
HAL Id: tel-01536343
https://theses.hal.science/tel-01536343v1
Submitted on 11 Jun 2017 (v1), last revised 12 Jun 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Role of lysine acetyltransferase (KAT) activation in
spatial memory : a new therapeutic approach for

memory related disorders such as Alzheimer’s disease
Snehajyoti Chatterjee

To cite this version:
Snehajyoti Chatterjee. Role of lysine acetyltransferase (KAT) activation in spatial memory : a new
therapeutic approach for memory related disorders such as Alzheimer’s disease. Neurobiology. Uni-
versité de Strasbourg, 2015. English. �NNT : 2015STRAJ092�. �tel-01536343v1�

https://theses.hal.science/tel-01536343v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE STRASBOURG 
 

ÉCOLE DOCTORALE DES SCIENCES DE LA VIE DE LA SANTE (ED414) 

Labotoires de Neurosciences Cognitives et Adaptatives 
 

 

THÈSE  présentée par : 

Snehajyoti Chatterjee 
 

soutenue le : 11 December, 2015 

 

 

 

pour obtenir le grade de : ������������������������������������� 

Discipline/ Spécialité : Neurosciences 

 

Role of Lysine Acetyltransferase (KAT) Activation in 
Spatial Memory: A New Therapeutic Approach for 

����������������������������������������������isease 
 

 

 

THÈSE dirigée par : 
Dr BOUTILLIER Anne-Laurence  Directeur de Recherche CNRS, University of Strasbourg 

 
RAPPORTEURS :
Dr García-Osta Ana Research Scientist, University of Navarra 
Dr Sergeant Nicolas Directeur de Recherche INSERM, University Lille 

 

 
AUTRES MEMBRES DU JURY : 
Dr Barco Angel  CSIC Research Investigator, Universitas Miguuel 

Hernandez de Elche (UMH) 

Dr Rouaux Caroline Chargé de Recherches CNRS, University Strasbourg 
 



��

�

 

�

�

����������������������

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



��

�

Acknowledgements 

I would like to thank my PhD mentor Dr Anne-Laurence Boutillier for guidance, mentorship 

and providing all the important training that helped to improve my scientific knowledge and 

growth.  It was a wonderful experience to work with you. Thanks for discussing with me 

about the project and science for those countless hours. During the most difficult times while 

writing the thesis, you have given me the moral support, freedom and strong intellectual 

inputs that I needed the most.   The amount of support that I received from you cannot be 

expressed in words.  

 

Thank you to all the members of LNCA for accepting me when I first arrived in Strasbourg 

and lending your helping hands whenever I needed.   

Thank you Dr. Jean-Christophe Cassel, the director of LNCA, your dynamic personality,

limitless motivation and passion for neuroscience always motivates me. Thanks Dr. Christian 

Kelche, Dean of the Faculty of Psychology for always encouraging me.  

 

I also wish to thank the Committee for the Scrutiny of my thesis,�Dr Ana García-Osta, Dr 

Nicolas Sergeant, Dr Angel Barco, Dr Caroline Rouaux.  

 

I acknowledge my funding agency CEFIPRA/IFCPAR for funding my PhD scholarship. 

 

Thanks a lot to Dr Tapas K Kundu, under whom I have first started my journey in research. 

The training that I received while working with you has laid the foundation for me to do 

science.   You have always inspired and motivated me and your contribution in my research 

carrier is immense.   

Thanks to my collaborators: Dr Ted Abel, Philadelphia, USA, Dr Luc BUEE and Dr David 

BLUM,�Lille, France, Dr. Patrick DUTAR, Paris, France and Dr. Claire Rampon, Toulouse, 

France for always being so helpful and supportive.  

Thanks to Catherine for the administrative assistances. Also thanks for significantly 

contributing to improve my stamp collection diary.  

Thanks to the past and present �������� ��� ������������� ������ ���� Anthony, Amelie 

Gressier, Raphaelle Cassel, Romain Neidl and Olivier Bousiges for being so friendly,

discussing about ideas and providing valuable suggestions. Thanks Olivier Bousiges for 

giving important inputs for my thesis introduction chapters.  



��

�

Thanks Celine and Julien for all the helpful discussions and for those trips around Alsace that 

helped me to get rid of all the stress.  

Thanks Jean Bastian, Jean Baptiste, and Marco for the helpful discussions and hang-outs 

together.  

Thanks Romain Goutagny, Karine Merienne, Anne Pereira, Pascal, Lucas, Alexandra, 

Monique, Aline, Katia, Dominique, Herrade and Chantal for being so nice and kind to me 

and sharing your knowledge with me. Talking to you is always a pleasure.     

Thank you Karine Herbeaux, Carole, Aurelia and Aurelie. Thank you for all the good times 

spent working with you. It's lucky to have you and to benefit from your expertise. Thanks to 

Fanny, Valentine and Victor for always being so helpful.   

Brigitte, special thanks goes to you. Your help throughout my PhD was a great support. 

Thank you Olivier, Georges and Daniel for providing excellent care to our dear animals.

 

Thanks to all the members of LNCA. 

 

I also like to thank all my friends and well-wishers from Strasbourg: Anamika bhabi, Ananya 

di, Arghyashree, Atish da, Chinmoy, Jan, Ming, Nadia, Natarajan, Nicholas, Niraj, Pavan,

Prem Ji, Satish, Shankari di, Sonali bhabi, Soumya da and Souvick, and my friends from

India:�Amit, Babhru, Bappa, Rahul Khasnabish, Rahul Modak for your constant support and 

encouragement. 

 

I will like to take this opportunity to thank my parents. Thank you for trusting me since the 

beginning and for supporting and motivating me on every step throughout these studies. Its 

because of you that I could come this far in my academic career. Thanks to my in-laws for 

trusting me and always being so encouraging. Thanks to all members of my family for all the 

support that I got from you.  

 

I thank my better half, Tania. Thank you for accompanying and supporting me for the last 10 

years for my adventures in life. Thank you also for listening to all my complaints, being my 

companion throughout this journey and most importantly your patience. You deserve a lot of 

credit for my PhD to go so smoothly. Thank you for everything.  

 

 



��

�

Contents 
Principal Abbreviations������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������

1.� Introduction to Learning and memory�������������������������������������������������������������������������������������������

1.1.� Brief history���������������������������������������������������������������������������������������������������������������������������

1.2.� Different forms of Memory����������������������������������������������������������������������������������������������������

2.� Role of Hippocampus in the consolidation of Spatial memory�����������������������������������������������������

2.1.� Hippocampus: Anatomy and Nomenclature��������������������������������������������������������������������������

2.2.� The standard connectional view���������������������������������������������������������������������������������������������

2.3.� Different cell types present in hippocampus��������������������������������������������������������������������������

2.4.� Glutamatergic Neurotransmission in the Hippocampus��������������������������������������������������������

2.5.� Theories of hippocampal function�����������������������������������������������������������������������������������������

3.� Memory consolidation: Synaptic and Systemic�����������������������������������������������������������������������������

3.1.� Synaptic consolidation�����������������������������������������������������������������������������������������������������������

3.2.� Systems consolidation������������������������������������������������������������������������������������������������������������

4.� Adult Neurogenesis and Memory consolidation����������������������������������������������������������������������������

4.1.� Neurogenesis process in the Dentate gyrus����������������������������������������������������������������������������

4.2.� Systemic regulation of adult neurogenesis�����������������������������������������������������������������������������

4.3.� Functions of immature adult born neurons����������������������������������������������������������������������������

4.4.� Adult hippocampal neurogenesis and cognition��������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������

1.� Introduction to molecular events during memory consolidation���������������������������������������������������

2.� Growth factors involved in synaptic plasticity and memory���������������������������������������������������������

Brain-derived neurotrophic factor (BDNF)���������������������������������������������������������������������������������������

3.� Signaling cascades involved during memory formation����������������������������������������������������������������

MAPK signaling cascade in synaptic plasticity and memory consolidation�������������������������������������

4. Implications of transcription factors in synaptic plasticity and memory �������������������������������������

CREB�������������������������������������������������������������������������������������������������������������������������������������������������

5.� Neuronal activity-regulated gene expression during memory formation���������������������������������������

Immediate early genes (IEGs) in memory�����������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������



��

�

1.� Basic introduction to Epigenetics��������������������������������������������������������������������������������������������������

1.1.� Definition and introduction����������������������������������������������������������������������������������������������������

1.2.� Different Histone Post translational modifications����������������������������������������������������������������

1.3.� Writers and Erasers of acetylation�����������������������������������������������������������������������������������������

3.� Histone acetylation and transcription regulation in memory formation����������������������������������������

3.1.� Histone acetylation and gene expression�������������������������������������������������������������������������������

3.2.� Histone acetylation and neuronal activity������������������������������������������������������������������������������

3.3.� Histone acetylation and synaptic plasticity����������������������������������������������������������������������������

3.4.� Histone acetylation and memory formation���������������������������������������������������������������������������

4.� Role of lysine acetyltransferases (HATs/KATs) in cognitive function�����������������������������������������

CREB binding protein (CBP)������������������������������������������������������������������������������������������������������������

p300���������������������������������������������������������������������������������������������������������������������������������������������������

p300/CBP-associated factor (PCAF)�������������������������������������������������������������������������������������������������

Gcn5l2������������������������������������������������������������������������������������������������������������������������������������������������

Tip60��������������������������������������������������������������������������������������������������������������������������������������������������

5.� Histone Deacetylases (HDACs) in Cognitive Processes���������������������������������������������������������������

6.� Role of other PTMs in learning and memory��������������������������������������������������������������������������������

6.1.� Histone Phosphorylation in Memory�������������������������������������������������������������������������������������

6.2.� Histone Methylation and Memory�����������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������

1.� �������������������������������������������������������������������������������������������������������������������������

1.1.� History������������������������������������������������������������������������������������������������������������������������������������

1.2.� ���������������������������������������������������������������������������������������������������������������������

1.3.� Symptoms�����������������������������������������������������������������������������������������������������������������������������

1.4.� Therapies of AD��������������������������������������������������������������������������������������������������������������������

2.� Imp������������������������������������������������������������������������������������������������

2.1.� Amyloid Precursor Protein (APP)�����������������������������������������������������������������������������������������

2.2.� ApoE4�����������������������������������������������������������������������������������������������������������������������������������

2.3.� Tau����������������������������������������������������������������������������������������������������������������������������������������

3.� Tau as a model ��������������������������������������������������������������-Tau22����������

Hippocampal synaptic plasticity�������������������������������������������������������������������������������������������������������

Behavioral abnormalities������������������������������������������������������������������������������������������������������������������

4.� Histone modifications and AD: Implications of small molecule modulators of HATs as a 
therapeutic possibility���������������������������������������������������������������������������������������������������������������������������



��

�

4.1.� Non-histone protein acetylation and AD�������������������������������������������������������������������������������

4.2.� Histone acetylation and AD��������������������������������������������������������������������������������������������������

4.3.� Histone deacetylases in AD��������������������������������������������������������������������������������������������������

4.4.� Small molecule modulators of acetylation in the treatment of AD���������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������

A Novel Activator of CBP/p300 Acetyltransferases Promotes Neurogenesis and Extends Memory 
Duration in Adult Mice�������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������

CREB-dependent CBP regulations of plasticity-related genes is required for long-term spatial 
memory formation��������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������

Chronic treatment of a Tau mouse model with a HAT activator increases maturation of newly
generated neurons and improves hippocampus-dependent memory����������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������

Supporting Results, SR1�����������������������������������������������������������������������������������������������������������������������

Supporting Results SR2������������������������������������������������������������������������������������������������������������������������

Supporting Results SR3A���������������������������������������������������������������������������������������������������������������������

Supporting Results SR3B���������������������������������������������������������������������������������������������������������������������

Supporting Results SR4������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������

Acetyltransferases (HATs) as Targets for Neurological Therapeutics�������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������

Multifunctional chromatin organizing protein, PC4 is critical for brain plasticity�������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������

 

 

 



��

�

������������������������

 

Ac acetylation 

AD  ������������������� 

AMPA �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

APP  Amyloid Precursor Protein 

ARC  Activity regulated cytoskeleton-associated protein 

BDNF  Brain-derived neurotrophic factor 

C/EBP  CCAAT enhancer�binding protein  

CA   cornu ammonis 

CAM   Cell adhesion molecules  

CaMKII  Calcium/calmodulin-dependent protein kinase II 

CBP   CREB binding protein 

CNS   Central nervous system 

CRE   cyclic AMP-responsive element  

CREB  cAMP-response element binding protein 

DG   Dentate gyrus  

DGC   Dentate granule cells 

EC   Entorhinal cortex  

EGR  Early growth response protein 

ERK  Endoplasmic reticulum kinase  
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MTT   Multiple trace theory 
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PTM   Post-translational modification 

RSTS   Rubinstein-Taybi Syndrome 

SARE   Synaptic activity-responsive element  

SRF   Serum response factor  

STM  Short-term memory 

SVZ   Subventricular zone  

TF   Transcription factors  

TGRA  Temporally-graded retrograde amnesia  
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General framework of the thesis 

 

The most fascinating feature of the brain is its ability to form long-term memories and store 

them for durations ranging from days to weeks to a whole lifetime. Long-term memory 

formation is a complex process associated with long-lasting structural modifications in the 

brain. Long-term memory formation does not occur immediately following learning, as 

memory is initially in a fragile state. It then undergoes process of stabilization known as 

memory consolidation through which memory becomes less susceptible to disruption.  

Mechanistically, de novo gene expression is a critical event during memory consolidation, 

which is fundamental to cellular or molecular consolidation. Gene expression during memory

consolidation requires several overlapping mechanisms, including recruitment of 

transcription factors, transcriptional co-activators and regulators. One of the principal 

mechanisms of gene expression regulation is by chromatin remodelling, through histone-tail 

modifications, of which histone acetylation is an important player. The enzymes that catalyze 

the transfer of acetyl- group to the lysine residues of histone or non-histone proteins are 

histone/lysine acetyltransferases (HATs/KATs). The reverse reaction is catalyzed by histone 

deacetylases (HDACs). Recently, histone acetylation has been on prime focus to modulate 

memory related processes. In particular, histone acetylation participates in the processes 

involved during synaptic plasticity, learning and long-term memory formation. CBP is one 

such HAT which has shown important features in the formation of long-term memory.  CBP 

functions as acetyltransferase and transcriptional co-activator. Both the acetyltransferase 

activity and the transcriptional co-activator function are critical for long-term memory 

formation. Lastly, CBP dysregulation has been observed in neurodegenerative conditions like 

��� ������������ �������� ���� ������������� ��������� ����������� ���������� ���� ��������� ���

pathological conditions could provide beneficial outcomes.   

 

Objectives of the Thesis 

 

The role of CBP in spatial memory is a topic of debate because various mutant models of 

CBP have provided different outcomes in spatial memory. Studies from different mutant 

mice models of CBP proves its importance in memory formation but results from specific 
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tasks that were not always comparable (reviewed in Valor et al., 2013). While most of the 

mutant mice models were impaired in objects recognition tasks, results from spatial memory 

were mostly variable. Mice lacking only one allele of cbp show not deficit in spatial memory 

formation nor recent retention (Alarcon et al., 2004), whereas these cbp
+/- mice were found 

impaired in environmental enrichment (EE)-mediated enhancement of spatial memory 

(Lopez-Atalaya et al., 2011). Mice with CBP mutation in the HAT domain were impaired in 

long-term spatial memory retention whereas short-term memory was sparse (Korzus et al., 

2004). Notably, the deficiency in recent long-term memory could be reversed upon intense 

training (Korzus et al., 2004). Yet, conditional knock-out (cKO) of CBP in the excitatory 

neurons of the postnatal forebrain of mice developed in J�� ������� ����������� ��������� ���

complete impairment in short- and long-term spatial memory (Chen et al., 2010), while 

deletion of CBP in forebrain principal neurons ������������������ �������������� ��boratory 

displayed intact spatial memory (Valor et al., 2011).  

 

Thus, research groups have rather produced transgenic mice bearing mutated 

acetyltransferases, than look at the dynamic aspect of acetyltransferase regulation. Data 

obtained in the laboratory before my PhD studies, bring a very interesting angle to this 

debate, as Bousiges et al. (2010) showed that the expression of several acetyltransferases 

(including CBP, but also EP300 and PCAF) was increased during consolidation of spatial 

memory. As CBP levels are present in limited concentrations in the cells (Vo and Goodman, 

2001), competition for recruitment of CBP might provide a potential mechanism for cross-

talk between different neuronal functions during memory formation. Such production of 

higher CBP levels - and eventually other HATs - might serve to implement the consolidation 

phase of memory formation either by increasing the robustness of the response within time, 

or by participating in the signal transduction through ����� multiple other functions 

(coactivator, bridging, or recruitment of RNA polymerase II at enhancers; Kim et al., 2010). 

In addition, acetylation of H2B, the level of which is dramatically altered in the hippocampus 

of CBP mutant mice (Alarcon et al. 2004; Chen et al., 2010; Valor et al., 2011) and thus 

appears to be an in vivo CBP-target, is increased in hippocampal neurons while a spatial 

memory is being formed both at bulk chromatin levels and at the promoters of several 

memory- and plasticity-related genes (Bousiges et al., 2010; Bousiges et al., 2013). H2B 

acetylation was also associated with neuronal activity as observed in depolarized 

hippocampal slices (Sharma et al., 2010). Thus, the induction of an acetylated-H2B / CBP-

dependent genetic program could contribute to hippocampus-dependent memory formation. 
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Altogether, these studies and ���� ������������ recent data clearly establish that 

acetyltransferases (presence and activity) are a critical component of memory formation.  

 

Therefore, my aim for the thesis was to 1/ better define the function of CBP in spatial 

memory using two different strategies: pharmacological (small molecule mediated activation 

of CBP HAT in brain; collaboration with Prof. Tapas KUNDU, Bangalore, India) and 

transgenic model (mice model with mutation of CBP in the KIX domain, so that CBP cannot 

bind with phospho-CREB; collaboration with Dr. Ted ABEL, Philadelphia, USA) and 2/ 

examine the relevance of using a HAT activator molecule as new therapeutic option for 

memory-re���������������������������������������������������������������������������������

Luc BUEE and David BLUM, Lille, France).  

 

HDAC inhibitors increases histone acetylation and have shown promising consequences to 

improve memory related processes. Our aim was to increase histone acetylation in a more 

direct approach by activating the acetyltransferase enzymes itself. We used chemical biology 

approach to develop a small molecule activator of HAT CBP/p300 (CSP-TTK21) that 

induces histone acetylation in dorsal hippocampus and frontal cortex of mice brain. We 

investigated the implications of CBP/p300 activation in two important hippocampal 

functions: adult neurogenesis and long-term spatial memory. The next objective was to study 

the KIX domain-dependent transcriptional co-activator function of CBP in spatial memory 

formation and retention, as well as in the regulation of CBP target gene expression (i.e. 

Memory and plasticity relevant genes) during spatial learning in the dorsal hippocampus and 

frontal cortex by using CBPKIX/KIX mice. Lastly, we explored the therapeutic implications of 

���������������� ����������� ��� ���� ��� �� ����� ������ ��� ������������ �������� ����-Tau22 

mice). Prior evidences from our lab suggest CBP dysregulation in hippocampus of THY-

Tau22 mice and a��������������������������������������������������������������������������

was to treat THY-Tau22 mice with the HAT activator CSP-TTK21 from an early time point 

(as early as 3 months of age), so that we might be able not only to improve memory 

functions, but also improve adult neurogenesis and may be delay the onset of the disease 

pathology. 
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Structure of the thesis 

�����General Introduction� introduces the basic fundamental scientific concepts that laid 

the foundation of my thesis. I started with basic understanding of learning and memory 

where, I introduce the different forms of memory. Later I focussed on hippocampus and 

explained important functions of hippocampus in memory related processes. In the next 

chapter, I explained briefly the different molecular pathways involved during memory

formation starting from the growth factors to the transcription factors and immediate early 

gene expression. I have cited examples of one principal component associated in each layers 

of the signalling cascade. In the next chapter, I introduced epigenetic mechanisms especially 

focussing on acetylation involvement in memory related processes. In the last chapter, I 

���������� ���� ������������� ���������� ��� ������������ �������� ���� �������� ���������� ����

important factors involved in the pathology. Then, I emphasized on implications of histone 

������������ ����������� ��� �� ��������� ������������ ��������� ���� ���������� ��� ������������

disease. 

 �Experimental contribution������������������three chapters based on the publications and 

thesis objectives: 

In Publication 1, the implications of pharmacological activation of CBP/p300 HAT with 

CSP-TTK21 have been shown for two important hippocampal functions: adult neurogenesis 

and spatial memory formation. It laid the basis of a collaborative patent (WO2013//160885) 

between UNISTRA (Strasbourg, France) and JNCASR (Bangalore, India). Publication 2 

shows the importance of CBP KIX domain in the storage of long-term spatial memory. In 

Publication 3, we have showed the beneficial effects of chronic treatment with HAT activator 

CSP-TTK21 in THY-Tau22 mice to rescue spatial memory deficits.  

�Supporting results�� ��������� ���� �������� ���� collaborative works performed with other 

members of my lab and collegues to identify the molecular mechanisms associated with 

CBP/p300 activation by CSP-TTK21 in THY-Tau22 mice (description of the THY-Tau22 

mouse strain, effect of CSP-TTK21 on LTD (electrophysiology measurements in 

collaboration with Dr. Patrick DUTAR, Paris, France) and transcriptomic studies (in 

collaboration with the BIOPUCE Platform of IGBMC, Illkirch, France).  

��������General Discussion and Perspective�����������������������������������������������

about CBP function in spatial memory and have suggested the implications of the thesis work 

in the development of epigenetic drug for the treatment of memory impairment diseases like 

�������������������������������������������������������������������� 
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1. Introduction to Learning and memory  

1.1.  Brief history 
�

Learning an experience and storing it as memory is the building block for our mental growth 

and intellectual development. Learning is the act of acquiring new or modifying existing 

knowledge, behaviours, skills, values, preferences or understanding. Memory is a process by 

which information is encoded, stored, and retrieves. Encoding is associated with receiving, 

processing and combining all the received information. Then the encoded information gets 

stored as a record.  Finally, in response to some specific cues, the stored memory gets 

retrieved or recalled. Presently it is the challenge of the scientific community to unravel the 

mystery behind the mammalian memory processes.  

 

 

Figure 1. The hippocampus and adjacent medial temporal lobes were damaged bilaterally in 

amnesic patient H.M.  The surgery caused removal of the hippocampus showed in the MRI 

scan obtained after the surgery.  

 

The region of brain that is important for memory formation is the most intriguing question in 

neuroscience. Karl Lashley in 1920s tried to understand the site of memory storage by 

carefully damaging the cortical neurons of rats after memory acquisition through a simple 

��������������������������������������������������������������������������������������������

delocalised in the brain. Later, neurosurgeon Wilder Penfield discovered that electrical 

stimulation of certain brain regions like temporal cortex (preceding brain surgery) often 
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triggered memory-like experiences in awake patients. Thus Penfield concluded that certain 

memories are stored in individual brain regions. The discrepancy between the two above 

mentioned findings were solved by Donald Hebb. He referred the combination of neurons 

���������������������������������������������������-�����������������������������������������

and memories were supported by cell-assembles or network of neurons where learning or 

experiences could modulate their connections (Hebb and Konzett 1949). Thus the Hebbian 

hypothesis laid the cornerstone towards our understanding towards synaptic plasticity and 

cognition. The role of involvement of one region of the brain, the hippocampus was 

evidenced from one of the most famous patients of neuroscience, late Henry Gustav 

Molaison, popularly known as H.M. He was a patient of severe epilepsy for which he had to 

undergo brain surgery. His left and right medial temporal lobes (MTLs) were removed during 

the surgery (Figure 1). However, the surgery exhibited severe anterograde amnesia which can 

be characterised by the inability to form lasting memories and loss of cognitive ability 

(Scoville and Milner 1957). Interestingly, H.M. could still recall his childhood memory 

��������������������������������������������������������������������������������������������������

to learn new motor skills was not impaired. The inability to create new long term memory 

after the surgery suggests that encoding and retrieval of long-term memory are processes that 

are dealt by distinct systems. H.M., case provided substantial evidence for the involvement of 

a specific brain region such as hippocampus in memory formation.  

 

1.2.  Different forms of Memory 

 

1.2.1. Sensory Memory 

Sensory memory holds information for less than a second after the stimulus. The sensory 

receptors possess the potential to hold huge amount of information but whatever these 

receptors can hold lasts for a fraction of a second. Sensory memory can be further divided 

into echoic and iconic memory. 

 

1.2.2. Short term Memory 

Short term Memory (STM) is the ability to hold small amount of information for a short time 

and its duration is believed to be in order of seconds. Short term memory is considered to be 

a critical component of cognition. Hardly any task could be completed without the 

involvement of Short term memory (Reviewed in Jonides et al. 2008). Several factors can
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������� ���� ����� ������������ ��������� ��������� ��������������� ������� ���� ����� ����������

stress disorder. In neurodegenerative cond�����������������������������������������������������

����������������������������������������������������������������������������� 

 

 

 
Figure 2. | The classical taxonomy of memory systems. Memory is classified into three 
forms based on the time span. Long term memory is in turn divided into two main classes 
based on the capacity of conscious recollection (declarative memory) and unconscious 
learning and memory (nondeclarative memory). These two classes of memories are further 
divided into several forms and are dependent on specific regions of the brain.  
 

 

1.2.3. Long term Memory 

 

In Long term memory, information can be stored for a very long period of time which can 

last for lifetime. Scientists have explored the LTM in a variety of behavioural paradigm using 

the rodents as a model system. LTM consolidation requires protein synthesis (Helmstetter, 

Parsons, and Gafford 2008; Johansen et al. 2011), various pharmacological and genetic 
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approaches has implicated the regulation at the transcription and translation level in different 

brain regions could affect LTM formation (Jarome and Helmstetter 2014). The protein 

synthesis requirement for LTM has a specific time window that starts during and minutes 

after learning which is called the consolidation phase. Blockage of protein synthesis during 

consolidation phase impairs long term memory (R. Bourtchouladze et al. 1998); Meiri and 

Rosenblum 1998). Physiologically, LTM establishment requires changes in the structure of 

neuron in the brain. These brain structure changes are called long-term potentiation and 

involve stable changes in the neural connections throughout the brain. The hippocampus is 

one of the most important structure in the persistence of LTM. It acts as a temporary transit 

point for LTM and does not store information by itself.  Hippocampus is involved in the 

consolidation process to convert information from short term to LTM. Several different forms 

of LTM have been distinguished (Figure 2):  

 

Declarative (Explicit) memory 

 

Declarative memory involves memory associated with facts and events that can be 

consciously recalled. This form of memory is also referred as explicit memory as the 

informations are explicitly stored and retrieved. Declarative memory is further sub-divided 

into episodic memory and semantic memory. 

 

a. Episodic memory 

Episodic memory also referred as memory of autobiographical events represents the 

experience and specific events in sequential form that can be reconstructed to form memory

of actual events that had happened at some point of our lives.  

 

b. Semantic memory 

Semantic memory refers to all kinds of general world knowledge that includes words or 

concepts, facts or beliefs. The common factors among these knowledge is that the knowledge 

is built up independently from specific experiences and can be retrieved without any 

reference from specific circumstances in which it was originally acquired. For example, 

knowledge of colour and shape of an apple can be considered to be part of semantic memory, 

whereas the knowledge about the last time where we have seen or tasted an apple is 

considered to be episodic memory.  
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Both episodic and semantic memory involves similar encoding process. Formation of 

semantic memory activates the frontal and temporal cortexes, whereas hippocampus is the 

major structure required for episodic memory activity. An interesting question that arises is 

that children who develop amnesia due to bilateral hippocampal damage in early childhood, 

can they acquire semantic knowledge? Interestingly, amnesic children can still acquire 

semantic knowledge despite impairment in their episodic memory (Bindschaedler et al. 

2011;Gardiner et al. 2008;Vargha-Khadem et al. 1997). Furthermore, the case study of the 

famous amnesic patient H.M. have also revealed that he could still acquire some semantic 

knowledge after the surgery that caused his amnesia (Gabrieli, Cohen, and Corkin 

1988 ;�����������������������������������. However, acquisition of semantic knowledge in 

amnesic patients is not normal i.e., it is very slow and laborious. Thus, it can be concluded 

that acquisition of semantic memory requires involvement of episodic memory but can 

bypass it rather in a less efficient manner when the episodic system is damaged.  

 

Non-Declarative memory 

 

Procedural memory (Implicit) 

Procedural (Implicit) memory is the unconscious memory of skills (motor skills, perceptual 

skills, and cognitive skills) or habits where use of a particular object or movement of a body 

part is involved. This form of memory is acquired after series of repetition and practice. The 

information is formed from automatic sensorimotor behaviours and are so deeply embedded 

that we remain no longer aware of them. This skill based habits or learning can be acquired 

by amnesic patients that include motor skills (Brooks and Baddeley 1976), perceptuomotor 

skills (Nissen and Bullemer 1987), perceptual skills (N. J. Cohen and Squire 1980), and 

cognitive skills. Also monkeys with large medial temporal lobe lesions who fail in the object 

recognition tasks can still perform skill based learning (Zola-Morgan and Squire 1984).  

Priming is the effect of the influence of a stimulus for a subsequent effect. It is the 

processing or detecting an object based on recent experience (Shimamura 1986; Tulving and 

Schacter 1990). Familiarity is also referred to be a form of memory which is closely related 

to priming as both these forms of memory are automatic, fast-acting, sensitive to the study�

test interval and depends on repetition-induced processing fluency (Reviewed in Henke 

2010). Also cortical activity directly influences both priming and familiarity even though 
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they do not depend on the same neural circuitry. Familiarity is restricted to perirhinal cortex 

whereas priming is associated with different brain areas.  

 

 

1.3.  Spatial memory 

Spatial memory or spatial cognition defi���������������������������������������������������

can be anything ranging from: Where am I? Where is my house? Where are my glasses? 

Spatial cognition is formed from exploratory behaviour. This form of behaviour is instinctive 

and is considered to be an expression of natural curiosity or is required to acquire new 

information when exposed to a new environment or stimulus. Thus Spatial memory can be 

defined as the part of memory responsible for recognizing, codifying, storing and recovering 

information abou�� ������ ������������ ������ ��������� ������������ ��� �������� ��� ���������

routes (Kessels et al. 2001)����������consists of two dimensions- a) personal corporal space 

(location of corporal stimuli), and b) external space. These two sources contributes the 

information to organize and used by two kinds of processes: egocentric and allocentric 

strategies (Figure 3). 

 

Egocentric strategy 

It is independent of spatial cues and utilises information contributed by the bodily cues. The 

subject utilises this strategy considering its own central point as reference. Thus position of 

any object will be defined using its own position in the space. Egocentric strategy depends 

more on small or local landmarks and personal directions (left/right) to navigate through a 

path. This involves activation in the right parietal lobe and prefrontal regions of the brain.  
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Figure 3. Spatial coding system.  Allocentric strategy: Information about the location of 

objects is encoded with respect to other objects. Egocentric strategy: Information about the 

location of objects in space is represented relative to the body axes of subject (example; Left-

right or front-back) 

 

Allocentric strategy 

This strategy depends on spatial cues. Using this strategy, the subject identifies the target 

destination using the environment reference landmarks.  Furthermore, requirement for short 

routes or whole pathways involves different memory processes. The spatial working memory 

allows storage of limited amount of spatial information that can be accessed immediately.  

On the contrary, spatial reference memory system involves obtaining the spatial information 

through multiple trials.  Spatial memory is considered as a sub-type of episodic memory as it 

stores information within a spatial�temporal frame (Reviewed in Paul, Magda, and Abel 

2009). 

 

Morris Water Maze (MWM): A tool to study spatial memory in rodents 

 

Invented by Richard G.M. Morris in 1981, MWM is a vastly used behavioural task to 

evaluate spatial learning and memory in rodents. It was designed to evaluate the role of 

specific visual cues as reference for spatial memory (Morris 1984).  

 

Design and general procedure 

The MWM design (Figure 4) includes a round pool which will be filled with opaque water. 

The opacity could be achieved by adding different substances: powder milk, white paint, 

titanium dioxide or others. An escape platform will be placed slightly hidden below the water 

(around 2-3 cm). Simple reference spatial memory could be measured by dividing the pool 

into four equal quadrants. As water acts as an aversive stimulant, the first day training starts 

with period of habituation where the mice or rats will be allowed to swim in the pool without 

the platform. The learning protocol starts when the platform is placed in a fixed position in 

one of the quadrants and the animal will be allowed to search for the hidden trial using the 

spatial cues present in the room. The acquisition or learning protocol ranges for multiple days 

with multiple trials per day. Each trial starts by placing the animal in a different starting 

point. For each trial, the time taken by the animal to reach the platform is recorded (escape 
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latency). After the acquisition trails, after a defined time point the platform will be removed 

and the animal will be allowed to swim in the pool. The time spent by the animal in the target 

quadrant (the quadrant where the platform was originally placed) will be measured. The time 

in target quadrant or the distance travelled in the target quadrant reflects the spatial memory 

consolidation.  

Methodological variables 

Multiple variables can affect the performance of an animal in the MWM: 

a) Diameter of the pool.  

b) Presence or absence of previous habituation in the maze.  

c) Number of starting positions and their position in the maze 

d) Measures of various parameters  

 

Factors influencing performance in the Morris water maze 

Body weight, physical condition and age have been demonstrated to influence the swim 

velocity ��������� ������������ �����. Other reports suggests that males performs better 

compared to the females possibly because of physical strength and differences in spatial 

navigation abilities (Brandeis, Brandys, and Yehuda 1989; Sherry and Hampson 1997). These 

differences disappears by using mice older than 6 months age suggesting differential gender 

based maturation in younger animals (Bucci, Chiba, and Gallagher 1995). Also low levels of 

estrogen significantly improve spatial performance, thus hormonal cycle during which 

females are tested is also a contributing factor for the differential performance between 

genders. The age of the animal is also an essential factor. It is already an accepted fact that 

learning capacity declines with age. Stress also plays important role in the spatial 

performance in MWM as this test involves an aversive stimulus. Hyperactive animals that are 

sensitive to stress performs poorly in MWM. Thus additional learning tasks and measuring 

the blood corticosterone to determine the amount of stress needs to be considered to conclude 

that the deficits observed in the MWM is due to the alterations in learning and memory (Paul, 

Magda, and Abel 2009). 

 

Disadvantages 

� Aversive behavioural stimulus (aquatic immersion). Habituation in the maze prior to 

the training can significantly reduce the stress levels in the animals. 
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� If not maintained properly, water itself could create complications. If the optimal 

condition is not maintained, respiratory, ophthalmic and other infections could arise 

� Animals quite often use a directional strategy, when it runs up from starting point. 

� The requirements for video-recording systems and software for the complete analysis 

makes it difficult for some research groups to acquire.  

Advantages 

� Learning is faster compared to other mazes (radial maze, circular maze). 

� Reference memory, spatial working memory and learning can be measured more 

accurately and the data is generally reproducible. 

� No previous preparation like food or water deprivation is required. 

� Animals cannot use aromatic cues due to the presence of water. 

 

 

Figure 4. Picture of a typical Morris Water Maze experimental room. 
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2. Role of Hippocampus in the consolidation of Spatial memory 

2.1. Hippocampus: Anatomy and Nomenclature 
�

Hippocampus is present deep in the medial temporal lobes is one of the most studied 

neuronal systems in the brain. In rodents, it occupies a large portion of the forebrain. It can be 

divided into two regions, a dorsal portion that lies behind the septum, and ventral portion 

lying in the temporal part of the brain. Based on the cell morphology and fiber projection, 

hippocampus can be divided into multiple sub fields: dentate gyrus and the cornu ammonis 

(also referred as CA) (Figure 5). The dentate gyrus (DG) consists of the fascia dentata and the 

hilus, while cornu ammonis (CA) is further differentiated into CA1, CA2, CA3, and CA4.  

 

Figure 5.  3D representation of rat hippocampal regions. A. 3D reconstruction of
hippocampus with colour coded various structures. B and C. NeuN stained rat hippocampal 
slices showing different substructures. Adopted from Kjonigsen et al. 2011 

 

2.2. The standard connectional view 

 

The standard view suggests that the neocortical projections at the para hippocampal region 

provide the main source of input to the hippocampal formation through the entorhinal cortex 

(EC) (Figure 6).  Parahippocampal region is the site for two parallel projection streams: the 

perirhinal cortex (PER) mediated projections towards lateral entorhinal cortex (LEC) and the 

postrhinal cortex (POR) projection towards the medial entorhinal cortex (MEC). The

principal component of the performant pathway is EC who projects to all hippocampal sub-

regions including the reciprocation of the connections from the PER and POR. DG and CA3 

receives projections from Entorhinal layer II, while CA1 and Sub received from Entorhinal 

layer III. According to the polysynaptic pathway, a unidirectional route exists that connects 

all the hippocampal formation sub-regions sequentially.  
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Figure 6. Scheme of the standard connectional view. The standard view is presented based 
on the circuitry models obtained from recent publications. Adapted from (Derdikman and 
Moser 2010).  

 

2.3. Different cell types present in hippocampus 

 

Principal cells 

Hippocampal principal cells include pyramidal cells of the CA areas, granular cells of the DG 

and the mossy cells of the hilus.  

 

Pyramidal neurons of CA 

One of the best studied hippocampal neurons are the pyramidal cells of CA1. The major 

characteristics of these types of neurons are its pyramidal or ovoid shaped soma, long apical 

dendrites and small basal dendrites. CA1 pyramidal cells are densely covered with spines that 

significantly contribute to the total volume of the neuron (Figure 7). Spines act as post 

synaptic targets mostly for glutamatergic terminals. Thus, more number of spines would 

mean more excitatory synaptic input to the neurons.  Notably, a single CA1 pyramidal neuron 

shows �30,600 terminals converge to form putative excitatory synapses through dendritic 

spines (Megías et al. 2001).  
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Figure 7. Morphology of CA1 pyramidal cells. Arrows indicates the dendritic spines 

 

Morphologically, CA3 pyramidal neurons show many similarities to their CA1 counterparts. 

One of the notable differences between the two is that the CA3 pyramidal neurons have 

larger cell bodies with around two to four times higher surface area.  The proximal dendrites 

shows large complex thorny spines that are post synaptic targets of mossy fiber boutons 

(Chicurel and Harris 1992). The morphological feature of CA2 pyramidal neurons lies in 

between the pyramidal cells from CA1 and CA3. The neurons have large cell bodies, but 

lacks complex spines. Their dendritic arborisation pattern is also similar to the CA1 

pyramids.  CA2 pyramidal cells shows highest total dendritic length compared to the CA1 

and CA3 pyramids (Ishizuka, Cowan, and Amaral 1995).  

 

Granular cells of DG 

GCs are one of the important hippocampal cell types, characterised by spiny dendrites which 

originates from the upper pole of the soma and an axon that emerges from the base (Seress 

and Pokorny 1981; Schmidt-Hieber, Jonas, and Bischofberger 2007). Dendrites ranging from 

one to four originate from the soma and bifurcate three to six times to form a dendritic tuft in 

the molecular layer. Similar to the CA pyramidal cells, GCs from DG are also densely 

covered with spines. Mossy fibers, axons of the GC are the source of major output of the DG 

to the CA3. 10�18 sparsely spaced mossy fiber boutons forms synaptic contacts with 
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complex spines of CA3 pyramidal in the str. lucidum and mossy cells in the hilus 

(Rollenhagen et al. 2007).  

 

Mossy cells of the hilus 

Morphologically mossy cells of hilus share several similarities with the CA3 pyramidal cells. 

The dendrites originating from the hilus rarely invades the granule cell layer in rats

(Rollenhagen et al. 2007). Soma and the dendrites are covered by complex spines that receive 

inputs from GC (Acsády, Arabadzisz, and Freund 1996). Furthermore, mossy cells are also 

involved in synaptic contacts with distal, simple dendritic spines (Frotscher et al. 1991). 

 

2.4.  Glutamatergic Neurotransmission in the Hippocampus 

 

Glutamate is the main excitatory transmitter in the hippocampus. Ionotropic and metabotropic 

receptors form the two main classes of glutamate receptors (Table 1).  

 

 

Table 1. Different classes of Glutamate receptors in hippocampus 

 

2.4.1. Ionotropic glutamate receptors 

 

These are ligand-gated ion channels that participate in most of the fast excitatory 

neurotransmission in the CNS. Glutamate binding in these receptors causes opening of the 

channels that result in predominant Na+ influx leading to membrane depolarization. 
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Ionotropic glutamate receptors are further classified into three main classes based on their 

pharmacology and selective agonists: 

 

� �������-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 

� NMDA (N-methyl-D-aspartate) 

� Kainate receptors 

 

AMPA receptors have four major subunits: GluR1, GluR2, GluR3, and GluR4 (or GluR A�

D) (Dingledine et al. 1999). These AMPA receptor subunits exist in different combinations. 

Interestingly, these subunits undergoes post-���������������� ���� �������� ��� ���� ����� ������

which results into low conductance,  Ca2+ -impermeable channels. Principal neurons of the 

hippocampus express high levels of GluR2 that show Ca2+-impermeable AMPA receptors.  

 

NMDA receptors of hippocampus consist of heteromultimers of NR1 and NR2A�D subunits. 

NMDA receptors shows slow dissociation rate of glutamate suggesting very slow kinetics 

compared to AMPA or kainite receptors. Glycine and glutamate are the two agonists that 

activate NMDA receptors. Sequential binding of glycine followed by glutamate opens the 

channel to enable Na+ and Ca2+ to enter the cell. This can only happen when Mg2+ block is 

removed from NMDA receptors. Ca2+ influx via NMDA receptors plays crucial role in the 

synaptic plasticity.  

 

Kainate receptors are also heteromultimers that are formed in combination of GluR5,6,7 and 

KA1,2 subunits. Similar to the GluR2 of AMPA receptors, GluR5 and -6 subunits also 

undergoes alternative splicing at the Q/R site.  

 

2.4.2. Metabotropic glutamate receptors 

 

Metabotropic glutamate receptors consist of seven transmembrane domains and their actions 

are guided by G-proteins.  

Group I metabotropic glutamate receptors are mostly localised postsynaptically and their 

activation leads to increased cell excitability. Group II and III receptors are mostly localised 

presynaptically where they are involved in the control of neurotransmitter release. 
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2.4.3. The perforant pathway 

 

Perforant pathway or path is one of the major connectional routes in the brain through which 

the entorhinal cortex provides inputs to the hippocampus (Figure 8). The origin of this 

pathway is the entorhinal cortex layer II and III through which it sends direct inputs to the 

dentate gyrus, all fields of CA and the subiculum. Layer II provides direct inputs to the 

granule cells of dentate gyrus (DG) through the perforant pathway (Witter 1993). The CA3 

cells receive projections from the granule cells of DG via mossy fibers (mf).  Layer III of 

entorhinal cortex axons sends inputs to the distal dendrites of CA1 and the subiculum via the 

temporoammonic pathway. Perforant pathway contributes significantly in the consolidation 

of spatial memory especially the temporoammonic pathway (TA-CA1) (Witter et al. 2000).  

 

 

Figure 8. The Perforant path.  Top: Saggital and coronal section of brain showing Medial 
Temporal Lobe Structures and Connectivity. Bottom: Processed inputs containing sensory 
information from the entorhinal cortex innervates the dentate gyrus granule cells and 
pyramidal cells of CA1 and CA3.  (Figure modified from Kheirbek et al. 2012 and ) 
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2.5. Theories of hippocampal function 

 

Over the years of research on hippocampus fetched multiples theories on its role in memory 

formation. All the theories proposes its role in episodic memory but the differences lies in the 

concept that whether hippocampus is involved in a time limited role (reviewed in Bird and 

Burgess 2008). 

 

Declarative Theory 

Hippocampus in association with other regions of the temporal lobe participates in the 

formation of episodic and sematic memory in a time limited period. Finally all these memory 

forms are consolidated to neocortical sites which are then unaffected by damage on temporal 

lobe.  

 

Multiple-Trace Theory 

Hippocampus in concert with other medial temporal lobe regions is important for the

acquisition of episodic and semantic memories. Hippocampus remains crucial for the 

recollection of the episodic memory throughout the life-time, whereas semantic memory is 

stored in other brain regions for which it becomes independent of the hippocampus.  

 

Dual-Process Theory 

Hippocampus plays valuable role in the retrieval of episodic memory for the contextual 

details of an event.  

 

Relational Theory 

Hippocampus helps to associate information to the cortical modules which otherwise could 

not communicate. Hippocampus processes various sequences of events in our daily life.  

 

Cognitive-Map Theory 

One of the most important roles of hippocampus is to construct and store allocentric 

information in the environment to help in navigation.  
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3. Memory consolidation: Synaptic and Systemic 

 

New memories are gradually formed from a labile state which is prone to disruption to a 

more permanent state. The process of stabilisation of memory after a new experience is 

termed as consolidation. The consolidation process can be distinguished into two forms: 

synaptic (fast) and systemic (slow). Synaptic consolidation involves morphological changes 

at the synapse level whereas systemic consolidation requires reorganisation of brain regions 

that supports memory.  

 

3.1. Synaptic consolidation 

 

Selected memories are stored in the brain for long period of time by a process called memory 

consolidation. Memories are thought to be stored in the neuronal connections called synapses. 

The strength of the synapse varies with learning. Acquisition of new memories can alter the 

strength of the existing synapse and thus disrupt it. It is thus difficult to imagine how some 

memories last for a life time. One possible explanation is that memories are stored in the 

synapses but some important memories are transferred to different parts of the brain to 

protect it from changes occurring due to new memory acquisition. During consolidation, 

memories are stored in the hippocampus and then it is transferred to the cortical areas during 

resting or sleeping (Kirwan et al. 2008; Smith and Squire 2009; Wilson and McNaughton 

1994; Diba and Buzsáki 2007). The strength of a synapse can vary making it plastic in nature. 

Synaptic plasticity can be defined as the experience or learning induced change in the 

strength or connectivity of neurons.  

 

3.1.1 Hippocampal Synaptic Plasticity 

 

The hippocampal anatomy is critical for memory formation and makes it a good target for 

electrophysiological studies. The hippocampus is involved with three synaptic pathways:  

perforant, mossy fiber, and Schaffer collateral pathways. Stimulating these pathways alters 

the synaptic efficacy. A persistent strengthening of synapses is known as Long-term 

potentiation (LTP), whereas activity dependent reduction of neuronal synapse efficacy is 

termed as Long-term depression (LTD). High frequency stimulation provides synaptic 

strengthening commonly known as long-term potentiation (LTP), whereas low-frequency 
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stimulation results in synaptic weakening, called long-term depression (LTD). Spike timing�

dependent plasticity can also generate LTP or LTD, where the timing of the pre- and post-

synaptic spikes changes synaptic strength. Hippocampal synaptic plasticity can be studied 

both in vivo and ex vivo. Electrodes implanted on living animals can provide valuable 

information about the hippocampal pathways whereas slices from hippocampus can also be 

used for electrophysiological measurements (Figure 19).  

 

Figure 9. Hippocampal synaptic plasticity. Transverse hippocampal slices from rodents can 
be used to study all the three synaptic pathways. Axonal afferents can be stimulated using 
electrodes and synaptic recording can be performed from the postsynaptic follower cells 
(Adapted from Ho, Lee, and Martin 2011).  

 

3.1.2. Presynaptic Mechanisms of Plasticity 

 

Releases of neurotransmitters from the pre synaptic terminal followed by binding to the 

postsynaptic receptors are essential components for communication at the chemical synapses 

(Ho, Lee, and Martin 2011). The active zone of the presynaptic terminal consists of synaptic 

vesicles (Figure 10). Synaptic vesicles are rich with neurotransmitter, scaffolding proteins 

and a dense matrix of cytoskeleton. Synaptic strength during neuronal plasticity has direct 

correlation with the amount of neurotransmitter released. The synaptic vesicles exist in three 

different states in the presynaptic terminal: pool of readily releasable vesicles present at the 

active zone, pool of recyclable vesicles that is release upon mild or moderate stimulation; and 
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the reserve pool which is release upon strong stimulation. The synaptic vesicles then undergo 

docking or priming to be competent for fusion.   

 

Figure 10. Activity dependent modulation of pre- and post- synaptic components 

�

3.1.3. Postsynaptic Mechanisms of Plasticity 

 

The principal neurons in the brain are mostly fabricated with the post synaptic compartments; 

dendritic spines. Spines bear a bulbous head and thinner neck which connects the spine with 

dendritic shaft. The size and volume of a spine correlates its synaptic strength; large spine 

possesses greater synaptic strength due to its large pool of neurotransmitter receptors.

Interestingly, the number and shape of spine alters during synaptic plasticity. Post synaptic 

increase in intracellular calcium level modulates induction of LTP and LTD. LTP requires 

increased amounts of calcium concentration whereas LTD depends on less calcium increases. 

Increased calcium concentration leads to activation of multiple downstream signalling 

enzymes consisting of kinases calcium/calmodulin-dependent protein kinase II (CaMKII) and 

protein kinase C (PKC). CaMKII activity is crucial in CA1 during LTP and directly affects 

spatial learning (Malenka et al. 1989, Malinow, Schulman, and Tsien 1989, Silva et al. 1992, 

Hierholzer 1977). Increased Ca2+-bound calmodulin activates kinase activity of CAMKII by 

autophosphorylation. Neuronal activity mediates translocation of CAMKII to PSD. Activated 

CAMKII phosphorylates multiple PSD proteins. Autophosphorylation of CAMKII is an 

important event for induction of LTP (Lisman, Schulman, and Cline 2002). Another 
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important component of the post synaptic plasticity in the brain is glutamate which activates 

several post synaptic receptors. Both AMPA and NMDA-type glutamate receptors are ligand-

gated ion channels that play key roles in hippocampal synaptic plasticity. NMDARs are 

calcium permeable and allow influx of calcium required for LTP, whereas AMPARs are 

essential for expression and maintenance of LTP.  

 

3.1.4. Trans-Synaptic Signalling; the Synaptic Cleft 

 

The ~20-nm junction between the pre- and post-synaptic compartments is known as synaptic 

cleft. The neurotransmitters diffuse through the synaptic cleft to bind to the post synaptic 

receptors and the cell adhesion molecules (CAMs). The CAMs keeps the synapse in close 

association to each other. The important members of CAMs are cadherin, integrin, and 

immunoglobulin containing CAMs, as well as neurexins and neuroligins.  

 

3.1.5. The Tripartite Synapse: Glia and Synaptic Plasticity 

 

Glial cells are now recognised to be another important factor involved in synaptic plasticity 

�����������������������������������������������������������������������������������������������

�����������������������������������������������������������- and post-synaptic compartments

release neuroactive molecules that contribute towards the communication among the neurons. 

One such example is the glial cell mediated release of D-serine (a coactivator of the NMDA 

receptor) is essential for LTP of hippocampal Schaffer collateral synapses (Henneberger et al. 

2010, Agulhon, Fiacco, and McCarthy 2010).  

 

 

Figure 11. Electron microscopic image 
of a typical tripartite Synapse from 
CA1 region in adult rat hippocampus. 
The presynaptic terminal is coloured in 
orange, the spine neck of the post 
synaptic terminal in green, the dendritic 
shaft in yellow and the astroglial 
processes in blue. Scale bar represents 
0.5 µm. Picture adapted from Ho, Lee, 
and Martin 2011. 
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3.1.6. Time-line of synaptic rearrangement upon learning 

 

The first series of molecular and cellular events triggered by enhanced plasticity after 

acquisition includes 1) post translational modification like protein phosphorylation of protein 

kinase RNA-like endoplasmic reticulum kinase (pERK) and phosphorylated cAMP-response 

element binding protein (pCREB) within minutes, 2) protein synthesis of pre-existing

mRNAs of plasticity related genes (e.g., c-Fos and Arc) within minutes and peak at 90 

minutes, 3) growth of new immature synapse within one hour, 4) transcription of memory 

and plasticity related genes like BDNF and Arc within 1�3 hours (Figure 12) (Caroni, 

Chowdhury, and Lahr 2014). The second wave of molecular and cellular events includes 

protein phosphorylation (e.g., pERK and pCREB) peak at 9 hours followed by structural�

functional maturation of new synapses within 12-15 hours. New memory consolidation 

process continues for several days with synapse elimination (most of the new synapses are 

eliminated within the first 1.5 days) and long-term retention of few synapses. The 

mechanistic details underlying long term memory consolidation is not very well described, 

but several factors like sleep, replay and rehearsal are thought to be involved this process.   

 

Figure 12. Timeline of synaptic plasticity process following learning. Adapted from 

Caroni, Chowdhury, and Lahr 2014. Left: Plasticity phases during learning and memory, 
Centre: scheme of spine assembly and elimination, red : pre- and post-synaptic densities, 
blue: post-synapse, yellow arrow: long-term potentiation (LTP) induction, Right: molecular, 
cellular, systems, and behavioral processes occurring during learning related plasticity 
phases.  
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3.1.7. Essential factors involved in synaptic plasticity and memory 

consolidation 

Transcription is pivotal for persistence of long-lasting forms of synaptic plasticity underlying 

long term memory (Kandel 2001, Cristina M. Alberini and Kandel 2015). One of the most 

important gene expression pathway required for long term plasticity and memory 

consolidation across different species and memory types is the cAMP response element-

binding proteins (CREB) dependent pathway (Alberini 2009; Kandel 2012). In a mammalian 

brain CREB dependent pathway is essential for long-term memory formation and long-term 

synaptic plasticity (Benito and Barco 2010; Barco and Marie 2011). CREB regulates 

transcription of multiple sets of genes during memory formation, one such example in the 

context of learning or long-term plasticity is the CCAAT enhancer�binding protein (C/EBP). 

C/EBP is an immediate early gene (IEG) which has direct influence on long-term synaptic 

plasticity and long-term memory consolidation. Thus CREB controls a transcriptional 

cascade via C/EBP (C. M. Alberini et al. 1994). c-Fos and the zinc-finger protein Zif268 

(also known as early growth response protein [EGR]-1) are IEGs that are regulated by CREB. 

Gene expression of both c-fos and Zif268 are upregulated following learning and acts as 

important step during memory consolidation (John F. Guzowski 2002). The IEG 

overexpression following learning has provided excellent platform for modern biologists to 

explore the field of neuroscience to understand the basic mechanisms behind memory 

formation. Recently, several groups have developed transgenic mice by manipulating the 

regulatory elements (e.g., promoter regions) of IEGs to obtain activity-dependent response 

readouts (Garner et al. 2012).  

Apart from the IEGs, several classes of transcription factors also plays essential roles in 

memory formation like nuclear factor-k light-chain enhancer of activated B cells (NF-kB), 

members of the families nuclear receptor 4a (NR4a), serum response factor (SRF), and 

neuronal Per-Arnt-Sim (PAS) homology factor 4 (NPAS4). LTP and learning tasks induces 

expression of NF-kB in both neurons and glia. NF-kB is implicated in memory-related 

synaptic plasticity. Knockout of NF-kB impairs memory formation ����������������������

2013; Snow et al. 2014). NF-kB has a dual role in long-term memory depending on its 

synaptic localisation; it acts as a signalling molecule at the synapse and upon translocation 

into nucleus it acts as a transcriptional regulator (Romano et al. 2006).  

Ligand-activated transcription factors belonging to the nuclear receptor (NR) superfamily is 

also linked to memory formation. Immediately after learning, expression of members of 
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NR4a family of orphan receptors increases in the hippocampus. The increased expression of 

these genes is crucial for hippocampus-dependent memory formation especially contextual 

fear and object recognition memory as well as the transcriptional-dependent LTP (Bridi and 

Abel 2013).  

Several lines of evidences suggest that brain derived neurotrophic factor, bdnf triggers 

synaptic consolidation (Bramham 2007). Bdnf enhances synaptic consolidation at adult 

excitatory medial perforant path-granule cell synapses through its receptor tyrosine kinase 

(TrkB) present on pre- and postsynaptical elements of glutamatergic synapses (Drake, 

Milner, and Patterson 1999). One important characteristics of bdnf is that it regulates 

transcription and translation through post-transcriptional mechanisms, and can also stimulate 

its own release (Santi et al. 2006).  

Arc is another factor that mediates synaptic consolidation. Within the first hour after 

induction of LTP, Arc mRNA gets transported to the distal dendrites of the granule cells 

(Won and Hogan 1995; Lyford et al. 1995). Increased protein levels of Arc are obtained in 

dendritic spines following LTP induction (Rodríguez et al. 2005). Behavioural training 

dynamically induces expression of Arc in principal neurons of many cortical and limbic 

structures which is crucial for long term memory (J. F. Guzowski et al. 1999; Vazdarjanova 

et al. 2006).  

 

3.2. Systems consolidation 
 

Unlike synaptic consolidation, systems consolidation is another level of memory 

consolidation. Memory consolidation at the systems levels is a slow process that requires 

reorganisation of the brain. Consolidation at the systems levels is associated with both 

declarative (Scoville and Milner 1957) and non-declarative memory (Shadmehr and Holcomb 

1997). The first demonstration of systems consolidation was suggested by French 

psychologist Ribot where he proposed that memories possibly reorganise over time. He 

pointed out that the recent memories are more vulnerable to disruption after brain insult than 

the remote memories. Behavioural examinations from patients with temporally-graded 

retrograde amnesia (TGRA) showed that the role of hippocampus in the storage and retrieval 

of memory is time limited. Thus it could be suggested that hippocampus temporally stores

new information but the permanent storage depends on broadly distributed cortical network 

(Reviewed in Frankland and Bontempi 2005).  
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3.2.1. Models of memory consolidation 

Standard consolidation model  

The first model for system consolidation was accounted by Marr (Marr 1970). He postulated 

that the hippocampus stores the new memories and subsequently transfers to the cortex for 

subsequent reorganization and reclassification. The transfer process depends on the neural 

activity during sleep. Based on these facts, contemporary models were formulated. The 

standard consolidation model states that new information is encoded between the 

hippocampus and cortical networks (Figure 13). Subsequent reactivation across 

hippocampal�cortical networks strengthens the cortico-cortical connections which further 

enables the new memories to be independent of hippocampus. According to this model 

memory in the hippocampus is more vulnerable to decay than in the cortex. One of the 

important features of this model is that changes in hippocampal and different cortical 

connection strength are rapid and transient whereas connection changes between cortical 

areas are slow.  

 

Figure 13. Standard consolidation model. Encoding of new memories occurs in several 
specialized primary and associative cortical areas. Hippocampus integrates this information 
from the cortical modules and fuses these features into a coherent memory trace. Reactivation 
of this hippocampal�cortical network leads to strengthened cortico-cortical connections to 
allow the new memory to be independent of hippocampus. Modified from Frankland and 
Bontempi 2005 
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The multiple trace theory 

 

An alternative to standard consolidation model was proposed in 1997 commonly known as 

the multiple trace theory (MTT) (Nadel and Moscovitch 1997) (Figure 14). MTT states that 

even though the new memories are encoded in the hippocampal-cortical networks, 

hippocampus is still required for rich contextual or spatial detail. Incomplete hippocampal 

lesion should affect recent memory rather than remote episodic or semantic memories, 

whereas complete hippocampal lesion should disrupt all episodic memories, regardless of 

their age. Thus entire hippocampal lesions should produce temporally-graded retrograde 

amnesia for only semantic but not episodic memories. This theory is contradictory to the 

reports obtained from patient E.P., who had to undergo extensive bilateral medial temporal 

lobe lesion. Contrary to the MTT, E.P., had very good autobiographical and spatial memories 

from his youth (Teng and Squire 1999).  

 

 

 

Figure 14. Multiple Trace Theory. According to the MTT theory, hippocampal�cortical 
network serves as the site for memory encoding. Memory reactivation is associated with 
generation of several traces in hippocampus that are linked to cortical network. Hippocampal 
traces provides spatial and temporal context whereas cortical network are context-free or 
semantic in nature. Contextually rich episodic memory retrieval is dependent on 
hippocampal�cortical networks, where each time a memory is retrieved a new trace is laid 
down in the hippocampal complex. Retrieval of remote semantic memory is independent of a 
functional hippocampus. Modified from Mahoney and Hannula 2014.  
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Involvement of prefrontal cortex in remote memory  

 

Several imaging and inactivation studies have indicated towards a role of prefrontal cortex 

during remote memory recall. Prefrontal cortex has highly interconnected regions (anterior 

cingulate, prelimbic and infralimbic cortices) which are reciprocally connected to sensory, 

motor and limbic cortices. By virtue of its high connectivity, it is suited to process remote 

memory similar to hippocampus for processing recent memories. Upon maturation of 

memory, the integrative functions of a coherent memory trace possibly get transferred to the 

prefrontal cortex and also other associative cortices through the strengthening of cortico-

cortical connections. Thus remote memory becomes independent to hippocampus and the 

prefrontal cortex could integrate information from multiple cortical regions (Miyashita 2004) 

(Figure 15). Interestingly, during recall of remote spatial and contextual memories 

hippocampal activity gets inhibited but the source of this inhibition is yet unknown.  

 

 

Figure 15. Relation of recent and remote memory with prefrontal cortex. A. During 
initial time points after memory consolidation (recent memory), hippocampus plays 
important roles in integrating information from distributed cortical modules. At later time 
points (remote memory) when the memory matures, the connections between the different 
cortical modules are strengthened. This allows the memory to be independent of 
hippocampus whereas prefrontal cortex is thought to be involved in the integrative role. 
Modified from (Frankland and Bontempi, 2005).  
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4. Adult Neurogenesis and Memory consolidation 

 

The process of generation of new neurons throughout life in specific regions of the brain is 

known as adult neurogenesis. The two main neurogenic niches in a mammalian brain are the 

subventricular zone (SVZ) lining the lateral ventricles and the hippocampal dentate gyrus 

(DG) (Gage 2000). The neural stem cells or NSPCs possess two most important 

characteristics: self-renewal and multipotency. Niche-derived and/or intrinsic signals activate 

stem cells to under proliferation and forms new neurons. In the DG the main population of 

cell type known to generate new neurons are the neural progenitor cells (also known as 

NSPCs) which ultimately differentiate into excitatory granule cells and integrates into the 

local neural network (Deng, Aimone, and Gage 2010). NSPCs from the SVZ produce neural 

progenitor cells that migrate via rostral migratory stream (RMS) towards the olfactory bulb 

(OB). In this section, neurogenesis from the hippocampal dentate gyrus will be discussed 

considering its involvement with hippocampus dependent learning and memory.  

4.1. Neurogenesis process in the Dentate gyrus 
 

Recent advances in clonal lineage-tracing analyses suggests that radial glia-like precursors 

are the multipotent neural stem cells which are capable of self-renewal and generates both 

neurons and astrocytes but not oligodendrocytes (Bonaguidi et al. 2011). Both proliferating 

radial and nonradial precursor cells give rise to intermediate progenitors and further forms 

neuroblasts (Reviewed in Ming and Song 2011) (Figure 16). During the first week after birth, 

the new born immature neurons migrate a short distance into the inner granule cell layer 

where it further differentiates to form dentate granule cells. Local interneurons released 

���������������-aminobutyric acid) tonically activates this cells. During the second week 

after birth, the adult born neurons DGCs  in the hippocampus extend their dendrites toward 

the molecular layer and project axons growing through the hilus toward the CA3 (Zhao et al. 

2006). At this stage these immature DGCs still have significantly differs from the mature 

ones. They have higher membrane resistance and with different firing properties. As DGCs 

lack glutamatergic input at this stage, they are also devoid of dendritic spines in the molecular 

layer. However these immature DGCs receive synaptic GABAergic input possibly from local 

interneurons. During the third week after birth, the adult-born DGCs further involves in 

synaptic integration into the existing neural circuit. At around day 16, spines starts to appear 
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from dendrites which enables them to form synapses with the afferent axon fibres in the 

perforant pathway coming from the entorhinal Cortex. Initially filopodia forms the major 

population spines that targets axon boutons which are already in synapse with other spines. 

Around 4�6 weeks of age, the adult-born DGCs displays stronger synaptic plasticity 

compared to the mature DGCs. NMDA receptor subunit NR2B influences this increased 

plasticity (Ge et al. 2007). At 8 weeks of age, the adult-born DGCs exhibits similar basic 

physiological properties and synaptic plasticity compare mature DGCs and are 

indistinguishable (Deng, Aimone, and Gage 2010).  

 

 

 

 
Figure 16. Adult neurogenesis process in the dentate gyrus. The different developmental 
stages during hippocampal neurogenesis 1) activation, 2) proliferation, 3) generation of 
neuroblasts, 4) integration of immature neurons, 5) maturation of adult born DGCs. Adapted 
from Ming and Song 2011.  
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4.2. Systemic regulation of adult neurogenesis  

 

Numerous factors associated with behaviour and cognitive state of an animal can regulate 

adult neurogenesis which impacts on learning and memory (Deng, Aimone, and Gage 2010). 

Some of these factors include hippocampus dependent learning tasks, housing in enriched 

environment and voluntary running. Whereas factors that inhibits hippocampal neurogenesis 

are stress, certain forms of inflammation, alcohol abuse and age, among other factors 

(Herrera et al. 2003; Zhao, Deng, and Gage 2008). Hippocampus dependent learning task is 

one of the well-studied models to analyse adult neurogenesis. Spatial navigation learning in 

the Morris water maze (MWM) increases survival of DGCs that were born 7 days before the 

start of the task (Dupret et al. 2007). These survived DGCs forms GABAergic synapses with 

the local network and enters the most active state during the MWM learning. Several other 

reports collectively suggest that neurogenesis events and survival of new neurons are strictly 

regulated by learning. In other words, learning selectively incorporates or removes adult-born 

DGCs based on their maturity and functional relevance. Living in enriched environment (EE) 

also improves hippocampal neurogenesis by increasing the survival of adult-born DGCs. One 

week EE increases the survival of adult-born DGCs younger than 3 weeks. EE also improves 

performance in learning and memory related tasks like MWM and object recognition tests 

(Kempermann, Kuhn, and Gage 1997; Bruel-Jungerman, Laroche, and Rampon 2005).   

However, the essence of hippocampal neurogenesis in these memory related tasks is still 

debatable (Bruel-Jungerman, Laroche, and Rampon 2005; Hirohashi et al. 1991). Physical 

excise has been shown to improve cognition and other brain functions (Hillman, Erickson, 

and Kramer 2008; Henriette van Praag 2009). Voluntary running increases proliferation and 

survival of NPCs in the DG. Increased amplitude of LTP in the DG and improved 

performance in MWM after voluntary running indicates a close correlation between increased 

neurogenesis and cognitive improvement. High frequency stimulation of the perforant 

pathway mediated LTP induction in the DG has shown to increase NPCs proliferation and 

survival of adult corn DGCs (Bruel-Jungerman et al. 2006; Kowaluk and Fung 1991). 

Pathological conditions such as neurodegenerative disorders have also shown to affect the 

hippocampal circuit activity thereby causing altered proliferation of NPCs and morphological 

abnormalities in adult-born DGCs (reviewed in Zhao, Deng, and Gage 2008).  
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4.3. Functions of immature adult born neurons  

 

New born neurons are thought to play significant roles in learning and memory (Deng, 

Aimone, and Gage 2010). Improved neurogenesis contributes to hippocampus dependent 

memory tasks like the Morris water maze (Kempermann, Kuhn, and Gage 1997;H. van Praag 

et al. 1999). Preferential recruitment of adult born DGCs into the hippocampal neuronal 

circuits corresponds to improved novelty recognition, contextual fear conditioning, spatial 

information processing and memory formation (Y. Gu, Janoschka, and Ge 2013). 

Transgenesis- and virus-based strategies mediated increase or depletion of neurogenesis 

established its role in spatial and object recognition memory (Jessberger et al. 2009), fear 

conditioning and synaptic plasticity (Saxe et al. 2006) and pattern separation (Clelland et al. 

2009; Sahay et al. 2011; Nakashiba et al. 2012). The critical period between 3 and 6 weeks 

when the plasticity of the adult DGCs is elevated, is considered to be essential for adult brain 

behaviour (Marín-Burgin et al. 2012).  

Two important modes through which an immature neuron could impact directly on adult 

brain function are; a) acting as an information processing unit and b) as an active modulator 

of local circuitry (Christian, Song, and Ming 2014). Even though the number of immature 

neurons are regulated and most of them do not survive for long, but selective recruitment of 

excitable immature neurons with increased synaptic plasticity will enable these cells to be an 

active member for information processing in the trisynaptic circuit (Christian, Song, and 

Ming 2014).  

 

4.4. Adult hippocampal neurogenesis and cognition  
 

After the discovery of neurogenesis in postnatal brain, Altman in 1967 proposed the critical 

role of adult neurogenesis in learning and memory.  The first experimental evidence for the 

role of adult neurogenesis in behavioural paradigm of mammals came from Shors et al 2001, 

where antimitotic agent mediated blockage of neurogenesis disrupted trace eye-blink 

conditioning and trace fear conditioning but not spatial memory (Shors et al. 2001). Since 

then, the field of neurogenesis and behaviour has improved a great deal with advancements in 

sophisticated genetic and optogenetic approaches. Ablation of hippocampal neurogenesis can 

either improve or have no effect on acquisition of spatial learning or associative memory 

tasks. Optogenetically silencing dentate new-born neurons at 4 weeks age but not of earlier 
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age impairs the retrieval of learned fear-conditioned contexts (Y. Gu et al. 2012). 

Additionally, indirect improvement of adult neurogenesis by environmental enrichment, 

running, etc leads to enhancement of spatial and associative memory (Koehl and Abrous 

2011; Lepousez, Nissant, and Lledo 2015). However, the causal link between adult 

neurogenesis and memory memory formation is still contradictory and debatable.   

 

Pattern separation and dentate gyrus 

Adult hippocampal neurogenesis has recently been found to be closely associated to pattern 

separation. Especially the DGCs between 3 and 6 weeks age with increased plasticity is 

considered to be an important contributor of pattern separation. The process of transforming 

very similar experiences in to distinct non-overlapping neural representations is known as 

pattern separation. Pattern separation occurs in such situation when the output firing patterns 

of a network are less similar to one another than the input firing patterns (Deng, Aimone, and 

Gage 2010). The anatomy of the dentate gyrus is considered to be ideal for pattern separation 

as it contains around ten times more neurons than its principal input, the entorhinal cortex 

(EC). Evidences suggest that even similar inputs activate distinct populations of DGCs 

making the DG finely tuned for pattern separation.  Thus the dentate gyrus drives the 

encoding of two similar events into memories that do not converge in future (Figure 17).  

 

    

 

Several recent reports suggest that adult neurogenesis modulates pattern separation (Figure 

18). Clelland and colleagues first demonstrated using two-choice touch screen spatial

Figure 17. Pattern separation. DG 
received direct inputs from the entorhinal 
cortex (EC) and sends projections to CA3 
region. Studies of David Marr (Marr 1971) 
suggest that hippocampus stores memories 
in associative networks. DG encodes 
separately overlapping inputs from the EC. 
Thus the associative memories formed in 
the CA3 are non-interfering to each other. 
This process of encoding separate memories 
for similar events is called pattern 
separation. Adapted from Deng, Aimone, 
and Gage 2010. 
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discrimination task that blocking adult neurogenesis directly impacts on pattern separation. 

Hippocampal X-irradiatio��������������������������������� ���������������������������������

detect small or fine spatial discrimination but not large (Clelland et al. 2009). Later Sahay 

and colleagues using a contextual fear discrimination learning task concluded similar results 

that distinguishing between similar contextual representations requires new neurons (Sahay et 

al. 2011). These studies strongly support the role of adult neurogenesis in pattern separation 

in three different dentate gyrus dependent behavioral paradigms. If the hypothesis is true then 

increasing the adult neurogenesis in DG should ideally improve pattern separation. Sahay and 

colleagues thus developed genetically modified mice with more functionally integrated adult-

born dentate granule neurons (also known as ibax mice). In contextual fear discrimination 

learning task, these ibax mice were better at distinguishing between two similar contexts. 

These reports suggest that pattern separation could be improved by increasing adult 

neurogenesis.  

 

Figure 18. Neurogenesis and pattern separation. The dentate gyrus is essential for the 
discrimination between two similar contexts (Context A and B) in a process called pattern 
separation. Pattern separation requires adult neurogenesis that generates new neurons.  When 
adult neurogenesis is blocked, pattern separation is impaired.  However, increased 
neurogenesis by genetic manipulation enhances the discrimination between the two contexts.  
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1. Introduction to molecular events during memory consolidation          

 

Regulation of gene expression is pivotal for the storage of long-term memory. Memory 

consolidation is the temporally limited process that is required for conversion of memory in 

the labile and short-term lasting state to a more stable long-term phase. Consolidation can be 

regarded as the phase during memory formation where new protein synthesis is crucial.  

 

Representation of signaling cascades during memory consolidation is extremely complex. 

The major components during different steps of the signaling pathway during memory 

consolidation have been discussed in this chapter. Briefly, the synapses are plastic structure 

present on the dendrites of hippocampus. Learning leads to activation and enlargement of the 

synapses. Neurotransmitters released from the synapses binds with the receptors present on 

the post-synaptic membranes (Figure 19). Binding of the neurotransmitters activates the 

receptors which in turn activates various kinase cascades and intracellular signals depending 

on the context and the receptor types. Activated kinases translocate into the nucleus and 

activate the constitutive transcription factors (Herdegen and Leah, 1998). The constitutive 

transcription factors are transcription factors that get covalently modified (like 

phosphorylation) and drives transcription of IEGs. Some IEGs themselves acts as 

transcription factors and drives expression of late genes. These gene products are essential for 

the maintenance of synaptic efficacy. The activation of these pathways and concomitant 

changes in the morphology of the cytoskeleton are the deciding steps during memory 

consolidation. These molecular processes are related to short-term, long-term and persistence 

of memory mechanisms.  
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Figure 19. Pictorial representation of simplified molecular events during memory 

formation. Learning causes synaptic activity where the second messengers trigger the 
activation of various kinase cascades. Activated kinases translocate to the nucleus and further 
activate constitutive transcription factors (CTF) which are rapidly induced by post 
translational modifications. CTF induces immediate early gene expression (IEGs). Some of 
the IEGs could also be transcription factors (TF). CTF and TF together participate in 
transcription of genes associated with synaptic plasticity and memory.  

 

2. Growth factors involved in synaptic plasticity and memory 

 

Growth factors (GF) are molecules that are secreted upon stimuli and bind to membrane-

associated extracellular receptors and activates intracellular signaling cascades that leads to 

cellular survival and growth. Nerve growth factor (NGF) is the first fully characterised GF. 

Classification of GF is based on the signaling cascades that are activated by the receptors.  

Receptor tyrosine kinases and serine�threonine kinases are the two main classes of receptors.  
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Neurotrophin family is one such GF family that signal through receptor tyrosine kinases. The 

neurotrophin family, includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin 

3 (NT-3), and neurotrophin 4/5 (NT-4/5) (Huang and Reichardt, 2003). Transforming growth

factor beta (TGFß) superfamily including TGFß, activin, and bone morphogenic proteins 

(BMPs) are the other classes of GF that signals thorough serine�threonine kinases. However,

the developmental plasticity of a neuron involves considerable overlap in the roles of 

different families of GF. Diverse range of GFs are implicated as critical component in long-

lasting plasticity (reviewed in (Kopec and Carew, 2013) and the temporal and spatial 

regulation of signaling cascade by  GF mediated distinct functional outcomes is an important 

aspect in dendritic plasticity and memory formation. In this section, implications of brain-

derived neurotrophic factor (BDNF) will be discussed further to understand its role in 

plasticity and long-term memory.  

 

Brain-derived neurotrophic factor (BDNF) 

 

BDNF is an activity dependent gene that encodes a neurotrophin. Bdnf gene has a highly 

complicated structure and regulation as it contains total 24 transcript variants produced with 9 

promoters (Figure 20). However, all the translated products from all the transcripts are 

identical mature dimeric protein. The promoters play important roles in tissue specific 

expression of different transcript variants of BDNF. However, various stimuli like physical 

exercise, seizures, ischemia, osmotic stress, and antidepressant treatment causes differential 

regulation of specific exon-containing transcripts of BDNF. BDNF is initially translated as a 

precursor, pre-proBDNF protein and form a cleavage into a 32-kDa proBDNF protein. 14 

kDa mature BDNF (mBDNF) is formed either after proteolytic cleavage intracellularly or 

secreted as proBDNF and then cleaved by extracellular proteases. BDNF is predominantly 

localised intracellularly at the somatodendrites but is also present in close proximity to the 

dendritic spines (Tongiorgi, 2008). BDNF can be localised at both pre-and post-synaptic 

compartments its release upon activity is dependent by three main mechanisms: a) Ca2+ 

influx-dependent release from postsynaptic sites, b) Ca2+ influx- dependent release from 

presynaptic sites, c) Ca2+ influx-independent release that relies on Ca2+ release from 

intracellular stores (reviewed in (Cunha et al., 2010).  
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BDNF is expressed in response to activity is secreted in the synapses where it binds to 

tyrosine kinase receptor B (trkB) and p75 neurotrophin receptors localised at both pre-and 

postsynaptic membranes (Figure 21). BDNF induction promotes dendritic outgrowth and 

synapse maturation, however the effect of BDNF is extremely complex. BDNF selectively 

acts on dendritic outgrowth; its application in primary somatosensory cortex enhances 

dendritic outgrowth in layer II/III and layer IV neurons, whereas inhibits outgrowth in layer 

VI neurons (Niblock et al., 2000). Bdnf conditional knockout mouse also confirms its 

regulation of dendritic outgrowth in layer II/III cortical neurons (Gorski et al., 2003a). 

Furthermore, bdnf  knock-in mouse with a polymorphic variant of BDNF (Val66Met) also 

displays decreased dendritic complexity and dysregulated trafficking, distribution and 

activity-dependent release of BDNF from neurons (Chen et al., 2006). The val66met 

polymorphic variant of BDNF (Val66Met) is also found in human patients with memory 

deficits  and psychiatric disorders (Bath and Lee, 2006) suggesting significant role of BDNF 

in neural connectivity and cognition.  

 

BDNF and synaptic plasticity  

 

Synaptic plasticity is closely correlated with learning and memory. LTP is the best studied 

form of synaptic plasticity. Stimulation of LTP results in activation of a number of signaling 

cascades including the ones activated by BDNF. BDNF is implicated in LTP induction at 

��������������������������������������������������������������(Kang and Schuman, 1995), 

dentate gyrus (Messaoudi et al., 2002) and also in the visual cortex (Akaneya et al., 1997). 

The role of BDNF was initially reported in vitro where exogenous BDNF sufficiently 

induced LTP in young hippocampal slices. Later in vivo role of BDNF in LTP induction was 

established from transgenic mice. BDNF null mutant mice showed severe impairment in LTP 

���������� ��� ���� ��������� ����������� �� CA1 synapse. Similarly, heterozygous BDNF mice 

showed cortical LTP impairment (Bartoletti et al., 2002). Interestingly, hippocampal slices 

from these mice treated with recombinant BDNF could reversed deficits in LTP and restore 

the synaptic transmission (Pozzo-Miller et al., 1999).  
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Figure 20. Genomic structure and transcriptional regulation of bdnf. Bdnf gene contains 

��������������� ��-���������������� ����� ����������� �������������� ����������������� ���������

complexity as the second exon can be spliced from three alternative splice sites (A, B and C). 

Therefore, the bdnf gene can produce multiple forms of bdnf transcripts that differ only in 

������������������������������������(Zheng et al., 2012).  

 

BDNF is also considered to be essential for late LTP (L-LTP). L-LTP process needs 

transcription and translation and depends on cAMP signalling and CREB. The proteolytic 

conversion of proBDNF into mature BDNF is essential for L-LTP. Mature BDNF can itself 

trigger L-LTP in absence of protein synthesis suggesting BDNF mediated activation of TrkB   

signaling is sufficient to induce L-LTP. Concomitantly, blockage of TrkB signalling at pre- 

and postsynaptic sites impairs L-LTP (Gärtner et al., 2006). Further research established 

BDNF role in the maintenance of L-LTP (Barco et al., 2005).  
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BDNF and Long-term memory 

 

Investigation in rodents has contributed immensely to establish the role of BDNF in learning 

and memory. BDNF gene expression is induced in the hippocampus of rats following training 

in Morris water maze (MWM; (Bousiges et al., 2010)), radial arm maze, passive avoidance 

and contextual fear conditioning (Cunha et al., 2010). Such finding relates to the importance

of BDNF activity in various hippocampus dependent memory tasks. Essential brain regions 

responsible for cognitive function such as hippocampus, neocortex, cerebellum, striatum and 

amygdala shows highest expression of BDNF proteins (Kawamoto et al., 1996). BDNF 

activity is crucial for the acquisition of spatial memory. Intra-hippocampal BDNF 

administration of BDNF significantly improves spatial memory in MWM task (Cirulli et al., 

2004), whereas infusion of anti-BDNF antibody before the training impairs spatial memory 

(Mu et al., 1999).  Also, inhibition of endogenous BDNF by infusion of anti-BDNF antibody 

at the parietal cortex impairs inhibitory avoidance by blocking CREB activation (Alonso et 

al., 2005). Recent studies suggest that NMDA receptor- and CREB-dependent mechanisms 

regulate expression of specific transcript variants of BDNF during the consolidation of long-

term memory. To understand the role of BDNF in cognitive function several lines of 

transgenic mice with mutation in BDNF gene has been developed. BDNF null mutation mice 

die within 2 days after birth, so no behavioural studies could be studied in these mice 

(Ernfors et al., 1994). Heterozygous BDNF KO has a normal life span and shows reduced 

LTP in the CA1 region of the hippocampus in homozygous mice and heterozygous KO mice. 

BDNF heterozygous KO mice are deficient in spatial learning (Linnarsson et al., 1997) and 

contextual fear conditioning.   Recently, BDNF conditional KO mice have been developed to 

circumvent the postnatal lethality problem and of developmental effects. Forebrain specific 

inducible loss of BDNF conditional mice shows impaired contextual fear conditioning and 

hippocampal LTP (Monteggia et al., 2004). Mice lacking BDNF from the early embryonic 

development (Emx-BDNF-KO) specifically in forebrain regions shows deficits in spatial 

learning in MWM (Gorski et al., 2003b). Site-specific deletion of BDNF in the dorsal 

hippocampus using lentiviral delivery of CRE recombinase shows impairment in MWM and 

novel object recognition tests (Heldt et al., 2007). Inhibition of local translation of BDNF was 

performed using administration of antisense oligonucleotides or RNA interference (RNAi) in 

non-transgenic mice. Spatial learning in radial arm maze was impaired in rats with 

intracerebroventricular infusion of antisense BDNF oligonucleotides which blocks BDNF 
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translation (Mizuno et al., 2000). Hippocampal infusion of antisense BDNF cDNA prevents 

consolidation of contextual fear conditioning (Lee et al., 2004). Thus the combined results 

from the transgenic mice models of BDNF mutations and local deletion of BDNF established 

its essential role in the long-term memory process.  

 

 

 

 

Figure 21. BDNF�TrkB signaling. BDNF binding induces dimerization and 
autophosphorylation of TrkB. Activated TrkB triggers the activation of three main signalling 
���������� ������ ����� ���� ���� ��������� ������ �������� ������ ��� �����horylation and 
activation of CREB. Activated CREB further induces expression of its target genes required 
for the survival and differentiation of neurons. Adapted from (Cunha et al., 2010)  
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3. Signaling cascades involved during memory formation   

 

MAPK signaling cascade in synaptic plasticity and memory consolidation  

 

The mitogen-activated protein kinase (MAPK) cascade activates extracellular signal-

regulated kinases-1 and -2 (ERK1 and ERK2). MAPK cascade is crucial for cell type specific 

differentiation and proliferation. However, recent reports establish the essence of MAPK 

pathway in control of synaptic plasticity in the adult brain (Reviewed in Thomas and 

Huganir, 2004).  

The best characterised MAPK pathway involves activation of ERK1 and ERK2 in response 

to growth factors and other stimuli.  The ERK signalling is implicated in neuronal 

transcription and regulation of synaptic targets to control plasticity. Extracellular stimuli 

cause increase in activated GTP-bound form of small G protein Ras which leads to activation 

of ERK1 and ERK2. Ras-GTP levels are increased by enhanced activity of guanyl nucleotide 

exchange factors (GEFs), decreased activity of GTPase-activating proteins (GAPs) or both. 

Ras-GTP further activates protein kinase Raf which activates MAPK/ERK kinase (MEK) by 

phosphorylation. Activated MEKs thereby phosphorylate and activate ERK1 and ERK2 (also 

known as p44 and p42 MAPK, respectively). ERKs have diverse sets of targets including 

transcription factors, cytoskeletal proteins, regulatory enzymes and, importantly, other 

kinases. The first evidence of ERKs involvement in memory related signal transductions was 

obtained from the discovery that excitatory glutamatergic signalling leads to activation of 

ERKs in neuron (Fiore et al., 1993).  Neuronal ERK is activated upon membrane

depolarization or glutamatergic signalling (Figure 22).  This pathway of ERK activation 

requires calcium influx and Ras activation. NMDA (N-methyl D-aspartate)-type glutamate 

receptors or voltage-gated calcium channels can facilitate calcium influx.  
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Figure 22. Activation of ERK by synaptic signalling. Left; Calcium influx through 
NMDARs or VGCCs causes the increase of Ras�GTP levels followed by activation of Raf, 
MEK and ERK resulting in phosphorylation of both cytoplasmic and nuclear ERK substrates. 
Right; Following ERK activation, ERK phosphorylates various extracellular and intracellular 
substrate. The extracellular target of ERK includes voltage-dependent K+ channel KV4.2. 
Downstream kinase substrates of ERK include ribosomal protein S6 kinases (RSKs). 
Activated ERK and RSK translocate to the nucleus. In the nucleus, ERK and RSK 
phosphorylate and activate the constitutively nuclear mitogen- and stress-activated kinases 
(MSKs). ERK and its substrate kinases RSK and MSKs phosphorylate various transcription 
factor substrates in the nucleus. One of the best studied substrates of these kinases is CREB 
(cyclicAMP-responsive element (CRE)-binding protein). Figure adapted from Thomas and 
Huganir, 2004) 
 

Functions of Neuronal ERK signalling in synaptic plasticity 

 

Development of specific inhibitors of MAPK enabled to elucidate the importance of ERK 

and its downstream kinases in adult brain. Protein phosphorylation holds a key role in the 

induction of two important forms of synaptic plasticity; LTP and LTD.  High-frequency 



General Introduction  Chapter 2: Molecular Mechanism of Memory 
�

���

�

stimulation mediated LTP induction activates ERK in hippocampus. MEK inhibitor PD 

98059 blocks induction of LTP and ERK activity in the hippocampus (English and Sweatt, 

1996); (Atkins et al., 1998). ERK signalling role has been best studied for the LTP from 

hippocampal CA3�CA1 synapses that requires NMDA receptor activation. Research from 

various groups for the last decade has demonstrated the role of ERK signalling in various 

forms of synaptic plasticity like NMDA receptor (NMDAR)-independent forms of LTP in 

hippocampal area CA1, and LTP in dentate gyrus and amygdala (Adams and Sweatt, 2002).  

 

Role of ERK signalling in learning and memory 

 

Evidences for involvement of ERK signalling in learning and memory were also obtained by 

using MEK inhibitors that prevent LTP. These inhibitors not only blocks LTP but also affect 

learning and memory in behaving animals. Spatial learning and fear conditioning are the two 

forms of long-term memory for which role of ERK signalling has been best characterised. 

Spatial memory assessment by MWM test which the ability of an animal to learn and 

remember the location of a hidden platform. Importantly, MWM training to locate a hidden 

platform induces ERK activation in the hippocampus. Whereas, administration of a potent 

inhibitor of ERK activation, SL327 impairs the ability of an animal to remember the location 

of a hidden platform (Selcher et al., 1999). The MEK inhibitors induces deficits in memory 

retention but do not affect memory acquisition. Interestingly, infusion of MEK inhibitor into 

the entorhinal cortex (the site in the brain which projects to the hippocampus) also imparts 

MWM performance (Hebert and Dash, 2002). Thus, these results confirm the importance of 

ERK signalling in the consolidation of long-term spatial memory. Fear conditioning is 

another form of long term memory where an animal has to learn to associate the cue or 

context with the foot-shock. Like spatial learning, fear conditioning also induces ERK 

activation, whereas MEK inhibitors reduces the levels of activated ERK and shows decreased 

memory consolidation (Atkins et al., 1998); (Schafe et al., 2000). Implications of ERK

signalling have also been explored in the memory to remember taste. Rats subjected to new 

taste leads to ERK activation in the insular cortex.  Consistent to long-term memory results, 

MEK inhibitors prevents the memory of new taste (Berman et al., 1998).  
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4. Implications of transcription factors in synaptic plasticity and 

memory 

 

Transcriptional requirement for long-term synaptic plasticity and long-term memory 

formation is a well-established fact. Behavioural studies using protein synthesis inhibitors 

indicated the requirement of protein synthesis in the long-term memory but not for the short-

term memory (Davis and Squire 1984). Later this phenomena was fine tuned to the 

requirement of transcription and translation for long-lasting forms of synaptic plasticity, such 

as long-term potentiation (LTP) (Kandel 2001). It was further confirmed that gene expression 

proceeding immediately after learning is essential for establishment and/or maintenance of 

long-lasting neuronal changes. Extensive research in last decade has identified various 

transcription factors and their partners involved in this crucial biological process.  

 

CREB 

 

CREB is a transcription factor initially identified to be activated by phosphorylation upon 

stimulation by cAMP. CREB recognises the palindromic octanucleotide sequences 

TGACGTCA classically known as the cAMP response elements (CRE). Three homologous 

genes of CREB (or CREB/ATF) has been identified; creb, cAMP response element 

modulator (crem), and activating transcription factor-1 (atf-1). The protein product of these 

genes are also highly homologous proteins named after their parent gene; CREB, CREM, and 

ATF-1. The basic region-leucine zipper (bZIP) domain located at the C-terminus region is a

common structural motif present in all these homologs (Figure 23). Interestingly, CREB 

family members can form heterodimers with other bZIP transcription factors such as C/EBPs, 

Fos, and Jun proteins to provide extensive diversity in the regulation of target genes. 

Functions of CREB are highly regulated by its post-translational modification. One of the 

most important PTM of CREB is phosphorylation at Ser-133 which resides in its KID 

domain leading to its activation. Various signalling processes can stimulate CREB 

phosphorylation such as voltage- or ligand-gated channels such as NMDA receptors mediated 

increase in intracellular Ca2+, activated G protein-coupled receptors mediated  increase in 

cAMP or activation of receptor tyrosine kinase by growth factors (Lonze and Ginty, 2002) 

(Figure 24). 
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Involvement of cAMP/PKA-signaling pathway in synaptic facilitation and sensitization was 

first obtained from studies in Aplysia (Brunelli et al., 1976). Later in 1986, (Montminy et al., 

1986) described a conserved DNA sequence in the promoter elements which are activated in 

response to cAMP called  CRE � the cAMP Response Element. The CRE region present on 

the control regions of a gene is the binding sites for various transcription factors. Later in 

1987, CREB (cAMP Response Element Binding protein) was identified to be one such 

transcription factors that bind to the CRE element (Montminy and Bilezikjian, 1987). CREB 

binds to the CRE only after it is phosphorylated by either PKA, MAPK or CaMK 

(Montminy, 1997). Role of cAMP activated pathway mediated CRE driven transcription in 

memory-related synaptic plasticity was first provided  by Dash et al., 1990. In that pioneering 

work, it was conclusively shown that LTF in Aplysia neurons activates PKA dependent gene 

expression via Aplysia CREB. Inhibition of CREB1 binding to DNA response element 

blocked LTF.  

 

 

 

Figure 23. Domain structure of Cyclic AMP-responsive element-binding protein 

(CREB). CREB contains two Glu-rich domains (Q1 and Q2), a central kinase-inducible 
domain (KID) and a carboxy-terminal basic Leu zipper (bZIP) domain. The KID and Q2
together forms the amino-terminal transactivation domain (TAD). Phosphorylation of the 
KID domain at Ser133 promotes interaction with CREB-binding protein (CBP) and p300. 
The bZIP domain promotes CREB binding to its cognate site on the DNA and dimerization; 
it also mediates CREB binding to cAMP-regulated transcriptional co-activators (CRTCs) 
(Figure modified from (Altarejos and Montminy, 2011).  
 

The upstream signalling cascade of CREB is mostly conserved throughout the evolution and 

the role of CREB in synaptic plasticity in invertebrates has also been reproduced in the 

mammalian brain (Kandel, 2012)�� ����������������������isoforms of CREB in mice brain 
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results in severe deficits in several types of memory including spatial, contextual, and cued 

(Bourtchuladze et al., 1994)�� ������������ ���� ���� ����� ��������� ��� �������� �����-out 

mice. Extensive studies from various research groups confirm the requirement of CREB 

function in LTP and long term memory (Alberini, 1999).  

 

 

 

 

Ser133 phosphorylation of endogenous CREB is required for its transcriptional activity 

(Impey et al., 1998). Moreover, inhibitory avoidance learning induces CREB phosphorylation 

in Ser133 in CA1 and the dentate gyrus (DG) of the hippocampus between 6-9 hours after 

training. The increased phosphorylation also coincided with increased CRE-dependent gene 

expression in the same hippocampal region (Impey et al., 1998) (Taubenfeld et al., 1999). 

Viral vector mediated induction of CREB levels in dorsal hippocampus substantially 

increased spatial memory in weakly trained mice. Indeed, brain-wide disruption of CREB 

activity in transgenic mice showed impairment in spatial memory (Sekeres et al., 2010). 

CREB activity is therefore essential for hippocampal molecular machinery associated with 

memory formation.  

 

Figure 24. Molecular pathways 

involved in CREB mediated 

memory formation. The scheme 
represents the events that are 
associated to the signalling 
cascade through CREB activation 
and formation of short and long 
term memory. CREB activation is 
required for long-term memory 
whereas short-term memory is 
independent of CREB. CaMKII, 
CaMKIV, calcium-almodulin-
dependent kinases II and IV; 
CREB, cAMP response element 
binding protein; MAPK, mitogen 
activated protein kinase; PKA, 
cAMP-dependent protein kinase; 
NT, neurotransmitter. Figure 
adapted from Alberini 1999.  
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5. Neuronal activity-regulated gene expression during memory 

formation 

 

Immediate early genes (IEGs) in memory 

 

c-fos  

The first evidence of an external stimuli induced gene expression came from a study by 

Greenberg & Ziff in quiescent 3T3 fibroblasts. Platelet-derived growth factor (PDGF) let to 

rapid induction of c-fos proto-oncogene in this cell lines (Greenberg and Ziff, 1984). c-fos 

and few other genes termed as immediate early genes (IEGs) shows increased expression 

(within 5 minutes for c-fos) after activity. Physiological significance of c-fos expression was 

shown later by various groups. In neuronal cells, various stimuli can induce transcription of 

c-fos. Initial evidences suggested that activation of nicotinic acetylcholine receptor, increased 

levels of extracellular potassium chloride mediated membrane depolarization and calcium 

influx via L-type voltage-gated calcium channels (L-VGCCs) stimulates c-fos gene 

expression (Jones et al., 1988). Later Morgan et al showed c-fos upregulation in brain regions 

after seizures and a various physiological stimuli (Morgan et al., 1987). Presently, c-fos and 

other IEGs are routinely used to mark the activated neurons.  

 

 

Figure 25. Regulation of c-fos transcription in neurons. Calcium dependent c-fos 
expression requires at least two distinct cis-acting regulatory elements: the CaRE and the 
SRE. The cartoon represents the recruitment of the protein complexes to these elements. 
Figure adapted from (Flavell and Greenberg, 2008).  
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Arc 

 

Plasticity of synaptic connections is thought to hold an immense role in the consolidation 

and storage of memory. Synaptic plasticity dysfunction is reported in various 

���������������������������������������������������������������������������������������atterns 

into long lasting changes in the synapse is a centre stage of basic and clinical neuroscientific

research. Glutamatergic synapses possess the potential to express diverse forms of plasticity 

including several mechanistically distinct kinds of synaptic strengthening (potentiation), 

weakening (depression) in response to synaptic inputs. These key processes involve new gene 

expression and protein synthesis to enable synaptic modification and long-term changes in 

behaviour. A dendritic tree of a neuron in adult brain consists of around 10,000 dendritic 

spines, each of which is capable of forming excitatory, glutamatergic synapse. Thus the 

question is: as the gene expression occurs in the nucleus, how activation of a set of synapse 

leads to protein synthesis-dependent modification of those synapses?  

 

Regulation of Arc expression 

 

Arc/Arg3.1 (activityregulated cytoskeleton-associated protein/activity-regulated gene 3.1) is 

an immediate early gene (IEG) that has vital relevance to synaptic plasticity and memory 

Reviewed in (Bramham et al., 2010). Learning experience, induction of LTP by HFS or 

BDNF triggers expression of ARC mRNA in the principal neurons of rodent brain (Waltereit 

et al., 2001); (Ying et al., 2002); (Miyashita et al., 2008). Following LTP induction, ARC 

expression requires activation of N-methyl-D aspartate receptor (NMDAR) type glutamate 

receptors and extracellular signal- regulated kinase (ERK) (Steward and Worley, 2001). 

Pharmacological application of BDNF or group 1 mGluR agonist dihydroxyphenylglycine 

(DHPG) in hippocampal neurons also activates ARC gene expression. Increased levels of 

intracellular calcium and cAMP  also induces Arc in hippocampal neurons upon activation of 

protein kinase A (PKA) and ERK (Waltereit et al., 2001). Muscarinic, acetylcholine receptor 

agonists increases Arc expression in SH-SY5Y neuroblastoma cell through ERK upstream 

proteins cytoplasmic tyrosine kinase Src and protein kinase C (PKC) (Teber et al., 2004). 

However AMPA-type glutamate receptors downregulates Arc expressionin in hippocampal 

neurons (Rao et al., 2006). Thus is evident that ERK signalling is an important component for 

the regulation of Arc expression.  
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Figure 26. Nuclear signalling mediated induction of Arc via SARE. Activity dependent 
combination of transcription factors (CREB/MEF2/SRF) triggers induction of a memory 
trace candidate protein Arc. This transcription is mediated upon binding of the transcription 
factors at the synaptic activity-responsive element (SARE) within a distal enhancer region of 
the Arc gene. Induction of Arc expression is essential active neuronal ensemble and long-
term memory consolidation.  Adapted from (Nonaka et al., 2014).  
 
 

Interestingly, Arc promoter consists if a unique activity-sensor named the synaptic activity-

responsive element (SARE) of approximately 100 bp in size and located at around 7 kb 

upstream of the Arc transcription initiation site (Kawashima et al., 2009). The SARE contains 

clusters of CREB, SRF, and myocyte enhancer factor-2 (MEF2) protein binding site. The 

SARE is necessary for synaptic activity-induced Arc expression in hippocampal neurons 

(Figure 26). Arc also has two enhancers at 6.5 kb and 1.4 kb upstream of transcription start 

site. The distal site has a highly conserved SRE that binds serum response factor (SRF) and is 

recruited by synaptic activity, forskolin and BDNF whereas the proximal enhancer has a 

���������� ��este-������ ��������� ���� ��������� ����� ������������� ����������� ����� ���������

activity and BDNF application (Pintchovski et al., 2009). 
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Function of Arc in long-term synaptic plasticity  

 

Arc antisense (AS) oligodeoxynucleotides mediated silencing Arc results in impaired 

maintenance of LTP but not the induction of LTP (Messaoudi et al., 2007). Local infusion of 

Arc AS at various times after LTP induction revealed several facts like: a) LTP consolidation 

requires sustained Arc translation during a time-window that starts within minutes of LTP

induction and lasts for 2�4 h, and b) Arc protein underlying LTP consolidation is rapidly 

degraded (Bramham et al., 2010). Late phase LTP also involves structural changes at the 

synapse like expansion of the postsynaptic density and enlargement of postsynaptic dendritic 

spines (Bourne and Harris, 2008). F-actin is an essential protein for this structural change to 

occur. Importantly, F-actin stabilizing drug, jasplakinolide blocks Arc AS ability to reverse 

LTP. Thus Arc mediated promotion of LTP consolidation is through regulation of actin 

dynamics. Further research using Arc AS evidenced F-actin dynamics and regulation of 

eIF4E phosphorylation during LTP is coupled to Arc synthesis.  

Several reports support the fact that brain-derived neurotrophic factor (BDNF) increases 

protein synthesis dependent LTP (Lynch et al., 2007). BDNF is released after high-frequency 

electrical stimulation (HFS) from the excitatory neurons. BDNF release leads to activation of 

postsynaptic TrkB receptors which can further induce BDNF secretion. Disruption of BDNF-

TrkB interaction blocks late phase LTP. Exogenous BDNF application triggers lasting 

potentiation of excitatory synaptic transmission (BDNF-LTP) in multiple regions of brain. 

BDNF-LTP in the dentate gyrus requires transport of Arc mRNA into granule cell dendrites 

(Ying et al., 2002). Interestingly, inhibition of Arc expression by AS treatment abolishes 

BDNF-LTP (Messaoudi et al., 2007) suggesting exogenous BDNF activates Arc gene 

expression and Arc synthesis-dependent LTP.  

NMDARs or group I mGluRs activation can induce two distinct forms of LTD on excitatory 

synapses. Both the forms require different signalling cascades to reduce surface expression 

and endocytosis of AMPARs.  Metabotropic glutamate receptor (mGluR)-dependent long-

term depression (mGluR-LTD) depends on protein synthesis in the dendrites occurring within 

minutes of mGluR activation.  Arc participates in mGluR-dependent LTD and homeostatic

plasticity by mediating internalization of surface AMPAR-type glutamate receptors via 

interacting with components of the endocytic machinery (dynamin and endophilin 2/3) 

(Waung et al., 2008). Activation of group I mGluR rapidly increases dendritic Arc protein 

synthesis essential for mGluR-dependent LTD. Furthermore, overexpression of Arc protein 
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expression leads to decrease of basal levels of AMPARs. Arc KO mice are impaired with 

both chemically and synaptically induced mGluR-dependent LTD at the Schaffer collateral to 

CA1 pyramidal cell synapse (Park et al., 2008). Activation of mGluRs mediated Arc 

translation requires a Ca2+/calmodulin-dependent kinase, eEF2K. Upon mGluR activation 

eEF2K dissociates from group I mGluR and phosphorylates eEF2 that inhibits general protein 

synthesis thus supporting Arc translation. This was further supported by the fact that eEF2K 

deletion shows selective deficit of rapid mGluR-dependent Arc protein synthesis and both 

chemically and synaptically induced mGluR-LTD.  

 

Arc and memory consolidation 

 

Intrahippocampal infusion of Arc AS disrupts LTP consolidation and impairs long-term 

spatial memory but do not alters acquisition and short-term memory performance (Guzowski 

et al., 2000). Development of Arc KO mice provided further insights into importance of Arc 

in memory consolidation. Arc is required for long-term memory for a variety of 

hippocampal-dependent and hippocampal-independent tasks, including spatial learning in the 

Morris water maze (MWM) and object recognition. Interestingly, FISH studies revealed that 

repeated exploration in an environment induces transcription of Arc in the same discrete 

population of hippocampal pyramidal neurons, whereas exploration in two completely 

different environment activates a partly nonoverlapping neuronal population (Vazdarjanova 

and Guzowski, 2004).  

 

 Zif268 

 

Zif268 is an immediate early gene that is a member of the Egr family of inducible 

transcription factors. It encodes a zinc-finger transcription factor which is rapidly induced 

after LTP and several forms of learning (Reviewed in (Bozon et al., 2002). Initial studies 

showed that ZIf268 mRNA and protein levels are highly expressed in granule cells after LTP 

in the stimulated dentate gyrus (Wisden et al., 1990). Zif268 expression is induced between 

10 min and 2 h after LTP stimulation and depends on NMDA receptor activation. ZIf268 

expression after LTP induction results in the binding of Zif268 proteins to its response 

elements (Williams et al., 2000).   
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Role of Zif268 in synaptic plasticity 

 

Evidences of Zif268 role in late LTP and for long-term memory were obtained from Zif268 

mutant mice models. Zif268 KO mice showed normal gross hippocampal anatomy (Topilko 

et al., 1998). Absence of Zif268 did not affect the early phase of LTP induction in the dentate 

gyrus, whereas maintenance of LTP over 24 h was affected. Similarly, Zif268 heterozygous 

mice also showed similar rapid decay of LTP suggesting full dose of Zif268 is required for 

LTP persistence in brain. Conversely, transgenic mice overexpressing Zif268 in the forebrain 

brain showed enhanced LTP in the dentate gyrus (Penke et al., 2014). As discussed before,

MAPK/ERK cascade plays important roles in synaptic plasticity and certain types of 

learning. Activated kinases of this pathway translocate into the nucleus and regulate 

transcriptional activity of several IEGs. LTP induction in the dentate gyrus leads to activation 
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Figure 27. Learning dependent 

activation of signalling pathway in 

the dentate granule neurons.  
Learning (MWM, fear conditioning) 
activates the NMDAR-ERK-MAPK 
pathway with concomitant activation 
of ERK1/2. Activated ERK 
translocates to the nucleus and 
phosphorylates CREB and Elk-1. 
Activation of these kinases results in 
phosphorylation and acetylation of 
histones. Epigenetic modification of 
the histones at the promoter of IEGs 
like Zif268/egr1 induces chromatin 
remodelling that allows transcription 
of the gene.  Induction of Zif268 gene 
expression is an important event for 
the consolidation of memory. Figure 
modified from (Reul 2014).  
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of MAPK/ERK and leads to rapid translocation into the nucleus where it phosphorylates two 

downstream transcription factors, CREB and Elk-1. Inhibition of MAPK/ERK 

phosphorylation leads to inhibition of CREB and Elk-1 phosphorylation and blockage of 

LTP-dependent transcriptional activation of Zif268 in dentate granule cells (Davis et al., 

2000). Thus, the model could be proposed in which MAPK/ERK dependent activated CREB 

and Elk-1 binds to CRE and SRE response elements on the Zif268 promoter and contributes 

to the maintenance of LTP. Various stimuli like LTP, stimulation of the basolateral amygdala 

tetanic stimulation of the thalamocortical tract can lead to upregulation of Zif268 in CA1 of 

the hippocampus, insular cortex and in visual cortex respectively. Apart from LTP, Zif268 is 

also implicated with LTD. group I metabotropic glutamate receptor agonist DHPG in 

organotypic slices of the hippocampus mediated LTD leads to overexpression of several 

IEGs, including Zif268 (Lindecke et al., 2006).  

 

Role of Zif268 in learning and memory 

 

Upregulation of IEG Zif268 in an activity dependent manner after LTP induction provoked 

researchers to study the link with learning and memory. Learning mediated upregulation of 

Zif268 has been reported for various learning and memory paradigm in different regions of 

brain (reviewed in (Tischmeyer and Grimm, 1999)). Notably, Zif268 and other IEGs are 

shown to be upregulated in the hippocampus following spatial training or cued navigation 

(Soulé et al., 2008) and in the dentate gyrus after spatial exploration of objects (Clarke et al., 

2010). Demonstration of involvement of Zif268 in memory consolidation was first obtained 

from Zif268 knockout mice. Zif268 mutant mice shows no short term memory deficits but 

are impaired in long-term memory tasks like social transmission of food preference task, taste 

aversion memory, spatial memory, object recognition memory, and object-place recognition 

memory (Jones et al., 2001), (Bozon et al., 2003), (Davis et al., 2010)). Consolidation of 

contextual fear memory has also recently been shown to be impaired in Zif268 knockout 

mice (Besnard et al., 2013). Epigenetic regulation like DNA methylation and histone 

phosphorylation, acetylation, and methylation at the Zif268 promoter is also considered to be 

important during long-term memory formation (Figure 27) (Zovkic et al., 2013). 

Interestingly, object exploration induces rapid histone phosphorylation, acetylation, and 

methylation at the Zif268 promoter in the hippocampus and the prefrontal cortex. Inhibition 

of these epigenetic marks at the promoter of Zif268 impairs recognition memory, whereas 
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intensive training mediated increase of these marks favours recognition memory (Gräff et al., 

2012). This concept was further confirmed by generation of inducible transgenic mouse 

model that specifically induces Zif268 expression in forebrain neurons. Gain of function of 

Zif268 did not alter the ability to form a long-term memory of objects but increased the 

ability to form a long-term memory of the spatial location of objects. This increase was 

corresponding to increased LTP from dentate gyrus and activity dependent expression of 

Zif268 and its selected target genes (Penke et al., 2014). All these studies indicate the 

function of Zif268 in the synaptic plasticity and encoding process of newly acquired memory.  
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1. Basic introduction to Epigenetics 

 

1.1.  Definition and introduction 

 

During the past 50 years the meaning and definition of the term epigenetics has undergone 

series of modifications with our improved understanding about the molecular mechanism 

behind regulation of gene expression in eukaryotes. The term epigenetics was first coined by 

C. H. Waddington in 1942. Until 1950, the term epigenetics was used in a very broad way to 

categorize all the developmental events from the fertilisation of zygote to the maturation of 

an organism (Waddington 1953). According to our present understanding, epigenetics could 

be defined as a process of heritable changes in gene function without changes in DNA 

sequence (Felsenfeld 2014). 

 

 

Development of a multicellular organism from a single nucleus, the zygote requires a precise 

transcriptional mechanism which includes series of transcriptional of multiple set of genes at 

Figure 28. Nucleosome structure and 

higher order chromatin 

organization. DNA is packaged inside 
a nucleus in a highly ordered structure 
called chromatin. Nucleosome is the 
basic structural unit of chromatin. The 
nucleosome structure composed of 
octamer of histone wrapped around 
DNA in association of linker histone 
H1.  The nucleosomes further folds 
into a 30 nm structure known as 
solenoid fibres. Higher order folding of 
the 30 nm fibre gives rise to a beads-
on-a string structure.  
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specific time point, in the right population of cells, and in the correct amount. Any 

dysregulation of the transcriptional program may result in developmental defect but also 

cause various disease phenotypes. Major research has been performed to understand the 

components of the transcriptional machinery and how they function together to control the 

transcription which makes the process so perfectly precise that is required for normal 

development. This process requires a close interplay between the RNA pol II transcriptional 

machinery and the chromatin structure. The Chromatin structure is controlled at the gene 

level, the methylation status of the DNA and also by the presence of different modifications 

present at the nucleosomal level (Conaway 2012). 

DNA is packed inside the nucleus of a eukaryotic cell in a highly organised structure known 

as chromatin (Figure 28). The DNA is packed in a series of nucleosomes each containing 

�146 bp of DNA wrapped around histone octamer containing two copies each of histones 

H2A, H2B, H3, and H4 (Kornberg 1977). These nucleosomes fold further to form chromatin 

fibres that allow several meters long mammalian DNA to fit inside a nucleus whose diameter 

is in range of few micrometres. This compaction provides an opportunity to regulate gene 

expression in a highly controlled manner.  

 

The histone N-terminal tails are subjected to various post translational modifications (PTMs) 

(Figure 29). These PTMs not only acts as a regulatory switch along the process of 

�������������� ���� ����� ����� �� ����������� �������� ��� ����������� ����� �������� ����� ��������� �����

expression patterns. Along the histone PTMs, several other factors like DNA methylation, 

small nuclear RNA and histone variants together in a combination forms a potent regulatory

������������������������������������������������� 

 

1.2.  Different Histone Post translational modifications 

 

Among the different histone PTMs, the modifications that play crucial roles in transcription 

regulation are acetylation, methylation, phosphorylation, ubiquitination, SUMOylation and 

others. Histone PTMs provides a level of specificity towards the chromatin state. Some 

specific modifications marks are exclusively associated with specific locus of a chromosome 

and the chromatin state that forms a global chromatin environment thus dividing the entire 

genome into euchromatic and heterochromatic regions. 
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Figure 29. Histone post translational modifications. Histones are subjected to
posttranslational modification like acetylation, methylation, phosphorylation and etc 
predominantly on their N-terminal tails. Several epigenetic modifications are occurs in their 
globular core region as well. B. The amino (N) and Carboxyl (C) terminus of histone H2A, 
H2B, H3 and H4 has been shown. Figure adapted from Füllgrabe, Kavanagh, and Joseph 
2011 and (Alberini 2009).  
 

Histone Methylation 

 

Enzymes catalysing lysine methylation are known as lysine methyltransferases which transfer 

methyl group from S-Adenosyl Methionine (SAM) to lysine residues of proteins. Except few 

(DOT1), all lysine methyltransferases possess a unique SET domain (Suppressors of 

variegation Enhancers of zeste and Tristae), which is enough for their enzymatic activity. 

There are around 73 SET domain containing proteins encoded in the human genome which 

possess the enzymatic activity. The major substrate of lysine methyltransferases are the 

histone H3 (K4, K9, K27, K36, K79), H4 (K20), H2B (K5) and linker histone H1 (K26). 

�

�
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Depending on the residues, lysine methylation is associated with both activation and 

repression of transcription (Rea et al. 2000).  Histone lysine methylation exists in three states: 

monomethylated, dimethylated, and trimethylated. Transcriptionally silent regions of the 

chromatin are composed of di- and tri- methylation of histone H3 at lysine 9 (H3K9), 

whereas the active locus are associated with di- and tri- methylation of histone H3 at lysine 4 

(H3K4) (Sims, Nishioka, and Reinberg 2003; Martin and Zhang 2005 ; Vermeulen et al. 

2007).  

Protein arginine methyltransferases (PRMTs) catalyse the addition of methyl group from the 

methyl cofactor, SAM to the guanidino-nitrogen of the arginine residue on proteins. There 

are 9 PRMTs been identified and based on symmetric and asymmetric arginine 

demethylation, arginine methylation is classified into two groups. Apart from histones, 

arginine methyltransferases has several other non-histone protein substrates. Arginine 

methylation contributes to various biological phenomena including RNA processing, DNA 

damage and repair, cell signaling and most importantly in transcription (Bedford and Clarke 

2009). 

 

Histone Phosphorylation 

 

Protein phosphorylation is another posttranslational modification where an amino acid 

residue (Serine, Threonine, and Tyrosine) is phosphorylated by the catalytic activity of 

protein kinases by addition of a covalently bound phosphate group. The reverse reaction is 

catalysed by protein phosphatases. Protein phosphorylation was first reported by Phoebus 

Levene in 1906 with the discovery of phosphorylated vitelline. Physiological role of protein 

phosphorylation was later reported in 1955 by Eddie Fischer and Ed Krebs (E. H. Fischer and 

Krebs 1955). Some of the important functions of protein phosphorylation lies in the 

regulation of signalling pathways and cellular processes that mediate metabolism, 

transcription, cell-cycle progression, differentiation, cytoskeleton arrangement and cell 

movement, apoptosis, intercellular communication, and neuronal and immunological 

functions (L. N. Johnson 2009). Histones are abundantly phosphorylated in physiological 

conditions. Interestingly, phosphorylation of histones is often related to proliferative gene 

regulation.   Histone phosphorylation is associated with a series of signalling cascades and 

other histone PTM marks are linked in the crosstalk. One such instance is the ERK/MAPK 

pathway regulation of the histone H3 phosphorylation following contextual fear conditioning. 
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MSK1 and MSK2 (mitogen and stress-activated protein kinase) mediates histone H3 

phosphorylation in vitro (Soloaga et al. 2003). Chwang and colleagues showed that activation 

of ERK/MAPK in vitro significantly increased histone H3 phosphorylation in hippocampal 

area CA1 whereas blocking the MAP kinase/ERK kinase using inhibitors blocks the increase 

in histone H3 phosphorylation after contextual fear conditioning (Chwang et al. 2006). 

Finally, activation of the MAPK pathway leads to enrichment of both H3S10 phosphorylation 

and H3K14 acetylation at the promoters of immediate early genes c-Fos and c-Jun (Clayton 

et al. 2000; Cheung et al. 2000).  

 

Histone acetylation 

 

Acetylation is a reversible process catalysed by the histone/lysine acetyltransferases 

(HATs/KATs) whereas the reverse reaction is catalysed by the histone/ lysine deacetylases 

(HDACs/KDACs) utilizing the cofactor acetyl CoA. Core histones are acetylated by HATs 

through the addition of an acetyl group from the pseudo-substrate acetyl coenzyme A (acetyl-

�����������������������������������-amino group on the N terminal of histones. The two major 

biological processes initiated by lysine acetylation are a) recruitment of coactivators and b) 

participation of co-repressor complexes through HDACs. These two functions alter the 

chromatin structure and hence lead to functional consequences. Recent reports suggest that 

individual histone core acetylation could influence the nucleosome structure (Reviewed in

(Tessarz and Kouzarides 2014). One such histone core modification is histone H3K56 

acetylation mark (Xu, Zhang, and Grunstein 2005, Masumoto et al. 2005), which is found in 

up to 40% of all H3 molecules in yeast. H3K56 acetylation is positioned at the entry�exit 

point of the DNA on the nucleosome (Luger et al. 1997) and thereby affects the compaction 

state of the chromatin. The acetylation of H3K56 donot drastically change the overall 

stability of the nucleosome but instead triggers the unwrapping of the DNA close to the DNA 

entry�exit site (where H3K56 is located) to regulate higher order chromatin organisation 

(Simon et al. 2011) (Figure 30).  
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Figure 30. HATs/KATs and HDACs modulates the acetylation states of chromatin. The 
balance between acetylation and deactylation in a living cell is essential  

 

The balance between acetylation and deacetylation inside living cells is highly dynamic 

(Figure 30). Any alteration in the histone acetylation balance could result in disease 

phenotype. Several histone acetylation marks are present on the promoters of actively 

transcribed genes. Neurons are highly sensitive to histone acetylation alteration. Many 

environmental stimuli or therapeutic intervention causes alteration in histone acetylation 

balance. The involvement of histone acetylation in synaptic plasticity and memory will be 

discussed in details later in this chapter.  

 

1.3. Writers and Erasers of acetylation 

 

1.3.1. Classification of HATs/KATs 

 

� Depending on their cellular localization HATs/KATs are classified into nuclear or 

type A and cytosolic or type B HATs. There are only three cytosolic HATs: HAT1 

(KAT1), HAT2 and HAT4 (Blackwell et al. 2007 ; Chang et al. 1997 ; Takahashi et 

al. 2006)  reported till date and they have shown to acetylate nascent histones. 

� Nuclear HATs are classified into five families depending on their structural and 

functional differences.  
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� GNAT family: The 3 members of this family are Gcn5 (KAT2A), p300/CBP 

associated factor (PCAF/KAT2B) and ELP3 (KAT9). GCN5 and PCAF are 

associated with various transcriptional complexes which are involved in 

diverse physiological functions (Nagy and Tora 2007).  

� CBP/p300 family: The two homologs of this family of KATs are p300 

(KAT3B) and CREB binding protein (CBP/KAT3A). These two KATs also 

functions as transcriptional co-activators and possesses several overlapping 

biological functions (Kalkhoven 2004).  

� MYST family: the major members of MYST family are Tip60 (KAT5), MOZ 

(KAT6A), MOF (KAT8), MORF (KAT6B) and HBO1 (KAT7). MYST 

family KATs plays crucial roles in DNA damage repair, development and 

differentiation (Sapountzi and Côté 2011). 

� Transcription factors: Several transcription factors are reported to possess 

intrinsic KAT activity. TFIIIC90 (KAT12), ATF2 and TAF1 (KAT4) are few 

of the members that directly affect transcription.  

� Nuclear hormone: SRC1 (KAT13A) and ACTR (KAT13B), possess KAT 

activity and also act as transcriptional coactivators. They are also often 

associated with p300/CBP mediated coactivator complexes. 

� Other members: CIITA, CDYL are also reported to possess intrinsic KAT 

activity but they are not yet classified into any of the above mentioned 

families of KATs.  

 

1.3.2. Structures of HATs/KATs: p300, CBP and PCAF 

 

p300 and CBP are highly similar KATs both in the context of structure and function. Both the 

proteins contain several well-defined domains including the CH1, KIX, CH3 (ZZ-TAZ2) and 

NCBD domains (Figure 31: p300 and 32: CBP)  (Goodman and Smolik 2000). By virtue of 

these domains, p300 and CBP interacts with a diverse range of proteins including numerous 

transcription factors and the basal transcription machinery as well as with other coactivators. 

These domains are linked to the catalytic core that contains the bromodomain, CH2 region 

and KAT domain (L. Zeng et al. 2008), (Mujtaba et al. 2004). The KAT domain is the 

catalytic domain for its acetyltransferase activity whereas the bromodomain recognises the 

acetylated substrates. Biophysical studies suggests that the CH2 domain has a PHD domain 
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that typically binds trimethylated histone H3 Lys4 (H3K4me3) and unmodified histone tails 

(Ragvin et al. 2004; Sanchez and Zhou 2011).  

 

 

p300 is a 2414 amino acid protein was originally identified using an array of protein-

interactions with the adenoviral E1A oncoprotein. p300 has roles in varied biological 

functions including proliferation, cell cycle regulation, apoptosis, differentiation, and DNA 

damage response. p300 transcriptional coactivator function primarily involves a number of 

nuclear proteins which includes oncoproteins (e.g., myb, jun, fos), transforming viral proteins 

(e.g., E1A, E6, and large T antigen), and tumor suppressor proteins (e.g., p53, E2F, Rb, and 

BRCA1). Apart from the histone proteins, the non-histone protein substrate for p300 

acetyltransferase is ever increasing with varied functional consequences. Recently, the crystal 

structure of the catalytic core of p300 containing its bromodomain, CH2 region and HAT 

domain has been reported. The crystal structure revealed that the conformation of p300 

allows its RING domain to positioned over the HAT substrate-binding pocket. Thus mutation 

on p300 RING domain in several cancers causes upregulation of its KAT activity.  

 

 

Figure 31. Domain architecture of p300. NRID, nuclear receptor interaction domain; 
TAZ1, transcriptional adaptor  zinc-finger domain 1 (also known as cysteine-histidine�rich 
(CH) region 1 (CH1)); KIX, kinase-inducible domain (CREB-interacting domain);  Bd, 
bromodomain; RING, really interesting new gene; PHD, plant homeodomain; HAT, histone 
acetyltransferase domain; IBiD, IRF3-binding domain (also known as nuclear coactivator-
binding domain (NCBD); The RING-PHD segment is also known as the CH2 region 
Modified  from Delvecchio M et al 2013.  
 

 

CBP is a transcriptional coactivator that regulates transcription by a) direct interaction with 

the basal transcriptional machinery, b) direct interaction with transcription factors and c) by 

modulating the chromatin structure through its KAT activity (Goodman and Smolik 2000; 
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Kalkhoven 2004). CBP shares very similar structural domains with p300. Studies by Korzus 

and colleagues suggested that the KAT domain of CBP is important for memory storage  

(Korzus, Rosenfeld, and Mayford 2004). CBP gets recruited to the DNA by transcription 

factors through direct protein-protein interaction through its amino terminus (Oike et al. 

1999; Bourtchouladze et al. 2003; Wood et al. 2005). The KIX domain of CBP is highly 

conserved and shows sequence similarity among different species of yeast and animals 

(Figure 32B). The CBP KIX domain is one of the most crucial domains of CBP that 

participates in recruitment of CBP by various transcriptional factors and drive gene 

expression. CREB is one such factor that binds to CBP through its KIX domain. Extracellular 

stimuli mediated activation of multiple signaling transduction cascades activates 

phosphorylation of CREB at Ser 133 in the kinase inducible domain (KID) resulting in 

association between phospho-KID and the KIX domain of CBP (Parker et al. 1996). To 

understand the significance of the CBP KIX domain, a transgenic mice was generated where 

the CBP KIX domain was mutated whereas the HAT domain was intact (Kasper et al. 2002). 

Behavioral studies suggested the importance of the CBP KIX domain in the long-term 

storage of hippocampus-dependent memory  (Wood et al. 2006). IBiD is another domain of 

CBP present in its C-terminus is responsible for the interaction with IRF-3. IBiD domain is 

essential for binding of various viral related proteins like Ets-2, the adenoviral oncoprotein 

E1A, nuclear receptor coactivator (NCoA) protein TIF-2, and an IRF homolog encoded by 

������������� �������-associated herpesvirus (KSHV IRF-1). Biophysical studies suggested 

that folding and structural  transition of IBiD is crucial for interaction with viral protein and 

thereby establishes a competition between viral and host gene transcription (Lin et al. 2001). 
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Figure 32. Domain organisation of CBP. A. Cartoon depicting the domain organisation of 

full length CBP. Full length CBP is composed of multiple domains as depicted in different 

colour coding. B.  Alignment of KIX domain of selected species and isoform sequences 

showing high conservation of all secondary structural elements. (Figure B adapted from 

Thakur, Yadav, and Yadav 2014). 

 

 

PCAF is a 832 amino acid protein with KAT activity and interacts with p300/CBP (Yang et 

al. 1996). PCAF presents marked similarity with the yeast HAT Gcn5. Its C-terminus 

presents around 64% homology with yeast KAT Gcn5 (Figure 33). Yeast Gcn5 is a 

component of the transcription co-activator complex SAGA (Spt�Ada�Gcn5 

acetyltransferase). PCAF is also found in a similar transcription co-activator complex. 

Residues 352�658 contains the acetyltransferase domain and the residues spanning from 1�

352 is essential for the interaction with p300/CBP. PCAF bromodomain is located between 

amino acids 744�832 (Figure 33) (Frisch and Mymryk 2002).  

 

 

 

Figure 33. PCAF domain structure 

 

 

1.3.3. Classification of HDACs 

 

There are around 18 mammalian HDACs that have been identified, characterised and 

classified based on their sequence similarity to yeast counterparts (Figure 34) (Reviewed in 

Delcuve GP et al 2012).  

1. Classical family of HDACs dependent on Zn2+ for deacetylase activity 
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a. Class I HDACs are closely related to the yeast RPD3. The members of class I 

HDACs are HDAC1, HDAC2, HDAC3 and HDAC8 

b. Class II HDACs are closely related to yeast HDA1. Class II HDACs are classified 

into subclass IIa (HDAC4, HDAC5, HDAC7 and HDAC9) and subclass IIb (HDAC6 

and HDAC10) 

c. Class IV contains only HDAC11 

2. NAD+ dependent Sirtuins  

a. Class III: SirT1-SirT7 

 

 

 

 

Figure 34.  Subclasses of the Histone deacetylase (HDAC) superfamily. (Adapted from 

Mihaylova and Shaw 2013) 
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3. Histone acetylation and transcription regulation in memory formation 

 

3.1.  Histone acetylation and gene expression 

 

Eukaryotic gene expression is influenced by the chromatin structure, the complex 

organisation of the protein and DNA which is packed inside the nucleus of a cell. Chromatin 

state guides the recruitment of the transcription machinery to the site of transcription and 

control gene expression. The initial hypothesis was that histone acetylation would loosen the 

electrostatic attraction between DNA and histone tails by neutralising the charge and thereby 

facilitates transcription (Davie and Chadee 1998). However, studies on yeast suggests the 

charge neutralization is unlikely the cause (Choi and Howe 2009). In vitro studies also 

showed that acetylation donot weaken the histone tail and DNA interaction at physiological 

conditions (Mutskov et al. 1998). Thus it could be concluded that the histone acetylation 

plays broader role than just neutralising charge. Furthermore, most of the acetyltransferases 

(CBP, p300, PCAF) contains bromodomain that recognises acetyl-lysine residues. So the 

transcriptional control by histone acetylation could be through direct chromatin structure 

alteration or by recruitment of other factors. The fact that histone modification can recruit 

proteins by recognition of the modified proteins by specific domain establishes the concept of 

histone code hypothesis (Jenuwein and Allis 2001). The histone code hypothesis refers to a 

combination of post translational modifications present in and between histones which codes 

for information but is not present in the sequence of the DNA.  The specific modifications 

�������� �������� ������ ���� ��������� ����� ���������� ���� ������� ������������ ���� ��������������

�����������������������������������������������������������������������������������������������

the epigenetic regulation of gene expression that is facilitated by action of chromatin-

associated enzymatic complexes (Figure 35). In fact the bromodomains containing proteins 

acts as the readers (CBP, p300), the chromatin modifying enzymes acts as the writers (CBP, 

p300, PCAF) and erasers (HDACs). The availability of various histone modification

antibodies and HDAC inhibitors led to a thorough understanding of histone acetylation 

dynamics and its relationship with gene expression. Reports suggest that occupancy of 

acetylated histones and recruitment of KATs at the gene promoters corresponds with active 

transcription (Wang et al. 2009, Waterborg 2002). Various studies have showed that 

alteration of histone acetylation and gene expression regulates diverse biological function. 
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One such example is the role of histone acetylation in learning and memory formation 

(reviewed in  Peixoto and Abel 2013).  

 

Figure 35. Writers, Erasers, and Readers of histone post translational modifications 

(PTM). ���� ����� ����� ���������� ������� �������� ����������� ���������� ������ ��� ���������� ��

hi������ ������ �������� ���� ���������� �������� ���� �������� ����� � ����� ������� ��������

examples of each classes has been shown. Ac: acetylation, P: phosphorylation, Me: 
methylation. 

 

3.2.  Histone acetylation and neuronal activity 

 

Several forms of neuronal activity can trigger histone acetylation. For example, potassium 

chloride-mediated neuronal depolarization and stimulation of dopaminergic, cholinergic and 

glutamatergic pathways by receptor-specific agonists increases histone acetylation in 

hippocampus of rodents (Maharana, Sharma, and Sharma 2010, Crosio et al. 2003). It has 

been observed that all these forms of neuronal activity also lead to phosphorylation-mediated 

activation of the extracellular regulated kinase (ERK). ERK is a member of the mitogen-

activated protein kinase (MAPK) pathway (Sweatt 2001), and direct activation of the ERK by 

protein kinase C or protein kinase A pathways, which is involved in long term memory 

formation increased histone acetylation, whereas inhibition of MAPK-ERK pathway blocked 

histone acetylation (Levenson et al. 2004). Another route to modulate histone acetylation by 

neuronal activity is by dissociating HDAC2 from the chromatin. Stimulation of 

neuroplasticity by brain-derived neurotrophic factor (BDNF) in cortical neurons results in 
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���������������������

����������� �����������

��������

�����������������

������������������������

�����������������

�����������������������������

�������������������������������

�������������������

��

��

��

��

��

�

�

�

��

��

��

��

��

��

��

��

��

�

�

�

��

��

��

��

��

�

��

��



General Introduction  Chapter 3: Epigenetics and Memory 
�

���

�

nitrosylation of HDAC2 on cysteine 262 and cysteine 274 in a nNOS- and NO-dependent 

manner. Nitrosylated HDAC2 dissociates from the chromatin and leads to histone 

hyperacetylation and activation of neurotrophin-dependent gene expression (Figure 36) (Nott 

et al. 2008). BDNF expression also increases upon calcium dependent de-repression by 

methyl-CpG-binding protein 2 (MECP2) (W. G. Chen et al. 2003) whereas HDAC2 

negatively regulates its expression (J.-S. Guan et al. 2009). Thus neuronal activity triggers 

BDNF expression and subsequently histone acetylation and expression of synaptic plasticity 

and memory related gene expression. Recently, Malik et al showed that among around 12,000 

putative neuronal activity-regulated enhancers where CBP is enriched, 12.4% shows rapid 

acetylation of H3K27 in response to neuronal activity after membrane depolarisation of 

cortical neurons that can drive expression of activity regulated genes. Several subsets of these 

enhancers also requires FOS binding to control the activity-regulated genes essential for 

nervous system functioning (Malik et al. 2014) (Jonkman and Kenny 2014).  

 

3.3.  Histone acetylation and synaptic plasticity 

 

Substantial evidence supports the fact that histone acetylation is involved in synaptic 

maintenance and communication by controlling the expression of genes involved in the long-

lasting forms of synaptic plasticity (Pittenger and Kandel 2003). Long-term facilitation (LTF) 

at the sensory�motor neurons in the marine mollusc Aplysia californica is accompanied with 

increased occupancy of CBP at the promoter region of CCAAT/enhancer binding protein 

(CEBP) and synapsin. CEBP is a transcription co-activator of CREB implicated in memory. 

The increased occupancy of CBP also coincided with increased histone H3K14 and H4K8 

acetylation at the promoter of CCAAT-box-enhanced binding protein (C/EBP)  (Z. Guan et 

al. 2002; Hart et al. 2011). However Long-term depression (LTD) is associated with 

decreased histone acetylation at the promoters of CEBP. Furthermore, HDACi trichostatin A 

(TSA) can enable weak electrical stimulation to induce LTF which normally requires strong 

electrical stimulation (Hart et al. 2011). Thus it can be concluded that extent of histone 

acetylation could be a major determinant for the extent of synaptic plasticity and modulation 

of histone acetylation have the potential to enhance naturally occurring synaptic processes.  

The mammalian equivalent of LTF is long-term potentiation (LTP) (Bliss and Collingridge

1993), which is also shown to be regulated by the histone acetylation. Induced LTP is 

correlated with increased histone H3 and H4 acetylation and stimulates by the application of 
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the HDACi TSA (Levenson et al. 2004, Miller, Campbell, and Sweatt 2008, Vecsey et al. 

2007,  Y. Zeng et al. 2011, Yeh, Lin, and Gean 2004) and sodium butyrate (NaB) (Levenson 

et al. 2004, Sui et al. 2012). Importantly, increase in histone acetylation related to LTP was 

specifically observed on the promoter regions of genes involved in synaptic transmission, 

such as the extracellular matrix protein reelin (Sui et al. 2012) and Bdnf (Y. Zeng et al. 2011, 

Sui et al. 2012). L-LTP is a phase of LTP that requires transcription and synthesis of new 

proteins. Application of TSA does not affect on basal synaptic transmission but enhances the 

L-LTP. To further strengthen the present notion that increased histone acetylation promotes 

LTP, CBP mutant mice (partial or complete deletion) shows decreased histone acetylation 

and impaired induction of transcription-dependent late-phase LTP, whereas the transcription-

independent early phase of LTP remained unaffected (Vecsey et al. 2007; Alarcón et al. 

2004 ; Barrett et al. 2011 ; Wood et al. 2005). These results suggest that a strong link exists 

between histone acetylation and late phase LTP (L-LTP).  

Therefore, acetylation of histones plays important role in LTP, and modulation of acetylation 

by either inhibiting HDACs or activating KATs are possible tool to facilitate LTP in disease   

conditions.   

 

3.4.  Histone acetylation and memory formation 

 

The involvement of histone acetylation upon learning and memory was first evidenced by 

Levenson et al. during associative learning task. Histone H3K14 acetylation was significantly 

increased in hippocampal area CA1, after fear conditioning, whereas H4 acetylation was 

selectively increased after latent inhibition training (Levenson et al. 2004). These initial 

studies opened a new concept that different learning paradigms could be involved in distinct 

epigenetic marks in the brain. Several follow-up studies were reported suggesting role of 

histone hyperacetylation in memory formation for fear conditioning (Koshibu, Gräff, and 

Mansuy 2011, Bousiges et al. 2013), spatial memory (Bousiges et al. 2010) and other types of 

memory (Gräff et al. 2012, , Lesburguères et al. 2011, Reul et al. 2009), different phases of a

memory (such as reconsolidation or extinction) (Maddox and Schafe 2011, Bredy and Barad 

2008, Bredy et al. 2007, Stafford et al. 2012), and in species other than rodents (Danilova et 

al. 2010). More importantly, the immediate-early genes such as Zif268 (also known as Erg1),

Creb and Bdnf, showed increased expression corresponding to the increased histone 

acetylation at their promoters (Alberini 2009). In a study by Bousiges et al, it was shown that 



General Introduction  Chapter 3: Epigenetics and Memory 
�

���

�

histone H3K9K14 acetylation is induced upon any experimental condition, whereas histone 

H2B N terminal lysine acetylation and H4K12 acetylation were more associated to either 

spatial or fear memory in the hippocampus (Bousiges et al. 2013). Inhibition of nuclear 

protein phosphatase 1 (PP1) in transgenic mice leads to increased acetylation of histones 

H2B, H3 and H4. Inhibition of PP1 also leads to improved long-term memory in object 

recognition and Morris water maze tasks. Furthermore, acetylated H3 occupancy was 

enriched at the promoters of CREB after object recognition training and PP1 inhibition 

(Genoux et al. 2002). Administration of small molecule modulators of histone acetylation 

strengthen the notion that histone acetylation acts as a molecular memory aid. Several HDAC 

inhibitors has shown to facilitate memory formation (Penney and Tsai 2014, (Gräff and Tsai 

2013) whereas KAT inhibition impaired  memory formation (Maddox et al. 2013). More 

importantly, these modulators of acetylation has no effect on the short term memory but was 

more specific towards long-term (day-old) memories. Thus histone acetylation acts as a 

crucial component in the memory formation process and manipulating histone acetylation by 

HDACi have a beneficial effect towards promoting memory formation.   

 

4. Role of lysine acetyltransferases (HATs/KATs) in cognitive function  

 

CREB binding protein (CBP) 

 

CBP, a transcriptional coactivator with lysine acetyltransferase activity has been shown to 

have important role in memory formation. Several mutant mice models of CBP has been 

generated that confirms its importance in learning and memory (Oike et al. 1999;  Tanaka et 

al. 1997; Wood et al. 2005). Mutation of CBP has been the cause of Rubinstein�Taybi 

syndrome (RSTS), a neurodevelopmental disorder characterized by cognitive impairments 

(Alarcón et al. 2004; Bourtchouladze et al. 2003). Early studies demonstrated the importance 

of the acetyltransferase activity of CBP in the memory consolidation (Korzus, Rosenfeld, and 

Mayford 2004). Later on the significance of the CBP KIX domain was validated for long 

term memory formation process. This study established for the first time the in vivo function 

of CBP KIX domain in brain. Phosphorylated CREB (p-CREB) recruits CBP through the 

KIX domain during long term memory storage to the CRE elements to facilitate CREB 

dependent gene expression (Wood et al. 2006). Interestingly, HDAC inhibitors mediated 

improvement of memory consolidation was shown to be dependent on CBP and its 



General Introduction  Chapter 3: Epigenetics and Memory 
�

���

�

interaction with CREB (Alarcon et al. 2004; Haettig et al. 2011; Korzus, Rosenfeld, and 

Mayford 2004; Vecsey et al. 2007).  The outcome of all the CBP mutation studies establishes 

its role in memory formation but results from specific tasks were not always comparable 

(Table 2). Variable results were obtained from fear conditioning and spatial memory making 

object recognition the only task showing impairment for most of the studies. This variability 

could be because of incomplete deletion or mutation, where a small population of neurons 

expressing full length CBP might be enough to generate persistence memory (Peixoto and 

Abel 2013). Another possibility could be developmental compensation as all the studies were 

conducted on transgenic mice.  

 

To establish the role of CBP in memory, several groups have come forward to generate 

conditional mutant model of CBP where CBP could be mutated in the postnatal brain in 

specific regions of the brain. The first conditional mutation model for CBP was generated by 

Chen et al (Chen and Olsthoorn 2010). This study described the role of CBP in the excitatory 

neurons of the postnatal forebrain for both short-term and long-term memory formation. The 

short-term memory deficits observed in this study fetched controversies as no other CBP 

mutation models were deficient for short-term memory consolidation. Another study of CBP 

deleted in postmitotic principal neurons of the forebrain confirmed its role in object 

recognition memory but not in other behavioural tasks, such as contextual fear conditioning 

and Morris water maze. The dimer consisting of histones H2A and H2B was found to be the 

preferred substrate of CBP (Valor et al. 2011). Barrett et al.  in 2011 reported that focal 

deletion of CBP in the CA1 region of mice impairs Long term potentiation (LTP) and long-

term memory for contextual fear and object recognition. Endogenous protein and transcript 

levels of CBP also increased upon learning and memory in the dorsal hippocampus. Learning 

mediated induction of CBP was associated with increase in histone H2B acetylation 

(Bousiges et al. 2010, Bousiges et al. 2013). The in vivo target histone substrate of CBP has 

also been extensively studied. Heterozygous deletion of CBP (CBP+/-) transgenic mice

showed H2B acetylation deficiency (Alarcon et al, 2004), focal deletion of CBP in 

hippocampus showed deficiency of H2BK12, H3K14, and H4K8 acetylation (Barrett et al. 

2011) whereas forebrain deletion of CBP showed deficits in acetylation of dimer of histones 

H2A and H2B (Valor et al. 2011). Overall, it can be concluded that CBP mediated acetylation 

of histone H2B could be one of the major component that is essential for CBP dependent 

memory formation.  
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Table 2. Mutant mice models of CBP  

 

p300 

 

p300 is the closest homolog of CBP and shares maximum number of substrates for 

acetylation. In comparison to CBP, p300 role in memory is much less critical. Like CBP, 

p300 is also associated with RSTS where mutation of p300 has been reported (van Belzen et 

al. 2011). p300+/- mice represent mild cognitive impairment (Viosca et al. 2010). However, 

overexpression of a mutant form of p300 and a forebrain specific knockout of p300 results in 

deficiency in long-term recognition and contextual fear memory (Oliveira et al. 2007; 

Oliveira et al. 2011). Mode of action of p300 for memory formation is not similar to CBP. 

CBP interaction with CREB is essential for motor learning, whereas p300-CREB interaction 

do not show such significance (Oliveira et al. 2006).  

 

p300/CBP-associated factor (PCAF) 

 

PCAF is a transcriptional coactivator with intrinsic KAT activity. PCAF knockout mice 

show memory impairment depending on the age. 2 months old PCAF KO mice shows short 

term memory deficits associated with hippocampal alterations in pyramidal cell layer 

organization, basal levels of Fos immunoreactivity, and MAP kinase activation. At 6 months 

CBP Mutation models Impairment in specific memory paradigm Histone acetylation 

deficiency

Reference

Hetereozygous knockout
Tanaka et al, 1997

H2B acetylation Alarcon et al, 2004

Dominant-negative

Long term memory deficits in fear conditioning Oike et al, 1999

long-term memory (LTM) for two passive avoidance 
tasks

Bourtchouladze et al, 
2003

Spatially restricted transgenic 
dominant-negative

Deficits in Spatial learning in the Morris water maze 
and long-term memory for contextual fear conditioning

Wood et al, 2005

Spatially and temporally 
restricted conditional transgenic 
dominant-negative

Long term memory: Recognition memory and Spatial 
memory

Korzus et al, 2004

Homozygous knockin long-term storage of hippocampus-dependent memory Wood et al, 2006

Forebrain restricted postnatal 
knockout

Spatial, associative, and object-recognition memory
H2B abd H3 
acetylation

Chen et al, 2010

Novel object recognition
H2A, H2B, H3 and 
H4 acetylation

Valor et al, 2011

Local deletion using viral 
injections

Long-term memory for contextual fear and object 
recognition

H2BK12, H3K14, 
and
H4K8 acetylation

Barrett et al, 2011
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and 12 months age, PCAF KO mice develop long term memory deficits (Maurice et al. 

2008). Furthermore, PCAF KO mice develop resistance towards amyloid toxicity suggesting 

�������������������������������������������������������(Duclot et al. 2010). Small molecule 

mediated activation of PCAF (SPV106) enhances memory for fear extinction and prevents 

fear renewal. It was evidenced that PCAF imparts fear extinction by recruiting the repressive 

transcription factor ATF4 on the promoter of immediate early gene Zif268 (Wei et al. 2012).  

 

Gcn5l2 

 

RNA sequencing studies from the CA1 region of mice hippocampus showed high expression 

�����������������������������������������������������������������������������������������

knockout mice model for KAT2A. Mice impaired with KAT2A in the excitatory neurons of 

forebrain showed impairment for hippocampus dependent memory consolidation and 

synaptic plasticity. It was observed that KAT2A controls the hippocampus dependent 

memory formation by regulating specific gene expression network associated with 

neuroactive ligand-receptor interaction (Stilling et al. 2014).  

 

Tip60 

 

Recently association of Tip60 with ARC in primary rat hippocampal neuronal cells has been 

reported. ARC is an immediate early gene whose role in long term memory is already 

established. Neuronal activity mediated increased expression of ARC also increases 

endogenous nuclear Tip60 puncta and thereby recruits Tip60 to the PML bodies. High levels 

of Tip60 thus acetylate its substrate H4K12 which is a learning-induced chromatin 

modification (Wee CL et al 2014). Tip60 also interacts with ataxin 1 protein in 

Spinocerebellar ataxia 1 (SCA1) mouse model and contributes to the progression of 

neurodegenerative condition characterised with polyglutamine tract expansion in the ataxin-1 

protein (Gehrking et al. 2011). Maintenance of the balance between different HATs is crucial 

for the homeostasis of a neuronal cell. Overexpression of Tip60 in neuronal cells of 

Drosophila leads to increased apoptosis and lethality (Pirooznia, Chiu, et al. 2012). However, 

overexpression of Tip60 in neurodegenerative condition imparts a neuroprotective effect 

(Pirooznia, Sarthi, et al. 2012; Pirooznia and Elefant 2013) and rescues axonal transport
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deficits  in a Drosophila model (Johnson et al. 2013). Also Tip60 loss in drosophila causes 

decreased microtubule acetylation (Sarthi and Elefant 2011). These findings indicate that 

Tip60 could be acting in a similar pathway as that of HDAC6. Eventhough direct 

involvement of Tip60 to memory formation is not yet known, but recently it has been 

implicated with AD pathogenesis.   In association with amyloid precursor protein 

intracellular domain (AICD), Tip60 regulates gene expression (Müller et al. 2013).  

 

5. Histone Deacetylases (HDACs) in Cognitive Processes 

 

HDACs are essential factors required for various biological processes (Ekwall 2005). In adult 

rodent brain all the 11 HDAC genes are expressed under naïve condition (Broide et al. 2007).  

 

Class I HDACs: HDAC1 is essential for fear extinction learning (Bahari-Javan et al. 2012), 

whereas no such involvement has been observed in contextual fear learning or spatial 

memory formation (Guan et al, 2009). HDAC1 mediates its role in fear extinction learning 

through suppression of immediate early gene expression of c-fos and egr1 by deacetylating 

H3K9 and subsequently increasing  H3K9 tri-methylation at the promoters (Bahari-Javan et 

al. 2012). Even though HDAC1 and HDAC2 are close homologues, their role in cognitive 

function differs substantially. Researchers found that HDAC2 negatively regulates the 

structural and functional synaptic plasticity and hippocampal memory formation. Mice 

overexpressing HDAC2 in neurons shows impaired LTP, contextual fear learning and spatial 

memory formation, whereas deletion of HDAC2 shows improved memory, enhanced 

synaptic density and neuroplasticity (Guan et al, 2009). The increase in memory in HDAC2 

knockout mice coincided with increased hippocampal H4K12 acetylation and number of 

synapses. Increased histone acetylation was observed on the promoters of genes involved in 

synaptic plasticity and memory, like synaptophysin and bdnf. Absence of HDAC2 improves 

fear extinction learning (Morris et al. 2013) whereas loss of HDAC1 shows opposite effect. 

Virus-mediated knock-down of HDAC2 in primary hippocampal neurons leads to increase in 

excitatory postsynaptic currents whereas loss of HDAC1 shows no such effect (Nelson et al. 

2011). Even though the exact molecular mechanism of HDAC2 mediated memory repression 

is not clearly defined, some recent studies showed role of HDAC2 in the survival of adult 

born neurons in the dentate gyrus (Jawerka et al. 2010). HDAC2 associates with the
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corepressor complex consisting SIN3A, NURD and CoREST (J.-S. Guan et al. 2009) and 

possibly binds on the chromatin and repress neuroplasticity-related genes and thereby acts on 

memory blockage (Figure 36). Expression of HDAC2 is in turn regulated by activated 

glucocorticoid receptor (GR). GR is activated during stress, ageing or neurodegeneration (Aß 

accumulation) and binds to a GR responsive element (GRE) within the HDAC2 promoter 

region and stimulates the expression of HDAC2 (reviewed in Gräff and Tsai 2013). BDNF 

treatment activates nitric oxide pathway that nitrosylates HDAC2 at cysteines 262 and 274 

and inhibits its ability to bind to the chromatin. Like HDAC2, role of HDAC3 has also been 

implicated with learning and memory. Focal deletion of HDAC3 in mouse hippocampus 

increased histone acetylation and object location memory (McQuown and Wood 2011). 

Specific inhibitor for HDAC8 also improves memory formation in rats but the detailed 

function of HDAC8 in adult brain has not yet been thoroughly examined (Yang et al, 2013). 

Thus, the above mentioned studies suggest a potential role of class I HDACs as molecular 

inhibitors of memory formation (Reviewed in  Fischer 2014).  

 

 

 

Figure 36. Regulation of HDAC2 in cognitive function. HDAC2 blocks the acetylation at 
the promoters of plasticity-associated genes. BDNF and nitric oxide (NO) under the control 
of calcium regulates HDAC2 binding to the chromatin. GR mediated transcription controls 
the expression of HDAC2.  
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Class IIa HDACs: Among the class IIa HDACs, HDAC4, HDAC5 and HDAC9 have shown 

implications in memory processes possibly through non-histone substrates (Lahm et al. 

2007). In response to calcium signaling and CamKII activity, HDAC4 shuttles between 

cytoplasm and the nucleus of cultured hippocampal neurons (Chawla et al, 2003; Backs et al, 

2006). Deletion of HDAC4 homolog in the nematode Caenorhabditis elegans leads to 

enhanced long-term memory in a thermotaxic memory task in CamKII-dependent manner 

(Wang et al, 2011). Overexpression of HDAC4 in nucleus reverts this process whereas 

deletion of HDAC4 in the cytoplasmic fraction improved memory (M.-S. Kim et al. 2012). 

Deletion of HDAC4 in the forebrain of adult mice leads to impaired hippocampus-dependent 

memory formation and plasticity (M.-S. Kim et al. 2012). Recently, HDAC4 has been shown 

to be a NMDA receptor-dependent transcriptional repressor and regulates several synaptic 

plasticity related genes (Sando et al. 2012). HDAC5 functions in the control of memory 

function in an age dependent manner. Deletion of HDAC5 from the forebrain of 2 months old 

mice shows no cognitive impairment (M.-S. Kim et al. 2012), whereas 10 months age mice 

lacking HDAC5 shows hippocampus dependent memory impairment (Agis-Balboa et al. 

2013). High copy number variation of HDAC9 was observed between patients with

schizophrenia with cognitive disabilities and healthy subjects (Tam et al. 2010).  

 

Class IIb and Class IV HDACs: Increased expression of HDAC11 has been noted in the 

hippocampus of rats after fear conditioning (Gupta-Agarwal et al. 2012). The major 

substrates of HDAC6 are the cytoplasmic proteins such as tubulin. However, mice lacking 

HDAC6 shows no overt phenotype and defects in memory formation (Govindarajan et al. 

2013).  

Thus the current literature on HDACs suggests that HDAC1-HDAC3 is mostly involved in 

memory dependent process where HDAC2 possibly acts as a crucial factor in the inhibition

of cognitive functions in neurodegenerative conditions and ageing.  
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6. Role of other PTMs in learning and memory  

 

6.1. Histone Phosphorylation in Memory 

 

MAPK pathway is associated to other histone PTMs and regulates gene expression related to 

memory formation. Hippocampus dependent long term memory consolidation induces 

histone H3S10 phosphorylation.  A cross talk between H3 acetylation and H3S10 

phosphorylation exists during hippocampus dependent learning. Histone acetyltransferase 

CBP can directly bind with phosphorylated histone H3. Moreover, CBP binds with 

phosphorylated CREB at S133. CBP binding with CREB is essential for gene expression 

regulation required in long-term memory. This suggests that the interplay between histone 

acetylation and phosphorylation is another important factor in the regulation of transcription 

during memory formation. 

Memory consolidation in hippocampus and cortex requires temporal and spatial regulation of 

histone acetylation and phosphorylation activation. Simultaneous as well as combined 

activation of these PTMs is essential for consolidation of memory. Pharmacological blockage 

of these histone PTMs impairs memory and memory-related gene expression whereas 

enhancement improves memory consolidation (Gräff et al. 2012). This result supports the 

spatiotemporal dynamics of histone acetylation and phosphorylation in memory 

consolidation.  

 

6.2. Histone Methylation and Memory 

 

Recently reports has provided evidences that implicates histone methylation in the regulation 

of chromatin structure in the nervous system (Tsankova et al. 2006; Huang and Akbarian 

2007; Huang et al. 2007; S. Y. Kim et al. 2007). Contextual fear conditioning induces both 

trimethylation of H3K4 and demethylation of H3K9 in hippocampus. HDAC inhibitor 

sodium butyrate (NaB) treatment induces histone acetylation but also increases trimethylation 

of H3K4 and decreased dimethylation of H3K9. Thus a dynamic link exists between histone 

acetylation and methylation in the hippocampus during consolidation of fear conditioned 

memories. Fear conditioning also elevates trimethylation of H3K4 at the promoters of Zif268 

gene which are associated with altered DNA methylation (Gupta et al. 2010).  
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Mutations in human genes encoding H3K4-specific demethylases (KDM5A, KDM5C) or 

methyltransferases (KMT2A, KMT2C, KMT2D, and KMT2F) are implicated in various 

neurodevelopmental disorders and diseases. Recently Akbarian and colleagues reported 

increased anxiety and robust cognitive deficits without locomotor dysfunction after neuronal 

ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in 

mouse postnatal forebrain and adult prefrontal cortex (PFC). Loss of Mll1 resulted in 

downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at more than 

50 loci (Jakovcevski et al. 2015). Ageing also contributes to alteration of methylation states 

of histones in the hippocampus especially levels for tri-methylation of histone H3 at lysine 4 

(H3K4me3). Interestingly, object learning after environmental enrichment (EE) significantly 

induces H3K4me3 occupancy around the Bdnf, but not the Zif268, gene region in the aged 

hippocampus and rescued memory deficits in aged adult rats (Morse et al. 2015).  
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1. ���������������������������������������������� 

1.1. History 
�

������������ ������������ ������ ���������������� ���������������������� ���� �����������������

Dr. Alois Alzheimer in a conference lecture in 1906 and later published an article in 1907.  In 

his landmark study, he described a peculiar case from a 51-year-old woman patient named 

Auguste Deter who had a disease of cerebral cortex (Figure 37). The strange disease was 

associated with progressive memory and language impairment, disorientation, behavioral 

symptoms (hallucinations, delusions, paranoia), and psychosocial impairment �������� ��

Peculiar Disease of the Cerebral Cortex. By Alois Alzheimer, 1907 (Translated by L. Jarvik 

�����������������������.  

 

Complete degeneration of the psyche of a patient was not the first time that Dr. Alzheimer 

had noticed but in all the previous cases the patients were much older in age and all were 

above seventy years of age. Alzheimer had documented all the conversation he had with 

Auguste and he used to call it "Disease of Forgetfulness". After her death, Alzheimer with 

Figure 37. Left: Dr. Alois 
Alzheimer� (seated on far left) 
and his colleagues at the 
psychiatric clinic of the 
University of Munich. Right: 
Auguste Deter, the first 
known to be diagnosed with 
Alzheimer�� disease. Bottom: 
Typical sketch of the brain of 
��� ������������ ��������

patient. Picture obtained from 
an article published in 
Fortune by Erika Fry.  
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two Italian physicians used staining techniques to identify amyloid plaques and 

neurofibrillary tangles in the brain. This was the first time the pathology and clinical 

symptoms of alzheimers disease was presented together. 

 

1.2. ����������������������������������� 
�

As the population of the world is rapidly ageing, by the end of the year 2030 the expected 

�������������������������������������������������������������������������������������������

mostly prevalent in North America and Europe. In 1907 when the first case ���������������

disease (AD) was reported, life expectancy was much lesser than that of today. Thus 

diagnosis above 65 years of age was limited making its devastating impact to be 

unrecognised. According to recent reports, it is estimated that around 25 to 30 million people 

suffers from AD worldwide (Figure 38) (Minati et al. 2009). The prevalence of AD is 

considered to be double after 65 years of age.  The life of a patient suffering from AD 

becomes miserable and also it places a psychological and economic burden on the caregivers 

and the family.   

AD is not caused by a single factor and is considered to be a multifactorial disease. The 

greatest risk factor for the development of AD is age. Majority of the patients suffering with 

AD are above 65 years of age. The disease exists in two forms: familial and sporadic. 

Mutation in a single gene inherited in autosomal-dominant form is the cause of familial form 

of AD. It accounts for 5% of the cases. Multifactorial etiology including genetic 

polymorphism is considered to be the factors involved in the sporadic form of AD (Serretti, 

Olgiati, and De Ronchi 2007). There are three main genes known to be implicated in the 

familial form of AD. Gene coding for amyloid precursor protein (APP) was the first to be 

identified in 1991 to get mutated. Genes encoding presenilin-1 and presenilin-2 (PSEN1 and 

������������� ���� ����� ��� ���� �-secretase complex are the other set of genes known to be 

mutated. The sporadic form of AD is associated with several genes. Among them all, gene 

encoding for apolipoprotein E (APOE) is consistently found to be mutated. Increasing 

evidences suggest that variants of gene encoding for the insulin degrading enzyme (IDE), 

which actively degrades amyloid-ß (Abeta) may predispose individuals to the disease.  
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1.3. Symptoms  
�

Pathological Correlates 

Clinico-pathological studies confirm the synaptic loss and axonal dysfunction occurring 

initially in the entorhinal cortex and hippocampus and subsequently in associative neocortical 

regions to be the cause of cognitive deficits observed in AD. 95% of the cholinergic neurons 

comprised in the basal nucleus of Meynert and medial septal nucleus are degenerated during 

the course of the disease. Reduced expression or activity of choline acetyltransferase causes 

further decline of acetylcholine (Storey, Kinsella, and Slavin 2001; Minati et al. 2009).  

Memory 

At the preclinical stage, AD is typically associated with impairment of episodic memory. In 

mild AD, verbal and nonverbal anterograde episodic memory appears with progressive 

deficits of retrograde episodic memory but relative preserved older memories (Jones, Livner, 

and Bäckman 2006). This also means that the entorhinal cortex and hippocampus is essential 

for acquisition and consolidation of new memories but consolidation of long term memories 

requires diffuse multifocal neocortical representation (Squire and Alvarez 1995). Impairment 

in recent memory consolidation causes failure to remember recently learned experiences.  

Disintegration of semantic memory as evident from tests of word list generation by semantic 

category is also associated with mild AD. Difficulties in generating verbal definitions, empty 

speech while in conversation are also quite common symptoms. In severe AD, part of implicit 

memory still remains to be preserved.  

 

Figure 38. Prevalence of AD 

worldwide. Based on the reports 
obtained on AD, prevalence of 
AD in different countries has 
been shown. Red: High death 
rate, Green: moderate death rate, 
Purple and grey: Low death rate.  
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Language 

As the disease progresses, the grammatical structure of the speech becomes progressively 

simpler with the language becoming paraphasic.  Both written and verbal structure of 

language declines with loss of function words, however reading aloud is preserved in some 

cases. In written language, spelling errors gradually increases, prevalently due to 

phonological errors, accompanied with defects in letter formation starts appearing in 

moderate AD. Severe AD is associated with complete loss of purposeful verbal 

communication.  

Visual Processing 

Visual processing impairment is quite common in AD patients. During the initial stages, 

drawing, construction and orientation impairment is reported. Loss of semantic and lexical 

knowledge causes visual agnosia in severe cases.   

Executive Function and Attention 

AD patients face problems in performing everyday activities which is determined by

executive dysfunction. Early AD patients also face difficulties to shift attention from one task 

or object to another. Even though, ability to sustain attention in patients with AD has not been 

thoroughly studied, some reports claim increased decrement over time (Berardi, 

Parasuraman, and Haxby 2005).  

Praxis 

Apraxic symptoms are prevalent in 30% of patients with mild AD and almost in all patients 

with severe AD (Baune et al. 2006).  Translimbic movement is affected together with 

ideomotor and ideational apraxia. Ideational apraxia is closely associated with semantic 

memory loss. Constructional apraxia occurring in early stage leads to rapid decline of 

cognition (Guérin, Belleville, and Ska 2002).  One example of constructional apraxia in AD 

is defects or impairment of copying a figure very closely or even on a given model (Kwak 

2004).  
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Behavioral Symptoms 

Behavioural symptoms appear in almost all the patients of AD at some point during the 

disease course. One of the most common behavioural symptoms is comorbid depression. 

Mild AD patients suffer from agitation, anxiety, irritability and apathy, while patients with 

severe AD develop aggression, increased confusion, aberrant motor behaviour, vocalisation 

and social isolation. Hallucination, delusion and dysphoria are comparatively less prevalent 

in AD (Mega et al. 1996). Sleep disturbances is very frequent in AD that significantly 

contributes to memory deficit and cognitive dysfunction.  

 

1.4. Therapies of AD 
�

Four acetylcholinesterase inhibitors (tacrine, rivastigmine, galantamine and donepezil) and an 

NMDA receptor antagonist (memantine) are the only 5 US Food and Drug Administration 

approved for treatment of AD (Pohanka 2011). AD is associated with reduced activity of 

cholinergic neurons. Thus acetylcholinesterase inhibitors impose a pause or brake to slow 

down the rate of acetylcholine (ACh) metabolism. These inhibitors shows effect in both mild 

and advanced stages of AD, only donepezil shows effects in advanced AD (Birks et al. 2009). 

Memantine  is a  noncompetitive NMDA receptor antagonist that acts on the glutamatergic 

system to inhibit overstimulation of glutamate by blocking NMDA receptors (Lipton 2006). 

Furthermore, administration of these drugs has not shown to delay the disease pathogenesis. 

Thus presently researchers all throughout the world are exploring the possibility to develop 

������������ ��������� ��� ������� ���� ������������ �������� ��� ����������� (Anand, Gill, and 

Mahdi 2014). A summary of the present strategies in correlation to pathophysiologic 

mechanisms for AD is depicted in Table 3.  
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������ �� �� �������������������� ����������� ��������������� �������� Adapted from Anand, 
Gill, and Mahdi 2014 

 

2. �����������������������������������������������������������������
disease (AD) 

2.1. Amyloid Precursor Protein (APP) 

2.1.1. APP metabolism 

 

Amyloid Precursor Protein (APP) is a transmembrane glycoprotein of 110�130 kDa which is 

present abundantly in the central nervous system (CNS). The primary functions of APP lies 

in synaptic formation and repair, signalling, and cell adhesion (Nathalie and Jean-Noël 2008).  

Amyloid-����������������������������������������������������������������������������������

(Recuero et al. 2004). Metabolism of APP follows two distinct mutually exclusive pathways 

(Figure 39) (reviewed in (De-Paula et al. 2012):  

Secretory pathway (or non-amyloidogenic): �-secretase cleaves APP resulting into a soluble 

N-��������� ��������� ������������ ���-��������� ��������� ������� �-secretase further cleaves 

the C-terminal fragment to give rise to a smaller C-terminal fragment of 3 kDa (C3). 

1. Modulating neurotransmission  
� Cholinesterase inhibitors  
� N-methylD-aspartate receptor 

antagonism  
� GABAergic modulation  
� Serotonin receptor modulation  
� Histaminergic modulation  
� Adenosine receptor modulation  
2. Tau based therapies  
� Tau phosphorylation inhibition  
� Microtubule stabilization  
� Blocking Tau oligomerization  
� Enhancing Tau degradation  
� Tau based immunotherapy  
3. Amyloid based strategies  
� Secretase enzymes modulation  
� Amyloid transport  
� Preventing amyloid aggregation  
� Promoting amyloid clearance  
� Amyloid based immunotherapy  
4. Modulating intracellular 

signaling cascades  

5. Oxidative stress reduction  
� Exogenous antioxidant 

supplementation  
� Augmenting endogenous defense  
6. Mitochondrial targeted therapy  
7. Modulation of cellular calcium 

homeostasis  
8. Anti-inflammatory therapy  
9. Others  
� Gonadotropin supplementation  
� Lipid modifiers  
� e Statins  
� Growth factor supplementation 
� Metal chelation  
� Epigenetic modifiers  
� Caspase inhibitors  
� Nitric oxide synthase modulation  
� Nucleic acid drugs  
� Multi-target directed ligands 
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Members of the ADAM (a disintegrin and metalloprotease) family mediate the secretory 

���������� �-���������� ��������� ��������� ��� ���� ��� ���� ��� �������� ������ ����� ���������

results in the formation of amyloid peptides (Braak and Braak 1998). 

Amyloidogenic pathway: �-secretase alternatively cleaves APP to form a smaller N-terminal 

��������� �������� ���� �� ������� �� ��������� ��������� ������� �-secretase mediated further 

cleavage of APP gives rise to amyloid-�����������������������������������������������������

form but progressively aggregates into dimmers, trimers, oligomers, protofibrils and fibrils, 

�������������������� �� ��� ����� ������������������������� ��� �������������������� ������� ���

peptide as it is more prone to aggregation and fibrilization, thus contributing immensely in 

the pathogenicity of AD (Recuero et al. 2004).  

  

 

2.1.2. The amyloid-�������������������� 

 

The basic hypothesis of the amyloid-�� �������� ������ ��� ������ ��� ���� �������� ���

accumulation of Abeta into neuritic and senile plaques in the brain during early stage causes 

neurodegeneration leading to AD pathogenesis (Hardy and Selkoe 2002). Increased 

accumulation of Abeta ���������������������������������������������������������������������

interacts with both neurons and glial cells to activate catastrophic effects like mitochondrial 

dysfunction and increased oxidative stress (Sanz-Blasco et al. 2008), impairment of 

intracellular signalling pathways and synaptic plasticity, increased Tau phosphorylation, 

increased GSK-��� ���������� ������������� ��� �������� ������������ ���������� ��� ���������

apoptosis and cell death (De-Paula et al. 2012). These steps leads to activation of a feedback 

����������������������������������������������������������������������������������������

�������������������������������������������������������s to the formation of phantoms of senile 

Figure 39. APP metabolism. Amyloid-
beta (Abeta) peptide portion of APP is 
embedded within the cell membrane. 
Differential splicing results in multiple 
isoforms of APP. APP undergoes two 
sequential endoproteolytic steps by 
enzymes - and -secretase. -secretase to 
release the Abeta species. Figure adapted 
from (LaFerla 2002)

- -- --
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plaques. The amyloid plaque formation leads to destabilisation of the functioning of a cell 

and ultimately leads to death (Rhein and Eckert 2007). Normally in a healthy cell, the balance 

����������������������������������������������������������������������������������(Roberts et 

al. 1994). Apolipoprotein E (APOE) and the insulin-degrading enzyme (IDE) are involved in 

�����������������������������������������������������������������������������������������������

by directly binding to it and thereby promoting its clearance (Recuero et al. 2004). The 

amyloid-�� �������� ����������� ���� �������� ������������� ��� ���� ��������������� ��� ����������

associated with early-onset AD like mutation in the APP gene, and presenilin 1 and 2 genes 

(Boeras et al. 2008). Furthermore transgenic animals with mutation on these genes 

���������������������bsequently lead to formation of plaques.  

 

 

2.2. ApoE4 

 

2.2.1. ApoE Polymorphisms and Functions in Neurobiology 

 

ApoE2, apoE3, and apoE4 are the three isoforms of ApoE prevalently found in humans. All 

the three isoforms differs from one another by single amino acid substitution enabling them 

to have diverse roles in neurobiology (Mahley, Weisgraber, and Huang 2006). ApoE 

isoforms have specific roles in neurite remodelling and remyelination of new axons (Huang 

2006). ApoE-deficient mice shows synaptic and dendritic alteration suggesting roles of apoE 

in maintenance synapto-dendritic apparatus  (Masliah et al. 1995). ApoE also controls 

glutamate receptor function and synaptic plasticity by regulating its receptor recycling in 

neurons (Y. Chen et al. 2010). N- and C-terminal domain interaction of apoE is extremely 

Figure 40. The 

amyloid-�� ��������

hypothesis. Mutation 
in the APP or PS 
genes leads to 
increased expression 
��� ��� ������

interferes with 
various cellular 
machinery and 
ultimately leads to 
pathogenesis of AD.  



General Introduction                            Chapter 4: ������������������������������������������ 
�

����

�

crucial for its functioning as mutation in this region (Arg-61 to threonine or of Glu-255 to 

alanine) prevents the domain interaction which leads to several detrimental consequences like 

proteolytic susceptibility, impairments in neurite outgrowth, and mitochondrial functions 

(Brodbeck et al. 2011; Chen et al. 2012), and apoE4-associated astrocytic dysfunction (Zhong 

and Weisgraber 2009).  

 

ApoE is present in different cell types.  The source of apoE defines its physiological and 

pathophysiological pathways. Astrocyte derived apoE isoforms have shown to be involved in

��������������������������� (Katsuura et al. 1990). CNS neurons expressed apoE acts upon 

stresses and injuries (Huang 2006).  

 

2.2.2. Roles of apoE4 in AD Pathogenesis 

 

������ ��� ����������������������� ��� ����� ��������� ������ ����� �������������� �����������

Ap����������������������������������������������������������������������������-terminally 

������������������������������������������������������������������������������������������

and act to impart neuronal and behavioral deficits in transgenic mice (Bien-Ly et al. 2011).  

 

Several lines of transgenic mice have been developed for apoE without co-expression of 

mutant hAPP. Results obtained from these studies revealed several role of apoE in the 

context of AD pathogenicity. Mice expressing apoE4 in the absence of the other isoforms in 

the neurons shows age and gender dependent spatial learning and memory deficits ApoE4 

reduces dendritic spine density in vivo and impairs adult hippocampal neurogenesis. The C-

terminally truncated forms of apoE4 induce phosphorylation of tau protein and thereby 

formation of intracellular NFT-like inclusions. Thus the apoE4 fragment induced 

neurotoxicity could be related to the formation of neurotoxic tau species. Removal of the 

endogenous tau from the apoE4 fragment-transgenic mice rescues neuronal and behavioural 

deficits (Andrews-Zwilling et al. 2010).  
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�������������������������������������������. A. �������� ������ ���� �������� ������ ����
important factors whose copathogenic interactions are crucial in the pathogenesis of AD. B. 
��� ������������ ���� ����������� ���� ��� ���������� ����������� ��� ��� ��� ���� ������ ��������

decreased clearance or reduced degradation�� ������ �������� �������� ��� ���������� ����
promotes its aggregation leading to synaptic dysfunction and altered neuronal activities. Tau 
protein mislocalises to the neuronal soma and dendrites where it forms inclusions called 
neurofibrillary tangles (NFTs). Adapted from Huang and Mucke 2012. 

 

 

 

2.3. Tau  

 

Tau is a microtubule stabilising protein which is predominantly found in the neurons. It was 

discovered simultaneously in The United States and Europe as a protein that is closely 

associated with tubulin polymerization into microtubules in the brain (Weingarten et al. 

1975). Human tau protein exists in 6 different isoforms as a result of alternative mRNA 

splicing from a single gene known as MAPT. MAPT is located on chromosome 17. 

 

2.3.1. Domain organisation and structure of tau protein  

 

Tau is a hydrophilic protein that appears as a random coiled structure. Brain tau isoforms 

have two major domains:  projection domain (positioned in the amino-terminal region) and 

microtubule binding domain (positioned in the carboxyl-terminal region). The amino-
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terminal region with a high percentage of acidic residues and the proline-rich region form the 

two sub domains of the projection domain, whereas the basic, true tubulin-binding region and 

the acidic carboxy-terminal region are the subdomains of the microtubule binding domain. 

Among several other roles, important functions of the projection domain are to determine the 

spacing between axonal microtubules (Chen et al. 1992) and interactions with other 

cytoskeletal proteins (Hirokawa, Shiomura, and Okabe 1988). An interesting feature of the 

microtubule domain is the presence of three (tau 3R) or four (tau 4R) similar but not identical 

repetitive sequences of 31 or 32 residues (Figure 42) (Avila et al. 2004). Alternate splicing of 

exons 2, 3, and 10 in the human adult brain gives rise to at least six isoforms of tau. Atleast 

50% of the isoforms contains the exon 10 encoding sequence, two isoforms contains exon 2, 

whereas 75% of the isoforms contains exon 3 always associated with exon 2 (Vingtdeux, 

Sergeant, and Buée 2012). Each isoforms of tau differs from one other by the presence of 3R 

or 4R repeat-regions in the microtubule binding domain and one (1N), two (2N), or no inserts 

of 29 amino acids each in the projection domain. Inclusion of the exon 10 encoding region 

provides tau protein containing four microtubule binding repeats (MTBRs) (4R tau: 0N4R, 

1N4R, 2N4R), whereas exclusion of exon 10 leads to expression of tau with three MTBRs 

(3R tau: 0N3R, 1N3R, 2N3R) (Sergeant, Delacourte, and Buée 2005; Goedert and Jakes 

1990). Each of these isoforms presents specific physiological roles as they are differentially 

expressed during development of brain. Differential distribution of tau isoforms have been 

noted in neuronal subpopulations. Mis-splicing of tau plays significant roles in the 

pathological conditions like frontotemporal dementia linked to chromosome 17 where it is 

linked to development of neurofibrillary degeneration (Sergeant et al. 2008). Major portion of 

tau protein is present in axons from neurons while it is also present in the oligodendrocytes.  
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Figure 42 : Different isoforms of brain microtubule-associated protein tau.  

Adapted from Vingtdeux et al 2012. 

 

2.3.2. Physiological functions of Tau  

 

One of the major functions of tau protein in the physiological condition is to facilitate tubulin 

assembly (Weingarten et al). Subsequent studies both in vitro and in vivo showed its roles in

the stabilisation of polymerised microtubules and suppression of microtubule dynamics (Bré 

and Karsenti 1990, Drubin and Kirschner 1986, Maccioni et al. 1989, Panda et al. 1995).  

Decreased levels of tau by antisense oligonucleotides showed the involvement of tau in 

neurite outgrowth (Caceres and Kosik 1990, Caceres, Potrebic, and Kosik 1991). Tau also 

influences axonal transport as its binding site on tubulin overlaps with other proteins 

including molecular motor kinesin. Tau deficiency in mice is not lethal. Mouse deficient with 

tau shows decreased microtubule numbers in small caliber axons, muscle weakness, and 
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some behavioral deficits (Harada et al. 1994, Ikegami, Harada, and Hirokawa 2000). A 

possible explanation could be compensation by other proteins in mice lacking tau.  

 

2.3.3. Tau pathology in AD and other tauopathies  

 

Tau is an important protein implicated in the maintenance of microtubule stability. Alteration 

in the amount or conformation of tau protein could disrupt the role of tau as a microtubule 

stabiliser and other processes where it is associated. Phosphorylation of tau alters its ability to 

interact with microtubules. Hyper-phosphorylation of tau is a major contributor for the 

aberrant aggregates found in neurons and sometimes in glia of patients with neurological 

disorders commonly known as tauopathies. AD is associated with presence of two main 

pathological structures in the brain: senile plaques (composed of the amyloid peptide), and 

neurofibrillary tangles (NFT). NFTs are composed of paired helical filaments (PHFs) 

composed of aberrant tau protein polymers. Increased number of NFT correlates with degree 

of dementia in patients.  

Tau pathology is closely linked to synaptic loss or dysfunction that correlates better with 

cognitive deficits observed in patients with AD or other tauopathies. Braak and Braak in 1991 

first described that AD related tauopathy follows a characteristic pattern to spread tau 

aggregation pathology in the brain (Figure 43) (Braak and Braak 1991). Neurofibrillary 

tangles first severely affects the hippocampus and entorhinal cortex and then slowly 

progresses and spreads to temporal, parietal, and frontal cortices. The aggregation of tau 

forms in neocortical regions much earlier than the first appearance of NFTs (García-Sierra et 

al. 2001, Mukaetova-Ladinska et al. 2000). PHF-tau aggregation starts appearing from Braak 

stage 2 onwards whereas tangles can be detected by microscopic techniques from Braak stage 

4 in the neocortex. Recent evidences suggests that tau pathology in the medial temporal lobe 

precedes Aß accumulation thus indicates that amyloid deposition is not a prerequisite for 

dementia (Harrington 2012).  
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Figure 43. Braak staging in Alzheimers disease based on immunohistochemical taining 

of Tau pathology. A. Six stages of Braak have been combined three representative images 

showing the spread of tau pathology. B. Alzheimers levels are also compared showing poor 

comparatively levels of staging. Adapted from Harrington 2012.  

 

Abnormal hyperphosphorylation of tau (Tau pathology in Alzheimer disease and 

other tauopathies) 

 

Hyperphosphorylation of tau protein leads to accumulation and forms NFTs. NFT is 

associated with neurofibrillary degeneration and dementia commonly described as 

tauopathies. Ever since the discovery of mutation in tau gene in diseases like frontotemporal 

dementia with Parkinsonism linked to chromosome-17 (FTDP-17), has established 

abnormalities of tau protein as a primary event in diseases associated with neurodegeneration 

and dementia (Grover et al. 1999). Abnormal hyperphosphorylation of tau robustly affects the 

neurons in AD. It is not only found in the neurofibrillary tangles but also in the cytosol from 

AD brains (K. Iqbal et al. 1986). Tau present in tangles is generally subjected to 

ubiquitination, whereas abnormally hyperphosphorylated tau obtained from AD brains shows 

no ubiquitin reactivity suggesting abnormal hyperphosphorylation of tau precedes its 

accumulation inside the neurofibrillary tangles (Khalid Iqbal et al. 2005).  
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3. ���� ��� �� ������ ������� ��� ������ ������������ ���ease and other 

tauopathies: THY-Tau22 

 

Transgenic Tau mice models are valuable system to study various aspects of tauopathies and 

AD tau pathology. During the last decade, several models with single tau mutations has been 

reported which includes P301L, P301S, G272V, V337M, and R406W, or overexpression of 

human tau isoforms. However, none of these models could reproduce spectrum of tau 

associated tangle pathology as observed in AD. Furthermore, most of these models show 

motor deficits and hind limb paralysis possibly by increased deposition of tau in the spinal 

cord thus making behavioural analysis to be a difficult job.  

In 2006, Luc Buée and colleagues generated a novel mouse model (THY-Tau22) expressing 

human 4-repeat tau with the double mutations G272V and P301S under the Thy1.2 promoter 

(Schindowski et al. 2006). THY-Tau22 mice do not shows any motor deficits and dystonic 

posture that could interfere with behavioural testing. None of the body organs tested  (heart, 

kidneys, spleen, muscle, gland and thymus) except brain showed expression of human tau. 

Interestingly THY-������ ����� ����� ��������������������� ��� ���� ��� �������� ������������

disease-relevant tau epitopes (AT8, AT100, AT180, AT270, 12E8, tau-pSer396, and AP422).

Neurofibrillary tangle-like inclusions (Gallyas and MC1-positive) with rare ghost tangles and 

PHF-like filaments, as well as mild astrogliosis are also prominent features of this model. 

Pyramidal cell layer of the CA1 region and the frontal cortex from 6 months age showed tau 

aggregated neurons whereas it was detected in the DG, the CA3 region, and the amygdala at 

12 months age. Ghost tangles started appearing in the CA1 at 12 months age. AD is 

associated with reactive astrocytes and microglia that causes neuronal damage. Aged THY-

Tau22 mice showed increased number of astroglial GFAP-positive cells especially in the 

hippocampal hilus region, cerebral cortex, corpus callosum, CA1 region, and the CA3 region. 

Interestingly, accumulation of astroglial and microglial cells was detected in close vicinity to 

neurons with high load of phospho-tau (Schindowski et al. 2006).  

 

Hippocampal synaptic plasticity 

 

Long-term changes in hippocampal synaptic transmission including both LTP and LTD are 

thought to be essential for the consolidation of spatial memory. THY-Tau22 mice shows 

normal long-term potentiation (LTP) with no significant difference from the WT in field 
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recordings from CA1 region (Schindowski et al. 2006). THY-Tau22 mice showed defects in 

the late long-term depression (LTD) hippocampal CA1-region in vitro (Van der Jeugd et al. 

2011). However, impaired late LTD can be rescued by inhibition of glycogen synthase 

kinase-3 (GSK3b) activity and also by protein-phosphatase 2A agonist selenite (Ahmed et al. 

2015). In support to the finding, increased phosphorylation of GSK3b at Y216 and decreased 

total phosphatase activity has been detected in the hippocampal tissues of THY-Tau22 mice. 

Thus the phospho-tau/total tau imbalance could be the major reason for the impaired LTD 

observed in THY-Tau22 mice.  

Brain-derived neurotrophic factor (BDNF) mRNA and protein levels are reported to be 

reduced in cortex and hippocampus of AD patients. The alteration of BDNF expression is 

considered to be due to the toxic accumulation of Aß (Peng et al. 2009). Thus the memory 

impairment observed in AD is partly due to Aß induced loss of BDNF expression. However, 

down-regulation of BDNF transcript or protein levels were not observed in THY-Tau22 mice 

(Burnouf et al. 2012). In physiological conditions, BDNF involves TrkB and N-methyl-D-

Aspartate receptors (NMDAR) to induce AMPA receptor dependent hippocampal basal 

synaptic transmission (Minichiello 2009).  In THY-Tau22 mice exogenous BDNF fails to 

enhance synaptic transmission. The loss of BDND response is attributed to impaired 

NMDAR function. Phosphorylation of NR2B at the Y1472, which is a critical component for 

NMDAR function, is reduced in THY-Tau22 mice. Moreover the two main NR2B kinases 

NR2B and Src interact with Tau and mislocalises to the pathological tau fraction (Burnouf et 

al. 2013).  

 

Behavioral abnormalities 

 

Accumulation of tau pathology causes age dependent cognitive decline in THY-Tau22 mice. 

3-4 months mice show no spatial memory deficits whereas it is impaired from 8 months 

onwards. Non-spatial memory defects starts as early as 6 months age (Van der Jeugd, 

Vermaercke, et al. 2013). 6 months age THY-Tau22 mice shows reduced anxiety-like 

behavior when tested in an elevated plus maze. In the Morris water maze (MWM), THY-

Tau22 mice shows delayed learning possibly because of the presence of phospho-tau in the 

hippocampus (Schindowski et al. 2006). Transgenic mice models of AD have provided huge 

amount of information towards the understanding of AD pathogenesis and possible treatment. 

Most of these models show similar AD neuropathology and cognitive symptoms as observed 
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in AD patients. Behavioral and psychological signs and symptoms of dementia (BPSD) has 

also been partially observed in APP transgenic mice (Lalonde, Fukuchi, and Strazielle 2012). 

Thus occurrence of BPSD-like behavioral changes in THY-Tau22 has also been recently 

studied in addition to the cognitive impairments. 12 months old THY-Tau22 mice displays

increased depression-like and aggressive behavior in accordance to disturbances in nocturnal 

activity. Decreased hippocampal concentration of serotonin, or 5-hydroxytryptamine (5-HT), 

and 5-hydroxyindoleacetic acid (5-HIAA) 5-HT and 5-HIAA, the main metabolite of 

serotonin was found to be responsible for the observed behavioural and psychological state. 

(Van der Jeugd, Blum, et al. 2013). 

 

 

4. Histone modifications and AD: Implications of small molecule 

modulators of HATs as a therapeutic possibility 

 

4.1. Non-histone protein acetylation and AD 
�

Epigenetic processes are considered to be heritable changes that alters gene expression 

without any changes in their coding sequence  (Egger et al. 2004). Epigenetic processes

includes a wide array of modifications like acetylation, phosphorylation, methylation, 

ubiquitination, ADP ribosylation, and sumoylation, DNA methylation, and non-coding RNAs 

(Goldberg, Allis, and Bernstein 2007). Histone acetylation is one such epigenetic 

modification whose dysregulation leads to alteration in the transduction cascade such as cell 

differentiation, cell apoptosis, vascular remodeling, inflammation reaction, immune 

responses, neuronal plasticity, and metabolic reprograming (Reviewed in Lu et al. 2015). 

Altered acetylation of several non-histone proteins both nuclear and cytoplasmic like NF-���

(Chen Lf et al. 2001), p53 (Barlev et al. 2001), alpha tubulin (Perez et al. 2009), and tau (Min 

et al. 2010; Irwin et al. 2012) has also been linked to AD pathology.  

p300/CBP acetylates NF-�� at multiple residues including Lys-122, -123, -218, -221, and -

310. PCAF (p300/CBP associated factor) mediated acetylation of NF-���������- 122 activate 

������-induced function of NF-�����-30-27, a selective inhibitor of PCAF inhibits NF-������

Lys- ���� ���� �������� ���������� ����� ��-�������� ��������� ����������� ���� ��-mediated 
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neuronal cell death in cell lines by blocking NF-��-mediated inflammatory response induced 

������(Park et al. 2013, Park et al. 2015).  

p53 is one of the first non-histone protein that was identified to be acetylated. p53 is regarded 

as a strong transcription factor that drives activation and repression of a large number of 

genes in a context specific manner that defines its tumour suppressor activity (Levine 2011, 

Soria et al. 2010). Various biochemical studies confirmed that CBP acetylates p53 on 

multiple lysines in the carboxyl terminus (K370, K372, K373, K381, and K382) and also in 

the DNA binding domain (K164) (Tang et al. 2008). One report states p53 acetylations are 

significantly increased in AD brain tissue where p300 is considered to acetylate p53 at the C-

terminal domain in AD brain (Aubry et al. 2015). Neuronal outgrowth and maturation also

involves p53 hyperacetylation by CBP/p300. On the other hand, SIRT1 agonist resveratrol is 

able to decrease p53 acetylation and rescues increased p53 acetylation in the inducible p25 

transgenic mouse, a model of AD and tauopathies. Resveratrol treatment reduced 

neurodegeneration in the hippocampus and rescued learning deficiency (Kim et al. 2007). 

Tau acetylation also plays crucial role in neurodegeneration and AD pathogenesis. Tau 

function gets modulated by acetylation at different residues but have different consequences. 

Tau K280 acetylation within the microtubule-�����������������������������������������������

disease patients. Acetylated-tau pathology presents a similar spatial distribution pattern 

compared to the hyperphosphorylated tau (Cohen et al. 2011). Sang-Won Min and colleagues 

identified several acetylation sites on tau protein that are elevated in patients at early and 

moderate Braak stages of tauopathy. This study suggested that acetylation of tau prevents 

degradation of phosphorylated tau (p-tau). p300 was identified to be the HAT that is involved 

in acetylating these sites whereas the class III protein deacetylase SIRT1 in deacetylation 

(Min et al. 2010). Possibly acetylation of tau reduces solubility and microtubule assembly 

thus increases tau fibrillization to contribute to tau-mediated neurodegeneration (Irwin et al. 

2012). CBP mediated acetylation of tau at Lys 280 leads to increased tau aggregation (Cohen 

et al. 2011). Recently, Cook and colleagues showed a beneficial effect of tau acetylation. 

They identified the KXGS motifs of tau protein to be acetylated. Acetylation on the KXGS 

motifs inhibits the phosphorylation in the same site and also prevents tau aggregation. 

Hypoacetylation of tau in the KXGS has been demonstrated in patients with AD, as well as a

mouse model of tauopathy where histone deacetylase 6 (HDAC6) was identified to be the 

enzyme that deacetylates these specific sites (Cook, Carlomagno, et al. 2014). Interestingly, 
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tau protein possesses intrinsic acetyltransferase activity and could auto acetylate using a 

mechanism similar to that employed by MYST-family acetyltransferases (Cohen et al. 2013). 

HDAC6 deacetylates both tau and tubulin and thereby contributes to tau-microtubule 

interactions and microtubule stability (Cook, Stankowski, et al. 2014, Cook, Carlomagno, et 

al. 2014).  

 

4.2. Histone acetylation and AD 

�

Histone acetylation homeostasis impairement is closely associated with memory 

impairement.  As described in details in Chapter 2, histone acetylation is transiently increased 

in the dorsal hippocampus of rats after spatial learning suggesting importance of acetylation 

in memory consolidation. Gjoneska et al observed decreased occupancy of histone H3 lys 27 

acetylation at the regulatory regions of synaptic plasticity genes in the p25 transgenic model 

of AD. Interestingly, increased occupancy of H3 lys 27 acetylation was found at regulatory 

regions of immune response genes. These genes are targeted by ETS (E26 transformation-

specific) family of transcriptional regulators. These changes in the acetylation profile also 

corresponds to the gene expression changes (Gjoneska et al. 2015). Global histone acetylation 

levels in aged mice are generally decreased as compared to young ones. This decreased 

acetylation can be reversed by HDAC inhibitors and improves the memory deficits (Gräff et 

al. 2012)�������������������������������������������������������������������������������(Gu 

et al. 2013). Genes related to APP metabolism are also regulated by histone acetylation. 

Hyperacetylation of histone H3 is detected at the BACE1 promoter in APP/PS1/tau triple 

transgenic mice (Marques et al. 2012).  Decreased H3 acetylation at the gene promoter of 

Neprilysin (NEP), the pr�������� ��������� ��� ��� ��������� ������ ��� ���� ��������������� ���

hypoxia stimulated mouse cortical and hippocampal neurons (Wang et al. 2011). All these 

information suggests a strong influence of histone acetylation in AD pathogenesis but the 

detailed understanding of these events and the exact role of histone acetylation is presently 

missing.  

4.3. Histone deacetylases in AD 
�

HDAC2 is widely expressed in the CNS and acts as a negative regulator to synaptic plasticity 

and memory. Knocking out HDAC2 in CK-p25 mice model by short-hairpin-RNA rescues 
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memory loss and re-establishes the structural synaptic plasticity (Gräff et al. 2012). Cortices 

and hippocampi from post-mortem brain samples of AD patients shows increased levels of 

HDAC6 protein (Ding, Dolan, and Johnson 2008). Decreasing the HDAC6 in a mouse model 

����������������������������������������������������-tubulin acetylation (Govindarajan et 

al. 2013). Cytoplasmic HDAC6 is thought to participates in tau metabolism, whereas 

increased levels of HDAC6 correlates with tau burden and decreased HDAC6 levels prevents 

tau aggregation. Furthermore, tau can also acts as HDAC6 inhibitor and overexpression of 

tau corresponds to tubulin hyperacetylation. SIRT1 levels are significantly reduced in the 

parietal cortex, but not in the cerebellum. Increased activity of SIRT1 in hippocampus of p25 

transgenic mouse model of AD reduces neurodegeneration. SIRT1 agonist resveratrol 

compensate the acetylation status of PGC-������������o prevent learning impairment (Kim et 

al. 2007). Thus HDACs are being thoroughly explored in the pathogenesis of AD to be used 

as a possible therapeutic target in the treatment of AD.   

 

4.4. Small molecule modulators of acetylation in the treatment of AD 

 

4.4.1. HDAC inhibitors 

HDAC inhibitors were initially identified for the treatment of cancer. Interestingly, HDAC 

inhibitors can significantly restore learning and memory deficits in mouse models of AD 

even in early stages. Thus the report by Fischer and colleagues in 2007 established a 

promising background for HDAC inhibitors to be used as therapeutics in neurodegenerative 

conditions (Fischer et al. 2007). Later, several groups had successfully used different HDAC 

inhibitors to rescue memory loss and synaptic plasticity in various mouse models of AD.  

HDAC inhibitors trichostatin A (TSA), VPA, SAHA (vorinostat) or sodium butyrate 

increases synaptic remodelling and contextual memory by enhancing acetylation of H3 and 

H4 on promoters of specific genes (Reviewed in Lu et al. 2015) . 4-phenylbutyrate (PBA) 

reinstates fear learning in the Tg2576 mouse model of AD. PBA reversed learning deficits by 

clearing intraneuronal Aß accumulation and restoration of CA1 dendritic spine densities 

(Ricobaraza et al. 2012).  Daily injections of PBA reverses spatial memory deficits and by 

normalising tau hyperphosphorylation in the hippocampus and dendritic spine density 

(Ricobaraza et al. 2009). Trichostatin A (TSA) treatment in APP/PS1 mouse model of AD 

rescued both acetylated H4 levels and contextual freezing and CA3-CA1 LTP (Francis et al. 
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2009). Sodium butyrate increases recruitment of acetylated histone H3/H4 at the DHCR24 

enhancer and increases its gene expression which is reported to be reduced in the temporal 

lobes of AD patients  (Drzewinska, Walczak-Drzewiecka, and Ratajewski 2011). However, 

most of the HDAC inhibitors are non-selective and targets both nuclear and cytoplasmic 

histone and non-histone protein acetylation. Some HDAC inhibitors like TSA selectively 

targets the expression of memory-related genes (Vecsey et al. 2007). Thus manipulating the

structure of HDAC inhibitors to obtain more specific molecules could prove to be of 

immense contribution in the therapeutic implications of AD.  

4.4.2. HAT activators 

HAT activators are the result of recent advances in the interdisciplinary field of chemical 

synthesis and biology. Several HAT activators are been reported but almost none has been 

reported to be tested in AD mouse models. The first reported HAT activator is N-(4-chloro-3-

trifluoromethyl-phenyl)- 2-ethoxy-6-pentadecyl-benza-mide (CTPB), derivatized using 

anacardic acid could specifically activate HAT function of p300 in vitro. Nemorosone, a 

derivative of benzophenone is another HAT activator that shows strong activity to induce 

CBP/p300 HAT function. However, most of the HAT activator molecules are impermeable to 

the Blood Brain Barrier (BBB) posing a barrier for applications as therapeutics. Among 

other, only two HAT activators have shown permeability towards BBB after systemic 

administration in adult mice; SPV106 (PCAF activator) (Wei et al. 2012) and CSP-TTK21 

(p300/CBP activator) (Chatterjee et al. 2013).  

Pentadecylidenemalonate or SPV106 is the only reported PCAF activator that could enhance 

PCAF acetyltransferase function and increase H3 acetylation in mice brain.  Fear 

conditioning and extinction are two different learning forms which involves different 

molecular pathways. p300/CBP mediated acetylation in the hippocampus is essential to form 

contextual fear, fear extinction also depends on epigenetic regulation. Systemic 

administration of PCAF activator SPV106 in C57BL/6 mice resulted in enhanced memory for 

fear extinction and prevented fear renewal. It was also demonstrated that activation of PCAF 

HAT function induced recruitment of repressive transcription factor ATF4 to the promoter of 

the immediate early gene zif268 further inhibiting its expression. This finding suggests that 

modulation of HAT function of a transcriptional coactivator such as PCAF could be further 

exploited for the treatment of fear-related anxiety disorders (Wei et al. 2012). 
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Selective screening using a low throughput HAT assays provided a TTK21 [N-(4-chloro-3-

trifluoromethyl-phenyl)-2-n-propoxy-benzamide], a derivative of CTPB which is a first 

generation HAT activator. TTK21 showed specificity towards CBP and p300 HAT activity 

but like its parent compound it was also impermeable to mammalian cell membrane and the 

BBB. Thus TTK21 was chemically conjugated with a glucose derived carbon nanosphere 

CSP. The conjugated product, CSP-TTK21 could traverse the BBB and could efficiently 

induce histone acetylation in adult mice brain. Further studies showed that CSP-TTK21 

improves adult neurogenesis by favouring dendritic maturation and differentiation in wild 

type mice. CSP-TTK21 can also increase spatial memory consolidation and enhances 

memory related gene expression (Chatterjee et al. 2013).  
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Background of Research and Objectives 

 

Histone acetylation is thought to be essential for synaptic plasticity and memory. Research 

from various groups from the last decade has indicated the importance of histone acetylation 

in the brain function and alteration of it results in cognitive defects. The best example of 

acetylation modulation is the use of HDAC inhibitors in the study of memory processes. 

Researchers use HDAC inhibitors as a tool to target HDACs and thereby activate histone 

acetylation.  Activation of histone acetylation by HDAC inhibitors impacts on maintenance of 

LTP and also improves long-term memory as tested for different forms of memory and 

different contexts. Importantly, histone acetylation activation by HDAC inhibitors is a rather 

indirect process and apart from deacetylation activity, which also occurs on non histone 

proteins, HDACs are associated with various other biological functions as they are 

components of transcription co-repressor complexes on the chromatin.  

 

The role of HDACs in memory and diseases has been an intense area of research. 

Researchers have demonstrated the role of several HDACs in memory processes. However, 

our knowledge on the role of HATs in memory related processes is mostly based on CBP. 

Mutation of CBP causes Rubinstein Taybi syndrome, a pathological condition characterized 

with cognitive deficits ( Petrij et al ., 1995; Kalkhoven et al ., 2003; Alarcón et al., 2004; 

Barco, 2007). CBP function in learning and memory has been deciphered with knock-down 

and deletion genetic models (Barco, 2007; Oliveira et al., 2006; Barrett et al., 2011; Oliveira 

et al., 2011 ; Chen et al., 2010 ; Valor et al., 2011). Spatial learning induces expression of 

several HATs including CBP/p300 suggesting its importance during memory formation 

process  (Bousiges et al., 2010). Also viral delivery of CBP in the hippocampus of a mouse 

������ ��� ������������ ������� rescues deficits in learning and memory (Caccamo et al., 

2010). All these results supports that stimulation of CBP can be a potential therapeutic tool 

for the treatment of memory related d���������������������������������������� 

Thus when I started my research at the laboratory of Dr Tapas K Kundu, Bangalore, India, 

the aim was to directly target the CBP HAT function by a pharmacological mean to modulate 

histone acetylation levels and study its effect in biological functions. Researches in the 

�������� ���������������� ��������� ��� ������� ��������������� �� ��������������������������

�������������������������������������������������������������������������������������������-

activation of proper HAT/CBP functions in neurodegenerative diseases and cognitive 

functions. Activation of HATs would provide better understanding of the importance of 

specific HATs in different processes, such as neuronal survival and memory formation, and 

with hypothetically less non-specific and global histone acetylation.  
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Search for KAT activator 

 

The HAT domain is the region which catalyzes the acetyltransferase activity of HATs. The 

HAT domain has been studied thoroughly and the crystal structure of CBP and p300 HAT 

domain is already reported. The HAT domain has been of immense interest for chemical 

biologists to modulate the acetyltransferase function of HATs. Several small molecules

(synthetic or natural chemical probes) have been designed to target this domain. Using small 

molecules that can activate the enzymatic function of HATs is an emerging concept and only 

a few of them has been reported. The first reported HAT activator molecule, N-(4-chloro-3-

trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benza-mide (CTPB) was derived from 

anacardic acid obtained from cashew-nut shell liquid�������������������������������������

laboratory, India (Balasubramanyam et al., 2003). CTPB activates p300 but not PCAF HAT 

function in vitro. Surface-enhanced Raman spectroscopy analysis suggests that the CTPB 

binding on p300 HAT domain induces a conformational change that helps in the recruitment 

of more acetyl-CoA and auto-acetylation (Mantelingu et al., 2007). In need of a more stable 

and potent activator of HATs, CTPB was further derivatized to a series of small molecules 

and a library was created. I was associated with the work on the modulation of HAT domain 

���������������������������������������������������������������������������������������������

a low throughput HAT activity assay. Among all the derivatives, TTK21 showed the best 

activity and specificity towards CBP and p300. The main purpose to synthesize these HAT 

activators was to test its function in animal brain. Thus the first step before testing a 

����������������������������������������������������������������������������������������������

SHSY-5Y cell lines and found that the molecule cannot cross the cell membrane and is 

inactive in mammalian cell lines.  

 

Need for a vehicle to carry the HAT activator  

 

Molecular biology and Nanotechnology is working hands on hands for the last decade to 

develop therapeutic approach for drug delivery. The best outcome of interdisciplinary science 

is that we can share knowledge from each sections of science and can develop technology 

���������������������������������������������������������������������������������������

India had developed a glucose derived carbon nanosphere (CSP) which can cross the 

mammalian cell membrane and can also cross the blood-brain barrier (BBB) in mice. Initial 
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studies from the collaborative work between the two research groups had chemically 

adsorbed HAT activator CTPB on CSP (CSP CTPB). Then, the adsorbed coumpound could 

����������������������������������������������������������������������������activator molecule 

in mice brain was acheved in the Rat (Selvi et al., 2008). We took the opportunity of the 

available technology and started investigating the mechanistic details of the CSP entry into 

mammalian cells. We showed that CSP entry into living cells follows an ATP dependent 

clathrin mediated endocytosis process. CSP also showed strong preference towards cells with 

higher levels of glucose transporters (Selvi et al., 2012). Thus the molecule proved to be a 

potential vehicle to target individual organs like brain with great specificity.  

 

CSP-TTK21 conjugation and beginning of a fascinating approach to boost 

memory in non-transgenic mice 

 

We successfully chemically conjugated CSP with HAT activator TTK21 (named it as CSP-

TTK21) and confirmed the conjugation by various biophysical methods.  CSP-TTK21 unlike 

the unconjugated TTK21molecule could cross the mammalian cell membrane and also pass 

the blood-brain barrier (BBB) in mice. The conjugated material takes around 24 hours to 

enter rodent brain and within 72 hours after the i.p. administration, as followed with CSP 

intrinsec fluorescence. As CSP-TTK21 could potentially impact on the histone acetylation 

levels of the brain, studying its consequences in a neurobiological context was of immense 

interest. This established the foundation for exploring the implications of the CBP activation 

by HAT activator CSP-TTK21 in memory related processes. The collaboration with Dr 

�������������������������� ����������������������������� �����������hort stay of 3 months. My 

�������� �������� ��������� ��� ��� ������������� ����������� ���������� ���� potential role of CSP-

TTK21 mediated CBP activation in the memory related processes. We found that CSP-

TTK21 by activating histone acetylation in the dorsal hippocampus also promoted the 

formation of long and highly branched doublecortin-positive neurons in the dentate gyrus 

only after single dose of injection (500µg/mice). This was the first series of data that 

suggested that HAT activation could also favour maturation and differentiation of adult 

neuronal progenitors. Finally, we also evidenced that CSP-TTK21 improved spatial memory

in remote long-term without improving retention of a recent memory.  

������������������������������������������������������������������������������������������������

supported by CEFIPRA between the collaborative labs of Dr Kundu and Dr Boutillier, 
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����������������������������������������������������������������asbourg, France. I joined in 

�������������������������������������������������������������� 

After joining as a PhD student, we studied the distribution of CSP-TTK21 in different regions 

of mice brain and other body tissues.  Then the major question was the mechanism by which

CSP-TTK21 activates memory formation. We evaluated the gene expression patterns of 

memory and activity related genes and also validated the acetylation status of histone H2B on 

the promoters of those genes after single injection of CSP-TTK21.  

The data obtained on the effect of CSP-TTK21 in healthy adult mice were published in the 

Journal of Neuroscience (Chatterjee et al., 2013) and the molecule (CSP-TTK21) has been 

patented (W02013/160885). 
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Discussion 

 

The present study showed implications of activating acetyltransferase CBP/p300 in memory 

related processes. Unlike other cell impermeant HAT activators, the novel HAT activator 

conjugate CSP-TTK21 efficiently crosses the blood brain barrier and activates histone 

acetylation in the frontal cortex and the dorsal hippocampus of mice brain. Activation of 

histone acetylation proved beneficial as it induced differentiation and maturation of young 

hippocampal neurons and improved long-term retention of a spatial memory. This study is 

the first evidence for direct activation of a CBP/p300 HAT in the brain which by itself is a 

great achievement and opens a new therapeutic option for brain related diseases.   

 

Significance of improved neuronal maturation in cognitive function 

 

Hippocampal neurogenesis is thought to be implicated in the persistence of long-term 

memory. Recently it was shown that ablation of neurogenesis by whole brain radiation (WBI) 

one month before the spatial task led to significant deficits of spatial memory performance in 

MWM. Additionally decreased neurogenesis also caused reduced expression of BDNF due to 

decreased acetylation of H3 on BDNF promoters (Ji et al., 2014). Here in this study, we 

showed that HAT activation in non-transgenic mice improved dendritic length and 

arborisation of DCX-positive neurons and increases the gene expression of neuronal markers 

for differentiation like BDNF and NeuroD1 only after 3 days of injection.  We observed 

increased occupancy of acetylated histone H2B on the promoters of NeuroD1 and BDNF eI. 

We claimed that HAT activator mediated induced expression of NeuroD1 possibly 

contributed to the stimulated dendritic maturation. It was already known that NeuroD1 is a 

critical component of dendritic maturation and mice lacking NeuroD1 presents reduced 

dendritic maturation and arborisation of hippocampal granule progenitors (Schwab et al., 

2000)�� ������ �� ����������� ������ ���������������������group confirmed the importance of 

NeuroD1 in the neuronal maturation and functional integration of new neurons during the 

maturation period (Richetin et al., 2015). In that study, retroviral vectors encoding the 

reporter gene for NeuroD1 delivery into dentate gyrus exhibited higher branching complexity

and increased total dendritic length of 14 days age neurons. Thus NeuroD1 provides the 

newly generated neurons a competitive advantage to receive inputs. NeuroD1 is a  CBP target 

gene (Sun et al., 2001). Eventhough CBP heterozygous mutation mice (CBP+/-) do not show 
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defects in basal adult neurogenesis but enriched environment induced adult neurogenesis was 

significantly impaired in these mice (Lopez-Atalaya et al., 2011). Thus the results support the 

present notion that CBP contributes to adult neurogenesis possibly through neuronal 

maturation and differentiation.  

 

Role of CBP/p300 activation in persistence of long-term memory 

 

Active research for the last decade has established the role of CBP and p300 in memory 

processes (Barco, 2007; Oliveira et al., 2006; Barrett et al., 2011; Oliveira et al., 2011). CBP 

involvement in spatial memory depends on its binding with CREB through the KIX domain 

(Chatterjee et al, Unpublished, Publication 3). Activation of the CREB signaling pathway 

increases spatial memory strength in weakly trained animals (Sekeres et al., 2010). 

Surprisingly, we did not evidence any influence of CBP activation on spatial memory 

performance at a short postacquistion delay. However, CSP-TTK21 dependent activation of 

CBP/p300 HAT functions significantly improved remote long-term memory (16 days after 

acquisition). Different CBP mutant mice show impairment in some hippocampus-dependent 

forms of memory, particularly object recognition memory is affected whereas spatial memory 

is either not or poorly affected (Oike et al., 1999; Alarcón et al., 2004; Korzus et al., 2004; 

Valor et al., 2011). Notably, spatial memory was measured in the above mentioned studies at 

short post-acquisition delays (24 h or less). Thus CBP seems to be more implicated in the 

remote spatial memory formation than for recent memory.  

Memory consolidation involved reorganization at synaptic and system levels where 

coordinated hippocampo�cortical interactions stabilizes the memory (Frankland and 

Bontempi, 2005; Winocur et al., 2010). We have observed that CSP-TTK21 not only 

activates histone acetylation in the dorsal hippocampus but also activates CBP/p300 mediated 

histone acetylation in the frontal cortex and some other brain regions. CBP HAT function is 

essential for long-term encoding in the medial prefrontal cortex (mPFC) circuits as well. 

Recent reports suggests that reduced function of CBP in the mPFC results in delay-dependent 

disruption of object-location memory (Vieira and Korzus, 2015). Thus activation of CBP 

HAT function in the mPFC could possibly complement hippocampus-dependent spatial 

memory mechanisms and enhance encoding of long-term memory.  These findings suggest 

that CSP-TTK21 mediated increased histone acetylation could mark neurons from some 

cortical subregions (early tagging), thereby reinforcing a hippocampo�cortical dialogue to 

form a persistent memory, as described recently (Lesburguères et al., 2011).  
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HAT activation, a novel therapeutic approach for memory related disorders?

 

HAT and HDACs present opposite outcomes in the context of global chromatin acetylation 

levels, their mode of actions are also different. HATs are the essential components of the 

transcriptional co-activator complexes and possess bromodomain to recruit themselves to the 

acetylated histones in the chromatin (Yang, 2004). Whereas, HDACs are part of corepressor 

complexes that depends on protein-protein interaction to be targeted to the chromatin. Thus it 

could be presumed that HAT activation would lead to different functional consequences than 

that of HDAC inhibition. Furthermore, during memory formation specific histone acetylation 

marks are activated by the HATs rather by blocking HDACs (Bousiges et al., 2013; Peixoto 

and Abel, 2013). Our results suggest that CSP-TTK21 activates transcription of genes related 

to differentiation (Neuro D1, DCX, TUC4, BDNF), neuronal excitability (cFos), or memory 

(fosl2, Nr4a2), however, other target genes of CBP/p300 were not activated like Egr-1 or Arc 

by a single injection of CSPTTK21 in basal (rest) conditions. BDNF activation is responsive 

to chromatin acetylation status and is a target of NR4A signaling (Volpicelli et al., 2007; 

Hawk et al., 2012). HDACi also increases NR4a2 gene expression, whereas blocking Nr4a 

signaling interferes with the HDACi induced memory enhancement. Thus CSP-TTK21 

possibly activates specific signaling cascades to activate memory processes.  

Cognitive impairment is often associated with transcriptional dysfunction as evidenced from 

various neurodegenerative diseases. HDAC inhibitors are extensively used to increase histone 

acetylation status in animal models to re-establish genetic programs in the brain (Kazantsev 

and Thompson, 2008;  Gräff et al., 2011). HDACi has shown promising effect to reverse the 

������������� ���������� ���� ������� ������� ������������ ��� ����� ������� ��� ������������

disease (AD) (Ricobaraza et al., 2009; Kilgore et al., 2010;  Ricobaraza et al., 2011); 

Govindarajan et al., 2013; Ricobaraza et al., 2012, Cuadrado-Tejedor et al., 2013).  

CBP has been implicated in various neurodegenerative diseases. CBP mutation causes 

Rubinstein Taybi syndrome, a neurodegenerative condition characterized with mental 

retardation  (Petrij et al., 1995; Oike et al., 1999).  ����������������������������� ����������

with mutant huntingtin protein and results in deregulation of gene expression  (Steffan et al., 

2000; Steffan et al., 2001). Unpublished results from our lab also suggest that CBP protein 

������� ���� �������������� ���������� ��� ���� ������������ ��� ������������ �������� ���������

(Bousiges et al, Manuscript under preparation) and in a mice model of Tauopathy (Cassel et 

al, Manuscript under preparation). In addition, we have also observed decreased amounts of 
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CBP levels in hippocampal cells expressing high levels of pathogenic phosphorylated Tau 

protein in mice model of Tauopathy. Thus the strategy to activate the enzymatic function of 

CBP in pathological condition could actually prove beneficial in a therapeutic perspective.  

  

 

Perspectives 

 

Single treatment of CSP-TTK21 in healthy adult mice showed promising effect to improve 

long-term spatial memory by enhancing neuronal maturation and expression of memory 

related genes. As discussed previously, dysfunctions of HATs like CBP/p300 has been 

����������� ����������������������������� ����������� ������������������������������������ ����

possibility to rescue cognitive defects in animal models of neurodegeneration by CSP-TTK21 

treatment is highly likely. We explored the possibility to ameliorate the memory loss in a 

mice model of tauopathy (THY-Tau22) by chronic treatment of CSP-TTK21 (Publication 3).  

To use the newly developed HAT activator CSP-TTK21 as a drug to boost memory, it would 

be necessary to investigate its physiological effect in the animal body. CSP is prepared from 

glucose and it gets cleared from the brain after 7 days of i.p. injection. Eventhough we did not 

evidenced any toxic effect or abnormal behavioural phenotypes in mice after single injection 

of CSP-TTK21, a thorough characterization of the toxicity needs to be performed. To 

develop CSP-TTK21 as a therapeutic drug, the most lethal dose also needs to be determined 

in different animal models. In publication 3, we have administered chronic treatment of CSP-

TTK21 in THY-Tau22 mice and have tried to partly answer the toxicity question by 

measuring the levels of pro-apoptotic marker cleaved caspase-3 in different body parts like 

liver, spleen, kidneys and heart. To answer the possibility of accumulation of the molecule in 

these body parts, histone acetylation levels have also been measured. Apparently, the 

molecule donot show any symptoms of toxic side-effects (Publication 3). 

We found that CSP-TTK21 activates the acetyltransferase activity of p300/CBP but do not 

alter the PCAF HAT activity (data not shown). However, recently other HATs like GCN5 

and Tip60 has been shown to influence memory related processes (Maurice et al., 2008; 

Stilling et al., 2014). Thus it would be interesting to investigate whether CSP-TTK21 acts on 

other HATs or it enhances memory related processes solely by activating CBP/p300. As 

histone acetylation is linked to gene expression, we also need to perform a complete 

transcriptomics to study the differential gene expression pattern upon treatment of CSP-
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TTK21 in healthy adult mice. Last but not the least; to develop a drug for therapy, effect of 

oral administration needs to be monitored. So we also need to check if CSP-TTK21 can still 

reach the brain and retain its HAT activation property after oral administration. 
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Scientific Context and Objectives 

 

CBP is a lysine acetyltransferase as well as a transcriptional co-activator. CBP interaction 

with the transcription factor CREB is an essential event in the process of memory formation.  

Since the last ten years, the role of CBP has been explored during different forms of memory 

formation mostly using mutant mouse models.  

In the present study, we have used a mutant mouse model of CBP (CBPKIX/KIX mice) that 

contains triple point mutation in the KIX domain of CBP which makes it incapable to interact 

with phospho-CREB and c-Myb. Woods et al has previously described that CBPKIX/KIX mice 

were impaired in long-term memory for contextual fear conditioning and novel object 

recognition (Wood et al., 2006). However, the significance of CBP-CREB interaction has 

never been tested for spatial memory consolidation in MWM using CBPKIX/KIX mice.  

In the present chapter, I have identified that CBP interaction with transcription factors like 

CREB through the KIX domain is essential for retention for long-term memory but not for 

short-term retention. Further, I studied the expression profiles of memory and plasticity 

related genes after spatial learning in two important brain regions for memory consolidation 

(dorsal hippocampus and prefrontal cortex) in CBPKIX/KIX mice. The gene expression profile 

has also been compared with acetylation of specific histone marks related to transcriptional 

activation on the proximal promoters of those genes. Therefore this study provides evidences 

for the requirement of CBP-CREB interaction through the KIX domain for the persistance of 

long-term spatial memory. 
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CREB-dependent CBP regulations of plasticity-related genes is required 

for long-term spatial memory formation 

 

Abstract 

 

Transcription is a key event in the process of long-term memory formation. The 

transcriptional coactivator and lysine acetyltransferase CREB-binding protein (CBP) is 

important for hippocampus-dependent long-term memory and hippocampal synaptic 

plasticity. By virtue of its multiple functional domains, it interacts with a wide array of 

transcription factors and other functionally relevant proteins. Importantly, almost all the 

genetically modified cbp mutant mice showed impairments in object recognition tasks.  

However, the role of CBP in the spatial memory consolidation is still debatable. We used 

CBPKIX/KIX mice carrying inactivating mutations in the CREB-binding (KIX) domain of the 

coactivator CBP to study the role of CBP KIX domain in spatial memory consolidation. In 

this study we found that CBPKIX/KIX mice presented a significant but slower acquisition than

the WT mice, but did not show long-term spatial memory retention in the Morris water maze, 

neither at recent nor at remote retention times. However, short-term retention was not 

impaired. Using quantitative real-time RT-PCR, we found that the expression of specific 

memory and plasticity related genes was not induced by spatial training in both the dorsal 

hippocampus and frontal cortex of CBPKIX/KIX compared to WT mice. Further studies in the 

dorsal hippocampus revealed that two of these genes (Zif268 and Nr4a1) presented a marked 

decrease of acetylated H2B histone (H2BK5 acetylation) occupancy at their gene promoters. 

Thus the interaction of the transcriptional coactivator CBP via the KIX domain with CREB 

impairs the activation of genes required for the long-term storage of spatial memory. 

 

Keywords: CBP KIX domain, spatial memory, chromatin, histone acetylation, hippocampus 
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Introduction 

 

The process of memory formation has been a subject for intense research and is known to 

involve multiple complex steps at both synaptic and systemic level of consolidation. Learning 

induces series of transcription dependent processes known as memory consolidation that 

involves conversion of short term memory to a more stable-long term memory. Histone

acetylation is a post translational modification catalyzed by lysine acetyltransferases 

(KATs/HATs) that add an acetyl group from acetyl-���� ��� ���� �-amino group of a lysine 

residue. The reverse reaction is catalyzed by lysine deacetylases (KDACs/HDACs). CREB 

binding protein (CBP) is a transcriptional coactivator displaying HAT properties. Among all 

the HATs, the role of CBP in long-term memory storage is best demonstrated (Oike et al., 

1999; Bourtchouladze et al., 2003; Alarcón et al., 2004; Korzus et al., 2004; Wood et al., 

2005). Various transgenic CBP mutant mouse models have been reported with either entire 

CBP allele deletion (Alarcon et al., 2004), expressing a dominant-negative truncation mutant 

of CBP (Oike et al., 1999; Bourtchouladze et al., 2003; Wood et al., 2005) or expressing a 

HAT activity deficient CBP (Korzus et al., 2004). All these mice models showed memory 

impairments in novel object recognition tasks, whereas results from spatial memory were 

variable. Initially it was shown that the histone acetyltransferase domain (HAT domain) of 

CBP is pivotal for spatial memory consolidation, whereas overtraining could compensate the 

deficiency (Korzus et al., 2004). However, mice bearing conditional knockout CBP from 

principal neurons of the forebrain (Valor et al., 2011) and haploinsufficiency for CBP (CBP+/- 

mice) (Alarcón et al., 2004) displayed normal spatial memory in the MWM. Wood et al 

demonstrated the role of CBP KIX domain in consolidation of long-term memory for 

contextual fear conditioning and novel object recognition (Wood et al., 2006). Also HDAC 

inhibitor mediated improvement of long-term memory is CBP KIX domain dependent and 

involves interaction with CREB  (Haettig et al., 2011; Vecsey et al., 2007).  

CBP binds to multiple transcription factors (Goodman and Smolik, 2000) including the 

phosphorylated form of cyclic-AMP response element binding protein (CREB) through the 

KIX domain. CREB is a transcription factor involved in the transcriptional machinery 

responsible for memory related gene expression (Kida and Serita, 2014). Knockdown of 

CREB results in impairment of spatial memory whereas overexpression of CREB in dorsal 

hippocampus causes memory improvement (Sekeres et al., 2010; Pittenger et al., 2002) 

suggesting hippocampal CREB is necessary for spatial memory formation (Porte et al., 2008; 
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Benito and Barco, 2010). However, constitutively active CREB in the hippocampus (VP-16 

mice) impairs retrieval of spatial memory (Viosca et al., 2009). Therefore, learning and 

retrieval of spatial memory requires a tight regulation of CREB pathway (Benito and Barco,

2010).  CBP KIX domain and CREB interaction is mediated by phosphorylation of CREB at 

Ser133 through its kinase inducible domain (KID). This CBP / phospho-CREB interaction is 

influenced by various external stimuli and thereby activation of a series of signalling 

cascades (Mayr and Montminy, 2001) that contributes to long-term memory formation.  

 

In this study, we examined the influence of CBP KIX domain on different forms of spatial 

memory: short-term and long-term memory (both recent and remote) retention. We used a 

mutant mouse model, CBPKIX/KIX mice that contains triple point-mutations in the KIX domain 

of CBP which makes it incapable to interact with phospho-CREB and c-Myb but harbours 

intact HAT domain (Kasper et al., 2002). We demonstrate that CBP KIX domain is necessary 

for persistence of long-term spatial memory but not short-term retention. The global histone

acetylation in the dorsal hippocampus after spatial learning is mostly unaffected in the 

CBPKIX/KIX mice. However, regulation of learning induced gene expression is impaired in two 

important brain regions: dorsal hippocampus and frontal cortex. We also provide evidences 

of reduced occupancy of acetylated histone H2BK5 at the promoters of Zif268 and NR4a1 in 

the dorsal hippocampus of CBPKIX/KIX mice after spatial learning. Thus, our data show that 

targeted CREB/CBP acetylation at plasticity-related genes is necessary to form long-term 

spatial memory. 

 

Materials and methods 

 

Animals 

The CBPKIX/KIX mice for experiments were generated from heterozygous mating (from 

C57BL/6 genetic background), and wild-type littermates were used as controls. Mice 

(CBPKIX/KIX, n=20 and their control littermates, WT n=28) were 3 months old at the time of 

the experiment. They were housed in groups of 2-3 under 12-h light/12 h-dark cycle, with all 

behavioral testing carried out during the light portion of the cycle (lights on at 7:00 A.M.). 

Access to food and water was ad libitum in a temperature- and humidity controlled room 

(22°C and 55 +/- 5%, respectively). Experimental protocols and animal care were in 

compliance with the national (council directive 87-848, 19 october 1987, Ministère de 
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���������������������������������������������������� ������������������������������nimale) and 

international (directive 86-609, 24 November 1986, European Community and new 

guidelines of the European Parliament 2010/63/UE of September 22, 2010) laws and policies. 

 

Euthanasia for biochemical studies 

After 2 days of habituation (H1, H2), 3 months old CBPKIX/KIX mice (CBPKIX, n =12) and 

their wild-type littermates (WT, n =12) were trained to search for a hidden platform (HPf) for 

3 consecutive days (A1-A3). Mice were euthanized one hour after the last trial. One more 

group of CBPKIX/KIX mice (CBPKIX, n=3) and wild-type littermates (WT, n=4) were 

euthanized to serve as Home Cage (HC) control. Euthanasia was performed by cervical 

dislocation. Brains were quickly removed and sub-dissected to isolate dorsal hippocampus, 

ventral hippocampus, frontal cortex and cerebellum, flash freezed in liquid nitrogen and 

stored at -800C. Dorsal hippocampus and frontal cortex collected from the learning group of 

mice were separated (CBPKIX/KIX, n=6 and WT, n=6) and were divided into two fractions for 

western blot and RNA preparation respectively. The rest dorsal hippocampus (CBPKIX/KIX, 

n=6 and WT, n=6) were processed for ChIP experiments.  

 

Protein preparation and Western blot analyses

Tissues were lysed and homogenized in Laemmli buffer. After 10 min at 70°C, samples were 

sonicated twice for 15 s (ultrasonic processor, power 35%), boiled 5 min, centrifuged (20,000 

X g for 5 min) and the supernatant was frozen at -20°C. Protein concentration was measured 

using the RC-DC Protein Assay (Bio-Rad). Western blots were performed as described

previously (Chatterjee et al., 2013) with antibodies against acetyl-histone H2B (#07-373; 

Millipore), acetylated-histone H2BK5 (#07-382; Millipore), H3 histone (#ab1791; Abcam), 

acetyl Histone H3 (#06-599; Millipore), and H2B histone (#H2-28; Euromedex); and ß-actin 

(#ab16039; Abcam). Secondary HRP-conjugated antibodies were from Jackson 

ImmunoResearch. Blots were revealed with ECL and exposed with Hyperfilm ECL (GE 

Healthcare). Results were quantified using ImageJ software.  

 

RNA preparation and RTqPCR 

Tissues were finely cut with a razor blade and homogenized with a Dounce in TRIzol reagent 

(Invitrogen). After chloroform extraction, RNAs were ethanol precipitated twice. Only RNA 

samples with an OD 260/280 and OD 260/230 ratio close to 2.0 were selected for reverse 

transcription. RNA samples were denaturated 10 min at 70°C and cDNA synthesis was 
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performed on 1µg of total RNA (iScript cDNA synthesis kit; Bio-Rad). qRT-PCR analysis 

was performed on a Bio-Rad iCycler System (CFX) using SsoAdvanced SYBR Green Super- 

Mix (Bio-Rad). A specific standard curve was performed in parallel for each gene, and each 

sample was quantified in duplicate. qRTPCR conditions were 3 min at 95°C, followed by 40 

cycles of two step PCR of 5 s at 94°C and 20 s at 60°C. Data were analysed by gene 

regression using iCycler software and normalized to the polymerase II, 36B4 and TBP RNA 

levels. Primers used for amplification were: 

 

Arc  ����������-AGCAGCAGACCTGACATCCT-�� 

  reverse ��-GTGATGCCCTTTCCAGACAT-�� 

FosL2   ����������-CAGCCAAGTGTCGGAACC-�� 

  ����������-CTGCAGCTCAGCAATCTCTTT-�� 

Dusp1  ����������-GGAGGATATGAAGCGTTTTCGG-�� 

  ����������-GGATTCTGCACTGTCAGGCACA-�� 

cfos  ����������-CGGGTTTCAACGCCGACTA-�� 

  ����������-TTGGCACTAGAGACGGACAGA-�� 

Zif268  ����������-TACGAGCACCTGACCACAGA-�� 

  ����������- GGGTAGTTTGGGTGGGATAAC-��

Fosb  ����������-CCGAGAAGAGACACTTACCCCA-�� 

  ����������-AAGTCGATCTGTCAGCTCCCTC-�� 

Icer   ����������-GGTGACATGCCAACTTACCAGA- 

  ����������-TTGCGACTTGCTTCTTCTGC-�� 

Junb  ����������-CTTTAAAGAGGAACCGCAGACC-�� 

   ����������-CGCTTTCGCTCCACTTTGAT-�� 

Nr4a1  ����������-AAAATCCCTGGCTTCATTGAG-�� 

  ����������-TTTAGATCGGTATGCCAGGCG-�� 

Nr4a2  ����������-CTCCAATCCGGGAATGAC-�� 

  �����������-AGAGCCAGTCAGGAGATCGT-�� 

Nr4a3  forward ��-GTGGCTCGACTCCATTAAAGAC-�� 

  ����������-GTGCATAGCTCCTCCACTCTCT-�� 

RNA Pol II ����������-AATCCGCATCATGAACAGTG-�� 

  ����������-TCATCCATTTTATCCACCACC-�� 

TBP  ����������-AGTTCCGGAAAAATGGTGTGC-�� 

  �����������-CACCATGTTCTGGATCTTGAAGT-�� 
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36B4  ����������-ACTGGTCTAGGACCCGAGAAG-�� 

  ����������-TCCCACCTTGTCTCCAGTCT-�� 

 

Chromatin immunoprecipitation (ChIP) 

Dorsal hippocampus from 2 animals from same genetic background, age and training were 

mixed together and chopped with a razor blade to allow them to be mixed homogenously.  

The protocol described in Chatterjee et al., 2013 was adopted for the chromatin pull down. 

We used two different antibodies; acetylated-histone H2BK5 (#07-382; Millipore) and 

acetylated-histone H3K27(#ab4729; Abcam) for two separate pulldowns.  For each pull

down, we used no antibody as negative controls. No antibody control consisted of 

hippocampi from one WT and one CBPKIX/KIX mice pulled together. Chromatin 

immunoprecipitations were quality controlled by the use of control genes that were either 

expressed ubiquitously (GAPDH) or not expressed in the hippocampus (TSH2B).  

 

Nr4a1  ����������- CCCTTGTATGGCCAAAGCTC-�� 

����������- CTCCGCAGTCCTTCTAGCAC-�� 

Nr4a2  ����������- CCGTTCCCACCTTAAAATCA-�� 

����������- CTGCCAACATGCACCTAAAG-�� 

Nr4a3  ����������- GAGGGAGGAGGAGGGTGACGTA-�� 

����������- CATAGAGTGCCTGGAATGCGAGA-�� 

fos  ����������- CACGGCCGGTCCCTGTTGTTC-�� 

����������- GTCGCGGTTGGAGTAGTAGGCG-�� 

DUSP1 ����������- TCAGCGGGGAGTTTTTGTG-�� 

����������- CTGTGAGTGACCCTCAAAGTGG-�� 

Zif268  ����������-GTGCCCACCACTCTTGGAT-�� 

����������-CGAATCGGCCTCTATTTCAA-�� 

bdnf PIV ����������-GGCTTCTGTGTGCGTGAATTTGC-�� 

����������-AAAGTGGGTGGGAGTCCACGAG-�� 

������������������ 

 

Morris water maze for spatial memory learning and memory testing 

Evaluation of spatial memory was performed using the Morris Water Maze task (MWM) as 

described in Chatterjee et al., 2013. For the spatial memory tests, 3 independent groups of 

mice CBPKIX/KIX and their wild-type littermates (WT) were trained for 5 days to locate a 
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hidden platform under the surface of water using the visual cues present in the room. After 

the last training session, the platform was removed and all the three groups undertook one 

probe test (PT) at different time to measure short term (PT 1 hr), recent (PT 24hr) or remote 

(PT 30 days) memory. During the probe test, the mice were introduced on the opposite 

quadrant (respect to the target quadrant) were allowed to swim for 60 s. Spatial memory 

during the probe test was quantified by measuring the amount of time spent by the mice

searching in the target quadrant versus the average time spent in three other equivalent 

quadrants. For the biochemical studies, mice were trained for 3 consecutive days and one 

hour after the last trial on the 3rd day they were euthanized by cervical dislocation. The brains 

were extracted and the dorsal hippocampus and frontal cortex were immediately dissected 

out, flashed freeze in liquid nitrogen and stored at -800C. 

 

Statistical analyses for biochemical studies 

Statistical analyses ����� ���������� ������ ���������� �� ����� �Statistica software). Data are

expressed as the means + SEM. Differences at p<0.05 were considered as significant. 

 

Statistical analyses for behavioral studies 

Performance recorded during acquisition (latency to the platform) was evaluated using a two-

�������������� ������������������������������������������������������������������������

(WT vs CBPKIX/KIX). Probe trial performance was analysed using a t test comparing the time 

spent in the target quadrant to chance (i.e., 15 s) and the time spent in the target quadrant to 

the average time in the other three quadrants. Values of p<0.05 were considered significant 

and are noted in the text. 

 

Results 

 

CBP
KIX/KIX 

mice are deficient in long-term memory consolidation but not short-term 

retention 

We analyzed the consequences of CBP KIX domain mutation for spatial memory formation. 

CBPKIX/KIX mice and their wild-type littermates (WT) were subjected to a hippocampus

dependent memory task in the MWM. CBPKIX/KIX (3 groups of mice, n=20 total) and their 

wild-type littermates (WT, n=28) were trained over 5 consecutive days to locate a hidden 

platform positioned at a fixed location. Three groups of mice (n=6-8/group) were made in 
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order to test three different retention times. Figure 1A shows the latencies for the three 

groups analyzed together. Both WT and CBPKIX/KIX mice showed a day-to-day decrease (D1 

to D5) in escape latencies [F(4,184)=39.20, p=0.0001] suggesting significant learning of the 

task. Individual learning curves for each group have been represented in Supplementary 

Figure S1�� �� ����������� ������� ���� ����� ��������� ������� ���� ������������ ����� ������

46)=29.33, p=0.0001] (Figure 1A, inset��� ��������� ��� ������������ ��� ����������� ����

����������� ��������� ����� ���� ������������ ����� ���������������� p=0.208 (ns)]. CBPKIX/KIX 

mice showed an overall improvement comparable to their wild type littermates. During the 

acquisition sessions, the average speed of exploration for the WT and CBPKIX/KIX mice were 

relatively constant and no significant interaction was noted between ���������� days�� ����

����������� ������ ������������ p=0.778 (ns)] (Figure 1B). Time spent in the thigmo zone 

showed strong interactio�������������������������������� ���������������������������������

p=0.00001]. CBPKIX/KIX showed very high thigmotactic swimming during the first three days 

of acquisition compared to the WT (D1; p=0.000008, D2; p=0.0014, D3; p=0.033, WT Vs 

CBPKIX/KIX). By day 4 and 5 of acquisition the thigmotaxis was significantly decreased and 

the performance was similar to that of WT mice (D4; p=0.539 and D5; p= 0.59, WT Vs 

CBPKIX/KIX) (Figure 1C). These results suggest that CBPKIX/KIX mice can still improve their 

performance in MWM even without CBP-CREB interaction.   

Our next aim was to study the effect of CBP KIX domain mutation in the short-term 

retention, recent and remote form of long-term memory. We tested the retention of the 3 

independent groups of mice at a different time to measure either short term, (WT, n=10; 

CBPKIX/KIX, n=6, PT 1hr) recent (WT, n=10; CBPKIX/KIX, n=6, PT 24hr) or remote (WT, n=8; 

CBPKIX/KIX, n=8, PT 30 days) memory. The time spent in the target quadrant was compared 

with the average time spent in the 3 other quadrants on each probe tests (Figure 2 A, C and 

E). As evidenced from the swim tracks (Figure 2 B, D and F), WT control mice showed 

significant retention of the platform location compared to random search in other quadrants

(Short-term, p=0.0001; Recent memory, p=0.0001; Remote memory, p=0.0025) and their 

retention scores were above random (15s) at all the three delays (Short-term, p=0.0001; 

Recent memory, p=0.0005; Remote memory, p=0.0226) suggesting that they had constructed 

an enduring spatial memory.  Performance of CBPKIX/KIX mice was not different from WT 

littermates for short-term retention: they explored significantly more in the target quadrant 

compared to the average of the other three quadrants (p=0.0058) and the searching score was 

above chance (15s) (p=0.0398). Importantly, in the 1 hr delay probe trial CBPKIX/KIX mice 

and the WT mice took similar amounts of time to reach the target quadrant for the first visit 
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(latency to first visit to TQ) (Supplementary Figure S2A). However, CBPKIX/KIX mice 

displayed less precision to search as indicated by significant differences in the annulus 

crossing (p=0.0396) (Supplementary Figure S2B). These results indicate that CBPKIX/KIX 

mice are not or only weakly impaired in short-term memory. Interestingly, retention of spatial 

memory for both recent and remote memory was impaired in CBPKIX/KIX mice (Figure 2 C-

F). CBPKIX/KIX mice performance was not significantly higher in the target quadrant 

compared to the other quadrants for both recent and remote memory retention (Recent, 

p=0.9411; Remote, p=0.0547) and these mice failed to score above chance level (15s) 

(Recent, p=0.9563; Remote, p=0.1421). Performance score in the target platform of 

CBPKIX/KIX mice was significantly below compared to their WT littermates for both recent 

and remote memory retention (Recent, p=0.0029; Remote, p=0.0052) (Recent: Figure 2C 

and Remote: Figure 2E). Furthermore, the latency to visit the target quadrant was 

significantly higher in CBPKIX/KIX mice compared to the WT (Recent, p=0.004; Remote, p=�

0.0092; Supplementary Figure S2C and E). Lastly, significant differences in annulus 

crossings were also observed in CBPKIX/KIX mice compared to the WT in recent (p=0.0018) 

and remote (p=0.0075) memory retention (Supplementary Figure 2D and F). These results 

suggest that CBPKIX/KIX mice have severe defects to translate a short term memory into a 

long-term memory. Thus, they indicate a crucial role of CBP-CREB interaction in long-term 

spatial memory formation.  

 

Histone acetylation study in CBP
KIX/KIX 

mice 

 

As we observed long-term memory impairments in CBPKIX/KIX mice, we investigated the 

molecular factors involved in CBP dependent spatial memory consolidation. Spatial learning 

induces histone acetylation in the dorsal hippocampus of rat brain (Bousiges et al., 2010). 

Therefore, we analysed the histone acetylation status on both non-behaving and behaving 

mice in the dorsal hippocampus. Among all the histone acetylation marks tested, no 

significant changes in histone acetylation were observed between WT and CBPKIX/KIX mice in 

the dorsal hippocampus of non-behaving mice (Figure 3A and Supplementary Figure 

S3A). We next analyzed the levels of histone acetylation in the dorsal hippocampus of WT 

(n=6) and CBPKIX/KIX (n=6) mice after 3 days of spatial learning in MWM (Learning curves 

shown in Supplementary Figure S4). Interestingly, significant differences of histone H2B 

K5 acetylation were observed between the WT and CBPKIX/KIX mice after spatial learning 

(p=0.0165). However, no such changes were observed for other histone acetylation marks 
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tested like H2B K5, 12, 15, 20 ac (p=0.4193), H3 K9, 14 ac (p=0.9347), H3 K27ac 

(p=0.4216) and H4 K12 ac (p=0.0901) (Figure 3B and Supplementary Figure S3B). 

CREB activation by phosphorylation at Ser-133 is a critical event during memory formation. 

Phosphorylated CREB at Ser-133 binds with CBP through KIX domain and drives 

transcription of CREB target genes. Therefore, we next analyzed the basal and activated form 

of CREB at home cage condition and after spatial learning in the dorsal hippocampus.  Total 

CREB protein levels were comparable between WT and CBPKIX/KIX mice at both basal 

condition (p=0.4254) (Supplementary Figure 5A) and after spatial learning (p=0.5716) 

(Supplementary Figure 5B). No significant changes in phosphorylated CREB at Ser133 was 

also observed in basal condition, however a non-significant decrease was observed in 

CBPKIX/KIX after learning (p=�0.1066).  

 

CBP
KIX/KIX 

mice shows differential gene expression pattern upon spatial learning 

 

Long-term memory consolidation requires gene expression; therefore, we presumed that 

spatial learning dependent CREB target gene expression could be perturbed in the brains of 

CBPKIX/KIX mice. To test the hypothesis, we used RT-qPCR to analyze the gene expression 

profiles of several memory- and plasticity- related genes in the dorsal hippocampus and 

frontal cortex after three days of spatial learning.  

We evaluated the expression of Nr4A gene family in the dorsal hippocampus to study the 

effect of spatial learning in CBPKIX/KIX mice. Spatial learning had a significant overall effect 

on gene expression for Nr4A family (Figure 4A). Notably, mRNA expression of Nr4a1 and 

Nr4a2 were significantly decreased in CBPKIX/KIX mice compared to their WT littermates 

(Nr4a1: p=0.0144; Nr4a2: p=0.0008) (Figure 4A). However, no change in Nr4a3 gene 

expression was observed between the two genotypes (Nr4a3: p=0.9162). We next evaluated 

the expression profile of bdnf in dorsal hippocampus after spatial learning. bdnf gene 

produces different splice variants. In the hippocampus, bdnf gene regulation is activated by 

different promoters; most importantly promoter I and IV are implicated in various forms of 

memory. Total (tot bdnf), exon I (bdnf_eI), and exon IV (bdnf_eIV) bdnf mRNA levels were 

measured in response to spatial learning. No significant changes in bdnf transcript variants 

were observed in CBPKIX/KIX mice (Figure 4B).  It was shown that other CREB target genes 

like Dusp1, Fosb, Bdnf IV, and Icer activation upon contextual fear conditioning is impaired 

in CBPKIX/KIX mice (Wood et al., 2006). Therefore, we next checked gene expression patterns 

of CREB target genes cfos, FosL2, Fosb, Zif268, ARC, JunB and Dusp1. Several of these 
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genes have been implicated in memory storage (Herdegen and Leah, 1998; Conti et al., 2002; 

2004; Kida et al., 2002; Conkright et al., 2003; Fass et al., 2003; Penke et al., 2011). As 

shown in Figure 4C, spatial learning dependent gene expression of cfos (p=0.0013), FosL2 

(p=0.0037), FosB (p=0.0164), Zif268 (p=0.0322), JunB (p=0.0004) and DUSP1 (p=0.0052) 

were significantly reduced in CBPKIX/KIX compared to WT. These results suggest that 

CBPKIX/KIX mice are impaired in expression of learning induced CREB target genes in the 

dorsal hippocampus.   

Prefrontal cortex is another brain region implicated in long-term memory storage (Frankland 

and Bontempi, 2005; Jo et al., 2007). Prefrontal cortex has highly interconnected regions 

(anterior cingulate, prelimbic and infralimbic cortices) which are reciprocally connected to 

sensory, motor and limbic cortices.  Its high connectivity makes it well suited to process 

long-term memory (Frankland and Bontempi, 2005). Lesions in the mPFC of rats disrupt 

spatial memory retrieval corresponding to decreased expression of immediate early gene c-

fos in mPFC and the hippocampus (Jo et al., 2007).  Therefore, we measured the gene 

expression profile in prefrontal cortex for all the sets of genes that we tested in the dorsal 

hippocampus upon spatial learning between these two important brain structures. As in the 

dorsal hippocampus, Nr4A subfamily of genes showed similar trend of expression pattern in 

the frontal cortex (Figure 5A). NR4a1 and Nr4a2 mRNA expression was significantly down-

regulated in CBPKIX/KIX mice compared to its WT littermate upon learning in the frontal 

cortex (Nr4a1; p=0.0014, Nr4a2; p=0.0019). Notably, we observed a non-significant 

decrease in Nr4a3 transcript levels (p=�0.0854) (Figure 5A). Bdnf splice variants, eI and total 

bdnf did not showed any alteration of expression between genotypes (Figure 5B). However, 

bdnf eIV was significantly reduced in CBPKIX/KIX mice (p=�0.0307). again, similarly to that 

observed in the dorsal hippocampus, significant differences in mRNA levels were observed 

for cfos (p=0.0009), FosL2 (p=0.0032), FosB (p=� 0.0291), Zif268 (p=0.0057), JunB 

(p=0.0576) and DUSP1 (p= 0.0002) between CBPKIX/KIX and WT mice (Figure 5C). ARC 

was unchanged in both dorsal hippocampus and frontal cortex between the two genotypes 

(Dorsal hippocampus: p=0.2267; Frontal cortex: p=0.4146). Thus, several memory and 

plasticity related gene expression is impaired in both dorsal hippocampus and prefrontal

cortex of CBPKIX/KIX mice, which could correspond to defects at the systemic consolidation 

level and thus, impairement in long-term memory formation as observed in MWM tests.  
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Reduced occupancy of acetylated histones at Nr4A1 and zif268 gene promoters during 

spatial learning 

 

Histone acetylation at the proximal promoters of genes is closely related to its transcriptional 

status (Grunstein, 1997). Spatial learning induces histone acetylation, such as H2B 

acetylation, at the promoters of memory and plasticity related genes like bdnf eIV, cfos, FosB 

and Zif268  (Bousiges et al., 2010). H3K27ac, another targeted acetylation of CBP (Tie et al., 

2009), is a mark associated to enhancers at activity-regulated genes (Malik et al., 2014). 

Recruitment of CBP on the promoters of its target genes upon neuronal activity could thus 

lead to acetylation of their promoter and further recruitment of the general transcriptional 

machinery that drives gene transcription (Hawk et al., 2012). Therefore, we further 

investigated the histone acetylation status at the promoters of spatial learning induced genes 

using chromatin immunoprecipitation (ChIP) with antibodies specific to acetylated histone 

H2BK5 and H3K27. Compared to control WT mice, the occupancy of H2BK5 acetylation 

mark was significantly reduced on the proximal promoter of Nr4a1 (p=0.0453) gene in the 

dorsal hippocampus of CBPKIX/KIX mice after spatial learning (Figure 6A). A non-significant 

trend of decreased H2BK5 acetylation was also seen at Nr4a2 (p=0.1228) promoter and no 

such change on Nr4a3 (p=�0.2208) promoter. No significant differences were observed in the 

levels of H3K27 acetylation on the promoters of Nr4a1 (p=0.2343), Nr4a2 (p=0.5094) and 

Nr4a3 (p=0.1863) gene (Figure 6B). We also analyzed the occupancies of histone acetylation 

on the promoters of other memory and plasticity related genes that showed altered expression 

in dorsal hippocampus of CBPKIX/KIX mice after spatial learning. Acetylated H2BK5 was 

significantly reduced on Zif268 promoter (p=0.0281) whereas no such changes were 

observed for cfos (p=0.1892), bdnf PIV (p=0.3556) and DUSP1 (p=0.4536) (Figure 6A). A 

non-significant tendency of decreased acetylation of H3K27 was seen on the promoter of cfos 

(p=0.0802), whereas H3K27 acetylation was mostly unchanged at the promoters of Zif268 

(p=0.3214), bdnf PIV (p=0.8556) and DUSP1 (p=0.603) in CBPKIX/KIX mice. Taken together, 

these results show that only Nr4a1 and Zif268 CBP-CREB target genes display reduced 

H2BK5ac on their proximal promoter in CBPKIX/KIX mice after spatial learning. 

 

Discussion 

In the present study, we showed that CBPKIX/KIX mice are dramatically impaired in retention 

of long-term spatial memory (both recent and remote) while short-term memory is relatively
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spared. These mutant mice also showed delayed acquisition performances compared to the 

WT mice. We further showed that the expressions of specific activity-dependent genes were

impaired in both dorsal hippocampus and frontal cortex of CBPKIX/KIX mice during spatial 

training. In addition, lysine 5 of histone H2B, a target of CBP, was under-acetylated in 

response to learning. In the dorsal hippocampus of CBPKIX/KIX mice, this histone mark was 

also decreased at the proximal promoters of two downregulated genes, e.g. Nr4a1 and Zif268 

promoters, with both important functions in spatial memory formation. Thus the present 

study indicates that CBP interaction with transcription factors (like CREB) through its KIX 

domain could drive proper chromatin modification at specific sites that could be essential for 

the persistence of spatial information in memory.  

 

Intact CBP KIX domain is required for long-term memory formation 

In this study, we found that CBPKIX/KIX mice were able to learn a complex spatial task such as 

the Morris water maze, eventhough their performance in the initial training days was 

significantly below the WT. Reduced learning during the first 3 days of training was also 

accompanied by high thigmotactic behavior. High thigmotaxis could be due to stress-related 

factors, with which mice were able to cope during the course of the training. We tested 

several parameters to test the retention at different time-points: measurements of time in 

target quadrant, number of annulus crossings and latency to the first visit of the target 

quadrant. The results suggest that CBPKIX/KIX mice showed adequate performance in 1 hr 

short-term memory. Eventhough the CBPKIX/KIX mice still searched in the target quadrant for

a significant amount of time, the search was less precise than in the WT mice. However, the 

scores of annulus crossing by CBPKIX/KIX mice for the retention of short-term memory (4.6) 

were similar to the scores of WT mice during the retention of recent (5.1) and remote (5.5) 

memory, indicating that CBPKIX/KIX mice can store the location of the platform in their short-

term memory. Interestingly, recent and remote spatial memory was strongly impaired in 

CBPKIX/KIX mice as indicated by significantly reduced time to search for target quadrant, 

decreased number of target annulus crossing, and high latency to the first visit of the target 

quadrant.  
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Activation of the CREB signaling pathway is one of the fundamental events during the 

process of spatial memory consolidation (Sekeres et al., 2010; Barco and Marie, 2011; 

Kandel, 2012). CREB is considered to be a major component that controls the conversion of 

short-term forms of plasticity to long-term forms underlying long-term memory formation 

(Lonze and Ginty, 2002; Barco and Marie, 2011; Gruart et al., 2012).  Interestingly, creb 

mutant mice showed deficiency in spatial memory retention after one-hour post-acquisition 

(Sekeres et al., 2010).  Thus, as CBPKIX/KIX mice were not deficient in short-term retention, it 

is likely that CREB signalling has been initiated independently of CBP-CREB interaction, 

through other activators such as CRTCs (Iourgenko et al., 2003; Sekeres et al., 2012). Studies 

with mice expressing constitutively active CREB with strong transcriptional transactivator 

function (known as VP16�CREB) suggest that spatial learning and memory retention 

requires precise regulation of CREB pathway (Viosca et al., 2009). The role of CBP in the 

process of memory formation has also been investigated. Almost all the previously described 

cbp mutant models showed deficiencies in some hippocampus-dependent forms of memory,

particularly for object recognition tasks, whereas spatial memory was altered in only few of 

them (Oike et al., 1999; Alarcón et al., 2004; Korzus et al., 2004 ). Importantly, HAT domain 

mutant mice of CBP were deficient in long-term spatial memory whereas short-term memory 

was sparse. Interestingly, deficiency in long-term spatial memory could be completely 

rescued by intense training in these mice  (Korzus et al., 2004). Mice with complete knock 

out of CBP (cKO) in the excitatory neurons of the postnatal forebrain were impaired in both 

short- and long-term spatial memory (Chen et al., 2010). On the contrary, CBP deletion from 

postmitotic principal neurons of the forebrain of mice displayed intact spatial memory (Valor 

et al., 2011). CBP haploinsufficiency mice (CBP+/- mice) have no deficits in spatial memory 

in MWM (Alarcón et al., 2004) but are impaired in environmental enrichment (EE)-mediated 

enhancement of spatial memory (Lopez-Atalaya et al., 2011).  

Two possible explanations could account for our contradictory results on CBPKIX/KIX mice 

with findings from CBP cKO mice, where CBP is deleted only at the adult stage (Valor et al., 

2011), which have no impairment in long-term memory storage during spatial memory tests.

Firstly, in complete absence of CBP (as in the case of CBP cKO), some other factors might 

compensate for the loss of CBP and therefore can still restore memory-related functions. In 

CBPKIX/KIX mice, a mutant form of CBP is present in the neurons. As a result CBP cannot be 

replaced (i.e. the mutation would be considered as dominant); however it cannot trigger its 

transcriptional co-activator function by activating its target gene expression through 
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association with phospho-CREB. Secondly, CBPKIX/KIX mice express the mutant form of CBP 

from developmental stages. Therefore, it could be possible that the fundamental neuronal 

networks or neuronal activity might be altered in the CBPKIX/KIX mice (like synaptic plasticity 

and neurogenesis) as CBP is essential for embryonic neural differentiation in brain (Wang et 

al., 2010). Recent evidence also suggests that CBP is a key regulator of interneuron 

development in brain (Tsui et al., 2014). Therefore, mutation in CBP from developmental 

stages (as in the case with CBPKIX/KIX mice) could affect the normal development of the brain 

and thus could result in defects at both synaptic- and systems level during memory 

consolidation.   

 

CBP-CREB interaction targets specific IEGs during spatial learning 

Memory consolidation requires transient gene expression within a strict window of time. 

These genes maintain a specific pattern of expression after hours from learning that is 

associated with waves of transcription which are required for memory consolidation (Alberini 

and Kandel, 2015). These transcriptional waves emerge from precisely timed and coordinated 

activities of specific transcriptional regulatory proteins that recruit epigenetic modifying 

enzymes and transcriptional machinery to the promoters of memory-related genes (Peixoto 

and Abel, 2013). Transcription of immediate early genes (IEGs) are induced by activity 

following learning, is one such critical step during long-term memory formation (Guzowski, 

2002).  It was previously demonstrated that 3 days of spatial learning is sufficient to increase 

memory and plasticity related gene expression like bdnf eIV, cfos, Zif268 and FosB in the 

dorsal hippocampus of rats within one hour after the last training session in MWM (Bousiges 

et al., 2010). In our study, CBPKIX/KIX mice showed impaired expression of several memory 

and plasticity related genes after spatial learning including NR4a1, Nr4a2, cfos, FosL2, FosB, 

JunB, DUSP1 and Zif268 in both dorsal hippocampus and frontal cortex. Similarly, FosB was 

found downregulated in home cage CBPKIX/KIX mice and contextual fear conditioning failed 

to rescue the FosB gene expression in the hippocampus (Wood et al., 2005). Notably, 

transgenic mice deficient to CBP HAT domain also display significantly decreased 

hippocampal FosB expression (Korzus et al., 2004).  

In our study, Nr4a1 and Nr4a2 transcript levels were strongly reduced in both the dorsal 

hippocampus and frontal cortex of CBPKIX/KIX mice compared to control WT mice. The Nr4A 

subfamily of nuclear receptors are critical regulators of long-term memory storage and 
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hippocampal synaptic plasticity (Hawk and Abel, 2011, Hawk et al., 2012,  McNulty et al., 

2012; Bridi and Abel, 2013). Blocking Nr4A activity in memory-supporting brain regions 

impairs long-term memory but do not impact on short-term memory in mice (Hawk et al., 

2012). Antisense oligodeoxynucleotide injection mediated knockdown of Nr4a2 into the 

hippocampus disrupts long-term memory in a spatial discrimination task (Colón-Cesario et 

al., 2006). Interestingly, Nr4a1 and Nr4a2 have been differentially implicated in long-term 

memory for object location / recognition, Nr4a2 being associated with both types of memory, 

while Nr4a1 was necessary only for object location (McNulty et al., 2012). Thus, Nr4a 

family regulation seems to be a component of spatial processing. Importantly, we found that 

Nr4a1 and  Nr4a2 mRNA expression was attenuated by mutation on KIX domain of CBP in 

both brain structures, suggesting that the lack of NR4A activation could impact in the 

memory consolidation process of CBPKIX/KIX mice.  

Apart from NR4A subfamily and FosB, we also observed significantly decreased expression 

of CREB target genes cfos, FosL2, FosB, JunB, DUSP1 and Zif268 in CBPKIX/KIX mice upon 

learning. Expression of activity-dependent genes (Zif268 and c-fos) are increased in 

hippocampus after recall of recent memory whereas recall of remote memory induces its 

expression in the prefrontal cortex (Frankland et al., 2004). Both cfos and Zif268 are also 

responsive to spatial learning in the hippocampus (Bousiges et al., 2010) whereas activation

of CBP HAT function by small molecule activator, CSP-TTK21, can induce NR4a2, cfos and 

FosL2 gene expression in basal (non behaving animals) conditions (Chatterjee et al., 2013). 

Furthermore, ablation of CBP in mice forebrain results in reduced mRNA expression of 

Nr4a1 and Zif268 in CA1 after exposure to novelty (Valor et al., 2011). NR4A activity is 

required for long-term but not short-term memory  whereas retrieval of long-term recent and 

remote memory requires cfos and Zif268 expression in dorsal hippocampus and prefrontal 

cortex respectively (Frankland et al., 2004). Zif268 is strongly implicated in spatial memory 

and stabilization of late long-term potentiation (Veyrac et al., 2014). Zif268 is essential for

learning dependent functional integration of adult hippocampal new-born neurons into spatial 

memory network (Veyrac et al., 2013). Mice lacking Zif268 are deficient in long-term spatial 

memory consolidation (Jones et al., 2001) whereas gain-of function of Zif268 leads to 

increased hippocampal functioning to form long-term spatial memory (Penke et al., 2014). 

Taken together, these findings suggest that Zif268, Nr4a1 and Nr4a2 have substantial role in 

spatial memory and could be a major target of CBP-CREB during spatial memory

consolidation.  
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Specific deacetylation at Nr4A1 and Zif268 promoters in CBP
KIX/KIX 

mice  

Transcription requires not only recruitment of transcription factors, but also removal of 

repressive histone marks as well as acetylated chromatin at the promoters. CBP recruitment 

reverses the transcriptionally silent chromatin by acetylation dependent chromatin 

remodelling (Fischle et al., 2003). In this study, we tested two histone acetylation marks that 

have been reported to be targeted by CBP: H2BK5ac and H3K27ac. The H2B histone is 

strongly deacetylated in the hippocampus of CBP deficient mice (Alarcon et al., 2004; Valor 

et al., 2011). Particularly, H2BK5 was found on the transcription start site (TSS) of active 

genes and thus, is a mark of active transcription (Wang et al., 2008). The acetylation of 

H2BK5 is also highly responsive to spatial learning (Bousiges et al., 2013). We observed 

decreased occupancies of acetylated histone H2BK5 on the proximal promoter of Nr4a1 and 

Zif268 gene in the dorsal hippocampus of CBPKIX/KIX mice after spatial learning. These are 

two important components of spatial memory learning processes. Nr4A gene expression is

regulated by histone acetylation and blocking Nr4A signaling inhibits the HDAC inhibitor 

mediated enhancement of memory (Hawk et al., 2012). Importantly, Zif268 promoter is also 

responsive to histone acetylation (Guan et al., 2009) and increased promoter histone 

acetylation correlates with increased Zif268 expression in the hippocampus (Xie et al., 2013). 

Further, object exploration increases histone acetylation at Zif268 promoter in the 

hippocampus and the prefrontal cortex  (Gräff et al., 2012).  

CBP was also shown to acetylate H3K27 (Tie et al., 2009) and this mark is found to be highly 

enriched at promoter regions of transcriptionally active genes (Wang et al., 2008). 

Particularly, CBP binding increased acetylation of H3K27 after membrane depolarization of 

cortical neurons function to regulate activity-dependent transcription (Malik et al., 2014). 

However, no significant differences of acetylation of H3K27 were observed on the promoters 

of the IEGs we have tested, a non-significant tendency was seen on cfos promoter. One 

possible explanation is that H3K27 acetylation could be target of other HATs like p300 

(Bedford and Brindle, 2012; Hilton et al., 2015) and are possibly recruited to the chromatin 

through its KIX domain. However, p300 binding with CREB may not be sufficiently able to 

activate the learning dependent transcription of CREB target genes required for memory 

formation, possibly due to incomplete recruitment of the transcriptional machinery. This 

hypothesis is further supported by the fact that mice mutated on p300 KIX domain 

(p300KIX/KIX mice) shows normal motor learning whereas analogous mutation on CBP KIX 

domain (CBPKIX/KIX mice) shows motor learning deficits (Oliveira et al., 2006). Therefore, 
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our results further suggests that acetylation at the promoters of IEGs are not sufficient to 

induce transcription, if CBP KIX interaction with factors such as CREB can not occur, as it is 

required to initiate the transcriptional process.  

Taken together, our data suggests that IEGs activation are predominantly regulated by CBP-

CREB interaction during spatial memory consolidation. They further evidence an H2BK5ac �

dependent regulatory mechanisms targeted by CBP KIX domain on Nr4a1 and Zif268 

proximal promoters. 

 

Conclusion 

In the current study, we established that the KIX domain of CBP is a pivotal component in 

the persistence of long-term spatial memory. Mutation in KIX domain resulted in differential 

gene expression pattern in two important brain regions essential for spatial memory 

consolidation (dorsal hippocampus and prefrontal cortex). Impaired long-term but not short�

term memory also supported the gene expression data and indicated roles of Nr4a1 and 

Zif268 expression. Thus, the present study extends our knowledge on the function of a 

specific domain of the transcriptional coactivator and lysine acetyltransferase CBP in the 

complex process of spatial memory formation.  
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Figures and figure legends 

Figure 1.  

 

 

Figure 1. Learning performance of CBP
KIX/KIX

 mice in the Morris water maze. 3 groups 

of CBPKIX/KIX mice (total n=20) and their wild-type littermates (WT, n=28) were trained 

during 5 days to search for a hidden platform positioned at a fixed location in the MWM. A, 

Acquisition performance shown as latencies to reach the platform. During training, the 

latencies decreased over sessions for both WT and CBPKIX/KIX mice. The inset shows the 

average performance of mice collapsed over the five days of training. Av, average. B, 

Average swim speed and C, thigmotactic swimming depending on the acquisition day and 

genotype. CBPKIX/KIX mice started the acquisition with very high thigmotaxis but gradually 

reduced during the acquisition days. Anova for repeated measures: *p<0.05, **p<0.001 *** 

p<0.0001, when performance (escape latency, average speed and thigmotactic swimming) 

across the 5 days is compared between the genotypes. 
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Figure 2.  

 

Figure 2. CBP
KIX/KIX

 mice exhibit evidence for short-term retention but are impaired in 

long-term spatial memory (recent and remote). Three independent groups of mice, 

CBPKIX/KIX and their wild-type littermates (WT) were trained during 5 days to search for a 

hidden platform positioned at a fixed location in the Morris water maze. After the last 

training session, the platform was removed and each group undertook one probe test (PT) at a 

different time to measure either A-B, short term, (WT, n=10; CBPKIX/KIX, n=6, PT 1hr), C-D, 

recent (WT, n=10; CBPKIX/KIX, n=6, PT 24hr) or E-F, remote (WT, n=8; CBPKIX/KIX, n=8, PT 

30 days) memory. A, C and E, WT mice showed a significant retention of the platform 

location compared to random performance at all three delays, while CBPKIX/KIX mice could 

recall the platform location after one hour (short memory), but not after 1 day (recent 
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memory) or 30 days (remote memory). B, D and F, Representative pictures of the swim 

tracks during the respective probe tests (B: Short-term, D: Recent and F: Remote memory). 

���������� �� ������ �p<0.05, **p<0.01, *** p<0.001, ****p<0.0001, when time in target 

quadrant (Target) is compared with random performance (15 s, dotted line); ##
p<0.01 

###
p<0.001 when performance in the target quadrant (Target) is compared to the mean of the 

3 other quadrants (Other); && p<0.01 when performance of CBPKIX/KIX in the target quadrant 

(Target) is compared with WT.  
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Figure 3.  

 

Figure 3. Bulk histone acetylation levels at basal condition and after spatial learning in 

the dorsal hippocampus of CBP
KIX/KIX

 and WT mice.  CBPKIX/KIX mice (CBPKIX, n = 6)

and their wild-type littermates (WT, n=6) were trained in MWM for 3 consecutive days 

followed by euthanasia one hour after the last trial. One more group of CBPKIX/KIX mice (n=3) 

and wild-type (n =4) were also euthanized to serve as Home Cage (HC) control. Laemmli 

lysates from dorsal hippocampus were subjected to western blot analysis for histone 

acetylation marks as noted. Quantification of H3 and H2B acetylated histone levels is shown 

relative to the respective total amounts of the H3 or H2B. A, Histone acetylation levels at the 

basal level (Home cage), B, Histone acetylation levels after training (learning). ���������� ��

test: *p<0.05, when CBPKIX/KIX mice is compared with WT.  
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Figure 4.  

 

 

Figure 4. Differential regulation of gene expression in the dorsal hippocampus of 

CBP
KIX/KIX

 and WT mice after spatial learning. CBPKIX/KIX mice (CBPKIX, n = 6) and their 

wild-type littermates (WT, n = 6) were trained in MWM for 3 consecutive days followed by 

euthanasia one hour after the last trial. Total mRNAs were isolated and processed for RT-

qPCR for A, Nr4A family of receptors, B, bdnf variants bdnf exonI (Bdnf eI), exon IV (Bdnf 

eIV) and total bdnf (Bdnf tot) and C, several immediate early / activity-dependent genes. 

Relative expression levels were normalized to the mean of 3 control genes (RNA Pol II, 36B4 

and TBP). �������������������p<0.05, **p<0.01, *** p<0.001, when CBPKIX/KIX is compared 

with WT mice. 
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Figure 5.  

 

 

Figure 5. Differential regulation of gene expression in the frontal cortex of CBP
KIX/KIX

 

and WT mice after spatial learning. CBPKIX/KIX mice (CBPKIX, n = 6) and their wild-type 

littermates (WT, n = 6) were trained in MWM for 3 consecutive days followed by euthanasia 

one hour after the last trial. Total mRNAs were isolated and processed for RT-qPCR for A, 

Nr4A family of receptors, B, bdnf variants bdnf exonI (Bdnf eI), exon IV (Bdnf eIV) and total 

bdnf (Bdnf tot) and C, several immediate early / activity-dependent genes. Relative 

expression levels were normalized to the mean of 3 control genes (RNA Pol II, 36B4 and 

TBP). �������������������p<0.05, **p<0.01, *** p<0.001, when CBPKIX/KIX is compared with 

WT mice. 
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Figure 6. 

 

Figure 6. Occupancy of acetylated histone H2BK5 is reduced at proximal promoters of 

Nr4a1 and Zif268 after spatial learning in the dorsal hippocampus of CBP
KIX/KIX

 versus 

WT mice. Chromatin immunoprecipitation performed on dorsal hippocampus of control WT 

and CBPKIX/KIX mice after spatial learning (n=3/group). Specific promoter targets were 

evaluated by RT qPCR. Quantification of immuno-precipitated material relative to its input 

level is represented relative to no antibody control which is arbitrarily set at 1. A, CBPKIX/KIX 

mice has reduced occupancy of acetylated histone H2BK5 at the promoter of Nr4a1 and 

Zif268. B, No significant deficits of H3K27 acetylation was detected on the promoters of 

Nr4A family and other memory related genes. *p����������������t-test: WT Vs CBPKIX/KIX).  
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Supplementary figure S1. 

 

 

Supplementary figure S1. Acquisition performances shown as latencies to reach the 

platform for all the three respective experiments A, Short term, B, Recent, C, Remote 

memory). During training, the latencies decreased over sessions in all the three groups tested 

(Short term: WT, p=�0.0001, CBPKIX/KIX , p=�0.0039; Recent memory: WT, p=�0.0252, CBPKIX/KIX 

, p=�0.0001; Remote memory, WT, p=�0.0002, CBPKIX/KIX, p=�0.0001, day 1 compared to day 5 

using Anova repeated measures).  
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Supplementary figure S2. 

 

 

Supplementary figure S2. CBP
KIX/KIX 

mice are deficient in long-term memory but not 

for short-term. A, C and E, Time taken by the mice to reach the target quadrant for the first 

time (latency to first visit) during the respective probe tests (A: Short-term, C: Recent, E: 

Remote memory) Below; B, D and F, represents the number of annulus crossing during 

respective probe test.  �������������������p<0.05, **p<0.01, (comparing WT with CBPKIX/KIX). 

ns represents statistically non-significant. 
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Supplementary figure S3. 

 

 

Supplementary figure S3. Histone acetylation levels in the dorsal hippocampus of 

CBP
KIX/KIX 

mice at basal level. Laemmli lysates from dorsal hippocampus of A, home cage 

CBPKIX/KIX mice (n=3) and their wild type littermates (WT) (n=4) and B, after spatial learning 

of CBPKIX/KIX mice (n=6) and their wild type littermates (WT) (n=4) were prepared for 

western-blot analysis. Different histone acetylation marks were analysed as noted, 

considering total H2B and H3 histones as loading controls. Quantification of acetylated 

histone levels is shown relative to the total amount of the H3 or H2B.  
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Supplementary figure S4. 

 

 

Supplementary figure S4. WT and CBPKIX/KIX mice were trained in MWM for 3 consecutive 

days to locate a hidden platform. A, Time taken by the mice to reach the target platform has 

been plotted. Both WT and CBPKIX/KIX mice learned to locate the hidden platform at the end 

of 3rd day of training (WT: p=� 0.0001; CBPKIX/KIX : p=0.0026, performance of day 1 

��������������������������������������-test). B, Time spent by the mice in the thigmo zone has 

been plotted. CBPKIX/KIX mice showed significantly higher thigmotaxis on day 1 compared to 

the WT (p=�0.0039), however it slowly reduced during each days of training. One hour from 

the last trial on day 3, all the mice were euthanized and their brains were dissected out. The 

samples were separated into two groups. One group of samples were processed for western 

blots and gene expression (WT, n=6; CBPKIX/KIX , n=6) and the other group was processed for 

chromatin immunoprecipitation (ChIP; WT, n=6; CBPKIX/KIX , n=6).  
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Supplementary figure S5. 

 

 

 

Supplementary figure S5. Western blot analysis of CREB from home cage and after 

spatial learning in WT and CBP
KIX/KIX 

mice. Protein lysates prepared from A, home cage 

[WT (n=4), CBPKIX/KIX mice (n=3)] and B, after 3 days of spatial learning [WT (n=6), 

CBPKIX/KIX mice (n=6)] were processed for western blot analysis. Representative pictures of 

western blots with antibodies recognising CREB, phosphor-CREB at Ser133 have been 

shown. Actin was used as a loading control. Below, Quantification of the blots shows that no 

significant differences in the above mentioned protein levels have been observed neither 

between the two genotypes nor with conditions.   
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Supplementary figure S6. 

 

 

 

Supplementary figure S6. Quality control analysis of chromatin immunoprecipitations 

using A, H2BK5ac, B, H3K27ac antibodies. Pulldowns showed higher occupancies on 

GAPDH promoter with both antibodies in both groups (WT and CBPKIX/KIX), while no 

(H2BK5ac) or less (H3K27ac) immunoprecipitated DNA was obtained with the TsH2B 

promoter. Abbreviations; ac: acetylation, TsH2B: testis specific H2B.  
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Perspectives 

 

The data presented in publication 2, show the importance of CBP KIX domain in the 

persistance of long-term spatial memory. Mutation in the CBP KIX domain has been 

previously studied in other memory paradigms like fear conditioning and object tasks, but the 

present study sheds light for the first time on its effect on spatial memory in the MWM. We 

showed alteration in gene expression and chromatin acetylation at proximal promoters of 

Zif268 and Nr4a1 gene after spatial learning in the dorsal hippocampus. Zif268 role in spatial 

memory formation has been thoroughly investigated.  Knock out mice models of Zif268 are 

impaired  in consolidation of hippocampus dependent long-term memory whereas short-term 

memory remains intact (Plath et al., 2006, Jones et al., 2001). Further, gain of function of 

Zif268 has been shown to enhance  hippocampal capacity to form long-term spatial memory

(Penke et al., 2014). Nr4A family has also been implicated in spatial memory (Hawk and 

Abel, 2011).  Therefore, a proof of concept experiment could be performed to overexpress 

these two activity dependent genes in CBPKIX/KIX mice to check if it reverses spatial memory 

deficits.  

 

CREB signalling can be initiated independently of CBP-CREB interaction through CREB 

regulated transcription coactivators (CRTCs)  (Iourgenko et al., 2003). Therefore, it is 

intriguing to understand: why CRTCs cannot activate the transcription of all the immediate 

early genes in CBPKIX/KIX mice after spatial learning. Therefore, overexpression of CRTCs in 

dorsal hippocampus of CBPKIX/KIX mice using viral vectors based expression could be tested 

if excess amounts of CRTCs could rescue the spatial memory impairment.   

 

As CBPKIX/KIX mice have impaired long-term memory, but intact short term-memory, 

activation of CBP HAT function by small molecule activator CSP-TTK21 could be tested to 

further verify if activation of CBP HAT function could initiate long-term memory, 

independent of its recruitment to the chromatin through CREB interaction. As CBPKIX/KIX 

mice have intact HAT domain, it is predictable CSP-TTK21 could activate CBP HAT 

function. But the target acetylation may not be locus specific (acetylation on specific 

proximal promoters) due to blockage of CBP recruitment by CREB.  Therefore HAT 

activation may not be able to completely rescue the transcriptional and cognitive deficits in 

CBPKIX/KIX mice. Such experiment would further validate the importance of locus specific 
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recruitment of CBP by CREB during memory formation. The results from this study would 

also indicate the importance of the two major functions of CBP (transcriptional co-activation 

through CREB interaction and lysine acetyltransferase activity) in spatial memory formation.  
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Scientific Context and Objectives 

 

In the publication 1, we have reported a novel activator of CBP/p300 HAT function (CSP-

TTK21) that can cross the blood brain barrier and induce histone acetylation in mice brain. 

Upon reaching the brain of healthy adult mice, it potentiates two important hippocampal 

functions: adult neurogenesis and long-term spatial memory (Chatterjee et al., 2013). 

Therefore, our next step was to investigate whether this HAT activator CSP-TTK21 treatment 

could bring any benefit in a mice model of cognitive impairment. For this study, we used 

THY-Tau22 mice that express four-repeats of human tau mutated at sites G272V and P301S 

under a Thy1.2-promotor. THY-Tau22 mice shows �����������-like hippocampal Tau 

pathology and hippocampus-dependent memory impairments (Schindowski et al., 2006; 

Belarbi et al., 2011; Van der Jeugd et al., 2013). THY-Tau22 shows age related decline of 

hippocampus dependent learning and memory (Van der Jeugd et al., 2013) and attenuated 

late-phase LTD of synaptic transmission (Van der Jeugd et al., 2011).  

Studies from my lab have shown that 8 months old THY-Tau22 mice trained in MWM for 

five consecutive days to locate a hidden platform shows deficits in retention of long-term 

spatial memory (Schneider, Cassel, Chatterjee et al, Manuscript in preparation; Supporting 

Results SR2). Sub-chronic treatment of CSP-TTK21 (3 injections, once-per week) in THY-

Tau22 mice ameliorated the memory deficits with a concomitant rescue of some gene 

expression in learning conditions, as assessed by transcriptomic analyses (RNAseq studies). 

Particularly several genes related to memory and plasticity were found deregulated in the Tau 

mice versus the WT mice after spatial learning, and of most interest, a set of genes related to 

ion transport and voltage-gated ion channels were found up-regulated by CSPTTK21 

treatment (Schneider, Cassel, Chatterjee et al, Manuscript in preparation; Supporting 

Results SR3). However, such sub-chronic treatment did not significantly improve adult 

neurogenesis that is otherwise severely impaired in this Tau mouse model (not shown), 

suggesting that the mice do not fully recover with the treatment. 

Therefore, the hypothesis behind the present study was that if we treat THY-Tau22 mice with 

the HAT activator CSP-TTK21 from an early time point (as early as 3 months of age), we 

might be able not only to improve memory functions, but also improve adult neurogenesis 

and may be delay the onset of the disease pathology. We then treated THY-Tau22 mice with 
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CSP-TTK21 from 3 months of age and continued treatment until 8 months of age. We 

analyzed the effects of CSP-TTK21 chronic treatment in two important hippocampus 

dependent functions: adult neurogenesis and long-term spatial memory. We further 

investigated the expression profiles of several memory and plasticity related genes (like 

immediate early genes, synaptic formation- and synaptic plasticity- related genes). As we 

performed the chronic treatment, we aimed to evaluate the toxic side-effects if any appearing 

due to the chronic treatment. Finally, we also studied the anatomopathology to determine if 

the molecule could actually delay the disease pathology.  

These are important features to determine in order to test whether such molecule can stand as 

a new therapeutic opportunity for memory-���������������������������������������������� 
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Chronic treatment of a Tau mouse model with a HAT activator 

increases maturation of newly generated neurons and improves 

hippocampus-dependent memory�

Abstract 

������������ �������� ����� ��� �� ������������������ condition which, besides its two 

histopathological hallmarks: amyloid plaques and tauopathy, is also characterized by 

neuronal loss and memory impairments. Recent evidences indicate that epigenetic 

modifications participate in higher brain functions such as brain plasticity and memory 

formation. Based on our previous finding that CSP-TTK21 activates CBP and induces spatial 

memory persistence in wild-type mice, we further aimed to explore the effect of CSP-TTK21 

in a mouse model of AD presenting Tau pathology. We investigated the effects of chronic 

treatment with an activator of CBP/p300 HAT (CSP-TTK21) in Tau mouse model (THY-

Tau22 mice). Male THY-Tau22 mice were injected (once in two weeks) with either vehicle 

(CSP) or HAT activator (CSP-TTK21) from 3 months of age (i.e. before the development of 

memory-related symptoms of the pathology) until 8 months of age. In the Morris Water Maze 

(MWM) task, control THY-Tau22 (CSP- treated) mice showed deficiency in retention of 

long-term memory, whereas it was completely restored in response to the chronic treatment 

with CSP-TTK21. Interestingly, CSP-TTK21 treatment significantly improved the dendritic 

arborization of doublecortin (DCX)-positive neurons in the dorsal dentate gyrus. CSP-TTK21 

treatment also rescued expression of Immediate-early genes (ARC and Zif268) and synaptic 

plasticity related genes (Synaptophysin and Gria2) that were otherwise decreased in THY-

Tau22 mice. CSP-TTK21 treatment did not induce any change in the body weight throughout 

the course of treatment and caused no apparent toxicity as evidenced from the constant levels 

of cleaved caspase-3 from different body organs and brain parts. However, CSP-TTK21 did

not reduce the phospho-tau load in either hippocampus or frontal cortex. Therefore chronic 

treatment of THY-Tau22 mice with CSP-TTK21 preserved the hippocampal functions that 

helped to restore adult neurogenesis and the persistence of long-term memory without 

affecting the severity of the disease. 

 

Keywords: HAT activator, CBP, spatial memory, gene expression, tau pathology 
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Introduction 

 

����������� disease (AD) is a common neurodegenerative disease and the major cause of 

dementia. AD is characterized by progressive memory loss and cognitive impairment. The 

two major clinical hallmarks of AD are senile plaques and neurofibrillary tangles (NFT). 

NFTs are formed from intraneuronal fibrillar aggregates of hyper- and abnormally 

phosphorylated Tau proteins. NFTs initially appears in entorhinal cortex and hippocampus 

and as the disease progresses it profoundly spreads to the temporal and frontal lobes and the 

symptom worsens (Braak et al., 1998, Braak and Del Tredici, 2011). Memory formation 

requires gene expression for consolidation of information (Alberini and Kandel, 2015).  

Regulation of gene expression is a critical step underlying memory consolidation (Peixoto

and Abel, 2013). Dysregulation in transcription alters the physiological balance of a cell 

leading to neuronal death (Rouaux et al., 2003) and could contribute towards AD

pathogenesis (Marambaud and Robakis, 2005, Chen et al., 2013).  

One of the fundamental mechanisms of gene expression regulation is chromatin remodelling, 

especially through histone-tail acetylation. Histone acetylation is catalyzed by Histone 

acetyltransferases (HATs) that alters the local chromatin conformation and improves the 

accessibility of transcriptional regulatory proteins to the DNA (Goldberg et al., 2007) thus 

facilitating gene transcription (Berger, 2007; Jenuwein and Allis, 2001; Kouzarides, 2007; 

Hilton et al., 2015). The reverse reaction is catalyzed by histone deacetylases (HDACs) that 

removes the acetyl groups and results in compact chromatin structure and reduced 

transcription. Recently, histone acetylation has been on prime focus of behavioral biologists. 

In particular, histone acetylation participates in the processes involved during synaptic 

plasticity, learning and memory (Peixoto and Abel, 2013; Lopez-Atalaya and Barco, 2014). 

Therefore modulation of histone acetylation is emerging as a possible therapeutic strategy in 

the treatment of AD (Valor et al., 2013; Fischer, 2014). HDAC inhibitors have been broadly 

used to rescue memory deficits in various modes of neurodegenerative diseases  (Ricobaraza 

et al., 2009; 2012; Benito et al., 2015). However, in the present study, we have employed an 

alternative strategy of activating acetylation process by direct pharmacological activation of 

HATs. We have previously reported a small molecule activator of HAT CBP/p300, CSP-

TTK21 (Chatterjee et al., 2013). CSP-TTK21 is cell permeable HAT activator that could pass 

the blood-brain barrier and induce histone acetylation in the dorsal hippocampus and frontal 

cortex of mice brain. CSP-TTK21 promotes formation of long and highly branched 
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doublecortin-positive (DCX+) neurons in the subgranular zone of the dentate gyrus and

facilitates long-term memory formation in healthy adult mice. Therefore, the molecule could 

be a potential therapeutic agent in diseases associated with cognitive impairment like 

��������������������� 

For this study, we used THY-Tau22 mice that express human 4-repeat tau mutated at sites 

G272V and P301S under a Thy1.2-promotor. THY-Tau22 mice exhibit AD-like hippocampal 

Tau pathology and hippocampus-dependent memory impairments (Schindowski et al., 2006; 

Belarbi et al., 2011; Van der Jeugd et al., 2013). These mice present hyperphosphorylation 

and abnormal phosphorylation of tau protein at major sites characterized in AD. The tau 

phosphorylation starts as early as 3 months in the CA1 and cortex, later the abnormal

phosphorylation spreads to the other brain regions like striatum, the olfactory bulb, the 

occipital cortex, the amygdala, the ventral thalamic nuclei, and deep layers of the entorhinal 

cortex. NFT-like inclusions characterized with massive hyper- and abnormal phosphorylation

of tau occurs at around 6 months of age, and the degenerative processes begins from 10 

months of age (Schindowski et al., 2006). THY-Tau22 shows age related cognitive decline 

including hippocampus dependent learning and memory deficits (Van der Jeugd et al., 2013) 

and attenuated late-phase LTD of synaptic transmission (Van der Jeugd et al., 2011). In the 

present study, we investigated the effects of a chronic treatment with CSP-TTK21 in THY-

Tau22 mice from 3 months till 8 months of age. Chronic treatment clearly preserved the 

persistence of long-term memory as evidenced from MWM tests. Interestingly, ARC and 

Zif268 transcript levels were reinstated in the dorsal hippocampus after chronic treatment 

compared to control THY-Tau22 mice (treated with CSP only). In addition, CSP-TTK21 

treated THY-Tau22 mice showed improved dendritic arborization from newly generated 

neurons in dorsal dentate gyrus. However, neither phospho-Tau proteins nor inflammation

were impacted by the treatment, suggesting that the HAT activator CSP-TTK21 improved 

hippocampal function in THY-Tau22 mice without affecting their anatomopathological 

status.  

 

Materials and methods 

 

Animals 

THY-Tau22 mice expresses human 4-repeat Tau mutated at sites G272V and P301S under 

the control of Thy1.2 promoter (Schindowski et al., 2006). THY-Tau22 mice is characterized 
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with major expression of tau in the hippocampal formation and cortex, whereas no significant 

pathology in the spinal cord. Heterozygous male mice were used in each experiment. Sex-

matched non-transgenic littermates (WT) were used as controls. WT and THY-Tau22 mice 

were housed in a pathogen-free facility (3-4 mice/ cage) maintained on a 12-hour light and/or 

12-hour dark cycle with ad libitum access to food and water. Experimental protocols and 

animal care were in compliance with the national (council directive 87-848, 19 october 1987, 

�����������������������������������������������������������������������������������������������

Animale) and international (directive 86-609, 24 November 1986, European Community and 

new guidelines of the European Parliament 2010/63/UE of September 22, 2010) laws and 

policies (ethical committee authorization AL/100/107/02/13). 

 

Chronic treatment of CSP or CSP-TTK21 

CSP was synthesized from glucose upon heating under very high temperature and pressure as 

described previously (Selvi et al., 2008). TTK21 was synthesized from salicylic acid and 

conjugated with CSP as described previously (Chatterjee et al., 2013). CSP/ CSP-TTK21 

were stored at -200C in multiple aliquots. For the chronic treatment, animals were 

randomized on body weight and CSP/ CSP-TTK21 were injected intraperitoneally at the dose 

of 20mg/kg of body weight with groups as follows: WT/Saline, n=8; THY-Tau22/CSP, n=8; 

THY-Tau22/CSP-TTK21, n=9. Each mouse received injections once per 2 weeks and body 

weights were measured before each injection. Chronic treatment started at an age when tau 

pathology and memory impairments are slight or even absent in THY-Tau22 mice (3 months)

and continued until 8 months of age, when transgenic mice exhibit memory deficits,  

deficient adult neurogenesis, anatomopathological hallmarks of tauopathy (Tau aggregates) 

and inflammation (Schindowski et al., 2006; Van der Jeugd et al., 2013). 

 

Actigraphy 

The mice were placed individually in transparent cages and adapted to the shelves of the 

testing device. Two infrared light beams passing through each cage were targeted on two 

photocells that were placed 2.5 cm above the cage floor level 28 cm apart. The number of 

cage crossings was recorded by a computer over during two days and one night cycles. 

Comparison of the global activity during the day vs during the night was done using the mean 

of activity for day compared to mean activity for night. Values of p< 0.05 were considered 

significant. 
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Spatial memory assessment using the Morris water maze (MWM) test  

Evaluation of spatial memory was performed using the Morris Water Maze task (MWM). 

The circular water maze tank (Atlantis) was located in a room with several visual extra maze 

cues. The maze was filled with water made opaque by powdered chalk (Blanc de meudon) at 

210C. To escape from the cold water, the mice needs to learn the location of an escape 

platform placed in a fixed position under the water surface. The mice were habituated for two 

consecutive days with one trial per day before the training period. The first day of habituation 

consisted of 1 minute trial with a visible platform and 5cm of water, whereas the second day 

habituation consisted of a 2 minute free swim trail without any platform. During the 

acquisition days, mice were trained for four trials per day with maximum duration of 60 s for 

five consecutive days. At the start of each trial, mice were placed in the pool, facing the wall 

in one of four start locations (varied pseudo-randomly). Each trial was automatically 

terminated whenever the mice reached the platform or after the completion of 60 s. Mice 

failing to reach the platform were gently guided to reach the platform. After each trial, mice 

were allowed to stay on top of the platform for 10-12 s. Latency to reach the platform, 

distance travelled, swim speed and time in the thigmo zone were recorded and computed 

using a video-tracking system (Any maze). Three independent groups of mice THY-Tau22 

CSP, THY-Tau22 CSP-TTK21 and their sex-matched wild-type littermates (WT) injected 

with saline were trained for 5 days of spatial learning. After the last training session, the 

platform was removed and all the three groups undertook a probe test (PT) 10 days after the 

last training day. During the probe test, the mice were introduced at the centre of the pool and 

were allowed to swim for 60 s. Spatial memory during the probe test was quantified by 

measuring the amount of time spent by the mice searching in the target quadrant versus the 

average time spent in the three other quadrants. Two hours after each probe tests, mice were 

tested for consequitive probe tests with a gap period of two hours for extinction. At the end of 

each trial (60 s), mouse was immediately taken out of the pool and were returned to its home 

cage.   

 

Euthanasia 

One day after the completion of the MWM task, 8 month-old mice were euthanized by 

cervical dislocation followed by decapitation. Brains were rapidly removed from the skull, 

rinsed in ice cold PBS and tissues were dissected. Half-brain lobes (n=3/group) were

processed for post-fixation to be used for immunohistochemistry and the rest of the brains 

were sub-dissected (n=7/group) to isolate either hippocampus, or separated dorsal 
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hippocampus and ventral hippocampus, frontal cortex and cerebellum. Tissues were then 

flash freezed in liquid nitrogen and stored at -800C. Body parts (kidney, liver, spleen and 

heart) were also collected, flash frozen and stored at -800C. 

 

Protein lysate preparation and Western blot analysis 

For histone acetylation analysis, the tissues were homogenized in laemmli buffer, sonicated 

for 15 seconds twice (ultrasonic processor, power 40%), heated at 700C for 10 min followed 

by boiling. The lysates were then centrifuged (20,000g for 5 min) and supernatant were 

stored at -200C.  Total protein concentration was determined by using RC-DC Protein Assay 

(Bio-Rad) kit. Western blots were performed as described previously (Chatterjee et al., 2013) 

with antibodies against acetyl-histone H2B(#07-373; Millipore), acetyl-histone H2BK5 (#07-

382; Millipore), H3 histone (#ab1791; Abcam), acetyl-histone H3 K9K14 (#06-599; 

Millipore), histone H2B (#H2-28; Euromedex), acetyl-histone H3K27 (#07-360; Millipore), 

acetyl-tubulin (#05-829; Santa Cruz),  tubulin (#NG1852175; Millipore), acetyl NF-kB (p65 

acK310, #ab52175; Abcam), caspase 3 (#sc-271759; Santacruz), NR2B (CS), pNR2B Y1472 

(CS) and Actin (#ab16039; Abcam). Secondary antibodies conjugated with HRP against 

rabbit and mouse was purchased from Jackson ImmunoResearch. Protein blots were revealed 

with ECL clarity (BioRad) using the Chemidoc Touch Imaging System (BioRad). Results 

were quantified using Image Lab, Biorad software. Histone acetylation was normalized with 

either total histone H3 or H2B. Each protein was normalized with the total proteins present in 

the Nitrocellulose membrane (Biorad) after transfer from the 4-20% SDS gels (Biorad).  

 

For Tau protein analysis, samples were homogenized in Tris buffer (pH7.4) containing 10% 

sucrose and protease inhibitors (Complete; Roche Diagnostics GmbH, Meylan, France). The 

homogenates were sonicated and left under agitation for 1hr at 40C. Protein amounts were 

evaluated using BCA assay (Pierce). Samples were subsequently diluted in 2X reducing LDS 

sample buffer (Life Technology, Saint-Aubin, France) and denatured at 1000C for 5 min.

10�g of lysates were loaded on 4-20% MOPS NuPAGE gels (Invitrogen), and transferred on 

to nitrocellulose membranes. After transfer, the nitrocellulose membranes were saturated on 

5% non-fat dry milk or BSA in TNT buffer (Tris 15 mM pH 8, NaCl 140 mM, 0.05% Tween) 

and incubated with appropriate primary and secondary antibodies. Tau antibodies used for 

western blots were AT100 (Thermo Scientific), pSer214 (Invitrogen), pThr181 (Thermo 

Scientific), pSer404 (Invitrogen), Tau1 (Millipore). Signals were visualized using 
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chemiluminescence kits (ECL, Amersham Bioscience, Velizy- Villacoublay, France) on a 

LAS3000 imaging system (Fujifilm). Results were normalized to GAPDH and 

quantifications were performed using ImageJ software (Scion Software). 

For sarcosyl-soluble/insoluble protein preparation, hippocampus were homogenized and 

sonicated in lysis buffer (10mM Tris-HCl, pH 7.4, 0.32M sucrose, 800mM NaCl and 1mM 

EGTA with protease inhibitors), and centrifuged at 12,000 g for 10 min at 4 °C. The 

supernatant was then incubated for 1 hr in 1% sarkosyl (N-laurylsarkosine sodium salt, 

Sigma, Saint-Quentin-Fallavier, France) at ambient temperature. The lysate was then 

centrifuged at 1,00,000 g for 1 h at 4 °C. The supernatant contained the sarkosyl-soluble and 

the pellet contained the sarkosyl-insoluble Tau species. Sarkosyl-insoluble fraction was 

resuspended in 2XLDS, whereas sarkosyl-soluble fraction was mixed with LDS 2X, 

supplemented with reducing agents (Invitrogen, Saint Aubin, France). Both the fraction of 

samples were loaded onto NuPage Novex (Invitrogen) gels at a ratio of 1:2 (v:v) (Laurent et 

al., 2014).  

 

Real-time qRT-PCR 

RNA preparation followed by Real-time qRT-PCR analysis were performed as described 

previously (Chatterjee et al., 2013). Briefly, tissues were finely cut using a razor blade 

homogenization was performed using a Dounce in TRIzol reagent (Invitrogen). Separation of 

the aqueous layer containing the RNA was followed by chloroform extraction and ethanol 

precipitation.  RNA samples with OD 260/280 and OD 260/230 ratio close to 2.0 were considered 

for reverse transcription. RNA samples were denatured at 70°C for 10 min and 1µg of total 

RNA was processed for cDNA synthesis (iScript cDNA synthesis kit; Bio-Rad). qRT-PCR 

analysis was performed on a Bio-Rad iCycler System (CFX) using SsoAdvanced SYBR 

Green Super- Mix (Bio-Rad). Each samples (n=6) were quantified in technical duplicate. The 

conditions for qRT-PCR was 3 min at 94°C, followed by 40 cycles of 45 s at 94°C and 10 s at 

60°C.�Data were analyzed by gene regression using iCycler software and normalized to the 

RNA polymerase II levels. Primers used for amplification were: 

 

Arc  ����������-AGCAGCAGACCTGACATCCT-�� 

  ����������-GTGATGCCCTTTCCAGACAT-�� 

Dusp1  ����������-GGAGGATATGAAGCGTTTTCGG-�� 

  ����������-GGATTCTGCACTGTCAGGCACA-�� 

cfos   ����������-CGGGTTTCAACGCCGACTA-�� 
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  ����������-TTGGCACTAGAGACGGACAGA-�� 

Zif268  ����������-TATGAGCACCTGACCACAGA-�� 

  ����������- GAGTCGTTTGGCTGGGATAAC-�� 

DCX  ����������-TAAAAGCCCAGGCCCAAT-�� 

� � ����������-TTGAGAGCTGACTGGTGGAA-�� 

PSD95  ����������-CCCCTACCCCTCCTGAGAAT-�� 

� � ����������-GAGGGGAAGGAGAAGGTTGG-�� 

SYP  ����������-CAAGGCTACGGCCAACAG-�� 

� � ����������-GGTCTTCGTGGGCTTCACT-�� 

SAP97  ����������-AGTGACGAAGTCGGAGTGATT-�� 

� � ����������-GTCAGGGATCTCCCCTTTATCT-�� 

SAP102 ����������-GTCTGGGTCTCTCCGAAGCA-�� 

� � ����������-AACCCAGGGAAGTCCCAGTT-�� 

NR2A  ����������-ACTGCCGCATCTTCCATGTT-�� 

� � ����������-GGGTGCACCTGATAGCCTTC-�� 

NR2B  ����������-CTGCCGAACGCTTGACTT-�� 

� � ����������-CAAGAGAGCCCAGATTCCAG-�� 

Gria2  ����������-GATGGCACGCATCCATTTGT-�� 

  reverse  ��-GATAGCAGTCACCTGCCACT-�� 

Gria3  ����������-ACCCAATGGTCCAGCAATT-�� 

  reverse  ��-TGCCTCCTCAGGTATCGGAA-�� 

human tau ����������-ATGGCTGAGCCCCGCCAGGAG-�� 

  reverse  ��-TGGAGGTTCACCAGAGCTGGG-�� 

murine tau ����������-AGCAGGCATCGGAGACAC-�� 

  reverse  ��-CATTTCCTGTCCTGTCTTTGC-�� 

RNA Pol II forward ��-AATCCGCATCATGAACAGTG-�� 

  reverse ��-TCATCCATTTTATCCACCACC-�� 

 

Immunofluorescence and Immunohistochemistry  

Half-brain lobes from the chronic treatment group of mice were post fixed with ice-cold 

paraformaldehyde (4% in 0.1 M PB, 4°C) for 6 h and transferred in sucrose at 4°C for 48 h. 

Brains were then freezed in isopentane for 1 min at -40°C. Brains were then stored at -800C 

before further use. 20µm thick coronal sections were cut through the dorsal hippocampus 

using a Vibratome (VT1000M; Leica). For the staining protocol, the tissues were first 
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permeabilized in 1XPBS/Triton X-100 2% for 15 min. Blocking of nonspecific labelling was 

done by incubating in 1X PBS/0.1% Triton X-100/5% horse serum for 30 min at 37°C.�The 

sections were then incubated overnight with the indicated antibodies (doublecortin [DCX] 

#ab18723, Abcam). Tissues were washed 3 times with 1X PBS/0.1% Triton X-100, and 

incubated with the appropriate secondary antibodies.�For immunofluorescence, sections were 

incubated with donkey anti-rabbit conjugated with fluorescent dye (1 h at room temperature). 

Then the tissues were washed 3 times with 1X PBS/0.1% Triton X-100, and the nuclei were 

stained with Hoechst for 5 min. Three PBS washes were given before mounting the sections 

with Mowiol (4-88; 81381, Sigma-Aldrich). For immunohistochemistry, after the primary 

antibody step, the sections were incubated with anti-rabbit and anti-mouse horseradish 

peroxidase-conjugated antibody (Santa Cruz Biotechnology) for 1 h. The sections were then 

washed 3 times in 1XPBS/0.1% Triton X-100. The sections were immersed in 0.05% DAB 

(with 0.04 M Tris, pH 7.5, 0.03% H2O2) until a brown colour appeared. Sections were 

further washed in 1X PBS and mounted with Mowiol (4-88; 81381, Sigma-Aldrich). Images 

were acquired using a microscope (Olympus AHBT-3). 

 

DCX-positive neurons and total dendritic length measurements 

Counting was done in three groups of mice [WT (Saline), THY-Tau22 (CSP) or THY-Tau22 

(CSP-TTK21), n=3/group] that underwent chronic treatment followed by MWM. After DCX 

immunohistochemistry, images were acquired with fluorescent microscope (Olympus AHBT-

3).�Sections containing the dorsal hippocampus (n=5�6/animal) were then evaluated blindly 

to the treatment for the number of DCX+ neurons. For the dendritic arborisation study, 

images were analysed in ImageJ software using NeuronJ plugin. Total DCX positive 

dendritic projection originating from a single neuron from an area in a similar hippocampal 

region was measured. The total length of the DCX+ dendrite given by the software was 

averaged per animal.  

 

Statistical analysis for biochemical studies 

All statistical analysis involving 3 groups (WT saline, THY-Tau22 CSP and THY-Tau22 

CSP-TTK21) were performed using ANOVA followed by Newman-Keuls multiple 

comparison test when appropriate. For comparison between two groups, stu��������-test was 

performed. Data were expressed as the mean +SEM (standard error of mean). The significant 

level was set at p<0.05.  
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Statistical analysis for behavioural studies 

One- or two- way ANOVA were used for MWM data analysis with repeated measures when 

appropriate. Various performances criteria recorded during acquisition (escape latencies, 

average speed, and distance to reach the platform) were analysed using ANOVA. ANOVA 

analysis was followed by Newman-Keuls multiple comparison test when appropriate. For the 

retention tests (probe test and extinctions), the time spent in the target quadrant were 

compared with the chance level (15 sec for a test duration of 60 sec in 4 quadrants) using a 

one-������� ���������� �-������ ������ ���������� ���� ����� ��� �������� ���� ������������ ����

������������������������������������������������������������������������������������������������

Results were expressed as means of +SEM. Values of p<0.05 were considered as statistically 

significant.  

 

Results 

 

Chronic treatment with CSP-TTK21 restored persistence of long-term spatial memory in 

THY-Tau22 mice 

 

THY-Tau22 mice display deficits in hippocampal synaptic transmission and behavioral 

impairment characterized by reduced anxiety and progressive age dependent deficits in 

cognitive function (Schindowski et al., 2006). Unpublished data from our lab showed that 8 

months old THY-Tau22 mice trained for five consecutive days in MWM are deficient in 

retention of spatial memory when tested ten days after the last training day (Cassel et al, 

Manuscript in preparation; Supporting Results SR2). We have previously reported that 

activation of CBP/p300 function by administration of HAT activator CSP-TTK21 improves 

long-term retention of spatial memory in healthy adult mice (Chatterjee et al., 2013). Thus 

our initial hypothesis was to start the chronic treatment of CSP-TTK21 from an early time-

point of the disease pathology so that we might be able to prevent or delay the disease onset. 

We separated male THY-Tau22 mice in two groups. One group received injections of HAT 

activator CSP-TTK21 (n=9) and the other group received injections of vehicle only (CSP, 

n=8). WT control litter-mates were injected with saline (WT, n=8). The chronic injections 

were started at 3 months of age with one injection per two weeks and were continued for 5 

months (Figure 1A). We have previously shown that CSP-TTK21 reaches the brain cells 
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within 3 days after injection and gets cleared out after 7 days. To maintain the potential effect 

of the molecule in the mice brain, we selected a gap period of two weeks between two 

injections. We hypothesized that the pharmacological effect would diminish progressively

after activation of HAT and can be again reinstated following the next injection.  After the 

completion of the chronic treatment, sleep/ wake pattern were studied. THY-Tau22 mice 

show increased nocturnal activity possibly due to melatonin dysregulation in Tau mutant 

mice (Van der Jeugd et al., 2013). THY-Tau22 mice showed nocturnal hyperactivity during 

the period of cage activity (p=0.0007, when THY-Tau22 compared to WT; p=0.0038 when 

THY-Tau22 CSP-TTK21 compared to WT) (Figure S1). However, we did not evidence any

impact of chronic treatment with CSP-TTK21 in the dysregulation of nocturnal activity in 

THY-Tau22 mice (p=� 0.3263). Therefore, CSP-TTK21 treatment does not reform the 

pathological nocturnal hyperactivity in THY-Tau22 mice. 

 

Five days after the last injection (10th injection), the 3 groups of mice were subjected to the 

Morris water maze (MWM) test.�During a 5-day training period, all the mice were tested in 

four trials per day for their ability to locate a hidden platform using visual clues surrounding 

the MWM pool. ANOVA with repeated measure on the latency to find the hidden platform 

during the training phase showed no genotype or treatment effect (p=0.7621). The acquisition 

was comparable between all the 3 groups, with all of them spending less time each day to 

reach the platform (D1 Vs D5; WT: p=0.0171, THY-Tau22 CSP: p=0.0035, THY-Tau22 

CSP-TTK21: p=0.0451) (Figure 1B). To examine the retention of spatial memory, a probe 

test was performed 10 days after the last training day. The time spend by the control THY-

Tau22 (CSP injected) mice in the target quadrant was not higher than the chance (15s, 

p= 0.5411) suggesting that the THY-Tau22 mice could not recall the platform location. 

However, the THY-Tau22 mice treated with CSP-TTK21 performed significantly higher than 

the chance level (15s, P=0.0001) and their performance score was also significantly better 

than the CSP treated THY-Tau22 mice (p=0.0059) suggesting a beneficial effect of CSP-

TTK21 treatment. The performance of the WT mice was similar to the THY-Tau22 CSP-

TTK21 mice (Figure 1C). To determine if the chronic treatment of CSP-TTK21 could 

improve the precision of search, we examined the number of annulus crossing during the 

probe test. ANOVA revealed a significantly precise search by WT and CSP-TTK21 treated 

THY-Tau22 mice compared to the control THY-Tau22 mice (WT Vs THY-Tau22 CSP: 

p=0.0345; THY-Tau22 CSP-TTK21 Vs THYTau22 CSP: p=0.0398) (Figure 1D). Thus the 

chronic treatment with CSP-TTK21 significantly rescued the loss of spatial memory in THY-



Experimental Contributions  Publication 3�

����

�

Tau22 mice. We next investigated if the memory in the CSP-TTK21 treated mice 

extinguished normally like the WT mice. Therefore, we subjected all the mice to several trials 

of extinction (Ext 1-4 at 2 h intervals) after the initial probe test. The WT mice spent 

progressively less time in the target quadrant in the subsequent extinction tests suggesting 

normal extinction of spatial memory (Figure 1F). Typically, THY-Tau22 mice treated with 

CSP-TTK21 performed similar to the WT mice as their preference to the target quadrant 

progressively reduced to chance level. On the 4th extinction test (Ext 4), both the groups (WT 

and THY-Tau22 CSP-TTK21) searched randomly and their performance was not higher than 

the chance level suggesting complete extinction of spatial memory. The extinction tests did 

not alter the performance of the THY-Tau22 CSP mice as they were already deficient in the 

first probe test. Therefore the treatment with CSP-TTK21 improved the consolidation process 

of spatial memory formation without altering the normal process of memory extinction.  

We have previously reported that single injection of CSP-TTK21 is sufficient to improve 

long-term spatial memory in non-transgenic adult mice (Chatterjee et al., 2013). As the last 

injection (10th injection) of the chronic treatment was only five days before the start of the 

MWM task, spatial memory improvement of THY-Tau22 mice may be the result from the 

last injection only, and not from the chronic effect of the molecule. Therefore, it was essential 

to verify the effect of a single dose of CSP-TTK21 in the persistence of long term memory in 

THY-Tau22 mice. We designed a similar experiment with a new set of mice and divided into 

3 groups (WT, THY-Tau22 CSP and THY-Tau22 CSP-TTK21, n=8/group). All the THY-

Tau22 mice received a single dose of either CSP alone or CSP-TTK21 whereas the WT were 

injected with saline (Figure S2A). Similar to the MWM test performed after chronic 

treatment, five days after the acute treatment all the mice were trained in MWM for five 

consecutive days to locate a hidden platform. All the 3 groups of mice learned to locate the 

hidden platform during the course of training (Figure S2B).  The probe test was performed 

after a delay of 10 days from the last training day. During the probe test, WT mice spent 

significantly longer time in the target quadrant compared to the chance level (15s, p=0.0009). 

However, both control THY-Tau22 and CSP-TTK21 treated THY-Tau22 mice failed to 

search for longer duration in the target quadrant compared to the chance (THY-Tau22 CSP: 

p=0.3595; THY-Tau22 CSP-TTK21: p=0.7309). The performance score in the target 

quadrant for both THY-Tau22 CSP and THY-Tau22 CSP-TTK21 mice were significantly 

lower than the WT mice (WT Vs THY-Tau22 CSP: p=� 0.0003; and WT Vs THY-Tau22 

CSP-TTK21: p=�0.0009) (Figure S2C). Thus, a single dose of CSP-TTK21 treatment is not 

sufficient to improve the cognitive deficits in pathological THY-Tau22 mice.  
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Chronic treatment of CSP-TTK21 increases the transcription of genes underlying memory 

and plasticity in THY-Tau22 mice

 

Gene expression is a pivotal step in the consolidation of long-term memory (Alberini and 

Kandel, 2015), as transient activation of immediate early genes (IEGs) is needed for the 

successive waves of gene expression (Jones et al., 2001). Importantly, induction of some 

IEGs like c-fos, Zif268 and ARC is impaired in the hippocampus of THY-Tau22 mice (Burlot 

et al., 2015). Therefore to identify the mechanism by which chronic treatment of CSP-TTK21 

rescues cognitive deficits in THY-Tau22 mice, we investigated the gene expression patterns 

of few of those IEGs. We analyzed the expression of 4 immediate early genes in the dorsal 

hippocampus (c-fos, ARC, Zif268 and DUSP1). Gene expression of ARC and Zif268 was 

significantly weaker in control THYTau22 mice compared to the WT (ARC: p=0.0006; 

Zif268: p=0.0488). Interestingly, chronic CSP-TTK21 treatment improved the gene 

expression of ARC and Zif268 in the THY-Tau22 mice to a level similar to that of WT. 

DUSP1 expression was unaffected in all the 3 groups of mice. c-fos expression was similar in 

both WT and control THY-Tau22 mice and CSP-TTK21 treatment tend to increase c-fos 

transcript levels but non-significantly in the THY-Tau22 mice (Figure 2A).  

Activation of histone acetylation by HDAC inhibitors in transgenic mouse model of AD 

restores expression of synaptic genes (Ricobaraza et al., 2009, 2012). Therefore, we 

measured the expression of few genes related to synaptic plasticity. Interestingly, the 

expression of genes related to synaptic formation like synaptophysin (SYP) and SAP97 was 

reduced in the control THY-Tau22 mice compared to the WT (SYP: p=0.0002; SAP97: p=�

0.0153). Chronic treatment of CSP-TTK21 rescued the expression of SYP in the THY-Tau22 

mice (p=�0.0005) (Figure 2B). Eventhough, the transcript levels of PSD95 in WT and THY-

Tau22 were comparable, a tendency to increase was observed in the CSP-TTK21 treated 

THY-Tau22 group (Figure 2B). Consistent with previous finding we evidenced no change in 

gene expression of NMDAR subunits NR2A and NR2B between WT and THY-Tau22 CSP 

mice (Burnouf et al., 2013) and the treatment had no effect on these genes (Figure 2B). 

However, AMPA receptor Gria2 expression was reduced in control THY-Tau22 mice 

(p=0.05, compared to WT) and robustly increased by CSP-TTK21 treatment (p=0.0017, 

compared to THY-Tau22 CSP). mRNA expression of Gria3 was not altered in both the 

genotypes (Figure 2C).   
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Chronic treatment with CSP-TTK21 increases maturation of adult-born dentate granule 

cells in THY-Tau22 mice 

 

We have previously shown that CSP-TTK21 induces neuronal differentiation and maturation 

of adult-generated dentate granule cells in healthy adult mice (Chatterjee et al., 2013). We 

performed immunohistochemistry studies for DCX (immature neuronal marker) to 

investigate the degree of maturation and differentiation of DCX-positive cells in the dorsal 

dentate gyrus. Typically, 5�6 sections were analyzed per animal (n=3/ group). Overall, the 

number of DCX positive neurons was relatively comparable in the three mice group, although 

a slight but non-significant decrease was observed in control THY-Tau22 mice compared to 

WT and CSP-TTK21 treated THY-Tau22 mice (Figure 3A and B). We evaluated the 

dendritic arborization of the DCX+ neurons by measuring the total length of the dendrites 

originating from a single granule cell in specific regions within the dorsal dentate gyrus 

(Figure 3C and D). The total length of the dendrites from a single neuronal tree was 

significantly lower in the control THY-Tau22 mice compared to the WT (p=� 0.0002) 

suggesting that THY-Tau22 mice presents less complex dendritic arborization. However, 

CSP-TTK21 treated THY-Tau22 mice showed significantly improved and complex dendritic 

arborization compared to control THY-Tau22 mice (p=0.0003). Eventhough, the chronic

treatment with CSP-TTK21 improved the dendritic complexity in THY-Tau22 mice but there 

was still a significant difference compared to the WT (p=�0.0404), suggesting that restoration

is not full. Control THY-Tau22 mice showed a slight decrease of DCX transcript levels 

compared to the WT (p=�0.0923), that tended to be more elevated in the THY-Tau22 CSP-

TTK21 mice, but these remained non-significant tendencies (Figure 3E). We have 

previously reported that CSP-TTK21 induced NeuroD1and bndf eI gene expression in the 

hippocampus of adult mice (Chatterjee et al., 2013). However, here we found that NeuroD1 

and transcript levels were significantly lower in both CSP and CSP-TTK21 treated THY-

Tau22 compared to the WT mice (WT Vs THY-Tau22 CSP: p=�0.0006; WT Vs THY-Tau22 

CSP-TTK21: p=� 0.0004) (Figure 3E). Nevertheless, if WT and control THY-Tau22 mice 

showed similar levels of bdnf eI transcript levels, THY-Tau22 injected with CSP-TTK21 

showed significantly increased amounts of bdnf eI compared to the WT (p= 0.0055) and 

control THY-Tau22 (p=�0.004) (Figure 3E).  
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CSP-TTK21 does not impart any apparent toxicity in different body organs or brain parts 

of THY-Tau22 mice after chronic administration

 

The limitation of chronic treatment of a drug is its toxic side-effects. Toxicity could arise 

from accumulation in liver, spleen and kidneys as the drug needs to pass these organs before 

getting cleared out of the body or get metabolized. We applied three strategies to measure any 

evidence of drug induced toxicity after chronic treatment. Firstly, drug induced toxicity could 

be determined by monitoring body weights which is considered to be a sensitive but non-

specific, indicator of health (Kukowska-Latallo et al., 2005). Secondly, cell or tissue toxicity 

could lead to cleavage of pro-apoptotic factors like caspase-3 that in turn activates the cellular

apoptosis pathways. Thirdly, if the drug gets accumulated or trapped in any body organs, then 

it could be detected by its substrate activity. As CSP-TTK21 is a HAT activator, the levels of 

acetylated histones in these body parts would indicate the presence of the drug. 

 

The body weight of all the mice was monitored at each injection day, throughout the course 

of the chronic treatment. THY-Tau22 mice exhibit a decrease in body weight compared to the 

WT (Schindowski et al., 2006). We indeed evidenced a significant loss of body weight in 

control THY-Tau22 mice (p=0.0001, WT Vs THY-Tau22 CSP), that was not impacted by the 

CSP-TTK21 treatment (p=0.0001, WT Vs THY-Tau22 CSP-TTK21) (Figure 4A).  

We then measured the levels of procaspase 3 (32 KDa) and cleaved caspase 3 (17-20 KDa) 

protein fragments that could account for any cellular toxic effect upon chronic treatment. As, 

CSP-TTK21 targets the brain tissues, we analyzed caspase 3 levels in frontal cortex and 

hippocampus. Similar amounts of pro-caspase 3 levels were detected in the frontal cortex and 

ventral hippocampus between control and CSP-TTK21 treated THY-Tau22 mice (Figure 4B 

and figure S3A). However, we failed to detect any cleaved caspase 3 in the brain lysate blots 

possibly due to presence of extremely low levels. In the four body organs tested (kidney, 

spleen, liver and heart), we found similar procaspase 3 protein levels between control and 

CSP-TTK21 treated THY-Tau22 mice in spleen, liver and heart (Figure 4C and figure 

S3B). However, a non-significant tendency of increase was observed in kidney (p=�0.1124). 

Levels of cleaved caspase 3 also showed similar pattern between control and CSP-TTK21 

treated THY-Tau22 mice in kidney, heart and liver, whereas in spleen a significant reduction 

was observed in the THY-Tau22 treated with CSP-TTK21 (p=0.0361) (Figure 4C and 

Figure S3B).   
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The acetylation status of histones H2B and H3 in liver, spleen, kidneys and heart were then 

compared between the THY-Tau22 chronically injected with CSP or CSP-TTK21. Western 

blot studies revealed that the acetylation level of histones H2B and H3 were comparable 

between the two groups (control and CSP-TTK21 treated THY-Tau22 mice) in all the 4 

organs tested (Figure S4A and S4B). These results indicate the absence of prolonged side-

effects of the drug CSP-TTK21 in these organs, as it may have been rapidly cleared out or 

metabolized after each i.p. injection.    

We have also evaluated the global histone acetylation status in the frontal cortex and ventral 

hippocampus of THY-Tau22 mice after chronic treatment. Histone H2B acetylation was 

predominantly unaltered in both frontal cortex and ventral hippocampus in THY-Tau22 mice 

after CSP-TTK21 treatment (Figure S5A and S5B). Histone H3 acetylation was reduced in 

the frontal cortex in the control THY-Tau22 mice compared to WT (p=0.0488), however 

CSP-TTK21 treatment failed to rescue such reduction in histone H3 acetylation in THY-

Tau22 mice (p=�0.3071, THY-Tau22 CSP Vs CSP-TTK21). Apart from histones, HATs have

many non-histone proteins as substrates for acetylation. Acetylation of some of the non-

histone proteins are associated with neurodegenerative diseases and have close connection 

with synaptic plasticity and memory (Schneider et al., 2013). We checked the acetylation 

levels of two non-histone proteins; tubulin (cytoplasmic) and NF-kB (nuclear) in the frontal 

cortex. Western blots revealed no alteration in the acetylated tubulin in all the 3 groups of 

animals (Figure S5C and S5D). NF-kB acetylation was similar between WT and control 

THY-Tau22 mice, whereas a non-significant increase was observed in THY-Tau22 CSP-

TTK21 mice (Figure S5D).   

In conclusion, chronic CSP-TTK21 treatment (total of 10 injections) of THY-Tau22 mice 

does not impact on histone (i.e. H2B, H3) and non-histone (i.e. NFkB, tubulin) acetylation 

status, 21 days after the last injection, underlining that the molecule does not induce 

persistent acetylation in the brain structures nor in the body organs tested. The caspase study 

also suggests a non-toxic nature of chronic CSP-TTK21 treatment.  

 

Chronic treatment of CSP-TTK21 did not affect tau phosphorylation in THY-Tau22 mice 

 

THY-Tau22 mice exhibit elevated phosphorylation of Tau protein as characterized in AD 

pathology that correlates with memory deficits (Schindowski et al., 2006; Belarbi et al., 2011; 

Burnouf et al., 2013). Therefore, the beneficial effect seen after CSP-TTK21 chronic 
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treatment on spatial memory of THY-Tau22 mice prompted us to investigate the 

anatomopathological status in these mice. We analyzed the phosphorylation levels of tau on 

various epitopes in the hippocampus and frontal cortex of THY-Tau22 mice. We evaluated 

Tau phosphorylation at Ser214, Ser404 (physiological epitopes), Thr181 and Ser199 

(pathological) and tau dephosphorylation using Tau1 antibody by western blot studies. The 

data revealed that chronic treatment with CSP-TTK21 did not alter any of the phospho-Tau 

epitopes in the hippocampus (Figure 5A, B and Figure S6) or frontal cortex (Figure S7A 

and B) relative to total Tau levels. Tau1 levels representing the dephosphorylated Tau 

epitopes was found unchanged in both hippocampus and frontal cortex of control and CSP-

TTK21 treated THY-Tau22 mice. We have also used antibodies recognizing Tau protein at 

either N- or C- terminal regions. No change in total tau at C- or N-terminal was observed

between control and CSP-TTK21 treated THY-Tau22 mice in both the brain structures 

(Figure 5B). However, a non-significantly reduced levels of C-ter fragments were observed 

in the frontal cortex of CSP-TTK21 injected THY-Tau22 mice compared to control THY-

Tau22 mice (p=�0.0896; fragments between 25 and 35 kDa) (Figure S7A and B). The impact 

of chronic CSP-TTK21 treatment was also evaluated on Tau aggregation after biochemical 

fractionation and analyses of the sarkosyl-soluble and insoluble fractions in the hippocampus 

of THY-Tau22 mice (Figure 5C). We observed similar amounts of sarkosyl insoluble tau�in 

CSP and CSP-TTK21 treated THY-Tau22 mice (Figure 5D). In addition, treatment of CSP-

TTK21 did not altered the gene expression of inflammatory marker CCL4 in the dorsal 

hippocampus of THY-Tau22 mice (Figure S8A) (p= 0.5705, THY-Tau22 CSP Vs CSP-

TTK21 treatment). Finally, we verified that the transcript levels of human- and murine- tau 

were not modified by the chronic treatment in the dorsal hippocampus of THY-Tau22 mice 

(Figure S8B).  

 

Together, these data indicate that chronic treatment with CSP-TTK21 did not impact on Tau 

pathology and possibly activates parallel pathways to boost memory functions and adult 

neurogenesis and overcome the detrimental effect of Tau hyper- or abnormal- 

phosphorylation.  
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Discussion 

 

The present study was designed to evaluate the implications of a newly developed HAT 

activator CSP-TTK21 as a new therapeutic strategy against cognitive impairment associated 

with Tau pathology.  In this study we evidenced that a chronic treatment of THY-Tau22 mice 

with the HAT activator CSP-TTK21 restored long-term spatial reference memory, without 

altering the memory trace extinction. We show that such treatment increases gene 

transcription of activity/ memory genes (Zif268, ARC) as well as plasticity genes 

(Synaptophysin and Gria2) and also improves differentiation of newly-generated neurons in 

the hippocampus. However, the improvement of cognitive function by CSP-TTK21 was 

independent of pathogenic Tau load in the hippocampus and frontal cortex as hyper- and 

abnormal- phosphorylated forms of Tau proteins were unaltered after the treatment.  

 

Reversal of cognitive defects in THY-Tau22 mice by CSP-TTK21 treatment 

While CBP plays an important role in the formation of long-term memory (Barco, 2007, 

Barrett and Wood, 2008, Barrett et al., 2011), reduced activity of CBP has been associated 

with various neurodegenerative conditions (Valor et al., 2013; Schneider et al., 2013). The 

most common therapeutic strategy to recover from such conditions is by employing HDAC 

inhibitors (Gräff and Tsai, 2013). However, a more direct approach to activate CBP function 

by genetic or pharmacological interventions will provide more specificity and possibly 

similar outcomes (Reviewed in Valor et al., 2013).  The first evidence of beneficial effect of 

CBP activation in a mouse model of cognitive impairment was reported by Caccamo et al. in 

2010.  Brain viral delivery of CBP improved learning and spatial memory deficits in a mouse 

model of AD (Caccamo et al., 2010). Later, we have reported that pharmacological activation 

of CBP HAT function in mice brain improved retention of long-term spatial memory 

(Chatterjee et al., 2013). In addition, stimulation of CREB signalling pathway in the dorsal 

hippocampus (one major target of CBP/p300) leads to improved spatial memory in weakly 

trained animals (Sekeres et al., 2010). We have observed decreased expression of CBP 

protein levels in the dorsal hippocampus of 12 months old THY-Tau22 mice (Supporting 

Results, SR1) and total degradation in brains of latest stage AD patients (Data not shown, 

Manuscript in preparation,). Therefore the strategy to activate the remaining CBP protein to 

prolong its effect as possible is of extreme significance in the pathophysiology of 

������������ ���������� ���� �������� ���������� ����� ���-TTK21 significantly rescued 
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cognitive deficits in long-term retention of spatial memory in THY-Tau22 mice, whereas 

single dose of CSP-TTK21 failed to reverse such memory deficits. Thus, a steady activation 

of brain CBP function is essential to improve cognitive impairment in THY-Tau22 mice. 

Therefore, these results further strengthen the present notion that activation of CBP function 

is a potential therapeutic approach to ameliorate memory deficits as observed in AD.   

 

CSP-TTK21 targets transcription of memory related genes 

Our gene expression studies demonstrate that chronic treatment with CSP-TTK21 impacts on 

the transcription of immediate early genes (IEGs).  We identified that CSP-TTK21 treatment 

completely re-established the transcript levels of two immediate early genes (IEGs) ARC and 

Zif268, that we (this study) and others (Burlot et al., 2015) found decreased in the dorsal 

hippocampus of THY-Tau22 mice. ARC mRNA expression is also impaired in the 

hippocampus in other tauopathy mouse models (Fox et al., 2011, Alldred et al., 2012). Both 

ARC and Zif268 are implicated in synaptic plasticity and spatial memory formation 

(Bramham et al., 2010, Veyrac et al., 2014). Knock out mouse models of either ARC or 

Zif268 shows deficiency for consolidation of hippocampus dependent long-term memory 

whereas short-term memory remains intact (Plath et al., 2006, (Jones et al., 2001c). 

Additionally, gain of function of Zif268 was recently reported to enhance  hippocampal 

capacity to form long-term spatial memory (Penke et al., 2014). Interestingly, ARC is also a 

direct transcriptional target of Zif268 (Li et al., 2005; Koldamova et al., 2014). Our results 

from the chronic treatment demonstrate that CSP-TTK21 targets the activity dependent genes 

such as ARC and Zif268 to restore spatial memory related molecular events in THY-Tau22 

mice. CSP-TTK21 chronic treatment from an early age (3 months for this study) probably 

resulted in steady maintenance of the basal levels of these immediate early genes in the dorsal 

hippocampus of THY-Tau22 mice during the 5 months of treatment.  Apart from the IEGs, 

we also evidenced decreased transcript levels of synaptophysin, SAP97 and SAP102 that are 

implicated in synaptic formation (Regalado et al., 2006) and are responsive to modulation 

upon HDACi treatment (Ricobaraza et al., 2012). Interestingly, chronic treatment with CSP-

TTK21 rescued the loss of synaptophysin in THY-Tau22 mice. Another important component 

related to synaptic plasticity is the regulation of glutamate receptors. We observed decreased 

transcript levels of AMPA receptor Gria2 in THY-Tau22 mice that were robustly increased 

by the chronic treatment. Taken together, these experiments show that CSP-TTK21 treatment 

restores hippocampal plasticity and activity/memory �related markers in the hippocampus, 

markers that are otherwise deficient in the tau model. 
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CSP-TTK21 treatment improves neuronal differentiation  

Adult hippocampal neurogenesis occurs throughout the life span whereas most of the newly 

generated neurons fail to survive before getting integrated into the neural circuits. In response 

to experience, new neurons from 2 to 4 weeks from birth are the most likely recruited into the 

dentate gyrus/hippocampus circuitry supporting spatial memory (Kee et al., 2007; Goodman 

et al., 2010). New neurons from DG granule cells receive inputs from the entorhinal cortex at 

3 to 5 weeks after birth (Deshpande et al., 2013) and blockade of these inputs results in 

deficits in DG dependent tasks like pattern separation (Vivar et al., 2012). Neuronal 

maturation characterized with increased dendritic arborization provides more possibility for 

connectivity after experience dependent circuit remodelling  (Bergami et al., 2015). Here in 

this study we showed that CSP-TTK21 treated THY-Tau22 mice presented increased 

dendritic arborization and complexity of DCX positive neurons in the dorsal dentate gyrus. 

These findings support the present notion that CSP-TTK21 chronic treatment improves the 

differentiation of newly generated neurons. Furthermore, secondary dendrites from the 

stratum radiatum in CA1 of THY-Tau22 mice were recently reported to present reduced 

length and decreased spine density (Burlot et al., 2015). Therefore, it is possible that THY-

Tau22 mice present reduced hippocampal connectivity that could be compensated by CSP-

TTK21 treatments. However, it is yet to be determined whether CSP-TTK21 treatment 

improves the recruitment of the newly generated neurons into the neural network supporting 

spatial memory and it acts on spine densities in immature and mature neurons. One important 

factor identified to be crucial for dendritic maturation and development of adult new-born 

dentate granule cells is Zif268. Mice lacking Zif268 (Zif268 KO mice) exhibits defects in 

morphological maturation of adult new-born neurons in the dentate gyrus. These mice also 

presents defective dendritic arborization characterized with reduced mean dendrite length of 

matured neurons. Furthermore, Zif268 is required for the recruitment of new-born dentate 

granule cells into spatial memory network (Veyrac et al., 2013). We found that Zif268 gene 

expression was compromised in the dorsal hippocampus of THY-Tau22 mice and was 

rescued by CSP-TTK21 treatment. Therefore activating Zif268 function by CSP-TTK21 

proves valuable to restore hippocampal plasticity and long term spatial memory storage. In 

addition, we observed a tendency of decrease in DCX transcript levels in the dorsal 

hippocampus of THY-Tau22 mice whereas a partial rescue was observed after treatment with 

CSP-TTK21. However, NeuroD1 gene expression decrease was not rescued upon CSP-

TTK21 chronic treatment. One possible explanation is that CSP-TTK21 only transiently 

induces the transcription of NeuroD1 after each injection.  
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Taken together, these results underline the importance of chronic treatment of CSP-TTK21 to 

ameliorate the deficits of hippocampus dependent-memory formation in THY-Tau22 mice 

and point to Zif268 as an important player in the ability of CSP-TTK21 to restore 

hippocampal functions. 

 

In summary, our data indicates that cognitive impairment as observed in a mouse model of 

tauopathy can be restored by chronic CSPTTK21. These results support the implication of 

pharmacological activation of CBP into adult brains as a potential therapeutic approach for

AD and other related neurodegenerative disorders. However, this treatment did not affect tau 

pathology. Previous papers already showed restoration of cognitive functions without Tau 

pathology alteration in mouse models of tauopathy (Caccamo et al., 2010; Yang et al., 2015; 

Brownlow et al., 2014; Burlot et al., 2015), so in a therapeutic point of view, such strategy 

could still de������������������������������������������������������������rolonged modulation 

of CBP by CSP-TTK21 did not impart any apparent toxic side-effects which are important 

evidences from a therapeutic perspective. Apart from AD, CBP dysfunction is also common 

in other neurodegenerative diseases like Huntington disease (Giralt et al., 2012) and 

Rubinstein�Taybi syndrome (Alarcón et al., 2004; Valor et al., 2013). Therefore, 

pharmacological activation of CBP in the brain could be a powerful therapeutic tool for the 

treatment of diseases associated with cognitive impairment.    
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Figures and figure legends 

Figure 1

 

 

 

Figure 1. Chronic treatment of CSP-TTK21 reduced memory deficits in THY-Tau22 

mice. A, Timeline of the chronic treatment relative to the MWM training protocol. Chronic 

treatment of either CSP (n=8)  or CSP-TTK21 (n=9) was started on 3 months age THY-

Tau22 mice. Sex matched control littermates (WT, n=8) were injected with saline. 

Intraperitoneal injections were administered every 2 weeks (1 injection/ 2 weeks). The 

chronic treatment were contined for 5 months during which 10 injection were made. The 

spatial memeory test was started after 5 days from the last injection (10th injection). The 

experiment was planned in such way that during the memory test the age of all the mice will 
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be 8 months. After sufficient time from  extinction tests, the mice were euthenised and 

various brain region and body tissues were collected. B, Acquisition curve showing the 

latency to reach the platform during the MWM training. All the 3 groups of mice learned to 

locate the hidden platform gradually during each days of training.  C, Retention was tested 

during the probe test  after a delay of 10 days from the last acquisition for persistance of long-

term memory. Time spent in the target quadrant and the mean of time spent in the other 

quadrants were measured. WT and THY-Tau22 mice spent significantly more time in the 

target quadrant compared to the THY-Tau22 CSP mice. D, Measurement of number of target 

annulus crossing in the correct quadrant during the probe test. E, Representative tracking 

images of probe test. F, Extinction tests were performed after 2-hour intervals from the probe 

test. Performance score of WT and THY-Tau22 CSP-TTK21 mice were significantly higher 

than that of THY-Tau CSP for Ex 1 to Ex 3 and were also significantly higher than the 

chance. Dotted line indicates the chance level (15s). Results are expressed as mean +SEM. 

*
p<0.05, **

p<0.01, ***
p�������������������-test compared to chance level. $$p<0.01 when WT 

compared to THY-Tau22 CSP, and ##
p<0.01 when THY-Tau22 CSP compared to THY-

Tau22 CSP-TTK21; ANOVA factoreal followed by Newman-Keuls post-hoc test.    
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Figure 2 

 

Figure 2. Chronic treatment of CSP-TTK21 enhances the mRNA expression of  specific 

memory and plasticity genes in the dorsal hippocampus of THY-Tau22 mice. 

Quantitative real-time PCR analysis was performed to check the mRNA expression profiles 

of A, Immediate early genes (c-fos, ARC, Zif268 and DUSP1), B, Synaptic formation (SYP, 

SAP97, SAP102, PSD95), and C, Glutamate receptor sub-types: Ionotropic (NR2A, NR2B) 

and AMPA (Gria2 and Gria3). $
p < 0.05, $$$

 p < 0.001 THY-Tau22 CSP vs WT mice; #
 p < 

0.05, ##
 p < 0.01, ###

 p < 0.001 THY-Tau22 CSP vs THY-Tau22 CSP-TTK21, &
p < 0.05, 

THY-Tau22 CSP-TTK21 Vs WT mice, Anova followed by Newman-Keuls post hoc test. 

Graphs indicate relative changes in mRNA levels normalized to RNA Pol II.  
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Figure 3  

 

Figure 3. CSP-TTK21 treatment stimulates the maturation of adult-born granule cells 

in the SGZ of the dentate gyrus. A, Immunolabelling of the dentate gyrus of the chronic 

treatment mice WT (n=3), THY-Tau22 CSP (n=3) and THY-Tau22 CSP-TTK21 (n=3) with 

doublecortin (DCX) antibody. Representative fluorescence microscopic images of DCX+ 

(green) neurons in the dorsal dentate gyrus. DAPI (blue) was used to label the nucleus. Scale 

bar represents 10�m. B, Quantification revealed a non-significant decrease in total DCX+ 

neuron in the dentate gyrus of THY-Tau22 CSP compared to WT mice. C, Typical image of 

dendritic arborisation with DCX immunoreactivity has been shown. Scale bar represents 

20�m. D, Histogram represents the total length of the dendrites originating from a single 

DCX positive neuron averaged from 3 animals. ($$$
p < 0.001 THY-Tau22 CSP vs. saline-

treated WT mice; ###
 p < 0.001 THY-Tau22 CSP vs THY-Tau22 CSP-TTK21, &

 p < 0.05 

THY-Tau22 CSP-TTK21 vs WT mice, Anova followed by Newman-Keuls post hoc test). 

Note that the dendritic arborisation is more complex in THY-Tau22 CSP-TTK21 compared 

to the THY-Tau22 CSP injected mice. E, qRT-PCR analyses of mRNA levels of 

doublecortin , NeuroD1, and bdnf eI  in response to CSP and CSP-TTK21 chronic treatment 

of THY-Tau22 andsaline treated WT mice (n=6/group). mRNA quantities were normalized 

with RNA Pol II levels measured in each sample. $$$
 p < 0.001 THY-Tau22 CSP vs WT 

mice, &&&
 p < 0.001 THY-Tau22 CSP-TTK21 vs WT mice, ##

 p < 0.01 THY-Tau22 CSP Vs 

THY-Tau22 CSP-TTK21 (Anova followed by Newman-Keuls post hoc test).  
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Figure 4 

�

Figure 4. CSP-TTK21 donot impart toxicity in THY-Tau22 mice after chronic 

treatment. A, Body weights of mice measured during each injection days during the chronic 

treatment (10 injections) were plotted. Influence of treatment on body weight was evaluated 

��������������������������������������������� ��������������������������������������������

significant changes in body weights were detected between THY-Tau CSP and THY-Tau 

CSP-TTK21 mice. B-C, One day after the behavioural studies, different body organs and 

brain sub-parts were dissected out (body: kidney, liver, spleen and heart; brain: Frontal cortex 

and ventral hippocampus) and Western blots were performed on total protein extracts. B, 

Total pro-caspase3 levels were quantified from samples obtained from brain parts. C, 

Quantification of procaspase and cleaved caspase protein levels is shown relative to the total 

proteins in the different organs. No signa����������������������������������������������������

test, #
 p <0.05 (THY-Tau22 CSP compared to THY-Tau22 CSP-TTK21). Annotations- Pro: 

Procaspase3; Cl: Cleaved caspase3, FCx: Frontal cortex and VHipp: Ventral hippocampus.  
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Figure 5 

 

 

 

Figure 5. CSP-TTK21 chronic treatment does not impact on tau phosphorylation and 

tau fragments in the hippocampus of THY-Tau22 mice. A-B, Western blot analysis of tau 

phosphorylation in the, hippocampus of THY-Tau22 mice treated with CSP or CSP-TTK21 

using antibodies targeting physiological pSer214, pSer404 and pathologic AT100 

(pThr212/Ser214), AT270 (pThr181) and pSer199 tau epitopes. Quantifications were 

performed over total human tau levels (Nter). No significant alteration in the phosphorylation 

of tau was detected between CSP or CSP-TTK21 treated mice in hippocampus. Total tau 

levels were quantified versus GAPDH. GAPDH was used as a loading control. Results are 

expressed as means � SEM. C, Sarkosyl-soluble/insoluble Tau was extracted from 

hippocampus of THY-Tau22 mice treated with CSP or CSP-TTK21. D, Quantification 

revealed that CSP-TTK21 did not impact on Tau insolubility as demonstrated using 

antibodies raised against total human tau (Nter). Results are expressed as mean percentage + 

SEM of THY-Tau22 animals (n=7/group).� Abbreviations: C: crude extract, So: soluble 

extract and In: Insoluble extract.  
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Supplementary figure S1 

 

 

 

Supplementary figure S1. Activity testing after chronic treatment. Activity graph with 

the number of cage crossings per hour was plotted for 2 days and 1 night. THY-Tau22 mice 

(both CSP and CSP-TTK21 injected) showed increased nocturnal activity compared to the 

saline injected control littermates (WT). $$$
 p <0.001 when THY-Tau22 (CSP) compared to 

WT; &&
 p <0.01 when THY-Tau22 (CSP-TTK21) compared to WT.  
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Supplementary figure S2 

 

 

Supplementary figure S2. Chronic treatment of CSP-TTK21 reduced memory deficits 

in THY-Tau22 mice. A, Timeline of the chronic treatment relative to the MWM training 

protocol. Single i.p. injection of either CSP or CSP-TTK21 was administered on THY-Tau22 

mice. Sex matched control littermates (WT) were injected with saline. The spatial memory 

test was started after 5 days from the injection. The experiment was planned in such way that 

during the memory test the age of all the mice will be 8 months similar to the chronic 

treatment condition. B, Acquisition curve showing the latency to reach the platform during 

the MWM training. All the 3 groups of mice learned to locate the hidden platform gradually 

during each days of training.  C, Retention was tested during the probe test  after a delay of 

10 days from the last acquisition for persistance of long-term memory. Time spent in the 

target quadrant and the mean of time spent in the other quadrants were measured. WT mice 

spent significantly more time in the target quadrant compared to the THY-Tau22 CSP and 

THY-Tau22 CSP-TTK21 mice. Results are expressed as means � SEM. *
p<0.05, **

p<0.01, 

***
p�������� ���������� �-test compared to chance level. $$$p<0.001 when WT compared to 

THY-Tau22 CSP, and &&&
p<0.001 when WT compared to THY-Tau22 CSP-TTK21; 

ANOVA factoreal followed by Newman-Keuls post-hoc test. 
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 Supplementary figure S3 

 

 

 

Supplementary figure S3. Representative Westernblot images of procaspase and cleaved 

caspase protein levels are shown relative to the total proteins in the A, Body parts and; B, 

brain regions. 
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Supplementary figure S4 

 

 

 

 

Supplementary figure S4. A, Representative Westernblot images of  Histone H2B and H3 

acetylation and total histones H2B or H3in different body parts (kidney, spleen, liver and 

heart), B, Quantification of acetylated histone levels is shown relative to the total histones 

H2B or H3 in the different parts. Results are expressed as means � SEM. 
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Supplementary figure S5 

 

 

 

Supplementary figure S5. A, Representative images of Western blot for; Histone H2B and 

H3 acetylation and total histones H2B or H3 in the brain parts (frontal cortex and ventral 

hippocampus), B, Quantification of acetylated histone levels is shown relative to the total 

histones H2B or H3 in the brain parts, C, Representative images of Western blot for; 

acetylated NFkB (ac p65), acetylated tubulin and total tubulin in the frontal cortex of mice 

brain, D, Quantification of non-histone protein acetylation (NFkB and tubulin) levels is 

shown relative to the total protein levels. Results are expressed as means � SEM. 
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Supplementary figure S6 

 

 

 

Supplementary figure S6. CSP-TTK21 chronic treatment does not impact on tau 

phosphorylation and tau fragments in the hippocampus of THY-Tau22 mice.  

Representative images of Western blot analysis of tau phosphorylation in the hippocampus of 

THY-Tau22 mice treated with CSP or CSP-TTK21 using antibodies targeting physiological 

pSer214, pSer404 and pathologic AT100 (pThr212/Ser214), AT270 (pThr181) and pSer199 

tau epitopes. 
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Supplementary figure S7 

 

 

Supplementary figure S7. CSP-TTK21 chronic treatment does not impact on tau 

phosphorylation and tau fragments in the frontal cortex of THY-Tau22 mice. A, 

Western blot analysis of tau phosphorylation in the frontal cortex of THY-Tau22 mice treated 

with CSP or CSP-TTK21 using antibodies targeting physiological pSer214, pSer404 and 

pathologic pThr181 and pSer199 tau epitopes. B, Quantifications were performed over total 

human tau levels (Nter). No significant alteration in the phosphorylation of tau was detected 

between CSP or CSP-TTK21 treated mice in the frontal cortex. Total tau levels were 

quantified versus GAPDH. GAPDH was used as a loading control. Results are expressed as 

means � SEM. 
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Supplementary figure S8 

 

 

 

 

Supplementary figure S8. mRNA expression of A, Inflammatory marker CCL4 and B, 

human and murine tau gene in the dorsal hippocampus of WT or THY-Tau22 mice treated

with CSP or CSP-TTK21. Results were normalised relative to RNA Pol II transcript levels. 
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Perspectives 

 

The chronic treatment with the HAT activator CSP-TTK21 rescued retention of spatial 

memory in THY-Tau22 mice, in the long term (persistence over 10 days). Effect of CSP-

TTK21 treatment was also observed in the maturation and differentiation of DCX expressing 

neurons in the dorsal dentate gyrus. The improvement of neurogenesis events was 

accompanied with rescue of expression of IEGs like ARC and Zif268. However, it is still 

unclear if the CSP-TTK21 chronic treatment helps to recruit more newly generated neurons 

into the neural network supporting spatial memory. It will also be interesting to investigate if 

CSP-TTK21 treatment improves the number of neurons that are activated during spatial 

memory formation in the hippocampus, or even in other implicated area for systems 

consolidation such as the prefrontal cortex. To answer these questions, we are presently 

administering another chronic treatment in a new group of THY-Tau22 mice. The chronic 

treatment will be followed by 3 days of MWM training. Three weeks before the training 

BrdU will be injected to track how many newly born neurons are recruited in the circuitry 

depending on the treatment. Immunohistochemistry will be performed to thoroughly study 

the influence of CSP-TTK21 chronic treatment in the process of 1/ neuronal activation 

(zif268, cfos �positive neuron countings) and 2/ adult neurogenesis and recruitment of adult 

born neurons into networks supporting spatial memory (double labeling of BrdU and zif268 

or cfos).  
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Supporting Results, SR1 

 

 

Supporting Results Figure SR1. CBP protein dysregulation in dorsal hippocampus of 12 

months old THY-Tau22 mice. A and B, Brains of 12 months age male THY-Tau22 (n=7) 

and WT (n=7) were sub-dissected to collect dorsal hippocampus. Western bots performed on 

dorsal hippocampus of 12 months old THY-Tau22 mice reveals that CBP protein levels are 

significantly down-regulated compared to WT mice (p=0.0453, t-test comparing THY-Tau22 

Vs WT) whereas no significant changes in PCAF levels were observed. Actin was used as 

loading control. C, Co-immunostaining using antibodies recognising pathogenic tau (AT100) 

mostly found in the neurofibrillary tangles (NFTs) and CBP were performed on CA1 region 

of dorsal hippocampus from 12 months old THY-Tau22 mice. D, Quantification of co-

localisation suggested that CBP is progressively degraded in neurons presenting increasing 

levels of pathogenic tau (AT100). Results are expressed as mean +SEM. #p<0.05, �����������-

test when WT is compared with THY-Tau22. 
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Supporting Results SR2 

 

 

 

Supporting Results Figure SR2. 8 months old THY-Tau22 mice are deficient in 

persistence of long term memory. 8 months old male THY-Tau22 (n=12) and their control 

littermates, WT (n=15) mice were subjected to the Morris water maze (MWM) test.  During a 

5-day training period (A1-A5), all the mice were tested in four trials per day for their ability 

to locate a hidden platform using visual clues surrounding the MWM pool. A, Acquisition 

curve showing the latency to reach the platform during the MWM training. Both the groups 

of mice learned to locate the hidden platform gradually during each days of training.  B, 

Retention was tested during the probe test  after a delay of 10 days from the last acquisition 

for persistance of long-term memory. Time spent in the target quadrant and the mean of time 

spent in the other quadrants were measured. WT mice spent significantly more time in the 

target quadrant compared to the THY-Tau22 mice. This results suggests that THY-Tau22 

mice shows deficiency in retention of spatial memory from 8 months of age.  Results are 

expressed as mean +SEM. *
p������� ���������� �-test compared to chance level; #

p<0.05, 

�����������-test when performance of WT is compared with THY-Tau22.  
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Supporting Results SR3A 
�

Transcriptomics analysis in WT and THY-Tau22 mice after sub-chronic treatment of 

CSP-TTK21 (Home cage) 
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Supporting Results SR3B 
�

Transcriptomics analysis in WT and THY-Tau22 mice after sub-chronic treatment of 

CSP-TTK21 (Learning) 
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Supporting Results SR4 

1 - Ex vivo hippocampal slice preparation. 

Each day, a mouse was anesthetized with halothane and decapitated. The brain was rapidly 
removed from the skull and placed in a chilled (0-3°C) artificial cerebrospinal fluid (ACSF) 
containing (mM) NaCl 124, KCl 3.5, MgSO4 1.5, CaCl2 2.5, NaHCO3 26.2, NaH2PO4 1.2, 
glucose 11. Transverse slices (300-400 µm thick) were cut using a vibratome and placed in a 
holding chamber (at 27°C) containing the ACSF solution, at least one hour before recording. 
Each slice was individually transferred to a submersion-type recording chamber and 
submerged with ACSF continuously superfused and equilibrated with 95% O2, 5% CO2. 

2 - Extracellular recordings  

Recordings were obtained at room temperature from the apical dendritic layers of the 
hippocampal CA1 area, using glass micropipettes filled with 2M NaCl and with a resistance 
of 2-�� ���� ������������ ������ �������� ������ ���� ������ ����������� ������������� ����ntials 
(fEPSPs), mostly resulting from the activation of AMPA receptors, were evoked by electrical 
stimulation of Schaeffer collaterals afferent to CA1 and commissural fibres in the stratum 
radiatum. Test stimuli (100 µs duration) were applied every 10 seconds. The magnitude of 
fEPSPs was determined by measuring the slope of fEPSPs. Three successive fEPSPs were 
used to calculate an average slope plotted against time.  

 Long term depression (LTD) was induced by applying a low frequency stimulation at 2 Hz 
(1200 pulses for 10 min) 

 

Supporting Results Figure SR4. Sub-chronic treatment of CSP-TTK21 rescues deficits 

in long-term depression. Time course of LTD: LTD is expressed as a percent change in 
fEPSP (field excitatory postsynaptic potentials) slope across time. After a 20 min baseline, a 
low-frequency stimulation (LFS, 2Hz for 10 min) was applied (arrow). Recording was 
stopped during the 10 min conditioning stimulation and resumed after completion of LFS. 
LFS induced a strong depression of the fEPSP slope, which recovered partially to reach a 
stable level of depression about 20 min after stimulation. LTD values were measured between 
the 50th and 60th min after the end of the LFS. LTD is significantly different in control THY-
Tau22 (CSP treated: 88.4 ± 4.1% of the baseline, n=10) as compared to controls (WT: 71.1 ± 
4.4%, n=9) (F(1,17)=8.8, p=0.008**). CSP-TTK21 treated THY-Tau22 group restores LTD to 
control levels (64.9 ± 5.2%, n=10)(WT vs THY-Tau22 CSP-TTK21:  
  F(1,17)=0.83, p=0.37, ns).
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Overview 

 

The focus of my thesis has been to establish whether small molecule activator of CBP/p300 

HAT function could be relevant to reverse memory dysfunctions in neurodegenerative 

�����������������������������������������������������������������������������������context of 

spatial memory formation, a form of memory that is very early dismantled in AD. In 

Publication 1, we first characterized and described the small molecule activator of CBP/p300 

HAT (CSP-TTK21) in normal adult mice. We showed that CBP/p300 activation in brain 

causes increased hippocampal neurogenesis and the persistence of long-term spatial memory. 

In Publication 2, we further confirmed the role of CBP and its interactions with factors 

binding the KIX domain such as CREB, in recent and remote spatial memory using a

transgenic mouse model of CBP with intact HAT domain but impaired KIX domain 

(CBPKIX/KIX mice). We showed that intact CBP/KIX is required for consolidation of long-

term spatial memory and expression of learning induced gene expression. In Publication 3, 

we showed that targeting CBP/p300 HAT activity by CSP-TTK21 rescues cognitive deficits 

of long-term spatial memory, as well as LTD, in a mouse model of tauopathy (THY-Tau22 

mice). This was also associated with rescue of gene expression of activity-dependent genes 

critically related to spatial memory.  

 

What did we learn about the role of CBP in spatial memory? 

 

CBP is a lysine acetyltransferase that also acts as a transcriptional co-activator. CBP mutation

has been linked to Rubinstein�Taybi syndrome (RSTS) (Petrij et al., 1995), a 

neurodevelopmental disorder characterized by cognitive impairments (Alarcón et al., 2004; 

Bourtchouladze et al., 2003). Among all other HATs, CBP has been most extensively studied 

in memory related processes. However, the role of CBP in spatial memory is still 

contradictory. 

My thesis work further confirms the important role of CBP in the storage of long-term spatial 

memory. To study the function of CBP in spatial memory formation, we adapted two 

different strategies: 1) mutant mice model of CBP, and 2) pharmacological activation of CBP 

HAT function.  
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Evidences from transgenic mouse models 

CBP role in spatial memory is a topic of debate because of different outcomes in spatial 

memory by using various mutant models of CBP. Studies from different mutant mouse 

models of CBP proves its importance in memory formation but results from specific tasks 

were not always comparable (reviewed in Valor et al., 2013; introduction of the thesis p. 13 

and discussed in Publication 2) .  

 

In this study, we investigated the role of CBP when its HAT domain is intact but its 

recruitment to CRE elements through CREB is impaired. Wood et al., in 2006 has described 

that CBPKIX/KIX mice were impaired in long-term memory for contextual fear conditioning 

and novel object recognition (Wood et al., 2006). However, CBPKIX/KIX mice were never 

tested for spatial memory in MWM. The results from Publication 2 clearly depict a 

significant role of CBP interaction with CREB through its KIX domain in the context of 

consolidation of spatial memory at the systems levels. We showed that CBPKIX/KIX mice 

present significant but delayed acquisition performances and significant short-term (1hr) 

memory. However, they are impaired in consolidation of long-term spatial memory as they 

fail to show any retention in both recent (24hr) and remote (30 days) memory. Yet, CBP cKO 

mice do not show such deficit in recent memory (Valor et al., 2011), suggesting that this 

deficit may be in part due to neurodevelopmental defects in the CBPKIX/KIX  mice, or that

compensation can occur when CBP is totally deleted, whereas it can not when a mutated form 

of CBP is present (dominant mutation). Further, CBPKIX/KIX mice present deficits in learning 

induced expression of memory and plasticity related genes in the dorsal hippocampus and the 

frontal cortex. CBP gets recruited by phosphorylated CREB at Ser133 to activate 

transcription (Chrivia et al., 1993; Parker et al., 1996). However, CREB-mediated 

transcription can also be initiated by another mechanism through CREB regulated 

transcription coactivators (CRTCs) (Iourgenko et al., 2003). CRTCs can activate transcription 

independent of phosphorylation of CREB through interaction with the basic leucine zipper 

domain of CREB (Iourgenko et al., 2003; Conkright et al., 2003). Importantly, viral vectors 

mediated local or acute increase of CRTC levels in dorsal hippocampus dentate gyrus region 

of mice before training leads to enhanced memory consolidation suggesting its important role 

in memory processes (Sekeres et al., 2012). Furthermore, depletion of endogenous CREB in 

the dorsal hippocampus leads to impairment of spatial memory  (Sekeres et al., 2010). Taken 

together, these data support the fact that recent retention of spatial memory can occur 

independently of CBP, as CRTC and CREB function could be sufficient. Our data obtained in 
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CBPKIX/KIX mice thus suggest that the persistence of long-term storage of spatial memory 

requires recruitment of CBP on the CRE regions through interaction with phospho-CREB to 

activate transcription of CBP:CREB target genes and this can not be compensated by CRTCs 

members. This does not preclude the intervention of other transcription factors than CREB 

binding the KIX domain (e.g; c-Myb; Kasper et al., 2002). CBP recruitment at the promoter 

coincides with activation of gene expression of some activity dependent genes (Figure 44). 

This likely occurs through histone acetylation, and we found the levels of H2BK5ac to be 

decreased at activity dependent genes, e.g. Nr4a1 and Zif268. These genes have established 

roles in long-term memory formation (Hawk et al., 2012; Penke et al., 2014). Notably Zif268 

was shown to enhance the capacity to form a spatial long-term memory and determine the 

strength of newly encoded memories (Penke et al., 2014). The lack of H2BK5ac (and may be 

other marks) at their promoter during spatial learning when compared to WT mice, may 

partly sign the important role of CBP:CREB in targeting loci-specific acetylation at plasticity 

genes, that may be required for inducing processes necessary for long-term retention. This is 

reminiscent with the early data from Korzus et al (2004), which showed that mice expressing 

CBP deleted from its HAT function could not recall spatial memory at 24hr. Histone 

acetylation at specific sites may lack in these mice (i.e. Zif268 proximal promoter may not be 

hyperacetylated) to further lead to proper spatial memory-associated gene expression profiles. 

Thus, it would be interesting to check the genes activated by spatial learning and their H2Bac

occupancy in such mice. 

Taken together, these finding suggests that CBP plays a major role in the formation of long-

term spatial memory, likely through its recruitment at specific gene promoter loci through 

CREB/CRE, such as those of Nr4a1 and Zif268. 
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Figure 44. CBP interaction with CREB through its KIX domain is essential for its 

recruitment at the proximal promoters of activity dependent gene expression. In WT 
mice, upon spatial learning CBP gets recruited to CRE regions on the promoters of genes like 
(Nr4A1, Zif268 and others) through interaction with CREB. CBP recruitment follows two 
important events related to gene transcription: histone acetylation at the promoters 
(H2BK5ac) and recruitment of the transcriptional machinery. However, mutant CBP that are 
deficient to bind with CREB or other transcription factors through its KIX domain will not 
present increased acetylation at the proximal promoters, and this may contribute to decreased 
gene transcription of memory and plasticity related genes. Figure modified from Vecsey et 
al., 2007. 
 

 

Evidences from pharmacological based strategy 

 

We used a direct strategy to activate CBP HAT function by using pharmacological approach. 

Small molecule based activation of histone acetylation is generally achieved by using HDAC 

inhibitors that indirectly activates histone and non-histone protein acetylation by inhibiting 

HDACs. The Publication 1 of my thesis introduced a novel approach to modulate CBP/p300 

HAT function in mice brain. We have employed an alternative strategy to directly activate 

acetylation by using small molecule activators of CBP/p300 HAT (CSP-TTK21). 

The strategy to activate CBP/p300 HAT in mice brain helped us to understand the 

involvement of CBP/p300 acetyltransferase activities in some fundamental processes in brain 

related to memory and plasticity.  

 

HAT activator TTK21 enhances the acetyltransferase activity of CBP/p300 by inducing the 

auto-acetylation of the protein. Increased HAT activity leads to enhanced histone acetylation 

in vitro. As mentioned in Publication 1, TTK21 cannot pass through mammalian cell 

membrane by itself but needs a vehicle, CSP. Covalent conjugation of CSP-TTK21 opened a 

new direction for our investigation on implications of activating CBP HAT function to study 

spatial memory in both WT and transgenic mouse models of cognitive impairment. We 

evidenced effects on two important hippocampal functions by single dose of CSP-TTK21 in 

healthy adult mice brain: 1) adult neurogenesis and 2) spatial memory formation. CSP-

TTK21 treatment supported maturation and differentiation of adult neuronal progenitors from 

subgranular zone of the dentate gyrus as indicated from long and highly-branched 

doublecortin-positive neurons in that region of hippocampus. Importantly, we observed that 

CSP-TTK21 treatment improved extension of memory duration for remote memory, that was 
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otherwise lost in the WT mice after the mild training. One possible connection of CBP in 

remote memory could be through adult neurogenesis. Notably, environmental enrichment 

induced neurogenesis is strongly impaired in CBP+/- mice and enriched mice can not further 

improve their water maze score (Lopez-Atalaya et al., 2011). New adult generated neurons in 

hippocampus contribute towards the strengthening of spatial memory (Trouche et al., 2009). 

Targeted ablation of adult born neurons in the hippocampus after training impairs the 

retention of remote spatial memory (Arruda-Carvalho et al., 2011). Moreover, genetic 

deletion of immature adult generated neurons leads to deficits in long-term spatial memory 

(Deng et al., 2009). Recruitment of these new adult generated neurons to the neuronal 

network supporting spatial memory is essential for remote spatial memory (Goodman et al., 

2010). Our results on the THY-Tau22 mice after chronic treatment with HAT activator CSP-

TTK21 significantly improved adult neurogenesis, but also improved precision of search in 

the target quadrant, which fits with the current notion that adult neurogenesis is important in 

processes that require precision (e.g. pattern separation; Clelland et al 2009). Thus, a 

possibility is that persistence of spatial memory consolidation requires activation of new 

neurons, a process in which CBP is implicated. Nevertheless, it remains that the HAT 

activator molecule may have favor the dialog of the hippocampus with other cortical regions 

(e.g. prefrontal cortex) to improve remote memory formation and consolidation by the 

systems. 

 

This study justifies the present notion that targeting CBP HAT function could be beneficial 

from the context of neurogenesis and memory formation. Therefore, the therapeutic potential 

for using HAT activator in memory impairment diseases is immense. 

 

Targeting CBP/p300 HAT could be a relevant therapeutic approach in memory 

impairment related diseases 

 

Activation of CBP/p300 HAT activity provided valuable information about its function in 

healthy adult mice brain. Therefore, we used a transgenic mouse model of tauopathy (THY-

Tau22) that shows age dependent cognitive impairment (Schindowski et al., 2006). 

Interestingly, CBP is down-regulated in the dorsal hippocampus of 12 months old THY-

Tau22 mice (Supporting Results, SR 1A and 1B, p233), where pathogenic Tau (AT100)

expressing neurons shows reduced levels of CBP protein in the dorsal CA1 region 

(Supporting Results, SR 1C and 1D, p233). CBP degradation has also been observed in brain 
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�������� �������������������� �� ������������ �������� �Bousiges O et al and Boutillier AL, 

Manuscript in preparation). Therefore, restoring the activity of CBP from an early time-point 

of disease pathology or activation of the remaining CBP proteins in the cells could prove 

beneficial in a therapeutic background. We targeted CBP HAT function in THY-Tau22 mice 

that already show spatial memory deficits from 8 months of age (Supporting Results, SR2, 

p234).  To investigate the effect of HAT activator CSP-TTK21 treatment in THY-Tau22 

mice, we have tested two different protocols of CSP-TTK21 injection in 8 months old THY-

Tau22 mice: chronic protocol (10 injections, once per two weeks) and sub-chronic protocol 

(3 injections, once per week). Based on these two experimental protocols, we have identified 

several implications of CBP/p300 HAT activation in THY-Tau22 mice model.  

 

Reversal of spatial memory deficits 

THY-Tau22 mice show no detectable learning impairments in our experimental conditions 

using MWM, but shows deficits in long-term retention of spatial memory from 8 months of 

age (Supporting Results, SR2, p234). We have seen that administration of both protocols 

(sub-chronic and chronic) can successfully rescue the deficits in cognitive impairment of 

spatial memory in THY-Tau22 mice. The improved memory by CSP-TTK21 treatment can 

also extinguish normally after chronic injection if subjected for consecutive extinction tests. 

These results are in agreement with previous findings, where overexpression of CBP by viral 

based delivery in brains of AD mice improves spatial memory deficits (Caccamo et al., 

2010).  We have identified several other memory- and plasticity- related elements (mentioned 

below) to be modulated upon CSP-TTK21 treatment which could account for reversal of 

memory deficits in THY-Tau22 mice.  

 

Transcriptional programs 

CSP-TTK21 treatment targets the transcriptional programs during memory consolidation in 

the dorsal hippocampus of THY-Tau22 mice. THY-Tau22 mice show reduced expression of 

the immediate early genes Zif268 and ARC in the dorsal hippocampus (Burlot et al., 2015). 

Notably, CSP-TTK21 treatment rescues such gene expression defects. Zif268 and ARC are 

both known to be target of CBP (Miller et al., 2012; Giralt et al., 2012). Importantly, ARC 

and Zif268 are integral components of synaptic plasticity and memory as mice lacking either 

ARC or Zif268 are impaired in hippocampus dependent long-term memory formation 

(Bramham et al., 2010 ; Veyrac et al., 2014 ; Plath et al., 2006 ; Jones et al., 2001). Also, gain 

of function of Zif268 improves hippocampal capacity to form long-term spatial memory 
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(Penke et al., 2014). Furthermore, our RNA sequencing studies performed after spatial 

learning suggests that CSP-TTK21 treatment activates Zif268 and also a series of Zif268-

target genes (Supporting Results, SR3, p235). Importantly, many of these Zif268-target genes 

up-regulated by the molecule were down-regulated in THY-Tau22 mice, suggesting that

Zif268 recovery could be a key player in CSP-TTK21 effect and thus CBP activation-induced 

recovery during spatial learning (Supporting Results, SR3, p235). Of note, Zif268 transcript 

levels were also impaired in the CBPKIXKIX mice during learning, showing the strong link 

between CREB, CBP and Zif268 in spatial learning. Therefore, considering the important 

roles of Zif268 and ARC in long-term memory; induction of these two IEGs in mice models 

of memory impairment is already a promising advancement as a potential therapeutics.  

 

Synaptic plasticity 

Chronic HAT activator treatment also increased the mRNA expression of genes related to 

synaptic formation (SYP) and synaptic plasticity (Gria2) which are otherwise downregulated 

in THY-Tau22 mice. THY-Tau22 mice presented impaired synaptic plasticity characterized 

by reduced dendritic spines from CA1 pyramidal neurons (Burlot et al., 2015) and impaired 

long-term depression (LTD) (Van der Jeugd et al., 2011). LTD, the physiological counterpart 

of LTP is also crucial for some types of hippocampus-dependent learning (Brigman et al., 

2010; Goh and Manahan-Vaughan, 2013). THY-Tau22 mice have impairments particularly in 

the late phase of LTD that occurs parallel to pathogenic Tau progression and memory 

impairments (Belarbi et al., 2011; Ahmed et al., 2015).  Our gene expression data reveals that 

CSP-TTK21 could re-establish a gene expression network associated with voltage gated ion 

channels and transmembrane transporter activity, suggesting it could re-establish proper 

membrane potential and electrical activity in the hippocampus during learning and memory 

(Supporting Results, SR3). This is also supported by the fact that CSP-TTK21 treatment 

totally restored the impaired LTD in THY-Tau22 mice (Supporting Results, SR4, p244). 

Therefore, the cognitive improvement after CSP-TTK21 could also be due to the re-

instatement of LTD in THY-Tau22 mice. However, we still need to analyze the effect of 

CSP-TTK21 treatment in the dendritic spine formation after spatial learning.  Thus our data, 

suggests that activation of CBP/p300 HAT function in a mice model of tauopathy could 

rescue defects in synaptic plasticity and therefore contribute towards re-establishment of 

normal hippocampal function during spatial memory formation.  
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Adult Neurogenesis 

CSP-TTK21 treatment also impacts on the adult hippocampal neurogenesis in THY-Tau22 

mice. Maturation and differentiation of adult-born dentate granule cells (3-5 weeks age) 

require synaptic contact from afferents of the entorhinal cortex (Vivar et al., 2012; 

Deshpande et al., 2013). THY-Tau22 mice show reduced dendritic arborization of newly 

generated neurons (DCX+ neurons) from the sub-granular zone of dorsal dentate gyrus. We 

have seen that sub-chronic treatment (3 injections) is not sufficient to reverse such defects; 

however, chronic treatment with CSP-TTK21 recovers such dendritic morphology. Therefore 

a persistent boost of transcriptional programs by CSP-TTK21 treatment from an early time-

point (from 3 months of age to 8 months age) can actually delay the deficits in neurogenesis 

in THY-Tau22 mice. However, we still need to analyze the effect of CSP-TTK21 treatment 

in the recruitment of these newly generated dentate granule cells into the neuronal network 

supporting spatial memory (under investigation).   

 

 

 

Figure 45. THY-Tau22 mice show impaired hippocampal gene expression of IEGs, LTD, 
adult neurogenesis and spatial memory. Chronic/ sub-chronic treatment of CSP-TTK21 
rescues such defects and therefore contributes towards improved hippocampal function. 
Violet arrow indicates improvement after sub-chronic treatment (3 injections, once per week) 
and blue arrow indicates improvements after chronic treatment (10 injections, once per two 
weeks).  
 

 



General Discussion and Future Perspectives 

����

�

Future perspectives  

 

What�� next? 

 

Further validation of CSP-TTK21 for therapeutic application 

 

Findings from my thesis show convincing data about the implication of CSP-TTK21, an 

activator of CBP/p300 HAT, in memory related processes. Data obtained from the THY-

Tau22 mice model shows that CSP-TTK21 treatment could rescue several defects of 

hippocampal processes related to memory formation like reinstatement of gene expression 

networks, adult neurogenesis, long-term depression and long-term spatial memory. Further, 

we show that long term (chronic) treatment is not deleterious for the mice. Therefore, the 

potential for this molecule to be used as a therapeutic intervention for the treatment of 

diseases related to memory impairment is immense. However, translation of CSP-TTK21 as a 

therapeutic agent requires validation of several parameters/ factors:   

 

Proteomics approach for substrate specificity. We have checked that CSP-TTK21 induces 

acetyltransferase activity of CBP and p300. However, it needs to be further verified whether 

other HATs are also targets of CSP-TTK21. Therefore in vitro HAT assays using

recombinant proteins of different HATs needs to be checked with CSP-TTK21. Further, we 

need to perform a proteomics based study to identify the targets of CBP/p300 activation by 

CSP-TTK21 in vivo. Using mass spectrometric methods, we can identify the histone and non-

histone protein acetylation marks induced by CSP-TTK21 in mice brain. 

 

Mode of administration. All the results obtained using CSP-TTK21 in my thesis are after 

intraperitoneal administration in mice, therefore other modes of administration also need to 

be verified. Oral drug administration is the most common mode of treatment, and recently, 

HDAC inhibitor vorinostat showed promising results in mice models of ageing and amyloid 

deposition after oral administration (Benito et al., 2015). Therefore, we also need to check if 

CSP-TTK21 could still cross the blood-brain barrier after oral administration and retain its 

HAT activation property and non-toxic nature.  
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Test CSP-TTK21 effect in CBP mutant mice. To prove the current notion that improvement 

of spatial memory by CSP-TTK21 is mainly due to activation of CBP, we need to treat a 

mutant CBP mouse strain (e.g. CBPcKO, Valor et al., 2011) with CSP-TTK21. As these mice 

do not show impairment in spatial retention, we could check whether the molecule fails to 

improve spatial learning memory following a mild training protocol as used for WT mice in 

Chatterjee et al. (2013). Further, CBP HAT domain is essential for consolidation of long-term 

memory (Korzus et al., 2004). Our data obtained from mostly in vitro studies indicates that 

CSP-TTK21 mainly targets CBP to activate its HAT function. Therefore to prove whether 

CSP-TTK21 effect is mainly due to activation of CBP�� HAT function, we need to treat CBP 

HAT
(-) mice with CSP-TTK21 . If the molecule treatment fails to improve memory durations, 

it would be a proof of concept that CSP-TTK21 mainly targets CBP and its HAT function to 

improve hippocampus dependent memory formation. 

 

Neuronal vs non-neuronal population. ������������ �������� ��� ����������� ����� ���������

degeneration, a massive increase in glial population of cells and increased inflammatory 

responses, which is also seen in our THY-Tau22 mouse model as early as 8 months of age 

(Supporting Results, SR3). We have previously shown that CSP can cross both neuronal and 

glial cells in cultured cell lines (Selvi et al., 2008; Selvi et al., 2012). Therefore, it would be 

of utmost importance to check the effect of CSP-TTK21 treatment separately in neuronal and 

glial population of cells in the hippocampus. Chronic treatment of CSP-TTK21 does not alter 

the pathogenic Tau load in THY-Tau22 mice which occurs in the neurons. However, it is not 

yet clear if the molecule enters the glial progenitors and alters their activity. Therefore a 

thorough characterization of the effects (transcriptional and pathological) of CSP-TTK21 in 

sorted population of brain cells (neuronal vs. non neuronal; Benito et al., 2015) needs to be 

performed.  

 

HAT activation in Zif268 KO mice. Our RNA sequencing studies after spatial learning 

shows that sub-chronic treatment with CSP-TTK21 causes increase in transcription of Zif268 

target genes in dorsal hippocampus of THY-Tau22 mice (Supporting Results, SR3). This 

study indicates an important role of Zif268 in the improvement of cognitive function by CSP-

TTK21. For proof of concept, Zif268 KO mice could be treated with CSP-TTK21 and their 

spatial memory performances in MWM could then be analyzed. If CSP-TTK21 treatment 

fails to rescue spatial memory deficits, it would conclusively prove the importance of Zif268 
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activation as one of the major event downstream of CBP/p300 activation caused by CSP-

TTK21 treatment. 

 

Other behavioural tasks. Almost all the mutant mice models of CBP shows memory 

impairments in object recognition tasks. Therefore, implication of HAT activation in object�

recognition tasks should also be tested.  Pattern separation is considered to be dependent on 

adult hippocampal neurogenesis (Sahay et al., 2011). CSP-TTK21 treatment also improves 

adult hippocampal neurogenesis in both healthy and pathogenic mice. CSP-TTK21 treated 

mice could be tested in behavioral tasks dependent on pattern separation. The results obtained 

would nicely establish the role of CBP function in pattern separation.  

 

Implications in therapeutics 

 

Test in different mice models of cognitive impairment. We have shown implication of CSP-

TTK21 treatment on a mouse model of memory impairment (THY-Tau22 mice), but to be 

used as a therapeutics, we need to verify the beneficial effects of CSP-TTK21 in other mice

models of cognitive impairment.  

 

� ������������������� (AD). Apart from tauopathy; ageing and amyloid burden are the 

other major contributors for the pathogenesis of ������������ disease. Therefore, 

testing the implications of CSP-TTK21 treatment in mice models of age-associated 

memory impairment and amyloid deposition will provide valuable information about 

the strategy to activate HATs as therapeutics. As APP-PS mice strains develop both 

amyloid plaques and neurofibrillary tangles (NFTs), treatment with CSP-TTK21 

would reflect its implications for the treatment of AD.  

� Huntington's disease (HD) is also associated with deficits in long-term memory 

mostly due to reduced CBP histone acetyltransferase activity (Giralt et al., 2012) and 

extensive down-regulation of genes controlling neuronal function (Achour et al., 

2015). As CSP-TTK21 treatment induces CBP HAT activity and also increases target 

gene expression, chronic treatment of CSP-TTK21 may provide beneficial effects in 

mouse models of HD.    

� Rubinstein�Taybi syndrome (RTS), a complex autosomal-dominant disease 

characterized with cognitive impairments (Rubinstein and Taybi, 1963) is associated 

with mutation in gene encoding cbp (Petrij et al., 1995). Mice models of 
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haploinsufficiency form of Rubinstein-Taybi syndrome (RTS; CBP+/-)  have 

deficiencies in some forms of long-term memory, and late phase of hippocampal 

long-term potentiation (L-LTP) (Alarcón et al., 2004). Therefore, it would be 

intriguing to check if HAT activation could ameliorate the cognitive impairment by 

activating the limited amounts of CBP in this mouse model.  

  

Therapeutic application in non-human primate models. Study of brain and behavioural 

changes in non-human primate models provides more biological resemblances to humans. 

Moreover, the two major factors contributing towards AD pathogenesis: ������������������� 

are highly homologous among primates. Importantly, ageing induces �����������������������

��������� �-amyloid angiopathy in nonhuman primates (Heuer et al., 2012). Therefore the 

therapeutic implications of CBP/p300 activation could be tested in these primate models. 
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Multifunctional chromatin organizing protein, PC4 is critical for brain 

plasticity 
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Abstract 

Though the elaborate combination of histone and non-histone protein complexes defines 
chromatin organization and hence regulates numerous nuclear processes, the role of 
chromatin organizing proteins remains unexplored at the organismal level. The highly 
abundant, multifunctional, chromatin-associated protein and transcriptional coactivator, 
PC4/Sub1 is absolutely critical for life, as its absence leads to embryonic lethality. Here, we 
report results obtained with conditional PC4 knockout (PC4f/f Nestin-Cre) mice where PC4 
is knocked out specifically in the brain. Compared to the control (PC4+/+ Nestin-Cre) mice, 
PC4f/f Nestin-Cre mice are smaller, with decreased nocturnal activity, but are fertile and 
show no motor dysfunction. Neurons in different areas of the brain of these mice show 
sensitivity to hypoxia/anoxia, and decreased adult neurogenesis was observed in the dentate 
gyrus. Interestingly, PC4f/f Nestin-Cre mice exhibit a severe deficit in spatial memory 
extinction, while acquisition and long-term retention were unaffected. Gene expression 
analysis of the dorsal hippocampus of PC4f/f Nestin-Cre mice revealed dysregulated 
expression of several neural function-associated genes, which could be a result of impaired 
chromatin organization or dysregulated transcriptional output. Finally, PC4 was consistently 
found to localize on the promoters of up- and downregulated genes, indicating that PC4 
regulates the expression of these genes. These observations indicate that non-histone 
chromatin-associated proteins like PC4 play a significant role in neuronal plasticity.  

Keywords: Chromatin organization, conditional knockout, gene expression, neurogenesis, 
spatial memory extinction.
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Le cadre général de la thèse 

 

La caractéristique la plus fascinante du cerveau est sa capacité à former des 

souvenirs à long terme et de les stocker pour des durées allant de quelques jours 

à quelques semaines, voire durant une vie entière. La formation de la mémoire à 

long terme est un processus complexe associée à des modifications structurelles 

dans le cerveau. La formation de la mémoire à long terme ne se produit pas 

immédiatement après l'apprentissage, la mémoire est initialement dans un état 

fragile. Elle subit ensuite un processus de stabilisation correspondant à la 

consolidation de la mémoire pendant laquelle la mémoire devient moins 

sensible aux perturbations. Mécaniquement, l'expression de novo des gènes est 

un événement critique lors de la consolidation de la mémoire, ce qui est 

fondamental pour la consolidation cellulaire ou moléculaire. L'expression des 

gènes lors de la consolidation de la mémoire nécessite plusieurs mécanismes qui 

se chevauchent, y compris le recrutement de facteurs de transcription, les co-

activateurs de transcription et les régulateurs. L'un des principaux mécanismes 

de régulation de l'expression des gènes est par remodelage de la chromatine, 

grâce à des modifications de ������������������������, dont l'acétylation est un 

acteur important. Les enzymes qui catalysent le transfert du groupe acétyle sur 

les résidus lysine de protéines histones ou non-histones sont les histones/lysine 

acétyltransférases (HATs / KATs). La réaction inverse est catalysée par des 

histone désacétylases (HDAC). Récemment, les acétylations des histones ont 

����������������������������������� moduler les processus liés à la mémoire. En 

particulier, l'acétylation des histones participe aux processus impliqués durant la 

plasticité synaptique, l'apprentissage et la formation de la mémoire à long terme. 
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CBP est une des HAT qui a montré fonctions importantes dans la formation de 

mémoire à long terme. CBP fonctionne comme acétyltransférase et comme co-

activateur transcriptionnel. A la fois l'activité acétyltransférase et la fonction de 

coactivateur de la transcription sont essentiels pour la formation de mémoire à 

long terme. Enfin, la dérégulation de CBP a été observée dans des maladies 

neurodégénératives comme la maladie d'Alzheimer et la maladie de Huntington. 

Par conséquent, cibler les fonctions de CBP dans des conditions pathologiques 

pourrait fournir des résultats bénéfiques.  

 

Objectifs de la thèse 

 

Le rôle de la CBP dans la mémoire spatiale est sujet à débat, parce que 

différents modèles de souris CBP mutées ont fourni des résultats différents dans 

la mémoire spatiale. Les études de différents modèles de souris mutantes de 

CBP prouve son importance dans la formation de la mémoire, mais les résultats 

concernant des tâches spécifiques ne sont pas toujours comparables (décrits 

dans Valor et al., 2013). Alors que la plupart des modèles de souris mutantes 

ont présenté des déficits dans l������������������������������objets, les résultats 

de la mémoire spatiale étaient la plupart du temps variables. Les souris 

dépourvues d'un allèle de CBP ne montrent aucun déficit dans la formation de la 

mémoire spatiale, ni dans la rétention récente (Alarcon et al., 2004), alors que 

ces souris CBP +/- présentent une diminution de leurs facultés dans un test de 

mémoire spatiale suite à un élevage dans un environnement enrichissement (EE) 

(Lopez- Atalaya et al., 2011). Les souris avec une mutation de CBP au niveau 

du domaine de la fonction HAT, présentaient une altération du maintien de la 

mémoire spatiale à long terme alors que la mémoire à court terme était peu 

impactée (Korzus et al., 2004). Notamment, le déficit de mémoire récente à long 

terme pourrait être inversé après un entrainement intense (Korzus et al., 2004). 
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Pourtant, les souris knock-out conditionnel (CKO) de CBP dans les neurones 

excitateurs du cerveau antérieur postnatale de souris développées dans le 

laboratoire de J. Shen avait entraîné une déficience complète de la mémoire 

spatiale à court et à long terme (Chen et al., 2010), tandis que la suppression de 

CBP les neurones principaux du cerveau antérieur de souris développées dans le 

laboratoire de A. Barco affiche une mémoire spatiale intacte (Valor et al., 

2011). 

Ainsi, les groupes de recherche ce sont intéressés aux souris transgéniques 

portant des acétyltransferases mutés, plutôt que de regarder l'aspect dynamique 

de la régulation des acétyltransférases. Les données obtenues dans le laboratoire 

avant mes études de doctorat, apportent un point de vue très intéressant, ainsi 

Bousiges et al. (2010) ont montré que l'expression de plusieurs 

acétyltransférases (CBP, mais aussi EP300 et PCAF) est augmentée lors de la 

consolidation de la mémoire spatiale. Comme les niveaux de CBP sont présents 

dans des concentrations limitées dans les cellules (Vo et Goodman, 2001), la 

concurrence pour le recrutement de CBP pourrait fournir un mécanisme 

potentiel de diaphonie entre les différentes fonctions neuronales lors de la 

formation de la mémoire. Cette production de la hausse des niveaux de CBP - et 

éventuellement d'autres HATs - po������� ������� ��������� ��������� ������������

consolidation de la formation de la mémoire soit en augmentant la robustesse de 

la réponse dans le temps, soit en participant à la transduction du signal à travers 

de multiples autres fonctions de CBP (coactivateur, pontage, ou le recrutement 

de l'ARN polymérase II au niveau des enhancers;. Kim et al, 2010). En outre, 

l'acétylation de H2B, dont le niveau est considérablement modifiée dans 

l'hippocampe de souris mutantes CBP (Alarcon et al 2004;. Chen et al, 2010;. 

Valor et al, 2011) et semble donc être une cible de CBP in vivo, est augmentée 

dans les neurones de l'hippocampe tandis qu'une mémoire spatiale est formée à 

la fois au niveau de la chromatine et au niveau des promoteurs de plusieurs 

gènes de mémoire liés à la plasticité (Bousiges et al, 2010;. Bousiges et al, 
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2013.). ��acétylation de H2B a également été associée à l'activité neuronale 

comme observé dans des coupes d'hippocampe dépolarisées (Sharma et al., 

2010). Ainsi, l'induction d'un programme génétique dépendant �����������������

de H2B / CBP pourrait contribuer à la formation de la mémoire dépendante de 

l'hippocampe. Au total, ces études et données récentes du laboratoire établissent 

clairement que les acétyltransférases (la présence et l'activité) sont une 

composante essentielle de la formation de la mémoire. 

 

Par conséquent, mon objectif pour la thèse était de 1 / mieux définir la fonction

de CBP dans la mémoire spatiale en utilisant deux stratégies différentes: une 

stratégie pharmacologique (utilisatio��������petite molécule activant la fonction 

HAT de CBP dans le cerveau; en collaboration avec le Prof. Tapas Kundu, 

Bangalore, Inde) et une stratégie reposant sur un modèle de souris transgénique 

(modèle de souris avec une mutation du CBP dans le domaine KIX, de sorte que 

CBP ne puisse pas se lier avec phospho-CREB; collaboration avec le Dr Ted 

ABEL, Philadelphie, Etats-Unis) et 2 / examiner la pertinence de l'utilisation 

d'une molécule activateur des HAT comme nouvelle option thérapeutique pour 

les maladies liées à la mémoire telles que la maladie d'Alzheimer dans un 

modèle de souris Tau (collaboration avec les Drs. Luc BUEE et David BLUM, 

Lille, France). 

 

Les inhibiteurs de HDAC augmentent l'acétylation des histones et ont montré 

des résultats prometteurs pour améliorer les processus mnésiques. Notre objectif 

était d'augmenter l'acétylation des histones dans une approche plus directe en 

activant ������������ ����������� ���������������� �cétyltransférases. Nous avons 

utilisé l'approche de la biologie chimique pour développer une petite molécule 

activant la fonction HAT de CBP / p300 (CSP-TTK21) qui induit l'acétylation 

des histones dans l'hippocampe dorsal et le cortex frontal des souris. Nous 

avons étudié les implications de ��activation de CBP / p300 dans deux fonctions 
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importantes: neurogenèse hippocampique adulte et la mémoire spatiale à long 

terme. ��objectif suivant était d'étudier la fonction co-activateur 

transcriptionnelle de CBP dépendant du domaine KIX dans la formation de la 

mémoire spatiale et de la rétention, ainsi que dans la régulation ����������������

de gènes cibles de CBP (�����-à-dire des gènes pertinents de mémoire et de 

plasticité) lors de l'apprentissage ���������������hippocampe dorsale et le cortex 

frontal des souris CBPKIX/KIX. Enfin, nous avons exploré les implications 

thérapeutiques de l'activation pharmacologique de CBP dans un modèle de 

souris de la maladie d'Alzheimer (des souris THY-Tau22). Les résultats 

préalablement obtenus au sein de notre laboratoire suggèrent un 

dysfonctionnement de CBP dans l'hippocampe des souris THY-Tau22 et aussi 

de patients humains de la maladie d'Alzheimer. Par conséquent, notre hypothèse 

était de traiter des souris THY-Tau22 avec l'activateur de HAT CSP-TTK21 à 

un âge précoce (dès 3 mois), afin que nous puissions être en mesure non 

seulement d'améliorer les fonctions de la mémoire, mais aussi d'améliorer la 

neurogenèse adulte et peut être également de retarder l'apparition de la maladie. 

 

 

Structure de la these 

 

��"Introduction générale" présente les concepts scientifiques fondamentaux qui 

ont ������������������������������ai commencé avec les connaissances de base de 

l'apprentissage et de la mémoire où, je présente les différentes formes de 

mémoire. Ensuite, je me suis concentré sur l'hippocampe et est expliqué les 

fonctions importantes de l'hippocampe dans les processus mnésiques. Dans le 

chapitre suivant, j'ai expliqué brièvement les différentes voies moléculaires 

impliquées lors de la formation de la mémoire en partant des facteurs de 

croissance ��������� facteurs de transcription et à l'expression des gènes 

précoces immédiats. J'ai cité des exemples d'un composant principal associé à 
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chacune des couches de la cascade de signalisation. Dans le chapitre suivant, 

���� introduit les mécanismes épigénétiques en mettant l'accent plus 

particulièrement sur la participation des acétylations dans les processus liés à la 

mémoire. Dans le dernier chapitre, j'ai décrit l'état pathologique de la maladie 

d'Alzheimer et décrit brièvement les facteurs importants impliqués dans la 

pathologie. Puis, j'ai insisté sur les implications de la modulation de l'acétylation 

des histones comme une approche thérapeutique possible pour le traitement de 

la maladie d'Alzheimer. 

La « Contribution expérimentale » est divisée en trois chapitres basés sur les

publications et les objectifs de la thèse: 

Dans la publication 1, les implications de l'activation pharmacologique des 

HATs CBP/p300 avec CSP-TTK21 ont été décrites pour deux fonctions 

importantes: la neurogenèse adulte hippocampique et la formation de la 

mémoire spatiale. Il a jeté les bases d'un brevet de collaboration (WO2013 // 

160885) entre ��UNISTRA (Strasbourg, France) et JNCASR (Bangalore, Inde). 

La publication 2 montre l'importance du domaine KIX de CBP dans le stockage 

de la mémoire spatiale à long terme. Dans la publication 3, nous avons montré 

les effets bénéfiques du traitement chronique ��� ��activateur de la HAT CSP-

TTK21 chez la souris THY-Tau22 pour restaurer les déficits de mémoire 

spatiale. 

La partie sur « Les résultats supplémentaires » présente les résultats de travaux 

de collaboration réalisées avec d'autres membres de mon laboratoire afin 

d'identifier les mécani����� ������������� ��������� �� ��activation de CBP/p300 

par CSP-TTK21 chez la souris THY-Tau22 (description de la souche de souris 

THY-Tau22, effet du CSP-TTK21 sur la LTD (mesures électrophysiologique, 

en collaboration avec le Dr Patrick Dutar, Paris, France) et des études 

transcriptomiques (en collaboration avec la Plate-forme biopuce de l'IGBMC, 

Illkirch, France). 



General Objectives and  Summary (In French) 

����

�

Dans la section « Discussion générale et perspective », j'ai décrit ce que nous 

avons appris sur la fonction de CBP dans la mémoire spatiale et ai suggéré les 

implications de ce travail de thèse dans le développement de médicaments 

épigénétiques pour le traitement des maladies de la mémoire comme la maladie 

d'Alzheimer, et probablement d'autres maladies neurodégénératives. 
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A Novel Activator of CBP/p300 Acetyltransferases Promotes 

Neurogenesis and Extends Memory Duration in Adult Mice 

 

 

Contexte de recherche et des objectifs 

 

L'acétylation des histones est considérée comme essentielle pour la plasticité 

synaptique et la mémoire. La recherche réalisée par diverses équipes lors de 

cette dernière décennie a indiqué l'importance de l'acétylation des histones 

dans le fonctionnement du cerveau et l'altération de cette voie est responsable 

de déficits cognitifs. Le meilleur exemple de modulation de l'acétylation est 

l'utilisation d'inhibiteurs d'HDAC dans l'étude des processus de mémoire. Les 

chercheurs utilisent des inhibiteurs d'HDAC comme un outil pour cibler les 

HDAC et ainsi activer l'acétylation des histones. L'activation de l'acétylation 

des histones par les inhibiteurs HDAC impacts sur le maintien de la LTP et 

améliore également la mémoire à long terme comme cela a été démontré dans 

différentes formes de mémoire et différents contextes. De manière intéressante, 

l'activation ��� ��acétylation des histones par les inhibiteurs de HDAC est un 

processus plutôt indirecte et en dehors de l'activité de désacétylation, qui se 

produit également sur les protéines non histones, les HDAC sont associés à de 

nombreuses autres fonctions biologiques, en agissant par exemple comme des 

complexes co-répresseurs de la transcription de la chromatine.  

 

Le rôle des HDAC dans la mémoire et les maladies est un domaine de recherche 

intense. Les chercheurs ont montré le rôle de plusieurs HDAC dans les 

processus de mémorisations. Cependant, nos connaissances sur le rôle des 

HATs dans les processus liés à la mémoire sont principalement basées sur CBP. 

La mutation de CBP ������ ������������ syndrome de Rubinstein Taybi, un état 

pathologique caractérisé par des déficits cognitifs (Petrij et al., 1995;. 

Kalkhoven et al., 2003; Alarcón et al, 2004; Barco, 2007). La fonction de CBP 

dans l'apprentissage et dans les processus de mémorisation a été déchiffré avec 
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des modèles génétiques de knock-down et de suppression du gène (Barco, 2007; 

Oliveira et al., 2006; Barrett et al, 2011;. Oliveira et al, 2011;. Chen et al., 2010; 

Valor et al., 2011). L'apprentissage spatial induit l'expression de plusieurs HAT 

y compris CBP/p300 suggérant son importance pendant le processus de 

formation de la mémoire (Bousiges et al., 2010). De même, une libération virale 

de CBP dans l'hippocampe d'un modèle de souris de la maladie d'Alzheimer 

restaure les déficits d'apprentissage et de mémoire (Caccamo et al., 2010). 

L'ensemble de ces résultats appuie le fait que la stimulation de CBP peut être un 

potentiel outil thérapeutique pour le traitement des pathologies des troubles de

la mémoire, tel que la maladie d'Alzheimer. 

Ai�������������� commencé ma recherche au laboratoire du Dr K Tapas Kundu, 

Bangalore, en Inde, l'objectif était de cibler directement la fonction HAT de 

CBP par un moyen pharmacologique afin de moduler les niveaux d'acétylation 

des histones et d'étudier son effet sur les fonctions biologiques. Les recherches 

dans le laboratoire de Kundu étaient principalement axées sur la recherche sur le 

cancer. Après une collaboration avec le groupe du Dr AL Boutillier qui a 

commencé en 2003, un nouvel axe de recherche a été développé vers la ré-

activation des fonctions HAT de CBP dans les maladies neurodégénératives et 

dans les fonctions cognitives. ���ctivation des HAT pourrait permettre une 

meilleure compréhension de l'importance des HAT spécifiques dans différents 

processus, tels que la survie neuronale et la formation de la mémoire, et avec 

hypothétiquement moins d'acétylation des histones de manière non-spécifique et 

globale. 

 

La recherche sur les activateurs KAT  

 

Le domaine HAT est la région qui catalyse l'activité acétyltransférase des HAT. 

Le domaine HAT a été étudié minutieusement et la structure cristalline du 

domaine HAT de CBP et p300 a déjà été décrit. Le domaine HAT a été d'un 
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immense intérêt pour les chimistes pour moduler la fonction acétyltransférase 

des HAT. Plusieurs petites molécules (sondes chimiques synthétiques ou 

naturels) ont été conçues pour cibler ce domaine. ������������� de petites 

molécules qui peuvent activer la fonction enzymatique des HAT est un concept 

émergent et seulement quelques-unes d'entre elles ont été décrites. La première 

molécule activatrice de HAT rapportée est le N- (4-chloro-3-trifluorométhyl-

phényl) -2-éthoxy-6-pentadécyle-Benza-mide (CTPB) qui est dérivée à partir de 

l'acide anacardique obtenu à partir de la coquille de la noix de cajou. CTPB a 

été synthétisé dans le laboratoire du Dr Kundu en Inde (Balasubramanyam et

al., 2003). CTPB active p300 mais pas fonction HAT de PCAF in vitro. 

��analyse par spectroscopie Raman suggère que la liaison du CTPB sur le

domaine HAT de p300 induit un changement de conformation qui aide au 

recrutement de plus d'acétyl-CoA et �� ��auto-acétylation (Mantelingu et al., 

2007). ����� ����������������n activateur de HAT plus stable et plus puissant, 

CTPB a été dérivé en une série de petites molécules et une librairie de 

molécules a été créée. ������������������� travail sur la modulation du domaine 

HAT par des petites molécules dans le laboratoire du Dr Kundu. Nous avons 

testé l'activité de ces molécules en utilisant un dosage de l'activité HAT faible 

débit. Parmi tous les dérivés, TTK21 a montré la meilleure activité et la 

meilleure spécificité envers CBP et p300. Le but principal à la synthèse de ces 

activateurs de HAT est de tester leurs fonctions dans le cerveau des animaux. 

Ainsi, la première étape avant de tester l'effet d'une molécule dans un modèle 

animal est de vérifier son activité dans des lignées cellulaires. Nous avons traité 

des lignées de cellules SHSY-5Y au TTK21 et nous avons trouvé que la 

molécule ����� pas capable de traverser la membrane cellulaire et est inactive 

dans les lignées cellulaires de mammifères. 
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Besoin d'un véhicule pour transporter l'activateur de HAT  

 

La biologie moléculaire et la nanotechnologie ont travaillé main dans la main 

pendant la dernière décennie pour développer une approche thérapeutique pour 

la délivrance de la drogue. La science interdisciplinaire nous permet de partager 

les connaissances de chacune des disciplines de la science et de la technologie 

permettant de développer ce qui est impossible à faire seul. Nous avons appris 

que le groupe du Dr Eswaramoorthy dans JNCASR, en Inde avait développé un 

sucre dérivé de nanosphères de carbone (CSP) qui peut traverser la membrane

des cellules de mammifères et peut également traverser la barrière hémato-

encéphalique (BHE) chez la souris. Les premières études de la collaboration 

entre les deux groupes de recherche ont permis ���������� ��������������� HAT 

CTPB sur CSP (CSP CTPB) de manière chimique. Ensuite, le composé adsorbé 

a pu être testé dans le laboratoire du Dr Boutillier et la molécule activateur de 

HAT a montré une activité dans le cerveau des souris et des rats (Selvi et al., 

2008). Nous avons profité de la technologie disponible et on a commencé à 

enquêter sur les détails mécanistiques de l'entrée de CSP dans les cellules 

mammifères. Nous avons montré que l'entrée de CSP dans des cellules vivantes 

suit un processus d'endocytose dépendante de la clathrine. CSP a également 

montré une forte préférence pour les cellules avec des niveaux plus élevés de 

transporteurs de glucose (Selvi et al., 2012). Ainsi la molécule ������avéré être 

un véhicule potentiel pour cibler différents organes comme le cerveau avec une 

grande spécificité. 

 

La conjugaison de CSP-TTK21 et le début d'une approche fascinante pour 

stimuler la mémoire chez des souris non transgéniques 

 

Nous avons réussi à conjuguer chimiquement CSP avec un activateur de HAT 

TTK21 (nommé comme CSP-TTK21) et à confirmer la conjugaison par 
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diverses méthodes biophysiques. CSP-TTK21 contrairement à la molécule 

TTK21 non conjuguée pourrait traverser la membrane des cellules de 

mammifères et aussi passer la barrière hémato-encéphalique (BHE) chez la 

souris. Le matériau conjugué prend environ 24 heures pour entrer dans le 

cerveau de rongeurs et dans les 72 heures après l'administration i.p., avec un 

suivi par la fluorescence intrinsèque de CSP. Comme CSP-TTK21 pourrait

avoir un impact sur les niveaux d'acétylation des histones du cerveau, étudier 

ses conséquences dans un contexte neurobiologique est d'un immense intérêt. 

Cela établit les bases pour explorer les implications de l'activation CBP par

��activateur HAT CSP-TTK21 dans les processus liés à la mémoire. La 

collaboration avec le groupe du Dr Boutillier ��a permis de travailler dans son 

laboratoire pour un court séjour de 3 mois. Mes premiers résultats obtenus dans 

le laboratoire du Dr Boutillier portaient sur le rôle potentiel de l'activation de 

CBP grâce au CSP-TTK21 dans les processus de mémorisation. Nous avons 

constaté que CSP-TTK21 en activant l'acétylation des histones dans 

l'hippocampe dorsal a également favorisé la formation de neurones 

doublecortine positif très ramifiés dans le gyrus denté seulement après une dose 

unique d'injection (500 µg / souris). Ce fut la première série de données qui a 

suggéré que l'activation de la HAT pourrait également favoriser la maturation et 

la différenciation des progéniteurs neuronaux adultes. Enfin, nous avons 

également mis en évidence que CSP-TTK21 a amélioré la mémoire spatiale à 

long terme sans amélioration de la rétention d'une mémoire récente. 

La première série de données obtenues à partir de ma courte visite dans le 

laboratoire du Dr Boutillier a en outre été soutenu par le CEFIPRA entre les

laboratoires du Dr Kundu et du Dr Boutillier, y compris le financement de mon 

doctorat dans le laboratoire du Dr Boutillier à Strasbourg, France. Je suis entré 

dans le laboratoire du Dr Boutillier en Janvier 2013 comme un étudiant en 

doctorat. 
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Après avoir rejoint en tant que doctorant, nous avons étudié la distribution des 

CSP-TTK21 dans différentes régions du cerveau des souris et d'autres tissus du 

corps. Alors la grande question était le mécanisme par lequel CSP-TTK21 

active la formation de la mémoire. Nous avons évalué les profils d'expression 

des gènes de la mémoire et nous avons également validé le statut d'acétylation 

de l'histone H2B sur les promoteurs de ces gènes après l'injection unique de 

CSP-TTK21. 

Les données obtenues sur l'effet de la CSP-TTK21 chez les souris adultes en 

bonne santé ont été publiés dans le Journal of Neuroscience (Chatterjee et al.,

2013) et la molécule (CSP-TTK21) a été breveté (W02013 / 160885).�

�
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Discussion 

 

La présente étude a montré les implications de l'activation acétyltransférase 

CBP / p300 dans les processus liés à la mémoire. Contrairement à d'autres 

activateurs de HAT ne passant pas les membranes cellulaires, le nouvel 

activateur de HAT conjugué CSP-TTK21 traverse efficacement la barrière 

hémato-encéphalique et active l'acétylation des histones dans le cortex frontal et 

l'hippocampe dorsal de cerveau de souris. L'activation de l'acétylation des 

histones a été bénéfique car elle induit la différenciation et la maturation des 

jeunes neurones de l'hippocampe et l'amélioration de la rétention à long terme 

d'une mémoire spatiale. Cette étude est la première preuve directe pour 

l'activation de CBP / p300 dans le cerveau qui en soi est une grande réussite et 

ouvre une nouvelle option thérapeutique pour les maladies neurodégénératives. 

 

Importance de l'amélioration de la maturation neuronale de la fonction 

cognitive 

 

La neurogenèse hippocampique est considérée comme étant impliquée dans la 

persistance de la mémoire à long terme. Récemment, il a été montré que ������� 

de la neurogenèse par rayonnement du cerveau entier un mois avant la tâche 

spatiale conduit à des déficits importants de la performance de la mémoire 

spatiale en piscine de Morris. En outre une diminution de la neurogenèse a aussi 

entrainé une expression réduite de BDNF en raison de la diminution des 

acétylations de H3 sur les promoteurs du BDNF (Ji et al., 2014). Ici, dans cette 

étude, nous avons montré que l'activation de  HAT chez les souris non 

transgénique a amélioré la longueur dendritique et ��arborisation des neurones 

DCX-positifs et augmente l'expression du gène de marqueurs neuronaux de 

différenciation comme BDNF et NeuroD1 seulement après 3 jours d'injection. 

Nous avons observé une augmentation de l'occupation ��� ��histone H2B 
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acétylée sur les promoteurs de NeuroD1 et BDNF EI. Nous avons montré que 

��expression induite de NeuroD1 par l'activateur de HAT a éventuellement 

contribué à la maturation dendritique stimulée. Il était déjà connu que NeuroD1 

joue essentielle de la maturation dendritique et des souris dépourvues de 

NeuroD1 présentent une réduction de la maturation dendritique et de 

��arborisation des progéniteurs granulaires de l'hippocampe (Schwab et al., 

2000). Plus tard, une étude concluante du groupe de Claire Rampon a confirmé 

l'importance de NeuroD1 dans la maturation neuronale et l'intégration 

fonctionnelle de nouveaux neurones pendant la période de maturation (Richetin

et al., 2015). Dans cette étude, les vecteurs rétroviraux codant le gène rapporteur 

pour la synthèse de NeuroD1 dans le gyrus denté montrent une grande 

complexité de ramification et une augmentation de la longueur dendritique 

totale des neurones à ������ ���14 jours. Ainsi NeuroD1 fournit aux neurones 

nouvellement générés de nouvelles connexions. NeuroD1 est un gène cible CBP 

(Sun et al., 2001). Bien que les souris CBP mutées hétérozygote (+/-) ne 

montrent pas de défauts dans la neurogenèse adulte basale mais la neurogénèse 

adulte induit par un environnement enrichi était significativement altérée chez 

ces souris (Lopez-Atalaya et al., 2011). Ainsi, les résultats appuient l'idée que la 

présence de CBP contribue à la neurogenèse adulte peut-être par la maturation 

neuronale et la différenciation.  

 

Rôle de ��activation de CBP / p300 dans la persistance de la mémoire à long 

terme 

 

La recherche active de la dernière décennie a établi le rôle de CBP et p300 dans 

les processus de mémoire (Barco, 2007;. Oliveira et al., 2006; Barrett et al, 

2011;. Oliveira et al, 2011). ��implication de CBP dans la mémoire spatiale 

dépend de sa liaison avec CREB à travers le domaine KIX (Chatterjee et al, non 

publié, Publication 3). L'activation de la voie de signalisation de la protéine 
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CREB augmente la force de la mémoire spatiale chez les animaux faiblement 

entrainés (Sekeres et al., 2010). Étonnamment, nous n'avons pas la preuve de 

��influence de l'activation CBP sur les performances de la mémoire spatiale pour 

un délai court post acquisition. Cependant, ��activation dépendant de CSP-

TTK21 des fonctions HAT de CBP / p300 augmente significativement la 

mémoire à long terme (16 jours après l'acquisition). Différentes souris mutantes 

CBP montrent une insuffisance dans certaines formes de la mémoire dépendante 

de l'hippocampe, en particulier la reconnaissance d'objet est affectée alors que la 

mémoire spatiale est soit peu ou pas impactée (Oike et al., 1999; Alarcón et al.,

2004;. Korzus et al, 2004;. Valor et al, 2011). Notamment, la mémoire spatiale a 

été mesurée dans les études mentionnées ci-dessus avec peu de temps post-

acquisition (24 h ou moins). Ainsi CBP semble être plus impliquée dans la 

formation de la mémoire spatiale à distance (remote memory) que pour la 

mémoire récente. 

La consolidation de la mémoire implique une réorganisation synaptique et des 

systèmes où les interactions hippocampo-corticale coordonnés stabilise la 

mémoire (Frankland et Bontempi 2005; Winocur et al., 2010). Nous avons 

observé que CSP-TTK21 non seulement active ��acétylation des histones dans 

l'hippocampe dorsal mais active également ��acétylation des histones grâce à 

CBP / p300 dans le cortex frontal et certaines autres régions du cerveau. La 

fonction HAT de CBP est essentielle pour l'encodage à long terme dans le 

cortex préfrontal médial (CPFm). Des rapports récents suggèrent que la fonction 

réduite de CBP dans le CPFm se traduit par la perturbation la mémoire 

dépendant de la localisation d'objet (Vieira et Korzus, 2015). Ainsi, l'activation 

de la fonction HAT de CBP dans le CPFm pourrait compléter les mécanismes 

de la mémoire spatiale hippocampe-dépendante et améliorer le codage de la 

mémoire à long terme. Ces ���������� ���������� ���� ��������������� �� 

��acétylation des histones grâce à CSP-TTK21 pourrait être la marque de 

neurones de certaines sous-régions corticales (marquage précoce), renforçant 
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ainsi un dialogue hippocampo-corticale pour former une mémoire persistante, 

comme décrit récemment (Lesburguères et al., 2011). 

 

Activation de HAT, une nouvelle approche thérapeutique pour les troubles de 

la mémoire ? 

 

HAT et HDAC présentent des résultats opposés dans le contexte de 

��acétylation des niveaux globaux de chromatine, leur mode d'action est 

également différent. Les HAT sont les composantes essentielles des complexes 

co-activateur transcriptionnel et possèdent un Bromodomain permettant de 

recruter les histones acétylées de la chromatine (Yang, 2004). Considérant que 

les HDAC font partie de complexes corépresseurs qui dépendent de ��interaction 

protéine-protéine à cibler à la chromatine. Ainsi on peut présumer que 

l'activation des HAT conduirait à des conséquences différentes de celles de 

l'inhibition des HDAC. En outre, pendant la formation de la mémoire les 

marques spécifiques d'acétylation des histones sont activés par les HAT plutôt 

que bloqué par les HDAC (Bousiges et al, 2013;. Peixoto et Abel, 2013). Nos 

résultats suggèrent que CSP-TTK21 active la transcription des gènes liés à la 

différenciation (Neuro D1, DCX, TUC4, BDNF), l'excitabilité neuronale (cFos), 

ou de la mémoire (FOSL2, NR4A2), cependant, d'autres gènes cibles de CBP / 

p300 ��étaient pas activé comme Egr-1 ou Arc par une injection unique de 

CSPTTK21 dans des conditions basales. ���ctivation du BDNF est sensible à 

��état d'acétylation de la chromatine et est une cible de la signalisation NR4A 

(Volpicelli et al, 2007;. Faucon et al, 2012). Les HDACi augmentent également 

l'expression du gène NR4A2, alors que le blocage de signalisation NR4A 

interfère avec l'amélioration de la mémoire induite par les HDACi. Ainsi CSP-

TTK21 active éventuellement des cascades de signalisation spécifiques pour 

activer les processus de mémoire. 
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La déficience cognitive est souvent associée à un dysfonctionnement de la 

transcription comme en témoignent de diverses maladies neurodégénératives. 

Les inhibiteurs d'HDAC sont largement utilisés pour augmenter le statut 

d'acétylation des histones dans des modèles animaux afin de rétablir les

programmes génétiques dans le cerveau (Kazantsev et Thompson, 2008; Gräff 

et al., 2011). Les HDACi ont montré un effet prometteur pour reestaurer les 

conditions pathologiques et les déficits de mémoire des modèles de souris de la 

maladie d'Alzheimer (MA) (Ricobaraza et al, 2009;. Kilgore et al, 2010;. 

Ricobaraza et al., 2011; Govindarajan et al, 2013.; Ricobaraza et al., 2012,

Cuadrado-Tejedor et al., 2013). 

CBP a été impliquée dans plusieurs maladies neuro-dégénératives. La mutation 

de CBP provoque le syndrome de Rubinstein Taybi, une affection 

neurodégénérative caractérisée par un retard mental (Petrij et al., 1995; Oike et 

al., 1999). Dans la maladie de Huntington, CBP interagit avec la protéine 

mutante et conduit à la dérégulation de l'expression du gène huntingtine (Steffan 

et al., 2000; Steffan et al., 2001). Des résultats non publiés de notre laboratoire 

suggèrent également que les niveaux de protéine CBP sont considérablement 

diminués dans l'hippocampe des patients atteints de la maladie d'Alzheimer 

(Bousiges et al, manuscrit en préparation) et dans un modèle de souris de 

Tauopathie (Cassel et al, manuscrit en cours de préparation). En outre, nous 

avons également observé que les niveaux de CBP ont diminué dans des cellules 

de l'hippocampe exprimant des niveaux élevés de protéine pathogène Tau 

phosphorylée dans un modèle de souris de Tauopathie. Ainsi la stratégie pour 

activer la fonction enzymatique de CBP dans un état pathologique pourrait 

effectivement se révéler bénéfique dans une perspective thérapeutique.  
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Points de vue 

 

Un traitement unique du CSP-TTK21 chez les souris adultes en bonne santé a 

montré un effet prometteur pour améliorer la mémoire spatiale à long terme en 

renforçant la maturation neuronale et l'expression de gènes liés à la mémoire. 

Comme indiqué précédemment, les dysfonctionnements de la fonction HAT de 

CBP / p300 a été impliquée dans divers troubles neurodégénératifs comme la 

maladie d'Alzheimer. Par conséquent, la possibilité pour sauver les défauts 

cognitifs dans des modèles animaux de neurodégénérescence, par traitement 

CSP-TTK21 est très probable. Nous avons exploré la possibilité d'améliorer la 

perte de mémoire dans un modèle de souris de tauopathie (THY-Tau22) par le 

traitement chronique de CSP-TTK21 (Publication 3). 

Pour utiliser l'activateur de HAT CSP-TTK21 nouvellement développé comme 

un médicament pour stimuler la mémoire, il serait nécessaire d'étudier son effet 

physiologique dans le corps de l'animal. CSP est préparé à partir de glucose et il 

est éliminé du cerveau après 7 jours après une injection ip. Bien que ���������� 

pas mis en évidence ��effet toxique ou des phénotypes comportementaux 

anormaux chez les souris après une injection unique de CSP-TTK21, une 

caractérisation approfondie de la toxicité doit être effectuée. Pour développer 

CSP-TTK21 comme médicament thérapeutique, la dose mortelle doit également 

être déterminée dans différents modèles animaux. Lors de la publication 3, nous 

avons administré un traitement chronique de CSP-TTK21 chez la souris THY-

Tau22 et avons essayé de répondre en partie à la question de la toxicité en 

mesurant les niveaux du marqueur pro-apoptotique caspase-3 dans différentes 

����������������������������������������������������������������������������������

possibilité d'accumulation de la molécule dans ces parties du corps, le niveau 

d'acétylation des histones ont également été mesurées. Apparemment, la 

molécule ne montre pas d'effets secondaires toxiques (Publication 3). 
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Nous avons constaté que CSP-TTK21 active l'activité acétyltransférase de p300 

/ CBP, mais ne modifie pas l'activité de la HAT PCAF (données non 

présentées). Cependant, il a été démontré récemment que ��autres HAT comme 

GCN5 et Tip60 influencent les processus liés à la mémoire (Maurice et al, 

2008;.. Stilling et al, 2014). Ainsi, il serait intéressant d'étudier si CSP-TTK21 

agit sur d'autres HAT ou s'il améliore les processus de la mémoire liés 

uniquement par activation de CBP / p300. Comme l'acétylation des histones est 

liée à l'expression des gènes, nous avons également besoin d'effectuer une étude 

transcriptomique complète pour déterminer le profil d'expression différentielle

des gènes lors du traitement par CSP-TTK21 des souris adultes en bonne santé. 

Dernier point mais pas des moindres; mettre au point un médicament pour le 

traitement, et l'effet de l'administration orale doit être controlé. Donc, nous 

devons aussi vérifier si CSP-TTK21 peut encore atteindre le cerveau et ainsi 

conserver sa propriété d'activation de la fonction HAT après administration 

orale.�
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CREB-dependent CBP regulations of plasticity-related genes is 

required for long-term spatial memory formation 
 

 

Contexte et objectifs scientifiques 

 

CBP est une acétyltransférase de la lysine ainsi qu'un co-activateur 

transcriptionnel. ���nteraction entre CBP et le facteur de transcription CREB est 

un événement essentiel dans le processus de formation de la mémoire. Depuis 

les dix dernières années, le rôle de CBP a été explorée au cours des différentes 

formes de formation de la mémoire à l'aide de la plupart des modèles de souris 

mutantes. 

Dans la présente étude, nous avons utilisé un modèle de souris mutante de CBP 

(souris CBPKIX / KIX) qui contient une triple mutation dans le domaine KIX 

de CBP qui le rend incapable d'interagir avec phospho-CREB et c-myb. Woods 

et al ont déjà décrit que les souris CBPKIX / KIX présentaient un déficit en 

mémoire à long terme, en conditionnement à la peur dépendant du contexte et 

en reconnaissance d'objet (Wood et al., 2006). Cependant, l'importance de 

l'interaction CBP-CREB n'a jamais été testé pour la consolidation de la mémoire 

spatiale dans la piscine de Morris (Morris water maze MWM) en utilisant des 

souris CBPKIX / KIX. 

Dans le présent chapitre, j'ai identifié que l'interaction entre CBP et les facteurs 

de transcription comme CREB grâce au domaine KIX est essentiel pour la 

conservation de la mémoire à long terme, mais pas pour la rétention à court 

��������������������� étudié les profils d'expression des gènes de la mémoire et 

de la plasticité liée après l'apprentissage spatial dans deux régions du cerveau 
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importantes pour la consolidation de la mémoire (hippocampe dorsal et cortex 

préfrontal) chez la souris CBPKIX / KIX. Le profil d'expression des gènes a 

également été comparé à l'acétylation des histones de marques spécifiques liés à 

l'activation transcriptionnelle sur des promoteurs proximales de ces gènes. Par 

conséquent, cette étude fournit des preuves de l'interaction CBP-CREB par le 

domaine KIX pour la persistance de la mémoire spatiale à long terme. 
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Chronic treatment of a Tau mouse model with a HAT activator 

increases maturation of newly generated neurons and improves 

hippocampus-dependent memory 
 

 

Contexte et objectifs scientifiques 

 

Dans la publication 1, nous avons signalé un nouvel activateur de la fonction 

HAT de CBP / p300 (CSP-TTK21) qui peut traverser la barrière hémato-

encéphalique et induire l'acétylation des histones dans le cerveau des souris. En 

atteignant le cerveau des souris adultes en bonne santé, il potentialise deux 

fonctions importantes: la neurogenèse hippocampique adulte et la mémoire 

spatiale à long terme (Chatterjee et al, 2013). Par conséquent, ��étape suivante 

était de déterminer si le traitement par cet activateur de la HAT CSP-TTK21 

pourrait apporter un avantage dans un modèle de souris présentant une 

déficience cognitive. Pour cette étude, nous avons utilisé des souris THY-Tau22 

qui expriment quatre répétitions de la protéine tau humaine mutés à des sites 

G272V et P301S sous un promoteur Thy1. Les souris THY-Tau22 montrent une 

pathologie Tau hippocampique et troubles de la mémoire dépendante de 

l'hippocampe ���� ����� ��������� ���� la maladie d'Alzheimer (Schindowski et 

al., 2006;. Belarbi et al, 2011; Van der Jeugd et al, 2013.). Les THY-Tau22 

montrent des déficits liée à l'âge tels que des déficits de ����������������et de la 

mémoire dépendant de l'hippocampe (Van der Jeugd et al., 2013) et des déficits 

atténués en phase tardive de LTD pour la transmission synaptique (Van der 

Jeugd et al., 2011). 
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Les études d��������������������������������� l'âge de 8 mois les souris THY-

Tau22 entrainées dans le MWM pendant cinq jours consécutifs afin de localiser 

une plate-forme cachée montrent des déficits dans la rétention de la mémoire 

spatiale à long terme (Schneider, Cassel, Chatterjee et al, manuscrit en 

préparation; Soutenir Résultats SR2). Un traitement sub-chronique de CSP-

TTK21 (3 injections, une fois par semaine) chez les souris THY-Tau22 

améliore les déficits de la mémoire avec parallèlement une restauration de 

��expression de certains gènes dans des conditions d'apprentissage, comme 

évalué par des analyses du transcriptome (études de RNAseq). Particulièrement

plusieurs gènes liés à la mémoire et la plasticité ont été trouvés dérégulés dans 

les souris Tau par rapport aux souris WT après l'apprentissage spatial, et de 

manière intéressante, un ensemble de gènes liés au transport d'ions et aux 

canaux ioniques voltage-dépendants ont été trouvés sur-régulée par un 

traitement CSPTTK21 (Schneider, Cassel, Chatterjee et al, manuscrit en 

préparation; Résultats Soutenir SR3). Cependant, un tel traitement sous-

chronique n'a pas amélioré de façon significative la neurogenèse adulte qui est 

par ailleurs sévèrement altérée dans ce modèle de souris Tau (non représenté), 

ce qui suggère que les souris ne récupèrent pas pleinement avec le traitement. 

Par conséquent, l'hypothèse de la présente étude était que si nous traitions les 

souris THY-Tau22 avec l'activateur de la HAT CSP-TTK21 à un temps précoce 

(dès 3 mois), nous pourrions être en mesure non seulement d'améliorer les 

fonctions de la mémoire, mais aussi d'améliorer la neurogenèse adulte et peut 

être retarder l'apparition de la pathologie de la maladie. Nous avons ensuite 

traité des souris THY-Tau22 de 3 mois avec CSP-TTK21 et nous avons 

poursuivi le traitement jusqu'à l'âge de 8 mois. Nous avons analysé les effets 

d'un traitement chronique de CSP-TTK21 dans deux fonctions importantes 

dépendantes ��� ��hippocampe: la neurogenèse adulte et la mémoire spatiale à 

long terme. Nous avons également étudié les profils d'expression de plusieurs 

gènes de mémoire et de plasticité (comme les gènes précoces immédiats, des 
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gènes de formation et de plasticité synaptique). Comme nous avons effectué le 

traitement chronique, nous avons cherché à évaluer les éventuels effets 

secondaires toxiques apparaissant en raison du traitement chronique. Enfin, 

nous avons également étudié l'anatomopathologie afin de déterminer si la 

molécule pourrait effectivement retarder la pathologie de la maladie. 

Ce sont ces caractéristiques importantes ������ ���������������, afin de tester si 

une telle molécule peut être une nouvelle opportunité thérapeutique pour les 

troubles liés à la mémoire tels que la maladie d'Alzheimer. 

�

�

�

�

�

�

�

�

�

�

�



�

�

�

 

����������������������

 

 

 

�����������������������������������������������������

������������������������������������������������������

����������������������������������������������

�

Résumé 

La CREB Binding Protein (CBP) a une activité lysine acétyltransférase intrinsèque et 
fonctionne aussi comme un co-activateur transcriptionnel. L'activité acétyltransférase et la 
fonction de coactivateur transcriptionel sont toutes deux essentielles pour la formation de 
mémoire à long terme. De plus, la dérégulation de CBP a été observée dans des maladies 
neurodégénératives comme la maladie d'Alzheimer et la maladie de Huntington. L'objectif de 
ma thèse était d'étudier le rôle de la CBP et de son activation pharmacologique dans le cadre 
de la formation de la mémoire spatiale, une forme de mémoire qui est démantelé très tôt dans 
la MA. Les données obtenues à partir de ma thèse montrent que l'activation de la fonction 
acétyltransférase CBP par ��activateur CSP-TTK21 améliore les processus mnésiques chez 
des souris adultes normales et aussi dans un modèle murin de MA (THY-Tau22). Ainsi, la 
stratégie d�activation pharmacologique de l'activité acétyltransférase de CBP a un énorme 
potentiel pour une utilisation en tant qu'agent thérapeutique pour le traitement des maladies 
liées à l'altération de la mémoire tel que la maladie d'Alzheimer. 

 

Summary 

CREB Binding Protein (CBP) has an intrinsic lysine acetyltransferase activity and also 
functions as a transcriptional co-activator. Both the acetyltransferase activity and the 
transcriptional co-activator function are critical for long-term memory formation. 
Importantly, CBP dysregulation has been observed in neurodegenerative conditions like in 
�������������������������������������������������������������������������������������������

of CBP and its activation by a new pharrmacological tool, in the context of spatial memory 
formation, a form of memory that is very early dismantled in AD. Data obtained from my 
thesis clearly suggests that activation of CBP acetyltransferase function by small molecule 
activator CSP-TTK21 can improve memory related processes in healthy adult mice and also 
in a mouse model of AD, (THY-Tau22). Therefore, the strategy of pharmacological 
activation of CBP acetyltransferase activity has tremendous potential for use as therapeutics 
for the treatment of diseases related to memory impairment ��������������������disease. 

Keywords: Epigenetics, Histone acetylation, Spatial memory, Transcription, Neurogenesis 
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