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The test of a good teacher is not how many questions
he can ask his pupils that they will answer readily, but
how many questions he inspires them to ask him which

he finds it hard to answer.

Alice Wellington Rollins

We are what we repeatedly do.
Excellence then, is not an act, but a habit.

Aristotle
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Introduction

This thesis is about the mathematical study of free surface incompressible fluids. An incompressible
flow is a fluid with a constant density. This implies a free divergence velocity. Obviously, water
like most liquids is incompressible.

In practice, if the density change of a fluid is small, it can be considered incompressible. This
happens when the Mach number associated to the flow is low i.e. when the ratio of flow velocity
to the speed of sound is small. Particularly, in our framework, air fits this regime and is considered
incompressible.

Incompressible fluids satisfy the incompressible Navier–Stokes equations:
ρ
(
∂u
∂t + (u · ∇)u

)
− µ∆u +∇p = ρf

div u = 0

u(0, x) = u0(x).

(0.1)

Here ρ is the density whereas µ is the viscosity of the fluid. The unknowns of the problem are u
the velocity flow and p the pressure. On the other hand, f is the density of force exerted on the
fluid while u0 is the initial velocity flow. This equation is endowed with boundary conditions on
the boundary of fluid domain.

An incompressible fluid satisfying the Navier–Stokes equation (0.1) with a viscosity µ > 0, is

called a Newtonian fluid. Nevertheless, if the Reynolds number associated to the flow i.e. the ratio
of inertial forces to viscous forces is large, we can suppose that the fluid is perfect. In this case, it

9



10 1. Some results on a shallow water model called the Green-Naghdi equations

satisfies the incompressible Euler equation (Navier–Stokes equation without the Laplace operator):
ρ
(
∂u
∂t + (u · ∇)u

)
+∇p = ρf

div u = 0

u(0, x) = u0(x).

(0.2)

As an example, let us consider water. The viscosity of water is 0.001 Pa.s while its density is 1000

kg/m3. Therefore, it is modeled by incompressible Euler equations in most applications specially
in oceanography. For this reason, system (0.2) is the equation used in this latter domain, for the
derivation of approximative models. These models are called shallow water and concern the regime
where the fluid height is small compared to the characteristic wavelength. This regime coincides
with the frame of some geophysical phenomena like tsunamis and earthquakes.

Let us mention that in this work, our concern is the fluid’s free surface. Indeed, free surface
flows satisfy the fluid equation on the fluid domain which moves following the velocity flow. For
this reason, the treatment of the free surface raises some challenges which have led to the derivation
of shallow water models and to creation of some specific numerical tools. The first part of the thesis
is on the theoretical study of one of these approximative models called the Green–Naghdi equation
whereas the second part is on the numerical study of System (0.1).

1 Some results on a shallow water model called the Green-Naghdi
equations

Shallow water models are essentially considered in Oceanography where the water height is small
compared to the characteristic wavelength and the rotational effects are negligible. The ratio be-
tween the squared characteristic water height and the squared characteristic wavelength is called
the shallowness parameter. As explained in [75], the derivation of these models is based on a non
dimensionalized Euler equations considered for a free curl velocity flow. As a matter of fact, the
fluid considered here is incompressible and perfect (inviscid) and is subjected to the earth gravity.
It slips on a flat solid bottom which is defined on the whole x-axis (resp. xoy plane) if the fluid is
2-dimensional (resp. 3-dimensional). A free surface separates the fluid from the vacuum or from
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air represented by an atmospheric pressure. The fluid is supposed to be a perturbation of the still
fluid in the sense that it can be represented with a function defined on the domain of definition of
the bottom. Moreover, the water depth is always assumed to be bounded from below by a strictly

Figure 1.1: An incompressible inviscid (perfect) fluid is considered on a solid flat bottom B. The
fluid domain (resp. the fluid free surface) at t is represented by Ωt (resp. Γt).

positive constant and to be at rest at infinity. Let us also mention that in the frame of water wave
problem, no surface tension is considered.

Remark 1.1 During the first part of this thesis, no topography is considered. More precisely, the
fluid is always assumed to evolve on a flat bottom. Nevertheless, see for instance [75, 20] for the
derivation and analysis of shallow water models with topography.

This model is described by the following equations:
ρ
(
∂u
∂t + (u · ∇)u

)
+∇p = ρg on Ωt

div u = 0 on Ωt

rot u = 0 on Ωt

u(0, x) = u0(x) on Ω0.

(1.1)

where Ωt is the domain of fluid at time t and g is the density of the gravity acceleration g = −gez .
Following the assumptions we consider, this domain evolves with the free surface. Let us also
mention that no friction effect is considered here for the derivation of shallow water systems (Saint-
Venant system and Green–Naghdi equations). Nevertheless, some classical terms are added, in
some references, to these shallow water models to take viscosity and friction into account (see
for instance [57, 75]). Therefore, the boundary conditions we consider for the moment are the
slip boundary conditions (without friction) on the bottom. Since the bottom is flat and no friction
is considered, this condition is equivalent to a homogenous Dirichlet condition for the vertical
component of the velocity. In other words, the velocity field is tangent to the bottom. Moreover,
since the fluid is inviscid and no surface tension is considered, the free surface condition leads to a
Dirichlet condition for the pressure on the free surface. Denoting the atmospheric pressure by pa

and the vertical axis coordinate by z1, these conditions are described by{
uz = 0 on B
p = pa on Γt

(1.2)

1Symbol uz represents the norm of the projection of the velocity u on the vertical z-axis.
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To complete the fluid model we consider, we just need to add the fact that the free surface is
transported by the velocity flow. In other words,{

(1,u) is tangential to the free surface (t,Γt), t ≥ 0. (1.3)

Equations (1.1)-(1.3) give us the mathematical frame of the physical problem. As we see in the
following sections, this is the model we consider to derive shallow water systems.

Asymptotic regimes. The complexity of formulation (1.1)-(1.3) leads to consider the asymp-
totic models in the shallow water and small amplitude (or long wave) regimes. A shallow water
system is a long wave model if the ratio between the characteristic wave amplitude and the water
height 2 is as small as the shallowness parameter. We consider in this work fluids satisfying the
shallow water assumption. However no condition for the waves amplitude is taken into account.
Under this assumption, the derived model at the first order is the non linear shallow water model or
Saint-Venant system whereas the derived model at the second order is the Green–Naghdi equations.
If in addition, the shallow water system is a long wave model, the Green–Naghdi equations will
become the Boussinesq equations [29] which leads to the KdV equations in the 2-dimensional case
[74, 17]. Let us also mention that in these asymptotic models, the free surface is represented by the
water height which is assumed to be unique at all points of the bottom. This water height satisfies
a partial differential equation since the kinematic boundary condition becomes a partial differential
equation. For this reason, these asymptotic models are simpler than the primitive fluid model. Let
us also mention that in this frame, the asymptotic model is defined on the bottom and not on the
whole space. This is due to the fact that the velocity components are independent of the vertical
variable. In conclusion, shallow water models are interesting essentially for their simplicity as well
as the reduction of the dimension.

Remark 1.2 During all this thesis, we are interested in smooth solutions of the free surface in-
compressible fluid problem. For this reason, all the equations are considered in the strong sens.
Similarly, all the operations done on the solution are based on its smoothness. Consequently, inte-
grations by part and use of composed function derivative formulas are justified.

The objective of the first part of this thesis is to prove the asymptotic stability of constant solutions
of the Green–Naghdi equations (derived in the next part) with a second order dissipative term.
This analysis is done by adapting an approach classically used for hyperbolic systems based on
the symmetric structure of the equations. In Chapter 1, we put the Green–Naghdi equation in a
generalized symmetric structure. Then, in Chapter 2, we see how this symmetric structure leads to
the asymptotic stability of constant solutions of the system with a second order dissipative term.

1.1 Zakharov formulation of the water wave problem and some of its properties

The classical formulation of the problem (1.1)-(1.3) which is classically used to derive the shallow
water models is a formulation introduced by Zakharov [109]. It is based on the fact that the trace of
the velocity as well as the trace of the velocity potential on the free surface is sufficient to obtain the

2This ratio is also called the nonlinearity parameter since it appears in front of non linear terms of the non-
dimensionalized equation.
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velocity on the whole fluid domain. Therefore, this formulation consists in considering the equation
satisfied by the fluid height h(x, t) and the trace of the velocity potential on the free surface. We
denote here by x in this work x = x if the fluid is 2-dimensional and x = (x, y) if the fluid is
3-dimensional.

The irrotationality of the fluid leads us to the existence of a velocity potential φ such that

u = ∇φ. (1.4)

Then, thanks to the mass conservation condition (the free divergence condition for the velocity), the
velocity potential φ is harmonic i.e. it satisfies

∆φ = 0. (1.5)

Now, we denote by ψ the trace of the velocity potential φ on the free surface Σt. This means that
we have

ψ(x, t) = φ(x, h(x, t), t) for all x ∈ Rd with d = 1, 2.

This notation together with the slip condition on the bottom (1.2) leads to the following boundary
condition for the velocity potential φ.{

φ = ψ on Σt,

∇φ · n = 0 on B.
(1.6)

Obviously, the knowledge of the traceψ leads to a non homogenous Dirichlet boundary condition on
the free surface and a homogenous Neumann boundary condition on the bottom. Under reasonable
regularity assumptions on h and ψ, the problem (1.5)-(1.6) admits a unique solution for φ. This
is why the knowledge of the trace of the velocity potential on the free surface is equivalent to the
knowledge of the velocity potential on the whole fluid domain.

Considering this fact, we now derive from (1.1)-(1.3) the equations satisfied by h and ψ. To do
so, we use the relation between φ and ψ described by the Dirichlet–Neumann operator G(h). This
operator relates the velocity potential trace ψ to the normal derivative of φ on the free surface:

G(h)(ψ) =
(

1 + |∂xh|2
) 1

2 ∇φ · n. (1.7)

Considering the fact that the exterior unit normal satisfies

n =
(

1 + |∂xh|2
)− 1

2

(
−∂xh

1

)
,

the expression (1.7) of the operator becomes

G(h)(ψ) = −∂xφ · ∂xh+ ∂zφ. (1.8)

On the other hand, the momentum equation (the first equation of (1.1), the boundary condition for
the pressure on the free surface (the second equation of (1.2)) together with (1.4) gives the following
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equation for φ on the free surface

∂tφ+
1

2
|∇φ|2 + gh = 0. (1.9)

Then, the free surface evolution condition (1.3) satisfied on the free surface becomes the following
equation in terms of h et φ :

∂th+ ∂xh · ∂xφ− ∂zφ = 0. (1.10)

We can also check by simple arguments and by the chain rule that the following equalities hold true
on the free surface {

∂tψ = ∂tφ+ ∂zφ∂th,

∂xψ = ∂xφ+ ∂zφ∂xh,
(1.11)

Then taking the scalar product of the second equation of (1.11) with ∂xh and using the expression
(1.8) of the Dirichlet Neumann operator, we find

∂zφ =
G(h)ψ + ∂xψ · ∂xh

1 + |∂xh|2
(1.12)

Then combining (1.8) - (1.12), we find the Zakharov formulation of the water wave problem i.e. the
system of equation satisfied by h and ψ:∂th− G(h)ψ = 0,

∂tψ + 1
2 |∂xψ|

2 − (G(h)ψ+∂xh·∂xψ)2

2(1+|∂xh|2)
+ gh = 0.

(1.13)

This system admits a Hamiltonian structure which is used in the following section to derive shallow
water systems. Indeed, (1.13) can be written under 3{

∂th = δH
δψ ,

∂tψ = − δH
δh ,

(1.14)

where the HamiltonianH is given by

H =
1

2

∫
R

(
gh2 + ψG(h)ψ

)
. (1.15)

Similarly to [78, 31, 32, 86, 85], we use a Taylor expansion of the Dirichlet–Neumann operator
to derive asymptotic models. The shallow water model we obtain, depends on the order of the
expansion as well as the assumptions on the wave amplitude, water height and wavelength. Other
approaches to derive shallow water models are possible (see [75, 20, 57] for instance).

1.2 Derivation of shallow water models

In this part, we derive formally Saint-Venant and Green–Naghdi equations from the water waves
problem (1.14). This means that we derive asymptotic models for (1.14) under the shallowness

3Symbol δH
δψ

represents the variational derivative of the functionalH with respect to the variable ψ.
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assumption. This assumption is represented mathematically by

ε << 1,

where the shallowness parameter ε is defined by

ε =
H

Lx
.

Here, H is the characteristic water height whereas Lx is the characteristic wavelength in the longi-
tudinal direction. Then, we denote by Ly the characteristic wavelength in the transverse direction
and by U the characteristic fluid horizontal velocity. Then, we use the following natural scaling for
the equation

ψ = ULxψ
′, h = Hh′, x = Lxx

′, t =
Lx
U
t′ and y = Lyy

′ if the fluid is 3-dimensional.

We assume for the sake of simplicity that Lx ' Ly.

Let us also mention that g′ = gh/U2 is the inverse of the Froude number. Then, after omitting
prime symbols for the sake of simplicity, we get the following non-dimensionalized equations:∂th−

1
ε2
G(ε, h)ψ = 0

∂tψ + 1
2 |∂xψ|

2 − 1
ε2

(G(ε,h)ψ+ε2∂xh·∂xψ)
2

2(1+ε2|∂xh|2)
+ gh = 0.

(1.16)

This system is Hamiltonian with the scaled Hamiltonian

H =
1

2

∫
Rd
gh2 + ψG(ε, h)ψ. (1.17)

Symbol d represents the fluid dimension minus one. In other words, d = 2 if the fluid is 3-
dimensional and d = 1 otherwise. Indeed, (1.16) writes{

∂th = δH
δψ ,

∂tψ = − δH
δh .

(1.18)

Then, using the properties of the Dirichlet–Neumann operator, we have the following Taylor expan-
sion for the scaled operator G(ε, h) (see [75, 78] for more details).

G(ε, h)( ) = −∂x(h∂x( ))− ε2

3
∂2
x

(
h3∂2

x( )
)

+O(ε4), (1.19)

As mentioned, one of the main advantages of shallow water models is the dimension reduction of
the fluid domain as well as the reduction of the components of the velocity. Indeed, in the frame of
shallow water models we consider here, the unknown of the problem is the horizontal component
of the velocity. The vertical component is related somehow to the horizontal component. For this
reason, during all this section, we adopt an abuse of notation: we denote by u only the horizontal
component of the speed and not the whole velocity vector. Moreover, ∂x (resp. ∂2

x) represent the
horizontal gradient (resp. the horizontal Laplacian).
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Saint-Venant system

Nonlinear shallow water system, also called Saint-Venant system, is a first order approximation of
the scaled water waves problem (1.16). More precisely, it fits the Hamiltonian structure (1.14) with
the first order approximation HSV of the Hamiltonian H of the water waves problem defined by
(1.17). In other words, the Hamiltonian HSV of Saint-Venant system is obtained by omitting the
terms of order O(ε2) i.e.

HSV =
1

2

∫
Rd
gh2 − ψ∂x · (h∂xψ).

Under convenient regularity assumptions on ψ, we can rewriteHSV as

HSV =
1

2

∫
Rd
gh2 + h(∂xψ)2. (1.20)

Therefore, the Saint-Venant system writes as{
∂th = δHSV

δψ = −∂x · (h∂xψ) ,

∂tψ = − δHSV
δh = −gh− (∂xψ)2

2 .
(1.21)

In the frame of Saint-Venant system, we assume that the vertical component of the velocity vanishes.
Therefore, ∂zφ vanishes and the second equation of (1.11) becomes

∂xψ = ∂xφ.

We also assume that the horizontal component of the velocity is constant along the vertical lines
and are equal to the components of ∂xψ i.e. the value of ∂xφ on the free surface. This leads to the
classical writing of the Saint-Venant equation. In fact, we denote by u the two first components of
the velocity for a 3-dimensional fluid and the first component of the velocity for a 2-dimensional
fluid. Then, we replace ∂xψ in the first equation of (1.21) by u. This leads to

∂th+ ∂x · (hu) = 0. (1.22)

We then take the x-derivative of the second equation of (1.21):

∂t∂xψ = −∂x(gh)− (∂xψ · ∂x) ∂xψ.

Then, we replace again ∂xψ by u to find

∂tu = −∂x(gh)− (u · ∂x)u. (1.23)

Equations (1.22) and (1.23) are the Saint-Venant equation where the unknowns are the water height
h and the horizontal velocity u independent of the vertical variable.

Let us also note that the Saint-Venant system under the variable (h,u) is Hamiltonian of the
form (

∂th
∂tu

)
=

(
0 −∂tx
−∂x 0

)( δHSV
δh

δHSV
δu

)
.
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This structure can easily get obtained from (1.21) using the chain rule considering the fact that

δHSV
δh

= gh+ u2/2,

and
δHSV
δu

= hu.

Remark 1.3 A rigorous derivation of Saint-Venant system is done in [57].

Green–Naghdi system

Green–Naghdi equation is a second order approximation of the water waves problem. More pre-
cisely, it fits the Hamiltonian structure (1.14) with the second order approximation HGN of the
Hamiltonian H defined by (1.17). Contrary to the case of Saint-Venant system, we do not assume
here that the vertical velocity vanishes. However, we assume that it is deduced by the horizontal
velocity and depends linearly to the vertical variable. Thus, we just need to solve the equation on
the horizontal velocity, denoted by u, in order to get the vertical component. This relation is given
through a physical variable k called the generalized velocity4, introduced for instance in [10, 55],
which is given by

k =
m

h
with m = Lε,h(u),

where Lε,h is the Sturm–Liouville operator defined by

Lε,h(f) = hf − ε2

3
∂x ·

(
h3∂x · f

)
for all test vector function f . (1.24)

Indeed, the vertical velocity on the free surface5, is obtained by the difference between the general-
ized velocity and the horizontal velocity as following:

uz ∂xh = k− u. (1.25)

On the other hand, φ is a potential for u and we have ∂zφ = uz. Therefore, using (1.25), the second
equation of (1.11) becomes

∂xψ = k =
m

h
. (1.26)

Moreover, under convenient regularity assumptions on ψ and using the second order approximation
(1.19) of the Dirichlet-Neumann operator, the Hamiltonian (1.17) of the water waves problem can
be written after an integration by part:

H =
1

2

∫
Rd
gh2 + h (∂xψ)2 +

ε2

3
∂xψ · ∂x

(
h3∂2

xψ
)

+O(ε4).

4As mentioned in [82], the generalized velocity k is the derivative with respect to the moment of the Lagrangian
associated to the Green–Naghdi equation by a total derivative.

5The vertical velocity on the bottom is assumed to vanish due to the slip boundary condition (see condition (1.2)).
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Then, using (1.26), we replace ∂xψ by m
h to find:

H =
1

2

∫
Rd
gh2 +

m2

h
+
ε2

3h
m · ∂x

(
h3∂x ·

(m
h

))
+O(ε4). (1.27)

Considering Definition of the Sturm–Liouville operator (1.24) of Lε,h, we remark that

( )

h
+
ε2

3h
∂x

(
h3∂x ·

(
( )

h

))
= L−1

ε,h( ) +O(ε4), (1.28)

where L−1
ε,h is the inverse of the operator Lε,h. Using this fact, (1.27) becomes

H =
1

2

∫
Rd
gh2 + m · L−1

ε,h(m) +O(ε4). (1.29)

Therefore, the second order approximationHGN of the HamiltonianH is

HGN =
1

2

∫
Rd
gh2 + m L−1

ε,h(m). (1.30)

Then, applying the chain rule, the Hamiltonian structure (1.18) with the HamiltonianHGN becomes(
∂th
∂tm

)
= −

(
0 ∂x · (h())
h∂x ∂x(m · ()) + m∂x·

)( δHGN
δh

δHGN
δm

)
(1.31)

System (1.31) is the Green–Naghdi equations written under the variable (h,m). The computation
of the variational derivative of the Hamiltonian, as an application of the variable (h,m), leads to

∂th+ ∂x ·
(
hL−1

ε,h(m)
)

= 0,

∂tm + ∂x
(
m · L−1

ε,h(m)
)

+ m∂x · L−1
ε,h(m) + h∂x

(
gh−

(L−1
ε,h

(m))2

2
− ε2

2
h2
(
∂x · L−1

ε,h(m)
)2
)

= 0.

(1.32)

In fact,
δHGN
δh

= gh−
(L−1

ε,h(m))2

2
− ε2

2
h2
(
∂x · L−1

ε,h(m)
)2
,

and
δHGN
δm

= L−1
ε,h(m).

Now, under the change of variable (h,m) 7→ (h,u), the Hamiltonian writes

HGN =
1

2

∫
Rd
gh2 + hu2 +

ε2

3
h3(∂x · u)2. (1.33)

As a consequence, Equation (1.32) becomes{
∂th+ ∂x · (hu) = 0,

∂t (Lε,h(u)) + ∂x (u · Lε,h(u)) + (Lε,h(u)) ∂x · u + h∂x

(
gh− u2

2 −
ε2

2 h
2 (∂x · u)2

)
= 0,

(1.34)
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which leads after computations to{
∂th+ ∂x · (hu) = 0,

Lε,h (∂tu + u · ∂xu) + g∂xh+ 2ε2

3h ∂x

(
h3 (∂x · u)2 + h3∂xu · ∂yu⊥

)
= 0.

(1.35)

Let us mention that the approach we use here for the analysis of the system, is suitable for all
ε. Therefore, for the sake of simplicity, we replace the coefficient ε

2

3 by α which is consequently
strictly positive. For a similar reason, we denote Lε,h by Lh. Hence, we rewrite (1.35) as{

∂th+ ∂x · (hu) = 0,

Lh (∂tu + u · ∂xu) + g∂xh+ 2α
h ∂x

(
h3 (∂x · u)2 + h3∂xu · ∂yu⊥

)
= 0.

(1.36)

Remark 1.4 Let us note that under the assumption of the regularity of the solution of system (1.36),
it can be written under other forms after simple computation. For instance, the system writes also{

∂th+ ∂x · (hu) = 0,

∂t(hu) + (∂x · u) (hu) + ∂x(gh2/2 + αh2ḧ) = 0,
(1.37)

where the superscript (̇) represents the material derivative defined by:

(̇) = ∂t() + u · ∂x().

Again, after simple equations, we remark that the Green–Naghdi system in the 2-dimensional case
i.e. when d = 1, can also be written as{

∂th+ ∂x(hu) = 0,

∂tu+ u∂xu+ g∂xh = α
h∂x

(
h3
(
∂txu+ u∂xxu− (∂xu)2

))
.

(1.38)

Remark 1.5 A rigorous justification of the Green–Naghdi equations is done in [80, 78, 75, 30]. In
[68], the author derive Green–Naghdi equation using the Hamilton’s principle by approximating
the action associated to incompressible Euler equations. A rotational version of Green–Naghdi
equations has been derived in [26].

1.3 Symmetric structure of the Green–Naghdi equations

The first part of this thesis concerns the study of the Green–Naghdi equation (1.35) derived in the
last subsection. The idea here is to adapt the approach classically used for hyperbolic systems
of conservation laws, to the case of Green–Naghdi equation. Indeed, the symmetric structure of
hyperbolic systems is used in several references to prove the local well-posedness as well as the
global well-posedness with dissipative terms. The first step to adapt the approach to the case of the
dispersive Green–Naghdi equations, is to symmetrize the system. Therefore, in the first chapter of
this thesis, we consider a general frame the Green–Naghdi equations fit in. We find a general result
and then apply it to the Green–Naghdi equation. Let us first recall introduce a brief reminder about
classical results on the symmetric structure of hyperbolic systems.
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Well known results on hyperbolic systems

Let us consider a N -hyperbolic system of conservation laws of the form:

∂tU + ∂xF (U) = 0, (1.39)

where F is a smooth function acting on a convex subset of RN .

We say that (1.39) admits an entropy in the sense of Lax if there exists a strictly convex function
E called the entropy and a function P called the entropy flux such that the gradient of E and P are
related to each other by the Jacobian of the flux as following [50, 61]:

(∇F (U))t∇E(U) = ∇P (U). (1.40)

According to Poincaré’s theorem, such a pair of function (E,P ) exists if and only if

∇2E(U)∇F (U) is a symmetric matrix, (1.41)

or equivalently, if and only if the smooth solution U of (1.39) satisfies

∂tE(U) + ∂xP (U) = 0. (1.42)

We call a system which admits an entropy in the sense of Lax, an entropic system.

The notion of the entropy is related to a structure named after Godunov [61]. Indeed, a hyper-
bolic system of the form (1.39) is entropic if and only if it is a Godunov system i.e. if and only
if there exist a pair of function (E?, P̂ ), and a change of variable U 7→ Q such that the system is
written

∂t(∇E?(Q)) + ∂x(∇P̂ (Q)) = 0.

This relation is highlighted by the Legendre transform. In fact, E? is the Legendre transform of the
entropy E and the change of variable to consider is U 7→ Q = ∇E(U). This can be summarized in
the following scheme:

System (1.39) admits the entropy E ⇐⇒ It admits a Godunov structure through E?. (1.43)

More precisely, the entropy pair (E,P ) is related to (E?, P̂ ) as following:{
E?(Q) = Q · U − E(U),

P̂ (Q) = Q · F (U)− P (U).
(1.44)

We also say that (1.39) is symmetrizable if there exists a change of variable U 7→ V , a symmetric
definite positive matrixA0(V ) and a symmetric matrixA1(V ), such that the system is written under
the form

A0(V )∂tV +A1(V )∂xV = 0.

The hyperbolic result we try to generalize here to the case of Green–Naghdi system is the
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following:

System (1.39) is a Godunov system. =⇒ System (1.39) is symmetrizable under any variable.
(1.45)

Since, we have the equivalence between the Godunov structure and the existence of the entropy for
the system, this result writes also

System (1.39) is entropic. =⇒ System (1.39) is symmetrizable under any variable. (1.46)

Moreover, the expressions of A0(V ) and A1(V ) are given by the Hessian of the entropy E(U) and
the Jacobian of F and the change of variable U 7→ V as following:

A0(V ) = (∇V U)T ∇2E(U)∇V U, A1(V ) = (∇V U)T ∇2E(U)∇F (U)∇V U. (1.47)

Application to the 1-dimensional Saint–Venant equation: Saint-Venant system (1.22)-(1.23)
fits the general frame (1.39). This fact becomes obvious by setting

U =

(
h
hu

)
and

F (U) =

(
hu

gh2/2 + hu2

)
.

It is well known that this system admits the entropy E = gh2/2 + hu2/2. Then, we use the change
of variable U 7→ V = (h, u) and apply the formulas (1.47) to find the following expressions for
A0(V ) and A1(V ).

A0(V ) =

(
g 0
0 h

)
,

and

A1(V ) =

(
gu gh
gh hu

)
.

Let us note that A0(V ) is bloc diagonal since the considered change of variable U 7→ V is partial
i.e. only some (and not all) components of U are changed to get V .

Remark 1.6 As detailed in Chapter 1, the presented result can easily get generalized to the case
of multi-dimensional systems. Therefore, the 2-dimensional Saint-Venant system is symmetrizable.
This symmetric structure under the variable V = (h, u, v) is

A0(V )∂tV +A1(V )∂xV +A2(V )∂yV = 0,

where

A0(V ) =

g 0 0
0 h 0
0 0 h

 , A1(V ) =

gu gh 0
gh hu 0
0 0 hu

 , A2(V ) =

gv 0 gh
0 hv 0
gh 0 hv

 .
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Generalization of the notion of symmetry

We now generalize the notion of symmetry presented in the previous part to systems of the form

∂tU + ∂xF (U) = 0, (1.48)

where F is not necessarily a function defined on a subset of the finite dimensional space RN . It is
an application defined on a convex subset of A, with values in A, where A is a convenient Banach
subspace of continuous functions of L2(R,RN ). Moreover, we assume that the solution of (1.48)
belongs to C ([0, T );A) for some T > 0. In other words, F can not be seen as a function acting on
a finite dimensional space but as an application defined on an infinite dimensional space.

One of the main differences here with the hyperbolic case (1.39) is the fact that the operator
version of conditions (1.40) and (1.41) is not equivalent anymore to an equality of the form (1.42).
Despite this difference, we generalize these conditions as well as the notion of Godunov structure
and symmetric structure such that we are able to find a similar result as (1.46) and (1.45). Nev-
ertheless, we do not use anymore the word "entropy" or "entropic system". Our generalization is
basically done by replacing the gradient by the variational derivative and the Hessian by the second
variation. Schematically speaking, we can represent this replacement by :

function E → functionalH =

∫
R
E.

gradient ∇ → variational derivative δ.

Hessian∇2 → second variation δ2.

E? → H?(Q) =

∫
R
U · δUH(U)− E(U).

Let us formally recall that the variational derivative of a functionalH =
∫
RE is such that

DH(U)(φ) =

∫
R
δH(U) · φ for all test function φ.

Then, the second variation is the differential of the variational derivative. To be more clear, we may
sometimes denote the differential (resp. the variational derivative) by DU (resp. by δU ) to insist on
the variable we differentiate with respect to.

Let us also mention that we say that an operator is symmetric if it is symmetric for the L2 scalar
product i.e. we say that F is symmetric if it satisfies∫

R
φ · F(ψ) =

∫
R
F(φ) · ψ for all test functions φ and ψ.

Following the presented approach, condition (1.41) is generalized as : there exists a strictly
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convex functionalH =
∫
RE such that

δ2
UH(U)DUF (U) is symmetric for the L2 scalar product. (1.49)

Again, this conditions is equivalent by Poincaré’s theorem to : there exists a differentiable applica-
tion N such that

DUH(U)DUF (U)φ = DUN (U)φ for all test function φ, (1.50)

which can be seen somehow, as the operator version of condition (1.40).

On the other hand, the notion of Godunov structure is generalized as: system (1.48) admits a
general Godunov structure if there exist two functionalsH? andR, as well as a change of unknown
U 7→ Q, such that the system writes

∂t(δQH?(Q)) + ∂x(δQR(Q)) = 0.

Following this generalization, we prove that the conditions (1.49) and (1.50) are equivalent to
the existence of the general Godunov structure under the unknown Q = δUH(U) i.e.

System (1.48) satisfies (1.49) or equivalently (1.50)⇐⇒ It is a general Godunov structure throughH?.
(1.51)

Again, this equivalence is highlighted using the generalization of the Legendre transform. Indeed,
H? andR can be expressed by{

H?(Q) =
∫
RQ · δUH(U)− E(U),

R(Q) =
∫
RQ · F (U)−N (U).

(1.52)

As mentioned, the notion of symmetry we generalize, is based on the L2 scalar product. Indeed, we
say that (1.48) is symmetrizable if there exist a change of unknown U 7→ V , a symmetric definite
positive matrix A0(V ) and a symmetric matrix A1(V ), such that the system is written under the
form

A0(V )∂tV +A1(V )∂xV = 0,

where A0(V ) is a symmetric definite positive operator and A1(V ) is a symmetric operator (for the
L2 scalar product).

Based on these generalized definitions, we prove that the general Godunov structure of the
system as well as condition (1.49) imply the symmetric structure of the system under any variable.
In other words, we have

System (1.48) is a general Godunov system. =⇒ System (1.48) is symmetrizable under any unknown.
(1.53)

System (1.48) satisfies the condition (1.49) or equivalently (1.50) =⇒ System (1.48) is symmetrizable

under any unknown.
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Similarly to the case of the hyperbolic system, the expressions of A0(V ) and A1(V ) are given by
the HessianH(U) and the differential of F and the change of variable U 7→ V as following:

A0(V ) = (DV U)T δ2H(U)DV U, A1(V ) = (DV U)T δ2H(U)DUF (U)DV U.

The last question we consider in this chapter is the following: Is it possible to obtain a conserva-
tion law similar to (1.42) for (1.48)? Actually, we prove that if system (1.48) satisfies one of the
assertions of statement (1.51), then the smooth solution of the system satisfies∫

R
∂tE(U) + ∂xN(U) = 0. (1.54)

In other words, contrary to the case of hyperbolic systems, the solution does not satisfy a conserva-
tion law but we can associate a conserved quantity to the system. We also see that the reciprocal in
the general case is false. This means that if all smooth solution of (1.48) satisfies (1.54), we can not
conclude that the assertions of statement (1.51) are satisfied.

Application to the 1-dimensional Green–Naghdi equation :

We then apply our generalized result to the case of 1-dimensional Green–Naghdi equations. We
first remark that the 1-dimensional Green–Naghdi equations fits the general frame (1.48) around all
constant solution (h̄, ū) with h̄ > 0. Indeed, using (1.36), it is easy to see that under variable U
defined by

U = (η, w) with η = h− h̄ and w = Lh(u)− h̄ū,

the 1-dimensional Green–Naghdi equations write

∂tU + ∂xF (U) = 0,

where F is defined by

F (U) =

(
(η + h̄)L−1

h (w + h̄ū)− h̄ū
(w + h̄ū)L−1

h (w + h̄ū)− 2α(η + h̄)3(∂xL−1
h (w + h̄ū))2 + g

2(η + h̄)2 − g
2 h̄

2 − h̄ū2

)
.

Therefore, F : A → A is a differentiable application with A defined by

A = Hs(R)×Hs−1(R) with s ≥ 2.

The next step is to remark that the system owns a Godunov structure. Indeed, this structure is
highlighted using the Legendre transform of the energy integral of the system:

Hh̄,ū(U) =

∫
R
Eh̄,ū(U) with Eh̄,ū =

gh(h− h̄)

2
+
h(u− ū)2

2
+
αh3(ux)2

2
.

Indeed, if we consider the change of variable

U 7→ Q = δUHh̄,ū(U),

We can check that
F (U) = δQR(Q),
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where

R(Q) =

∫
R
gu

(
h2 − h̄2

2

)
− αh3u(ux)2 − h̄ū

(
gh− gh̄/2− u2/2 + ū2/2− 3

2
αh2(ux)2

)
− h̄ū2(u− ū) + gh̄2ū.

Therefore, the Green–Naghdi equations is a general Godunov system i.e. it writes

∂t(δQH?h̄,ū(Q)) + ∂x(δQR(Q)) = 0.

Hence, the system is symmetrizable under any change of variable. The symmetric structure we are
using in the next part, is the structure obtained based on the change of variable U 7→ V where
V = (h, u). More precisely, the 1-dimensional Green–Naghdi equation writes

A0(V )∂tV +A1(V )∂xV = 0, (1.55)

where

A0(V ) =

(
g − 3αh(ux)2 0

0 Lh

)
, (1.56)

and

A1(V ) =

(
gu− 3αhu(ux)2 gh− 3αh2(ux)2

gh− 3αh2(ux)2 hu+ 2α∂x(h3ux)− αh3ux∂x − αu∂x(h3∂x())

)
. (1.57)

We see again thatA0(V ) is bloc diagonal since the considered change of unknown U 7→ V is partial
i.e. only some (and not all) components of U are changed to get V .

Remark 1.7 As we will see later, a multi-dimensional generalization of the general result is possi-
ble. This means that the 2-dimensional Green–Naghdi equation is symmetrizable under the variable
V = (h, u, v) of the form

A0(V )∂tV +A1(V )∂xV +A2(V )∂yV = 0,

where

A0(V ) =

g − 3αh(div(u, v))2 0 0
0 h− α∂x(h3∂x) −α∂x(h3∂y)
0 −α∂y(h3∂x) h− α∂y(h3∂y)

 .

1.4 Global existence for small data of a viscous Green–Naghdi equations

As mentioned previously, the symmetric structure of hyperbolic systems is interesting since it can
be used to prove the local well-posedness as well as the global well-posedness of systems with
dissipative terms. In fact, we generalized the notion of symmetry for Green–Naghdi equations in
order to obtain a global well-posedness result for the system with viscosity. We first briefly present
the hyperbolic results found by Kawashima–Shizuta [71, 70, 95], Hanouzet-Natalini [64] and Yong
[108]. Then, we will see how we adapt the hyperbolic approach to the case of Green–Naghdi
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equations. Therefore, Chapter 2 of this thesis is devoted to the rigorous demonstration of the global
existence for initial data close to constant solutions of the Green–Naghdi equations with a second
order viscosity. The asymptotic stability of these solutions is also proved as a consequence by a
similar approach as for hyperbolic system. Let us also mention that the definition of the asymptotic
stability we consider here is the following:

Asymptotic stability: A particular global solution Ue of an evolution system is called
asymptotically stable if there exists a neighborhood of Ue such that for all initial data in
this neighborhood, the solution of the system exists for all time and converges (for the
norm of local well-posedness) to Ue while t→∞.

Let us also mention that to prove the global well-posedness, we assume that the system is locally
well-posed. Though, a rigorous proof of the local well-posedness of the Green–Naghdi equations,
with the viscosity we consider, is illustrated in an appendix of Chapter 2. The proof is based on
the result presented in [69] for Green–Naghdi equations without viscosity. Then, we use similar
computations as for hyperbolic case in [15] to deduce the local well-posedness for the system with
a second order viscosity.

Global well-posedness results for hyperbolic systems

The hyperbolic approach we try to generalize is the approach used in [71, 70, 95] for hyperbolic
parabolic systems which can be put under the form

A0(U)∂tU +A1(U)∂xU = B∂2
xU, (1.58)

satisfying

• Symmetrizability: A0(U) is a symmetric definite positive matrix, A1(V ) is a
symmetric matrix.

• Entropy dissipativity: B is a symmetric constant definite positive matrix such that
its kernel is invariant under A0(U).

• Kawashima–Shizuta condition: There exists a real matrix K such that KA0(Ue)
is skew-symmetric and 1

2

(
KA1(Ue) +A1(Ue)K

T
)

+ B(Ue) is definite positive
for a constant solution Ue.

Let us mention that the symmetric structure of the system together with entropy dissipativity lead to
estimates which gives the local well-posedness of the system in the space C([0,∞);Hs(R)) with
s ≥ 2. Then, the Kawashima–Shizuta condition gives some other estimates which completes the
local well-posedness estimates in a way to obtain the global existence result. Indeed, the results due
to Kawashima–Shizuta can be schemed as following:
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Let us assume that System (1.58) satisfies the symmetrizability, entropy dissipativity as
well as the Kawashima–Shizuta condition on an equilibrium Ue. Then, Ue is asymptoti-
cally stable. In other words, for all initial data close enough to Ue, the local solution of
(1.58) exists for all time and tends to Ue when t→∞.

In [64, 108], the authors find a similar result using similar approach and assumptions as Kawashima–
Shizuta. The main difference in these references, is that the dissipative terms are added only to
some equations of the symmetric hyperbolic system. Moreover, the added dissipative terms are of
0th derivative order. Indeed, their result can be resumed as

Let us consider a n-symmetric hyperbolic system of the form

A0(U)∂tU +A1(U)∂xU = (0, Q(U)) , (1.59)

where U = (U1, U2) is a n-component vector. Let us also consider a constant vector
Ue = (U1

e , U
2
e ) such that Q(Ue) = 0. We also assume that

• Symmetrizability: A0(U) is a symmetric definite positive matrix, A1(V ) is a
symmetric matrix.

• Entropy dissipativity: There exists a definite positive matrix B(U) such that
Q(U) = −B(U)(U2 − Ue).

• Kawashima–Shizuta condition: There exists a real matrix K such that KA0(Ue)
is skew-symmetric and

1

2

(
KA1(Ue) +A1(Ue)K

T
)

+

(
0 0
0 B(Ue)

)
is definite positive.

Then, the equilibrium Ue is asymptotically stable for the normC([0,∞);Hs(R)) (the
norm of the local well-posedness space).

In both cases, the proof is based on two classes of estimates found for all integer l ∈ [1, s]:

• The first category is obtained by taking the scalar product of the lth derivative of the system
with the lth derivative of the solution using the symmetric structure and the entropy dissipa-
tivity.

• The second category is obtained by acting the operator K∂l−1
x on the system before taking

the scalar product with the lth derivative of the solution.

Combining these two estimates, we can find δ > 0 such that for all initial data in the δ-neighborhood
of Ue, the solution belongs to the neighborhood for all time. The asymptotic stability is then ob-
tained by simple computations and using the Gagliardo–Nirenberg inequality.
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Global existence result for the Green–Naghdi equation with a second order dissipative term

During the first part of this thesis, we try to find a global well-posedness result for the Green–Naghdi
equation with a dissipative term, using a similar approach as the approach presented in the previous
section. We add here a dissipative term of second order of the form µ∂x(h∂xu) (with µ > 0) to the
second equation of the system i.e. we consider the following equations6{

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2) + ∂x(gh2/2 + αh2ḧ) = µ∂x(h∂xu).
(1.60)

As mentioned in an appendix of Chapter 2, under the assumption of the strict positivity of h, the
system is locally well-posed under the variable (h−he, u) (for all he > 0) in spaceC([0, T );Xs(R))
where Xs(R) = Hs(R)×Hs+1(R).

Then, we use the symmetric structure (1.55) of system and write the equation under the variable
V = (h, u) as following:

A0(V )∂tV +A1(V )∂xV =

(
0

µ∂x(h∂xu)

)
,

where

A0(V ) =

(
g − 3αh(ux)2 0

0 Lh

)
and

A1(V ) =

(
gu− 3αhu(ux)2 gh− 3αh2(ux)2

gh− 3αh2(ux)2 hu+ 2α∂x(h3ux)− αh3ux∂x − αu∂x(h3∂x())

)
.

Then, we see that it is possible to obtain the first category of estimates based on this structure by a
similar way as in the hyperbolic case. In other words, the system satisfies the operator version of
the symmetry and dissipativity condition. However, it does not satisfy any operator version of the
Kawashima–Shizuta condition. Nevertheless, there exists a constant matrix K such that KA1(V )
is a definite positive matrix by a constant even though KA0(V ) is not skew-symmetric. We see
that we are able to extract some convenient terms in a total time derivative form and cancel the high
order terms together. Therefore, we get similar estimates as the second category of estimates for
hyperbolic systems. Then, we get the asymptotic stability by basic computations together with the
Gagliardo–Nirenberg inequality. Indeed, here is the main result of Chapter 2:

All constant solution of the form (he, ue) of System (1.60), with he > 0, is asymptotically
stable for the norm of the space of the local well-posedness.

Let us mention that we tried here to adapt the general result on hyperbolic-parabolic systems and
hyperbolic systems to the case of dispersive Green–Naghdi equations. We could adapt the com-
putations to this particular case. Nevertheless, the treatment of an abstract general case is an open
problem. For instance, the case of 2-d Green-Naghdi equation is not treated. Let us also mention

6The right hand side µ∂x(h∂xu) of the second equation of (1.60) is the classical viscosity term for Saint-Venant
system.
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that this approach can not be adapted if we consider a 0th order or a 4th order derivative dissipative
term instead of a second order dissipative term. Indeed, in these cases, the order of the estimates of
the first category and second category are incoherent in a way that we are not able to obtain the sta-
bility estimate. However, 0th order dissipative terms can be considered only if they are considered
together with a second order dissipative term.

Remark 1.8 Let us remark that all along the first part of this thesis, the problem is considered on
the whole horizontal space. This is mainly due to two reasons:

• The hyperbolic results we try to generalize concern hyperbolic or hyperbolic-parabolic sys-
tems defined on the whole space.

• No local well-posedness result is available for the Green–Naghdi equations on a bounded
domain. Therefore, the investigation of the global well-posedness of the system on a bounded
domain, does not seem to be a priority at this stage.

2 Numerical simulation of the free surface incompressible Navier–
Stokes equations

The second part of the thesis concerns the numerical treatment of the free surface Navier–Stokes
system. Naturally, contrary to the first part of this thesis, we can not consider the problem on the
whole space but only on a bounded domain. Nevertheless, the problem we treat is quite general
since no constraint on the form of the fluid domain or on the topography is considered. Moreover,
friction and surface tension are taken into account and no assumption on the irrotationality of the
fluid is considered. From the physical point of view, the problem can be described by the evolution
of an incompressible Newtonian fluid in a closed container or on a bottom defined on a bounded
space. The container (or the bottom) is fixed and does not change over time. From the computa-
tional point of view, we consider a fixed bounded computational domain containing the free-surface
fluid. It satisfies the Navier slip or Dirichlet boundary conditions on the parts of boundary which
corresponds to the bottom or to the boundary of the container, the free surface boundary condition
on the free surface and homogenous Neumann condition elsewhere on the boundary. The fluid sat-

Figure 2.2: An incompressible Newtonian fluid on a curvy bottom (left) and the computational
domain D considered for the simulation of the fluid (right).

isfies the incompressible Navier–Stokes equations (0.1) inside the fluid domain. As a matter of fact,
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the mathematical description of the problem is the following: We denote by Ωt the fluid domain at
time t, by Γt the free surface at time t and by D the computational domain. Then, the fluid velocity
u and the fluid pressure p satisfy

ρ
(
∂u
∂t + (u · ∇)u

)
− µ∆u +∇p = ρf in Ωt,

div u = 0 in Ωt,

u(0, x) = u0(x) in Ω0.

(2.1)

together with the boundary conditions determined by the friction coefficient α, the surface tension
coefficient γ and the atmospheric pressure pa as following:

u · n = 0 on ∂Ωt \ Γt,[
αu + µ

(
∇u + t∇u

)
n
]
tan

= 0 on ∂Ωt \ Γt,(
µ
(
∇u + t∇u

)
− p
)
n = − (γκ+ pa)n in Γt,

(2.2)

and the free surface evolution condition7{
(1,u) is tangential to the free surface (t,Γt), t ≥ 0. (2.3)

The objective of the second part of the thesis is the numerical resolution of the time dependent prob-
lem (2.1)-(2.3) on the time interval [0, T ]. Therefore, the natural approach consists in dividing the
time interval [0, T ] into small subintervals and then solving the time discretized problem on each
subinterval. Indeed, each iteration of our global algorithm, detailed in Chapter 3, corresponds to
the resolution of the time-discretized problem on a subinterval. Besides, the time-discretized fluid
equation is resolved only on the fluid domain thanks to an anisotropic mesh adaptation. The algo-
rithm is made by several steps which can be classified in two categories: The first category enables
us to advect the fluid domain during the concerned time subinterval, the second category supplies
us with the tools which let us to solve the time descretized fluid equation on the advected domain.
Let us mention that the basis of the tools of the first category comes from previous works done in
[22, 36, 38, 4] whereas the basis of the tools of the second category comes from the work done in
[100].

Level set formulation : The free surface evolution condition (2.3) here is treated in the frame
of level set formulation. We choose this approach since it is good to deal with topology changes
and is easy to be implemented on unstructured meshes. Therefore, it is adapted to our problem
regarding the use of an adapted unstructured mesh at each iteration. In level set formulation, the
fluid free surface is represented by a continuous function φ defined on the computational domain D
such that it vanishes on the free surface and only on the free surface, it takes negative values on the
domain of fluid and only on the domain of fluid. Therefore, it takes positive values out of the fluid
(see Figure (2.3)). In other words, the level set function φ satisfies

φ−1 ((−∞, 0)) = Ωt,

φ−1 ({0}) = Γt,

φ−1 ((0,+∞)) = D \ Ωt.

(2.4)

7Again, the free surface is transported by the fluid velocity.
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Figure 2.3: The free surface Γt corresponds to the 0-level set of φ defined on D.

Under this representation, the surface evolution condition (2.3) can be replaced by the advection
of the level set function φ with a flux which takes the same values as the fluid velocity on the free
surface. This condition can be described in mathematical terms by the fact that φ satisfies{

∂tφ+ ũ · ∇φ = 0 ∀(x, t) ∈ D × [0, T ],

φ(0, x) = φ0(x) on D,
(2.5)

where ũ is a smooth flux defined on D such that it coincides with the flow velocity on the free
surface and φ0 is a level set function for the initial fluid domain. Numerically, the advection of the
fluid domain at each iteration consists in numerical resolution of (2.5) on the corresponding time
subinterval for a convenient flux ũ and a convenient time initial condition. The numerical resolution
of (2.5) is done by solving the corresponding characteristic equation using a 4th order Runge-Kutta
scheme. The construction of the flux ũ and the initial condition are other steps of the algorithm
which are explained in following paragraphs.

Velocity extension: In order to solve the equation (2.5), we need obviously to construct the
flux ũ. This flux must be smooth and defined on the whole domain D and must coincide with the
fluid velocity on the free surface. On the other hand, the fluid velocity u is defined only on the fluid
domain. Therefore, we need to extend the velocity smoothly outside of the fluid. This extension
is done using a Helmholtz operator with non homogenous Dirichlet mixed with homogenous Neu-
mann Dirichlet boundary condition. Indeed, the flux of the advection equation is obtained as the
solution of 

−a∆ũ + ũ = 0 in D \ Ωt

∇ũ · n = 0 on ∂D

ũ = u on Ω̄t

(2.6)

where a = 0.5 is chosen such that a is neither too small nor too large. In fact, if it is too small,
the flux will not be smooth enough for the numerical resolution of (2.5). On the other hand, if a is
too large, the values of the velocity on the interface may interfere with its values inside or outside
of the fluid. Therefore, the 0-level set may exceed for instance strictly positive level sets and the
level set function may take some positive values on the advected fluid region and may not fit any
more in the frame of level set formulation. For the same reason, System (2.6) will lead to a conve-
nient flux for the equation (2.5) only if the Reynolds number associated to the fluid is not too high
i.e. if the characteristic fluid velocity is small enough. Therefore, if the fluid Reynolds number is
high, we need to solve the Helmholtz problem on the whole computational domain D with a non-
homogenous Dirichlet boundary condition (described by u) on the free surface and homogenous
Neumann boundary conditions on the rest of the boundary of the computational domain.
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Distancing: As mentioned previously, during each iteration of our general algorithm the fluid
domain is advected on the corresponding subinterval. In other words, at iteration n of the algorithm,
we solve the advection equation on the subinterval [tn, tn+1] of [0, T ] i.e. we solve numerically{

∂tφ+ ũ · ∇φ = 0 ∀(x, t) ∈ D × [tn, tn+1],

φ(tn, x) = φtn(x) on D,
(2.7)

where φtn is a level set function for the fluid domain Ωtn at time tn. It is well known that in the
frame of level set method the initial level set function φtn must satisfy

|∇φtn | = 1 (2.8)

in the vicinity of the free surface. This condition is necessary because of numerical reasons since
it guarantees that the level sets of the initial level set function are neither too close nor too far one
from each other. Indeed, if the initial level sets are too close, then they may cut each other during
the advection. On the other hand, if they are initially too far from each other, we will maybe find
numerically more than one 0-level set line. Therefore, the advected free surface is not any more a
null measured subspace of the computational domain. Regarding the fact that the 0-level set line is
supposed to represent physically the free surface, consideration of the condition (2.8) is necessary
for the initial condition.

For this reason, at each iteration, before advecting the fluid domain along the subinterval
[tn, tn+1], we construct an initial level set function φtn corresponding to the fluid domain Ωtn

at time tn satisfying (2.8). This step is called distancing and uses the algorithm suggested in [38].
Indeed, the initial level set function the authors suggest, is equal to the signed distance function in
the neighborhood of the free surface. Therefore, it satisfies (2.8) in this neighborhood. This func-
tion is obtained as a long term limit of an unsteady Eikonal equation.

Figure 2.4: Mesh adaptation for the initial fluid domain in the case of dam break problem.
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Mesh adaptation: Once the fluid domain is advected during the subinterval [tn, tn+1], we
intend to solve the discretized fluid equation on the advected domain. The key tool which enables
us to solve the fluid equation only on the fluid domain and not on the whole computational do-
main is the mesh adaptation. Let us mention that the resolution of the fluid equation is expensive.
Therefore, its resolution only on the fluid domain saves computational time. Indeed, this point is
the main difference of this work with the work done in [100]. The work in [100] concerns bi-fluid
incompressible systems. Therefore the authors solve the fluid equation in the whole computational
domain. On the contrary, in our case, the fluid is in contact with vacuum or with a fluid such air we
are not interested in the behavior. Nevertheless, the mesh adaptation we consider here, is done on
the same principle as in [100]. In fact, after the advection of the domain along [tn, tn+1], we adapt
the mesh to the advected domain. This adaptation is done with the aim of minimizing the geomet-
ric error, the interpolation error and approximation errors. As shown in Figure 2.4, this adaptation
leads to very small elements near the free surface for a precise capture whereas elements out of the
fluid domain, far from the free surface and the curvy boundaries of the computational domain, are
large since no information is this zone is of interest. Then, inside the domain of fluid, the mesh
elements are small enough to get a good approximation of the velocity field and the pressure. Let
us also mention that in order to get a good approximation error, it should be a convenience between
the smallness of the mesh elements in the fluid and the smallness of the time discretization step.
Indeed, a too small time discretization step compared to the mesh elements’ size, may lead to a larg
approximation error.

Resolution of the fluid equation: The mentioned steps considered together, are sufficient
to enable us to solve the time-discretized Navier–Stokes equation on the fluid domain. This time
discretization is done by the method of characteristics. Therefore, at each iteration, the last step
consists in solving a generalized steady stokes problem. This problem is resolved by considering
the associated variational formulation. Besides, slip boundary conditions are then taken into account
by adding a penalization term. Then, we use a convenient finite elements method to discretize the
problem and solve the corresponding linear system by Uzawa algorithm.

Chapter 3 contains some numerical results and comparisons with results of bi-fluid systems .
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1.1 Introduction

Incompressible Euler equations and water waves problem model free surface incompressible fluids
under the influence of the gravity. The complexity of these systems leads to consider averaged
geophysical models to describe coastal oceanic flows. We focus on a particular type of these reduced
models called the Green–Naghdi type model [62], which writes{

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2) + ∂x(gh2/2 + αh2ḧ) = 0.
(1.1.1)

The unknown h represents the fluid height and is assumed to be positive, while u is the averaged
horizontal velocity. Moreover, the material derivative (̇) is defined by (̇) = ∂t() + u∂x(), α is a
positive real number and g is the gravity constant.

37
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If α = 0, system (1.1.1) is hyperbolic and equivalent to the Saint-Venant equations (and to the
barotropic Euler equations). System (1.1.1) with α 6= 0 is different from the Saint-Venant system
by the dispersive term ∂x

(
αh2ḧ

)
. It has been rigorously derived for α = 1

3 from the water wave
problem for irrotational flows by Li [78] and by Alvarez and Lannes [5]. In [68], Ionescu derived
the same system by a variational method considering the Lagrangian formulation of the irrotational
incompressible Euler equations. In [20], the authors obtain (1.1.1) for α = 1

4 by a different but a
formal method without any hypothesis on the irrotationality of the fluid.

It is worth remarking that (1.1.1) admits the following conservation law (see for instance [54,
55]),

∂tE + ∂x (u(E + p)) = 0, (1.1.2)

where the energy E is defined by

E = gh2/2 + hu2/2 + αh3(∂xu)2/2, (1.1.3)

and p by
p = gh2/2 + αh2ḧ. (1.1.4)

Contrary to the case of hyperbolic systems, the energy E and the pressure p are not functions of the
unknown but smooth operators acting on the space of functions the unknown belongs to.

The aim of this chapter is to extend the notion of symmetry classically defined for hyperbolic
systems, to more general type of equations, including the Green–Naghdi model (1.1.1). We first
recall the definition of symmetrizability for hyperbolic systems and its relation with the existence
of a convex entropy.

1.1.1 Symmetric structure of hyperbolic systems of conservation laws

Let us provide a brief review on the symmetrization of hyperbolic systems of conservation laws.
We consider the system

∂tU + ∂xF (U) = 0 (1.1.5)

where the flux F : RN → RN ,N ≥ 1, is a smooth function. We only consider in the sequel smooth
solutions U : R+ ×R→ RN . The hyperbolic system (1.1.5) is called symmetrizable if there exists
a change of variable U 7→ Q such that (1.1.5) is equivalent to

A0(Q)∂tQ+A1(Q)∂xQ = 0, (1.1.6)

where A0(Q) is a symmetric positive definite matrix and A1(Q) is a symmetric one.

Moreover, a pair of smooth functions (E,P ) from RN to R such that∇2
UE(U) positive definite

is an entropy pair for system (1.1.5) if any solution U to (1.1.5) satisfies

∂tE(U) + ∂xP (U) = 0, (1.1.7)

or equivalently if
(∇UF (U))T ∇UE(U) = ∇UP (U). (1.1.8)

Using Poincaré’s theorem [25], the latter condition, which is nothing but an integrability condition,
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is equivalent to the symmetry condition

∇2E(U)∇F (U) =
(
∇2E(U)∇F (U)

)T
.

The following classical proposition illustrates how the notions of entropy and symmetry are related.
We also provide the associated proof in order to compare it to the generalized case of the next
section.

Proposition 1.1.1 [61, 50, 83, 79, 15] Let us assume that the hyperbolic system (1.1.5) admits an
entropy pair (E,P ). Then, it is symmetrizable under any change of variable U 7→ V under the
form

A0(V )∂tV +A1(V )∂xV = 0,

where

A0(V ) = (∇V U)T∇2
UE(U) ∇V U and A1(V ) = (∇V U)T∇2

UE(U) ∇UF (U)∇V U. (1.1.9)

Proof Considering a change of variable U 7→ V , System (1.1.5) becomes

∇V U∂tV +∇UF (U)∇V U∂xV = 0. (1.1.10)

We now apply (∇V U)T∇2
UE(U) to the left-hand side and obtain

(∇V U)T∇2
UE(U) ∇V U ∂tV + (∇V U)T∇2

UE(U) ∇UF (U)∇V U ∂xV = 0. (1.1.11)

The symmetric matrix A0(V ) = (∇V U)T∇2
UE(U) ∇V U is positive definite due to the strict con-

vexity of the entropy. Therefore, we just need to prove the symmetry of ∇2
UE(U) ∇UF (U). To do

so, we consider the change of variable U 7→ Q where Q is the entropy variable, i.e.

Q = ∇UE(U). (1.1.12)

This change of variable is valid sinceE is strictly convex. As a consequence, the Legendre transform
E? of E defined by

E?(Q) = Q · (∇UE)−1(Q)− E((∇UE)−1(Q)), (1.1.13)

satisfies
U = ∇QE?(Q). (1.1.14)

Let us now define the scalar function P̂ by

P̂ (Q) = Q · F (U(Q))− P (U(Q)). (1.1.15)

Then, we use relation (1.1.8) to get

∇QP̂ (Q) = F (U). (1.1.16)

Hence,

∇2
UE(U) ∇UF (U) = ∇2

UE(U) ∇2
QP̂ (Q)∇UQ = ∇2

UE(U) ∇2
QP̂ (Q) ∇2

UE(U)
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is symmetric. �

Gathering (1.1.14) and (1.1.16), we remark that (1.1.5) is equivalent to

∂t (∇QE?(Q)) + ∂x

(
∇QP̂ (Q)

)
= 0.

In other words, system (1.1.5) admits a so-called Godunov structure [61]. Note that such a struc-
ture can be used to deduce the existence of an entropy pair since it implies the symmetry of
∇2
UE(U) ∇UF (U), and thus the integrability of (∇UF (U))T ∇UE(U). Let us consider a system

of the form (1.1.5) which admits an entropy pair (E,P ). Assume that there exists a decomposition
of the unknown U = (U1, U2) such that the application φ 7→ ∇U2E(U1, φ) is invertible. Then, the
change of variable

U 7→ V = (U1,∇U2E(U1, U2))

is particularly interesting since A0(V ) is block diagonal (this is a direct consequence of the ex-
pression (1.1.9) of A0(V )). Indeed, this can be useful to deduce equivalent normal forms of sys-
tem (1.1.5) when studying for instance parabolic regularizations [71].

In the case of the Saint-Venant equations, with U = (h, hu) and E = gh2/2 + hu2/2, let
us compare two symmetric forms. If we consider the entropy variable Q = ∇UE(U) = (gh −
u2/2, u), one has

A0(Q)∂tQ+A1(Q)∂xQ = 0,

where

A0(Q) =
1

g

(
1 u
u gh+ u2

)
and A1(Q) =

1

g

(
u gh+ u2

gh+ u2 3ghu+ u3

)
.

On the other hand, using the change of variable U 7→ V = (h,∇huE(U)) = (h, u), the Saint-
Venant equations become

A0(V )∂tV +A1(V )∂xV = 0,

with

A0(V ) =

(
g 0
0 h

)
and A1(V ) =

(
gu gh
gh hu

)
.

The notion of symmetrizability is crucial to be useful to prove the local well-posedness of hy-
perbolic systems (see [15] for instance) as well as the stability of constant solutions of hyperbolic
systems with dissipative terms [64, 108, 71, 95]. Let us now recall some properties of the Green–
Naghdi equations.

1.1.2 Hamiltonian structure of the Green–Naghdi equations

Following Li [78], let us consider the unknown U = (h,m) defined by

m = Lh(u) = hu− α
(
h3ux

)
x
. (1.1.17)

The change of variable (h, u) 7→ (h,m) is valid since the Sturm–Liouville operator Lh is an iso-
morphism from Hs(R) to Hs−2(R), for s ≥ 2, due to the fact that h is positively bounded by
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below1. Let us also mention that the variable m has been used in [55] to define the generalized
velocity k = m

h .

We illustrate in the following proposition the Hamiltonian structure of the Green–Naghdi equa-
tions inherited from the structure of the water waves problem. To state this result, we adopt classical
notations of variational derivatives and second variations (see for instance [56, 87]).

Proposition 1.1.2 [78] Let h̄ > 0 be a real constant. System (1.1.1) is equivalent to

∂tU = J (U)δHh̄(U), (1.1.18)

where
U = (h,m) = (h,Lh(u)),

Hh̄(h, u) =

∫
R
gh(h− h̄)/2 + hu2/2 + αh3(ux)2/2, (1.1.19)

and

J (U) = −
(

0 ∂x(h())
h∂x ∂x(m()) +m∂x

)
. (1.1.20)

More precisely, we have for all test functions (φ, ψ)

J (U)

(
φ
ψ

)
= −

(
∂x(hψ)

h∂xφ+ ∂x(mψ) +m∂xψ

)
. (1.1.21)

By classical calculations, we have
δHh̄(U) = (σ, u),

with
σ = gh− gh̄/2− u2/2− 3

2
αh2(ux)2. (1.1.22)

The variable σ has been used in [54] for the canonical representation of the Green–Naghdi equa-
tions.

The functionHh̄ is the integral of the relative energy

Eh̄ = gh(h− h̄)/2 + hu2/2 + αh3(ux)2/2, (1.1.23)

which, following the same calculations as those which lead to (2.1.2), satisfies the conservation law

∂tEh̄ + ∂x(u(Eh̄ + p)) = 0, (1.1.24)

where p is given by (1.1.4). The first consequence is the conservation of the Hamiltonian Hh̄ over
time by integration in space2. This important property can also be obtained using the Hamiltonian
structure (1.1.18) of the system and the fact that J (U) is a skew-symmetric operator acting on the

1Operator Lh is a diffeomorphism from Hs+2(R) to Hs(R) if h is close enough to a constant state h̄ for the norm
Hn with n ≥ 2. This assumption is considered in Section 1.3.1 while symmetrizing the Green–Naghdi equations.

2 It has been shown in [78, 69] that the Green–Naghdi equations endowed with the unknown (h−h̄, u) are well-posed
in C

(
[0, T );Hs(R)×Hs+1(R)

)
for some T > 0 and s ≥ 2. Hence, u is a continuous function vanishing at infinity

using the Sobolev embedding theorem.
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space of vector-valued functions whose second component converges to 0 at infinity. Hence,

d

dt
H(U(t)) =

∫
R
δH(U) · ∂tU =

∫
R
δH(U) · J (U)δH(U) = 0.

1.1.3 General idea

The generalization of the notion of symmetrizability to dispersive perturbations of hyperbolic sys-
tems has been studied by several authors. For instance, Gavrilyuk and Gouin in [53] (see also [14])
investigate the symmetric structure of Euler–Korteweg models and some p-systems. Similar ideas
can be partially adapted to some generalized p-systems like bubbly fluid equations and to modified
Lagrangian Green–Naghdi [52].

These generalizations are investigated with the hope of extending the results on hyperbolic sys-
tems to their dispersive perturbations. In Chapter 2 (published as [72]), we use the generalized
symmetric structure presented in this work (more precisely in Section 1.3) to prove the asymp-
totic stability of constant solutions of the Green–Naghdi equations with viscosity. Let us note that
the symmetric structure presented here for Green–Naghdi equations holds only in a small enough
neighborhood of constant solutions, this is to say that we consider the symmetrizability as a local
notion. As we will see in the following chapter, this is not an obstacle to prove the stability of equi-
libriums since the solution of the viscous Green–Naghdi equations remains close to equilibriums
for initial data close enough to these solutions.

In this chapter, we consider general systems written under the following conservative form

∂tU + ∂xF (U) = 0. (1.1.25)

The unknown U is supposed to belong to C([0, T );A) for some T > 0 where A is a Banach
subspace of continuous functions of L2(R,RN ) converging to 0 at infinity. Let us note that F is not
anymore a function of RN but a smooth application defined from A to A. This is actually the case
for the Green–Naghdi equations. As we will see in Subsection 1.3.1, the Green–Naghdi equations
under the Hamiltonian variable (h,m) fits the abstract form (1.1.25) with no loss of derivatives
through F .

For sake of simplicity, we mainly consider the one-dimensional problem (1.1.25). We provide
some generalizations of the previous notions used in the hyperbolic case, symmetrizability, Go-
dunov structure, and relate it, in the case of Green–Naghdi equations, to the existence of a Hamil-
tonian structure. The extension of the results of the next section to the multi-dimensional case will
be addressed at the end of the next section. Section 1.3 is devoted to the particular case of the
Green–Naghdi equations.

1.2 Weak symmetric structure

The aim of this part is to provide a sufficient condition for the symmetrizability of System (1.1.25)
under any variable. First, we provide an adapted notion of symmetrizability and define the Legendre
transform of a variational function. Then, we will see how a convenient strictly convex function can
lead to the symmetrizability.
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The notion of symmetry we consider here is based on the L2 scalar product, and not on the
scalar product of RN . More precisely, an operator F : A ⊂ L2(R,RN )→ L2(R,RN ) is said to be
symmetric if ∫

R
φ · F(ψ) =

∫
R
F(φ) · ψ ∀φ, ψ ∈ A,

and positive definite if, for all φ ∈ A \ {0},
∫
R φ · Fφ > 0.

Definition 1.2.1 (Weak symmetrizability) System (1.1.25) is called weakly symmetrizable if there
exists a change of variable U 7→ V such that (1.1.25) is equivalent to

A0(V )∂tV +A1(V )∂x(V ) = 0, (1.2.1)

where A0(V ) is a symmetric positive definite operator and A1(V ) is a symmetric one.

Definition 1.2.2 (Legendre transform) Let Ω be an open convex subset of a Banach space A ⊂
L2(R,RN ) and consider a smooth application E : Ω → L1(R) together with the variational
functionH : Ω→ R defined by

H(U) =

∫
R
E(U).

Assume that there exists an open set Ω? of a Banach space B ⊂ L2(R,RN ) such that the application

δUH :

{
Ω→ Ω?

U 7→ δUH(U)

is a diffeomorphism. The Legendre transformH? ofH is defined on Ω? by

H?(Q) =

∫
R
Q · (δUH)−1 (Q)− E

(
(δUH)−1 (Q)

)
. (1.2.2)

Let us note that the Legendre transformH? of a functionH satisfying the assumptions of Definition
1.2.1, also satisfies the assumptions of the definition. Moreover, basic computations show that the
Legendre transform ofH? is nothing butH. In other words,

H?? = H.

We now state one of the fundamental properties of the Legendre transform of a strictly convex
variational function (i.e. a function with a definite positive second variation). Let us remark here
that contrary to the finite dimensional case, the variational derivative of a smooth strictly convex
function is not necessarily a diffeomorphism. Therefore, we still need to assume in the sequel that
its variational derivative defines a diffeomorphism as in Definition 1.2.2.

Proposition 1.2.3 The Legendre transform H? of a strictly convex function H which satisfies the
assumptions of Definition 1.2.2 is strictly convex.

Proof Considering the expression (1.2.2) of the Legendre transform, we remark that

δQH?(Q) = (δUH)−1 (Q).
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In other words,
Q = δUH(U) ⇐⇒ U = δQH?(Q).

Hence, the definite positivity of the second variation ofH implies the definite positivity of the second
variation ofH?. More precisely, we have

δ2
UH(U) = DUQ(U),

and
δ2
QH?(Q) = DQU(Q).

Therefore,
δ2
UH(U) =

(
δ2
QH?(Q)

)−1
.

�

The following theorem provides the connection between the convexity of H and the existence of a
general Godunov structure (this notion has been introduced in [54] and is recalled in the following
statement).

Theorem 1.2.4 We use the same notations and assumptions as in Definition 1.2.2. Assume that H
is strictly convex on Ω. If

δ2
UH(U)DUF (U) is symmetric, (1.2.3)

then system (1.1.25) admits a general Godunov structure: there exists a change of variable U 7→ Q
defined on Ω and a function R, together with R(Q) =

∫
RR(Q), such that system (1.1.25) is

equivalent to
∂t (δQH?(Q)) + ∂x (δQR(Q)) = 0, (1.2.4)

as long as the solution U remains in Ω.

Proof Let us first consider the change of variable U 7→ Q defined by

Q = δUH(U), (1.2.5)

or equivalently by
U = δQH?(Q). (1.2.6)

Considering the fact that δ2
UH(U)DUF (U) is symmetric on the open convex set Ω, there exists, by

Poincaré’s theorem [25], a differentiable application N : Ω→ R such that

DUN (U)φ =

∫
R
δUH(U) ·DUF (U)φ ∀φ ∈ A. (1.2.7)

We now define the functionR by

R(Q) =

∫
R
Q · F (U(Q))−N (U(Q)). (1.2.8)
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We differentiate (1.2.8) and take the action on a test function ψ. This leads to

DQR(Q)ψ =

∫
R
F (U(Q)) · ψ +Q ·DUF (U)DQU(ψ)−DUN (U)DQU(ψ).

Then, we have by (1.2.5),

DQR(Q)ψ =

∫
R
F (U(Q)) · ψ + δUH(U) ·DUF (U)DQU(ψ)−DUN (U)DQU(ψ).

Finally, using (1.2.7), we find

DQR(Q)ψ =

∫
R
F (U(Q)) · ψ,

or equivalently
δQR(Q) = F (U(Q)). (1.2.9)

Considering system (1.1.25) together with (1.2.6) and (1.2.9), we obtain (1.2.4). �

The general Godunov structure (1.2.4) directly implies the weak symmetrizability of system (1.1.25)
with respect to the unknown Q, since it lets us write the system under

δ2
QH?(Q)∂tQ+ δ2

QR(Q)∂xQ = 0.

Let us now state in the following theorem, other consequences of a general Godunov structure for
system (1.1.25).

Theorem 1.2.5 We use the same notations and assumptions as in Definition 1.2.2. Assume thatH?
is strictly convex on Ω?. Then, the general Godunov system (1.2.4) is weakly symmetrizable for
any change of variable Q 7→ V . More precisely, it is written under the form

A0(V )∂tV +A1(V )∂xV = 0,

where the symmetric operators are given by

A0(V ) = (DV U)T δ2
UH(U)DV U, (1.2.10)

A1(V ) = (DV U)T δ2
UH(U)DUF (U)DV U, (1.2.11)

with U = δQH?(Q), F (U) = δQR(Q), andH the Legendre transform ofH?.

Proof Setting U = δQH?(Q) and F (U) = δQR(Q(U)), system (1.2.4) writes

∂tU + ∂xF (U) = 0. (1.2.12)

We now consider the change of variable U 7→ V and write (1.2.12) under

DV U∂tV +DUF (U)DV U∂xV = 0. (1.2.13)

Then, we denote byH the Legendre transform ofH? and take the left side action of (DV U)T δ2
UH(U)
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on (1.2.13). This leads to

(DV U)T δ2
UH(U)DV U∂tV + (DV U)T δ2

UH(U)DUF (U)DV U∂xV = 0. (1.2.14)

Hence, the theorem is proved if we show that δ2
UH(U)DUF (U) is symmetric. To do so, let us

differentiate the following application

N (U) :=

∫
R
Q(U) · F (U)−R(Q(U)),

and find

DUN (U)φ =

∫
R

(F (U)− δQR(Q)) ·DUQφ+Q ·DUF (U)φ ∀φ ∈ A.

On the other hand, δQR(Q) = F (U) and Q = δUH(U). Therefore,

DUN (U)φ =

∫
R
δUH(U) ·DUF (U)φ ∀φ ∈ A.

The symmetry of the operator δ2
UH(U)DUF (U) is just a consequence of the integrability of φ 7→∫

R δUH(U) ·DUF (U)φ. �

Let us gather the two previous results in the following corollary.

Corollary 1.2.6 We use the same notations and assumptions as in Definition 1.2.2. Assume thatH
is strictly convex on Ω. The three following statements are equivalent:
1. System (1.1.25) owns a general Godunov structure using the Legendre transformH? ofH.
2. The operator δ2

UH(U)DUF (U) is symmetric.
3. System (1.1.25) is weakly symmetrizable under any change of variable U 7→ V with the expres-
sions (1.2.10) and (1.2.11) for symmetric operators.

One can see that these relations are very similar to the case of hyperbolic systems. It remains to
check whether or not one can add to these statements the existence of a conservation law.

Proposition 1.2.7 Assume any of the three statements of Corollary 1.2.6. Assume also that there
exists a pair of functions (E,R) which defines H(U) =

∫
RE(U) and R(Q) =

∫
RR(Q) describ-

ing the general Godunov form (1.2.4) of system (1.1.25). Then, the solution U to system (1.1.25)
satisfies ∫

R

(
∂tE(U) + ∂xN(U)

)
= 0, (1.2.15)

where
N(U) = Q(U) · F (U)−R(Q(U)).

Proof We take the left action of DUE(U) on (1.1.25) and find

DUE(U)∂tU +DUE(U)DUF (U)∂xU = 0. (1.2.16)
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We then take the integral on R and use the definition of the variational derivative to get∫
R
DUE(U)∂tU + δUH(U) ·DUF (U)∂xU = 0. (1.2.17)

On the other hand, as done in the proof of Theorem 1.2.5, we have∫
R
DUN(U)φ =

∫
R
δUH(U) ·DUF (U)φ ∀φ ∈ A. (1.2.18)

Therefore, ∫
R
DUN(U)∂xU =

∫
R
δUH(U) ·DUF (U)∂xU. (1.2.19)

Hence, we can write (1.2.17) as∫
R
DUE(U)∂tU +DUN(U)∂xU = 0, (1.2.20)

which provides (1.2.15). �

Let us remark that contrary to the case of hyperbolic systems, the reciprocal of Proposition
1.2.7 is false since (1.2.18) and (1.2.19) are not any more equivalent. Indeed, δUH(U) as well as
the components of DUN(U) depend not only on U but also on its derivatives.

Let us also remark that the notion of symmetry introduced for (1.1.25) corresponds to the sym-
metry for the L2 scalar product and is a weak notion while the symmetry of hyperbolic system is a
strong one. This is due to the fact that the assertion∫

R
φ.Fψ =

∫
R
Fψ · φ ∀φ, ψ test functions, (1.2.21)

does not imply
φ.Fψ = Fψ · φ ∀φ, ψ test functions. (1.2.22)

Therefore, the weak symmetry of the system does not lead to a conservation law but to an equality
of the form (1.2.15). However, as we can see in [72], this definition is strong enough to allow us
to generalize the hyperbolic techniques to the Green–Naghdi equations. In fact, if we considered
a stronger definition like the one deduced in (1.2.22) for the symmetric operator and a stronger
condition such as the symmetry of D2

UE(U)DUF (U) for Theorem 1.2.4, we would obtain a con-
servation law in addition to similar theorems. However, less equations would be covered (i.e. the
result would be less general). Moreover, the strong symmetry ofD2

UE(U)DUF (U) is more tedious
to be checked than the weak symmetry of δ2

UH(U)DUF (U). We end this section by two remarks.
The first one is about an interesting change of variable (similarly to Remark 1.1.1) while the second
deals with the multi-dimensional case. Let us consider system (1.1.25) with a variational function
H such that δ2

UH(U)DUF (U) is a symmetric operator. Assume that there exists a decomposition
of the unknown U = (U1, U2) such that the application φ 7→ δU2H(U1, φ) is invertible. Then, the
change of variable

U 7→ (V1, V2) = (U1, δU2H(U1, U2)) (1.2.23)

is very interesting since it leads to a block diagonal structure of the matrix operator A0(V ) defined
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by (1.2.10). Using this expression, we have

A0(V ) =

(
A11

0 A12
0

A21
0 A22

0

)
,

where

A11
0 = δ2

U1
H(U) + δ2

U2U1
H(U) DV1U2 + (DV1U2)T δ2

U1U2
H(U) + (DV1U2)T δ2

U2
H(U) DV1U2

A12
0 = δ2

U2U1
H(U) DV2U2 + (DV1U2)T δ2

U2
H(U)DV2U2,

A21
0 = (A12

0 )T = (DV2U2)T δ2
U1U2
H(U) + (DV2U2)T δ2

U2
H(U)DV1U2,

A22
0 = (DV2U2)T δ2

U2
H(U) DV2U2.

Therefore, A0(V ) is block diagonal since

A21
0 = (A12

0 )T = (DV2U2)T δ2
U1U2
H(U) + (DV2U2)T δ2

U2
H(U) DV1U2 = 0.

This is due to the fact that (1.2.23) implies that

(DV2U2)T δ2
U1U2
H(U) + (DV2U2)T δ2

U2
H(U) DV1U2

= (DV2U2)T DU1V2 + (DV2U2)T DU2V2 DV1U2

= (DV2U2)T DU1V2 DV1U1 + (DV2U2)T DU2V2 DV1U2

= (DV2U2)T (DU1V2 DV1U1 +DU2V2 DV1U2)

= (DV2U2)T DV1V2 = 0.

Let us consider the multi-dimensional version of system (1.1.25)

∂tU +

n∑
i=1

∂xiFi(U) = 0. (1.2.24)

One can easily extend the previous results. Consider a variational function H(U) =
∫
RE(U)

which admits a Legendre transform, as in Definition 1.2.2. Then the following three statements are
equivalent:
1. The operators δ2

UH(U)DUFi(U) are symmetric for all i ∈ {1, · · · , n}.
2. System (1.2.24) admits a general Godunov structure. i.e. there exist functions Ri and the
associatedRi(Q) =

∫
RRi(Q) such that system (1.2.24) is equivalent to

∂t(δQH?(Q)) +
n∑
i=1

∂xi(δQRi(Q)) = 0.

3. System (1.2.24) is symmetrizable under any change of variable U 7→ V i.e. it is equivalent to

A0(V )∂tV +
n∑
i=1

Ai(V )∂xiV = 0,
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where the symmetric positive definite operator A0(V ) is given by

A0(V ) = (DV U)T δ2
UH(U)DV U, (1.2.25)

and the symmetric operators Ai(V ) by

Ai(V ) = (DV U)T δ2
UH(U)DUFi(U)DV U. (1.2.26)

Moreover, if one of these statements is satisfied, the solution to system (1.1.25) satisfies∫
R
∂tE(U) +

n∑
i=1

∂xi (Q · Fi(U)−Ri(Q)) = 0.

1.3 Application to Green–Naghdi type equations

1.3.1 Symmetrization of the Green–Naghdi system

In this part, we are going to apply the result of the previous section to the Green–Naghdi type system
(1.1.1) around constant solutions (h̄, h̄ū), with h̄ > 0 and ū ∈ R. First, we show that system (1.1.1)
is of the form (1.1.25) under convenient variables.

Proposition 1.3.1 Let s ≥ 2 be an integer and setA = Hs(R)×Hs−1(R). Then, using the variable

U = (η, w)

with η = h − h̄ and w = Lh(u) − h̄ū, system (1.1.1) is of the form (1.1.25) where F : A → A is
differentiable.

Proof We denote Lh(u) by m and h̄ū by m̄. Let us first prove that system (1.1.1) can be written as{
∂η
∂t + ∂

∂x

(
hu
)

= 0,
∂w
∂t + ∂

∂x(mu) + ∂
∂x

(
−2αh3(∂xu)2 + g

2h
2
)

= 0
(1.3.1)

This is a consequence of the Hamiltonian structure (1.1.18) of the system. Indeed, developing
the first line of (1.1.18) we find easily the first equation of (1.3.1). Then, we develop the second
equation of (1.1.18) to get

∂tm+ h∂xσ + ∂x(mu) +m∂xu = 0,

where σ is given by (1.1.22). Now, using the expression (1.1.22) of σ together with the fact that
m = Lh(u), we find the second equation of (1.3.1). One can deduce

F (U) =

(
(η + h̄)L−1

h (w + m̄)− h̄ū
(w + m̄)L−1

h (w + m̄)− 2α(η + h̄)3(∂xL−1
h (w + m̄))2 + g

2(η + h̄)2 − g
2 h̄

2 − m̄ū

)
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Let us now check the properties of F . Assuming that h ∈ Hs(R) + h̄ is positively bounded by
below, Lh is a diffeomorphism from Hs+1(R) + ū to Hs−1(R) + h̄ū. This together with the fact that
Hs−1(R) is an algebra for s ≥ 2 ensures that F is an application from A to A. For instance, let us
consider the first component of F (U). Since w ∈ Hs−1(R), we obtain that L−1

h (w+ m̄) belongs to
Hs+1(R) + ū and thus, to Hs(R) + ū. On the other hand, η + h̄ ∈ Hs(R) + h̄. Hence, the product
is in Hs(R) + h̄ū. A similar logic can be applied to get a similar result on the second component of
F .
The differentiability of F is due to the fact that it is a composition of differentiable applications. �

We are now going to see that system (1.1.1) satisfies the assumptions of theorems 1.2.4 and 1.2.5
and Corollary 1.2.6 presented in Section 1.2.

Proposition 1.3.2 Let us consider a constant solution V̄ = (h̄, ū) with h̄ > 0. Then, there exists
a neighborhood in Hs(R) × Hs+1(R) of V̄ , such that as long as the solution V = (h, u) remains
in this neighborhood, system (1.1.1) is symmetrizable under any change of variable defined on this
neighborhood. In other words, (1.1.1) is locally weakly symmetrizable around constant solutions.

Proof Let us prove that system (1.1.1) admits a general Godunov structure of the form (1.2.4) using
the function

Hh̄,ū(U) =

∫
R

gh(h− h̄)

2
+
h(u− ū)2

2
+
αh3(ux)2

2
.

Let us first remark that Hh̄,ū(U) is strictly convex in a small neighborhood3 of Ū = U(V̄ ). The
explicit representation formula of the second variation ofHh̄,ū is provided in Appendix 1.A. For all
test functions φ1, φ2, one has 4∫

R

(
φ1

φ2

)
· δ2Hh̄,ū(U)

(
φ1

φ2

)
=∫

R
(g − 3αh(ux)2)(φ1)2 +

(
L−

1
2

h (−uφ1 + 3α∂x(h2uxφ1)) + L−
1
2

h (φ2)

)2

.

Now, considering the fact that g−3αh(ux)2 is bounded positively by below for (h, u) close enough
to V̄ 5 (therefore, for U close enough to Ū ), the strict convexity of Hh̄,ū on the small neighborhood
of Ū is concluded. We can formulate this conclusion as following:

There exists a neighborhood in Hs(R)×Hs−1(R) of Ū = (0, 0) such that as long as the solution
U = (η, w) is in this neighborhood, δ2

UHh̄,ū is positive definite. In particular, we have on Ū ,

δ2Hh̄,ū(Ū) =

(
g 0

0 L−1
h

)
. (1.3.2)

Let us also remark that δ2Hh̄,ū(U) is an isomorphism from Hs(R)×Hs−1(R) to Hs(R)×Hs+1(R)
if U is close enough to Ū . Hence, the variational derivative δHh̄,ū defines a diffeomorphism on a

3for the classical norm of Hs(R)×Hs−1(R).
4L−

1
2

h is the symmetric operator such that L−
1
2

h ◦ L−
1
2

h = L−1
h . The existence of this operator is guaranteed by the

symmetry definite positivity of L−1
h .

5for the classical norm of Hs(R)×Hs+1(R).
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small enough neighborhood of the equilibrium Ū . This is a consequence of the inverse function
theorem considering the injectivity of δHh̄,ū(U) for U close to Ū .

We now consider the Legendre transformH?
h̄,ū

which is defined by

H?h̄,ū(Q) =

∫
R
Q · U − Eh̄,ū, (1.3.3)

where

Eh̄,ū =
gh(h− h̄)

2
+
h(u− ū)2

2
+ αh3(ux)2.

and
Q = δUHh̄,ū(U). (1.3.4)

One can check that Q = (σ, u− ū), with σ = gh− gh̄/2− u2/2 + ū2/2− 3
2αh

2(ux)2. This leads
to the following expression forH?

h̄,ū

H?h̄,ū(Q) =

∫
R

g(h− h̄)2

2
+
h̄(u− ū)2

2
− αh3(ux)2 +

3

2
αh2h̄(ux)2.

We just now need to remark that there exists a functionR of Q such that

F (U) = δQR(Q).

We can get to this equality setting

R(Q) =

∫
R
gu

(
h2 − h̄2

2

)
− αh3u(ux)2 − h̄ūσ − h̄ū2(u− ū) + gh̄2ū/2. (1.3.5)

Hence, the system is equivalent on a small enough neighborhood of V̄ to

∂t

(
δQH?h̄,ū(Q)

)
+ ∂x (δQR(Q)) = 0. (1.3.6)

Now, using Theorem 1.2.5, we can conclude the weak symmetrizability of the system under any
change of variable around constant solutions. �

Let us remark that the quantity Eh̄,ū introduced in the proof of Proposition 1.3.2, is actually an
energy for the system. Indeed, we can check that the solution of (1.1.1) satisfies

∂tEh̄,ū + ∂x
(
uEh̄,ū + (u− ū)p

)
= 0. (1.3.7)

where p is defined by (1.1.4).

Proposition 1.3.2 together with Theorem 1.2.5 implies the symmetrizability of the system under
any variable around constant solutions. We now provide in the two following propositions some
explicit symmetric forms of system (1.1.1).

Proposition 1.3.3 The Green–Naghdi type system (1.1.1) can be written under the symmetric form

A0(Q)∂tQ+A1(Q)∂x(Q) = 0, (1.3.8)
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where Q = (σ, u− ū) is defined by (2.1.6) and

A0(Q) = (1.3.9) 1
g−3αh(ux)2

u+3αh2ux∂x
g−3αh(ux)2

u
g−3αh(ux)2 − 3α∂x

(
h2ux

g−3αh(ux)2 ()
)
Lh +

u(u+3αh2(ux)∂x)
g−3αh(ux)2 − 3α∂x

(
h2ux

u()+3αh2ux∂x()
g−3αh(ux)2

)
and

A1(Q) = (1.3.10)
u

g−3αh(ux)2 h+ u2+3αh2uux∂x
g−3αh(ux)2

h+ u2

g−3αh(ux)2 − 3α∂x( h2u(ux)
g−3αh(ux)2 ()) 3hu+ u3+3αh2u2ux∂x

g−3αh(ux)2 − α∂x
(
h3ux()

)
−

αu∂x
(
h3∂x()

)
− 3α∂x

(
h2u2ux+3αh4u(ux)2∂x()

g−3αh(ux)2

)
 .

Proof This is a consequence of the general Godunov structure (1.3.6) of the system. We just need
to set A0(Q) = δ2

QH?h̄,ū(Q) and A1(Q) = δ2
QR(Q) to get the result. �

Let us remark that the operators A0(Q) and A1(Q) defined by (1.3.9) and (1.3.10) are second order
differential operators.

Proposition 1.3.4 The Green–Naghdi type system (1.1.1) is symmetric under the unknown V =
(h, u) of the form

A0(V )∂tV +A1(V )∂x(V ) = 0, (1.3.11)

with

A0(V ) =

(
g − 3αh(ux)2 0

0 Lh

)
, (1.3.12)

and

A1(V ) =

(
gu− 3αhu(ux)2 gh− 3αh2(ux)2

gh− 3αh2(ux)2 hu+ 2α∂x(h3ux)− αh3ux∂x − αu∂x(h3∂x())

)
. (1.3.13)

Proof This proposition is just a consequence of Theorem 1.2.5 and Proposition 1.3.2. In fact, we
check that the change of variable U 7→ Ṽ such that{

U = (η, w),

Ṽ = (η, δwHh̄,ū(U)),

leads to Ṽ = (h − h̄, u − ū) which is nothing but V within a constant. This fact is true since
δwHh̄,ū(U) = L−1

h (m) − ū. This change of variable is valid by the properties of the Sturm–
Liouville operator Lh while h is positively bounded by below. Hence, the system is symmetric
with

A0(V ) = (DV U)T δ2
UHh̄,ū(U)DV U,
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and
A1(V ) = (DV U)T δ2

UHh̄,ū(U)∇UF (U)DV U.

Basic computations (similar to those presented in Appendix 1.A) show that their analytic expres-
sions are given by (1.3.12) and (1.3.13). �

Let us remark that similarly to Proposition 1.3.3, the operators A0(V ) and A1(V ) are second order
differential operators. However, the analytic expressions of these operators are much simpler than
the expressions of A0(Q) and A1(Q) in Proposition 1.3.3. In fact, as explained in Remark 1.2, the
symmetric positive definite operator of Proposition 1.3.4 is diagonal. A similar structure to (1.3.11)
(but non symmetric) is used in [69] to study the linearized Green–Naghdi system in order to prove
the local well-posedness. Let us now apply Proposition 1.2.7 to the Green–Naghdi type equations
to get a conserved quantity. According to this proposition, as long as the solution U remains close
Ū , it satisfies ∫

R
∂tEh̄,ū(U) + ∂xN(U) = 0, (1.3.14)

where
N(U) = Q · F (U)−R(U),

with

R(U) = gu

(
h2 − h̄2

2

)
− αh3u(ux)2 − h̄ūσ − h̄ū2(u− ū) + gh̄2ū/2

given by (1.3.5). Now, we use the expressions of Q, F (U), and R(U) and we find

N(U) =
ghu(h− h̄)

2
+

(
gh2 + hu2

2
+ 3αh3(ux)2

)
(u− ū) +

α

2
h3u(ux)2.

Since (h− h̄, u− ū) ∈ Hs(R)×Hs+1(R) and s large, we remark that

lim
x→±∞

N(U) = 0,

which gives
d

dt

∫
R
Eh̄,ū(U) = 0.

Hence, we conclude the conservation of the energy integral Hh̄,ū(U) from the general Godunov
structure of the system. Let us note that we could get the conservation of the energy integral simply
by integrating the energy conservation law (1.3.7).

1.3.2 Two-dimensional extension

Let us fix V̄ = (h̄, ū, v̄) ∈ R3 with h̄ > 0 and consider the 2D Green–Naghdi model

∂th+ ∂xhu+ ∂yhv = 0, (1.3.15a)

∂thu+ ∂xhu
2 + ∂yhuv + ∂x(gh2/2 + αh2ḧ) = 0, (1.3.15b)

∂thv + ∂xhuv + ∂yhv
2 + ∂y(gh

2/2 + αh2ḧ) = 0, (1.3.15c)
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where ḣ = ∂th+ u∂xh+ v∂yh.

This system is equivalent to

∂tU + ∂xF1(U) + ∂yF2(U) = 0, (1.3.16)

where U = (h − h̄,m − h̄ū, n − h̄v̄), with (m,n) = Lh(u, v) and Lh(u, v) = h(u, v) −
α∇

(
h3div(u, v)

)
. The transformation (m,n) 7→ (u, v) is well-defined if h is strictly positively

bounded by below. Indeed in this case, Lh is an isomorphism acting on the space

Hs+1(div) = {(u, v) ∈ (Hs(R2) + ū)× (Hs(R2) + v̄) such that div(u, v) ∈ Hs(R2)}.

The fluxes are defined by

F1(U) =

 hu
gh2/2 + hu2 − 2αh3(div(u, v))2 − αu∂x

(
h3div(u, v)

)
+ αh3div(u, v)vy

huv − α∂y
(
h3udiv(u, v)

)
 ,

and

F2(U) =

 hv
huv − α∂x

(
h3vdiv(u, v)

)
gh2/2 + hv2 − 2αh3(div(u, v))2 − αv∂y

(
h3div(u, v)

)
+ αh3div(u, v)ux

 .

Proposition 1.3.5 The solution of system (1.3.15) satisfies the following conservation law

∂tEV̄ + ∂x (uEV̄ + (u− ū)p) + ∂y (vEV̄ + (v − v̄)p) = 0. (1.3.18)

where

EV̄ = gh(h− h̄)/2 + h(u− ū)2/2 + h(v − v̄)2/2 + αh3(ux + vy)
2/2, (1.3.19)

with p given by (1.1.4).

Let us consider the space integralHV̄ of the energy EV̄ ,

HV̄ (U) =

∫
R2

EV̄ (U). (1.3.20)

Similarly to the one dimensional case, this function is strictly convex as an application of U while
V = (h, u, v) is close enough to the equilibrium V̄ = (h̄, ū, v̄), i.e. δ2

UHV̄ (U) is positive definite
for U close to Ū = U(V̄ ) = (0, 0, 0). Let us now consider the change of variable

U 7→ Q = δUHV̄ (U),

defined around Ū . Similarly to the 2-dimensional case, this is a diffeomorphism since δUHV̄ is
injective on a small enough neighborhood of Ū . Moreover, δ2

UHV̄ (U) is an isomorphism for all U
close to Ū . The invertibility of δUHV̄ is then just a consequence of the inverse function theorem.
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One can check that

Q =

gh− gh̄/2− (u2 − ū2)/2− (v2 − v̄2)/2− 3αh2(div(u, v))2/2
u− ū
v − v̄

 . (1.3.21)

We are going to see in the following proposition that the 2-dimensional Green–Naghdi equation
(1.3.15) admits a general Godunov structure using the variable Q.

Proposition 1.3.6 Let s > 4. There exists a neighborhood for the norm Hs×Hs+1(div) of V̄ such
that as long as the solution V of (1.3.15) remains in this neighborhood, the system is equivalent to

∂t(δQH?V̄ (Q)) + ∂x(δQR1(Q)) + ∂y(δQR2(Q)) = 0, (1.3.22)

where Q is defined by (1.3.21) and R1 and R2 are two functions defined on a neighborhood of
Q̄ = Q(V̄ ) = (gh̄/2, 0, 0) (see (1.3.24) for some explicit representation formulas).

Proof Let us first remark that the Legendre transformH?
V̄

of the energy integralHV̄ is defined by

H?V̄ (Q) =

∫
R2

Q · U − EV̄ (U)

=

∫
R2

g(h− h̄)2/2 + h̄(u− ū)2/2 + h̄(v − v̄)2/2− αh3(div(u, v))2 +
3

2
αh2h̄(div(u, v))2.

We know by Definition 1.2.2 of the Legendre transform that we have

U = δQH?V̄ (Q). (1.3.23)

Let us now consider the variational functionsR1 andR2 defined by

R1(Q) =

∫
R2

g

(
uh2 − ūh̄2

2

)
+ h̄ū(u2 − ū2)− αh3u(div(u, v))2, (1.3.24a)

and

R2(Q) =

∫
R2

g

(
vh2 − v̄h̄2

2

)
+ h̄v̄(v2 − v̄2)− αh3v(div(u, v))2. (1.3.24b)

We can easily check that

F1(U) = δQR1(Q), (1.3.25)

F2(U) = δQR2(Q). (1.3.26)

Considering (1.3.23) together with (1.3.25) and (1.3.26) we get the result. �

Now, according to Remark 1.2, the 2-dimensional Green–Naghdi system (1.3.15) is symmetrizable
under any change of variable around any constant solution V̄ . Especially, the general Godunov
structure of the system leads directly to the following symmetric structure under the unknown Q:

A0(Q)∂tQ+A1(Q)∂xQ+A2(Q)∂yQ = 0, (1.3.27)
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where
A0(Q) = δ2

QH?V̄ (Q), (1.3.28a)

A1(Q) = δ2
QR1(Q), (1.3.28b)

and
A2(Q) = δ2

QR2(Q). (1.3.28c)

Considering the fact that we can recover the physical variable V = (h, u, v) using the partial
variational derivative of the energy integral, we have the following corollary.

Corollary 1.3.7 The two-dimensional Green–Naghdi equation (1.3.15) is symmetric under the phys-
ical variable V = (h, u, v) of the form

A0(V )∂tV +A1(V )∂xV +A2(V )∂yV = 0. (1.3.29)

where

A0(V ) =

g − 3αh(div(u, v))2 0 0
0 h− α∂x(h3∂x) −α∂x(h3∂y)
0 −α∂y(h3∂x) h− α∂y(h3∂y)


is block diagonal.

Proof We first consider the change of variable U 7→ Ṽ where

U = (h,m, n),

and
Ṽ = (h, δ(m,n)HV̄ (U)) = (h, u− ū, v − v̄)

is nothing but V within a constant. This change of variable is valid by the invertibility of Lh
on Hs+1(div) since h is positively bounded by below and the physical speed (u, v) belongs to
Hs+1(div). We then use Remark 1.2 to find the following expression for the operators

A0(V ) = (DV U)T δ2
UHV̄ (U) DV U,

A1(V ) = (DV U)T δ2
UHV̄ (U) DUF1(U) DV U,

and
A2(V ) = (DV U)T δ2

UHV̄ (U) DUF2(U) DV U.

Using Remark 1.2, we could predict the block diagonal structure of A0(V ). �

Let us mention that similarly to the first dimensional case, the conservation over time of the energy
integralHV̄ can be concluded.

1.4 Conclusion

A generalization of the notion of symmetry classically defined for hyperbolic systems has been pre-
sented. This generalization is mainly based on the generalization of Godunov systems introduced in
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[54]. We prove that all general Godunov systems are symmetrizable under any change of variable.
We also see that this structure leads to a conserved quantity. Then, we check that the one and two
dimensional Green–Naghdi equations are general Godunov systems as long as the solution remains
close enough to equilibriums. Therefore, there are symmetrizable under any change of variable
defined on a small neighborhood of constant solutions. Moreover, the conserved quantity deduced
by the general Godunov structure of the system is nothing but the energy integral which represents
the total physical energy of the system.

Let us also mention that we write the Green–Naghdi equation on a quite simple structure under
the physical variable. This is due to the fact that the physical variable can be obtained from the
Hamiltonian variable by a partial change of variables. In fact, this leads to a bloc diagonal operator
for the symmetric structure. The symmetric structure of the Green–Naghi equations under the
variable (h, u) is also used in [72] to prove the non linear stability of constant solutions of the
system with viscosity.

1.A Computation of the second variation

In this part, we compute the second variation with respect to U = (h,m) of

Hh̄,ū(U) =

∫
R

gh(h− h̄)

2
+
h(u− ū)2

2
+
αh3(ux)2

2
.

Let us first compute the variational derivative with respect to h of Hh̄,ū(U). In fact, fixing the
function m, we have for all test functions φ,

Hh̄,ū(h+ φ,m) =

∫
R
Eh̄,ū(h+ φ, u)

=

∫
R
Eh̄,ū(h, u) +DhEh̄,ū(h, u)(φ) + o(‖φ‖),

= Hh̄,ū(h, u) +

∫
R
DhEh̄,ū(h, u)(φ) + o(‖φ‖)

where limφ→0
o(‖φ‖)
‖φ‖ = 0. Using the definition of Eh̄,ū, we have

Hh̄,ū(h+ φ,m) = Hh̄,ū(h, u) +

∫
R
ghφ− gh̄

2
φ+

(u− ū)2

2
φ

+

∫
R
h(u− ū)Dhu(φ) +

3

2
αh2(ux)2φ+ αh3ux∂xDhu(φ) + o(‖φ‖). (1.A.1)

In order to computeDhu(φ), we consider (1.1.17) wherem is defined. We differentiate this relation
with respect to h and take the action on φ. We find

0 = uφ+ hDhu(φ)− α∂x(3h2φux)− α∂x(h3∂x(Dhu(φ))).

This leads to
Dhu(φ) = L−1

h

(
3α∂x(h2uxφ)− uφ

)
.
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Injecting this into (1.A.1), we get

Hh̄,ū(h+ φ,m) = Hh̄,ū(h, u) +

∫
R
ghφ− gh̄

2
φ+

(u− ū)2

2
φ

+

∫
R

3

2
αh2(ux)2φ+

(
h(u− ū) + αh3ux∂x

)
L−1
h

(
3α∂x(h2uxφ)− uφ

)
+ o(‖φ‖).

Hence, we have after an integration by part

Hh̄,ū(h+ φ,m) = Hh̄,ū(h, u) +

∫
R
ghφ− gh̄

2
φ+

(u− ū)2

2
φ+

3

2
αh2(ux)2φ

+

∫
R

(
h(u− ū)− ∂x(αh3ux)

)
L−1
h

(
3α∂x(h2uxφ)− uφ

)
+ o(‖φ‖),

or equivalently

Hh̄,ū(h+ φ,m) = Hh̄,ū(h, u) +

∫
R
ghφ− gh̄

2
φ+

(u− ū)2

2
φ+

3

2
αh2(ux)2φ∫

R
+Lh(u− ū) · L−1

h

(
3α∂x(h2uxφ)− uφ

)
+ o(‖φ‖).

Now considering the fact that Lh is symmetric and using another integration by part, we get

Hh̄,ū(h+ φ,m) = Hh̄,ū(h, u) +

∫
R

(
gh− gh̄/2− u2

2
+
ū2

2
− 3

2
αh2(ux)2

)
φ+ o(‖φ‖).

Then, we have

δhHh̄,ū(U) = gh− gh̄/2− u2

2
+
ū2

2
− 3

2
αh2(ux)2,

which is nothing but the quantity called σ in Section 1.1.2.
Using exactly the same type of computations, we find

δmHh̄,ū(U) = u− ū.

On the other hand, we know by the definition of the second variation that

δ2
UHh̄,ū(U) = DUδUHh̄,ū(U) =

(
Dhσ(U) Dmσ(U)
Dhu(U) Dmu(U)

)
.

Then, similar computations lead to

δ2Hh̄,ū(U) =(
g − 3αh(ux)2 −

(
u+ 3αh2ux∂x

)
L−1
h

(
−u() + 3α∂x(h2ux())

)
−
(
u+ 3αh2ux∂x

)
L−1
h

L−1
h

(
−u() + 3α∂x(h2ux())

)
L−1
h

)
.
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2.1 Introduction

The Green–Naghdi system is a shallow water approximation of the water waves problem which
models incompressible flows. The vertical and horizontal speeds are averaged vertically. Moreover,
vertical acceleration is supposed too small to be considered [62]. In other words, Green-Naghdi
equations is one order higher in approximation compared to the Saint–Venant (called also isentropic
Euler) system [9]. To obtain the latter system, not only the vertical acceleration but also the vertical
speed are neglected. This leads to a hyperbolic system of equations whereas the Green–Naghdi
equation is dispersive due to the term αh2ḧ defined below. In this work, we focus on the Green–

59
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Naghdi type equation with a second order viscosity:{
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2) + ∂x(gh2/2 + αh2ḧ) = µ∂x(h∂xu)
(2.1.1)

We assume that h(x, t) > 0, α and µ are strictly positive and g is the gravity constant. The unknown
h represents the fluid height and u its average horizontal speed. Moreover, the material derivative
(̇) is defined by (̇) = ∂t() + u∂x().

Remark 2.1.1 Let us note that the α = 0 case gives us the Saint-Venant system. We can also
learn more about the derivation of the system in [78, 5, 68] for (µ, α) = (0, 1

3), and in [20] for
(µ, α) = (0, 1

4).

It is worth remarking that (2.1.1) admits the following energy equality [55, 20],

∂tE + ∂x (u(E + p)) = µu∂x(h∂xu), (2.1.2)

where
E(h, u) = gh2/2 + hu2/2 + αh3(∂xu)2/2,

and
p(h, u) = gh2/2 + αh2ḧ.

Then, we can check that (2.1.1) admits a family of relative energy conservation equalities given by

∂tEhe,ue + ∂xPhe,ue = µ(u− ue)∂x(h∂xu), (2.1.3)

where
Ehe,ue(h, u) = g(h− he)2/2 + h(u− ue)2/2 + αh3(∂xu)2/2, (2.1.4a)

and

Phe,ue(h, u) = uEhe,ue(h, u) + (u− ue)p(h, u)− gh2
e

2
u. (2.1.4b)

This family is parametrized by (he, ue) ∈ R2 with he > 0.

Remark 2.1.2 Let us assume that α = 0. Then, E(h, u) and Ehe,ue(h, u) are convex entropies for
Saint-Venant system.

The dissipative term µ∂x(h∂xu) considered here in the right hand side of (2.1.1), is presented in [57]
and some other references, as the viscosity for Saint-Venant system. Indeed, Saint-Venant system
with this viscosity is derived in [57] from the Navier–Stokes equations under the shallow water
assumption. On the one hand, this term is stabilizing for the hyperbolic Saint-Venant system. On
the other hand, Green–Naghdi equation is a higher order approximation of the water waves problem
and contains Saint-Venant system in addition to some dispersive terms. Therefore, we are interested
to learn more about the role this viscosity plays on Green–Naghdi equations. Following the result
of this work, we see that the dispersion does not cancel the stabilizing effect of the viscosity.

The aim of this chapter is to study the stability of equilibriums based on the symmetric structure
of the system. The intuition comes from the Kawashima–Shizuta works on hyperbolic–parabolic
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systems [95, 71] and Hanouzet–Natalini and Yong [64, 108] on entropy dissipative symmetric hy-
perbolic equations. All these results have been proved using the symmetric structure of hyperbolic
systems. In particular, Saint-Venant system with a linear friction can be treated by the general result
obtained in [64, 108] whereas Saint-Venant system with viscosity fits the general frame considered
in [95, 71]. The notion of symmetric structure and of Godunov systems has been extended to some
dispersive systems in the previous chapter as well as in [73]. In particular, the Green–Naghdi equa-
tions enter in this framework and then can be written under a symmetric structure which is recalled
in Subsection 2.1.1. We show in this work how this structure enables us to extend the techniques
used in [71, 64, 108] for symmetric hyperbolic equations to the dispersive Green-Naghdi equations.

Remark 2.1.3 The order of the dissipative term µ∂x(h∂xu) plays a very crucial role in this work.
Indeed, we can prove the global existence for small initial data only if the dissipative term, con-
sidered in the right hand side of (2.1.1), is a second order derivative term with respect to u. For
instance, we are not able to generalize the results presented in Section 2.2, if we replace the dis-
sipative term µ∂x(h∂xu) with a friction type term such as −κu for some κ > 0. Likewise, if we
consider a fourth order dissipation such as−µ∂2

x (h∂x(h∂xu)) /4 (suggested in [20]) instead of the
second order µ∂x(h∂xu), the estimates we find are not sufficient to conclude the global existence.

In all this work, partial derivatives with respect to x of any differentiable function f are presented
by ∂xf . The differential of the application F at U is symbolized by DUF (U). The adjoint of the
operator A is denoted by A?.

2.1.1 Symmetric structure

Following Li’s notations in [78], we use the unknown U = (h,m) defined by a Sturm–Liouville
operator called L:

m = hu− α∂x(h3∂xu) = Lh(u).

Let us note that Lh : Hs(R) → Hs−2(R) is an isomorphism if h is strictly positively bounded by
below and s ≥ 2. Therefore, System (2.1.1) can be written under

∂tU + ∂xF (U) = Q(U),

where

F (U) =

(
hL−1

h (m)

mL−1
h (m)− 2αh3(∂xL−1

h (m))2 + g
2h

2 − g
2h

2
e

)
, (2.1.5)

and

Q(U) =

(
0

µ∂x(h∂xu)

)
(2.1.6)

Based on the structure presented in [78], it is easy to check that the unknown U enables us to write
(2.1.1) under a Hamiltonian structure where the Hamiltonian Hhe,ue is defined by the integral of
the relative energy i.e. by

Hhe,ue :=

∫
R
Ehe,ue .
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This unknown presents also another advantage. In fact, we can recover the physical variable V =
(h, u) from U using the interesting change of variable V = (h, δmHhe,ue(U)), where δm denotes
the variational derivative with respect to m1. This consideration, as suggested in the following
theorem found in the previous chapter, enables us to symmetrize the system in the physical variable
with a diagonal locally definite positive operator (See Appendix 2.A for more details).

Theorem 2.1.4 [73]. Let Ve = (he, ue) be a constant solution of (2.1.1) with he > 0. Let also
s ≥ 2 be an integer. Then, as long as the solution V = (h, u) remains close to Ve for the usual
norm of Hs(R)×Hs+1(R), the system is equivalent to the following symmetric form:

A0(V )∂tV +A1(V )∂xV =

(
0

µ∂x(h∂xu)

)
(2.1.7)

where

A0(V ) = DV U
?(V )

(
δ2
UH
)
DV U(V ) (2.1.8)

=

(
g − 3αh(∂xu)2 0

0 Lh

)
is a positive definite operator and

A1(V ) = DV U
?(V )

(
δ2
UH
)

(DUF (U))DV U(V ) (2.1.9)

=

(
gu− 3αhu(∂xu)2 gh− 3αh2(∂xu)2

gh− 3αh2(∂xu)2 hu+ 2α∂x(h3∂xu)− α∂x(h3u)∂x − αh3u∂2
x

)
is a symmetric one.

Proof Let us consider the conservative form

∂tU + ∂xF (U) = Q(U).

Obviously, we have

DV U(V )∂tV +DUF (U)DV U(V )∂xV = Q(U).

Then, acting DV U
?(V )

(
δ2
UHhe,ue

)
on the system and considering the fact that Q(U) is an in-

variant vector of DV U
?(V )

(
δ2
UHhe,ue

)
, we get the result (See Appendix 2.A for more details).

�

Let us note that A0(V ) and A1(V ) are linear second order differential operators. Therefore, they
can be decomposed as

A0(V ) = A0
0(V ) +A1

0(V )∂x +A2
0(V )∂2

x (2.1.10)
1We have

δhHhe,ue(U) = g(h− he)−
u2 − u2

e

2
− 3

2
αh2(∂xu)2,

and
δmHhe,ue(U) = u− ue.
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A1(V ) = A0
1(V ) +A1

1(V )∂x +A2
1(V )∂2

x (2.1.11)

where the expressions of symmetric matrix Aji (V ) for i, j ∈ {0, 1, 2} are given by

A0
0(V ) =

(
g − 3αh(∂xu)2 0

0 h

)
, A1

0(V ) =

(
0 0
0 −3αh2∂xh

)
, A2

0(V ) =

(
0 0
0 −αh3

)
,

A0
1(V ) =

(
gu− 3αhu(∂xu)2 gh− 3αh2(∂xu)2

gh− 3αh2(∂xu)2 hu+ 2α∂x(h3∂xu)

)
, A1

1(V ) =

(
0 0
0 −α∂x(h3u)

)
,

A2
1(V ) =

(
0 0
0 −αh3u

)
.

Remark 2.1.5 The definite positivity of a real matrix is equivalent to its coercivity. However, this
fact does not necessary hold true for definite positive operators i.e. some definite positive operators
are not coercive. It is important to point out that, as illustrated in Section 2.3, one of the keys
which lets us generalize the hyperbolic methods to our symmetric system is actually the coercivity
of A0(V ) for the convenient norm. This means that we would not be able to generalize the method
if A0(V ) was definite positive but not coercive.

We can also remark that the symmetric structure suggested in this section is similar to the structure
used in [69] to study the local well-posedness of the Green-Naghdi equations without viscosity.

2.1.2 Outline

We are going to study the global existence of solutions of the viscous Green–Naghdi type equations
for smooth initial data close to equilibriums. A local well-posedness result is proved in Appendix
2.B. Let us also mention that some similar writings as (2.1.7) have been used to study the local
well-posedness of some dispersive systems (see [93] and [42] for instance). Then, we use the dissi-
pative character of the viscosity as well as the symmetric structure of the system to prove the global
existence of the local solution. In fact, the first step of the proof contains some initial estimates
obtained by taking the scalar product of the sth derivative of the equation with the sth derivative of
the solution. As it is exposed in Subsections 2.3.1 and 2.3.2, these estimates are obtained by almost
the same approach as in the hyperbolic case ([64] and [108]). Then, the second step is to estimate
the time integral of the norm of the solution. In the case of hyperbolic systems, this estimate is
found by using the Kawashima–Shizuta condition. This condition has been introduced in [95] as
a stability condition for constant solutions. It is based on the existence of a constant real matrix
such that its product with the definite positive matrix (the one equivalent to A0) is skew-symmetric
at equilibrium while the symmetric part of its product with the symmetric matrix (the one equiv-
alent to A1), added to the right hand side term matrix, gives a definite positive matrix. However,
in the case of Green–Naghdi system, we have not been able to find any operator generalization
of the Kawashima–Shizuta condition. Hence, we must use a slightly different approach to find a
convenient estimate. Indeed, we can find a null diagonal real matrix K such that KA1(Ve) is a
symmetric definite positive matrix for all equilibriums Ve with ue = 0. However, KA0(Ve) is not a
skew-symmetric operator. Nevertheless, we are able to put some non straightforwardly controllable
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term under a time integral of a time derivative 2 and estimate the remaining terms in a convenient
manner (see Subsection 2.3.3). Then, using a symmetry group of the system, we can generalize the
result to the case of equilibriums Ve with ue 6= 0.

This chapter is organized in 4 sections. The global existence theorem and its corollaries are pre-
sented in Section 2.2. Section 2.3 contains the steps of the proof. Some perspectives are suggested
in Section 2.4. The advantages of the symmetric structure used in this study are explained in Ap-
pendix 2.A. So we can see why this symmetric structure is more appropriate than others. Appendix
2.B contains the proof of the local well-posedness theorem 2.2.1. Appendix 2.C highlights one of
the other utilities of the symmetric structure. In fact, linear stability of equilibrium of non viscous
Green–Naghdi can be proved using this structure.

2.2 Main results

The local well-posedness of (2.1.1) has been studied in [69] and [78] for the case µ = 0. We see
here that we can prove the local well-posedness of (2.1.1), around constant solutions, based on the
idea used for symmetric hyperbolic systems. To do so, we first note that the set of constant solutions
of (2.1.1) is

{Ve = (he, ue); he > 0, ue ∈ R}.

We may also call these solutions the equilibriums of the system.

We denote the norm associated with the affine space Xs(R) = (Hs(R) + he)× (Hs+1(R) + ue) by

‖ (f, g) ‖2Xs=‖ f ‖2Hs + ‖ g ‖2Hs+1 .

Moreover, the s-neighborhood of radius δ and center Ve is presented byBs(Ve, δ) = {V ∈ Xs(R), ‖
V − Ve ‖Xs≤ δ} for all integer s ∈ R.

Let us also denote by C the universal constant of the following Gagliardo–Nirenberg inequality:

‖ f ‖L∞≤ C ‖ ∂xf ‖
1
2

L2‖ f ‖
1
2

L2 ∀f ∈ H1(R). (2.2.1)

We are now able to announce the local well-posedness theorem,

Theorem 2.2.1 Let s ≥ 2 be an integer and consider a constant solution Ve of System (2.1.1).
Then, there exists 0 < δ < he such that for all initial data V0 ∈ Bs(Ve, δ), there exists T > 0 such
that the system admits a unique solution which belongs to C([0, T ),Xs(R)).

The proof of the theorem is given in Appendix 2.B. The steps of the proof are the same as for hyper-
bolic systems (see [35, 15] for instance). However, the necessary estimate to reach the final result

2The skew-symmetry of KA0 for hyperbolic systems lets us put the non straightforwardly controllable terms under
a time derivative. Therefore, we can deal with them by taking the time integral. Although, we are not able here to obtain
a skew-symmetry KA0, we try to deal with non straightforwardly controllable terms by a similar idea.
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of each step, is obtained by the same technique used in Section 2.3.2. In fact, we can see again in
this part, how the generalized symmetric structure (2.1.7) of the system enables us to generalize the
techniques used for symmetric hyperbolic systems.

An immediate corollary for Theorem 2.2.1 is the following. It states the positivity of the water
height for small dat and for short times.

Corollary 2.2.2 Let s ≥ 2 be an integer and consider a constant solution Ve of System (2.1.1).
Let us also consider δ ∈ (0, heC ) and 0 < T both conveniently small, and V0 ∈ Bs(Ve, δ) such that
(2.1.1) admits a unique solution (h, u) ∈ C([0, T ),Xs(R)). Then, for all η0 ∈ (0, inf

x∈R
h0(x)), there

exists a time T̃ ∈ (0, T ) such that

inf
x∈R

h(t, x) ≥ η0 ∀t ∈ [0, T̃ ]. (2.2.2)

Proof Let us first note that inf
x∈R

h0(x) > 0. This is a consequence of the Gagliardo–Nirenberg

inequality. Indeed,

‖ h0 − he ‖L∞≤ C ‖ ∂xh0 ‖
1
2

L2‖ h0 − he ‖
1
2

L2 .

Considering the fact that V0 ∈ Bs(Ve, δ) with s ≥ 2 and δ < he
C , the inequality becomes

‖ h0 − he ‖L∞≤ Cδ < he.

Therefore,
0 < he − Cδ ≤ h0(x) ≤ he + Cδ < 2he ∀x ∈ R.

Then, we conclude that
inf
x∈R

h0(x) ≥ he − Cδ > 0.

Let us now fix η0 ∈ (0, infx∈R h0(x)). The unique solution of (2.1.1) belongs to C([0, T ),Xs(R)).
Hence, there exists T̃ ∈ (0, T ) such that

‖ h(t)− h0 ‖Xs≤
infx∈R h0(x)− η0

C
∀t ∈ [0, T̃ ].

Again, the Gagliardo–Nirenberg inequality leads us to

‖ h(t)− h0 ‖L∞≤ inf
x∈R

h0(x)− η0 ∀t ∈ [0, T̃ ].

Then, we have
η0 − inf

x∈R
h0(x) ≤ h(t, x)− h0(x) ∀(x, t) ∈ R× [0, T̃ ]

and finally
η0 ≤ η0 + h0(x)− inf

x∈R
h0(x) ≤ h(t, x) ∀(x, t) ∈ R× [0, T̃ ].

�

The main result of this study is the following theorem on the asymptotic stability of equilibriums.
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Theorem 2.2.3 Let us consider an equilibrium Ve = (he, ue) of (2.1.1) and s ≥ 2 an integer.
Then, there exists δ > 0 such that for all initial data V0 = (h0, u0) ∈ Bs(Ve, δ) , the solution V
exists for all time and converges asymptotically to Ve.
In other words, every constant solution Ve = (he, ue) of (2.1.1) is asymptotically stable.

Let us remark that we can prove Theorem 2.2.3 by considering ue = 0. This is due to the fact that
v = t∂x + ∂u is a infinitesimal generator of a symmetry group of (2.1.1). This means that

Vβ = (h(x− βt, t), u(x− βt, t) + β)

is also a solution of (2.1.1) for all solution V = (h, u) and all β ∈ R. This fact has been mentioned
in [77, 8] for the case µ = 0. It is easy to check that the second order viscosity right hand side does
not change this symmetry group. Hence, from now on, all the equilibriums considered in this work
are of the form

Ve = (he, 0).

The key of this study is the following proposition which is a consequence of the primitive
estimates in Xs and the estimation of the time integral of the Hs−1 norm of hx obtained in Section
2.3. In order to understand this study, let us mention that symbol CS(δ) stands for a function of
δ, defined by the elements of the set S, which converges to a strictly positive limit while δ goes
to 0. On the other hand, ΘS(δ) stands for a function, defined by the elements of the set S, which
converges to zero while δ goes to 0. Let us also mention that the estimate suggested in Proposition
2.2.4 has a similar structure to the estimate given in Theorem 3.1 of [108].

Proposition 2.2.4 Let us consider an equilibrium Ve = (he, 0) of System (2.1.1), an integer s ≥ 2
and δ > 0 such that the system is locally well-posed for all initial data V0 ∈ Bs(Ve, δ). Assume
also that there exists T > 0 such that the unique local solution V satisfies V (t) ∈ Bs(Ve, δ) for all
0 ≤ t < T . Then, the following estimate holds true for all t ∈ [0, T ),

(1−Θ{he,α}(δ)) ‖ V (t)− Ve ‖2Xs +C{he,µ}(δ)

∫ t

0
‖ ∂xu ‖2Hs ≤ C{he,α}(δ) ‖ V (0)− Ve ‖2Xs

+ Θ{he,µ,α}(δ)

∫ t

0
‖ ∂xu ‖2Hs

Besides, if δ is conveniently small, this inequality leads to

‖ V (t)− Ve ‖2Xs +C{he,µ}(δ)

∫ t

0
‖ ∂xu ‖2Hs ≤ C{he,α}(δ) ‖ V (0)− Ve ‖2Xs .

Now, we get the global existence theorem as a result. In fact, we have

Theorem 2.2.5 Let us consider an equilibrium Ve = (he, 0) of (2.1.1) and an integer s ≥ 2. Then,
there exists ν > 0 such that for all initial data V0 = (h0, u0) ∈ Bs(Ve, ν) , the solution V exists for
all time.
In other words, the equilibrium solutions Ve = (he, 0) of (2.1.1) are stable.
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Proof Let us first remark that if δ > 0 is small enough, we have

1−Θ{he,α}(δ) >
1

2
and

C{he,µ}(δ)−Θ{he,µ,α}(δ)

1−Θ{he,α}(δ)
> 0.

Let us also assume that δ satisfies the assumptions of Proposition 2.2.4. Then, as long as V ∈
Bs(Ve, δ), it satisfies

‖ V (t)− Ve ‖2Xs +
C{he,µ}(δ)−Θ{he,µ,α}(δ)

1−Θ{he,α}(δ)

∫ t

0
‖ ∂xu ‖2Hs≤ C{g,he,α}(δ) ‖ V0 − Ve ‖2Xs

Therefore, while V ∈ Bs(Ve, δ),

‖ V (t)− Ve ‖2Xs≤ L(δ) ‖ V0 − Ve ‖2Xs

where L is a function of δ such that lim
δ→0

L(δ) = l > 0. Setting ν ≤ δ such that L(δ)ν ≤ δ/2, we

have
‖ V (t)− Ve ‖2Xs≤ δ/2, while V (t) ∈ Bs(Ve, δ).

Then, considering the uniqueness of the local solution as well as its continuity for the norm Xs
we have the following conclusion: For V (0) ∈ Bs(Ve, ν), the local solution can not go out from
Bs(Ve, δ/2) for any time. Therefore, the norm of the local solution does not blow up. Hence, the
unique local solution exists for all time. �

Corollary 2.2.6 (Asymptotic stability of equilibriums) Let s ≥ 2 be an integer and consider the
equilibrium Ve = (he, 0) of (2.1.1). Then, there exists δ > 0 such that for all initial data V0 =
(h0, u0) in Bs(Ve, δ) , the global solution V (x, t) in Xs(R) of (2.1.1) converges asymptotically to
Ve. In other words, lim

t→∞
V (x, t) = Ve for all x ∈ R.

Proof We use a similar logic to the one used in [108] for symmetric entropy dissipative hyperbolic
systems satisfying the stability condition. We first take the x derivative of the first equation of
(2.1.1), the time integral on [t1, t2] and consider the L2 norm. This leads us to

‖ ∂xh(t2)− ∂xh(t1) ‖L2=‖
∫ t2

t1

∂xx(hu) ‖L2 . (2.2.3)

Therefore,

‖ ∂xh(t2)− ∂xh(t1) ‖L2≤ |t2 − t1|
(

sup
t1≤t≤t2

‖ ∂xx(hu) ‖L2

)
.

Considering the fact that ‖ ∂xx(hu) ‖L2 is bounded by Proposition 2.2.4, there exists C̃ > 0 such
that we have for all t1, t2 positive,

| ‖ ∂xh(t1) ‖H1×L2 − ‖ ∂xh(t2) ‖L2 | ≤‖ ∂xh(t2)− ∂xh(t1) ‖L2≤ C̃|t2 − t1|.

This means that t 7→‖ ∂xh(t) ‖L2 is Lipschitz continuous. On the other hand, it is L2 ([0,∞))
according to the estimate of the same proposition together with Proposition 2.3.12 of Subsection
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2.3.3. Therefore, ‖ ∂xh(t) ‖L2 converges to 0 at the limit t→∞.

Let us now consider the second equation of (2.1.1) which writes ([42]) also

ut = −u∂xu− L−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
.

Again, we derivate with respect to x, take the [t1, t2] time integral and consider its L2 norm :

‖ ∂xu(t2)− ∂xu(t1) ‖L2=‖
∫ t2

t1

∂x
(
−u∂xu− L−1

h ∂x
(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

))
‖L2 .

Therefore,

‖ ∂xu(t2)− ∂xu(t1) ‖L2≤

|t2 − t1|
(

sup
t1≤t≤t2

‖ ∂x
(
−u∂xu− L−1

h ∂x
(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

))
‖L2

)
.

Considering the fact that ‖ ∂x
(
mL−1

h (m)− 2αh3(∂xL−1
h (m))2 + g

2h
2 − µh∂xu

)
‖L2 is bounded,

the Lipschitz continuity of t 7→‖ ∂xu(t) ‖L2 is concluded. This together with the fact that t 7→‖
ux(t) ‖L2 is square integrable (according to the estimate of Proposition 2.2.4), leads to

lim
t→∞

‖ ∂xu(t) ‖L2= 0.

We just now need to consider Gagliardo–Nirenberg inequality

‖ V (t)− Ve ‖L∞×L∞≤ C ‖ ∂xV (t) ‖
1
2

L2×L2‖ V (t)− Ve ‖
1
2

L2×L2 .

Then, considering the facts that ‖ V (t) − Ve ‖
1
2

L2×L2 is bounded by
√
δ and ‖ ∂xV (t) ‖

1
2

L2×L2

converges to 0, the uniform convergence of V (x, t) to Ve is concluded. �

Remark 2.2.7 In addition to the asymptotic stability of constant solutions, the question of de-
cay rates naturally arises. This point has been studied in [102] for linear symmetric systems of
hyperbolic–parabolic type, by means of Fourier techniques in the frame of an energy method. Then,
the result is used in [71] for the linearized symmetric hyperbolic–parabolic system to obtain a poly-
nomial decay rate for the non-linear equation. The study of decay rate of linearized Green–Naghdi
equations with viscosity, seems to be necessary to obtain a decay rate for the non-linear system and
beyonds the scope of this work.

2.3 A priori estimates

The goal of this part is to obtain some a priori estimates of (2.1.1) similar to the estimate obtained
in [64, 108, 95, 71] for hyperbolic systems. To do so, we use the Hamiltonian dissipation to find a
0th order estimate. We then take the `th order derivative of the symmetric equation and consider the
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scalar product with the `th order spatial derivative of the solution for all 1 ≤ ` ≤ s. Then, using
the properties of the operators A0(V ) and A1(V ), especially the coercivity of A0(V ) and their
symmetry, we get a `th order estimate for the solution V ∈ Bs(Ve, δ). Then, in Subsection 2.3.3,
we get an estimation of

∫ T
0 ‖ ∂

`
xh ‖2L2 for all 1 ≤ ` ≤ s which together with the first estimates

leads us to Proposition 2.2.4. These estimates are obtained by acting a hollow real matrix on the
system. The equilibrium Ve we consider in all this section is of the form Ve = (he, 0) and s is an
integer equal or greater than 2.

2.3.1 Estimate in X0

System (2.1.1) admits a X0 estimation which is obtained by using the dissipation of the integral
Hhe,0 of the relative energy Ehe,0 defined in Section 2.1. In fact, the following proposition holds
true.

Proposition 2.3.1 Let δ, t > 0 be small and V0 ∈ Bs(Ve, δ) such that System (2.1.1) admits a
unique solution (h, u) ∈ C([0, t],Xs(R)), with h uniformly in time, strictly positively bounded by
below 3. Then,

‖ u(t) ‖2H1≤
Hhe,0(h0, u0)

min{infx∈R h(t)/2, α infx∈R h3(t)/2}
, (2.3.1)

and
‖ h(t)− he ‖2L2≤

2

g
Hhe,0(h0, u0) (2.3.2)

Proof We take the spatial integral of the both sides of the relative energy equality (2.1.3) with
ue = 0. On the other hand, (h, u) ∈ (Hs(R) + he) × Hs+1(R) and s ≥ 2. Therefore, an
integration by part leads us to the dissipation of the HamiltonianHhe,0 :

d

dt
Hhe,0(h, u) = −µ

∫
R
h(∂xu)2 ≤ 0.

In other words,

Hhe,0(h(t), u(t))−Hhe,0(h(0), u(0)) = −µ
∫ t

0

∫
R
h(∂xu)2 ≤ 0. (2.3.3)

Thus,
Hhe,0(h(t), u(t)) ≤ Hhe,0(h(0), u(0)). (2.3.4)

On the other hand,Hhe,0 is defined by

Hhe,0(h, u) =

∫
R
g(h− he)2/2 + hu2/2 + αh3(∂xu)2/2,

and h is strictly positively bounded by below. Therefore,

g

2
‖ h(t)− he ‖2L2 +

(
inf
x∈R

h(t)

)
‖ u ‖2L2 +α

(
inf
x∈R

h(t)

)3

‖ ∂xu ‖2L2≤ Hhe,0(h(t), u(t)).

3The existence of such δ and t is guaranteed by Theorem 2.2.1 and Corollary 2.2.2
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This together with (2.3.4) gives us the inequalities of the proposition. �

Let us also remark that the Hamiltonian Hhe,0 is locally X0-quadratic on Ve, in the sense that the
following relation is satisfied for s ≥ 2 and δ > 0 small:

C{he,α}(δ) ‖ V − Ve ‖
2
X0≤ Hhe,0(h, u) ≤ C{he,α}(δ) ‖ V − Ve ‖

2
X0 ∀V ∈ Bs(Ve, δ).

This together with the dissipation equality (2.3.3) of Hhe,0 gives us the following 0th order
estimate around equilibriums.

Proposition 2.3.2 Let s ≥ 2 be an integer and Ve be an equilibrium of (2.1.1). Let us also assume
that there exist δ, T > 0 such that the solution V of the system satisfies

V (t) ∈ Bs(Ve, δ) ∀t ∈ [0, T ).

Then, the following estimate holds true for such time:

‖ V (t)− Ve ‖2X0 +C{he,µ,α}(δ)

∫ t

0
‖ ∂xu ‖2L2≤ C{he,α}(δ) ‖ V (0)− Ve ‖2X0 . (2.3.5)

2.3.2 Estimate in Xs

The main objective of this part is to obtain a convenient a priori estimate of `th order, for all integer
` ∈ [1, s]. This is done by a similar strategy as for hyperbolic systems. This analogy works here
due to the structure of differential operators A0 and A1. More precisely, the operator A0 writes

A0(V ) =

(
g 0
0 h

)
+

(
−3αh(∂xu)2 0

0 0

)
+

(
0 0
0 −α∂x(h3∂x•)

)
. (2.3.6)

Likewise, A1(V ) writes

A1(V ) =

(
gu gh
gh hu

)
+

(
−3αhu(∂xu)2 −3αh2(∂xu)2

−3αh2(∂xu)2 2α∂x(h3∂xu)

)
+

(
0 0
0 −α∂x(h3u∂x•)

)
. (2.3.7)

Indeed, the first term of the right-hand sides of (2.3.6) and (2.3.7) gives the hyperbolic part of the
system i.e. the part which corresponds to Saint-Venant system. Therefore, it can be treated exactly
as in [71]. The other terms need a specific treatment but they are not an obstacle to the result. On
the one hand, this is due to the fact that the space of local well-posedness for u, is one order higher
in regularity compared to the case of the hyperbolic Saint-Venant system. On the other hand, the
conservative structure of the last term of (2.3.6) and (2.3.7) plays an important role in the treatment
of the third order terms of (2.1.1), responsible for dispersion. For this reason, all along this subsec-
tion, different terms of operators A1

0∂x and A2
0∂

2
x (resp. A1

1∂x and A2
1∂

2
x), introduced by (2.1.10)

(resp. by (2.1.11)), are matched together to form the conservative term presented in the last part of
the right hand side of (2.3.6) (resp. (2.3.7)).

We start the computations by taking the `th derivative of (2.1.7) with respect to the spatial
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variable, taking the scalar product with ∂`xV and integrating on [0, T )× R:∫ T

0

∫
R
∂`x(A0(V )∂tV )·∂`xV +

∫ T

0

∫
R
∂`x(A1(V )∂xV )·∂`xV = µ

∫ T

0

∫
R
∂`+1
x (h∂xu)∂`xu (2.3.8)

Then, using basic computations and the Leibniz formula, we remark that4∫
R
∂`x(A0(V )∂tV ) · ∂`xV =

1

2

d

dt

∫
R
A0(V )∂`xV · ∂`xV −

1

2

∫
R

(
A0

0t +A1
0t∂x +A2

0t∂
2
x

)
∂`xV · ∂`xV

+
∑̀
i=1

(
`
i

)∫
R

(
A0

0i +A1
0i∂x +A2

0i∂
2
x

)
∂t∂

`−i
x V · ∂`xV,

where, Aj0i is another notation for ∂ix(Aj0(V )), the ith spatial derivative of Aj0(V ), for all j ∈
{0, 1, 2} and for any i ∈ N.

On the other hand, the integration by part and the symmetry of A1 imply that∫
R
∂`x(A1(V )∂xV ) · ∂`xV =

(
`− 1

2

)∫
R

(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂`xV · ∂`xV

+
∑̀
i=2

(
`
i

)∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂`−i+1
x V · ∂`xV.

We have also∫
R
∂`+1
x (h∂xu)∂`xu = −

∫
R
h(∂`+1

x u)2 −
∑̀
i=1

(
`
i

)∫
R

(∂ixh)(∂`−i+1
x u)(∂`+1

x u).

Hence, (2.3.8) becomes∫
R
A0(V )∂`xV (T ) · ∂`xV (T ) + 2µ

∫ T

0

∫
R
h(∂`+1

x u)2 =

∫
R
A0(V )∂`xV (0) · ∂`xV (0)

− 2
∑̀
i=1

(
`
i

)∫ T

0

∫
R

(
A0

0i +A1
0i∂x +A2

0i∂
2
x

)
∂t∂

`−i
x V · ∂`xV

+

∫ T

0

∫
R

(
A0

0t +A1
0t∂x +A2

0t∂
2
x

)
∂`xV · ∂`xV

+ (1− 2`)

∫ T

0

∫
R

(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂`xV · ∂`xV

− 2
∑̀
i=2

(
`
i

)∫ T

0

∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂`−i+1
x V · ∂`xV

− 2µ
∑̀
i=1

(
`
i

)∫
R

(∂ixh)(∂`−i+1
x u)(∂`+1

x u). (2.3.9)

4For sake of simplicity, we use sometimes A1 or A0 instead of A1(V ) or A0(V ).
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The two following lemmas present two results which are used several times in the rest of this
Section. The first one is on the X0-quadraticity of A0(V ):

Lemma 2.3.3 There exists δ > 0 such that A0(V ) is quadratic on Bs(Ve, δ). In other words, we
have for all V = (h, u) ∈ Bs(Ve, δ) and all f = (f1, f2) ∈ X0(R),

C{he}(δ) ‖ f ‖
2
X0≤

∫
R
A0(V )f · f ≤ C{he}(δ) ‖ f ‖

2
X0 .

Proof The expression (2.1.8) of A0(V ) leads to∫
R
A0(V )f · f =

∫
R

(g − 3αh(∂xu)2)f2
1 + f2Lhf2.

On the other hand, Gagliardo-Nirenberg inequality (2.2.1) leads to

‖ h− he ‖L∞≤ Cδ,

or equivalently to
he − Cδ ≤ h(x) ≤ he + Cδ ∀x ∈ R.

We also apply this inequality to ∂xu to get

‖ ∂xu ‖L∞≤ Cδ,

or equivalently
−Cδ ≤ ∂xu(x) ≤ Cδ ∀x ∈ R.

Thus,
−3αh(∂xu)2 ≥ −3α (he + Cδ) (C2δ2),

and, if δ is conveniently small,
−3αh(∂xu)2 ≥ −g

2
.

Consequently

g ‖ f1 ‖2L2

2
+ min{he − δ, α(he − δ)3} ‖ f2 ‖2H1≤

∫
R
A0(V )f · f

≤ g ‖ f1 ‖2L2 + max{he + δ, α(he + δ)3} ‖ f2 ‖2H1 .

�

The second lemma is on the smallness of the L∞ norm (in time and space) of ∂th and ∂tu and some
of their spatial derivatives as long as V ∈ Bs(Ve, δ). Actually, the following lemma holds true.

Lemma 2.3.4 Let us assume that the solution V (t) of (2.1.1) belongs toBs(Ve, δ) for all t ∈ [0, T ).
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Then, we have for all 0 ≤ j ≤ s− 2 and all 0 ≤ l ≤ s− 1,

lim
δ→0

V ∈B(Ve,δ)

‖ ∂jx∂th ‖L∞= 0, lim
δ→0

V ∈B(Ve,δ)

‖ ∂lx∂tu ‖L∞= 0. (2.3.10)

Moreover, we have for all 2 ≤ k ≤ s,

‖ ∂kx∂tu ‖L2≤ C{he,µ,α}(δ) (‖ ∂xu ‖Hk + ‖ ∂xh ‖Hk−2) . (2.3.11)

Proof The first equation of System (2.1.1) gives us ∂th = −h∂xu− u∂xh. Therefore,

‖ ∂jx∂th ‖L∞≤‖
j∑
i=0

∂ixh∂
j−i+1
x u ‖L∞ + ‖

j∑
i=0

∂ixu∂
j−i+1
x h ‖L∞≤ Θ{he}(δ)

Likewise, the second equation of the system can be written under the following form,

∂tu = −u∂xu− L−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
. (2.3.12)

This form can be obtained by applying A0(V )−1 to (2.1.7) and coincides with the form suggested
in [69, 75].

On the other hand, Lh : Hm(R)→ Hm−2(R) is bounded for all 2 ≤ m ≤ s. This is due to the
facts that ‖ h− he ‖Hs≤ δ and δ is small. Indeed,

‖ Lh(u) ‖Hm−2=‖ hu− 3αh2∂xh∂xu− αh3∂2
xu ‖Hm−2≤ C{he,α}(δ) ‖ u ‖Hm .

Therefore, Lh is a linear bijective bounded application from the Banach space Hm(R) to the Ba-
nach space Hm−2(R). We now use the Banach theorem (see [18] for instance) to conclude that
L−1
h : Hm−2(R)→ Hm(R) is bounded. Thus, there exists C > 0 such that

‖ ∂`x∂tu ‖L∞ ≤‖ ∂`x(u∂xu) ‖L∞ + ‖ ∂`xL−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖L∞

≤ Θ(δ) + C ‖ ∂lxL−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖H1

≤ Θ(δ) + C ‖ L−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖H`+1

≤ Θ(δ) + C{he,α}(δ) ‖ ∂x
(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖H`−1

≤ Θ(δ) + C{he,α}(δ) ‖ ∂x
(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖Hs−2

≤ Θ(δ) + C{he,α}(δ)Θ{he,α,µ}(δ) ≤ Θ{he,α,µ}(δ).

To prove (2.3.11), we use similar computations. Indeed,

‖ ∂kx∂tu ‖L2 ≤‖ ∂kx(u∂xu) ‖L2 + ‖ ∂kxL−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖L2

≤
k∑
i=0

‖ ∂k−ix u ∂i+1
x u ‖L2 + ‖ L−1

h ∂x
(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖Hk

≤ Θ(δ) ‖ ∂xu ‖Hk + ‖ ∂x
(
gh2/2 + 2αh3(∂xu)2 − µh∂xu

)
‖Hk−2

≤ Θ(δ) ‖ ∂xu ‖Hk +C{he}(δ) ‖ ∂xh ‖Hk−2 +
(
Θ{α,he}(δ) + C{he,µ}(δ)

)
‖ ∂xu ‖Hk−2

≤ C{he,µ,α}(δ) (‖ ∂xu ‖Hk + ‖ ∂xh ‖Hk−2) .
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�

We are now able to prove the following lemma which is the key step to achieve the appropriate `th

order estimate.

Lemma 2.3.5 Let us consider the solution V of (2.1.7) and assume that it belongs to Bs(Ve, δ) for
some δ > 0. Then, the following estimates hold true for all integer 1 ≤ ` ≤ s,∣∣∣∣∣∑̀

i=1

(
`
i

)∫
R
A0

0i∂
`−i
x ∂tV · ∂`xV

∣∣∣∣∣ ≤ Θ{he,α,µ}(δ)

`+1∑
j=1

‖ ∂jxu ‖2L2 +
∑̀
j=1

‖ ∂jxh ‖2L2

 . (2.3.13)

∣∣∫
RA

0
0t∂

`
xV · ∂`xV

∣∣ ≤ Θ{he,α,µ}(δ)
(
‖ ∂`xu ‖2L2 + ‖ ∂`xh ‖2L2

)
. (2.3.14)∣∣∣∣∣∑̀

i=1

(
`
i

)∫
R

(
A1

0i∂x +A2
0i∂

2
x

)
∂`−ix ∂tV · ∂`xV

∣∣∣∣∣ ≤ Θ{he,α,µ}(δ)

(∑̀
i=1

‖ ∂ixh ‖2L2 + ‖ ∂xu ‖2H`

)
.(2.3.15)∣∣∫

R
(
A1

0t∂x +A2
0t∂

2
x

)
∂`xV · ∂`xV

∣∣ ≤ Θ{he,α,µ}(δ)
(
‖ ∂`+1

x u ‖2L2

)
. (2.3.16)∣∣∫

R
(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂`xV · ∂`xV

∣∣ ≤ Θ{he,α}(δ)
(
‖ ∂`xh ‖2L2 + ‖ ∂`xu ‖2H1

)
. (2.3.17)∣∣∣∣∣∑̀

i=2

(
`
i

)∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂`−i+1
x V · ∂`xV

∣∣∣∣∣ ≤ Θ{he,α}(δ)
(
‖ ∂xh ‖2H`−1 + ‖ ∂xu ‖2H`

)
.(2.3.18)

Proof Let us first prove (2.3.13). The expression of A0
0 gives us the following equality for all

1 ≤ i ≤ ` ,∫
R
A0

0i∂
`−i
x ∂tV · ∂`xV = −3α∂ix(h(∂xu)2) ∂`−ix ∂th ∂

`
xh+ ∂ixh ∂

`−i
x ∂tu ∂

`
xu.

Therefore,∣∣∣∣∫
R
A0

0i∂
`−i
x ∂tV · ∂`xV

∣∣∣∣ ≤ ‖ ∂`−ix ∂tu ‖L∞
2

(
‖ ∂ixh ‖2L2 + ‖ ∂`xu ‖2L2

)
+ ‖ ∂`−ix ∂th ‖L∞

‖ ∂`xh ‖2L2 + ‖ 3α∂ixh (∂xu)2 ‖2L2 + ‖ 6α

i−1∑
j=0

∂jxh ∂xu ∂
i−j+1
x u ‖2L2


≤ max

{
‖ ∂`−ix ∂tu ‖L∞

2
, Che,α(δ) ‖ ∂`−ix ∂th ‖L∞

}(
‖ ∂xh ‖2H`−1 + ‖ ∂xu ‖2H`

)
.

Then, considering (2.3.10), the proof of (2.3.13) is complete.

We are now going to prove (2.3.14). To do so, we should first remark that∫
R
A0

0t∂
`
xV · ∂`xV = −3α∂t

(
h(∂xu)2

)
(∂`xh)2 + ht(∂

`
xu)2.
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Then, ∣∣∣∣∫
R
A0

0t∂
`
xV · ∂`xV

∣∣∣∣ ≤‖ 3α∂t
(
h(∂xu)2

)
‖L∞‖ ∂`xh ‖2L2 + ‖ ht ‖L∞‖ ∂`xu ‖2L2 .

Now, we use (2.3.10) to get the result.

The first step to prove (2.3.15) is to notice that we have for all 1 ≤ i ≤ `∫
R

(
A1

0i∂x +A2
0i∂

2
x

)
∂`−ix ∂tV · ∂`xV = α

∫
R

(∂ixh
3) ∂`+1

x u (∂`−i+1
x ∂tu).

Hence we have for all 2 ≤ i ≤ `,∣∣∣∣∫
R

(
A1

0i∂x +A2
0i∂

2
x

)
∂`−ix ∂tV · ∂`xV

∣∣∣∣ ≤ ‖ α∂`−i+1
x ∂tu ‖L∞

2

(
‖ ∂ixh3 ‖2L2 + ‖ ∂`+1

x u ‖2L2

)
≤ ‖ α∂

`−i+1
x ∂tu ‖L∞

2

C{he}(δ) i∑
j=1

‖ ∂ixh ‖2L2 + ‖ ∂`+1
x u ‖2L2

 .

Considering (2.3.10), we obtain the estimate on the terms where 2 ≤ i ≤ `. It remains to consider
the case i = 1. This leads to∫

R

(
A1

01∂x +A2
01∂

2
x

)
∂`−1
x ∂tV · ∂`xV = α

∫
R

(∂xh
3) ∂`+1

x u (∂`x∂tu).

Therefore,∣∣∣∣∫
R

(
A1

01∂x +A2
01∂

2
x

)
∂`−1
x ∂tV · ∂`xV

∣∣∣∣ ≤ ‖ α∂x(h3) ‖L∞
2

(
‖ ∂`x∂tu ‖2L2 + ‖ ∂`+1

x u ‖2L2

)
≤ Θ{α,he}(δ)

(
‖ ∂`x∂tu ‖2L2 + ‖ ∂`+1

x u ‖2L2

)
.

We now use (2.3.11) and find∣∣∣∣∫
R

(
A1

01∂x +A2
01∂

2
x

)
∂`−1
x ∂tV · ∂`xV

∣∣∣∣ ≤ Θ{he,α,µ}(δ)
(
‖ ∂xh ‖2H`−2 + ‖ ∂xu ‖2H`

)
.

In order to prove (2.3.16) , we first remark that∫
R

(
A1

0t∂x +A2
0t∂

2
x

)
∂`xV · ∂`xV =

∫
R

3αh2∂th(∂`+1
x u)2.

Again, using (2.3.10), we find∣∣∣∣∫
R

(
A1

0t∂x +A2
0t∂

2
x

)
∂`xV · ∂`xV

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂
`+1
x u ‖2L2 .
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To prove (2.3.17), we use an integration by part:∫
R

(
A1

1x∂x +A2
1x∂

2
x

)
∂`xV · ∂`xV =

∫
R
−α∂2

x(h3u)∂`+1
x u∂`xu− α∂x(h3u)∂`+2

x u∂`xu

=

∫
R
−α∂x

(
∂x(h3u)∂`+1

x u
)
∂`+1
x u =

∫
R
α∂x(h3u)(∂`+1

x u)2.

Hence, ∣∣∣∣∫
R

(
A1

1x∂x +A2
1x∂

2
x

)
∂`xV · ∂`xV

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂
`+1
x u ‖2L2 .

We have also∫
R
A0

1x∂
`
xV · ∂`xV =

∫
R
∂x
(
gu− 3αhu(∂xu)2

)
(∂`xh)2 + 2

∫
R
∂x
(
gh− 3αh2(∂xu)2

)
∂`xh ∂

`
xu

+

∫
R
∂x
(
hu+ 2α∂x(h3∂xu)

)
(∂`xu)2,

Therefore,∫
R
A0

1x∂
`
xV · ∂`xV =

∫
R
∂x
(
gu− 3αhu(∂xu)2

)
(∂`xh)2 + 2

∫
R
∂x
(
gh− 3αh2(∂xu)2

)
∂`xh ∂

`
xu

− 2

∫
R

(
hu+ 2α∂x(h3∂xu)

)
∂`xu ∂

`+1
x u.

Then, ∣∣∣∣∫
R
A0

1x∂
`
xV · ∂`xV

∣∣∣∣ ≤ Θ{he,α}(δ)
(
‖ ∂`xh ‖2L2 + ‖ ∂`xh ‖2H1

)
.

The last estimate (2.3.18) is just a consequence of the following fact which holds true for all
2 ≤ i ≤ `. It is due to the structure of A1

1(V ) and A2
1(V ) together with an integration by part:∫

R

(
A1

1i∂x +A2
1i∂

2
x

)
∂`−i+1
x V · ∂`xV = α

∫
R

(∂ix(h3u)) ∂`−i+2
x u (∂`+1

x u).

Hence, as long as V ∈ Bs(Ve, δ) and 2 ≤ i ≤ `− 1,∣∣∣∣∫
R

(
A1

1i∂x +A2
1i∂

2
x

)
∂`−i+1
x V · ∂`xV

∣∣∣∣ ≤ ‖ α∂ix(h3u) ‖L∞
2

(
‖ ∂`−i+2

x u ‖2L2 + ‖ ∂`+1
x u ‖2L2

)
≤ Θ{he,α}(δ)

(
‖ ∂`−i+2

x u ‖2L2 + ‖ ∂`+1
x u ‖2L2

)
.

On the other hand,∫
R

(
A1

1`∂x +A2
1`∂

2
x

)
∂xV · ∂`xV = α

∫
R

(∂`x(h3u)) ∂2
xu (∂`+1

x u).
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Therefore,∣∣∣∣∫
R

(
A1

1`∂x +A2
1`∂

2
x

)
∂xV · ∂`xV

∣∣∣∣ ≤ Θ{α}(δ)
(
‖ ∂`x(h3u) ‖2L2 + ‖ ∂`+1

x u ‖2L2

)
≤ Θ{he,α}(δ)

(
‖ ∂xh ‖2H`−1 + ‖ ∂xu ‖2H`

)
.

Let us now treat the remaining terms of the left hand side of the estimate. In fact, we have for all
2 ≤ i ≤ `− 2,∣∣∣∣∫

R
A0

1i∂
`−i+1
x V · ∂`xV

∣∣∣∣ ≤ 2 ‖ A0
1i ‖L∞

(
‖ ∂`−i+1

x u ‖2L2 + ‖ ∂`xu ‖2L2 + ‖ ∂`−i+1
x h ‖2L2 + ‖ ∂`xh ‖2L2

)
≤ Θ{he,α}(δ)

(
‖ ∂`−i+1

x u ‖2L2 + ‖ ∂`xu ‖2L2 + ‖ ∂`−i+1
x h ‖2L2 + ‖ ∂`xh ‖2L2

)
,

since the structure of A0
1 gives us for all integer i ∈ [2, `− 2],

lim
δ→0

V ∈Bs(Ve,δ)

‖ A0
1i ‖L∞= 0.

On the other hand,∣∣∣∣∫
R
A0

1(`−1)∂
2
xV · ∂`xV +A0

1`∂xV · ∂`xV
∣∣∣∣

≤ max{‖ ∂`x(gu− 3αhu(∂xu)2) ‖L∞ , ‖ ∂`−1
x (gu− 3αhu(∂xu)2) ‖L∞}

(
‖ ∂xh ‖2H1 + ‖ ∂`xh ‖2L2

)
+ max{‖ ∂`x(gh− 3αh2(∂xu)2) ‖L∞ , ‖ ∂`−1

x (gh− 3αh2(∂xu)2) ‖L∞}
(
‖ ∂xh ‖2H`−1 + ‖ ∂xu ‖2H`−1

)
+

∣∣∣∣∫
R
∂x

(
∂`−1
x (hu+ 2α∂x(h3∂xu)) ∂xu

)
∂`xu

∣∣∣∣ .
Therefore,∣∣∣∣∫

R
A0

1(`−1)∂
2
xV · ∂`xV +A0

1`∂xV · ∂`xV
∣∣∣∣ ≤ Θ{he,α}(δ)

(
‖ ∂xh ‖2H`−1 + ‖ ∂xu ‖2H`−1

)
+

∣∣∣∣∫
R
∂`−1
x (hu+ 2α∂x(h3∂xu)) ∂xu ∂

`+1
x u

∣∣∣∣
≤ Θ{he,α}(δ)

(
‖ ∂xh ‖2H`−1 + ‖ ∂xu ‖2H`

)
.

Hence, estimate (2.3.18) is totally proved. �

This lemma together with the coercivity of A0 and relation (2.3.9) leads us to the following propo-
sitions.

Proposition 2.3.6 Let us assume that there exists δ > 0, T > 0 such that the solution V of (2.1.1)
satisfies V (t) ∈ Bs(Ve, δ) for all t ∈ [0, T ). Then, we have for all 1 ≤ ` ≤ s,

‖ ∂`x (V (t)− Ve) ‖2X0 +C{he,µ}(δ)

∫ t

0
‖ ∂`+1

x u ‖2L2 ≤ C{he,α}(δ) ‖ ∂
`
x (V (0)− Ve) ‖2X0
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+ Θ{he,α,µ}(δ)

∫ t

0
‖ ∂xV ‖2X`−1 .

Then, considering this proposition together with the 0th order estimate of Subsection 2.3.1, we reach
the final primary estimate which is given in the following proposition. This estimate together with
the result of the next part enables us to prove the main theorem.

Proposition 2.3.7 Let us assume that there exists δ > 0, T > 0 such that the solution V of (2.1.1)
satisfies V (t) ∈ Bs(Ve, δ) for all t ∈ [0, T ). Then, we have for such T ,

‖ V (t)− Ve ‖2Xs +C{he,µ}(δ)

∫ t

0
‖ ∂xu ‖2Hs ≤ C{he,α}(δ) ‖ V (0)− Ve ‖2Xs

+ Θ{he,µ}(δ)

∫ t

0
‖ ∂xV ‖2Xs−1 . (2.3.19)

2.3.3 Estimate on
∫ t

0
‖ ∂sxh ‖2

L2

This part is the final step to prove Proposition 2.2.4. In fact, we need to find a convenient estimate
on
∫ t

0 ‖ ∂xV ‖
2
Xs−1 to be able to control the right hand side of (2.3.19). This idea has been used

in [108], [64] and [95]. Actually, Estimate (2.3.19) has a similar appearance as the estimate found
in these references for symmetric hyperbolic systems with dissipative terms. Then, they use the
Kawashima stability condition to control the norm of spatial derivatives of first components of the
solution. Let us note that, as in the case of hyperbolic system, we do not need to control the norm
of second components. This is due to the presence of the second term of the left hand side of
inequality (2.3.19). Therefore, what we need to control in the case of Green–Naghdi equation, is
the time integral of the norm of the spatial derivative of h. Nevertheless, the main difficulty is the
generalization of the Kawashima–Shizuta condition. Actually, we have not been able to find any
operator version of the Kawashima–Shizuta condition for Green–Naghdi equation. However, we
are going to see that it is possible to find an appropriate upper bound for

∫ t
0 ‖ ∂

s
xh ‖2L2 by using a

slightly different technique from the hyperbolic case. To do so, we consider the 2 × 2 hollow real
matrix K(Ve) defined by

K(Ve) =

(
0 1

−he
g 0

)
. (2.3.20)

As we will see further, the reason why we consider this matrix, is the fact that K(Ve)A1(Ve) is a
diagonal real matrix with a strictly positive first component. In other words, there exists a matrix of

the form B =

(
0 0
0 L

)
with L ≥ 0 such that K(Ve)A1(Ve) + B is definite positive. This enables

us, as in [108], [64], to get an upper bound for
∫ t

0 ‖ ∂
s
xh ‖2L2 . This upper bound is convenient even

though, unlike the case of hyperbolic systems, K(Ve)A0(Ve) is not a skew-symmetric operator.
This is due to the fact that we can extract from K(Ve)A0(V ), a part which plays a quite similar role
to a skew-symmetric operator such that the norm of the remaining part is controllable in a suitable
manner. So, let us write (2.1.7) under the form

A0(V )∂tV +A1(Ve)∂xV = H(V ), (2.3.21)
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where H(V ) is defined by

H(V ) = [A1(Ve)−A1(V )] ∂xV +

(
0

µ∂x(h∂xu)

)
. (2.3.22)

We then take the action of the operator K(Ve)∂
`−1
x on (2.3.21) and take the scalar product with

∂`xV . This leads us to∫ T

0

∫
R
K(Ve)∂

`−1
x (A0(V )∂tV ) · ∂`xV +

∫ T

0

∫
R
K(Ve)A1(Ve)∂

`
xV · ∂`xV

=

∫ T

0

∫
R
K(Ve)∂

`−1
x H(V ) · ∂`xV,

or equivalently to∫ T

0

∫
R
K(Ve)A1(Ve)∂

`
xV · ∂`xV =

∫ T

0

∫
R
K(Ve)∂

`−1
x H(V ) · ∂`xV

−
∫ T

0

∫
R
K(Ve)∂

`−1
x (A0(V )∂tV ) · ∂`xV. (2.3.23)

Let us note that

K(Ve)A1(Ve) =

(
ghe 0
0 −h2

e

)
. (2.3.24)

Hence,∫ T

0

∫
R
K(Ve)A1(Ve)∂

`
xV · ∂`xV =

∫ T

0

∫
R

(
ghe(∂

`
xh)2 − h2

e(∂
`
xu)2

)
= ghe

∫ T

0
‖ ∂`xh ‖2L2 −h2

e

∫ T

0
‖ ∂`xu ‖2L2 . (2.3.25)

Gathering (2.3.23) and (2.3.25), we get

g

∫ T

0
‖ ∂`xh ‖2L2= he

∫ T

0
‖ ∂`xu ‖2L2 +

1

he

∫ T

0

∫
R
∂`−1
x (K(Ve)H(V )−K(Ve)A0(V )∂tV ) · ∂`xV.

(2.3.26)
It is now sufficient to give a convenient estimate on the last term of (2.3.26). This estimation is
given in the following lemma.

Lemma 2.3.8 Let Ve = (he, 0) be an equilibrium (with he > 0) and δ > 0 be small such that
System (2.1.1) admits a local solution V ∈ C0 ([0, T );Xs(R)) for initial data in Bs(Ve, δ). Then,
as long as V remains in Bs(Ve, δ), we have for all 1 ≤ ` ≤ s,∫

R
K(Ve)∂

`−1
x (H(V )−A0(V )∂tV ) · ∂`xV =

∫
R
∂t

(
∂`−1
x Lhu · ∂`xh

)
+ µ∂`x(h∂xu)∂`xh

+R[h, u], (2.3.27)
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where ∣∣∣∣∫
R
R[h, u]

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂xh ‖
2
H`−1 +C{he,α}(δ) ‖ ∂xu ‖

2
H` . (2.3.28)

Proof First of all, we look at the first term of the left hand side of (2.3.27). To do so, we first remark
that

A1(Ve)−A1(V ) =

(
−gu+ 3αhu(∂xu)2 g(he − h) + 3αh2(∂xu)2

g(he − h) + 3αh2(∂xu)2 −hu− 2α∂x(h3∂xu) + α∂x(h3u∂x())

)
.

(2.3.29)
Thus, the definition (2.3.22) of H(V ) leads to

K(Ve)∂
`−1
x H(V ) · ∂`xV = µ∂`x(h∂xu)∂`xh + ∂`−1

x

(
g(he − h)(∂xh) + 3αh2(∂xu)2∂xh

)
∂`xh

+ ∂`−1
x

(
heu∂xh−

3αhe
g

hu∂xh(∂xu)2

)
∂`xu− ∂`−1

x

(
he(he − h)(∂xu) +

3αhe
g

h2(∂xu)3

)
∂`xu

− ∂`−1
x

(
hu∂xu+ 2α∂x(h3∂xu)∂xu

)
∂`xh+ α∂`x

(
h3u∂2

xu
)
∂`xh . (2.3.30)

Let us remark here that all of the non boxed terms of (2.3.30) are straightforwardly controllable as
in (2.3.28).

We now consider the second term of the left hand side of (2.3.27) and observe that

K(Ve)A0(V ) =

(
0 Lh

−he + 3α
g heh(∂xu)2 0

)
. (2.3.31)

Therefore,

K(Ve)∂
`−1
x (A0(V )∂tV ) · ∂`xV = ∂`−1

x Lh(∂tu) · ∂`xh+ ∂`−1
x

(
3αhe
g

h(∂xu)2∂th− he∂th
)
∂`xu.

(2.3.32)
Now, we need the following lemma to deal with non straightforwardly controllable term of the right
hand side of (2.3.32).

Lemma 2.3.9 Assume that (h, f) ∈ C0([0, T ],Xs(R)) for some T > 0. Then, we have

Lh∂tf = ∂tLhf − f∂th+ 3α∂x
(
h2∂th∂xf

)
. (2.3.33)

We now use the lemma to rewrite (2.3.32):

K(Ve)∂
`−1
x (A0(V )∂tV ) · ∂`xV = ∂t

(
∂`−1
x Lhu · ∂`xh

)
− ∂`−1

x Lhu · ∂t∂`xh

− ∂`−1
x (u∂th) · ∂`xh+ 3α∂`x

(
h2∂th∂xu

)
∂`xh+ ∂`−1

x

(
3αhe
g

h(∂xu)2ht − heht
)
∂`xu. (2.3.34)

We then use the mass conservation equation, ht = −∂x(hu), to find

K(Ve)∂
`−1
x (A0(V )∂tV ) · ∂`xV = ∂t

(
∂`−1
x Lhu · ∂`xh

)
+ ∂`−1

x Lhu · ∂`+1
x (hu) +
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∂`−1
x (u∂x(hu)) · ∂`xh− ∂`−1

x

(
3αhe
g

h(∂xu)2∂x(hu)− he∂x(hu)

)
∂`xu

− 3α∂`x
(
h2∂x(hu)∂xu

)
∂`xh. (2.3.35)

Considering the fact that all of the non-boxed terms of (2.3.35) are straightforwardly controllable
as in (2.3.28), we notice that the form (2.3.35) of K(Ve)∂

`−1
x (A0(V )∂tV ) ·∂`xV is very interesting.

This is due on the one hand to the fact the non desirable term g∂`x(h2/2) ∂`xh is hidden in the boxed
time derivative term ∂t

(
∂`−1
x Lhu · ∂`xh

)
. Therefore, we can easily deal with this term by a time

integration. On the other hand, as detailed in the following lemma, this formulation gathers the
other non straightforwardly controllable term under the boxed term ∂`−1

x Lhu · ∂`+1
x (hu) which is

cancellable with the boxed term α∂`x
(
h3u∂2

xu
)
∂`xh of (2.3.30).

Lemma 2.3.10 Assume that V ∈ Bs(Ve, δ). Then, we have for all 1 ≤ ` ≤ s,∣∣∣∣∫
R
α∂`x

(
h3u∂2

xu
)
∂`xh− ∂`−1

x Lhu · ∂`+1
x (hu)

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂xh ‖
2
H`−1 +C{he,α}(δ) ‖ ∂xu ‖

2
H`

(2.3.36)

We just now need to consider (2.3.30), (2.3.35) together with lemma 2.3.10 to complete the proof.
�

Proof of Lemma 2.3.10 We first use an integration by part and the definition of Lh to write∫
R
α∂`x

(
h3u∂2

xu
)
∂`xh− ∂`−1

x Lhu · ∂`+1
x (hu) =

∫
R
α∂`x

(
h3u∂2

xu
)
∂`xh+ ∂`xLhu · ∂`x(hu)

=

∫
R
α∂`x

(
h3u∂2

xu
)
∂`xh+ ∂`x(hu) · ∂`x(hu)−

∫
R
α∂`+1

x (h3∂xu) · ∂`x(hu).

Then, we use a simple development to get

∫
R
α∂`x

(
h3u∂2

xu
)
∂`xh− ∂`−1

x Lhu · ∂`+1
x (hu) =

∫
R
α ∂`xh

∑̀
j=1

∂jx(h3u) ∂`−j+2
x u


+
(
∂`x(hu)

)2
− α∂`x(hu)

∑̀
j=1

∂jx(h3)∂`−j+2
x u

− α ∫
R
∂`x(hu) ∂`+1

x (h3)∂xu . (2.3.37)

We now see that the term
∫
R ∂

`
x(hu) ∂`+1

x (h3)∂xu may be the only obstacle to the estimate (2.3.36).
However, we can treat this term as following to get the desired estimate. Indeed, we use the fact
that5

∂`+1
x (h3) = 3h2∂`+1

x h+ [∂`x, 3h
2]∂xh,

5 As in [108], Symbol [∂`x, A]U represents the commutator of A ∈ Hs(R) and U ∈ Hs−1(R). In other words, we
have

[∂`x, A]U = ∂`x(AU)−A∂`xU.
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to write∫
R
∂`x(hu) ∂`+1

x (h3)∂xu = 3

∫
R
∂`x(hu) h2 ∂`+1

x (h)∂xu+ ∂`x(hu)
(

[∂`x, h
2]∂xh

)
∂xu.

Likewise, we have∫
R
∂`x(hu) ∂`+1

x (h3)∂xu = 3

∫
R
uh2∂xu ∂

`
xh ∂

`+1
x h+ h2∂xu

(
[∂`x, u]h

)
∂`+1
x h

+ ∂`x(hu)
(

[∂`x, h
2]∂xh

)
∂xu.

We just now use an integration by part to get∫
R
∂`x(hu) ∂`+1

x (h3)∂xu = −3

∫
R
∂x
(
uh2∂xu

)
(∂`xh)2 + ∂x

(
(h2∂xu

(
[∂`x, u]h

))
∂`xh

+ 3

∫
R
∂`x(hu)

(
[∂`x, h

2]∂xh
)
∂xu.

Therefore,∣∣∣∣α ∫
R
∂`x(hu) ∂`+1

x (h3)∂xu

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂xh ‖
2
H`−1 +C{he,α}(δ) ‖ ∂xu ‖

2
H` .

This together with (2.3.37) leads to∣∣∣∣∫
R
α∂`x

(
h3u∂2

xu
)
∂`xh− ∂`−1

x Lhu · ∂`+1
x (hu)

∣∣∣∣ ≤ Θ{he,α}(δ) ‖ ∂xh ‖
2
H`−1 +C{he,α}(δ) ‖ ∂xu ‖

2
H`

�

The last step to get the estimate of Proposition 2.2.4 is to give an estimate on the first two terms of
the right hand side of (2.3.27). This is done in the following lemma.

Lemma 2.3.11 Let V = (h, u) be in C0 ([0, T );Xs(R)) and assume that it belongs to Bs(Ve, δ)
for all t ∈ [0, T ). Then, we have for all 1 ≤ ` ≤ s,

‖ µ∂`x(h∂xu)∂`xh ‖L1≤ Θ{µ}(δ) ‖ ∂xV ‖2X`−1 +C{µ,he}(δ) ‖ ∂
`+1
x u ‖2L2 +

g

2
‖ ∂`xh ‖2L2 ,

(2.3.38)

and ∫ t

0

∫
R
∂t

(
∂`−1
x Lhu · ∂`xh

)
≤ C{he,α}(δ)

(
‖ u(t) ‖2H`+1 + ‖ ∂`xh(t) ‖2L2

)
+ C{he,α}(δ)

(
‖ u(0) ‖2H`+1 + ‖ ∂`xh(0) ‖2L2

)
. (2.3.39)

Proof The first estimate (2.3.38) is a consequence of Leibniz formula and the fact that∣∣∣∂`+1
x u ∂`xh

∣∣∣ ≤ 2µ(he + δ)

g

(
∂`+1
x u

)2
+

g

2µ(he + δ)

(
∂`xh

)2
.
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To prove (2.3.39), we use the definition of Lh to write∣∣∣∂`−1
x Lhu · ∂`xh

∣∣∣ =
∣∣∣∂`−1
x (hu) · ∂`xh− α∂`x(h3∂xu) · ∂`xh

∣∣∣ .
Then, the estimate is obtained by very basic computations. Indeed,∣∣∣∂`−1

x (hu) · ∂`xh− α∂`x(h3∂xu) · ∂`xh
∣∣∣ ≤ ∣∣∣∂`−1

x (hu) · ∂`xh
∣∣∣+
∣∣∣α∂`x(h3∂xu) · ∂`xh

∣∣∣
On the other hand, we have∣∣∣∂`−1

x (hu) · ∂`xh
∣∣∣ ≤ C{he}(δ)(‖ u ‖2H`−1 + ‖ ∂`xh ‖2L2

)
,

and ∣∣∣α∂`x(h3∂xu) · ∂`xh
∣∣∣ ≤ C{he}(δ)(‖ ∂xu ‖2H`−1 + ‖ ∂`xh ‖2L2

)
.

Hence, the lemma is proved. �

We now sum (2.3.26) for 1 ≤ ` ≤ s. This together with (2.3.27) and Lemma 2.3.11 enables us to
give an estimation on

∫ T
0 ‖ hx ‖

2
Hs−1 :

Proposition 2.3.12 Let us assume that there exists T > 0 such that the local solution of (2.1.1)
satisfies V (t) ∈ Bs(Ve, δ) for all t ∈ [0, T ). Then, we have,∫ t

0
‖ ∂xh ‖2Hs−1 ≤ C{he,µ}(δ)

∫ t

0
‖ ∂xu ‖2Hs +C{he,α}(δ)

(
‖ u(t) ‖2Hs+1 + ‖ ∂xh(t) ‖2Hs−1

)
+ C{he,α}(δ)

(
‖ u(0) ‖2Hs+1 + ‖ ∂xh(0) ‖2Hs−1

)
. (2.3.40)

This proposition together with Proposition 2.3.7 gives the a priori estimate of Proposition 2.2.4.

Remark 2.3.13 In this work, α and µ are supposed to be strictly positive. However, we can use the
same approach and computations for the viscous Saint-Venant system i.e. for α = 0. In this case,
the system fits the general framework considered in [71] and our approach, as wall as our result, is
exactly the same. Indeed, the main difference between the case α = 0 (Saint-Venant system) and the
case α > 0 (Green–Naghdi system) is the space on which the Hamiltonian Hhe,0 and the operator
A0(V ) are quadratic: this space is (Hs(R) + he)×Hs(R) when α = 0 whereas it is Xs(R) when
α > 0. As a matter of fact, in both cases, the space of quadraticity of Hhe,0 and A0(V ) are the
same as the space on which the system is locally well-posed. For this reason, instead of the estimate
of Proposition 2.2.4, we find the following estimate

(1−Θ{he}(δ)) ‖ V (T )− Ve ‖2Hs×Hs +C{he,µ}(δ)

∫ T

0
‖ ∂xu ‖2Hs

≤ C{he}(δ) ‖ V (0)− Ve ‖2Hs×Hs +Θ{he,µ}(δ)

∫ T

0
‖ ux ‖2Hs ,

which writes for small δ > 0,
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‖ V (T ) − Ve ‖2Hs×Hs +C{he,µ}(δ)

∫ T

0
‖ ∂xu ‖2Hs≤ C{he}(δ) ‖ V (0) − Ve ‖2Hs×Hs .

Remark 2.3.14 The dissipative right hand side term, µ∂x(h∂xu), plays a very important role to
obtain the stability result in both hyperbolic and dispersive cases. Indeed, it is well-known that
equilibriums of Saint-Venant system without any dissipative term, are unstable6 (see [35] for in-
stance). Such an instability result does not exist for the Green–Naghdi equations. However, we are
not able to prove the global existence result if the dissipative term is absent, i.e. if µ = 0. More
precisely, the presence of the

∫ T
0 ‖ ∂xu ‖

2
Hs term in the left hand side of the estimate of Proposition

2.2.4 is due to the strict positivity of µ. Therefore, this term disappears if µ = 0. This means that
the estimate of Proposition 2.2.4 becomes

(1−Θ{he,α}(δ)) ‖ V (T )− Ve ‖2Xs≤ C{he,α}(δ) ‖ V (0)− Ve ‖2Xs +Θ{he,α}(δ)

∫ T

0
‖ ∂xu ‖2Hs .

Hence, ‖ V (T )− Ve ‖2Xs is not any longer controlled by the norm of the initial data and the global
existence for small data can not be concluded.

2.4 Conclusion and Perspectives

During this study, we proved the global existence for small data and the asymptotic stability of con-
stant solutions of the Green–Naghdi system with a second order viscosity. This result is obtained
by generalizing the technique used for symmetric entropy dissipative hyperbolic equations thanks
to the generalized symmetric structure of the system. The study of the rate of convergence to equi-
librium is one of the perspectives of this work [71].

Let us however recall that the result found in this study can not be generalized by this method to the
Green–Naghdi system with friction −κu (with κ > 0), without the viscosity µu∂x(h∂xu). In fact,
in absence of this term, the first estimations are not coherent with the estimation of

∫ t
0 ‖ ∂xh ‖

2
Hs−1 ,

in the sense that there are of one order less than the estimation of
∫ t

0 ‖ ∂xh ‖
2
Hs−1 . Furthermore, if

we add higher order viscous terms (order 4 or more) such as −µ∂2
x (h∂x(h∂xu)), we are not able

either to generalize the technique used in this work. In fact, in this latter case, the order of the
first estimations are always less than the order of the estimates of

∫ t
0 ‖ ∂xh ‖

2
Hs−1 , with or without

−κu + µu∂x(h∂xu). This means that the order 2 seems to be the only order of viscosity, our ap-
proach can be used for.

One of the other perspectives of this work is to study, in a general frame, the stability of equi-
libriums of locally-wellposed symmetrizable systems with a convenient friction or viscous term.
In fact, the main difficulty of this generalization is to find the condition which leads to convenient
estimates on the time integral of the spatial derivative of the solution. Let us note that in the case

6in the sens that in all neighborhood of constant solutions, there exists an initial data for which a shock is created in a
finite time.
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of hyperbolic systems, there are other equivalent formulations of the Kawashima–Shizuta condi-
tion [95, 71] which may be more convenient for the generalization. One of these formulations for
hyperbolic systems is the emptiness of the intersection of the eigenspaces of the symmetric posi-
tive definite matrix (the one equivalent to A0) and the symmetric matrix (the one equivalent to A1)
with the kernel of the viscosity matrix at equilibriums. It is also interesting to mention that the
Kawashima–Shizuta condition is not sharp for hyperbolic systems (see [81] or [11] for instance). A
generalization of less sharp conditions may be another way to follow. The answer to this question
may let us for instance, investigate the stability of equilibriums of 2D Green–Naghdi system. Let
us recall that A0(V ) in 2-dimensional case is given in Chapter 1 (as well as in [73]), by

A0(V ) =

g − 3αh(div(u, v))2 0 0
0 h− α∂x(h3∂x) −α∂x(h3∂y)
0 −α∂y(h3∂x) h− α∂y(h3∂y)


where u (respectively v) represents the vertically averaged x-component (resp. y-component) of
the speed. In this case, A0(V ) is quadratic near equilibriums, for the norm ‖ . ‖X0 defined by

‖ f ‖2X0=‖ f ‖2L2 + ‖ div(f) ‖2L2 .

This is also the 0th order norm of the local well-posedness space of the 2-dimensional system [5].
Indeed, the symmetric structure is coherent with the well-posedness space.

2.A Special Symmetric Structure

In this section, we consider a system of the form

∂tW + ∂xF (W ) = 0, (2.A.1)

The unknown W is supposed to belong to C([0, T );X ) for some T > 0 where X is a Banach
subspace of continuous functions of L2(R,RN ) converging to 0 at infinity. We also assume that
the derivative of all elements of X belongs to X . Additionally, F is not anymore a function of RN
but a smooth application defined from X to X . We also assume that (2.A.1) is a general Godunov
system (cf Chapter 1 and [54, 73]). Therefore there exists a strictly convex functional H defined
on a convex subset Ω of X such that δ2H(W )DF (W ) is symmetric. Under theses assumptions,
System (2.A.1) is symmetrizable under any change of unknown (see [73] or Chapter 1 for more
details).

Proposition 2.A.1 Let us consider the decomposition W = (U, V ) of the unknown. Assume also
that the application

(U, V ) 7→ (U, δVH(U, .))

is a diffeomorphism. Then, (2.A.1) is written under the unknown w = (U, δVH(W )), as following

A0(w)∂tw +A1(w)∂xw = 0. (2.A.2)

Moreover,A0(w) = DwW
?(w) δ2

WH(W ) DwW (w) is a symmetric definite positive bloc diagonal
operator and A1(w) = DwW

?(w) δ2
WH(W ) DWF (W ) DwW (w) is a symmetric one.
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Proof Let us set u = U and v = δVH(W ). Therefore w = (u, v). It is easy to check that we
obtain (2.A.2) by acting DwW

?(w)δ2H(w) on System (2.A.1). Let us now remark that

DwW =

(
1 0

DuV DvV

)
,

and

δ2
WH(W ) =

(
δ2
UH(W ) δ2

V UH(W )
δ2
UVH(W ) δ2

VH(W )

)
.

Hence,

A0(w) =(
δ2
UH(W ) + δ2

V UH(W ) DuV + (DuV )T δ2
UVH(W ) + (DuV )T δ2

VH(W ) DuV δ2
V UH(W ) DvV + (DuV )T δ2

VH(W )DvV
(DvV )T δ2

UVH(W ) + (DvV )T δ2
VH(W )DuV (DvV )T δ2

VH(W ) DvV

)
.

Then, A0(w) is bloc diagonal considering the fact that

(DvV )T δ2
UVH(W ) + (DvV )T δ2

VH(W ) DuV = 0.

Indeed, v = δVH(W ) and u = U give us

(DvV )T δ2
UVH(W ) + (DvV )T δ2

VH(W ) DuV = (DvV )T DUv + (DvV )T DV v DuV

= (DvV )T DUv DuU + (DvV )T DV v DuV = (DvV )T (DUv DuU +DV v DuV )

= (DvV )T Duv = 0.

�

Let us now add a right hand side term of the following form to (2.A.1){
∂tU + ∂xF1(U) = 0,

∂tV + ∂xF2(V ) = q(W ),
(2.A.3)

where q is a smooth application of W and (U, V ) is a decomposition of W satisfying the assump-
tions of Proposition (2.A.1). Again, we act DwW

?(w)δ2H(w) on System (2.A.1) to find

A0(w)∂tw +A1(w)∂xw = G(w),

with
G(w) = (DwW )T δ2

WH(W )Q(W ).

We are now going to see that Q(W ) = (0, q(W )) is an eigenvector for the eigenvalue 1 of
(DwW )T δ2

WH(W ). In fact, the following proposition holds true.

Proposition 2.A.2 The right hand side term G(w) is equal to Q(W ).

Proof We have by assumptions

G(W ) = (DwW )T δ2
WH(W )Q(W ) =

(
δ2
V UH q(W ) + (DuV )T δ2

VH q(W )
(DvV )T δ2

VH q(W )

)
.
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Considering the fact that the first components (associated to U ) of G(W ) are the same as the up
non diagonal bloc of the operator A0(w) considered in the proof of Proposition 2.A.1 acting on
q(W ), these components vanish. On the other hand,

(DvV )T δ2
VH q(W ) = (DvV )T (δ2

VH)T q(W ) = (DvV )T (DV v)T q(W )

= (DV v DvV )T q(W ) = (DV v (DV v)−1)T q(W ) = q(W ).

�

2.B Local well-posedness

Let us first note that there exists 0 < δ < he such that A0(V ) is invertible for all V ∈ Bs(Ve, δ).
Then, consider the associated linear problem∂tV +A−1

0 (V )A1(V )∂xV =

(
0

µL−1
h (∂x(h∂xu))

)
V (0, x) = g0(x)

(2.B.1)

where V ∈ C([0, T ];Xs(R)) and ∂tV ∈ Xs−1(R) for some s ≥ 2 and g0 ∈ Xs(R). It is proved
in [69] that the problem admits a unique solution V in C([0, T ];Xs(R)). We now consider the
following iteration schemeA0(V k)∂tV

k+1 +A1(V k)∂xV
k+1 =

(
0

µ∂x(hk∂xu
k)

)
V k+1(0, x) = gk+1(x)

(2.B.2)

where gk+1 = εkV0 ?ρ( .
εk

) for some mollifier ρ7 with the positive real set εk = β
2k

, with β > 0. We
initialize the iteration by g0 = V0. We know that (2.B.2) admits a unique solution for all positive
integer k. Let us now assume that V l(t) ∈ Bs(Ve, δ) for all l ≤ k and all t ∈ [0, T ]. This implies
by triangle inequality that

‖ V l − g0 ‖C([0,T ];Xs)≤ 2δ (2.B.3)

for all l ≤ k. We can show that there exists a suitable T > 0 such that the estimate (2.B.3) holds
also true for l = k + 1 . In fact, we consider the s̄th derivative of (2.B.2) , take the scalar product
with ∂ s̄+1

x (V k+1 − g0) and we sum over s̄ ∈ {0, ..., s}. Then, using very similar logics as in 2.3.2,
we find for all 0 ≤ t ≤ T ,

‖ V k+1(t)− g0 ‖2Xs ≤ C{‖g0‖L∞}(δ) ‖ g
k+1 − g0 ‖2Xs +C{‖g0‖L∞ ,µ}(δ)

∫ t

0
‖ V k+1(t′)− g0 ‖2Xs dt′

+ C{‖g0‖L∞ ,µ}(δ)t.

7ρ : R→ R+ is infinity derivable compactly supported in the unit ball with
∫
R ρ = 1.
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Then, Gronwall lemma leads us, for δ small enough, to

‖ V k+1 − g0 ‖2C([0,T ];Xs)≤ Ce
λT
(
‖ gk+1 − g0 ‖2Xs +T

)
.

where C and λ are strictly positive reals independent of k. On the other hand, there exists by
assumption, ε0 > 0 such that

‖ gk+1 − g0 ‖Xs≤ ε0 for all k ∈ N.

Then, choosing β small enough (therefore ε0 small enough), there exists T > 0 such that the
condition (2.B.3) is satisfied for all l ∈ N. We assume from now that T and β are small enough to
give us (2.B.3) for all positive integer. Then, we consider the s̄th derivative of (2.B.2) for iterations
k and k − 1 , take the scalar product with ∂ s̄+1

x (V k+1 − V k), subtract the two equations and sum
over s̄ ∈ {0, ..., s}. Likewise, we get

‖ V k+1(t)− V k(t) ‖2Xs ≤ γ ‖ gk+1 − gk ‖2Xs +θ

∫ t

0
‖ V k(t′)− V k−1(t′) ‖2Xs dt′

+ θ

∫ t

0
‖ V k+1(t′)− V k(t′) ‖2Xs dt′

for some convenient positive γ, θ.

Applying the Gronwall lemma, we have for all k ∈ N

‖ V k+1 − V k ‖2C([0,T ];Xs) ≤ e
λT

(
‖ gk+1 − gk ‖2Xs +θ

∫ T

0
‖ V k(t′)− V k−1(t′) ‖2Xs dt′

)
.

(2.B.4)

Now, we sum (2.B.4) on k ∈ N. This leads us to

(1− θTeλT )
∑
k∈N
‖ V k+1 − V k ‖2C([0,T ];Xs)≤ e

λT
∑
k∈N
‖ gk+1 − gk ‖2Xs .

Then, considering the fact the T is small and the fact that the sum
∑

k∈N ‖ gk+1 − gk ‖2Xs is
convergent, we conclude that the set V k is convergent in C([0, T ];Xs(R)). The uniqueness can be
proved by the same way. In fact, we obtain a very similar approximation to (2.B.4) for ‖ V 1 −
V 2 ‖Xs considering two solutions V 1(x, t) and V 2(x, t) for the initial conditions V1(x) and V2(x).
Hence, the local well-posedness is proved.

2.C Linear stability of equilibriums of the Green-Naghdi equation

In this part we are going to see another use of the symmetric structure of the Green-Naghdi equation.
In fact, this structure enables us to prove the linear stability of an equilibrium Ve = (he, ue) with
he > 0, for the system without any dissipative right hand side term. To see this, let us consider the
solution V ∈ C([0, T );Xs(R)) of the linearized system

A0(Ve)∂tV +A1(Ve)∂xV = 0, (2.C.1)
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act ∂`x on (2.C.1) for 0 ≤ ` ≤ s, and take the scalar product by ∂`x(V − Ve) :∫ t

0

∫
R
A0(Ve)∂t∂

`
xV · ∂`x(V − Ve) +

∫ T

0

∫
R
A1(Ve)∂

`+1
x V · ∂`x(V − Ve) = 0. (2.C.2)

Now, considering the facts that∫
R
A0(Ve)∂t∂

`
xV · ∂`x(V − Ve) =

1

2

d

dt

∫
R
A0(Ve)∂

`
x(V − Ve) · ∂`x(V − Ve),

and ∫ t

0

∫
R
A1(Ve)∂

`+1
x V · ∂`x(V − Ve) = 0,

together with the X0-quadraticity of A0(Ve), we get the following estimate,

‖ ∂`x(V (t)− Ve) ‖2X0≤ C ‖ ∂`x(V (0)− Ve) ‖2X0 . (2.C.3)

where C is a strictly positive constant depending only on he, α and g. Hence, we have the following
proposition,

Proposition 2.C.1 Let s ≥ 2 be an integer and consider the initial data V0 ∈ Xs(R). Then, there
exists C > 0 such that the solution V of (2.C.1) satisfies for all time,

‖ V (t)− Ve ‖2Xs≤ C ‖ V0 − Ve ‖2Xs . (2.C.4)

This gives us the linear stability of the equilibrium of (2.1.1).

Theorem 2.C.2 Let s ≥ 2 be an integer and consider the Green-Naghdi system,{
∂th+ ∂xhu = 0,

∂thu+ ∂x(hu2) + ∂x(gh2/2 + αh2ḧ) = 0.
(2.C.5)

Then, the equilibrium solutions Ve = (he, ue), with he > 0, are linearly stable for the Xs norm.

Let us note that this theorem can be generalized to all locally well-posed symmetrizable system of
the form (2.C.1) such that A0(Ve) is quadratic.
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3.1 Introduction

Similarly to incompressible two-phase flows, modeling and simulation of free surface incompress-
ible fluids are important problems for the scientific community. On the one hand, this is due to
the various applications in engineering. On the other hand, the treatment of the free-surface is
still a difficult challenge and few results are available on the mathematical analysis of these prob-
lems. See [2, 3, 98, 97, 107] and references therein for some well-posedness results for free surface
incompressible fluids modeled by Stokes/Navier–Stokes equations. Free surface incompressible
problems have been addressed dealt with two different approaches in the literature. The first one,
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widely used in oceanography, consists on substituting free surface Euler or Navier–Stokes equation
by their shallow water approximation (see for instance [57, 62, 9]). The advantage of this approach
is that the obtained shallow water model is usually easier to study theoretically and numerically. A
famous example of these models is the Saint-Venant equations which is a particular case of isen-
tropic Euler equations. Nevertheless, these models can be considered only in the shallow water
regime. Moreover, the free surface is fully represented by the height of water, which is an unknown
of the problem, as a function of time and horizontal space variables. For this reason, the numerical
treatment of the free surface is not an extra challenge and the free surface location is found by solv-
ing an evolution partial differential equation with boundary conditions. Breaking waves however
can not be described using this approach. The second approach is to consider the full free surface
Navier-Stokes problem. In this case, the domain on which the Navier–Stokes equations are posed is
also an unknown. The first numerical method introduced to treat this problem is the marker and cell
method (MAC) [65]. In this method, the authors resolve the problem in a fixed grid using finite-
difference method and represent the free surface by markers which move with the fluid (see also
[103, 45, 46, 66]). Since then, other techniques have been developed to deal with the simulation
of the free surface. Arbitrary Lagrangian-Eulerian method (ALE) [12, 7, 51, 59] , Volume of Fluid
methods (VOF) [67, 94, 58, 99] and Level Set method (LS) [88, 40] are among the most famous.
The ALE method is based on the assumption that each fluid particle is transported by the velocity
field. Thus, its trajectory is described by a characteristic equation whose flow is the fluid velocity.
In this method, the underlying mesh is moved with the flow velocity in order to deal partially with
topology changes and severe displacements i.e. distortions. In the VOF method, the interface is
represented by the characteristic function of the fluid domain. This discontinuous function is ad-
vected by the flow velocity. Thus, the method is based on the weak formulation of the advection
equation. It is able to handle topology changes but is quite tedious to implement on unstructured
meshes. In the LS method, the free surface is represented by the 0-level set of a continuous function.
Again, this function is advected by the velocity flow but thanks to its continuity, no weak formu-
lation of the advection equation is considered. Therefore, this method can be easily implemented
on unstructured meshes. All these three approaches can be also used without difficulty for bi-fluid
incompressible flows.

The main purpose of this work is to adapt the work done in [100] on bi-fluid incompressible
models, to free surface incompressible fields. Therefore, the free surface is modeled by the level
set method with a moving mesh. In other words, the free surface is explicitly discretized by a mesh
which is moved with the flow velocity. The main improvement of this work is that Navier–Stokes
equations are resolved in the fluid domain only. This approach is reasonable since only one fluid
behavior is of interest. The other part of the domain is not used in the resolution of the Navier–
Stokes equations, it is only represented by an external pressure which is equal to the atmospheric
pressure if the fluid is in contact with air and vanishes for a fluid in the vacuum. This helps to reduce
the time of computation consequently since the Navier-Stokes equations is solved only on a small
part of the domain of computation. No constraints are considered here on the geometrical structure
of the computational domain. Friction and surface tension may easily be taken into account in the
formulation.

The first section is devoted to the mathematical formulation of the physical problem. Section
3.3 details the numerical tools used in this work. The adaptation of the global scheme of [100] to
our problem is presented in Section 3.4. Finally, Section 3.5 contains some numerical results.



Chapter 3: Numerical tools and global algorithm 95

3.2 Mathematical model

We consider in this work an incompressible Newtonian fluid with viscosity µ > 0 and density
ρ > 0. This fluid is contained in a fixed d-dimensional1 computational domain D with boundary
∂D. The fluid domain is time dependent and is assumed to be included in D. This domain is
denoted by Ωt at time t and satisfies Ωt ⊂ D. The boundary ∂Ωt of Ωt is represented by the
partition ∂Ωt = Γt ∪ (∂Ωt \ Γt) where the boundary part Γt represents the free surface. A surface
tension with a coefficient γ > 0 is considered on the free surface. We assume that the fluid slips on
∂Ωt \Γt with a friction coefficient denoted by α > 0. An atmospheric pressure pa is exerted on the
fluid. The external normal on the free surface is denoted by n.

Figure 3.2.1: Illustration of a computational domain D containing the fluid domain Ωt at time t.

3.2.1 Incompressible Navier-Stokes equations

Incompressible Newtonian fluids satisfy the incompressible Navier–Stokes equations. Moreover,
the free surface is advected by the flow velocity. This means that the system is described by the
following partial differential equations:

ρ
(
∂u
∂t + (u · ∇)u

)
− µ∆u +∇p = ρf in Ωt,

div u = 0 in Ωt,

u(0, x) = u0(x) in Ω0,

(3.2.1)

where u0 and Ω0 are respectively the initial velocity flow and the initial fluid domain while f is
the density of external force. The problem unknowns are u and p which represent respectively the
velocity flow and the pressure of the fluid. This system is endowed with Navier slip conditions on
the computational domain boundary and with a Neumann condition on the free surface:

u · n = 0 on ∂Ωt \ Γt,[
αu + µ

(
∇u + t∇u

)
n
]
tan

= 0 on ∂Ωt \ Γt,(
µ
(
∇u + t∇u

)
− p
)
n = − (γκ+ pa)n in Γt,

(3.2.2)

Let us note that κ(x) is the algebraic mean curvature, for x on Γt, which is positive if the free
surface bends towards Ωt and negative otherwise. Moreover, the evolution of the free surface is

1with d = 2, 3.
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described by
(1,u) is tangential to the free surface (t,Γt), t ≥ 0. (3.2.3)

Equations (3.2.1), (3.2.2) and (3.2.3) together, give us a mathematical model representing the fluid
dynamic.

Remark

In this model, Dirichlet boundary conditions are not considered. However, these conditions can
be added with no extra difficulty. In fact, the free surface model is presented only with Navier
slip boundary conditions mainly for the sake of simplicity. Nevertheless, all of the numerical tools
presented in Section 3.3 as well as the global algorithm can get adapted without any technical or
mathematical difficulty to mixed Dirichlet-slip boundary conditions. Let us also note that Dirichlet
boundary condition can also be obtained by tending the friction coefficient α to∞.

3.2.2 Interface capturing with level set methods

As mentioned previously, the fluid domain can be characterized by a continuous level set function
φ(x, t) defined on the whole computational domain, such that{

φ(x, t) < 0⇐⇒ x ∈ Ωt

φ(x, t) = 0⇐⇒ x ∈ Γt.
(3.2.4)

Therefore, the knowledge of the level set function is the same as the knowledge of the fluid domain.
This is the approach considered in this work. In this frame, the free surface evolution relation (3.2.3)
is substituted by the advection equation{

∂φ
∂t

(x, t) + ũ(x, t) · ∇φ(x, t) = 0 ∀(x, t) ∈ D × (0,∞),

φ(x, 0) = φ0(x) ∀x ∈ D.
(3.2.5)

where ũ is a smooth vector field defined on D which coincides with the fluid velocity of the free
surface i.e. it satisfies

ũ(x, t) = u(x, t) on Γt ∀t ≥ 0.

Moreover, φ0(x) is a level set function for the initial fluid domain Ω0. In this work, the initial level
set function considered is the signed distance function to Γ0 i.e.

φ0(x) = dΓ0(x) =


−d(x,Γ0) if x ∈ Ω0

0 if x ∈ Γ0

d(x,Γ0) if x ∈ D \ Ω0

(3.2.6)

where d(.,Γ0) denotes the usual Euclidean distance function to Γ0. As mentioned in [22], the
smoothness of the vector field ũ is necessary in this work since we intend to solve the advection
method by the method of characteristics. The regularity of ũ guarantees the mathematical well-
posedness of the problem as well as its numerical accuracy. This is also why the initial level set
function considered is the signed distance function. In fact, an initial signed distance function with
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Figure 3.2.2: The initial fluid velocity field (left), the initial level set function associated with the initial fluid domain (middle), the
advected level set function by the fluid velocity at time t = 0.006.

too steep or too loose variations in its level sets, may jeopardize the accuracy of computations.

3.3 Numerical tools

In this section, we present numerical techniques necessary to understand the global scheme of
Section 3.4.

3.3.1 Method of characteristics for the advection equation

The method of characteristics [33, 16, 76, 13] is known to be very efficient for solving advection-
diffusion problems, including the Navier-Stokes equations, see [89, 90, 91] for the mathematical
and numerical method and its application to fluid mechanics problems.

Here, we consider the Cauchy problem for the advection equation (3.2.5): given a velocity field
ũ(x, t) defined on D, find a scalar solution φ(x, t) defined on D × [0, T ] solving the equation:

∂φ

∂t
(x, t) + ũ(x, t) · ∇φ(x, t) = 0 on D × [0, T ]

φ(x, 0) = φ0(x) for x ∈ D.
(3.3.1)

Under proper hypotheses on the regularity and the growth of ũ and φ0 [90], the unique C1 solution
φ of (3.3.1) is

φ(x, t) = φ0(X(x, t; 0)) (3.3.2)

with s 7→ X(x, t; s) the characteristic curve of ũ passing through x at time t and defined as the
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solution of the ODE system:
dX(x, t; s)

ds
= ũ(X(x, t; s), t) for s ∈ R

X(x, t; t) = x.
(3.3.3)

This curve describes the trajectory of a particle at position x at time t and transported by the ve-
locity field ũ. The first equation of (3.3.1) implies that φ(x, t) is constant along the characteristics
X(x, t; s). Hence, the solution of the Cauchy problem (3.3.1) reads:

φ(x, t) = φ0(X(x, t; 0), 0) , on D × [0, T ] (3.3.4)

In the numerical setting of this work, we divide the time interval [0, T ] into a finite number of
subintervals of the form [tn−1, tn] with tn = tn−1 + ∆t, for a time step ∆t. Then, we denote
φ0(x) := φ0(x) and define φn, for all integer n ∈ [1, T∆t ], as the solution of

∂φn

∂t
(x, t) + ũ(x, t) · ∇φn(x, t) = 0 , (x, t) ∈ D × (tn−1, tn)

φ(x, tn) = φn−1(x) , ∀x ∈ D.
(3.3.5)

Again, we use the characteristic method to solve (3.3.5). In other words, the solution φn of this
equation is approximated by

φn(x) = φn−1(X(x, tn; tn−1)) , for all x ∈ D (3.3.6)

where X(x, tn; tn−1) is the position at the time tn−1 of the characteristic line emerging from x at
the time tn. This function is computed by

dX(x, tn; t)

dt
= ũ(X(x, tn; t), t) for all (x, t) ∈ D × (tn−1, tn)

X(x, tn; tn) = x for all x ∈ D.
(3.3.7)

Let us also note that the first equation of (3.3.7) is equivalent to

X(x, tn; t) = x−
∫ tn

t
ũ(X(x, tn; t), t)dt. (3.3.8)

This integral can be approximated by any method used for solving ordinary differential equations.
For example, introducing a small sub-integration time step δt << ∆t and subdividing the interval
]tn−1, tn[= ∪Ll=0]tl, tl+1[ with tl = tn−1 + lδt, a fourth order Runge-Kutta schemes yields for all
x ∈ D to the following approximation X̃(x, tn, ·) of X̃(x, tn, ·), defined on {tl}l∈{0,..,L} computed
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by: 

X̃(x, tn; tn) = x

X̃(x, tn; tl) = X̃(x, tn; tl+1)− δt

6
(v1 + 2v2 + 2v3 + v4),

with v1 = ũ(X̃(x, tn; tl))

v2 = ũ(X̃(x, tn; tl+1)− δt

2
v1)

v3 = ũ(X̃(x, tn; tl+1)− δt

2
v2)

v4 = ũ(X̃(x, tn; tl+1)− δtv3) .

We are now able to use (3.3.6) to approximate φn for all integer n ∈ [1, T∆t ]. This problem can
be solved by a Galerkin numerical scheme which involves resolution of a linear system with using
quadrature formulas for approximating integrals in the right hand side. Another alternative is the
Lagrange interpolation. In fact, both methods have been used in previous works. The first approach
in [23] is more expensive than the second one in [27]. Moreover, the second approach leads to an
estimate which enables us to control the geometric error on the interface by the interpolation error.
This is very interesting for the mesh adaptation step. Therefore, this second approach is considered
in the present work. Indeed, we endow here the computational domain D with a mesh Dh and we
consider a suitable Lagrange finite element space V (e.g. P1 or P2). Then, we denote by φ0

h the V
projection of the initial level set function φ0. Moreover, at each degree of freedom represented by
x, we compute the approximation φnh of φn as following:

φnh(x) = φn−1
h (X̃(x, tn+1; tn)) (3.3.9)

As mentioned in [27], this method requires the resolution of one ODE at each degree of freedom of
Dh and is efficient since no matrix inversion nor quadrature formulas for approximating integrals
are considered. This first-order space approximation is sufficient here since in our frame work, only
values of the level set function in the vicinity of the free surface are of interest. Moreover, thanks to
a mesh adaptation step, mesh elements are very small in the vicinity of the interface. We also refer
the reader to the previous works in [21], for more details on these schemes .

Remark 3.3.1 It is worth to forecast some difficulties: in the numerical framework, the charac-
teristic curves may go out of the computational domain specially when the computational mesh
approximates a computational domain with curvy boundaries. In such cases, we project the final
point of the characteristic curve, corresponding to X(x, tn; tn−1) for some n, on the mesh bound-
ary. This is done by identifying the edge (or the face) of the boundary such that the barycentric
coordinate of the final point with respect to this edge (or face) is strictly negative in the element to
whom this edge (or face) belongs.

3.3.2 Extension and regularization of the velocity field

In this work, we intend to solve the Navier–Stokes equations only on the fluid domain. Thus, the
velocity field is defined only on the subdomain Ωt of D representing the fluid domain whereas
the transport equation needs to be solved on the whole computational domain. As mentioned in
Subsection 3.3.1, the flow ũ considered for the advection equation, must be defined on the totality
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of the computational domain D and must coincide with the flow velocity in the vicinity of the free
surface. Therefore, an extension of velocity is crucial for the resolution of free-surface flows while
using the level set formulation.

Figure 3.3.3: Norm of the fluid velocity on the fluid domain (left), Norm of the velocity after the extension (middle), Norm of the
velocity after the regularization (right). The Reynolds number associated to the fluid is not large here. For this reason, the resolution of
the Helmholz equation out of the fluid domain is sufficient to obtain a velocity defined on the computational domain.

The approach we use here to construct a convenient flow ũ for advection equation comes from
[96, 28, 24, 39]. In fact, it is required that ũ is defined away from the free surface and smoothly
approaches the prescribed velocity as the zero level set is approached.
On the other hand, large velocity discrepancies between neighboring points may cause uncontrolled
oscillations on the level sets and jeopardize the stability of the numerical algorithm. For this rea-
son, a regularization of the velocity field must be considered as a step of the algorithm if the flow
presents such discrepancies. The methods we use to extend and regularize the velocity flow are
described in the following paragraphs.

-Velocity extension: This step consists in solving a non homogeneous Dirichlet–Neumann prob-
lem for a Helmholtz equation out of the fluid domain. The system to solve writes:

−a∆ũ + ũ = 0 in D \ Ωt

∇ũ · n = 0 on ∂D \ ∂Ωt

ũ = u on Γt

(3.3.10)

where a > 0 is an extension regularization parameter. As mentioned in [39], it must be small
enough such that large values of ũ outside of the free surface do not interfere with other values on
the other side of the free surface. Indeed, if a is too large, some strictly positive level sets may cross
the 0-level set during the advection. Therefore, the level set function does not represent any more
the fluid domain during the advection. For this reason, it is important to consider a Helmholtz op-
erator and not only a Laplace operator. The identity part of the Helmholtz operator together with a
conveniently small a, guarantees a reasonable decrease for the extended velocity flow as the bound-
ary of the domain far from the free surface are approached. On the other hand, a must obviously
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not be too small, since the solution ũ must be smooth enough such that the advection equation can
be resolve by the characteristic method. Figure 3.3.3 illustrates the application of this extension
(middle) to the velocity flow presented on the left.

-Velocity regularization: Regularization of the velocity consists in solving the system on the whole
computational domain D in order to get a convenient field ũ for the advection equation:

−a∆ũ + ũ = 0 in D

∇ũ · n = 0 on ∂D

ũ = u on Γt

(3.3.11)

Let us also note that for the same reason as in the previous case, a must be not too small, not too
large. Let us also mention if we solve the advection equation with a flow which is the same as the
fluid velocity inside of the fluid domain, it is possible that some values of large velocities inside of
the fluid domain interfere with the velocity of the fluid on the free surface i.e. some strictly negative
level sets may cross the 0-level set. For this reason, we need to regularize the velocity of the fluid.
As an illustration, see Figure 3.3.3 where this regularization is applied to the velocity flow presented
on the left. The result of this extension is given on the right of the figure.

Remark 3.3.2 The critical threshold beyond which we need to consider (3.3.11) instead of system
(3.3.10) depends on the geometry of the computational and the fluid domain as well as the size
of time step and mesh elements. In practice, we use the first kind of extension (extension for small
Reynolds number) by default. The regularization of the velocity on the whole computational domain
is used only if level sets cross each other during the first kind of extension.

In both cases, the variational problem associated to the Hemlholtz problem is solved using a finite
element method.

3.3.3 Resolution of the Navier–Stokes equations on the fluid domain

We are interested in this part in the numerical resolution of the free surface incompressible Navier–
Stokes equation on the fluid domain at some time t. In other words, we endow the time discretized
problem with boundary conditions (3.2.2). This time discretization is done following the pioneering
works [13, 89, 60]. More precisely, we consider the term

ρ

(
∂u

∂t
+ (u · ∇)u

)
which actually models the transport of the momentum ρu by the velocity field u with the idea of
taking advantage of the transport nature of the non linear term. Hence, we use here the backward
method of characteristics for the time discretization of the Navier–Stokes equations. Then, we will
use a convenient finite elements method for the spatial resolution of the time discretized equation
on the fluid domain.
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Time discretization by the method of characteristics

In this section, we describe the time discretization of the Navier–Stokes equations based on the
method of characteristics. This is not the only possible choice. Nevertheless, we use this scheme
because it is unconditionally stable (see [89]). Moreover, this method is already implemented in
our framework to solve the advection equation (3.3.1). Therefore, we can use the same scheme for
the resolution of the advection equation and the time discretization of the Navier–Stokes equation.
Moreover, we use obviously the same time step ∆t for both advection and Navier–Stokes equation.
Indeed, we have the same subdivision [tn−1, tn], with tn = tn−1 + ∆t, of the time interval [0, T ].
The main idea is that the nonlinear convection part of Navier–Stokes equations can be hidden in the
Cauchy problem (3.3.3) i.e. the operator ∂

∂t +u.∇ may be turned into a total derivative (also called
Lagrange derivative) d

dt . Therefore, the first equation of (3.2.1) is recast into the following form:

ρ
du(X(x, t; s), s)

ds
|s=t −µ∆u +∇p = ρf . (3.3.12)

Hence, we denote u(x, tn) by un(x) for all n and use the following explicit approximation:

du(X(x, tn; s), s)

ds
|s=tn≈

u(X(x, tn; tn), tn)− u(X(x, tn; tn−1), tn−1)

∆t
,

since

du(X(x, tn; s), s)

ds
|s=tn=

u(X(x, tn; tn), tn)− u(X(x, tn; tn−1), tn−1)

∆t
+O(∆t).

This approximation is equivalent, using the latter notation together with the definition (3.3.3) of the
characteristic curve, to

du(X(x, tn; s), s)

ds
|s=tn≈

un(x)− un−1(X(x, tn; tn−1))

∆t
.

Therefore, denoting X(x, tn; tn−1) by Xn−1(x), the time discretized Navier–Stokes equation writesρ
un(x)− un−1 ◦Xn−1(x)

∆t
− µ∆un(x) +∇pn(x) = ρfn in Ωtn

divun(x) = 0 in Ωtn

(3.3.13)

or equivalentlyρ
un(x)

∆t
− µ∆un(x) +∇pn(x) = ρfn + ρ

un−1 ◦Xn−1(x)

∆t
in Ωtn ,

divun(x) = 0 in Ωtn

(3.3.14)

Indeed, un−1 ◦ Xn−1(x) approximates the velocity at the point Xn−1(x) at the time tn−1. We
endow problem (3.3.14) with slip boundary and free surface conditions. Indeed, the boundary
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conditions (3.2.2) writes here 2
un · n = 0 on ∂Ωtn \ Γtn ,[
αun + µ

(
∇un + t∇un

)
n
]
tan

= 0 on ∂Ωtn \ Γtn ,(
µ
(
∇un + t∇un

)
− pn

)
n = − (γκ+ pa)n in Γtn ,

(3.3.15)

Obviously, at each time step, the Navier–Stokes problem becomes a Stokes problem plus a transport
of the previous solution on the characteristic. This problem is resolved in two steps:

1. Approximate the characteristic curves Xn−1(x).

2. Solve the resulting generalized Stokes system with the corresponding boundary conditions.

Remark 3.3.3 - The approximation of characteristic curves Xn−1(x) in each time interval
[tn−1, tn] for the Navier-Stokes problem is implemented by the same way as in Subsection
3.3.1.

- Similarly to Subsection 3.3.1, the characteristic curves may cross some elements or go out
the computational domain. In this cases we identify the last element the characteristic curve
crossed and project the final point of this curve to the corresponding edge (or face). Let us
recall that we intend to solve the Navier–Stokes equation on the fluid domain only. However,
the flow we consider to solve the characteristic equation is not the flow velocity u but the
extended flow velocity ũ. This lets us handle situations where the characteristic curves cross
the free surface of the fluid but stay in the computational domain D.

Variational formulation

As mentioned previously, we intend to solve the time discretized Navier–Stokes equation (3.3.14)
together with boundary conditions (3.3.15) by finite element method for all integer n ∈ [0, T∆t ].
Equation (3.3.14) is nothing but a generalized Stokes equation. The associated variational formu-
lation is then obtained by the same method as for generalized stokes problems. Therefore, Hilbert
spaces we consider here for the velocity flow and the pressure respectively Vn and Qn defined by
(see for instance [104, 105, 106, 41]):

Vn = {v ∈
(
H1(Ωtn)

)d
,v · n = 0 on ∂Ωtn \ Γtn}, (3.3.16)

Qn = L2(Ωtn). (3.3.17)

Let us note that we do not need to consider zero-integral functions for Qn since we assume that Γtn

is non empty for all n. We are now able to find the variational formulation of the problem. We first
take the scalar product of a test function v ∈ Vn with the first equation of (3.3.14) and integrate on

2Let us mention the the curvature κ at the free surface as well as the normal vector n depends on time tn since they
correspond to the fluid domain Ωtn which travels by time. Nevertheless, for sake of simplicity, we do not use any n
superscript for these symbols in (3.3.14) either in the following section.
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Ωtn to get:∫
Ωtn

ρ

∆t
un · v −

∫
Ωtn

µ∆un · v +

∫
Ωtn
∇pn · v =

∫
Ωtn

ρ

(
f +

un−1
?

∆t

)
· v, (3.3.18)

where un−1
? is set equal to un−1 ◦ Xn−1(x). Then, we multiply the second equation of (3.3.14)

with a test function q ∈ Qn and integrate on Ωtn to get∫
Ωtn

divun q = 0. (3.3.19)

The following lemma is the next step to the variational formulation.

Lemma 3.3.4 Let us consider the solution (un, pn) ∈ Vn × Qn of system (3.3.14) with boundary
conditions (3.2.2). Then, we have for all v ∈ Vn∫

Ωtn

−µ∆un · v +∇pn · v =

∫
Ωtn

µ
(
∇un + t∇un

)
: ∇v −

∫
Ωtn

pndivv +

∫
Γtn

(γκ+ pa)n · v

+ α

∫
∂Ωtn\Γtn

[un]tan · [v]tan.

Proof The first step to prove the lemma is the following equality which holds true under the incom-
pressibility condition divun = 0,

∆un = div
(
∇un + t∇un

)
. (3.3.20)

Next, we use the Green’s formula [63] to remark that

− µ
∫

Ωtn
∆un · v = µ

∫
Ωtn

(
∇un + t∇un

)
: ∇v − µ

∫
∂Ωtn

(
∇un + t∇un

)
n · v, (3.3.21)

where Symbol : denotes the usual square matrix product i.e. A : B = Σd
i,j=1AijBij for all d-square

matrices A and B. On the other hand, we have obviously

µ

∫
∂Ωtn

(
∇un + t∇un

)
n · v = µ

∫
Γtn

(
∇un + t∇un

)
n · v + µ

∫
∂Ωtn\Γtn

(
∇un + t∇un

)
n · v (3.3.22)

Then we have by the free surface condition on Γtn (the last equation of (3.2.2)):

µ

∫
Γtn

(
∇un + t∇un

)
n · v =

∫
Γtn

(pn − pa − γκ)n · v. (3.3.23)

On the other hand, we have

µ

∫
∂Ωtn\Γtn

(
∇un + t∇un

)
n · v = µ

∫
∂Ωtn\Γtn

((
∇un + t∇un

)
n · n

)
(v · n)

+ µ

∫
∂Ωtn\Γtn

[(
∇un + t∇un

)
n
]
tan

[v]tan . (3.3.24)

The first integral of the right hand side of (3.3.24) vanishes since v ∈ Vn. Then, the slip boundary



Chapter 3: Numerical tools and global algorithm 105

conditions on ∂Ωtn \ Γtn (the two first equations of (3.2.2)) leads us to

µ

∫
∂Ωtn\Γtn

[(
∇un + t∇un

)
n
]
tan

[v]tan = −α
∫
∂Ωtn\Γtn

[u]tan [v]tan (3.3.25)

Hence, (3.3.24) becomes

µ

∫
∂Ωtn\Γtn

(
∇un + t∇un

)
n · v = −α

∫
∂Ωtn\Γtn

[u]tan [v]tan (3.3.26)

Gathering (3.3.21),(3.3.25) and (3.3.26), we find

− µ
∫

Ωtn

∆un · v = µ

∫
Ωtn

(
∇un + t∇un

)
: ∇v + α

∫
∂Ωtn\Γtn

[u]tan [v]tan −
∫

Γtn

(pn − pa − γκ)n · v.

(3.3.27)

We now apply the Green’s formula to
∫

Ωtn
∇pn · v and get∫

Ωtn
∇pn · v = −

∫
Ωtn

pn divv +

∫
∂Ωtn

pnn · v. (3.3.28)

Since the test function v belongs to Vn, we get∫
Ωtn
∇pn · v = −

∫
Ωtn

pn divv +

∫
Γtn

pnn · v. (3.3.29)

Adding the both sides of equalities (3.3.27) and (3.3.29) yields the result. �

Now, we use the lemma to rewrite (3.3.18)-(3.3.19) as following:∫
Ωtn

ρ

∆t
un · v +

∫
Ωtn

µ
(
∇un + t∇un

)
: ∇v + α

∫
∂Ωtn\Γtn

[un]tan · [v]tan −
∫

Ωtn
pndivv =∫

Ωtn
ρ

(
f +

un−1
?

∆t

)
· v −

∫
Γtn

(γκ+ pa)n · v, (3.3.30)

∫
Ωtn

divun q = 0. (3.3.31)

Let us also remark that (
∇un + t∇un

)
: ∇v =

(
∇un + t∇un

)
: t∇v.

Therefore, (
∇un + t∇un

)
: ∇v = 2D(un) : D(v),

where D denotes the symmetric gradient also called rate of deformation tensor i. e.

D(·) =
∇(·) + t∇(·)

2
.

The variational formulation is then given in the following proposition.

Proposition 3.3.5 The variational formulation corresponding to (3.3.14) , (3.2.2) is:
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Find (un, pn) in Vn ×Qn such that we have for all (v, q) ∈ Vn ×Qn{
a(un,v) + b(v, pn) = l(v),

b(un, q) = 0.
(3.3.32)

In this formulation, a(., .) is a continuous bilinear symmetric coercive operator defined on Vn by

a(u,v) =
ρ

∆t

∫
Ωtn

u · v + 2µ

∫
Ωtn

D(u) : D(v) + α

∫
∂Ωtn\Γtn

[u]tan · [v]tan . (3.3.33)

Besides, the bilinear operator b(., .) is defined on Vn ×Qn by

b(u, q) = −
∫

Ωtn
divuq. (3.3.34)

The linear operator l(.) is continuous on Vn and given by

l(v) =

∫
Ωtn

ρ

(
f +

un−1
?

∆t

)
· v −

∫
Γtn

(γκ+ pa)n · v.

Remark 3.3.6 Let us mention that the operator b satisfies the Babuska-Brezzi inf-sup condition and
the variational formulation (3.3.32) is well-posed (for instance, see [19]).

Penalization technique for slip boundary condition

The variational formulation (3.3.32) is defined on the Hilbert space Vn × Qn. However, the con-
struction of a basis of Vn as well as its finite element approximation is a challenge since Vn contains
only functions whose velocity is tangent to ∂Ωtn \ Γtn and is a strict subspace of

(
H1(Ωtn)

)d
.

We use the penalization technique to overcome with this difficulty (see [41]). In this method, we
do not consider any more a strict subspace of H1(Ωtn)d but the whole space. The non-penetration
condition

(
u · n|∂Ωtn\Γtn = 0

)
is considered by adding a penalization term to the first equation of

the variational formulation. In fact, we consider the following variational formulation:

Find (unε , p
n
ε ) in Kn ×Qn such that we have for all (v, q) ∈ Kn ×Qn{

aε(u
n
ε ,v) + b(v, pnε ) = l(v),

b(unε , q) = 0.
(3.3.35)

where
Kn =

(
H1(Ωtn)

)d
,

and aε is defined by

aε(u,v) =
ρ

∆t

∫
Ωtn

u ·v+2µ

∫
Ωtn

D(u) : D(v)+α

∫
∂Ωtn\Γtn

[u]tan · [v]tan+
1

ε

∫
∂Ωtn\Γtn

(u ·n)(v ·n).

The penalization technique is interesting since the solution (unε , p
n
ε ) of (3.3.35) converges (for the
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usual norm Kn ×Qn) to the solution (un, pn) of (3.3.32) when ε tends to 0 (see [41]).

Remark 3.3.7 Simple computations lead to

α

∫
∂Ωtn\Γtn

[u]tan · [v]tan = α

∫
∂Ωtn\Γtn

u · v − (u · n)(v · n).

Therefore, the bilinear operator aε can also writes

aε(u,v) =
ρ

∆t

∫
Ωtn

u ·v+ 2µ

∫
Ωtn

D(u) : D(v) +α

∫
∂Ωtn\Γtn

u ·v+

(
1

ε
− α

)∫
∂Ωtn\Γtn

(u ·n)(v ·n).

Resolution by finite element method

We use the Galerkin finite element approximation to find the following discrete problem: Find
(uh, ph) ∈ Kh

n ×Qhn such that :{
∀vh ∈ Kh

n aε(uh,vh) + b(vh, ph) = l(vh)

∀qh ∈ Qhn b(uh, qh) = 0
(3.3.36)

where Kh
n ⊂ Kn and Qhn ⊂ Qn represent two families of finite dimensional subspaces constructed

from a triangulation Th covering the fluid domain Ωtn . Symbol h denotes the space discretization
parameter which is nothing but the characteristic element size. The discrete border of the triangula-
tion Th is denoted by ∂Th. It can also be seen as a discrete approximation of the boundary of Ωtn .
Symbol Γh represents the part of ∂Th which corresponds to a discrete approximation of the free
surface. Besides, aε(uh,vh), b(vh, ph), l(vh) are bilinear and linear forms defined on Kh

n ×Kh
n ,

Kh
n ×Qhn and Kh

n respectively as follows:

aε(uh,vh) =
∑
K∈Th

ρ

∆t

∫
K
uh.vhdx+

∑
K∈Th

2µ

∫
K
D(uh) : D(vh)dx+ α

∑
E∈∂Th

∫
E
uh · vhdx

+

(
1

ε
− α

) ∑
E⊂(∂Th\Γh)

∫
E

(uh · n(E)) (vh · n(E))dx;

b(vh, ph) =
∑
K∈Th

∫
K
−phdivvh;

l(vh) =
∑
K∈Th

∫
K
ρfh · vhdx+

ρ

∆t

∑
K∈Th

∫
K
ρ
(
un−1
?

)
h
.vhdx+ lSurface(vh);

where n(E) is the exterior normal (with respect to Th) of the edge E for all edge E of Γh. More-
over, the term lSurface(vh) is a discretization of the surface tension and atmospheric pressure term
−
∫

Γtn
(γκ+ pa)n.v and will be concerned in the next section.

The existence and uniqueness of the weak formulation for generalized Stokes problem has been
proven, see [44], [92] and [41]. This proof dues to: i. the ellipticity of the form aε(., .) ; ii. the com-
patibility of the spaces of velocity and pressure results satisfying the Babuska–Brezzi condition,
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also called inf-sup condition on the form b(., .), i.e. there exists a positive constant C such that:

inf
q∈Qn

sup
v∈Kn

b(v, p)

‖v‖1‖q‖0
≥ C > 0 (3.3.38)

where ‖v‖1 =
(

Σd
i=1‖vi‖1

2
)1/2

and ‖.‖1, ‖.‖0 are standard notations of norms in the Sobolev

spaces H1(Ω), L2(Ω) respectively.
The approximative problem also requires a compatibility condition, meaning that the discrete spaces
of velocity needs to be "rich" enough to compare with the one of pressure. For this reason we choose
mini elements (P1-bubble/P1) as discrete spaces3. Hence, the problem (3.3.36) leads to solve the
square linear system: (

A Bt

B 0

)(
U
P

)
=

(
F
0

)
(3.3.39)

where the matrices A,B correspond to the bilinear forms aε and b, respectively and F corresponds
to the right hand side l of the first equation. The system (3.3.39) is sparse, symmetric but not pos-
itive and its size is dimKh

n + dimQhn. In practice, this linear system is solved by classical Uzawa
method [6] as recalled in the following paragraph.

Uzawa algorithm : In order to understand the Uzawa method, let us first remark that the
solution of the linear problem (3.3.39) is the unique solution to the following saddle point problem:{

Find (U,P ) ∈ Kh
n ×Qhn such that

L(U, q) ≤ L(U,P ) ≤ L(v, P ) ∀(v, q) ∈ Kh
n ×Qhn,

(3.3.40)

where
L(v, q) =

1

2
aε(v, v) + b(v, q)− l(v),

or equivalently

L(v, q) =
1

2
Av · v +Bq · v − F · v.

Then, the Uzawa method consists in solving the saddle point problem (3.3.40) using a gradient
method applied to the minimization of the dual function. Indeed, we initialize the algorithm by
choosing P0 ∈ Kh

n . Then, for each iteration k,

• We compute velocity Uk satisfying

L(Uk, Pk) ≤ L(v, Pk) ∀v ∈ Kh
n .

• The initial condition Pk+1 for the following iteration is computed moving in the gradient
direction by

Pk+1 = Pk + β∇qL(Uk, Pk),

where β > 0 is the gradient method step.

3Other choices satisfying the inf-sup condition are possible. For instance, we can consider Taylor-Hood elements
(P2/P1)
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Equivalently, this algorithm writes in the matrix version at an iteration k as

• Solve
AUk = F −BtPk.

• Set
Pk+1 = Pk + βBUk.

It is well-known that Uzawa algorithm converges for β > 0 sufficiently small.

Approximation of the surface tension term

Surface tension plays a crucial role in the regularization of the free surface for incompressible
fluids with small viscosity. The accurate computation of this term is one of the critical stages in any
interface tracking or capturing technique. Classically, the level set function can be used to calculate
the unit normal vector and the mean curvature at the interface by following formulas:

n =
∇φ
|∇φ|

∣∣∣∣
φ=0

; κ = div
(
∇φ
|∇φ|

)
|φ=0.

It can be seen that these formulas require an approximation of the gradient, however, in our approach
the interface is explicitly discretized in the triangulation Th. This feature gives us an alternative
technique to approximate the interface via a set of connected segments (faces in three dimensions).
In 2-dimensional case, we denote by (xi)1≤i≤ns the set of ordered vertices along the discrete curve
Γh such that xi−1,xi,xi+1 represent its three consecutive points and x0 ≡ xns,x1 ≡ xns+1 if Γh
is a closed curve. Using quadrature formula along each edge E of Γh, it has been shown in [23]
that the surface tension term can be rewritten as follows, for all vh ∈ Kh

n :∫
Γh

γκn.vhds =
∑
E⊂Γh

|E|
2

∑
xi∈E

γκ(xi)nh(xi).vh(xi)

=
∑

xi∈Γh

γκ(xi)nh(xi).vh(xi)
∑
E3xi

|E|
2

(3.3.41)

where the unit external normal vector nh is computed from the approximation of unit tangent
vector τ = (τ1, τ2)t at each vertex xi ∈ Γh: τ(x)i = −−−−−−→xi+1xi−1/‖−−−−−−→xi+1xi−1‖, hence nh(xi) =
(τ2(xi),−τ1(xi))

t. The mean curvature κ(xi) is obtained as the inverse of the radius r(xi) which
can be computed via the following approximation [48]:

r(xi) =
1

4

(
〈−−−−→xixi−1,

−−−−→xixi−1〉
〈−nh(xi),

−−−−→xixi−1〉
+
〈−−−−→xixi−1,

−−−−→xixi+1〉
〈−nh(xi),

−−−−→xixi+1〉

)
Other formulas can be used to approximate r(x) or κ(x), see for instance [101].

The atmospheric pressure term can be then added with no difficulty:∫
Γh

(γκ+ pa)n.vhds =
∑

xi∈Γh

(γκ+ pa) (xi)nh(xi).vh(xi)
∑
E3xi

|E|
2
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This technique can be extended straightforwardly to three dimensions, where the unit normal
is then taken as the weighted average value of the unit normals of all triangles sharing vertex xi.
Moreover, the mean curvature is computed by approximating the discrete contour of the mesh at
each vertex by a quadratic surface. This means that for each vertex on the free surface, we intend
to find the quadratic surface which minimize the distance to discrete contour of the mesh at this
vertex. Therefore, this is done by a solving a polynomial minimization problem (see [47] for more
details).

3.3.4 Redistancing

It is well-known, in the context of level set method, that the level-set function must usually satisfy:

|∇φ| = 1. (3.3.42)

Unfortunately, when φ is transported by a physical velocity field using equation (3.3.1), all the
isolines do not travel with the same speed. As a consequence, the level set does not preserve the
property (3.3.4). A natural choice to reinitialize the level-set function is the signed distance function
to the interface for all time iteration n ∈ N in the discrete approximation Dh of the computational
domain D:

φ(x) =


d(x,Γh) if x ∈ Th
0 if x ∈ Γh
−d(x,Γh) if x ∈ Dh \ Th.

In our scheme, this signed distance function is approximated by redistancing procedure studied in
[37], consists in implementation the following two steps:
- Step 1: Initialization φ0 of φ: denoting TΓ the set of mesh elements intersected by the interface,
i.e. TΓ = {K ∈ Dh : K ∪ Γh 6= ∅}, φ0(x) is defined as:

φ0(x) =


φ(x) if x ∈ TΓ

+∞ if x ∈ Th \ TΓ

−∞ if x ∈ (Dh \ Th) \ TΓ.

- Step 2: Numerical computation of φ as steady solution of so-called Eikonal equation:
∂φ

∂t
(x, t) + sgn(φ0)(|∇φ| − 1) = 0 ∀(x, t) ∈ D × (0, T )

φ(x, 0) = φ0(x) ∀x ∈ D.
(3.3.43)

The long term solution of this equation keeps a similar behavior in "vicinity" of the zero isoline
i.e. the position of interface Γtn is not modified and to ensure the constraint (3.3.4). The numerical
computation of the solution of this equation is based on the explicit expression of its unique uni-
formly continuous viscosity solution, see [37] for more details. Figure 3.3.4 illustrates two level-set
functions for a fluid domain. The function on the right of the figure, is obtained using the algorithm
described in this part. Therefore, it is equal to the signed distance function in the vicinity of the free
surface and satisfies (3.3.4).
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Figure 3.3.4: Illustration of the fluid domain (the yellow part) in the computational domain (left). A level set function for the fluid
which does not satisfy the condition in the vicinity of the free surface (middle), A level set function for the fluid satisfying this condition
(right). The latter function is obtained using the algorithme presented in this part.

3.3.5 Mesh adaptation

The key tool which lets us solve the time-discretized fluid problem on the fluid domain is the
anistropic mesh adaptation of the computational domain D based on the location of the free sur-
face. Indeed, mesh generation at each step is performed as presented in [100]. The idea of this
method is based on a metric tensor to prescribe the characteristics (size, shape and orientation) of
the mesh elements. The definition of this metric tensor relies on the information related to numer-
ical error estimates as: geometric error, interpolation error, approximation error (see [48] and for
details). The estimates we consider here, are from [89] for time-discretized Navier–Stokes problem
and from [27] for the level set advection equation as well as for the discrete approximation of the
smooth boundary of the computational domain. More precisely, we intend to get a small approxi-
mation error based on the error estimate given in [89] for the Navier-Stokes equation with Dirichlet
boundary conditions. Indeed, let u be the smooth solution of the Navier–Stokes equations (3.2.1)
with Dirichlet boundary condition. While uh is the solution of the associated problem discretized
temporarily by the characteristic method and spatially by the finite element method as described in
the previous section. Then, we have the following error estimate4

‖u− uh‖L2 ≤ c(h+ ∆t+ h2/∆t), (3.3.44)

where c is a strictly positive constant and h is the characteristic mesh element size. According to
this error estimate, there should be a coherence between the time step and space step in order to give
an interesting upper bound for the velocity L2 error. More precisely, if ∆t is too small compared to
the mesh elements’ size h, this upper bound is not interesting.

Then, we use the estimates of [27] for the advection equation on the whole space conjecturing

4Let us note that for more precision, we must find an error estimate for the free-surface Navier–Stokes problem with
slip boundary conditions which is the actual problem treated in this work. Nevertheless, we consider the result in [89]
on time dependent Navier–Stokes equation with Dirichlet boundary conditions since in our knowledge, no error estimate
result is available on free surface Navier–Stokes equations.
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that similar estimates holds true on bounded domains. In fact, we see that the approximation error
associated with the level set function is bounded by above by the interpolation error of the level set
function:

‖φ−φh‖L∞(D) ≤ ‖φ−Πhφ‖L∞(D)+‖φ0−Πhφ0‖L∞(D)+c1‖ũ−Πũ‖L∞(D)+c2e
δtδt, (3.3.45)

where c1, c2 are constants depending on initial data φ0 and velocity u while the operator Πh is the P1

interpolate over the mesh Dh
n covering the computational domain D on the interval [tn, tn+1]. On

the other hand, we have the following geometric estimate. In other words, the Haussdorff distance
between the discrete 0 isoline contour Γh and the continuous one Γ satisfies

dH(Γt,Γ
h
n) ≤ sup

 sup
x∈D
|∇φ(x)|

inf
x∈D
|∇φ(x)|2

,

sup
K∈Dhn

|∇φh(x)|K |

inf
K∈Dhn

|∇φh(x)|K |2

 ‖φ− φh‖L∞(D) (3.3.46)

Therefore, we see that the geometric error is bounded by the level set function approximation error
which is itself bounded by the interpolation error of the solution of the problem. Using the result
of [49] on the L∞ error estimate for the Lagrange finite element P1-interpolation, we have for all
function defined on D and on all elements K of the mesh Dh

n:

||ϕ−Πhϕ||L∞(K) ≤ cdmax
x∈K

max−→v ⊂K
< −→v , |∇2ϕ(x)|−→v > (3.3.47)

≤ cdmax
x∈K

max−→e ⊂EK
< −→e , |∇2ϕ|−→e >

where ∇2ϕ is the Hessian of ϕ, EK is the set of edges of the element K and cd is a constant
depending on the dimension d. This estimate implies that we can control the interpolation error
on each element by controlling the size of edges of the element. This estimate lets us define an
anisotropic metric for each function on each element which leads to a small interpolation error on
the element (see [1] for details). According to (3.3.45) and (3.3.46), the geometric error and the
approximation error associated with the level set function are conveniently bounded if the mesh is
generated under the intersection of the metrics (see [48]) associated with φ, φ0 and u. Then, at each
step, the generation of the mesh from this metric is then obtained by using a Delaunay-based local
mesh modification procedure (see [43]).

As mentioned previously, contrary to the framework of [100], we are interested in only the fluid
domain information, we do not use a very sharp metric tensor outside of the fluid far from the free
surface. Nevertheless, since we are specially interested in the behavior of the free surface, the mesh
elements in the vicinity of the free surface are taken small enough to give a precise approximation
for the free surface.

3.4 Global numerical scheme

In this part we will describe the general scheme used in this work on the time period [0, T ]. This
scheme is based on the numerical tools presented in the previous section. We suppose that [0, T ] is
divided by N interval [tn−1, tn]. The main improvement of our work compared with [100] is the
fact that the Navier–Stokes equations is solved only in the fluid domain. In discrete terms, the com-
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putation domain D is covered by a time depending mesh Dn
h at iteration n. This mesh is adapted

at each iteration based on the position of the fluid domain, particularly based on the location of the
free surface. Therefore, at each iteration the Navier–Stokes equation is solved only on a strict sub-
domain Tnh of Dn

h which corresponds to the fluid domain. Let us also note that contrary to [100],
the velocity extension step on the computational domain must be placed before the resolution of
the Navier–Stokes equation. The reason is the convection term and its numerical treatment with
the characteristic method. In fact, if the velocity extension step is placed after the fluid equation
resolution, the velocity considered for the flow when the characteristic curve crosses the free sur-
face and goes to the other side of the computational domain, will be 0. This is not coherent with
the physical system nor with the continuous mathematical model which represents it. Indeed, one
of the features of this work is to compare the free surface simulation with the bifluid simulation
where air represents one of the two phases. In other words, in the case of free-surface flows, the
action of the second fluid is describe by an atmospheric pressure. On the other hand, according to
the interface condition, the flow velocity is continuous through the bifluid interface. This is why
the consideration of a 0 value for velocity when the characteristic curve crosses the free surface is
not convenient. Of course, in these latter cases, we could also take the value of the last point of
the domain intersected with the advection curve. However, since an extension of the velocity is
necessary for the resolution of the advection equation on D, it is practical to use the same extended
velocity to solve the Navier-Stokes equation in the fluid domain. This means that even though the
Navier-Stokes equation is solved only on the fluid domain, the velocity taken the Navier-Stokes
solver as entry, is the extended velocity defined on the whole computational mesh Dn

h . However,
only values of the same extended velocity on the vicinity of free surface and in the fluid domain
which are used to construct the right hand side of the linear system (3.3.39). As a confirmation, we
can check by numerical simulations that the behavior of the free surface is different if we give the
non-extended velocity to the Navier-Stokes solver. Consequently, if we consider a Stokes flow, the
placement of the velocity extension step before the resolution of the fluid equation is not necessary.
This is due to the absence of the convection term, therefore to non-use of the characteristic function
on the right hand side of the linear system in the case of Stokes flows.

In this part, we omit the subscript h for all iterations. However, let us recall that the character-
istic element size h is very important in our approach. As explained previously, it is prescribed by
an anisotropic metric tensor and is adapted at each iteration. In other words, the scheme generates
mobile unstructured meshes.

The algorithm starts with an initial discretization of the computational domain D0, an initial
velocity flow u0 defined on a strict subdomain T 0 of D0, which corresponds to the initial fluid
domain Ωt0 . Then, at each iteration n = 0, · · · , N − 1, we first extend the discrete velocity un

defined on Tn, on the whole computational domain Dn to get the discrete extended velocity ũn.
We then generate the signed distance function φn of the discrete domain Tn. Let us recall that this
is a level set function for Tn and is defined on the whole Dn. This function is then transported
by the resolution of the level set advection equation defined thanks to the extended velocity ũn.
The new level set function is called φ̃n+1. It is supposed to characterize the discrete fluid domain
Tn+1 at time tn+1. The mesh is then adapted according to this level set function. We now have a
new mesh Dn+1 with a fluid sub domain Tn+1. The extended function ũn is now interpolated on
the new mesh Dn+1. Finally the time-discretized Navier–Stokes equation (3.3.14) (with boundary
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conditions (3.2.2)) is solved on Tn+1. This algorithm is recapitulated in the following table.

1. At time t0 = 0, we know the initial mesh D0 covering the computational domain, as well as
the fluid velocity u0 defined on the subdomain T 0 ⊂ D0 representing the initial fluid domain
Ωt0 .

2. For n = 0, ..., N − 1,
Smooth velocities mesh input output
Velocity extension (Dn \ Tn) ∪ Γn un ũn

Generation of the signed distance function Dn Dn φn

Resolution of the advection equation Dn (ũn , φn) φ̃n+1

Mesh adaptation Dn (φ̃n+1, Dn) Dn+1

Interpolation Dn+1 ũn ũn

Resolution of the time-discretized Navier–Stokes system Tn+1 ũn (un+1, pn+1)

Non-smooth velocities mesh input output
Velocity regularization Dn un ũn|adv

Velocity extension (Dn \ Tn) ∪ Γn un ũn|NS
Generation of the signed distance function Dn Dn φn

Resolution of the advection equation Dn (ũn|adv , φn) φ̃n+1

Mesh adaptation Dn (φ̃n+1, Dn) Dn+1

Interpolation Dn+1 ũn|NS ũn|NS
Resolution of the time-discretized Navier–Stokes system Tn+1 ũn|NS (un+1, pn+1)

3. We return uN , pN , φN , DN .

Let us recall that a velocity regularization step is necessary if the velocity field presents large
discrepancies between neighboring points. As mentioned in Subsection 3.3.2, in this case, we first
solve the Helmholtz equation (3.3.11) on the whole computational mesh Dn to get a regularized
velocity for the advection equation. This velocity coincides with the physical velocity in the vicinity
of the free surface. However, the knowledge of the fluid velocity on the fluid domain Tn is nec-
essary to solve the time-discretized Navier-Stokes equations. For this reason, we must also solve
the Helmholtz equation (3.3.10) out of the fluid domain to find a convenient extended velocity. Let
us also mention that the resolution of the problem (3.3.10) is not expensive since mesh elements
situated inside of Dn \ Tn are quite large. This is due to the fact that physical quantities as well as
the extended velocity far from the fluid part are of few if no interest.

3.5 Numerical results

In this section, we present some numerical results that we used to validate our numerical code.
The first result concerns a viscous fluid in a circular computational domain. The objective here
is to ensure that our work can be used properly for curvy boundary computational domain. In
fact, comparing with square or rectangle computational domains, it happens more often to go out
from the computational domain along the flow characteristic curves. The second test case is a dam
break with shampoo. Our result is compared with the physical experiments and numerical results
presented in [34]. Both of these cases concern fluids with quite high viscosity and small Reynolds
number. The third example concerns the collapse of a water column. The Reynolds number here is
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large and the flow is considered to be turbulent. As mentioned in [84], when the Reynolds number

is large, there are usually strong gradients for the velocity and the vorticity in the vicinity of solid

walls. For this reason, we may consider some adapted models for turbulent flows. We modify here

the viscosity as suggested in [34] to take into account the energy dissipated by turbulence. Our

results are then compared with the results presented therein.

3.5.1 Viscous fluid in a circular domain

We consider here a fluid with density ρ = 1 and dynamic viscosity μ = 1. The surface tension

constant is γ = 7.2. and the gravity action is modeled by f = −100. No atmospheric pressure is

considered i.e. the fluid is in the vacuum. The friction with the boundary of the domain is modeled

by α = 10. The initial solution is presented in Figure 3.5.1. Let us note that the initial solution is

obtained by solving the steady Stokes equation with a upward gravity. The computational domain

Figure 3.5.5: Norm of the initial velocity (on the left) and the associated vector field (on the right).

considered here is the unit circle i.e. the circle of radius 1 and the center (0, 0). Let us note that, as

illustrated in Figure 3.5.1, in this test the mesh elements all over the computational boundary, even

out of fluid domain, must be small enough to preserve the curvy shape of the computational domain.

This is also due to the fact the fluid domain is quite large (half of the computational domain). The

characteristic element size of the mesh is about 0.03 and the time step is in the order of 10−3.
The test is done over the time interval [0, 4.435] (over 3300 iterations). Figure 3.5.1 represents the

solution at some time steps.

3.5.2 Collapse of a shampoo column

We consider here a fluid with density ρ = 1024 and dynamic viscosity μ = 8. The surface tension

constant is γ = 0.07 and the gravity action is modeled by the force density f = −9.8. The fluid is

subjected to no atmospheric pressure i.e. pa = 0 and the friction constant is equal to α = 10−2.
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Figure 3.5.6: Evolution of a 2-dimensional viscous fluid in the unit circle. The equilibrium is reached at about time T = 4.
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Figure 3.5.7: Norm of the velocity at time 0.341 (left), the associated adapted mesh (right).

This friction is computed following the law

α =
ρ |U|
C2
f

,

where Cf = 190 as in [34] and |U| is the order of the norm of the flow velocity. The value which
is taken here f|U| is 0.4. However, the result does not change significantly if we take for instance
|U| = 0.04 or |U| = 4.

The initial fluid is a 0-velocity fluid column. The computational domain dimension as well as
the fluid column width and height are the same as in [34]: The computational domain is 0.42m ×
0.44m whereas the fluid domain is 0.114m × 0.114m. Figure 3.5.8 compares our result with the
physical experiments and the numerical results presented in [34]. The problem is considered in
[34] as a bi-fluid air-shampoo problem. Therefore, the fluid equation is solved on the whole com-
putational domain. Similarly to our work, the interface between two flows is captured by solving
an advection equation (edge-track interface locator technique). The time step we consider here is
∆t = 0.01 for the first ten iterations (until time t = 0.1) and is ∆t = 0.02 for other iterations. The
values we consider for hmin and hmax are 0.0009 and 1.0. More over hgrad = 2.5. The mesh
adaptation at each step leads to large elements out of the fluid and fine elements inside (see Figure
3.5.9). Let us note that the time step in [34] is ∆t = 0.001. Nevertheless, the results are similar.

3.5.3 Collapse of a water column

This test case is a dam break test case with water whose characteristics are ρ = 1000 and dynamic
viscosity µ = 0.001. The high value of the Reynolds number of this problem leads to some turbulent
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Figure 3.5.8: Comparison between physical experiments of [34] (top), the numerical result of [34] with wall friction (middle) and
our results (bottom) at times t = 0.1, 0.2, 0.3, 0.4, 0.5 (from left to right).

Figure 3.5.9: Adapted mesh for the dam break with shampoo at times t = 0.1 (left), t = 0.3 (middle) and t = 0.5 (right). We
see that the mesh elements’ size is small inside the fluid, very small in the vicinity of the free surface and large out of the fluid far from
the surface.
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effects. The model we consider here is the model recalled in [34]. In this simple model, the viscosity
of the fluid is modified to take into account the energy dissipated by the turbulent effects. The law
according to which the flow is modified is given by

µmod = min
(
µ+ l2mixρ

√
D(u) : D(u)/2;µmax

)
,

where lmix = Ct hUGN such that Ct is a modeling parameter, hUGN is a characteristic element
size and µmax is a cut-off value. The values suggested in this test case for this parameters are

Ct = 3.57, hUGN = hmin = 9× 10−4, µmax = 1.5.

In practice, we take here µ = 0.001 and ∆t = 0.001 for the first iteration of the algorithm.
Then, we take the cut-off value µmax for viscosity and set ∆t = 0.005 for others. Boundary
conditions considered here are slip boundary conditions without friction. Besides, no atmospheric
pressure is taken into account and the surface tension coefficient is γ = 0.07. Other parameters are
set as hmax = 1 and hgrad = 2.5.

Remark

In all dam break test cases, simulations are proved to be very sensitive to the time step. Indeed, even
small variations of the time step play a very important role in the behavior of the fluid. Moreover,
for a fixed size of the mesh elements, a too small time step may lead to an incoherent simulation.
This may be eventually due to the presence of the time step in a denominator of the right hand side
of the error estimate of the problem.
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Figure 3.5.10: Comparison between physical experiments of [34] (left column), the numerical result of [34] with a discontinuity
capturing interface dissipation (middle column) and our results (right column) at times t = 0.1, 0.2, 0.3, 0.4, 0.5 (top left), at times
0.6, 0.7, 0.8, 0.9, 1.0 (top right) and at times 1.1, 1.2, 1.3, 1.4, 1.5 (bottom). (from top to bottom).
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3.6 Conclusion and perspectives

In this work, we presented a numerical scheme using level set methods on mobile unstructured
meshes to simulate free-surface incompressible problems. In the model we consider here, the influ-
ence of other fluids is represented by an extern pressure on the free surface, denoted by pa. As we
see in Subsections 3.5.1 and 3.5.1, our dam break numerical experiments seem to be coherent with
bifluid simulations in [34] even though the atmospheric pressure pa in our case is set to 0. Never-
theless, the selection of the best atmospheric pressure to model the extern effect is a perspective for
this work. Similarly, the sensitivity of our numerical algorithm to the variations of the atmospheric
pressure would be the subject of further investigations. Answers to similar questions on the friction
coefficient α will also lead to more precise simulations.

Besides, the regularization of the velocity in our algorithm is optional unless it represents im-
portant fluctuations on small regions of the fluid domain. Nevertheless, the seek of quite precise
criteria to evaluate the importance of velocity fluctuations will be help-full to improve the algo-
rithm. Obviously, this point is correlated with the sensitivity of the algorithm to the regularization
of the velocity in different practices. Finally, a numerical analysis and the knowledge of some error
estimates will be illuminating for the choice of time step and mesh elements size.
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Mathematical study of free-surface fluids in incompressible dynamics

Abstract :
This thesis is about theoretical study and numerical treatment of some problems raised in incompressible free-surface fluid dynamics. The first part
concerns a model called the Green–Naghdi (GN) equations. Similarly to the non linear shallow water system (called also Saint-Venant system),
the Green–Naghdi equations is a shallow water approximation of water waves problem. Indeed, GN equation is one order higher in approximation
compared to Saint-Venant system. For this reason, it contains all the terms of Saint-Venant system in addition to some non linear third order
dispersive terms. In other words, the GN equations is a dispersive perturbation of the Saint-Venant system. The latter system is hyperbolic and
fits the general framework developed in the literature for hyperbolic systems. Particularly, it is entropic (in the sense of Lax) and symmertizable.
Therefore, we can apply the well-posedness results known for symmetric hyperbolic system. During the first part of this work, we generalize the
notion of symmetry to a more general type of equations including the GN system. This lets us to symmetrize the GN equation. Then, we use the
suggested symmetric structure to obtain a global existence result for the system with a second order dissipative term by adapting the approach
classically used for hyperbolic systems.

The second part of this thesis concerns the numerical treatment of the free surface incompressible Navier–Stokes equation with surface tension.
We use the level set formulation to represent the fluid free-surface. Thanks to this formulation, the kinematic boundary condition is treated by
solving an advection equation satisfied by the level set function. This equation is solved on a computational domain containing the fluid domain
over small time subintervals. Each iteration of the algorithm corresponds to the adevction of the fluid domain on a small time subinterval and to
solve the time-discretized Navier–Stokes equations only on the fluid domain. The time discretization of the Navier–Stokes equation is done by
the characteristic method. Then, the key tool which lets us solve this equation on the fluid domain is the anisotropic mesh adaptation. Indeed, at
each iteration the mesh is adapted to the fluid domain such that we get convenient approximation and geometric errors in the vicinity of the fluid
domain. This resolution is done using the Uzawa algorithm for a convenient finite element method. The slip boundary conditions are considered
by adding a penalization term to the variational formulation associated to the problem.

Keywords : Incompressible fluid, shallow water models, Green–Naghdi equations, symmetric structure, Navier–Stokes equation, level set
method, anisotropic mesh adaptation, characteristic method

Etudes mathématiques de fluides à frontières libres en dynamique incompressible

Résumé :
Cette thèse est consacrée à l’étude théorique ainsi qu’au traitement numérique de fluides incompressibles à surface libre. La première partie
concerne un système d’équations appelé le système de Green–Naghdi. Comme le système de Saint-Venant, il s’agit d’une approximation d’eaux
peu-profondes du problème de Zakharov. La différence est que le système de Green–Naghdi est d’un degré plus élevé en ordre d’approximation.
C’est pourquoi il contient tous les termes du système de Saint-Venant plus de termes d’ordre trois non-linéairement dispersives. Autrement dit, le
système de Green–Naghdi peut être vu comme une perturbation dispersive du système de Saint-Venant. Ce dernier système étant hyperbolique, il
entre dans le cadre classique développé pour des systèmes hyperboliques. En particulier, il est entropique (au sense de Lax) et symétrique. On
peut donc lui appliquer les résultats d’existence et d’unicité bien connus pour des systèmes hyperboliques. Dans la première partie de ce travail,
on généralise la notion de symétrie à une classe plus générale de systèmes contenant le système de Green–Naghdi. Ceci nous permet de symétriser
les équations de Green–Naghdi et d’utiliser la symétrie obtenue pour déduire un résultat d’existence globale après avoir ajouté un terme dissipative
d’ordre 2 au système. Ceci est fait en adaptant l’approche utilisée dans la littérature pour des systèmes hyperboliques.

La deuxième partie de ce travail concerne le traitement numérique des équations de Navier–Stokes à surface libre avec un terme de tension de
surface. Ici, la surface libre est modélisée en utilisant la formulation des lignes de niveaux. C’est pourquoi la condition cinématique (condition
de l’évolution de surface libre) s’écrit sous la forme d’une équation d’advection satisfaite par la fonction de ligne de niveaux. Cette équation
est résolue sur une domaine de calcul contenant strictement le domaine de fluide, sur de petits sous-intervalles du temps. Chaque itération de
l’algorithme global correspond donc à l’advection du domaine du fluide sur le sous-intervalle du temps associé et ensuite de résoudre le système de
Navier–Stokes discrétisé en temps sur le domaine du fluide. Cette discrétisation en temps est faite par la méthode des caractéristiques. L’outil clé
qui nous permet de résoudre ce système uniquement sur le domaine du fluide est l’adaptation de maillage anisotrope. Plus précisément, à chaque
itération le maillage est adapté au domaine du fluide tel que l’erreur d’approximation et l’erreur géométrique soient raisonnablement petites au
voisinage du domaine du fluide. La résolution du problème discrétisé en temps sur le domaine du fluide est faite par l’algorithme d’Uzawa utilisé
dans la cadre de la méthode des éléments finis. Par ailleurs, la condition de glissement de Navier est traité ici en ajoutant un terme de pénalisation
à la formulation variationnelle associée.

Keywords : Fluide incompressible, Modèle d’eaux peu-profondes, équations de Green–Naghdi, structure symétrique, équation de Navier–Stokes,
méthode des lignes de niveaux, adaptation de maillage anisotrope, méthode des caractéristiques
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