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Introduction

One of the most powerful means of microstructure formation and, consequently, properties

improvements of ferrous alloys are phase transformations. The complexity of the phase trans-

formation reactions and the wide spectrum of microstructures requires a fully understanding of

phase transition mechanisms at atomic scale. Detailed description of such phenomena in iron

alloys permits the emergence of new steels with enhanced engineering properties.

All types of phase transformations can be divided into two different groups: diffusional and

diffusionless [24]. The chemical composition of the new phase and the parent phase are not

identical in the case of the first type of transformation. A new phase is formed by a long-range

diffusion of atoms. The second type of phase transformations, diffusionless, does not involve a

change in chemical composition of the parent phase but rather its crystal structure. We will

consider both types of transformations.

The aim of the present work is to describe martensite transformation and carbon diffusion in

martensite using atomistic approach for modeling phase transitions at atomic scale, in particular,

the martensite transformation and the following aging processes in martensite.

This thesis consists of five chapters. The outline of this work is as follows.

In the first chapter, the main aspect of martensite transformation, the mechanism of mar-

tensite formation, the martensite morphology and influence of carbon content are considered.

Then, the experimental studies of the preliminary stage of aging of martensite are presented.

The main objectives and choice of computational method to model martensite transformation

and carbon diffusion in martensite phase are discussed.

The second chapter is dedicated to description of computational methods used in this work.

First, the Atomic Density Function (ADF) theory on constrain Ising lattice is introduced. Then,

a new approach, called the Atomic Fragment Theory (AFT), is described in details. The stability

condition which can be applied to study the stability of alloys with respect to concentration

fluctuations is presented. The interaction potentials used in the AFT are discussed.

In the third chapter, to show the versatility and efficiency of the AFT the self-assembling

dynamics of initially disordering system with increasing topological complexity is tested. In

particular, the self-assembly of non-ideal gas/liquid, diamond and zinc-blend structures, single-

strand and double-stranded helixes are considered.
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In the fourth chapter, the AFT is used to describe the martensite transformation from

austenite phase. A detailed description of the initial conditions, choice of interaction potential

and computational parameters are given. The obtained simulation results are analyzed in real

and reciprocal space. The diffraction patterns and pole figures of the final configurations are

constructed. The comparison of the simulation results with experimental studies is given in

section discussion.

In chapter five, the ADF theory on constrained Ising lattice is used to describe the redis-

tribution of carbon atoms during aging processes in martensite. In considered model elastic

and chemical interatomic interactions are taken into account. The first part of this chapter is

dedicated to detail description of the interaction potential, method of calculation of the scatte-

ring intensities and the choice of computational parameters. Using ADF approach two diffusion

kinetics of carbon atoms in martensite phase are considered. The system with the tetragonality

factor t1 = −0.1 which can be associated to bcc Fe-C alloys and the system with t1 = −0.27

which corresponds to Fe-Ni-C alloys. The discussion of the obtained results is given in the last

section of this chapter.

The main results are summarized in the conclusions and some future prospects are proposed.

Some mathematical calculations and details of methodology used in our work are presented in

the appendixes at the end of this manuscript.



Chapter 1

Literature review: martensitic

transformations and aging of

martensite

1.1 Martensite transformations

The martensite transformation (MT) is a diffusionless transformation when cooperative mo-

vements of atoms in crystal lattice induce a phase change in crystal structure. The new phase,

which forms from the parent phase, is called martensite or α′-phase. During this transforma-

tion the parent phase maintains metastable and in carbon steels is called austenite or γ-phase.

The MT accompanied by the formation of rich microstructure and its morphology is strongly

depended on alloy composition. In general, the MT is observed in different materials, such as

nonferrous alloys, pure metals, ceramics, minerals, inorganic compounds, solidified gases and

polymers [25].

The process of martensite formation is carried out by quenching. This procedure provides a

diffusionless character of transformation. Before transformation, steel is only consist of γ-phase

at temperature above the A3 temperature or the eutectoid temperature, A1, according to carbon

content (see the iron-carbon (Fe-C) diagram in Figure 1.1). When austenite is cooled below A3

or A1 temperatures the transformation of crystal lattice occurs. Figure 1.2 schematically shows

the free energy temperature dependence for two phases. At temperatures above T0 the free

energy of γ-phase is lower then that of α′-phase. Therefore γ-phase is stable. T0 is a metastable

equilibrium temperature, which corresponds to coexistence of two phases. At temperatures

below T0 the free energy of martensite phase becomes smaller than of austenite one and phase

transformation begins. Because the crystal lattices of product and parent phases are different,

the growth of new phase induces the elastic strain. Thus, the kinetic barrier for a growth of new

phase occurs. If the driving force magnitude is not enough large to overcome the kinetic barrier,

then the transformation can be blocked at any stage. To overcome this kinetic barrier and to

3
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Figure 1.1: Phase diagram of Fe-C system shows which phases are to be expected at metas-
table equilibrium for different combinations of temperature and carbon content [1]. Martensite

start, Ms, temperatures as a function of carbon content in Fe-C alloys are shown.

start a martensitic transformation, the system is cooling to the temperature which is known as

martensite-start temperature Ms. In Fe-C system the temperature Ms depends of the carbon

concentration. It is important to note, that to obtain martensite phase the quenching velocity

should be high. Otherwise, during slow cooling, the diffusion of atoms takes place (in particular

the carbon atoms diffusion) and as result two phases form: ferrite (α-Fe) and cementite (Fe3C).

In the case of rapid cooling the atoms don’t have a time to diffuse. When the temperature Ms is

reached, the very rapid growth of the α′-phase starts with a speed close to the speed of sound in

metal (∼ 1100 ms−1 in steel). The martensite transformation is completed at temperature Mf .

The experimental measurements show that chemical composition of martensite and austenite is

the same. It indicates that martensite transformation is a diffusionless transition.

The γ-phase has a face-centered cubic (fcc) lattice structure with the lattice parameter

about afcc = 0.356 nm. Carbon atoms are dissolved in fcc iron matrix. The highest content

of carbon in austenite is 2.11 wt.% at 1148 ◦C. The decreasing of a temperature decreases

a carbon solubility and forms the new phase: cemetite or iron carbide (see Fig.1.1). The α

iron has less solubility then the γ, about 0.02 wt.% at 727 ◦C. The crystal lattice of ferrite

corresponds to body-centered cubic (bcc) lattice with the lattice parameter abcc = 0.286 nm at
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carbon concentration (Fig.1.6):

c/a = 1.000 + 0.046ρ [26], (1.1)

where ρ is the carbon concentration in wt.%.

Figure 1.6: Lattice constants of tetragonal martensite and austenite in Fe-C steels [1]

The distortion of iron lattice induces the barriers for the dislocation movements and, as

a result, big hardness of martensite is observed. Figure 1.7 shows that hardness of martensite

grows with increasing of carbon content. Also, martensite steels can acquire some technologically

important properties, such as shape memory effect, superelasticity, superplasticity, and high

mechanical damping [27].

It is well accepted that mechanical properties of steel are strongly depend on their microstruc-

ture. That is why, the understanding and prediction of microstructure formation in steels is a

fundamental question for their future development and design. Present understanding of mar-

tensite transformations is based on the phenomenological theory of martensite crystallography

(PTMC) [25, 28, 29]. This theory is formulated in pure geometrical terms. The basic assumption

of the PTMC is the invariance of the planar interface between austenite and martensite phases

under the transformations. The change of the crystal structure during martensite transforma-

tion induces the macroscopic change of the parent crystal shape and consequently generates a

big internal stress inside a material (Figure 1.9(b)). This stress can’t be minimized only by the

lattice deformation. Thus the lattice invariant transformation occurs and involves deformation

of the martensite. PTMC allows to deduce an invariant plane strain deformation from choosing

a pure shear lattice invariant deformation and a lattice correspondence between the parent and

product phases. To minimize the strain energy, the interfaces between austenite and martensite



Chapter 1. Literature review: martensitic transformations and aging of martensite 8

Figure 1.7: Hardness of martensite as a function of carbon concentration in steels [2]

should be invariant under the transformation: it should be unrotated and undistorted. This

interface is called habit plane. Figure 1.8 schematically shows the interface between two phases

and the surface tilting which is induced by the shape change. It is worth noting that usually

the habit plane is not completely flat and have some curvature. This fact is conditioned by

surroundings which constrained the transformation [25] (Figure 1.10(e)).

Figure 1.8: The schematic representation of the plate martensite and its habit plane

There are two mechanisms of the lattice invariant transformation: slip and twinning. Slip

mechanism involves the sliding of the crystal blocks over one other along the definite crystallo-

graphic planes. These close-packed planes are called slip planes (Figure 1.9(c)). Slip is generated

by the movement of the perfect dislocations. The partial dislocations induce twinning. A twin
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Figure 1.10: The optical micrographs of the martensite with different carbon content: (a)
Fe-0.0026C, (b) Fe-0.18C, (c) Fe-0.38C, (d) Fe-0.61C alloys with lath microstructure [3] and (e)

Fe-1.86C alloy with plate microstructure [4]

austenite grain consists of packets of all four kinds. Within the packet laths form plates, named

blocks, of three types: B1, B2 and B3. Boundaries between blocks are roughly planar. Each

block consists of laths of a single variant or it is a composite of laths of two variants with a

small misorientation of 10.53◦. For example, in the V1-V6 packet there are three kind of such

pairs: V1/V4, V2/V5 and V3/V6, which correspond to B1, B2 and B3 blocks, respectively.

Several individual laths of the same variant in a bivariant block form sub-blocks, with irregular

boundaries. Adjacent blocks in a given packet can contain combinations of variants with three

misorientations: 60.0◦ (V1/V3, V1/V5, V2/V4, V2/V6 and V4/V6), 49.5◦ (V1/V6, V2/V3 and

V4/V5) and 70.5◦ (V1/V2, V3/V4 and V5/V6). All these variant combinations are interrelated

by misorientation angle around [011]α rotation axis.

There is an interrelation of a variant selection in a packet with a carbon content in the

martensite. In the interstitial free (IF) steels the pairing with small misorientation, for example

V1/V4, is dominant. The increasing of carbon concentration in steel shifts the dominance

of variant pairing from V1/V4 to V1/V2 [5], see Fig.1.11(b-c). At the same time, the size of

blocks and packets decreases with increasing of carbon content [3]. For steels with a high carbon

content the V1/V16 variant pair is typical, see Fig.1.11(d).

The mechanism, that provides the martensite formation, depends of the carbon content in

iron-carbon alloys (Figure 1.10). In low carbon steels with the concentration of carbon < 0.6

wt.% and where the concentration of dislocations is quite high the slip mechanism is more favo-

rable to provide the lattice invariant deformation. In these steels, the slip mechanism produces

the lath martensite (Figure 1.10(a-d)) with the habit plane close to {111}γ (in the case of twin-

free martensite) or {557}γ relatively to the austenite phase [1]. Since the carbon atoms block

the dislocations and complicate its movements across the crystal the twinning mechanism beco-

mes dominant in high carbon steels [17]. The resulting microstructure of twinning martensite

contains the plates with several internal twins and midrib (Figure 1.10(e)). The increasing of
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general mechanism of martensitic nucleation, that is assisted by crystal defects, can be found

in [35–37]. These embryons are a complex nanoscale assemblages of martensitic microdomains

rather than a homogeneous single-domain particle. The developing of a model of the MT, which

describes the formation of a complex microstructure, seems to be too complicated problem to

solve it analytically. This is why a better insight into the development of martensite structure

could be given by numerical methods.

In 1990s computer simulations of the MT dynamics has been performed using the Monte

Carlo (MC) simulation [38] (in 2D), the molecular dynamic (MD) method [39] (in 3D at the

microscopic scale), the phase field microelasticity (PFM) approach [40]. Recently the Phase

Field method was used [14] to investigate a MT. In particular, it was shown in order to growth

a martensite nuclei are transformed into multivariant cluster.

1.2 Aging of the martensite

The product phase of the martensite transformation is unstable with respect to increasing tem-

perature after quenching (here, the temperatures below the temperature of austenite formation

are considered). The heating of martensite is called tempering or aging. Commonly, the tem-

pering is used to increase toughness, ductility, fracture resistance of steel, but at the same time

the tempering is accompanied by reduction of strength[41] and hardness in the material. These

changes of properties in steels are caused by the structural changes in martensite due to its

instability at tempering. The supersaturation of carbon atoms in the crystal lattice of mar-

tensite, the retained austenite, the high density of dislocations are driving forces that induce

carbide formation and the ferrite matrix growth [2, 4]. The earlier stages of tempering at the

temperature range slightly above and below the room temperature (from −40 to 100◦C) are

separately allocated in tempering. It is termed the room-temperature aging or the zeroth stage

of tempering. The aging corresponds to the stage when changes in martensite structure are not

accompanied by the carbide formation. The carbide-forming stages are classified as tempering.

Further, we will focus on the structural changes taking place in the aging processes in

steels at room temperature. There are many experimental investigations of martensite aging

that used the numerous techniques: X-ray [42] and neutron diffraction, transmission electron

microscopy (TEM)[6–9, 43, 44], atom-probe field-ion microscopy (APFIM)[7, 45–47], Mössbauer

spectroscopy. In particular, it has been shown that aging kinetics are controlled by carbon atoms

diffusion [48].

Olson and Cohen [49] distinguished two stages of aging. At the first stage (A1) carbon-

rich clusters are formed, then at the second stage (A2) a fine modulated tweed microstructure

appears, that contains elastically distorted carbon-deficient regions. Carbon atom clusters occur

between 270 and 370 K. Nagakura and coworkers [6, 8] associated diffuse spikes around the

fundamental spots on the diffraction pattern with clustering of carbon atoms. The diffusion

spikes are elongated very close to [102] direction. The exact direction of carbon clusters can
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Such a method was developed by Khachaturyan [17, 57, 58]. It is based on kinetic theory

formulated in terms of the crystal lattice site diffusion in a solid solution. The investigations

of the kinetic evolution in this method are provided by solving Onsager microscopic diffusion

equations. This theory is also named as atomic density function (ADF) theory on constrained

Ising lattice. It can be applied to model solid-solid isostructural transformations as ordering,

decomposition, coarsening etc.

In 2002, Elder propose a phase field crystal method (PFC) [59, 60] to model long temporal

evolution of materials at the atomic length scale. The phase field in this model has been

interpreted as an atomic density function in the continuum space. There are a lot of applications

of PFC in modeling crystallization, elastic deformations in materials, formation of dislocations.

Later in [61] Jin and Khachaturyan developed more general ADF theory. They showed that

the phenomenological PFC theory is a particular case of ADF approach.

However, there are still significant difficulties of atomic scale prototyping of a slow diffusional

self-organisation of atoms in complex structures. This is especially the case if the evolution is in

the continuum space, the system consists of comparatively large number of atoms, and evolution

time is long, ranging from a fraction of seconds to years.

In [62, 63] we propose such an approach that may be supplemental to MD and MC and

addresses their aforementioned limitations in computationally very effective way. This develop-

ment turned out to be possible because we (1) introduced a characterisation of a multi-atomic

system in terms of quasiparticles named fratons, (2) proposed a new simple form of phenomeno-

logical model potentials describing a directionality, length and strength of atom-atom bonding

and (3) used the kinetic equations of the atomic density field (ADF) theory describing the ato-

mic scale diffusion. In this work we will show that proposed approach is able to successfully

simulate a self-assembly of high-complexity structures and we will apply this approach to model

a martensite transformation.



Chapter 2

Atomic Fragment Theory in

Self-Assembly of Atoms

Properties of material at macroscale are often determined by its structure at microscale. Re-

cently, phase field crystal method (PFC) has been proposed to model a temporal evolution of

materials at atomic length scale [59, 60]. More general formulation of this approach, Atomic

Density Function (ADF), has been proposed in [61]. In ADF theory the atoms are associated

to a periodic field of the atomic densities which considered as the occupation probabilities.

It was shown that the ADF theory is capable to correctly reproduce the elastic and plastic

deformations of crystals, diffusion of defects, liquid-solid transition, structural transformations

[57, 61, 64]. In general case this dynamic is taken place at time range that can be spread

from a fraction of seconds to years. However, at present, there are still significant difficulties

to prototype the evolution of complex structure at atomic scale with large number of atoms,

especially, if it starts from initially disordered distribution of atoms. In this chapter the Atomic

Fragment Theory (AFT) [62, 63] will be introduced and some example of its applications will

be done.

2.1 ADF on constrained lattice

At first, we will present the ADF approach on the constrained Ising lattice proposed by Kha-

chaturyan in [17]. This approach can be used to model isostructural phase transformation and

order/disorder phase transition. Since we will use ADF approach for studying of processes in

Fe-C system, where carbon atoms occupy interstices of the host iron lattice, the following des-

cription of the method is applied only to interstitial solid solutions. In general case, the atomic

configuration can be described by random variable c(r) which can take 1 or 0 values:

c(r) =







1, if site r is occupied by atom,

0, otherwise.
(2.1)

18
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In this approach, the atomic configuration is described by a single-site occupation probability

function n(r, t) = hc(r)it, 0 ≤ hc(r)it ≤ 1. Where symbol h. . .it means averaging over the

time-dependent ensemble of occupation numbers c(r)The function n(r, t) defines of probability

of finding atom in site r. The vector r indicates a site of the computational grid, which is playing

a role of the underlying Ising lattice. All sites of Ising lattice are crystallographically equivalent.

In multi-component system with different kind of atoms, several occupation probabilities nα(r, t)

should be defined, where index α = 1, 2, . . . ,m corresponds to different kind of atoms.

2.1.1 Free Energy Functional

The occupation probabilities, nα(r), have similarity to the Fermi-Dirac functions (see for ex-

ample [65]), hence each site can be occupied or not by one atom of kind α, the occupation

probabilities, nα(r), can be assimilated to the Fermi-Dirac distribution function:

nα(r) =

�

exp

�

−µα + Φα(r)

kBT

�

+ 1

�

−1

, (2.2)

where kB is Boltzmann constant, T is the temperature, µα is the chemical potential, Φα(r) is a

mean field potential. In the case of conservative system, the conservation condition is:

X

r

nα(r) =
X

r

�

exp

�

−µα + Φα(r)

kBT

�

+ 1

�

−1

= Nα. (2.3)

In mean field approximation Φα(r) can be expressed as:

Φα(r) =
mX

β=1

X

r′

wαβ(r− r′)nα(r
′), (2.4)

where wαβ(r − r′) is the pairwise interaction energy of α-β pair of atoms situated at r and r′,

respectively. Summation over r′ and β in Eq.(2.4) is carried out over all N0 sites of the com-

putational grid lattice and over all kinds of atoms (β = 1, 2, . . . ,m), respectively. Substituting

(2.4) in Eq.(2.2) yields:

nα(r) =

"
exp

 
−µα +

P
β

P
r′ wαβ(r− r′)nα(r

′)

kBT

!
+ 1

#
−1

. (2.5)

In the ADF approach the free energy functional can be written as:

F = F ({nα(r)}, T ) = U − TS −
X

r

mX

α=1

µαnα(r). (2.6)
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Here U is internal energy of system and S is entropy. The entropy can be written as:

S = −kB
X

r

"
mX

α=1

nα(r) lnnα(r) +

 
1−

mX

α=1

nα(r)

!
ln

 
1−

mX

α=1

nα(r)

!#
. (2.7)

The model Hamiltonian is given by

H =
1

2

X

r,r′

mX

α=1

mX

β=1

wαβ(r− r′)nα(r)nβ(r
′). (2.8)

In this expression, the summation over r and r′ and on the all kinds atoms in Eq.(2.8) is carried

out over all N0 sites of the computational grid lattice.

Then using Eqs.(2.6), (2.7), (2.8) Helmholtz free energy can be presented in mean field

approximation [17] as

F ({nα(r)}, T ) =
1

2

X

r,r′

mX

α=1

mX

β=1

wαβ(r− r′)nα(r)nβ(r
′) +

+kBT
X

r

"
mX

α=1

nα(r) lnnα(r) +

 
1−

mX

α=1

nα(r)

!
ln

 
1−

mX

α=1

nα(r)

!#
− (2.9)

−
X

r

mX

α=1

µαnα(r).

Then the minimization of this energy will define the equilibrium state of this system.

2.2 Atomic Fragment Theory(AFT)

Since the ADF theory on constrained lattice is a discrete model, it cannot be applied to model

phase transitions, which induce displacements of atoms. For example, this approach cannot be

applied for the description of diffusionless transformations, where structural transition occur

by displacements of atoms. Also, the discrete model cannot describe the atomic configuration

near grain boundaries, solid-liquid transition, self-assembly phenomena of austenite-martensite

transformation. To describe all these phenomena continuous models should be developed.

In our work the continuous version of the ADF model was developed. We called this new

approach the Atomic Fragment Theory (AFT). In this method two novel concepts have been

introduced: the atomic pseudoparticles and a new form of the model Hamiltonian. In the AFT is

assumed that each atom is a sphere comprised of its finite elements, which are atomic fragments,

and treat these fragments as pseudo-particles. These pseudo-particles are named fratons. The

fratons are considered as interacting pseudo-particles occupying sites of the computational grid

playing a role of the underlying Ising lattice. In the proposed fraton model, the configurational

degrees of freedom are occupation numbers, c(r), where the vector r describes a site of the

computational grid lattice. The function c(r) is equal to either 1 if the site at r is occupied by



Chapter 2. Atomic Fragment Theory in Self-Assembly of Atoms 21

a fraton or 0 if it is vacant.

c(r) =







1, if site r is occupied by fraton,

0, otherwise.
(2.10)

At finite temperature, T , the system is described by averaging over the time-dependent

ensemble. The averaging gives the occupation probability, ρ(r, t) = hc(r)it, 0 ≤ hc(r)it ≤ 1,

where the symbol h. . .it implies averaging over the time-dependent ensemble and t is time. The

occupation probability, ρ(r, t), in fact, is the probability that a point r is anywhere inside the

volume of any sphere describing an atom at the moment t.

In the multi-component systems, the number of types of fratons is equal to the number of

different atomic components of the system.

2.2.1 Model Potential

In the AFT the Helmholtz energy, F , is determined by the Eq.(2.9), where F is a functional of

the occupation probabilities {ρα(r)}.

The proper choice of a model Hamiltonian describing the interaction of fratons should re-

sult in both their ”condensation” into atomic spheres and the movement of the spheres into

the desirable equilibrium atomic configuration driven by the spontaneous minimization of the

free energy. The model Hamiltonian (2.8) uses the Connolly-Williams approximation [66, 67]

mapping in this case the fraton-fraton interaction into the interaction of their pairs. The cho-

sen fraton-fraton interaction model potential wαβ(r− r′) should guarantee the self-assembly of

initially randomly distributed fratons into a desirable structure. The Fourier transform (FT) of

such a potential is:

ewαβ(k) =
1

N0

X

r

wαβ(r)e
−ikr, (2.11)

where the summation is carried out over all sites of the Ising lattice (grid), and the wave vector,

k, is defined at all quasi-continuum points of the first Brillouin zone of the computational grid,

that is, at all N0 the points in the k-space permitted by the periodical boundary conditions.

To model the spontaneous self-assembly of a disordered atomic distribution into chosen in

advance 3D atomic structures of arbitrary geometric complexity we introduced a new approach

in a formulation of model potential based on the concepts of structural clusters and cluster

amplitudes.

A structural cluster is defined as a minimum size group of geometric points (cluster) whose

size is just sufficient to fully reproduce the topological features of the desirable final configuration

of the α-atoms. An amplitude of structural cluster of the kind α and is defined as:

Ψ
clstr
α (k) =

X

jα

wj(α,k)e
−ikrjα , (2.12)
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Figure 2.1: (a)Schematic representation of short-range potential θ(r). (b)Example of FT of
θ(r) with the following input parameters: ξ = 4, Δr̂ = 0.25.

where summation is carried out over all points of the α-kind cluster, the index jα numbers

these points, and wj(α,k) is the weight of the contribution of each point of the cluster to its

amplitude. The constants wj(α,k) are chosen to reproduce the desirable thermodynamic and

mechanical properties of the simulated atomic aggregate.

With these definitions, we present the Fourier Transform of the model potential as sum of

what we call the short-range and long-range interactions:

ewαβ(k) = λ1θ̃α(k)δαβ + λ2Ψ
clstr
α (k)Ψclstr

β (k)∗. (2.13)

Here δαβ is the Kronecker delta function. The function θα(r) and its Fourier Transform θ̃α(k)

are the spherically symmetric functions describes the short-range fraton-fraton pair interaction.

It is responsible for the spontaneous ”condensation” of fratons into atomic spheres. λ1 is a

constant which determines the strength of the short-range atomic repulsion. The second term

of Eq.(2.13) describes the long-range part of the fraton-fraton pair interaction responsible for

the mutual arrangement of atoms in the final desired configuration. It is presented as a bilinear

expansion in cluster amplitudes, Ψclstr
α (k). λ2 in (2.13) is a fitting parameter determining a

strength of the long-range interaction.

The simplest choice of the short range part of the interaction potential θ(r) is a step function,

which is shown in Fig.2.1(a). The Fourier Transform of the function, eθ(k), schematically shown

in Fig.2.1, and can be written as

eθ(k) =
4π

k3
(− (sin (kr1)− kr1 cos (kr1)))

+
4π

k3
ξ ((sin (k (r1 +Δr))− k (r1 +Δr) cos (k (r1 +Δr)))− (sin (kr1)− kr1 cos (kr1))) ,

(2.14)
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where the constant r1 is the radius of attractive part of short range interaction potential, r1

being a length parameter determining atomic radius, Δr is the width of its repulsive part and

ξ = |θmax(r)|
|θmin(r)|

is the ratio between the modules of minimum and maximum value of the shape

function presented in Fig.2.1.

It should be mentioned, that the smooth dependencies of the function θ(r) on r are also

possible if they have similar topological features, and ensure attractive and repulsive parts of

the short range interaction.

The free energy (2.9), corresponding to the mean field approximation [17], is asymptoti-

cally accurate at low and high temperatures, and its accuracy asymptotically increases if the

interaction radius is much greater than the distance between interacting particles. The last con-

dition is automatically satisfied in our case because the continuous movement of atoms can be

satisfactory described only if the computational grid increment playing the role of the spacing

of the Ising lattice is much smaller than the atomic radius.

2.3 Response Function and instability of homogeneous state

with respect to infinitesimal fluctuations

To consider the stability of system with respect to fluctuations next development can be done. In

this subsection the stability condition will be establish based on the introduction of the response

function. The approach used in this section can be applyed in both cases: the ADF theory

and the AFT. At temperature near the temperature of the phase transition, the occupation

probabilities can be written as

nα(r) = n̄α +Δnα(r), (2.15)

where n̄α is the average atomic fraction of α-atoms in the solution, and Δnα(r) are the periodic

fluctuations of nα(r).

Then, the variation of free energy, ΔF = F ({n̄α +Δn̄α(r)})−F ({nα(r)}), can be expanded

in Taylor series with respect to these fluctuations:

ΔF =
X

r

X

α

Aα(r)Δnα(r) +
1

2

X

r,r′

X

αβ

Bαβ(r, r
′)Δnα(r)Δnβ(r

′)

+
1

3!

X

r,r′,r′′

X

αβγ

Cαβγ(r, r
′, r′′)Δnα(r)Δnβ(r

′)Δnγ(r
′′) + . . . ,

(2.16)

where

Aα(r) =
∂F ({Δnα(r)}, T )

∂Δnα(r)

�

�

�

�

nα(r)=n̄α

,
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Bαβ(r, r
′) =

∂2F ({Δnα(r)}, T )

∂Δnα(r)∂Δnβ(r′)

�

�

�

�

nα(r)=n̄α,nβ(r′)=n̄β

,

Cαβγ(r, r
′, r′′) =

∂3F ({Δnα(r)}, T )

∂Δnα(r)∂Δnβ(r′)∂Δnγ(r′′)

�

�

�

�

nα(r)=n̄α,nβ(r′)=n̄β ,nγ(r′′)=n̄γ

are the expansion coefficients calculated in the homogeneous state. In the disordered homoge-

neous state all sites are crystallographically equivalent, thus Aα(r) = Aα = const. Considering

that the number of the atoms of each kind is a constant value we can write:

X

r

Δnα(r) = 0. (2.17)

Therefore, the second term in expansion (2.16) is equal zero:

X

r

X

α

Aα(r)Δnα(r) =
X

α

Aα

X

r

Δnα(r) = 0. (2.18)

Then the variation of free energy can be written as:

ΔF =
1

2

X

r,r′

X

αβ

Bαβ(r, r
′)Δnα(r)Δnβ(r

′)

+
1

3!

X

r,r′,r′′

X

αβγ

Cαβγ(r, r
′, r′′)Δnα(r)Δnβ(r

′)Δnγ(r
′′) + . . . (2.19)

Here we consider only the infinitesimal fluctuations of occupational probabilities Δnα(r). Thus,

only the first non vanishing term in Eq.(2.19) can be considered:

ΔF =
1

2

X

r,r′

X

αβ

Bαβ(r, r
′)Δnα(r)Δnβ(r

′). (2.20)

Using (2.9) the Eq.(2.20) gives

ΔF =
1

2

X

r,r′

X

αβ

�

wαβ(r− r′) +
∂2f({n̄α})

∂n̄α∂n̄β

�

Δnα(r)Δnβ(r
′). (2.21)

As it was proposed in [17], the fluctuations of the occupation probabilities can be expressed

using the static concentration wave representation:

nα(r) = n̄α +
X

k

fΔnα(k)e
ikr, (2.22)
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where fΔnα(k) =
P

rΔnα(r)e
−ikr is the Fourier amplitude of static concentration waves of the

component α with the wave vector k. In this representation the free energy change (2.21) yield

ΔF =
1

2

X

k

X

αβ

Dαβ(k, T, {n̄α})fΔnα(k)fΔn
∗

β(k). (2.23)

Here

Dαβ(k, T, {n̄α}) = ewαβ(k) +
∂2f({n̄α})

∂n̄α∂n̄β
. (2.24)

Dαβ(k, T, {n̄α}) is a response function which describes the characteristic properties of homoge-

neous solution at temperature T . This function is defined in (2.24) as an element of the m×m

matrix, where m is the number of the independent components in solution. Since the interaction

energies, ewαβ(k), and the second derivatives of a local free energy, ∂2f({n̄α})
∂n̄α∂n̄β

, are the real values

and symmetrical with respect to permutations of indexes α and β, the matrix Dαβ(k, T, {n̄α})

is Hermitian and symmetric and can be written as:

D̂ =















D11 D12 . . . D1m

D12 D22 . . . D2m

...
...

. . .
...

D1m D2m . . . Dmm















. (2.25)

Then with definition (2.24) we can rewrite the Eq.(2.23) as

ΔF =
1

2

X

k

X

αβ

Dαβ(k, T, {n̄α})fΔnα(k)fΔn
∗

β(k). (2.26)

Expression (2.26) can be diagonalized by using normal mode representation of static con-

centration waves. In this representation, the occupation probability fluctuations Δnα(r) can be

written as a linear superposition of normal static concentration waves Ψ
(s;k)
α (r):

Δnα(r) =
X

k

mX

s=1

Qs(k)Ψ
(s;k)
α (r), (2.27)

where Qs(k) are amplitudes of normal concentration waves Ψ
(s;k)
α (r), the index s indicates a

normal mode of a normal static concentration wave (s = 1, 2, . . . ,m). These normal modes

characterize relative vibrations of the atoms of different sublattices formed by atoms of different

kinds. Ψ
(s;k)
α (r) can be expressed in the form of Bloch functions:

Ψ
(s;k)
α (r) = vα(s;k)e

ikr. (2.28)
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Let the vectors Ψ
(s;k)
α (r) be the eigenvectors of the matrix Dαβ(k, T, {n̄α}) and vα(s;k) are

the ”polarization vectors”. Then Ψ
(s;k)
α (r) satisfy the eigenvalue equation:

X

β

X

r′

Dαβ((r− r′), T, {n̄α})Ψ
(s;k)
β (r′) = λs(k, T )Ψ

(s;k)
α (r), (2.29)

where

Dαβ((r− r′), T, {n̄α}) =
X

k

Dαβ(k, T, {n̄α})e
ikr.

In Eq.(2.29) {λs(k, T )} = (λ1(k, T ),λ2(k, T ), . . . ,λm(k, T )) are eigenvalues of the matrixDαβ(k, T, {n̄α}).

Substituting (2.28) in (2.29) gives the next secular equation

X

β

Dαβ(k, T, {n̄α})vβ(s;k) = λs(k, T )vα(s;k). (2.30)

This equation has a non-trivial solution if

det
�

�

�

�

�

�D̂(k, T, {n̄α})− λs(k, T )Î
�

�

�

�

�

� = 0. (2.31)

The equation (2.31) is a characteristic equation and allows to find the eigenvalues λs(k, T ).

Since the matrix D̂(k, T, {n̄α}) is Hermitian, all eigenvalues λs(k, T ) are real values and all

eigenvectors are orthogonal to each other

X

α

vα(s;k)vα(s
′;k) = δss′ . (2.32)

Using previous consideration the amplitude of static concentration waves fΔnα(k) can be ex-

pressed as:

fΔnα(k) =

mX

s=1

Qs(k)vα(s;k). (2.33)

Substituting Eq.(2.33) in (2.26) gives

ΔF =
1

2

X

k

X

αβ

X

ss′

Dαβ(k, T, {n̄α})Qs(k)Q
∗

s′(−k)vα(s;k)v
∗

β(s
′;−k).

Using (2.30) and (2.32) the expression for the free energy change (2.26) can be rewritten in the

quadratic form:

ΔF =
1

2

X

k

X

s

λs(k, T ) |Qs(k)|
2 . (2.34)

Then the sign of the free energy changeΔF will determine whether the homogeneous solution
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Figure 2.2: The plots of the lowest branch of the spectrum λs0(k, T ) for different temperatures.
All functions λs0(k, T ) reach the minimum at k0. For simplification on this graph vector k is a

one-dimensional vector.

is stable or unstable with respect to fluctuations. In Eq.(2.34) the factor |Qs(k)|
2 is always

positive. Thus, if all eigenvalues {λs(k, T )} are positively defined for all wave vectors k any

fluctuations Qs(k) will increase the free energy. In this case the homogeneous state is stable

with respect to the infinitesimal fluctuations.

If for some wave vector k = k0 the eigenvalue λs(k, T ) reaches 0 or became less then zero,

λs0(k0, T ) ≤ 0, then any infinitesimal fluctuation with amplitude Qs0(k0) with vector k0 will

grow and involve instability of homogeneous state. The system becomes unstable with respect

to fluctuation at k = k0 6= 0 and spatially periodic heterogeneous structure appears. This

case is called ”ordering”. If k0 = 0 then the instability results the formation of the mixture

of two homogeneous phases with different mean atomic concentration. The last case is called

”decomposition”.

The temperature T , at which system becomes unstable with respect to infinitesimally small

fluctuations, is called absolute instability temperature Tc. The homogeneous solution is stable

(or metastable) above this temperature (T > Tc). At T = Tc the lowest branch of the spectrum

λs0(k, T ) reached zero at k = k0 (Fig.2.2) and system loses its stability with respect to the

periodic structure with the period k0. In Fig.2.2 we present the eigenvalues of the response

function as function of T .

The same consideration can be done in the case of AFT. In the case of continuum model the

state of the system (liquid, gas or solid) depends on the temperature T and average density ρ̄α.

At high temperatures atoms are randomly distributed and can be described by homogeneous

densities {ρ̄α} = (ρ̄1, ρ̄2, . . . , ρ̄n). In this disordered state all sites on the computational grid are

characterized by the same occupation probabilities

ρα(r) = ρ̄α. (2.35)
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This case corresponds to the gas or liquid state. The difference between these states is only in

value of density (ρ̄liquid ≫ ρ̄gas).

With decreasing of temperature T the system becomes unstable with respect to the periodic

modulation of atomic density and crystallisation takes place. In the case of a solidification that is

a first order phase transition, there is the temperature range Tc < T < T0 where a homogeneous

solution is in a metastable state. Where T0 is the equilibrium first-order transition temperature

in which the free energy functional are equal for liquid (disordered) and solid (ordered) phases

and the temperature Tc is called the absolute instability temperature. In the metastable state

the homogeneous solution is stable with respect to infinitesimal fluctuations of the density.

When the amplitude of the fluctuations increases the system becomes unstable to some value of

an amplitude. This means that there is a local minimum of the free energy functional in which

system remains stable to small fluctuations of homogeneous distribution. The fluctuations with

the highest amplitude allow to overcome the nucleation barrier and the solidification process

start. When T < Tc the solidification occurs without nucleation. The homogeneous solution

becomes unstable with respect to infinitesimal fluctuations

Δρα(r) = ρα(r)− ρ̄α. (2.36)

Thus it is possible to write the stability conditions of homogeneous state:

∂λs0(k, Tc)

∂k

�

�

�

�

k=k0

= 0, (2.37)

λs0(k0, Tc) = 0. (2.38)

The first equation (2.37) is a condition for λs0(k, Tc) to have minimum at k = k0. The second one

(2.38) gives the condition for the function λs0(k0, Tc) to reach the low bound of the metastabilty

range at T = Tc. Usually the function λs0(k, Tc) reaches the minimum not only at one point k0

but in some interval k0±Δk. Therefore the uniform solution becomes unstable with respect to

the fluctuations at all these wave vectors {k0 +Δk}. However, the wave with k0 growth more

rapid then others one. It should be noted, to obtain the stability condition in the case of the

large fluctuations the high-order terms in Taylor expansion in Eq.(2.19) should be considered.

To illustrate the definition of the response function and eigenvectors for single- and two-

components systems will be considered. For a single-component system (m = 1) the matrix D̂

consists only of one element. Then the eigenvalue λ(k, T ) is

λ(k, T ) = D(k, T, n̄) = ew(k) + ∂2f(n̄)

∂n̄2
. (2.39)
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The second derivative of the local free energy functional can be found from Eqs. (2.7) and (2.6).

Finally the eigenvalue is

λ(k, T ) = ew(k) + kBT

ρ̄(1− ρ̄)
. (2.40)

Here the first term determines the minima {k0} at which the system becomes unstable and the

second one defines the temperature of the absolute instability Tc. Using Eqs. (2.37) and (2.38)

the stability conditions are defined as

min (λ(k, Tc)) = min

�

ew(k) + kBTc

n̄(1− n̄)

�

= 0. (2.41)

Finding the stability conditions for the two-components (m = 2) system is more complex.

In this case the matrix of the response functions is

D̂ =

 
D11 D12

D12 D22

!
. (2.42)

The components of the matrix (2.42) could be obtained from Eqs.(2.24), (2.7) and (2.6):

D11(k, T, {n̄α}) = ew11(k) + kBT (1− n̄2) / (n̄1(1− n̄1 − n̄2)) ,

D22(k, T, {n̄α}) = ew22(k) + kBT (1− n̄1) / (n̄2(1− n̄1 − n̄2)) ,

D12(k, T, {n̄α}) = ew12(k) + kBT/(1− n̄1 − n̄2).

In this case, the system will loose its stability at the temperature where the eigenvalues of the

matrix D̂ become negative. The eigenvalues λs(k, T ) (s = 1, 2) could be found from characte-

ristic equation (2.31):

�

�

�

�

�

D11 − λ D12

D12 D22 − λ

�

�

�

�

�

= 0. (2.43)

There are two solutions of the equation (2.43):

λ1,2(k, T ) =
D11 +D22 ±

q
(D11 −D22)

2 + 4D2
12

2
. (2.44)

Since the third term in (2.44) is always positively defined or equal zero, the lowest branch

λ2(k, T ) (with ”−” in the right part) is

λ2(k, T ) =
D11 +D22 −

q
(D11 −D22)

2 + 4D2
12

2
. (2.45)
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Then the temperature of order-disorder transition is describing by the condition: min (λ2(k, Tc)) =

0.

2.4 Kinetic equation

The temporal evolution of the density function, {ρα(r, t)}, or occupation probabilities, {nα(r, t)},

of the multi-component system can be described by a microscopic Onsager equations [61]:

dnα(r, t)

dt
=
X

r′

mX

β=1

Lαβ(r− r′)

kBT

δF

δnβ(r′, t)
. (2.46)

In Eq.(2.46), a linear proportionality between the flux of probabilities, dnα(r,t)
dt , and the ther-

modynamic driving force, δF
δnβ(r′,t)

, is assumed. L(r)αβ is the matrix of kinetic coefficients, kB

is the Boltzmann constant, T is temperature.

The sum of occupation probabilities over all the lattice sites is equal to the total number of

solute atoms in the system

X

r

nα(r, t) = Nα. (2.47)

Then the summation of Eq.(2.46) over all sites yields

X

r

dnα(r, t)

dt
=
X

r





X

r′

mX

β=1

Lαβ(r− r′)

kBT

δF

δnβ(r′, t)



 = 0,

this equation can be also written in the next form

X

r

dnα(r, t)

dt
=

1

kBT

X

r′

mX

β=1

δF

δnβ(r′, t)

X

r

Lαβ(r− r′) = 0. (2.48)

In general case:

X

r′

mX

β=1

δF

δnβ(r′, t)
6= 0.

Therefore, to satisfy the condition the matrix of kinetic coefficients should satisfy next equation:

X

r

Lαβ(r− r′) = 0. (2.49)

In k space this condition becomes eLαβ(k) = 0. In the case of continuum model, Eq.(2.49)

satisfies the conservation condition of the total number of fratons of each kind (and thus the

conservation of the total volume of all corresponding atoms).
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As the elements of matrix of kinetics coefficients is constant then the Fourier transform of

these coefficients can be expressed as a function of distance:

eLαβ(k) =
X

r

Lαβ(r)e
−ikr.

In the long-wave approximation, for large distances r− r′, which correspond to small k, we can

expand eLαβ(k) in Taylor series around k = 0:

eLαβ(k) = eLαβ(0) +
∂eLαβ(k)

∂k

�

�

�

�

�

k=0

k +
∂2eLαβ(k)

∂k2

�

�

�

�

�

k=0

k2 + . . .

Taking into account condition (2.49) and spherical symmetry of function eLαβ(k), eLαβ(k) =

eLαβ(−k), the first nonvanishing term in Taylor series is

eLαβ(k) ≈ −L0
αβk

2, (2.50)

where L0
αβ ≡ − ∂2�Lαβ(k)

∂k2

�

�

�

�

k=0

is the mobility coefficients matrix. This mobility is proportional

to the jump probability between a pair of atoms (or fratons) α and β at nearest-neighbor sites

per unit time.

Then the k-representation of the kinetic equation (2.46) is

denα(k, t)

dt
= −

mX

β=1

eLαβ(k)

�

ewαβ(k)enβ(k, t) +

�

ln
nβ(r, t)

nl(r, t)

�

k

�

, (2.51)

where

eLαβ(k) =
X

r

Lαβ(r)e
−ikr,

ewαβ(k) =
X

r

wαβ(r)e
−ikr,

eρα(k, t) =
X

r

ρα(r)e
−ikr,

�

ln
nα(r, t)

nm(r, t)

�

k

=
X

r

ln
nα(r, t)

nm(r, t)
e−ikr

are the Fourier Transforms of the corresponding functions defined on the computational grid

sites. Since for the multicomponent system nl(r, t) = 1− n1(r, t)− n2(r, t)− . . . nm−1(r, t) only

m− 1 independent kinetic equations for the atoms (or fratons) should be solved.
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2.5 Conclusions

In this chapter first, the ADF approach has been described. This approach can be applied

to model the decomposition and ordering on the constrain Ising lattice. It was shown the

relation between eigenvalues of the response function, D(k, T ), and the temperature of the

phase transition. The stability condition obtained in this work allows to get the absolute

instability temperature Tc, below which the homogeneous solution loses its stability with respect

to infinitesimal fluctuations. It will be shown in Chapter5 that this approach can be used to

study the carbon diffusion in Fe-C system during aging at room temperature.

New development of ADF theory in the the case on the nonconstrained Ising lattice was pro-

posed. The proposed fraton theory rests on two novel conceptual premises: (a) the introduction

of interacting pseudoparticles that we call fratons that described two configurational states of

each point of continuum space. One is an event in which the point is inside the atomic sphere

of any atom and the other is an event in which the point is outside of atomic sphere; the fratons

are considered as a non-ideal gas whose ’condensation’ describes a diffusional self-assembling

of atomic system, and (b) a concept of a structural cluster function describing the directions,

length and strength of interatomic bonds. The latter allows us to formulate a new and sim-

ple model Hamiltonian that is proportional to a bilinear expansion in these cluster functions.

This model Hamiltonian provides the formation of a predetermined atomic structure and has

a sufficient flexibility to describe the desired mechanic and thermodynamic properties of this

structure.

In the next chapters the applications of the ADF and AFT approaches will be present.



Chapter 3

Application of the AFT to the

modelling of self-assembly of

complex structures

To illustrate the versatility and efficiency of the AFT, we tested its application to the modelling

of the self-assembly of three groups of 3D structures of increasing complexity. They are non-

ideal gas/liquid, single-component crystals, two-component crystals, and polymers with a helix

and a double helix structure mimicking biological macromolecules. The modelling was carried

out by numerical solution of the FT representation of the kinetic equation type (2.46) and in

the case of fratons it becomes :

deρα(k, t)
dt

= −
mX

β=1

eLαβ(k)

�

ewαβ(k)eρβ(k, t) +
�

ln
ρβ(r, t)

ρl(r, t)

�

k

�

. (3.1)

Here eL(k)αβ is the FT of matrix of kinetic coefficients, kB is the Boltzmann constant. Indices,

α and β, label fratons describing different kinds of atoms (α = 1, 2, . . . ,m), ewαβ(k) is the

fraton-fraton interaction. Eq.(3.1) was solved using the semi-implicit Fourier spectral method

proposed in [68].

An additional characterization of atomic configurations is their diffraction pattern. The

diffraction pattern, which is a distribution of intensity of scattered radiation in the 3D reciprocal

space of the wave vectors, k = (kx ky kz), was determined as the squared modulus of the Fourier

Transform of the density function ρ(r):

I(k) = |eρ(k)|2 =
�

�

�

�

�

X

r

ρ(r)e−ikr

�

�

�

�

�

2

, (3.2)
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where I(k) is proportional to the intensity distribution of a diffuse scattering. And for the

multicomponent system it gives:

I(k) =
X

αβ

eρα(k)eρ∗β(k). (3.3)

In our modeling reduced parameters have been used. The average density is defined as

ρ̂α = ρatα
4πR3

α

3 where ρatα = Nα

V is the density of α atoms in the ground state, Nα is number of the

atoms of sort α, V is the total volume of the system, and Rα is the atomic radius. According

to this definition, the reduced density, ρ̂α, is also a fraction of all computational grids sites

occupied by fratons of the kind α. The input parameter ξ in the short range interaction, θα(r),

is measured in the units of kBT0 (see Fig.2.1(a)), where T0 is the solidification temperature.

The lengths are measured in units of r1, which is very close to the atomic radius; the grid lattice

increment, l̂ (the spacing of the underlying Ising lattice), is defined as a fraction of the atomic

radius. The temperature T̂ is also measured in units of T0. The reduced time, t̂, is measured in

units of typical atomic migration time, τ0. The reduced kinetic coefficients, L̂(r), are measured

in units of τ−1
0 .

3.1 Non-ideal gas

The first example is a modeling of a condensation of a disordered distribution of fratons into the

atomic spheres followed by their rearrangement during the equilibration process. In the case

of a single-component system, we will omit the symbol α. The initial disordered configuration

was described by a sum of a homogeneous fratons density, ρ̂ with stochastically generated

”infinitesimally small” noise.

The model potential (2.13) for a single-component system is:

ew(k) = λ1θ̃(k) + λ2

�

�

�Ψ
clstr(k)

�

�

�

2
. (3.4)

In this modeling, we considered only a short-range interaction described by only the first

term of this model potential (λ2 = 0).

Fig.3.1 shows the results of the numerical solution of Eq.(3.1) describing a spontaneous ”con-

densation” of fratons with the average density ρ̂ = 0.1 into higher density clusters visualizing

the atoms. Fig.3.1(a) presents the density of fratons, ρ̂, in the initial disordered configuration

with a small static inhomogeneity, |Δρmax| = 1.5 · 10−3. As follows from Figs.3.1(b-d), the

fratons form randomly distributed sphere-like clusters describing a disordered distribution of

atoms. This configuration can be associated with a liquid or amorphous state.

The same kind of modeling but with different initial concentrations was also done. Figures

3.2(a)–(d) show the final configurations of fratons with different reduced densities, ρ̂, equal to

0.01 (Fig.3.2(a)), 0.05 (Fig.3.2(b)), 0.1 (Fig.3.2(c)), and 0.3 (Fig.3.2(d)). Other parameters
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Figure 3.1: Temporal evolution of the fraton density corresponding to the times (a) t̂ = 0,
(b) t̂ = 1000, (c) t̂ = 2000 and (d) t̂ = 4000. In (a), green colour corresponds to the value of
the fratons’ density function ρ̂(r) at a given point r. The parameters in these simulations are

λ̂1 = 45.5, ξ = 4, D̂ = 1, ρ̂ = 0.1, l̂ = 0.25, Δr̂ = 0.25 and T̂ = 0.886. The size of the simulation
box is 64 × 64 × 64. The initial configuration is the layer in the middle of the simulation box
where small inhomogeneities (|Δρmax| = 1.5 · 10−3) at the sites of the fcc lattice have been

introduced.

Figure 3.2: Equilibrium configurations of atomic fratons with different reduced densities self-
assembled by short range interaction (first term in Eq.(3.4)) from disordered state (a,b,c,d).
The corresponding diffraction patterns of atomic configurations formed by fratons are shown
on the (e,f,g,h). Images (e,f,g) are (100)-plane section of the reciprocal space of their simulated
diffraction patterns of the configuration on the (a, b, c) which are calculated via Eqs. (3.2–
3.3); (h) 3D image of a simulated intensity distribution in the k-space from the configuration

presented on (d).

corresponding to these simulations are ξ = 4, D̂ = 1, l̂ = 0.25, Δr̂ = 0.25; for the case with

ρ̂ = 0.01: λ̂1 = 408 and T̂ = 0.857; for ρ̂ = 0.05: λ̂1 = 87 and T̂ = 0.913; for ρ̂ = 0.1: λ̂1 = 45.5

and T̂ = 0.886; for ρ̂ = 0.3: λ̂1 = 21.5, and T̂ = 0.968. The size of the simulation box is

64× 64× 64.

In all these examples, the final structures obtained by self-assembling of fratons can be

interpreted as a co-existence of two states, the liquid-like gas of atoms with high short-range
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order and the gas with no or very little correlation. This is expected state for the considered low

density systems with the conserved number of fratons and, thus, conserved number of atoms.

”Liquid” is visualized by atomic spheres distributed with the significantly short-range order

while the gas is described by a disordered distribution of fratons. The obtained difference in the

number of atoms with the increase of atomic density is a result of a changing of a ratio between

equilibrium volume fractions of these two coexisting states, liquid and gas, under the atomic

conservation condition. The simulated diffraction patterns obtained for these structures using

Eqs. (3.2–3.3) are presented in the Fig.3.2(e)–(h).

The Fig.3.2 also shows, that the increase of density of fratons, ρ̂, (and thus the increase of

atomic density), results in different equilibrium structures; the structure became more ordered

with the increase of the density, ρ̂. It is reflected in increasing of the intensity of spherical

layer of intensity distribution on the diffraction patterns. The last is typical for a liquid state

(Figs.3.2(a,e) and (b,f)). However, at ρ̂ = 0.3, the structure looks more like either imperfect

crystal with the hcp or fcc close packed structure (Fig.3.2(d,h)) or as a two phase (hcp+fcc)

state consisting of imperfect close-packed crystalline regions and liquid with high correlation.

The diffraction pattern of this configuration, shown in Fig.3.2(d), confirm that this structure

has a topological long range order.

Therefore, the chosen short-range interaction model Hamiltonian in the fraton theory, as is

expected, correctly provides a transition from the liquid/gas state to the crystalline state upon

the isothermal increase of atomic density from ρ̂ = 0.01 to ρ̂ = 0.3. It also indicates that the

short-range interaction (interaction radius is commensurate with the atomic diameter) reflecting

the weak short-range attraction and strong repulsion of atomic cores leads to the formation of

the close packed crystalline state.

Since the average atomic density and temperature are the external thermodynamic parame-

ters of our system, the model also correctly reproduces the required change of the equilibrium

state upon isothermal increase of atomic density in a single component system. This density in-

crease results in a transition across the liquid-solid line on the T -ρ phase diagram and produces

the corresponding crystallization.

To better prototype the crystallization, we have to take into account the following. As it is

well known, the solidification always produces a polycrystalline state if special efforts to prevent

this outcome are not made. An underlying reason for that is an isotropy of the space resulting

in a degeneration of the energy of the crystalline phase with respect to any rigid-body rotation

and translation. Under these circumstance, a single crystal state is achieved only if we lift this

degeneration either by introducing a substrate or the external symmetry-lifting field. In our

modelling, to lift this degeneration, we used the same approach to a computational prototyping

of a single crystal ”growth” as well: we introduced into the initial disordered distribution of

fratons a layer of width 4r1 with the small deviations of the atomic fratons density (Δρ̂ = 0.0015)

and symmetry of the fcc lattice (see Fig.3.3(a)). This layer mimics a role of a substrate.
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Figure 3.3: Initial (a) and final (b) configurations of fratons. The unit cell of the final structure
is also shown in (b) and can be easily identified as the unit cell of the final fcc structure. The

parameters in these simulations are λ̂1 = 21.74, ξ = 4, D̂ = 1, ρ̂ = 0.25, l̂ = 0.182, Δr̂ = 0.25
and T̂ = 0.924. The size of the simulation box is 64× 64× 64. The initial configuration is the
layer in the middle of the simulation box where small inhomogeneities (|Δρmax| = 1.5 ·10−3) at
the site of the fcc lattice have been introduced. In this simulation, only short-range interaction
has been taken into account. The simulated diffraction pattern indicates the fcc symmetry of
the atomic arrangement. The intensity distribution in the final configuration in the (100) and

(111) reciprocal lattice planes are presented in (c) and (d), respectively.

Being ”infinitesimal”, these heterogeneities of the density field are too small to trigger the

evolution to the ”wrong” structure. However, they are sufficient to lift the translational and

orientational isotropy of the continuum space, and thus to suppress the formation of a polycry-

stalline state. The average density in this simulation was set to be ρ̂ = 0.25.

Fig.3.3(b) shows the final equilibrium configuration of the atoms that is easily recognizes

as the fcc structure. The similar conclusion can be reached analysing the diffraction patterns

of this structure shown in Fig.3.3(c) and Fig.3.3(d). The reflections (002), (111), (220), which

characterise the fcc structure, are clearly seen.

3.2 Diamond structure

The next level of complexity is the self-assembly of a single-component crystal with several

atoms in a Bravais lattice unit cell. As an example, we have chosen a crystal with the diamond

structure. Such a structure is characteristic for Si and Ge semiconductor materials.

In this case, besides the short-range interaction used in the previous examples, the long-range

interaction, described by the second term in Eq.(3.4), has been included. A chosen structural
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cluster in this case is a cubic unit cell of the diamond lattice: it consists of eight points in the

positions of the atoms in this unit cell, as shown in Fig.3.4(a).

Figure 3.4: Example of a self-assembly of fratons into diamond structure at reduced times
t̂ of (a) t̂ = 0, (b) t̂ = 600, (c) t̂ = 1000, (d) t̂ = 2800, and (e) t̂ = 3000. The parameters in

this simulations are λ̂1 = 14.085, λ̂2 = −7.042, a = 4.57, ξ = 2, D̂ = 1, ρ̂ = 0.07, l̂ = 0.286,
Δr̂ = 0.17 and T̂ = 0.732. The initial configuration was an embryo consisting of the small
variation of the fratons’ density at the sites of the structural cluster of diamond structure
embedded in the gas of disordered fratons. This initial configuration is the atomic cluster of
the diamond structure placed in the centre of the simulation box. The size of the simulation

box is 64× 64× 64.

The diamond lattice has the fcc Bravais lattice with a two-atom basis, the atoms of the basis

being displaced by the vector, a
�

1
4
1
4
1
4

�

, where a is the crystal lattice parameter; the coordinates

are given as fractions of the crystal lattice parameter along the cube sides [69]. A chosen

structural cluster in this case is a cubic unit cell of the diamond lattice: it consists of eight

points in the positions of the atoms in this unit cell, as shown in Fig.3.4(a). The four points

forming a fcc lattice cubic cell ((000), a
�

1
2
1
20
�

, a
�

01
2
1
2

�

, a
�

1
20

1
2

�

) and additional four points

obtained from them forgoing by the basis shift, a
�

1
4
1
4
1
4

�

.

The function Ψ
clstr(k) was constructed by using its definition (2.12) and the coordinates of

the chosen structural cluster points:

Ψ
clstr(k) =

�

1 + e−ia
4
(kx+ky+kz)

��

1 + e−ia
2
(kx+ky) + e−ia

2
(kx+kz) + e−ia

2
(ky+kz)

�

, (3.5)
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where a is a lattice constant of diamond structure, ki =
2πmi

aN (where i = x, y or z, mi = 1 . . . N ,

N is the number of simulation grid in a given direction). With this definition, the Fourier

transform of the long range interaction, ewLR(k), can be written as:

ewLR(k) = λ2(k)eΩD(k), (3.6)

where

eΩD(k) = Ψ
clstr(k)

�

Ψ
clstr(k)

�

∗

=

=
�

1 + e−ia
4
(kx+ky+kz)

��

1 + e−ia
2
(kx+ky) + e−ia

2
(kx+kz) + e−ia

2
(ky+kz)

�

.
(3.7)

Then, the Fourier transform of the total fraton-fraton potentials is:

ew(k) = λ1
eθ(k) + λ2(k)eΩD(k), (3.8)

where the first term describes the short range interaction. The functions eΩD(k) and eθ(k), were
normalized by the absolute value of a difference between the maximum and minima values of

these functions, respectively. The chosen parameters are λ̂1 = 14.085, λ̂2 = −7.042, a = 4.57,

ξ = 2, D̂ = 1, ρ̂ = 0.07, l̂ = 0.286, Δr̂ = 0.17 and T̂ = 0.732. The initial state is described by the

randomly distributed fratons. Translational and rotational degeneracy is lifted by introducing a

small static inhomogeneity, ρ̂(r) = 0.03 (it is a deviation of fraton density, ρ̂(r), from ρ̂ = 0.07,

at the points of a unit cell sites of a single unit cell of the diamond lattice), placed in the centre

of the simulation box.

The spontaneous self-organization of fratons into the diamond structure is shown in Fig.3.4.

The intermediate structure in the pattern formation dynamics at the reduced time t̂ = 60000 is

shown in Fig.3.4(b). A very interesting aspect of this self-assembling of the diamond crystal pas-

ses through is the development of the transient cubic body centered (bcc) structure (Fig.3.4(c))

at the early stages of evolution. The lattice parameter of this bcc structure is half that of the

diamond structure. This transient state gradually transformed to the diamond structure by the

gradual disappearance of some atoms in the bcc structure and the formation of the diamond

structure. To better visualize the final structure, presented in Fig.3.4(e), the unit cell as well

as the links between the first neighbours are shown.

The final diamond structure and its diffraction pattern are shown in Fig.3.5 where Fig.3.5(b)

shows the simulated intensity distribution in the (110) section of the reciprocal space genera-

ted by the structure shown in Fig.3.5(a). This diffraction pattern is typical for the diamond

structure: the most strong calculated diffraction peaks (220), (111), (311) and (400), are the

strongest peaks of the diamond lattice as well. The peaks {200}, which are forbidden by the

extinction rule for the diamond lattice, are also absent on the calculated diffraction pattern of

the simulated structure. As is well known, the extinction rule for the diamond structure forbids
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Figure 3.5: Simulated diamond structure: (a) Distribution of fratons at t̂ = 3000000. To
clarify the structure, the links between first neighbours are drawn. (b) The diffraction pattern
in the (110)-plane of the reciprocal k-space. The main diffraction peaks of the diamond structure

are indicated: (111), (220), (113), and (400).

reflections whose indexes are either meeting the conditions: h, k, l are mixed odd and even; or

all are even with the condition h+ k + l 6= 4n.

3.3 Zinc-blende structure

Continuing our test of potentiality of the fraton theory, we gradually increased complexity of

the modeled structure. As example, we considered the formation of a two-component crystalline

phase with the zinc-blende atomic structure. The zinc-blende structure is observed in GaAs,

InP, InAs, GaP, ZnO, ZnS alloys [70]. Semiconductor materials, such as GaAs, InP, GaSb,

have increasing technological importance because of their use in solar cells [71], lasers [72],

photodetectors [73].

A two-component systems atomic arrangement is formed by a ”condensation” of two kinds

of fratons, belonging to type A and B. This condensation should produce atoms A and B,

respectively. The spontaneous arrangement caused by an equilibration of a disordered distribu-

tion of the fratons is described by the kinetic equations Eq.(3.1). For a two-component system,



Chapter 3. Applications of the AFT to the modelling of self-assembly of complex structures 41

Eq.(3.1) in the reciprocal space is reduced to two equations:

∂eρA(k, t)
∂t

= eLAA(k)

�

ewAA(k)eρA(k, t) + ewAB(k)eρB(k, t) +
�

ln
ρA(r

′, t)

1− ρA(r′, t)− ρB(r′, t)

�

k

�

+eLAB(k)

�

ewAB(k)eρA(k, t) + ewBB(k)eρB(k, t) +
�

ln
ρB(r

′, t)

1− ρA(r′, t)− ρB(r′, t)

�

k

�

,

(3.9a)

∂eρB(k, t)
∂t

= eLAB(k)

�

ewAA(k)eρA(k, t) + ewAB(k)eρB(k, t) +
�

ln
ρA(r

′, t)

1− ρA(r′, t)− ρB(r′, t)

�

k

�

+eLBB(k)

�

ewAB(k)eρA(k, t) + ewBB(k)eρB(k, t) +
�

ln
ρB(r

′, t)

1− ρA(r′, t)− ρB(r′, t)

�

k

�

,

(3.9b)

where A and B designates two sorts of atoms and corresponding two sorts of fratons. The

Fourier transforms of the interaction energies, ewαβ(k) determined by Eq.(6), are:

ewAA(k) = λA
1
eθA(k) + λA

2 (k)eΩAA
zb (k), (3.10a)

ewBB(k) = λB
1
eθB(k) + λB

2 (k)eΩBB
zb (k), (3.10b)

ewBB(k) = λAB
2 (k)eΩAB

zb (k), (3.10c)

where eΩαβ
zb (k) = Ψ

clstr
α (k)

�

Ψ
clstr
α (k)

�

∗

.

The zinc-blende structure has two atoms, A and B in a primitive unit cell of the fcc Bravais

lattice with positions (000) and a
�

1
4
1
4
1
4

�

, correspondingly. To describe the model Hamiltonian

providing evolution of this two-component structure, we needed two structural clusters, viz.,

the clusters of type A and B. The cluster A consists of four points: the point (000) and the

points of its nearest neighbors in the fcc lattice, a
�

1
2
1
20
�

, a
�

01
2
1
2

�

, a
�

1
20

1
2

�

The cluster B also

consists of four points. They are obtained from the four points of the cluster A by the shift,

a
�

1
4
1
4
1
4

�

. The points of both clusters for the A and B fratons are shown in Fig.3.6 by green and

red colors. With this definition, the cluster Ψ-functions for the two structural clusters are:

Ψ
clstr
A (k) = 1 + e−ia

2
(kx+ky) + e−ia

2
(kx+kz) + e−ia

2
(ky+kz), (3.11a)

Ψ
clstr
B (k) = e−ia

4
(kx+ky+kz)

�

1 + e−ia
2
(kx+ky) + e−ia

2
(kx+kz) + e−ia

2
(ky+kz)

�

. (3.11b)
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Figure 3.6: Example of a self-assembly of fratons into zinc-blende structure at reduced times
t̂ of (a) t̂ = 0, (b) t̂ = 1600, (c) t̂ = 1900, (d) t̂ = 2800, and (e) t̂ = 30000. The parameters

in this simulation are λ̂A
1 = 3.77, λ̂B

1 = 5.84, λ̂A
2 = −1.88, λ̂B

2 = −2.92, λ̂AB
2 = −2.26,

D̂AA = D̂BB = 1, D̂AB = −0.5, ρ̂A = 0.07, ρ̂B = 0.045, l̂ = 0.25, rA1 = 1.143rB1 , ξ = 2,
Δr̂ = 0.17, â = 4.0 and T̂ = 0.235. The initial configuration is the atomic cluster of a diamond
structure placed in the centre of the simulation box. The size of the simulation box is 64×64×64.

Two sorts of atoms with different atomic sizes are indicated in red and green.

Using these definitions the functions eΩαβ
zb (k) in the Eq.(3.10a–3.10c) can be written as:

Ω
AA
zb (k) = Ω

AA
zb (k) =

= 4 + 4
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cos
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(3.12a)
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(3.12b)

The difference in size of different species of atoms has been taken into account in the short

range potential. In these simulations the ratio of two atomic radii was chosen 0.875. The size of

the simulation grid, l̂ = 0.25, was measured in the units of rA1 . Therefore, the value of rB1 was

chosen equal to 3.5l̂. For the zinc-blende structure we used the following set of input parameters:

λ̂A
1 = 3.77, λ̂B

1 = 5.84, λ̂A
2 = −1.88, λ̂B

2 = −2.92, λ̂AB
2 = −2.26, D̂AA = D̂BB = 1, D̂AB = −0.5,
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ρ̂A = 0.07, ρ̂B = 0.045, l̂ = 0.25, rA1 = 1.143rB1 , ξ = 2, Δr̂ = 0.17, â = 4.0 and T̂ = 0.235.

The initial configuration was a single unit cell embryo of the diamond embedded into the two-

component gas consisting of disordered fratons of two kinds. The temporal evolution of densities

of the fratons obtained by the solution of two kinetic equations (3.9a) and (3.9a) for two species

of fratons (α = A,B) is shown in Fig.3.6. As follows from Fig.3.6(e), the evolution eventually

leads to the formation of the zinc-blende crystal. To better visualize the zinc-blende structure,

we draw the links between the first neighbours that are also shown in Fig.3.6(e). In Fig.3.6,

green and red atoms represent the two sorts of atoms, for example Zn and S, respectively. A

difference with the diamond structure is that the positions of two identical atoms in the basis

of the diamond structure are occupied by different atoms in the zinc-blend structure. Each sort

of atoms forms the fcc lattice with the period of the fcc Bravais lattice a. As is expected, these

two fcc lattices are shifted with respect to each other by the distance, a
�

1
4
1
4
1
4

�

.

The (110) section of the simulated diffraction pattern of the configuration shown in Fig.3.7(a)

is presented in Fig.3.7(b). The first strongest diffraction peaks are (200), (111), (220) and (311).

Figure 3.7: (a) Simulated configuration of fratons obtained by a spontaneous ”condensation”
of fratons into the atomic structure at t̂ = 3000000. The spherical clusters of fratons of type A
and B which describe atoms A and B are shown in different colors. The unit cell clarifying links
between the nearest neighbours are indicated. (b) The (110) section of the reciprocal k-space.

The main peaks of the zinc-blende structure are indicated: (002), (111), (311) and (400).

The positions and intensity of these peaks are in agreement with the extinction rule: reflections

from the zinc-blend structure: with mixed odd and even h,k,l indices are forbidden.

3.4 Helix and Double-helix structure

Molecules with a helix architecture are observed in organic materials [74–76], helix-shaped

graphite nanotubes [77, 78], liquid crystal[79, 80], proteins, and, of course, DNA and RNA

polymeric molecules [81–83]. Then, the most challenging test of the potency of the fraton

theory would be its ability to describe a spontaneous self-assembly for the most interesting

case relevant to biology, that is, the self-assembly of a double helix polymer from ”soup” of
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randomly distributed of fratons. We chosen this system because, as far as we know, a self-

assembly of randomly distributed monomers into double-tread helix polymers was a too complex

phenomenon to prototype by the existing methods.

3.4.1 Modeling of helix structure

To model a self-assembly of helix structure, fraton-fraton potential producing a helix structure

should be directional and have a built-in chirality. The geometrical parameters of the configu-

ration of the structural cluster are the pitch length, P , the number of coils per pitch, n0 = 6,

the distance between coils in z-direction, h, and the radius of the coil, u (see Fig.3.8).

Figure 3.8: Illustration of the geometrical parameters of the helical structure: P is a pitch, h
is a distance between the nearest coils along the z axis and helix radius u.

Then the coordinates of points of the helix occupied by molecules are:

rs =
�

u cos
�

2π
n0
s
�

u sin
�

2π
n0
s
�

hs
�

, (3.13)

where s runs from 0 to n0 − 1, n0 is the number of coils in the pitch.

Our chosen structural cluster consists of two pitches. The second-pitch segment of the cluster

is needed to introduce a chirality into the long-range part of the model potential. The size of the

structural cluster would be drastically reduced if the chirality were built-in in the short-range

part of the fraton-fraton interaction. This can be done by a straightforward modification of the

short-range interaction.
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Figure 3.9: Example of self-assembly of the fratons into the helix structure at reduced time of
(a) t̂ = 0, (b) t̂ = 2000, (c) t̂ = 2500, (d) t̂ = 3000, and (e) t̂ = 7000. The input parameters in

this simulation are: λ̂1 = 61.14, λ̂2 = −69.87, ĥ = û = 1.56, n0 = 6, ξ = 2, D̂ = 1, ρ̂ = 0.0096,
l̂ = 0.22, Δr̂ = 0.17 and T̂ = 0.568. The size of the simulation box is 32× 32× 210. The initial

configuration shown in (a) is n0 + 1 coils in the helix structure.

Using this definition of cluster for the formulation of the function Ψ(k) for the helical struc-

ture, presented in Fig.3.8 gives:

Ψ
clstr(k) =

�

1 + e−in0hkz
�

n0−1X

s=0

e−ikrs . (3.14)

Then function eΩH(k) is:

eΩH(k) = (2 + 2 cos (n0hkz))

 
6 + 2

n0−1X

n>m=0

cosφ(n,m)

!
, (3.15)

where

φ(n,m) = kxu

�

cos
2πn

n0
− cos

2πm

n0

�

+ kyu

�

sin
2πn

n0
− sin

2πm

n0

�

+ kzh(n−m). (3.16)

In this simulation the following parameters were used: D̂ = 1, λ̂1 = 61.14, λ̂2 = −69.87,

l̂ = 0.22, ĥ = û = 1.56, n0 = 6, ξ = 2, ρ̂ = 0.0096 and T̂ = 0.568. The parameters of the θ(k)

function were chosen the same as for the diamond structure. The size of the simulation box was

210 × 32 × 32. The initial embryo lifting the spatial and rotational energy degeneration was a

one pitch inhomogeneity introduced in the centre of the simulation box. In the first step, we

considered a random distribution of fratons of one kind. We also assumed that the desired helix
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other about axis z by ϕ = π. Then, using the definition of the functions Ψα(k) by Eq.(2.12) for

α = A,B, gives:

Ψ
clstr
A (k) =

�

1 + e−in0hkz
�

n0−1X

s=0

e−ikrs , (3.17a)

Ψ
clstr
A (k) = e−i

n0h

2
kz

�

1 + e−in0hkz
�

n0−1X

s=0

e−ikrs . (3.17b)

We assume that eΩAA
DH(k) = eΩBB

DH(k) = eΩH(k), where eΩH(k) is defined by Eq.(3.15). Then the

function eΩAB
DH(k) is:

eΩAB
DH(k) = 2 cos (

n0h

2
kz) (2 + 2 cos (n0hkz))

 
6 + 2

n0−1X

n>m=0

cosφ(n,m)

!
. (3.18)

The simulation box size and input parameters for two kinds of complimentary fratons were

chosen the same as for a single-thread helix and the interaction between helix is defined by

λ̂AB
2 = −1.78, T̂ = 0.033.

In spite of all these oversimplifications, this model describes some generic features relevant

Figure 3.11: Self-assembly of the fratons into a double helix structure at reduced time of (a)
t̂ = 0, (b) t̂ = 1500, (c) t̂ = 2000, (d) t̂ = 3000, and (e) t̂ = 15000. The input parameters in

this simulation are λ̂A
1 = λ̂B

1 = 4.07, λ̂A
2 = λ̂B

2 = −4.07, λ̂AB
2 = −1.78, rA1 = rB1 , ĥ = û = 1.56,

n0 = 6, ξ = 2, D̂AA = D̂BB = 1, D̂AB = −0.5, ρ̂A = ρ̂B = 0.0096, l̂ = 0.22, Δr̂ = 0.17 and
T̂ = 0.033. The size of the simulation box is 32× 32× 210. The initial configuration shown in

(a) is one helix and one coil of the second helix.
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to the spontaneous formation of single-stranded polymeric molecule and the growth of the com-

plementary strand of the monomers eventually producing a double-stranded helix configuration

(see Fig. (3.11)). In this case, the first single-stranded helix is a template for the aggregation

on it of complementary monomers to form a double-stranded helix. For clarity, we show the

clusters of fratons (monomers) of the second strand in red.

Fig.3.10(b) shows the simulated diffraction pattern of double helix structure in (100) reci-

procal plane. We can see that in comparison with the single-thread helix (Fig.3.10(a)), there is

an extinction of each second layer-plane on the diffraction pattern of the double helix structure.

The X-ray diffraction patterns for DNA show somewhat similar diffraction pattern [10, 84, 85].

For example, in Fig.3.10(c) is shown X-ray diffraction pattern of A-DNA with numbered layer-

planes. Its real structure is formed by two right-handed polynucleotide chains that are coiled

about the same axis [10].

3.5 Conclusions

In this chapter, we selected the most difficult cases of self-assembling wherein the initial system

is atomically disordered so that its configuration ”knows” nothing about the final atomic pattern

that should be spontaneously self-assembled. This self-assembling is driven only by the chosen

model Hamiltonian, and, specifically, by mutual orientation, length and strength of interatomic

bonds. We considered situations wherein the self-assembling is taken place at diffusion time

scale, which may range from a fraction of a second to years. A typical time of this evolution

is dictated by the typical time of evolution of time-dependent ensemble rather than typical

times of atomic dynamics like time of atomic vibrations. Difficulty in addressing such slow

evolving systems probably was a reason why a spontaneous formation of some of them (crystals

and polymers) from a liquid solution of atoms or monomers has not been modelled yet in the

diffusional time scale.

The developed approach opens a way to answer numerous outstanding questions concer-

ning the atomistic mechanisms of the formation of defects (dislocations, grain boundaries, etc.),

nucleation in solid-solid transformations, the formation of polymers due to aggregation of mo-

nomers in their solution, folding and crystallisation of polymers, and their responses to external

stimuli. This list can be significantly extended. Especially interesting are the modelling results

describing the spontaneous self-assembly of monomers into a single-stranded polymeric helix and

the formation of a double-helix structure obtained by aggregation of complementary monomers

on the single-stranded helix playing the role of a template. This result may be also considered

as an attempt to formulate and execute the simplest prototyping of the spontaneous formation

of homopolymeric DNA from a liquid solution of monomers playing the role of nucleotides.

Finally, the use of the new model Hamiltonian formulated in terms of the structural clusters

and proposed fraton model provide already a ready tool to address a general problem of spon-

taneous pattern formation by self-assembling of any randomly distributed building elements in
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the time scale ranging from sub-seconds to years. This approach can be also straightforwardly

extended for the prototyping of self-assembly of elementary building block monomers with more

complex molecular structures. In the latter case, we have to generalise the concept of fratons

of atoms by introducing fraton of molecules and modify accordingly the model short-range part

of the model fraton-fraton Hamiltonian. Then this modification should provide a ”condensa-

tion” of the molecular fratons into molecules and subsequent self-assembly of these molecules.

In principle, this approach can be even used for the description of three-dimensional pattern

formation by any macroscopic objects and optimisation of their properties. The ”fratons” in

this case being fragments of these objects are also macroscopic.
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fcc unit cells. The martensite bcc lattice (Fig.4.1(b)) forms by deformation of the bct (Fig.4.1(a))

lattice: compression along [001]γ axis and expansion along [11̄0]γ and [110]γ directions. This

transformation is induced by Bain strain and requires a minimum of atomic motion. In steels

the resulting martensite lattice parameters a and c correspond to a given carbon content. In

earlier theories it was thought that the formation of α′ phase from γ phase occurs exactly by

this mechanism.

However, the Bain strain does not satisfy the conditions of the habit plane formation and

could not describe the hole transformation [86]. In fact, the experimentally observed correspon-

dence between γ and α′ phases are different of proposed by Bain correspondences.

4.1.1.1 Orientation relationships

As was discussed in the introduction, the martensite transformation is diffusionless phase tran-

sition where the low temperature martensite phase with bct structure growths in the high

temperature austenite fcc phase. The misfit between this two structures induces the internal

elastic stress in the system. The minimisation of the total free energy of system that contains

the elastic and chemical contributions, produces some special orientational relations between

two phases. Experimentally different orientations between these phases has been observed:

Kurdjumov-Sachs (KS), Nishiyama-Wassermann (NW), Greninger-Troiano (GT), Pitsch and

Bain orientation relationships (ORs). In the plain carbon steels the most often found KS ORs.

However, NW relationships have been observed in Fe-30% Ni alloys [1]. In nickel steels, the GT

ORs have been found, which are intermediate between KS and NW ORs. Pitsch correspondence

has been found in iron-nitrogen alloys [87]. It should be remarks, that Bain relationships have

been found in Fe3Pt and Fe3Al-C martensites.

In our modeling we will be interested only about KS ORs. In KS ORs {111}γ close-packed

planes of fcc structure are parallel to the bcc {011}α′ close-packed planes:

{111}γk{011}α′ . (4.1)

There are four possible close-packed planes in the fcc structure. Each close-packed plane con-

sists of the six different orientations of the bcc structure along close-packed directions. These

orientations are called crystallographic variants. On the Figure 4.2 ([11]) the (111)γ plane of

austenite is indicated as a triangle and six variants of martensite which can be obtained from

this (111)γ planes are shown. The (011)α′ martensite plane is shown as a rectangle. In general

case fcc structure consists of the four possible {111}γ close-packed planes: (111)γ , (11̄1)γ , (1̄11)γ

and (111̄)γ ; there are 24 equivalent crystallographic KS ORs (variants). The ORs for all these

24 variants are presented in the table 4.1. In this table the misorientation angle between a given

variant with respect to variant V1 is also done [18].
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or in column representation

[γ;u] =









u1

u2

u3









. (4.2)

The α basis can be expressed by the matrix equation through the γ basis:








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
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
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


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




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







a1

a2

a3









. (4.3)

Table 4.1: The 24 crystallographic variants of the KS ORs. Various Bain groups (BG) and
misorientation angle (θ) of variant V2 to V24 relative to V1 are given in the table [18].

Variant number Plane parallel Direction parallel BG Misorientation from V1 (θ)

1 (111)γ ||(011)α [1̄01]γ ||[1̄1̄1]α B1 -
2 [1̄01]γ ||[1̄11̄]α B2 60◦

3 [011̄]γ ||[1̄1̄1]α B3 60◦

4 [011̄]γ ||[1̄11̄]α B1 10.5◦

5 [11̄0]γ ||[1̄1̄1]α B2 60◦

6 [11̄0]γ ||[1̄11̄]α B3 49.5◦

7 (11̄1)γ ||(011)α [101̄]γ ||[1̄1̄1]α B2 49.5◦

8 [101̄]γ ||[1̄11̄]α B1 10.5◦

9 [1̄1̄0]γ ||[1̄1̄1]α B3 50.5◦

10 [1̄1̄0]γ ||[1̄11̄]α B2 50.5◦

11 [011]γ ||[1̄1̄1]α B1 14.9◦

12 [011]γ ||[1̄11̄]α B3 57.2◦

13 (1̄11)γ ||(011)α [01̄1]γ ||[1̄1̄1]α B1 14.9◦

14 [01̄1]γ ||[1̄11̄]α B3 50.5◦

15 [1̄01̄]γ ||[1̄1̄1]α B2 57.2◦

16 [1̄01̄]γ ||[1̄11̄]α B1 20.6◦

17 [110]γ ||[1̄1̄1]α B3 51.7◦

18 [110]γ ||[1̄11̄]α B2 47.1◦

19 (111̄)γ ||(011)α [1̄10]γ ||[1̄1̄1]α B3 50.5◦

20 [1̄10]γ ||[1̄11̄]α B2 57.2◦

21 [01̄1̄]γ ||[1̄1̄1]α B1 20.6◦

22 [01̄1̄]γ ||[1̄11̄]α B3 47.1◦

23 [101]γ ||[1̄1̄1]α B2 57.2◦

24 [101]γ ||[1̄11̄]α B1 21.1◦
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The matrix (αMγ) represents the coordinate transformation of the vector components from the

γ to α basis:

[α;u] = (αMγ) [γ;u]. (4.4)

To obtain the position of atoms in the first KS variant, the matrix (α1Mγ) should be

calculated, where α1 designate the variant V1:

[111]γk[011]α, [1̄01]γk[1̄1̄1]α, [12̄1]γk[21̄1]α. (4.5)

The length of the vectors which determine the direction presented in (4.5), should be invariant

during fcc-to-bcc transition. Thus it is necessary to equalize the magnitudes of these parallel

vectors. For this we will introduce the constants k, g, m as a ratio of lengths of the two parallel

vectors:

k =
afcc0

√
3

abcc0

√
2
,

g =
afcc0

√
2

abcc0

√
3
, (4.6)

m =
afcc0

√
6

abcc0

√
6
=

afcc0

abcc0

.

Substituting relations (4.6), (4.5) in (4.3) we get

[0kk] = (α1Mγ) [111],

[ḡḡg] = (α1Mγ) [1̄01] , (4.7)

[2mm̄m] = (α1Mγ) [12̄1] .

Then we can rewrite these equations as









0 ḡ 2m

k ḡ m̄

k g m









=









M11 M12 M13

M21 M22 M23

M31 M32 M33

















1 1̄ 1

1 0 2̄

1 1 1









.

Finally the orientation transformation matrix is
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Table 4.2: The rotational matrices for the 24 variants of KS ORs [11].

Ĵ1 =





0.742 −0.667 −0.075
0.650 0.742 −0.167
0.167 0.075 0.983



 Ĵ13 =





0.667 0.742 −0.075
−0.742 0.650 −0.167
−0.075 0.167 0.983





Ĵ2 =





0.075 0.667 −0.742
−0.167 0.742 0.650
0.983 0.075 0.167



 Ĵ14 =





−0.667 0.075 −0.742
−0.742 −0.167 0.650
−0.075 0.983 0.167





Ĵ3 =





−0.667 −0.075 0.742
0.742 −0.167 0.650
0.075 0.983 0.167



 Ĵ15 =





0.075 −0.667 0.742
0.167 0.742 0.650
−0.983 0.075 0.167





Ĵ4 =





0.667 −0.742 0.075
0.742 0.650 −0.167
0.075 0.167 0.983



 Ĵ16 =





0.742 0.667 0.075
−0.650 0.742 −0.167
−0.167 0.075 0.983





Ĵ5 =





−0.075 0.742 −0.667
−0.167 0.650 0.742
0.983 0.167 0.075



 Ĵ17 =





−0.742 −0.075 −0.667
−0.650 −0.167 0.742
−0.167 0.983 0.075





Ĵ6 =





−0.742 0.075 0.667
0.650 −0.167 0.742
0.167 0.983 0.075



 Ĵ18 =





−0.075 −0.742 0.667
0.167 0.650 0.742
−0.983 0.167 0.075





Ĵ7 =





−0.075 0.667 0.742
−0.167 −0.742 0.650
0.983 −0.075 0.167



 Ĵ19 =





0.742 −0.075 0.667
0.650 −0.167 −0.742
0.167 0.983 −0.075





Ĵ8 =





−0.742 −0.667 0.075
0.650 −0.742 −0.167
0.167 −0.075 0.983



 Ĵ20 =





0.075 −0.742 −0.667
−0.167 0.650 −0.742
0.983 0.167 −0.075





Ĵ9 =





0.742 0.075 −0.667
0.650 0.167 0.742
0.167 −0.983 0.075



 Ĵ21 =





−0.667 0.742 0.075
0.742 0.650 0.167
0.075 0.167 −0.983





Ĵ10 =





0.075 0.742 0.667
−0.167 −0.650 0.742
0.983 −0.167 0.075



 Ĵ22 =





0.667 0.075 0.742
0.742 −0.167 −0.650
0.075 0.983 −0.167





Ĵ11 =





−0.667 −0.742 −0.075
0.742 −0.650 −0.167
0.075 −0.167 0.983



 Ĵ23 =





−0.075 −0.667 −0.742
−0.167 0.742 −0.650
0.983 0.075 −0.167





Ĵ12 =





0.667 −0.075 −0.742
0.742 0.167 0.650
0.075 −0.983 0.167



 Ĵ24 =





−0.742 0.667 −0.075
0.650 0.742 0.167
0.167 0.075 −0.983





(α1Mγ) =
1

6









3g + 2m −4m −3g + 2m

2k + 3g −m 2k + 2m 2k − 3g −m

2k − 3g +m 2k − 2m 2k + 3g +m









=
afcc0

abcc0









0.742 −0.667 −0.075

0.650 0.742 −0.167

0.167 0.075 0.983









. (4.8)
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Then it is convenient to introduce the rotational matrix (α1Jγ) that transform the coordinates

of atoms in the fcc lattice to their position in the V1 KS variant of martensite

(α1Jγ) = Ĵ1 =









0.742 −0.667 −0.075

0.650 0.742 −0.167

0.167 0.075 0.983









. (4.9)

Using this procedure all other rotational matrix can be obtained for all 23 variants presented

in Table 4.2.

4.1.1.3 Deformation twinning

As was mentioned before, there are two main deformation modes, which reduce the strain in

material during martensite transformation: slip and twinning. Both mechanisms can be involved

in MT. In binary alloys, such as Fe-C, Fe-Ni, Fe-N binary alloys with high content of carbon,

nickel, nitrogen, respectively, the twinned microstructure is found [88, 89]. Also, twins are

observed in iron-carbon [89, 90] alloys with low carbon quenching at temperatures lower then

Ms temperature. In general case, twinning mechanism coexists with slip mechanism. However,

the decrease of the temperature of martensite transformation or application of the external

strain lead to domination of the twinning mechanism [20].

A detailed overview of twinning mechanism of martensite transformation can be found, for

example, in [20]. In this paragraph we will focus only on twinning crystallography. According to

definition, deformation twinning is a kind of diffusionless transformation in which a new phase

has the same crystal structure as a parent phase and corresponds to its mirror image. In the

Fig.4.3(a) a twinned crystal is shown. The red part corresponds to the parent undeformed crystal

and the green part represents its twin. In our case we will consider the centrosymetrical crystals.

In this case, the twins can be obtained from the parent crystal using one of two operations: (1)

by a reflection in some plane, which is called twinning plane, or (2) by a rotation by π about

some axis, which is called twinning direction. Twins obtained by the first operation are called

type I twins and obtained by the second one are called type II twins [91]. For the high symmetry

lattices, such as fcc and bcc, these two operations are equivalent and the resulting twins are

called compound twins.

The deformation process, which induces twins formation, requires coordinated individual

atom displacements, that are achieved by a homogeneous simple shear. In general, deformation

twinning can be described by twinning elements: K1, K2, η1, η2, shear magnitude s and plane

of shear P . These elements define a twinning mode. In Fig.4.3(b-c) twinning elements are

shown. Twinning shear of magnitude s occurs in the plane K1. Plane K1 is the invariant of this

shear and is called twinning plane. The direction of the shear is called twinning direction and is

denoted as η1. The conjugate twinning plane, K2, is undistorted, but due to the shear is rotated.

In Fig.4.3(b) the plane K2 is marked in red and the plane formed by twinning and belonged to
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In Eq.(4.12) λ1 and λ2 are the fitting parameters determining strength of the short range and

long range interactions, respectively, the short range part of the potential θ̃(k) is the same as

in Eq.(2.14). The long-range part of the interactional potential should be isotropic to allow the

formation of any martensite variants. In our case, for long-range interaction we used a Gaussian

function:

f(x) = exp

�

−
(x− x0)

2

2σ2

�

. (4.13)

Here σ is a constant. The function (4.13) has an extremum at x0 and to provide a minimum

at this point the constant λ2 should be negative. The position of the minimum of the Gaussian

function corresponds to the distance between the first neighbors in the reciprocal space.

Using (2.12) the anisotropic long-range potential for the fcc lattice is

ewfcc
LR(k) = λ2

eΩfcc(k) = λ2

�

�Ψ
fcc(k)

�

�

2
= λ2 ×

�

4 + 4
�

cos(kxa
fcc

2 ) cos(
kyafcc

2 ) + cos(kxa
fcc

2 ) cos(kza
fcc

2 ) + cos(
kyafcc

2 ) cos(kza
fcc

2 )
��

. (4.14)

This potential reaches the minima at the points {k01} = 2π
afcc

{111} and {k02} = 2π
afcc

{200}.

The distances to these minima respectively are kfcc01 = 2π
afcc

√
3 and kfcc02 = 2π

afcc
2. Therefore the

long-range isotropic potential for the fcc structure can be written as

ewfcc
LR(k) = λ2

�

exp

�

−
(k − kfcc01 )

2

2σ2

�

+ exp

�

−
(k − kfcc02 )

2

2σ2

��

. (4.15)

Similarly for a bcc structure the position of the minimum can be found from an anisotropic

potential

ewbcc
LR(k) = λ2

eΩbcc(k) = λ2

�

�Ψ
bcc(k)

�

�

2
= λ2

�

8 + 8 cos(kxa
bcc

2 ) cos(
kyabcc

2 ) cos(kza
bcc

2 )
�

.(4.16)

The potential (4.16) reaches the minima at the points {k01} = 2π
abcc

{110}. Hence the distance

to this minimum can be written as: kbcc01 = 2π
abcc

√
2 and the isotropic potential in this case is

ewbcc
LR(k) = λ2 exp

�

−
(k − kbcc01 )2

2σ2

�

. (4.17)

All modeling have been performed at the constant volume. To satisfy this condition we imposed

that the distance between first neighbors atoms in both structures (fcc and bcc) are the same

(Fig.4.5). In this case the ratio between the lattice constants of the fcc and the bcc structures

is

afcc

abcc
=

r
3

2
≈ 1.225. (4.18)

The ratio (4.18) is close to that observed in experiment: afcc
�

abcc = 3.562 Å
�

2.860 Å ≈ 1.245
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initial state, the (111)fcc plane of the fcc matrix that is parallel to the (011)bcc plane of the bcc

nucleus is shown in Fig.4.6.

To stabilize the bcc structure we decreased the amplitude of the second peak in the long-range

potential (4.15) for the fcc structure. The first peak in (4.15) is the same as in (4.17) according

to (4.18). To model the fcc-to-bcc transition we used the following long-range potential:

ewLR(k) = λ2

�

exp

�

−
(k − k01)

2

2σ2

�

+ 0.1 exp

�

−
(k − k02)

2

2σ2

��

. (4.19)

The elastic constants for the fcc and bcc lattices with potentials (2.14) and (4.19) which are

considered in (4.12) can be calculated using the method specified in Appendix A. Their values in

adimensional units are: C11 = 0.233, C12 = 0.101, C44 = 0.086 for bcc lattice and C11 = 0.139,

C12 = 0.081, C44 = 0.090 for the fcc lattice. These values were obtained using σ equal 0.05 in

potential (4.19). All simulations were done with simulation box 5123.

For comparison the experimental constants for the iron are: C11 = 246 GPa, C12 = 140

GPa, C44 = 116 GPa for the bbc lattice [97] and C11 = 154 GPa, C12 = 122 GPa, C44 = 77

GPa for fcc lattice [98].

4.2.2 Simulation results

The different steps of the fcc-to-bcc transition in direct space are presented in figures 4.7 and

4.8. For convenience, only (001)γ (Fig.4.7) and (100)γ (Fig.4.8) planes are shown. On the

first images (Fig. 4.7(a) and 4.8(a)) the initial state with the fcc matrix and bcc nucleus are

shown. At Figs 4.7b-48b 4.7(b-c) and 4.8(b-c) the second variant can be observed. In these

figures the system of dislocations on astenite/martensite interface are visible (see white arrows

in Figs. 4.7(c) and 4.8(c)). During growth (see Figs. 4.7(c) and 4.8(c)) these two variant

structure growth and bcc nucleus transforms in multidomain structure. At the final stage of

transformation two variant structure can be clearly distinguished.

To analyze the obtained multidomain structure: the crystallographic orientations of their

components with respect to the fcc phase and the misorientation angle between variants of the

resulting martensite, the pole figures can be used.

4.2.2.1 Simulations of pole figures

After complete martensite transformation the orientation of each crystallographic variant can be

determined by using a pole figure representation (see Appendix B). To recognize the orientation

of variants of the multidomain structure it is enough to build only (001) pole figure. In Fig.

4.9(a) are shown (001) pole figures of the ideal KS relations. Each KS variant is marked by a

number from 1 to 24. For comparison the experimental pole figure for the prior austenite grain

with all 24 variants is also given (Fig.4.9(b)). Pole figures in Fig. 4.9 are given relatively to the

(001)[100] orientation of the austenite grain.
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diffraction spots. In this plane the spot 21̄1α1
of the V1 variant is superposed with 2̄11̄α2

spot

of V2. Consequently, we can conclude that variant V2 is a mirror image of V1 in (21̄1)α (or

(12̄1)γ) plane and in this case (21̄1)α plane is a twinning plane for two variants.

Also, it is important to note, that the lattices of both variants are slightly tetragonal in

[001]α1
and [001]α2

directions of V1 and V2 variants, respectively. The axial ratio c/a calculated

from diffraction patterns is ≈ 1.025.

Figure 4.14: Dark field images constructed using the 011α diffraction spot in (011)α plane
at simulation times (a)-(b)t̂ = 0, (c)-(d)t̂ = 420000. (a),(c) correspond to V1 variant, (b),(d)

correspond to V2.

To investigate the morphology of microstructure it is convenient to use dark field images.

Reconstruction of the atomic density field ρ(r) from ρ̃(k) (by selecting one or several diffraction

spots in the plane kx = 0 during the inverse Fourier transformation) leads to a set of atomic

lattice fringes or to intersections of several sets. This image we call dark field (DF) image. In a

given case, the dark field image was constructed using the next consideration: one of the spot

was selected on the diffraction pattern using the function φDF (k) which is equal zero in each
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Figure 4.15: Dark field images constructed using the 011α diffraction spot in (011)α plane at
simulation times (a)-(b)t̂ = 620000, (c)-(d)t̂ = 950000. (a),(c) correspond to V1 variant, (b),(d)

correspond to V2.

point k of a reciprocal space except selected area of a spot:







φDF ((k)) = ρ̃(k), if k ∈ selected area,

φDF (k) = 0, otherwise.
(4.28)

Here ρ̃(k) is a Fourier transform of the ρ(r). In our case, the dark field image was using the

011α diffraction spot.

In Figs.4.14-4.15 the (011)α (or (011)γ) section of the 3D DF image at different time are

presented. The right images (a,c,e,g) correspond to the DF images built using 011α1
spot of

V1 variant and the left-side images (b,d,f,h) correspond to the DF images built using 011α2

diffraction spot of V2. The bright area on the DF images coincides with the position of the

variants. At the initial step (Figs.4.14(a-b)) only the first variant V1 is presented in the middle of

the simulation box. The next images 4.14(c-d) and 4.15(a-d) show the presence of both variants



Chapter 4. Martensitic Transformations 70

and their growth in some particular direction. This growth produced plate-like morphology of

KS variants.

The 3D images of DF at different times are shown in Fig.4.16, green color denotes V1

variant and red denotes V2. The growth of V1 variant at the initial stages of modeling is

Figure 4.16: 3D dark field images calculated using the 011α diffraction spot at simulation
times (a)t̂ = 0, (b)t̂ = 420000, (c)t̂ = 620000, (d)t̂ = 950000. Red and green colors correspond

to the V1 and V2 variants, respectively.

accompanied by emergence of second variant. These two variants form a periodic twin structure

of type V2|V1|V2 slightly elongated along [101]α (∼ [32̄3]γ) direction, Fig.4.16(b). In [101]α

direction the bcc nucleus growth faster, Figs.4.16(b-c). In Figs.4.16(c) the martensite phase has

V1|V2|V1|V2|V1 twin structure. The following growth of martensite phase does not have such

a clear alternation of variants. This is probably due to the limitation of our simulation box and

periodic boundary conditions used in our simulations.
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stage of growth and correspond to V2 KS variant. In the case when we started our simulation

with bcc nucleus with V3 KS variant the V4 KS variant was appeared. It corresponds to the

frequently observed structure in high carbon steels. However, this structure is also observed in

low carbon steels.

To conclude, the proposed method based on the AFT can be used to understand the atomistic

mechanism of the MT.
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Here F is the free energy functional of the function np(r, t), Lpq(r− r′) is the matrix of kinetic

coefficients that characterize the elementary diffusion jumps from the site (p, r) to the site (q, r′).

In Eq.(5.1) the summation is carried out over all points, r′, of the computational grid.

The total number of carbon atoms NC is

NC =
X

p

X

r

np(r, t) = (n̄1 + n̄2 + n̄3)N0 = n̄CN0. (5.2)

Here N0 is a number of all grids in the simulation box, n̄1, n̄2, n̄3 and n̄C correspond to the

average concentrations of carbon atoms in 1-st, 2-nd, 3-rd sublattices and in the whole simulation

box, respectively. Since, the total number of carbon atoms NC is fixed, it is possible to obtain

the conservation condition by summing both sides of the Eq.(5.1) and using definition (5.2):

X

p

X

r

dnp(r, t)

dt
=

1

kBT

3X

q=1

X

r′

dF

δnq(r′, t)

X

p

X

r

Lpq(r) = 0.

Finally it can be rewritten as

X

p

X

r

Lpq(r) = 0. (5.3)

For the conveniens we will use the Fourier transform of the kinetic coefficients matrix:

eLpq(k) =
X

r

Lpq(r)e
−ikr. (5.4)

Fig.5.5 shows the positions of the neighboring octahedral interstitial positions (numbers 1, 2,

3, 4 correspond to the distances of the 1st, 2nd, 3rd, 4th coordination spheres of the carbon

atom) in the host iron bcc lattice. Assuming that atomic jumps take place only between the

nearest neighbor positions, Lpq(r) = 0 for the distance bigger then a0/2. The Fourier transform

of coefficients eLpp(k) which describe atomic jumps inside the octahedral sublattice p is

eLpp(k) = Lpp(r = 0)e−ik0 +
X

r

′

Lpp(r)e
−ikr = L(0). (5.5)

Here the sum with prime symbol means that the term r = 0 is omitted. Kinetic coefficients

which describe the exchange between sublattices are

eL12(k) =
X

r

′

L12(r)e
−ikr = L(a0/2)2 cos

kza0
2

,

eL13(k) = L(a0/2)2 cos
kya0
2

, (5.6)

eL23(k) = L(a0/2)2 cos
kxa0
2

.
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The free energy functional in the Fe-C system with three octahedral sublattices in mean-field

approximation is

F =
1

2

X

p,q

X

r,r′

wpq(r− r′)np(r)nq(r
′)+

kBT
X

r

X

p

[np(r) lnnp(r) + (1− np(r)) ln (1− np(r))] , (5.9)

where kB is the Boltzmann constant, T is the temperature, wpq(r− r′) is the effective pairwise

energy between carbon atoms in (p, r) and (q, r′) sites. The Fourier transform of the potential

wpq(r) is

ewpq(k) =
X

r

wpq(r)e
−ikr. (5.10)

In the subsection the interaction potential wpq(r) will be presented in details.

5.1.1 Interaction potential

The interaction between two carbon atoms can be divided in the two contributions: the elastic

interactions wpq
elas(r) and chemical wpq

chem(r) one. In our model we will use the Fourier

representation of these potentials. Then the total interaction potential is:

ewpq(k) = ewpq
elas(k) + ewpq

chem(k). (5.11)

5.1.1.1 Effective elastic interactions

First, we will consider the elastic part of the interaction potential. As it was mentioned above,

the carbon atoms occupy octahedral interstitial positions in the iron host lattice (Fig.5.4). In

the bcc lattice the interstitial atom has two nearest neighbor iron atoms. The octahedral voids

are smaller then the radius of carbon (Fig.5.6). Therefore, the carbon atoms induce a tetragonal

distortion in the host bcc lattice. Then the lattice expansion ε̄ij related to this distortion is

ε̄ij = uij(p)n̄p, (5.12)

where uij(p) are the concentration expansion coefficients and n̄p is the mean concentration of

carbon atoms in p-sublattice. The expansion coefficient uij(p) is defined by the next expression:

uij(p) =
dap
adn̄p

δij . (5.13)

Here {ap} = a1, a2, a3 are the lattice translations along [100], [010] and [001] directions. The

concentration expansion coefficients describe the deformation induced by carbon atom situa-

ted in p octahedral sublattice. If carbon atoms occupy, for example, 1st sublattice there is
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The strain-induced interaction potential obtained using the Kanzaki forces by Krivoglaz [53]

and by Khachaturyan [17] reads:

ewpq
elas(k) =







−v0λijkluij(p)ukl(q) +Qδpq at k = 0,

−Fi(p,k)Gij(k)F
∗

j (q,k) +Qδpq at k 6= 0.
(5.16)

Here the interaction potential is written for the atoms situated in (p, 0) and (q, r) interstices,

v0 is atomic volume and for the bcc lattice v0 =
a3
0

2 , λijkl is a tensor of elastic constants and for

cubic lattice it can be written in next form:

λijkl =

























C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

























. (5.17)

To exclude a self-interaction of interstitial atoms the constant Q is introduced. It can be

obtained by the averaging of the expression F(p,k)Ĝ(k)F∗(q,k) over the first Brillouin zone of

the bcc lattice:

Q =
1

N0

X

k

Fi(p,k)Gij(k)F
∗

j (p,k) = hFi(p,k)Gij(k)F
∗

j (p,k)i. (5.18)

The Green function Ĝ(k) in (5.16) is the inverse matrix of the dynamical matrix
ê
A(k):

Gij(k) =
h
eAij(k)

i
−1

(k 6= 0) . (5.19)

The dynamical matrix is a function of the elastic constants λijkl and lattice parameter a0.

The analytical form of its components eAij(k) can be expressed in terms of the Born-Karman

constants and in two coordination shells approximation for bcc lattice (see Appendix D):

eAxx(k) = 8α1

h
1− cos(kx

a0
2
) cos(ky

a0
2
) cos(kz

a0
2
)
i
+

h
4α2 sin

2(kx
a0
2
) + 4β2(sin

2(ky
a0
2
) + sin2(kz

a0
2
))
i
, (5.20)

eAxy(k) = 8γ1 sin(kx
a0
2
) sin(ky

a0
2
) sin(kz

a0
2
).

The force constants α1, α2, γ1 and β2 are [53]

α1 =
C44

2
a0, α2 =

C11 − C44

2
a0, γ1 =

C12 + C44

4
a0, β2 = 0. (5.21)
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The expressions for the other components eAij(k) can be obtained by cyclic permutations:

x → y,

y → z,

z → x.

Using (5.14) and (5.17) we can obtain the potential (5.16) at the point k = 0:

ewpp
elas(k = 0) = −

a30
2

�

2(C11 + C12)u11
2 + C11u33

2 + 4C12u11u33
�

+Q,

ewpq
elas(k = 0) = −

a30
2

�

(C11 + 3C12)u11
2 + C12u33

2 + 2(C11 + C12)u11u33
�

.

We will use the energy unit C44a
3
0u33

2 to rewrite the potential (5.16) in the dimensionless form:

ewpq
elas(k 6= 0)

C44a30u33
2

=
−Fi(p,k)Gij(k)F

∗

j (q,k) +Qδpq

C44a30u33
2

. (5.22)

And at k = 0:

ewpp
elas(k = 0)

C44a30u33
2

= −
1

2

�

2(C11 + C12)t1
2 + C11 + 4C12t1

�

/C44 +
Q

C44a30u33
2
,

ewpq
elas(k = 0)

C44a30u33
2

= −
1

2

�

(C11 + 3C12)t1
2 + C12 + 2(C11 + C12)t1

�

/C44. (5.23)

Here t1 = u11/u33 is a tetragonality factor.

5.1.1.2 Effective chemical interactions

Due to the fact that the distance between the nearest neighbor octahedral interstitial atoms

(a0/2 = 1.433Å) is smaller then the effective diameter of carbon atom (dC = 1.54Å) there is

a strong repulsion between the neighboring carbon atoms. Therefore, in chemical part of the

effective potential wpq(r) we took into account the contact repulsion between carbon atoms from

the first coordination shell. The repulsion between diluted carbon ions caused by a screened

Coulomb interaction will be also taken into account. The energies of these interactions can be

calculated using ab initio methods. Such calculations have been done for the carbon-carbon

interactions in various papers [21–23, 104, 105]. In particular, it has been shown that the

energy of chemical carbon-carbon interactions decreases rapidly with distance. In this work we

consider the chemical interactions between carbon atoms from the first four coordination shells.

In Table 5.1 the pairwise interaction energies Wi between carbon atoms placed in octahedral

interstices of the host iron lattice are presented. Index i = 1, 4 in energies Wi marks the number

of coordination shell, the prime symbol is used to distinguish the interactions between two

atoms located at the same distance, but situated in one or different sublattices. The positions

of neighbor octahedral interstitial sites of carbon atoms are shown in Fig.5.5. The 1st, 2nd,
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Table 5.1: Pairwise interaction energies Wi obtained in first-principles calculations [21–23]
and used in this work.

Udyansky et al. [22], eV Johnson et al. [21], eV Ruban [23], eV This work, eV

W1 3.13 - 3.12 6.26
W2 0.87 - 1.0 1.74
W3 0.27 0.13 0.38 0.54

W
′

3 0.27 0.08 0.38 0.54
W4 1.4 0.11 1.45 2.8

W
′

4 0.23 0.11 0.33 0.46

3rd and 4th neighbors are situated at distances a0/2, a0
√
2/2, a0

√
3/2 and a0, respectively. To

adapt the ab initio calculations to mean field modeling we kept the same energy as in the work

of Udyansky et al. [22] but results of the mean-field theory (the second column in Table5.1)

are multiplied by two. Using this set of parameters the contribution of the elastic and chemical

energy to free energy becomes approximately the same. It also help us to obtain the carbon

rich zones with large thickness.

For the following calculations it is convenient to write the potential wpq(r) in Fourier space.

In the case when the carbon atoms occupy only one sublattice (p = q) there are eight possible

neighbors in 3rd coordination shell and six in 4th one. Using (5.10) the Fourier transform of

wpp(r) is

ewchem
11 (k) = 8W3 cos(

kxa0
2

) cos(
kya0
2

) cos(
kza0
2

)+

+ 2W4 (cos(kya0) + cos(kza0)) + 2W
′

4 cos(kxa0),

ewchem
22 (k) = 8W3 cos(

kxa0
2

) cos(
kya0
2

) cos(
kza0
2

)+

+ 2W4 (cos(kxa0) + cos(kza0)) + 2W
′

4 cos(kya0),

ewchem
33 (k) = 8W3 cos(

kxa0
2

) cos(
kya0
2

) cos(
kza0
2

)+

+ 2W4 (cos(kxa0) + cos(kya0)) + 2W
′

4 cos(kza0).

(5.24)

Here W3 and W4 are the chemical interaction energy in third and forth coordination shell. In

the case when the carbon atoms are situated in two sublattices (p 6= q), there are two neighbors

in 1st coordination shell with pairwise interaction energy W1, four in the 2nd and eight in the

3rd with interaction energies W2 and W
′

3, respectively. Thus, the Fourier representation of the
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interaction potentials wpq(r) for p 6= q is

ewchem
12 (k) = 2W1 cos(

kza0
2

) + 4W2 cos(
kxa0
2

) cos(
kya0
2

)+

+ 4W
′

3 cos(
kza0
2

) (cos(kxa0) + cos(kya0)) ,

ewchem
13 (k) = 2W1 cos(

kya0
2

) + 4W2 cos(
kxa0
2

) cos(
kza0
2

)+

+ 4W
′

3 cos(
kya0
2

) (cos(kza0) + cos(kxa0)) ,

ewchem
23 (k) = 2W1 cos(

kza0
2

) + 4W2 cos(
kya0
2

) cos(
kza0
2

)+

+ 4W
′

3 cos(
kxa0
2

) (cos(kya0) + cos(kza0)) .

(5.25)

Using the expression (5.9) with (5.10) the kinetic equation (5.1) can be written as:

denp(k, t)

dt
=

1

kBT

3X

q=1

eLpq(k)

�

ewsq(k)ens(k, t) + kBT

�

ln
nq(r, t)

1− nq(r)

�

k

�

. (5.26)

Numerical solution of this equation allows to follow the kinetics of carbon diffusion in martensite.

5.1.2 Scattering intensities of the imperfect crystal lattice structure

To characterise the obtained microstructure the diffraction pattern should be also simulated.

Since we use in our simulation the ADF theory on constrained Ising lattice the displacement of

carbon atoms cannot be visualized in the real space. However it can be taken into account in

calculation of diffraction patterns.

Then the positions of iron atoms are described by the radius vector r +
P

p u(p, r), where

r corresponds to positions in a perfect crystal lattice and u(p, r) is a displacement caused by

a diluted atom in p octahedral sublattice. The carbon atoms positions are determined by the

vector r + hp, where vector hp determines the position of the p sublattice. In the case of the

bcc host lattice these vectors are

h1 = (a0/2, 0, 0),

h2 = (0, a0/2, 0),

h3 = (0, 0, a0/2).

According to the mentioned above the scattered wave amplitude of the Fe-C system can be

written as:

A(q) =
X

r

"
fFee

−iq(r+
�

p u(p,r)) + fC
X

p

e−iq(r+hp)np(r)

#
. (5.27)
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Here fFe = 26 and fC = 6 are atomic factors of iron and carbon atoms. It is convenient to

represent a point in reciprocal space as

q = 2πH+ k,

where H is a reciprocal lattice vector closest to the point q, k is a distance between the obser-

vation point q and vector 2πH. According to this representation it can be written:

e−iqr = e−i(2πH+k)r = e−ikr. (5.28)

Therefore expression (5.27) may be rewritten as

A(q) =
X

r

e−ikr

"
fFee

−iq
�

p u(p,r) +
X

p

fCe
−iqhpnp(r)

#
. (5.29)

For the small displacements u(p, r) Eq. (5.29) can be simplified:

A(q) ≈
X

r

e−ikr

"
fFe − ifFeq

X

p

u(p, r) + fC
X

p

e−iqhpnp(r)

#
. (5.30)

In (5.30) we used

e−iq
�

p u(p,r) ≈ 1− iq
X

p

u(p, r).

The Fourier transform of atomic displacements is

eu(p,k) =
X

r

u(p, r)e−ikr. (5.31)

The displacement eu(p,k) can be calculated using the Kanzaki forces:

eu(p,k) = Ĝ(k)F(p,k)enp(k) = eu0(p,k)enp(k), (5.32)

where the vector eu0(p,k) = Ĝ(k)F(p,k).

Substituting Eqs.(5.31) and (5.32) into Eq.(5.30) gives

A(q) = fFe
X

r

e−ikr +
3X

p=1

h
−ifFeqeu0(p,k) + fCe

−iqhp

i
enp(k). (5.33)

The diffraction intensities are proportional to the square of absolute value of scattered am-

plitude:

I(q) = |A(q)|2 . (5.34)
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Using (5.33) in (5.34) gives finally the expression for the scattered intensity:

I(q) =

�

�

�

�

�

�

fFe
X

r

e−ikr +

3X

p=1

h
−ifFeqeu0(p,k) + fCe

−iqhp

i
enp(k)

�

�

�

�

�

�

2

. (5.35)

In Eq.(5.35) the first term is equal 0 for each point k 6= 0, so
PN

r=1 e
−ikr = Nδ(k). The

second term gives zero at points 2πH. Therefore we can present diffraction intensity as a sum of

the scattering intensity of the perfect crystal I0(q) and the scattering intensity IC(q) associated

with a carbon influence:

I(q) = I0(q) + IC(q), (5.36)

where

I0(q) = f2
FeN

2δ(k) (5.37)

and

IC(q) =

�

�

�

�

�

�

3X

p=1

h
−ifFeqeu0(p,k) + fCe

−iqhp

i
enp(k)

�

�

�

�

�

�

2

. (5.38)

This is the final formula which gives the possibility to calculate the scattering intensity in the

iron-carbon system.

5.2 Simulation results

To perform the computer modeling of atomic diffusion kinetics during aging of martensite

phase, the atomic density function kinetic equation (Eq.(5.26)) for occupation density, np(r, t)

should be numerically solved. Typically, in the freshly formed martensite the carbon atoms are

randomly distributed only in one octahedral sublattice of the bcc iron lattice [106]. This kind

of distribution corresponds to the α
′

phase of martensite.

In our simulation the initial state was a random distribution of the carbon atoms in the

three iron octahedral sublattices with average concentrations n̄1 = 0.02 and n̄2 = n̄3 = 0.002.

This distribution reflects the preferential occupation of the sublattices by carbon atoms. At

each point of sublattice p the values of occupation densities np(r, t) are given as n̄p ± Δnp,

where Δnp varies randomly within a range of 0 to 0.5n̄p. The iron host lattice was occupied

with probability 1 by iron atoms. In this case we can calculate the average concentration of

carbon atoms which in our case equal n̄C = 0.024. It corresponds to 2.34 at.% or 0.51 wt.%.

Let us remember that the value of Kanzaki forces is proportional to the tetragonality of

the system. The interaction parameters used in modeling are given in Table5.2. In this study
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Table 5.2: Experimental elastic constants Cij and lattice constant a0 of Fe in α phase.

a0, Å C11, GPa C12, GPa C44, GPa

2.865[17] 242[96] 146[96] 112[96]

we considered Kanzaki forces that correspond to two kinds of alloys: Fe-C and Fe-Ni-C. In the

case of Fe-C system the concentration expansion coefficients, that are used for the calculation

of Kanzaki forces, are u11 = −0.09, u33 = 0.86 and the corresponding tetragonality factor is

t1 = −0.1 [17]. For the other type of alloy, Fe-Ni-C, we used parameters proposed in [107] by

Taylor et al.: u11 = −0.275, u33 = 1.016 and t1 = −0.27. Thus, it will allow us to investigate

the effect of tetragonality on high-carbon regions formation.

The pairwise chemical interaction energies Wi used in modeling are presented in the fifth

column of Table5.1.

In our modeling all energetic parameters are expressed in the energetic unit C44a
3
0u33

2. In

this unit the energy kBT is 1.5 · 10−3. The time, t, is measured in units of typical atomic

migration time, τ0, and is proportional to L0Δf , where Δf is a driving force. Adimensional

kinetic coefficient, L0, equal 1/12 was used. In computations the simulation box 1283 has been

used.

5.2.1 Modeling with t1 = −0.1

For the α-Fe-C alloy the concentration expansion coefficients are u11 = −0.09, u33 = 0.86 [17].

Then the tetragonal factor is t1 = −0.1.

First, using the concentration wave method [17] we will analyze the conditions under which

the system looses stability and the ordered phase phase forms from a disordered solution. To this

end, we will find the eigenvalues λs(k) of the matrix of potential ewpq(k) which are determined

from the equation:

�

�

�

�

�

�

�

�

ew11(k)− λ ew12(k) ew13(k)

ew12(k) ew22(k)− λ ew23(k)

ew13(k) ew23(k) ew33(k)− λ

�

�

�

�

�

�

�

�

= 0. (5.39)

Cubic equation (5.39) has three solutions λ1(k), λ2(k) and λ3(k). The minimal value of ei-

genvalues λs(k) (s = 1, 3) determines the temperature of the order-disorder phase transition,

Tc:

Tc = −
n̄C(1− n̄C)λs0(ks0)

kB
, (5.40)

where index s0 denotes the lowest branch of the eigenvalues spectrum λs(k), the star of the

vector ks0 corresponds to the global minimum of λs(k). If ks0 = 0 the aging kinetics will be

determined by the spinodal decomposition. However if the global minima takes place at ks0
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Equations (5.43) and (5.44) have only one solution corresponding to the eigenvalue λ1(0):

v1(p, 0) =
1
√
3









v1(1, 0)

v1(2, 0)

v1(3, 0)









=









1

1

1









. (5.45)

The eigenvectors which correspond to eigenvalue λ2(0) are

v2(p, 0) =
1
√
6















2

1̄

1̄















and
1
√
2















1

1̄

0















. (5.46)

If the dominant mode is v1(p, 0)e
−i0r, using (5.41), then the carbon distribution for the first

eigenvalue is

n(p, r) =









n(1, r)

n(2, r)

n(3, r)









=
n̄C

3









1

1

1









+ η1









1

1

1









. (5.47)

Since the occupation probabilities n(p, r) = n̄C

3 +η1 for different sublattices are equal, the mode

v1(p, 0) corresponds to the disordered phase of carbon. Here we defined: η1 = η10γ1/
√
3. For

the second eigenvalues (5.46) there are two wave vectors and the probability function can be

written as

n(p, r) =









n(1, r)

n(2, r)

n(3, r)









=
n̄C

3









1

1

1









+ η2









2

1̄

1̄









+ η′2









1

1̄

0









. (5.48)

Here η2 = η20γ2/
√
6 and η′2 = η′20γ

′

2/
√
2. The long-range parameters, ηs0, depend of the

eigenvalues λs(ks), tetragonality, t1, temperature, T , and the average concentration of carbon,

n̄C . Since the distribution (5.48) is determined by weights η2 and η′2 of the vectors (5.46), all

these factors will affect the final distribution of carbon between octahedral sublattices.

To summarize, the kinetics during aging will be determined by the lowest eigenvalue (5.47)

or (5.48).

In the case of Fe-C system with the tetragonality t1 = −0.1, without taking into account

the chemical interactions (case when ewpq(k) = ewpq
elas(k), see Fig.5.7), the eigenvalues are

λ1(k0 = 0) = −1.123,

λ2(k0 = 0) = −0.15.
(5.49)

Since the λ1(0) < λ2(0) the carbon atoms will undergo the spinodal decomposition and in the

final structure will occupy all three octahedral sublattices with equal probabilities.
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5.2.4 Discussion

Now we will compare the obtained results with experimental data.

First, we consider the thermodynamics of carbon ordering (within the meaning of Zener-

ordering). In the approach proposed by Khachatuyan [17] and used in present work it is possible

to define the composition-dependent critical temperature for carbon ordering. As it was shown

above, the ordered state is stable when λ2(k = 0) < λ1(k = 0). Then the atomic density

function probability is described by Eq.(5.48). Within the mean-field approximation the free

energy of this ordering structure can be expressed as

F (n̄C , η) = U − TS =
1

2
3Nλ1(0)

� n̄C

3

�2

+ 3Nλ2(0)
� n̄C

3

�2

η2

+ kBTN
n
2
n̄C

3
(1− η) ln

h n̄C

3
(1− η)

i
+

n̄C

3
(1 + 2η) ln

h n̄C

3
(1 + 2η)

i

+ 2
h
1−

n̄C

3
(1− η)

i
ln
h
1−

n̄C

3
(1− η)

i

+
h
1−

n̄C

3
(1 + 2η)

i
ln
h
1−

n̄C

3
(1 + 2η)

io
.

(5.55)

Here the first two terms describe the internal energy U and the other terms correspond to the

entropy S in mean-field approximation. η is the long-range order parameter, N is a number of

all atoms of the system. The temperature dependence of the long-range order parameter η can

be found by minimization of free energy Eq.(5.55):

kBT

λ2(0)n̄C
= −

η

ln
�

(1 + 2η)
�

(1− η)
� . (5.56)

Eq.(5.56) was obtained for small concentrations of carbon, n̄C ≪ 1.

The temperature of order-disorder transition, T0, can be found from the equilibrium condi-

tion

F (n̄C , η0) = F (n̄C , 0). (5.57)

Here η0 is the equilibrium long-range-order parameter, the case when η = 0 corresponds to the

disordered state.

The solution of transcendental equations (5.56) and (5.57) gives the expression for the critical

temperature Tc

Tc = −1.08
λ2(0)n̄C

3kB
. (5.58)

The phase diagram of Fe-C with ordered and disordered phases is presented in Fig.5.30.

The temperatures of order-disorder transformation obtained for parameters used in our model

are presented by blue (for t1 = −0.1) and red (for t1 = −0.27) lines. For the comparison, it

is also given critical temperatures obtained within Khachaturyan [17] and Zener [16] models.
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Table 5.3: Modeling results for systems with tetragonality factors t1 = −0.1 and t1 = −0.27
with and without Zener-ordering. Vector n characterizes the direction of carbon-rich zones
elongation. Wave vectors ki describe the superstructure formed by carbon atoms. Average

concentrations n̄c(p) represents the occupancy of octahedral sublattices.

t1 n Zener-ordering ki n̄c(p)

n̄1 = 2.4%
-0.1 ∼ [2 1̄ 0] yes {1

2
1
2
1
2}, {100} n̄2 = 0.0%

n̄3 = 0.0%

n̄1 = 1.91%
-0.1 ∼ [2 1̄ 0] no {1

2
1
2
1
2}, {100} n̄2 = 0.34%

n̄3 = 0.15%

n̄1 = 2.4%
-0.27 ∼ [2̄ 3 0] yes {1

2
1
2
1
2}, {100} n̄2 = 0.0%

n̄3 = 0.0%

n̄1 = 0.84%
-0.27 − no {1

2
1
20}, {100} n̄2 = 0.86%

n̄3 = 0.70%

the direction of spikes, is slightly deviated from the angle between the [100] axis and [201]α′

direction. In our simulation with the average carbon concentration n̄C = 0.51 wt.% the angle θ

is equal 23.4◦ which is very close to the experimentally observed angle of ∼ 24◦ obtained in [6]

in the Fe-C system with the same average concentration of carbon. For the system with higher

tetragonality t1 = −0.27, which describes the Fe-Ni-C system, there is also good concordance

with experimental data of diffuse spikes elongation close to [023] direction [7].

In spite of good description of a morphology of carbon in carbon-rich zones, the model does

not give the expected concentration of carbon in carbon rich zones. The observed concentration

at room temperature in these zones during earlier stages of aging is lower then that obtained in

our simulation. In the most of cases in our simulations the carbon rich zones reach the value 20

at.% of carbon. It was shown experimentally in Fe-Ni-C alloys with low carbon content [45–47]

at the earlier stages of aging at room temperature that carbon concentration does not exceed

the value of 11 at.%. Such carbon content (11 at.%) has been obtained with the tetragonality

factor t1 = −0.27 without Zener-ordering.

Also, it is very important to note that the α′′ phase, which is obtained in the case of the

system with t1 = −0.27 without Zener-ordering, does not observed in experimental studies. It

should be noted that in experimental data the long-period ordered metastable phases has been

proposed [9] to explain the experimentally observed diffraction patterns. Some of them based on

the fcc lattice. To model these long-periodic structures the ADF method should be improved.

5.3 Conclusions

In this chapter the ADF theory on constrained Ising lattice to describe carbon diffusion in

Fe-C alloys has been used. In considered model the carbon-carbon interatomic interaction was
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divided in two parts: elastic and chemical part. The elastic part of interaction potential was

calculated using the microscopic elasticity theory developed by Kurdjumov and Khachaturyan.

The chemical pairwise interaction energies were fitted on the ab initio calculations.

The numerical resolution of the kinetic microscopic equation gave a possibility to reproduce

the kinetics of the redistribution of carbon atoms on the three octahedral sublattices in bcc

Fe-C and Fe-Ni-C alloys.

It was shown that at the beginning the carbon kinetics is governed by the spinodal decompo-

sition and small carbon rich zones appear. During growth these zones elongated to some special

crystallographic directions to minimize the free energy of system. Simulation results are in good

agreement with experimental data and reproduce quite well the direction of the alignment of

these zones. These directions for the Fe-C and Fe-Ni-C systems are [21̄0] and [2̄31], respectively.

To understand the influence of Zener-ordering on carbon rich zones two kinds of modeling has

been done, with and without of point k = 0 of the FT in the interaction energy. The simulations

with Zener-ordering tetragonality gives Fe4C and Fe2C stoichiometric compositions, which are

too high in comparison with experimentally observed concentrations in the carbon-rich zones.

Modeling without Zener-ordering with t1 = −0.27 gives the concentration in carbon-rich zones

close to 11at.% observed in experience in the carbon-rich zones in the Fe-Ni-C alloys during

aging at room temperature. The simulation and experimental results show that the carbon-rich

phase with such concentration is quite stable during kinetics at low temperature.



Conclusions and future prospects

The aim of this work was to develop and to apply the atomistic model to describe the growth

of martensite in austenite phase and low temperature diffusion kinetics of carbon atoms in

martensite phase.

To achieve this goal the new atomistic method, Atomic Fraton Theory, has been developed.

The proposed theory rests on two novel conceptual premises: (a) the introduction of interacting

pseudoparticles that we call fratons that described two configurational states of each point of

continuum space. One of them is an event in which the point is inside the atomic sphere of

any atom and the other is an event in which the point is outside of atomic sphere; the fratons

are considered as a non-ideal gas whose ”condensation” describes a diffusional self-assembling of

atomic system, and (b) a concept of a structural cluster function describing the directions, length

and strength of interatomic bonds. The latter allows us to formulate a new and simple model

Hamiltonian that is proportional to a bilinear expansion in these cluster functions. This model

Hamiltonian provides the formation of a predetermined atomic structure and has a sufficient

flexibility to describe the desired mechanic and thermodynamic properties of this structure. It

should be noted that the proposed cluster formulation of the model Hamiltonian has its own

more general intrinsic value: in principle, it can be used not only in our theory but in other

methods as well.

The modeling based on the proposed theory is at atomic resolution, and addresses the time

scale commensurate with a typical diffusion time, which may range from a fraction of a second

to years. To demonstrate a potentiality and versatility of our approach, we tested its application

to a self-assembling of disordered systems to three groups of systems of increasing topological

complexity, viz., single component crystals (fcc and diamond structures), two component cry-

stals (zinc-blend structure), and polymers (self-assembly of the randomly distributed monomers

into single-strand and double-stranded helixes, which may mimics the DNA structure formation

from nucleotides).

To describe the martensite transformation from austenite phase the AFT theory was used.

Since this transformation is undergo by the displacements of atoms, a given method was a

natural choice to model this kind of transition in order to understand at atomic scale how

martensite transformation proceeds. It was shown that a martensite nucleus cannot growth
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as monovariant particle in austenite matrix and during its growth is transformed to a multi-

variant aggregate. This multivariant structure consists from two twin related KS variants. Using

our simulation results in direct and reciprocal spaces we identified the orientation relations

between two martensite variants and calculated the angle between them. In particular, the

pole figures have been used to identify the nature of coexisting variants and the calculated

diffraction pattern allowed to determine the angle between these two variants. It was fond that

the misorientation angle between these two variants is 70.1◦. Our simulation results are in

good agreements with experience. AFT modelling has also allowed to establish the mechanism

of formation of second KS variants and to reproduce the periodic dislocation structure at the

interface austenite/martensite. It was shown that twin formed by the twinning dislocations

gliding on the successive {21̄1} planes.

The Atomic Density Function (ADF) approach on the constrained Ising lattice, that is a

particular case of the AFT theory, was applied to model the carbon diffusion in martensite

phase. The input parameters of the model for the chemical interaction between carbon atoms

were derived from ab initio simulation. The elastic interaction induced of interstitial carbon

atoms was calculated using Kanzaki forces. Two systems with the tetragonality factors t1 = −0.1

and t1 = −0.27 was studied. First one can be associated with Fe-C and second one with Fe-

Ni-C compound. To simulate the diffusion of carbon atoms in these two compounds during low

temperature aging the microscopic diffusion equation for a three-component system has been

solved. In this modelling the iron, carbon and carbon vacancies were considered. It was shown

that during first stage of aging the carbon atoms undergo a spinodal decomposition on the

octahedral subsystem in the bcc lattice and form the carbon-rich zones. These zones growth

and carbon-rich domains becomes ordered with stoichiometric composition Fe4C or Fe2C. The

simulated ”tweed-like” morphology of carbon-rich zones is in a good agreement with experience.

However, the concentration inside of these domain is higher than the concentrations measured in

experience. Concentration in the core of areas rich in carbon reported in literature and obtained

by 3D atom probe analyses is between 10 and 16 at.% C. To explain this disagreement we

proposed to consider the case where kinetics of carbon atoms is governed by the thermodynamic

driving force where Zener ordering was excluded. It corresponds to the situation where the point

k=0 in the Fourier transform of interatomic interaction is excluded from consideration. This

particular point is responsible to appearance of Zener-ordering. This idea was put forward from

the fact that a long range elastic interaction, which is the origin of Zener ordering, can be

cancelled if studied system contains grain boundaries or other structural defects. Using this

hypothesis we show that during spinodal decomposition in Fe-Ni-C system with t1 = −0.27

the carbon-rich zones with the concentration 11 at.% are formed. Then these domains are

growing but the concentration did not differ during aging kinetics, indicating that this phase

is metastable. The crystal structure of the carbon-rich zone in this case corresponds to the α
′′

ordered phase. However, as these simulations were done without Zener ordering, the carbon
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atoms are distributed on the three octahedral sublattices and α
′′

phase is formed at each of

them. Then the final structure can be seen as an interposition of the three α
′′

structures.

As perspective the AFT theory can be applied to large game of self-assembly phenomena

or phase transformations where crystallographic structure is changing. In the further studies

it will be interesting to apply this approach to model martensite transformation with taking

into account the carbon atoms. The follow studies of Zener ordering and its influence on the

redistribution of carbon atoms during low temperature aging in Fe-C and Fe-Ni-C systems can

be also done. It will be very interesting and challenging to apply the AFT approach to reproduce

whole chain of metastables phases appearing during aging from virgin martensite to coexisting

of ferrite and carbide. All these metastables phases could be the member of adaptive phase

predicted by Khachaturyan in the previous theoretical work.

The AFT is a phenomenological approach and the quasiparticles using in this approach can

be interpreted at different scales. In principle, this approach can be even used for the description

of three-dimensional pattern formation by any macroscopic objects and optimisation of their

properties. The ”fratons” in this case being fragments of these objects are also macroscopic.

It will be also very challenging to continue develop this approach to model a self-assembly

in biological system. Our first results shown that this approach can reproduce the formation of

helix and double helix structures. Next developing of this method can open a way to model a

real structure of DNA molecule with four structural units.



Appendix A

Calculation of the elastic properties

of the potential

In this appendix, a method of calculation of the elastic constants of the bcc and fcc structures

is given.

Cubic systems have three independent elastic constants: C11, C12 and C44. To find them

three characteristic deformations [110] were used.

1) Uniform compression or expansion, r → (Î + δ̂bulk)r, with symmetric strain tensor

bδbulk =









δ 0 0

0 δ 0

0 0 δ









. (A.1)

Here δ is a magnitude of the strain.

2) Equal contraction and expansion along two cube edges: Ox and Oy, r → (Î+ δ̂dev)r, with

symmetric strain tensor

bδdev =









δ 0 0

0 −δ 0

0 0 0









. (A.2)

3) Simple shear, r → (Î + δ̂shear)r, with symmetric strain tensor

bδshear =









0 δ 0

0 0 0

0 0 0









. (A.3)
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The change in the energy per unit volume with respect to these deformations can be written

as

ΔF bulk ≈
9

2
Bδ2 +O

�

δ4
�

,

ΔF dev ≈ (C11 − C12) δ
2 +O

�

δ4
�

,

ΔF shear ≈
1

2
C44δ

2 +O
�

δ4
�

.

(A.4)

In (A.4) bulk modulus, B, is equal (C11 + 2C12) /3.

Therefore, the elastic constants can be found from the second derivative of the free energy

change with respect to δ. The free energy for the one component system used in Chapter4 is

F ({ρ(r)}, T ) =
1

2

X

r,r′

w(r− r′)ρ(r)ρ∗(r′) +
X

r

f({ρα(r)}, T ). (A.5)

Second term in Eq.(A.5) does not change with respect to deformations. Thus, only change of

internal energy, the first term in Eq.(A.5), contributes in the strain energy.

The deformation of the system can be provided by replacement r → (Î+ δ̂def )r in interaction

potential w(r):

w(r) → w
�

(Î + δ̂def )r
�

, (A.6)

where (Î + δ̂def ) is the matrix described deformation, δ̂def is the symmetric strain tensor.

Using Eq.(A.5) with replacement (A.6) the change in free energy is

ΔF =
1

2

X

r,r′

w
�

(Î + δ̂def )(r− r′)
�

ρ(r)ρ∗(r′)−
1

2

X

r,r′

w(r− r′)ρ(r)ρ∗(r′). (A.7)

Since in our simulations the FT of interaction potential is used, then the reciprocal lattice

transformation should be determined. For this it can be used the fact that the product of vector

r and corresponding vector of reciprocal space k is always equal 2π. Therefore, the product of

vectors r and k of not deformed system and product of vectors r′ and k′ of deformed system

are equal:

kr = k′r′. (A.8)

Substituting the relation r′ = Âr between initial and transformed lattices and Eq.(A.8):

kr = k
�

Â−1Â
�

r =
�

kÂ−1
��

Âr
�

= k′r′, (A.9)

where Â = Î + δ̂def . Thus, vector k
′ of deformed system is

k′ = kÂ−1 =
�

Â−1
�T

k =
�

(Î + δ̂def )
−1

�T
k. (A.10)
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For the considered deformations the vector k′ is

1) for uniform compression or expansion:

k′ =
�

kx/(1 + δ) ky/(1 + δ) kz/(1 + δ)
�

; (A.11)

2) for equal contraction and expansion along two cube edges: Ox and Oy:

k′ =
�

kx/(1 + δ) ky/(1− δ) kz

�

; (A.12)

3) for simple shear:

k′ =
�

kx ky − δkx kz

�

. (A.13)

The FT of change of free energy (A.7) using Eq.(A.10):

ΔF =
1

2

X

k

�

ew
�

�

(Î + δ̂def )
−1

�T
k

�

− ew(k)
�

|ρ(k)|2 . (A.14)

The change of free energy (A.14) could be found using potentials (4.12) and (4.19) with

density functions of fcc and bcc phases at equilibrium. The free energy of deformed crystal was

calculated with δ = δ0n, where n is integer and δ0 = 0.002. To approximate the derivative of

the change in free energy a centered difference formula was used:

f ′(xi) ≈
f(xi+1)− f(xi−1)

2δ
. (A.15)

Finally, using the same approach the second derivative of free energy in δ = 0 with respect to δ

for the three characteristic deformations can be also evaluated. These derivatives are equal to

the coefficients at δ2 in Eqs.(A.4). Calculated elastic constants for the fcc and bcc phases are

given in TableA.1.

Table A.1: Elastic constants Cij for the bcc and fcc lattice structures. Elastic constants used
in this work are presented in dimensionless form.

Structure C11 C12 C44

bcc 0.233 0.101 0.086

fcc 0.139 0.081 0.090
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Then at the end, the value I(ϕ, θ) of each cell are projected on the projected plane using the

scheme described above.
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with iron atoms from the first two coordination shells, the Kanzaki forces have a form:

f(3, r) =



















(0, 0,±fz(3)) , if r = (0, 0,±a0/2) ,

(±fx(3),±fy(3), 0) , if r = (±a0/2,±a0/2, 0) ,

0, otherwise.

(C.1)

The Kanzaki forces components fi(p) can be found from

σ0
ij(p) =

1

2v0

X

r

(fi(p)rj + fj(p)ri) , (C.2)

where v0 =
a3
0

2 is a volume per atom in the bcc lattice, σ0
ij(p) are the components of the tensor

which describes the transformation stress:

σ0
ij(p) = λijklukl(p). (C.3)

Using the expansion coefficients (5.14) and tensor of elastic constants (5.17) the tensors σ0
ij(p)

can be written as

σ0
ij(1) =









σ0
33 0 0

0 σ0
11 0

0 0 σ0
11









, σ0
ij(2) =









σ0
11 0 0

0 σ0
33 0

0 0 σ0
11









, σ0
ij(3) =









σ0
11 0 0

0 σ0
11 0

0 0 σ0
33









,(C.4)

here

σ0
11 = (C11 + C12)u11 + C12u33,

σ0
33 = 2C12u11 + C11u33. (C.5)

Then to obtain the components of Kanzaki forces then three independent equations from

equation (C.2) using (C.1) can be done:

σ0
ij(p) =

1

2v0

X

r

2fi(p)riδij , (C.6)

or for the carbon situated in the Oz octahedral sublattice

σ0
xx(3) =

1
2v0

2
�

fx(3)
a0
2 + fx(3)

a0
2 − fx(3)

�

−a0
2

�

− fx(3)
�

−a0
2

��

= 2
v0
fx(3)a0,

σ0
yy(3) =

1
2v0

2
�

fy(3)
a0
2 − fy(3)

�

−a0
2

�

+ fy(3)
a0
2 − fy(3)

�

−a0
2

��

= 2
v0
fy(3)a0, (C.7)

σ0
zz(3) =

1
2v0

2
�

fz(3)
a0
2 − fz(3)

�

−a0
2

��

= 1
v0
fz(3)a0.
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The equations (C.8) give the forces components fi(3):

fx(3) =
a20
4
σ0
11(3),

fy(3) =
a20
4
σ0
11(3), (C.8)

fz(3) =
a20
2
σ0
33(3).

The elastic interaction potential representation (5.16) needs to introduce the Fourier trans-

form of the Kanzaki forces:

F(p,k) =
X

r

f(p, r)e−ikr. (C.9)

Considering the expressions for the Kanzaki forces (C.1) and its components (C.9) the Fourier

transform F(p,k) is

F(3,k) =









0

0

fz(3)









e−ikza0/2 +









0

0

−fz(3)









eikza0/2 +









fx(3)

fy(3)

0









e−i(kx+ky)a0/2

+









fx(3)

−fy(3)

0









e−i(kx−ky)a0/2 +









−fx(3)

fy(3)

0









e−i(−kx+ky)a0/2 +









−fx(3)

−fy(3)

0









e−i(−kx−ky)a0/2,

or

F(3,k) =









fx(3) (−4i sin(kxa0/2) cos(kya0/2))

fy(3) (−4i sin(kya0/2) cos(kxa0/2))

fz(3) (−2i sin(kza0/2))









.

Finally

F(3,k) =









−ia20σ11 sin(kxa0/2) cos(kya0/2)

−ia20σ11 sin(kya0/2) cos(kxa0/2)

−ia20σ33 sin(kza0/2)









. (C.10)

Kanzaki forces for atoms placed in the other octahedral sublattices can be obtained using

cyclic permutations:

x → y,

y → z,

z → x.
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Thus the Fourier transform of the Kanzaki forces which are caused by the atoms diluted in the

Ox octahedral sublattice(p = 1) of the bcc lattice is

F(1,k) =









−ia20σ33 sin(kxa0/2)

−ia20σ11 sin(kya0/2) cos(kza0/2)

−ia20σ11 sin(kza0/2) cos(kya0/2)









. (C.11)

And for the case when p = 2:

F(2,k) =









−ia20σ11 sin(kxa0/2) cos(kza0/2)

−ia20σ33 sin(kya0/2)

−ia20σ11 sin(kza0/2) cos(kxa0/2)









. (C.12)

The expressions (C.11), (C.12) and (C.10) can be used for all kinds of point defects placed in

octahedral interstices of the bcc host lattice.



Appendix D

Calculation of dynamical matrix for

bcc lattice structure

In this appendix, the dynamical matrix for bcc lattice structure are obtained and Born-von

Karman constants through elastic constants are expressed.

For the description of dynamical properties of a crystal it is convenient to use the theory of

lattice vibrations. The basic theory of this phenomena has been described in detail, for example,

in [112],[113] and [114].

In the next consideration it assumed that the mean equilibrium positions of each atom, s,

is a Bravais lattice site, Rs. Therefore, the position of an atom in crystal, rs, can be described

by the displacement u(Rs) from the nearest equilibrium position Rs of atom s:

r(Rs) = Rs + u(Rs).

The free energy E can be presented as a function of the static displacements E = E(u(Rs)).

If the amplitude of atomic deviations is smaller then the interatomic distance, then we can

expand the free energy in Taylor series near equilibrium positions Rs:

E = E0 +
X

s

∂E

∂ui(Rs)

�

�

�

�

u≡0

ui(Rs) +
1

2

X

ss′

∂2E

∂ui(Rs)∂uj(Rs′)

�

�

�

�

u≡0

ui(Rs)ui(Rs′) +O(u3).(D.1)

Here ui(Rs) (i = ¯x, y, z) are components of a displacement vector u(Rs), E0 is an energy of the

system at equilibrium. The second term in (D.1) is vanished because the free energy reaches

a minimum ( ∂E
∂u(Rs)

�

�

�

u≡0
= 0) when the positions of all atoms correspond to sites of perfect

crystal. This leads to a harmonic approximation which is sufficiently accurate to describe most

of the lattice dynamical effect of interest. In the harmonic approximation the free energy has

sense of the potential energy of the imperfect crystal. It should be noted that in the case of a

crystal with defects the equilibrium positions don’t correspond to the minimum of free energy

and derivatives ∂E
∂u(Rs)

don’t vanish.
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The second non-vanishing term in (D.1) is

Eharm =
1

2

X

ss′

Aij(Rs −Rs′)ui(Rs)uj(Rs′),

or

Eharm =
1

2

X

ss′

uT (Rs)Â(Rs −Rs′)u(Rs′).

(D.2)

Here Aij(Rs −Rs′) is a force constants tensor (Born-von Karman tensor), that determines the

force acting on atom s′ in j-direction when atom s is displaced in i-direction:

Aij(Rs −Rs′) =
∂2E

∂ui(Rs)∂uj(Rs′)

�

�

�

�

u≡0

. (D.3)

The set of interatomic force constants Aij(Rs − Rs′) characterizes the rigidity of the lattice

against displacements. The lattice symmetry determines the number of unique Born-von Kar-

man constants.

Using Born-von Karman constants we can express a force on atom s, F, by the relative

displacements of all other atoms:

Fi(Rs) = −
∂Eharm

∂ui(Rs)
= −

X

s′

Aij(Rs −Rs′)uj(Rs′) =

= −
X

s′

[Aix(Rs −Rs′)ux(Rs′) +Aiy(Rs −Rs′)uy(Rs′) +Aiz(Rs −Rs′)uz(Rs′)] .
(D.4)

Before the determination of the Born-von Karman constants value we consider some sym-

metry properties of the tensor Â(R).

The first property follows from the fact that the differentiation order in (D.3) is not impor-

tant:

Aij(Rs −Rs′) = Aji(Rs −Rs′). (D.5)

Also, due to the inversion symmetry of the Bravais lattice the configurational energy (D.2)

does not change with change of the displacement u(Rs) to the opposite direction −u(−Rs):

Aij(Rs −Rs′) = Aij(Rs′ −Rs), or Â(R) = Â(−R). (D.6)

If we give the same displacement for all atoms (u(R) ≡ a) in crystal, it will lead only to

the displacement of whole crystal without internal distortion. The potential energy E will not

change due to this operation (E = E0). Thus,

Eharm =
1

2

X

ss′

Aij(Rs −Rs′)aiaj =
1

2

X

ij

aiajN

 
X

s

Aij(Rs)

!
= 0. (D.7)
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Since the displacement a is an arbitrarily chosen vector, Eq.(D.7) reduces to the condition:

X

s

Aij(Rs) = 0. (D.8)

Now, we will consider the symmetry relations between components of tensor Â(R) in the bcc

lattice. Since we regard perfect crystal containing atoms of one kind, force constants Aij(Rs −

Rs′) depend only of vector R = Rs−Rs′ . We assume that interatomic forces strongly decrease

with increasing distance between atoms. Therefore, we will take into account only first two

coordination shells in the bcc lattice. In the bcc lattice each atom s has eight nearest neighbors

and six neighbors from the second coordination shell. All neighbors of atom s, that we took

into consideration, are listed in Table D.1. For convenience, we placed atom s in the origin.

Table D.1: Tensor of Born-von Karman constants Â(R) for the bcc lattice. Constants
Aij

(1)(R) and Aij
(2)(R) correspond to the interatomic interactions with atoms from the first
and second coordination shells. a0 is lattice constant.

R, 1
2a0 Â(1)(R) R, 1

2a0 Â(2)(R)

(111)





−α1 −γ1 −γ1
−γ1 −α1 −γ1
−γ1 −γ1 −α1



 (200)





−α2 0 0
0 −β2 0
0 0 −β2





(1̄11)





−α1 γ1 γ1
γ1 −α1 −γ1
γ1 −γ1 −α1



 (2̄00)





−α2 0 0
0 −β2 0
0 0 −β2





(11̄1)





−α1 γ1 −γ1
γ1 −α1 γ1
−γ1 γ1 −α1



 (020)





−β2 0 0
0 −α2 0
0 0 −β2





(111̄)





−α1 −γ1 γ1
−γ1 −α1 γ1
γ1 γ1 −α1



 (02̄0)





−β2 0 0
0 −α2 0
0 0 −β2





(1̄1̄1)





−α1 −γ1 γ1
−γ1 −α1 γ1
γ1 γ1 −α1



 (002)





−β2 0 0
0 −β2 0
0 0 −α2





(1̄11̄)





−α1 γ1 −γ1
γ1 −α1 γ1
−γ1 γ1 −α1



 (002̄)





−β2 0 0
0 −β2 0
0 0 −α2





(11̄1̄)





−α1 γ1 γ1
γ1 −α1 −γ1
γ1 −γ1 −α1





(1̄1̄1̄)





−α1 −γ1 −γ1
−γ1 −α1 −γ1
−γ1 −γ1 −α1





The force constants tensor for interactions with first coordinate shell are denoted as Â(1)(R),

and for the interactions with second coordinate shell as Â(2)(R).

Symmetry operations of the lattice can be expressed as a transformation matrix T̂:

R′ = T̂R. (D.9)
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The harmonic energy after transformation (D.9) is

E′

harm =
1

2

X

ss′

�

T̂u(Rs)
�T

Â(R′

s −R′

s′)
�

T̂u(Rs′)
�

=

=
1

2

X

ss′

uT (Rs)
�

T̂T Â(R′

s −R′

s′)T̂
�

u(Rs′),

(D.10)

where T̂T is the transpose of matrix T̂. Since energy is invariant under the symmetry operations

of the lattice (E′

harm = Eharm), then combining (D.2) with (D.10) we have the transformation

law for a tensor Â:

Â(Rs −Rs′) = T̂T Â(R′

s −R′

s′)T̂. (D.11)

If one of the atom in (D.11) is situated in the origin of coordinates then the transformation law

can be simplified:

Â(R) = T̂T Â(R′)T̂. (D.12)

The body-centered cubic lattice belongs to the Oh point group, and therefore has three

4-fold axes of rotation: Ox, Oy and Oz. Rotations by 90◦ about the Ox, Oy and Oz axes

provide movements of the vectors 1
2a0(111) →

1
2a0(11̄1),

1
2a0(111) →

1
2a0(111̄) and

1
2a0(111) →

1
2a0(1̄11), respectively, a0 is lattice constant of the bcc lattice. The corresponding rotational

matrices, using the right-hand rule, are

T̂x =









1 0 0

0 0 −1

0 1 0









, T̂y =









0 0 1

0 1 0

−1 0 0









, T̂z =









0 −1 0

1 0 0

0 0 1









. (D.13)

Substituting the matrices (D.13) into the transformation law (D.12) gives following relations

between force constants:

A(1)
xx

�a0
2
(111)

�

= A(1)
xx

�a0
2
(11̄1)

�

= A(1)
zz

�a0
2
(111̄)

�

= A(1)
yy

�a0
2
(1̄11)

�

,

A(1)
yy

�a0
2
(111)

�

= A(1)
zz

�a0
2
(11̄1)

�

= A(1)
yy

�a0
2
(111̄)

�

= A(1)
xx

�a0
2
(1̄11)

�

,

A(1)
zz

�a0
2
(111)

�

= A(1)
yy

�a0
2
(11̄1)

�

= A(1)
xx

�a0
2
(111̄)

�

= A(1)
zz

�a0
2
(1̄11)

�

,

A(1)
xy

�a0
2
(111)

�

= A(1)
xz

�a0
2
(11̄1)

�

= −A(1)
yz

�a0
2
(111̄)

�

= −A(1)
xy

�a0
2
(1̄11)

�

,

A(1)
xz

�a0
2
(111)

�

= −A(1)
xy

�a0
2
(11̄1)

�

= −A(1)
xz

�a0
2
(111̄)

�

= A(1)
yz

�a0
2
(1̄11)

�

,

A(1)
yz

�a0
2
(111)

�

= −A(1)
yz

�a0
2
(11̄1)

�

= A(1)
xy

�a0
2
(111̄)

�

= −A(1)
xz

�a0
2
(1̄11)

�

.
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Atoms with vectors (000), 1
2a0(111) and 1

2a0(111̄) are in the reflection plane (1̄10). Since,

the reflection about plane does not change positions of atoms in this plane, it follows that

A(1)
xx

�a0
2
(111)

�

= A(1)
yy

�a0
2
(111)

�

, A(1)
yz

�a0
2
(111)

�

= A(1)
xz

�a0
2
(111)

�

,

A(1)
xx

�a0
2
(111̄)

�

= A(1)
yy

�a0
2
(111̄)

�

, A(1)
yz

�a0
2
(111̄)

�

= A(1)
xz

�a0
2
(111̄)

�

.

The transformation matrix for the reflection about (1̄10) plane is

T̂(1̄10) =









0 1 0

1 0 0

0 0 1









. (D.14)

Finally, there are two independent constants in the tensor Â(1)(R):

A(1)
xx

�a0
2
(111)

�

= −α1,

A(1)
xy

�a0
2
(111)

�

= −γ1.
(D.15)

Matrices for Â(1)(R) are given in the Table D.1. We used symmetry property (D.6) to obtain

force constants for interactions with atoms on 1
2a0(1̄1̄1),

1
2a0(1̄11̄),

1
2a0(11̄1̄) and

1
2a0(1̄1̄1̄) lattice

positions.

The force constants for the second neighbors can be found using the same symmetry proper-

ties as for the first neighbor atoms. First, we will use the reflections about (100), (010), (001)

planes. The corresponding transformation matrices are

T̂(100) =









−1 0 0

0 1 0

0 0 1









, T̂(010) =









0 0 0

0 −1 0

0 0 1









, T̂(001) =









1 0 0

0 1 0

0 0 −1









. (D.16)

Substituting (D.16) in (D.12) gives the vanishing of all elements of matrices Â(2)(R) except the

main diagonal:

A(2)
xy (R) = −A(2)

xy (R) = 0,

A(2)
xz (R) = −A(2)

xz (R) = 0,

A(2)
yz (R) = −A(2)

yz (R) = 0.
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The next relations of force constants can be obtain using the rotations by 90◦ about the Ox, Oy

and Oz axes:

A(2)
xx

�a0
2
(200)

�

= A(2)
yy

�a0
2
(020)

�

= A(2)
zz

�a0
2
(002)

�

,

A(2)
yy

�a0
2
(200)

�

= A(2)
xx

�a0
2
(020)

�

= A(2)
yy

�a0
2
(002)

�

,

A(2)
zz

�a0
2
(200)

�

= A(2)
zz

�a0
2
(020)

�

= A(2)
xx

�a0
2
(002)

�

.

Reflection about (1̄10) gives:

A(2)
yy

�a0
2
(002)

�

= A(2)
zz

�a0
2
(002)

�

.

As follows, the forces between an atom and its second neighbors expressed by the two coefficients:

A(2)
xx

�a0
2
(200)

�

= −α2,

A(2)
yy

�a0
2
(200)

�

= −β2.
(D.17)

Matrices for Â(1)(R) are given in the Table D.1.

If interatomic forces act along a line connecting the centers of atoms and depend only of

distance between atoms (the case of central forces) then a number of force matrix coefficients

reduced:

β2 = 0. (D.18)

Other coefficients α1, γ1 and α2 can be expressed by elastic properties of the crystal.

The Fourier transform of the force constants matrix Â(R) is commonly referred to as the

dynamical matrix:

eAij(k) =
X

s

Aij(Rs)e
−ikRs . (D.19)

Using symmetry properties (D.8), the dynamical matrix can be written in the form:

eAij(k) = Aij(0)e
−ik0 +

X

s

′

Aij(Rs)e
−ikRs =

= −
X

s

′

Aij(Rs) +
X

s

′

Aij(Rs)e
−ikRs =

X

s

′

Aij(Rs)
�

e−ikRs − 1
�

.
(D.20)

Here the sum with prime symbol means that the term r = 0 is omitted. Substituting (D.8) into

(D.20) gives:

eAij(k) =
1

2

X

s

′

Aij(Rs)
�

e−ikRs + eikRs − 2
�

=
X

s

′

Aij(Rs) (coskRs − 1) . (D.21)
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The components of the dynamical matrix, eAij(k), can be expressed using Eq.(D.21) and tensor

of Born-von Karman constants, Table D.1:

eAxx(k) = 2α1

h
4− cos

a0
2
(kx + ky + kz)− cos

a0
2
(−kx + ky + kz)− cos

a0
2
(kx − ky + kz)−

− cos
a0
2
(kx + ky − kz)

i
+ 2α2 [1− cos a0kx] + 2β2 [2− cos a0ky − cos a0kz] =

= 8α1

h
1− cos

a0
2
kx cos

a0
2
ky cos

a0
2
kz

i
+ 2α2 [1− cos a0kx] , (D.22)

eAxy(k) = 2γ1

h
1− cos

a0
2
(kx + ky + kz)− (1− cos

a0
2
(−kx + ky + kz))−

−(1− cos
a0
2
(kx − ky + kz)) + 1− cos

a0
2
(kx + ky − kz)

i
=

= 8γ1 sin
a0
2
kx sin

a0
2
ky cos

a0
2
kz. (D.23)

Other components of dynamical matrix can be obtained from (D.22) and (D.23) using cyclic

permutations:

x → y,

y → z,

z → x.

The expressions for the remaining components of matrix
ê
A(k) are

eAyy(k) = 8α1

h
1− cos

a0
2
kx cos

a0
2
ky cos

a0
2
kz

i
+ 2α2 [1− cos a0ky] ,

eAzz(k) = 8α1

h
1− cos

a0
2
kx cos

a0
2
ky cos

a0
2
kz

i
+ 2α2 [1− cos a0kz] ,

eAxz(k) = 8γ1 sin
a0
2
kx cos

a0
2
ky sin

a0
2
kz,

eAyz(k) = 8γ1 cos
a0
2
kx sin

a0
2
ky sin

a0
2
kz.

(D.24)

In the long-wave approximation ,k → 0, the dynamical matrix can be expressed through the

elastic modulus tensor, λiklj :

lim
k→0

eAij(k) = v0k
2λikljnknl, (D.25)

where n = k
k is a unit vector, v0 =

a3
0

2 is a volume per atom in the bcc lattice. The approximation

(D.25) allows to find Born-von Karman constants in terms of elastic constants. We will use



Appendix D. Calculation of dynamical matrix for bcc lattice structure 134

Taylor series about k to find limit of functions (D.22),(D.23):

eAxx(k)
�

�

�

k→0
= 8α1

�

1−
�

1−
1

2

�a0
2
kx

�2
��

1−
1

2

�a0
2
ky

�2
��

1−
1

2

�a0
2
kz

�2
��

+

+ 2α2

�

1−
�

1−
1

2
(a0kx)

2

��

= α1a
2
0k

2
�

n2
x + n2

y + n2
z

�

+ α2a
2
0k

2n2
x =

= a20k
2
�

α1 + α2n
2
x

�

, (D.26)

eAxy(k)
�

�

�

k→0
= 8γ1

�a0
2
kx

��a0
2
ky

�

�

1−
1

2
(
a0
2
kz)

2

�

= 2a20k
2 [γ1nxny] . (D.27)

Here the unit vector n2 = n2
x + n2

y + n2
z = 1 was used. Functions eAij(k) are restricted by the

second-order Taylor expansion with respect to k. On the other hand, substituting (5.17) in

(D.25) gives components eAxx(k) and eAxy(k):

eAxx(k)
�

�

�

k→0
= v0k

2
�

C11n
2
1 + C44(n

2
2 + n2

3)
�

= v0k
2
�

(C11 − C44)n
2
x + C44

�

,

eAxy(k)
�

�

�

k→0
= v0k

2 [(C12 + C44)nxny] .
(D.28)

Combining (D.26) and (D.27) with (D.28) gives final expressions for Born-von Karman con-

stants:

α1 =
C44

2
a0, α2 =

C11 − C44

2
a0, γ1 =

C12 + C44

4
a0. (D.29)
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Résumé: 

Cette thèse a été centrée sur l’étude de la formation d’une phase martensitique dans les aciers 

Fe-Ni-C et sur la diffusion des atomes de carbone dans cette phase à basse température. La 

modélisation à l’échelle atomique a été utilisée. Pour décrire ces phénomènes, deux approches 

ont été développées: un modèle discret basé sur la théorie de la fonction de densité atomique 

(ADF) et une approche quasiparticulaire basée sur la théorie atomique de Fratons (AFT). Dans 

un premier temps, pour montrer l’universalité de notre approche, nous avons appliqué l'AFT 

pour modéliser la cinétique d'auto-assemblage des atomes initialement désordonnés à des 

structures ordonnées complexes. Cette approche a ensuite été appliquée à l'étude de 

transformation austénite/martensite. Il a été montré que le germe de martensite se développe 

comme agrégat multivariant dans la matrice austénitique. En utilisant des figures de pôles et 

des diagrammes de diffraction simulés, ces variants ont été identifiés et comparés aux données 

expérimentales. La diffusion du carbone dans la phase de martensite a été étudiée en utilisant 

la théorie ADF. Deux systèmes avec différentes propriétés élastiques, Fe-C et Fe-Ni-C, ont été 

considérés. Il a été montré qu’au cours du premier stade de vieillissement, les atomes de 

carbone subissent une décomposition spinodale sur les interstices octaédriques du réseau 

tétragonal centré de martensite et forment les zones riches en carbone. Ensuite, la morphologie 

«tweed-like» des zones riches en carbone est développée. Les résultats des simulations sont 

un bon accord avec les images expérimentales obtenues par sonde atomique tomographique. 

La relation entre une mise en ordre de Zener et la concentration des zones riches en carbone a 

été discutée. 

 

Abstract: 

This thesis examines the formation of martensite in Fe-Ni-C steels and the diffusion of carbon 

atoms in this phase at low temperatures. To achieve this goal the atomistic modeling have been 

used. To describe these phenomena two different approaches were developed: a discrete 

model based on the Atomic Density Function (ADF) theory and the quasiparticle approaches 

based on the Atomic Fraton Theory (AFT). First, the AFT was tested to model a self-assembly 

kinetics of initially disordered systems to three different classes of ordered one: single 

component crystals with fcc and diamond structures, two component crystals with zinc-blend 

structure, and polymers with single-strand and double-stranded helixes structures. Then this 

approach was applied to model austenite/martensite transformation. It was shown that 

martensite nucleus grows as multivariant aggregate in austenite matrix. Using pole figures and 

simulated diffraction patterns these variants were identified and compared with the experimental 

data. The carbon diffusion in martensite phase was studied using ADF theory. Two systems 

with the different elastic properties corresponding to the Fe-C and Fe-Ni-C systems were 

considered. It was shown that during a first stage of aging the carbon atoms undergo a spinodal 

decomposition on the octahedral interstices of bcc lattice and form the carbon-rich zones. Then 

"tweed-like" morphology of carbon-rich zones is developed. The simulations results are a good 

agreement with experimental images obtained by atom probe tomography. The relation 

between Zener ordering and the concentration of carbon reach zones is discussed. 


