise rigid transformation. This regularization is called As-Rigid-as-Possible and was introduced in Computer Graphics by [START_REF] Alexa | As-rigid-as-possible shape interpolation[END_REF]. It enforces the constraint that each triangle of the warping mesh can only be scaled, rotated or translated. Thus triangles compete among selves to keep rigidity. This regularization had been also implemented in video stabilization applications [START_REF] Liu | Content-preserving Warps for 3D Video Stabilization[END_REF]. Warping the whole image with big foreground objects and large baselines can introduce distortions. Their blending strategy avoids blending several images which minimizes ghosting artifacts but produces temporal artifacts like popping.

To automatically preserve silhouettes [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] opted for a greedy approach. They over-segment the image into superpixels with SLIC [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] under the hypothesis that superpixels preserve discontinuities and hence contain one single depth. They deal with non-reconstructed regions and approximation of geometry in preprocessing and during rendering. In preprocessing, they propagate front-parallel depth information to non-reconstructed regions from reconstructed regions. With a graph-based data structure, [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] propagate depth samples based on the appearance and proximity of superpixel segments (see Fig. 2.12). During rendering, they used a shape preserving warp: segment-wise 2D transformation driven by re-projection constraints and as-rigid-as-possible warps. With a multi-view data structure they keep track of which superpixel can be blended and as Zheng et al. (2009a) they render extra pixels around each superpixel to fill empty spaces produced by the forward transformation. A final Poisson hole filling render pass completes empty regions. To render with the shape preserving warp, thousands of linear equations (one per segment) must be solved; thus the rendering approach requires high-end (the linear systems are solved on the CPU) hardware (to be able to solve linear in real time), which means that it may not run on all computing platforms like mobile phones.

Hybrid Approach Another approach that tackles drawbacks of incomplete reconstruction was presented by [START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF].

Their hybrid algorithm leverages advantages of both correspondences-based (discussed in Section 2.2.2) and explicit geometry-based methods. They compensate for inaccurate scene geometry by incorporating visually plausible correspondences into the rendering equation, however, estimate plausible dense correspondences can be as difficult as estimate depth. From dense correspondences and calibrated cameras they obtain an explicit representation of the scene. For rendering, instead of mapping and interpolating color directly in image space, Lipski et al. interpolate in world space to compensate for mismatches in 3D position of depth pixels in correspondences (see Fig. 2.10b). This approach reported a time consuming per-possesing (hours per pair of images) and a manual foreground segmentation to compute reliable correspondences which is a very difficult problem.

In this thesis we use forward-mapping methods, specifically, we build on [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] which has been demonstrated to outperform previous methods in terms of image quality in most cases.

Handling Reflections

The methods review so far assumed that the scene can be approximated by a single geometric layer (proxy). This assumption is violated in reflective and semi-transparent surfaces. Based on layered depth images, [START_REF] Lischinski | Image-based rendering for non-diffuse synthetic scenes[END_REF] represent separately both view-dependent and view-independent appearance of synthetic scenes. Their IBR algorithm recombines the two layers together in a manner that produces an approximation to the correct image. [START_REF] Sinha | Image-based rendering for scenes with reflections[END_REF] observed that for real scenes, there is a reflective component and a refractive component that have different geometries. They separate the stereo matching process into these two-layers. They also separate the appearance of the two layers. Then they compute piecewise-planar proxies with local-plane fitting and seed-and-grow to cluster planes. For rendering they move each piece of the image according to their layered geometry and additively combine them from two closest images. Separating these two layers is not always clean producing ringing artifacts. [START_REF] Sinha | Image-based rendering for scenes with reflections[END_REF]'s method does not generalize to reflections and could be only applied to strong planar reflectors (e.g., a glossy painting in a museum).

Instead of explicitly separating the scene into these components, [START_REF] Kopf | Image-based rendering in the gradient domain[END_REF] are able to deal with general scenes with reflections. They do so by synthesizing views in the gradient domain. Depth gradients are estimated for pixels instead of depth itself.

In rendering they splat gradients into the novel view, use additive blending and integrate to recover the color. They compute an approximate integration by solving a Poisson problem and apply weakly weighted data term to regularize the solution. Gradients of contours occlude each other but not necessarily gradients of reflective areas. Kopf et al. suggested an heuristic to detect which gradient should vanish because of occlusion. The method produces artifacts when incorrect depth values are associated to gradients e.g., for horizontal gradients with horizontal camera motions and busy textures like vegetation. This limits the application range.

Optimization and Learning-based Approaches

A different set of approaches use optimization and learning to directly synthesize novel views. [START_REF] Fitzgibbon | Image-based rendering using image-based priors[END_REF] reconstruct color rather than depth. In a Bayesian framework, they estimate the most likely novel view given the input images, calibrated cameras and novel camera. The color to be synthesized has the Maximun a Posteriori probability given the colors that lie in the epipolar lines of input images. [START_REF] Fitzgibbon | Image-based rendering using image-based priors[END_REF] regularize with statistics of input textures (patches around the selected depth). The off-line optimization was speeded up in [START_REF] Woodford | Fast image-based rendering using hierarchical image-based priors[END_REF]. They used small baselines and reported some ghosting that depends on the size of the patches (prior). [START_REF] Pujades | Bayesian View Synthesis and Image-Based Rendering Principles[END_REF] also use a Bayesian framework to formulate mathematically a description of the physical principles behind ULR's heuristics. They consider uncertainty of reconstruction as a gap around the surface. Re-projection color lookups propagate this gap of uncertainty. By considering the proxy uncertainty, they penalize the minimum angle deviation property of non-reliable geometry. Pujades et al. measure un-reliability of the proxy, based on photo-consistency of re-projection.

A remarkable application that yielded a commercial product 11 of IBR was presented by [START_REF] Kopf | First-person hyper-lapse videos[END_REF]. They stabilize videos that were recorded in long interval of time (e.g., 1 frame per second) by very irregular motion -and thus very shaky. With calibrated frames and per-frame proxies, they optimize for a smooth rendering path where one of the criteria was the rendering quality. Given a proxy, they showed that ULR's minimum angle deviation does not always correlate with rendering artifacts. [START_REF] Kopf | First-person hyper-lapse videos[END_REF] used invariant texture stretching as rendering quality measure. They generate the novel video with an optimized path by rendering, stitching, and blending selected source frames appropriately.

Currently, there is a new research trend in view synthesis with machine learning algorithms like Convolution Neural Networks. A novel application of deep learning in view synthesis has emerged [START_REF] Flynn | DeepStereo: Learning to Predict New Views from the World's Imagery[END_REF]. Flynn et al. hypothesis says that deep networks trained with input cameras and poses can learn to predict appearance of novel views. Relationships of images-cameras and novel view are way too complex and the network would need to learn re-projection and encode epipolar constraints. Instead they train with a stack of re-projected input images at variable depths (plane sweep-volume). The network's architecture contains two blocks: one to select depth and the other to predict color. This system has limitations of speed, scalability and dependency of resolution and depth quantization.

Another deep learning method re-formulates the view synthesis problem as a pixel-copy task. [START_REF] Zhou | View Synthesis by Appearance Flow[END_REF]. Zhou et al. Observed that visual appearance of nearby views are highly correlated to input views. They train a CNN to predict 2D vectors to reconstruct the novel view (appearance flow). This formulation does not require plane sweep-volume that prohibits view extrapolation for Flynn et al. but the rendering results are still far from high quality rendering. Although these two attempts are promising for the future, they do not out perform the quality of previous methods and are still far from achieving real-time performance.

Discussion Human vision uses a variety of depth cues to interpret 3D structures. Studies show that users of IBR hardly notice perspective distortions of complete reconstructions [START_REF] Vangorp | Perception of Visual Artifacts in Image-Based Rendering of Façades[END_REF][START_REF] Vangorp | Perception of perspective distortions in image-based rendering[END_REF], however, users can easily identify artifacts and missing reconstruction especially for free view-point IBR with cameras close to the scene. In spite of impressive advances in image-based reconstruction techniques, they still present missing parts of the scene. The big challenge of modern IBR techniques consists in generating views that could provide images with convincing realism from a perceptual perspective, even with incomplete information about the 3D world.

In this thesis we address this problem adapting incomplete information for rendering. Specifically, in Chapter 3 we use a set of plausible navigation IBR methods and we estimate per-region which of them allows better rendering quality. In Chapter 4 we use databases of 3D models to automatically query, align and morph models of cars in our scenes. The morphed meshes do not need to adapt precisely to the exact overall geometry but only adapt to the image silhouettes. Finally, in Chapter 5 we present two possible approaches (feature and learning based) to detect incomplete and inaccurate reconstruction information for rendering. Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels

Introduction

As we have seen in the review of previous work in Chapter 2, new Image-Based Rendering algorithms [START_REF] Zitnick | Stereo for image-based rendering using image over-segmentation[END_REF][START_REF] Eisemann | Floating Textures[END_REF][START_REF] Goesele | Ambient point clouds for view interpolation[END_REF][START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF][START_REF] Kopf | Image-based rendering in the gradient domain[END_REF][START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF], build on and improve the original methods where geometry was either not used [START_REF] Levoy | Light field rendering[END_REF] or provided (semi-) manually [START_REF] Debevec | Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach[END_REF][START_REF] Gortler | The Lumigraph[END_REF][START_REF] Buehler | Unstructured lumigraph rendering[END_REF]. Recent IBR algorithms often treat specific cases very well, e.g. the floating textures algorithm [START_REF] Eisemann | Floating Textures[END_REF] reduces ghosting, shape-preserving warps [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] allow plausible rendering of badly-reconstructed regions (low texture, vegetation) and gradient domain rendering [START_REF] Kopf | Image-based rendering in the gradient domain[END_REF] treats reflections. These methods typically sacrifice performance for quality to treat hard cases; in well reconstructed regions, simpler and faster methods [START_REF] Buehler | Unstructured lumigraph rendering[END_REF] perform very well. We see that each IBR algorithm has different quality/speed trade-offs, depending on the specific scene and cases it treats, and that no single algorithm is better than all others for all cases. In addition, each method has different parameters which directly affect rendering quality. Modeling such complex rendering processes to improve novel view synthesis is hard, due to the complexity of the solutions and the data, which are often uncertain (e.g., 3D reconstructions, camera calibration). In this dissertation we introduce a general Bayesian approach that models different IBR algorithms but also the possibility to choose between them.

Bayesian methods have been used in IBR to improve image quality for specific algorithms [START_REF] Fitzgibbon | Image-based rendering using image-based priors[END_REF][START_REF] Pujades | Bayesian View Synthesis and Image-Based Rendering Principles[END_REF]. Our analysis will share some common tools with these approaches, but our goal is real-time IBR. It can be considered complementary to these and allows the combined use of several different IBR algorithms by choosing between them in a local manner, i.e., at the level of image regions (see Fig. 3.1). In Section 3.2, we first present this approach in general terms which can be used in the context of several different algorithms. Our Bayesian methodology provides an intuitive description of the problem and takes the full set of complex factors into account. This formulation expresses the likelihood of a choice of rendering method by taking into account the rendering quality, the priors given the assumptions about the scene as well as the rendering algorithm and its parameters, which can be interpreted as the optimizations performed in the methods described here. We solve a Maximum a Posteriori (MAP) estimation to choose the rendering process at the granularity we target (pixel or image region). We do this by applying Bayes rule and computing posterior probability densities on rendering quality and choice of rendering process.

For the purposes of this work, we will concentrate in modeling the choice of algorithm, as well as rendering quality, with the assumption that the rendering algorithm and parameters are fixed. To demonstrate the utility of our framework, we apply our general approach to the class of IBR algorithms based on oversegmentation (superpixels) presented in the Section 3.3. These achieve high rendered image quality by preserving silhouettes. In this algorithmic class, we use the algorithm of [START_REF] Zitnick | Stereo for image-based rendering using image over-segmentation[END_REF] as a baseline. It uses fronto-parallel depth to render superpixels and is thus fast. We also consider the recent algorithm of [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF], which uses a shape-preserving warp to regularize rendering of superpixels in hard case (in Section 3.3.3). This approach has been demonstrated to be superior in quality to previous methods especially for free-viewpoint navigation, but involves an expensive warping step during rendering. We also include an intermediate approach (in Section 3.3.2), which uses planar estimation of superpixels similar to that of [START_REF] Bodis-Szomoru | Fast, approximate piecewise-planar modeling based on sparse structure-from-motion and superpixels[END_REF]. We render planar segments with a method akin to View-Dependent Texture Mapping [START_REF] Debevec | Efficient view-dependent image-based rendering with projective texture-mapping[END_REF].

In a preprocessing step, we estimate probability densities independently at each superpixel to allow real-time selective rendering at runtime. The probability density function representing rendering quality is expressed using both geometric and photometric errors in re-rendering existing input views. In preprocessing, the MAP estimation on the three possible rendering processes assigns the best choice to each superpixel based on our Bayesian formulation, and our selective IBR algorithm efficiently generates high-quality novel viewpoints in real-time accordingly.

Our main contributions are:

• A new Bayesian formulation to model the choice and quality of rendering algorithms for IBR.

• A selective IBR algorithm for oversegmentation-based methods that chooses the rendering method most suited for a given superpixel in a preprocessing step, allowing high-quality real-time rendering.

Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels Thus, the new algorithm provides an efficient and practical IBR algorithm which offers the best of previous methods by selecting the most suitable solution in a principled manner. Our implementation shows that the selective rendering algorithm is much faster with equivalent or even better quality than the best of the three approaches taken separately.

Bayesian Formulation

As mentioned in previous work (Chapter 2), Image-Based Rendering uses input data which is inherently inaccurate and incomplete, e.g., the 3D geometric reconstruction, the camera calibration, amount others. The actual rendering process contains uncertainty. The nature of this uncertainty is unknown, and thus, rather than model uncertainty to improve an algorithm, we model the choice between different rendering algorithms instead.

We next introduce our Bayesian approach to model this choice. Our final goal is to compute the best quality image, which we model as being the most likely image in a probabilistic sense [START_REF] Bishop | Pattern recognition and machine learning[END_REF]. The preprocessing step we describe next will assign a rendering algorithm to each superpixel of each image. At runtime each superpixel will be rendered using the chosen rendering algorithm.

A Bayesian Approach to IBR

We define a probabilistic model of the rendering function that generates novel images I. The rendering function is very general and corresponds to the set of three rendering methods we consider (i.e., [START_REF] Debevec | Efficient view-dependent image-based rendering with projective texture-mapping[END_REF][START_REF] Zitnick | High-quality video view interpolation using a layered representation[END_REF][START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. Each of these rendering methods are respectively characterized by the sets of parameters ξ 1 , ξ 2 and ξ 3 .

These parameters represent all the necessary information needed by the rendering function to estimate images for new viewpoints. We define the label l s i that identifies which of the three rendering method is used for each superpixel s of the input view i.

Noting ξ = {ξ 1 , ξ 2 , ξ 3 } the set of all rendering parameters and L the vector of all labels l s i , we define the probability distribution p(ξ, L|I) which expresses the likelihood of a choice L of rendering method with parameters ξ given reference images I. To estimate this distribution, we use a generative model [START_REF] Bishop | Pattern recognition and machine learning[END_REF] as we will explicitly model inputs (input images) and outputs (renderings). The model describes the method of rendering new viewpoints as follows:

p(ξ, L|I) = p(I|ξ, L)p(ξ)p(L) p(I) (3.1)
The denominator p(I) is a normalization factor and since we will be maximizing likelihood, we can ignore it, leading to the simpler expression:

p(ξ, L|I) = p(I|ξ, L)p(ξ)p(L) (3.2)
We define this model for rendering methods based on superpixels [START_REF] Debevec | Efficient view-dependent image-based rendering with projective texture-mapping[END_REF][START_REF] Zitnick | Stereo for image-based rendering using image over-segmentation[END_REF][START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF], but it can be applied to any rendering Each rendering method is described by its parameters ξ 1 , ξ 2 and ξ 3 . These parameters can be, for example, the number of superpixels. For superpixels, L is a vector of labels specifying which rendering method to use for each one of them.

method. The selection can be defined for different parts of the process, e.g., image regions in input images, input or output camera positions, specific pixels, etc. The general relation described by this generative model is illustrated in Fig. 3.2(a), along with the specific case of selective rendering in Fig. 3

.2(b)

Rendering quality We model rendering quality with the term p(I|ξ, L), which expresses the likelihood to generate images I given vectors of labels L and parameters ξ. It models the uncertainty in the rendered image due to the errors associated with the rendering method selected by L. More precisely, high probability p(I|ξ, L) means that the image I is close to the result obtained with the rendering method selected by the state variable L. In Section 3.4, we use this rendering quality to choose the rendering method for each superpixel of the input images.

Priors on rendering parameters

We consider the rendering methods used by the rendering function as black boxes. The prior p(ξ) is thus considered uniform and we do not need to further develop the list of parameters of each method. Our assumption is that, independently, each algorithm is close to optimal and our objective is to find the best way of combining them. However, if the goal is also to improve the rendering algorithm, such a PDF can be used to favor a certain set of parameters.

Prior on the choice of rendering method The probability p(L) is a prior on the choice of rendering algorithm. It does not depend on the resulting images but only on the selected method. We can use it for example to favor a specific rendering method when we expect it to perform better in a given context. For example, if we have very precise geometry and images close to the novel view, direct warping or reprojection of input images will work well, while if the reconstruction is sparse or uncertain, the shape-preserving warp will work better. In our generative model, p(L) is the the most general term. Each rendering algorithm has a different set of implicit and explicit assumptions that relate to the geometry Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels or to appearance (image pixels); p(L) may depend on geometry or color and the challenge is to propose a distribution p(L) which best expresses how well these assumptions are met.

Discussion In summary, we now have a probabilistic framework for image based rendering that models the relation between different algorithms and the final rendered image. Instead of estimating the most probable image which is time consuming [START_REF] Pujades | Bayesian View Synthesis and Image-Based Rendering Principles[END_REF], this probabilistic model can be used to choose a real-time rendering method and its parameters in a pre-process. Adopting a probabilistic approach has several advantages. First, we delay any decisions until all factors have been considered, helping us avoid incorrect decisions early on which cannot be subsequently corrected. Second, we compute an overall probability for a given choice of algorithm which allows us to improve the final blending step of rendering. Finally, our formulation can be easily adapted to different algorithms.

Rendering selection as MAP estimation

Using the proposed generative model, we can express the selection of the rendering method L * as a MAP estimation:

L * = arg max L p(I|ξ, L)p(ξ)p(L) (3.3)
Quality measures on the rendered images to estimate are used to select the rendering method L. These rendering methods are treated as black boxes and we do not impose any prior on their parameters, so p(ξ) can be ignored in further development:

L * = arg max L p(I|ξ, L)p(L).
(3.4)

To solve the above equation, we would ideally need to evaluate Eq. 3.4 over a large number of images I. Unfortunately, this is impossible since these images are not available. As an approximation, we can evaluate the density p(I i |ξ, L)p(L) for each input image I i . We do this by rendering all other input images {I 1 , . . . , I i-1 , I i+1 , . . . , I n } into the viewpoint of I i , and evaluating how well the synthesized image matches the ground truth input I i . This MAP estimation can thus be performed as a pre-process.

Superpixel IBR Algorithms

To demonstrate the utility of our approach, we will apply it in the context of a specific class of IBR algorithms that use over-segmented input images. As explained previously, IBR methods based on oversegmentation achieve high quality by preserving silhouettes while maintaining real-time performance; they are thus suited to our objectives. In preprocessing, we use the proposed Bayesian model to choose the best method for each superpixel in a principled way, allowing fast and high quality rendering at runtime. In what follows we assume that the input is a set of over-segmented images from different viewpoints, processed by SfM and MVS. We thus assume that a set of reconstructed points X s is assigned to each superpixel s of the oversegmentation.

Fronto-parallel superpixels

We consider the algorithm of Zitnick et al. as the baseline algorithm which oversegments the input images, and uses fronto-parallel depth for subsequent rendering. In our case for each superpixel s we use the median depth of the 3D points X s . We extend the original method by using depth values hallucinated by propagation from similar superpixels in the image when a superpixel does not contain reconstructed geometry (Chaurasia et al.). Such superpixels are assumed to be fronto-parallel to the corresponding input camera. The novel view is rendered with forward projections and additive blending. We call this algorithm Fronto-parallel PLANar rendering (FPLAN).

Planar superpixels for IBR

As shown in Fig. 3.1(b), view synthesis with FPLAN can result in visual artifacts when the actual surface is grazing with respect to the camera position -at the pillar base, a curved surface looks distorted because segments cannot reproduce perspective effects. To achieve perspective of piece-wise planar regions, beside depth we must assign orientation to segments by estimating planes. Thus, we also propose an intermediate algorithm that enhances FPLAN with a local plane estimation.

In general, fitting planes to point clouds follows two strategies: top-down [START_REF] Argiles | Dense multi-planar scene estimation from a sparse set of images[END_REF] versus bottom-up [START_REF] Mičušík | Multi-view superpixel stereo in urban environments[END_REF][START_REF] Bodis-Szomoru | Fast, approximate piecewise-planar modeling based on sparse structure-from-motion and superpixels[END_REF]. Globally, the former strategy takes the whole point cloud to iteratively fit and remove big planes with robust methods like RANdom SAmple Consensus -RANSAC Fischler & Bolles Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels (1981). In Appendix A we explain how we applied this strategy combined with color appearance models to estimate and recover the ground floor of the scene since commonly MVS reconstruction fails for this region. Another alternative fits planes to local regions. Given a noisy point cloud, estimating planes with the superpixel's local geometry is prone to localized noise and results in rendering artifacts. We first present a strong conservative filter to remove local noise in Section 3.3.2.1 and in Section 3.3.2.2 we present a procedure to assign planes to superpixels after filtering. In Section 3.3.2.4 we explain how to render a novel view with this approach called PLANar reprojection (PLAN).

Filtering Outliers

Feature points for reconstruction usually occur at color gradients and discontinuities.

The boundary of a superpixel segment also occurs in color gradients. By construction, superpixel boundaries correspond to feature points that can be at depth discontinuities. As a result, 3D points close to the superpixel boundaries can often be at multiple depths which makes them unreliable for plane estimation. We design a simple filter to avoid multiple depth and filter out possible outliers. For each superpixel we define a 3D sphere centered in X s c ∈ X s . The radius of the sphere is proportional to the size of the superpixel and to the distance from the camera. We thus filter out points in X s that lay outside the sphere.

Given x s , the set projections of X s ∈ X s , we obtain x s c as the weighted geometric median of x s . The geometric median is the point that minimizes the weighted sum of distance to all points and provides a robust estimator for the location of the uncorrupted data even when up to half of the sample data may be arbitrarily corrupted. To discourage MVS points near boundaries, weights w n_i in Eq. (3.5) are the values of a normal distribution centered at the centroid of the 2D position of pixels inside s and standard deviation the minimum distance of the centroid to a contour of s. The equation for the weighted geometric median is:

arg min x s c |X s | i w n_i x s c -x s i (3.5)
We unproject the farthest pixel in s with the same depth as x s c . The distance between this 3D point and X s c is the radius of the sphere centered in X s c . Any points outside this sphere are rejected. Intuitively, in this procedure the size of a volume that encloses 3D samples is proportional to the distance from the camera and proportional to the size of the 2D segment. In Fig. 3.4 we show some examples of this procedure after centering the sphere.

Plane Estimation

After filtering out noisy 3D samples as described above, we follow a similar approach to Bodis-Szomoru et al. (2014) to generate plane hypothesis. Given the filtered 3D samples X s , we estimate a plane π s for the segment s with RANSAC. The base of a plane model is defined by three points samples. Iteratively, we select a random base in X s , fit a plane π i to the selected samples and compute the score of that base. Points within a distance τ from π i are the inlier points for the base. The base with the highest score and the inlier points from this base define the final plane π s . As score, we do not use the inlier count but the weighted sum of point to plane distances d(•, •) in Eq. (3.6). Weights w X s represent the confidence of reconstruction of each point (usually normalized cross-correlation of photometric consistency) and τ is the inlier threshold. Finally, the score is given as follows:

score i = X s ∈X s w X s exp - 1 2τ 2 d 2 X s , π i (3.6)

Improvements

We test stability of planes with Single Value Decomposition and an heuristic considering visibility reasoning and discouraging sharp orientation of planes with respect to the camera they originate from. Further improvements for PLAN could be done by merging superpixels with the same plane description or splitting them when a single segment contains two or more planes as described in Fig. 3.5. Concurrently with Bodis-Szomoru et al. (2014) and in a closely related direction, we attempted to regularize planes assigned to superpixels with pairwise multi-view and intra-view constraints. However, they attempted fast and light-weight representations of urban scenes, while our ultimate goal is rendering. Solving this problem would imply a new reconstruction algorithm, which is beyond the scope of this thesis. Instead, we follow the procedure described in Section 3.3.2.2 and with an imperfect reconstruction, leave our Bayesian Approach to select the most reliable rendering algorithm, given that PLAN is the least reliable in many cases.

Rendering

If a superpixel s is well approximated by a plane, we define a planar quadrilateral bounding the superpixel and transform the superpixel to the new view using standard OpenGL projection. We assume for now that the quadrilateral is a good approximation of the geometry corresponding to the superpixel since our probabilistic model will identify other cases as discussed below. Note that the actual rendering uses s as a mask and only renders pixels of the rendered quadrilateral which correspond to the region of s [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. This algorithm can be seen as a combination of [START_REF] Zitnick | High-quality video view interpolation using a layered representation[END_REF] and View-dependent Texture Mapping [START_REF] Debevec | Efficient view-dependent image-based rendering with projective texture-mapping[END_REF].

Superpixel warp

The highest quality oversegmentation-based IBR method we consider is shape-preserving warp [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. For each input view, the shape-preserving warp algorithm (SWARP) takes as input the set of superpixels and the corresponding reconstructed 3D points. The method then propagates depth into superpixels which do not contain reconstructed geometry over the mesh triangles. Rendering proceeds by building a small mesh of triangles over each superpixel s and performing an image-space warp of the mesh into the novel view, using shape-preserving constraints and 3D reconstruction. This algorithm, though computationally expensive, handles poorly reconstructed regions and allows free-viewpoint navigation far from the input viewpoints. If the reconstruction of the model corresponding to 3D space covered by the superpixel s is of high quality and if s is (almost) planar, the warp is wasteful since it will give essentially the same result as direct reprojection. However, when the quality of the reconstruction is uncertain or unknown, the shape-preserving constraints will dominate and provide a plausible solution in many cases. Clearly the two rendering algorithms are somewhat complementary, and by carefully selecting which one to use, the resulting renderer will provide equivalent or even better quality at a lower cost.

Map Estimation for Rendering

We now have three rendering algorithms based on image over-segmentation, PLAN, FPLAN, and SWARP. In this section we show how the probabilistic framework presented in Section 3.2 can be used to select which rendering method should be considered for a given superpixel.

MAP selection at superpixel level

With the rendering methods precisely defined we can adapt the general formulation (Eq. 3.4) to our specific scenario. As already mentioned, the observations for the MAP estimation are the input images {I 1 , I 2 , . . . , I n } and we can rewrite Eq. 3.4 as:

L * = arg max L n i=1 p(I i |ξ, L)p(L) (3.7)
To find L * the MAP estimate of the labels L, we need to evaluate p(I i |ξ, L). In this MAP estimation, we generate the image corresponding to the viewpoint of I i using the images I j (j i). To do this, the images I j are transformed to the viewpoint of I i using depth and/or shape-preserving warps and blended together. If we note R j→i the rendering obtained by transforming I j , then creating the approximation Ĩi to the input image I i can be expressed as: Ĩi = j i α j R j→i with

j i α j = 1 (3.8)
So p(I i |ξ, L), which models the error in rendering, can be expressed as a function of the distance between I i and the transformed images R j→i . With the assumption that improving any of these intermediate images improves the final blended image, we can write:

p(I i |R, L) ∝ j i p(I i |R j→i , L j) (3.9)
The rendering methods reason on superpixels and novel viewpoints are generated by independently estimating superpixel transformations and blending them. Thereby, the choice of rendering algorithm must be made for each superpixel. The selection variable L j is defined as the vector of labels l s j selecting the rendering method to use with each superpixel s from image I j . We can now expand the expression for the MAP estimation:

L * = arg max L n i=1 j i p(I i |R j→i , L j)p(L j) (3.10)
In our case the possible values for l s j are {PLAN, FPLAN, SWARP}. Assuming that rendering is independent between the superpixels, the MAP estimation becomes:

L * = arg max L n i=1 j i s p(I i |R s j→i , l s j)p(l s j) (3.11)
Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels

Maximizing the previous probability can be done independently for each superpixel and the MAP equation for each superpixel label is thus:

l s, * j = arg max l s j i j p(I i |R s j→i , l s j)p(l s j) (3.12)
This equation allows the selection of the rendering algorithm. Note that starting from the general Eq. 3.4 and by leveraging rendering algorithm properties, we derive a model that expresses the same ideas at the level of superpixels. In this case, p(I i |R s j→i , l s j) expresses the quality of rendering superpixel I s j in the different view i using the rendering algorithm l s j . The probability p(l s j) is the prior on the choice of rendering algorithm l s j and is considered uniform over all the labels. In the following, we show how using only rendering quality for superpixels we are able to perform algorithm selection for rendering.

MAP selection using rendering quality

We model the probability distribution p(I i |R s j→i , l s j) as a function of the distance between the transformed image R s j→i and the observed input I i image, using two distributions:

p(I i |R s j→i , l s j) = p geom (I i |R s j→i , l s j)p pho (I i |R s j→i , l s j). (3.13)
The first term corresponds to the geometric rendering quality. It expresses how well the 3D structure of the scene is preserved under the rendering transformation. The second distribution is based on appearance and will be referred to as photometric rendering quality. It models the error between the rendered image and the observation in terms of color differences. We also use occlusion information from MVS reconstruction estimating rendering quality only in viewpoints where the superpixel is visible.

Geometric rendering quality

To render the image at the view of input image I i , the superpixel s will undergo a transformation corresponding to a warp (for l s j = SWARP) or a plane projection (for l s j = PLAN or FPLAN). One way to measure the error in this transformation from a geometric point of view is to use reconstructed 3D points present in the superpixel. We define X s j as the set of the 3D reconstructed points X that project in the superpixel s in view j. We denote x j the 2D position of the projection of X in view j. As previously described, the superpixel s undergoes a transformation to the viewpoint of an input camera. The points x j will follow the same transformation and their new position is noted x j→i . If the transformation is well estimated, then x j→i and x i (the projection of X in view i) should coincide. To define the geometric term, we use a Gaussian distribution defined on the distance between x j→i and x i (see Fig. 3.6):

p geom (I i |R s j→i , l s j) = X∈X s j N σ x j→i -x i |X s j |
(3.14)

Map Estimation for Rendering

39

(A) (B) Situation A Situation B -3 -2 -1 1 2 3 -3 -2 -1
Density of probability in each case In these examples, a superpixel s j is transformed to image i using a plane approximation. The geometric quality will depend on the distance between x i , the projection of the 3D point X in view i, and x j→i , the transformation of x j into view i. Situation A: The plane approximation is relatively good so the distance x j→ix i is small and it results in a high value for N σ . Situation B: The transformation for superpixel s is not well estimated and in this case the distance x j→ix i is large resulting a small value for N σ .

0 Figure 3.7: Photometric rendering quality. We compute the mean squared distance between the colors of the superpixel s j→i and the superpixel s i . The distribution N σ 2 will give a high density value when there is a strong match between the two superpixels.

If there are no reconstructed points, it is impossible to estimate a plane and so p geom is set to zero for PLAN. For FPLAN and SWARP depth will be propagated from neighbors. The choice between these two labels will only depend on p pho .

Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels

Photometric rendering quality

The objective is to estimate the rendering quality in terms of appearance. We denote s j→i the result of transforming the superpixel s to the image plane of camera C i . To measure the rendering quality in terms of appearance, we use the mean squared distance (MSE) between the pixel colors of I s j and I s j→i i

. If the transformation is well estimated, the distance should be small. To define the photometric term, we use a Gaussian distribution defined on the mean squared distances between I s j and I s j→i i (see Fig. 3.7):

p photo (I i |R s j→i , l s j) = N σ 2 (MSE(I s j , I s j→i i)) (3.15)
We note that other error measures could be considered but this was sufficient in our case.

We also tried inverse normalized cross-correlation (NCC) which has similar results but it is computationally more expensive.

Validation of rendering hypotheses

In general the probability associated with rendering hypotheses p(L) (in Eq. 3.1) describes the compatibility of the rendering algorithm with the considered scene. In the context of our algorithm selection, we derive a similar probability p(l s i) at the superpixel level. For PLAN, FPLAN, we should choose the planar approximation if the 3D geometry corresponding to the superpixel is well approximated by a plane. To model this we could use principal component analysis (PCA) on the 3D points, and examine the weight associated with each principal component. If note w 1 , w 2 and w 3 the decreasingly ordered weights associated with the three main components obtained from PCA. If 3D points are located on a planar surface, we have two main components and the third one negligibles. We could model this by defining a distribution on the bounded surface defined by the two variables w 2 /w 1 and w 3 /w 2 . These two values are defined in the interval [0, 1] and we naturally use the Beta distribution [START_REF] Bishop | Pattern recognition and machine learning[END_REF] (noted B α,β) to model the validity of the planarity assumption with respect to w 2 /w 1 and w 3 /w 2 :

p(l s i = PLAN) = B α 1 ,β 1 w 2 w 1 B α 2 ,β 2 w 3 w 2 (3.16)
With the distribution B α 1 ,β 1 (w 2 w 1) we can give lower probability density to small values of w 2 /w 1 as the underlying geometry is more likely to be a line. On the other end, the distribution B α 2 ,β 2 (w 3

w 2) we can give higher probability density to small values of w 3 /w 2 as the underlying geometry is more likely to be a plane. The Fig. 3.8 shows the resulting distribution p(l s i = planar). For SWARP there is no assumption related to geometry, since the algorithm uses the shape-preserving warp to get the best possible result, both for well-and poorly-reconstructed regions. Similarly, for FPLAN no assumptions are made. Since for FPLAN and SWARP we do not make any assumption, for our experiments, we decided not to include the planarity assumption for PLAN. Consequently, we assume a uniform distribution for all of them:

3.5. A Selective IBR Algorithm p(l s i = SWARP) = 1 p(l s i = PLAN) = 1 p(l s i = FPLAN) = 1 (3.17)
We can now compute Eq. 3.7 for each superpixel of each image, for each of PLAN, FPLAN, SWARP. We discuss below how we use this estimation in a preprocessing step for our selective rendering algorithm. = planar) with respect to PCA decomposition weights w 1 , w 2 and w 3 . When w 2 /w 1 is small the underlying geometry is more likely to be a line and it less probable to obtain a good rendering result using a planar approximation. When geometry is closer to a plane (w 2 /w 1 close to 1 and w 3 /w 2 close to 0), using planar approximation for rendering is favored with higher values for p(l s i = planar).

Final labeling

To obtain a fast rendering algorithm we need to favor plane projection methods (PLAN and FPLAN) when they result in similar quality to the warp based approach. To this end we use a smaller value for σ 2 in the case of PLAN and FPLAN labels. Thanks to this, when both planar and warp based methods achieve good results, the planar rendering will be favored, resulting in significant speedup. We can now compute Eq. 3.12 for each superpixel of each image, for each of PLAN, FPLAN, and SWARP. We discuss below how we use this estimation in a preprocessing step for our selective rendering algorithm.

A Selective IBR Algorithm

The input to our approach is a set of images of a given scene, which have been processed by automatic camera calibration (e.g., VisualSFM et al. (2010) and the depth synthesis as described in [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. We then perform the plane estimation for each superpixel, as described in Section 3.3.2. In a preprocessing step, we perform the MAP estimation on this data, following Eq. (3.7). This is done for each superpixel of each input image and each rendering algorithm, i.e. L = {PLAN,FPLAN,SWARP}. A rendering algorithm is then chosen for each superpixel in this preprocess.

Rendering Similarly to [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF], the four spatially closest views to the novel view are chosen and each superpixel of these views is projected into the novel view.

In contrast to previous methods, each superpixel is projected into the novel view using the choice of rendering algorithm l s j , as computed in the pre-processing step. We can also use the probability of the chosen algorithm in the blending weights. Previous algorithms [START_REF] Buehler | Unstructured lumigraph rendering[END_REF][START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]) use heuristic blending weights, i.e. if two superpixels do not contain reconstructed points, the background is preferred. Instead, for a superpixel S we scale the blending weights with the probability density over all views for the chosen algorithm:

p S = n i=1 j i s p(I i |R s j→i , l s j)p(l s j) (3.18)
The projection operation for FPLAN,PLAN uses standard OpenGL polygon rendering in the GPU, and is much cheaper than the superpixel warp. We measured a factor of approximately 3 times speedup, depending on the number of MVS points in each superpixel which add constraints to the warp. Speedup depends on the percentage of superpixels using the SWARP, as shown in the results.

Implementation Details The preprocessing step and rendering were implemented in C++ with OpenGL/GLSL shaders. For SWARP a triangle mesh covering superpixels is warped [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. The reconstructed points are used as constraints in the warp mesh. For Eq. (3.14) we use barycentric coordinates of the mesh triangle before the warp to determine their position in the same triangle after the warp. For Eq. (3.15) every rasterized patch is read back in RGB color space. This requires 2 min to process an image of 1M pixels. A subsequent implementation in CUDA does this computation directly on the GPU and instead of reading back at every iteration, we read the final computation only once. This reduces the labeling process to a few seconds per image.

Results and Evaluation

We ran our algorithm on twelve urban scenes with different conditions and one interior scene (Fancy_restaurant-26). The datasets ChapelHill1-25 and ChapelHill2-30 were captured by a moving vehicle at street-level in [START_REF] Pollefeys | Detailed real-time urban 3d reconstruction from video[END_REF]. The other datasets where captured with different DSLR-cameras and some of them have been referenced in other IBR publications as wi will see in comparisons. For all of them we calibrate cameras with VisualSfM structure from motion [START_REF] Wu | Multicore bundle adjustment[END_REF]. The scenes Yellowhouse-12, Museum-27, Street-10, Aquarium-20 were previously reconstructed with PMVS [START_REF] Furukawa | Accurate, Dense, and Robust Multi-View Stereopsis[END_REF] in [START_REF] Chaurasia | Silhouette-Aware Warping for Image-Based Rendering[END_REF][START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. The scene Library_RM-50 was reconstructed with MVE [START_REF] Goesele | Multi-view stereo for community photo collections[END_REF] while for Figure 3.9: Selection of the rendering algorithm Superpixels in dark and medium red are rendered using planes with respectively the FPLAN and PLAN algorithm (with the same rendering time computational cost). When the SWARP algorithm is selected the superpixels are in blue. This last label is mainly used in regions with poor or non existing 3D information such as leaves and specular car windows. the rest of scenes (Tree-18, Bouquet_house-25, Museum_back-29, SaintAndrews-28, Fancy_restaurant-26, ChapelHill1-25, ChapelHill2-30) we used CMPMVS reconstruction [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF].

We reconstruct the scene Hotel_corner-10 with all three mentioned reconstructions (PMVS, MVE, CMPMVS) and discuss this result in Section 3.6.2. The suffix in the name of a dataset indicates the number of input photographs used. In Section 3.6.1 we present visual comparisons for all these datasets.

The main goal of our approach is to choose the most appropriate rendering process according to quality criteria. This limits the usage of expensive computations for image-space warps [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] to regions with poor 3D information and favors planar approximation for the superpixels where its rendering quality is high. In Fig. 3.9 we illustrate the selected IBR method for superpixels of one view for three different datasets. The planar approximations are mostly used on buildings where 3D reconstruction is most reliable. In more challenging parts of the scene, the image-space warps are more likely to be used. This is the case for leaves where geometry is not necessarily well approximated by a plane. Due to reflections, windows are also not well reconstructed and we notice a higher proportion of superpixels of SWARP labels selected (in blue), as well as some occlusion boundaries where it is harder to accurately fit a plane.

Table 3.1 shows the percentages of superpixels classified in FPLAN, PLAN, SWARP on average (± standard deviation) for each dataset. Planar approximations are used on average for 74% of superpixels allowing our algorithm to run 2.5 times faster (mean value) than SWARP. We ran a batch preprocess and rendering of the scene Bouquet_house-25 on a 12-core 2.5GHz Dell Z800 (NVIDIA Titan GTX GPU); all others on a 6-core Dell 3.2GHz Z420 (GTX 680). After MVS reconstruction, the whole preprocess takes about 1min/image. Warps are parallelized, explaining the difference in overhead of our approach compared to planar methods in the two configurations. At rendering time, the cost of choosing the four nearest neighbors views is negligible.

The main advantage of our method is speed, since it only uses shape-preserving warps when necessary. By appropriately selecting the rendering method to use for each region of the image, our selective IBR is on average 2.5 times faster than SWARP, reaching 3.5 times for the Aquarium-20 scene. In (Table 3.2) we show frames per second (FPS) for each algorithm. In Fig. 3.10 we can see how the number of segments rendered with planar re-projection correlates with the gain in speed. This gain in speed can be critical for the usage of free-viewpoint IBR on devices with limited compute resources, such as mobile phones for example.

Qualitative Comparisons

Quality evaluation is subjective, especially for the complex imagery we consider here. In the following we present qualitative comparisons of Selective rendering against individual methods used for labeling. We also compare our approach with the three recent IBR methods [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF][START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF][START_REF] Flynn | DeepStereo: Learning to Predict New Views from the World's Imagery[END_REF]. These two first approaches have already shown their superiority Chaurasia et Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels constraints [START_REF] Goesele | Ambient point clouds for view interpolation[END_REF] or manually defined silhouettes [START_REF] Chaurasia | Silhouette-Aware Warping for Image-Based Rendering[END_REF]. From visual inspection of interactive sessions, using different navigation paths for the various datasets, our approach globally outperforms the other superpixel based algorithms. To illustrate this, Fig. 3.11 to Fig. 3.16 show a selection of challenging viewpoints, off the view-interpolation trajectory. Each time the proposed selective approach results in rendering quality equivalent or better than the three methods taken separately. This is more obvious in a continious navigation path than in single photography. We provide a video in supplementary material available here: http://team.inria.fr/graphdeco/ publications. In this video, artifacts (e.g., incorrect plane reconstruction) become particularly visible during camera motion. The choice of SWARP for unreconstructed regions results in improved overall visual quality compared to PLAN, FPLAN albeit with an increase in computational overhead, depending on the CPU used.

In Figs. 3.17 to 3.19, we compare selective rendering only with SWARP [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]. For each scene we present the spatially closest reference camera to have in idea of how the scene should look like. For these extreme cases, we can see on the top view that the novel camera positioned and oriented much farther than previous examples. In general, we observed that Selective and SWARP present equivalent results.

In Fig. 3.20, we show a visual comparison with the dense correspondence approach of [START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF], notably the rendered image for a given position on the view interpolation path. Overall visual quality is close, although our methods avoids some of the blurring due to correspondence tracking and interpolation. We note however that the rendering based on dense correspondences (left image) has the typical artifacts due to a bad estimation of correspondences (see close up on the tree). In regions with poor 3D information (building of the left) both methods show some artifacts as well as in thin structures as the flag pole.

In Fig. 3.21, we compare with the most recent paper for IBR walkthroughs [START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF] that uses pre-trained deep networks. Their offline synthesis takes several minutes to render this low resolution image. Other artifacts that characterize their system, include the vanish of thin foreground structures. Also, partially occluded objects tend to appear overblurred. However, they manage to obtain a sharper region on the flag (upper left) which in our case, presents ghosting because during the capture it was waving.

Comparison using Different Reconstructions

To test the effect of the reconstruction methods on our labeling, we used three different multi-view reconstructions algorithms publicly available on Hotel_corner-10: PMVS [START_REF] Furukawa | Accurate, Dense, and Robust Multi-View Stereopsis[END_REF], MVE [START_REF] Goesele | Multi-view stereo for community photo collections[END_REF] and CMPMVS [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF]. We have previously shown reconstructed point cloud for PMVS and recovered meshes MVE and CMPMVS in Section 2.2. The average percentage of superpixels labeled as SWARP is about 50%, 37% and 27% for PMVS, MVE and CMPMVS respectively. This result was expected considering the improvement in

Quantitative Evaluation

To validate our results quantitatively, we investigated the use of visual metrics for image quality assessment like Structure Similarity Index SSIM [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] or Visual Difference Predictor VDP [START_REF] Mantiuk | HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions[END_REF]. These metrics need a reference image to compare against. Hence the procedure followed was leave-one-out: We calibrate all input photographs but we set apart a subset of inputs to use them as reference images for quality metrics. MVS reconstruction and subsequent steps were performed only in the subset of input images. For test algorithms (PLAN, SWARP and Selective), rendered images were generated at calibrated cameras of the reference images. In Table 3.3 we set some results (the higher the number, the better the quality) which are actually inconclusive since according to VDP, we are not significantly better and even in some cases, our score is lower.

To understand these results, we show the probability maps of error detection for SSIM in Fig. 3.23(c) and VDP in Fig. 3.23(d) for the synthesized view in Fig. 3.23(b) given the reference image Fig. 3.23(a). Higher error is encoded as a color closer to red. We observe that the error is high and localized around the windows, at the flag and all the vegetation. However, in terms of subjective visual quality, the human eye has difficulty perceiving small errors in reflections or in cluttered vegetation [START_REF] Reinhard | Calibrated image appearance reproduction[END_REF]. Given the bias of high error, it is difficult to differentiate the quality of different algorithms. For more rare cases the error is slightly worse due the difference in color and other aspects. We can see mainly red everywhere in Fig. 3.23(e) and Fig. 3.23(f) which biases the result of the metric, to the point that the numbers presented in Table 1.3 are essentially meaningless. The weakness of these metrics has been highlighted by Čadík et al. (2012) while evaluating the performance of state-of-the-art metric for detection and localization of rendering distortions. As a result, quantitative assets Image-based Rendering methods in a reliable way is still an open research topic.

Scene

Selective SWARP PLAN

Conclusions and Discussions

We proposed a Bayesian formulation to model the choice of the most suitable rendering method for IBR algorithms based on superpixels, using probability distributions to model rendering quality and choice of rendering method. We solve for the most suitable rendering method using MAP estimation, which chooses a rendering method for each superpixel in a preprocess. We use the result to define a selective IBR algorithm combining the benefits of previous algorithms, with very good overall speed/quality tradeoff. One important strength of our approach is that it identifies regions of the image where using a more expensive IBR approach (e.g., [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF]) is wasteful, and replaces it with a cheaper planar reprojection method of equivalent quality while another important aspect is that as the 3D reconstruction improves, the speedup offered by our approach is higher. We currently use the camera selection and blending of Chaurasia et al.. These can definitely be improved, but both topics are hard problems involving different tradeoffs which we will investigate in future work. A good solution will improve the quality of our algorithm significantly. The recent rendering method for indoors methods [START_REF] Hedman | Scalable Inside-Out Image-Based Rendering[END_REF] is an interesting avenue to explore in this direction.

This work provides a first indication on the utility and power of MAP estimation as a preprocess for real-time IBR. An interesting future direction is to pursue these ideas further in a more general context taking the prior p(ξ) into account, improving the rendering methods and their parameters. Developing such solutions raises several hard In the previous chapter we presented a new method providing a good trade-off between speed and quality. We achieved this by choosing the best IBR algorithm to render a given local region. Our approach provides satisfactory results, but does not inherently improve the quality of the rendering, since we are limited by the capabilities of available algorithms. The algorithms we use suffer from artifacts on poorly reconstructed objects, e.g., reflective surfaces such as cars. To alleviate this problem, we propose a method that automatically identifies stock 3D models, aligns them in the 3D scene and performs morphing to better capture image contours. Our method provide models which are well-aligned in 3D and to contours in all the images of the multi-view dataset, allowing us to use the resulting model in our mixed IBR algorithm. As we will see in the results section of this chapter, our method shows significant improvement in image quality for free-viewpoint IBR, especially when moving far from the captured viewpoints.

Introduction

A key element of a high quality IBR is good 3D reconstruction estimated from the images. While great progress has been made in this domain, these methods do not work well in the case of transparent surfaces or reflective objects. IBR methods try to compensate for missing 3D geometry using strategies like fronto-parallel assumptions [START_REF] Zitnick | Stereo for image-based rendering using image over-segmentation[END_REF], 2D image warps [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] or interpolation from image correspondences [START_REF] Lipski | Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality[END_REF]. For poorly reconstructed foreground objects, close to the novel, synthesized view, this is usually not sufficient to mask errors in the reconstruction. A typical example of incomplete reconstruction of foregrounds in outdoors scenes are cars. (see Fig. 4.1).

We focus on urban environments, where captured scenes contain buildings and many man-made objects (cars, signposts, benches etc.). With the recent development of 3D model databases it is more and more likely to find a corresponding model to objects in a captured scene. Examples of these databases are Trimble Warehouse 3D1 , ShapeNet2 [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF], and ObjectNet3D3 [START_REF] Xiang | ObjectNet3D: A Large Scale Database for 3D Object Recognition[END_REF]. Trying to use CAD models is a promising strategy that has been used for various application such as depth correction [START_REF] Lee | High-quality depth estimation using an exemplar 3d model for stereo conversion[END_REF] or image editing and manipulation [START_REF] Kholgade | 3D object manipulation in a single photograph using stock 3D models[END_REF], even though selected 3D models usually do not exactly correspond to the images, requiring deformation of the model. However, these previous methods rely entirely on user interaction for selection, placement, alignment and deformation of the model and often are not designed to handle multi-view data which is required for IBR.

In this chapter, we present an automatic method which leverages databases of 3D CAD models to augment IBR scenes and allow better navigation. The core idea is to use the stock models as a better proxy for the objects in the scene. To be visually convincing the stock models first needs to be correctly placed in the scene and carefully aligned with the silhouettes in input photographs. We then use the model in our mixed IBR algorithm that renders the background and the objects in two passes, blending them in a final pass. Our new approach which builds on learning methods in a preprocess and proposes an improved contour-based alignment and morphing approach to automatically chose, align and morph 3D models in a reconstructed scene for IBR. To the best of our knowledge this is the first method automatic method for this process to improve IBR.

Our contributions can be summarized as follows:

• We first adapt learning-based methods to detect and identify an object class and an object pose in the input views.

• We present an accurate object alignment and correspondence selection method for morphing with more fine-grain and accurate treatment. We then propose a method which exploits all available information, namely partial and inaccurate 3D reconstruction, multi-view calibration, image contours and the 3D model to achieve accurate object alignment for morphing.

Our method provides fine-grain alignment and automatic correspondence detection for contours, achieving a good initial placement in the scene. Thanks to the good initial placement and the correspondence detection, we can automatically morph the stock-model to better align with contours in all the images of the multi-view dataset. The resulting model is then used in our mixed IBR algorithm, greatly improving image quality, especially when moving far from the captured viewpoints thanks to the stability given by an explicit geometric representation of objects nearby the cameras.

Our approach is fully automatic and can directly benefit from any future improvement in model selection or larger databases. We demonstrate our method on the example of cars in urban environments, since very often instances of this class are present in street-view datasets and MVS algorithms struggle to recover their geometry. Another good reason to focus on cars, is that the number of models available is sufficiently large 3D model database [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]; when databases of models for other objects become available, our approach can be directly applied. Our experiments demonstrate a clear improvement in rendering quality compared to state of the art methods.

Before presenting an overview (Section 4.3) and details of our system, in Section 4.2 we discuss related work which is specific to the method developed in this chapter, which complements the general review of IBR presented in Chapter 2.

Related Work

We propose a new mixed IBR algorithm, improving rendering quality of objects by automatically retrieving, aligning and morphing 3D geometry from stock models. Since each of these components is a vast area in itself, we restrict discussion of previous work only to the most closely related methods. In contrast to previous IBR methods, we provide an end-to-end automatic pipeline which finds a good match for such objects from stock 3D models, and then performs fine-grain alignment and morphing to provide multi-view consistent 3D model for the object, resulting in much higher visual quality for free-viewpoint IBR. In the Following, we review some methods for learning with 3D object databases (in Section 4.2.1) and geometry alignment (in Section 4.2.2).

3D Object Databases and Learning

Initial methods to align 3D models to photos for model retrieval, extract edges from both the 3D model and the photograph [START_REF] Roberts | Machine perception of 3-D solids[END_REF][START_REF] Huttenlocher | Object recognition using alignment[END_REF][START_REF] Lowe | The Viewpoint Consistency Constraint[END_REF]. Such approaches work well especially for untextured objects [START_REF] Lim | Parsing IKEA Objects: Fine Pose Estimation[END_REF][START_REF] Arandjelović | Smooth object retrieval using a bag of boundaries[END_REF], but can be limited by the difficulty of extracting reliable and consistent edges in 2D and 3D. The most popular approach for matching CAD models to photographs is to use handcrafted descriptors such as HOGs [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF][START_REF] Su | Estimating image depth using shape collections[END_REF][START_REF] Aubry | Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models[END_REF] or learned Convolutional Neural Network (CNN) features [START_REF] Massa | Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views[END_REF]Aubry & Russell, 2015). [START_REF] Hueting | CrossLink: joint understanding of image and 3D model collections through shape and camera pose variations[END_REF] use both HOGs and CNN features to co-align and sort collections of class-labeled images and CAD models. Considering the recent success of CNN features, we follow this option.

CNNs [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] are composed of a succession of simple operations, such as convolutions, non-linearities and max poolings, whose parameters are optimized to perform a given task. They have demonstrated impressive results in many domains such as image classification (Krizhevsky et al., 2012a;[START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] and object detection [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF][START_REF] Gidaris | Object detection via a multi-region & semantic segmentation-aware CNN model[END_REF]. In addition, they provide intermediate features which have proven to be generic enough to be re-used or adapted for very different tasks [START_REF] Yosinski | How transferable are features in deep neural networks? Pages 3320-3328 of: Advances in neural information processing systems[END_REF][START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. Here we use CNNs to first detect object categories using the framework of [START_REF] Gidaris | Object detection via a multi-region & semantic segmentation-aware CNN model[END_REF] and then simply match images and rendered views from the 3D models using the intermediary pool4 features of the network of [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] to retreive the corresponding 3D model in a way similar to Aubry & Russell (2015). As mentioned before, here we focus only on cars to validate our approach since this is the best database available for objects in the scenes we target.

We next review previous methods for car pose estimation. [START_REF] Koller | Moving object recognition and classification based on recursive shape parameter estimation[END_REF] proposed a method based on a polyhedral 3D vehicle model which was further improved by [START_REF] Ferryman | A Generic Deformable Model for Vehicle Recognition[END_REF]. The use of more complex deformable models has become more common [START_REF] Leotta | Vehicle surveillance with a generic, adaptive, 3d vehicle model[END_REF]. [START_REF] Hödlmoser | Model-based vehicle pose estimation and tracking in videos using random forests[END_REF] applied Random Forests (using handcrafted features) to track cars in videos. More recently, fine-grained model classification has received more attention [START_REF] Lin | Jointly optimizing 3d model fitting and fine-grained classification[END_REF]. By taking advantage of 2D detections from deformable part models, a 3D model is deformed to better fit the estimated landmark positions. Part based features are then used for fine grained model classification. Finally, [START_REF] Mottaghi | A coarse-to-fine model for 3D pose estimation and sub-category recognition[END_REF] use a coarse-to-fine hierarchical representation for object detection, pose estimation and sub-category recognition. This method is not limited to cars and results are demonstrated with planes and boats. These car pose estimation methods focus on the single-view case. The inherent 3D ambiguity for our multi-view setting makes these methods suboptimal for our goal.

Model selection and pose estimation are the first component of our solution; To be as generic as possible we build on the CNN-based methods and extend it to handle the multi-view data we treat here.

Geometry Alignment

A first category of methods treat automatic 3D model alignment. With the goal of a more compact geometric representations, [START_REF] Lafarge | Insertion of 3-D-primitives in mesh-based representations: towards compact models preserving the details[END_REF] attempted to insert basic primitives in the reconstructed geometry while preserving details. In [START_REF] Lafarge | A hybrid multiview stereo algorithm for modeling urban scenes[END_REF] this insertion was jointly done with multi-view reconstruction. In their multi-object energy model a photo-consistency term would favor the mesh alignment with content of photographs, however some objects would not be correctly represented by piece wise primitives. Other solutions [START_REF] Rosenhahn | Three-dimensional shape knowledge for joint image segmentation and pose tracking[END_REF]Dambreville et al., 2008b;Prisacariu & Reid, 2012) were based on a level set formulation and assumed a fixed 3D model and assume a separation between the color models of the background and the object of interest. To handle different types of 3D models, a common approach is to learn an embedding into a lower dimensional space using kernel principal component analysis (Dambreville et al., 2008a) or Gaussian process latent variable models [START_REF] Prisacariu | Nonlinear shape manifolds as shape priors in level set segmentation and tracking[END_REF]. Recent methods take advantages of these dimensionality reduction approaches to estimate 3D shape, 2D-3D pose and image segmentation [START_REF] Sandhu | A nonrigid kernel-based framework for 2D-3D pose estimation and 2D image segmentation[END_REF]Prisacariu et al., 2012). Although discussed in Prisacariu & Reid, results on multi-view data are not demonstrated, and in their examples images have uniform color background which is not the case of cluttered urban scenes. Relying on dimensionality reduction, the unique parts present in a few models may disappear from the generic model. Our solution takes advantage of the diversity of models in the dataset and finds the closest one. It can also directly benefit from any improvement in matching or any new instance added to the database.

In Computer Graphics applications, 3D models are fitted to images for various applications such as image edition [START_REF] Prasad | Single view reconstruction of curved surfaces[END_REF] or 3D modeling [START_REF] Xu | Photo-inspired model-driven 3D object modeling[END_REF]. In all cases user input is required for 3D geometry alignment. [START_REF] Zheng | Interactive images: cuboid proxies for smart image manipulation[END_REF] rely on user interaction to help approximate underlying geometry with cuboids. A similar approach is adopted in [START_REF] Chen | 3-Sweep: extracting editable objects from a single photo[END_REF] but the user has access to richer 3D components. In [START_REF] Kholgade | 3D object manipulation in a single photograph using stock 3D models[END_REF], the user selects a similar 3D model which is deformed to fit the image according to user provided constraints. The main advantage of this method is its ability to generate novel viewpoints of the object. The closest method related to our work is the depth estimation method using 3D models by [START_REF] Lee | High-quality depth estimation using an exemplar 3d model for stereo conversion[END_REF]. Here the objective is to help the 2D-3D conversion for images and videos. Using a model aligned with the input image, depth is coherently in-painted. However the process relies heavily on manual user interaction at all stages: model selection, initial constraints for pose estimation and image segmentation for morphing.

In contrast, our approach provides a fully automatic pipeline for all these steps, leading to a solution that is scalable and thus usable for IBR.

Overview

The goal of our approach is a high-quality mixed Image-Based Rendering algorithm for urban scenes, by using stock 3D models to represent hard-to-reconstruct geometry such as cars. To achieve this, we build on recent advances in object detection/recognition and the ever growing 3D object databases. To avoid confusion we refer to the 3D mesh from the shape database as the 3D object mesh and any geometry coming from reconstruction as the reconstructed geometry.

Input. The input to our approach is a set of photographs of the scene. As in the previous chapter, we obtain calibrated cameras and an approximate geometry of the scene (proxy) using structure from motion (VisualSfM [START_REF] Wu | Multicore bundle adjustment[END_REF][START_REF] Wu | Towards linear-time incremental structure from motion[END_REF] and multi-view stereo reconstruction CMPMVS [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF]; other alternatives could be used for this step. We use the ShapeNet 3D object database [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] for the object retrieval step.

Object Selection and Preprocessing. Object bounding boxes are obtained using a recent detection algorithm [START_REF] Gidaris | Object detection via a multi-region & semantic segmentation-aware CNN model[END_REF]. We use the 3D reconstructed geometry to put the detections into correspondence (Fig. 4.2.a). These images are used to find the corresponding 3D model and its orientation with respect to the cameras (Fig. 4.2.c).

Object Alignment. After obtaining the 3D models, we place the object in the scene. We use a multi-view approach taking advantage of the detection bounding boxes (Section 4.5.1), the available geometry and silhouette matching (Section 4.5.2). Object Morphing and Rendering. After the alignment, the object mesh can still be different from the actual object geometry. In this case, we use morphing based on silhouettes to obtain a closer fit. Rendering is achieved by compositing background rendering using our selective rendering [START_REF] Ortiz-Cayon | A Bayesian Approach for Selective Image-Based Rendering using Superpixels[END_REF] and an ULR-like [START_REF] Buehler | Unstructured lumigraph rendering[END_REF] rendering for the foreground. Results clearly demonstrate the advantage of our approach (Fig. 4.2.2.b). As expected, we found that the retrieval using AlexNet features were of lower quality than using the more powerful VGG features. More surprisingly, we also found that the retrievals with adapted features were of lower quality, probably because the adaptation layer of Massa et al. also destroys some image information.

Each query is matched with an image from the database. This gives both a 3D model ID and an orientation with a matching score (of the object in the scene). Orientation is expressed as azimuth-elevation angles (θ, φ) with respect to a camera viewing the object at the origin. Because we have access to several views of the same car, we were able to further refine the retrieval using this information. Interpreting the comparison score between CNN features as a log probability, we compute a single score for each 3D model by simply summing the maximum score for this model for each of the unoccluded view of the model. Typical results of this step are shown in Fig. 4.5.

Positioning the Mesh

We now have a mesh corresponding to each object identified in the images of our multi-view dataset. The rendering with the highest matching score gives the orientation of the model with respect to one camera. To place the mesh in the scene we follow a multi-view strategy taking advantage of the detection information from all the views. To achieve more precise alignment we use both reconstructed geometry and silhouette matching. The final output is a set of rigid transformation parameters Λ corresponding to scale, translation and rotation for each 3D model.

Initial Pose Estimation

Initial pose of each mesh is computed as follows. We perform the initial alignment separately for rotation and then translation and scale. To orient the 3D model obtained from the previous step (Section 4.4.2), we rely on the matched image with the highest score from the database. We know the orientation of the 3D models with respect to the corresponding virtual camera C r , which we represent as rotation R r . This rotation is not sufficient to align the 3D model, since our database consists of images rendered with the object at the center (Fig. 4.4) while in real world images the object can be present at different locations (Fig. 4.3). To compensate for this, we compute the rotation matrix that aligns the camera central axis ray with the viewing line passing through the center of the detected bounding box. We compose all rotations and represent the orientation of the mesh in a global coordinate system.

After setting a rough orientation, a first estimate of the car position is computed as the point that minimizes the sum of squared distances to all rays cast through the center of 2D bounding boxes. We define the transform parameters Λ ∈ {λ|t x , t y , t z , s} where t i is the translation in the i-axis and s is the scale. We further improve this first estimate of the transform parameters Λ by leveraging the 2D bounding boxes from object detection (Fig. 4.6a). By minimizing the distance between detection bounding boxes and the bounding boxes from 3D projection, we obtain a better initial estimate of the rigid transform parameters Λ:

Λ * = arg min Λ n i=1 dist(x i 1 , d i 1) 2 + dist(x i 2 , d i 2) 2 (4.1)
where {x 1 , x 2 } and {d i 1 , d i 2 } respectively define, for view i, the sets of upper left and bottom right corners of the 2D bounding boxes of the object and the detection. The distance function dist is defined as:

dist(x, x d) = 0 if x or x d on image border ||x -x d || 2 otherwise (4.2)
For this optimization we only consider an edge of a bounding box if the edge is entirely within the image (i.e., the car is not truncated at that side). We use gradient descent to estimate these initial set of parameters Λ. We provide the full formulas for the partial derivatives in Appendix B. For each camera, the line of view for object vertices v 1 and v 2 intersects the available 3D reconstruction (in green; note that part of the car is missing) at 3D points v 1 mvs and v 2 mvs . In this case, the constraint from v 2 mvs is ignored.

Multi-View Alignment

After the initial pose estimation, the model is placed in the correct general region of the 3D scene. It now becomes possible to further improve the alignment of the 3D model using contours and available 3D reconstruction. We continue to use Λ to indicate pose parameters (rotation, translation and scale) but this time we include rotation quaternions Λ ∈ {λ|t x , t y , t z , q x , q y , q z , q w , s}. We model the alignment step by solving the following optimization problem:

Λ * = arg min Λ E(Λ) = E 3D (Λ) + E edge (Λ) (4.
3)

The first term (E 3D) corresponds to distance between the partial 3D reconstruction from MVS and the mesh. The second term (E edge) tries to align the silhouette of the mesh with the corresponding edges in the images.

Constraints from partial 3D reconstruction. Multi-view stereo algorithms [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF][START_REF] Goesele | Multi-view stereo for community photo collections[END_REF] provide a coarse 3D reconstruction of the object. This reconstruction often contains inaccuracies and holes, typically in regions containing windows or strongly reflective surfaces where depth estimation from stereo matching algorithms is unreliable. Nevertheless existing 3D information should be used to align the model. The initial pose of the matched 3D model provides a rough overall scale and position of the object, allowing us to identify with some accuracy which parts of the 3D reconstruction correspond to the model we wish to align. We note V i visible the set of the visible 3D model vertices from camera i. When MVS reconstruction is available, we associate to a vertex v its closest point v mvs on the line view. E 3D (Λ) is defined as: with C i the set of valid (v, v mvs) pairs obtained from view i. As illustrated in Figure 4.6b, when the reconstruction is far from the model, it is unlikely that v mvs is part of the car and it should not be considered. In our case we use 1/5 of the object length as the filtering threshold. This is a common strategy in point cloud alignment literature [START_REF] Rusinkiewicz | Efficient variants of the ICP algorithm[END_REF].

E 3D (Λ) = n i=1 (v,v mvs)∈C i ||v -v mvs || 2 (4.4) (b) (c)
Constraints on the silhouette. For silhouette matching we first need to identify relevant contours in each image. We use the Canny filter [START_REF] Canny | A computational approach to edge detection[END_REF] to detect edges in the images. The output is an edge map only based on local color differences. [START_REF] Isola | Crisp Boundary Detection Using Pointwise Mutual Information[END_REF] describe a method to estimate the statistical dissociation information on boundaries. We use this information to filter the edge map and only keep edges likely to correspond to object contours.

Once the contours in the image have been identified, the next step is to match points from the object's silhouette with edges detected in the image. If we consider p a point on the silhouette and n the normal to the silhouette at this point, we search for matching candidates along the normal line passing by p. We keep the two closest edge points to p as a matching candidate. This procedure can generate a large number of candidate matches with potentially many outliers. We first use the normals as filtering criteria. Let ∇(p) be the color gradient at the image candidate pixel p . If the angle difference between the vectors ∇(p) and n is larger than 15 • , the candidate pixel p is discarded (Fig. 4.7.(a)). This criterion is sufficient in many cases but certain situations require the usage of color information (Fig. 4.7.(b)). Pixels inside and outside the model projection are used respectively to estimate a foreground and a background color model. Here, these color models are histograms noted H F and H B . Fig. 4.7 shows the resulting object probability for pixels (warm colors indicate high object probability). We use these models to help filter incorrect matches by defining the color energy associated to a contour point p and a vector n as

E color (p, n) = p∈S int -log(H F (I p)) + p∈S ext -log(H B (I p)) (4.5)
S int and S ext are set of points sampled along the line defined by n. They respectively correspond to interior and exterior points. The defined energy is lower when interior and exterior points respectively satisfy foreground and background color distributions. Any silhouette match that results in an increase in contour energy is ignored. In essence, this is similar to energy terms used in level set segmentation [START_REF] Cremers | A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape[END_REF].

We further enforce multi-view coherence by extending our filtering scheme. Each 2D constraint is transformed into a 3D constraint by using the vertex depth value. These 3D constraints are projected in all the other views, resulting in new 2D displacements. Views where this displacement causes an increase in the appearance energy E color , vote to drop the constraint. We only keep the constraints for which a majority of views agrees. The energy term from silhouette matching is defined as:

E edge (Λ) = n i=1 (p,p)∈M i ||p -p || 2 (4.6)
with M i the set of 2D matching points from silhouettes in view i.

Optimization. We solve the alignment problem of Eq. (4.3) using gradient descent. All differentiations with respect to each pose parameter are provided in Appendix B.2.

Typical outputs of initial pose described in Section 4.5.1 and in the fine alignment Section 4.5.2 are shown in Fig. 4.8. These two steps are not sufficient, since the mesh of the model is not exactly the same as the model in the input photos as we saw in Fig. 4.8. This happens due to inaccuracies at the retrieval step or just because the appropriate model may be missing from the database. A subsequent morphing step (in Section 4.6.2) will be required to accurately fit the model in the images; however high-quality alignment using a rigid transformation is indispensable for the success of morphing and finally high-quality IBR.

Automatic Geometry Morphing and Rendering

We now have a well aligned 3D model in our scene. However, due to the inevitable differences between 3D models retrieved and the 3D object observed, the 3D mesh needs to be adapted to fit the object in the images as best as possible. This happens due to several reasons: • Inaccuracies at retrieval step.

• Inaccuracies at the alignment step.

• Inaccuracies of the 3D model.

• Or simply, because objects such as cars exist in various options and the appropriate model might be missing in the database, or the specific instance of the object may have small differences such as different accessories etc.

A key element of our approach is that we automate this morphing process using the 2D silhouette matching obtained in the previous step, contrary to previous methods based on manual user interaction [START_REF] Kholgade | 3D object manipulation in a single photograph using stock 3D models[END_REF].

Mesh simplification

Mesh deformation techniques, such as the As Rigid As Possible (ARAP) morphing [START_REF] Sorkine | As-rigid-as-possible surface modeling[END_REF], require high quality manifold meshes. Unfortunately, meshes available in ShapeNet and other large databases are unsuitable for such transformations. They often present poor quality due to their diverse and "casually modelled" origin, often containing duplicate vertices and faces, self-intersecting polygons, disconnected components which are generally unsuitable for further geometry processing.

We tried different methods to repair the meshes, including re-sampling the hull of the meshes with points and using screened Poisson reconstruction with the software Graphite4 While the resulting meshes are reasonable, the final mesh is not guaranteed to be manifold and small holes due to details in the 3D modeled mesh remained which create problems during rendering. An example of this kind of mesh is presented in Fig. 4.9(b). As a reasonable compromise, we opted for the semi-convex hull representation [START_REF] Guney | Displets: Resolving stereo ambiguities using object knowledge[END_REF] (see Fig. 4.9(c)). This method preserves the shell of the objects, and outputs a manifold mesh suitable for further processing while keeping desired properties as a side-effect.

Morphing

To deform the mesh, we obtain 3D constraints on vertices from 2D silhouette matching.

For every silhouette point p matched with an edge point p in the image, we obtain the new position of the mesh vertex v i projecting on p. This new position, v i M , is located along the viewing line of p at the same depth as v i . We enforce a smooth deformation of the rest of mesh using the As-Rigid-As-Possible surface deformation framework [START_REF] Sorkine | As-rigid-as-possible surface modeling[END_REF] available in libigl5 [START_REF] Jacobson | libigl: A simple C++ geometry processing library[END_REF].

Rendering

The rendering proceeds in three passes. The first pass renders the background environment using the mask generated by the previous process. We use our previous implementation of selective rendering [START_REF] Ortiz-Cayon | A Bayesian Approach for Selective Image-Based Rendering using Superpixels[END_REF] to render this layer, and modify the shader to discard all pixels on the objects which have geometry using the mask. We see this layer in Fig. 4.13(left), which is the result of blending the four closest views. The second pass performs a ULR-like rendering of the car using the aligned and morphed geometry (figure middle). Specifically we used deferred shading to render the depth and normals of the 3D model, look up the color in the closest images and use the ULR blending weights (Buehler Figure 4.10: Mesh morphing. Because the selected 3D mesh may not correspond exactly to the model in the images, a deformation step is necessary. We use silhouette matching to define constraints on vertices: red points indicate original positions and white points target positions. A multi-view filtering step (see text for details) is necessary to remove remaining outliers (indicated in green). After morphing, the mesh better fits the images and can be used for rendering. et al., 2001) to synthesize the final color on the object. Finally we blend background and object layers directly on the GPU to produce the final result (figure right).

Results and Comparisons

We evaluate our method on 5 scenes. We use the scenes YellowHouse-12 and Street-10 from [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] that contain cars. We also propose the new scenes . Results of our real-time rendering are shown in Fig. 4.2,Fig. 4.13 and 4.14. but are best appreciated in the accompanying video, available here: https://team.inria.fr/graphdeco/publications.

Comparisons. We compare our method with previous rendering algorithms [START_REF] Buehler | Unstructured lumigraph rendering[END_REF][START_REF] Ortiz-Cayon | A Bayesian Approach for Selective Image-Based Rendering using Superpixels[END_REF]. Fig. 4.14 shows the result of rendering for each algorithm, at a novel viewpoint far from the input cameras. ULR [START_REF] Buehler | Unstructured lumigraph rendering[END_REF] relies entirely on the available geometry and errors in the reconstruction are particularly visible (one can also notice the black regions where no 3D data exist). Our previous selective approach using superpixels, performs better on the background in general. It compensates a little for errors in the geometry (1st row), but starts to show strong artifacts as we move closer to the reconstructed background (3rd and 4th row). Just using the initial pose of the stock model may improve the rendering when no 3D data is available (row 3) but results are blurry and artifacts are created around edges. Our approach outperforms other rendering algorithms and it is able to compensate for the errors in the geometry. Thanks to alignment and morphing, the renderings around contours look natural and much fewer artifacts are visible. It now possible to move closer to objects in the scene contrary to previous methods. To show the importance of the alignment step, we also compare with rendering based on initial pose of the 3D model in Fig. 4.15.

As we explained in previous chapter, we attempt to quantitatively validate our results with image quality metrics following a leave-one-out procedure but comparing only cropped images (with bounding boxes from detection). Although this time we always obtain higher index of quality, the differences are insignificant with respect to the values obtained with ULR and Selective. We could not conclude anything with this measure since as see in Fig. 4.16, the error is spread through the image, making it hard to reach any meaningful conclusion. Again, we concluded that these metrics are not suited for Image-based rendering evaluation.

Conclusions

In this chapter, we introduced a new mixed Image-Based Rendering algorithm that builds on recent advances in object detection and recognition to augment IBR scenes with explicit geometry. We propose an entirely automatic pipeline that starts from object detection in images, then accurately places the object in the scene using a multi-view approach taking advantage of available geometry and silhouettes. As the stock 3D model may not exactly correspond, the 3D mesh is morphed to better fit the images. Our results demonstrate that we obtain improved rendering quality even when moving away from the input cameras.

For the moment only car 3D model databases are rich enough to be used in our context, but our method is generic and can be directly applied on other object categories and we would like to test our approach with other classes. We see our approach as a first step in a more general trend, in which traditional 3D models will be combined with image-based techniques to greatly simplify 3D content creation and interactive display. This is a

ULR

Selection Ours promising direction as more and more 3D models are available. Additionally, we would like to incorporate the semantic knowledge of new databases as ObjectNet3D [START_REF] Xiang | ObjectNet3D: A Large Scale Database for 3D Object Recognition[END_REF] to render retrieved objects bases on their material properties. In Chapter 3 and Chapter 4 we presented Image-Based Rendering methods that can generate plausible views under imprecise geometry. We expect better rendering quality as the reconstruction completeness and accuracy improves. An ideal IBR method should also be capable to adapt to different levels of reconstruction quality, and still perform well if only a poor geometric proxy is available. An interesting question is to ask what is the level of precision required for geometric reconstruction to still allow rendering of plausible views? The answer is unclear because: 1. Rendering methods are complex. Their artifacts are hard to analyze.

2. We have not completely understood the human vision process and we miss good perceptual models.

IBR methods presented in this thesis as well as state of the art methods use heuristics to minimize target functions, achieving excellent results. So far we have used the reconstruction process as a black box system, without explicitly measuring uncertainty introduced in the final rendering. Being aware of depth uncertainty would allow us to define rendering strategies and possibly improve depth for IBR.

In this chapter we attempt to improve IBR by identifying erroneous depth with a classification task formulated as a feature-based energy (in Section 5.2) and with a learning-based energy (in Section 5.3). In the former, we try to identify areas labeling them based in a energy using classic descriptor-based approach. In the latter, we train a deep network to learn to predict corrections of depth maps. We present partial results of both approaches which give us a first insight on how to obtain better geometry for IBR.

Introduction

We reviewed recent multi-view stereo reconstruction algorithms at a very high level in Section 2.2.1. With around 20 images of the scene viewed in Fig. 5.1a, Jancosek & Pajdla's method gives us the best proxy we have been able to obtain from tests with publicly available solutions (seen in Fig. 5.1b). We use mesh-based surface representation of the geometry which generally offers fewer outliers compared to point clouds representations. Projecting the proxy onto input cameras produces the depth maps we use for rendering (see Fig. 5.1c).

Given this scene's complexity, the results of these state of the art computer vision methods are impressive. Nevertheless those are far from being perfect. Inaccuracies on the proxy introduce rendering artifacts. Defining how imprecise geometry degrades rendering quality is a complex task. Pujades et al. model uncertainty of the geometry by back-projecting -into 3D space -feature points uncertainties of the matching algorithm. The estimated uncertainty weights the "minimal angular deviation" criteria of ULR in their optimization.

For real-time rendering application, we can informally describe this uncertainty of depth maps as three main classes. "Holes" (black regions in Fig. 5.1c) are the most evident and trivial to identify. Chaurasia et al. proposed an iterative algorithm to synthesize view depending depth base on the appearance of neighboring regions with depth. This procedure produces front-facing depth good enough when we move the nearby input cameras but rendering artifacts appear when we move far. When displaying in stereo or at slanted planes (like the ground floor in Fig. 5.2(b)), we clearly see the "billboard-like" nature of the synthesized depth.

Another kind of problem harder to identify, happens in regions with inaccurate depth as in Fig. 5.1d. We get depth information everywhere, but actually, it is too far from what it should be. It could be either extra geometry -thus some fake geometry occludes the background -or missing parts of objects -and thus it takes depth of the background. Rendering artifacts of this kind of error can be seen in Fig. 5.2(b).

Our goal is to reduce the rendering artifacts due to inaccurate view dependent or multi-view reconstruction. We target complex environments, typically outdoors urban content, in which a lot of depth cannot be reconstructed. Indoors scenes pose specific challenges [START_REF] Hedman | Scalable Inside-Out Image-Based Rendering[END_REF], but in principle the solutions we propose here could be extended to interiors.

A frequently used approach to solve this kind of problem is measuring the evidence with hand-crafted descriptors (data term) and formulating an energy with some prior observations to regularize the solution (smoothness term). We follow this approach in Section 5.2. Although we have control over the feature, it is difficult to define meaningful descriptors for the task. Deep Learning has proved to be effective for this kind of tasks. The challenge consist in gathering a massive amount of data for training and in establishing an appropriate network architecture for the problem. In Section 5.3 we explain the procedure to create our training data and the proposed network architecture.

Descriptor-based Approach

In this section we present an attempt to identify problems of depth maps for IBR, using a descriptor to measure the evidence of inaccurate geometric information in our input views. In particular, different regions of depth maps generated from MVS proxies can be classified into: Reliable (reconstructed), Unreliable (missing occluder or extra occluder) and No geometry (no depth). Next, we describe some observations of these regions to understand the their characteristics:

Reliable depth -reconstructed. Surfaces with texture and Lambertian properties, visible in two or more views. Photo-consistent properties of this type of region can be verified by re-projecting depth into other views.

Unreliable of class 1: missing occluder. Rarely, an object in the reconstruction scene is completely missing. Thus, image regions containing unreconstructed objects, but with a reconstructed background, belong to this category

Unreliable of class 2: extra occluder. This case happens when the reconstruction algorithm hallucinates geometry (and thus depth), which does not exist in the real world. In the reconstruction algorithms we tested this often occurs around vegetation or in-between thin repetitive structures (like fences). Usually the parts that subtend the extra geometry are well reconstructed.

No geometry. Regions where no reconstructed geometry is projected. In recent reconstruction algorithms, regions with noisy texture (clutter) or with repetitive patterns are less problematic for reconstruction. The real challenge remain regions that change their appearance drastically from one view to another or simply do not have matching pairs (e.g. at the border of a photograph).

Trivially, any region of the depth maps without depth will be labeled with "no-geometry". But for the other two types of regions, which tools do we have to measure these observed properties? For "missing occluder" one could measure the "objectness" of regions and verify that depth of regions that belong to the same object should not change quickly. This is hard to measure in our setups where there is no single object which is the center of attention but we move freely in the scene. Instead, we can reason on visibility, considering that the background should not be visible by the view which is missing the occluder, as we will propose in Eq. (5.3).

"Reliable depth" can be measured via photo-consistency. For this task we use the Daisy descriptor proposed by [START_REF] Tola | Daisy: An efficient dense descriptor applied to wide-baseline stereo[END_REF], inspired by SIFT and GLOH descriptors.

Daisy was efficiently computed at each pixel (two orders of magnitude faster than SIFT) It has been specifically designed for dense wide-baseline stereo matching, handling occlusions correctly and presenting desirable robust properties to perspective distortions, lighting changes and rotations. We also expect that low photo-consistency indicates "extra occluder".

Descriptor for Geometry Labeling

For each of our M input images I m associated with camera C m and depth map Z m , we can obtain Daisy descriptor maps D m . Given this map, the Daisy descriptor at a pixel coordinate x i of I m is equal to:

D m (x i) = D m (X i) = [h 1 , ..., h Q] (5.1)
Where X i is the 3D point that projects to location x i with the projection matrix of C m . D m (x i) is a feature vector with a set of Q normalized oriented histograms h q -centered around the point of interest at different levels and considering regions of different sizes. For a pixel x i in view m we obtain the matching pixel in view n, projecting X i onto camera C n and thus a matching descriptor D n (X i).

The distance d i m→n between matched points can be computed as the mean χ 2 error between histograms1 of D m (X i) and D n (X i). We define the descriptor for Geometry labeling of the pixel x i in I m (Eq. (5.2)) and its complement (Eq. (5.3)) as:

d i = |N| n∈N w n d i m→n (5.2) d * i = |N|-1 n∈(N\m) w n d i m →n (5.3)
where N is the set of views where x i is visible -according to the proxy. The weights w n are the cosine distances (dot product of normalized vectors) between rays from X i to C m and to C n . It penalizes matches between slanted views. The spatially closest view to m is denoted by m . The intuition of Eq. (5.3) is that excluding the reference view, we can measure the error between descriptors of other views that see the point of evaluation. Thus if other views generate a small error d * i with respect to d i , probably C m is missing something and the other views see the background correctly reconstructed. Maps of d i and d * i computed for the Fig. 5.1a can be seen in Fig. 5.3.

MRF Energy to identify Problematic Regions

To classify depth map regions into the afore mentioned classes we can define the problem as a multi-label MRF optimization on a regular grid (each pixel is a node). To each node x i we assign a label l i ∈ {0, 1, 2, 3} which represents reconstructed, missing occluder, extra occluder and no geometry respectively. We need to find the optimal labeling L * that minimizes the following energy with multi-view (mv) and single view (sv) regularization:

x i ∈I m E data (x i , l i) + λ 1 (x i ,x j)∈N sv E smooth-sv (x i , x j , l i , l j) + λ 2 (x i ,x j)∈N mv E smooth-mv (x i , x j , l i , l j)
(5.4) The data term attempts to measure the properties previously discussed. Concretely:

E data (x i , l i) =          ∞,
if x i has no depth and l i 3 e ρ(x i)-1 σ , otherwise (5.5)

The constant σ (between 0.0 and 1.0) indicates a threshold for variability of photo-consistency and the function ρ measures photo-consistency according to the label as:

ρ(x i) =              d i , if l i = 0 d * i , if l i = 1 σ, if l i = 2
(5.6)

The pair-wise terms E smooth-sv and E smooth-mv regularize the energy considering the 4-connected neighbors N sv in single and the 2-closest correspondences N mv in multi-view respectively. Penalizing the color difference between neighboring nodes as:

E smooth-sv (x i , x j , l i , l j) =        w z (x i , x j)e -γ 1 ||I s m (x i)-I s m (x j)|| 2 , if l i l j 0, otherwise (5.7)
where w z (x i , x j) depends on the difference of depths at x i and x i as: e -γ 2 ||Z m (x i)-Z m (x j)|| 2 . γ 1 and γ 2 are constant relative to the relevance of depth and color. I s m (x i) is the mean color of the superpixel where x i belongs to. In this way, we use SLIC [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF] oversegmentation as a soft constraint to guide the label boundaries towards image edges, instead of defining the MRF on superpixel nodes. While this could be efficient in terms of computations, some superpixels do not necessarily follow occlusion contours and thus, a superpixel might be "partially reconstructed". E smooth-mv is defined as Eq. (5.7) without considering w z . We downscale input views to a quarter of the original (downscaled to 600 × 450 pixels) to reduce computational complexity of the MRF solution.

Results and Conclusions of Descriptor-based Approach

We solve Eq. (5.4) with standard Graph Cut minimization [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. The optimized labeling for two input views is shown in Fig. 5.4. Overall, the results were not conclusive. We can explain that with two main reasons. Firstly, the descriptors presented in Eq. (5.2) and Eq. (5.3) might not discriminate correctly between labels and particularly, for the label l 2 ("extra occluder") which is very hard to model correctly. Secondly, the choice of optimization method, which might not be appropriate. Graph Cut may not be suitable for this kind of problem because is biased to produce small contours since it finds the minimum cut. This means that Graph Cut is most probably not suited to produce isolated and thin segments presented in complex street images. As a result, we decided to turn the solution of the problem as a learning-based system which we describe next.

Learning-based Approach

Recent years have seen the emergence of several learning-based methods to improve geometric reconstruction. [START_REF] Reynolds | Capturing time-of-flight data with confidence[END_REF] presented a supervised learning method to estimate geometric inaccuracies -in the form of confidence -of reconstructions with Time-of-Flight cameras. They train a classifier (Random Forest regressors) and as ground truth, they used real-world data, acquired with laser scanners. We can not apply their classifiers to multi-view stereo reconstructions because artifacts of MVS proxies (described in Section 5.1) are visibly different errors to those produced by Time-of-Flight cameras. Convolutional Neural Networks (CNNs) have become a very popular supervised learning technique in years. CNNs have been very successful in solving classification and detection tasks (e.g. Krizhevsky et al. 2012b). Deep network architectures have been extended to solve segmentation, pose estimation, stereo depth and surface normal estimation [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF][START_REF] Eigen | Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[END_REF]. Broadly speaking, implementing a solution based on deep learning requires computational power, training and validation data and a network architecture. Computational resources and the amount of initial data are the main limitations when implementing such systems. The first one is less of a problem with the availability of deep learning libraries optimized for GPUs processing (e.g. Caffe2 , Torch3 , and Theano4) and architectures for training with distributed resources allows to train deep networks in a matter of hours.

In spite of an impressive growth of publicly available data for training and testing, we did not find suitable databases for our task. Most databases, with depth information, involve Kinect-like captures which themselves do not capture the kind of thin structures we target. Creating databases with meaningful and reliable data to generalize the learning problem is probably what takes the largest amount of time when setting up deep learning systems. Instead of capturing the ground truth depth with laser scanners the option we choose is to generate synthetic data. Renderings have been used before for classification and other vision tasks (e.g. Aubry et al. 2014a and[START_REF] Rematas | Image-based synthesis and re-synthesis of viewpoints guided by 3d models[END_REF]) but usually those do not require high quality realistic imagery.

In this section, we explain the procedure to create our training data (discussed in Section 5.3.1), a network architecture (in Section 5.3.2) and the training procedure (in Section 5.3.3). Specifically we need to generate high definition photo-realistic images with ground truth depth that "look similar" to the scenes we capture for IBR. For each scene we use a small subset (15-30) of the synthetic images to run a MVS reconstruction and obtain approximate depth maps from IBR (see Fig. 5.5). Then we train a network in order to find patterns between the input color images, approximate depth and ground truth depth. Building training data from realistic synthetic renderings is a non trivial task and it is a major element of our work.

Datasets Generation

Our goal is to produce high-definition natural looking images with ground truth depth. We need to get accurate geometry and lighting details. With the availability of highly detailed hand-crafted models 5 or procedurally generated vegetation 6 , and combined with Mitsuba 7 (implementing physically-based rendering algorithms, e.g. path-tracing), we can produce extremely high quality renderings with complex effects and ground truth for different graphics components:, geometry, materials and lighting.

As a proof of concept, we started working only with four scenes (see Fig. 5.6) in 3DS-Max format with VRay 8 materials. These scenes were built by professional artists who create these assets for commercial purposes. The quality of the geometry and materials is very high, and includes complex shade trees to give realistic appearance to the rendered images. We can augment this data and generate a lot of variability if we manipulate the scene configuration, materials and lights.

To use these scene many components of our pipeline require some practical solutions developed in our research group 9 . In particular we need to deal with the problems of exporting materials from V-ray to Mitsuba, compatibility between models, different coordinates systems and automation of camera generation. Additionally the elevated cost of physically-based rendering thousands of images, requires high-end computation resources. We chose to use the Inria compute cluster for this task. HD Photo-realistic Images and Ground Truth Depth. We developed a plug-in for 3DS-Max which allows the creation of hundreds of cameras and allows the export of scenes to Mitsuba. The process of creating the cameras for a scene only requires two splines (origin and target) used to randomly sample position and orientation of cameras. The plug-in exports the scene geometry and materials to the Mitsuba format which we use in the cluster to generate our synthetic data: RGB images and ground truth depth. Using path tracing in Mitsuba, we render about 600 images of resolution 1600 × 1200 for each of our 4 scenes. Computing global illumination for our scenes takes around 2.5 hours per image on a single machine with 16GB RAM Intel-i7 with 12-cores running at 3.20GHz.

On the cluster it took less thank two week to render all this data. An example of rendered view and ground truth depth is shown in Fig. 5.7b and Fig. 5.7c respectively.

Reconstructed Depth. We select a subset of each dataset (15 to 30 images) in similar paths to those that were used in previous chapters for IBR captures. We use CMPMVS [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF] to reconstruct the scene proxy. This proxy and the ground truth geometry are not in the same coordinate system. We use an automatic alignment tool to align both the proxy and the ground truth geometry, by using the 3D point information available for each camera from the SfM step. Specifically, for each point reconstructed in each camera, we know the 3D point corresponding to the pixel in the SfM coordinate system, and we can find the 3D position of the same pixel in the original synthetic image. We use these matches as constraints to build a linear system and solved with an iterated least squares solver which provides high quality alignment. Once this is done, we obtain depth maps as the one in Fig. 5.7d.

Network Architecture

Our task is to learn the mapping between reconstructed depth and an ideal depth guided by color. In principle this task is easier than learning depth only from color. Considering we want good precision, we base our architecture on that developed by [START_REF] Eigen | Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[END_REF], with the only variation that we have an initial approximate depth. They presented a multi-scale architecture to learn coarse features and progressively refine the prediction to a higher resolution. The first coarse layer is equivalent to AlexNet (Krizhevsky et al., 2012b) since it has been designed to discriminate elements in the image. This give us meaningful localized descriptors using only image content. We concatenate our depth at the second and third scale to learn the relations between image content and depth. We use soft-max to compute our loss between the prediction and ground truth depth. with the small variation that we feed the the second and third scale of the network with our approximate depth maps obtained from MVS. For detail of the layer, refer to Eigen & Fergus 2015. The training happens in two phases. In the first phase we train the scale 1 (over AlexNet) and scale 2 with low resolution patches of depth (64 × 64 pixels). In the second phase we train the scale 3 to learn refinement of depth maps. Beforehand, we create databases in format HDF5 of patches of images (Fig. 5.9(a)), depth (Fig. 5.9(b)) and ground truth depth (Fig. 5.9(c)). Each patch of the size 256×256 pixels is created from overlapping regions of our full resolution rendered views. To avoid over-fitting, we augment our data creating patches from three different level of the views: at full resolution, half and a quarter size of the original images from where we create 60, 20 and 4 patches respectively. Our database contains about 180k of patches for each type of data. We randomly take 15% of the patches for validation. Depth is quantized in 255 levels and with a label for absence of depth.

Network Training

Results

We have run initial experiments with the data and network described above. In Fig. 5.10 we show the graphs of the loss function value with number of iterations for both the first and the second training phases. In Fig. 5.11 we show the result of depth prediction for four images of the validation dataset. Even though these preliminary results are not conclusive, there are some encouraging traits in the results. In particular, the fist two rows where the MVS depth maps was not available and for thin structures of the last two rows has been recovered (as can be seen in the umbrella's pole, the plans and lamp).

Conclusions and Further Work

In this chapter we have discussed two strategies to address the difficult problem of obtaining accurate depth which is aligned with image contours, in the presence of large reconstruction errors such as those existing in MVS reconstructions of outdoors scenes. We first presented a hand-crafted feature based approach, which despite some encouraging indications does not succeed in the goal of providing high-quality depth. We then present initial steps of a learning-based system which uses realistic synthetic data to create high-quality training data for depth estimation. Since recording high quality depth for use as ground truth of natural environments is a challenge itself, we discussed the data generation system for ground truth data and the initial network architecture used for training and depth estimation. Also, we would like to investigate loss functions which are more meaningful for view synthesis by combining our powerful ground truth depth information with a quality measure on the rendering itself. Recent work along similar lines has been proposed by [START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-Right Consistency[END_REF] and [START_REF] Kalantari | Learning-Based View Synthesis for Light Field Cameras[END_REF]. Godard et al. use stereo pairs to learn to predict each other and do not actually need ground truth depth. Their loss function enforces consistency between disparity pairs, implying good quality depth. While Kalantari et al.

use Light Field images and use a two step procedure to first estimate disparity and then use a loss function based on the quality of re-projection. The data already existing in the light field provides the required ground truth, thus optimizing for the quality of the the resulting image rather than the depth. A promising future direction for our approach would be to use a similar loss function, but to combine it with the high quality ground truth depth we have at our disposal, especially for thin structures and hard-to-reconstruct objects.

Even though our experiments are incomplete, we believe that such learning approaches based on synthetic data hold great promise for the future. The goal of the thesis was to develop solutions that allow IBR to become more usable, making it possible to adopt this approach in much wider settings. To achieve this goal we presented several novel solutions to improve speed and quality of Image-based Rendering under incomplete and inaccurate geometric information. Specifically, we investigated three research directions to address these issues.

Contributions

At the beginning of this thesis work, the highest-quality free-viewpoint IBR algorithm for outdoors scenes involved expensive warp operations on superpixels [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF], making the method too expensive for many uses, e.g., on mobile platforms. To address this problem we developed and implement an approach based on Bayesian principles. We model the rendering quality, the rendering process and the validity of the assumptions of a set of IBR algorithms. Our method improves the quality/speed trade-off of the input algorithms, selecting the best rendering algorithm for each region (represented by a superpixel segment) in a preprocessing step. At runtime our selective IBR uses this choice to achieve significant speedup at equivalent or better quality compared to previous algorithms.

A recurring problem in IBR algorithms is rendering of shiny objects. Even though solving the general problem is very hard, we observed that the recent availability of models for certain classes of objects (such as cars), opens an opportunity to exploit existing 3D models to improve the quality of IBR. We thus introduced a new mixed Image-Based Rendering algorithm that builds on recent advances in object detection and recognition. Our system automatically augments IBR scenes with explicit geometry of a semantic class present in the images. The geometry is obtained from publicly available databases of 3D CAD models. As a test case, we use the class "car" which is often present in street views and which are usually poorly reconstructed due the transparency and reflectivity of such objects. Our pipeline starts by detecting the object of interests and then accurately places the object in the scene using a multi-view approach taking advantage of available geometry and silhouettes. Since the retrieved CAD model might not be the exactly the same to the actual captured object by our photographs, the 3D mesh is morphed to better fit the images contours. Our results demonstrate that we obtain improved rendering quality even when moving away from the input cameras.

Another significant problem in IBR for outdoors scenes is the inaccuracy of the 3D reconstruction using SfM and different MVS methods. Specifically, such methods often miss some parts of the geometry, or create incorrect additional geometry in other places. We reported initial experiments addressing these issues, first based on a hand-crafted descriptor and then based on the use of realistic synthetic data to train a deep network for accurate depth prediction.

Research Impact and Applications

We addressed the problems of IBR in three different projects from where the results of Chapter 3 were presented at the International Conference on 3D Vision (3DV) 2015 (oral) and those of Chapter 4 at 3DV 2016 (oral). The research reported in Chapter 5 is still preliminary, but show much promise, in particular in the possible use of synthetic data for deep learning.

This thesis was funded by the EU project CR-PLAY (www.cr-play.eu), which was coordinated by a game developer company (Testaluna/Miniclip) and included the TU Darmstadt who provided an SfM and MVS solution. The results developed in this thesis had significant direct impact in the evolution and success of the project. The increase in rendering speed provided by the solution of Chapter 3 was critical in allowing the rendering algorithm to be used on mobile platforms, via a Unity3D port of our approach developed together with the game-developer partners of the project.

Two different prototypes games were developed using IBR technologies (in Fig. 6.2). The first one, name SilverArrow is a first-person-shotting game where an archer attempts to hit targets on a scene. The movement of the character is also restricted to avoid having the camera go outside the capture field. The background of the scene is rendered with our Selective Rendering. The second prototype is a street basketball game. The game-play happens in multiple urban scenarios give the ease capture of Image-based Modeled assets.

To engage game developers with the Image-based Rendering technology CR-PLAY organized a workshop in Patras that required the development of game prototypes through the whole process (capture, reconstruct, edit-and-play). More than 10 game developers participated creating prototypes games with image-based content and rendering. The game developers were able to use the system, including SfM and MVS reconstruction provided by TUD, and our selective IBR prepFig. 6.3. The quality and speed of the rendering was highly commended by the users, who all stated that they would like to be able to use the algorithms commercially.

Future Directions

The results we presented have advanced both the speed and the quality of IBR algorithms, and have also had impact in an applied setting. The ideas we have explored in this thesis open numerous possible future research directions. We list a few of these in what follows.

Using 3D models for improved IBR. The algorithm we presented in Chapter 4 is generic and can be directly applied on other object categories. We would like to test our approach with other classes, however the effectiveness of such solutions will depend on the availability of a sufficient large and diverse number of models for the given category.

We see our approach as a first step in a more general trend, in which traditional 3D models will be combined with image-based techniques to greatly simplify 3D content creation and interactive display. Additionally, we would like to incorporate the semantic knowledge of new databases as ObjectNet3D [START_REF] Xiang | ObjectNet3D: A Large Scale Database for 3D Object Recognition[END_REF] to render retrieved objects based, for example, on their material properties.

Reflections in IBR. In order to render new viewpoints, current IBR techniques use approximate geometry to warp and blend colors from close viewpoints. They assume the scene materials are diffuse so geometry colors are independent of the viewpoint, which fails in the case of specular surfaces such as windows. Dealing with reflections in an IBR context requires being able to identify what are the diffuse and the specular color layers in the input images. Importantly, it requires a method to correctly warp the specular layers since their associated geometry is not available and since the normals of the reflective surfaces are not reliable. Our solution for placing an exact synthetic model to replace such objects could potentially allow the use of these high quality models to develop accurate solutions for reflective surface IBR.

IBR for Head-Mounted Displays (HMD). The improved quality and speed of our IBR algorithms has opened the possibility of their use in an HMD setting. In the context of CR-PLAY, and initial demonstrator using our IBR algorithm was created for an HMD. While the potential of such solutions was clear from the prototype, many problems need to be solved before this solution can be widely used. In particular, we need to improve poor depth perception in IBR for HMDs by alleviating the card-boarding effect and also to improve comfort by reducing visual fatigue. These can be done by matching the capturing, projection and display geometry, managing the Vergence -Accommodation conflict and rendering a Depth-of-Field effect consistent with the scene. Another interesting idea is to render content appropriately in order to match eye adaptation to light by properly rendering High Dynamic Range captures in IBR for HMDs. The increase in speed and quality resulting from the algorithms in this thesis are prerequisite for this type of future work. Where: C i is the set of valid (v, v mvs) pairs obtained from view i. The set M i contains the 2D matching points (p, p) from silhouettes in view i. To solve equation B.5 we use gradient descent to estimate the set of parameters Λ ∈ {λ|t x , t y , t z , q x , q y , q z , q w , s}: We can obtain a 3D point position in homogenious coordinates W = (X, Y, Z, 1) T from (X 0 , Y 0 , Z 0) applying transformations (translation t, rotation R, scale s) given by the pose parameters Λ (see equation B.12). (X 0 , Y 0 , Z 0) represents the initial position of a 3D point of the mesh.

E f ine_align (Λ) = E 3D (Λ) + E edge (Λ) (B.
∂E f
W =                 X Y Z 1                 = sR                 X 0 Y 0 Z 0 1                 + t (B.12) Where R =           
r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33

          
We can relate W to the 2D point (x, y) in image coordinates using the camera P as:

x y 1 T = P • W T (B.13)

Where P = P 1 P 2 P 3 T and P i = p i1 p i2 p i3 p i4 . Thus x and y in terms of (X, Y, Z) are:

x = P 1 • W P 3 • W y = P 2 • W P 3 • W (B.

Figure 1 . 1 :

 11 Figure 1.1: Realistic rendering applied to film industry. Right: Virtual middle age city created for the series Games of Thrones. Left: Scene from The Jungle Book (2016). "The computer graphics character Baloo is so large and furry, he took almost five hours of rendering time per frame".

Figure 1 . 2 :

 12 Figure 1.2: Casual content creation. Right: Acquisition with Autodesk 123D. Center: Tango device. Left: Some instances of 3D models available in ShapeNet database.

Figure 1 . 3 :

 13 Figure 1.3: Abstraction of an Image-based Rendering algorithm. Input: A set of cameras C i and input images I i (preferably with unstructured capture) the goal of IBR is to generate an image I "as seen as" from the novel camera C n . Approximate geometry of the scene (Proxy) can be used in the process. Output: Synthesized view I.

Figure 1 . 4 :

 14 Figure 1.4: View synthesis with learning methods. Top row: View synthesis of Zhou et al. (2016). Input view (left) and Synthesized view (right). Bottom row: View synthesis of Rematas et al. (2014). Input view (left) and Synthesized view (right).

Figure 2 . 1 :

 21 Figure 2.1: Taxonomy proposed by Shum & Kang. From left to right: IBR algorithms that do not use any geometry require a high number of images while algorithms that use detailed geometry need a small number of images.

 Figure 2.2: (a) Plenoptic eye: For static scenes with fixed light conditions, what the eye sees at position (V x , V y , V z) and direction (θ, φ) can be considered a sample of the plenoptic function (McMillan & Bishop, 1995). (b) Top-view of a panoramic capture. (c) Top-view of Lumigraph style of capture. (d) Relationship between Lumigraph and an arbitrary pixel[START_REF] Gortler | The Lumigraph[END_REF].

Figure 2 . 3 :

 23 Figure 2.3: Interpolation from synthetic views in Chen & Williams. Interpolated view (middle) from the two synthetic source images (in the corners).

Figure 2 . 4 :

 24 Figure 2.4: (a) Reconstruction method of Debevec et al.: Left: A photograph with user marked edges. Center: The model recovered by their photogra-metric modeling method. Right: A synthetic view generated using VDTM. (b) 2D Warp of Mark et al.: In black, areas of the scene that were occluded are now exposed due to warping from a reference view. Multiple reference frames can be composited to fill the gaps.

Figure 2 . 5 :

 25 Figure 2.5: Two baselines configurations. On the right we have a larger baseline than on the left. The search space along the epipolar line of the is bigger (red dashed) in the right-hand configuration.

Figure 2 . 7 :

 27 Figure 2.7: Overview of the system of Sinha et al.: Multiple planes are robustly extracted from sparse 3D points and lines; piecewise planar depth maps are then generated by graph-cut based energy minimization.

 Figure 2.8: Camera selection and rendering of Koch et al. (2001). (a) Select the three spatially close cameras, triangulate the geometry and progressively sub-divided triangles for refinement. (b) Details of rendered images showing the result with initial sub-division (left) and with geometric refinement (right).

 Figure 2.9: Blending Field and rendering artifacts of ULR. (a) Continuous blending field. For this visualization, we assign one color to each input camera. A "pure" color (e.g. blue) means that uniquely one camera contributes to the novel view. We observe continuous transition of color (contribution of cameras) except on the right side where some regions where exclusively seen from some cameras and in black regions where no depth was available. (b) View rendered form a novel position. (c) At left, the top view of the scene with the red triangle representing the novel view position and the blue triangles the input camera positions. Some regions of (b) are highlighted in (c).

Figure 2 .

 2 Figure 2.10: (a) Rendering with Floating Textures (Eisemann et al., 2008): Input views C i , are re-projected onto the novel view V with the geometry G A and The resulting intermediate images I V i are aligned with optical flow to obtain the final image I V Float . (b) Rendering of Lipski et al. (2014): image correspondences might not be at the same location in 3D (points P 1 and P 2). The location of the new point is interpolated before projection onto novel view V.

Figure 2 . 11 :

 211 Figure 2.11: Novel view rendered with 4 previous methods. Top-left: Floating textures of Eisemann et al. (2008). Optical flow fails in specular regions like the front of the car. Top-right: Ambient point clouds of Goesele et al. (2010). Regions with no depth (upper corners of the image) are sampled with multiple depth pixels. Bottom-left: Silhouette-aware warping of Chaurasia et al. (2011). Regions around the car present distortion. Bottom-right: Shape-preserving warping of Chaurasia et al. (2013). A complete and plausible image is generated, however, the car and the facade present artifacts.

Figure 2

 2 Figure 2.12: Depth synthesis of of Chaurasia et al. (2013). (a) Over-segmentation of an input view. The superpixel in red did not contain any depth (target superpixel). Superpixels with similar appearance (saturated in green) potentially offers approximated depth. (b) Chaurasia et al. create a graph structure with connections on adjacent superpixels. Weights of edges depend on the appearance of neighboring superpixels (high weights highlighted in cyan and low weight highlighted in red). (c) Target superpixel obtains depth sampled from the three nearest neighbors in the graph (superpixels in cyan).

Figure 3

 3 Figure 3.1: Overview. We propose a Bayesian formulation (a) to model rendering quality for different Image-Based Rendering (IBR) algorithms, and a Maximum a Posteriori estimation to select the algorithm producing the highest probability result for a given image region. We apply our algorithm to three IBR methods which use oversegmented input images, each having different speed/quality tradeoffs. In (b), we use planes fronto-parallel to the input view which fail for trees and slanted planes. Using local plane estimation (c) the result is improved, especially for slanted planes (blue box). Using the shape preserving warp (d) of Chaurasia et al. (2013), better results are achieved for the tree (red box), but the quality of the slanted planes is worse. Our algorithm (e) makes the correct choice locally, giving the best solution in each case.

Figure 3

 3 Figure3.2: Probabilistic graphical models for selective IBR: (a) In the general model, the rendering of image I is estimated according to label L that indicates which rendering method to use with parameters ξ. (b) Selective rendering uses a set of 3 rendering methods. Each rendering method is described by its parameters ξ 1 , ξ 2 and ξ 3 . These parameters can be, for example, the number of superpixels. For superpixels, L is a vector of labels specifying which rendering method to use for each one of them.

Figure 3

 3 Figure 3.3: IBR methods for our selective approach. (a) The geometry, input cameras, and oversegmented images. (b) FPLAN: a fronto-parallel plane is assigned to superpixel s (Zitnick et al., 2004). (c) PLAN: a plane is estimated for s similar to Bodis-Szomoru et al. (2014). (d) SWARP: a shape preserving warp is applied to s in image space[START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF].

Figure 3 . 4 :

 34 Figure 3.4: Geometric median sphere filtering. In the upper part of the images, segments with superpixel contours in magenta. The red point inside the superpixel is the weighted geometric median of depth samples. Weights of 3D points are color coded (the higher a weight, the closer to red). All the 3D points outside the sphere are ignored during plane estimation. (a) All points are selected. The superpixel is well formed with a single depth. (b) Two clusters of 3D points belong to the superpixel (two depths). Fitting a plane to all points would give us an slanted plane. Only the points inside the sphere are used for plane estimation. (c) Multiple points along a 3D corner. We select a subset where most points are concentrated far from contour.

 Figure 3.5: Splitting superpixels and Matting. PLAN reconstruction could be improved by splitting superpixels that contains multiple planes. (a) A superpixel in a corner of a building with depth samples in white. (b) With J-linkage (Magri & Fusiello, 2014) we can robustly identify that the samples actually describe two instances of planes. (c) We can observe two groups of depth samples (in green versus blue) that belong to two different planes. (d) We could separate these two planar regions with Spectral matting[START_REF] Levin | Spectral matting[END_REF]. The two regions (red and blue) separated by a matte layer (in yellow/green).

Figure 3 . 6 :

 36 Figure 3.6: Geometric rendering quality.In these examples, a superpixel s j is transformed to image i using a plane approximation. The geometric quality will depend on the distance between x i , the projection of the 3D point X in view i, and x j→i , the transformation of x j into view i. Situation A: The plane approximation is relatively good so the distance x j→ix i is small and it results in a high value for N σ . Situation B: The transformation for superpixel s is not well estimated and in this case the distance x j→ix i is large resulting a small value for N σ .

Figure 3 . 8 :

 38 Figure 3.8: Example of probability distribution for p(l s i

Figure 3 .

 3 Figure 3.10: Proportion of selected algorithm for some datasets and the gain in rendering speed.

Figure 3 . 11 :

 311 Figure 3.11: Rendering close-up of the scene Bouquet_house-25. Top left: FPLAN. Top right: PLAN. Bottom left: SWARP. Bottom right: proposed. From top to bottom, the scenes Bouquet_house-25.

Figure 3 . 12 :

 312 Figure 3.12: Rendering close-up for the scene Yellowhouse-12. Top left: FPLAN. Top right: PLAN. Bottom left: SWARP. Bottom right: our result.

Figure 3 . 14 :

 314 Figure 3.14: Rendering close-up for the scene Aquarium-20. Top left: FPLAN. Top right: PLAN. Bottom left: SWARP. Bottom right: our result.

Figure 3 . 15 :

 315 Figure 3.15: Rendering close-up for the scene Tree-18. Top left: FPLAN. Top right: PLAN. Bottom left: SWARP. Bottom right: our result.

Figure 3 . 16 :

 316 Figure 3.16: Rendering close-up for the scene Library_RM-50. Top left: FPLAN. Top right: PLAN. Bottom left: SWARP. Bottom right: our result.

Figure 3 Figure 3 Figure 3

 333 Figure 3.17: Bottom row: novel views rendered far from reference images with SWARP (left) and Selection (right). Top row: a reference view (left) and top view (right). Position and orientation of the novel camera is represented by the red pyramid in the top right view.

Figure 3 .

 3 Figure 3.20: Comparison of Dense correspondences and DIBR[START_REF] Lipski | Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video[END_REF] (on the left) and our Selective Rendering method (on the right). For a given position on the view interpolation path. We note that the rendering based on dense correspondences has the typical artifacts due to a bad estimation of correspondences (see close ups). In regions with poor 3D information (building of the left) both methods show rendering artifacts.

 Figure 3.21: Comparison of DeepStereo[START_REF] Flynn | DeepStereo: Learning to Predict New Views from the World's Imagery[END_REF] (on the left) and our Selective Rendering method (on the right). Views were synthesized with parameters of a camera left out for rendering. Flynn et al.'s network took about 12 minutes on a multi-core workstation to render this 512x512 pixel image. In our case, our system renders this image in real-time at 1200x800 resolution.

Figure 4 . 1 :

 41 Figure 4.1: MVS reconstruction of specular objects of an urban scene. Left: input view. Right: reconstructed scene.

Figure 4 . 2 :

 42 Figure 4.2: Overview. We propose a new method for Image-Based Rendering that takes advantage of 3D model databases. During a fully automatic Preprocessing stage, (a) cameras are calibrated and 3D reconstruction is estimated using multi-view stereo[START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF]. Objects of interest (here cars) are detected using R-CNN[START_REF] Gidaris | Object detection via a multi-region & semantic segmentation-aware CNN model[END_REF]. These detections are matched using viewing rays in cyan. (b) The corresponding images are used to query our database of 3D objects, (c) which returns a 3D model and an orientation relative to the cameras.(1.d) combining depth and silhouette cues in multi-view, (e) a better alignment of the object is obtained. During Rendering, we generate the novel viewpoints illustrated by the blue camera (a). The selective approach of the previous chapter[START_REF] Ortiz-Cayon | A Bayesian Approach for Selective Image-Based Rendering using Superpixels[END_REF] exhibits strong artifacts on the car (2.a). Using our current approach (2.b) we achieve good rendering quality for both the car and the background.

Figure 4 . 4 :

 44 Figure 4.4: Example of Renderings. Four out of 108 views generated for one car model of the ShapeNet database.

Figure 4 . 5 :

 45 Figure 4.5: Model and orientation matching. The detection algorithm provides 2D bounding boxes for the object. After cropping, the images are used to query the database. Right: the matched rendering which provides both a 3D model and a rough orientation.

Figure 4

 4 Figure 4.6: (a) Constraints from detection 2D boxes: To have a better starting point for object alignment, we use the constraints from the detection bounding boxes. The bounding box corners x 1 and x 2 of the mesh should match the corners d 1 and d 2 of the R-CNN detection box. (b) Constraints from 3D reconstruction:For each camera, the line of view for object vertices v 1 and v 2 intersects the available 3D reconstruction (in green; note that part of the car is missing) at 3D points v 1 mvs and v 2 mvs . In this case, the constraint from v 2 mvs is ignored.

Figure 4 . 7 :

 47 Figure 4.7: Constraints from silhouettes. (a) For a point p on the mesh contour we look for a matching point along the lined defined by n. A candidate matching point p is added as 2D constraint if α < 15 • . (b) In certain situations, the mesh contour in pink can have two corresponding contour points. In this case it is necessary to use color models (warm colors indicate high object probability). (c) The resulting constraints help align the 3D mesh (in gray).

Figure 4 . 8 :

 48 Figure 4.8: Positioning the mesh. Upper row: Initial alignment for two views; Bottom row: fine-grain alignment.

Figure 4 . 9 :

 49 Figure 4.9: Mesh simplification. (a) Retrieved mesh from ShapeNet. (b) Re-sampled mesh with Graphite. (c) Semi-convex hull mesh of Guney & Geiger (2015).

Figure 4 .

 4 Figure 4.11: Full Mesh Fitting (a) Using 2D detection bounding boxes, an initial transformation of the 3D model is computed. (b) Using available 3D reconstruction and constraints from silhouette matching, a fine grain alignment of the model is estimated. (c) Because the 3D model does not always correspond to the images, deforming the mesh is necessary. Red points indicate mesh vertices to be displaced. White points indicate their target position.

Figure 4 .

 4 Figure 4.12: Detail of mesh morphing. (a) Detail before morphing. (b) After morphing we obtain a better alignment of the 3D model.

Figure 4 .

 4 Figure 4.13: Mixed-rendering. Left: Background layer. Middle: Foreground object. Right: Final novel view.

Figure 4 .

 4 Figure 4.14: Comparisons. Rendering of novel viewpoints on Bosquet-16, YellowHouse-12, HotelBruges-19 Street-10 and Street2-26 datasets (from top to bottom). The rendering methods are, from left to right, ULR (Buehler et al., 2001), Selection (Ortiz-Cayon et al., 2015), Ours without alignment, Ours after alignment.

 Figure 5.1: Problems of MVS reconstruction. (a) One input image. (b) Reconstructed proxy seen from (a). Proxy''s holes in red. (c) Depth map extracted from (b). (d) Example of two kind of inaccuracies of the reconstruction: Geometry of the upper path of the pole is missing while the base has inexistent geometry.

 Figure 5.2: Rendering artifacts produced by erroneous geometry. (a) Top view with input cameras in blue and novel camera in red. (b) Image from the novel camera in (a): Visible rendering artifacts around the vertical poles and in the ground floor from another novel camera far from inputs.

 Figure 5.3: Maps of descriptors for Geometry labeling. (a) Map of d i per pixel. (b) Difference between d i and d * i accentuates the missing regions

Figure 5 . 4 :

 54 Figure 5.4: Labeling for two input views of the test scene. Regions saturated in red correspond to label l 3 . Saturated in green correspond to label l 1 . Original colored pixels correspond to label l 0 . Any pixel was labeled with l 2 . (a) A correct labeling: missing parts are detected on the top of the poles, around the tree and the branches of the plant. (b) The consistency is kept on branches of plant, but labeling is been incorrectly projected from (a).

8

 Figure 5.5: Depth maps generated from geometry. (a) Ground truth geometry. (b) Reconstructed geometry aligned with the ground truth geometry. (c) Depth map extracted from (a). (d) Depth map extracted from (b).

Figure 5 . 6 :

 56 Figure 5.6: Four scenes used to generate the training data. The scenes present highly detailed geometry and include complex effects that "look similar" to the scenes we capture for Image-based rendering.

Figure 5 . 8 :

 58 Figure5.8: Network architecture. We use a three scale architecture from[START_REF] Eigen | Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[END_REF] with the small variation that we feed the the second and third scale of the network with our approximate depth maps obtained from MVS. For detail of the layer, refer to[START_REF] Eigen | Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[END_REF]

 Figure 5.9: Image patches for training. (a) Color image. (b) Reconstructed depth. (c) Ground truth depth. (d) Difference between ground truth and reconstructed depth.

 Figure 5.10: Learning curves. Upper row: Training of phase 1. Lower row: Training of phase 2. (a) Train loss vs number of iterations ×500. (b) Test loss vs number of iterations ×500. (c) Accuracy on the validation database vs number of iterations ×500.

 Figure 5.11: Example of depth prediction in our validation set. (a) Color image. (b) Ground truth depth. (c) Reconstructed depth. (d) Predicted depth.

 . 95 6.2 Research Impact and Applications . 96 6.3 Future Directions . 97

Figure 6 . 1 :

 61 Figure 6.1: Our Selective rendering running on a mobile device. Left: Screen-shots of some demos of IBR scenes. Right: IBR scene running on a mobile device.

 Figure 6.2: CR-PLAY IBR prototypes games. (a) Silver Arrow. (b) IBR Basketball

Figure B. 1 :

 1 Figure B.1: Constraints from detection of 2D boxes. To have a better starting point for object alignment, we use the constraints from the detection bounding boxes. The bounding box corners x 1 and x 2 of the mesh should match the corners d 1 and d 2 of the R-CNN detection box.

 2 Initial IBR Methods . 10 2.2 Implicit and Explicit Reconstruction for IBR 12

	Previous Work
	Contents
	2.1

2.2.1 3D Reconstruction (Explicit geometry) 13 2.2.2 Correspondences (Implicit geometry) 16 2.3 Unstructured-capture IBR . 17 2.3.1 Re-projection Methods . 18 2.3.2 Forward-mapping Methods . 20 2.3.3 Handling Reflections . 23 2.3.4 Optimization and Learning-based Approaches 24

 [START_REF] Wu | Multicore bundle adjustment[END_REF]) and MVS reconstruction (e.g., Furukawa & Ponce 2010[START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF]. These two steps provide camera calibration parameters, and a 3D point cloud of the scene, which can be sparse and inaccurate in regions with low texture or stochastic (e.g., vegetation) or reflective (e.g., cars) content.Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using SuperpixelsPreprocessing For each image, we first run the superpixel oversegmentation of Achanta

 al. (2013); Lipski et al. (2014) over methods based on optical flow estimation[START_REF] Eisemann | Floating Textures[END_REF], epipolar

	Scene	FPLAN		PLAN	SWARP
	Yellowhouse-12	36.62 ± 5.84	39.45 ± 5.88	23.93 ± 7.87
	Street-10	35.30 ± 6.03	38,47 ± 5.12	26.23 ± 6.62
	Museum_front-27	31.52 ± 3.12 43.20 ± 17.35 12.98 ± 1.30
	Museum_back-29	24.79 ± 4.86	52.64 ± 4.88	22.57 ± 3.16
	Aquarium-20	34.02 ± 4.94	56.75 ± 5.23	9.23 ± 1.93
	Library_RM-50	44.27 ± 4.00	16.55 ± 3.47	39.18 ± 3.56
	Hotel_corner-10 1	29.71 ± 43.20 22.52 ± 3.42 27.09 ± 14.08
	Tree-18	33.48 ± 5.40	42.48 ± 5.43	24.04 ± 1.55
	Bouquet_house-25	38.87 ± 5.47	37.65 ± 5.01	23.48 ± 5.99
	SaintAndrews-28	45.40 ± 4.47	30.85 ± 4.53	23.75 ± 1.43
	ChapelHill1-25	29.97 ± 3.20	42.39 ± 3.31	27.64 ± 1.75
	ChapelHill-30	32.450 ± 1.60 41.83 ± 1.80	25.67 ± 1.32
	Fancy_restaurant-26 47.01 ± 11.42 30.96 ± 8.41	22.03 ± 4.70
	Average	35.65		40.69	23.66
	Scene	Speedup Selective SWARP F/PLAN
	Yellowhouse-12	2.5	145.7	58.7	346.0
	Street-10	2.5	158.5	62.5	373.5
	Museum-27	2.9	158.3	55.3	319.3
	Tree-18	2.2	136.5	62.5	418.3
	Aquarium-20	3.5	218.0	62.5	314.3
	House-25	2.4	97.0	41	102
	Average	2.67	152.33	57.08	312.23

Table

3

.1: Average (± standard deviation) percent of the labels of Bayesian preprocessing phase. The percentage of superpixels requiring a warp is low on average. Table

3

.2: FPS for each algorithm and our selective approach. The speed up factor is relative to the SWARP method.

 Introduction . 80 5.2 Descriptor-based Approach . 81 5.2.1 Descriptor for Geometry Labeling 83 5.2.2 MRF Energy to identify Problematic Regions 83 5.2.3 Results and Conclusions of Descriptor-based Approach 85 5.3 Learning-based Approach . 85 5.3.1 Datasets Generation . 86 5.3.2 Network Architecture . 89 5.3.3 Network Training . 90 5.3.4 Results . 91 5.4 Conclusions and Further Work . 92

	Quality of Reconstruction and
	Geometry Correction for IBR
	Contents
	5.1

 In this section we present derivatives common to B.1 and B.2. Derivatives of 2D image projections with respect to pose parameters:

	B.3. Common Derivatives										105
	B.3 Common Derivatives						
			∂x ∂λ	=	∂x ∂X	∂X ∂λ	+	∂x ∂Y	∂Y ∂λ	+	∂x ∂Z	∂Z ∂λ	(B.10)
			∂y ∂λ	=	∂y ∂X	∂X ∂λ	+	∂y ∂Y	∂Y ∂λ	+	∂y ∂Z	∂Z ∂λ	(B.11)
			ine_align ∂λ	=	∂E 3D ∂λ	+	∂E edge ∂λ	(B.9)
	∂E 3D ∂λ	= 2	n i=1 (v,v mvs)∈C i	(v -v mvs) •	∂X ∂λ	,	∂Y ∂λ	,	∂Z ∂λ
	∂E edge ∂λ	= 2	n i=1 (p,p)∈M i	(p -p) •	∂x ∂λ	,	∂y ∂λ
	Derivatives ∂X ∂λ , ∂Y ∂λ , ∂Z ∂λ r can be found in Table B.1 and derivatives ∂x ∂λ , ∂y ∂λ can be
	found in section B.3										

 14)We derive equations B.14 w.r.t. X, Y and Z to obtain some of the terms of equations B.10 and B.11:∂x ∂X = p 11 P 3 • Wp 31 P 1 • W (P 3 • W) 2

	∂x ∂Y	=	p 12 P 3 • W -p 32 P 1 • W (P 3 • W) 2
	∂x ∂Z	=	p 13 P 3 • W -p 33 P 1 • W (P 3 • W) 2
	∂y ∂X	=	p 21 P

3 • Wp 31 P 2 • W (P 3 • W) 2

http://www.sketchup.com

http://www.123dapp.com

https://get.google.com/tango

https://shapenet.cs.stanford.edu

http://cvgl.stanford.edu/projects/objectnet3d

https://photosynth.net

http://research.microsoft.com/en-us/um/redmond/projects/hyperlapseapps

http://ethancartergame.com

Visual cues -motion, color, orientation, binocular disparity, etc.-before a higher level visual process that involves the memory.

From the Latin plenus, meaning complete or full, and the Greek opticus meaning vision

https://www.lytro.com

refers to the bundle of light rays leaving each 3D feature and converging on each camera center.

http://ccwu.me/vsfm/

http://imagine.enpc.fr/~moulonp/openMVG/

http://graphics.tu-bs.de/

IBR for dynamic scenes is a.k.a. Video-Based Rendering (VBR). In this thesis, we do not treat dynamic scenes.

cr-play.eu

Testaluna: http://www.testaluna.it

(a) Lipski et al. (b) Ours

https://3dwarehouse.sketchup.com

http://shapenet.cs.stanford.edu

http://cvgl.stanford.edu/projects/objectnet3d

http://alice.loria.fr/software/graphite/doc/html

https://github.com/libigl/libigl

To account for occlusion contours, we only consider pairs of histograms with approximate depth.

caffe.berkleyvision.org

torch.ch

deeplearning.net/software/theano

www.evermotion.org

xfrog.com

www.mitsuba-renderer.org/

Acknowledgments

colleagues at the GraphDeco team, engineers of this team, friends at Inria Sophia-Antipolis,

Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels completeness and quality of reconstruction from PMVS to CMPMVS and shows that our approach has the very desirable property of improving speed as the quality of the reconstruction improves.

Consider the point of view presented in Fig. 3.22. We can observed that for this point of view, CMPMVS clearly offers better rendering results with a more complete mesh even in regions of vegetation and specularities. With MVE and PMVS we observed in Fig. 3.22(c) and Fig. 3.22(d) respectively, different kind of artifacts inherent to the kind of explicit 3D information provided by the reconstruction. For example, PMVS provides a point cloud with visibility information per 3D sample. Visibility information helps to decide which segments do not contain depth samples and so we must synthesize their depth. We see on the left side of Fig. 3.22(d) visual errors in the slanted wall and the branches of the cactus because of depth approximations. On the other hand, for MVE provides a mesh with no visibility information. Regions that where not initially reconstructed, like the branches of the cactus, might take the depth from what is reconstructed behind. As a result, we obtain ghosting when this vegetation projects into wrong places.

Chapter 3. A Bayesian Approach for Selective Image-Based Rendering using Superpixels challenges, including a way to estimate quality of IBR in the absence of a reference and preferably online. Another important issue is the balance between preprocessing and runtime: optimization per pixel at rendering time is prohibitively expensive, but some combination of preprocessing and well-designed GPU data structures could result in significant improvements in rendering quality using an extension of our Bayesian approach. This thesis was funded by the CR-PLAY 2 project, led by a video-game company 3 . Our selective IBR algorithm has been implemented in Unity engine framework which makes integration with prototypes very easy. Thanks to the reduction in rendering time and memory footprint, our algorithm has been deployed on mobile devices such as the Google Tango (see Fig. 6.1) and used for video game prototypes like Silver-Arrow, IBR-Basketball and others. We will discuss this in more detail in Chapter 6.

Stock 3D Model from Multi-view Images

The first step of our system is to identify the regions in the input images containing the objects of interest, then select the stock 3D model and finally create a model which is suitable for further processing.

Multi-View Object Class Detection

We use the multi-region R-CNN [START_REF] Gidaris | Object detection via a multi-region & semantic segmentation-aware CNN model[END_REF] -one of the top-performing detection algorithms. The original method treats each input image of the dataset independently and produces candidate bounding boxes corresponding to the objects requested (e.g., car, aeroplane, chair, etc.).

For each input view, we run the R-CNN, which provides a set of candidate 2D bounding boxes (Fig. 4.3). To put these bounding boxes into correspondence we rely both on appearance and geometry. We first cluster candidate regions based on appearance. Candidates belonging to different color clusters should never be matched. For each pair of object candidates -from different views -we compute the intersection of the viewing line passing through the center of the 2D bounding boxes (Fig. 4.2.a). The largest 3D-point clusters identify the objects in the scene and match 2D detections. After this step we have a set of candidate objects with corresponding images from different viewpoints. Next we use this data to find the corresponding stock models.

Multi-View 2D-3D Retrieval

We use the ShapeNet [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] database to find stock models using the 2D bounding boxes from all views. Currently, ShapeNet has a rich collection of the class "car" which we use to validate our approach. We downloaded approximately 5K car models from this database and for each 3D model we rendered the object from 108 viewpoints of the viewing sphere, with azimuth and elevation increasing 10 degrees in the range of [0, 360) and [0, 30) respectively (see Fig. 4.4). This constitutes our database of 5K car models, each associated to 108 views of the object.

We will now use the images obtained from the bounding boxes to query our object database. Following [START_REF] Massa | Deep Exemplar 2D-3D Detection by Adapting from Real to Rendered Views[END_REF], we compare the images using the cosine distance on pool4 features. We tested features of AlexNet (Krizhevsky et al., 2012a), VGG

Ours (no alignment)

Ours (with alignment)

Floor Plane Estimation

The floor in outdoors scenes is a particularly difficult case for reconstruction with MVS algorithms due to the fact that it is texture-less and the grazing angle of capture. We could augment urban scene reconstruction fitting a plane to the floor π f loor . We developed a first solution to this problem. With RANSAC we estimate principal planes in the point cloud.

In Now, the problem consist to assign superpixels to the floor plane (floor label). We attempted to do so by casting the labeling problem as a MRF over the superpixels S i (see Eq.A.1). For each superpixel with MVS points, we fit a local plane following the procedure described in Section 3.3.2 and Section 3.3.2.1. The term E g encourages to assign the floor label to superpixels with a similar orientation to π f loor . We initialize global appearance model for the floor based on a Gaussian mixture model with the color of the superpixels with MVS points used to estimate π f loor . The term E a encourages superpixels to be assigned to the floor if they have a similar appearance. Sometimes the appearance of the floor cannot be separated from the poles or background. We add the term E p to regularize the solution with user scribbles. The user sparsely defines regions that should belong to the floor and elsewhere regions. We solve this with graph cut and propagate the results to other input images (see Fig.

Appendix A. Floor Plane Estimation

Derivatives for Automatic Pose Estimation B.1 Derivatives for Initial Pose Estimation

In Chapter 4, we presented a solution to the problem of setting an initial translation and scale. This can be represented as an energy minimization problem:

where {x 1 , x 2 } and {d i 1 , d i 2 } respectively define, for view i, the sets of upper left and bottom right corners of the 2D bounding boxes of the object and the detection. The distance function dist is defined as

We use gradient descent to estimate these initial set of parameters Λ ∈ {λ|t x , t y , t z , s}

An example of derivative term:

Remark that x i depends on the (x, y) position. Thus ∂x i ∂x and ∂x i ∂y are equal to 1. In section B.3 we develop the term ∂x ∂λ and by extension ∂y ∂λ .

B.2 Derivatives for Multi-View Alignment

We follow the same strategy as related work in model alignment Dambreville et al. (2008b); Prisacariu & Reid (2012) where the derivatives of contour points are estimated using 3D points projecting on the contours. We use both closest and farthest 3D points for the following optimization problem:

Luminance Harmonization

At render time, IBR algorithms directly use content from multiple images to render novel views. However, color consistency is not always guarantee during the acquisition of images even when efforts are made to block the camera exposure parameters. This inconsistency produces blending artifacts. We implement an image harmonization procedure that consists in simply applying a global transformation M i from the input image I i color space to an output image Ĩi in a median color space Ĩi = M i I i The median color space Y i is built with the multi-view color information of the reconstructed points in I i . The parameters of M i are found by solving X i in the linear system Y i = A i X i , where A i contains the color of reconstructed pixels in I i . This operation is performed independently for each color channel, resulting in the new set of images Ĩi which have harmonized colors. We then use Ĩi as input images instead of I i for the IBR algorithm, avoiding significant visual artefacts related to blending of inconsistent colors.

In the Fig. C.1 we see an example of the application of the harmonization approach, and the case of the red pixel and the differences between the two views before and after harmonization. In the original dataset, differences in RGB values were up to 14 color levels (average 11), while after harmonization, the maximum difference is 7 and the average is 5.6: we have reduced the difference by half. Even though the effect is subtle in the image shown above, the difference becomes much clearer during rendering where these image are blended. This can clearly be seen below, where we see that the severe artefacts in the sky on the right are greatly diminished after harmonization. The current method is restricted to a single transformation for the entire image, which has proven sufficient in some cases, but may need to be refined in more difficult cases. For these a per-region (e.g., superpixel) approach may be appropriate, followed by a filtering step (i.e., bi-lateral filtering), similar to the approach developed in [START_REF] Okura | Unifying color and texture transfer for predictive appearance manipulation[END_REF].

Appendix C. Luminance Harmonization