N
N

N

Formal and incremental
design of comp

HAL

open science

verification of SysML for the
onent-based system

Oscar Carrillo Rozo

» To cite this version:

Oscar Carrillo Rozo. Formal and incremental verification of SysML for the design of component-

based system. Modeling and Simulation.
2015BESA2017 . tel-01537117

HAL Id: ¢t

Université de Franche-Comté, 2015. FEnglish. NNT:

el-01537117

https://theses.hal.science/tel-01537117v1

Submitted on 12 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01537117v1
https://hal.archives-ouvertes.fr

P

These de Doctorat

école doctorale sciences pour I'ingénieur et microtechniques

UNIVERSITE DESFRANC HE -€ OM TaE

Formal and Incremental Verification of
SysML Specifications for the Design of
Component-Based Systems

OscAR ALBeRTO CARRILLO R0Oz0

DPIM

‘These de Doctorat

école doctorale sciences pour lI'ingénieur et microtechniques

UNIVERSITE DEAFRANC HE -€ OM T4

THESE présentée par
Oscar ALBERTO CARRILLO ROZO

pour obtenir le

Grade de Docteur de
I'Université de Franche-Comté

Spécialité : Informatique

Formal and Incremental Verification of SysML
Specifications for the Design of Component-Based
Systems

Unité de Recherche:
Institut Femto-ST/DISC

Soutenue publiquement le 17 décembre 2015 devant le Jury composé de :

CHRrISTIAN ATTIOGBE ~ Rapporteur Professeur, LINA, Université de Nantes
FrEDERIC BONIOL Rapporteur Professeur, ONERA, Université de Toulouse
JAacQUES JULLIAND Examinateur Professeur, DISC, Université de Franche-Comté
Francois VERNADAT Examinateur Professeur, LAAS - CNRS, INSA de Toulouse
Hassan MOUNTASSIR Directeur de thése Professeur, DISC, Université de Franche-Comté

Samir CHOUALI Co-Directeur de thése MDC, DISC, Université de Franche-Comté

ACKNOWLEDGEMENTS

There are a lot of people who was involved during the development of this thesis, profes-
sionally and personally and whom I would like to say THANK YOU.

First Iwould like to thank the people who helped and encouraged me to continue my post-
graduate studies here in France, Michel Riveill who accepted my candidature in the Ecole
Polytechnique de Nice - Sophia Antipolis to do my master studies and Carlos Barrios who
helped and supported me to organize my post-graduate studies.

I really enjoyed my time in the Femto-ST/DISC laboratory and I'm very grateful with my
supervisors Hassan Mountassir et Samir Chouali for have given me the oportunity to work
in this thesis with them. Hassan for his help and guidance during this four years, and
Samir for been always there to support me, help me and guide my research during all that
time, he has greatly enhanced my knowledge and comprehension of computer science.

I would like to thank Professor Christian Attiogbé and Professor Frédéric Boniol for ac-
cepting being my referees and giving me valuable remarks to enhance my work. Also, I
would like to thank Professor Jacques Julliand and Professor Francois Vernadat for accept-
ing being my examiners.

Furthermore, I would like to thank the people from the laboratory in Besancon who were
there supporting me in one way or another: Alois, Fouad, Adrien, Elizabeta, Aydée, Elena,
Kalou, Roméo, Hamida, Pierre-Cyrille, Olga, Pierre-Alain, Francois, Francoise, Jacques,
Frédéric, Ivan, Jean-Marie, Dominique...

Additionnally, Iwould like to thank my colleagues from the Université de Savoie for giving
me the opportunity to work with them as a ATER and supporting me during the writing
of this thesis: Jean-Charles, Pierre, Xavier, Tom, Jacques-Olivier, Christophe, Rodolphe...

Finally, I would like to give special thanks to my beloved wife Ruby for her support and
patience during all this time we had lived apart, I would never have been able to finish my
dissertation without her support and confidence.

CONTENTS

1 Introduction 1
1.1 Contextand Challenges 1

1.2 Contributions 2

1.3 Tools e 4

1.4 CaseStudy e 4

1.5 Publications 5

1.6 DocumentOutline 6

I Scientific Context 7
2 Component-Based Systems 9
2.1 Software Component Definition 9

2.2 Componentsvs. Objects e 10

2.3 AbstractionandReusability oo 11

2.4 ComponentInterfaces o oL 12

2.5 BehaviorProtocols L L 13
2,51 Definition L L L 13

2.5.2 Description Protocol Languages 13

2.6 Software Architecture L L L Lo 14

2.7 ArchitecturalPatterns L L Lo 15

3 SysML Language 17
3.1 StructuralDiagrams 18
3.1.1 TheBlock Definition Diagram 18

3.1.2 Thelnternal BlockDiagram 19

3.1.3 TheParametricDiagram 19

3.1.4 PackageDiagram L. e 20

3.2 BehavioralDiagrams L L o 20
3.2.1 TheActivityDiagram 20

vii

viii

II

CONTENTS

3.2.2 TheUseCaseDiagram 20

3.2.3 TheSequenceDiagram 21
3.2.4 The State MachineDiagram 21

3.3 Cross-CuttingDiagrams 22
3.3.1 TheRequirementsDiagram 22

3.4 SysMLTools @ e e 22
3.5 Conclusion L 24
Interface Automata 25
4.1 Definition L 25
4.2 Automata Compatibility Verification 26
4.3 Compatibility Verification Utilities 28
4.4 Conclusion e 29
Related Works 31
5.1 Generation of CBS Architecture L. 31
5.2 Compatibility Verification 32
5.3 Component Behavior Description 33
5.4 Requirements SpecificationinSysML 34
55 Conclusion 35
Contributions 37
Incremental Refinement of a CBS Architecture 39
6.1 ApproachOverview e 41
6.2 CBS Architecture SpecificationwithSysML 44
6.3 Formal Specification of SysMLmodels 46
6.4 Structural Refinement of SysMLBlocks 48
6.4.1 Consistency and Composability Verification between Blocks 48
6.4.2 Interface Automata Generation 50

6.4.3 Compatibility Verification 52
6.4.4 Verification Algorithm for Structural Refinement 53

6.5 Behavioral Refinement Verification of SysMLBlocks 56
6.5.1 Alternating Simulation 56

6.5.2 Modall/OAutomata v i i 56

6.5.3 CaseStudy Application., . 58

CONTENTS

6.6

Conclusion

7 Formal Verification of SysML Requirements

7.1
7.2

7.3
7.4
7.5
7.6

Approach Overview . .

Linear Temporal Logic (LTL)

7.2.1 Syntax

7.2.2 Semantics . . .

Verification with SPIN Model Checker

Requirement specificationwithLTL

Case Study Promela descriptions

Conclusion

8 Incremental Specification of CBS Architecture...

8.1
8.2
8.3
8.4

8.5
8.6
8.7

Overview

CaseStudy

SysML Requirement Diagram Analysis

Component Assembly Preserving SysML Requirements

8.4.1 Functional Requirements and Input/Output Actions

8.4.2 Preservation of Input/Output Actions in Automata Composition . .

8.4.3 Verification of Ato

mic Requirements Preservation

Specification of System Architecture

NlustrationontheCaseStudy

Conclusion

III Conclusion

9 Conclusion and Perspectives

9.1
9.2

Main Contributions . .

Perspectives of the Work

IV Résumé étendu

10 Vérification Formelle de Spécifications SBC en SysML

10.1 Contexte Scientifique .

10.1.1 SystémesaBasedeComposants

10.1.2 Le Langage SysML

ix

62

63
63
64
64
64
65
66
69
71

73
75
76
77
79
80
80
81
83
84
86

87

89
90
91

93

CONTENTS

10.1.3 Les Automatesd’Interface 98
10.2 Contributions e 100
10.2.1 Raffinement Incrémental d'une ArchitectureSBC 101
10.2.2 Vérification Formelle d’ExigencesSysML 103
10.2.3 Spécification Incrémentale d'une Architecture SBC 104
10.3 Conclusions 107
10.4 Perspectives L. 108

1.1

1.2

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5

4.1

4.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

LIST OF FIGURES

Thesis contributions L Lo L Lo 2
Asafety vehiclesystem L L L 5
Ablackbox component Lo 1
UML metamodel for the specification syntax of a component 12
Common layers in a software architecture 16
Relation between UMLand SysML 18
Ablock definitiondiagramo 19
Aninternal blockdiagramo L oL 20
Asequencediagraml 21
Arequirementdiagram oL oo 23
Interface automaton A for the sensorblock 26
Interface automaton B forthe ACUblock 27
Thesiscontribution1. L L L L Lo 40
Proposed approach for verifying SysML refinement 41
Refinement verification ofa SysMLBlock 43
The preliminary BDD of the safety vehiclesystem 44
Block definition diagram of SensorsControl block 45
Proposed block definition diagram for SensorsControl block 45
Internal block diagram of the SensorsControl block 46
Sensorssequencediagraml e e 52
Interface automaton A associated to the Sensorsblock 52
ACUsequencediagramo v v v 53
Interface automaton A, associatedtothe ACU 53
Product A; ® A, between the automata Sensorsand ACU 54
Composition A; || A, between the automata Sensorsand ACU 54
SD for SensorsControl abstractblock 59
IA associated to the SensorsControl abstractblock 60

Xi

xii

6.16
6.17

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

9.1

10.1
10.2

10.3

LIST OF FIGURES

Refinement in MIO Workbench 60
The final BDD of the safety vehiclesystem 61
Thesis contribution2o 67
SDfor Sensorsblock 67
Promela code for Sensorsblock L. 67
SDforthe ACUblock 68
Promela code for ACUblock 68
Thesis contribution3 L L 74
Proposed approach to generate CBS architecture 75
SysML requirements diagram for a safety carsystem 77
A SysMLrequirementdiagram 79
Interface automata composition alternatives 83
IA forthe Sensorsblock 85
IAforthe ACUblock 85
IA for the composition of Sensorsand ACUblocks 85
BDD forthe seconditeration 86
IBD for the second iteration 86
Thesisperspectives e e 89
Contributionsdelathese, 100
Approche proposé pour la génération d'une architecture SBC 106

Perspectivesdelathése L. 107

LIST OF TABLES

7.1 Mapping of basic concepts from sequence diagrams to Promela 65

10.1 Régles de correspondance des concepts basiques entre DS et Promela . . . 103

xiii

O© 0 N o u

11
12
13
14
15
16

17
18
19

20

21
22
23
24
25

Definition:
Definition:
Definition:

Definition:

Definition:
Definition:
Definition:
Definition:
Definition:
Definition:
Definition:
Definition:
Definition:
Definition:
Definition:

Definition:

Definition:
Definition:
Definition:

Definition:

Definition:
Definition:
Definition:
Definition:

Definition:

LIST OF DEFINITIONS

Interface Automata 26
Synchronized Product 27
IllegalStates 27
Composition L 28
Refinement by decomposition of SysMLblocks 42
SysMLBlock 46
Blockinterfaces oo oL 47
SysMLIBD e 47
Structural refinement of SysMLblocks 48
Message e 51
Sequence diagram formalmodel 51
Alternating Simulation, 56
Interface Automata Refinement 56
Modalautomaton Lo 57
Translation functiono 57
Observational Modal Refinement 58
Requirement diagram specification 78
Atomicrequirementso 78
Connected requirements 80
SysML Composite component 84
AutomatedInterface o L. 98
Produit Synchronisé oL 99
EtatsIllégaux 99
Composition o 100
Raffinement par une décomposition de blocs SysML 102

XV

BDD Block Definition Diagram.

CBD Component-Based Development.
CBS Component-Based Systems.

CSP Communicating Sequential Processes.
EMF Eclipse Modeling Framework.

IBD Internal Block Diagram.

IDL Interface Description Language.

INCOSE International Council on Systems Engineering.

OMG Object Management Group.
OOD Object-Oriented Design.

RFP Request for Proposals.

SD Sequence Diagram.

SysML Systems Modeling Language.
UML Unified Modeling Language.

XML Extensible Markup Language.

XVii

ACRONYMS

1

INTRODUCTION

1.1/ CONTEXT AND CHALLENGES

The systems become increasingly complex and their implementation asks for more rig-
orous conception approaches. To develop reliable systems, some software engineering
approaches have been proposed and particularly top-down approach, which allows build-
ing a system, step by step from high abstract specifications, like in [Wir71, CLo2, AaDB" o2,
vLo3, LNRT10]. This approach has been used to design Component-Based Systems (CBS)
[Szy02] constituted by communicating entities. It allows effectively to enhance develop-
ment process reliability and reduce development costs.

CBS are widely used in the industrial field, and they are built by assembling various
reusable components. Its success is due, generally, to the development of complex sys-
tems by assembling smaller and simpler components and its reduced development cost.
However, this approach of development leads to construct CBS generally even bigger,
therefore more complex. Consequently the question of their reliability is not always guar-
anteed. Hence the need to integrate more formal approaches in the development process
of the CBS.

To ease the communication between the various stakeholders in a CBS development
project, one of the widely used modeling language is SysML [OMG12], which besides allow-
ing modeling of structure and behavior, it has capabilities to model requirements. It offers
a standard for modeling, specifying and documenting systems. Therefore, in this thesis,
we propose to exploit it. The improvements, brought by SysML, have allowed increasing
its popularity in the industrial and academic environment. A SysML specification of a
system is described by structural diagrams and behavioral diagrams. The architecture re-
finement of a system is an important concept in SysML, and it is based in a development
process that can start from an abstract level and evoluates towards more detailed levels
which can end in an implementation.

In this context, we have identified two main challenges:

The first one concerns the development by refinement of a CBS, which is modeled only
by its SysML interfaces and behavior protocols. In this case, it is a question of replacing
an abstract specification by a composition of blocks preserving its structural properties
and its behavioral properties. Structural diagrams of SysML describe the system in static
mode, and behavioral diagrams describe the dynamic operation of the system. The blocks
are modeled by two diagrams, the Block Definition Diagram (BDD), which defines the ar-
chitecture of the blocks and their performed operations, and the internal block diagram
used to define the ports of each block and connectors between them linking their ports.

2 CHAPTER 1. INTRODUCTION

During the refinement process, these two diagrams can be checked to decide whether the
proposed architecture satisfies or it is inappropriate compared to the abstract specifica-
tion.

The second one concerns the difficulty to decide what to build and how to build it, by
considering only system requirements and reusable components. Then, the question
that arises is: how to specify a CBS architecture, which satisfies all system requirements?
There is a subsequent subject in this issue, and it concerns compatibility between the set
of reusable components that will compose the system, which must be guaranteed. Indeed,
we, generally, exploit reusable components from a component library to construct CBS, so
it is necessary to guarantee component compatibility. Our goal, here, is to guide, by the
requirements, the CBS specifier to build a consistent system architecture that fulfills all
requirements.

1.2/ CONTRIBUTIONS

In this section we present an abstract of the contributions proposed in this thesis. These
contributions are oriented to give an answer to the challenges presented in the above sec-
tion. We present in Figure 1.1 a diagram representing our contributions (numbered as 1,2,
and 3) to the specification of CBS in SysML.

SysML
I
[[I
Structural Behavioral .
a A Requirements
Diagrams Diagrams
BDD IBD SD Functional

2 ([C1)
=15
oE & «block»
Eo %)
S ()8
gé = blockr =@
- [£ «blockn = B Ag E
B \; ;, 55
= = «block % g
wn C
Compatibility o=
Verification E eblocka = cblocks =)
-
B S g
Tools - Bia EZ
o
Ptolemy EW
MIO Workbench =38

Promela/SPIN

Compatibility
Verification

Figure 1.1 - Thesis contributions

Firstly, we focus on the fulfillment of an abstract SysML specification by assembling sev-
eral concrete blocks according to a refinement process (see Contribution 1 on Figure 1.1).
Blockbehaviors are described by interface automata which can be derived from behavioral

1.2. CONTRIBUTIONS 3

diagrams as proposed in [CH11]. This approach aims to formalize the decomposition pro-
cess, by defining refinement relations between blocks, and by focusing on the verification
of architectural and behavioral aspects of SysML blocks. In this contribution we exploit
the tools: Ptolemy II for verifying compatibility between the assembled components, and
the MIO Workbench tool to verify refinement.

Secondly, based on SysML requirement diagram and component interfaces, specified with
SD, we propose a formal and methodological approach to specify incrementally the sys-
tem architecture that preserves all the system requirements (see Contribution 3 on Fig-
ure 1.1). Therefore, we propose to treat, one by one, atomic requirements, extracted from
the requirement diagram (provided by the specifier), to construct a partial architecture,
of the system, composed of atomic components and composite components. At each
step, we propose to select an atomic requirement from a SysML requirement diagram, and
choose a component from a library that should satisfy the selected requirement. Then we
verify whether the component satisfies the requirement thanks to the LTL formula which
specifies the requirement and the Promela program which specifies the component SD
(see Contribution 2 on Figure 1.1). After that, we verify the compatibility between the
selected components, and the selected one in the precedent step, and we verify also the
preservation of the requirements treated in the precedent steps. This process ends when
all atomic requirements are treated, or when we detect incompatibility between compo-
nents, or the non preservation of the requirements by component composition. When the
process ends correctly, we guarantee the architecture consistency of the final CBS which
then fulfills all the requirements.

In this context, this thesis presents new contributions which are:

« The exploitation of SysML requirement diagram to specify the requirements of CBS
[CCM13, CCM14a].

 The specification of SysMLrequirements with LTL (Linear Temporal Logic) formulae
for their verification on components [CCM14a], thanks to their SD which are trans-
lated to Promela by adapting the approach proposed in [LTM*09].

« The verification of components compatibility by exploiting the interface automata
formalism [dAHO1], obtained from SD of components, thanks to the approach pro-
posed in [CH11]. In this work we adapted the compatibility verification algorithm to
handle SysML requirements and to verify also their preservation by the composition
[CCM12a, CCM12b, CCM15].

o The verification of components behavior refinement by applying alternating simu-
lation in interface automata [CCMai5].

« The proposition of an incremental approach to construct CBS and to verify their re-
quirements in order to avoid the problem of the combinatorial explosion of the num-
ber of states of the verified components. Indeed, the requirement verification is per-
formed on elementary (generally small) components, so we avoid the verification
on composite components thanks to the requirements preservation by the compo-
sition. This contribution allows obtaining the CBS architecture that fulfills all the
requirements. Indeed, this architecture is constructed incrementally and also vali-
dated incrementally against to SysML requirements at each step [CCM13, CCM14a].

4 CHAPTER 1. INTRODUCTION

1.3/ TooLs

In this section, we describe the tools that we used to model and verify the CBS in this thesis.

Papyrus This plugin made by Lanusse et al. [LTE*09, GDTS10], it is designed to work in
the Eclipse Modeling Framework (EMF) [SBMP08] to model any kind of EMF model, one
of them is SysML. We used this modeling tool to design the SysML models in this thesis.
Besides of being a free and open source software, it has a growing community of users in
the industrial and academic field [LST"11].

MI0 Workbench This tool is a plugin made by Bauer et al. [BMSH10], it is an Eclipse-based
editor and verification tool for modal I/O automata. We used it in this thesis, to verify
behavioral refinement of CBS.

Ptolemy Il This is a tool for modeling, simulate and design concurrent, real-time and em-
bedded systems [BLL*05]. It integrates a module to work with interface automata [LX04].
It represents the interaction between components as actors and evaluates their compat-
ibility by various means, and one of those is the compatibility verification by interface
automata. We used this tool to validate the compatibility between components in a CBS.

SPIN This is a popular open-source model-checker that supports the design and verifi-
cation of asynchronous process systems. SPIN verification models are focused on prov-
ing the correctness of process interactions, and they attempt to abstract as much as pos-
sible from internal procedures [Hol97]. SPIN verifies design specification written in the
verification language Promela (Process Meta Language) [Hol91], and it accepts correct-
ness claims (properties) specified in the syntax of standard Linear Temporal Logic (LTL)
[Pnu77]. We used this model-checker to verify if a component satisfies a given require-
ment.

1.4/ CASE STUDY

In this section, we present a safety vehicle system as the case study, which we will use as
the pivot case study during this thesis.

The system presented here is a case study inspired from the study of Barnes et al.
[BMFNo1] and the safety requirements dictated by the American Department of Trans-
portation to improve protection of vehicle occupants [Adm98]. There, the authors define
the conditions to activate automatically the safety devices in a car.

Figure 1.2 shows a safety system that consists of several sensors all around a vehicle (ac-
celerometers, impact sensors, pressure sensors, tachometers, brake pressure sensors, gy-
roscopes, etc.) that detect whether a collision occurred. When a car collides with a barrier
or the breaks are pressed, there will be a speed deceleration. The sensors will detect the ac-
celeration/deceleration values and will send them to a central unit, which is marked with
number 1in the image. This center unit must decide whether to inflate the airbags (front,
side, knee, etc.), which are marked with number 2 in the figure, and /or lock the seat-belts

1.5. PUBLICATIONS 5

(marked with number 3 in the figure). From the directives in [Adm98], we assume that the
maximum deceleration that the chest can accept is 60G, and therefore, the airbag must
be deployed. In the same way we assume that every time the vehicle decelerates at more
than 3G, the seat-belts must be locked.

Figure 1.2 - A safety vehicle system’

1.5/ PUBLICATIONS

The work presented in this thesishasbeen already published in national and international
conferences, in the following, we list the references for the published articles:

o Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Formalizing and verifying
compatibility and consistency of SysML blocks. In ACM SIGSOFT Software Engineer-
ing Notes (UML-FM 2012), volume 37, pages 1-8, Paris, France, 2012. ACM

e Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Vérification de la consistence
et de la compatibilité entre blocs SysML. In Conférence en Architectures Logicielles
(CAL 2012), Montpellier, France, 2012

o Samir Chouali, Oscar Carrillo, and Hassan Mountassir. Specifying System Architec-
ture from SysML Requirements and Component Interfaces. In Software Architecture
(ECSA 2013), pages 348-352, Montpellier, France, 2013

 Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Incremental Modeling of Sys-
tem Architecture Satisfying SysML Functional Requirements. In José Luiz Fiadeiro,
Zhiming Liu, and Jinyun Xue, editors, Formal Aspects of Component Software (FACS
2013), Lecture Notes in Computer Science, pages 79-99. Springer International Pub-
lishing, Nanchang, China, 2014

Tmage taken from [Dav10]

6 CHAPTER 1. INTRODUCTION

o Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Modélisation Incrémentale
d'une Architecture de Systéme Satisfaisant des Exigences Fonctionnelles SysML. In
Conférence en Architectures Logicielles (CAL 2014), Paris, France, 2014

o Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Verification of a SysML Block
Decomposition in a Refinement Process. In Under consideration for publication in Soft-
ware & Systems Modeling (SOSYM). Springer Berlin Heidelberg, 2015

1.6/ DOCUMENT OUTLINE

In this section we give a summary of the content of this thesis, which is structured in three
parts and composed of nine chapters as follows:

In Part I, we introduce the scientific context of this work, there, we first give, in Chapter 2,
an overview of Component-Based Systems and the key concepts to describe them. Then in
Chapter 3, we present the SysML modeling language and the diagrams that we will use to
model Component-Based Systems. In Chapter 4, we introduce the concept of Interface Au-
tomata, which we will use later in our approach to describe behavior protocols and verify
component compatibility. Finally, in Chapter 5, we present some works that are related to
ours in one way or another.

In Part II, we present the contributions of this thesis regrouped in three chapters. Chapter
6 handles the first identified issue, which is how to model, by refinement, a CBS that is ini-
tially described only by its interfaces, and guarantee that the proposed system refines the
initial abstract definition. Chapter 7 explains our proposition to formally verify SysML re-
quirements on system components by translating the initial requirements into LTL prop-
erties that we later verify over a Promela model. This Promela model is obtained from
the component behavior protocol described in its sequence diagram. Finally, we use the
model-checker SPIN to verify the properties. Chapter 8 deals with the second identified
issue, which is how to build a CBS from a list of functional requirements, represented by
a SysML requirement diagram and a library of reusable components.

In Part III, we conclude our work with Chapter 9, where we present the conclusions and
perspectives of this thesis.

I

SCIENTIFIC CONTEXT

2

COMPONENT-BASED SYSTEMS

nthis chapter, we define the main concepts of Component-Based Systems. In Section 2.1
Iwe define software components, later in Section 2.2 we describe the difference between
objects and components. We continue then describing the properties of abstraction and
reusability of componentsin Section 2.3. Section 2.5introduces behavior protocols, which
are used to describe the order of arrival for events accepted or invoked by a component.

2.1/ SOFTWARE COMPONENT DEFINITION

Over the years, software developing field has evolved through different paradigms. Struc-
tured programming changed over time to class paradigm and the revolutionary object ori-
ented programming. Objects of nowadays have grown, and are identified as software com-
ponents. In this section, we define and describe properties of the later to better understand
the differences between objects and components that we will expose in Section 2.2.

Several definitions have been proposed to define software components and one of
the more complete was proposed in [SP97] during the European Conference of Object-
Oriented Computing (ECOOP 1996). This definition is:

"A software component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed independently and is
subject to composition by third parties”.

From this definition, a software component is a unit of composition with other peers, a

Contents

2.1 Software Component Definition 9
2.2 Componentsvs.Objects v i it 10
2.3 AbstractionandReusability 11
2.4 ComponentInterfaces i ittt vttt oo 12
2.5 Behavior Protocols & ¢ v v v vttt e e e e e e e e e e e e 13

2,51 Definition e 13

2.5.2 Description Protocol Languages 13
2.6 Software Architecture i ittt it e 14
2.7 Architectural Patterns ¢ ¢« ¢ ¢t v v 4 o bt e e e e e 15

10 CHAPTER 2. COMPONENT-BASED SYSTEMS

component must encapsulate its implementation and interact with its environment on ac-
count of only well defined interfaces. Specifically, these interfaces must give information
about what the component requires from other components and what it can offer as ser-
vices. Nevertheless, to use a component correctly, we must fulfill a contract. This contract
lists a series of constraints about the way of use to make the component execute its func-
tionalities [Szy02]. It is also required to define what the environment of composition and
deployment must provide to make the components interact properly. This environment
is composed of a component model with composition rules and a framework that defines
deployment, installation, and activation rules of components. Therefore, software sys-
tems designed to be an assembly of components with a predefined architecture are called
Component Bases Systems (CBS).

Components can be refined and improved by subsequent versions. A company that sells
third party components can propose different improved versions of the same component.
Traditional version management would assume that the version of a component evolves
at a single source. Nevertheless, in a free market, version evolution is more complex and
version management can become a problem in its own right, mostly because versions can
also change at interface level.

2.2/ COMPONENTS VS. OBJECTS

In this section, we discuss the key points that differentiate a component from an object.

From [Szyo02], we can define an object as a symbolic container, which integrates informa-
tion and mechanisms that represents a physic or moral identity from the real world. The
concept of object leads to the concept of instance, encapsulation, and identity.

Objects and components are frequently considered as synonyms, or very similar. A com-
ponent can be seen as a collection of objects that communicate between them. The bor-
derline between a component and other components or objects is very clear. The inter-
action with a component and therefore with its objects must pass through its borderline,
which for components is at interface level. In this way, granularity in a component re-
mains hidden, and one cannot use its objects directly. A component cannot be used to
identify its composing objects. Moreover, objects inside a component have access to their
implementations, but accessing an object implementation from outside the component
must be avoided [SP97].

A component may contain one or several classes, but one class should not be part of sev-
eral components. Although, a component may depend on other components by import
relations like the inheritance relationships between classes and objects. Therefore, the
parent class and its subclass do not have to be on the same component. If the parent class
resides in another component, the inheritance relationship between the two classes tra-
verse the component limits and demands an import relationship between them [Szyo02].
More over, instead of classes or objects, a component may contain traditional procedures
tomanage global variables or it can be completely developed in a functional programming
language.

The following properties list other differences between objects and components [DW98]:

o Components lead to other means of intercommunication more extensive than ob-
jects, i.e. distributed SmallTalk components support the interaction of several re-

2.3. ABSTRACTION AND REUSABILITY 11

mote users over several machines [Ben87].

 Granularity level of components is more extensive than the one of objects and their
communication means through interfaces is widely more complex.

« Components are deployed in different configurations with no need of reconfigura-
tion for each host infrastructure.

In summary, components are very close to objects and therefore Component-Based Devel-
opment (CBD) is greatly linked to Object-Oriented Design (OOD). However, many factors
like granularity, the concept of composition and deployment, or even the process of de-
velopment, distinguish components from objects.

2.3/ ABSTRACTION AND REUSABILITY

In the following section, we present the concept of abstraction and reuse of components,
which represent the two main features in the CBD approaches.

Component abstraction is the level of visibility of its implementation through its inter-
faces. In an ideal component abstraction, the environment should not know any detail of
the interface specification, hence the idea of Blackboxes. To understand the working of a
component, it is only a matter of interpretation of its outputs as a function of its inputs.
Testsonacomponent are performed following this principle. Generated outputs, after the
component execution, are verified to decide whether the component works as expected.

Nevertheless, blackbox components, in which implementation information are strictly
hidden, are not the best suitable for a more interactive communication with their software
environments. Outputs in a component may not depend only from their inputs, but also
from the responses of a set of services provided by their neighbors (see Figure 2.1).

inputs outputs

e —
external
services

Figure 2.1 - A blackbox component

The external services, activated by the component, must also be specified. Such services
often depend on the calling component state. For example, the design pattern observer
[GHJV94] needs to ask information about the state of the observed object. If the observed
object is a bank account and the observer is a balance check component, we need to know
if the observer component is called before or after a balance change. Operation specifica-
tions, like withdraws or deposits, in a blackbox component do not specify when the ob-
server component is called and the calling component state during the operation. This
intermediate state in the blackbox component may be described informally but in more
complex cases this approach may often fail.

The question now is how to design more interactive components keeping their implemen-
tations hidden? The answer is to use greybox components, these are components that re-
veal some internal operations. The component may give more details if needed, i.e., in-
formation about the conditions under which external services are called. For instance, in

12 CHAPTER 2. COMPONENT-BASED SYSTEMS

1 B Component | [*]
[1 o
[
Offeredinterfaces Requiredinterfaces
[1] [yl
= Name 1] Elinterface | [
: <
r 1
[
= Signature 1] [1] =] Operation
<>
K>
[1
[']
- Type [l = Parameter
1
(11 1
1 [1
=] InputParameter = OutputParameter

Figure 2.2 - UML metamodel for the specification syntax of a component

our balance check observer component, the greybox specification will clearly specify that
the updated balance notification is called after its change [BW97, Szy02].

Hence, the abstraction of a component still remains as the best solution, that allows a user
to quickly understand its essential working. One specification explaining that a compo-
nent is used to sort some data is better understood than a specification giving the inner
workings of the algorithm used to sort that data. In this way, authors of the component
can later modify the internal code of the component without needing to redeploy its envi-
ronment. Thus, in a component sorting data, we could change a bubble sorting algorithm
for a quick-sort one.

A component is a reusable unit, that can be used in different contexts or be replaced for
another one, which refines its original implementation with new functionalities without
affecting its clients (other components). A component may also be adapted to new en-
vironments, without modifying its source code, even if its interfaces are not intended to
communicate with directly.

2.4/ COMPONENT INTERFACES

Component interfaces are the way by which components communicate. Interface descrip-
tions must be explicitly enough to properly describe a component role. Interfaces and
their description must be separate from the component implementation [CL0O2, Szy02].
This separation allows firstly to replace an implementation without changing its inter-
faces, secondly to improve system performance without rebuilding it all, and thirdly to
add new interfaces without changing the existing ones.

There are two types of interfaces: required and offered interfaces. A component can ex-

2.5. BEHAVIOR PROTOCOLS 13

port interfaces to the environment and can import interfaces from other components. An
offered interface describes one or more services offered by the component to its clients,
whereas a required interface describes a required service by the component from its envi-
ronment.

Specifically, an interface is a set of operations that may be called by clients (mostly other
components). An operation may have zero or more input and output parameters. Gen-
erally, an operation has at least one output parameter (return value). These concepts are
exposed in the UML metamodel shown in Figure 2.2.

A component may provide an interface directly through procedural interfaces from tra-
ditional libraries, or indirectly, through objects. Most of component-based approaches
use object interfaces, rather that procedural interfaces, being components an evolution
of object-based development.

2.5/ BEHAVIOR PROTOCOLS

In this section, we define the concepts about behavior protocols for components and some
languages used to describe these protocols.

2.5.1/ DEFINITION

A component behavior protocol defines the way in which a component must be used, es-
tablishing a timing order for calling and/or receiving a response from exposed services.
Yellin and Storm described behavior protocols for the first time in [YS97].

A protocol describes the interactions between a component and its environment (clients).
An interaction can be an event for answering a call to one of the exposed services or an
event for asking an offered service provided by the environment. A beavior protocol aims
to establish an order for the use of services of the component and reduce the number of
possible combinations while using these services. Another goal of behavior protocols is
to give a more detailed description than the services one, and to facilitate the abstraction,
reusability and modularity of components.

Behavior protocols allow also to verify composability and compatibility properties in a
component assembly. Therefore, it is not enough to call a component service properly,
but we must also ensure that the assembly is well composed and that there will not be a
blocking state or indesirable situations during the events timeline [AAA07].

For instance, in a printer component, a user should not send a document to print before
asking to reserve the resources and validate his identity, otherwise the component will
respond unexpectedly. In this same case, if the user does not release the printer, then the
component will stay in a blocked state waiting for the user to send an event to unlock it.

2.5.2/ DESCRIPTION PROTOCOL LANGUAGES

There are several languages to describe component protocols as exposed in [Mou11].
There is no language that will fit all behavior specifications, as there are languages for
different contexts. In the following, we present some of them according to the formalism

14 CHAPTER 2. COMPONENT-BASED SYSTEMS

used to express the protocol.

« Formal semantics: in this category we found protocols that provide an explicit seman-
tic to describe the interactions with a component. Here we meet approaches like
[AG97] where the authors propose a formal protocol to describe the connections be-
tween components using Communicating Sequential Processes (CSP) [Hoa78]. They
propose to formally describe the semantic definitions of connectors independently
of component interfaces. The use of CSP allows for consistency and compatibility
checking of architectural descriptions.

« Process algebra: in this category we found the proposal of Carlos Canal et al.
[CFTVoo0]. They propose to extend the descriptions of CORBA Interface Description
Language (IDL) [McHo07] to specify component protocols using polyadic I1-calculus,
a process algebra specially well suited for the specification of dynamic and evolving
systems [Mil99]. This language aims to enrich CORBA IDL with information about
the way components expect their services to be called, how they use other compo-
nent services, and even some semantic aspects of user interest.

o Statechart: Some approacheslike [MRR03a, MRRO3b], propose to model component
behavior using statecharts. The use of finite state machines relies on mathematical
models and it allows simulation of resulting applications and even generation of
code. Another interest of using finite state machines is that we can enhance UML
component descriptions by adding statechart diagrams that later we can verify for
compatibility and safety properties.

« Automata: In this category we group languages that use automata to describe com-
ponent behavior. We found here approaches like [ZVB*08] that uses component-
interaction automata, [dAHo1, dAHo5]| that proposes interface automata, or
[LNWo7] who proposes an extension of interface automata named modal automata.
In these languages, component behaviors are described through labeled transition
systems. The labels have semantics of input, output, or internal actions that repre-
sent the internal functions, and required and offered services of a component. In
this category, we place the description language that we will use in this thesis to de-
fine component behavior. A detailed description of interface automata is presented
in Chapter 4.

We decided to present some of these languages by their formalism. Nevertheless, we could
have also classified them by their content (i.e., services, messages, channels, etc.), the unit
hosting the protocol (i.e., the component itself, its interfaces, etc.), or even their formal
verification capabilities.

2.6/ SOFTWARE ARCHITECTURE

Software architecture can be seen as the art of designing systems. In the same manner
that a building architect proposes new designs to his customers by means of a number of
different views. A software architect will present several views in which some particular
aspect of the system is emphasized to expose his understanding of the system to a client
[PWoz].

2.7. ARCHITECTURAL PATTERNS 15

Bass et al. [BCKo03] give the following definition for software architecture:

The software architecture of a program or computing system is the structure or structures of the
system, which comprise software elements, the externally visible properties of those elements,
and the relationships among them. Architecture is concerned with the public side of interfaces;
private details of elements—details having to do solely with internal implementation—are not
architectural.

We can define a software architecture as an abstract description of the system, of its re-
finement in components, the interfaces of its components and their interactions. Compo-
nents provide a way to isolate specific sets of functionality within units that we can dis-
tribute and install separately from other functionality [MHH" 09].

2.7/ ARCHITECTURAL PATTERNS

Software architectures can be categorized according to the pattern used to assemble its
components. Patterns like [Wir71] started to propose to gradually refine a system from
upper levels to small functionalities following a desired degree of granularity. Years later,
approaches like [TB85] wanted to formalise a separate layer for user interfaces and make
applications more interactive. Nowadays, most of the systems have an architecture com-
posed of several layers like the one in Figure 2.3 [MHH" 09]. Components of the same layer
share the same concern and they do not know much about the internal operation of one
another. The main layers that we can identify are:

« Presentation layer: Components in this layer implement the functionalities that al-
low users to interact with the system. There are Ul components that present the
information to users and get input from them, and UI Process components that
present the information in a logical representation that is independent of any spe-
cific user interface implementation.

« Service layer: Besides, user interfaces, the system can interact with its clients or other
systems through services. This layer is charged of presenting to clients the interface
for getting information from the business layer in a structured manner and wrap
information to be exchanged in structured messages.

« Business layer: Components in this layer implement the core functionalities of the
system, and encapsulate the relevant business logic. In this layer, there will be an
application facade that will provide a simplified interface to business components,
so the clients will not need to know any details about the internal business compo-
nents and their relations.

 Data layer: Components in this layer provide access to data that is hosted within the
boundaries of the system or network resources. They will hide all the logical defini-
tionsneeded to connect to this data sources and will ease the treatement and mainte-
nance of data sources. Another class of components in this layer are service agents
that will provide information obtained from other component services in a format
understandable by the system.

 Crosscutting layer: In this layer we find components that will perform their function-
alities for more that one layer. For instance, security components are required in
other layers to perform authentication, authorization, and validation.

16 CHAPTER 2. COMPONENT-BASED SYSTEMS

USERS

(2 N O N
= \ NSNS N
Eg Ul Components J

wi y
22
E Ul Process Components)
e €
o L] @
~ 7 | 2 el .
o Q

I N El [l 2| =
o . . Y a = i =
a. Application Facade 1 - 5 E =
w = e wvi &] £
@ 5 [Business (Business Y Business = = 3
= . Workflow | Components /| Entities v g

- y % = N » I

A J o

4 ™
Eg | (Ig)ata Access \(Datﬁ !-llg]pers{ (ierwce
05 4 ¢ omponent_? ' tilities gents y \ J FAN J

" AN J

A -~

-

Services

Figure 2.3 - Common layers in a software architecture®

From this layered style, we can derive other ones like the message bus, n-tier/3-tier, SOA,
client/server, etc, among others. For example in the client/server model, the system is
segregated into two applications and the client makes request to the server, most of the
times the server is a database with application logic represented by stored procedures.

'Image taken from [MHH" 09]

3

SYSML LANGUAGE

he Systems Modeling Language (SysML) [OMG12] is a modeling language definition

designed in response to the need for unifying the wide range of modeling languages,
tools, and techniques used in the systems engineering field. For this goal, the Object Man-
agement Group (OMG) [OMG15] and the International Council on Systems Engineering
(INCOSE) made in March 2003 a Request for Proposals (RFP) [OMGo3] for using the Uni-
fied Modeling Language (UML) in Systems Engineering. Then, in May 2006, they pro-
posed a SysML standard and released the version 1.0 in September 2007. Since then, they
have been integrating suggestions from the systems engineering community and nowa-
days we are in version 1.3 presented in April 2012.

The basis of SysML are in UML version 2.0 [OMGos5], which allows defining new profiles
by modifying, adding and excluding diagrams from its standard set. SysML reuses a sub-
set of its diagrams and adds new features to better fit the needs in the RFP, so that it allows
the specification, analysis, design, verification, and validation of a wide range of complex
systems. These systems may include software, hardware, data, processes, people, and fa-
cilities.

SysML is defined by nine diagrams, classified in three subgroups: Structural, Behavioral

Contents
3.1 StructuralDiagramsttt it e e e 18
3.1.1 TheBlock Definition Diagram 18
3.1.2 Thelnternal BlockDiagram 19
3.1.3 TheParametricDiagram 19
3.1.4 PackageDiagram 20
3.2 BehavioralDiagrams ¢ ¢t v vt vt b bttt 20
3.21 TheActivityDiagramo 20
3.2.2 TheUseCaseDiagram 20
3.2.3 TheSequenceDiagram 21
3.2.4 The State MachineDiagram 21
3.3 Cross-CuttingDiagrams ot v v v v v v v v v v v v oo 22
3.3.1 TheRequirementsDiagram 22
3.4 SySMLTOOIS v v i i i ittt i it ettt e e e a e 22
3.5 Conclusion . . . v v v v v v it et e e e e e e e e e e e e e 24

17

18 CHAPTER 3. SYSML LANGUAGE

and Cross-Cutting diagrams. Figure 3.1 shows this categorization and the modification de-
gree of the diagrams with respect to their UML counterparts. Diagrams in orange color
are taken from UML without modifications, those in orange /yellow are modified versions,
and yellow ones are the new additions. We will describe these diagrams in the rest of this
chapter, with an emphasis on those used in our work.

SysML
Structural Diagrams Behavioral Diagrams Cross-Cutting Diagrams
N A T
|| Block Definition Diagram L] Use Case Diagram Requirement Diagram

|| Internal Block Diagram Sequence Diagram

| Parametric Diagram | Activity Diagram SysML 1.3

L] Package Diagram L_| State Machine Diagram

Figure 3.1 - Relation between UML and SysML

This chapter is organized as follows: Sections 3.1, 3.2, and 3.3 will be consecrated to de-
scribe each SysML group and their diagrams, Section 3.4 presents some of the tools widely
used in the SysML community to edit the diagrams and we end in Section 3.5 with the con-
clusion.

3.1/ STRUCTURAL DIAGRAMS

Structural diagrams are intended to describe the system architecture showing its consti-
tutive parts, communication links, internal composition, and initial values. The basic el-
ements in structural diagrams are blocks. A block is a modular unit that represents the
structure of a system or one of its elements. It may list structural or behavioral features
by properties and actions respectively. Some of the properties may hold other parts of the
system (that may be also described by blocks) and be linked through connectors to indicate
how they relate to one another.

This set of SysML diagrams are meant to organize blocks and allow us to represent a system
hierarchy, in which a system at one level is composed of systems at a more basic level. In
the following we present the diagrams grouped in this category:

3.1.1/ THE BLOCK DEFINITION DIAGRAM

Block Definition Diagrams (BDDs) are based on the UML class diagram with some capa-
bilities excluded, such as more specialized forms of associations. They describe the ar-
chitectural structure of the system as components with their properties, operations, and
relationships. Every component is represented by a block, no matter whether they are

3.1. STRUCTURAL DIAGRAMS 19

- «block» - «block»
<blocky £ linSensors £ loutSensors
¥ sensorsControl . AR P
& p_in: linSensorsControl e & p_out: loutSensorsControl operations operations
I:]W[:I i3 speed() 43 acceleration()
+ sensorscontrol + sensorscontrol constraints constraints
—— constraints o —
11 [
_ «block» ~ «block»
1]+ acu = linACU 2 loutACU
[']|+ sensors <blocks properties properties
T«bIock» o p_in: inACU = ACU i operations operations
& p_in: linSensors = Sen.sors B [properties ¥fs acceleration() ## lock_sb()
|: properties e - constraints 5 unlock_sb()
operations % acc_control() ?\. activate_ab()
T i p_out: loutSensors - reset() 5 reset_ab()
constraints o p_out: loutACU constraints

Figure 3.2 - A block definition diagram

logical (software) or physical (hardware) elements, and they are organized in the diagram
to show a system hierarchy or a system classification tree describing their associations,
generalizations, and dependencies.

Figure 3.2 presents a preliminary BDD diagram for our case study where the main block
SensorsControl is associated to two composing parts, the block Sensors and ACU. Since the
association link starts with a black diamond symbol then this association is a composing
one. Inside each block box we can list its constraints, operations, parts, references, values
and properties, and around it we can put the ports allowing it to communicate with other
blocks. These ports are typed by interface blocks that can be presented in the same dia-
gram or in another one. They list as operations the actions that we can demand or should
provide to the corresponding block through their typed ports.

3.1.2/ THE INTERNAL BLOCK DIAGRAM

The Internal Block Definition Diagram (IBD) is based on the UML composite structure dia-
gram, with restrictions and extensions as defined by SysML. It captures the internal struc-
ture of a block in terms of properties and connectors between properties. Each property
is represented as a part and ports are used to specify allowable types of interaction. They
are linked by the interactions between them, such as software operations, discrete state
transitions, flows of inputs and outputs, or continuous interactions.

In Figure 3.3 we show an IBD describing the internal structure of the block SensorsControl
from our case study. It presents the block as the main frame and inside we see the two com-
posing blocks, Sensors and ACU, instantiated as part properties, . They are linked through
a connector that goes from the p_out port of Sensors part to the p_in port of ACU part.

3.1.3/ THE PARAMETRIC DIAGRAM

The Parametric Diagram is a new diagram introduced in SysML and it aims to describe
the parametric constraints between the structural elements. Here we can define initial,
minimum, and maximum values for the variables specified in the blocks. This diagram
includes notations that constraint the values of an IBD and define the relations between

20 CHAPTER 3. SYSML LANGUAGE

«block»
2% SensorsControl

sen;(gras"béensors t loutS i p_out: loutSensorsControl

o =l g i p_out: loutSensors

i p_in: linSensors

[:l «part» :l
(=) acu: ACU

(1| —{] [T—
& p_in: linSensorsControl = p_in: linACU .
i p_out: loutACU

Figure 3.3 - An internal block diagram

block properties, that can be used later to compute energy use or response times.

3.1.4/ PACKAGE DIAGRAM

ThePackage Diagram is used to describe how the system model is organized into packages,
views, and perspectives. Organizing the elements by packages helps to establish unique
naming of the model elements and avoid overloading a particular model element name.
Other diagrams like the BDD, requirement diagram, and behavior diagrams can nest pack-
age elements.

3.2/ BEHAVIORAL DIAGRAMS

Behavioral diagrams aim to describe all the actions performed by the system, showing
the messages exchanged, the actors, the order of actions and the different states in which
the system will be, once an action is executed. This set of SysML diagrams are meant to
present the dynamic view ofthe system. In the following we present the diagrams grouped
this category:

3.2.1/ THEACTIVITY DIAGRAM

The Activity Diagram describes the actions done by the system and their sequence. For
this end, it specifies the input and output data, which are used during the flows. This dia-
gram is an extension of the activity model of UML 2.0. It includes additional properties to
allow modeling of other type of flows (i.e. continuous or discrete object flows, controlled
flows, probabilities of flows, etc).

3.2.2/ THE USE CASE DIAGRAM

The Use Case Diagram describes the services a user can interact with. The services de-
scribed are not limited to system functions, they can also be other users or physical ob-
jects. Hence, use case diagrams are very simple and their application fields are very large,
including systems engineering, they were not modified from the UML 2.0 version.

3.2. BEHAVIORAL DIAGRAMS 21

7 :SensorsControl T environment

I I
| —L

= loop] o

b speed()
12] (0,1)[true]
it J % lock_sb()
12_| [val_acc>=60] @ unlock_sb()
[val_acc<60 @ activate_ab()
|2 |and
val_acc>=3] @ reset_ab()

2 |[el
= ;I & reset()

Figure 3.4 - A sequence diagram

3.2.3/ THE SEQUENCE DIAGRAM

The Sequence Diagram describes the system behavior as interactions between system
components. Aninteraction presents each part of the system represented as a lifeline that
communicates through messages in the form of operation calls or signals. In addition to
lifelines and messages, sequence diagrams uses combined fragments that condition the
execution of messages, for example the if and while operands can be represented by the
alt and loop combined fragments respectively.

In Figure 3.4 we present the interaction of the ACU block from our case study with its en-
vironment. We see that the ACU and its environment have a lifeline for each one and the
exchanged messages are represented by arrows. We notice that there are two combined
fragments, a loop fragmentindicating that the message sequenceis repeated and a nested
alt fragment that decides which sequence of messages must be executed, in this case we
decide whether to deploy the airbag by analyzing the deceleration value received in the
sensor_values call from the environment.

3.2.4/ THE STATE MACHINE DIAGRAM

The State Machine Diagram describes through state machines the system behavior. A
state machine presents a set of states and state transitions that represents the response
of a system to events. Each state contains a set of values that are modified at each transi-
tion. The SysML state machine diagram is used unchanged from its UML 2.0 counterpart.

22 CHAPTER 3. SYSML LANGUAGE

3.3/ CROSS-CUTTING DIAGRAMS

In this category comes the diagrams that do not fit in structural neither behavioral dia-
grams since they describe the system needs in a wide view as for example the functional
and non-functional requirements.

3.3.1/ THE REQUIREMENTS DIAGRAM

The requirement diagram is a new diagram introduced by SysML to close the lack of re-
quirement modeling in UML, besides the use case diagram that can only represent func-
tional requirements though. This diagram aims to list the model functional and non-
functional requirements, such as response times, size or functions of a system.

In the requirement diagram, each requirement is represented as a stereotype «require-
ment» of the UML element class, and the requirements can be associated by different rela-
tionships, i.e. the «deriveReqt» relationship to indicate that a requirement is derived from
another requirement, or the containment relation, represented by the symbol & at the
start of the association, to indicate that a requirement is contained in the other require-
ment.

The requirement diagram that specifies the system needs for our case study is shown on
Figure 3.5. In this diagram, the initial requirement R, asks for ensuring passengers lives
and it is decomposed by a containment relationship into two requirements R, ; and R, ,
that ask for two safety devices: an airbag system which must be deployed whenever the
car isin a collision, and the seat-belts that must be locked when the sensors detect strong
movements. On the left side, requirement R1.1 is further decomposed into requirements
R; 11, Ri 12, and R; ;5. Requirement R, asks for the capture and sending of sensor
values to an Airbag Control Unit (ACU). Requirement R ; , requests an ACU to decide
whether to deploy the airbag and lock the seat-belts as soon as the sensors report new
values. Finally, requirement R, ; ; demands to deploy an airbag device, once the signal
from the ACU is received.

3.4/ SYSML ToolLs

The OMG is responsible for releasing SysML and each version comes with a documenta-
tion describing the specification and a machine readable file in Extensible Markup Lan-
guage (XML) format with the metadata for building SysML diagrams. From this metadata,
developers can create tools to assist the designing of standards-compliant models. So, ac-
tually there are several tools available to assist the system designers in their projects, and
is up to them to choose the one that fits better their needs. Here we list some of the most
known tools classified in commercial and free software:

o Commercial Tools

- MagicDraw: Since its release, this tool, produced by the NoMagic society ?, is
intended for designing UML models, nevertheless as SysML is a UML stereo-
type then one can add a plugin named Paramagic (also a commercial plugin)

http://www.nomagic.com

http://www.nomagic.com

3.4. SYSMLTOOLS 23

req [package] SecurityRequirements [Car Safety Device])

<<requirement>>
Car Safety Device
Text : "Ensure life of

passengers"
Id: "R1"

<<requirement>>
Seat Belt System
Text : "Seat belts must

<<requirement>>
Airbag System

Text : "Activate the air be locked once the
bag system when there signal from the ACU is
is a collision" received"”

Id: "RL.1" Id: "R1.2"

<<requirement>>
Airbag Control Unit ;
- Text : "Decide whether <<Irequ|reme?nt>>
<<requirement>> or not to deploy the Airbag Device
Sensors airbag and/or lock the Text : "Deploy the

Text : "Always get the seat-belts once the airbag once the signal
sensors values and send sensors report new from the ACU is
them to the ACU" values" received”
Id: "RL.1.1" Id: "R1.1.2" Id: "R1.1.3"

Figure 3.5 - A requirement diagram

that includes the SysML specification. This tool is the most used in the model-
ing community since it is the one used by the authors of the standards in their
books and it integrates the new specification as soon as they are published.

- Cameo Systems Modeler: This tool, developed also by NoMagic and based in Mag-
icDraw is exclusively intended for designing systems and we can say that is the
most complete SysML tool as it integrates the new updates as soon as they are
proposed by the OMG. It includes the SysML 1.4 version, which at this moment
has not been released by the OMG though.

- Artisan Studio: Developed by the Atego society ?, this tool provides modeling
capabilities to design UML and therefore SysML diagrams. One interesting op-
tion with this tool is the posibility to use a free version, which is intended for
single users.

- Enterprise Architect: Developed by the Sparx Systems society 3, this tool can be
extended to model SysML diagrams, by adding the MDG Technology plugin.

o Free Tools: Most of the free SysML tools are based on the EMF * and we can add them
as plugins from their respective update sites.

- Papyrus®: This plugin is intended to model any kind of EMF model, especially
UML and related modeling languages as SysML.

Zhttp://www.atego.com
3http://www.sparxsystems.com
*http://www.eclipse.org/emf/
http://www.eclipse.org/papyrus/

http://www.atego.com
http://www.sparxsystems.com
http://www.eclipse.org/emf/
http://www.eclipse.org/papyrus/

24 CHAPTER 3. SYSML LANGUAGE

- TopCased®: This plugin is intended to model critical embedded systems includ-
ing hardware and/or software, and its main modeling language is SysML. We
have to note that until now they were releasing a dedicated plugin to integrate
in eclipse but actually they are migrating their tools to the PolarSys organiza-
tion ? which is an open source environment intended for embedded systems.

3.5/ CONCLUSION

As seen in this section, SysML is a language intended for the systems engineering com-
munity based in UML and allows designers to model not only structural and behavioral
properties but also to organize the requirements. For the purpose of this dissertation we
will particularly focus in four of the nine diagrams: Block Definition, Internal Block, Se-
quences, and Requirements. Requirement diagrams will be used to present the require-
ments to verify over the other ones. We also presented a vehicle safety system as a case
study to show the use of these diagrams. Finally, we presented some of the main commer-
cial and free tools used to model SysML diagrams.

®http://www.topcased.org/
“http://www.polarsys.org

http://www.topcased.org/
http://www.polarsys.org

4

INTERFACE AUTOMATA

ne of the several options to describe component behavior is the interface automata
O approach. In this chapter, we present an overview of the main concepts of this kind
of automata proposed by Luca d'’Alfaro and Thomas Henzinger en 2001. We will later used
them in Part II to verify component compatibility in our proposed approaches. This chap-
ter is organized as follows: in Section 4.1 we present a formal definition of interface au-
tomata and its properties, Section 4.2 presents the application of interface automata to
verify component compatibility, Section 4.3 presents some tools that we can use to ver-
ify if two components are compatible and we conclude this chapter in Section 4.4 with a
conclusion.

4.1/ DEFINITION

Luca d’Alfaro and Thomas Henzinger introduced interface automata in [dAHo1]. They
used this automata to specify component interfaces and also to verify component assem-
bly. For the matter of this dissertation, we exploit interface automata to model interfaces
of SysML blocks (components).

The interface automata approach aims to describe the behavior ofa component asan inter-
face automaton, this automaton consists of a set of states and actions allowing the change
of state. Actions are decomposed into three groups: input actions, output actions and
internal actions. Input actions represent the methods than can be requested to the com-
ponent, in which case they are the offered services. These actions are labeled by the char-
acter “?”. Output actions model the method calls or messages sent to another component.
Therefore, they represent the services required by the component. These actions are la-
beled by the character “!". Internal actions are operations that can be activated locally and

w,n

are labeled by the character “;".

Formally we describe an interface automaton as follows:

Contents
4.1 Definition it e e e e 25
4.2 Automata Compatibility Verification 26
4.3 Compatibility Verification Utilities 28
4.4 Conclusion . . . v v v v v v i b e e e e e e e e e e e e 29

25

26 CHAPTER 4. INTERFACE AUTOMATA

Definition 1: Interface Automata

An interface automaton A is represented by the tuple (S4, I, Zi, Zg, Zf, 64)
such that:

» S, isafinite set of states;
« I, C§,isasubsetofinitial states;

. Ei, Eg, and Ef , respectively denote the sets of input, output, and internal
actions. The set of actions of A is denoted by X 4;

e 04 €Sy XXy XS, isthe set of transitions between states.

We define by 2114(5), 23(5), Zfz (s), respectively the set of input, output, and internal actions
at the state s. X 4(s) represents the set of actions at the state s.

!
get_sensor sensor_values! sensor

_values @\/——>® _values

get_sensor_values?

Figure 4.1 - Interface automaton A for the sensor block

Asan example, we present in Figure 4.1 an interface automaton representing the behavior
of the sensor block presented in the BDD of Figure 3.2. The process to obtain this automa-

tonwill be described later on Part II. Besides this graphical representation, we can describe
it formally as follows:

« S, =1{0,1};

o I,=1{0};

. Zi = {get_sensor_values};

. Z(j = {sensor_values};

. =i = g;

o X, = {get_sensor_values, sensor_values};

e 64 ={(0, get_sensor_values, 1), (1, sensor_values,0)}.

4.2/ AUTOMATA COMPATIBILITY VERIFICATION

The verification of the assembly of two components (blocks) is obtained by verifying the
compatibility of their interface automata. Before doing this verification, it is necessary to
ensure that the interface automata are composable.

Two interface automata A; and A, are composable if
I I _v0 O _vH _ H _
ZA] nZAz-ZA] nZAz-ZAl NXy =Xy, ”ZAz—@-
This means that they can not share the same set of input, output or internal actions. In

Figure 4.2 we present an automaton representing the behavior of the ACU block in the
BDD on Figure 3.2, which we compose with the automaton in Figure 4.1.

4.2. AUTOMATA COMPATIBILITY VERIFICATION 27

e)
!
act_ab! act sb
sensor ——
_values ensor_values?, act_sb!
— — — 1 —
act_ab
o—
reset,;
L act_sb!)

Figure 4.2 - Interface automaton B for the ACU block

We define by Shared(A,A,) = (Zli1 N Zgz) U (Zlg1 N ZAZ) the set of actions shared between
A, and A,. The verification of the compatibility of two interface automata is based on

their synchronized product, A; ® A,, obtained by synchronizing the interface automata
on their shared actions (see Definition 3.4 in [dAHo1]).

Definition 2: Synchronized Product

Let A; and A, be two composable interface automata. The synchronized product
A ® A, of A| and A, is defined by:

L SA1®A2=SA1 XSA2 andIA1®A2 == IAI XIAZ;
. 231®A2 = (z{11 uzﬁb) \ Shared(A, A,);
o 23 o4, = (Eq UZL) \ Shared(4;, Ay);

. 2/’;’1®A2 = 25{1 U zfz U Shared(A;, Ay);

((S]’ SZ)’ a, (slla Sé)) € 5A1®A2 lf

- a & Shared(Ay, Ay A(s1,a,5]) €Edy Asy =5

!
2
- a & Shared(A;, Ay)) A(sy.a,55) €64 As| =5

- a € Shared(Ay, A)) A (sy,a,57) € 54 A(53,a,5)) €y,

Two interface automata may be incompatible due to the existence of illegal states in their
synchronized product. Illegal states are states from which a shared output action from an
automaton can not be synchronized with the same enabled action as input on the other
component.

Definition 3: Illegal States

Let A; and A, be two composable interface automata, the set of illegal states
Illegal(A}, Ay)) € Sy %X Sy, is defined by {(s1,5,) € Sy, X Sy, | Ja €

Shared(A,, A,).((a € zgl(sl YAa & zgz(sz)) V(ae zgz(sz) Aa g Zﬂl(sl)))}-

The interface automata approach is considered an optimistic approach. In this approach,
the reachability of states in Illegal (A, A,) does not guarantee the incompatibility of A,
and A,. Indeed, in this approach one verifies the existence of an environment that pro-
vides appropriate actions to the product A; ® A, to avoid illegal states. The statesin which
the environment can avoid the reachability of illegal states are called compatible states,

28 CHAPTER 4. INTERFACE AUTOMATA

and are defined by the set Comp(A;, A,). This setis calculated in A; ® A, by eliminating
illegal states, unreachable states, and states that lead to illegal states through internal ac-
tions or outputactions, called also incompatible states. These states are eliminated by pro-
viding a legal environment which steers away from the illegal states by generating appro-
priate inputs. By eliminating these statesin A; ® A,, we obtain the composition A, || A,.
As a consequence, the interface automata A; and A, are compatible iff A; || A, # @
[dAHo1].
Definition 4: Composition

The composition A; || A, of two automata A and A, is defined by:
i Sy a4, = Comp(A, Ay),
. Iy 14, = 14,04, N Comp(Ay, Ay),
il X4, = 24,04,

iv. 64,14, = 04,04, N(Comp(Ay, Ay) XXy |4, X Comp(Ay, Ay))

We call the automaton A = A, || A,, the composite automaton.

The verification of the compatibility between a component C; and a component C, is ob-
tained by verifying the compatibility between their interface automata A; and A,. The
main steps of the verification algorithm of the compatibility between A, and A, (the com-
plete algorithm in [dAHo1]) are listed as follows:

Compatibility verification algorithm:
1. verify that A; and A, are composable.
2. compute the product A; @ A,.
3. compute the set of illegal statesin A; @ A,.

4. compute the set of incompatible statesin A; @ A,: the states from which the illegal
states are reachable by enabling only internal and output actions (one supposes the
existence of a helpful environment).

5. compute the composition A, || A, by eliminating from the automaton A; ® A,, the
illegal states, the incompatible states, and the unreachable states from the initial
states.

6. if A; || A, isemptythen A; and A, are not compatible, therefore C; and C, can not
be assembled correctly in any environment. Otherwise, A; and A, are compatible
and their corresponding component can be assembled properly.

The complexity of this approach is in time linear on |A,| and | A, | [dAHoO1].

4.3/ COMPATIBILITY VERIFICATION UTILITIES

The verification steps presented above have already been implemented in mainly two
tools, The first one is Ticc [AdAD* 06, dAFL06] which was developed by Henzinger and de

4.4. CONCLUSION 29

Alfaro, butis no longer available neither supported. The second one is Ptolemy II [BLL* 05]
which is a tool for modeling, simulation and design of concurrent, real-time and embed-
ded systems. Ptolemy II integrates a module to work with interface automata [LX04], it
represents the interaction between components that are represented as actors and evalu-
ate their compatibility by various means, and one of those is the compatibility verification
by interface automata.

4.4/ CONCLUSION

In this chapter we presented the interface automata approach introduced by d’Alfaro and
Henzinger in which components are represented as automata. In this approach, compo-
nent services are implemented as actions to change the component state. The goal of us-
ing interface automata is to verify the compatibility between components by synchroniz-
ing them in their shared actions and verify if there are states that are still accessible after
the composition. In order to automatize the process of verification we presented also the
tool Ptolemy which allows to verify if two interface automata are compatible.

5

RELATED WORKS

his chapter presents some ongoing research subjects in the scientific community re-
Tlated to our matter in this thesis. The chapter is organized as follows: in Section 5.1
we present some relevant approaches about the generation of software architectures for
CBS, in Section 5.2 we list some interesting approaches exploring component compatibil-
ity verification, in Section 5.3 we list some proposals for describing component behavior.
Section 5.4 introduce some approaches that propose how could we list and describe sys-
tem requirements, particularly in SysML. We end the chapter with a conclusion in Section
5.5.

5.1/ GENERATION OF CBS ARCHITECTURE

In [LLHO1], the authors propose to specify formally system requirements from UML use
case diagram and to exploit this formal model to construct the class diagram of the system.
The differences with our proposition are the use of SysML requirement diagram to specify
requirements, and the situation of our work in the context of CBS, where we deal with the
problem of component compatibility with the interface automata approach.

In [PEML10], the authors propose a system modeling approach that combines SysML
safety requirements and block diagrams, and the model checking approach to prove that
the local behavior of each component contributes to satisfy system requirements. In this
work the problem of component compatibility and the preservation of the requirements
are not treated.

To construct systems, other approaches take into account all the requirements at once.
For example, [vL03], based on KAOS framework [BDD" 97|, and in [BDLo5] the authors
propose an incremental approach by adding structural and behavioral properties into a
software architecture. Therefore, we were inspired by their vision concerning the require-

Contents
5.1 Generation of CBS Architecture ¢ ¢ v v v v v v o .. 31
5.2 Compatibility Verification 32
5.3 Component Behavior Description 33
5.4 Requirements SpecificationinSysML 34
5,5 Conclusion v vt i i it i i e e e e e e e 35

31

32 CHAPTER 5. RELATED WORKS

ments where a requirement should be further decomposed to meet the atomic require-
ments which can be then linked to elementary software components.

In [CLR*09], the authors propose a component-based design method called rCOS, its goal
is to guide the process of system development from requirements elicitation through to
coding, providing the formal definitions of the models in a UML-based RUP development
process. Although, our approach is similar to theirs, in the way we use sequence diagrams
to express component interfaces, it lacks the use of a component library to look for third
party components that can be reused and verify their compatibility.

The works proposed in [Droo3, Droo7] are based on a behavior tree approach and translate
atomic requirements into behavior trees. An interesting approach which inspired our ap-
proach in Chapter 8 was proposed in [LNRT10], the authors construct the system starting
from raw requirements described in a natural language. Specifications of requirements
are derived from intermediate requirement models, and these models approximate the
raw requirements. These requirements are then directly mapped into system architec-
ture, where a requirement is represented by an element in the system, thus, maximizing
the match between the final system and the raw requirements. This approach is based
on a component model that supports incremental composition. However, this model is
restrictive and does not consider component protocols and compatibility verification, be-
cause their components do not have external dependencies, which ensures that newly
added components do not alter the behavior of existing components. Our approach is
different and proposes to map requirements, specified and organized with SysML dia-
grams, directly into system architecture, by exploiting the interface automata formalism
and the composition of component interfaces. Using SysML to list the requirements has
the main advantage of seeing them graphically modeled and their relationships are ex-
plicitly mapped, which allows seeing the decomposition of the system in early stages of
the development [SV08b]. The construction of system architecture is guided by the re-
quirements, and the preservation of these requirements in the final system is guaranteed
by the compatibility of interface automata and the preservation of the component actions
linked to the requirements.

5.2/ COMPATIBILITY VERIFICATION

In the field of the verification of component compatibility, Bauer et al. [BSBMos5] sug-
gested that "two services are compatible if they can interact properly”, which is derived into:
firstly the components having opposite behaviors, this means that when one component
emits a message, the other one must receive that message and vice-versa, secondly there
must not be unspecified receptions, which means that all services requested from one
component to the other one must be offered, and thirdly the system must be free of dead-
locks, in other words, during the interaction between the two services, all reachable states
must be deadlock free.

In the field of components, several approaches have been proposed to describe software
architectures like those of [Szy02, MToo]. Most models consider the components with
their behavior, connectors, and provided/required services. The assembly operation of
components may occur at different levels of abstraction, from the design of Dynamic Soft-
ware Architectures (DSA) to the implementation in platforms such as CORBA [McHo7] or
.NET [Plao2].

5.3. COMPONENT BEHAVIOR DESCRIPTION 33

In our case, we are interested in SysML blocks specified by their interfaces and their be-
haviors modeled using Sequence Diagram (SD). We can cite as examples the model of
Allen 1997 [AG97] where the protocols are associated with component connectors. Attie
in 2006 [ALPC06] combines protocols to interfaces connecting two components. Others,
like Becker in 2004 [BOR04] propose a framework for comparing models with three levels
of interoperability using the signatures, the protocols associated to the components and
quality of service. The protocols of Magee et al. 1999 [MKG99] are based on works on au-
tomata and competition using the formalism of transition systems, including the analysis
of reachability. The composition operation is essential to define the assembly and verify
the safety and liveliness properties.

The crucial question that arises to the developer is whether the proposed assembly is valid
or not.

The approach of Moizan et al. 2003 [MRR03b] aims to provide UML components with the
specification of their protocols. The behavior description language is based on hierarchi-
cal automata inspired by StateCharts. It can support mechanisms for composition and
refinement of behaviors. Properties are specified in temporal logic.

Attiogbé et al. [AAA05, AAA06] define a component model based on services named
Kmelia. In this approach they associate components through communication channels
following a syntax inspired from Hoare’s CSP [Hoa78]. The behaviors are described by au-
tomata and associated to services. To verify component compatibility, they encode the
Kmelia components into LoTOS processes [Lot88] which are the input of the toolbox for
protocol validation and verification CADP [FGK* 96].

Teixeira in 2011 [TS11] proposed an approach to evaluate the compatibility of components
specified in UML, they use the state machine diagram to describe component behaviors
which are then translated to a Petri net to identify compatibility problems

Although a system architecture is composed by several components, and there are ap-
proaches like [CK13] which propose to verify compatibility in a multicomponent environ-
ment by using team automata [Ell97], we are constrain to verify components by pairs who
must not share the same input (resp. output) actions, which allows us to use interface
automata obtained from SD.

Other works deal with the inclusion of real-time constraints as in Etienne and Bouzefrane
in2006 [EB0O6]. Itaims to determine the characteristics of components and to define some
criteria to verify compatibility of their specifications during the assembly phase using the
tool Kronos.

Our approach allows analyzing the consistency, composability and compatibility between
blocks. It combines semi-formal models based on SysML and formal models based on
interface automata for correct assembly between blocks.

5.3/ COMPONENT BEHAVIOR DESCRIPTION

In this thesis we explore the substitutability and compatibility of software components.
Substitutability is the ability of the component to replace another one without been no-
ticed by the clients. Compatibility is the ability of a component to interact properly with
other one when connected.

34 CHAPTER 5. RELATED WORKS

[VVRO6] proposes the use of session types, [HVK98] to describe the dynamic behavior of
components additionally to the simple descriptions usually provided by software compo-
nent interfaces, other like [[MO10] use timed automata.

The ability of SD to express the behavior of a system has been exploited before, like in
[HLo7, HKo7, VTo4, RFo6, GMP11] where they are translated into state machines, Petri
nets or even Java code skeleton, nevertheless they are not formally verified as it is pro-
posed in [LTM*09]. This later proposes to translate SD into a Promela-based model to
simulate its execution and therefore verify properties written in Linear Temporal Logic
(LTL) [CGP99] that can be checked with the model-checker SPIM [Holo1].

5.4/ REQUIREMENTS SPECIFICATION IN SYSML

Soares [SV08b, SV08a] proposed a methodology for Model-based Requirements Engineer-
ing using the SysML Requirements and Use Case diagrams. They chose SysML because it
allows to have a structured graphic model of the requirements and also a tabular format
which may facilitate the traceability of requirements during the system life cycle. In this
approach, first, all the atomic requirements are classified by type:

« Functional: describes what the users expect the system should do to be useful (func-
tionalities), this type of requirements includes information about logical databases
like frequency of use, data entities, and integrity constraints.

« Non-functional:are related to emergent system properties such as reliability, safety
or response times. They do not depend from a single element in the system, they are
evaluated on the emerging system by assembling the system components.

« External: describes all the inputs and outputs of the system, it can include other
systems, users, hardware, software, or communication interfaces.

Then, they represent all the requirements in a SysML Requirement diagram which helps
to define their relationships, which can be useful for discovering subsystems and limit
system architectures. At this stage, requirements are also listed in a tabular form to allow
their traceability during the system life cycle, this is important to trace when a require-
ment has been changed, satisfied or deleted. Finally, SysML Use Case diagrams are used
to represent the actors involved in the system and the use cases which helps to delimit the
system.

Matoussi et al. [Mat11, BMC"12, LSM*10] propose a methodology that allows generating
a refinement architecture in EventB from SysML requirements specifications. They are
based in the KAOS approach [vLo3] and extend the SysML requirement diagram in the
stereotype SysML/KAOS for functional goals. Once the goals diagram is described, they
refine the requirements into atomic goals from which they generate Event-B functions
that can be later verified.

In the field of requirements validation, Petin et al. [Peto7, PEML10] propose to model re-
quirements through SysML diagrams which they extend in a prototype that allows to link
formal properties to the requirements. The requirements can be then linked to the blocks
in a BDD to indicate that that block satisfies that requirement, to verify the requirement,
the linked property is verified with UPPAL model-checker. This model of linking blocks,

5.5. CONCLUSION 35

properties and requirements aims to facilitate the traceability of requirements validation.
Similarly, Linhares et al. [LdAOFV07] propose to formalize SysML requirements with LTL
properties that they verify over Petri nets representing system behavior, for this end, they
use the TINA toolbox [BRV04].

5.5/ CONCLUSION

In this chapter, we presented some related works of the proposals in this thesis, we cited
notably the works of [CLRT09] who propose the design method rCOS, to develop a CBS
architecture following a UML-Based development from requirements, other authors like
Matoussi et al. [Mat11] and Petin et al. [Pet0o7] base their work in SysML requirements like
we do in this thesis, the former using Event-B to verify requirements and the latter using
UPPAL model-checker.

I

CONTRIBUTIONS

37

6

INCREMENTAL REFINEMENT OF ABSTRACT
COMPONENTS TO DEFINE CBS ARCHITECTURE

n this chapter, we propose to exploit SysML language and the relation of refinement

between components, to define the architecture of CBS from an abstract component.
As seen above in Chapter 3, a SysML specification of a system is described by structural
diagrams and behavior diagrams. Our approach is based on processing an incremental
refinement from an abstract level toward more detailed levels. In our case it is a question
of replacing an abstract block in a specification by a composition of blocks preserving its
structural properties and its behavioral properties.

Structural diagrams of SysML describe the system in static mode and behavioral diagrams
describe the dynamic operation of the system. We note that the term used in SysML for
components is blocks, and they are modeled by two diagrams, the BDD, which defines
the architecture of the blocks and their performed operations, and the Internal Block Di-
agram (IBD), which is used to define the ports of each block and transactions exchanged
between them through their ports. During the refinement process, these two diagrams
can be checked to decide whether the proposed architecture of components satisfies or
not the requirements defined by an abstract component.

Contents
6.1 ApproachOverviewot v vt vt v eeneenennn 41
6.2 CBS Architecture SpecificationwithSysML 44
6.3 Formal Specification of SysMLmodels 46
6.4 Structural Refinement of SysMLBlocks 48
6.4.1 Consistency and Composability Verification between Blocks . . . 48
6.4.2 Interface Automata Generation 50
6.4.3 Compatibility Verification 52
6.4.4 Verification Algorithm for Structural Refinement 53
6.5 Behavioral Refinement Verification of SysML Blocks 56
6.5.1 Alternating Simulation 56
6.5.2 Modall/OAutomata v v v v i 56
6.5.3 CaseStudy Application 58
6.6 Conclusion v v i v v vttt ittt e e 62

39

40 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

We focus on the decomposition of a SysML block into several blocks whose interactions
are described by interface automata (see Chapter 4). These interface automata can be de-
rived from SysML behavioral diagrams as proposed in [CH11]. The interface automata for-
malism [dAHo01] allows us to model the temporal order for performing the required (out-
put) and provided (input) services (operations) of a component. One problem that appears,
may be the existence of anomalies in the interaction between blocks that can lead to ille-
gal states. These states mean that one of the two blocks is requesting a service not offered
from the other one. However, two interface automata A, and A, associated with two in-
ternal blocks B| and B, are compatible if there is an environment that prevent them from
reaching illegal states during their interaction.

This chapter aims to formalize the decomposition process, by defining a refinement rela-
tion between blocks, and by focusing on the verification of architectural and behavioral
aspects of SysML blocks. In Figure 6.1, we show the position of the contribution presented
in this chapter, regarding the contributions of this thesis.

SysML
I
[| I
Structural Behavioral .
. A Requirements
Diagrams Diagrams
BDD IBD SD Functional

0
-

B oioce Promela requiremen
B T R
R R

= «blocky = ablocks
B ’1 B,
@ ablocks [ablock»

Bll Blz

Incremental
Refinement

Compatibility
Verification

Figure 6.1 — Thesis contribution 1

Itis organized as follows. In Section 6.1, we present a general explanation of our proposed
refinement process, which allows us to verify refinement of an abstract SysML block into
more concrete SysML blocks, then in Sections 6.2 and 6.3 we introduce the principles to
model CBS with SysML and its formal representation, later in Sections 6.4 and 6.5 we
present our proposal to validate structural and behavioral refinement of SysML blocks,
and we end with a conclusion of this chapter in Section 6.6.

6.1. APPROACH OVERVIEW 41

6.1/ APPROACH OVERVIEW

«block»
£ B

rties
The refinement of the [y proper +
— T e

abstract block (CBS) * operations
by the proposed constrants
implementation? 1] + b1 Mk b2
ablock» -
=8 g «block» «block»
properties = B1 B2
operations properties properties
@ p_in: i o it: loutB
p_in: linB pout: fou operations operations
Abstract system constraints. constraints

Proposed implementation

«block»
=B

@ p_in: linB «part» «part» © p_out: loutB
- = b1:B1 (=) b2: B2
i p_out: loutB1

o p_in: linB1 o p_in: linB2 [p_out: loutB2

Figure 6.2 - Proposed approach for verifying structure and behavior refinement in SysML

The approach presented in this chapter aims to propose a method to formalize and verify
SysML block decomposition in a refinement process. We show the general procedure in
Figure 6.2.

Our approach aims to propose a formal method to construct SysML composite block from
asetofelementary reusable ones. So, from an abstract composite block, such that its struc-
ture is modeled with SysML BDD and IBD diagrams, and its behavior with SD, we propose
an approach which decides whether a composition of a set of elementary reusable blocks
fulfill the structural and behavioral requirements, related to the composite block. Thus,
we propose to verify the correct decomposition of the composite block into a selected set
of sub-blocks (elementary). We achieve this decomposition by defining a refinement by de-
composition relation between the abstract block and its sub-blocks. Thisrelation is verified
incrementally, between abstract blocks and their sub-blocks, at different levels, starting
from the first abstract block until obtaining the elementary blocks. Our relation of refine-

ment depends on the verification of two relations between the composite block and its
sub-blocks:

« structural refinement relation: according to the illustration in the figure 6.2, this re-
lation holds between the composite block B and, the sub-blocks B1 and B2 iff Bl
and B2 are compatible and the offered and required services of Bl and B2 are con-
sistent with those of B.

o behavioral refinement relation: this relation holds iff the behavior of the composi-
tion of Bl and B2 is a refinement of the behavior of B.

42 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

Definition 5: Refinement by decomposition of SysML blocks

Let Bbeanabstractblock describedbya BD D, and an I BD, these both diagrams
specify the system architecture. Let By, ..., B, be the set of blocks composing B
according to the BDD, so By, ..., B, refine by decomposition B iff:

e By,..., B, refine structurally B,

e By, ..., B, refine behaviorally B,

Therefore, to verify the refinement between a block and its sub-blocks, we verify the con-
ditions of consistency and compatibility for structural refinement and alternating sim-
ulation for behavioral refinement (see Figure 6.3). To achieve this verification, we need
to specify by Sequence Diagrams (SD) the behavior description of the abstract block and
its composing sub-blocks, and then, by exploiting the approach proposed in [CH11], we
associate an interface automaton to each SD. These automata are exploited to verify the
compatibility between sub-blocks by means of Ptolemy tool [LX04], which generates the
composition automaton from two interface automata as input. Then we verify the behav-
ioral refinement by means of the MIO Workbench [BMSH10], which verifies ifa behavioral
specification is refined by an implementation using Modal Input/Output (MIO) automata
as data input.

6.1. APPROACH OVERVIEW

Structural Diagrams Behavioural Diagrams
B
<<block>> <<block>> = | e | om0 | | vesssen|
<<block>> | | | | | |
B, B, | | | \ | |
Bl | | | | I I
! Generation
T — VST
3 [T
....................................... N (D) Pe () Aet @) A=
IEramive| e
2 Vb O OlO—0
ABZ : ' °
€ ®

°'° ® ‘G TV T 7
° Associated automata to blocks
9 v
iy 3 M
o - T [vy -
Compute with Ptolemy the synchronous product A A :
between automata to obtain composition B,//B, o Bl o B1 o Ay
QR Q< 039 N ‘e
fi
strurstl:r;:uy? e G) O,
vy 2R v

Sub-blocks B, and
B, refine
structurally B

Structural Refinement Verification

: IVerify with MIO Workbench if A, is a simulation of Ay, // A,

refine
behaviorally?
yes

Sub-blocks B, and
B, refine

behaviorally B

43

Figure 6.3 — Structural and behavioral refinement verification in a SysML Block Decom-

position

44 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

Once we have verified the structural and behavioral refinement by two or more blocks
that decompose an upper abstract block, we have also verified that this parent block can
effectively be replaced by its composing entities. This verification process can be applied
incrementally from the top abstract blocks until the lower level blocks to validate the final
architecture of the CBS obtained from the initial abstract block.

6.2/ CBS ARCHITECTURE SPECIFICATION WITH SYSML

In this section, we present the SysML models that we exploit to specify a CBS architecture.
In Figure 6.4, we present the block definition diagram of the whole system. The system is
represented by the main block: ControlSystem, this block is composed by two other blocks:
SensorsControl and DevicesControl. The first one is responsible for collecting the data from
the sensorsall around the car to calculate the instant acceleration during movement and if
it detects a sudden deceleration, it decides which safety devices must be activated: airbag
or seat belts. The second one is charged of receiving calls to activate a safety device, in our
case, it will manage the airbag unit and seat belts.

To illustrate our approach we only focus on analyzing a refinement for the block Sen-
sorsControl. Our goal is to propose a set of blocks, that when composed, can replace the
block SensorsControl, and then verify if they can refine the structure and behavior of it.
The approach can be applied in the same manner to obtain the architecture of the whole
system corresponding to the block SensorsControl.

Thus, in Figure 6.5, we present the SensorsControl block using SysML in version 1.3. In this
version of SysML, ports are used to describe the required and/or provided services of a
system, these services are listed as operations in blocks outside the relationship. These
blocks are used to type the interface of the port. For simplicity, we propose to assemble
provided and required services in separate ports, p_inandp_out respectively, and interface
blocks are named as Iin<block_name> and Iout<block_name> respectively.

In the diagram of Figure 6.5, we ask for a block named SensorsBlock that must provide a
service named speed() as described by the interface block IinSensorsControl, and it demands
the services lock_sb(),unlock_sb(),activate_ab(), and reset_ab(), listed by the interface block
IoutSensorsControl. It also has an internal operation named reset() which is described as a
private operation of the block.

In CBS development, systems are built by reusing already built components, rather than
developing a new whole system. Thus, to build a concrete specification of the block Sen-
sorsControl, we propose to use a component library, with own and third party software

~ «block»
= ControlSystem

o 1 properties
@ p_in: linControlSystem [:l @ p_out: loutControlSystem

operations

1
= ’ - ' + cor 1
1 M
+ sensorscontrol_1 | [1] [1]

_ «block» «block»
£%] SensorsControl %] DevicesControl

properties © p_out: loutSensorsControl properties
s

@ p_in: linSensorsControl - - .
& p_in: linDevicesControl constraints i p_out: loutDevicesControl

Figure 6.4 — The preliminary BDD of the safety vehicle system

+ cor

+ devicescontrol_1

6.2. CBS ARCHITECTURE SPECIFICATION WITH SYSML

@ p_in: linSensorsControl

~ «block»
% SensorsControl

properties

operations

4 reset()

constraints

@ p_out: loutSensorsControl

«block»

«block»
£ oL

“ontrol

2 lir ontrol

properties

properties

operations

speed()

4 lock_sb()
4 unlock_sb()
4 activate_ab()

44 reset_ab()

constraints

Figure 6.5 — Block definition diagram of SensorsControl block

45

~ «block» ~ «block»
W‘ £ linSensors = loutSensors
£% sensorsControl . pEeice proesifies
@ p_in: lir ontrol properties & p_out: loutSensorsControl operations operations
i 5 speed() 45 acceleration()
+ ! + sensorscontrol constraints constraints
Ml 11
_«block» _ «block»
{1+ acu 1 linACU [loutACU
[1]|+ sensors <blocks properties properties
Tf<b|00k» 4 p_in: liNACU £ AcU operations operations
& p_in: linSensors |__— Sensors_| - properties iy acceleration() | | g lock_sb()
properties operations constraints 4 unlock_sb()
operations 42 acc_control() #; activate_ab()
@ p_out: loutSensors - reset() 4 reset_ab()
constraints @ p_out: loutACU constraints

Figure 6.6 — Proposed block definition diagram for SensorsControl block

components, and assemble a set of these components, that once composed, will replace
structurally and behaviorally the block SensorsControl, that we will refer to as an abstract
block. Components in that library are described using SysML, so we will refer to them as
blocks.

In this way, we propose to decompose our abstract block in two different sub-blocks: a Sen-
sors unit and an Acceleration Control Unit (ACU). This proposed decomposition is shown
in Figure 6.6 using a block definition diagram. On the left side we can see the represen-
tation of the two sub-blocks linked to the abstract block by a composition relation and on
the right side the interface blocks used to type the input and output ports of sub-blocks.
In this assembly, we have the block Sensors which receives the speed values through the
speed() operation on its input port p_in, as listed in the interface block IinSensors, and it re-
turns a computed acceleration through a call to the acceleration() operation described in
the interface block IoutSensors. Also, there is the ACU block, which listens to acceleration
values from the acceleration() operation in its input port p_in as described by the interface
block [inACU, and decides whether is necessary to call the airbag or the seat belt system by
calling the operations lock_sb() and activate_ab() respectively, these systems can be then
unlocked by the operations unlock_sb() and reset_ab(), these operations are listed in the
interface block IoutACU.

To complete the system architecture specification, we exploit the SysML internal block
diagram to describe the internal composition of the abstract block and how its sub-blocks
are connected. So, in Figure 6.7 we specify the internal composition of the SensorsControl
block (our abstract block) in order to know how its composing blocks, Sensors and ACU,
are linked. In this diagram each composing block is instantiated and represented as a
part of the system. Also, there are connectors between the ports to show how the parts are

46 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

~ «block»
=] SensorsControl

sparts & p_out: loutSensorsControl
[sensors: Sensors | & p_out: - :l

@ p_in: li
A «part»
1= acu: ACU

o o in: o p_in: linACU
p_in: linSensorsControl P! & p_out: loutACU

Figure 6.7 - Internal block diagram of the SensorsControl block

linked. In our example, the two sub-blocks are linked through a connector betweenthep -
out port of block Sensors and the p_in port of block ACU. The ports of the composition that
will communicate with the environment are linked with the external input and output
ports of the abstract block. In our case study, the provided services of the Sensors block
are externalized by the input port p_in of the SensorsControl block and it is represented by
the connector between them. In the same way, the required services of the block ACU in
port p_out are externalized by the p_out port of the SensorsControl block by a connector
between them.

Fortherest of this chapter, we will consider the interaction between the sub-blocks Sensors
and ACU as a case study, and we will verify the correct assembly between these sub-blocks
through our interface automata approach, and therefore if they refine structurally and
behaviorally the block SensorsControl.

6.3/ FORMAL SPECIFICATION OF SYSML MODELS

To define formally the refinement relation, we have, first, to define formally SysML models
exploited in our approach : BDD, Block interfaces, IBD, and the sequence diagram, defined
in Chapter 3.

Definition 6: SysML Block

Let S'B a set of blocks modeled with a BDD, a SysML block B in S B is a tuple

(®p, P, P, TypePort), where:

out?
« ®pisthe set of the private operations in B,
« P, the unique input port of B,

« P

out

the unique output port of B.

« The function T'ypePort : P,, U P,, — SB determines the interface that
types each port.

The input and output ports of blocks are typed by blocks called interfaces (see Definition
6). To determine the interface that types each port, we use the function T'ype Port.

For example, the formal specification of the block SensorsControl, described in Figure
6.5, is defined by B,. = (®B, P,,, P,,,), where:

o« &p = {reset()},

6.3. FORMAL SPECIFICATION OF SYSML MODELS 47

e P, =p inwhere
TypePort(p_in) = IinSensorsControl, i.e. this port is typed by the block interface
IinSensorsControl,

« P, = p_out where
TypePort(p_out) = IoutSensorsControl,i.e. this portistyped by the block interface

I0utSensorsControl.

According to the specifications of SysML 1.3 in [OMG12], each port associated to a block is
typed by an interface block which exhibits the provided or the required services related to
the port. These latter define the set of input and output actions of a block.

Definition 7: Block interfaces

Let P, and P,, be respectively the output and input ports of a SysML Block
B. The required and provided interfaces of B are defined by the blocks which
type respectively P, and P;,,. The required interface of B, noted I, =
(D, 8> Pips P,y)» where @, . p defines the set of required services of B, i.e. the
output actions, and P,,, P, are both empty (the interfaces have no ports). And
the provided interface of B, noted I, = (®,,5, P,;» P,,;) Where ®;, p define the
set of provided services of B, i.e. the input actions, and P,,, P, are both empty.

For example, the required interface of the block SensorsControl in Figure 6.5 is defined
by IoutSensorsControl where ¢;,.;sensorsControi = 110ck_sb(), unlock_sb(), activate_ab(),
reset_ab()}.

Definition 8: SysML IBD

A SysML internal block diagram I BD, of a composite block, is a tuple
(®Parts,iP,,iP,,, eP,, eP,,, Connector), where:

o ®Partsisthe setof parts, where each part represents an instance of a block,

« iP, and i P, are respectively the sets of internal input and output ports.
These ports are related to the parts in the I BD.

« eP, and eP,, are respectively the external input and output ports. These
ports are related to the composite block described by the I BD.

« the function Connector : P, U P,, — P, U P, associates input and
output ports to other input and output ports, it defines the links between

blocks. P;, and P, are respectively the sets of input and output ports.

For example, the internal block diagram for the block SensorsControl shown in Figure
6.7 will be formally specified as:
e ®Parts = {sensors,acu},

e iP, = {sensors(p_in),acu(p_in)},
iP,, = {sensors(p_out),acu(p_out)} .

» eP,, = SensorsControl(p_in),

eP,,, = SensorsControl{p_ou).

48 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

o Connector(sensors{p_in)) = SensorsControl{p _in),
Connector(sensors(p_out)) = acu(p_in),
Connector(acu(p_in)) = sensors(p_out),
Connector(acu(p_out)) = SensorsControl{p_out).

6.4/ STRUCTURAL REFINEMENT OF SYSML BLOCKS

In this section we describe our structural refinement process by defining the refinement
relation that we exploit to validate SysML architecture of systems. An initial version of
this structural refinement approach was published in [CCM12a].

We define a refinement relation between composite blocks (abstract) and their sub-blocks
in order to validate SysML system architecture, and to guarantee the decomposition be-
tween blocks and sub-blocks. Thus, we analyze the case where an abstract block described
with SysML models (BDD and IBD) is refined by a set of sub-blocks, which are described by
the internal block diagram of their abstract block. In this case, the sub-blocks refine struc-
turally the abstract block iff it is possible to replace the abstract block by its sub-blocks
without affecting the set of offered and required services of the system, and without caus-
ing system malfunction. Therefore, to define the refinement relation, we identify two con-
ditions in which the refinement is based:

» Consistency: the set of sub-blocks are consistent with their abstract block if they
offer at least the same services as the abstract block, and they require at most the
same services. This relation ensures that the sub-blocks do not affect the services of
their abstract block.

« Compatibility: the set of sub-blocks are compatible if the interoperability holds be-
tween them, which means that they interact correctly without causing deadlocks or
system malfunction.

Definition 9: Structural refinement of SysML blocks

Let Bbe an abstract block described with the BD D, and I BD g the internal block
diagram of B. Let By, ..., B, be the set of blocks composing B according to the
BDD, so By, ..., B, refine structurally B iff:

e By,..., B, are consistent with B,

« theinteracting blocks By, ..., B, according to I BD p are compatible.

In the following section, we define formally the consistency conditions that must be re-
spected between abstract block and its sub-blocks to verify partly the relation of structural
refinement.

6.4.1/ CONSISTENCY AND COMPOSABILITY VERIFICATION BETWEEN BLOCKS

We propose to verify that the sub-blocks are consistent with their parent block by look-
ing if the provided and required services in the abstract block are in accord to those in
the composing sub-blocks. Indeed, the consistency condition proposed here allows us

6.4. STRUCTURAL REFINEMENT OF SYSML BLOCKS 49

to determine if the offered services of the abstract block are provided by the sub-blocks
that compose it. Similarly, it is verified whether the required services by the composed
sub-blocks are required by the abstract block. In addition, composability ensures that the
blocks in question do not share the same inputs and/or the same outputs. These condi-
tions are described in the following:

We consider an abstract block B, and B, and B ; two linked sub-blocks, by a connector, in
the set By, ..., B, of composing sub-blocks described in an internal block diagram I BDg,
D5, ®;ypir Diyp; are respectively the offered services (input actions) of the blocks B,
B;, B;, @, Doy pir Py p; are respectively the required services (output actions) of the
blocks B, B;, Bj, and ®p, Op;, Pp ; are respectively the internal actions of the blocks
B, B;, B;. We define the set of shared actions between B; and B; by the set Shared(B,,
Bj) = (@yp; N Py pj) U (Pouepi N Pip)-

The composition of the blocks By, ..., B, is consistent with B iff:

« Condition 1 (Composability):
For every pair of connected sub-blocks { B;, B;}, it holds that: ®@;,p; N @,,p;
Digi N Poyipj = Ppi N (P UD;,p; UD,, ;) = Pp;i N(Pp; UD;, 5 UD,5) = &
This condition ensures to compose B; and B; and to apply later the interface au-
tomata theory to verify their compatibility.

« Condition 2 (At least the same inputs):
For a sub-block B, connected to the external input port eP;,, it holds that: ®;, 5 C
(I)inBi
This condition ensures that the sub-block B, offers atleast the same services (inputs)
as the abstract block B.

« Condition 3 (At most the same outputs):
For a sub-block B, connected to the external port e P, it holds that: ®,,, 5 C ;-

This condition ensures that the sub-block B; requires at most the same services (out-
puts) as the abstract block B.

Remark: Note that according to formal definitions of conditions 1,2, and 3, their verifica-
tion is possible on to the formal specifications of the used SysML model: blocks, BDD, IBD,
and block interfaces (see the Algorithm 1 on page 55).

Case Study Consistency Verification To verify the consistency between the composite block
SensorsControl and its composing sub-blocks (see Figures 6.5 and 6.7), we first identify
the connected sub-blocks in its BDI. From the BDI in Figure 6.7 we obtain:

Thelist of parts in the block SensorsControl will be instances of its composing sub-blocks:
DParts gopsorsControl = 1S€NSOrs, acu},

we then identify the ports of its composing sub-blocks from the list of internal ports in
SensorsControl block:

iP, = {sensors(p_in),acu(p_in)},
iP,, = {sensors(p out),acu(p out)},

out

for each of the identified ports we use the Connector function to determine its associated
counterpart:

50 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

Connector(sensors{p_in)) = SensorsControl{p _in),
Connector(sensors(p_out)) = acu(p_in),
Connector(acu(p_in)) = sensors(p_out),
Connector(acu(p_out)) = SensorsControl{p_out).

We identify the counterparts that are other sub-blocks to determine the connected sub-
blocks, that in this case are sensors and acu.

Then, as exposed in Condition 1 we check the sub-blocks composability by considering the
input, output, and internal actions of each sub-block. These actions are described in the
interface blocks of the proposed BDD of Figure 6.6, we formally list them as follows:

(DinSensors = {speed},
D ,y1sensors = tacceleration},
(I)Sensors =0

®,, 1cu = {acceleration},
D, iacu = {lock_sb,activate_ab,unlock_sb, reset_ab},
@ 4oy = {acc_control, reset}

Shared(Sensors, ACU) = {acceleration}

Notice that we do not find inputs or outputs that are present simultaneously in both sub-
blocks, ie.

;i Sensors N Pinacu = Poursensors N Powacu =

D@ 5ensors N (Pacy Y Pinacu Y Pouracy) =

@ 4cu N (Psensors Y Pinsensors Y PLourSensors) = Ds

Then we check the condition 2, and we find that the input ®;, ¢, ,sorscontror = {Speed} of
the abstract block SensorsControl is present in the connected sub-block Sensors, ie.

o co

inSensorsControl = *inSensors*

Finally for Condition 3, we check that the outputs
D1 SensorsConirol = 110ck_sb, activate_ab,unlock_sb, reset_ab}

of the abstract block are the same required outputs of the connected sub-block ACU, ie.
o cCo

We can therefore conclude that the blocks Sensors and ACU are consistent with
SensorsContol.

outSensors outSensorsControl *

6.4.2/ INTERFACE AUTOMATA GENERATION

The aim of this section is to show the process of generating the interface automata that de-
scribe the behavior of the analyzed sub-blocks. We can generate an interface automaton
from a sequence diagram that represents the behavior of each block. In the following we
present an overview of the approach described in [CH11], which we exploit to generate in-
terface automata. This approach isbased on an algorithm that accepts as entry the formal
definition of a sequence diagram (see Definition 11), which is also based on the formal def-
inition of messages (see Definition 10) between blocks and environment, and generates
as output the components of the corresponding interface automata.

6.4. STRUCTURAL REFINEMENT OF SYSML BLOCKS 51

Definition 10: Message

A message s a tuple:
(By, action, By,) where :

B is the source block of the message,
By is the target block of the message,

action is the called method

We consider that in a set of messages Mes and an Environment block, the
following condition is valid :

Vmes;

Bfi

= (le_,action,-,Bfi,) € Mes we have Bsi = FEnvironment or
= Environment. This condition allows us to translate sequence dia-

grams into interface automata. In the following definition we consider only the
combined fragments loop, alt, and seq which are sufficient to the translation to
interface automata.

Definition 11: Sequence diagram formal model

A sequence diagram representing the protocol of a block B is defined by :
SDg=(IM,Mes, Loop, Alt, Seq), where

I M : the initial message,
Mes: the set of messages,

Loop = (loopy,...,loop,, ...,loop,), is the list of the loop combined frag-
ments,

loop; = <(obji,...,obj;,...,0bj,), obj; is a message or a fragment, and
card(loop;) >='1

Alt = (alt, ..., alt,, ..., alt,), is the list of alternative combined fragments,
alt, = (obj,...,0bj;,...,obj,), obj; is a message or a fragment, and
card(alt;) >=12

Seq = (seqy, ..., seq;, ..., seq,), is the list of sequence combined fragments,
seq; = (obj,,...,obj;,...,obj,), obj; is a message or a fragment, and
card(seq;) >=12

The formal model corresponding to the sequence diagram specifying the protocol of the
block sensors (see Figure 6.8)is SD = (IM, Mes, Loop, Alt, Seq), where:

o I M : the message designed by the action

(Environment, speed(), Sensors);

o Mes: {{ Environment, speed(), Sensors),
(Sensors, acceleration(), Environment)};

o Loop = (loop),

52 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

| 5 :Sensors I | 5 environment
T
L =

ion!
ioop spocd) acceleration! .
- ftrue] speed cceleration
A N
— @
i T speed?

Figure 6.8 - Sensors sequence diagram Figure 6.9 - Interface automaton A, associated to the Sensors block

loop = {{ Environment, speed(), Sensors),
(Sensors, acceleration(), Environment)};

o Alt = @;
. Seq:@

The derivation algorithm requires as main input a sequence diagram .S D, and also a list
[of objects, which are messages and fragments composing .S D 3. The algorithm provides
as output an interface automaton A.

For our case study, we applied the algorithm to generate the automata that describe the
behavior of the Sensorsand ACU blocks. Their corresponding sequence diagrams shown
in Figures 6.8 and 6.10 detail the actions done by these blocks.

The generated interface automata A, and A, are shown in Figures 6.9 and 6.11.

6.4.3/ COMPATIBILITY VERIFICATION

The compatibility verification between two blocks B, and B, is obtained by verifying the
compatibility between their interface automata A, and A,. To verify the compatibility
between two blocks B; and B,, this approach verifies if there is an environment where
it is possible to correctly assemble B; and B,. Thus, we assume the existence of an
environment that accepts all output actions of the synchronized product automaton of
A, and A,, and does not trigger any input action of A} ® A,.

Condition 4 (Compatibility): Two interface automata A; and A, are compatible iff their
composition A; || A, has atleast one reachable state.

The composition A; || A, is calculated by computing the product A; ® A, in which we
eliminate the states that are illegal and those that lead to illegal ones through internal or
output actions (see Definition 4). The algorithm to calculate the composition is described
as a part of Algorithm 1. We can also obtain the composition by means of the tool Ptolemy
[LX04].

Case Study Compatibility Verification To verify the compatibility of the interface automata
associated to the two sub-blocks, Sensors and ACU, we compute the synchronous prod-
uct A; @ A, and we eliminate unreachable states to obtain the composition A; || A, as
indicated by condition 4 of our approach, this synchronous product is given in Figure 6.12.
The calculated automaton contains the illegal states 117, 12’, 13", and 14’, which we must
eliminate to obtain the composition A; || A, shown in Figure 6.13. This composition has

6.4. STRUCTURAL REFINEMENT OF SYSML BLOCKS 53

- ¢ N
bctivate_ab
e M *—
1= loop J ® acceleration()
(10, 1)itrue]
Zl & acc_control() yese t_ab
— '
Clalt) 9, lock_sb() acceleratiol
| [val_acc>=60] @ unlock_sb() —®
_______________ N ock_sb
[val_acc<60 @ activate_ab() o—>
> |and
val_acc>=3] @ reset_ab/()
——————————————— - unlock sb
12 |[else] -
@ reset() *—
L =
! ' _ J
Figure 6.10 - ACU sequence diagram Figure 6.11 - Interface automaton A, associated to the ACU

no illegal states and more than one reachable state, and therefore we conclude that they
are compatible. We deduce that the two blocks Sensors and ACU are consistent and com-
patible, and that the block SensorsControl can be refined (structurally) into the sub-blocks
Sensors and ACU.

In the following section, we present the algorithm to verify the refinement between an
abstract block and its sub-blocks at the structural level.

6.4.4/ VERIFICATION ALGORITHM OF THE STRUCTURAL REFINEMENT RELATION BETWEEN AN AB-
STRACT BLOCK AND ITS SUB-BLOCKS

The Algorithm 1 shows the pseudo-code to implement our approach to verify the struc-
tural refinement relation. For every pair of connected sub-blocks in an internal block dia-
gram, we verify, first, the consistency between the abstract block and the sub-blocks, and
if they are consistent, we continue to verify the compatibility between the sub-blocks.

The complexity of this algorithm is in time linear on the size of the interface automata
and is given by O(|A; X A,|). In fact, the complexity of the compatibility verification is
O(]A; X A,|) [dAHo1], and we can easily verify that the complexity of the verification of
conditions 1,2, and 3 do not increase this complexity.

54

CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

l acceleration!

unlock_sb@

)

speed?

8
ab! \=

uctivate_ab
*—

I
]
lel
5
_. (03’ reset_ab
< (J *—
S
speed =/ |=
—e | 5[|R®
S})
=\ = ock_sb
o "~ | aune
=}
inlock _sb
*—

Figure 6.12 - Product A; ® A, between the automata Sensors and ACU

speed?

speed

l

@reset_ab!
0421299 :e

»
2
g
0
lock sb!

uoi

or’

activate_ab! acc_control;

-

Figure 6.13 — Composition A, || A, between the automata Sensors and ACU

6.4. STRUCTURAL REFINEMENT OF SYSML BLOCKS 55

Algorithme 1 : Verification of the consistency and the compatibility between blocks

Input : An abstract block B described witha BDD = (®g, P,,, P,,;, TypePort) and a
IBD = (®Parts,iP,,iP,,, eP,,eP,,, Connector), and a sequence diagram
SD;—y ,=(IM,Mes, Loop, Alt, Seq) for each sub-block B described in
the I BD.

Output : The results on the verification of the structural refinement between the

abstract block and its sub-blocks

i=l.n

Consistency verification:

1. Analyze the BDD by exploring the set ® 5z and the block interfaces from the sets
(P,,, P,,;) (obtained using the Type Port function) to identify the offered, required

and internal operations of B,B,_; .

2. Analyze the I BD by exploring the set ® Parts (which are instances of blocks in
® B) and identify the connected sub-blocks using the Connector function on each
of the internal portsiniP,, andiP,,,.

3. For each pair of connected sub-blocks B; and B, verify the condition 1
(composability), by considering their sets of private operations (®p;, Pp ;) and the
sets of offered and required services (®;,p;, @, 5> Py pi> a0d Py g)-

4. Analyze the I BD and identify which internal input port in i P;, is connected to the
external input port e P;,n and select the sub-block B, that owns it.

5. Verify the condition 2 (at least the same inputs)

6. Analyze the I BD and identify which internal output portin i P, is connected to
the external input port e P, and select the sub-block B, that owns it.

out

7. Verify the condition 3 (at most the same outputs)

if one of the conditions is not verified then
| By,...,B, are inconsistent with B;

else

Compatibility verification (Condition 4):

1. For each pair of connected sub-blocks { B;, B j }, obtain the interface automata A;
and A; from the sequence diagrams S D; and SD;

2. Compute the product 4; ® 4;

3. Compute the composition 4; || A; = A; ® A; — Illegal(A;, A;) and remove the
unreachable states

4. Verify the condition 4

if condition 4 is verified for every pair { B;, Bj } then
| the composition of By,...,B, refine structurally B
else
the structural refinement does not hold between the composition of By,...,B, and
B
end

end

56 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

6.5/ BEHAVIORAL REFINEMENT VERIFICATION OF SYSML BLOCKS

In this section, we describe our behavioral refinement process by defining a relation be-
tween SysML Sequence Diagrams (SD). In our approach, behaviors are described with
SysML SD and when an abstract block is replaced by two or more concrete blocks, we re-
fine its behavior with the actions of the composing blocks. To verify if the abstract block
behavior is well refined by the actions of the composing blocks, we verify if the alternating
simulation [AHKV98] holds between the IA of the composition and the IA obtained from
the SD of the abstract block.

6.5.1/ ALTERNATING SIMULATION

In order to verify if the composition of a set of blocks refines the behavior of an abstract
block, we use the concept of Alternating Simulation for interface automata [AHKV98].

T ¥
To define alternating simulation formally, we use the notation s — s’ for interface au-
tomata to mean that there exists a sequence of internal transitions leading from s to s’.
Then, we define alternating simulation for interface automata as commonly used in soft-
ware specification [dAHO5].
Definition 12: Alternating Simulation

For a pair of interface automata
I 5O vH I vO vH
) P:<SP’IP’ZP’ZP’ZP’6P>andQ:<SQ’IQ’2Q’ZQ’.ZQ’6Q>)

with the same signature, a binary relation <,C Sp X S is an alternating
simulation if whenever p <, g and a € X it holds that:
: a? ’ 1 ’ a? ’ o
ifg—> ¢q' anda € ZchenEIp p— p and(p’,q') €5,

! !
if p 2, p anda € Zg then 3¢’ .q A q' 39" .q' R q"and (p',q") €<,

. & ’ H ’ Tk ror
ifp— p'anda € £, then3dq'.q —" ¢’ and (p',q') €Z,

Definition 13: Interface Automata Refinement

An interface automaton P refines an interface automaton Q, writen P <, Q, if
I I 0 0
1. ZQ cx, andZQ 22,
2. thereis an alternating simulation <, by O of P suchthat I <, I

Actually, we can not verify behavioral refinement through Ptolemy tool but we can do that
thanks to the MIO Workbench [BMSH10], an Eclipse-based editor and verification tool for
modal I/O automata.

6.5.2/ MODAL I/0 AUTOMATA

Modal automata are an extension of interface automata with modality and control infor-
mation proposed by Larsen et al. [LNWo7].

6.5. BEHAVIORAL REFINEMENT VERIFICATION OF SYSML BLOCKS 57

Definition 14: Modal automaton

S

A modal automaton S is a six tuple: S = (S, I, ng’, Zg, —> —>é)

where
Ss: is a finite set of states,
I¢ € Sg: istheinitial state,
Eg’“ and Z? : are disjoint sets of external and internal actions,
_ yext ywH
To=Zy UZg,
—>g C Sg¢ X Xg X Sg: is the may transition relation describing allowed
behavior,
—>ég S¢ X Xg X Sg: is the must transition relation describing required
behavior.

Usually interface automata refinement is verified by alternating simulation and instead of
building a new tool we propose to use the MIO Workbench module to verify modal refine-
ment. Larsen et al. proposed Theorem 1 (a proof can be found in [LNW07]) to show that
we can use observational modal refinement as it coincides with alternating simulation.

Theorem 1: Alternating simulation and observational modal refinement

Alternating simulation and observational modal refinement coincide for inter-
face automata in the following sense:

for any two interface automata P,Q: P <, Qiff 7 (P) <}, 7 (0)
Indeed, interface automata can be translated into modal automata to use observational
modal refinement. This can be achieved by applying the I translation function.

Let 5,44 be a fresh state that allows all behavior but does not require any behavior. If U

denotes the universe of all inputs, such that for all interface automata P, Z; € U, then
we define the translation function as follows:

Definition 15: Translation function 5

T (Sp, Ip, 25,20, 28, 6p) = (S5, I, 28", 24, —, —0)

where
SS = SP U {Smayall}’
IS :IP’
t _ (0]
I =UUZ,,
H _ vH
zH = A

ds; —5 s, if spanda €Uzl
and s; —; 5,if(sy,a,5)) €dpanda e L UL}

a a
and s3 —% 54 and s3 —>‘g s41if (s3,a,54) € 6panda € Zf,

a
and 53— Spaya ifVs' € Sp.(s3.a,5') & panda € U

a

and s ; is a fresh state such that Va € Xg.5,,4 01/ —>g Sgargytlio

mayal

Asan example, we apply the function & over the interface automaton A, associated to the

58 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

block ACU (see Figure 6.11).
Let P be the automaton representing the behavior of the block ACU, such that:

« Sp=1{0,1,2,3,4};

« Ip ={0};

. ZJIP = {acceleration};

. Zg = {activate_ab,reset_ab,lock sb,unlock sb};
. Zg = {acc_control,reset};

e 6p = {(0,acceleration, 1), (1,acc_control,?2), (2,activate_ab,3), (3,reset_ab,0),
(2, reset,0), (2,lock_sb,4),(4,unlock sb,0)}.

The result automaton .S from the translation (P) is a modal automaton such that:

« S¢=1{0,1,2,3,4,s
* Is = {0},

. ngr = {activate_ab,reset_ab,lock_sb,unlock _sb,U};

mayall} ;

. Zg = {acc_control,reset};

. —>g= {(0, acceleration, 1), (1, acc_control,?2), (2,activate_ab,3), (3, reset_ab,0),
(2, reset,0), (2,lock_sb,4), (4,unlock_sb,0), (0,a,Spapa)s (1,0, Spayair)s
2,b,s 1),(3,b,s 1), (4, b,s D}.a,be U Aa# acceleration;

mayal mayal mayal

. —%: {(0, acceleration, 1)}.

Definition 16: Observational Modal Refinement

For a pair of modal automata P and Q with the same signature, a binary relation
R C Sp XS isanobservational modal refinement if whenever pRganda € Zp
it holds that:

: 4 ’ (0] ’ a ’ o

ifg —q andanchenEIp p—p ANp.q)ER

. z ’ O ’ Tox n o 9 " ron

ifp — p'anda € £ then3dq'.q —s 4q .Aq" .q —, 4 A(p,q9")ER

ifp 2, p'anda € Zg then3dq'.q —r>z g ANQp'.q)ER

We say that a modal automaton P observationally refines a modal automaton Q,
writen P <} Q, if there exists an observational modal refinement containing

(IP’ IQ)

6.5.3/ CASE STUDY APPLICATION

To verify the behavior refinement for the SensorsControl block we need the sequence dia-
gram shown in Figure 6.14, it shows the messages and replies that must be implemented

6.5. BEHAVIORAL REFINEMENT VERIFICATION OF SYSML BLOCKS 59

| 7 :SensorsControl | | ﬁ environment
T T
_I e
1= loop
_) @, speed()
[21(0,1)true]
= alt @, lock_sb()
12 | [val_acc>=60] @ unlock_sb()
[val_acc<60 @ activate_ab()
> |and
val_acc>=3] @ reset_ab()
2 |[else]
& reset()
T 0

Figure 6.14 - SD for SensorsControl abstract block

by the composition of sub-blocks. In order to apply our approach we generate the inter-
face automaton shown in Figure 6.15, this automaton is then verified against the com-
position automaton of the sensors and ACU blocks (see Figure 6.13). The two automata
are loaded into the MIO Workbench and the refinement is verified with the module Strict-
Observational Modal Refinement.

In Figure 6.16, we show the verification of the two automata in MIO Workbench. The com-
position automaton (sensors || acu) is presented at the left and the SensorsControl au-
tomaton at the right. To perform the verification we select in the refinement verification
menu the option Strict-Observational Modal Refinement, being the other refinement veri-
fication options (Strong Modal Refinement, May-Weak Modal Refinement, and Weak Modal
Refinement) intended for modal automata. Once the verification is executed, MIO Work-
bench will determine the binary relations between the states of the two automata (shown
by the gray arrows from one automaton to the other one) and will verify if the conditions
for an observational modal refinement hold. For our example, we can see the tool bar at
the top, this bar turns green to indicate that the verification was successful and that the
automaton (sensors || acu) is a refinement of the automaton SensorsControl.

In this way we continue also treating the block DevicesControl, and we obtain the final
system whose BDD is shown in Figure 6.17. In this BDD, we note the decomposition of
the abstract block ControlSystem into the elementary blocks sensors, ACU, airbag, and
seatbelt.

60 CHAPTER®6.

INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

speed

kcti vate_ab

reset_ab

ock_sb
*—

unlock sb

1
_activate_ab! T

lock_sb!

Figure 6.15 -

IA associated to the SensorsControl abstract block

! Click to select path... = \
..-"’ ~\ i----— ‘-h-—\

- 7]
L= speed? ! unleck_sblf speed! I i reset |
! 1 ey 1 =
! \. I \\
! 1] \
i | i i \

; \

I unlock_sb! ;‘ o I " lock bt ‘
I ‘ I LY e s, activate_ab! X
] acceleratron , b bt Lt s b o
] _ab!
! 1
1 i
1 I
1 I
1 1
I i 5
! acc_control b of]

I Lot H

1 1

1 [

1 1

{ lock_sh! i

]
/
\ ,' \\ 1
@ activate_ab! @

Figure 6.16 — Refinement in MIO Workbench

6.5. BEHAVIORAL REFINEMENT VERIFICATION OF SYSML BLOCKS

«block»
@)
+ controlsystem_1 |— Control?ystem
properties
_ + controlsystem_1
[1] operations
constraints [
+ sensorscontrol_1 | 1] [11| + devicescontrol_1
«block» @ «t?IOCkC» ol
‘% SensorsControl £ Jevicest.-onTo
+ sensorscontrol| = : -
properties + devicescontrol_1 properties
- operations + devicescontrol_1
0] Operations + sensorscontrol [1 P
constraints gonstaints 1]
(1]
11| + sensors +acu|[1] [1]| *+ airbag_1 + seatbelt_1 1]

~ «block» «block» «block» «blocky»

| Sensors = ACU & Airbag & SeatBelt

properties properties properties properties
operations operations operations operations
constraints constraints constraints constraints

Figure 6.17 — The final BDD of the safety vehicle system

62 CHAPTER 6. INCREMENTAL REFINEMENT OF A CBS ARCHITECTURE

6.6/ CONCLUSION

We have shown in this chapter, how to specify formally systems described by SysML mod-
els with BDD, IBD and SD diagrams. Then, we defined a refinement relation between
SysML system blocks, described by structural and behavioral diagrams. The refinement
in SysML is an essential concept and it is based on the development of a process from an
abstract level towards more detailed levels, which can end in its implementation. Our re-
finement ensures an incremental substitutability of an abstract block in a specification by
a composition of blocks preserving its structural and behavioral properties.

To verify structural refinement specified in BDD and IBD diagrams, we verified first if the
sub-blocks were consistent with the abstract block specification and then we verified if
they were compatible by applying the model of interface automata. Interface automata
were obtained from the SysML SD of each composing sub-block.

To verify behavioral refinement, we applied the approach of alternating simulation for
interface automata to verify if the composition of the set of sub-blocks simulated the ex-
pected behavior in the abstract block. To ease the task of verifying alternating simulation
we proposed to use the module Observational Modal Refinement of the tool MIO Workbench.
To use this tool, we translated interface automata into modal automata.

7

FORMAL VERIFICATION OF SYSML
REQUIREMENTS

his chapter presents a formal verification technique based on the approach proposed

by V. Lima et al. in [LTMT09]. This technique proposes to create a Promela-based
model from UML interactions expressed in Sequence Diagrams (SD), and uses SPIN model
checker [Hol91] to simulate the execution and to verify properties written in Linear Tem-
poral Logic (LTL) [CGP99]. In Figure 7.1, we show the position of the contribution pre-
sented in this chapter, regarding the contributions of this thesis.

7.1/ APPROACH OVERVIEW

To verify if a component satisfies a given requirement, we propose to use the tuple Prome-
la/SPIN. We choose them because it provides important concepts for implementing SD:
sending and receiving primitives, parallel and asynchronous composition of concurrent
processes, and communication channels. Our adaptation of the approach proposed by V.
Lima et al. concerns a particular type of sequence diagrams that we exploit to specify the
block behaviors.

We propose to use a particular type of SD with only two lifelines, one for the block and
one for the environment. Thus, SD can be further translated into interface automata as
exposed in [CH11]. In this diagram the exchanged messages will be the offered services
as calls from the environment and the required services as calls to the environment. The
main advantage of using SD for verification is that we can verify temporal properties over

Contents

7.1 ApproachOverview oottt v vt e eeennnen 63
7.2 Linear Temporal Logic (LTL)ot v v v 64

7.2.1 Syntax . . o. ... Lo e e e e e e e e e e e 64

7.2.2 Semantics Lo 64
7.3 Verification with SPIN ModelChecker 65
7.4 Requirement specificationwithLTL 66
7.5 Case Study Promeladescriptions 69
7.6 Conclusion v v v v i v vttt et e e e e e 71

63

64 CHAPTER 7. FORMAL VERIFICATION OF SYSML REQUIREMENTS

it. Messages follow a sequence order that we can trace to detect deadlocks or execution
of paths. Figures 7.2 and 7.4 show the interfaces, by SD, for two blocks: sensors and ACU.
These are blocks from our block library. In these diagrams we notice that there are only
two lifelines and messages are sent to/received from the environment.

Before presenting the verification approach, we show in the following section a short pre-
sentation of LTL.

7.2/ LINEAR TEMPORAL LoGic (LTL)

Linear temporal logic is a modal temporal logic with operators referring to time and used
for reasoning about infinite behaviors of reactive systems. LTL is mostly used as the logic
to specify the properties to verify in model checking environments, such as SPIN.

7.2.1/ SYNTAX

The set of well-formed LTL formulas ® is constructed from a set of atomic propositions
P = {py, P> ...}, the standard boolean operators: - (not),V (or), A (and), and the temporal
operators: O, to be read as "next”, and U, to be real as until. The formula s Op, means that
pis true at the next step. And the formula p U g means that g is true at some point, and p
is true until that time. The until operator allows deriving the temporal operators

« Eventually ¢p := true U p, means p will become true at some point in the future.

o Always [Jp := — ¢ =p, means p is always true.
The set of LTL formulas over & is inductively defined as follows:

« every atomic proposition in & belong to ®.

o if pand g are formulas in @, then —p, p Vv q, Op, and p U g are formulas in ®.

7.2.2/ SEMANTICS

Let @ be an LTL formula, ¢ can be satisfied by an infinite word w that can be viewed as w-
word on an execution path of a Kripke structure. Let w = ay, ay, a,, ... over 27 (the set of
propositions), be such an w-word, where at some time point i € N, a proposition p is true
iff p € a;. We note by w);, the suffix of w starting at i. The satisfaction relation F between a
word and an LTL formula is defined as follows:

wk @iff p € w,.
e wk@iffnotw F ¢.
e wkeVyiffwE porwF y.

« wF@Uyiff3i € Nsuchthatw, Fy AVj EN,0<j <i,w; F ¢.

7.3. VERIFICATION WITH SPIN MODEL CHECKER 65

Table 7.1 - Mapping of basic concepts from sequence diagrams to Promela

SD element Promela Element Promela Statement

Lifeline Process proctype{...}

Message Message mtype{ml,...,mn}

Connector Communication channel for | chan chanName = [1] of {mtype}

each message arrow
Send and receive | Send and receive operations | Send = ab!m, Receive => ab?m

events

Alt combined | if condition if

fragment ::(guard)->ab_p?p;

. else -> ab_qg?q;

fi;

Loop combined | do operator do

fragment t:ab_p?p;
od

In this work we exploit LTL to express properties, specifying SysML requirements, to be
verified on components by means of the model-checker SPIN. These properties are ex-
pressed as LTL formulas, and SPIN requires, as input, their corresponding negative for-
mulas, which are converted into Biichi automata to be exploited in the model-checking
algorithm.

7.3/ VERIFICATION WITH SPIN MoODEL CHECKER

As exposed above in the overview, we exploit and adapt the approach proposed in
[LTM™* 09] to translate SD to Promela-based models to verify properties with the model-
checker SPIN. Table 7.1 shows the Promela representation of the main elements in SD. Al-
ternative and loop combined fragments are represented as if condition and do operator
in Promela respectively, guard condition is declared globally and the non-deterministic
behavior is implemented at init time by assigning different values to the guards.

Figures 7.3 and 7.5 show partially the Promela representation for the sensors SD and ACU
SD respectively (the complete code is presented at the end of this chapter in Listings 7.1
and 7.2). In both diagrams, we notice that their two lifelines are translated as processes in
the Promela code, one process for the block and one other for the environment. Both pro-
cesses are started at the same time thanks to an atomic call at the main process init. We
also notice that loop combined fragments are translated as do statements. The alternative
combined fragment, alt, in ACU SD is translated as if statement. There, the three possi-
ble range values for deceleration are assigned at init time by using an if clause, this way,
SPIN will choose non-deterministically, which of the three values will be used to simulate
the system.

Once the sequence diagram is translated, the component can be simulated as a SPIN sys-
tem. However, in order to verify whether the component satisfies an LTL property, the
authors propose to use a series of flags to keep track of who is sending/receiving what mes-
sage to/from whom at any time of the execution. In our approach we verify properties over
independent components with only two lifelines in their SD, one line for the selected com-
ponent and the other for the environment. So, we do not use a flag related to to/from whom
is sent a message as it will always be the other lifeline. These flags are updated together at
each send/receive event using a d_step statement. The flags for our example in Figure 7.2
will be send and receive to indicate the performed action, msg_get_sensor_values and

66 CHAPTER 7. FORMAL VERIFICATION OF SYSML REQUIREMENTS

msg_sensor_values to indicate the message exchanged, and sensors and environment
to indicate who performed the action.

7.4/ REQUIREMENT SPECIFICATION WITH LTL

After defining the flags to track the execution state of the system, LTL properties can be
written as boolean expressions over the flags. In our approach, we propose to translate
SysML requirements to LTL properties by respecting this formalism with flags. Hence, for
example requirement R1.1.1 in Figure 8.3 can be expressed as: always after receiving a call
toget_sensor_values, the sensor block will send a message with the sensor_values. The boolean
expression, using the flags described before, will be:

O((sensors && receive && msg get sensor_values) — { (sensors && send &&
msg_sensor_values))

Similarly, requirement R1.1.2 can be expressed as: always after receiving a message with the
sensor_values, the ACU will send a message deciding to lock the seat-belt, activate the airbag or
wait for another call, and the boolean expression with flags will be:

O((acu && receive && msg _sensor_values) — { (acu && send && (msg_reset
|| msg_act_sb || msg _act_ab)))

These properties are further verified over their corresponding Promela model by using
SPIN model-checker, which indicates if blocks satisfy the properties. Once a correspond-
ing block is found for a requirement, we continue with another requirement to start build-
ing the system architecture.

7.4. REQUIREMENT SPECIFICATION WITH LTL

SysML
l

Structural
Diagrams

BDD

——

IBD

«block

Promela

’l

«blockn

By

«blockn

By

«block»

I I

Behavioral
. Requirements
Diagrams
SD Functional

[«blocky

B.l

By

£ «block»

Bll B12
\ //

\\ 4

& «block»

Figure 7.1 - Thesis contribution 2

| = :Sensors | | = environment
1 T
lloop] 9, speed()
2] true]
 acceleration()
L

proctype proc_sensors(){

do
sensors_environment_get_sensor_values?get_sensor_values;
d_step{send=0; receive=1; msg_get_sensor_values=1;
msg_sensor_values=0; sensors=1; environment=0;};
sensors_environment_sensor_values!sensor_values; ...

od

}

proctype proc_environment (){

do
sensors_environment_get_sensor_values!get_sensor_values;

sensors_environment_sensor_values?sensor_values; ...
od

init{atomic{run proc_sensors();run proc_environment();}}

Figure 7.2 - SD for Sensors block

Figure 7.3 - Promela code for Sensors block

68

CHAPTER 7. FORMAL VERIFICATION OF SYSML REQUIREMENTS

] sd: sd_acu]

T
1]
) loop % sensor_values()

12 1(0,1)[true]

] alt J @ act_sb()

12_| [val_acc>=60] @ act_ab()
[val_acc<60

2 Jand & act sbo
val_acc>=3]

e @ reset()

proctype proc_acu(){
do
:racu_environment_sensor_values?sensor_values;
if
::(val_dec>=60)->{acu_environment_act_sblact_sb;
acu_environment_act_abl!act_ab;
d_step{send=0; receive=1; ...};}
::((val_dec<60) && (val_dec>=3))->
acu_environment_act_sbl!act_sb;
::else{acu_reset!reset;
acu_reset?reset; ...}
fi;
od}

proctype proc_environment(){
do
:tacu_environment_sensor_values!sensor_values;
if
::((val_dec<60) && (val_dec>=3))->
acu_environment_act_sb?act_sb;
::(val_dec>=60)->{acu_environment_act_sb?act_sb;
acu_environment_act_ab?act_ab; ...}
fi;
od}
init{
if
::(true)->val_dec=0;
::(true)->val_dec=10;
::(true)->val_dec=60;
fi;
atomic{run proc_acu();run proc_environment();}

}

Figure 7.4 - SD for the ACU block

Figure 7.5 - Promela code for ACU block

7.5. CASE STUDY PROMELA DESCRIPTIONS 69

7.5/ CASE STUDY PROMELA DESCRIPTIONS

Inthe following, we present the complete Promela descriptions for the blocks sensors and
ACU. To obtain these listings, we used a tool developed by us under the Eclipse framework,
by means of an ADL and Acceleo transformation.

Listing 7.1 - "Promela Description for Sensors Block"

© © N U AW N R

5B S S B wowowwwwww w NN N N N = N IS
EEESHERERV R BYRYLUYUYREERYISIIRINNSEHLTIGHEEREOG

® N Ou AW N R

/*Messages declaration*/
mtype={get_sensor_values,sensor_values};

/*Channels declaration*/
chan sensors_environment_get_sensor_values=[1] of {mtype};
chan sensors_environment_sensor_values=[1] of {mtype};

/***FLAGS***/

/*Last performed action*/

bit send=0;

bit receive=0;

/*Message used 1in the last action*/

bit msg_get_sensor_values=0;

bit msg_sensor_values=0;

/*Lifeline that performed last action*/
bit sensors=0;

bit environment=0;

1tl po {[]((sensors && receive && msg_get sensor_values) ->
<>(sensors && send && msg_sensor_values))};

/*Lifelines specification */

proctype proc_sensors(){

do
::atomic{sensors_environment_get_sensor_values?get_sensor_values;
d_step{send=0; receive=1;
msg_get_sensor_values=1; msg_sensor_values=0;
sensors=1; environment=0;};};
atomic{sensors_environment_sensor_values!sensor_values;
d_step{send=1; receive=0;
msg_get_sensor_values=0; msg_sensor_values=1;
sensors=1; environment=0;};};
od}
proctype proc_environment(){
do
::atomic{sensors_environment_get_sensor_values!get_sensor_values;
d_step{send=1; receive=0;
msg_get_sensor_values=1; msg_sensor_values=0;
sensors=0; environment=1;};};
atomic{sensors_environment_sensor_values?sensor_values;
d_step{send=0; receive=1;
msg_get_sensor_values=0; msg_sensor_values=1;
sensors=0; environment=1;};};
od}

/*System Instantiation*/
init{
atomic{run proc_sensors();run proc_environment();}

¥

Listing 7.2 - "Promela Description for ACU Block"

/*Messages declaration*/
mtype={sensor_values,act_sb,reset,act_ab};

/*Channels declaration*/

chan acu_environment_sensor_values=[1] of {mtype};
chan acu_environment_act_sb=[1] of {mtype};

chan acu_environment_act_ab=[1] of {mtype};

chan acu_reset=[1] of {mtype};

10
11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74
75
76
77
78

70 CHAPTER 7. FORMAL VERIFICATION OF SYSML REQUIREMENTS

/*Variable global*/
byte val_acc=0;

/*Last performed action*/

bit send=0;

bit receive=0;

/*Message used in the Llast action*/
bit msg_sensor_values=0;

bit msg_act_sb=0;

bit msg_act_ab=0;

bit msg_reset=0;

/*Lifeline that performed last action*/
bit acu=0;

bit environment=0;

1tl po {[]((acu && receive && msg_sensor_values) ->
<>(acu && send && (msg_reset || msg_act_sb || msg_act_ab)))}
/*Lifelines specification */
proctype proc_acu(){
do
::atomic{acu_environment_sensor_values?sensor_values;
d_step{send=0; receive=1;
msg_sensor_values=1; msg_act_sb=0;
msg_act_ab=0; msg_reset=0;
acu=1l; environment=0;};};
if
::(val_acc>=60)->{
atomic{acu_environment_act_sblact_sb;
d_step{send=1; receive=0;
msg_sensor_values=0; msg_act_sb=1;
msg_act_ab=0; msg_reset=0;
acu=1l; environment=0;};};
atomic{acu_environment_act_abl!act_ab;
d_step{send=1; receive=0;
msg_sensor_values=0; msg_act_sb=0;
msg_act_ab=1; msg_reset=0;
acu=1l; environment=0;};};
}
:((val_acc<60) && (val_acc>=3))->
atomic{acu_environment_act_sbl!act_sb;
d_step{send=1; receive=0;
msg_sensor_values=0; msg_act_sb=1;
msg_act_ab=0; msg_reset=0;
acu=1l; environment=0;};};
relse{
atomic{acu_reset!reset;
d_step{send=1; receive=0;
msg_sensor_values=0; msg_act_sb=0;
msg_act_ab=0; msg_reset=1;
acu=1; environment=0;};};
atomic{acu_reset?reset;
d_step{send=0; receive=1;
msg_sensor_values=0; msg_act_sb=0;
msg_act_ab=0; msg_reset=1;
acu=1l; environment=0;};};}
fi;
od}

proctype proc_environment(){
do
::atomic{acu_environment_sensor_values!sensor_values;
d_step{send=1; receive=0;
msg_sensor_values=1; msg_act_sb=0;
msg_act_ab=0; msg_reset=0;
acu=0; environment=1;};};
if
::((val_acc<60) &&% (val_acc>=3))->
atomic{acu_environment_act_sb?act_sb;

7.6. CONCLUSION 71

79 d_step{send=0; receive=1;

80 msg_sensor_values=0; msg_act_sb=1;

81 msg_act_ab=0; msg_reset=0;

82 acu=0; environment=1;};};
83 t:(val_acc>=60)->{

84 atomic{acu_environment_act_sbract_sb;
85 d_step{send=0; receive=1;

86 msg_sensor_values=0; msg_act_sb=1;
87 msg_act_ab=0; msg_reset=0;
88 acu=0; environment=1;};};
89 atomic{acu_environment_act_abract_ab;
90 d_step{send=0; receive=1;

91 msg_sensor_values=0; msg_act_sb=0;
92 msg_act_ab=1; msg_reset=0;
93 acu=0; environment=1;};};
94 }

95 fi;

96 od}

97

98 /*System Instantiation*/

99 init{

100 if

101 ::(true) ->val_acc=0;

102 ::(true) ->val_acc=10;

103 ::(true) ->val_acc=60;

104 fi;

105 atomic{run proc_acu();run proc_environment();}

106 }

7.6/ CONCLUSION

We have presented in this chapter our proposal to verify SysML functional requirements
over SysML blocks. To solve this issue, we have translated requirements into formal prop-
erties using linear temporal logic. LTL properties were then verified over a formal model
of a SysML block. Formal models of SysML blocks were obtained by applying the approach
of V. Lima et al. to translate SysML sequence diagrams into Promela descriptions. Finally
we used the model-checker SPIN to verify LTL properties over the Promela descriptions.

3

INCREMENTAL SPECIFICATION OF CBS
ARCHITECTURE GUIDED BY THE VERIFICATION
OF SYSML REQUIREMENTS

T he CBS are widely used in the industrial field, and they are built by assembling various
reusable components (third party components), allowing reducing their development
cost. The success of the CBS development is related to the process of building complex sys-
tems by assembling smaller and simpler components. Generally these systems are made
larger because they are developed with software frameworks. However, this development
isahard task due to two reasons. The first is the difficulty to decide what to build and how
to build it, by considering only system requirements and reusable components. There-
fore, the question that arises is: how to specify a CBS architecture satisfying all system
requirements? The second reason concerns the compatibility between the set of reusable
components that compose the system, which must be guaranteed. Indeed, generally, one
exploits reusable components from a component library to construct CBS, thus we need
to guarantee component compatibility.

In this chapter, we discuss the relationship between system requirements and CBS ar-
chitecture specification. Our goal is to propose a methodology, to the CBS specifier, to
build a consistent system architecture that formally fulfills all the system requirements.
To achieve this goal, we exploit the SysML requirement diagram to specify and organize
system requirements, SD to describe components behavior, and BDD and IBD to specify

Contents

8.1 OVEIVIEW . & v v v v v v v o v o e o o o oo oo o oo oo o oo ae 75
8.2 CaseStudy it i i ittt ittt 76
8.3 SysML Requirement Diagram Analysis 77
8.4 Component Assembly Preserving SysML Requirements 79

8.4.1 Functional Requirements and Input/Output Actions 80

8.4.2 Preservation of Input/Output Actions in Automata Composition . 80

8.4.3 Verification of Atomic Requirements Preservation 81
8.5 Specification of System Architecture 83
8.6 IllustrationontheCaseStudy ¢ v v v v v v v oo 84
8.7 Conclusion o i i it i ittt 86

73

74 CHAPTER 8. INCREMENTAL SPECIFICATION OF CBS ARCHITECTURE...

system architecture. In Figure 8.1, we show the position of the contribution presented in
this chapter, regarding the contributions of this thesis.

SysML
I
[[I
Structural Behavioral .
. A Requirements
Diagrams Diagrams
BDD IBD SD Functional

5] «block»

uy|
8
i !

&
[V]
Incremental specification of

CBS by verifying requirements

@ «blocks

Compatibility
Verification

Figure 8.1 — Thesis contribution 3

We propose to extract the atomic requirements from a requirement diagram and treat
them one by one, to construct a partial architecture of the system, composed of atomic
components and composite components. At each step, we propose to select an atomic re-
quirement from a SysML requirement diagram, and choose a component from a library
that should satisfy the selected requirement. Then we verify whether the component sat-
isfies the requirement thanks to the LTL formula which specifies the requirement and the
Promela program which specifies the component SD (see Chapter 7). After that, we verify
the compatibility between the selected component, and the selected one in the precedent
step, and we verify also the preservation of the requirements treated in the precedent steps.
This process ends when all atomic requirements are treated, or when we detect incompat-
ibility between components, or the non preservation of the requirements by component
composition. When the process ends correctly, we guarantee the architecture consistency
of the final CBS which then fulfills all the requirements.

This chapter is organized as follows: An overview of the approach is presented in Section
8.1, then we present in Section 8.2 the case study used to validate the approach, and later
in Sections 8.4, and 8.5 we describe the main steps of the approach.The illustration on the
case study is shown in Section 8.6, and we end with the conclusion in Section 8.7.

8.1. OVERVIEW 75

8.1/ OVERVIEW

We propose an approach to construct a CBS system and to specify its architecture directly
from SysML requirements. Our goal is to obtain a consistent architecture respecting all
the specified requirements. To specify this architecture, the software architect exploits
a library of reusable components (or blocks). These components are considered as black
boxes and described only by their interfaces, specified with SD. So, we propose to specify
CBS requirements with SysML requirement diagram, then analyze this diagram in order
to associate one by one its atomic requirements (can not be decomposed) to software com-
ponents that satisfy them. The satisfiability is evaluated by performing a formal verifica-
tion step with a model-checker. Each verified component is tested for compatibility with
the other components in the composition and then added to the partial architecture that
must preserve the atomic requirements.

In our approach, a CBS is specified with a SysML requirement diagram that shows the
functional requirements, and component interfaces describe component protocols by se-
quence diagrams.

requirement select atomic
L S > .
diagram requirements

for each atomic

end Generate system
req. R

architecture

| next

link R to a com-

no Do component
that C E R |<----- X
(Use SD, library

Promela, SPIN)
Y

Verify that
S| C#o
(use IA and preser-
vation of actions)

l yes
letS=S8]|C
and generate partial
BDD and IBD

Figure 8.2 — Proposed approach to generate CBS architecture from SysML requirements

The main steps of our approach, presented in Figure 8.2, can be described as follows:

1. Start by analyzing the SysML requirement diagram to obtain the atomic require-
ments because they are more precise, and it is easier to find components that satisfy
them (see Section 8.3).

2. Let R, be the first atomic requirement, let C; be a component from the component
library, described by the sequence diagram .S D;. Specify R; with the LTL formula

76 CHAPTER 8. INCREMENTAL SPECIFICATION OF CBS ARCHITECTURE...

F; and translate S'D, to the Promela code PRO,, then verify that C; satisfies R; by
verifying that P RO; satisfies F; with the model checker SPIN (see Section 7.3). The
selection of the component C; in the library is done by the software architect. How-
ever, itis possible to guide this selection (or to automate it) because R; isa functional
requirement, and describes constraints on offered and required services (Input/out-
put actions). These services are also described in component interfaces. So it is easy
to extract these services from R; and to match them with those described in the in-
terfaces. If this step returns false, then C; does not satisfy R;, therefore one has to
obtain the appropriate component in other libraries, or to develop it from scratch.

3. Let A, be the interface automaton describing the component protocol and obtained
from the sequence diagram S D; (see Section 8.4).

4. Identify the input and output actions in A; related to R; (Section 8.4).
5. Repeat until all the requirements are treated .

(a) Let R, be the next atomic requirement, connected to R; (see Definition 19),
let C;, | be a component satisfying R, , thanks to the LTL formula F; | and
the Promela code PRO, . Let A, be the interface automaton describing the
component protocol.

(b) Identify the set of input and output actions in A, | related to R, ;.

(c) Verify that C; and C;; are compatible thanks to their interface automata, so
verify that A; || A;;; # @ (see Section 4.2).

(d) Verify that the requirements R; and R, are preserved by the composition, so
they are satisfied by the composite C = C; || C,, (see Section 8.4).

(e) Define the consistent partial architecture of the system by the composite C =
C; || C;;1,according to Definition 20.

6. End repeat

According to the main steps of our approach, we validate the final architecture of our CBS
when all the atomic requirements are analyzed without problems of component compat-
ibility and /or requirement preservation.

8.2/ CASE STUuDY

To illustrate our approach, we use the case study of the vehicle safety system presented in
Section 1.4. The associated requirement diagram that specifies the system needs is shown
on Figure 8.3.

In this diagram, the initial requirement R1 asks for ensuring passengers lives and it is
decomposed into two requirements R1.1 and R1.2 that ask for two safety devices: an
airbag system, which must be deployed whenever the car is in a collision, and the seat-
belts that must be locked when the sensors detect strong movements, therefore, this last
is an atomic requirement as it is not decomposed. On the left side, requirement R1.1 is
further decomposed into requirements R1.1.1, R1.1.2, and R1.1.3 which are atomic ones.
Requirement R1.1.1 asks for the capture and sending of sensor values to an Airbag Control

8.3. SYSML REQUIREMENT DIAGRAM ANALYSIS 77

req [package] SecurityRequirements [Car Safety Device])

<<requirement>>

Car Safety Device
Text : "Ensure life of
passengers"

Id: "R1"

<<requirement>>
Seat Belt System

Text : "Seat belts must
be locked once the

<<requirement>>
Airbag System

Text : "Activate the air
bag system when there

signal from the ACU is
is a collision" received"
Id: "RL1" Id: "R1.2"
<<requirement>>
Airbag Control Unit -
- Text : "Decide whether <<IreqU|reme?nt>>
<<requirement>> or not to deploy the Airbag Device
Sensors airbag and/or lock the Text : "Deploy the
Text : "Always get the seat-belts once the airbag once the signal
sensors values and send sensors report new from the ACU is
them to the ACU" values” received”
Id: "RL.1.1" Id: "R1.1.2" Id: "R1.1.3"

Figure 8.3 — SysML requirements diagram for a safety car system

Unit (ACU). Requirement R1.1.2 requests an ACU to decide whether to deploy the airbag
and lock the seat-belts as soon as the sensors report new values. Finally, requirement
R1.1.3 demands to deploy an airbag device, once the signal from the ACU is received.

8.3/ SYSML REQUIREMENT DIAGRAM ANALYSIS

In this section, we specify formally the SysML requirement diagram in order to analyze it
and to extract formally the atomic requirements. Then, we show that it is sufficient to a
CBS to satisfy only the atomic requirements in order to satisfy all the requirements speci-
fied in the requirement diagram. In the following definition we consider two relations of
SysML requirement diagram.

« Containment: exploited to decompose a requirement into other ones more precise.

« Derivation: exploited to connect a requirement with other ones that derive from it.

78 CHAPTER 8. INCREMENTAL SPECIFICATION OF CBS ARCHITECTURE...

Definition 17: Requirement diagram specification

We specify a SysML requirement diagram by RD = (I R, SR, RelC, Rel D) such
that:

o [R: define the set of initial requirements, the first requirements that the
specifier defines in the requirement diagram. Generally, they are not pre-
cise, and it is necessary to connect them, with the containment relation, to
more refined requirements.

« SR: the set of all requirements.

e RelC C SR X P(SR)the relation of containment, where P(.SR) is the set
of the subsets of S R.

e RelD C SR X P(SR)the relation of derivation.

For example in our case study, the specification of the requirement diagram described in
Figure 8.3is RD = (IR, SR, RelC, Rel D), where:

« IR = {R1},
« SR={RI,R1.1,R1.2,R1.1.1, R1.1.2, R1.1.3},

RelC = {(R1,{R1.1, R1.2}),

(R1.1,{R1.1.1,R1.1.2, R1.1.3})}, and
e RelD =@.

Definition 18: Atomic requirements

The set of atomic requirements in the requirement diagram specified by RD =
(IR, SR, RelC, RelD)istheset AR = {R|R € SR, A(R,{R;,...R,}) € RelC}

An atomic requirement is a requirement that can not be decomposed. It expresses a con-
straint on input and output actions which are related to one component (see Section 8.4).

The atomic requirements in our case study are (see Figure 8.3): {RI1.1.1, R1.1.2,
R1.1.3,R1.2}.

Remark: To compute the set of atomic requirements, it is necessary to analyze the set SR
of all requirements and to identify the requirements that are not related by the relation
RelC (containment).

Theorem 2: System satisfying all atomic requirements

Let SbeaCBS,let RD = (IR, SR, RelC, Rel D) be the specification of a require-
ment diagram, and let AR be the set of atomic requirements of RD. S satisfies
all the requirements in .S R iff it satisfies the atomic requirements AR.

Theorem 2 states that it is sufficient for a system to satisfy the atomic requirements, in
order to satisfy all requirements represented in a SysML requirement diagram.

To illustrate the proof of this theorem, we propose a simple requirement diagram pre-
sented in Figure 8.4. The requirements are connected with a containment relation, with

8.4. COMPONENT ASSEMBLY PRESERVING SYSML REQUIREMENTS 79

D T
| <<derive>>

‘ Ry, ‘ ‘ Ry ‘ ‘

e

‘ Rony ‘ ‘ Ro1p ‘

Figure 8.4 — A SysML requirement diagram

continuous arrows, and a derivation relation, with dashed arrows. So the requirement R0
is decomposed in the requirements RO1 and R02. The requirement R1 derives from RO,
and R?2 derives from R1.

Proof. Due to the semantic of the relation derive in SysML requirement diagram (and also
the semantic of requirement diagram), it's obvious to state that a system satisfies all re-
quirements that are specified by a requirement diagram iff it satisfies the initial require-
ments and all the ones that are derived (linked by the relation derive) directly or indirectly
from them. Indeed, the satisfaction of the derived requirements does not guarantee the
satisfaction of the initial ones. Since the atomic requirements are either derived (directly
or indirectly) from initial requirements, or related by the relation of containment (directly
or not) to initial requirements. And due to the semantic of the containment and the derive
relations, the satisfaction of atomic requirements leads to the satisfaction of the require-
ment which are linked to them. Therefore it is sufficient to satisfy atomic requirements
to satisfy all requirements. For example in Figure 8.4, the requirements to satisfy (initial
and derived)are { RO, R1, R2}. The derived requirements are R1 and R2, and the initial re-
quirementis RO. However, to satisfy arequirement composed of other ones, it is sufficient
to satisfy the requirements that compose it. This process is repeated until all the atomic
requirements are satisfied. So, to satisfy RO, it is sufficient to satisfy ROl and R02. And to
satisfy RO1 it is enough to satisfy RO11 and RO12. Therefore, to fulfill all requirements, it
isnecessary to satisfy { R1, R2, R02, RO11, RO12}, which defines the set of atomic require-
ments in our requirement diagram.]

8.4/ COMPONENT ASSEMBLY PRESERVING SYSML REQUIREMENTS

In this section, we specify interface automata from sequence diagrams thanks to the ap-
proach proposed in [CH11], then we propose to compose components and to verify com-
patibility between them, using their interface automata, by applying the algorithm pre-
sented in Chapter 4. We propose also to verify, at the same time as the compatibility ver-
ification is done, whether the atomic SysML requirements are preserved over the compo-
sition. Indeed, this verification allows avoiding the requirement verification over the ob-
tained composite component, thus, we avoid the state explosion problem for the model
checker. Before presenting the algorithm to verify the preservation, we show in the fol-
lowing sections that SysML requirements are related to Input/Output actions of interface
automata, and their preservation is related to the preservation of their related actions by
the composition.

80 CHAPTER 8. INCREMENTAL SPECIFICATION OF CBS ARCHITECTURE...

8.4.1/ FUNCTIONAL REQUIREMENTS AND INPUT/OUTPUT ACTIONS

The atomic requirements considered in this work concern the functional properties of a
CBS. They are related directly to input and output actions of components. Therefore, for
each atomic requirement we associate the sets of input and output actions provided by a
component.

Let AR be the set of atomic requirements in the specification RD of a requirement di-
agram. Let R; be an atomic requirement satisfied by the component C;. Let A; be the
interface automaton describing the protocol of C;. So, R, is associated to input actions
Ig, ={iy,,- 1) },and outputones Og = {0,; ;... 0,

For example the first atomic requirement in our case study is R1.1.1: always get the sensor
values and send them to the ACU. It is satisfied by the component Sensor. The interface
automaton of this component is described in Figure 8.6. The set of input actions related
to R1.1.11is {get_sensor_values}, and the set of output actions is { sensor_values}.

The actions related to atomic requirements are formalized by transitions in the interface
automata, labeled with these input/output actions.

Definition 19: Connected requirements

Let R and R’ be two atomic requirements specified in a SysML requirement dia-
gram. Rand R’ arerelated respectively to the set of input actions Iz, and I, and
outputones Og,and O%. Rand R’ are connectediff N0y # @or [,NOy # @.

According to Definition 19 and to the condition of composability of interface automata
(see Chapter 4), it is obvious to state that two components satisfying two connected atomic
requirements are composable. We exploit this definition in our approach: at each iter-
ation i of our approach, we choose an atomic requirement which is connected with the
requirement in the iteration i — 1, in order to compose their components, otherwise the
composition is not allowed.

8.4.2/ PRESERVATION OF INPUT/OQUTPUT ACTIONS IN AUTOMATA COMPOSITION

In this section, we show that the composition of two interface automata does not guaran-
tee the preservation of their non shared input/output actions in the obtained composite
automaton, despite their compatibility.

In fact, in the item (iii) of Definition 4, the authors in [dAHo1] indicate that the set of ac-
tions in the composite automaton A = A; || A, is the same as the set of actions in the
synchronized product A; ® A,, however, the set of transitions in A is not the same as
the onein A; ® A, (according to Definition 4). Indeed, the set of transitions in A is in-
cluded in the one of A} ® A,. Thus, there may be input/output actions in X , which are
not associated to transitions in A. In fact according to the optimistic approach of inter-
face automata, despite that A| and A, are compatible, and A # @, there may be shared
input/output actions between A; and A, which do not synchronize, but certainly, there
are also shared actions which synchronize (because A # @). Therefore, the transitions la-
beled with the shared input/output actions, which do not synchronize, will be eliminated
from A = A, || A, because they lead to illegal states. But the related input/output ac-
tions (which label the eliminated transitions) remain in the set of actions in A, because
the composite component described by the composite automaton A could provide these

8.4. COMPONENT ASSEMBLY PRESERVING SYSML REQUIREMENTS 81

actions, and with the optimistic approach, one decides that it is compatible, because one
supposes the existence of the helpful environment which never enables these actions (for
more illustration see the example in [dAHO1]).

8.4.3/ VERIFICATION OF THE PRESERVATION OF THE ATOMIC REQUIREMENTS BY THE COMPOSITION.

In this section, we show the conditions that the composition of components should re-
spect to preserve the requirements of the composed components. And we show also how
to verify these conditions by adapting the compatibility verification algorithm of interface
automata (see Chapter 4).

The preservation of the atomic requirements by the composition of components is neces-
sarily related to the preservation of the input/output actions, associated to these require-
ments, by the composition of their interface automata. Furthermore, in Section 8.4.2, we
indicate that some input/output actions may belong to the set of actions of a composite
automaton, but they do not label transitions in this automaton. Hence, in this case we
state that these actions are not preserved.

Condition of Input/Output action preservation: Anaction act (input or output)is preserved by
the composition of two interface automata, A; and A,, iff there is at least one transition in
the composite automaton, A = A, || A,, which islabeled with act. Which means that the
action act belongs to the set of Input/Output actions in A, when act is not shared between
A and A,, and belongs to the internal actions in A otherwise.

Verification algorithm overview: To verify the preservation of atomic requirements by the
composition, we propose to adapt the compatibility verification algorithm [dAHo1] (Chap-
ter 4). We verify whether the transitions labeled with input/output actions, related to
atomic requirements, are preserved in the transition set of the obtained composite au-
tomaton A; || A;;;. This adaptation consists on: to calculate in the step (2) of the com-
patibility verification algorithm, the set of transitions in A; ® A,,, noted T, related to
the requirements. When we eliminate transitions in the step (5) of the compatibility veri-
fication algorithm, we eliminate also these transitions in 7'. Finally, we verify that all the
actions related to the requirements, are associated to at least one transition in 7', after step
(6).

We notice that this adaptation does not increase the complexity of the compatibility veri-
fication algorithm (this can be easily verifiable). So the complexity of the presented algo-
rithmis O|A; ® A;,;|. However, in order to calculate the time complexity of one step in
our approach, we have to consider a component C, associated to the current requirement
to analyze, R, . This component is selected from the components library specified by the
setC = {C|,C,,...,C,}. We consider also the sequence diagrams .S D, that specifies the
protocol of C,. In each step we have to verify that the current component satisfies the
current requirement thanks to the Promela code of S D, and to the model checker SPIN.
And we verify also the compatibility between the current component and the composite
component, C,, obtained in a precedent step. So the time complexity of one step in our
approach is analyzed as follows:

« toselectacomponent from the set C that should satisfy an atomic requirement, the
complexity is: O(|C])

82 CHAPTER 8. INCREMENTAL SPECIFICATION OF CBS ARCHITECTURE...

« to verify that C, satisfies R,, the complexity is : O(|T'S,| x 2/7¢l), where T'S, is the
automaton calculated by SPIN from the Promela code associated to S D, (this is the
complexity of the LTL model checking), and Pc the LTL formula that specifies the
requirement R..

« After verifying the atomic current requirement on the component, we verify the
compatibility between C, and C,, and the preservation of the requirements by the
composition. The complexity of this stepis: O(|A. ® A,|), where A, and A, are the
interface automata associated respectively to C. and C,,.

Therefore, to calculate the complexity of the whole approach, we have to consider the com-
plexity of one step and the number of the atomic requirements which defines the number
of steps.

To demonstrate the correctness of our approach, we should prove that the composition
of two components preserves the atomic requirements iff the composed components are
compatible and the input and output actions related to these requirements are preserved
according to the condition of preservation of input/output actions. Indeed, each step in
the incremental approach is based on the compatibility and the preservation of the atomic
requirements by the composition. Thus, it is sufficient to show the correctness of a step i
in our approach.

Theorem 3: Preservation of requirements

Let C; be a component satisfying the atomic requirement R; and A; the interface
automaton of C;, let I; be the set of input actions related to R; and O, the output
ones. Let C;, | be a component satisfying R;,; and A, the interface automaton
of C;,q,let I, | bethesetofinputactionsrelatedto R, ; and O, ; the outputones.
The composite component S = C; || C;,; preserves the requirements { R;, R, }
iff the interface automata A;, and A, |, are compatible, and the input and output
actions, I;, 1,1, 0;,and O, are preserved in S.

Proof. The component C; satisfies R; means that the program Promela describing the
component behaviors satisfies the LTL property specifying the requirement R;. In our
approach, component behaviors are also described with an interface automaton A;, and
these behaviors are execution paths in the interface automaton. The functional require-
ment R; is related to the sets of input/output actions, I;, O;, and they express constraints
and the order of executing these actions. For example R; could express: always when C;
enables an input action i € I, then it will inevitably enable the output actions o0 € O;. So
C, satisfies this requirement iff in all the execution paths in A; where a transition labeled
by i belongs, it will be followed by a transition labeled with o. Since our composition ap-
proach preserves at least one of these paths, when the compatibility and the preservation
of Input/Output actions hold, then the requirements are preserved.

Indeed, the composite S = C; || C;,; preserves the input/output actions related to the
requirements means that for each input/output actions related to R; and R, the tran-
sitions labeled with these actions are preserved, therefore at least one execution path, in
A; || A;,, containing these transitions is preserved in .. Indeed, we have the following
possibilities when A; and A;, | are compatible and the actions related to R; and R, are
preserved (illustration concerning only one action a related to R; or R,):

8.5. SPECIFICATION OF SYSTEM ARCHITECTURE 83

A,

i
'

Ail+1 Ai ”IAHI Ai A[|+l Ai ”IAHI Ali A[|+1 Ai IllAi+l
Y Y

'
Y

QRYY QY B RYV
ololcRalolzicyale

¥ ¥ ¥
Figure 8.5 - Interface automata composition alternatives

\

« ifthere are noillegal states the preservation is guaranteed, because all the paths are
preserved. This case (we have two possibilities) is illustrated in the Figure 8.5(a) and
(b). In the case (a), we suppose that there is a synchronization between the two au-
tomata on the shared action a (related to a requirement), so in the composition we
obtain a transition labeled with the internal action a. Therefore, the action a is pre-
served and becomes internal. And in the second case (b), we suppose that a is not
shared and there is interleaving in the composite automaton, and a is preserved.

« if there are illegal states (and the automata are compatible due the optimistic ap-
proach): in this case (see Figure 8.5(c)), we suppose that the first automaton provides
a shared output action g, in the state s, and the second automaton does not provide
the input action a, in s1. So we obtain an illegal state and the action a is not en-
abled in the illegal state (s, s1). In this case we have to verify that a is preserved in
other paths of the composite automaton A; || A,,;, with our approach. So, if we
find a transition labeled with a,in A; || A;,;, soitis preserved (according to the con-
dition of preservation), and the associated requirement also, otherwise the related
requirement is not preserved. So when the preservation of the Input/Output action
is verified, then the related requirements are preserved.

8.5/ SPECIFICATION OF SYSTEM ARCHITECTURE

The construction of a CBS with our approach is based on constructing, at each incremental
step, one SysML composite component, which defines a partial architecture of a CBS. This
architecture is based on the interface automata of the assembled components and partic-
ularly on their shared actions. So, in the following definition, we describe the SysML com-
posite by specifying the relation between SysML BDD and IBD diagrams, and the interface
automata describing the behaviors of the composed components.

84 CHAPTER 8. INCREMENTAL SPECIFICATION OF CBS ARCHITECTURE...

Definition 20: SysML Composite component

Let C; and C, be two components, let A| and A, be their respective interface au-
tomata. When A, and A, are compatible, A,||A, # @, the composite component
C composed of C| and C,, is well formed and it is written C = C; || C,. This
composite is described with the SysML BDD diagram, BD D, composed of the
composite block C, and the blocks C;| and C,. The interactions between the com-
ponents C; and C, are described with the SysML IBD diagram, I BD such that,
I BD is composed of the parts C; and C, which communicate through inter-
nal ports, labeled with the names of the synchronized input and output actions,
which are shared between A; and A,. The external ports of I BD are labeled
with the names of actions which are not shared.

This definition is illustrated in Section 8.6 in Figures 8.9 and 8.10 (BDD and IBD).

8.6/ ILLUSTRATION ON THE CASE STUDY

In this section we apply our approach on the case study shown in Section 8.2. As ex-
posed in the approach, we start by analyzing the SysML requirement diagram to obtain
the atomic requirements. These requirementsare R1.1.1, R1.1.2, R1.1.3,and R1.2. Then,
we link LTL properties for each of these atomic requirements. These properties are used to
verify whether a block in a component library satisfies the requirement in order to match
them.

For the first requirement R1.1.1 we take a sensor block with its associated SD shown in Fig-
ure 7.2 respectively. This sensor block gets information from several sensors (accelerome-
ters, impact sensors,...) all around the car at each call of the service get_sensor_values,
and sends them through a service sensor_values. These services are respectively the
input {get_sensor_values}and output actions {sensor_values}related to requirement
R1.1.1. To validate if the block sensors satisfies requirement R1.1.1, we first describe the
requirement as a LTL property like “always, after the sensors block receives a call for get_ -
sensor_values, it sends a message sensor_values to the environment”. Then we translate
the associated SD to a Promela description as exposed in Chapter 7, the generated code is
not shown here for lack of space. Following the approach of flags from [LTM*09], the LTL
property in Promela language is:

C((sensors && receive && msg get sensor_values)
— (O(sensors && send && msg_sensor_values))

The next requirement to be analyzed is R1.1.2 which is connected to R1.1.1. For this re-
quirement, we find the ACU block and its associated SD in Figure 7.4, this block offers an
input action {sensor_values} and requires the output actions {act_sb,act_ab} to lock
the seat-belts and deploy an airbag respectively, this block analyzes each arrival of sensor
values and decides whether the seat-belts must be locked, an airbag must be deployed or
wait for another sensor values arrival (reset action). To verify if this block satisfies re-
quirement R1.1.2, we express it as a Promela description (the generated code was shown
in Listing 7.2) and the requirement is expressed as a LTL property: “always after receiving
a message with the sensor_values, the ACU will send a message deciding to lock the seat-belt
(act_sb), activate the airbag (act_ab) or wait for another call (reset)”, which expressed in
Promela code using flags will be:

8.6. ILLUSTRATION ON THE CASE STUDY 85

act_ab!
— act_sb
sensor 5
get_senso sensor_values! | ¢,ncor _values|) ensor_values?/;\ act_sb! S
_values @\/j@ _values @J act_ab

—_—
reset,

get_sensor_values? act sb!
Figure 8.6 — |A for the Sensors block Figure 8.7 - |A for the ACU block
act_sb
get_sensor
“values et_sensor_values? ~sensor_values;
U N
act_ab

act_sb!

Figure 8.8 — IA for the composition of Sensors and ACU blocks

O((acu && receive && msg_sensor_values)
— { (acu && send && (msg_reset || msg_act sb || msg act _ab)))

These properties are verified using SPIN model-checker which outputs no errors for both
models, therefore, the models satisfy the properties.

Then, to link the blocks that satisfy requirements R1.1.1 and R1.1.2, we verify that they
are compatible thanks to their interface automata. These interface automata are gener-
ated from SD following the approach in [CH11], and they are shown in Figures 8.6 and 8.7.
To verify compatibility we compute the composition; we use Ptolemy Interface Automata
tool [LX04] which computes the composition of two given interface automata as input.
The output composite automaton is shown in Figure 8.8, this automaton is not empty, so
the blocks Sensors and ACU are compatible. This composition had illegal states that were
eliminated automatically by Ptolemy tool, so we have to validate that the actions related to
the requirements are still present on the transitions of the composite automaton to guar-
antee preservation of the requirements over the composition.

Looking at the transitions in the composite automaton, we find that the set of input/out-
put actions, related to the requirements, are still present, so the requirements are still pre-
served over the composition and we can proceed to define a partial architecture of the sys-
tem, by presenting a BDD with the refinement of an abstract block into the blocks Sensors
and ACU, this diagram is presented in Figure 8.9.

The interactions between the composed blocks are then described by an IBD (see Figure
8.10) where the ports representing the synchronized input and output actions are linked
with connectors and the unshared actions are exposed as offered and demanded services
of the composition.

Subsequently, we continue adding requirements R1.1.3, with related input action {act_-
ab}, and R1.2, with related input action {act_sb}, to our architecture in the same manner,
until all atomic requirements are treated.

86 CHAPTER 8. INCREMENTAL SPECIFICATION OF CBS ARCHITECTURE...

~block» "~ «block»
“blocky ¥ linSensors = loutSensors

= properties properties
@ p_in: lir ACU _Ssnsors.+Acul @ p_out: loutSensors+ACU

Prop operations operations
[']WE,] #, speed) #, acosleration()
+ sensorscontrol + trol constraints constraints

] 11
~«block» ~ «block»
]| + acu £ linACU = loutACU
[1]]+ sensors “block» properties properties
- plockey @ p_in: linACU = A(?U | . operations N operations
@ p_in: lir EliSensors properties 45 acceleration() | | g lock_sb()
propertes operations | constraints i unlock_sb()
220 conrl % sl 50
@ p_out: loutSensors - reset() 45 reset_ab()
constraints @ p_out: loutACU constraints

Figure 8.9 — BDD for the second iteration

~ «block»
=] Sensors+ACU

— sen:é):'t»Sensors D e i p_out: loutSensors+ACU

«part»
[acu: ACU

@ p_in: lir

il & p_in: linACU
& p_in: linSensors+ACU P 1 p_out: loutACU|

Figure 8.10 - IBD for the second iteration

8.7/ CONCLUSION

In reliable applications, it is important to specify a system architecture in accord with the
requirement specifications. To achieve this goal, in this chapter we proposed an approach
to specify system architecture directly from SysML functional requirements. SysML re-
quirement diagram was analyzed to extract its atomic requirements. Then, we associate
these requirements, one by one, to reusable components, and LTL properties representing
the requirements were verified on the components. To verify an LTL property, component
behavior represented in SD is translated into Promela statements and then verified with
the SPIN model-checker. These components were then added to a partial architecture by
the composition of their component interfaces described through interface automata. We
guarateed preservation of requirements over the composition by the conservation of re-
lated Input/Output actions on the transitions of the composite automaton. Finally, we
illustrated this approach by the case study of a safety vehicle system.

I11

CONCLUSION

87

9

CONCLUSION AND PERSPECTIVES

T he conclusion of this thesis summarizes the obtained results and it presents some per-
spectives for our work.

We present in Figure 9.1 the global approach and the perspectives.

SysML
I
[[I
Structural Behavioral
Requirements
Diagrams Diagrams

——— |

BDD IBD SD Functional %

£ «blocky

S

Incremental
Refinement
(os]
A

[«block» [«block»

By

«requirements
[«block» [# «block» [«block» R3,1

B11 Adaptor 312
Verification
with SPIN

a2

[® «block» [® «block» [® «block»

By, [|Adaptor| Bio

Compatibility
Verification

&
!

Incremental specification of
CBS by verifying requirements

Compatibility
Verification

Toolchain

Figure 9.1 - Thesis perspectives

CBS are a promising solution widely exploited in industrial applications. The approach
to develop CBS is based on the idea that software systems can be developed by selecting
appropriate components and then assemble them in a valid architecture. The success of
the CBS development is related to the process of building complex systems by assembling
various reusable components, allowing reducing their development cost. Generally, these
systems are made larger because they are developed with software frameworks. However,
this development can become a difficult task when the designer must decide what to build
and how to build it, by considering only system requirements and reusable components.

89

90 CHAPTER 9. CONCLUSION AND PERSPECTIVES

Therefore, there are three challenges that a designer must confront:

1. The first one is how to specify an architecture that satisfies all system requirements?

2. The second one concerns the compatibility between the set of reusable components
that compose the system, which must be guaranteed. Indeed, generally, one exploits
reusable components from a component library to construct CBS, thus, we need to
guarantee component compatibility.

3. And finally, we ask for how to integrate formal verification in the assembly process
to build reliable systems.

The philosophy of this thesis is inspired from the concept of CBS, to build, step by step,
SysML specifications of a system, by exploiting the notion of SysML refinement. Struc-
tural diagrams of SysML describe the system in static mode, and behavioural diagrams
describe the dynamic operation of the system. In SysML, blocks are modeled by two di-
agrams. The BDD, which defines the architecture of the blocks and their performed op-
erations, and the IBD, which is used to define the ports of each block and transactions
exchanged between them through their ports. During the refinement process, these two
diagrams can be checked to decide whether the proposed architecture satisfies or it is in-
appropriate to the requirements diagram.

9.1/ MAIN CONTRIBUTIONS

In this thesis we presented three contributions based on an incremental approach.

1. The first contribution aimed to formalize the decomposition process, by defining a
refinement relation between an abstract block and its sub-blocks. It consisted on ex-
ploiting the architecture description in SysML language when a system is described
by structural diagrams and behavioral diagrams. The refinement in SysML is an es-
sential conceptanditisbased onthe development of a process from an abstract level
towards more detailed levels, which can end in its implementation. Our refinement
ensured an incremental substitutability of an abstract block in a specification by a
composition of blocks preserving its structural and behavioral properties.

To verify structural refinement specified in BDD and IBD diagrams, we verified first if
the sub-blocks were consistent with the abstract block specification and then we ver-
ified if they were compatible by applying the model of interface automata of d'Alfaro
et al. Interface automata were obtained from the SysML SD of each composing sub-
block and then verified for compatibility by means of the Ptolemy tool .

To verify behavioral refinement, we applied the approach of alternating simulation
for interface automata to verify if the composition of the set of sub-blocks simulated
the expected behavior in the abstract block. To ease the task of verifying alternating
simulation we proposed to use the module Observational Modal Refinement of the
MIO Workbench tool. To use this tool, we translated interface automata into modal
automata.

2. The second contribution focused on properties verification in our system. We were
inspired from works proposed by V. Lima et al. The technique proposes to gener-
ate Promela-based models from UML interactions expressed in Sequence Diagrams

9.2. PERSPECTIVES OF THE WORK 91

(SD), and uses conjointly the SPIN model checker in order to simulate and verify
properties written in Linear Temporal Logic(LTL). Our minor adaptation of this ap-
proach concerned a particular type of sequence diagrams that we exploited to spec-
ify the block behaviors. We chose Promela to describe SD specifications and LTL
properties to describe functional requirements. We then used SPIN tool to verify
these properties. We chose this environment implementation because it is a popu-
lar tool in verification activity and it is easy to specify and implement SD concepts
like sending and receiving primitives, parallel and asynchronous composition.

3. The third contribution discussed an interesting approach to describe the relation-
ship between system requirements and a CBS architecture specification in SysML.
The goal was to propose a methodology to build incrementally a consistent system
architecture that formally fulfills all the system requirements. We used SD to de-
scribe component behavior and BDD and IBD to specify system architecture. In
details, the proposed construction extracted the atomic requirements from a re-
quirement diagram and treated them one by one in order to construct the final sys-
tem. We obtained then a partial architecture of the system, composed with elemen-
tary blocks (components) and composite blocks (components). At each step, we se-
lected an atomic requirement from a SysML requirement diagram, and we chose
a block from a library that should satisfy the selected requirement. Then we veri-
fied whether the block satisfied the requirement thanks to the LTL properties which
specified the requirement and the Promela specification which described the com-
ponent behavior from SD. We then verified the compatibility between the selected
block, and the selected ones in the precedent steps, and we verified also the preserva-
tion of requirements treated in precedent steps. The process ended when all atomic
requirements were treated, or when we detected incompatibility between compo-
nents, or the non preservation of the requirements by the component composition.
In this way we guaranteed the architecture consistency of the final system which
therefore fulfilled all the system requirements.

9.2/ PERSPECTIVES OF THE WORK

The works of this thesis targeted the main question: how to introduce formal verification
on informal SyML specifications in the process of the development of CBS?

Our contributions addressed some solutions in order to build consistent CBS, thus we es-
tablished relations between refinement, concepts of SysML blocks, and CBS characteris-
tics. In the following, we present some perspectives and future works related to our con-
tributions.

Toolchain for verification Develop and provide for the designer a toolchain to support the
automatic verification of the refinement relation between abstract blocks and sub-blocks,
and also the verification of SysML requirements on blocks to decide or not the validation of
CBS SysML architecture. This toolchain will be composed of tools that allow (1) verifying
conditions of consistency between blocks and exploit Ptolemy tool to verify compatibility
(2) translating directly diagrams into Promela language (3) and verifying LTL properties
with the model-checker Spin. Some significant examples can be experimented to evaluate
the proposed approach.

92 CHAPTER 9. CONCLUSION AND PERSPECTIVES

Combining verification and simulation for non functional properties In reliable applications, it
isimportant to specify a system architecture in accord with functional and non functional
requirement specifications. To achieve this goal, we have proposed an approach to specify
system architecture directly from SysML functional requirements. So, as a future work, it
isinteresting to address the validation problem with non functional requirements and use
simulation techniques.

Adapting and Generating adapters for incompatible blocks The problem of adapting blocks is
crucial in the development of CBS by reusing blocks. The adaptation consists to generate
automatically, when it is possible, an adaptor block between incompatibles blocks in order
to ensure a reliable interaction. The idea of a future work, is to generate an entity capable
of ensuring the interaction between two incompatible blocks when the conditions of con-
sistency and compatibility are failed, allowing thus achieving our approach of refinement
of abstract blocks, and the generation of CBS architecture based on SysML requirements.

IV

RESUME ETENDU

93

10

VERIFICATION FORMELLE ET INCREMENTALE DE
SPECIFICATIONS SYSML POUR LA CONCEPTION
DE SYSTEMES A BASE DE COMPOSANTS

e travail présenté dans cette thése est une contribution a la spécification et a la vérifi-
L cation des Systémes a Base de Composants (SBC) modélisé avec le langage SysML. Les
SBCsontlargement utilisés dansle domaine industriel et ils sont construits en assemblant
différents composants réutilisables, permettant ainsi le développement de systémes com-
plexes en réduisant leur cotit de développement. Malgré le succés de I'utilisation des SBC,
leur conception est une étape de plus en plus complexe qui nécessite la mise en ceuvre
d'approches plus rigoureuses.

Pour faciliter la communication entre les différentes parties impliquées dans le développe-
ment d'un SBC, un des langages largement utilisé est SysML, qui permet de modéliser, en
plus de la structure et le comportement du systéme, aussi ses exigences. Il offre un stan-
dard de modélisation, spécification et documentation de systémes, danslequel il est possi-
ble de développer un systéme, partant d'un niveau abstrait, vers des niveaux plus détaillés
pouvant aboutir a une implémentation. Généralement ces systémes sont faits plus grands
parce qu'ils sont développés avec des cadres logiciels.

Dans ce contexte nous avons traité principalement deux problématiques :

La premiére est liée au développement par raffinement d'un SBC modélisé uniquement

Contents
10.1 Contexte Scientifique ¢ttt ittt v vt 96
10.1.1 SystéemesaBasedeComposants 96
10.1.2 LelangageSysML 97
10.1.3 Les Automatesd’Interface 98
10.2Contributions L0 Lo e e e e e e 100
10.2.1 Raffinement Incrémental d'une ArchitectureSBC 101
10.2.2 Vérification Formelle d'ExigencesSysML 103
10.2.3 Spécification Incrémentale d'une ArchitectureSBC 104
10.3Conclusions 0 i i e e e e e e e e e e e e e e e e e 107
10.4Perspectives i ittt e e e e e e e e e e e e e 108

95

96 CHAPTER 10. VERIFICATION FORMELLE DE SPECIFICATIONS SBC EN SYSML

par ses interfaces SysML. Notre contribution permet au concepteur des SBC de garan-
tir formellement qu'une composition d'un ensemble de composants élémentaires et réu-
tilisables raffine une spécification abstraite d'un SBC. Dans cette contribution, nous ex-
ploitons les outils: Ptolemy pour la vérification de la compatibilité des composants assem-
blés, et 'outil MIO Workbench pour la vérification du raffinement

La deuxieme problématique traitée concerne la difficulté de déterminer quoi construire
et comment le construire, en considérant seulement les exigences du systéme et des com-
posants réutilisables, donc la question qui en découle est la suivante: comment spécifier
une architecture SBC qui satisfait toutes les exigences du systéme? Nous proposons une
approche de vérification formelle incrémentale basée sur des modéles SysML et des auto-
mates d'interface pour guider, par les exigences, le concepteur SBC afin de définir une ar-
chitecture de systeme cohérente, qui satisfait toutes les exigences SysML proposées. Dans
cette approche nous exploitons le model-checker SPIN et la LTL pour spécifier et vérifier
les exigences.

Dans ce chapitre nous présentons un résumeé de ces contributions structuré ainsi: d'abord
nous présentons un contexte scientifique qui liste les concepts sur lesquels nous nous
sommes basés (SBC, SysML, Automates d'Interface), ensuite nous présentons nos contri-
butions et enfin nous listons nos conclusions et perspectives de ces travaux.

10.1/ CONTEXTE SCIENTIFIQUE

Dans cette section nous présentons les concepts de base utilisés dans cette thése. D'abord,
nous introduisons les SBC, puis SysML qui est le langage choisi pour modéliser les SBC et
enfin les automates d'interface que nous utilisons pour la vérification de la consistance et
compatibilité des blocs.

10.1.1/ SYSTEMES A BASE DE COMPOSANTS

Au fils des années, le domaine du développement logiciel a evolué a travers de différents
paradigmes. La programmation structurée a changé dans le temps vers le paradigme des
classes et puis vers la révolution de la programmation orientée objets. Les objets des nos
jours ont grandit et ils sont identifiés comme des composants logiciels. Dans cette section,
nous allons définir et décrire les propriétés de ces derniers pour mieux comprendre les
differences entre objets et composants.

Plusieurs définitions ont été proposés pour définir les composants logiciels et une des plus
complétes a été proposé dans [SP97]. Cette définition est :

"Un composant logiciel est une unité de composition avec des interfaces spécifiés contractuelle-
ment et seulement dépendances de contexte explicites. Un composant logiciel peut étre déployé
indépendamment et est sujet a la composition par un tiers”.

A partir de cette définition, un composant logiciel est une unité de composition avec
d’autres paires, un composant doit encapsuler son implémentation et interagir avec son
environnement en tenant compte de seulement ses interfaces bien définis. Ces interfaces
doivent donner l'information sur les exigences du composant de la part d'autres com-
posants et les services qu'il peut offrir.

Cependant, pour utiliser un composant correctement, il est nécessaire de satisfaire un

10.1. CONTEXTE SCIENTIFIQUE 97

contrat. Ce contrat liste une série de contraintes sur la maniere d'exécuter le composant
pour que celui-la exécute ses fonctionnalités [Szyo2]. Il est aussi requis de définir ce que
I'environnement de composition et déploiement doit fournir pour faire interagir les com-
posants proprement.Cet environnement est composé d'un modéle a composants avec des
régles de composition et un cadre qui établi déploiement, installation et activation des
regles des composants. Ainsi, les systémes logiciels congus pour étre un assemblage de
composants avec une architecture prédéfinit sont appelés Systémes a Base de Composants
(SBC).

Les composants peuvent étre raffinés et améliorés par des versions ultérieurs. Une en-
treprise qui vend des composants tiers peut proposer différentes versions améliorées du
méme composant. Une gestion traditionnelle des versions supposerait que la versiond'un
composant évolue d'une seule source. Cependant, dans le marché ouvert, I'évolution des
versions est plus complexe et la gestion des versions peut devenir un probléme en soi,
surtout parce que les versions peuvent aussi changer au niveau de son interface.

10.1.2/ LE LANGAGE SYSML

SysML (Systems Modeling Language) [OMG12] est un langage de modélisation dédié aux
applications d'ingénierie systéme. Il a été concu comme réponse a l'appel de propositions
(REP) fait en mars 2003 par I'Object Management Group (OMG) [OMG15] pour 'utilisation
d'UML en Ingénierie Systéeme [OMGO03], il a été proposé par 'OMG et |'International Coun-
cil on Systems Engineering (INCOSE) et il a été adopté en tant que standard en Mai 2006.
SysML est un profild UML 2.0 [OMGo5] qui réutilise un sous-ensemble de ses diagrammes
et ajoute de nouvelles fonctionnalités pour mieux s'adapter aux besoins de l'ingénierie
systéme de sorte qu'il permet la spécification,l'analyse, la conception, la vérification et la
validation d'un large éventail de systémes complexes. Ces systemes peuvent inclure le
logiciel, le matériel, les données, les processus, les personnes et les installations.

SysML comprend donc 9 diagrammes et selon [OMG12] on peut les définir comme suit:

o Activités: décritle comportement du systéme comme flux de contréle et de données.

« Définition de blocs (DDB): décrit la structure architecturale du systéme comme com-
posants avec leur propriétés, opérations et relations.

o Bloc interne (DBI): décrit les structures internes des composants, en ajoutant leurs
parties et connecteurs.

« Paquets: décrit comment un modéle est organisé en paquets, vues et points de vue.
o Paramétrique: décrit les contraintes paramétriques entre les éléments structurels.
« Exigences: décrit les exigences du systéme et leurs relations avec d'autres éléments.

« Séquences (DS): décrit le comportement du systéme comme interactions entre les
composants du systéme.

e Machines d’état: décrit le comportement du systéme comme états qu'un composant
a en réponse a des événements.

o Cas d'utilisation: décrit les fonctions du systéme et leurs acteurs en train de les
utiliser.

98 CHAPTER 10. VERIFICATION FORMELLE DE SPECIFICATIONS SBC EN SYSML

10.1.3/ LES AUTOMATES D'INTERFACE

Les automates d'interface ont été introduits par Alfaro et Henzinger [dAHO1] pour
modéliser les interfaces dans une approche a composants. Ces automates sont issus des
automates Input/Output ot il n'est pas nécessaire d'avoir des actions d’entrée activables
dans tous les états. Chaque composant est décrit par un seul automate d'interface.
L'ensemble des actions est décomposé en trois ensembles : les actions d’entrée, les
actions de sortie, et les actions internes. Les actions d'entrée permettent la modélisation
des méthodes qui vont étre appelées dans un composant, dans ce cas elles représentent
les services offerts pour un composant. Elles peuvent aussi modéliser une réception de
messages dans un canal de communication. Ces actions sont étiquetées par le caractére
"?". Les actions de sortie modélisent les appels des méthodes d'un autre composant. Donc,
elles représentent les services requis par un composant. Elles peuvent aussi modéliser la
transmission de messages dans un canal de communication. Ces actions sont étiquetées
par le caractére "!". Les actions internes sont des opérations activables localement et elles

",

sont étiquetées par le caractere ”;

Definition 21: Automate d’'Interface

Un automate d'interface A est représenté par le tuple (S 4,14, 22, 22, Z/I;I, 64) tels
que:

« S, estensemble fini d’'états;
« I, C.S,estunsousensemble des états initiaux;

. Ei, Zg et Zf , représentent, respectivement, les ensembles des actions d’entrée,
de sortie et internes. L'ensemble des actions de A est noté par X 4;

e 64 €Sy XXy XS estl’ensemble des transitions entre les états.

Les actions d’'entrée et de sortie d'un automate d’interface A sont notées actions externes
(Z4= Zi U Eg). L'ensemble des actions internes Zf peut contenir l'action, epsilon €, qui
symbolise un événement non opérationnel. Nous définissons par Zi(s), Zg(s), Zf (s), re-
spectivement les ensembles des actions d’entrée, de sortie et internes activables a 'état s.
2 4(s) représente 'ensemble des actions activables de I'état s.

La vérification de 'assemblage de deux composants (blocs) s'obtient en vérifiant la com-
patibilité de leurs automates d'interface. Pour vérifier I'assemblage de deux composants
B, et B,, on vérifie s'il existe un environnement pour lequel il est possible d’assembler
correctement B, et B,. Cela se traduit par la composition de leurs automates d'interface et
la vérification si cette derniére n'est pas vide.

Deux automates d'interface A, et A, sontcomposables si Zil N 2542 = 221 N 222 = ZZ NZy,
H I 0 I o ' .

= ZAz N ZAI = @. Shared(A,A,) = (Z‘.A1 N EAz) U (EA2 N Z‘.Al) est 'ensemble des actions

partagées entre A; et A,.

10.1. CONTEXTE SCIENTIFIQUE 99

Definition 22: Produit Synchronisé

Soient A; et A, deux automates d'interface composables. Le produit synchronisé
A ® A, de A et A, est définipar:

L SA1®A2=SA1XSAzetIA1®A2:IA1XIA2;

* 2,141@,,12 = (221 U 21142) \ Shared(A;, A,);

. 231®A2 = (221 Y Zgz) \ Shared(A;, A,);
H _vH H .

* I} o4, = Za, UZ, U Shared(A,, Ay):;

((S]) S2)7 a, (sll, Sé)) € 6A1®A2 Si

- a & Shared(Ay, Ay A(s1,a,5]) €6y Asy =5

i
2
- a & Shared(A,, A) A(sy.a,5)) €34 As; =s)

- a € Shared(A,, Ay)) A(s1,a,5]) € 54, A (55,0, 5)) € 8y,

Deux automates d'interface pourraient étre incompatibles a cause de l'existence des états
illégaux dans leur produit synchronisé. Les états illégaux sont des états a partir lesquels
une action de sortie partagée d'un automate ne peut pas étre synchronisée avec la méme
action activée en entrée dans l'autre composant.

Definition 23: Etats Illégaux

Soient deux automates d'interface composables A; et A,, 'ensemble des états il-
légaux Illegal(A;, Ay) © Sy, X Sy, estdéfinipar {(s1,5,) € Sy, XSy, | Ja €
Shared(A,, A,). telle que la condition C est satisfaite}

agEZ@QAagzg@g
C = Vv
aeE%@ﬁAa¢Z;@Q

L'approche des automates d'interface est considérée comme une approche optimiste, car
l'atteignabilité des états dans Illégal(A;, A,) ne garantit pas I'incompatibilité des A, et
A,. En effet, dans cette approche on vérifie I'existence d'un environnement qui fournit
les services appropriés au produit A; @ A, afin d'éviter les états illégaux. Les états
dans lesquels 'environnement peut éviter l'atteignabilité des états illégaux sont appelés
états compatibles, et sont définis par I'ensemble Comp(A;,A,). Cet ensemble est calculé
dans A; ® A, en éliminant les états illégaux, les états inatteignables et les états qui con-
duisant vers des états illégaux en passant par des actions internes ou des actions de sortie.

100 CHAPTER 10. VERIFICATION FORMELLE DE SPECIFICATIONS SBC EN SYSML

Definition 24: Composition

Lacomposition A; || A, de deux automates A, et A, est définie par
(1) SA] [|Ay = Comp(Al'AZ)v

(11) Iy 14, =14,04,N COmp(A;,A) et

(iii) 64,14, = 64,4, N COMP(A|,A2) X Z 4 4, X Comp(A,A,)

10.2/ CONTRIBUTIONS

Dans cette section nous présentons un résumé des contributions proposées dans cette
thése. Ces contributions sont orientées a donner une réponse a la problématique présen-
tée en début de chapitre. Nous présentons dans la Figure 10.1 un diagramme représentant
nos contributions (numérotées 1, 2 et 3) a la spécification des CBS en SysML.

SysML
|
[[|
Structural Behavioral .
A A Requirements
Diagrams Diagrams
BDD IBD SD Functional
se(CD B
- O
E E 1 «blocky [«block»
B LB T) LE 58
o _ V c®
- @ blocks [blocks ‘9 E
By B B3
£8
(%}
2o
Compatibility =
Verification = = fcf=)
B 5o
Tools 11 B g2
felt=)
Ptolemy S
MIO Workbench Compatibility =93
Promela/SPIN Verification

Figure 10.1 - Contributions de la thése

En premier lieu, nous nous focalisons a la réalisation d'une spécification SysML abstraite
en assemblant plusieurs blocs concrets selon un processus de raffinement (voir Contri-
bution 1 a la Figure 10.1). Les comportements des blocs sont décrits par des automates
d'interface qui peuvent étre obtenus a partir des diagrammes de comportement comme
proposé dans [CH11]. Cette approche cherche a formaliser le processus de décomposition,
en définissant les relations de raffinement entre blocs, et en se focalisant sur la vérifica-
tion des aspect structurels et comportementaux des blocs SysML. Dans cette contribution
nous exploitons les outils: Ptolemy II pour vérifier la compatibilité entre les composants
assemblés, et MIO Workbench pour vérifier le raffinement.

10.2. CONTRIBUTIONS 101

En deuxieme lieu, en nous basant sur des diagrammes d'exigences et interfaces des com-
posants spécifiés par SD, nous proposons une approche formelle et méthodologique pour
spécifier incrémentalement l'architecture de systéme qui préserve tous les exigences du
systéme (voir Contribution 3 ala Figure 10.1). De cette maniére, nous proposons de traiter,
uneaune, les exigences atomiques, extraites du diagramme d'exigences (fourni parle con-
cepteur), pour construire une architecture partielle du systéme, composée de composants
atomiques et composites. A chaque étape, nous proposons de sélectionner une exigence
atomique du diagramme d’exigences SysML, et choisir un composant d'une bibliotheque
de composants qui devrait satisfaire 'exigence choisie. Aprés nous vérifions si le com-
posant satisfait 'exigence en vérifiant le programme Promela qui spécifie le DS du com-
posant (voir Contribution 2 a la Figure 10.1). Puis, nous vérifions la compatibilité entre
les composants choisis dans les étapes précédentes et le nouveau composant et nous véri-
fions aussi la préservation des exigences traitées aux étapes précédentes. Ce processus
finit quand tous les exigences atomiques ont été traitées, ou si les exigences ne sont pas
préservées par la composition des composants. Quand le processus finit correctement,
nous garantissons la consistance de l'architecture du CBS final qui satisfait tous les exi-
gences du systeme.

Dans ce context, cette theése propose de nouvelles contributions :

« Lexploitation du diagramme d'exigences SysML pour spécifier des exigences de CBS
[CCM13, CCM14a].

« La spécification d'exigences SysML avec des formules en Logique Temporelle
Linéaire (LTL) pour les vérifier sur les composants [CCM14a], grace a leur DS qui est
traduit vers Promela en adoptant I'approche proposée dans [LTM* 09].

« La vérification de la compatibilité des composants en exploitant le formalisme des
automates d’interface [dAHO1]|, obtenus a partir des DS des composants, grace a
I'approche proposée dans [CH11]. Dans ce travail nous avons adapté l'algorithme de
vérification de la compatibilité pour gérer des exigences SysML et pour vérifier aussi
sa préservation dans la composition [CCM12a, CCM12b, CCM15].

o La vérification du raffinement du comportement en appliquant la simulation al-
ternée dans les automates d’'interface [CCM15].

« La proposition d'une approche incrémentale pour construire des SBC et pour véri-
fier leurs exigences pour éviter le probléme de 'explosion combinatoire du nombre
d'états des composants vérifiés. En fait, la vérification des exigences est réalisée sur
des composants élémentaires que généralement son petits, de tel sorte que nous
évitons la vérification sur des composants composites grace a la préservation des
exigences dans la composition. Cette contribution permet d’'obtenir I'architecture
SBC qui satisfait tous les exigences. En effet, cette architecture est construite incré-
mentalement et aussi validée incrémentalement par rapport aux exigences SysML
a chaque étape [CCM13, CCM14a].

10.2.1/ RAFFINEMENT INCREMENTAL D'UNE ARCHITECTURE SBC

L'approche présenté dans cette section cherche proposer une méthode pour formaliser et
vérifier la décomposition d'un bloc SysML dans un processus de raffinement. Nous avons
présenté la procédure générale a la Figure 6.2.

102 CHAPTER 10. VERIFICATION FORMELLE DE SPECIFICATIONS SBC EN SYSML

Notre approche s’oriente a proposer une méthode formelle pour construire un bloc com-
posite SysML a partir d'un ensemble des blocs élémentaires réutilisables. Ainsi, a par-
tir d'un bloc composite abstrait, tel que son structure est modélisé par DDB et DBI, et
son comportement par DS, nous proposons une approche qui décide si une composition
d'un ensemble de blocs élémentaires réutilisables satisfont les exigences structurelles et
comportementales, par rapport au bloc composite. Ainsi, nous proposons de vérifier la
décomposition correcte du bloc composite en un ensemble de composants élémentaires
sélectionnés. Nous accomplissons cette décomposition en définissant une relation de raf-
finement par décomposition entre le bloc abstrait et ses sous-blocs. A différents niveaux,
en commencant a partir du premier bloc abstrait jusqu'a obtenir les blocs élémentaires.
Notre relation de raffinement dépende de la vérification de deux relations entre le bloc
composite et ses sous-blocs :

« relation de raffinement structurel : selonl'illustration de la Figure 6.2, cette relation
se maintient entre le bloc composite B et les sous-blocs B1 et B2 si Bl et B2 sont
compatibles et les service requis et demandés de B1 et B2 sont consistants avec ceux
de B.

o relation de raffinement comportemental : cette relation se maintient sile comporte-
ment de la composition de B1 et B2 est un raffinement du comportement de B.

Definition 25: Raffinement par une décomposition de blocs SysML

Soit B un bloc abstrait décrit par un DD B et un DBI, ces deux diagrammes spé-
cifient I'architecture du systéme. Soit By, ..., B, 'ensemble de blocs composant
B selon son DD B, alors By, ..., B, raffinent par décomposition B si:

e By,..., B, raffine structurellement B,

« By,..., B, raffine comportementalement B,

Donc, pour vérifier le raffinement entre un bloc et ses sous-blocs, nous vérifions les con-
ditions de consistance et compatibilité pour le raffinement structurel, et de simulation
alternée pour le raffinement comportemental (voir Figure 6.3). Pour réussir cette vérifica-
tion, nous avons besoin de spécifier par diagramme de séquences la description du com-
portement du bloc abstrait et ses sous-blocs composants, et puis, en exploitant 'approche
proposé dans [CH11], nous associons un automate d’interface a chaque DS. Ces automates
sont exploités pour vérifier la compatibilité entre les sous-blocs en utilisant 'outil Ptolemy
[LX04], qui génére l'automate de la composition de deux automate d’'interface en entrée.
Ensuite nous vérifions le raffinement comportementale a travers 'outil MIO Workbench
[BMSH10], qui vérifie si une spécification de comportement est raffinée par une implé-
mentation en utilisant un automate Modal Input/Output (MIO) comme donnée d’entrée.

Une fois que nous avons vérifié le raffinement structurel et comportemental par deux ou
plus blocs qui décompose un bloc abstrait de niveau supérieur, nous avons aussi vérifié
que ce bloc parent peut effectivement étre substitué par ses entités composants.

Ce processus de vérification peut étre appliqué incrémentalement depuis les blocs ab-
straits de plus haut niveau jusqu'aux blocs de plus bas niveau pour valider l'architecture
finale du SBC obtenu a partir du bloc abstrait initial.

10.2. CONTRIBUTIONS

Table 10.1 - Régles de correspondance des concepts basiques entre DS et Promela

103

Elément DS Elément Promela Déclaration Promela
Ligne de vie Processus proctype{...}
Message Message mtype{ml,...,mn}
Connecteur Chalne de communication | chan chanName = [1] of {mtype}
pour chaque fléeche de mes-
sage
Envoi et réception | Envoi et réception | Send = ab!m, Receive = ab?m
d’événements d'opérations
Fragment com- | condition if if
biné Alt ::(guard)->ab_p?p;
else -> ab_qgrq;
fi;
Fragment com- | opérateur do do
biné Loop ::ab_p?p;
od

10.2.2/ VERIFICATION FORMELLE D'EXIGENCES SYSML

Pour vérifier si un composant satisfait une exigence donnée, nous proposons d'utiliser
I'ensemble Promela/SPIN. Nous les choisissons car ils fournissent d'importants concepts
pour implémenter des DS : primitives d'envoi et réception des messages, composition par-
allele et asynchrone de processus concurrents, et chaines de communication. Notre adap-
tation de cette approche proposé par V. Lima et al. [LTM*09] concerne un type particulier
de diagramme de séquence que nous exploitons pour spécifier le comportement de blocs.

Nous proposons d'utiliser un type particulier de DS avec seulement deux lignes de vie,
une pour le bloc et une pour son environnement Ainsi, un DS peut par la suite étre traduit
en automate d’interface comme montré dans [CH11]. Dans ce diagramme de séquence les
messages échangés seront les services offerts comme appels de 'environnement et les ser-
vices requis comme appels a 'environnement La principale avantage d'utiliser les DS pour
la vérification est que I'on peut vérifier des propriétés temporelles sur eux. Les messages
suivent un ordre séquentiel que nous pouvons tracer pour détecter blocages ou exécution
de chemins. LesFigures 7.2 et 7.4 montrent les interfaces, a travers des DS, pour deux blocs
: sensors et ACU. Ils sont des blocs pris d'une a partir d'une bibliothéque de blocs. Dans ces
diagrammes nous voyons qu'il y a seulement deux lignes de vie et que des messages sont
envoyés par/recus de 'environnement.

Ensuite, dansles Figures 7.3 et 7.5 nous montrons partiellement lareprésentation Promela
pour ces deux blocs respectivement (le code complet est présenté dans les Listings 7.1 et
7.2). Ce code est obtenu en appliquant les régles de transformation listées dans la Table
10.1.

Dans les deux diagrammes nous pouvons voir qu'il y a deux lignes de vie traduites en tant
que processus dans le code Promela, un processus pour le bloc et un autre pour son en-
vironnement. Les deux processus commence au méme moment grace a un appel atom-
ique dans le processus main : init. Nous pouvons aussi voir que les fragments com-
binés de boucle loop sont traduits en tant que déclarations do, et le fragment combiné
d'alternative alt est traduit comme une déclaration if. Pour pouvoir parcourir tous les
chemins d'exécution, il est nécessaire de définir les valeurs possibles pour les variables
affectées, comme c’est le cas des valeurs deceleration qui est assignée au moment init
dedans une déclaration if, de cette maniere SPIN va choisir de facon non-déterministe
quelle valeur sera utilisée pour simuler le systéme.

104 CHAPTER 10. VERIFICATION FORMELLE DE SPECIFICATIONS SBC EN SYSML

Une fois que le DS est traduit, le composant peut étre simulé comme un systéme
SPIN. Pour pouvoir vérifier si le composant satisfait une propriété LTL, V. Lima propose
d'utiliser une série de drapeaux pour garder une trace de qui est en train d’'envoyer/recevoir
quel message a/de qui a tout moment de l'exécution. Néanmoins, dans notre approche nous
vérifions des propriétés sur des composants indépendants avec seulement deux lignes
de vie dans son DS, une ligne pour le composant sélectionné et 'autre pour son environ-
nement. Donc, nous n'utilisons pas le drapeau lié a a/de qui un message est envoyé car il
sera toujours l'autre ligne de vie. Ces drapeaux sont mis a jour au méme temps a chaque
événement envoi/réception en utilisant une déclaration d_step.

Apreés la définition des drapeaux pour garder la trace de I'exécution du systéme, des pro-
priétés LTL peuvent étre écrites comme expressions booléennes sur les drapeaux. Dans
notre approche, nous proposons de traduire des exigences SysML a propriétés LTL en re-
spectant le formalisme des drapeaux (pour plus des détailles, voir Chapitre 7). Ces pro-
priétés sont par la suite vérifiées sur leur modele Promela correspondant en utilisant le
model-checker SPIN, qui indiquera si les blocs satisfont les propriétés. Une fois qu'un
bloc correspondant est trouvé pour une exigence, nous continuons avec l'exigence suiv-
ante pour commencer a construire l'architecture du systeme.

10.2.3/ SPECIFICATION INCREMENTALE D'UNE ARCHITECTURE SBC

Nous proposons une approche pour construire un SBC et spécifier son architecture di-
rectement a partir de ses exigences SysML. Notre objectif est d'obtenir une architecture
consistante en respectant toutes les exigences spécifiées. Pour spécifier cette architecture,
l'architecte logiciel exploite une bibliothéque de composants réutilisables (ou blocs). Ces
composants sont considérés comme boites noires et ils sont décrits seulement par ses in-
terfaces, spécifiés par DS. Ainsi, nous proposons de spécifier des exigences de SBC avec
un diagramme d'exigences SysML, puis analyser ce diagramme pour associer une a une
ses exigences atomiques (celles qui ne peuvent pas étre décomposées) a des composants
logiciels qui les satisfont. La satisfiabilité est évalué en effectuant une étape de vérifica-
tion formelle avec un model-checker. Chaque composant vérifié est évalué pour com-
patibilité par rapport aux autres composants dans la composition et par la suite ajouté
a l'architecture partielle qui doit préserver les exigences atomiques.

Dans notre approche, un SBC est spécifié avec un diagramme d'exigences SysML qui
présenteles exigences fonctionnelles, et des interfaces des composants qui décriventleurs
comportements a travers de DS.

Les étapes principales de notre approche sont présentées dansla Figure 10.2, elles peuvent
étre décrites comme suit :

1. Commencer par analyser le diagramme d'exigences SysML pour obtenir les exi-
gences atomiques car elles sont plus précises et il sera plus facile de trouver des com-
posants qui vont les satisfaire (voir Section 8.3).

2. Soit R; la premiére exigence atomique, soit C; un composant dans une bibliothéque
de composants, décrit par le DS S D;. Spécifier R; avec la formule LTL F; et traduire
S D; au code Promela P RO;, puis vérifier que C; satisfait R; en vérifiant que PRO;
satisfait F; avec le model-checker SPIN (voir Section 7.3). La sélection du composant
C,; dans la bibliothéque est faite par l'architecte logiciel. Néanmoins, il est possible
de guider cette sélection (ou I'automatiser) car R; est une exigence fonctionnelle et

10.2. CONTRIBUTIONS 105

décrit des contraintes dans les services offert et requis (actions d'entrée/sortie). Ces
services sont aussi décrits dans les interfaces des composants. Alors, il est facile
d'extraire ces services de R; et de faire une correspondance avec ceux décrit dans les
interfaces. Si cette étape retourne false, alors C; ne satisfait pas R; et donc I'on doit
obtenir le composant approprié dans une autre bibliothéque, ou le développer des
zéro.

3. Soit A, l'automate d'interface qui décrit le protocol du composant obtenu a partir du
DS S'D; (voir Section 8.4).

4. Identifier les actions d'entrée et sortie en A, liées a R; (voir Section 8.4).
5. Répéter jusqu’a avoir traité tous les exigences :

(a) Soit R, l'exigence atomique suivante, connectée a R; (voir Définition 19), soit
C;,1 un composant satisfaisant R, |, grace a la formule LTL F;, et le code
Promela PRO; ;. Soit A, I'automate d’interface décrivant le protocole du
composant.

(b) Identifier 'ensemble des actions d'entrée et sortie en A, liéesa R, ;.

~

(c) Vérifier que C; et C;; sont compatibles grace a leurs automates d'interface, en

vérifiant que A; || A, # @ (voir Section 4.2).

(d) Vérifier que les exigences R; et R;, | sont préservées par la composition, c’est-
a-dire qu'elle sont satisfaites par le composant composite C = C; || C;,; (voir
Section 8.4).

(e) Définir l'architecture consistante partielle du systéme pour le composant com-
posite C = C; || C;,, en accord avec la Définition 20.

(f) SoitC; =C; || Cip1. A; = A; || Ajp et Ry = {R;, R 1 }.
6. Fin Répéter
Selon les étapes principales de notre approche, nous validons l'architecture finale pour

notre SBC, une fois que tous les exigences atomiques ont été analysées sans problémes de
compatibilité des composants et/ou préservation des exigences.

106

CHAPTER 10. VERIFICATION FORMELLE DE SPECIFICATIONS SBC EN SYSML

diagramme
d'exigences

no

Figure 10.2 — Approche proposé pour la génération d'une

d'exigences SysML

H

selectionner exi-
gences atomiques

pour chaque
exigence
atomique R

\ next

lier R a un com-
posant C tel
que C F R
(Utiliser SD,

Promela, SPIN)

Vérifier que
S|C#g
(utiliser AI et préser-
vation des actions)

yes

soit S =S || C
et générer BDD
et IBD partiels

Générer l'architecture
du systéme

end

bibliotheque
de com-
posants

architecture SBC a partir

10.3. CONCLUSIONS 107

10.3/ CONCLUSIONS

La Figure 10.3 montre l'approche globale des contributions de cette thése et ses perspec-
tives. Dans cette thése nous avons présentées trois contributions basées sur une approche

SysML
|
| ! '
Structural Behavioral Requirements
Diagrams Diagrams 9
Non
SD Functional
BDD IBD Functional

gg|CD

g E & «blocks & «blocks
= (2]
= By By st
oo [«blockn e
- [= «blockn [#] «blocks (¥ «blockn B Ag E

----- =1

Bi1 [7|Adaptor[| Bjs / 83
= e
& «blocks S 3]
Bz oo
Compatibility ac
Verification [blockn ® «block» E"?
_— - =
v
Toolchain By Adaptor By g>
oy
=44
(8]

Compatibility
Verification

Figure 10.3 — Perspectives de la thése

incrémentale :

1. La premiére contribution orientée a formaliser le processus de décomposition, en
définissant une relation de raffinement entre un bloc abstrait et ses sous-blocs. 11
consistait a exploiter la description d'architectures en langage SysML quand un sys-
téme est décrit par des diagrammes structurels et comportementaux. Le raffine-
ment en SysML est un concept essentiel et il est basé sur le développement d'une
démarche a partir d'un niveau abstrait vers de niveaux plus détaillés, qui peuvent
aboutir en son implémentation. Notre raffinement assure une substitution incré-
mentale d'un bloc abstrait d'une spécification par une composition des blocs en
préservant ses propriétés structurelles et comportementales.

Pour vérifier le raffinement structurelle spécifié en diagrammes DDB et DBI, nous
avons vérifié d'abord si le sous-blocs étaient consistants par rapport a la spécifica-
tion du bloc abstrait et par la suite nous avons vérifié s’ils étaient compatibles entre
eux en nous appuyant sur le modéle des automates d’'interface de d’Alfaro et al. Les
automates d'interface ont été obtenus a partir du DS SysML de chaque sous-bloc et
puis vérifiés en compatibilité avec I'outil Ptolemy.

Pour vérifier le raffinement structurelle, nous avons appliquée 'approche de la sim-
ulation alternée pour les automates d’interface pour vérifier si la composition de

108

CHAPTER 10. VERIFICATION FORMELLE DE SPECIFICATIONS SBC EN SYSML

I'ensemble de sous-blocs simulait le comportement attendu dans le bloc abstrait.
Pour faciliter la tache de vérification de la simulation alternée nous avons proposé
d'utiliser le module Observational Modal Refinement de 'outil MIO Workbench.

La deuxiéme contribution a été orientée sur la vérification des propriétés de notre
systeme. Nous nous avons inspiré des travaux proposés par V. Lima et al. Cette tech-
nique propose de générer des modeles basés en Promela a partir des interactions
UML décrites en Diagrammes des Séquences (DS) et utilise 'outil de model-checking
SPIN pour simuler et vérifier des propriétés écrites en Logique Temporelle Linéaire
(LTL).

Notre adaptation de cette approche s’est orientée a un type particuliere de DS
que nous exploitons pour spécifier le comportement d'un bloc. Nous avons
choisi Promela pour décrire des spécifications de DS et des propriétés LTL pour
décrire des exigences fonctionnelles. Pour la suite, nous avons utilisé le model-
checker SPIN pour vérifier ces propriétés. Nous avons choisi cet environnement
d'implémentation car c’est un outil de vérification treés répandu et permet d'une
maniere relativement facile de spécifier et implémenter des concepts des DS comme
I'envoi et réception de primitives et la composition paralléle et asynchrone.

. La troisieme contribution propose une approche pour décrire la relation entre les

exigences du systéme et la spécification d'une architecture CBS en SysML. L'objectif
était de proposer une méthodologie pour construire incrémentalement une archi-
tecture de systéme consistante que formellement satisfait toutes les exigences du
systeme. Nous avons utilisés des SD pour décrire les comportements des blocs et
DDB et DBI pour spécifier l'architecture du systéme. La construction proposé extrait
les exigences atomiques d'un diagramme d'exigences et les traite un par un pour
construire le systeme final.

Nous obtenons donc une architecture partielle du systéme, composé de blocs élé-
mentaires et blocs composites. A chaque étape, nous sélectionnons une exigence
atomique a partir d'un diagramme d'exigences SysML, et nous choisissons un bloc
d'une bibliotheque des blocs qui devrait satisfaire 'exigence choisie. Puis, nous véri-
fions si le bloc satisfait I'exigences grace aux propriétés LTL spécifiés par I'exigence
et la spécification Promela qui décrit le comportement du bloc a partir du DS.

Ensuite, nous vérifions la compatibilité entre le bloc sélectionné et ceux sélection-
nésaux étapes précédentes. Le processus finit quand toutes les exigences atomiques
ont été traitées ou quand on détecte des incompatibilités entre les blocs, ou si les ex-
igences ne sont pas conservées par le bloc composite formé. De cette maniére nous
garantissons la consistance de l'architecture du systeme final qui satisfait toutes les
exigences du systéme.

10.4/ PERSPECTIVES

Les travaux de cette thése répond a une question principale : comment introduire la
vérification formelle dans des spécifications informelles SysML pendant le processus de
développement des SBC ?

Dans ce but, nos contributions ont introduit quelques solutions pour construire de SBC
consistants, ainsi nous avons établi des relations entre le raffinement, concepts de blocs

10.4. PERSPECTIVES 109

SysML et caractéristiques des SBC. Ce travail peut continuer a étre enrichi et dans ce con-
texte nous envisageons d’autres perspectives de travail comme :

Chaine d'outils pour la vérification Développer une chaine d’outils pour aider le concepteur
dans la vérification automatique de la relation de raffinement entre les blocs abstraits et
ses sous-blocs et aussila vérification des exigences SysML danslesblocs pour déciderlava-
lidité de l'architecture CBS en SysML. Cette chaine d'outils serait composé d'outils qui per-
mettrait (1) vérifier les conditions de consistance entre les blocs et utiliser I'outil Ptolemy
pour la vérification de la compatibilité, (2) traduire directement des DS en programmes
Promela et (3) vérifier des propriétés LTL avec le model-checker SPIN. Quelques exemples
significatifs pourrait étre expérimentés pour évaluer 'approche proposée.

Combiner vérification et simulation pour la validation de propriétés non fonctionnelles Dans les
applications fiables, il es important de spécifier une architecture de systéme en accord
avec des spécifications d'exigences fonctionnelles et non-fonctionnelles. Dans ce but,
nous proposons une approche pour spécifier l'architecture du systeme directement en
SysMLa partir des exigences fonctionnelles SysML. Ainsi, pour des travaux futurs, il serait
intéressant d'adresser le probléeme de validation pour les exigences non-fonctionnelles et
utiliser des techniques de simulation.

Adapter et générer des adaptateurs pour les blocs incompatibles Le probléme d'adapter des
blocs est crucial dans le développement de SBC en réutilisant des blocs. L'adaptation con-
siste a générer automatiquement, quand c'est possible, un bloc adaptateur entre blocs in-
compatibles pou assurer une interaction fiable. L'idée d'un travail futur est de générer une
entité capable d'assurer l'interaction entre deux blocs incompatibles quand les conditions
de consistance et compatibilité ne sont pas validées.

[AAAOS5]

[AAAO6]

[AAAO7]

[AaDB*o02]

[AdAD*06]

[Admo8]

[AGo7]

[AHKV98]

[ALPCo6]

BIBLIOGRAPHY

Pascal André, Gilles Ardourel, and Christian Attiogbé. Behavioural Verifica-
tion of Service Composition. In First International Workshop on Engineering
Service Compositions (WESC’05), pages 77-84, Amsterdam, The Netherlands,
dec 2005. IBM Research Report RC23821.

Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking Component
Composability. Proceedings of the 5th International Symposium on Software
Composition, 4089:18-33, 2006.

Pascal André, Gilles Ardourel, and Christian Attiogbé. Protocoles
d'Utilisation de Composants: Spécification et Analyse en Kmelia. Proceed-
ings of the 13th Conférence Francophone de Languages et Modéles a Objets, pages
19-34, 2007.

Yamine Ait-ameur, Bruno D’Ausbourg, Frédéric Boniol, Rémi Delmas, and
Virgine Wiels. A component based methodology for description of complex
systems, an application to avionics systems. In 3rd European Systems Engineer-
ing Conference (EuSEC'2002), Toulouse, France, 2002.

B.Thomas Adler, Luca de Alfaro, Leandro Dias Da Silva, Marco Faella, Axel
Legay, Vishwanath Raman, and Pritam Roy. Ticc: A Tool for Interface Com-
patibility and Composition. In Computer Aided Verification, volume 4144 of
Lecture Notes in Computer Science, pages 59-62. Springer Berlin Heidelberg,
2006.

National Highway Traffic Safety Administra-
tion. Federal = Motor Vehicle Safety Standards.
http://www.nhtsa.gov/cars/rules/rulings/AAirBagSNPRM/, 1998.

Robert Allen and David Garlan. A Formal Basis for Architectural Connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213-249, jul
1997.

Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Al-
ternating refinement relations. In CONCUR’98 Concurrency Theory, volume
1466 of Lecture Notes in Computer Science, pages 163-178. Springer Berlin Hei-
delberg, 1998.

PC Attie, DH Lorenz, Aleksandra Portnova, and Hana Chockler. Behav-
ioral Compatibility Without State Explosion: Design and Verification of
a Component-Based Elevator Control System. In I. Gorton et Al, editor,
Component-Based Software Engineering, volume 4063 of Lecture Notes in Com-
puter Science, pages 33-49. Springer Berlin Heidelberg, 2006.

111

112

[BCKo3]

[BDD"97]

[BDLos5]

[Ben87]

[BLL*05]

[BMC*12]

[BMFNo1]

[BMSH10]

[BORO4]

[BRVo4]

[BSBMos]

[BWo7]

[CCM12a]

BIBLIOGRAPHY

Len. Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
volume 2nd. Addison-Wesley, Boston, MA, USA, second edition, 2003.

P Bertrand, Robert Darimont, Emmanuelle Delor, Philippe Massonet, and
Axel van Lamsweerde. GRAIL/KAOS : An Environment for Goal-Driven Re-
quirements Engineering. In Proceedings of the 19th international conference on
Software engineering, pages 612—-613. ACM, 1997.

Olivier Barais, Laurence Duchien, and Anne-Francoise Le Meur. A Frame-
work to Specify Incremental Software Architecture Transformations. 31st
EUROMICRO Conference on Software Engineering and Advanced Applications,
pages 62-69, 2005.

John K. Bennett. The design and implementation of distributed Smalltalk.
ACM SIGPLAN Notices, 22(12):318, 1987.

Christopher Brooks, Edward A. Lee, Xiaojun Liu, Steve Neuendorffer, Yang
Zhao, and Haiyang Zheng. Heterogeneous Concurrent Modeling and Design
in Java. Technical report, University of California, Berkeley, 2005.

Erwan Bousse, David Mentré, Benoit Combemal, Benoit Baudry, and Takaya
Katsuragi. Aligning SysML with the B method to Provide V & V for Systems
Engineering. In Model-Driven Engineering, Verification, and Validation (MoD-
eVVa 2012), Innsbruck, Austria, sep 2012.

Jo Barnes, Andrew Morris, Brian Fildes, and S.V. Newstead. Airbag effective-
nessinreal world crashes. Road Safety Research, Policing, Education Conference,
2001.

Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hennicker.
On Weak Modal Compatibility, Refinement, and the MIO Workbench. In
Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 6015 of Lecture Notes in Computer
Science, pages 175-189. Springer Berlin Heidelberg, 2010.

Stefen Becker, Sven Overhage, and Ralf Reussner. Classifying Software Com-
ponent Interoperability Errors to Support Component Adaption. In Crnkovic
Ivica, Stafford Judith, Schmidt Heinz, and Wallnau Kurt, editors, Component-
Based Software Engineering, pages 68-83. Springer Berlin Heidelberg, 2004.

Bernard. Berthomieu, Pierre-Oliver Ribet, and Francois Vernadat. The tool
TINA - Construction of abstract state spaces for Petri nets and Time Petri nets.
International Journal of Production Research, 42(14):2741-2756, 2004.

Lucas Bordeaux, Gwen Salaiin, Daniela Berardi, and Massimo Mecella. When
are two web services compatible? Technologies for EServices, 3324:15-28,
2005.

Martin Biichi and Wolfgang Weck. A Plea for Grey-Box Components. Tech-
nical report, Turku Centre for Computer Science, Turku, 1997.

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Formalizing and ver-
ifying compatibility and consistency of SysML blocks. In ACM SIGSOFT Soft-
ware Engineering Notes (UML-FM 2012), volume 37, pages 1-8, Paris, France,
2012. ACM.

BIBLIOGRAPHY 113

[CCM12b]

[CCM13]

[CCM14a]

[CCM14b]

[CCM15]

[CFTVoo]

[CGPo9]

[CH11]

[CK13]

[CLo2]

[CLR" 09]

[dAFLo6]

[dAHo1]

[dAHo5]

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Vérification de la con-
sistence et de la compatibilité entre blocs SysML. In Conférence en Architec-
tures Logicielles (CAL 2012), Montpellier, France, 2012.

Samir Chouali, Oscar Carrillo, and Hassan Mountassir. Specifying System Ar-
chitecture from SysML Requirements and Component Interfaces. In Software
Architecture (ECSA 2013), pages 348-352, Montpellier, France, 2013.

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Incremental Model-
ing of System Architecture Satisfying SysML Functional Requirements. In
José Luiz Fiadeiro, Zhiming Liu, and Jinyun Xue, editors, Formal Aspects of
Component Software (FACS 2013), Lecture Notes in Computer Science, pages
79-99. Springer International Publishing, Nanchang, China, 2014.

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Modélisation In-
crémentale d'une Architecture de Systéme Satisfaisant des Exigences Fonc-
tionnelles SysML. In Conférence en Architectures Logicielles (CAL 2014), Paris,
France, 2014.

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Verification of a
SysML Block Decomposition in a Refinement Process. In Under consideration
for publication in Software & Systems Modeling (SOSYM). Springer Berlin Hei-
delberg, 2015.

Carlos Canal, Lidia Fuentes, José M. Troya, and Antonio Vallecillo. Extending
CORBA Interfaces with Pi-Calculus for Protocol Compatibility. In Proceedings
of the 33th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS 2000), pages 208-225, St. Malo, France, 2000. IEEE.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

Samir Chouali and Ahmed Hammad. Formal verification of components as-
sembly based on SysML and interface automata. Innovations in Systems and
Software Engineering, 7(4):265-274, oct 2011.

Josep Carmona and Jetty Kleijn. Compatibility in a multi-component envi-
ronment. Theoretical Computer Science, 484:1-15, 2013.

Ivica Crnkovic and Magnus Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House, Inc, Norwood, MA, 2002.

Zhenbang Chen, Zhiming Liu, Anders P. Ravn, Volker Stolz, and Naijun Zhan.
Refinement and Verification in Component-Based Model-Driven Design. Sci-
ence of Computer Programming, 74(4):168-196, feb 2009.

Lucade Alfaro, Marco Faella, and Axel Legay. An introduction to the tool Ticc.
In Proc. of Workshop on Trustworthy Software, pages 1-32, 2006.

Lucade Alfaroand Thomas A. Henzinger. Interface automata. ACM SIGSOFT
Software Engineering Notes, 26(5):109-120, 2001.

Luca de Alfaro and Thomas A. Henzinger. Interface-Based Design. In En-
gineering Theories of Software Intensive Systems, volume 195 of NATO Science
Series, pages 83-104. Springer Netherlands, 2005.

114

[Davio]

[Droo3]

[Droo7]

[DWos]

[EBo6]

[Ellg97]

[FGK*96]

[GDTS10]

[GH)Vo4]

[GMP11]

[HKo7]

[HLo7]

[Hoa78]

[Holo1]

BIBLIOGRAPHY

Brett Davis. = Mercedes-Benz celebrates 30 years of using airbag tech-
nology. http://www.caradvice.com.au/84716/mercedes-benz-celebrates-30-
yearsof-using-airbag-technology/, 2010.

R. Geoff Dromey. From requirements to design: formalizing the key steps.
First International Conference on Software Engineering and Formal Methods,
pages 2-11, 2003.

R Geoff Dromey. Engineering Large-Scale Software-Intensive Systems. In
Software Engineering Conference, ASWEC 2007., pages 4-6. IEEE, 2007.

Desmond F. D’souza and Alan Cameron Wills. Objects, Components, and Frame-
works with UML: The Catalysis Approach. Addison-Wesley Longman Publish-
ing Co., Inc., 1998.

Jean-Paul Etienne and Samia Bouzefrane. Versune approche par composants
pour lamodélisation d'applications temps réel. In MOSIM’06 Conférence Fran-
cophone de Modélisation et Simulation, volume 6, pages 1-10, Rabat, jan 2006.
Lavoisier.

Clarence Ellis. Team Automata for groupware systems. Proceedings of the In-
ternational ACM SIGGROUP Conference on Supporting Group Work, pages 415-
424,1997.

Jean Claude Fernandez, Hubert Garavel, Alain Kerbrat, Laurent Mounier,
Radu Mateescu, and Mihaela Sighireanu. CADP a protocol validation and
verification toolbox. In Computer Aided Verification, volume 1102 of Lecture
Notes in Computer Science, pages 437-440. Springer Berlin Heidelberg, 1996.

Sébastien Gérard, Cédric Dumoulin, Patrick Tessier, and Bran Selic. Papyrus:
A UML2 tool for domain-specific language modeling. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 6100:361-368, 2010.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

Roy Grgnmo and Birger Mgller-Pedersen. From UML 2 Sequence Diagrams
to State Machines by Graph Transformation. The Journal of Object Technology,
10:8:1, 2011.

Rolf Hennicker and Alexander Knapp. Activity-Driven Synthesis of State Ma-
chines. Fundamental Approaches to Software Engineering, pages 87-101, 2007.

Zbigniew Huzarr and Grzegorz Loniewski. Deriving prototypes from UML
sequence diagrams. In Proceedings of the 10th International Conference on In-
formation System Implementation and Modeling, Hradec nad Moravici, Czech
Republic, apr 2007.

C. A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-677,1978.

Gerard]. Holzmann. Design and validation of computer protocols. Prentice Hall,
New Jersey, 1991.

BIBLIOGRAPHY 115

[Holo7]

[HVK98]

[JMO10]

[LAOFVo7]

[LLHo1]

[LNRT10]

[LNWo7]

[Lot88]

[LSM*10]

[LST*11]

[LTE* 09]

Gerard] Holzmann. The Model Checker. IEEE Transactions on Software Engi-
neering, 23(5):279-295, 1997.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives
and Type Discipline for Structured Communication-Based Programming. In
ESOP 98 Proceedings of the 7th European Symposium on Programming: Program-
ming Languages and Systems, ESOP '98, pages 122-138, London, UK, 1998.
Springer-Verlag.

Jacques Julliand, Hassan Mountassir, and Emilie Oudot. Incremental Verifi-
cation of Component-Based Timed Systems. International Journal of Identifi-
cation Modelling and Control special issue on Formal Modeling and Verification
of Critical Systems, 1(3/4):19, 2010.

Marcos V. Linhares, R6mulo S. de Oliveira, Jean-Marie Farines, and Francois
Vernadat. Introducing the modeling and verification process in SysML. In
IEEE International Conference on Emerging Technologies and Factory Automa-
tion. ETFA'2007, pages 344-351. IEEE, 2007.

Xiaoshan Li, Zhiming Liu, and Jifeng He. Formal and Use-Case Driven Re-
quirement Analysis in UML. In Proceedings of the 25th International Com-
puter Software and Applications Conference on Invigorating Software Develop-
ment, COMPSAC '01, pages 215-224, Washington, DC, USA, 2001. IEEE Com-
puter Society.

Kung-Kiu Lau, Azlin Nordin, Tauseef Rana, and Faris Taweel. Constructing
Component-based Systems Directly from Requirements using Incremental
Composition. In Proc. 36th EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 85-93. IEEE, 2010.

Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O Automata
for Interface and Product Line Theories. In Rocco Nicola, editor, Program-
ming Languages and Systems, volume 4421 of Lecture Notes in Computer Science,
pages 64-79. Springer Berlin Heidelberg, 2007.

ISO Lotos. A formal description technique based on the temporal ordering
of observational behaviour. International Standard 8807. International Or-
ganisation for Standardization - Information Processing Systems - Open Systems
Interconnection, Geneva, page 142, 1988.

Régine Laleau, Farida Semmak, Abderrahman Matoussi, Dorian Petit,
Ahmed Hammad, and Bruno Tatibouet. A first attempt to combine SysML
requirements diagrams and B. Innovations in Systems and Software Engineer-
ing, 6(1):47-54, dec 2010.

Vincent Lorenzo, Rémi Schnekenburger, Yann Tanguy, Patrick Tessier, and
Sébastien Gerard. Loutil de modélisation graphique MDT Papyrus: Etat
actuel et perspectives. Génie logiciel, (97), 2011.

Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien
Gerard, Patrick Tessier, Remi Schnekenburger, Hubert Dubois, and Francois
Terrier. Papyrus UML: an open source toolset for MDA. 5th ECMDA-FA: Pro-
ceedings of the Tools and Consultancy Track, pages 1-4, 2009.

116

[LTM*o09]

[LXo04]

[Mat11]

[McHo7]

[MHH"09]

[Milgo]

[MKG99]

[Mou11]

[MRRo3a]

[MRRoO3D]

[MToo]

[OMGo3]

[OMGos]

[OMG12]

[OMG15]

[PEML10]

BIBLIOGRAPHY

Vitor Lima, Chamseddine Talhi Talhi, DDjedjiga Mouheb, Mourad Debbabi,
Lingyu Wang, and Makan Pourzandi. Formal Verification and Validation of
UML 2.0 Sequence Diagrams using Source and Destination of Messages. Elec-
tronic Notes in Theoretical Computer Science, 254:143-160, oct 2009.

Edward A. Lee and Yuhong Xiong. A behavioral type system and its applica-
tion in Ptolemy II. Formal Aspects of Computing, 16(3):210-237, 2004.

Abderrahman Matoussi. Construction de spécifications formelles abstraites
dirigée par les buts. PhD thesis, Université Paris-Est, 2011.

Ciaran McHale. Corba Explained Simply. Ciaran McHale, 2007.

J.D. Meier, David Hill, Alex Homer, Jason Taylor, Prashant Bansode, Lonnie
Wall, Rob Boucher Jr., and Akshay Bogawat. Microsoft Application Architec-
ture Guide: Patterns & Practices. Microsoft Press, 2nd edition, 2009.

Robin Milner. Communicating and Mobile Systems: the z-Calculus. Cambridge
University Press, 1999.

Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour Analysis of
Software Architectures. In Software Architecture, pages 35-50, Deventer, The
Netherlands, The Netherlands, 1999. Springer.

Sebti Mouelhi. Contributions a la Vérification de la Streté de '’Assemblage et a
I’Adaptation de Composants Réutilisables. PhD thesis, Université de Franche-
Comté, Besancon, 2011.

Sabine Moisan, Annie Ressouche, and Jean-Paul Rigault. A Behavioral Model
of Component Frameworks. Technical report, INRIA, 2003.

Sabine Moisan, Annie Ressouche, and Jean-Paul Rigault. Behavioral substi-
tutability in component frameworks: A formal approach. In Proceedings of
ESEC, volume 3, pages 22-28, 2003.

Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. Software Engi-
neering, 26(1):70-93, 2000.

OMG. UML for Systems Engineering. Request for Proposal.
http://syseng.omg.org/UML_for SE RFP.htm, 2003.

OMG. Unified Modeling Language Specification, UML 2.0.
http://www.omg.org/spec/UML/2.0/, jul 2005.

OMG. Systems Modeling Language (SysML) Version 1.3.
http://www.omg.org/spec/SysML/1.3/, 2012.

OMG. OMG Organization. http://www.omg.org, 2015.

Jean-Francois Pétin, Dominique Evrot, Gérard Morel, and Pascal Lamy. Com-
bining SysML and formal methods for safety requirements verification. In
22nd International Conference on Software & Systems Engineering and their Ap-
plications, Paris, France, 2010.

BIBLIOGRAPHY 117

[Peto7]

[Plao2]

[Pnu77]

[PWo2]

[RFo6]

[SBMPo8]

[SP97]

[SVo8a]

[SVo8b]

[Szyoz2]

[TBS85])

[TS11]

[vLo3]

[VTo4]

[VVRo6]

Jean-Francois Petin. Méthodes et modéles pour un processus sir
d’automatisation. PhD thesis, Université Henri Poincaré - Nancy I, Nancy,
2007.

David S. Platt. Introducing Microsoft .Net. Microsoft Press, Washington, sec-
ond edition, 2002.

Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium on
Foundations of Computer Science (SECS 1977), pages 46-57. IEEE, sep 1977.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of soft-
ware architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40-52,
1992.

Oscar R. Ribeiro and Jodo M. Fernandes. Some Rules to Transform Sequence
Diagrams into Coloured Petri Nets. In 7th Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 237-256, 2006.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
Eclipse Modeling Framework. Pearson Education, 2008.

Clemens Szyperski and Cuno Pfister. Workshop on Component-Oriented
Programming, summary. In Special Issues in Object-Oriented Programming -
ECOOP '96 Workshop Reader, Heidelberg, 1997. dpunkt Verlat.

Michel Dos Santos Soares and Jos Vrancken. A proposed extension to the
SysML requirements diagram. Proceedings of the IASTED International Confer-
ence on Software Engineering, pages 220-225, 2008.

Michel dos Santos Soares and Jos Vrancken. Model-driven user requirements
specification using SysML. Journal of Software, 3(6):57-68, 2008.

Clemens Szyperski. Component Software: beyond Object-Oriented Program-
ming. Addison-Wesley Professional, New York, 2 edition, 2002.

P. P. Tanner and W. A. S. Buxton. Some Issues in Future User Interface Man-
agement System (UIMS) Development. In User Interface Management Systems,
pages 67-79. Springer-Verlag, 1985.

Nara Sueina Teixeira and Ricardo Pereira E Silva. Compatibility Evaluation
of Components Specified in UML. 30th International Conference of the Chilean
Computer Science Society, pages 90-99, nov 2011.

Axel van Lamsweerde. From system goals to software architecture. Formal
Methods for Software Architectures, pages 25-43, 2003.

Simona Vasilache and Jiro Tanaka. Synthesis of State Machines from Mul-
tiple Interrelated Scenarios Using Dependency Diagrams. In Proceedings of
the 8th World Multiconference on Systemics, Cybernetics and Informatics, pages
49—-54, Orlando, Florida, USA, 2004.

Antonio Vallecillo, Vasco T Vasconcelos, and Anténio Ravara. Typing the Be-
havior of Software Components using Session Types. Fundamenta Informati-
cae, 72(4):583-598, 2006.

118 BIBLIOGRAPHY

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Communica-
tions of the ACM, 14(4):221-227, 1971.

[YS97] Daniel M. Yellin and Robert E. Strom. Protocol Specifications and Compo-
nent Adaptors. ACM Transactions on Programming Languages and Systems,
19(2):292-333, 1997.

[ZVB*08] Barbora Zimmerova, Pavlina Vafekova, Nikola Bene§, Ivana Cernd, Lubo$
Brim, and Jifi Sochor. Component-Interaction Automata Approach (Coln).
The Common Component Modeling Example, 5153(102):146-176, 2008.

Document generated with X§TgX and:
the IXTEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle
the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

The work presented in this thesis is a contribution to the specification and verification of Component-Based
Systems (CBS) modeled in SysML. CBS are widely used on the industrial field, and they are built by assembling
various reusable components, allowing developing complex systems at lower cost.

To ease the communication between the various stakeholders in a CBS development project, one of the
widely used modeling languages is SysML, which besides allowing modeling of structure and behavior, it has
capabilities to model requirements. It offers a standard for modeling, specifying and documenting systems,
wherein it is possible to develop a system, starting from an abstract level, to more detailed levels that may lead
to an implementation.

In this context, we have dealt mainly two issues. The first one concerns the development by refinement of a CBS,
which is described only by its SysML interfaces and behavior protocols. Our contribution allows the designer of
CBS to formally ensure that a composition of a set of elementary and reusable components refines an abstract
specification of a CBS. In this contribution, we use the tools: Ptolemy for the verification of compatibility of the
assembled components and MIO Workbench for refinement verification.

The second one concerns the difficulty to decide what to build and how to build it, considering only system
requirements and reusable components. Therefore, the question that arises is: how to specify a CBS
architecture, which satisfies all system requirements? We propose a formal and incremental verification
approach based on SysML models and interface automata to guide, by the requirements, the CBS designer to
define a coherent system architecture that satisfies all proposed SysML requirements. In this approach we use
the SPIN model-checker and LTL properties to specify and verify requirements.

Modeling, SysML specifications, CBS architecture, Refinement, Compatibility, Requirements,
LTL properties, Promela/SPIN, Ptolemy, MIO Workbench

Le travail présenté dans cette thése est une contribution a la spécification et la vérification des Systémes a Base de Composants (SBC)
modélisé avec le langage SysML. Les SBC sont largement utilisés dans le domaine industriel et ils sont construits en assemblant différents
composants réutilisables, permettant ainsi le développement de systémes complexes en réduisant leur colit de développement. Malgré le
succes de l'utilisation des SBC, leur conception est une étape de plus en plus complexe qui nécessite la mise en ceuvre d'approches plus
rigoureuses.

Pour faciliter la communication entre les différentes parties impliquées dans le développement d'un SBC, un des langages largement utilisé
est SysML, qui permet de modéliser, en plus de la structure et le comportement du systéme, aussi ses exigences. Il offre un standard
de modélisation, spécification et documentation de systémes, dans lequel il est possible de développer un systéme, partant d'un niveau
abstrait, vers des niveaux plus détaillés pouvant aboutir a une implémentation.

Dans ce contexte nous avons traité principalement deux problématiques. La premiére est liée au développement par raffinement
d'un SBC modélisé uniquement par ses interfaces SysML. Notre contribution permet au concepteur des SBC de garantir formellement
qu'une composition d'un ensemble de composants élémentaires et réutilisables raffine une spécification abstraite d'un SBC. Dans cette
contribution, nous exploitons les outils: Ptolemy pour la vérification de la compatibilité des composants assemblés, et 'outil MIO
Workbench pour la vérification du raffinement

La deuxiéme problématique traitée concerne la difficulté de déterminer quoi construire et comment le construire, en considérant
seulement les exigences du systéme et des composants réutilisables, donc la question qui en découle est la suivante: comment spécifier
une architecture SBC qui satisfait toutes les exigences du systéme? Nous proposons une approche de vérification formelle incrémentale
basée sur des modeles SysML et des automates d'interface pour guider, par les exigences, le concepteur SBC afin de définir une architecture
de systeme cohérente, qui satisfait toutes les exigences SysML proposées. Dans cette approche nous exploitons le model-checker SPIN et
la LTL pour spécifier et vérifier les exigences.

Modélisation, Spécifications SysML, Architecture SBC, Raffinement, Compatibilité, Exigences, Propriétés LTL, Prome-
la/SPIN, Ptolemy, MIO Workbench

W Ecole doctorale SPIM 16 route de Gray F - 25030 Besangon cedex
W tél. +33 (0)3 81 66 66 02 M ed-spim@univ-fcomte.fr M www.ed-spim.univ-fcomte.fr L] S F C
i

	1 Introduction
	1.1 Context and Challenges
	1.2 Contributions
	1.3 Tools
	1.4 Case Study
	1.5 Publications
	1.6 Document Outline

	I Scientific Context
	2 Component-Based Systems
	2.1 Software Component Definition
	2.2 Components vs. Objects
	2.3 Abstraction and Reusability
	2.4 Component Interfaces
	2.5 Behavior Protocols
	2.5.1 Definition
	2.5.2 Description Protocol Languages

	2.6 Software Architecture
	2.7 Architectural Patterns

	3 SysML Language
	3.1 Structural Diagrams
	3.1.1 The Block Definition Diagram
	3.1.2 The Internal Block Diagram
	3.1.3 The Parametric Diagram
	3.1.4 Package Diagram

	3.2 Behavioral Diagrams
	3.2.1 The Activity Diagram
	3.2.2 The Use Case Diagram
	3.2.3 The Sequence Diagram
	3.2.4 The State Machine Diagram

	3.3 Cross-Cutting Diagrams
	3.3.1 The Requirements Diagram

	3.4 SysML Tools
	3.5 Conclusion

	4 Interface Automata
	4.1 Definition
	4.2 Automata Compatibility Verification
	4.3 Compatibility Verification Utilities
	4.4 Conclusion

	5 Related Works
	5.1 Generation of CBS Architecture
	5.2 Compatibility Verification
	5.3 Component Behavior Description
	5.4 Requirements Specification in SysML
	5.5 Conclusion

	II Contributions
	6 Incremental Refinement of a CBS Architecture
	6.1 Approach Overview
	6.2 CBS Architecture Specification with SysML
	6.3 Formal Specification of SysML models
	6.4 Structural Refinement of SysML Blocks
	6.4.1 Consistency and Composability Verification between Blocks
	6.4.2 Interface Automata Generation
	6.4.3 Compatibility Verification
	6.4.4 Verification Algorithm for Structural Refinement

	6.5 Behavioral Refinement Verification of SysML Blocks
	6.5.1 Alternating Simulation
	6.5.2 Modal I/O Automata
	6.5.3 Case Study Application

	6.6 Conclusion

	7 Formal Verification of SysML Requirements
	7.1 Approach Overview
	7.2 Linear Temporal Logic (LTL)
	7.2.1 Syntax
	7.2.2 Semantics

	7.3 Verification with SPIN Model Checker
	7.4 Requirement specification with LTL
	7.5 Case Study Promela descriptions
	7.6 Conclusion

	8 Incremental Specification of CBS Architecture...
	8.1 Overview
	8.2 Case Study
	8.3 SysML Requirement Diagram Analysis
	8.4 Component Assembly Preserving SysML Requirements
	8.4.1 Functional Requirements and Input/Output Actions
	8.4.2 Preservation of Input/Output Actions in Automata Composition
	8.4.3 Verification of Atomic Requirements Preservation

	8.5 Specification of System Architecture
	8.6 Illustration on the Case Study
	8.7 Conclusion

	III Conclusion
	9 Conclusion and Perspectives
	9.1 Main Contributions
	9.2 Perspectives of the Work

	IV Résumé étendu
	10 Vérification Formelle de Spécifications SBC en SysML
	10.1 Contexte Scientifique
	10.1.1 Systèmes à Base de Composants
	10.1.2 Le Langage SysML
	10.1.3 Les Automates d'Interface

	10.2 Contributions
	10.2.1 Raffinement Incrémental d'une Architecture SBC
	10.2.2 Vérification Formelle d'Exigences SysML
	10.2.3 Spécification Incrémentale d'une Architecture SBC

	10.3 Conclusions
	10.4 Perspectives

