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This thesis was conducted within the VESONTIO team, Département Informatique des
Systèmes Complexes (DISC) of the Institut Femto-ST1 of the Université de Franche-
Comté (Besançon - France), between October 2012 and October 2015. The work pre-
sented in this document has been produced as part of the EU FP7 research project
RASEN2.

1.1/ CYBERSECURITY THREATS

In recent years, the increase of attacks over the information and communication sys-
tems has been mainly focused on the vulnerabilities present in Web applications [65, 16].
Based on the current state of the art on security (see Section 3) and on security reports
such as OWASP Top Ten 2013 [76], CWE/SANS 25 [52] and WhiteHat Website Security
Statistic Report 2014 [75], Web applications are the most popular targets when speaking
of cyberattacks. The fact that modern society’s reliance on the Web keeps increasing
foregrounds the challenges of IT security, particularly in terms of data privacy, data in-
tegrity and service availability. Economically, the digital revolution has resulted in the fast
growth of a new buoyant market, greatly welcomed especially in these times of crisis.
In France for instance, digital economy in 2014 represented 5.2% of its Gross Domestic

1http://www.femto-st.fr/ [Last visited: August 2015]
2http://www.rasenproject.eu [Last visited: August 2015]
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Product (GDP) and 3.7% of employment3. With financial gain in sight, it is no surprise that
organized crime has become the most frequently seen threat actor for Web application
attacks [65].

Risks of security breaches inside Web applications have increased over the past ten
years. Building a Web application today involves combining an entire mosaic of technolo-
gies, both on the client side and the server side. Web applications are becoming more and
more complex and ubiquitous, and the need for security of such systems has never been
this alarming. As a consequence, a significant growth has been observed in application-
level vulnerabilities, with thousands of vulnerabilities detected and disclosed annually in
public databases such as MITRE CVE - Common Vulnerabilities and Exposures [52]. The
most common vulnerabilities found on these databases especially emphasize the lack of
resistance to code injection, but other vulnerability kinds based on the logic of applica-
tions are also well represented. Often referred as the big 4 of the internet, Google, Apple,
Facebook and Amazon have all been suffering recently from vulnerabilities inside their
services. The iCloud scandal4 from 2014, where thousands of people had their private
data disclosed, is a vivid example. Another one is the stored Cross-Site Scripting vulnera-
bility inside Facebook Chat/Messenger that allowed hackers to access private messages
of other users5.

The next section foregrounds the motivation of the thesis by showing that the need for
improved security is far from being met, as current vulnerability testing techniques are
unstructured, time consuming, and lack precision and accuracy.

1.2/ MOTIVATION AND RESEARCH OBJECTIVES: A PRECISE AND

ACCURATE VULNERABILITY TESTING TECHNIQUE

Current techniques to test / counteract / eliminate vulnerabilities are not precise and ac-
curate enough. Indeed, making the Internet a safer place and improving the confidence
of users in their ability to use Web applications for actions like purchases and banking is
a great challenge.
A widespread “quickfix-style” solution that provides an additional security layer to current
Web applications is client-side and server-side prevention. Taking the form of a browser
functionality (client-side) or an application firewall (server-side), these mechanisms act
as guardians that analyze traffic and sanitize or reject any input/request considered as
potentially malicious. However, they lack completeness since they miss a lot of vulnera-
bilities. The complexity of Cross-Site scripting with its near-to-infinite number of variants
is a vivid example6. In addition, they have poor knowledge of the applications they pro-
tect, which is necessary to efficiently filter out malicious requests without encroaching
nominal user interactions.
Another technique strongly advised by security consortia7 is defensive programming: it
consists of a set of good practices and habits one should follow during application de-
velopment. The underlying idea is to never assume anything good concerning user be-

3http://www.justice.gouv.fr/include_htm/pub/rap_cybercriminalite.pdf [Last visited: August 2015]
4http://www.bbc.com/news/technology-29237469 [Last visited: August 2015]
5http://www.breaksec.com/?p=6129 [Last visited: August 2015]
6http://www.mediafire.com/view/7a57hv5z25s58lh/WAF_Bypassing_By_RAFAYBALOCH.pdf Last vis-

ited: August 2015]
7https://www.owasp.org/index.php/Secure_Coding_Principles [Last visited: August 2015]

http://www.justice.gouv.fr/include_htm/pub/rap_cybercriminalite.pdf
http://www.bbc.com/news/technology-29237469
http://www.breaksec.com/?p=6129
http://www.mediafire.com/view/7a57hv5z25s58lh/WAF_Bypassing_By_RAFAYBALOCH.pdf
https://www.owasp.org/index.php/Secure_Coding_Principles
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haviors and supplied inputs, by writing programs that check their own operations with
assertions to restrict inputs and behaviors solely to the ones that are intended. In addi-
tion, Web application frameworks nowadays (e.g., Symfony8, Django9, Rails10) provide
assistance to defensive programming with built-in security features regarding input vali-
dation, form manipulation, authentication and authorization mechanisms. The OWASP
consortium also provide guidance on how to code in a secure manner.
However, designing an application following defensive programming rules is not enough
in practice to prevent vulnerability proliferation because it is subjected to human errors,
which by nature are inevitable, and the rising complexity of Web applications hardens the
task even more.

Vulnerability proliferation can be overcome by deploying an application-level vulnerability
testing campaign: it consists of a set of intrusive test cases, each targeting a certain vul-
nerability type. It may be done manually, automatically, or somewhere in the middle; it can
rely on the source code (white-box), on the running application as a whole (black-box) or
again, somewhere between the two of them (gray-box). Each technique possesses ad-
vantages and drawbacks, be it about its efficiency or its deploying cost (see Chapter 3 for
more information on the state of the art about vulnerability testing).
Application-level vulnerability testing is first performed by developers, but they often lack
the sufficient in-depth knowledge in recent vulnerabilities and related exploits. This kind
of tests can also be achieved by companies specialized in security testing, for example in
Penetration Testing. These companies monitor the constant discovery of such vulnerabil-
ities as well as the constant evolution of attack techniques. But they mainly use manual
approaches, making the dissemination of their techniques very difficult, and the impact
of this knowledge very low. Moreover, such companies work in time boxes, and often
have to reduce their detection scope accordingly. Finally, Web application vulnerability
scanners can be used to semi-automate the detection of vulnerabilities, but they lack pre-
cision and accuracy since they have no knowledge of the application’s logic. Thereby,
they often generate false positive and false negative results, and human investigation is
often required [22, 30].

Model-Based Testing (MBT) [68] is a software testing approach in which both test cases
and expected results are automatically derived from an abstract model of the system
under test (SUT). More precisely, MBT techniques derive abstract test cases (including
stimuli and expected outputs) from an MBT model, which formalizes the behavioral as-
pects of the SUT in the context of its environment and at a given level of abstraction. The
test cases generated from such models allow the validation of the functional aspects of
the SUT by comparing back-to-back the results observed on the SUT with those speci-
fied by the MBT model. MBT is usually performed to automate and rationalize functional
black-box testing. It is a widely-used approach that has gained much interest in recent
years, from academic as well as industrial domains, especially by increasing and mas-
tering test coverage, including support for certification, and by providing the degree of
automation needed for accelerating the test process [20].

The strong lack of accuracy and precision in current vulnerability testing techniques rep-
resents the motivation of this thesis, to which we respond by proposing a Model-Based
Vulnerability Testing approach dedicated to Web application vulnerabilities. This trans-
lates in the two following research objectives (RO1 and RO2):

8https://symfony.com/ Last visited: August 2015]
9https://www.djangoproject.com/ Last visited: August 2015]

10http://rubyonrails.org/ Last visited: August 2015]
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4 CHAPTER 1. OVERVIEW OF RESEARCH

RO1 : DESIGN AN APPROACH THAT RELIES ON PATTERNS AND MODELS FOR BETTER AC-
CURACY AND PRECISION OF VULNERABILITY TESTING OF WEB APPLICATIONS

Vulnerability test patterns are used to describe testing procedures for each class of vul-
nerabilities [62]. Several security consortia, such as Mitre, CAPEC, and OWASP have all
issued test patterns for the detection of specific vulnerabilities. Research projects have
as well been focused on designing vulnerability test patterns, like the ITEA2 DIAMOND
project [70]. However, such patterns are informal and applying them remains manual.
Using vulnerability test patterns for automated testing still remains a challenge.

Our objective is to formalize vulnerability test patterns into a machine-readable language
that would enable to automatically generate test cases dedicated to the detection of the
targeted vulnerability. To achieve this, we propose to combine formalized test patterns
with a model of the Web application under test, in order to design a Model-Based Vulner-
ability Testing technique for the detection of Web application vulnerabilities. This way, we
combine the accuracy of patterns and the precision of the model to improve the overall
detection of vulnerabilities.

RO2 : DESIGN AN APPROACH THAT IS USABLE, SCALABLE, EFFICIENT, AND WITH A GOOD

LEVEL OF AUTOMATION

Model-Based Testing techniques generally suffer of the high cost associated to the design
of models and test case concretization. Indeed, test cases generated from a model are
abstract, since the model is an abstraction of the system. It is the responsibility of the test
engineer to design the model and translate all test cases into executable scripts.
Moreover, Web application development is a fast-paced activity where time is essential.
Therefore, there is a strong need for a usable, scalable and efficient testing approach,
and automated as much as possible.
Our objective is to automate most activities of such approach for vulnerability testing
purposes, by narrowing the information contained in the model and generify formalized
test patterns. In addition, MBT techniques have proven to be scalable and efficient testing
approaches deployed for critical and complex systems.

These two RO raise 3 research questions, which we express in the next section.

1.3/ RESEARCH SCOPE

The purpose of this thesis is to investigate the main problem What is the effectiveness
and efficiency of pattern-based and model-based approaches such as the one we are
presenting for detecting Web vulnerabilities? This research challenge can be broken
down to 3 research questions that are expressed and developed below. We refer to these
questions in Section 8.5 to evaluate the experimentation results.

RQ1 To what extent test patterns applied to a model of the Web application under

test improves the accuracy and precision of vulnerability detection?

On the one hand, penetration testing is becoming more and more difficult as Web sites
are growing in size and complexity. For instance, the OWASP foundation recommends
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that each user input of a Web application should be tested for XSS using a list of a
hundred XSS attack vectors11. Considering a basic Web form composed of ten fields,
a thorough validation against XSS attacks would represents approximately 1000 tests,
which is clearly not realistic with manual penetration testing.
On the other hand, current automated vulnerability discovery techniques such as Web
application scanners (e.g., AppScan, Acunetix, and so forth) can test for a large percent-
age of technical vulnerabilities. However, they cannot test 100 percent of them since
they usually have issues when dealing with specific cases that require intelligence, like
infinite Web sites with random URL-based session IDs, or automated form submission.
Moreover, automated techniques also have issues to establish a verdict from a test case
execution, and as a result they often produce many false positives.

One research axis of this thesis is to determine if a pattern-driven and model-based test-
ing approach can ally advantages of both manual and automated techniques, by modeling
certain functional aspects of a System Under Test (SUT), especially navigational informa-
tion, to generate test cases that current techniques struggle to obtain.

RQ2 To what extent is it possible to provide generic test patterns for Web applica-

tion vulnerabilities?

A vulnerability test pattern is a formalization of a generic test procedure that aims to test
for a certain vulnerability. In the case of XSS/SQL Injections, it can be as simple as
insert this malicious vector in this area to observe this behavior. Or it may involve more
complex contrivances like forging a Web-form to highlight a CSRF (Cross-Site Request
Forgery) vulnerability, or browse-forcing parts of the Web application that are supposed
to be protected in the case of Privilege Escalation.
Each vulnerability type has a rather unique test pattern, and another aspect of this thesis
is about establishing if test patterns can be represented as test purposes and applied on
a model and interpreted by automated test generation engines.

RQ3 To what extent such Web application vulnerability testing process (based on

patterns and models) may be automated?

This is one of the most attractive properties of MBT in general: its capacity for automat-
ing test generation and execution. However, MBT techniques generally require human
intervention to provide a model of the system under test, and adapt the generated ab-
stract test cases to make them executable on the real system. Given the specificity of
our context, which concerns vulnerability testing for Web applications, we need to find out
the level of automation that can be reached for the major steps of such process, namely
model design, the application of generic patterns on these models, test generation, test
execution, and verdict assignment and reporting.

1.4/ CONTRIBUTIONS OF THE THESIS

This thesis proposes a novel and innovative security testing approach, called PMVT for
Pattern-driven and Model-based Vulnerability Testing, to address Web application vulner-
abilities. The PMVT approach aims to improve the accuracy and precision of Web ap-
plication vulnerability detection by proposing a test generation and execution technique

11https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet [Last visited:
August 2015]

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
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driven by automated vulnerability test patterns composed with a model (called in the se-
quel PMVT model) of the system under test. Patterns describe generic test scenarios
that assess the robustness of the Web application w.r.t. a given kind of vulnerability. Test
generation is achieved by relying on the information contained in PMVT models, espe-
cially the location of the possible user inputs and their associated resurgences, to check
that user inputs are correctly sanitized before being displayed on a Web page. As a major
result, the PMVT approach increases the efficiency of penetration testers when detecting
technical as well as logical vulnerabilities.

To summarize, the main 5 contributions of this thesis are:

• The design of a Web application modeling language, called DASTML, dedicated to
vulnerability testing,

• The formalization of textual vulnerability test patterns into operational generic test
purposes and a contribution to the extension of the test purpose language,

• The creation of a model-based testing process, called PMVT, which composes for-
malized generic patterns and PMVT models for the computation of vulnerability test
cases,

• The engineering of a prototype toolchain that implements the PMVT approach and
instruments its activities,

• The experimentation of the PMVT toolchain on 5 case studies to evaluate the effec-
tiveness and efficiency of the PMVT approach.

The following sections of this chapter present each contribution of the thesis. Then we
provide a short description of the research context, the European FP7 research project
RASEN12, and the story of how the PMVT approach was designed to be one of the key
elements of a security assessment tool suite.

1.4.1/ DOMAIN-SPECIFIC MODELING LANGUAGE

The PMVT process is an extension of MBT and as such, the modeling activity consists of
designing a PMVT model of the Web application under test that will be used to automati-
cally compute abstract vulnerability test cases. This activity is based on CertifyIt [45], an
MBT toolchain designed by Smartesting13, which requires a model designed using the
UML4MBT notation [68, 13], a subset of UML / OCL introduced in Section 4.1.
One of the main constraints in MBT is the design of models, which is known to be time
consuming. To address this issue, a Domain Specific Modeling Language (DSML) has
been developed, dubbed DASTML for Dynamic Application Security Testing Modeling
Language. It allows the modeling of the global structure of a Web application: the avail-
able pages, the available actions on each page, and the user inputs of each action poten-
tially used to inject attack vectors. It solely represents all the structural entities necessary
to generate vulnerability test cases. The transformation of a DASTML instantiation into
a valid UML4MBT model is automatically performed by a dedicated plug-in integrated to
the modeling environment.

12http://www.rasenproject.eu [Last visited: August 2015]
13http://smartesting.com/ [Last visited: August 2015]

http://www.rasenproject.eu
http://smartesting.com/
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More precisely, DASTML is composed of 4 entities that match either an element or a
concept related to Web applications. Page entities represent the different pages that
compose the Web application under test. Navigation entities are typically a link or a button
that takes the user to another page, without altering the internal state of the application
nor triggering any function or service of the application. Action entities are similar to
navigation entities, except that they alter the internal state of the application and may
carry data (e.g, in case of a Web form or a parameterized URL). Data entities represent
user inputs and are each composed of a key and a value.
Entities interact with each other based on multiple relationships. For example, pages
where each user input is rendered back are known thanks to a relation between inputs
and pages entities.

The information contained in PMVT models is crucial, not only for conducting attacks, but
also for assessing whether these attacks succeeded or failed. An in-depth breakdown
of the metamodel 14 of DASTML and a thorough description of each entity is given in
Section 5.3.

1.4.2/ VULNERABILITY TEST PATTERN FORMALIZATION

A Vulnerability Test Pattern is a normalized textual document describing the testing ob-
jective and procedure to detect a particular flaw in systems of a similar nature (e.g., Web
applications). As such, there are as many patterns as there are types of application-level
flaws. The approach presented in this thesis is based on pattern catalogues provided by
dedicated organizations, for instance OWASP and SANS15, as well as research projects
such as the ITEA2 research project DIAMONDS16 [70]. Nonetheless, Vulnerability Test
Patterns are still textual and cannot be processed automatically.

One motivation of this thesis is centered on using textual patterns as starting point and
formalizing them into operational test purposes, in order to automate testing strategies’
implementation and execution. A test purpose is a high-level expression that formalizes
a testing objective to drive the automated test generation on the PMVT model. Test pur-
poses are written in a dedicated language, called Smartesting Test Purpose Language.
It has been originally designed to drive model-based test generation for security compo-
nents, typically Smart card applications and cryptographic components [11]. This lan-
guage has been augmented in order to make test purposes generic, and thus enable
the translation of vulnerability test patterns. Thereby, within the context of vulnerability
testing, a test purpose formalizes a given textual pattern in order to drive the vulnerability
test generation on the PMVT model. Basically, such a test purpose is a sequence of
significant steps that has to be exercised by the test case scenario in order to assess the
robustness of the application under test w.r.t. the related vulnerability. Each step of a
test purpose is a request, such as calling an operation, activating a behavior or reaching
a state.

As a result, multiple test purposes have been designed to tackle major vulnerabilities from
the OWASP Top 10, that is to say Cross-Site Scripting, SQL Injection, Cross-Site Request
Forgeries, and Privilege Escalation. A detailed presentation of each vulnerability lies in
Chapter 2, and their associated test purposes are depicted in Chapter 6.

14http://dictionary.reference.com/browse/metamodel Last visited[August 2015]
15https://www.sans.org/ [Last visited: August 2015]
16http://www.itea2-diamonds.org [Last visited: August 2015]

http://dictionary.reference.com/browse/metamodel
https://www.sans.org/
http://www.itea2-diamonds.org
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1.4.3/ PATTERN-DRIVEN AND MODEL-BASED VULNERABILITY TESTING PRO-
CESS

Both test purposes and PMVT models are integrated in a model-based testing process
dedicated to the generation of vulnerability test cases for Web applications.

The PMVT process is a composition of 4 activities:
The first activity concerns the modeling of the Web application using the DASTML nota-
tion. This is done by exploring the application and collecting relevant information in the
model, such as the various pages or states, the possible user interactions within these
pages, as well as user inputs in Web forms, anchors, cookies and HTTP headers.
The second activity consists of the design and / or selection of Test Purposes to cover
specific vulnerabilities. PMVT test purposes are generic and can be applied on any Web
application that has been modeled using the DASTML notation. It is thus possible to se-
lect existing test purposes, such as the ones presented in this thesis, or design new ones
tailored to another vulnerability.
The third activity is about applying the selected test purposes on the model to automat-
ically generate vulnerability abstract test cases. The test generation engine uses test
purposes as guidance to animate the model for the computation of attack traces.
Finally, the last activity involves the concretization of the generated test cases and their
automated execution on the real application, along with an automated verdict assignment.

Each activity of the process is described in Section 5.1.

1.4.4/ TOOLCHAIN

A prototype toolchain that supports the PMVT process has been developed as part of
this thesis to conduct experiments, and thus assess the validity of the approach. It is
built on top of the model-based testing software CertifyIt [8, 45], provided by the company
Smartesting17. CertifyIt is a test generator that takes as input a test model, written with
UML4MBT, which represents the behavior of the SUT to compute abstract test cases.

The PMVT toolchain embeds several tools to enable test engineers to complete each
activity of the process. It relies on IBM Rational Software Architect18 for the modeling
and test purpose design/selection activities. The RSA modeler that initially allows UML
modeling is augmented with CertifyIt plugins that enable the design of UML4MBT models
and test purposes. An additional plugin, developed as part of this thesis, allows the
creation of DASTML model as well as their transformation in a UML4MBT model.
The CertifyIt test generation engine is responsible for composing test purposes and mod-
els to compute abstract vulnerability test cases. A second dedicated PMVT algorithm,
plugged to the test generation engine, exports the abstract test cases in JUnit test scripts
integrated to a Mavenized19 Java project.
Each JUnit test script contains a sequence of Selenium20 primitives (e.g., load a Web
page, click on a link, fill a form field, etc.) that emulate a headless Web browser and
reproduce user actions to conduct attacks. Note that test engineers must provide a table
that matches each abstract data from the model and the concrete data from the real

17http://www.smartesting.com [Last visited: August 2015]
18https://www.ibm.com/developerworks/downloads/r/architect/ [Last visited: August 2015]
19http://maven.apache.org/ [Last visited: August 2015]
20http://www.seleniumhq.org/ [Last visited: August 2015]

http://www.smartesting.com
https://www.ibm.com/developerworks/downloads/r/architect/
http://maven.apache.org/
http://www.seleniumhq.org/
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application, and in some cases may have to adapt Selenium primitives.

1.4.5/ EXPERIMENTATION

Experiments have been conducted on 5 Web applications. Three of them are dummy ap-
plications that have been made vulnerable for experimentation purposes: (i) Wackopicko
is an open-source photo-sharing platform developed by Adam Doupé [5], (ii) Cuiteur and
(iii) Bookshop are clones of Twitter and Amazon respectively, and have been initially de-
veloped at the Institut FEMTO-ST for a Web development course. The last two Web
applications are real-life systems, both online at the moment of writing, with several thou-
sands of users: (iv) a Romanian eHealth portal called Medipedia (which is also used for
experimentation as part of the FP7 RASEN project, see Section 1.4.6 for more informa-
tion), and (v) a French eLearning portal called stud-E (due to confidentiality issues, we
chose to change its name).

To evaluate the robustness of the real-life case studies and assess the efficiency and
effectiveness of the PMVT approach, test cases were generated to tackle 4 of the most
commonly exploited Web application Vulnerabilities: Cross-Site Scripting, SQL Injections,
Cross-Site Request Forgeries, and Privilege Escalation vulnerabilities (see Chapter 2 for
a presentation of each vulnerability type).

Chapter 7 provides a full description of the toolchain and Chapter 8 presents and dis-
cusses experimentation results of the PMVT toolchain on the 5 Web applications.

In the following section, we introduce the European research project RASEN in which this
work has been conducted.

1.4.6/ CONTRIBUTION WITHIN THE FP7 RASEN PROJECT

The PMVT approach presented in this document has been designed in the context of the
EU FP7 research project RASEN21. This collaborative research project, driven by SIN-
TEF ICT, has been underway since October 2012 and will complete in October 2015. It
addresses risk assessment, legal compliance, and testing within the area of cybersecu-
rity. To achieve this goal, the project brings together 8 partners from 4 European countries
(Germany, Norway, France, and Romania). The partners fill one or more of the 3 possible
roles in the RASEN project:

• Research Partners: Fraunhofer FOKUS, Université de Franche-Comté / Femto-ST,
SINTEF, University of Oslo.

• Technology Providers: Smartesting, Software AG.

• Use Case Providers: Evry, Info World, Software AG.

The RASEN project develops an approach that allows organizations to conduct security
risk assessments for large-scale networked systems and verify the assessment by means
of security testing.

21http://www.rasenproject.eu [Last visited: August 2015]

http://www.rasenproject.eu
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The RASEN project addresses cybersecurity issues by making interrelated and syner-
getic risk management activity and security testing. On the one hand, it provides support
for deriving test cases from risk assessment results, and on the other hand, it proposes
to use the related test results to verify or update the risk picture and therefore risk as-
sessment.

In a more concrete way, the RASEN project addresses these challenges by means of
3 innovations. The first innovation [60] is a method for risk-based security testing and
legal compliance assessment, which provides a unified approach toward cybersecurity
that addresses both technical and non-technical issues across different levels in the or-
ganizational hierarchy. The second innovation [69] is a tool for risk management, called
RACOMAT, which combines risk-based security testing with test-based risk assessment
into a unified iterative process. The third innovation [46] is an application-specific risk-
based security testing approach that derives test cases from risk assessment results and
test patterns.

The PMVT test generation technique, based on PMVT models and driven by test patterns,
is the keystone of the third innovation, which combines the PMVT approach with the
CORAS method[49], a risk assessment technique based on models. The principle of
this combination is to use the CORAS risk assessment results to guide the PMVT test
generation process by selecting and prioritizing test patterns related to the identified risks.
It also provide traceability between risks and generated test cases to get feedback from
test execution and to highlight which risks revealed to be real vulnerabilities.

1.5/ DISSERTATION STRUCTURE

This thesis dissertation is organized as follows.

The first 4 chapters lay down the context, motivation, and background of the thesis. We
expose the research objectives, the research questions and the contributions in Chap-
ter 1. Then, Chapter 2 defines the 4 targeted vulnerability types that are tackled by the
proposed approach. Subsequently, Chapter 3 is dedicated to the state of the art and prac-
tice about Web application security testing. Finally, Chapter 4 presents the background
work on top of which the PMVT approach is built.

In the next 3 chapters, we detail the technical contributions of the thesis. Chapter 5 de-
scribes the overall PMVT Process and the modeling notation. Chapter 6 the test pattern
formalization into a machine-readable language and its instantiation to address the 4 vul-
nerability types. We present the prototype toolchain that supports the PMVT process in
Chapter 7, along with its general work-flow.

Chapter 8 focuses on experimentation and evaluation. We describe the 5 case studies
we included to demonstrate the validity of the experimentation results, which we present
and discuss in depth in this chapter.

This document concludes with Chapter 9. We summarize the work completed during this
thesis and discuss future works based on what has been achieved.
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Web applications present all the risks that threaten normal applications: compromising,
information leak, reputation damage, information and money loss. A standard Web appli-
cation relies on 3 artifacts: the client, the Web server, and the storage unit. In general,
the client is a Web browser (e.g., Firefox, Chrome, IE), manually handled by a physical
person. The Web server (e.g., Apache, IIS, nginx) receives requests sent by the client
and issues responses. The communication between them takes place using the Hyper-
text Transfer Protocol (HTTP). The Web server’s end goal is to deliver Web pages to the
client. The storage back-end is usually a database (e.g., MySQL, PostgreSQL, Mon-
goDB). Its purpose is to store data that can be retrieved later, at will.
A typical work-flow involving the 3 artifacts would consists of the client sending an HTTP
request to the Web server that contains data meant to be stored, for instance a blog ar-
ticle. The Web server receives and processes the request, passing the attached data to
the storage back-end for storage. Some time later, in another context, the client issues
a new HTTP request, whose purpose is to receive the previously sent data. The Web
server processes the request, queries the database to retrieve the relevant data, uses it
to compute an HTTP response and sends it to the client.
All these components can present different vulnerabilities and security issues, and may
have different behaviors that will impact the existence and exploitability of vulnerability.
For instance, if a careless user clicks on a malicious link and downloads a Trojan on his
computer, or installs a malicious extension on his Web browser, the hacker behind the
trap can steal the victim’s credentials and compromise any system that the victim has
access. As another example, if the database of a Web application has not been updated
to the last version, and if the form fields of this application are not protected against SQL
Injections, by sending the correct sequence of attack vectors a miscreant can get access
to the root shell of the Web server.

The purpose of this section is to lay down all the vulnerability types that are tackled by the
PMVT approach. These vulnerability types have been chosen specifically based on their

11
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high severity and prevalence, and their complex detectability. Each type is provided with
explanations on its workings and is illustrated with a usage example. We start with Cross-
Site Scripting, a threatening vulnerability because of its almost-infinite attack vector list.
It continues with the most prevalent vulnerability of all according to the OWASP TOP 10,
SQL Injections. Then it highlights Cross-Site Request Forgeries, a direct consequence
of the statelessness simulation of the Web by browsers. Finally, we end this section
with Privilege Escalation vulnerabilities, which are closely related to the logic of Web
applications, thus complexifying their detection.

2.1/ CROSS-SITE SCRIPTING

It is quite common for one to receive emails, sometimes from trusted acquaintances,
requiring to click on a given link leading to a legitimate Website (e.g., by advertising a
sales promotion). However, if one happens to click on the link he/she might become
victim of session stealing, or get redirected to a malicious Website.

This popular hacking phenomena is known as Cross-Site Scripting (XSS). XSS repre-
sents a great part of the most prevalent and dangerous cyber-attacks against Web ap-
plications reported during the last decade; see, for example, OWASP Top Ten 2013 [76],
CWE/SANS 25 [52] and WhiteHat Website Security Statistic Report 2014 [75]. In the
latter, XSS appears to represent between 35% and 67% (depending on the programming
language) of all the serious vulnerabilities discovered in a large panel of Web applications.
As another example, Claudio Criscione reports at GTAC 2013 that nearly 60% of secu-
rity bugs detected in Google software are XSS vulnerabilities1. XSS was first disclosed
in 1996 during the debut of the Internet, when the first e-stores came online, when the
most enhanced Web applications were using HTML frames, and most importantly when
Javascript was released. This dynamic programming language revolutionized the Web as
people knew it, and developers were suddenly able to create dynamic and interactive ap-
plications with floating menus, pop-ups, and content altering without the need to refresh
the current page. It also received a great welcome from the hacker community who saw
in this language new ways to tamper with Web applications.

An XSS vulnerability occurs each time an application stores (with more or less persis-
tence) a user input and uses it to compute an output without proper sanitation. When
injecting a malicious input, such as a piece of code, it is therefore possible to have it ex-
ecuted by Web browsers. Indeed, if this data is displayed to all the visitors of a Website
(e.g., in a reply of a forum post), then the code is executed on each visitor’s browser,
potentially causing severe damages (and not necessarily visible). XSS is easy to put into
practice and presents a great number of variants; it is also an entry point for many ex-
ploits. For example, attackers can steal session credentials and hijack an active session,
access sensitive or restricted information, or spy on a user’s Web browsing habits.

XSS vulnerabilities can be classified into 4 categories2:
When the untrusted injected data (the attack vector) is directly displayed/executed after
being injected, we speak of reflected XSS, and the response containing the attack vector

1https://developers.google.com/google-test-automation-conference/2013/presentations[Last visited: Au-
gust 2015]

2https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_%28XSS%29 [Last visited:
February 2014]

https://developers.google.com/google-test-automation-conference/2013/presentations
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_%28XSS%29
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Figure 2.1 – Stored XSS typical workflow

is immediately produced and sent back to the user.
On the opposite, in stored XSS vulnerabilities the attack vector is stored (no matter how)
by the application and retrieved later in another context.
A special case of XSS, called multi-step XSS, requires a user to perform several actions
on the applications (mainly navigation steps) to display/execute the attack vector. In this
thesis, we highlight two types of multi-step XSS: multi-step in a testing, and multi-step
in the conducting of the attack. The first type concerns XSS attacks, reflected or stored,
that are not observable in the immediate server response, but take place in another part
of the application, or in another context (e.g., requiring to authenticate with another user
role). The second type encompasses XSS attacks that require several steps between the
injection and the actual storage of the payload in the DMBS of the application. Notice
that these two groups are not exclusive, and certain complex XSS attacks can be of both
types.
The last category, named DOM-based XSS, works at the level of the victim’s browser
by injecting the attack vector in the URL, replacing a parameter used by a local script to
modify the DOM3 of a Web page.

The difficulty of handling XSS issues is mainly due to the increasing complexity of appli-
cations’ logic: developers need to think of a systematic protection of the displayed data,
which is an error-prone exercise as a given user input may be subsequently displayed in
a large variety of places in the application.

STORED XSS: USAGE EXAMPLE

As an example for stored XSS, we consider a forum board where users can hold con-
versations in the form of posted messages. Creating a new topic or posting a reply is
done through a specific page containing an HTML form with input fields. Upon submis-

3http://www.w3.org/TR/WD-DOM/introduction.html [Last visited: August 2015]

http://www.w3.org/TR/WD-DOM/introduction.html
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sion, either a new discussion thread is created or the posted message is appended to
the thread. We also consider a miscreant that has detected a stored XSS vulnerability
in the “body” input field of the form responsible for new messages. The server-side and
client-side source code of this page is shown in Figure 2.2.

A typical stored XSS scenario is depicted in figure 2.1. On step ①, the attacker sets the
trap by injecting a malicious script inside the “body” field input of the message posting
form:

<SCRIPT>

document.location=’http://evil.com/store-sid.php?sid=’+document.cookie

</SCRIPT>

This script, which will be referred as {payload} from now on, redirects browsers to the
URL “evil.com” using the document.location method. It also appends the content of the
document.cookie variable, which contains the session ID of the victim.

<?php
/ / DB query f o r message posts
foreach ($msg i n $messages ) {
echo ( ’ <div ><p> ’ . $msg [ ’ t i t l e ’ ] . ’ </p> ’ ,

’ <p> ’ . $msg [ ’ body ’ ] . ’ </p> ’ ,
’ <d i v / > ’ ) ;

}
?>

(a) server-side code

<html>
[ . . . ]
<d i v >
<p>You w i l l never be l i eve t h i s < / p>
<p>
{ payload }
< / p>< / d i v >
[ . . . ]

< / html>

(b) client-side code

Figure 2.2 – XSS usage example: server-side and client-side code

User inputs are not sanitized by the server, which sends the raw data to the DBMS for
storage. Then, in step ②, a curious user decides to visit the topic created by the attacker.
The Webserver makes a request to the DBMS, retrieves the payload, inserts it on the
output document, and sends the response to the user (as shown on step ③). Code
fragments from the server-side and client-side, as depicted in figure 2.2, show that both
input values title and body are not sanitized and rendered back as is. Step ④, the victim’s
browser interprets the DOM and executes the malicious script, resulting in the disclosure
of their session ID. The attacker can therefore spoof requests using a received ID and
impersonate victims.

COMPLEXITY OF TESTING

The 1st, 2nd and 4th categories of XSS are usually well-identified and easily detected by
current vulnerability detection techniques (e.g., Web application vulnerability scanners,
see Section 3.2.1).
However, the 3rd category, which concerns multi-step XSS, represents a challenging is-
sue [22]. Indeed, the result of an attack cannot be seen immediately, and the applications’
logic must be taken into account to know in which part of the application and in which con-
text a given user input is supposed to be sent back to the client.
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Figure 2.3 – SQL Injection: Typical Workflow

2.2/ SQL INJECTIONS

Injections (such as SQL, but also OS, LDAP4, and so on) are considered the most threat-
ening and prevalent vulnerability type. It has always been on top of the OWASP TOP 10
since its first version, published in 2003. Indeed, injection vulnerabilities can be extremely
severe: sensitive data read, removal or corruption, authentication bypass, identity spoof,
denial of access, and in some cases host takeover. They are also very common since
they may be present each time data with inadequate validation is interpreted. Last but not
least, it is quite straightforward for an attacker to conduct an injection vulnerability. During
this thesis, we focused on SQL Injections.

SQL is a special-purpose programming language initially developed by IBM in the early
1970s. There are many varieties of SQL, but today the most commonly used are based
on the ISO/IEC 9075:2011 standard5. The most commonly used variants are MySQL,
Oracle, PostgreSQL, Microsoft SQL, etc. Each variant comes with subtleties in its syntax,
giving plenty of opportunities for hackers to find targeted injector vectors that might be
missed by generic protection mechanisms.

SQL Injections were mentioned for the first time in 1998 by Rain.Forest.Puppy6 (a hacker,
security consultant, and author of the RFPOLICY, a method of contacting vendors about
security vulnerabilities found in their products) in a Phrack article7. His conclusion about
SQL Injections became a popular quotation: “don’t assume user’s input is OK for SQL
queries”. Even today, whereas SQL Injections have been around for almost 20 years and
a lot of protection mechanisms have been designed, recent reports show that the number
of exploits from SQL Injections is still alarming. In a report from 2014 [48], Ponemon
Institute LLC expresses that 65% of organizations participating in the study experienced
an SQL Injection attack that successfully evaded their perimeter defenses in the last 12
months.

Very much like XSS, SQL Injection attacks exploit the trust applications have in their
users. They take place when data coming from an untrusted source enters an application

4https://tools.ietf.org/html/rfc4510 [Last visited: August 2015]
5http://www.iso.org/iso/home/search.htm?qt=9075&sort=rel&type=simple&published=on [Last visited:

August 2015]
6http://lists.jammed.com/ISN/2001/10/0032.html [Last visited: August 2015]
7http://www.phrack.org/archives/issues/54/8.txt [Last visited: August 2015]

https://tools.ietf.org/html/rfc4510
http://www.iso.org/iso/home/search.htm?qt=9075&sort=rel&type=simple&published=on
http://lists.jammed.com/ISN/2001/10/0032.html
http://www.phrack.org/archives/issues/54/8.txt
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(e.g., through a form input field), and is used to construct an SQL query, for instance
untrusted data injected into data-plane input and sent to an SQL interpreter. By supplying
an SQL code fragment instead of a nominal value as input, with respect to the syntax of
the initial SQL query, hackers can alter the semantic of the request. As a consequence,
the database server is tricked into running an arbitrary, unauthorized, unintended SQL
query that implies unwanted effects on the integrity of its data.

Examples of SQL Injection exploits, such as the one presented in Figure 2.3 and dis-
cussed later in the next section, are anything but rare8. In 2011, various Websites owned
by Sony (sonymusics, sonypictures) were compromised by LulzSec, a black hat computer
hacker group. They managed to dump the entire database and disclosed its content to
the Internet9. In December of 2014 archos.com, the Website of the French smartphone
maker Archos, was compromised by an SQL Injection attack conducted by a hacking
group know as “Focus”10. They claimed to have dumped 100,000 customer records.

SQL INJECTION: USAGE EXAMPLE

(a) Authentication form

<?php
[ . . . ]
$usr = $_POST[ ’ usr ’ ] ;
$pw = $_POST[ ’pw ’ ] ;
/ / b u i l d query :
$sq l = "SELECT ∗ FROM users "+
"WHERE usr = ’ $usr ’ and pw=MD5( ’ $pw ’ ) " ;
/ / execute query :
$ r e s u l t = mysql_query ( $sq l ) or d ie ( ) ;
[ . . . ]
?>

(b) Server-side Authentication Process

Figure 2.4 – Authentication: Server-side and Client-side

To illustrate SQL Injections we consider an eLearning Web portal, where users have ac-
cess to various courses. They can download course material, do exercises and quizzes,
pass exams, send messages to their teachers and fellow students, and so on. To get
access to the platform, students must authenticate to the portal by providing their creden-
tials (username and password).

We present below the syntax of the SQL query, whose purpose is to verify whether a user
entry matches the provided username and password:

SELECT ∗ FROM users WHERE usr= ’ $usr ’ and pw=MD5( ’$pw ’ ) ;

When students provide their credentials using the authentication form (see Figure 2.4a),
for instance “john” as username and “@doedoe1!” as password, the server configures
the query by replacing $usr and $pw by their corresponding value and submits the crafted
request to the DBMS for interpretation (see Figure 2.4b). The problem in the server

8http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/ [Last visited: August 2015]
9http://www.pcmag.com/article2/0,2817,2386362,00.asp [Last visited: August 2015]

10http://www.scmagazineuk.com/up-to-100k-archos-customers-compromised-by-sql-injection-
attack/article/395642/ [Last visited: August 2015]

http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
http://www.pcmag.com/article2/0,2817,2386362,00.asp
http://www.scmagazineuk.com/up-to-100k-archos-customers-compromised-by-sql-injection-attack/article/395642/
http://www.scmagazineuk.com/up-to-100k-archos-customers-compromised-by-sql-injection-attack/article/395642/
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implementation comes from the lack of input sanitation: the received values are passed
on raw to the DBMS. As result, attackers can supply an SQL fragment as input and alter
the initial semantics of the query. A general scenario for SQL Injection is depicted in
Figure 2.3.

For example, if a miscreant injects a’ or 1=1;� as login and a random value as password
(step ①), it changes the query:

SELECT ∗ FROM users WHERE usr= ’ a ’ or 1=1;−− and pw=MD5( ’ $pw ’ ) ;

The SQL fragment injected by the miscreant is composed of 3 distinct parts:

• a’ : the purpose of the first part is to respect the SQL syntax imposed by the
preamble of the query. It provides a value, a, and closes the Boolean equality test
with a simple quote;

• or 1=1 : this is the part that modifies the semantic of the query by changing the
comparison predicate of the “WHERE” clause. Because 1=1 is always true, when
coupled with a “OR” operator it cancels “WHERE” clause.

• ;– : this last part closes the query and comment the rest of the initial request,
to preserve the syntactic correctness of the request.

The conduction of this attack is depicted in Figure 2.3. Upon reception of the credentials,
the Webserver configures the SQL query and passes it on the DBMS (step ② in the
figure). The injection of this particular payload forces the DBMS to retrieve the whole
content of the “users” table (step ③ in the figure). As a result, depending on how the
server treats the resulting data, the miscreant may be able to bypass the authentication
form and log in using the credentials of the first users entry (step ④ in the figure). It often
corresponds to the first user registered, therefore the probabilities that this user holds
extensive permissions (e.g., a teacher or worse, an administrator) on the application are
high.

COMPLEXITY OF TESTING

Detecting SQL Injection vulnerabilities, like Cross-Site Scripting, can be performed by in-
jecting attack vectors through user input and analyzing the server’s response. In some
cases, it may be very simple to fingerprint a database to unveil a vulnerability; by sup-
plying as input a certain attack vector that will affect the syntactic correctness of the
initial SQL query, it is possible to make the execution of the request fail on the back end
database, which will generate an SQL exception. The evidence of an SQL exception er-
ror is often a manifestation of a vulnerability that can be exploited. Most automated tools
are able to detect these vulnerabilities with a high level of confidence. In other cases
though, it can be much more complex: when the back end database does not generate
exception errors. There is no technical telltale on whether the request was interpreted,
and one must resort to other techniques while being “blindfolded”. These vulnerabilities
are referred as Blind SQL Injections.

When it comes to Blind SQL Injections, fingerprinting techniques consists of performing
several attacks directed toward the same input, each one with a different goal, to seek
for variations in the server’s responses. For example, time-delay techniques compare the
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server’s response time between two injections. One attack vector will compromise the
syntax of the query, resulting in a fast response from the server since it does not involve
any search over the database. The second attack vector, on the other end, will alter the
request to return as many entries as possible: the end-goal is to force processing time.
Observation is done by comparing response times; a big enough time gap is a good
indication of the presence of an SQL Injection vulnerability. Another technique compares
the nature of the responses, and generally involves 3 injection vectors. The first one is
a nominal input that triggers the intended behavior of the application. The second one
tries to change the semantic of the request to return as much entries as possible. The
third vector is the opposite: it tries to make the request return no entry. A difference in
the outputs is an indicator of the presence of a vulnerability. The detection of Blind SQL
vulnerabilities is a source of trouble for automated tools because identifying variations in
responses often implies understanding the workings and the logic of a Web application,
thus requiring human intervention.

Along the lines of XSS, SQL Injections can be multi-step (also mentioned as “second
order SQL Injections”), when injections are not immediately sent to the DBMS, but require
specific user actions from the injection page to reach the actual execution of the query.
Automated tools struggle to detect these vulnerabilities because, once again, they are
generic and hence, not aware of the logic of Web application [7].

2.3/ CROSS-SITE REQUEST FORGERY

Cross-Site Request Forgery (CSRF) has often been an underestimated vulnerability, but
it is well present in the OWASP TOP 10 since 2007, being ranked 5th in 2007 and 2010,
and 8th in 2013. Although protecting Web applications against this vulnerability is straight-
forward, many CSRF attacks are still reported on a regular basis. The fact is that CSRF
attacks remain in the shadow of the most common, highest profile vulnerabilities like
Cross-Site Scripting and SQL Injections. As opposed to Cross-Site Scripting attacks that
exploit the trust a user (or rather his Web-browser) has in a Web application, Cross-Site
Request Forgery attacks exploit the trust a Web application has in its users. However, ex-
ploiting a CSRF vulnerability needs only basic knowledge of the targeted Web application
to quickly identify relevant actions and victims to trick (e.g., by using phishing). During
the last decade, lots of Web applications have been compromised by CSRF attacks. The
most explicit example is the “Samy Worm” [42], which in fact is a combination of an XSS
vulnerability with a CSRF vulnerability. This worm infected millions of Myspace accounts
in less than a day. Several other major Web applications have been compromised like
Ebay, Youtube and INGDirect.

Actions of a Web application (GET and POST requests) are usually linked to specific
URLs (e.g., http://bank.com/transfer.php?amount=10000&receiver=42982875983).
A direct request to such a URL allows its associated action to be performed. A CSRF
attack consists of tricking a victim into making a specific request through his/her browser,
that will ultimately lead to unwanted consequences on a trusted Web application. It is
qualified as malicious because it indirectly impersonates a user to perform actions only
he/she or a restricted group of users is allowed to do, and without him/her knowing. A
typical action would be to modify a user’s contact email, his/her password, or add items
to a shopping cart and even activate the payment if the user has stored his/her credit
card’s info. That is, CSRF attacks target actions that modify the internal state of the Web
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Figure 2.5 – CSRF: Typical Workflow

application, but they can also be conducted to access sensitive data. As shown by the
previous example, major targets are social networks, Webmail clients, banking Websites,
etc.

CSRF attacks are possible when the targeted Web application does not check whether
an incoming request is really originating from the user owning the active session. More
precisely, there are 3 different ways for a user to send a GET or POST request11 to a
Web application: (i) from the application, by clicking on a link or submitting a form, (ii)
from the outside, by clicking on a link on a Website that points the URL responsible for
the request, and (iii) by manually typing the URL in the browser’s navigation bar. If the
Web application cannot determine how the request has been made, then it is vulnerable
to CSRF.

CSRF: USAGE EXAMPLE

We consider in this example a banking Web portal where users can manage their ac-
count: check their balance, go through recent transactions, and transfer money to other
accounts. One common mistake made by the developers of such portal is the absence of
URL rewriting, resulting in the disclosure of sensitive actions. For example, the URL that
triggers a money transfer from the current session to the account no 28728472647 has
the following structure:

https://www.bank.com/money_transfer.asp?amount=1000&target_acc=28728472647

It should be noted that actions being displayed in URLs is not a prerequisite for the pres-
ence of a CSRF vulnerability. Hackers can record traffic between their browser and Web
application to deduce URLs and key values.

11http://www.w3schools.com/tags/ref_httpmethods.asp [Last visited: August 2015]

http://www.w3schools.com/tags/ref_httpmethods.asp
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A hacker has detected the vulnerability and decided to deploy a scam in order to steal
money from other accounts, by forcing clients to make the transfer themselves without
their consent.
In step ① (as shown on Figure 2.5), the future victim authenticates to the vulnerable Web
portal. Although authentication is not always mandatory to exploit a CSRF vulnerability,
sensitive actions with consequences on a system are often session-related.
In step ②, the attacker tries to trick the victim into issuing the request, for instance with
fishing; it can take the form of an email containing a direct link, or it can be embedded in
an XSS vulnerability.
In step ③, the victim has been tricked (e.g., clicked on the link), resulting in an unwanted
request toward the vulnerable Web application. Because the victim has a running session
on the application, his browser appends the corresponding credentials to the request.
In step ④, the banking portal receives the request along with credentials. Since it has no
protection against CSRF, the action is performed.
In step ⑤ the attacker receives the money he/she stole from the victim without his/her
consent.

COMPLEXITY OF TESTING

CSRF mitigation can be easily implemented. The preferred protection mechanism against
CSRF is the synchronizer token pattern. It consists of generating a unique randomly-
generated token, which is inserted into sensitive URLs (as a key/value parameter) and
Web forms (as a hidden field). Users who click on a link or submit a Web form will there-
fore send the token along with their input data. In this way, servers check for the good
reception of the token. If the received token is missing or if it is different from the one
that was generated and sent with the last server response, then the incoming request is
dismissed. This mechanism ensures that requests are made from within the Web appli-
cation GUI.
Another protection mechanism is the challenge-response method, which involves a veri-
fication step by the user before an action is completed. However, many Web application
developers ignore these protection mechanisms, and a detection phase is required.

Automated, universal CSRF detection is a tough challenge, especially if it is based on re-
quest/response analysis: for instance, the presence of tokens in requests and responses
does not ensure that they are processed by the server. Hence, the most reliable method
to check whether a Web application is vulnerable to CSRF is to actually tamper with it, if
possible in a harmless way.

Nevertheless, a common test scenario for CSRF detection consists of first performing the
action under test in a nominal way, following the application’s intended behavior, and sav-
ing the server’s response for comparison. In a second step, it implies simulating a user
caught in a fishing scam, for example by clicking on a link whose consequence is to send
a direct request to the server to perform the action under test. The user must be authen-
ticated to the Web application beforehand. Then, verdict is assigned by comparing the
two responses. Another test scenario consists of swapping tokens between two separate
user sessions and observe whether the server performed the actions or rejected them.
However, this technique only shows if tokens are taken into account and does not ensure
the presence of a CSRF vulnerability, since the presence of tokens may only be a decoy.

Although efficient, these scenarios are not straightforward, especially if conducted au-
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tomatically. First, they require the ability to authenticate as a user with permissions to
perform the action under test. Being able to provide valid credentials and successfully
authenticate to a Web application is not always as straightforward as one thinks for au-
tomated scanners. Second, it means navigating to the page displaying the action, which
requires some knowledge of the application’s logic. Third, automatic verdict assignment
is often complex because there may be no direct telltale indicating that an action has
been completed or rejected.

2.4/ PRIVILEGE ESCALATION

The 3 previous vulnerability types addressed in this chapter, XSS, SQL Injection and
CSRF, are all technical flaws. While there are cases where understanding the application
under test is mandatory to conduct vulnerability testing, the detection process is often
mechanical and can be performed the same way on most systems. On the contrary
to these vulnerability types, Privilege Escalation is a logical vulnerability, meaning it is
closely linked to the logic of applications. Privilege Escalation is part of a greater vulnera-
bility type known as Missing Function Level Access Control, which is the 7th most highly
ranked Web security risk, according to OWASP.

Whereas authenticating to a Website is probably one of the most frequent tasks per-
formed by users multiple times every day, in Web applications with different user roles,
an authentication mechanism is not enough to handle the delivery of content tailored to
the user and its associated role. In these cases, users must have the authorization to ac-
cess privileged functions. Authorization determines whether the authenticated user can
perform an action and whether the resources can be accessed, depending on its “role”.
Roles management is usually handled with the help of an Access Control List (ACL),
which is a list of Access Control Entries (ACE). An ACE is a combination of two values:
a user or a role, and a type of resource or a specific resource. In other words, an ACE
allows a certain user to access a certain resource.

However, the main problem is that Web application development languages do not embed
built-in support for authorization policies specification. Therefore, access control mecha-
nisms are implemented by Web developers, potentially making them flawed by design. A
common error is to rely on the GUI to restrict user actions. It consists of hiding/disabling
direct links to restricted areas to users that don’t have the sufficient privileges. In this
scenario, all it takes for one to access a function is its URL. Finding URLs to restricted
functions is just a matter of time (URL bruteforcing, social engineering, etc.).
In other cases, the authorization scheme is extremely complex that makes it prone to
human errors and at risk of not being restrictive enough. Indeed, reports of vulnerabilities
related to permissions, privileges and access control are very frequent. Moreover, they
are often associated with a high CVSS Severity and their victims are first class companies
such as IBM12, Cisco13, or Samsung14.

12https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0160 [Last visited: August 2015]
13https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0713 [Last visited: August 2015]
14https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3435 [Last visited: August 2015]

https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0160
https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0713
https://Web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3435
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PRIVILEGE ESCALATION: USAGE EXAMPLE

Because this vulnerability type encompasses logical concepts, there is no typical work-
flow. Attackers will fingerprint an application and gather relevant information in order to
understand its logic, the various user roles that exist, and restricted sensitive functions.
As an example, we consider again the forum board that served as example in Section 2.1.
As mentioned before, users can engage conversation, create topics and post messages.

With a misspelled word or an erroneous information, sometimes comes the need to mod-
ify a message. Rather that deleting the whole message and creating a new one, which
may become out of context if other users have posted replies since, a popular function is
“message edition”. A click on the edit button attached to one of its message will lead the
author to the edition page, containing a form filled with the initial message and a submit
button to save modifications.

Consider for instance an attacker who wants to edit messages from other users (e.g., for
political purposes). His first reflex is to analyze how the Web server constructs URLs. In
this case, the server has no URL rewriting and pages are visible in plain-text:

https://www.unsecure-forum.com/edit_post.php?id=1984729847

Based on this URL pattern the attacker fingerprints the Web server structure, looking for
admin functions. He tries prefixing pages with “admin_”, “admin/”, etc. He finally gets
a different error message when trying to access a restricted folder and discovers the
“backend/” folder. He pursues with pages discovery and finds out that the “edit_post”
page has a duplicate in the backend directory, which lacks of proper access control:

https://www.unsecure-forum.com/backend/edit_post.php?id=1984729847

The attacker gained access to an admin function and now has the ability to edit any
message in the database as long as he provides its id, which can be guessed easily by
analyzing features such as “reply” or “quotation”.

COMPLEXITY OF TESTING

The detection of the failure of an application to restrict access to unauthorized users is
relatively easy if the application’s logic is well understood. Indeed, testing for such flaws
consists of generating a matrix that enumerates all user roles as well as all resources.
The design of the matrix can be done with the aid of the application developers, or simply
by manually crawling the application and making educated guesses. For instance, it is
useful to find out if the back end of the Web application under test is based on a Content
Management System (e.g., Wordpress has six roles, from subscriber to super-admin).

The problem of this technique lies in its cost. First, it requires a consequent amount
of manpower to design the matrix and confront each function with all the user roles.
However, using spider tools can facilitate the process as they provide automation for the
execution part. One has to provide credentials for each user role and then let operate the
spider tool. Nonetheless, the verdict assignment activity is still done manually and going
through the logs of a spider tool can be cumbersome. Some scanners however, such as
AppScan 15 or IronWasp, use the GUI as test Oracle: they perform a first crawl using a

15http://security.media-solutions.de/download/whitepaper_watchfire/testing_privilege_escalation.pdf [Last
visited: August 2015]

http://security.media-solutions.de/download/whitepaper_watchfire/testing_privilege_escalation.pdf
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set of credentials, and then perform a second exploration using another set of credentials,
with a lower authorization level. Finally, they try to access URLs they found during the
first crawl but did not find during the second crawl. If the server response is similar to the
one obtained during the first crawl, they report it as a vulnerability.
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As reported previously, Web applications are fast evolving software systems, on which
society relies more and more. However, too many of them are plagued with vulnerabilities
that, if exploited by malicious users, may lead to sensitive data disclosure, identity theft,
money stealing, and so on. Making these systems safe and secure has therefore been a
strong area of research from academics as well as industrial companies.

One solution consists of attack prevention by designing third-party defense mechanisms.
These mechanisms may be installed on the server, such as Web application Firewalls
(WAFs), and/or on the client’s browser that examines incoming data and sanitizes or
rejects anything considered malicious. For instance, lots of solutions have been elab-
orated to protect against injection vulnerabilities, based on Web proxies [44], reversed
proxies [77], dynamic learning [9], data tainting [54], fast randomization technique [4],
data/code separation [23], or pattern-based HTTP request/response analysis [50]. Vul-
nerability prevention has proven to be efficient in a variety of general cases, but since it is
generic by definition and has no knowledge of the system it is trying to protect, it misses
a lot of attacks. For instance, client-side filtering cannot handle stored XSS [47] because
it is unable to separate harmless scripts sent by the server from malicious scripts injected
by miscreants. In addition, it does not solve the main problem of developers being un-
aware of the severity of vulnerabilities and good practices that help enforcing security.
Worse, it might invite them to solely rely on third party security tools like WAFs and en-
courage poor-secured Web applications to proliferate. Web application security should
be pushed toward writing secure code rather than deploying extra defense layers.

Another solution is then detection, also known as Web application Security Testing. Re-
lated work on Web application vulnerability testing, as stated in Figure 3.1, can be classi-
fied in two categories: Static Application Security Testing (SAST), and Dynamic Applica-
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Figure 3.1 – Web application Vulnerability Testing Overview

tion Security Testing (DAST). Both categories feature manual and automated techniques.
The first category encompasses the use of code-based techniques (mainly code review
and analysis), while the second category consists of executing and stimulating the sys-
tem in order to detect vulnerabilities (e.g., penetration testing). We discuss in the next
sections the main techniques for both categories from the literature and the state of the
practice. Note that we consecrate a section on the DAST category encompassing Model-
based Vulnerability Testing techniques to point out their strengths and weaknesses, in
order to further motivate the PMVT approach.

3.1/ STATIC APPLICATION SECURITY TESTING

A good majority of the techniques found in the literature propose to deal with Web appli-
cation vulnerabilities using SAST techniques, most of them relying on taint analysis [57],
which consists of keeping track of the values derived from user inputs. Although SAST
techniques are not directly related to the work presented in this manuscript, we discuss
the most relevant SAST papers in order to provide a self-contained state-of-the-art and
motivate the design of a DAST technique.

Kieyzun et al. [43] propose a vulnerability detection technique addressing SQL Injections
and XSS-1 (reflected) as well as XSS-2(stored), based on dynamic taint analysis. The
main idea is to track the flow of tainted data in the application, and check whether tainted
data can reach “sensitive sinks” (e.g., mysql_query function is a sensitive sink for SQL
Injections). If an input reaches a sensitive sink, it gets modified by using a library of
attack patterns, in order to test a vulnerability type. For XSS-2, a concrete+symbolic
database is used and the program is run on two inputs (one from the attacker, the other
from the victim). The algorithm tracks the flow of data from the attacker’s input through
the database, and to a sensitive sink in the execution of the victim’s innocuous input. The
symbolic database stores the taint sets of each given input parameter. Two observation
methods for XSS: lenient and strict. The tool looks for differences between the output
of an innocuous input and a potentially malicious input. Lenient reports a vulnerability
when the output differs in script-inducing elements (e.g., <script> tags) or HTML elements
(e.g., href tags). Strict seek differences only in script-inducing elements. The approach
has been implemented as a tool called Ardilla1. Its evaluation shows a good stored-XSS
detection rate but a low code coverage.

1see http://groups.csail.mit.edu/pag/ardilla/

http://groups.csail.mit.edu/pag/ardilla/
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Wassermann and Su [72] use string-taint analysis for cross-site scripting vulnerabilities
detection. This technique combines the concepts of tainted information flow and string
analysis. It detects XSS vulnerabilities due to unchecked untrusted data as well as those
due to insufficiently-checked untrusted data. An analysis algorithm first translates pro-
grams into static single assignment form in order to encode data dependencies, then it
constructs a context free grammar. Authors have established a policy that enumerates
the possible manners an HTML document can invoke a browser’s Javascript interpreter,
by studying the Gecko layout engine as well as the W3C2 recommendation. It states that
no untrusted data should invoke the Javascript interpreter. XSS discovery is performed by
analyzing the intersection between the Control-Flow Graph (CFG) of the program under
test and the regular expressions that describe the policy: a non-empty intersection means
that there is a vulnerability. Evaluation of the approach shows good results, unreported
vulnerabilities have been discovered on Claroline3, although the approach does not work
in a few cases.

Shar et al. [61] present an automated approach that not only detects XSS vulnerabili-
ties, but also statically removes them from program source code. The detection phase
relies on a taint-based analysis technique, that consists in extracting a CFG from pro-
gram source code, that shows data dependence between input nodes and HTML output
nodes. HTML output nodes produce an HTML response output, and an HTML output
node o is defined as a potentially vulnerable output node if o is also an input node, or if o
is data dependent or transitively data dependent on an input node i. The identification of
potential vulnerable nodes has been implemented by tracking the flow of untrusted data
between input nodes and HTML output nodes. They implemented a prototype-tool called
SaferXSS and evaluated it against 5 Java-based open source applications. Results show
that all the potential vulnerabilities identified by the tool were successfully removed.

Code analysis appears quite effective for detecting injection-type vulnerabilities. However,
one main weakness is that program source code is not always available. Moreover these
techniques are usually bound to one or a few specific programming languages, while
there exists a tremendous number of languages to develop a Web application (PHP, ASP,
JSP, Ruby, J2E, and so on). Several black-box techniques have been proposed regarding
the detection of Web application vulnerabilities.

3.2/ DYNAMIC APPLICATION SECURITY TESTING

To overcome the issue of source code an/availability, especially for applications manipu-
lating sensitive data (e.g., in the domain of banking), for which static testing cannot always
be deployed, another research area, called Dynamic Application Security Testing (DAST)
investigates “black-box” testing techniques. Its objective is to detect vulnerabilities and
weaknesses by tampering with a running Application. In this section, we first discuss
fully automated techniques, also viewed as point-and-shoot solutions. Second, we in-
troduce manual/tool-aided penetration testing, the most popular approach for assessing
the robustness of systems. Finally, we present current Model-Based Vulnerability Testing
techniques and discuss them w.r.t. the research challenges we have identified.

2http://www.w3.org/ [Last visited: August 2015]
3http://www.claroline.net/

http://www.w3.org/
http://www.claroline.net/
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3.2.1/ AUTOMATED PENETRATION TESTING: WEB APPLICATION SCANNERS

In the current state of the practice, automated penetration testing techniques are mainly
implemented by a category of tools called Web application Scanners (WAS) [31, 7]. One
can use WASs to test a Web application against major vulnerability types; There are many
Web applications Scanners available on the market4.

These tools follow the same process composed of 3 steps:

1. Exploration. WASs explore the Web application under test using a crawler, i.e.
a module that computes a map of the Web application. This map contains all the
visited pages and the means to access each page: either the raw HTTP request of
the page, or the User Interface (UI) link/button leading to the page.

2. Testing. Based on the previously-computed map, each page is then tested against
various vulnerability types. At the HTTP level, each parameter of an HTTP request
is fuzzed [64], whereas at the UI level, each user input field is fuzzed. Responses
to attacks are stored, for further analysis.

3. Analysis. Based on the results obtained at the previous stage, each response from
the server is analyzed to detect if the conducted attack has succeeded or failed.

Several kinds of barriers arise when it comes to use WASs [22, 7].

First, WASs have to handle identification barriers (e.g., user session, anti-CSRF tokens,
etc.), embedded in Web applications in order to prevent identity abuse. These barriers
arise at the HTTP level, but not at the UI level. Indeed, browsers handle them natively
because they automatically append identification data to each HTTP request in order
to simulate statelessness. If a WAS doesn’t handle identification barriers, the server
will reject any subsequent HTTP request. These barriers are encountered during the
exploration and the testing phase, when WASs send requests to the server in order to
respectively reach new pages or attack the application. It should be noted that most
modern WASs are able to bypass identification barriers.

Second, WASs have to handle logical data barriers, meaning that the values of HTTP
requests or the values of user inputs have to be set with relevant business-related val-
ues. Thess barriers arise at both HTTP and GUI levels. If a WAS does not handle these
barriers, the server may reject HTTP requests containing irrelevant values (e.g., a trans-
mitted parameter representing an email containing a simple string), and/or the client-side
validation may reject such values in the input fields (e.g., input field representing an email
filled with a simple string). In these cases, the request can be considered as malformed,
and not even computed by the Web application. This barriers are encountered during the
exploration and the testing phase, when the WAS sends requests to the server in order
to respectively reach new pages or attack the application. In order to deal with this issue,
one can define default values in the WAS, which may become a time-consuming work.

Third, WASs have to handle logical work-flow barriers, meaning that, in order to reach
a particular page, WASs have to deal with a particular sequence of business-related
interactions with the Web application under test. This barrier arises at both HTTP and
GUI levels. It is mostly encountered during the testing phase, in which each page is

4For a list of open-source and commercial scanning tools maintained by OWASP, see https://www.owasp.
org/index.php/Category:Vulnerability_Scanning_Tools [Last visited: August 2015].

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
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tested. The problem is that each page is often tested separately, without consideration of
the business-related flow.

To conclude, automated penetration testing techniques can achieve a first level of vul-
nerability detection by crawling Web applications and bombarding them with thousands
of attack vectors. They can also point potential flaws to penetration testers in order to
ease the discovery process. However, these tools produce a significant amount of false
positives as well as false negatives, which makes them not reliable enough for critical
systems like eBanking and eHealth Web portals, social applications, etc.

3.2.2/ MANUAL/TOOL-AIDED PENETRATION TESTING: ETHICAL HACKING

Penetration testing, also viewed as ethical hacking, is probably the most popular of all
software security testing techniques [3, 66]. Companies and software owners heavily rely
on penetration testing to assess the robustness of their products because it does not
imply any change in their development life-cycle. This activity usually intervenes once
development is completed, just before release.

Penetration Testers (aka pentesters) are white-hat hackers. As such, their process is
similar to black-hats: they analyze systems to find breaches, flaws or backdoors, and if
their search is successful they try to make their way into the systems’ back end (e.g.,
DBMSs) and retrieve sensitive data. But they differ in their intention and what they do
with their findings. Black-hat hackers’ end-game is personal gain: they steal data in order
to make money (e.g., by selling the data, or by threatening owners to disclose the stolen
data and asking for a ransom), they also deny access to service for political reasons. On
the contrary, white-hat hackers motivation is to make systems and network safer. They
don’t disclose stolen data but use it as a proof of poor security to alert owners in order to
make them consider the issue and fix their product.

A theoretical workflow for penetration testing has been proposed by Engebretson [26],
which can be broken down into 4 phases:

i - Reconnaissance: Information is naturally disclosed everywhere: on companies’
Website, jobsites, social media, google. Penetration testers gather intelligence on
their target: information about companies structure, about hosts. The objective is
to use this information to plan tailored attacks. They often tackle the issues of using
an information for social engineering attacks or discovering the build version of a
targeted Web server. For Web applications, it also includes understanding the site
map, its features, what users can and cannot do, the various user roles, and the
kind of data stored in the DBMS.

ii - Scanning: Pentesters make use of the information they gathered during recon-
naissance, and by relying on their experience start scanning their target for vul-
nerabilities and breaches. This process can be done manually or with the aid of
technical tools, such as vulnerability scanners, which speed the process and at the
same time harvest further preliminary data.

iii - Gaining access: When a breach has been found, next step is to exploit this
breach in order to gain a privileged access to the target. For example, it may con-
sists of obtaining admin credentials
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iv - Maintaining access: With a direct privileged access to the targeted system (e.g.,
with administrator credentials), it is now possible to perform the “mission”: stealing
data. In data stealing, pentesters rarely operate in a single shot, and there may be
time constraints that force them to maintain their access open. For instance, it may
consists of installing a backdoor to be able to connect to the target anytime.

Such process is often associated with a full report about the activities of the pentester(s).
This document is sent to the system’s owners and serves as proof for lack of security. It
should be noted that completing all 4 phases is not mandatory for assessing the robust-
ness of a system but the further a pentester goes, the more the impact will be on the
system’s owners to encourage them securing their product.

To achieve their ends, pentesters heavily rely on the use of tools to automate the detec-
tion and exploit process as much as possible. Main pentesting assisting tools are intrusive
proxies such as Burp5 or Zap6). Each of these tools provides similar features, and may
be very efficient in pentester expert hands. As proxies, they can sniff HTTP messages ex-
changed between browsers and a server. Moreover, these tools can record/replay each
sniffed exchange. Using these features, pentesters can exactly know the exchanged data.
Moreover, as an intrusive tool, transiting HTTP messages can be intercepted and mod-
ified on-the-fly with attack vectors. Thanks to this capability, pentesters can on the one
hand test the robustness of the server-side part of Web applications (e.g., by modifying
HTTP messages transiting to the server), and on the other hand test the robustness of the
client-side part of Web applications (e.g., by modifying HTTP messages transiting to the
browser). These tools are also able to replay recorded HTTP messages, with or without
modification, and spider Web applications (i.e. explore a Web application and create a
map as any Web application Scanner can do). Finally, intrusive proxies can usually be ex-
tended with plug-ins, depending on the community, for example dedicated to automated
fuzzing and automated injection.

The problem of these tools is that they work at HTTP level, which is not suitable for many
modern applications [35]. Indeed, most critical systems embed protection mechanisms to
force users to interact with the GUI, which makes the crafting of relevant HTTP requests
very complex. These mechanisms can be spread on both client-side and server-side
parts of the application. For instance, when a Web server generates a new page, each
user action (hyperlinks, from submit, ...) is associated to a dynamically-generated control
parameter. When users interact with the application through the GUI, the Javascript code
of the client-side part of the Web application crafts the correct HTTP request with the rel-
evant control parameters. Hence, each request to the server embeds control parameters,
dynamically generated on each page. Without the knowledge of the Javascript code’s
behavior and the knowledge of the control parameter, crafting a correct HTTP request is
merely impossible.

Therefore, when the use of tool is not a viable option, penetration testing turns to manual
testing. In this context, the know-how and experience of the pentester is even more
crucial. For each kind of vulnerability, pentesters rely on informal test patterns that provide
the procedure to test the application, in order to look for vulnerabilities. They typically
design code scripts (e.g., using python) to automate parts of the detection and exploit
process. For example, a script can help to automate the iteration over a list of attack
vectors for SQL Injection discovery.

5https://portswigger.net/burp/ [Last visited: August 2015]
6https://www.owasp.org/index.php/ZAP [Last visited: August 2015]

https://portswigger.net/burp/
https://www.owasp.org/index.php/ZAP
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The main limitation of manual penetration testing is its lack of exhaustiveness [34], as pen-
testers only focus on a sub-part of the application considered the most “at risk”. A Pen-
etration testing campaign is often submitted to a limited budget, which makes pentesters
work within a restricted time box, thus forcing them to make compromises about their
test process. It means having to focus on major vulnerability types and conduct attacks
only on the major parts of Web applications (based on their understanding of the appli-
cations, and/or following a risk assessment), letting aside parts of applications that, even
if considered less critical, may be vulnerable and represent an entry-point for hackers to
compromise the entire system.
Moreover, this technique can be viewed as a one shoot solution [55]. Therefore, for long-
life Web applications with a constant evolution in their features and the way they deliver
information, the cost of conducting a new penetration testing campaign will be close to
the initial one, as the reusable material in this process is very thin.
Lastly, penetration testing is a late life-cycle paradigm [3] and as a result uncovers vul-
nerability too late, often when the final product development is considered completed.
Hence, when both time and budget are severely constrained, options for fixing breaches
are limited. These constraints lead companies to overlook security warnings and flaws in
their products, because they assessed that the fixing-cost is superior to the probability of
an attacker exploiting the flaw associated with the criticality of the assets at risk.

3.3/ MODEL-BASED VULNERABILITY TESTING

Model-Based Testing (MBT) [68] refers to the process and techniques for the automatic
derivation of test cases from models. It is a widely-used approach that has gained much
interest in recent years, from academic as well as industrial domains, especially by in-
creasing and mastering test coverage, including support for certification, and by providing
the degree of automation needed for accelerating the test process.

More recently, MBT has been extended to address security testing. A taxonomy about
the current state of the art of Model-Based Security Testing has been created in [28].
Authors considered more than a hundred approaches and categorized them depending
on several factors, such as model type (Threat model, Attack model), test selection crite-
rion (structural coverage, fault-based, etc.), and maturity of evaluated system (prototype,
premature system, production system).
Model-Based Security Testing has proven its efficiency when it comes to test documented
security properties [27, 40], such as access control policies [53]. However, a large part
of what we call security is implied and usually not explicitly specified in a document. This
part is referred as Security Vulnerability Testing, which consists of defining, identifying,
quantifying and prioritizing the security holes (vulnerabilities) in a system, network, or ap-
plication software. Whereas Functional Security Testing is about “verifying that a given
security property or policy is met”, Security Vulnerability testing is more about “verifying
that users cannot use a system in a way it was not intended to be used” [67].

While model-based vulnerability testing may help conduct tests at every infrastructure
layer (networks, systems, applications), most papers focus on application-level vulnera-
bilities, typically for Web applications. In this section, we provide an overview on Model-
Based Vulnerability Testing, which can be grouped into 3 main families: pattern-based
and attack-model based, model-checking, and fuzzing approaches.
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3.3.1/ PATTERN-BASED AND ATTACK-MODEL BASED APPROACHES

The majority of MBT papers have chosen not to represent the behavior of the SUT, but
rather the behavior of attackers. Whether these are referred to as attack-models or pat-
terns, the idea is to model how malicious individuals would conduct an attack, step by
step.

Blome et al. [10] describe a model-based vulnerability testing tool called VERA, standing
for ‘VERA Executes the Right Attacks’. It is based on the fact that usually the presence of
a vulnerability is a prerequisite to deploy an attack, but actually exploiting this vulnerability
is time-consuming. This approach relies on attacker models, that can be seen as exten-
sions of Mealy machines. These models, if combined with the back-end of the approach,
can provide fully automated test scripts. The back-end of the approach is composed of
(i) an instantiation library, which is basically a list of nominal and malicious vectors, (ii)
a configuration file that contains system-specific information (cookie data such as the
session ID, target URL, specific headers, etc...), and (iii) an XML file describing the at-
tacker model to be tested. This approach can address a large variety of vulnerabilities
like code injection, source disclosure, file enumeration, RFI, CSRF, among others. How-
ever, advanced vulnerability types like multi-step XSS and second order SQL Injections
are not addressed in this paper. It would require to model a complex heuristic to inject
and observe this particular vulnerability type.

Bozic and Wotawa [15] present a model-based testing approach relying on attack patterns
to detect Web application vulnerabilities, namely SQL Injections and XSS. An attack pat-
tern is a specification of a malicious attack. Represented by a UML state machine, it
specifies the goal, conditions, individual actions and post-conditions of the represented
attack. Test cases are computed and executed by branching through the states of the
state machine and executing the corresponding methods of the SUT. Concretizing vul-
nerability test cases with malicious inputs is either done by supplying a static list (for SQL
Injections), or by dynamic generation based on combinatorial testing (for XSS, more in-
depth details are found in [14]). This approach has been implemented as a toolchain
using several existing tools, such as Yakindu7 for the state machine modeling, Eclipse8

to encapsulate the entire system, and WebScarab9 for the interpretation of communi-
cation between the Web application and clients, and for manual submission of attacks.
Experiments have been conducted on 3 vulnerable applications (DVWA, Mutillidae, and
BodgeIt) and one real life application (WordPress Anchor). SQLI and XSS vulnerabilities
were found on Mutillidae and DVWA, on various security levels. On the contrary, no vul-
nerability was found on WordPress Anchor because an administrator needs to approve
each post submitted by users. Therefore, it requires a more detailed model of the attack.
This technique, however, only addresses single-step XSS and SQL Injections, and there
is no mention on how to treat cases that involve user actions between injection and ob-
servation. In addition, interactions with Web applications are based on HttpClient, a java
library that provides basic functionality for accessing resources via HTTP but does not
provide the full flexibility or functionality needed by many applications. As a consequence,
client-side code is not taken into account, which represents a handicap to the deployment
of this technique on modern applications with a strong reliance on Javascript and Ajax.

Wei et al. [73] focus on penetration test case inputs and propose a model based pen-

7http://statecharts.org/ [Last visited: August 2015]
8https://eclipse.org/ [Last visited: August 2015]
9https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project [Last visited: August 2015]

http://statecharts.org/
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https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
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etration test method for SQL Injections. First, they provide attack models using the Se-
curity Goal Model notation, which is a modeling method used to describe vulnerabilities,
security properties, attacks, and so on. Models are generic and describe goals in a top-
down fashion. A typical goal is for instance “steal system information”, and is modeled
as two sub-parts: error-message utilizing and blind injection. Hence, each top-down
path in a model represents an attack process that realizes a certain attack goal. Each
top-down successful attack process represents the attack scheme, defined as a triple
< OBJ, INP,OUT >, OBJ being the attack goal, INP being the attack input, and OUT
being the vulnerable response of the Web application. To perform an actual attack, one
must instantiate the test case model according to the fingerprint of the Web application
and use certain coverage criteria to generate executable test cases. Authors created an
automated Web application SQL Injection vulnerability penetration test tool called NKSI
scan: it applies the widely used “crawling - attack – analysis” method to detect the SQL
Injection vulnerability in subject applications. They compared their tooled technique with
popular scanners IBM AppScan and Acunetix. Results show that NKSI was able to dis-
cover more flaws than those two scanners. Nonetheless, this technique still makes use
of a crawler to identify injection points. It therefore may be unable to visit parts of Web
applications and cannot address second order SQL vulnerabilities.

In [78], authors present an approach to automate the generation of executable secu-
rity tests from Threat Model-Implementation Description (TMID) specifications, which
consist of threat models represented as Predicate/Transition (PrT) nets and a Model-
Implementation Mapping (MIM) description. A threat model describes how a malicious
individual may trigger the system under test to violate a security goal. A MIM descrip-
tion maps the individual elements of a threat model to their implementation constructs.
Abstract test cases (i.e. complete attack paths) are computed in two steps. First a reach-
ability graph is generated from the threat net. It represents all states and state transitions
reachable from the initial marking. Then the reachability graph is transformed to a tran-
sition tree containing complete attack paths by repeatedly expanding the leaf nodes that
are involved in attack paths but do not result from firings of attack transitions. Concrete
test cases are derived by automatically composing the attack paths and the MIM descrip-
tion. The approach has been implemented in ISTA, a framework for automated test code
generation from Predicate/Transition nets, and experiments have been conducted on two
real-world systems. It shows good results with most vulnerabilities being found (90%),
whether they are Web-related vulnerabilities (XSS, SQLi, CSRF, etc.) or protocol-based
vulnerabilities (FTP).

Salva et. al. [58] present a Model-Based Data Testing approach for Android applications
that automatically generates test cases from intent-based vulnerabilities, using vulnera-
bility patterns. It specifically targets the Android Intent Messaging mechanism, whose
objective is to allow sharing of actions and data between components using content-
providers, in order to perform operations. The concern is that attackers may exploit this
mechanism to pass on payloads from component to component, infecting the whole sys-
tem and making their attack more severe. This approach therefore searches for data
vulnerabilities inside components. The automated generation of test cases relies on 3
artifacts: vulnerability patterns, class diagrams, and specifications. Vulnerability patterns
are specialized Input-Output Symbolic Transition Systems, which allow formal expression
of intent-based vulnerabilities. A pattern formally exhibits intent-based vulnerabilities and
helps to define test verdicts. Class diagrams are partially generated from the decom-
piled Android application under test, and represent Android components with their types
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and their relationships. They typically provide the Activities (these are Android compo-
nents that display screens to let users interact with programs) or Services composed with
content-providers. Specifications are generated from the Android manifest. They express
the behavior of components after the receipt of intents combined with content-provider
requests. Test case generation is performed by composing the 3 artifacts. This method
has been implemented in a tool called APSET, and has been experimented on several
real life applications. Results support the effectiveness of the tool, finding vulnerabilities
in popular Android applications such as YouTube and Maps.

3.3.2/ MODEL-CHECKING APPROACHES

Test cases can also be obtained by using a model-checker. Given a Website specifica-
tion/model, a typical model-checking approach will inject faults into the model and use
a model-checker to generate attack traces. Various techniques have been proposed to
detect technical vulnerabilities (XSS, SQLi, CSRF, etc.) as well as logical vulnerabilities
(authentication bypass, insecure direct object references, etc.).

Buchler et al. [17] represent the SUT using a secure AVANTSSAR Specification Lan-
guage (ASLan++) model, where all traces fulfill the specified security properties. A library
of fault injection operators has been developed. The goal is to apply a fault injection op-
erator to the model, and use a model checker to report any violated security goal. If a
security goal has indeed been violated, the reported trace then constitutes an Abstract
Attack Trace (AAT). The attack traces are translated into concrete test cases by using
a 2-step mapping: the first step is to translate an AAT into WAAL (Web application Ab-
stract Language) actions, the second step is to translate WAAL actions into executable
code. An attack may be conducted in a fully automated fashion, at the browser level. In
some specific cases (disabled input elements, etc.), a test expert may be required to craft
HTTP level requests in order to recover from the error. So far, this approach has only
addressed first-order XSS. Moreover, the creation of a formalized representation of Web
applications may become tedious and time-consuming as the size and complexity of the
Web application under test rise.

Rocchetto et. al. [56] present a formal model-based analysis technique for automatic
detection of CSRF during the design-phase. It is based on the ASLan++ language to
define the several entities involved (client, server) and their interactions. The client is
used as an oracle by the attacker, and the model is centered around the Web server and
extends the work of Dolev-Yao (usually used for security protocol analysis). The design
of models relies on the extraction of a specification Once designed, models are submitted
to the AVANTSSAR platform, which, when a CSRF is found, returns an abstract attack
trace reporting the list of steps an attacker would follow in order to exploit the vulnerability.
This technique takes into account that the Web server may have some CSRF protection
in place, and will try to bypass it. It will typically look for CSRF token-related flaws, for
instance if the tokens are unique for each client, and for each client/server interaction. If
no attack trace is produced, the specification is considered safe regarding CSRF. Authors
assume that attackers can listen to the network and build their attack upon the transac-
tions between a client and the server. However, this technique is not about testing the
final product itself but rather the design of the application, relying on a specification or on
how developers are planning to proceed. Therefore, testing the specification itself does
not ensure that the implementation is protected.
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Felmetsger et. al. [29] present advances toward the automated detection of application
logic vulnerabilities, combining dynamic execution and model checking in a novel way.
Dynamic execution allows for the inference of specifications that capture a Web applica-
tion’s logic, by collecting likely invariants. A likely invariant is derived by analyzing the
dynamic execution traces of the Web application during normal operation, and captures
constraints on the values of variables at different program points, as well as relation-
ships between variables. The intuition is that the observed, normal behavior allows one
to model properties that are likely intended by the programmer. Model checking is used
with symbolic inputs to analyze the inferred specifications with respect to the Web appli-
cation’s code, and to identify invariants that are part of a true program specification. A
vulnerability is therefore any violation of such an invariant. This technique has been im-
plemented in a tool called Waler (Web application Logic Errors AnalyzeR), which targets
servlet-based Web applications written in Java. Up to now, Waler detects a restricted set
of logic flaws and is currently limited to servlet-based Web applications, but was still able
to find previously-undetected vulnerabilities in real-life applications while producing a low
number of false positives.

3.3.3/ FUZZING APPROACHES

Fuzzing is extensively used in vulnerability testing [41] to introduce malformed data or
mutate nominal values to trigger flawed code in applications. Fuzzing techniques are
usually very cheap to deploy, don’t suffer from false positives, but lack an expected-result
model and therefore rely on crashes and fails to assign a verdict. Two main fuzzing tech-
niques exist: mutation-based and generation-based. Mutation fuzzing consist of altering
a sample file or data following specific heuristics, while generation-based fuzzers take
the input specification and generate test cases from it. Fuzzing may be used for crafting
malicious input data [24], or crafting erroneous communication messages [71].

The approach presented by Duchene [24] consists of modeling the attacker’s behavior,
and driving this model by a genetic algorithm that evolves SUT input sequences. It re-
quires a state-aware model of the SUT, either derived from an ASLan++ description or
inferred from traces of valid/expected SUT execution. This model is then annotated us-
ing input taint data-flow analysis, to spot possible reflections. Concrete SUT inputs are
generated with respect to an Attack Input Grammar that produces fuzzed values for re-
flected SUT input parameters. The fitness function of the genetic algorithm depends on
the obtained SUT output following the injection of a concrete SUT input. It computes
the veracity of an input by looking for correlations, using the string distance between a
given input parameter value and a sub-string of the output. Two genetic operators are
used: mutation and cross-over. It is an efficient technique for detecting XSS, as it goes
beyond the classical XSS evasion filters that may not be exhaustive. Such a technique
also tackles multi-step XSS discovery by using a more complex string matching algorithm
to generate an annotated FSM, in order to inspect the SUT to find the possibilities of XSS
at certain places. The downside of this approach is that it requires a great effort from test
engineers to deploy the whole process: the model inference process needs to be rightly
tuned. Also, it cannot handle modern Web applications, for instance client-side oriented
applications (which rely on Javascript and Ajax).

A model-based behavioral fuzzing approach has been designed by Wang et. al. [71] to
discover vulnerabilities of Database Management Systems (DBMS). A DBMS is defined
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by a format rule that specifies packet format and a behavior rule that specifies its se-
mantics and functionality. This approach is based on two main artifacts. The first artifact
is a behavioral model, which includes fuzzing patterns and behavioral sequences. This
is obtained from a behavior analysis of DBMS (protocol format analysis, attack surface
analysis, etc.). A fuzzing pattern expresses the data structure of packets, the needs of se-
curity testing, and the design strategy for vulnerability discovery. A behavioral sequence
defines the message transfer order between client and DBMS. The second artifact is
a DBMS Fuzzer composed of a test instance (a detailed test script based on fuzzing
patterns), and a finite state machine model EXT-NSFSM used for semi-valid test case
generation based on behavioral sequences and test instances.
Authors describe a general framework for behavioral fuzzing that has been implemented
and on which they carried on experiments. It allows for the generation of thousands of
fuzzing instances, and despite a few errors of analysis and script, the tool was able to
discover buffer overflow vulnerabilities, 10 of which were not released yet.

3.4/ SYNTHESIS

Two different strategies exist for improving security of Web applications: prevention and
detection. Prevention is about designing security mechanisms and functionalities to pro-
tect applications against attacks. Detection is about testing a Web application for vul-
nerabilities to fix them before putting the final product online. When it comes to security
testing of Web applications, Two main techniques are proposed in the literature and the
state-of-the-practice: SAST and DAST.

SAST designates white-box techniques: they analyze source code, either manually or
automatically, to detect faults in the implementation of the application that may lead to
a vulnerability. However, SAST techniques suffer from several weaknesses. First, they
are usually bound to a single programming language, limiting their testing scope to Web
applications that use the same language. Second, they produce a fair amount of false
positives because they don’t run the application, and consequently report suspicions of
vulnerabilities rather that actual vulnerabilities. Third, Web application source code is
often unavailable.

As opposed to SAST, DAST designates black-box techniques: they probe Web applica-
tions for security vulnerabilities, without access the to source code, by mimicking attacks
from hackers.
The probing can be done manually by ethical hackers and security test engineers. We
then speak of manual penetration testing. These experts rely on their experience and
know-how, potientially aided with specific tools such as spiders tools, to conduct attacks
in order to penetrate and compromise the application. This is the most widespread tech-
nique within the industry. Even so, there are several drawbacks inherent to manual pene-
tration testing. First, manual penetration testing lacks exhaustiveness, as test engineers
have to work within restricted time-boxes often due to a limited budget. Second, this tech-
nique can be viewed as a one shoot solution, which is not adapted to Web apllications
with a constant evolution in their features. Third, penetration testing is a late life-cycle
paradigm that uncovers vulnerabilities too late, when options for fixing them are limited.
The probing can also be done automatically, using Web application vulnerability scanners.
These tools are point-and-shoot solutions that bombard the Web application under test
with thousands of malicious requests carrying payloads. These tools can test for a major-
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ity of vulnerabilities with very little cost in human resources and time. However, scanners
are meant to be generic and suitable for any Web application, which means they lack
the necessary behavioral knownledge of the application to detect complex vulnerabilities.
Indeed, they don’t take the logic of applications into account, which leads to incomplete
crawling results, and an incapacity to perform sophisticated attacks. Moreover, the detec-
tion rate strongly varies between scanners, and users may have to use several scanners
in order to get a trustable feedback about the security status of their application(s).
A new type of approaches that extend MBT for security testing has been the object of
many research studies and has attracted the interest of a large group of scientists in re-
cent years. These approaches rely on a variety of techniques to compute black-box test
cases, such as attack patterns, fuzzing, and model-checking. They have shown promis-
ing results, having better detection rates than scanners and being less time consuming
than manual penetration testing. However, Model-based Vulnerability Testing approaches
usually focus on only one or two vulnerability types, from the same category (e.g., XSS
and SQLi are both malicious data injections). In addition, test concretization is often con-
sidered as an accessory and kept minimal. Consequently, these approaches have issues
to address scalability and thus, modern Web applications heavily relying on Javascript
and JQuery10.

With PMVT, we aim at advancing the state-of-the-art of Model-based Vulnerability Testing
as well as of security testing, by proposing a model-based approach that can generate
tests for 4 vulnerability types that are very different and concerns various aspects of Web
applications (i.e., structure, logic, etc.). Test concretization has been addressed with care
to enable the computation of executable test scripts on any Web application, regardless
of their back-end and the technologies they rely on. The objective of PMVT is to conduct
sophisticated attacks to unveil complex vulnerabilities that scanners fail to detect, whith a
good level of automation that makes it a better choice than manual penetration testing in
terms of time and resources costs.

10https://jquery.com/ [Last visited: August 2015]

https://jquery.com/
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The work presented in this manuscript registers as a model-based software vulnerability
testing approach, which has been developed on top of an existing toolchain called Certi-
fyIt [45]. This chapter centers on describing the inner workings of CertifyIt in order to get
a better understanding of how it served as a basis for the PMVT approach. The chap-
ter ends with an explanation on why CertifyIt is a good candidate for vulnerability testing
of Web applications but needs to be augmented and adapted, and on how the PMVT
approach can fill this gap.

4.1/ CERTIFYIT: SOFTWARE TESTING BASED ON UML AND OCL

CertifyIt [45] is a Model-Based Testing toolchain, which is a fruit of the collaboration be-
tween the Institut Femto-ST1 and a software testing company called Smartesting2.
Smartesting is a model-based testing technology provider focused on technical areas
such as IT systems, electronic transactions, security components, embedded systems
and distributed systems. For this, Smartesting develops the CertifyIt technology that
allows automatic test generation from requirements to test cases using a model-driven
approach. Development of the Smartesting core technologies began in the mid 1990s
at the Université de Franche-Comté in Besancon (France), with the goal of reducing the
cost of software validation using automated test generation techniques. Smartesting (re-
named Smartesting Solutions & Services SAS since January 2015) was incorporated at
the beginning of 2003 as a spin-off of the Computer Science Lab of the Institut Femto-ST
(Universié de Franche-Comté / CNRS / INRIA).

CertifyIt is a fully equipped toolchain that allows the automated generation of functional
test cases from a behavioral model of the SUT. Behavioral models that are designed as

1http://www.femto-st.fr/ [Last visited: August 2015]
2http://www.smartesting.com [Last visited: August 2015]
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Figure 4.1 – Smartesting CertifyIt Process

part of the CertifyIt methodology use the UML notation and can be seen as the combina-
tion of 2 representations. On the one hand, the static representation (i.e. class diagrams)
contains all the points of control and observation of the SUT, along with its state variables
and their domain of definition. The initial state of the SUT is defined by instanciating these
class diagrams using an object diagram. On the other hand, the dynamic representation
(i.e. state-machines) contains the expected behavior of the SUT, which describes the
evolution of its state variables defined in the static representation. Moreover, UML is as-
sociated with the Object Constraint Language (OCL) [36], which allows expected behavior
to be formalized using OCL expressions, thus increasing the precision of models.

Test selection consists of deriving test targets to cover the test objective. CertifyIt can
generate test cases for 2 types of characteristics: functional behavioral testing [12] and
functional security testing [32]. Functional behavioral testing is about achieving struc-
tural coverage of the behavioral model, which combines decision-condition coverage for
OCL expressions, and transition-based coverage for state-machines. Functional security
testing relies on the formalization of test scenarios extracted from the test objective us-
ing high-level expressions called test purposes, in order to derive test targets from the
model that are tailored to the test objective. Then, for each test target, an automated
theorem prover is used to search for a path from the initial state to the targeted state,
and data values that satisfy all the constraints along that path. The approach supports
traceability between test cases and system requirements by using identifiers that refer to
the expression of potentially informal and external requirements, and linking identifiers to
model animation-related actions such as operation postconditions.

CertifyIt allows the publication of generated abstract test cases in a standardized XML
format. This structured document is then used as a base for adapters that translate
abstract test cases into executable scripts (e.g., JUnit3), or in a test repository (e.g., HP

3http://junit.org/ [Last visited: August 2015]

http://junit.org/
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Quality Center platform4).

We detail in the next subsections the activities that compose a typical MBT process using
CertifyIt, as depicted in Figure 4.1 First, we present the modeling notation, based on
UML and OCL. Second, we explain how test cases are selected and translated into test
targets, depending on the test objective. Third, we describe the automated generation
mechanism of abstract test cases from test targets. Finally, we express how abstract test
cases are transformed into test scripts, which can be executed on the real system. Notice
that we do not elaborate on the traceability between requirements and test cases, as it is
natively handled by CertifyIt and is out of the scope of this thesis.

4.1.1/ MODELING NOTATION

CertifyIt uses a subset of UML2 [37], called UML4MBT [13], as notation for MBT pur-
poses. UML is a standard graphical language, in a diagrammatic form, designed for
writing software development plan while remaining a simple notation that is easy to write
and understand. It can be used to view, specify, construct and document software system
artifacts. Its large expressiveness makes it suitable for the modeling of various types of
systems (Web applications, embedded systems, . . . ).

Because MBT models are bound to be processed in order to generate test cases, re-
ducing the UML notation expressiveness as much as possible implies simpler processing
and better test generation time. Thus, UML4MBT is based only on 3 diagrams: UML
class diagrams (to model the control points and observation of the SUT), object diagrams
(to define test data), and state-machines (to model dynamic behavior of the SUT). It also
makes use of a subset of the OCL language [36], called OCL4MBT, in order to add con-
straints to operations and state-machine transitions. In addition, OCL4MBT is also used
as an action language, i.e. a language that expresses state changes in the model, based
on UML state machines and class diagrams [8].

These 3 diagrams, completed with OCL4MBT constraints, are sufficient to design com-
prehensive, precise and interpretable models to test finite state systems with the Cer-
tifyIt tool. The next subsections describe each modeling artifact of the UML4MBT and
OCL4MBT notations.

4.1.1.1/ CLASS DIAGRAMS: STATIC STRUCTURE

Class diagrams express the static structure of the model in terms of classes and relation-
ships between those classes. It provides an abstraction of the objects of the SUT and
their relationships / dependencies.

UML4MBT Class diagrams modeling relies on a restricted set of UML elements:

i - Classes: They define a set of objects of the SUT with semantics and common
properties. These properties are expressed through class attributes and class op-
erations. Object-oriented properties such as inheritance are not implemented.

4http://www8.hp.com/us/en/software-solutions/quality-center-quality-management/ [Last visited: August
2015]

http://www8.hp.com/us/en/software-solutions/quality-center-quality-management/
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ii - Reflexive and binary associations: They represent a structural relationship be-
tween 2 objects of the SUT. Associations are always binary, defined between 2
classes. They may be reflective and link 2 objects of the same class. The available
multiplicities are 0..1, m, n..∗ and n..m with m and n integers such as 0 ≤ n < m.
Association classes are not implemented.

iii - Class attributes: They define the state variables of the SUT. They support primi-
tive types (Boolean and bounded Integers) and enumeration types. Object types are
represented using a 1-1 association between the 2 classes rather than attributes.
The String type is not available in UML4MBT. Strings are abstracted into enumera-
tion literals.

iv - Operations: They model the actions supported by an object. Class operations
are used to model the methods that can be applied to instances of the owner class.
They formalize activated actions on the system. An operation can be defined with
parameters (input and output) that can be typed as Boolean, Integer, Enumeration
Literal or Object. OCL preconditions and postconditions can be used to formalize
the behavior of an operation. Moreover, operations are also used to observe results.

v - Enumeration classes: They are composed only of literals. Enumerations are
used to model static types like strings (SUT’s output messages, user inputs, . . . ).
For example, the following user passwords “cheval” and “erf58RO_$!! ” are re-
spectively abstracted as literals USER_PASSWORD_1 and USER_PASSWORD_2,
contained in an enumeration class called USER_PASSWORDS.

There is a close correlation between class diagrams and object diagrams: an object
diagram is an instantiation of a given class diagram. In this sense, a class describes a set
of objects and an association describes a set of links. Objects are instances of classes,
links are instances of associations. Object diagrams in the CertifyIt approach are used to
characterize both the initial state of the SUT and the objects that can be operated during
a test scenario.

4.1.1.2/ OBJECT DIAGRAMS: INITIAL STATE

A class diagram is a graphical representation of a structural object-oriented program that
can be instantiated. To model this instantiation, UML proposes object diagrams. In this
diagram it is thus possible to define objects that are in fact instances of a class, and links
between objects that are instances of associations.

Object diagrams serve 2 purposes in UML4MBT. On the one hand, they represent the
initial state of the SUT. Objects and their dependencies are modeled in their state be-
fore interacting with the SUT. On the other hand, Object diagrams contain all objects
when running the model because creation and deletion of objects are not allowed in the
UML4MBT notation. Instead, these 2 actions are respectively simulated by creation and
deletion of links between objects in the model. This way, object diagrams represent the
initial state of the system and any objects to be used during its animation.

Object diagrams can be composed of the following elements:

i - Objects (class instances): They are the concrete objects of the SUT that are used
in the generated tests. They further represent the initial state of the SUT.
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ii - Slots (attribute instances): They define the value of a attribute (state variable) at
a given point. Slots must be valued.

iii - Links (association instances): They define the dependencies between objects
in the initial state of the SUT.

It should be noted that in UML4MBT, class diagrams typically has a specific class, called
class under test, which represents the SUT. This class may only be instantiated once,
and this instance represents the overall system.

4.1.1.3/ STATE-MACHINE DIAGRAMS: DYNAMIC STRUCTURE

State-machine diagrams, also called Statecharts, provide an abstract description of the
dynamic of one or more UML entities, in the form of a finite state automaton (UML formal-
ism is a variant of Harel’s statecharts [59]). Typically, state-machines describe classes
behavior. They supplement a class diagram by specifying a system’s behavior and state
changes. They have been chosen in UML4MBT instead of other dynamic diagrams, such
as use-case diagrams, mainly because they allow the specification of richer behaviors
and provide better support for loops and alternative paths.

In UML4MBT, state-machines define the behavior of the SUT. Indeed, the SUT is modeled
as a UML class, and the state-machine is contained by this class. In this sense, state-
machines can only be associated to the class under test. Test cases are directly related
to the possible execution traces from the state-machine.

A state-machine is a type of controller: it consists of a set of nodes connected by transi-
tions. A node represents the SUT’s state at a given point, and a transition expresses a
SUT state change. A transition is triggered by an event of different types (method call, a
signal, a timeout).

The following UML elements can be used in UML4MBT state-machines:

i - Initial State: Designates the starting point of the state-machine. It must be unique.

ii - Final State: Designates the end of an execution of the state-machine. There may
multiple final states.

iii - Simple State: Basic state, represents the SUT at a given point.

iv - Choice State: Designates a point of choice. It heads the execution to different
states depending on how is evaluated its precondition (onEntry).

v - Composite State: Designates a state that contains a sequence of sub-states.

vi - External Transition: Links 2 different states (a source state and a target state)
together.

vii - Internal Transition: Used when the firing of the transition does not lead to a state
change.
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4.1.1.4/ OBJECT CONSTRAINT LANGUAGE: CONSTRAINTS AND ACTIONS

A UML diagram on itself cannot model all the important aspects of a system. The
need for example to define constraints associated with objects of a model lead to the
use of a language to express conditions and constraints, called Object Constraint Lan-
guage (OCL) [36]. OCL is a formal language for defining constraints on UML models,
for instance preconditions and postconditions on operations, guards constraints on state-
machine transitions, and invariant expressions on classes. These constraints, in the form
of Boolean expressions, can specify invariant conditions that a model must verify, or spec-
ify requests to objects defined in a model. Thereby, OCL clarifies models. The notation,
between natural language and mathematical language, was developed by the IBM Insur-
ance division, and comes from the Syntropy method [18].

A subset of OCL, called OCL4MBT, has been defined within the CertifyIt approach for
MBT purposes. The language serves 2 purposes within the approach. On the one hand,
it is used to improve the precision of behavioral models by adding constraints to operation
call (i.e. as a precondition) and transition triggers (i.e. as a guard). On the other hand, it
is used to formalize the behavior of the SUT, in the form of actions that change the SUT’s
state. However, OCL is not an action language (nor procedural), but a declarative lan-
guage. It only allows the description of constraints on elements of models. This problem
is addressed in CertifyIt by providing a double interpretation of the language.

Thus, OCL is interpreted as a constraint language in operation preconditions, to express
the execution condition of the operation, and in transition guards, to express the condition
of activation of the transition. It is interpreted as an action language in operation post-
conditions to express the behavior of the operation, and in transition effects to express
the related behavior of the state change expressed by the transition. As an example,
the OCL expression self.attribute=value will be interpreted differently depending on
whether the context is passive (preconditions and guards) or active (postconditions and
effects). In a passive context, the expression is interpreted and evaluated as a standard
Boolean expression. In an active context, it is interpreted as an assignment of the object
attribute to the given value. Notice that OCL easily lends itself to this particular second
interpretation; the context of an expression is deterministic and is comprehensive in the 2
cases. This particular but non-ambiguous interpretation of OCL makes it possible to use
OCL as an action language for UML test generation models. The 2 own interpretations
(passive and active) are exhaustively defined in [13].

Moreover, OCL4MBT is interpreted sequentially as opposed to OCL. Indeed, OCL is a
constraint language without side effect: an OCL expression cannot change the state of
the system. Thus, a variable used in an operation exists in the state before and the state
after, and has no intermediate value during the execution of the operation. For variables
in a postcondition, OCL allows reference to both its value at the beginning of the operation
and at its end: the keyword @pre is used to refer to its initial value. However, because
of the double interpretation of the language and the absence of real postconditions, this
property has not been integrated to OCL4MBT. Interpretation of OCL4MBT constraints is
therefore sequential, a variable may change of value several times during an operation
processing and the final value of the variable, i.e. its value at the end of the operation
processing, is the one that has been affected to it last.

Next sections present how test selection is performed from UML4MBT models within
CertifyIt, how abstract test cases are generated, and how they are transformed into exe-
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cutable scripts.

4.1.2/ TEST SELECTION

MBT makes use of test selection criteria to select the tests to be derived from the model.
In CertifyIt, test selection is done differently depending on the tested characteristics.

For functional behavioral testing, test selection is built-in: the test generation engine de-
rives test targets until all behaviors have been activated. For functional security testing,
test selection is done by formalizing the test scenarios extracted from the test objec-
tive using high-level expressions called test purposes, to drive the test generation engine
through the test model in order to derive test targets and generate test cases. We present
each technique in the next sections, with an emphasis on test purposes since the PMVT
approach relies on an augmented version of the test purpose language for the formaliza-
tion of vulnerability test patterns.

4.1.2.1/ FUNCTIONAL BEHAVIORAL TESTING

Test selection for functional testing is built-in in Certify-It. It directly relies on the informa-
tion captured by the test model. The goal is to activate all behaviors with one or several
test cases.

A behavior is a sequence of guarded substitutions that define a state of the SUT. A
guarded substitution is the assignment of a variable or set of variables of the SUT in
a specific condition.

Structural behavioral coverage of the model exercises the functionalities of the system by
directly activating and covering the corresponding operations. In the case of a UML4MBT
model, a behavior can be:

1. An execution branch in an operation,

2. A transition, internal or external, of the state-machine,

3. An input or output action of a state of the state-machine.

As behaviors, the generated targets are sequences of guarded substitutions. The test
target production rule in CertifyIt uses the Decision / Condition Coverage (D/CC) criterion.

To illustrate this criterion, consider an OCL4MBT expression (see Figure 4.2) defined
as the postcondition of an operation of the SUT, and therefore interpreted as an action
language.

Three behaviors can be extracted from this operation:
B1 = [I ∨ J](a = 3); (c = 4)

B2 = [¬(I ∨ J)](b = 5); [X ∨ Y](a = 1)(c = 4)

B3 = [¬(I ∨ J)](b = 5); [¬(X ∨ Y)](b = 2)(c = 4)

Satisfying the D/CC criterion requires the production of 5 test targets:
D/CC(B1) = [I](a = 3); (c = 4), [J](a = 3); (c = 4)
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1 i f I or J then
a = 3

3 else
b = 5 and

5 i f X or Y then
a = 1

7 else
b = 2

9 end i f
end i f and

11 c = 4

Figure 4.2 – OCL4MBT expression: D/CC coverage

D/CC(B2) =















[¬(I ∨ J)](b = 5); [X](a = 1)(c = 4)

[¬(I ∨ J)](b = 5); [Y](a = 1)(c = 4)

D/CC(B3) =















[¬(I ∨ J)](b = 5)

[¬(X ∨ Y)](b = 2)(c = 4)

For each test target, the test generation engine tries to find a path that reaches the target
to compute an abstract test case.

4.1.2.2/ TEST PURPOSES IN CERTIFYIT

Recently, a new test selection technique has been introduced in CertifyIt to generate test
cases for security components [11], typically Smart card applications and cryptographic
components, by relying on operational test purposes.

When the tested characteristics of the SUT are security functionalities, the general test
objective is to trigger each functionality of the system, in one or several contexts, to as-
sess that security is properly enforced. A common test design technique to perform
security testing consists of invalid testing: testing using input values that should be re-
jected by the component or system. When done manually, security test engineers extract
invalid test scenarios from the test objective (that specifies each security functionality and
their purpose), in which some security properties might be violated by an erroneous im-
plementation. Then, they translate each scenario in one or several test cases. CertifyIt
enables to automate the derivation of test targets from test scenarios by formalizing these
scenarios using operational test purposes.

Test purposes enable to formalize one or several test scenarios extracted from the test
objective, using regular expressions, by relying on the information captured in UML4MBT
models. The main principle is to formalize test scenarios in terms of model states to reach
and model operations to call. Moreover, test purposes can specify several contexts within
which states should be reached and operations should be called, making it possible to
formalize several test scenarios from a unique expression. Test purposes enable to drive
the automated test generation on UML4MBT models in order to derive test targets tailored
to the test objective.
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Figure 4.3 – Test Purposes workflow for the production of test targets

As stated in Figure 4.3, test purposes can be seen as an intermediary between the test
objective and the test cases it implies. It is a 2-step process. The first step, which con-
cerns the formalization of test scenarios, is manual and is the responsibility of test engi-
neers. The second step, which concerns the derivation of test targets and the generation
of test cases, is automated and entrusted to the test generation engine.

Test purposes are high-level textual expressions, based on a regular expression. They are
defined using a dedicated notation called Test Purpose Language [11]. This is a textual
language oriented toward test engineers: its semantics is based on regular expressions
(see [39] and [32] for more details). In addition, it was designed to stay close to natural
language in order to keep the formalized test scenario easily understandable, without
prior test purpose language knowledge. Note that during this thesis, we have augmented
the expressivity of the test purpose Language to enable the translation of vulnerability test
patterns without information loss. The resulting grammar of the language is the content
of Section 6.1.

A typical test purpose is composed of 2 main entities: iterators and stages. Stages
define animation steps (states to reach and operations to call) that the test generation
engine must activate. Iterators specify the various contexts within which stages must be
activated. Thus, a typical test purpose has the following construction:

for_each Contexts

activate stage1

activate stage2

activate stage3

. . .

We describe the creation of stages and iterators in the following sections.

STAGE CREATION

A test scenario often implies several steps. In test purposes, each test step is expressed
with a stage. A test purpose is therefore composed of one or several stages, depending
on the test scenario.

A stage is a directive towards the test generation engine that must be completed in order
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to proceed to the next stage, if any, or to generate a test case, otherwise. A directive can
request the call of one or multiple operations, the activation of behaviors or the reach of
states. It can also specify restrictions, for instance prohibit the call to a specific operation.
What makes stages powerful is that they specify the end-goal and the means to reach it,
but the actual path (i.e. the exact sequence of actions) is computed by the test generation
engine by animating the model.

Test purpose stages can contain up to 3 parts, thus:

• The “CONTROL” part: It defines the type of model entities (e.g., operations,
states, behaviors) that can be used during the stage.

• The “RESTRICTION” part: It constrains the number of model entities that can be
solicited in the current stage.This part is optional.

• The “TARGET” part: It defines the objective that must be reached at the end of
the stage This part is also optional.

A stage is always composed as follows:

use CONTROL RESTRICTION TARGET

If a test purpose contains multiple stages, then stage definitions are separated using the
then keyword:

use CONTROL1 RESTRICTION1 TARGET1

then use CONTROL2 RESTRICTION2 TARGET2

then use...

The “CONTROL” part The “CONTROL” part specifies the type of model entities to be
used in order to complete the stage. Several ways exist to select each of these model
entities. It can be an operation chosen from a list of operations of the system:

• any_operation: Any system operation can be used during the current stage.

• operation1: Only the named operation can be used during the current stage.

• operation1 or operation2 or . . . : Only the named operations can be used during the
current stage.

• any_operation_but operation1 or operation2 or . . . : The specified operations cannot
be used during the current stage.

It can also be a behavior from a list of behaviors of the system:

• any_behavior_to_cover : Any behavior of the system can be used during this stage.

• behavior_with_tags {REQ: req1, AIM : aim1}: Only the behaviors of the system
covering at least the specified tags can be used during this stage.

• behavior_without_tags {REQ: req1, AIM : aim1}: Only the behaviors of the system
not covering the specified tags can be used during this stage.
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• As for operations, it is possible to specify a list of behaviors, by separating each
behavior with the or keyword.

An operation call can also be specified directly:

• instance.operation1(value1, _): Only the designated operation from the specified
instance can be called and its first parameter must take the value “value1”, the
second parameter can take any value.

• As for operations and behaviors, a list of calls can be specified by separating each
call with the or keyword.

The “RESTRICTION” part The length of each stage, in term of the number of animation
steps, can be set. This part is optional. It is expressed as follows:

• any_number_of_times: The stage can involve as many animation steps (e.g., oper-
ation calls) as needed, zero included, to verify the condition contained its “TARGET”
part.

• at_least_once: The stage can involve as many animation steps (e.g., operation
calls) as needed, zero excluded, to verify the condition contained in its “TARGET”
part.

• i times: The stage must involve exactly i animation steps.

• if no restriction part is specified, the stage should involve exactly one animation step
(equivalent to the restriction 1 times).

The “TARGET” part The TARGET part expresses a condition that must be verified at
the end of the currently computed stage. It can be a state of the SUT or a behavior that
must be activated by the last animation step of the stage. The definition of a system state
that must be reached at the end of a stage is introduced by the to_reach keyword followed
by an OCL constraint on a specified model instance, as follows:

use any_operation to_reach “self.status = ALL_STATUS::OK” on_instance sut

The example above represents a complete test purpose stage. It specifies that the test
generation engine may use any of the operations from the model (but only one call from
only one operation is allowed) to satisfy the OCL constraint, in the context of the sut

instance.

ITERATOR CREATION

In order to create various contexts where states must be reached, or to activate several
behaviors in a specific context, the language allows the creation of iterators. This enables
to formalize several test scenarios from the same test purpose expression. Iterators are
separated by a comma, and are expressed as follows:

for_each TYPE $Varname from DATA
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Iterators can be created for many model entities: operations, behaviors, calls, enumera-
tion literals, instances, and integer. Moreover, keywords used in the definition of stages
to give instructions and restrictions to the test generation engine, such as any_operation

or behavior_without_tags, can also be used to refine the set of model entities that will be
iterated over.

Here is an example of an iterator over operations:

for_each operation $OP from any_operation_but op1 or op2 or ...

This iterator runs through all operations except operation1 and operation2 and for each
allowed operation, makes the $OP variable points to the current operation, and continue
to the processing of the stages.

The value of variables defined by iterators can be used in test purpose stages. On the
one hand, variables may be introduced in the CONTROL part as follows:

for_each operation $OP from any_operation_but op1 or op2

use $OP to_reach “self.status = STATUS::OK” on_instance INST

In this example, $OP points to an operation of the model, obtained through an iterator,
which must be used in order to satisfy the given OCL expression, which requires that the
status attribute from the Class instance inst is valued with the enumeration literal “OK”
from the enumeration “STATUS”.

On the other hand, variables can also define the context of an OCL expression:

for_each instance $inst from inst1 or inst2 or inst3

use any_operation to_reach “self.status = STATUS::OK” on_instance $inst

In this stage, the OCL expression that represents the TARGET part is evaluated in the
context of the instance contained in the $inst variable, obtained through an iterator.

In the next section, we describe how test cases are generated from the derived test
targets, depending on the tested characteristics (behavioral or security).

4.1.3/ TEST GENERATION

Test targets are derived from the model and transmitted to the test generation engine.
For functional behavioral testing, there are as many test targets as there are behaviors
to activate. For functional security testing, test targets are derived by unfolding each
test purpose: the number of derived test targets, for a given test purpose, is equal to
the number of possible combined iterator values. For instance, a test purpose with 2
iterators, the first with 3 elements [A, B,C] and the second with 2 elements [1, 2], leads to
the derivation of 6 test targets ((A, 1); (A, 2); (B, 1); (B, 2); (C, 1); (C, 2)).

Once test targets have been derived, the test generation engine uses symbolic state
exploration of the model (see [19] for more technical details) to cover each test target.
A test case is produced for each reachable target. Test cases are sequences of model
operation calls with parameters aiming to activate their corresponding test target from the
initial state defined in the model.

The test generation engine can conclude on the reachability of the test targets in 3 ways:

1 - Reachable: There is at least one path in the model that activates the behavior /
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trigger the security function.

2 - Unreachable: There is no way to activate the behavior, or the evaluation of an
OCL expression is undefined.

3 - Undetermined: A test target is labeled as undetermined in the following 2 cases:
(i) the status is temporary, the test target has not been processed yet (i.e. the test
target is in its original state), or (ii) the status is final, the test generation engine
could not find a path that reaches the test target within the allocated generation
time.

Each time a path that reaches a given test target is found by the test generation engine,
then this path constitutes a test case that covers the test target. Test cases are composed
of 3 parts:

1 - The preamble: It represents the sequence of operations calls, from the initial state
to the state that allows to activate the behavior (for behavioral testing) or trigger the
security function (for security testing) defined by the test target.

2 - The body: It represents the effective activation of the behavior / triggering of the
security function associated with the test target.

3 - The postamble Optional: It represents the sequence of operations calls that
brings the system back to its initial state. The postamble can be seen as a spe-
cific test target and thus can also be labelled as reachable, unreachable or unde-
termined. In this thesis, the postamble’s role was to restore the initial state of the
database.

Note that test cases embed both input data and intended results, which are obtained
during the animation of the test model.

Next section describes the mechanism that enables to transform abstract test cases in
test scripts, which are executable on the real system.

4.1.4/ TEST CONCRETIZATION, EXECUTION AND VERDICT ASSIGNMENT

Test cases computed with the CertifyIt technology are abstract by definition, since they
have been derived from an abstracted view (an UML4MBT model) of the SUT. As a con-
sequence, such test cases are not directly executable and they must be concretized for a
validation of the real system.

The concretization activity consists of writing an adapter (i.e. a conformity table) between
the abstract data from the model and their corresponding concrete data from the SUT.
Abstract test cases are then transformed into test scripts that are executable on the SUT.
This activity is therefore mandatory for test execution and verdict assignment. It enables
to run test cases from the model on the real system to compare the real behavior of the
system with what is expected and has been modeled.

Practically speaking, test cases concretization in CertifyIt consists of publishing abstract
test cases, as well as additional information, in a standardized XML format. CertifyIt
supports test publisher plugins, which use the XML file as a basis for the generation of
executable test scripts in a given language. As an example, the most popular CertifyIt test
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publisher plugin writes JUnit3 test cases. Test management is also targeted by publishing
the generated tests in a format supported by test management and execution tools such
as HP Quality Center5, and TestLink6.

4.2/ CERTIFYIT FOR VULNERABILITY TESTING

The CertifyIt approach had been initially designed to compute functional test cases by
relying on a test model that captures both the input and output data for each operation
call. Recently, a novel test selection technique has been introduced to compute functional
security test cases by composing the test model with operational test purposes. Test
purposes allow to formalize test scenarios by specifying a sequence of high-level steps
called stages, which can be applied on several objects from the model, and in several
contexts.

Such approach, when using a composition of test purposes and models, constitutes a rel-
evant candidate for vulnerability testing of Web applications. One the one hand, the use
of UML4MBT models enables to represent not only the structure of Web applications,
but also their logic features and constraints as well as the various user roles and their
corresponding privileges. One the other hand, test purposes can formalize test scenar-
ios related to vulnerability testing, by translating informal vulnerability test patterns from
catalogues such as MITRE and OWASP. It is then possible to use test purposes to drive
the CertifyIt test generation engine through the model, in order to compute attack traces
in the form of test cases (i.e. a sequence of operation calls). In addition, using CertifyIt
for vulnerability testing implies automated test generation, and automated test execution
and verdict assignment.

Although it is technically possible, using the CertifyIt approach in its current state for vul-
nerability testing would not be efficient nor effective.
First, the current Test Purpose Language lacks genericity. Indeed, functional security test-
ing relies on a specification about the security properties of the SUT, and consequently
the general test objective is tailored to these security properties and to the SUT. Vulner-
ability testing, on the other hand, relies on vulnerability test patterns. Such patterns are
not linked to a particular application: they are defined at a higher level to be appliable
on any Web application. Test purposes allow a certain freedom in the formalism of test
scenarios, but they are too intricately bound to the associated model. It would require
test engineers to specify each context with named objects from the test model. Since
these objects vary from one model to another, test purposes would have to be constantly
adapted to each Web application.
Second, the UML4MBT notation is too expressive for Web application vulnerability test-
ing. It has been created to generate tests for a variety of systems, and therefore do not
provide a predefined canevas for the modeling of Web applications. However, the gener-
icity of test purposes can only be achieved if the elements and data types they interact
with remains the same, regardless of the Web application that was modeled. Lastly, cre-
ating a UML4MBT model implies being familiar with the UML notation, the OCL notation,
and the particularities of UML4MBT (especially the passive and active interpretations of
OCL4MBT expressions). Web application development and Web application vulnerability

5http://www8.hp.com/us/en/software-solutions/quality-center-quality-management/ [Last visited: August
2015]

6http://testlink.org/ [Last visited: August 2015]

http://www8.hp.com/us/en/software-solutions/quality-center-quality-management/
http://testlink.org/
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testing are fast-paced activities with strong time constraints, and the actors responsible of
the vulnerability testing part of the development are usually not familiar with model-based
techniques. Therefore, the trade-off for the CertifyIt approach for vulnerability testing pur-
poses is not acceptable.

Based on the constraints and needs of penetration testers and vulnerability test engi-
neers, an efficient MBT technique for Web application vulnerability testing should:

• Not involve new complicated programming languages and notations;

• Be fast and easy to deploy on any Web application;

• Reusable from one testing project to another as much as possible;

• Not bound to only one vulnerability category (e.g., technical, logical).

The PMVT approach that we designed during this thesis is built on top of CertifyIt and
provide additions and adaptations to enable the generation of vulnerability test cases,
which is not currently supported.
First, we propose to represent Web applications using a simple dedicated textual
language that is straightforward to master. It provides a unified methodology on how to
model Web applications strictly for Vulnerability testing purposes. Such model is then
automatically transformed in an UML4MBT instance, therefore saving test engineers
from having to learn a panel of new notations and concepts.
Second, we augmented the Test Purpose Language to make it generic w.r.t. the textual
modeling language and to allow the computation of sophisticated attacks, which involve to
take relationships between model entities into account and/or are linked to the business
logic of the Web application. Consequently, test purposes are reusable from one testing
project to another, without any required adaptation, and can lead to the computation of
vulnerability test cases for many vulnerability types. Moreover, test engineers who are
not interested in creating new test purposes to tackle other vulnerability types can rely
on the existing catalog we created during this thesis.

In the next two chapters, we present PMVT and its general process, along with a full
description of the dedicated textual notation and the augmented Test Purpose Language.
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This chapter introduces a Pattern-driven and Model-based Vulnerability Testing (PMVT)
approach, as a generic solution for Web application vulnerability testing. PMVT is com-
posed of several artifacts whose objective is to capture the logic of a concept, a technique
or a system that plays a role in Web application security and vulnerability discovery.

We first describe the principles of the approach and the inner workings of the PMVT
process. Then, we present the running example that helps illustrate each activity of
the process. The chapter continues by giving information on the PMVT modeling no-
tation, a domain-specific modeling language we designed called DASTML, which allows
the textual modeling of Web applications in a simple manner. It captures structural and
behavioral aspects of Web applications by relying on a restricted set of keywords. Test
generation has been made possible by transforming DASTML in UML4MBT and sending
the result to CertifyIt.

5.1/ PMVT PROCESS

The PMVT process, depicted in Figure 5.1, is composed of the 4 following activities:

① The Modeling activity aims to design a test model that captures the behavioral as-
pects of the SUT in order to generate consistent sequences of stimuli, from a be-
havioral and structural point of view.

55
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Figure 5.1 – PMVT: General Process

② The Test Purposes activity consists of formalizing an operational test procedure
from vulnerability test patterns that the generated test cases have to cover. Test
purposes are generic and can be used on any Web application. A catalog of test
purposes has been designed during this thesis to tackle several high-profile vulner-
abilities that test engineers can import into their testing project as is.

③ The Test Generation activity consists of applying the test purposes on the model,
using the CertifyIt test generation engine, to automatically produce vulnerability ab-
stract test cases.

④ The Concretization, Test Execution and Verdict Assignment activity aims to (i) trans-
late abstract test cases into executable test scripts, (ii) automatically execute these
scripts on the SUT, and (iii) automatically compare SUT’s responses with expected
results in order to assign a test verdict and detect vulnerabilities.

All these activities are supported by a dedicated toolchain, based on an existing model-
based testing software named CertifyIt [45]. The components of the PMVT toolchain are
described in Chapter 7.

In the following section, we describe the running example whose purpose is to illustrate
the deployment of each PMVT artifact.

5.2/ RUNNING EXAMPLE: CUITEUR

Cuiteur is a simplified copycat of Twitter1. It has been created for educational purposes
at the University of Franche-Comté: students were asked to develop a similar Web ap-
plication based on the course they were given. It is a PHP / MySQL web site, run on an
Apache Server. The Web application has been fully developed from scratch, and thus

1http://www.twitter.com [Last visited: August 2015]

http://www.twitter.com
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does not rely on any framework (e.g. Symfony, Zend, and so on) nor any third-party
library.

Users must register and authenticate to access the application. Once logged in, they
can read and post short messages called cuits, of a maximum length of 255 characters.
Messages are public, and an authenticated user can view all the cuits from any other
user. Users can follow other users to automatically retrieve and display the content they
post. They can repost (recuit) other users’ cuits. They can also make mention of a certain
user in a cuit by typing the character ’@’ followed by the user’s nickname (e.g., @yoda).
Hashtags can also be inserted in cuits, by typing the character ’#’ followed by the hashtag
name (e.g., #XSS).

Here are the various features of the application:

• Authentication and registration system. As opposed to Twitter, Users of Cuiteur
must be logged in to access the application’s features, and this requires a registra-
tion. To do so, users should provide a valid email address, a valid password, plus
their name and birthday. A valid new registration results in automatically logging in
the user.

(a) Log In (b) Registration

Figure 5.2 – Cuiteur: Login and Registration System

• Cuits posting system. This is the core feature of Cuiteur. Users can post cuits
from the home page, and retrieve their cuit feed that consists of the last cuits from
their subscription(s). Users can recuit (repost) posted messages from other Users
and reply to a cuit. It is also possible to create trends with the use of hashtags. The
more active trends are featured on the home page.

• Account info. This page allows users to see and modify their account information.
It is not accessible unless the user is logged in. The first form on the page allows
to modify personal information: (i) firstname and lastname, (ii) birthday, (iii) City, (iv)
Mini-biography. The second form concerns personal email address and website.
The last form on the page allows to modify connection information: (i) password
and confirmation, (ii) profile picture, (iii) display or hide photo.

• User search. The search page displays a text input, allowing users to search for
other users. The result is a set of mini user profiles, providing a link to the user’s
complete profile page, and keys information such as the number of followers, sub-
scriptions, posts, mentions.
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Figure 5.3 – Cuiteur: Home Page

• Administrator Panel. A restricted set of Users has access to the administrator
panel. To get access, authorized users need to re-authenticate by providing their
account password. A successful authentication redirects users to the panel where
they can edit and delete user accounts. Moreover, authenticated administrators can
go back to their regular user environment while preserving administration rights, and
therefore can edit and delete cuits from any user.

Cuiteur has been made permissive to various vulnerability kinds on purpose. We detail
each vulnerability below:

• CT-RXSS-01: Reflected XSS. On the user search page, the content of the “search”
field is rendered back on the next page without sanitization.

• CT-SXSS-02: Stored XSS. On the profile page, the content of the “usBio” field is
stored in the database and rendered back to clients without proper sanitization.

• CT-MSXSS-03: Multi-step XSS. On the authenticated home page, the content of
the “txtMessage” field (used for post cuits) is stored in the database and displayed
without proper sanitization. However, users must first submit the message for pre-
view, and then validate or dismiss it.

• CT-JQXSS-04: Stored XSS behind JQuery. On the authenticated home page, the
content of the “txtMessage” field (used for post cuits) is stored in the database and
displayed unsanitized.
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Figure 5.4 – Cuiteur: Profile Page

Figure 5.5 – Cuiteur: User Search Page

• CT-SQLI-05: SQL injection. On the profile page, the content of the “usBio” field is
stored in the database without proper sanitization.

• CT-SQLI-06: SQL injection. On the user search page, the content of the “search”
field is not sanitized against SQL Injections.

• CT-CSRF-07: CSRF. All forms of the Cuiteur application are vulnerable to CSRF.

• CT-PE-08: Privilege escalation. The access restriction to the “delete user” action,
supposedly restricted to administrators, is not enforced.
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We use this running example in the next sections to illustrate the deployment of the PMVT
approach and show how each artifact is put into practice on a simple use case. To that
end, we have defined a restricted subset of the application to keep the description of
the PMVT artifacts simple. The subset only features the authentication and cuits posting
systems, and the administration home page with links to delete given users.

5.3/ WEB APPLICATION MODELING NOTATION

As for every MBT approach, the modeling activity consists of designing a test model that
will be used to automatically generate abstract test cases. The PMVT approach, built on
top of CertifyIt, requires a UML4MBT model. However, as stated in Chapter 5, UML4MBT
is not usable as is. Therefore, we propose a simpler notation that is dedicated to Web ap-
plication vulnerability testing. We created a textual domain-specific modeling language,
called DASTML, which allows to represent the structure and logic of Web applications us-
ing a restricted set of keywords. Then, DASTML models are transformed into UML4MBT
models, based on a set of transformation rules, in order to generate abstract test cases
using CertifyIt.

In the following subsections, we first present the DASTML notation along with its entities
and relationships. We then explain the content of a UML4MBT model adapted to meet
PMVT’s needs. We finally describe the transformation rules that enable to transform
DASTML models into UML4MBT models.

5.3.1/ DASTML: A DEDICATED LANGUAGE FOR VULNERABILITY TESTING OF

WEB APPLICATIONS

To ease and accelerate the modeling activity, which is known to be time consuming, we
have developed a Domain Specific Modeling Language (DSML), called DASTML for Dy-
namic Application Security Testing Modeling Language, to represent the structural and
behavioral properties of Web applications. It solely represents all the structural entities
necessary to generate vulnerability test cases. The transformation of a DASTML instan-
tiation into a valid UML4MBT model is automatically performed by a dedicated plugin
integrated to the CertifyIt modeling environment.

Web applications share a common structure. A typical Web application is a set of pages
(in the case of a standard Web application), or a set of states (in the case of a Rich Inter-
net Application). Each page or state contains possible interactions with users: anchors,
forms, buttons, etc. A click on an anchor, a form submission, or a click on a button may
take the user to another page / state. User interactions may require special privileges to
be executed, and sometimes require users to provide data (e.g., Web Forms). Input data
may be rendered back in another page, in another context or session.
DASTML enables to represent this information, and only this information. It is sufficient
to generate vulnerability test cases for the 4 vulnerability types described in Chapter 2.

Note that the objective of DASTML is to provide a simple way to capture the structure of
Web applications. All the model artifacts that are necessary to perform attacks (injections
operations, verdict assignment operations, etc.) are automatically generated and inte-
grated to the target UML4MBT model (see Section 5.3.2). This way, PMVT users don’t
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have to think about how to conduct attacks, but only where to conduct attacks, by solely
representing the relevant parts of the Web application that need to be tested.

The language grammar is shown on Figure 5.6. We provide a short description of each
DASTML entities in the next paragraphs. Then, we illustrate this language by discussing
the DASTML model of Cuiteur.

model ::= PAGES { ( page )* }
page ::= ident init? { action_list? navigation_list? restriction_list? }

init ::= : INIT
action_list ::= ACTIONS { action (, action)* }

navigation_list ::= NAVIGATIONS { navigation (, navigation)* }
restriction_list ::= RESTRICTIONS { restriction (, restriction)* }

navigation ::= ident nav
nav ::= → ident

action ::= ident session_type? data_list? nav?
session_type ::= : restriction

data_list ::= ( data ( , data )? )
data ::= ident value? output_usage?

value ::= = ident
output_usage ::= ⇒ ident

| ⇒ ident ( , ident )?
restriction ::= ANONYMOUS | USERS | ADMINS

ident ::= " ’A’..’Z’ ((’_’)? ’A’..’Z’ | ’0’..’9’)* "

Figure 5.6 – Syntax of the DAST Modeling Language

Page A page is an output from the server, in the form of a HTML document (or alike
format). In PMVT, we differentiate pages based on the technique presented in [21].
Hence, a page is considered unique if its set of control points (actions and navigation
links) is unique, or if its set of outputted inputs is unique. A Page instance may contain
Navigations, Actions, and Restrictions.

"PAGE_NAME" {

ACTIONS {...}

NAVIGATIONS {...}

RESTRICTIONS {...}

}

In addition, we represent the initial page using a suffix, :INIT, appended to the page
name (e.g., "PAGE_NAME":INIT). The purpose of this information is to establish the initial
state of the model, which is mandatory for UML4MBT models.

Restrictions To represent the different areas of a Web application, each modeled page
has restrictions. A restriction set defines which user roles has access to the page. As
such, it is implied that all actions owned by the page are submitted to the same restric-
tions. As of now, users roles have been hardcoded in the language. We consider 3 pos-
sible user roles: ANONYMOUS, USERS, and ADMINS.
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"PAGE_NAME" {

RESTRICTIONS {USERS, ADMINS}

...

}

Navigations Navigation entities represent mechanisms that take users from one Page
to another. Navigations represent anchors, buttons, element hovering, any action that will
trigger an HTTP request to the server that ask for another page. These entities enable to
create a dynamic map of the pages of the Web application.

"NAVIGATIONS" {

"NAV_NAME"

→ "TARGET_PAGE",

...

}

Actions As opposed to Navigations, Actions represent user interactions that can modify
the internal state of the application, and/or carry data.

It can be the filling of a Web form, a click on a button, the hovering of a graphical control
element, and so on. For example, consider the action of login to a Web application. It
generally consists of a form composed of 2 fields (login and password) and a submit
button. The submission of the form will create a user session, and will provide access to
authenticated area.

"ACTIONS" {

"ACTION_NAME"

→ "TARGET_PAGE",

...

}

Actions may carry data, i.e. user inputs. Depending on the nature of the action, user
inputs can be form fields, URL parameters, cookie variables, etc. We represent user
inputs as a key-value pair inside the owning action, thus:

"ACTION_NAME"

("INPUT_NAME" = "INPUT_VALUE",

("INPUT2_NAME" = "INPUT2_VALUE")

→ "TARGET_PAGE",

...

Sometimes, the value of a user input is rendered back by the application in other pages.
The detection of XSS vulnerabilities becomes complex when the output pages are in
another part of the Web application, possibly only accessible with another session type.
Typically, scanners struggle with this issue and may miss vulnerabilities. In PMVT, we
represent input values resurgences with a double arrow (e.g.,⇒), which points to the set
of pages that output the input value, such as:

"INPUT_NAME" = "INPUT_VALUE" ⇒ {"PAGE1","PAGE2"}

Finally, actions are responsible for session type changes. In the initial state of the Web
application, it is implied that no authentication has occurred, therefore the initial session
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type is defined as ANONYMOUS. An action that leads to a session type change, such
as login or registration actions, is represented using a suffix that corresponds to the new
session type. For instance, the action "LOGIN":USERS implies a session type change,
from ANONYMOUS to USERS.

DASTML ILLUSTRATED: REPRESENTATION OF CUITEUR

The DASTML model of Cuiteur is as follows:

1 PAGES {
"HOME" : INIT {

3 ACTIONS {
"LOGIN" :USERS ( "ACCOUNT_LOGIN" = "A_LOGIN_2" ,

5 "ACCOUNT_PASSWORD" = "A_PASSWORD_2" )
−> "HOME_LOGGED_IN" ,

7 "LOGIN" :ADMINS ( "ACCOUNT_LOGIN" = "A_LOGIN_1" ,
"ACCOUNT_PASSWORD" = "A_PASSWORD_1" )

9 −> "HOME_LOGGED_IN"
}

11 NAVIGATIONS {
"GOTO_REGISTRATION"

13 −> "REGISTRATION"
}

15 RESTRICTIONS {ANONYMOUS}
}

17

"HOME_LOGGED_IN" {
19 ACTIONS {

"POST_CUIT" ( "CUIT_POST" = "CUIT_POST_1" => "HOME_LOGGED_IN" )
21 −> "HOME_LOGGED_IN" ,

"LOGOUT" :ANONYMOUS
23 −> "HOME"

}
25 NAVIGATIONS {

"GOTO_PROFILE"
27 −> "PROFILE"

}
29 RESTRICTIONS {USERS, ADMINS}

}
31

"REGISTRATION" {
33 ACTIONS {

"REGISTER" :USERS ( "ACCOUNT_LOGIN" = "A_LOGIN_3" ,
35 "ACCOUNT_PASSWORD" = "A_PASSWORD_3" ,

"ACCOUNT_PASSWORD_CONF" = "A_PASSWORD_CONF_3" ,
37 "ACCOUNT_NAME" = "A_NAME_3" => { "HOME_LOGGED_IN" , "PROFILE" } ,

"ACCOUNT_EMAIL" = "A_EMAIL_3" => "PROFILE" )
39 −> "HOME_LOGGED_IN"

}
41 RESTRICTIONS {ANONYMOUS}

}
43

"PROFILE" {
45 NAVIGATIONS {

"GOTO_HOME_LOGGED_IN"
47 −> "HOME_LOGGED_IN"

}
49 RESTRICTIONS {USERS, ADMINS}
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}
51

"ADMIN_PANEL_LOGIN" {
53 ACTIONS {

"ADMIN_LOGIN" ( "ACCOUNT_PASSWORD" = "A_PASSWORD_1" )
55 −> "ADMIN_PANEL"

}
57 NAVIGATIONS {

"GOTO_HOME_LOGGED_IN"
59 −> "HOME_LOGGED_IN"

}
61 RESTRICTIONS {USERS, ADMINS}

}
63

"ADMIN_PANEL" {
65 ACTIONS {

"DELETE_USER" ( "ACCOUNT_LOGIN" = "A_LOGIN_2" ) ,
67 "ADMIN_LOGOUT" :USERS −> "HOME_LOGGED_IN"

}
69 NAVIGATIONS {

"GOTO_HOME_LOGGED_IN"
71 −> "HOME_LOGGED_IN"

}
73 RESTRICTIONS {ADMINS}

}
75

}

In this model, we represented 6 pages. The “HOME” page is the initial page of the Web
application (i.e. the page sent to users when they send an HTTP request to the root
URL). The page features 2 actions, both are called “LOGIN” and are about authenticating
users. The first has a USERS suffix, which means that if a user provides the credentials
A_LOGIN_2 / A_PASSWORD_2, he/she will authenticate as a standard user. The sec-
ond action has an ADMINS suffix and authenticates users as administrators, given the
right credentials. From the “HOME” page, it is possible to access the “REGISTRATION”

page by triggering the navigation link called “GOTO_REGISTRATION”. This page is
only accessible to ANONYMOUS users, meaning that once users have logged in, they
cannot access this page anymore, unless they trigger the “LOGOUT” action (which has
an ANONYMOUS suffix) from the “HOME_LOGGED_IN” page.
The “REGISTRATION” page has one action, “REGISTER”, which contains 5 valued user
inputs. When users trigger the action, they will be taken to the “HOME_LOGGED_IN”

page, and will be authenticated with the credentials they provided for registration.
Moreover, the value of the ”ACCOUNT_EMAIL“ input is rendered back on the ”PROFILE“

page. Likewise, the ”ACCOUNT_NAME“ input is rendered back on 2 other pages:
”HOME_LOGGED_IN“ and ”PROFILE“.

In the next section, we detail how DASTML models are represented using UML4MBT, and
we describe the additional material, automatically generated, which enable to generate
vulnerability test cases.
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5.3.2/ PMVT WITH UML4MBT

Once designed, DASTML models are transformed in UML4MBT as 4 diagrams (2 class
diagrams, one object diagram and one state-machine) in order to generate vulnerability
test cases using CertifyIt.

To ensure the genericity of test purposes and make possible the transformation of
DASTML models in UML4MBT models, we have specialized UML4MBT to meet PMVT’s
need. In the original use of UML4MBT (i.e. for functional testing), class diagrams repre-
sent the SUT, object diagrams represent its initial state, and state-machines represent its
dynamic. PMVT, on the other hand, relies on 2 class diagrams:

• A generic class diagram that captures the general structure of Web applications. It
can be seen as the UML4MBT equivalent to the DASTML grammar.

• A specific class-diagram that captures operations and datatypes related to the Web
application under test.

Then, an object diagram instantiates both class diagrams to represent the application and
its initial state, and a state-machine represents its pages map.

Figure 5.7 – From DASTML to UML4MBT

Therefore, as stated in Figure 5.7, DASTML models are transformed in a UML4MBT
specific class diagram that connects to the generic class diagram, an object diagram that
instanciates both class diagrams, and a state-machine contained in the main class of the
specific class diagram.

In the next subsections we detail each diagram, with a strong emphasis on the generic
class diagram as it constitutes the core of PMVT models. We end this section with mod-
eling concepts that were created as part of the PMVT notation to enable the computation
of sophisticated attacks.

5.3.2.1/ GENERIC CLASS DIAGRAM: PMVT METAMODEL

We propose to use a UML4MBT class diagram to describe the generic structure of Web
applications. This class diagram is generic and can be applied to any Web application. In
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some extent, it can be qualified as metamodel for Web applications structure, and is the
UML4MBT equivalent to the DASTML grammar.

Figure 5.8 – PMVT: Generic Class Diagram

Figure 5.8 shows the generic class diagram as used in PMVT. Note that this representa-
tion of Web applications only allows the simulation of a single user - system interaction.
Therefore, it can be seen as a model of an application viewed by a particular user. We
describe each entity in the next paragraphs.

Datatypes There are 4 generic datatypes that serves for the identification of class in-
stances, and their values are used in OCL expressions to refer to a particular object.
These datatypes are represented as Enumerations: (i) PAGE_IDS contains all the Page
identifiers, (ii) ACTION_IDS contains all the Action identifiers, (iii) DATA_IDS contains all
the Data identifiers, which represent user inputs, and (iv) SESSION_TYPES contains all
the user roles identifiers.

The use of such datatypes is necessary for the identification of a particular Class instance
among the object diagram. Indeed, we cannot refer directly to the instance name because
String manipulation is not implemented in CertifyIt. Therefore, every object in a PMVT
test model can be identified using enumeration literals, which are affected to the id slot of
Pages, Actions and Data instances. Note that enumeration literals from these datatypes
are application-dependent and must be defined in the specific class diagram.

In contrast, session types are hard-coded in the generic PMVT class diagram as 3 roles
defined as enumeration literals: (i) ANONYMOUS which represents non-authenticated
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users, (ii) USERS which represents standard authenticated users without any adminis-
tration rights, and (iii) ADMINS which represents users that have administrator rights.

WebAppStructure This class is the core of the static structure of the WAUT. It contains
all the pages of the Web application under test (via the navigable_through association),
and is linked to the Threat class with the has association.
The WebAppStructure class has one attribute named session_type, of type SESSION_-

TYPES, which defines the current status of the active session (anonymous, authenti-
cated, admin). Section 5.3.2.5 provide more information on session handling in PMVT.
Moreover, the WebAppStructure class contains additional information about the current
state of the application, thanks to 2 associations: (i) the browses association is linked to
the Page class and represents the current page displayed to the user, and (ii) the isDoing

association is linked to the Action class and represents the current ongoing Action that
the user is doing. It is also linked to the Page class with the starts association, which
symbolizes the initial page displayed to the user (as represented by the :INIT suffix in
DASTML).

Several operations are owned by this class, which we can separate in 2 categories. The
first category contains private operations that cannot be directly called by the test gener-
ation engine but are used in OCL pre and postconditions. Their purpose is to factorize
OCL expressions that are extensively used (e.g., to change the current page):

• setOngoingAction(ACTION_IDS newActionId). This operation enables to
change the current ongoing action. It takes one parameter, newActionId, which
is an enumeration literal of type ACTION_IDS and contains the new ongoing ac-
tion id.
This operation contains an OCL postcondition that uses the value contained in
newActionId to retrieve the corresponding Action instance and creates a is_ongoing

link between that instance and the waut instance:

POST: self.ongoingAction =

self.current_page.all_actions->any(a:Action|a.id=newActionId)

• result ← hasOngoingAction(). This is a Boolean operation, with one return pa-
rameter called result, which purpose is to check whether there is an action ongoing.
This check is done using an OCL postcondition that puts the result of the Boolean
expression in the result return parameter:

POST: result = not self.ongoingAction.oclIsUndefined()

• setCurrentPage(PAGE_IDS newPageId). This operation enables to change the
current page displayed to the user. It takes one parameter, newPageId, which is an
enumeration literal of type PAGE_IDS and contains the new page id.
This operation contains an OCL postcondition that uses the value contained in new-

PageId to retrieve the corresponding Page instance and creates a browses link
between that instance and the waut instance:

POST: self.current_page = self.all_pages->any(p:Page|p.id=newPageId)

• isAccessible(SESSION_types session,PAGE_IDS pageId). This a Boolean op-
eration which purpose is to check whether a given session type can access a given
page. It takes 2 parameters: session, valued with a literal from SESSION_TYPES
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and pageId, valued with a literal from PAGE_IDS.
This operation contains an OCL postcondition that compares back to back the value
of the Boolean attributes of the page (i.e. its restrictions) with the given session type:

POST: let page = self.all_pages->any(p:Page|p.id=pageId) in

if (

(page.accessible_to_anonymous and

session_type = SESSION_TYPES::LIT_ANONYMOUS)

or

(page.accessible_to_users and

session_type = SESSION_TYPES::LIT_USERS)

or

(page.accessible_to_admins and

session_type = SESSION_TYPES :LIT_ADMINS)

) then result = true

else result = false

endif

For instance, if the page is accessible to authenticated users (page.accessible_-
to_users = true and the value of session_type is LIT_USERS, this operation will
return true.

The second category contains operations that can be called by the test generation engine
and their purpose is to enable sophisticated attacks:

• finalizeAction(). The finalizeAction operation serves a purpose in the conducting
of attacks (as detailed in Section 5.3.2.5). Its semantics is about submitting forms
and clicking on links, in order to make sure that a system’s unattended behavior
(e.g., crash or error message) is because of the attack, and not because of any side
effects (e.g., validation mechanisms of other fields in case of a Web form).

• reset(). The purpose of this operation is to put the system back in its initial state. It
is used for attacks that require to conduct a given sequence of steps several times
and compare the different outcomes (e.g., for Time-Based and Boolean-Based SQL
Injections). The OCL postcondition responsible of reinitializing the model contains
3 statement: first we remove any ongoing action, second we initialize the session,
and third we define the initial page as the current page:

POST: let was = self.webAppStructure in

was.ongoingAction.oclIsUndefined() and

self.session_type = SESSION_TYPES::LIT_ANONYMOUS and

was.current_page = self.initPage

Threat This class models the potential attacks that can be applied to the WAUT. It con-
tains 3 types of operations, all required to conduct attacks. First, there are information
collecting operations:

• gatherCSRFInfo(). Used for CSRF attacks to gather information about the user
action under test, namely the form or link used to submit data.
Because this operation must be called between the data filling and data submission,
it contains the following OCL precondition:
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PRE: self.was_t.hasOngoingAction()

This condition means that this operation cannot be called unless there is an ac-
tion ongoing. For more information about action handling in PMVT, report to Sec-
tion 5.3.2.5.

• collectPage. Used for Privilege Escalation attacks to gather information about the
page under test, that is to say its content, for later comparison with the result of the
attack.

• activateCapture. Dedicated to Privilege Escalation attacks that focus on triggering
an access-controlled function.

Second, there are attack operations:

• injectXSS(). Removes the nominal value from the user input under test and re-
places it with an XSS vector.

• injectErrorBasedSQLi() / injectTimeBasedSQLi() / injectBooleanBasedSQLi().

Removes the nominal value from the user input under test and replaces it with an
SQL vector.

• performCSRFAttack(). Makes use of the information gathered to replicate the form
or link on an external server and submit it.

• triggerAction() / accessPage(). Used for Privilege Escalation attacks to browse-
force a page that is supposed to have a restricted access.

Finally, the Threat class contains all the verdict assignment operations:

• checkXSS(). Analyzes the current page to check whether the injected vector has
been sanitized, removed, or used verbatim.

• checkErrorBasedSQLi() / checkTimedBasedSQLi() / checkBooleanBased-

SQLi(). The error-based SQLi operation checks whether the application displayed
a DBMS error message, the time-based SQLi operation mesures the response time
between 2 injections, and the Boolean-based SQLi operation compares the results
of 3 SQL Injections.

• checkCSRF(). Compares the response page from the nominal completion of the
action under test with the attack response page to check whether the action was
completed by the WAUT, even if the data involved in the action were submitted from
an outside server.

• checkPrivilegeEscalation(). Compare the response page obtained through a
nominal workflow with the response page obtained through the attack.

Note that all these operations (except for gatherCSRFInfo()) does not contain OCL pre
and postconditions, and have no effect on the model: their purpose is to automate the
test oracle. Therefore, the test generation engine cannot automatically call them to com-
pute attack traces since they do not modify the state of the model. Test purposes are
responsible for calling these operations, which is fully described in Section 6.1.
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Page This class represents the various pages of the WAUT as static elements. It con-
tains 4 attributes:

• id: PAGE_IDS: Contains the identifier of the page.

• accessible_to_anonymous: Boolean: Defines if the page is accessible to non-
authenticated users.

• accessible_to_users: Boolean: Defines if the page is accessible to authenticated
users.

• accessible_to_admins: Boolean: Defines if the page is accessible to authenti-
cated users with administrator rights.

A Page instance owns Actions (e.g., web forms or anything that modifies the WAUT
state variables) through the provides association, and is potentially connected to Data

instances (user inputs) if this page uses their value as output, through the renders asso-
ciation. Section 5.3.2.5 details the page handling and session handling mechanisms in
the PMVT notation.

Action We consider Action any user interaction that will have a consequence on the
WAUT. It can be the filling of a Web form, a click on a button, the hovering of a graphical
control element, and so on.
The Action class owns an attribute, called id for identifier, which can be set with literals
from the ACTION_IDS enumeration.
Moreover, the class is connected to the Data class with the takes_as_input association,
which symbolizes the user inputs involved in the completion of the action. It is also con-
nected to the WebAppStructure class with the is_doing association, and with the Page

class with the provides association.

Data The Data class represents user-supplied inputs. This class has one attribute,
called id for identifier, which can be set with literals from the DATA_IDS enumeration.
Data instances are owned by an action through the takes_as_input association, and own
output pages through the renders association.

5.3.2.2/ SPECIFIC CLASS DIAGRAM: APPLICATION-DEPENDENT INFORMATION

To complete the transformation of DASTML models, PMVT uses a specific class diagram
to represent application-dependent information such as navigational and logical opera-
tions, as well as datatypes and values. Application-dependent operations are contained
in a class that represent the overall Web application, and datatypes are represented with
Enumerations. We present these entities in the next paragraphs.

WAUT The WAUT class, whose name stands for Web application Under Test, repre-
sents the overall Web application, in a logical point of view. As such, it contains all logical
operations, e.g. LOGIN(. . . ), REGISTER(. . . ), or BUYITEM(. . . ), and navigational oper-
ations such as GOTO_PROFILE() or GOTO_REGISTRATION(). These operations are
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application-dependent and correspond to actions and navigations of the DASTML model.
The class is linked to the WebAppStructure class (from the generic class diagram).

Specific Datatypes and values First, the specific class diagram enables to specify all
values from the generic datatypes PAGE_IDS, ACTION_IDS and DATA_IDS.
Second, it contains all specific datatypes and their possible values. A specific datatype
represents a category of data, such as login credentials, passwords, birthdates, pictures
identifiers, and so on. These data are used to provide nominal data to Web forms and
URLs.

PMVT SPECIFIC CLASS DIAGRAM OF CUITEUR

Figure 5.9 – PMVT Class Diagram: Specific Entities of Cuiteur

Test engineers must define the specific entities of the WAUT in a specific class diagram,
thus:

• Logical datatypes (e.g., email accounts, genders, etc) along with values.

• Literals for generic enumerations PAGE_IDS ACTION_IDS and DATA_IDS.

• Logical operations, such as Login() or Register().

• Navigational operations, such as GOTO_PROFILE_PAGE().

The specific entities of the Cuiteur Web application are shown in blue in Figure 5.9. As
precised in Section 5.2, we only use a subset of Cuiteur to illustrate the PMVT nota-
tion. As such, we have modeled 6 logical operations: LOGIN, REGISTER, POST_CUIT,
ADMIN_LOGIN, DELETE_USER and LOGOUT, as well as 4 navigational operations:
GOTO_REGISTRATION, GOTO_HOME_LOGGED_IN, GOTO_PROFILE, and GOTO_-
ADMIN_LOGIN. These 10 operations are sufficient to authenticate to the application,
register, post a cuit, access the admin panel, and delete users.
Accordingly, we have created identifiers for 6 pages, 6 actions, and 10 user inputs (2 for
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login, 5 for registration, 1 to authenticate as an admin, and 1 for user deletion).
Finally, we modeled the necessary abstract logical values to interact with the system.
Datatypes for the registration form (ACCOUNT_[...]), content for cuits (CUIT_POST), and
credentials to authenticate.

5.3.2.3/ OBJECT DIAGRAM: STRUCTURE CONTENT

Very much like with CertifyIt, object diagrams in PMVT represent the initial state of the
WAUT. It is an instantiation of both class diagrams. Test engineers must instantiate sev-
eral entities from the class diagrams, which can be separated into 3 categories:

1 - Web application Backbone: The first category of entities is what makes the
WAUT a system as a whole. This consists of instantiating the system classes:
waut, WebAppStructure, Threat.

2 - Web application Structure: The second category concerns the content of the
WAUT. Test engineers must define each page (by instantiating the Page class),
user (by instantiating the User class), user action (by instantiating the Action class),
and user input (by instantiating the Data class) of the WAUT.

3 - Relations between entities: The last category is about the relationships between
the instances. Test engineers must instantiate associations to link the various in-
stances, in order to: define the initial page of the application, link user inputs to their
corresponding user action, link user actions to their corresponding page, and link
user inputs to their output page (i.e. the pages that output them).

PMVT OBJECT DIAGRAM OF CUITEUR

Figure 5.10 – PMVT Object Diagram of Cuiteur
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Figure 5.10 shows the PMVT object diagram for Cuiteur. Elements in light blue are in-
stances of the classes that represents the backbone of the application: WAUT, WebApp-

Structure, and Threat. The session_type slot of the waut instance has been set to anony-
mous, since the initial state represents the system before any interaction has occurred.
Elements in purple are Page instances. Six pages are modeled: the Login page, the
Home page, the Registration page, the Profile page, the Admin Login page, and the
Admin Panel page. Each instance has a identifier, and its restriction slots are set. For
instance, the Profile page has an id, LIT_PROFILE, and is accessible by users and ad-
mins, but not by non-authenticated users. Moreover, the login page is connected to the
waut instance, which means it is the initial page. As well, this same page is connected to
the WebAppStructure instance, which means it is the current page.
Elements in green are Action instances. The object diagram for Cuiteur contains 6
actions: LOGIN, REGISTER, POST_CUIT, ADMIN_LOGIN, DELETE_USER, and LO-

GOUT. Each action has an identifier and is linked to a Page instance. For example, the
POST_CUIT action is owned by the HOME_LOGGED_IN instance, which means that on
the real system users can post cuit from the home page, once they are logged in.
Elements in orange are Data instances. Each instance has an identifier and is owned by
an Action instance. For example, the LOGIN_ACCOUNT_PASSWORD data is owned by
the LOGIN action. Moreover, some Data instances are linked to output pages such as
the REGISTER_ACCOUNT_EMAIL param, which is linked to the Profile page, meaning
that on the real system this page outputs the value of the user input.

This object diagram defines the initial state of Cuiteur as well as its static structure. The
definition of its dynamic structure is the object of the next section.

5.3.2.4/ STATE-MACHINE: DYNAMIC STRUCTURE

State-machines in PMVT represent the dynamic of the WAUT, that is to say its map. It
contains the various workflows a user can conduct on the application. States of the state-
machine represent pages, and transitions between states represent user behavioral and
navigational interactions with the WAUT.

Transitions Transitions are user actions that lead to a change of page. Each transition
is linked to an operation from the WAUT, which when called by the test generation engine,
triggers the firing of its associated transition automatically. In addition, each state has a
transition linked to the reset operation that leads to the initial page. Consequently, it is
possible to reset the model to its initial state, not matter what its current state is.

State States represent unique pages of the WAUT. States are also responsible for the
change of current page: when a transition fires, its target state executes the content of its
onEntry action. More information about page handling is provided in Section 5.3.2.5.

PMVT STATE-MACHINE OF CUITEUR

The PMVT state-machine of Cuiteur is shown in Figure 5.11. It is composed of 6 states,
each one representing a unique page. The initial start point of the state-machine leads
to the HOME state, matching what has been designed in the object diagram. Then, each
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Figure 5.11 – PMVT State-Machine of Cuiteur

operation from the class diagram has at least one corresponding transition. In some
cases, an operation can be triggered by several transitions. For instance, the LOGIN op-
eration has 2 transitions: one that represents a regular user authentication, and another
one that represents an administrator authentication.

5.3.2.5/ MODELING CONCEPTS

Several entities have specific semantics to enable the computation of sophisticated at-
tacks, which lead to the creation of 3 modeling concepts, detailed in the next paragraphs.

Page Handling A page is an output from the server, in the form of an HTML document
(or alike format). In PMVT, we differentiate pages based on the technique presented
in [22]. Hence, a page is considered unique if its set of control points (actions and navi-
gations links) is unique, or if its set of outputted inputs is unique.

A page is represented within the PMVT notation with 3 model entities:

• Page instance: It represents the page as a static element. It can connected to
the WebAppStructure instance with an instance of the browses association, which
defines the current page displayed to the user.
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• PAGE_IDS literal: It is the identifier of the page, contained in an attribute of the
Page class, named id.

• State-machine state: Each state of the state-machine represents a page as a
dynamic element. Pages are connected to each other with transitions, which are
associated to behavioral and navigational operations from the model. This infor-
mation is used to define the server response (target page) that results from the
completion of a user interaction.

When an operation from the model is called, its associated transitions may lead to a new
state (i.e. another page). Therefore, each state of the diagram contains an OCL expres-
sion in its onEntry action which purpose is to replace the current browses link between
the WebAppStructure instance and a given Page instance, with a new link involving the
page represented by the state:

ENTRY: self.webAppStructure.setCurrentPage(PAGE_IDS::LIT_SOME_PAGE)

In this expression, the current page displayed to the user is now the Page instance which
identifier is LIT_SOME_PAGE.

Action Handling and Attack Process In PMVT, Actions represent user interactions
with the WAUT that can carry data (e.g., Web form, anchors with parameters) and are
involved in an attack process. An example is the action of login to the Web application,
which consists of a form, usually composed of 2 fields (login and password) and a submit
button. A user action is represented by 4 elements: an Action instance, an identifier from
the ACTION_IDS enumeration, an operation owned by the WAUT class, and a state-
machine transition.

• Action instance. It is connected to a Page instance and may own one or several
Data instances. This information is used to know which action is ongoing.

• ACTION_IDS literal. This is an enumeration literal that identifies an action. The
Action class has a attribute called id, to which an ACTION_IDS literal is affected.

• WAUT operation. A WAUT operation is linked to each Action instance, and a call
to this operation results in the creation of a link (from the is_ongoing Association)
between the waut instance and the corresponding Action instance.

• State-machine transition. The call to an action operation triggers the firing of a
state-machine transition, which may lead to a state change, and therefore a change
of current page.

The completion of an action in a nominal way (e.g., filling the 2 fields and clicking on the
submit button in the case of the login form) is a process divided in 2 steps:

1 - Nominal data filling: The first step is about providing values to all the user inputs
involved in the completion of the action, if any.

2 - Data submission: The second step consists of submitting the data (e.g., clicking
on the submit button in the case of the login form). Data submission is represented
by a single operation in the model, called finalizeAction(), in the context of the
WebAppStructure class. This “finalization” is action-dependent and its is handled
during test concretization.
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The objective of separating data from data submission is to allow attacks that concern
user inputs, such as Injections and Cross-Site Scripting. Indeed, the result of an attack
can be clouded by data validation mechanisms from other inputs, especially in the case
of Web forms.
Consider again the login form. If, when trying to test the login field for SQL Injections, the
password is left empty, the submission may fail because there is a validation mechanism
that checks (client-side or server-side) if all fields have been filled. Moreover, it is usually
not enough to provide random data as validation mechanism may force a specific data for-
mat. As another example, consider a registration form that asks users to provide personal
information such as their firstname, lastname and date of birth in a specific format (e.g.,
MMDDYYYY). An attack towards the firstname field may fail because the random data
inserted in the birthdate field is malformed: a protection mechanism may be in place to
verify that the data entered matches a valid date of birth. By splitting the Action process,
we ensure that all user inputs have been assigned with valid data.

This 2-steps action processing is made possible thanks to OCL operation precondi-
tions and postconditions. In order to force the test generation engine to call the
finalizeAction() when an action is ongoing, all operations from the model related to
the completion of an action are constrained as follows:

PRE: not (self.webAppStructure.hasOngoingAction())

POST: self.webAppStructure.ongoingAction = ACTION_IDS::SOME_ACTION

The OCL precondition means that for the operation to be callable, there must be no on-
going action. The OCL postcondition, which must be processed as an action language
(see Section 4.1 for more information on the double interpretation of the OCL language),
defines a new action as ongoing depending of the operation nature (SOME_ACTION must
be replaced by the action identifier linked to the operation). Contrariwise, the OCL pre-
condition of the finalizeAction() is the negation of the OCL precondition above:

PRE: self.webAppStructure.hasOngoingAction()

POST: self.webAppStructure.ongoingAction.OclIsUndefined()

As well, the postcondition of the finalizeAction() removes the existing link between
the WebAppStructure instance and the action instance that was ongoing.

Thereby, when an operation that represents an action is called, no other operation from
the model is callable until the finalizeAction() has been called, except for attack opera-
tions. This specific representation enables the automated computation of attack traces
and ensure precision of the test verdict.

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. was.finalizeAction()

3. waut.someOperation())

4. ...

(a) Nominal trace

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. threat.injectSQLi(LIT_A_LOGIN)

3. was.finalizeAction()

4. threat.checkErrorBasedSQLi()

(b) Attack Trace

Figure 5.12 – Action Handling: Nominal and Attack Traces

Consider the login example we introduced above. Figure 5.12 shows 2 traces involving
the LOGIN action, one nominal and one aiming to attack the login field with SQL Injec-
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tions.
In the nominal trace (Figure 5.12a), we first call the LOGIN() operation. Then, on line 2,
the call to finalizeAction() is the only possibility the test generation engine has in order
to go further on the model. Indeed, the effect of the LOGIN() operation is to create an
is_ongoing link between the WebAppStructure instance and the LOGIN Action instance.
At this point, no other operation from the model can be called because of their precondi-
tion, which requires that no action must be ongoing. Finally, on line 3, the LOGIN action
has been finalized, which means the is_ongoing link has been deleted. Other operations
from the model are now callable, and the exploration of the model can be resumed.
The attack trace (Figure 5.12b) is computed in a similar fashion. We first call the LOGIN()

operation, but before finalizing the action, we make a call to the malicious operation in-

jectSQLi(. . . ) that represents the injection, and consists of replacing the nominal value
from the login field with an SQL attack vector. Attack operations have no incidence on the
model and are not constrained, which means they can be called regardless of the model
state but the test generation engine does not automatically solicit them since they would
only make traces bigger (the test generation engine is configured to produce the smallest
trace possible). Once the malicious operation has been called, the LOGIN action can be
finalized and the exploration of the model can be resumed.

Session Handling The PMVT modeling notation enables to represent user sessions,
along with page access restrictions depending on the session type and the page acces-
sibility (see Section 5.3.2.1 for more information on how page restriction are defined).
Access restriction check is perform in transition guard. Indeed, each transition is guarded
with the following OCL expression:

GUARD: self.webAppStructure.isAccessible(self.webAppStructure.session_-

type,PAGE_IDS::LIT_PROFILE)

In this example, the called operation implies a change of a page, leading to the LIT_PRO-

FILE page. Its associated transition is guarded accordingly: it uses the private operation
is_accessible to check whether the page is accessible considering the current session
type. If the guard is evaluated to false, then the transition cannot be fired, and its associ-
ation cannot be called. This is how access restriction is enforced in PMVT.

The authentication process is represented as an action, and as such it is composed of
the same entities: an Action instance, a WAUT operation, an id from the ACTION_IDS

enumeration, and a state-machine transition triggered an waut operation call. All these
entities are be called “LOGIN”.

Similar to restriction checks, session type modification is also performed in transitions.
Each operation that leads to a change of a session type (either upgrade or downgrade)
has one or several transitions, which effect is defined as follows:

EFFECT: self.webAppStructure.session_type = SESSION_TYPES::LIT_USERS

This OCL expression changes the session type to LIT_USERS, which symbolizes either
a non-authenticated user that login to the application, or an admin that exits the admin
panel.
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5.3.3/ FROM DASTML TO UML4MBT

The objective when designing a DASTML model is to generate vulnerability test cases.
Therefore, this model has to be translated in a UML4MBT instance, compliant with its
PMVT subset, in order to be processed by the test generation engine. This is done by
a dedicated algorithm that parses the DASTML model using ANTLR2 and creates the
corresponding UML4MBT entities.

In the next paragraphs, we explain how each entity is transformed into one or several
UML4MBT entities. Note that several of these entities are automatically created at the
start of a transformation, namely the creation of the generic PMVT class diagram pre-
sented in Section 4.1.1.1, and the instantiation of the classes corresponding to the back-
bone structure of the WAUT (the WAUT class, the WebAppStructure class, and the Threat
class).

“PAGE” {...} The declaration of a DASTML page leads to the creation of the following
UML4MBT PMVT entities:

• An instance of the Page class,

• A state in the state-machine,

• An Enumeration Literal called “PAGE” in the PAGE_IDS enumeration,

• A slot (instance of the attribute id of the Page class) owned by the Page instance
and valued with the enumeration literal “PAGE”,

• A link (from the navigable_through association) between the Page instance and the
WebAppStructure instance.

“PAGE”:INIT Appended to a “PAGE”, the :INIT suffix means this page is the initial page.
As a consequence, a link from the association starts is created between this Page in-
stance and the waut instance.

RESTRICTED_TO This section is owned by a page and defines its access restrictions,
which consists of assigning values to the page accessibility slots, depending on the con-
tent of the RESTRICTED_TO entity. For instance, if a page has the following restrictions:
RESTRICTED_TO{USERS,ADMINS}

Then the Page instance will be set as follows:
accessible_to_anonymous = FALSE

accessible_to_users = TRUE

accessible_to_admins = TRUE

Note that if the RESTRICTED_TO keyword is not specified, then all the accessibility slots
will be set to TRUE.

2http://www.antlr.org/ [Last visited: August 2015]

http://www.antlr.org/
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“ACTION” (. . . ) → “TARGET_PAGE” The declaration of a DASTML action leads to the
creation of the following UML4MBT PMVT entities:

• An instance of the Action class,

• An Enumeration literal called “ACTION” in the ACTION_IDS enumeration,

• A slot (instance of the attribute id of the Action class) owned by the Action instance
and valued with the enumeration literal “ACTION”,

• An operation owned by the WAUT class along with its behavior written in OCL (as
explained in Section 5.3.2.5).

Moreover, if the completion of the action involves a change of a page, as declared with
a right directed arrow, then a state-machine transition is created between the state asso-
ciated with the Page that owns the action and the target state associated to “TARGET_-
PAGE”. This transition is guarded according to the target page access restrictions.

“ACTION”:(ANONYMOUS | USERS | ADMINS) As explained in Section 5.3.2.5, oper-
ations have the ability to change the session type (such as login or register operation).
With DASTML, this is simply done with the use of a suffix. As a consequence, the effect
of the transition associated with the given operation is defined to change de session type
accordingly.

“NAVIGATION” → “TARGET_PAGE” The declaration of a DASTML action leads to
the creation of the following UML4MBT PMVT entities:

• An operation owned by the WAUT class along with its behavior written in OCL (as
explained in Section 5.3.2.5),

• A transition between the state associated with the page that owns the navigation
and the target state associated to “TARGET_PAGE”, guarded according to the ac-
cess restrictions of the target page.

“USER_INPUT” = “VALUE”⇒ {“PAGE1”,“PAGE2”} User inputs are owned by an ac-
tion. A user input is associated with a value, and with possible output pages. The dec-
laration of a DAST user input leads to the creation of the following UML4MBT PMVT
entities:

• An instance of the Data class,

• An enumeration literal called “USER_INPUT” contained in the DATA_IDS enumera-
tion,

• A slot (instance of the attribute id of the Data class, owned by the Data instance
and valued with the enumeration literal “USER_INPUT”,

• A operation parameter in the WAUT operation associated to the Action instance
that owns the user input.
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If the user input has output pages (i.e. the pages that use the value of the input in their
output), as declared with a right directed double arrow, then for each specified page a
renders link is created between the Data instance and the corresponding Page instance.

5.4/ SYNTHESIS

PMVT is a Model-Based Vulnerability Testing approach that composes formalized generic
test patterns with a model of the Web application under test, to automatically generate
test cases.

We have designed a dedicated notation to represent Web applications. It is a domain-
specific modeling language called DASTML. It allows the modeling of the structure and
behaviors of Web applications: the various user roles, the available pages, the avail-
able actions on each page, and the user inputs of each action potentially used to inject
attack vectors. It solely represents the necessary information to generate vulnerability
test cases. In order to use the CertifyIt technology to automatically generate test cases,
DASTML models are automatically translated in UML4MBT as 4 diagrams, thanks to a
set of transformation rules.

In the next chapter, we first present the additions we made to the test purpose language
in order to generify vulnerability test purposes w.r.t. PMVT models. Then, we describe
and illustrate each of the 7 test purposes we designed to address the 4 vulnerability types
detailed in Chapter 2.



6
PMVT APPROACH: FORMALIZATION

OF VULNERABILITY TEST PATTERNS

As the need for security has never been stronger, research in this domain has increased
significantly to address the issue. Consequently, a large amount of knowledge has been
collected, and various techniques have been designed to test for security breaches and
vulnerabilities in systems. However, all this knowledge is scattered and takes multiple
forms. The fact that no common standard has been imposed by the academia and
research industry constitutes an obstacle to the dissemination of security testing best
practices. Recently, there has been an impulse on the design of test patterns and their
adaptation to security purposes [70, 62].

Vulnerability test patterns (vTPs) are a form of design pattern, which is a notion coming
from building construction [63]. A design pattern is a textual document that describes
a recurrent problem and provide a reusable and optimized solution “that you can use a
million times over, without ever doing it the same way twice” [1]. First mention of design
patterns in software development can be traced back to the Gang-of-4 [33] and their work
on showing that relying on patterns for the design of object-oriented software reduces the
complexity of software products, by making their architecture and source code easier to
understand, while improving their quality and decreasing the cost of development.

VTPs are the initial artifacts of the PMVT approach. A vTP expresses the testing needs
and procedure allowing the detection of a particular flaw in Web applications, using infor-
mal textual descriptions. There are as many vTP as there are types of application-level
flaws. The vTPs that have been designed as part of this thesis are an aggregation of
several sources, such as security consortia (CAPEC, OWASP) and research projects.
For instance, the ITEA2 DIAMONDS1 research project has already studied vTPs, and
provide a first definition as well as a first listing of vTPs [70]. The characteristics of a vTP
are introduced in Figure 6.1.

This chapter explains how PMVT relies on a formalization of vTPs to automate the gener-
ation of vulnerability test cases. First, we detail the additions we made to the test purpose
language to generify test purposes and enable the formalization of complex and sophis-
ticated attacks. Then, we present the generic test purposes we designed to address the
4 vulnerability types, Cross-Site Scripting, SQL Injections, Cross-Site Request Forgery,
and Privilege Escalation.

1http://www.itea2-diamonds.org [Last visited: August 2015]
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Name identifies the pattern
Description specifies its usage contexts
Objective(s) specifies the addressed testing objectives
Prerequisites specifies the conditions and knowledge required for a

right execution
Procedure specifies the modus operandi to put the pattern

in practice
Observations specifies which information has to be monitored
and oracle in order to identify the presence of an application-level

vulnerability
Variants specifies some alternatives regarding the means in use,

or the attack vector, or what is observed
Known Issue(s) specifies any limitation or problem (e.g., technical)

limiting its usage
Affiliated vTP lists its related vTPs
References relates to public resources dealing with application-level

vulnerability issues, such as CVE, CWE, OWASP, etc.

Figure 6.1 – Generic Vulnerability Test Pattern

6.1/ AUGMENTED TEST PURPOSE LANGUAGE FOR PMVT

A vTP is the expression of the essence of a well-understood solution to a recurring soft-
ware vulnerability testing problem. It can be represented as a table containing informal
information about the problem. However, the semi-formal way does not allow automated
test case generation and execution. With PMVT, we formalize the pattern part that con-
cerns the test procedure with one or several operational test purposes, in order to auto-
matically produce the corresponding test cases with model based testing.

A vulnerability test objective aims to be generic in order to be applied on several models
to generate test sequences. However, current test purposes contain information coming
directly from the current model, which makes them reliant on it. To avoid any dependency,
several additions were made to the language to allow the translation of vTPs in opera-
tional test purposes while improving their genericity. Namely, these contributions to the
language are:

• Introduction of Keyword lists that refer to elements from the model, in order to ex-
ternalize data manipulation;

• Improvement of for_each statements to iterate the results of an OCL expression;

• Addition of variable usage for nested iterators on a set of instances, in order to use
the instance obtained from the outer iterator as context for the OCL expression of
the inner iterator;

• Addition of variable usage in OCL expressions throughout a test purpose;

• Introduction of stage loops for cases where one or several stages must be activated
more than once.

• The creation of a test purpose catalog that allows automatic import/export of exist-
ing test purposes from on PMVT test project to another.
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These additions enable to represent generic test purposes with the sufficient expres-
siveness to formalize vTPs, in order to tackle the 4 vulnerability types we presented in
Chapter 2.
In the next sections, we define each addition that were made to the language with an ex-
planation on how they increase the genericity of the language and/or enable to compute
more sophisticated attack traces.

Keyword Lists A keywords mechanism has been introduced, which consists of using
specific arguments, called keywords, in test purposes to represent generic artifacts of a
PMVT model. They can represent behaviors, calls, instances, integers, literals, opera-
tions, or a state regarding a specific instance of the model. Test engineers only have to
link keywords with the specific elements of the current PMVT model.
Keywords are contained in lists, and a list may only contain keywords that point to ele-
ments of the same nature (behaviors, instances, literals, etc.). Keywords lists can be used
both in the iteration and stage phases to replace any of this model information preceded
by the character “#”.

For instance, consider an Enumeration (e.g., the PMVT ACTION_IDS enumeration).
A keyword list enables to only apply test purposes to literal of the enumeration that
share the same properties or restrictions (e.g., selecting only keywords that points to
user actions worth testing for CSRF, and excluding unnecessary actions that represent
for instance search forms).

for_each literal $lit from #KEYWORD_LIST

In this scenario, the iterator goes through all the keywords from #KEYWORD_LIST, each
keyword pointing to a certain enumeration literal.

As another example, consider a test purpose stage that requires to restrict the test gen-
eration engine to call an operation from a restricted set, or prohibit the call to a given set
of operations. This is done as follows:

use any_operation #RELEVANT_OPS to_reach OCL_EXPR1 on_instance $inst1

use any_operation_but #UNWANTED_OPS to_reach OCL_EXPR2 on_instance $inst2

The first state expresses to only use any operation that have a corresponding keyword
in #RELEVANT_OPS. Contrariwise, the second stage expresses to use any operation,
except the ones that have a corresponding keyword in #UNWANTED_OPS. Note that the
latter construction has been extensively employed in PMVT test purposes to restrict the
generator to solely call navigational and behavioral operations during the computing of
test cases. It is described in details in Section 6.2.

Iterating the Result of an OCL Expression Keywords lists provide a first level of
genericity to test purposes. The use of such lists is necessary when the objects they
contain must be selected manually (e.g., for CSRF testing). However, when the keywords
from a list can be deduced based on the information from the model, it is therefore pos-
sible to extract their corresponding element automatically. Hence, we augmented the
language to make it possible to iterate the results of an OCL expression. It is constructed
as follows:

for_each instance $inst from “self.all_users->select(u:User|u.bought_items

= 2)” on_instance shop
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First the OCL expression is evaluated, in the context of the shop instance. The expres-
sion returns all User instances that have bought exactly 2 items. Then, the results are
transmitted to the iterator to be used in the stage phase.
This construction preserves the genericity property of test purposes and automates the
test data selection meant to be used for test generation.

Variable usage in nested for_each loops Certain types of attack require to consider
several datatypes as well as the relationships between them. (e.g., testing for multi-step
XSS implies, for a given page, to retrieve all the user inputs that are rendered back on this
page). We have thus added variable usage between for_each loops. In cases where the
outer loop iterates instances and the inner loop iterates the results of an OCL expression,
it is possible to use the instance from the first loop as the OCL context for the second
loop:

for_each instance $inst1 from #INST_LIST

for_each instance $inst2 from “self.all_items” on_instance $inst1

In this example, the outer for_each iterates a list of instance. The inner for_each is re-
liant on the value coming from its parent as it uses it for defining the context of its OCL
expression. Thereby, the self variable from the OCL expression corresponds to $inst1.

Usage of data-dependent nested loops is for instance necessary to compute abstract test
cases for multi-step XSS, as it avoids the production of unreachable targets.

Variable usage in OCL expressions In more sophisticated attacks, data dependency
goes beyond their selection and must be carried throughout the test purpose. For in-
stance, Privilege Escalation attacks involve session types, pages, and their relations, in
order to test that access control policies are not flawed. In these cases, we need to use
the value from the iterator to configure OCL expressions in order to make test purposes
more precise and avoid the submission of irrelevant or unreachable test targets to the test
generation engine.
Variables can be used in the iteration phase in cases of nested for_each statements, thus:

for_each literal $lit from #LITERAL_LIST

for_each instance $INST from “self._insts->select(u:User|u.bought_items =

2)” on_instance shop

Moreover, variables can be used in OCL expressions from the restriction part of stages:

use any_operation to_reach “self.status = STATUS::$LIT” on_instance sut

This stage expresses that any operation from the model can be used, the goal is that
the status attribute from the WAUT is valued with the content of $LIT, which contains an
enumeration literal from the enumeration “STATUS”.

Stage Loops In some cases, it is necessary to reproduce the exact same set of steps
several times, in order to conduct an attack. This is the case notably for time-based and
boolean-based SQL Injections, which require to inject several vectors in the same user
input and compare the results.
To make the design of such test purpose simpler while reducing test generation time,
we have introduced the notion of stage loops in the test purpose language. Stage loops
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are defined using the declaration keyword repeat, followed by a integer and the keyword
times, expressing the number of loop to accomplish:

repeat 3 times

use CONTROL1 RESTRICTION1 TARGET1

then use CONTROL2 RESTRICTION2 TARGET2

then ...

end_repeat

In this sequence, we declare that the 3 stages enclosed in the loop must be repeated 3
times.

Test Purpose Catalog Test purposes are stored in a Test Purpose catalog (in XML for-
mat), with a reference to the pattern they belong to. This allows test engineers to easily
select relevant test purposes depending on the test objective, motivated by a test selec-
tion criteria. In the RASEN project for instance, test purpose selection is conducted based
on a risk assessment of the WAUT. Regarding the information present in the CORAS di-
agram, the corresponding vTPs are chosen and the corresponding test purposes are
selected for test generation.

Next section describes the test purposes we designed during this thesis to tackle the
4 vulnerability types we presented in Chapter 2, namely Cross-Site Scripting, SQL Injec-
tions, CSRF, and Privilege Escalation.

6.2/ SMA TEST PURPOSES FOR WEB APPLICATION VULNERABIL-
ITY TESTING

We present in this section the generic test purposes we have designed during this the-
sis to tackle the 4 vulnerabilities we have described in Chapter 2. Some vulnerabilities
required the design of several test purposes when the implementation of multiple attack
subcategories was necessary for efficient testing (e.g., for SQL Injections and Privilege
Escalation).
For each test purpose, we first present the vTP that we used to design it. Then, we de-
scribe its workings by going through each of its steps. Finally, we illustrate the application
of such test purpose on the PMVT model of Cuiteur (as depicted in Section 5.3.2) by
describing one of the attack traces it helped produce.

6.2.1/ CROSS-SITE SCRIPTING

As we mentioned in Section 2.1, XSS vulnerabilities consists of an attacker injecting an
hostile browser executable code (i.e. Javascript, VBScript) into Web pages through user
inputs, typically Web forms, or through parameters which value can be modified by clients,
such as cookie values. This vulnerability type is one of the consequences of the lack of
proper user-supplied input data analysis from the WAUT.

Most vulnerability testing techniques tackle XSS as a one shot kind of attack, and usually
proceed within 3 steps: (i) locate a user-supplied input, (ii) inject an XSS vector, and (iii)
analyze the server response. Typically, efforts are primarily focused on finding new attack



86 CHAPTER 6. PMVT: FORMALIZATION OF VULNERABILITY TEST PATTERNS

vectors rather than trying to cover all XSS types. As such, there is very little work in the
literature on how to address multi-step XSS vulnerabilities [5].

With PMVT it is possible to tackle all XSS types at once, by applying the testing strategy
depicted in Figure A.2. The testing technique represented in this vTP is quite similar to
other techniques that we referred to in the above paragraph. However, we make use of
the information that we captured in the model: links between user-supplied inputs and
the pages of the WAUT that use them to compute an output. Thereby, for the testing of a
particular user input, the PMVT attack procedure for XSS is as follows:

i - Locate the user input: Following proper user interactions, the WAUT is put in a
state where the current page is the page where the user input can be provided. It
can be a form field, a parameter in the href attribute of an anchor, a cookie value,
etc.

ii - Fill nominal values: Often, the user input under test is part of a form or URL,
which contains multiple parameters. These parameters need to be assigned with
relevant values to prevent any data validation functions (e.g., some parameter must
not be left empty, or must be only assigned with specific a datatype) to block the
submission of the form/request.

iii - Replace the input with an attack vector: Here, the initial nominal content of the
user input under test is erased, and replaced with an attack vector.

iv - Submit the crafted request: Once the attack vector has been inserted, the
crafted request is submitted. Depending on the type of user input, it means submit-
ting the form, or clicking on the link.

v - Locate an output point: Instead of simply waiting for the next server response,
the information contained in the PMVT model enables to determine which pages
use the user input under test as part of their output. The WAUT state is changed
accordingly in order to display one of these pages.

vi - Analyze the result: The content of the page is analyzed to assess whether the
attack vector has been inserted verbatim in the page. If it has not undergone any
modification, the WAUT is considered vulnerable to XSS, from this particular user
input, and on this particular page.

This test procedure has been translated into a test purpose in order to give each instruc-
tion to the test generation engine from Smartesting. The test purpose for multi-step XSS
is shown in Table 6.1

First Phase The first 3 lines of the test purpose for XSS compose the first phase. Be-
cause this is about XSS, the first for_each statement selects all the page that are us-
ing at least one user input as output. The selection is done using the OCL expression
Pages.allInstances()->select(p:Page|not(p.all_outputs->isEmpty())) executed
from the context of the WAUT instance. This OCL expression can be split as follows: From
all the pages (Pages.allInstances()), we select all the pages (->select(p:Page|) that
are linked to one or more Data instances (not(p.all_outputs->isEmpty())). The result
of the OCL expression is a set of Page instances.
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1 for_each instance $page from

2 "self.all_pages->select(p:Page|not(p.all_outputs->isEmpty())" on_instance was,
3 for_each instance $param from "self.all_outputs" on_instance $page,
4 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

5 "WebAppStructure.allInstances()->any(true).
6 ongoingAction.all_inputs->exists(d:Data|d=self))"
7 on_instance $param
8 then use threat.injectXSS($param)
9 then use was.finalizeAction()
10 then use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

11 "self.was_p.current_page = self and
12 self.was_p.ongoingAction.oclIsUndefined()" on_instance $page
13 then use threat.checkXSS()

Table 6.1 – Test Purpose for Cross-Site Scripting

The next for_each statement selects all the Data instances that are linked to the Page
instance contained in $page, i.e. all the user inputs that $page uses to compute its output.
Here, the selection is done using the OCL expression self.all_ouputs from the context
of $page. Therefore, the second stage of the test purpose handles 2 elements, a user
input and one of the pages that outputs it.

Second Phase The second phase starts on lines 4-5-6 by putting the WAUT in
a state where the displayed page to the user is the injection page, and where the
action containing $param is ongoing, meaning all other fields (in the case of a form)
or parameters (in the case of a link) have been filled with nominal values, ready
to be submitted. In the context of the selected user input (on\_instance $param),
the test purpose tells the test generation engine to satisfy the OCL expression
WAUT.allInstances()->any(true).webAppStructure.ongoingAction.all_inputs

->exists(d:data|d=self). First, we retrieve the instance of the WAUT
(WAUT.allInstances()->any(true)). Second, we navigate in the model until we reach
the ongoing action (webAppStructure.ongoingAction). Third, we check that the user
input $param is contained in the action (all_inputs->exists(d:data|data = self)).
To satisfy this expression, the test generation engine must animate the model, and
for this we provide the instructions use any_operation_but #UNWANTED_OPS any_-
number_of_times, which means that any behavioral or navigational operation from
the WAUT can be called, as many times as needed, in order to find the right WAUT
state. Indeed, each test purpose we designed during this thesis possess a keyword
list, named #UNWANTED_OPS, which contains all the operations from the Threat and
WebAppStructure classes. These operations are not meant to be called during the
computation of navigational and behavioral steps, therefore we exclude them to When
the right state is found, it is then possible to complete XSS injection.
The actual injection is performed in line 7 by calling the operation
threat.injectXSS($param), which targets the user input $param.

Next lines concern verdict assignment. The goal is to put the WAUT in a state where
the displayed page is the one that outputs the user input ($page) in order to analyze its
content. This is done by satisfying the OCL expression in line 9, defined in the context



88 CHAPTER 6. PMVT: FORMALIZATION OF VULNERABILITY TEST PATTERNS

of page. The first part of the expression is about verifying that no action is pending, and
the second part specifies that the current page is self, i.e. $page. Again, the test gener-
ator engine may use any behavioral or navigational operation of the model, as much as
necessary. The last line of the test purpose is a call to the operation threat.checkXSS()
which scraps the page content to look for the injected vector.

Next paragraph provides an example on Cuiteur that shows how the test purpose for XSS
is unfolded and applied to one particular user input and output page.

APPLYING THE XSS TEST PURPOSE ON CUITEUR

In the running example presented in Section 5.2, we modeled 6 pages and 10 user
inputs. Three of these inputs are rendered back on other pages. Accordingly, the test
generation engine computes 4 test targets by applying the XSS test purpose on the
DASTML model of Cuiteur:
1. CUIT_POST ⇒ HOME_LOGGED_IN
2. ACCOUNT_NAME ⇒ HOME_LOGGED_IN
3. ACCOUNT_NAME ⇒ PROFILE
4. ACCOUNT_EMAIL ⇒ PROFILE

Figure 6.2 shows the generated abstract XSS attack trace for the email field on the reg-
ister page and its resurgence on the profile page. It consists of: ① accessing Cuiteur’s
home page, ② clicking on the link that points to the registration page, ③ filling the reg-
istration form, ④ replacing the nominal value of the email field with an XSS vector, ⑤

submitting the form and being taken to the home logged in page, ⑥ clicking on the link
that points to the profile page, and ⑦ analyzing the content of the profile page.

6.2.2/ SQL INJECTIONS

Like XSS, SQL Injections are another consequence of poor input data validation. This
class of vulnerability exploits the trust a Web application has in its users by triggering
unwanted interactions between the application and its database. This is done by injecting
SQL fragments through user inputs, such as form fields or cookie variables, to alter the
semantic of hardcoded SQL queries. Of course, SQL Injections are only possible when

1. waut.setup()

2. waut.GOTO_REGISTRATION()

3. waut.REGISTER(LIT_A_LOGIN_2, LIT_A_PASSWORD_2, LIT_A_PASSWORD_CONF_2, LIT_A_NAME_2, LIT_A_-

EMAIL_2

4. threat.injectXSS(LIT_REGISTER_ACCOUNT_EMAIL_PARAM)

5. was.finalizeAction()

6. waut.goToProfile()

7. threat.checkXSS()

8. waut.teardown()

Figure 6.2 – Abstract XSS Attack Trace on Cuiteur
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1 for_each literal $param from #DATA
2 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

3 "not(self.ongoingAction.oclIsUndefined()) and
4 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"
5 on_instance was
6 then use threat.injectSQLi($param)
7 then use was.finalizeAction()
8 then use threat.checkErrorBasedSQLi()

Table 6.2 – Test Purpose for Error-based SQL Injections

the value contained in the user input that lacks sanitization is used by the application to
configure an SQL query.

However, the discovery of SQL Injections is much more complex than XSS. Indeed, XSS
targets Web browsers and therefore happens on the client-side, where it is easily possible
to assess the existence of a vulnerability. On the contrary, SQL Injections affect the
database of the WAUT, to which users (and test engineers) don’t have direct access.
Moreover, in many cases the database is installed on another server. For these reasons,
probing the database is out of question.

With PMVT we follow the same verdict assignment process as penetration testers, which
consists of “taking what the WAUT gives you”. The amount of information about the
database that is leaked by the WAUT varies a lot. Hence, we cannot tackle SQL Injections
with only one test purpose but with a set of 3 test purposes, each one implementing a
dedicated injection and observation style.

Error-Based SQL Injections This is the best case scenario for a hacker / test engineer.
Error-based SQL Injections means that syntax error messages from the database (e.g.,
“You have an error in your SQL syntax” for MYSQL) are displayed to end-users. It can be
default error messages from the database but also custom ones, designed for develop-
ment purposes.
Consequently, the main objective of error-based SQL Injections, when limited to vulner-
ability discovery only (see the OWASP Testing Guide about standard SQL Injections2 for
more information), is about breaking the syntactic correctness of the initial query to gen-
erate an error message. The reception of an error message is a strong indicator of the
presence of a vulnerability, because it means we were able to tamper with the query.

Table 6.2 shows the test purpose for Standard SQL Injections. There is only one iterator
for the first phase, which receives user input identifiers. Indeed, we want to test every
user input regardless of their possible resurgence. The for_each iterates a keyword list,
called #SQLI_VULN_PARAMETERS. This list is created automatically by the algorithm
responsible of the translation of DASTML models into UML4MBT models, it adds by
default all the Data identifiers to the list. The objective is to let the test engineer decide
whether one or more user inputs are not worse testing.

2https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Standard_
SQL_Injection_Testing [Last visited: August 2015]

https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Standard_SQL_Injection_Testing
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Standard_SQL_Injection_Testing
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The second phase starts on lines 2 to 5. The test purpose instructs the test generation
engine to satisfy, in the context of the WAUT instance, an OCL expression composed of
2 sub-expressions. The first sub expression imposes that an action is ongoing to ensure
that all other fields that are part of the same request have been properly set. The second
sub-expression imposes that the ongoing action must involve the Data instance which
identifier is contained in $param. This way, we know that we are on the right state to inject
the user input .
The injection is performed on line 6, with the dedicated operation threat.injectSQLi().
Then, we submit the data by calling the finalize operation on line 7, and result is assigned
on line 8 with the operation threat.checkErrorBasedSQLi().

Time Delay SQL Injections When error messages from the database are not passed
on to end-users, another solution for the detection of SQL Injection vulnerabilities is to
conduct a temporal differential analysis between several injections. This is performed in
PMVT with the injection of 2 vectors. The role of the first vector is to disrupt the syntax of
the SQL query in order to cause an immediate response from the database, i.e. with little
latency, thus:

SELECT * FROM products WHERE name LIKE ’’’;

In this example, we have injected a single quote, which effect was to disrupt the syntactic
correctness of the query.

The role of the second vector is to alter the initial query to generate delay while being
processed by the database. It can be done by modifying the query to make the database
returns as much data as possible, or by injecting built-in methods such as sleep(10),
which stalls the database for 10 seconds:

SELECT * FROM products WHERE name LIKE ’1’ or sleep(10)#’;

The objective is to observe a variation in response time from the WAUT between the 2
injections.

The test purpose for time delay SQL Injections is depicted in Table 6.3. This test purpose
has a similar logic as the one for error-based injections. The iterator in the first phase
collects all user input identifiers from a keywords list, which contains only the identifiers
that are intended to be tested for SQL Injections.
The second phase is composed of a stage sequence meant to be executed 2 times
under the same conditions, one execution dedicated to each injection. During this re-
peated sequence, the test purpose instructs the test generation engine to drive the model
in a state where the current page is the page displaying the user input, then a call to
threat.injectSQLi() perform the attack by replacing the nominal value with an attack
vector, to finally submit the data by calling the was.finalizeAction(). Note that the
sequence starts with a call to sut.reset(), which goal is to reset the WAUT in order to
perform another injection within the same conditions. Note that the selection of appriori-
ate SQL attack vectors is handled by the test harness, which is automatically generated
during test concretisation. Once the sequence as been executed 2 times, we assess the
injections results by calling the threat.checkTBSQLI().

Boolean-Based SQL Injections Another technique for Blind SQL Injections is to per-
form several attacks and conduct a differential analysis between the server responses.
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1 for_each literal $param from #DATA
2 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

3 "not(self.ongoingAction.oclIsUndefined()) and
4 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"
5 on_instance was
6 then use was.finalizeAction()
7 repeat 2 times
8 then use was.reset()
9 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

10 "not(self.ongoingAction.oclIsUndefined()) and
11 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"
12 on_instance was
13 then use threat.injectSQLi($param)
14 then use was.finalizeAction()
15 end_repeat

16 then use threat.checkTimeDelaySQLi()

Table 6.3 – Test purpose for Time Delay SQL Injections

In PMVT, the vTP we relied on to create this test purpose has been designed following
the testing strategy3 proposed by IBM and implemented in its scanning tool, AppScan.
Indeed, by injecting SQL fragments that will cause singular changes to the initial SQL
query, the objective is to observe a difference of behavior from the WAUT.

Consider a Web application with a search page containing a text field. The content of this
field ($inputvalue) is sent to the database in order to configure the following SQL query:

SELECT * FROM products WHERE name LIKE ’$inputvalue’;

The response contains the product entries whose name is close to the content of the
search field. The result is sent to the user, in the form of a Web page that lists the
content.

A Boolean-Based SQL Injection is composed of 4 injections, as follows:

1 - Nominal Injection: This is the intended interaction with the WAUT. The server
response is used as “control group”, its objective is to compare the nominal behavior
of the WAUT with its behavior when receiving SQL fragments as input.

2 - AND TRUE: The objective is to inject an SQL fragment that has a positive logic
and does not change the overall logic of the query, such as:

SELECT * FROM products WHERE name LIKE ’NOM’ AND 1=1;

Based on the monotone law of identity for ∧, since the boolean sub expression
1=1 is always true and because it is tied to a conjunction, then the result of the
expression depends on the other sub-expression EXPR of the conjunction:
EXPR ∧ 1 = EXPR

3 - AND FALSE: The objective is to inject an SQL fragment that has a negative logic
and changes the overall logic of the query, such as:

3http://www-01.ibm.com/support/docview.wss?uid=swg21659226 [Last visited: August 2015]

http://www-01.ibm.com/support/docview.wss?uid=swg21659226
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1 for_each literal $param from #DATA,
2 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

3 "not(self.ongoingAction.oclIsUndefined()) and
4 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"
5 on_instance was
6 then use was.finalizeAction()
7 repeat 3 times
8 use was.reset()
9 then use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

10 "not(self.ongoingAction.oclIsUndefined()) and
11 "self.ongoingAction.all_inputs->exists(d:Data|d.id=DATA_IDS::$param)"
12 on_instance was
13 then use threat.injectSQLi($param)
14 then use was.finalizeAction()
15 end_repeat

16 then use threat.checkBooleanBasedSQLi()

Table 6.4 – Test purpose for Boolean-based SQL Injections

SELECT * FROM products WHERE name LIKE ’NOM’ AND 1=2;

Based on the monotone law of identity for ∧, since the boolean sub-expression
1=2 is always false and because it is tied to a conjunction, then the result of the
expression is always false:
EXPR ∧ 0 = 0

4 - OR FALSE: This injection is similar to the AND TRUE injection, and is mainly use
to rule out the possibility of SQL Injections by reinforcing the verdict:

SELECT * FROM products WHERE name LIKE ’NOM’ OR 1=2;

Based on the monotone law of identity for ∨, since the boolean sub-expression
1=2 is always false and because it is tied to a disjunction, then the result of the
expression depends on the other sub-expression EXPR of the conjunction:
EXPR ∨ 0 = EXPR

Verdict is assigned by comparing the responses from the server.
If all responses are equivalents, we can conclude that SQL Injections are not possible:
NOMINAL = ANDTRUE = ANDFALS E = ORFALS E ⇒ ¬(In jinput)

However, if the results from the nominal and AND TRUE injections are equivalents, but
there is a difference in the responses between the AND TRUE and AND FALSE injec-
tions, we can conclude that there is a strong possibility that the injected user input is
vulnerable to SQL Injections:
(NOMINAL = ANDTRUE) ∧ (ANDTRUE , ANDFALS E)⇒ In jinput

This attack has been translated to a test purpose, as showed in Table 6.4. First
phase consists of collecting all the user input identifiers that are intended to be tested for
SQL Injections, and assigning them one after another to $param to compute attack traces.

Second phase is composed of 2 main sequences. The first sequence consists of sending
nominal values, and collecting the resulting page. First, the test purpose proposes in
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line 2 to use any behavioral or navigational operation, as many times as necessary, to
satisfy the OCL expression defined in lines 3-4. This expression requires, on the one
hand, that an action must be ongoing, and on the other hand that this action involves the
user input whose identifier is $param. Satisfying this expression will take the hypothetical
user to the injection page, with all fields filled (in the case of a Web form). Then in line 6,
the test purpose instructs to call the finalizeAction() method, in order to submit the form /
click on the link.

The second sequence is responsible for the completion of the 3 SQL Injections. Since
the protocol is the same for each injection, we use the repeat keyword to simplify the
test purpose and save test generation time. Note that the selection of apprioriate SQL
attack vectors is handled by the test harness, which is automatically generated during
test concretisation. Therefore, each attack starts by calling the was.reset() operation,
in order to put the model back to its initial state. Then in lines 9 to 12, and similarly to
the nominal sequence, the second step is to put the model in a state where the current
ongoing action is this action involving the user input under test ($param). Then, the
injection is performed in line 13, and the newly crafted request is submitted to the server
in line 14.

Once the attack sequence has been executed 3 times, the threat.checkBlindSQLI()
operation is called in line 16 to compare all 4 responses and assign a verdict.

APPLYING THE SQLI TEST PURPOSES ON CUITEUR

In the running example presented in Section 5.2, we modeled 10 user inputs. Accord-
ingly, the test generation engine computes 10 test targets per SQLi test purpose (30 test
targets in total) by applying each test purpose on the DASTML model of Cuiteur.

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. was.finalizeAction()

3. waut.POST_CUIT(LIT_CUIT_POST_1)

4. threat.injectSQLi(LIT_POST_CUIT_CUIT_POST)

5. was.finalizeAction()

6. threat.checkErrorBasedSQLi()

(a) Error-Based

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. was.finalizeAction()

3. waut.POST_CUIT(LIT_CUIT_POST_1)

4. threat.injectSQLi(LIT_POST_CUIT_CUIT_POST)

5. was.finalizeAction()

6. was.reset()

7. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

8. was.finalizeAction()

9. waut.POST_CUIT(LIT_CUIT_POST_1)

10. threat.injectSQLi(LIT_POST_CUIT_CUIT_POST)

11. was.finalizeAction()

12. threat.checkTBSQLi()

(b) Time-Based

Figure 6.3 – Error-based and Time-Based Abstract SQL Injection Attack Traces on Cui-
teur



94 CHAPTER 6. PMVT: FORMALIZATION OF VULNERABILITY TEST PATTERNS

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. was.finalizeAction()

3. waut.POST_CUIT(LIT_CUIT_POST_1)

4. was.finalizeAction()

5. was.reset()

6. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

7. was.finalizeAction()

8. waut.POST_CUIT(LIT_CUIT_POST_1)

9. threat.injectSQLi(LIT_POST_CUIT_CUIT_POST)

10. was.finalizeAction()

11. was.reset()

12. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

13. was.finalizeAction()

14. waut.POST_CUIT(LIT_CUIT_POST_1)

15. threat.injectSQLi(LIT_POST_CUIT_CUIT_POST)

16. was.finalizeAction()

17. was.reset()

18. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

19. was.finalizeAction()

20. waut.POST_CUIT(LIT_CUIT_POST_1)

21. threat.injectSQLi(LIT_POST_CUIT_CUIT_POST)

22. was.finalizeAction()

23. threat.checkBlindSQLi()

(a) Boolean-Based

Figure 6.4 – Abstract SQL Injection Attack Traces on Cuiteur

Figures 6.3 and 6.4 show the generated abstract SQL Injection attack traces for the post_-
cuit field on the home logged in page: The attack trace for the error-based SQL Injection
is depicted in Sub-figure 6.3a, the one for time-based injection in Sub-figure 6.3b, and the
one for Boolean-based injection in Sub-figure 6.4a.
The error-based SQL Injection attack trace consists of 6 steps: ① filling the login form, ②

submitting the login form, ③ filling the post_cuit form with a nominal value, ④ replacing the
nominal value with an SQLi vector, ⑤ submitting the form and being taken to the home
logged in page, and ⑥ analyzing the content of the home logged in page.
Attack traces for time-based and boolean-based SQL Injection consists of respectively 12
and 23 steps. Notice that we do not describe them since they are of a similar logic than
the attack trace for error-based SQL Injection.

6.2.3/ CROSS-SITE REQUEST FORGERIES

A CSRF attack consists of tricking a victim into making a specific request through his/her
browser, that will ultimately lead to unwanted consequences on a trusted Web application.
It is qualified as malicious because it indirectly impersonates a user to perform actions
only him/her or a restricted group of users is allowed to do, and without him/her knowing.
It is due to the fact that browsers automatically append user credentials (session data) to
each request made towards a Web application where a user session has been started.
These attacks are made possible when the targeted Web application does not check
whether an incoming request is really originating from the user owning the active session.

The proposed vTP consists of conducting an actual CSRF attack by cloning the action
being tested on an external server, to assess whether this action can be triggered from
outside the application. The logic is similar to BURP’s CSRF PoC4, and goes as follows:

1 - Nominal Action: The objective is to follow the intended behavior of the application
and perform the action from inside, using the GUI.

4https://support.portswigger.net/customer/portal/articles/1965674-using-burp-to-test-for-cross-site-
request-forgery-csrf- [Last visited: August 2015]

https://support.portswigger.net/customer/portal/articles/1965674-using-burp-to-test-for-cross-site-request-forgery-csrf-
https://support.portswigger.net/customer/portal/articles/1965674-using-burp-to-test-for-cross-site-request-forgery-csrf-
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1 for_each literal $action from #CSRF_(SESSION_TYPE)_ACTIONS
2 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

3 "not(self.ongoingAction.oclIsUndefined()) and self.ongoingAction.id=ACTION_IDS::$action
4 "and self.session_type = (SESSION_TYPE)" on_instance was
5 then use threat.gatherCSRFInfo()
6 then use was.finalizeAction()
7 then use was.reset()
8 then use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

9 "not(self.ongoingAction.oclIsUndefined()) and
10 and self.session_type = (SESSION_TYPE)" on_instance was
11 then use was.finalizeAction()
12 then use threat.performCSRFAttack()
13 then use threat.checkCSRF()

Table 6.5 – Test Purpose for Cross-Site Request Forgeries

2 - Information collect: The link / form being responsible for the triggering of the ac-
tion is extracted, as well as the output page, for later comparison.

3 - Reset: The application is reinitialized and the current user session is closed.

4 - Login: The user authenticates to the application, to open a new session.

5 - External Action: The action is submitted from an external Web server, using the
same browser. This is done using a java program that starts a local Web server,
which takes as input the data gathered during information collect. The server recre-
ates the form or link based on the received data, and sends the result to the user,
in the form of an interactive Web page.

6 - Result Comparison: The results from the nominal and the external actions are
compared back to back. If both results are similar, then the tested action is consid-
ered vulnerable to CSRF attacks.

This vTP has been translated into a test purpose depicted in Table 6.5. In the first phase,
we collect all the actions that are part of the test objective regarding CSRF. Each action
will be affected to the $action variable to configure the second phase of the test purpose.

The second phase starts by triggering the action as intended by the application. This is
performed by satisfying the OCL expression on line 3-5 that requires to put the model in
a state where the action under test is ongoing and the user is properly logged in. Then
in line 6, the threat.gatherCSRFInfo() operation is called to retrieve the Web form or
link that is used to submit the action. On line 7, we finalize the action and then reset the
application on line 8.
The attack sequence starts in line 9-11 by instructing the test generation engine to satisfy
an OCL expression that expresses that a new user session should be started, with the
same privileges as during the nominal sequence, and that no action should be ongoing
(i.e. the login form has been submitted). This is done with an OCL expression, that can
be satisfied using any behavioral or navigation operation from the model, as many times
as necessary. Finally, the CSRF Attack is performed in line 13, and the 2 results are
compared on line 14, by calling the threat.checkCSRF() operation.
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APPLYING THE CSRF TEST PURPOSE ON CUITEUR

In the running example presented in Section 5.2, 4 actions were modeled (login,
registration, post of cuits, logout). Accordingly, the test generation engine computes 4
test targets, one per action.

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. was.finalizeAction()

3. waut.POST_CUIT(LIT_CUIT_POST_1)

4. threat.gatherCSRFInfo()

5. was.finalizeAction()

6. was.reset()

7. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

8. was.finalizeAction()

9. threat.performCSRFAttack()

10. threat.checkCSRF()

Figure 6.5 – Abstract CSRF Attack Trace on Cuiteur

Figure 6.5 shows the generated abstract CSRF attack trace for the post_cuit field on the
HOME_LOGGED_IN page. It consists of: ① filling the login form, ② submitting the login
form, ③ filling the post_cuit form with a nominal value, ④ gathering info, namely the Web
form, ⑤ submitting the form and being taken to the home logged in page, ⑥ resetting the
application, ⑦ filling the login form again to open a session, ⑧ submitting the login form,
⑨ conducting the attack, and ⑩ comparing the 2 responses for verdict assignment.

6.2.4/ PRIVILEGE ESCALATION

Applications do not always protect application functions properly. As anyone with network
access to a Web application can send a request to it, such application should verify action
level access rights for all incoming requests. When designing a Web application frontend,
developers must build restrictions that define which users can see various links, buttons,
forms, and pages. Although developers usually manage to restrict Web interface, they
often forget to put access controls in the business logic that actually performs business
actions: sensitives actions are hidden but the application fail to enforce sufficient autho-
rization for these actions. If checks are not performed and enforced, malicious users may
be able to penetrate critical areas without the proper authorization.

The method we implemented in PMVT to test for Privilege Escalation is called Forced

Browsing. The objective is to obtain a direct URL to trigger a action or access a page of
the Web application that is supposed to be available only to users with sufficient rights.
The underlying idea is that developers may have hidden the access to such action or
page in the GUI but forgot to enforce the restriction in the action’s code. Therefore, the
vTP for Privilege Escalation consists of the following steps:

1. Access the page / Trigger the action as intended, from the GUI, with a session that
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1 for_each literal $session from #SESSION_TYPES,
2 for_each instance $page from

3 "self.all_pages->select(p:Page|not(self.isAccessible(SESSION_TYPES::$role,p.id)))"
4 on_instance was,
5 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

6 "self.was_p.current_page = self and self.was_p.ongoingAction.oclIsUndefined()"
7 on_instance $page
8 then use threat.collectPage()
9 then use was.reset()
10 then use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

11 "self.ongoingAction.oclIsUndefined() and
12 "and self.session_type = SESSION_TYPES::$role"
13 on_instance was
14 then use threat.accessPage()
15 then use threat.checkPrivilegeEscalation()

Table 6.6 – Test Purpose for Privilege Escalation of Pages

carries the sufficient rights.

2. Save the direct URL that point to that page / action.

3. Save the output result for later comparison.

4. Logout from the Web application, or change the session state (from admin to regular
user, for instance).

5. Access the URL directly, and save the output result.

6. Compare the 2 outputs.

If the output results are equivalent, it constitutes an indicator that we were able to access
the restricted page or action.

The vTP described above has been formalized in 2 test purposes: one for pages and one
for actions.

Privilege Escalation: Pages The first phase of the test purpose for Privilege Escalation
of pages, as shown in Table 6.6, is composed of 2 nested for_each. The first iterator
retrieves all the possible session types, and the second iterator retrieves all the pages
that are not accessible to the currently iterated session type. To do this, we use the
private operation isAccessible (as described in Section 5.3.2.1) that defines whether a
given session type can access to a given page.

In the second phase, the test purpose first instructs the test generation engine to satisfy
an OCL expression that requires to put the model in a state where the current page is
$page, and no action is ongoing. Then, we collect the relevant information using the
collectPage operation. The nominal part of the vTP is done at this point, the next step
is then to reset the system, and start the attack part. This is done by instructing the
test generation engine to satisfy an OCL expression, which is evaluated to true when the
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current session type of the WAUT is the session type from the iterator. Once the system
is in the right state, the restricted page is visited using the accessPage operation. The
last step is verdict assignment, thanks to the checkPrivilegeEscalation operation.

Privilege Escalation: Actions The test purpose for privilege escalation of restricted
actions, depicted in Table 6.7, shares a similar structure with the one for pages.

1 for_each literal $session from #SESSION_TYPES,
2 for_each instance $action from

3 "self.all_pages->select(p:Page|not(self.isAccessible(SESSION_TYPES::$role,p.id)))
4 ->collect(p:Page|p.all_actions" on_instance was,
5 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

6 "self.was_ca.ongoingAction = self" on_instance $action
7 then use threat.activateCapture()
8 then use was.finalize()
9 then use threat.collectPage()
10 then use was.reset()
11 then use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

12 "self.ongoingAction.oclIsUndefined() and
13 "and self.session_type = SESSION_TYPES::$role"
14 on_instance was
15 then use threat.triggerAction()
16 then use threat.checkPrivilegeEscalation()

Table 6.7 – Test Purpose for Privilege Escalation of Actions

In the first phase, the outer loop retrieves all possible session types and for each session
type, the inner loop retrieves all the actions that cannot be triggered by users under this
session type.
The second phase starts by requesting to put the model in a state where the iterated
action is ongoing, which means the current page is the page owning this action. In line 8,
the activateCapture is for concretization purposes: it tells the test harness to start captur-
ing the outgoing request made by the test script, in order to collect relevant information
’target URL, parameters, etc.). Then, we submit the action, collect the page result, and
reset the application in lines 8-10.
The attack sequence first requests to put the model in a state where the current session
type of the WAUT corresponds to the one from the iterator, and where no action is on-
going (meaning the authentication credentials has been submitted). In line 14, we try to
trigger the action by calling the triggerAction operation, using the information collected
by the activateCapture operation. Finally, we compare the 2 outputs from the server by
calling the checkPrivilegeEscalation operation.

APPLYING THE TEST PURPOSES ON CUITEUR

There are 6 pages on Cuiteur and 3 different session types. Based on the access restric-
tions of these 6 pages, the test generation engines computes 5 test targets:

1 - ANONYMOUS: to access the HOME_LOGGED_IN page.
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2 - ANONYMOUS: to access the PROFILE page.

3 - ANONYMOUS: to access the ADMIN_LOGIN page.

4 - ANONYMOUS: to access the ADMIN_PANEL page.

5 - USERS: to access the ADMIN_PANEL page.

Similarly, there are 5 actions on the PMVT model of Cuiteur, which leads to the computa-
tion of 3 test targets:

1 - ANONYMOUS: to trigger the POST_CUIT page.

2 - ANONYMOUS: to trigger the DELETE_USER page.

3 - USERS: to trigger the DELETE_USER page.

For Privilege Escalation of pages, consider the test target no 5, which consists of being
authenticated as a regular user and directly request the ADMIN_PANEL page. Its corre-
sponding attack trace is shown in Figure 6.6a. The first 4 steps are nominal actions: login
as user with admin privileges, reach the admin login page, authenticate, and access the
admin panel. At this point, we collect information about the page content and its URL.
Then, the application is reset. Finally, we authenticate as a regular user, try to access the
admin panel directly, and observe the result.
Test target no 3 consists of being authenticated as a regular user and directly trig-
ger the DELETE_USER action, whose attack trace is displayed in Figure cui-
teur:priv:trace:action. The first 4 steps are similar to the attack trace for the ADMIN_-

PANEL page. Then, we activate the information capture, trigger the action and collect the
output result. The application is then reset/ Finally, we authenticate as a regular user, try
to directly trigger the action, and observe the results.

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. was.finalizeAction()

3. waut.GOTO_ADMIN_LOGIN()

4. waut.ADMIN_LOGIN(LIT_A_PASSWORD_1)

5. was.finalizeAction()

6. threat.collectPage()

7. was.reset()

8. waut.LOGIN(LIT_A_LOGIN_2, LIT_A_PASSWORD_2)

9. was.finalizeAction()

10. threat.accessPage()

11. threat.checkPrivilegeEscalation()

(a) Page-Based

1. waut.LOGIN(LIT_A_LOGIN_1, LIT_A_PASSWORD_1)

2. was.finalizeAction()

3. waut.GOTO_ADMIN_LOGIN()

4. waut.ADMIN_LOGIN(LIT_A_PASSWORD_1)

5. was.finalizeAction()

6. threat.activateCapture()

7. waut.DELETE_USER(LIT_A_USER_1)

8. threat.collectPage()

9. was.reset()

10. waut.LOGIN(LIT_A_LOGIN_2, LIT_A_PASSWORD_2)

11. was.finalizeAction()

12. threat.triggerAction()

13. threat.checkPrivilegeEscalation()

(b) Action-Based

Figure 6.6 – Abstract Privilege Escalation Attack Traces on Cuiteur
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6.3/ SYNTHESIS

In PMVT, precise and accurate test generation is made possible thanks to test purposes.
A test purpose is a high-level textual expression that formalize test scenarios, based on
regular expressions, to drive the test generation process through the model in order to
derive test targets and generate test cases.

However, test purposes in their original form are too reliant on the model on which they
are applied. Therefore, we have augmented the test purpose language with 6 additions to
improve the genericity of test purposes, and make them reliant on the UML4MBT generic
class diagram. Since all PMVT test projects share this generic class diagram, test pur-
poses are therefore usable as is for any Web application. Using the augmented test
purpose language, 7 test purposes were to address the 4 vulnerability types described in
Chapter 2.

In the next chapter, we present the toolchain that was developed to support the PMVT
process along with a description of all the tools it relies on, and all the mechanisms that
were designed to automate the test execution.
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We present in this chapter the technical details of the PMVT approach. First, we illustrate
the implementation of the PMVT process using a dedicated toolchain. We describe each
activity along with the tools involved. Then, we expose the various mechanisms we de-
signed to automate the test execution, and especially the conducting of attacks regarding
the four vulnerability types presented in Chapter 2.

7.1/ IMPLEMENTATION OF THE PMVT APPROACH

A toolchain has been created for the deployment of the PMVT approach to conduct ex-
periments, in order to assess its accuracy and precision (see RO1) as well as its usability,
scalability and capacity of automation (see RO2). This toolchain is composed of a set of
tools, each one having a role in one or several activities of the approach:

• IBM Rational Software Architect. An eclipse-based graphical modeling tool cre-
ated by IBM. The CertifyIt MBT methodology relies on this tool with two eclipse plu-
gins to enable the creation UML4MBT models, their animation, and their exportation
for test generation. In a PMVT deployment, this tool is used during the modeling
and test selection activities. First, it is used for the translation of DASTML models
into UML4MBT models, thanks to a dedicated plugin. Second, it allows advanced
users to make adjustments to the translated UML4MBT models. Third, it enables
user to import, create, and select test purposes based on their test objectives.

101
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• CertifyIt Test Generation Engine. This tool takes as input a UML4MBT model,
derives test targets; computes test cases from these test targets, and exports the
results. It is used in the PMVT process during the test generation activity to unfold
the test purposes, compute the corresponding attack traces by relying on the model,
and translate the attack traces in JUnit4 Test scripts.

• Integrated Development Environment (optional). For a better management of
the generated test scripts, we relied on an Integrated Development Environment
(IDE) for the test concretization, execution, and verdict assignment activities. During
this thesis, we have exclusively worked with IntelliJ Idea. However, it is possible to
complete these activities with another IDE such as Eclipse or Netbeans, or without
an IDE.

Figure 7.1 – Overview of the PMVT toolchain

We demonstrate the implementation of each PMVT activity and the use of the associated
tools in the following subsections.

7.1.1/ MODELING ACTIVITY

The first action in a PMVT process is Web application modeling. We have designed a
domain-specific modeling language called DASTML (see Chapter 5 for more information
about the language), which enables to create textual PMVT models. Therefore, any text
editor can be used for model design.

Designing a PMVT DASTML model does not require any testing skills, and consists of
doing a manual crawling of the Web application under test to gather relevant information
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Figure 7.2 – PMVT: Modeling Environment

that will be used for vulnerability detection purposes.
The first step of this manual process is about creating a “map” of the Web application,
that is to say the page flow. This can be done by clicking on links and filling Web forms,
the goal is to identify each unique page that requires testing (e.g., because it provides
user interactions that are not purely navigational) or would be part of an attack process
(e.g., a result page).
Then, the second step is to do reconnaissance on each page that has been modeled to
gather information in order to design a DASTML Model, in a text file. Once the model
is complete, or a first subset of the Web application has been modeled, the file can be
processed by RSA to translate its content in an UML4MBT model.

Figure 7.2 shows the RSA interface, extended with several plugins.
The first plugin, Smartesting CertifyIt for RSA v5.2.0, enables to create UML4MBT mod-
els, animate them, check their compliancy with the UML4MBT metamodel, and export
them in a standardized XML file. It is used as is in PMVT to manage generated UML4MBT
entities and potentially make adjustments in special cases where experimented test en-
gineers need to go outside the PMVT realm, for instance to create new test purposes. It
is also possible to animate PMVT models to check whether they are accurate regarding
the Web application under test.
The second plugin, Test Purposes connector for RSA v1.3, provides a graphical interface
to manage test purposes: creation, import / export, validity check. It is more discussed in
the next section.
The third plugin, PMVT Connector for RSA v1.2, is responsible for the translation of
DASTML models in UML4MBT models. DASTML models are parsed using an ANTLR3
grammar, which creates an Abstract Syntax Tree (AST) out of it. Then, a dedicated al-
gorithm visits the AST to create the corresponding UML4MBT entities on the fly. This is
delivered to users of the solution in two ways.
First, test engineers can choose to create a new modeling project. An eclipse wizard has
been created for PMVT purposes and provides two inputs: a DASTML model file, and



104 CHAPTER 7. TOOLCHAIN

Figure 7.3 – PMVT: Test Purposes Editor

a test purpose catalog. From these inputs, the wizards automatically creates the corre-
sponding UML4MBT models, and integrates the test purposes from the catalog. Second,
it is possible to import a DASTML model in an existing project. However, model evo-
lution is not yet supported at this point and test engineers must remove any previously
generated entity before importing a new DASTML model.

Next step of the PMVT process is the selection and / or creation of test purposes, as
described in the next section.

7.1.2/ TEST PURPOSE ACTIVITY

Once the model has been designed and translated in an UML4MBT instance, test engi-
neers have to proceed to test selection. This is done in PMVT using test purposes (de-
scribed in Section 6.1). The design and selection of test purposes is also done through
RSA. A graphical interface has been created, which is depicted on Figure 7.3.
The upper part of the interface concerns keywords lists. Such list can contain a set of
Enumeration literals, instances, states, behaviors, etc. Lists content is then used by test
purposes iterators to compute test cases based on a refined set of model elements, there-
fore allowing test engineers to generate precise test suites that only address the selected
elements. Note that all the visible keywords lists visible on the figure have been gener-
ated automatically.
The lower part of the interface is the test purpose editor. The left side lists all the created
or imported test purposes, and on the right side is the actual editor. It is shipped with test
purposes and OCL expressions on-the-fly syntax check.
Users can add and remove test purposes, and export their test purposes as a catalog in
an XML file. This way, they can import them back into another project.
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Figure 7.4 – PMVT: Test Purposes Catalog

As part of PMVT, we provide to users of the approach a predefined catalog containing
the existing test purposes we presented in Section 6.2. Users can import all or part of
this catalog. The test purposes stored this catalog are usable as is to test any Web
application, without the need for adaptation. Figure 7.4 shows the interface for importing
test purposes from the catalog in a PMVT test project. Notice that for the existing test
purposes to be usable, the associated model must be compliant with the PMVT modeling
notation.

When the model and the test purposes have been defined, test engineers can check the
validity of their PMVT project. If it has been successfully checked, the next step is to
export the PMVT project in a standardized XML file and pass it on to the test generation
engine.

7.1.3/ TEST GENERATION ACTIVITY

The test generation engine that is used as part of the PMVT process is CertifyIt 5.2.0.
This tool generates abstract test cases by finding paths in the PMVT model to reach the
test targets that have been derived from the test purposes. Figure 7.5 shows its interface.
The left part lists all the test targets that the tool extracted from the model. If a test target
is successfully reached, a test case is produced and all its steps are displayed on the
right part of the tool.
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Figure 7.5 – PMVT: Test Generation Environment

CertifyIt interprets test purposes using a two-step process.
First, during the importation of a PMVT project, the test generation unfolds the test pur-
poses: if a test purpose contains iterators, then the test generation engine creates a test
target for each element of the list linked to the iterator.
Second, the test generation engine tries to reach each test target by animating the model.

When test generation is complete, test engineers in general export the generated abstract
test cases in executable test scripts, which we detail in the next section.

7.1.4/ TEST CONCRETIZATION AND EXECUTION ACTIVITIES

Abstract test cases are not executable as is on the real system, therefore they must be
concretized (adapted) and exported as test scripts. Test engineers must implement each
operation from the model, provide concrete data to match each abstract data, and may
need to develop a test harness in order to simplify test execution.

In the context of PMVT, generated abstract test cases are exported as JUnit test scripts.
These scripts allows to automatically interact with the Web application through its GUI,
as a normal user would do. To accomplish this programmatically, PMVT test scripts use
libraries such as Selenium1 or HTMLUnit2, which enable to operate a headless browser
using primitives (i.e. methods such as filling form fields and clicking buttons / anchors).

Test concretization activity represents a considerable amount of work to obtain exe-
cutable test scripts. A PMVT test publisher has therefore been designed in order to

1http://www.seleniumhq.org/ [Last visited: August 2015]
2http://htmlunit.sourceforge.net/ [Last visited: August 2015]

http://www.seleniumhq.org/
http://htmlunit.sourceforge.net/
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Figure 7.6 – PMVT: Test Concretization and Execution Environment

automate most of the process.

When all abstract data have been matched with concrete data and all methods have been
implemented, the obtained test scripts can be executed on the real Web application.
Test execution and verdict assignment are fully automated, thanks to the test harness
generated by the PMVT publisher. Test engineers execute the test suite, and collect the
results.
Both the test concretization and execution activities are performed preferably using an
IDE (in our case, IntelliJ Idea), as depicted in figure 7.6. Such tool provides a graphical
view of the test results, and an “export” function to store the results, for instance in an
XML file. This file can be used to generate a textual report, although it is out of the scope
of this thesis.

In the next section, we present the various tools and mechanisms we relied on to con-
cretize and execute the attack traces generated with the PMVT approach.

7.2/ PMVT TOOLS FOR CONCRETE VULNERABILITY TESTING

Several tools and mechanisms were designed and/or utilized during this thesis to simplify
the concretization of abstract test cases and automate the execution of test scripts. We
describe these tools in the next sections. We start with the PMVT Test Publisher, which
enabled to save considerable amounts of time by inferring most of the test concretization
process. We continue with the additions we brought to existing java libraries that enable
to browse Web applications programmatically, in order to conduct sophisticated attacks.
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Then, we describe the Web server that allowed PMVT to simulate real-life CSRF attacks
for efficient CSRF testing. Lastly, we present the technique we implemented for smart
Web page comparison, which is extensively used to establish verdict assignments for
blind SQL Injections, CSRF, and Privilege Escalations.

7.2.1/ PMVT TEST PUBLISHER

The concretization activity in most MBT techniques is considered as a tedious and time-
consuming task. In this section, we discuss the PMVT test publisher that was designed
to automate most of the concretization activity. It parses the XML file containing all the
generated abstract test cases and computes JUnit test scripts accordingly. Such test
scripts are then integrated in a test harness that centralizes data and automates their
execution.

Test engineers must provide concrete values to each abstract data from the model, and
implement each operation from the WAUT:

• Navigational and logical operations, using a library providing a programmatically-
controlled browser, such as Selenium.

• Attack and observation operations, using predefined attack scripts or from scratch.

To ease this consequent activity, a PMVT test publisher has been created. It exports all
generated test cases as JUnit test scripts and generates a complete test harness that
automates most of the concretization activity, as follows:

• Implementation of operations from the model is centralized. All operations from the
model are exported as Java methods in a separate class file, and JUnit test scripts
simply call these methods.

• All attack and observation methods are implemented.

• All navigational and logical methods are implemented with generic enhanced Sele-
nium primitives (See next section for more information about how Selenium is used
in PMVT).

• Abstract data matching with concrete values is centralized. Manipulated data are
exported as static String variables and defined in a separated class file. Methods
simply call these variable to obtain the concrete value.

• All tests scripts and tools are structure in a Mavenized Java project, which auto-
mates test execution.

Thereby, test engineers can focus on matching abstract data with concrete values and
possibly edit operations that have specific behavior. The PMVT Publisher has shown
great results and considerably reduced concretization design time by more than 60%
compared to the built-in JUnit publisher in CertifyIt.
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7.2.2/ EXECUTABLE TEST SCRIPTS

Vulnerability test cases that have been generated as part of a PMVT process are trans-
lated in JUnit test scripts. Test scripts must trigger the real Web application the same way
a standard user does, by interacting with the GUI. It means clicking on links and buttons,
filling form fields, etc. In addition, test scripts must have access to the emitted HTTP
requests as well as the HTTP responses from the server, in order to conduct attacks. For
instance, Cross-Site Scripting and SQL Injections attacks are performed by intercepting
requests containing nominal values, and replacing the initial value of the parameter un-
der test with an attack vector (see Section 5.12a for more details about user actions and
attacks handling).

This is done programmatically in PMVT using a combination of Java libraries:

• Web Browser Driver: In order to stay close to the GUI, access any Web application
the same way users do, while having the ability to conduct attacks, we used Sele-
nium. This Java library allows to control a Web browser programmatically through
a set of commands, such as click(), sendKeys(), get(URL, and so on. Selenium can
control several browsers, such as Firefox, Chrome, and Internet Explorer.

• Headless Browser: Selenium provides program control over several browsers.
However, instantiating a full graphical browser for vulnerability testing purposes is
too time and memory consuming. To ensure fast execution of the test scripts as
well as browser-like support of Web applications, we made selenium controls Phan-
tomJS3, a headless javascript Web browser based on Web kit4 (Webkit is the layout
engine that powers Safari and Chrome).

• HTTP intercepter: Requests and Responses capture is not implemented in Sele-
nium. Therefore, we rely on Browsermob-proxy5. This java library enables to create
a proxy programmatically, and provide methods to intercept requests / responses
for observation, modification, or rejecting.

In order to efficiently combine these libraries, we extended the Selenium main class and
integrated PhantomJS and Browsermob-proxy to it. This Web driver, called PMVT Web
driver, enables to write simple and powerful test scripts that can browse any Web appli-
cations accessible using the regular Safari. Moreover, we have implemented necessary
features for attack purposes, such as a page load timer (which is not implemented in Se-
lenium) that was used for verdict assignment of Time Delay SQL Injections. The source
code of this Web driver is available on Github6.

7.2.3/ CSRF WEB SERVER

The testing procedure for CSRF detection (see Section 6.2.3) involves the use of a Web
Server, which acts as an outside Web application from which a hacker would trick its
victims. The objective is to reproduce actions that can only be performed from within
the WAUT User Interface, such as button / anchor clicks and form submissions. If the

3http://phantomjs.org/ [Last visited: August 2015]
4http://www.webkit.org/ [Last visited: August 2015]
5http://bmp.lightbody.net/ [Last visited: August 2015]
6https://github.com/Alex-Vernotte/PMVT [Last visited: August 2015]

http://phantomjs.org/
http://www.webkit.org/
http://bmp.lightbody.net/
https://github.com/Alex-Vernotte/PMVT
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response from the WAUT is identical to its typical response when the action is performed
following a nominal workflow, we can suspect the presence of a CSRF vulnerability.

To perform this task, we created a Java program that starts a local Web server along with
a HTTP request handler. Its purpose is to reproduce a complete Web form based on the
data it receives. Two parameters are mandatory: form_method, which specify the type of
request to send (GET or POST), and form_action, which specify the target URL to which
send the data. All other parameters are considered as parameters from the original form,
and are included in the crafted form.

For instance, consider the URL below that points to the CSRF Server with several input
parameters:

http://csrf_server:8045/?form_method=GET

&form_action=http://www.waut.dev/index.php&login=toto&password=superpw

This URL leads to the creation of following Web form:

<form method= ’GET’ ac t i on = ’ h t t p : / / www. waut . dev / index . php ’ >
2 < inpu t type = ’ tex t ’ name= ’ log in ’ value = ’ to to ’ / >

< i npu t type = ’ tex t ’ name= ’ password ’ value = ’ superpw ’ / >
4 < inpu t type = ’ submit ’ name= ’ submit ’ / >

< / form>

This technique makes it possible to simulate a CSRF attack by relying on an external
server to submit the form. Note that this technique can be used to test Web forms, but
also parameterized anchors and buttons.

7.2.4/ WEB PAGE COMPARATOR

Test verdict assignment is the act of defining whether a test has succeeded or failed upon
execution. In order to assign a verdict, a test case contains assertions to compare test
execution data and expected data, with the latter obtained using an oracle. When testing
functional or security functionalities, the oracle is usually deduced from the specification
of the system. On the contrary, for vulnerability testing the oracle is inherent to the vul-
nerability type under test. In Web application vulnerability testing, verdict assignment is
performed through analysis and/or comparison between outputs (i.e. Web pages).

However, as we observed during early experiments, when comparing two Web pages one
cannot simply confront the two raw outputs: there is too much transient noise in a Web
page. Indeed, a lot of content in an output from the server is generated randomly, and / or
include random data. For instance, a Web applications often have a dedicated frame for
advertising to help owner(s) earn money based on traffic. These ads are usually loaded
randomly and are therefore different from one client request to another.

For effective Web page comparison, it is mandatory to strip Web pages of random content
or better yet, extract static content only.

During this thesis, we designed a tool capable of comparing two Web pages, depending
of four comparison criteria:

• Page content. Full content comparison between two pages;
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• Full URL. Only the URL of the two pages are compared;

• Abstracted URL. Because URLs can also include random parameter values, this
technique removes these values to only keep the base URL and the parameters
name.

• Control points. This technique consists of extracting HTML elements that allow
user interactions, such as anchors, web forms, and buttons.

In practice, we almost entirely relied on the Control point comparison criterion during
experiments. We detail this technique in the next section.

CONTROL POINTS COMPARISON

This Web page comparison technique is based on the state-aware vulnerability scanner
in [21]. It consists of only taking into account elements from the page that, if triggered,
tell the browser how to create a subsequent request. The idea is to reduce Web pages to
a set of possible users interactions. Following this logic, two pages that contain the same
set of user interactions are considered equal. Contrariwise, two pages that look similar
may in fact considered different because one of the page has an additional anchor toward
the administration panel, for instance. This comparison technique is loose enough to strip
off pages from random content, such as advertising, but strong enough to detect the one
user interaction that cannot be found in both pages.

Therefore, when comparing two Web pages, we only take into account a very restricted
set of HTML elements:

• Anchors (< a > .. < /a > in HTML)

• Buttons (< button../ > in HTML)

• Web forms and all their possible inputs (inputs of any kind, select, textarea)

• Javascript Events (e.g., onClick, onFocus, onSubmit, and so on)

We have designed an algorithm, in Java, which takes as input two HTML documents and
extract all control points from both pages, in order to compare back to back the nature of
the control points. The source code has been put on Github7. This algorithm allowed us
to test for CSRF, Time-based SQL Injections, and Privilege Escalation vulnerabilities.

7.3/ RASEN: TEST SELECTION FROM RISK ASSESSMENT

The RASEN approach proposes to extend the PMVT technique by relying on risk assess-
ment results to guide the selection of test cases. VTPs are affiliated to one type of risk,
and depending on the identified risks and their severity and likelihood, corresponding test
patterns are selected and prioritized to generate relevant test cases. The adaptation of
such technique for risk-based vulnerability testing defines novel features and perspectives

7https://github.com/Alex-Vernotte/PMVT [Last visited: August 2015]

https://github.com/Alex-Vernotte/PMVT
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in this research domain. Risk and requirements-driven testing was originally introduces
by James Bach in [6], where he underlined the creative aspects of software testing to
manage stated and unstated requirements depending on risks associated with the SUT.
This means going beyond having just one test for each stated requirement and implies
abilities from the Quality Assurance team to recognize potential risks for the SUT. Risk
may be defined as a Unwanted incident, which may occur at a given likelihood and impact
an asset with a given consequence. Risk-driven test process management focuses on
risk assessment and test prioritization based on requirements.

This approach influences the entire MBT process by driving the development of test gen-
eration artifacts: (i) MBT models have to precisely capture risk aspects besides functional
features, and (ii) the test selection strategies applied on MBT models have to be specified
to cover risk and its related priorities.

The Figure 7.7 introduces the PMVT process, which implements these features to enable
risk-driven MBT approach.

Figure 7.7 – RASEN: PMVT guided by Risk Assessment

The process starts with a risk model as a result from risk assessment. Risk may be
defined as a unwanted incident which may occur at a given likelihood and impact an
asset with a given consequence. Especially for complex systems, there are not sufficient
resources to test all vulnerabilities and threat scenarios identified during risk analysis.
Each threat scenario of the CORAS risk model is linked to a security test pattern defining
the testing procedure to detect the threat in the application under test.

Hence, a CORAS risk model (in relation with associated generic security test pattern
and vulnerability catalogues) enables to select security test purposes and to prioritize
them with respect to risk estimation. CORAS is a model-driven method for risk analysis
featuring a tool-supported modeling language specially designed to document risks and
their causes. Risk model elements such are vulnerabilities are linked to dedicated security
test patterns.

The PMVT process ensures the traceability between the test case, the verdict of the ex-
ecution and the targeted vulnerabilities identified during risk assessment. To manage
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traceability between risk assessment and the generated test cases, the test model also
embeds all the related information about prioritization and test procedure, which are in-
herited from the CORAS model and the test pattern. The results of the security testing
metric functions help to characterize the security risks of the system under test. Hence,
it is possible to improve a risk assessment based upon the results since these functions
can be used, for instance, to calculate and update the likelihood values regarding the
exploitability of some threat scenarios.
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In this chapter, we present the experimentation results obtained by applying the PMVT
toolchain on 5 case studies and comparing its results with those obtained using 2 vul-
nerability scanners. First, we describe the five case studies, along with their eventual
implementation specificities that can harden vulnerability detection. Second, we provide
information on the 2 scanners that were integrated in the experimentation. Third, we
present the obtained results on each use case, and for each tool. Finally, we analyze
and discuss these results and provide answers to the Research Questions introduced in
Section 1.3.

8.1/ CASE STUDIES

We detail in this section the case studies we relied on to conduct experiments with PMVT
and security scanners.
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8.1.1/ WACKOPICKO

Wackopicko is a realistic Web application that has been made vulnerable deliberately. It
has been created by [22] for experimentation purposes, motivated by the fact that existing
vulnerable applications were either educational tools and therefore not realistic enough
for thorough experiments, or known well enough so existing techniques may be optimized
to perform well on them. It is a PHP / MySQL web site, run on an Apache Server.

The application is a photo sharing and photo-purchasing site. Users can upload photos,
browse other user’s photos, comment on photos, and purchase the rights to a high-quality
version of a photo. It has several features :

• Authentication. WackoPicko has a user registration system. Users have to register
and then log in to access WackoPicko’s restricted features.

• Pictures. Users can upload pictures, and other users can comment on them as
well as purchase the right to a high-quality version. It follows a classic e-commerce
process, with a shopping cart filled with items, possible discount coupons, and a
shopping summary page. Once purchased, a link to a high-quality version is sent
to the user.

• Search. A search toolbar lies at the top of every page, to search for particular
pictures.

• Guestbook. Visitors can provide feedback by submitting a form containing a name

and a comment field.

• Admin Area. Administrators have access to a special area, with a dedicated au-
thentication mechanism. Once logged in, they have access to sensible actions such
as creating or deleting users.

The web site contains 16 vulnerabilities that are representative of the current landscape,
according to well-known organizations such as OWASP[76]. For the sake of this experi-
ment, we only present those that are tackled by the PMVT approach:

• WP-RXSS-01: Reflected XSS. There is an XSS vulnerability on the search page
which is accessible without having to be authenticated.

• WP-SXSS-02: Stored XSS. The comment field in the guestbook page is not prop-
erly escaped.

• WP-RSQLI-03: Reflected SQL Injection. An SQL Injection is possible through the
username field of the authentication form.

• WP-JSXSS-04: Reflected XSS behind JavaScript. There is a form on Wack-
oPicko’s home page that checks if a file is in the proper format for upload. It has a
name parameter that is echoed back unsanitized upon a successful check.

• WP-SSQLI-05: Stored SQL Injection. On the registration page, the supplied value
for the firstname field is used unsanitized on an SQL request in another page.

• WP-MSXSS-06: Multi-Step Stored XSS. On the picture page, the comment field
is vulnerable to XSS. It is used unsanitized when displayed along the picture. It
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is qualified as multi-step because the comment has to be previewed and validated
upon submission: only the preview is sanitized and a typical vulnerability test case
has to go all the way to the validation.

• WP-FLRXSS-07: Reflected XSS Behind Flash. There is a Flash form on the
home page, asking users for their favorite color. The value parameter is echoed
back without sanitization.

8.1.2/ BOOKSHOP

Similar to Cuiteur, bookshop has been initially created for educational purposes: students
were asked to develop a similar Web application based on the course they were given.
It is a PHP / MySQL web site, run on an Apache Server. Notice that one particularity of
this application lies in its design: it forces users to rely on the GUI by generating a token
on each page, and every user action must carry this token to the next page in order to
access it. If the token received on the target page matches the token generated on the
source page, access is granted and a new token is generated. If the tokens don’t match,
the user is automatically logged out. This mechanism is implemented in sensitive Web
applications, such as Banking portals. The goal is to evaluate whether scanners and the
PMVT approach are able to test such application.

The web site mimics an e-commerce platform that sells books. Once registered, a user
can search for books, put books into his/her cart, complete the ordering process, create
a wish-list, and display other users’ wish-list.

• Authentication and registration system. To be able to shop on Bookshop users
should be logged in to the system, and this requires a registration. To do so, users
should provide a valid email address, a valid password, plus their name and birth-
day. A valid new registration implies that the user is automatically logged in.

• Account info. This page allows users to see and modify their account and shipping
information. It is not accessible unless the user is logged in. The first form on
the page allows to modify connection information: (i) firstname and lastname, (ii)
birthday, (iii) email address, (iv) password and confirmation. The second form on
the page allows to modify shipping information: (i) address, (ii) zipcode, (iii) city, (iv)
country. Users can’t make an order if any of these data is missing.

• Book search. The search page displays a text input, allowing users to search for
a particular kind of book. Search can be performed either by providing an author’s
name or by providing a book title fragment. Each result entry can then be added to
the user’s cart. For authenticated users, it is also possible to add these items to a
wish-list.

• Friends’ wish-list search. On this page users can search for other users’ wish-list.
When a valid email address is provided, the wish-list of the corresponding user is
displayed, listing each book that has not been offered yet. The action here is to add
one or more books to the cart.

• Cart management. On the cart page, users can modify the quantity of each book,
remove them from the cart, and validate the cart. The validation process takes
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users to a Paypal sandbox1, where they can pay-pretend for their order.

• Administrator panel. Administrators have access to a special area, with a dedi-
cated authentication mechanism. The administrator panel provides several actions,
such as the creation and deletion of users, and the creation and deletion of admin-
istrators.

Bookshop has been made vulnerable to various vulnerability kinds on purpose. We detail
each vulnerability below:

• BS-RXSS-01: Reflected XSS. On the search book page, the search field is vulner-
able to reflected XSS. There is no sanitization and malicious scripts can be injected
and will be executed in the output page.

• BS-SXSS-02: Stored XSS. On the account page, the name field is vulnerable to
stored XSS. There is no sanitization and malicious scripts can be injected and will
be executed every time a user perform a request to the infected profile view page.

• BS-SXSS-03: Stored XSS. On the account page, the city field is vulnerable to
stored XSS. There is no sanitization and malicious scripts can be injected and will
be executed every time a user perform a request to the infected profile view page.

• BS-SQLI-04: SQL Injection. On the friend search page, the search field is vulner-
able to SQL Injection. There is no sanitization and a crafted SQL statement can
alter the initial SQL request and collect/modify/delete sensitive data.

• BS-SQLI-05: SQL Injection. On the account page, the email field is vulnerable to
SQL Injections. There is no sanitization and a crafted SQL statement can alter the
initial SQL request and collect/modify/delete sensitive data.

• BS-CSRF-06: CSRF. On the admin edit client page, the form is vulnerable to CSRF.
An attacker may trick a user into making this request without his consent.

• BS-PE-07: Privilege Escalation. The create administrator action is vulnerable to
Privilege Escalation. An authenticated user can send a crafted request to create a
new administrator account.

8.1.3/ STUD-E

This case study is an e-learning Web-based application, named stud-e, that is currently
used by more than 15.000 users. It provides 3 main profiles: students, teachers, and ad-
ministrators. Students can access and download material of their courses, practice quiz
and exercises, can participate to their exams and review their scores, can interact with
their teachers through embedded emails and forums. Teachers can grant course mate-
rial, elaborate quiz and exercises, manage their courses, group courses into modules,
define exams, give scores to exams, tutor their students. Administrators are in charge of
student’s inscriptions, teachers management, privilege definition and parameter settings.

The application has been under development for 10 years, and several releases have
been produced and used. Both server-side and client-side parts of the application use

1https://developer.paypal.com/developer/accounts/ [Last visited: August 2015]

https://developer.paypal.com/developer/accounts/
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programming languages. The server uses PHP to (i) manage user sessions and identi-
fications, (ii) produce the HTML pages, (iii) interact with a MySQL database. The client-
side part of the application uses Javascript and CSS for user interface matters. This
application is of the kind infinite-urls, meaning that every single produced page is ac-
cessed through a unique time-stamped identifier. There is also a custom URL-rewriting
mechanism.
It is important to note that some effort has been put on security-related matters:

• all non-user data are encrypted (e.g. session data are encrypted, actions are en-
crypted and thus do not appear in HTTP messages, database entries such as iden-
tifiers or keys are encrypted and hence do not appear in HTTP messages, ...),

• during page production, the server sanitizes every single piece of information re-
trieved from the database,

• user input validation occurs at client-side and server-side.

8.1.4/ MEDIPEDIA WEB PORTAL

In this section we detail the Medipedia Web portal by introducing its main features and the
identified security and legal risks. This case study is brought by Info World in the context
of the European FP7 RASEN Project.

Presentation of the Medipedia Web application The Medipedia Web portal is a com-
plex eHealth system that is accessible by creating a free user profile. The system acts
as a Web portal that provides articles and news that are relevant for the prevention, treat-
ment and control of diseases commonly occurring in the Romanian population. Users
can access the portal via one of the 3 roles: public user, registered user and medical
personnel. Each role has clearly defined rights and limitations. Currently, the Medipedia
community includes over 40.000 registered users as well as over 150.000 weekly visitors,
a linear increase of around 20% from 2014.

Everyone can access the public section that includes the articles section together with
medicine brochures, suppliers and a medical forum where they can interact with other
users or registered physicians. In addition, registered users can access their electronic
health record that acts as the hub of their electronic healthcare data. As it includes
sensitive personal data, access to the health records are provided based on a signed
agreement and data is secured via the user’s account. Users can provide other users,
such as family members or physicians registered within the platform access to some or
all of their stored data, on the basis of a signed agreement. Moreover, granting tempo-
rary access rights to registered physicians is also possible for the purposes of gaining
a second opinion. In this way, physicians can access the patient’s medical history in a
centralized manner during the patient encounter, with no time or location constraints.

Medical data can be added to a user’s record in two ways. First of all, organizations that
are interconnected with Medipedia can add the results of medical or laboratory examina-
tions to the user’s account automatically and securely, while preserving the user’s right
to privacy. Currently, the Medipedia platform is integrated with Medcenter, a nationwide
Romanian network of over 40 clinics that provides consultations and laboratory analyses.
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Medical results obtained outside of the Medcenter network can be added by registered
users manually.

Technical and legal aspects The Medipedia portal is part of Info World’s portfolio for
the management of care and financial processes in clinical units. Together with its sys-
tems for hospital, laboratory, pharmacy and imagistics management, Info World solutions
cover the entire spectrum of requirements for patient management and care. From a
technical standpoint, all Info World products are Health Level 7 (HL7) v3 compliant [2] in
order to ensure interoperability between the company’s products as well as facilitate inte-
gration with components provided by other vendors. In order to facilitate interoperability,
reduce software redundancy the HL7 group have defined a number of components that
facilitate the management of patients, patient encounters and medical records [25].

The Medipedia platform employs several such components that were developed in-house,
but according to HL7 interoperability specifications. A detailed description of these ser-
vices in a relevant context for Medipedia is available at [74]. The Entity Identification
Services (EIS), which manages the involved entities such as external organizations, clin-
ical locations, practitioners and registered users. All medical documents are attached
to the account of a user from the EIS service. The management of medical records is
handled by the Resource Location and Reporting Service, that implements Integrating
the Healthcare Enterprise (IHE)’s XDS Cross Enterprise Document Exchange profile and
understands HL7 v3,CDA v2 and DICOM messages [38]. Medical documents uploaded
by the user or transferred to their profile by the system are stored within this service. At
the base of these services we find the Enterprise Vocabulary Service, which provides
common and machine translatable clinical vocabulary services and is employed within all
medical documents.

These services can be accessed after authentication and authorization by the Security
Service, which uses a role-based access control model. The architecture of the secu-
rity services itself is compliant with the AuditTrail and Node Authentication, Cross Enter-
prise User Authentication and Document Digital Signature profiles of the IHE as detailed
within [38]. This ensures the confidentiality, integrity and availability of the system, to-
gether with recording detailed audit logs that allow post-mortem analysis, with important
significance in tracing healthcare decisions. The services environment for Medipedia,
including the security components is illustrated in Figure 8.1. Physically, the platform is
currently deployed in a secured data-centre that is off-site from the company locations.

8.2/ WEB APPLICATION VULNERABILITY SCANNERS

To evaluate the precision and accuracy of the PMVT approach, we have confronted it with
Web application vulnerability scanners. We have selected two scanners, one commercial
and one open-source, based on their crawling capacity and vulnerability detection rates,
as specified in the dedicated website SecToolMarket2.
We present both scanners along with their characteristics in the next sections.

2http://www.sectoolmarket.com/ [Last visited: August 2015]

http://www.sectoolmarket.com/
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Figure 8.1 – Medipedia Services Architecture

8.2.1/ IBM APPSCAN

IBM AppScan3 is a Web vulnerability scanner originally developed by Israeli Software
Company Sanctum whose first release came out in 1998. Since 2007 and following mul-
tiple redemptions of the product, AppScan development and maintenance continued with
IBM. AppScan enables to verify the presence of security vulnerabilities in Web applica-
tions during the development process. The product learns the behavior of each tested
application, whether an external application or developed internally, and then test all its
functions for the most common vulnerabilities, such as XSS, SQL Injections, CSRF, as
well more complex and specific vulnerabilities that are linked to a particular Web frame-
work (e.g., Symfony, Zend, etc.) or Content Management System (e.g., Wordpress4,
Joomla5, etc.). As such, AppScan bombards each user input of the Web application with
thousands of attack vectors.
To access parts of the application that require authentication, AppScan asks users to
record a login session. AppScan then replays the session before each attack. If the au-
tomated crawling module failed at discovering parts of the application, AppScan provides
a manual crawling module, consisting of a Web browser. Test engineers have to navigate
through the Web application, and trigger the functionalities they want to be tested.
AppScan allows the testing of type 1 multi-step XSS by keeping records of each injected
XSS vector, and then crawling the application a second time to look for these vectors.
It also allows the testing of type 2 multi-step XSS with manually defined multi-step se-
quences: it consists of a sequence of actions the scanner must perform in order to reach
parts of the application that require this exact sequence to be accessible, or before ob-
serving the result of an attack.
Privilege Escalation can be tested as well. It requires two scans: one configured with
login credentials leading to high privileges, and another one with credentials leading to
less privileges. The scanner then tries to force-browse URLs it could access during the

3http://www-03.ibm.com/software/products/en/appscan [Last visited: August 2015]
4https://www.wordpress.com [Last visited: August 2015]
5http://www.joomla.org/ [Last visited: August 2015]

http://www-03.ibm.com/software/products/en/appscan
https://www.wordpress.com
http://www.joomla.org/
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first scan through the GUI but could not during the second. If the server response from
the force-browsed URLs is equal to the server responses from the first scan, AppScan
reports a potential vulnerability.
AppScan generates post-evaluation reports in Word and PDF format containing the list
of security vulnerabilities discovered by the application. Note that the price of the soft-
ware is non-negligible ($ 9,500 to over $ 36,000 depending on the license longevity and
the software version), making it hardly accessible for smaller companies or independent
developers.

8.2.2/ IRONWASP

IronWasp6 has been created and is maintained by Lavakumar Kuppan. This Open
Source software allow users to scan Web applications in order to detect vulnerabilities.
Unlike other scanners, such as AppScan, which aims at being relatively simple to use for
people who have no specific expertise in penetration testing, IronWasp allows its users to
perform automatic detection scans as well as develop Python or Ruby scripts to extend
the original behavior of the scanner. However, since our objective is to compare the
accuracy and precision of vulnerabilities detection between PMVT and point-and-shoot
scanners, only the built-in modules of IronWasp were taken into account.
As with AppScan, it is possible to record a login session to access the authenticated
area. It is also possible to manually crawl through the different pages of the application to
focus on parts that were not discovered during automated crawling. In addition, IronWasp
relies on a similar testing method for the detection of privilege escalations.

8.3/ EXPERIMENT RESULTS

In this section, we present and discuss the experiments results from the PMVT toolchain
and the two vulnerability scanners.

8.3.1/ EXPERIMENTAL SETUP

All experiments have been conducted on a Windows 7 machine, with 8GB of RAM. The
3 dummy Web applications were powered by a local Web server directly installed on
the machine (using Xampp7. Contrariwise, Stud-e was installed in a dedicated Apache/
PHP/MySQL server accessible through Femto-ST intranet. Medipedia was installed on a
windows Server 2008 R2, with IIS as Web server and SQL Server as DBMS.

We based our study on two factors: vulnerability detection rates and time spent (for PMVT,
the time spent on each of its activities, and for scanners, the time spent on configuration
and execution). Time spent on vulnerability scanners encompasses configuration, crawl-
ing, and 2 or 3 scans (one for each user role). Time spent on PMVT encompasses model
design (designated by the letter M), test generation (designated by the letter G), test con-
cretization (designated by the letter C), and test execution (designated by the letter E).

6https://ironwasp.org/ [Last visited: August 2015]
7https://www.apachefriends.org/index.html

https://ironwasp.org/
https://www.apachefriends.org/index.html
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We used a detected (✓) / undetected (✗) metric for the detection of each featured vul-
nerability in dummy applications. However, since vulnerabilities present in real-life case
studies were not known in advance, metrics for these case studies are presented as a set
of 3 values:

Total number of vulnerabilities detected ( True positives / False positives )

We define as total number of vulnerabilities detected the number of reported vulnerabil-
ities per tool, for one vulnerability type. True positives are vulnerabilities that have been
detected whose presence was confirmed after manual investigation. Contrariwise, false

positives are detected vulnerabilities that revealed to be non-existent after manual inves-
tigation.

For the two scanners, we separated the results depending on the crawling mode: Au-

tomated for automated crawling and scanning, and Manual for Manual crawling and/or
additional configurations (e.g., multi-step sequences in Appscan).

8.3.2/ DUMMY WEB APPLICATIONS

The objective of the 3 dummy applications is to compare PMVT and scanners within a
controlled environment. Vulnerabilities present in these applications are known and it
allowed us to not only evaluate the false positives rate of the approaches, but also their
false negatives rate.

Table 8.1 presents experimentation results on Wackopicko. This application served a spe-
cific purpose in the evaluation: we used Wackopicko to evaluate how scanners perform
today compared to when the website was designed as part of [22], in order to assess
whether they have improved their crawling capacity and detection rates since.
As given in the table, the prototype implementation of the PMVT approach had the best
detection rate, finding all vulnerabilities except the XSS behind Flash. This kind of vul-
nerability is not taken into account in PMVT, since the current version of Selenium cannot
interact with Flash objects.
We met some problem with IronWasp on Wackopicko: we were unable to record a login
sequence, nor create a login handling session. The scanner was thereby limited to the
anonymous section of the Web application. It did find the vulnerabilities present in this
area, but was not able to access the authenticated area, even when we involved its man-
ual crawling module.
AppScan performed well, finding most of the vulnerabilities in automated mode. However,
it could not detect the multi-step XSS vulnerability, even when using its manual crawling
module. We decided to define a multi-step operation sequence starting at the injection
point and ending at the storing point, but not change in the results was detected.
Regarding the time spent, scanners provided results at least five times faster than the
PMVT approach. Indeed, it took 1 hour to design the PMVT model of Wackopicko, 45
minutes to generate test cases, 3 hours to concretize them, and 15 minutes to execute
them.

Results of the experiment conducted on Cuiteur are displayed in Table 8.2. The prototype
implementation of the PMVT process gave again the best results: almost all vulnerabili-
ties were detected.
AppScan gave good results as well, and was able to detect most injection vulnerabilities,
except for the multi-step XSS and the stored XSS behind JQuery. Using the manual crawl-



124 CHAPTER 8. EVALUATION

IronWasp AppScan
PMVT

Auto. Manual Auto. Manual

WP-RXSS-01 ✓ ✓ ✓ ✓ ✓

WP-SXSS-02 ✓ ✓ ✓ ✓ ✓

WP-RSQLI-03 ✓ ✓ ✓ ✓ ✓

WP-JSXSS-04 ✗ ✗ ✓ ✓ ✓

WP-SSQLI-05 ✗ ✗ ✓ ✓ ✓

WP-MSXSS-06 ✗ ✗ ✗ ✗ ✓

WP-FLRXSS-07 ✗ ✗ ✗ ✗ ✗

Time Spent 0h20 1h15 0h35 1h 5h

Time Spent 0h20 1h15 0h35 1h
M / G / C / E

1h / 0h45 / 3h / 0h15

Table 8.1 – Wackopicko: Experiment Results

ing module provided new URLs to the tool, but it did not change the results. Therefore,
we had to define a multi-step sequence containing the submission of a cuit for preview
and its final submission. With this sequence, AppScan was able to detect the multi-step
XSS vulnerability. However, even with this technique, the stored XSS vulnerability behind
JQuery could not be detected.
We were able this time to record a login sequence with IronWasp, but the scanner per-
formed poorly in automated scanning mode and was not able to detect any vulnerability.
Thus, we relied on its manual crawling module to explore the application and feed URL
to the scanner. It was then able to detect all XSS and SQL Injections, except for the XSS
vulnerability behind JQuery. However, the admin area could not be accessed with Iron-
Wasp since users have to be logged in as standard users, then authenticate as admins
on another page, which is not supported by IronWasp.
Note that none of the techniques were able to detect the Privilege Escalation vulnera-
bility. This is due to the implementation of the delete user page, i.e. once the user is
deleted the page redirects to the previous page. Indeed, when admin triggers this action
they are redirected to the admin panel page, but when normal users try to force-browse
the delete user page, the action is triggered but they are redirected to the home page of
Cuiteur. Therefore, output pages between admin and standard users are different, even
though the action was indeed triggered in both cases. This means the verdict assignment
technique implemented by all approaches is partial, and a new strategy should be inves-
tigated.
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IronWasp AppScan
PMVT

Auto. Manual Auto. Manual

CT-RXSS-01 ✗ ✓ ✓ ✓ ✓

CT-SXSS-02 ✗ ✓ ✓ ✓ ✓

CT-MSXSS-03 ✗ ✗ ✗ ✓ ✓

CT-JQXSS-04 ✗ ✗ ✗ ✗ ✓

CT-SQLI-05 ✗ ✓ ✓ ✓ ✓

CT-SQLI-06 ✗ ✓ ✓ ✓ ✓

CT-CSRF-07 ✗ ✗ ✗ ✗ ✓

CT-PE-08 ✗ ✗ ✗ ✗ ✗

Time Spent 0h20 1h 0h20 1h30
M / G / C / E

1h30 / 1h / 4h / 0h30

Table 8.2 – Cuiteur: Experiment Results

Interestingly, none of the scanners were able to see past the decoy token that Cuiteur
inserts in all its forms. It means that scanners only check for the presence of a token, but
do not actually conduct a real attack. This appears as a major weakness of these tools.
As with Wackopicko, scanners were at least five times faster than the PMVT approach.
Indeed, it took 1h30 to design the PMVT model of Cuiteur, 1h to generate test cases, 4h
to concretize them, and 30min to execute them.

Table 8.3 shows the results of the experiment conducted on Bookshop. The prototype
implementation of the PMVT process obtained the best results by detecting all the
featured vulnerabilities. It took 1h30 to design the PMVT model, 1h to generate test
cases, 3h to concretize them, and 30min to execute them.
Contrariwise, scanners were unable to handle the dynamic token generated for each
page. Thus, they were unable to automatically crawl the Web application, and did not
detect any vulnerability. When relying on their manual crawling module, their detection
rate did not improve. This is due to their attack process: scanners reuse HTTP requests
emitted during the crawling phase, and re-send them with attack vectors. The presence
of a dynamic token prevents them from successfully conducting attacks.
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IronWasp AppScan
PMVT

Auto. Manual Auto. Manual

BS-RXSS-01 ✗ ✗ ✗ ✗ ✓

BS-SXSS-02 ✗ ✗ ✗ ✗ ✓

BS-SXSS-03 ✗ ✗ ✗ ✗ ✓

BS-SQLI-04 ✗ ✗ ✗ ✗ ✓

BS-SQLI-05 ✗ ✗ ✗ ✗ ✓

BS-CSRF-06 ✗ ✗ ✗ ✗ ✓

BS-PE-07 ✗ ✗ ✗ ✗ ✓

Time Spent 0h30 2h 0h45 2h30
M / G / C / E

1h30 / 1h / 3h / 0h30

Table 8.3 – Bookshop: Experiment Results

8.3.3/ MEDIPEDIA

Medipedia is a large real-life website with many different pages and possible user inter-
actions. The experiment results from the scanners and PMVT have been aggregated in
Table 8.4.

As for Wackopicko, we were unable to record a login sequence in IronWasp, nor define a
login handling session. Therefore, the scanner could not access the authenticated area
of Medipedia, which represents a consequent part of the application. Nonetheless, we
were able to use the automated crawler to find 3 Reflected XSS vulnerabilities. We tried
to manually crawl the authenticated area, but it did not improve the results.

AppScan obtained the highest detection rate, with 8 Reflected XSS vulnerabilities. More-
over, its automated crawling module was able to visit most parts of the application, there-
fore we did not have to perform manual crawling.

PMVT obtained good results, but missed on 3 Reflected XSS vulnerabilities. This is be-
cause of the places of injection: each undetected vulnerability resulted from the injection
of HTTP headers or hidden tokens sent as HTTP request parameters. We did not repre-
sent these inputs during the modeling activity and therefore did not test them.

Note that both AppScan and PMVT had false positives for CSRF. Indeed, Medipedia
produces the same output regardless of the genuineness of requests. It duped PMVT’s
verdict assignment, which relies on Web page comparison, and it probably duped App-
Scan as well for the same reason. These results show that, again, Web page comparison
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IronWasp AppScan
PMVT

Auto. Manual Auto. Manual

Refl. XSS 3 (3/0) 3 (3/0) 8 (8/0) N/A 5 (5/0)

M.Step XSS 0 0 0 N/A 0

SQL Inj. 0 0 0 N/A 0

Blind SQL Inj. 0 0 0 N/A 0

CSRF 0 0 25 (0/25) N/A 8 (0/8)

Priv. Escal 0 0 0 N/A 0

Time Spent 3h30 4h 13h N/A
M / G / C / E

2h / 6h / 8h / 1h

Table 8.4 – Medipedia: Experiment Results

is not always reliable, which foregrounds the need for designing a new verdict assignment
strategy.

The time spent by AppScan and PMVT are very close. Although AppScan does not
involve human intervention once the manual crawling activity is completed, it took 30
minutes to configure it and the scan activity lasted 12 hours and a half. PMVT, on the
other hand, requires human intervention for 60% of the process: 2 hours for model
design, 6 hours for test generation, 8 hours for test concretization, and 1 hour and a half
for text execution.

8.3.4/ STUD-E

As previously stated in Section 8.1.3, Stud-E is a complete custom Web application,
developed in PHP. It is a single-URL website: the nature of the server response depends
on the HTTP parameters present in the request.

Results from the scanners and the PMVT toolchain are presented in Table 8.5. Vulner-
ability scanners were unable to automatically crawl the application: the presence of a
frame-set and the absence of unique URLs is the most probable cause for their inca-
pacity. IronWasp could not detect any vulnerability, even when supplied with manually
crawled URLs. On the other hand, AppScan was able to use results from manual crawl-
ing to scan the application. The scanner obtained the best results with the detection of 9
Reflected XSS, 2 multi-step XSS, and 16 blind SQL Injections. However, it produced two
false positives for CSRF, reinforcing the fact that its technique for CSRF is flawed.

As for Medipedia, PMVT obtained good results but missed on several XSS and SQL
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IronWasp AppScan
PMVT

Auto. Manual Auto. Manual

Refl. XSS 0 0 0 9 (9/0) 2 (2/0)

M.Step XSS 0 0 0 2 (2/0) 3 (3/0)

SQL Inj. 0 0 0 0 0

Blind SQL Inj. 0 0 0 16 (16/0) 9 (9/0)

CSRF 0 0 0 3 (0/3) 0

Priv. Escal 0 0 0 N/A 0

Time Spent 0h30 5h 1h30 19h00
M / G / C / E

2h / 7h / 9h / 2h

Table 8.5 – Stud-e: Experiment Results

Injections, because of non-handled injection points. Nonetheless, PMVT was able to
detect a complex multi-step XSS spread on different user sessions: the injection was
performed using an administrator role, and the vulnerability could only be observed when
logged in as a student. None of the scanners were able to detect this vulnerability. PMVT
relied on the information captured in the model to determine where the input is rendered
back, which lead to a session change. This result strongly supports the use of PMVT
models for the detection of complex vulnerabilities.

The time spent on AppScan and PMVT are very close. Although AppScan doe not involve
human intervention once the manual crawling activity is completed, it took one hour to
configure it and the scan activity lasted 18 hours. PMVT, on the other hand, required
human intervention during 70% of the process: 2 hours for model design, 7 hours for test
generation, 9 hours for test concretization, and 2 hours for text execution.

8.4/ THREATS TO VALIDITY

These experiments, like any others, have some limitations.

First, since we personally conducted all experiments, there is a difference between our
expertise of PMVT and our expertise of scanners: we had to learn how to properly con-
figure and execute these tools in order to use them efficiently. However, we don’t claim
to have become experts on using scanners, and the eventuality that we missed a few
configuration settings during the experiments exists. Nonetheless, to mitigate this issue,
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we worked with penetration testers from a french company called NBS System8 during
the early days of PMVT to get professional insights about manual penetration testing in
general and how to use scanners efficiently.

Second, we knew in advance the location of all vulnerabilities in the 3 dummy applications.
Even though we modeled these applications thoroughly, model creation may have been
somehow influenced by this knowledge. As such, it is possible that parts of the dummy
applications were unconsciously looked off during model creation if they did not feature
any vulnerability.

Third, we have only reported results that concerned the 4 vulnerability types addressed
by PMVT. Scanners found a few vulnerabilities on Medipedia and Stud-E that were not
reported because out of scope. Therefore, we depicted a somewhat reductive image of
scanners, and readers should acknowledge that these tools can test for a greater set of
vulnerability types [51].

8.5/ DISCUSSION

We have evaluated the toolchain that supports the PMVT process on 5 Web applications,
and compared its results with those obtained using AppScan and IronWasp. We discuss
these results by responding to the research questions we defined in Section 1.3.

RQ1 To what extent test patterns applied to a model of the Web application under

test improves the accuracy and precision of vulnerability detection?

Overall, The PMVT approach obtained the best results during the experimentation. First,
we were able to conduct successful attacks on each Web application, as opposed to scan-
ners who had issues to crawl Stud-E and were unable to crawl Bookshop. Second, PMVT
enables to detect complex attacks such as type 2 multi-step XSS, which are present in
Wackopicko and Cuiteur and were not detected by scanners. Moreover, we were able to
detect type 1 multi-step XSS that are spread across several user sessions (e.g., injection
as a standard user, resurgence as an admin), which scanners missed. Third, CSRF de-
tection in PMVT is more efficient than the one implemented in scanners. We were able to
dupe AppScan and IronWasp into missing on vulnerabilities by introducing decoy tokens
in Web forms, which we detected with PMVT.

However, scanners had better results at finding “simple” vulnerabilities. We qualify as sim-
ple the vulnerabilities that only require understanding of the application’s logic to reach
the page on which the attack is performed. This is the case for technical vulnerabilities
such as Reflected XSS and SQL Injections, for instance. Once the targeted page has
been reached, the attack process is purely technical: (i) inject a payload, (ii) submit the
data, and (iii) analyze the immediate response from the server.
During this thesis, we have decided to create all the attack mechanisms from scratch, in
order to have full control over the entire toolchain and have the ability to easily tweak /
enhance / change any attack process that showed weaknesses. As such, we have solely
relied on the information captured in the model to generate test cases, which means that
any user input that has not been modeled is not tested. It is the reason why PMVT under-
performed compared to scanners for the detection of Reflected XSS and SQL Injections.
On the other hand, scanners were able to detect more of these vulnerabilities because

8https://www.nbs-system.com/ [Last visited: August 2015]

https://www.nbs-system.com/
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they systematically conduct injections in every user input of a page. In PMVT, only the
modeled inputs are injected, and we did not model every possible input during experi-
mentation. For instance, Stud-E contains many hidden fields containing tokens, which
are inserted in every page of the application. We missed them during the modeling ac-
tivity, and therefore did not test for them. Scanners revealed that a few of these hidden
fields were vulnerable to XSS and SQL Injections, due to an incomplete sanitization.
Nonetheless, such exhaustive injection technique could be integrated in PMVT, without
unbearable cost. We discuss this as a possible future work in Section 9.2.1.2.

PMVT composes test patterns and a model of the Web application, which improves the
accuracy and precision of vulnerability detection by finding complex vulnerabilities

missed by scanners, and testing Web applications that scanners are unable to crawl.

RQ2 To what extent is it possible to provide generic test patterns for Web applica-

tion vulnerabilities?

Thanks to the modeling notation and the additions we brought to the test purpose
language, we were able to design seven generic test purposes based on vulnerability
test patterns, to detect four types of vulnerabilities. We successfully applied these test
purpose on each model of the five Web applications present in the experimentation,
without modification. Test cases generated from the test purposes enabled to detect
many instances of each vulnerability type.
Indeed, PMVT relies on a UML4MBT class diagram to represent the metamodel of the
DASTML language. This class diagram is therefore unique and not dependant of the
target Web application. With this specific notation, we provide means for test purposes
to be generic: test purposes only use elements from the UML4MBT class diagram and
generic instances (instances of classes such as WebAppStructure, WAUT, Threat).

PMVT makes it possible to design generic test patterns to generate vulnerability test
cases, for the detection of 4 vulnerability types.

RQ3 To what extent such Web application vulnerability testing process (based on

patterns and models) may be automated?

We were able to automate most of the PMVT process:

• Test purposes are generic; which means they have to be designed once and can
be used as is afterwards, for any project. Therefore, we consider the incorporation
of test purposes in a PMVT test project as automatic.

• Test selection and generation are automated; thanks to the additions PMVT brought
to the initial CertifyIt process to enable the CertifyIt test generation engine to com-
pute test cases from PMVT models and test purposes.

• Test concretization is 90% automated; the PMVT test publisher generates a com-
plete Mavenized Java project containing a test harness. Each operations from the
model is translated in an executable script with Selenium primitives. The only task
remaining manual is the matching between abstract and concrete data.

• Test execution and Verdict assignment are automated; thanks to the PMVT test
publisher, which relies on JUnit and includes dedicated observation techniques in
the test harness to assess the existence of vulnerabilities.
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The only activity that stayed fully manual is the design of PMVT models. However, thanks
to the DASTML language, we were able to strongly ease this activity. The creation of
DASTML models is straightforward, close to the real application, and has proven to be
3 times faster than directly designing PMVT-compliant UML4MBT models.

PMVT is a semi-automated MBT approach dedicated to vulnerability testing.
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This chapter aims to summarize the work that was produced during this thesis and pro-
poses five research perspectives to present possible extensions and continuations of this
work.

9.1/ SUMMARY

Current techniques to test / counteract / eliminate vulnerabilities are not precise and accu-
rate enough. On the one hand, manual penetration testing is the most used technique that
enable to detect many vulnerabilities. However, such technique rely on the experience
and know-how of penetration testers, who mostly proceed manually by writing specific
attack scripts tailored to a given Web application. This makes the dissemination of their
techniques very difficult, and the impact of this knowledge very low. Moreover, penetra-
tion testers often have to work in time boxes, and as a consequence have to reduce their
detection scope accordingly. On the other hand, Web application vulnerability scanners
are able to the detect major vulnerabilities, but they lack precision and accuracy since
they have no knowledge of the application’s logic. Consequently, they often generate
false positive and false negative results, and deep human investigation is often required.

In this thesis, we introduced an approach called Pattern-driven and Model-based Vulner-
ability Testing (PMVT) based on vulnerability test patterns and models for the detection
of Web application vulnerabilities. This original approach improves the precision and ac-
curacy of vulnerability testing, by producing executable test scripts faster than if written
manually, and by enabling to conduct complex and sophisticated attacks to detect vulner-
abilities that scanners fail to find, thanks to patterns and models.

Models in PMVT are designed using a dedicated domain-specific modeling language,
called DASTML. It allows the modeling of the global structure of the targeted Web appli-
cation: the available pages, the available actions on each page, and the user inputs of
each action potentially used to inject attack vectors. It solely represents all the structural
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entities necessary to generate vulnerability test cases. The transformation of a DASTML
instantiation into a valid UML4MBT model is automatically performed by a dedicated al-
gorithm.
Test purposes represent generic vulnerability test patterns, i.e. independent from the tar-
geted Web application. They define abstract vulnerability detection scenarios that drive
the test generation process through the model, by reasoning in terms of states to reach
and operations to call.
The proposed approach thus consists of instantiating the abstract scenarios regarding the
Web application model in order to automatically generate test sequences, which enable
to reveal potential vulnerabilities w.r.t. the test pattern objective.

To experiment and evaluate the PMVT approach, a full automated toolchain, from model
design to test execution, has been developed. It has been built on top of an existing
MBT tooling, called CertifyIt. As such, PMVT extends the existing artifacts of CertifyIt in
order to generate vulnerability test cases: its initial test purpose language has been aug-
mented in order to formalize generic vulnerability test patterns, and its modeling notation,
UML4MBT, has been specialized to meet PMVT’s need. The PMVT toolchain enables to
test for four of the most critical and widespread Web applications vulnerabilities, that is
to say Cross-Site Scripting, SQL Injections, Cross-Site Request Forgeries, and Privilege
Escalations.
A thorough experimentation on two real-life Web portals (Medipedia and Stud-E) and
three dummy applications (Wackopicko, Cuiteur and Bookshop) enabled to evaluate the
PMVT approach, as we were able to detect many vulnerabilities in each case studies. A
comparison with existing automated testing solutions (i.e., vulnerability scanners) showed
its effectiveness to generate more accurate vulnerability test cases and conduct complex
and sophisticated attacks that current automated solutions are unable to perform.
These benefits directly stem from the combination of PMVT models, capturing the logical
and structural aspects of the application under test, and the test purposes, driving with
precision the test generation process. Moreover, the automation of the test generation
and test execution makes it possible to adopt an iterative testing approach and is partic-
ularly efficient to manage vulnerability regression tests on updated or corrected further
versions of the Web application under test.

Furthermore, we have laid the foundations for the extension of MBT to address vulnera-
bility testing. In the next section, we present five future works to improve and extend the
PMVT approach.

9.2/ FUTURE WORKS

As showed by the experiment results (see Chapter 8), the PMVT approach provides
means to test for complex vulnerabilities on custom-made Web applications. Besides
these research results, the experiments showed possible improvements of the method
and the toolchain. Therefore, we propose in the next sections three improvements of the
toolchain to increase its effectiveness and efficiency, and two extensions to the process
in order to address other vulnerability types.
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Figure 9.1 – PMVT Model Inference Process Using a Proxy

9.2.1/ IMPROVEMENTS OF THE PMVT APPROACH

The time and resource cost related to the deployment of the approach are still higher than
scanners. As well, the verdict assignment strategy that was employed for CSRF and Priv-
ilege Escalations is flawed, as it has lead to several false positives and false negatives on
Cuiteur and Medipedia. To overcome these problems we propose three possible ways of
improving the current toolchain in terms of effectiveness and efficiency: model inference,
composing PMVT and scanners, and a verdict assignment strategy based on database
content analysis. We detail these improvements in the next sections.

9.2.1.1/ MODEL INFERENCE

PMVT inherits MBT’s weakness regarding deployment cost: model design and test con-
cretization are both time consuming and tedious tasks. During this thesis, we reached
a first level of simplification by introducing the dedicated DASTML modeling language,
which allows to capture Web applications structure and logic in a much simpler way than
with UML4MBT. In addition, the PMVT test publisher infers most of the concretization
activity by creating a complete test harness in which model operations have been imple-
mented using Selenium primitives.
A possible second level of simplification concerns the capture of user traces. The actual
practice to create a DASTML model is to manually visit the Web application under test,
and then manually report the relevant information in the model. The second part of this
practice could be semi-automated by recording the interactions between the browser and
the Web application to infer the model. The recording of browser/application interactions
may be done in two ways.

The first solution, as depicted in Figure 9.1, is to insert a proxy (e.g., using libraries such
as Browsermob Proxy ) between the browser and the Web application to record all HTTP
requests and responses. Then, a dedicated algorithm, using a similar approach than the
one proposed in [5] for the identification of unique pages (or states), would analyze the
traces and infer a model the same way it is manually done currently. The underlying idea
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Figure 9.2 – PMVT Model Inference Process Using Selenium IDE

is to manually crawl Web applications using a Web browser, similarly to scanners’ manual
crawling module, to automatically infer PMVT models.
Capturing the logical aspects of Web applications (e.g., user inputs resurgence, user
roles, multi-step actions, etc.) requires human intelligence, and therefore would be done
manually through the browser by developing a browser extension. This extension would
provide features to allow test engineers to define multi-step actions (e.g., with a recording
mechanism), characterize the current session type, and link page content to user inputs
(for instance by highlighting a text fragment and, with a right-click, select a user input from
a list created automatically from the intercepted HTTP requests).
In addition, the use of a proxy would enable to infer the concretization value matching
table (i.e., mapping between abstract data from the model and concrete data from the real
application), since all abstracted data would be automatically computed from concrete
data.

The second solution, as depicted in Figure 9.2, is to build a PMVT model inference plugin
on top of Selenium IDE 1. Selenium IDE is a Firefox extension that allows test engineers
to record sequences of actions on the Web application under test, such as button clicks,
form fields filling, URL loading, and so on. Each recording constitutes a test case that can
be automatically replayed. An export function enables to generate program test cases, for
instance JUnit test cases, filled with Selenium primitives w.r.t. the sequence of actions.
Moreover, Selenium IDE has a plugin system that allows for extension and customization.
The objective would be to create a Selenium IDE plugin that uses records to infer PMVT
models.
As for the first solution, the logical aspects of Web applications would be captured through
the plugin by creating features to create multi-step actions (e.g., by grouping a fragment
of a sequence of actions and marking it as multi-step), characterizing the current session
type and linking page content to user inputs.
With this solution, it would not only enable to infer the concretization value matching
table, but it would also allow to infer all the Selenium primitives that are necessary for
test execution. This would considerably improve the automation of the test concretization
activity, which currently relies on general assumptions about how PMVT actions translate
best in real user actions.

1http://www.seleniumhq.org/projects/ide/ [Last visited: August 2015]

http://www.seleniumhq.org/projects/ide/
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1 for_each literal $pagelit from “self.all_pages->select(p:Page|p.id)” on_instance was
2 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

3 "not(self.ongoingAction.oclIsUndefined() and
4 "self.current_page.id = PAGE_IDS::$pagelit)"
5 on_instance was
6 then use threat.execScannerOnPage()

Table 9.1 – Test Purpose combining PMVT and Scanners for All Injections

9.2.1.2/ COMPOSITION WITH SCANNERS

Experiment results showed that scanners are efficient at finding “simple” vulnerabilities,
because they systematically conduct injections in every user input of a page. PMVT failed
to detect some of these vulnerabilities because only the modeled inputs are injected, and
not every input was modeled during experiments.

An interesting improvement of the PMVT process would consists of composing the navi-
gation capacities of PMVT and the exhaustive testing capacities of scanners. If we take a
look back at the structure of test cases generated by CertifyIt (see Section 4.1.3), we see
that it is composed of two mandatory parts (we don’t consider the postamble since it is
optional and has not been used in PMVT test cases): (i) the preamble, which represents
all the interactions prior to the attack, and (ii) the body, which concerns the attack. Follow-
ing this logic, PMVT would be responsible for the preamble of the test cases by relying on
the information captured in the model. The body of test cases, which concerns the actual
attack and verdict assignment, would be delegated to the attack module of a scanner.

Furthermore, such composition would extend the testing capacity of PMVT. Indeed, many
injection-related vulnerabilities (such as Command Injections and LDAP Injections) share
the same attack process with Reflected XSS and SQL Injections. It would be then possi-
ble to address all these vulnerability types at once, using a single test purpose.

A theoretical test purpose that illustrates the composition of PMVT and scanners to ad-
dress all injections is depicted in Table 9.1. It consists of iterating the pages of the appli-
cation, and for each page, use the model to navigate from the root URL to the page, and
then delegate attacks to a scanner.

9.2.1.3/ VERDICT ASSIGNMENT

While verdict assignment for XSS and SQL Injections showed no weakness during ex-
periments, several false positives were observed concerning CSRF and Privilege Esca-
lations.

The verdict assignment strategy used to assess the presence of these two vulnerabilities
consists of Web page comparison (as stated in Chapter 7). The problem of this technique
is that it only relies on the information that the Web server is willing to share. It is an elab-
orated assumption that Web applications respond differently whether their functions has
been successfully triggered or not, or that the server response will be identical regard-
less of the type of user that triggered the functions. For instance, Medipedia computes
the same output whether form submissions have been performed or not, which lead to
false positives when testing for CSRF. As well, Cuiteur redirects its administrators to the
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administrator panel page once they modified a user account. If the user who triggered
the function is not logged in as administrator, Cuiteur redirects him further, to the home
page. It lead to false negatives when testing for Privilege Escalations: the function had
been triggered but the result pages were different. Therefore, a new verdict assignment
strategy must be designed.

A solution would consists of monitoring the database to collect and compare changes
between a nominal usage of a function and an attack. Consider for instance an adminis-
trator panel with a function to create administrator accounts (e.g., a Web form). Testing
this function for CSRF would first require to get a snapshot of the database prior to trig-
gering the function in a nominal way (e.g., by an authenticated administrator through the
GUI of the application). Then, another snapshot of the database is taken just after the
function triggering, to extract the delta between the two snapshots. The same database
snapshot acquisition process must be applied during the conduction of the CSRF attack.
Finally, verdict assignment is performed by comparing the two deltas (after stripping out
ids, timestamps and other data with temporal or random properties).

9.2.2/ EVOLUTIONS OF THE PMVT APPROACH

We propose two evolutions of the PMVT approach to increase its vulnerability coverage.
The first concerns an extension of DASTML and the test purpose language to tackle
Insecure Direct Object References. The second is about converting PMVT into an online
MBT process.

9.2.2.1/ EXTENSION TO ADDRESS INSECURE DIRECT OBJECT REFERENCES

So far, the PMVT approach is able to generate vulnerability test cases for four vulner-
abilities: XSS, SQL Injections, CSRF, and Privilege Escalation. We believe that such
approach could address much more vulnerability types by making additional extensions
to the test purpose language and DASTML.

A possible extension would be to address Insecure Direct Object References. Along the
lines of Privilege Escalations, this vulnerability type is due to an Access Control problem.
It implies that users can access resources that are restricted to a single user (e.g., an
account panel), for example by modifying the URL parameter that points to the ID of the
account. The test scenario to address this vulnerability type is also very close to the one
we relied on to generate Privilege Escalations test case: first access the resource as
intended, then login as another user and try to access the same resource. If the resource
is retrieved, then the Web application is vulnerable.

We have designed an hypothetical test purpose to address this vulnerability type, which
is depicted in Table 9.2. It first consists of collecting a user, all the pages that qualify as
user-specific, and all the other users. Then, the first part (lines 6-9) is about accessing
the page when connected as the first user. The second part (lines 10-12) is about trying
to access the same page when connected with another user. Finally, verdict assignment
(line 13) is performed by comparing the two page outputs.

However, we could not integrate this test purpose into this thesis, because it requires
several evolutions of the test purpose language and DASTML. First, it is not possible to
use variables that contain instances in OCL expressions (it has been implemented only
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1 for_each instance $user from "User.allInstances()" on_instance was,
2 for_each instance $page from "self.all_pages->select(p:Page|p.is_user_specific)"
3 on_instance was,
4 for_each instance $otherUser from "self.all_users->excluding($user)"
5 on_instance was,
6 use any_operation_but #UNWANTED_OPS any_number_of_times to_reach

7 "self.current_page = $page and self.current_user = $user" on_instance was
8 then use threat.collectPage()
9 then use was.reset()
10 then use any_operation_but #UNWANTED_OPS any_number_of_times
11 to_reach "self.current_page = $page and "and self.current_user = $otherUser"
12 on_instance was
13 then use threat.checkIDOR()

Table 9.2 – Test Purpose for Insecure Direct Object References in Pages

for literal values). Second, it is not possible to nest three for_each. The language is still
considered as a proof-of-concept and can only nest two iterators at the moment. Third,
DASTML does not allow to model users, nor to specify that pages are user-specific.
The creation of users as part of DASTML could be done by declaring all users prior to
the pages. Then, for login operations, use a user as parameter instead of credentials.
Concerning user-specific pages, such property could be defined as a special keyword in
their restrictions section. It could also be defined with the creation of a new section inside
pages declaration. Indeed, there are many possibilities, and a thorough experiment would
be necessary to decide which notation fits best.

9.2.2.2/ ONLINE MBT

PMVT is an offline MBT technique, which consists of generating test cases prior to their
execution on the application. An interesting future work would be to transform PMVT into
an online MBT technique.

Online MBT (or on-the-fly MBT) combines test generation and test execution: MBT tools
interact directly with the SUT and test it dynamically. Such process consists of generat-
ing only a single test step from the model at a time and immediately execute it on the
system under test. The test stops either if the stop conditions are satisfied (timeout, cov-
erage condition satisfied etc.) or if an unexpected behavior has been detected. The main
advantage of online MBT is indeed that the current execution results may influence the
path to take through the model for the next execution step, as well as produce instant
results (including feedback for modelers) both for test generation and execution. In com-
ponent and embedded (cyber-physical) systems, online MBT is commonly used to detect
operational faults.

Implementing PMVT as an online MBT technique would allow to further improve the pre-
cision of vulnerability test cases, perform more sophisticated attacks, and react on vul-
nerability discovery (e.g., to exploit it).
First, an online approach could improve the detection of injection-type vulnerabilities (XSS
and SQLi), while reducing execution time. By injecting user inputs with supposedly illegal
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characters that are commonly used in SQL Injections and/or XSS vectors, it would be pos-
sible to assess which characters are sanitized and which characters are not. Based on
these ideas, the objective would be to refine attack vector lists by excluding vectors that
don’t rely on characters that were identified as sanitized. Second, an online approach
could take the eventual hierarchy between vulnerabilities into account to perform com-
plex and sophisticated attacks. Consider a Web application that protect its users against
CSRF by checking the origin of their requests. The current attack process implemented
in PMVT would not be able to test for CSRF since it performs the attack from an external
Web server. However, if one of the user inputs is vulnerable to XSS, then it would be pos-
sible to use this vulnerability to conduct a CSRF attack from inside the Web application
(see the SAMY worm2 for an example of an XSS+CSRF attack). Therefore, whenever an
XSS vulnerability is found, the test generation engine would react on it and proceed to
the generation of XSS+CSRF test cases.
Third, online MBT would allow to go further than coupling vulnerabilities. It would enable
to perform each four phases of manual penetration testing (as stated in Section 3.2.2,
from reconnaissance to exploitation and maintaining access).

However, a suitable and scalable online testing process implies that test generation can-
not be slower than intended by the test execution framework. The required synchro-
nization between test generation and test execution must be ensured by implementing
efficient test generation algorithms, in order to produce results in a given lapse of time.
Furthermore, an online testing process should ensure the repeatability of the test genera-
tion activity for the same version of the Web application and from the same PMVT model,
and should result in the same generated tests and the same test execution results.

2http://namb.la/popular/ [Last visited: August 2015]

http://namb.la/popular/
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test_purpose ::= ( quantifier_list , )? seq
quantifier_list ::= quantifier (, quantifier )*

quantifier ::= for_each_behavior var from behavior_choice
| for_each_operation var from operation_choice
| for_each_literal var from literal_choice
| for_each_instance var from instance_choice
| for_each_integer var from integer_choice
| for_each_call var from call_choice

operation_choice ::= any_operation
| operation_list
| any_operation_but operation_list

call_choice ::= call_list
behavior_choice ::= any_behavior_to_cover

| behavior_list
| any_behavior_but behavior_list

literal_choice ::= <identifier> (or <identifier>)*
instance_choice ::= instance (or instance)*

integer_choice ::= { <number> (, <number>)* }
var ::= $ <identifier>

state ::= ocl_constraint on_instance instance
ocl_constraint ::= <string>

instance ::= <identifier>
seq ::= bloc (then bloc)*
bloc ::= use control restriction? target?

restriction ::= at_least_once
| any_number_of_time
| <number> times
| var times

target ::= to_reach state
| to_activate behavior
| to_activate var

control ::= operation_choice
| behavior_choice
| var
| call_choice

call_list ::= call (or call)*
call ::= instance.operation(parameter_list)

operation_list ::= operation (or operation)*
operation ::= <identifier>

parameter_list ::= (parameter (, parameter)*)?
parameter ::= free_value

| <identifier>
| <number>
| var

behavior_list ::= behavior (or behavior)*
behavior ::= behavior_with_tag tag_list

| behavior_without_tag tag_list
tag_list ::= { tag (, tag)* }

tag ::= @REQ: <identifier>
| @AIM: <identifier>

Figure A.1 – Syntax of the Test Purpose Language
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Name multi-step XSS
Description This pattern can be used on an application that does not check user inputs. An XSS

attack can redirect users to a malicious site, or can steal user’s private information
(cookies, session, ...).

Objective(s) Detect if a user input can embed attack vector enabling an XSS attack.
Prerequisites N/A
Procedure

1. Identify a sensible user input;

2. If there are other inputs (in the case of a Web form), supply nominal value to
each input;

3. Inject an attack vector (for instance <script>alert(xss)</script>) into the sensi-
ble user input.

Observation

1. Go to a page echoing the user input;

2. Check if the vector has been rendered verbatim.

Oracle
Variant(s) - attack vector variants: character encoding, Hex-transformation, comments insertion

- procedure variants: attack can be applied at the HTTP level; the attack vector is
injected in the parameters of the HTTP messages sent to the server, and we have to
check if the attack vector is in the response message from the server

Known Issue(s) XSS Cheat Sheet
Web Application Firewalls (WAF) filter messages send to the server (black list, clac
regEx, ...); variants allows to overcome these filters

Affiliated vTP Stored XSS
Reference(s) CAPEC: http://capec.mitre.org/data/definitions/86.html

WASC: http://projects.Webappsec.org/w/page/13246920/CrossSiteScripting
OWASP: https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Figure A.2 – Test Pattern for multistep XSS attacks

Name Error-Based SQL Injection
Description The software constructs all or part of an SQL command using externally-influenced

input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify the intended SQL command when it is sent to a
downstream component.

Objective(s) Detect if a user input can embed attack vector enabling SQL Injections.
Prerequisites N/A
Procedure Based on attack pattern CAPEC-66

1. Use the application, client or web browser to inject SQL constructs input (e.g.,
’ or “) through text fields or through HTTP GET parameters, to corrupt the
syntactic correctness of the SQL query.

2. Use a possibly modified client application or web application debugging tool
such to submit SQL constructs for submitted values or to modify HTTP POST
parameters, hidden fields, non-freeform fields, etc.

Observation Scrap the resulting page for a DBMS syntax error message.
Oracle
Variant(s) SQL Injection Cheat Sheet
Known Issue(s) Web Application Firewalls (WAF) filter messages send to the server (black list, clac

regEx, ...); variants allows to overcome these filters
Affiliated vTP Time-Based SQL Injections, Boolean-Based SQL Injections
Reference(s) CAPEC: http://capec.mitre.org/data/definitions/66.html

WASC: http://projects.webappsec.org/w/page/13246963/SQL%20Injection
OWASP: https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-
INPVAL-005%29#Error_based_Exploitation_technique

Figure A.3 – Test Pattern of Error-Based SQL Injection attacks
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http://projects.Webappsec.org/w/page/13246920/Cross Site Scripting
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://capec.mitre.org/data/definitions/66.html
http://projects.webappsec.org/w/page/13246963/SQL%20Injection
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Error_based_Exploitation_technique
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Error_based_Exploitation_technique
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Name Time-Based SQL Injection
Description The software constructs all or part of an SQL command using externally-influenced

input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify the intended SQL command when it is sent to a
downstream component.

Objective(s) Detect if a user input can embed attack vector enabling SQL Injections.
Prerequisites N/A
Procedure Based on OWASP Testing guide v4:

1. Use the application, client or web browser to inject an SQL fragment input
through text fields or through HTTP GET parameters, with the objective to cor-
rupt the query and get a fast response from the DBMS

2. Use the application, client or web browser to inject a second SQL fragment
input through text fields or through HTTP GET parameters, with the objective
to delay the response from the DBMS as much as possible (e.g., using built-in
functions such as MySQL sleep())

Observation Compare the two response times. A notable difference between response times is a
strong indicator of the presence of SQL Injections

Oracle
Variant(s) SQL Injection Cheat Sheet
Known Issue(s) Web Application Firewalls (WAF) filter messages send to the server (black list, clac

regEx, ...); variants allows to overcome these filters
Affiliated vTP Error-Based SQL Injections, Boolean-Based SQL Injections
Reference(s) CAPEC: http://capec.mitre.org/data/definitions/7.html

WASC: http://projects.webappsec.org/w/page/13246963/SQL%20Injection
OWASP: https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-
INPVAL-005%29#Time_delay_Exploitation_technique

Figure A.4 – Test Pattern for Time-Based SQL Injection attacks

Name Boolean-Based SQL Injection
Description The software constructs all or part of an SQL command using externally-influenced

input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify the intended SQL command when it is sent to a
downstream component.

Objective(s) Detect if a user input can embed attack vector enabling SQL Injections.
Prerequisites N/A
Procedure Based on IBM AppScan Test Pattern:

i - CTRL: Use the application, client or web browser to trigger the function contain-
ing the user input as intented.

ii - &TRUE: Use the application, client or web browser to inject SQL constructs
input with a positive logic (e.g., AND 1=1).

iii - &FALSE: Use the application, client or web browser to inject SQL constructs
input with a negative logic (e.g., AND 1=2).

iv - ||FALSE: Use the application, client or web browser to inject SQL constructs
input that has no logic influence (e.g., OR 1=2).

Observation Compare the control points of the resulting pages.
If CTRL ≈ &TRUE ≈ ||FALSE and
&TRUE , &FALSE then the application is vulnerable.

Oracle
Variant(s) SQL Injection Cheat Sheet
Known Issue(s) Web Application Firewalls (WAF) filter messages send to the server (black list, clac

regEx, ...); variants allows to overcome these filters
Affiliated vTP Time-Based SQL Injections, Error-Based SQL Injections
Reference(s) CAPEC: https://capec.mitre.org/data/definitions/7.html

WASC: http://projects.webappsec.org/w/page/13246963/SQL%20Injection
OWASP: https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-
INPVAL-005%29#Boolean_Exploitation_Technique
IBM: http://www-01.ibm.com/support/docview.wss?uid=swg21659226

Figure A.5 – Test Pattern for Boolean-Based SQL Injection attacks

http://capec.mitre.org/data/definitions/7.html
http://projects.webappsec.org/w/page/13246963/SQL%20Injection
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Time_delay_Exploitation_technique
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Time_delay_Exploitation_technique
https://capec.mitre.org/data/definitions/7.html
http://projects.webappsec.org/w/page/13246963/SQL%20Injection
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Boolean_Exploitation_Technique
https://www.owasp.org/index.php/Testing_for_SQL_Injection_%28OTG-INPVAL-005%29#Boolean_Exploitation_Technique
http://www-01.ibm.com/support/docview.wss?uid=swg21659226
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Name Cross-Site Request Forgery
Description The web application does not, or cannot, sufficiently verify whether a well-formed, valid,

consistent request was intentionally provided by the user who submitted the request.
Objective(s) Detect if requests can be sent from outside the application.
Prerequisites N/A
Procedure

1. Authenticate as a potential victim on the application.

2. Use the application, client or web browser to trigger the tested function as in-
tented, and store the resulting page.

3. Logout, and re-authenticate as a potential victim on the application.

4. Make a request to an external application.

5. From the external application, send a request that triggers the function on the
application under test, and store the resulting page.

Observation Compare the control-points of the two resulting pages. If the two sets of control points
are equal, the tested function is considered vulnerable to CSRF.

Oracle
Variant(s)
Known Issue(s)
Affiliated vTP
Reference(s) CAPEC: http://capec.mitre.org/data/definitions/62.html

WASC: http://projects.webappsec.org/w/page/13246919/Cross%20Site%20Request%
20Forgery
OWASP: https://www.owasp.org/index.php/Testing_for_CSRF_%28OTG-SESS-005%
29

Figure A.6 – Test Pattern for Cross-Site Request Forgery attacks

Name Privilege Escalation
Description The software does not perform a rigorous authorization check for functionalities and

pages that requires a provable user identity.
Objective(s) Detect if a page or function can be requested without proper authorization (e.g., without

being authenticated, or authenticated with low-privilege credentials).
Prerequisites N/A
Procedure Based on attack pattern from OWASP Testing Guide v4:

1. Authenticate as a potential victim on the application.

2. Use the application, client or web browser to access the tested page / trigger
the tested function as intented, and store the resulting page.

3. Logout and re-authenticate as a potential victim on the application.

4. Force-browse the request that retrieves the tested page / triggers the tested
function, without relying on the GUI, and store the resulting page.

Observation Compare the control points of the two resulting pages. If the two sets of control points
are equal, the tested function is considered vulnerable to Privilege Escalation.

Oracle
Variant(s)
Known Issue(s)
Affiliated vTP
Reference(s) CAPEC: http://capec.mitre.org/data/definitions/233.html

OWASP: https://www.owasp.org/index.php/Testing_for_Privilege_escalation_
%28OTG-AUTHZ-003%29

Figure A.7 – Test Pattern of Privilege Escalation attacks

http://capec.mitre.org/data/definitions/62.html
http://projects.webappsec.org/w/page/13246919/Cross%20Site%20Request%20Forgery
http://projects.webappsec.org/w/page/13246919/Cross%20Site%20Request%20Forgery
https://www.owasp.org/index.php/Testing_for_CSRF_%28OTG-SESS-005%29
https://www.owasp.org/index.php/Testing_for_CSRF_%28OTG-SESS-005%29
http://capec.mitre.org/data/definitions/233.html
https://www.owasp.org/index.php/Testing_for_Privilege_escalation_%28OTG-AUTHZ-003%29
https://www.owasp.org/index.php/Testing_for_Privilege_escalation_%28OTG-AUTHZ-003%29
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Abstract:

This thesis proposes an original approach, dubbed PMVT for Pattern-driven and Model-based
Vulnerability Testing, which aims to improve the capability for detecting four high-profile vulnerability
types, Cross-Site Scripting, SQL Injections, CSRF and Privilege Escalations, and reduce false
positives and false negatives verdicts. PMVT relies on the use of a behavioral model of the
application, capturing its functional aspects, and a set of vulnerability test patterns that address
vulnerabilities in a generic way.
By adapting existing MBT technologies, an integrated toolchain that supports PMVT automates the
detection of the four vulnerability types in Web applications. This prototype has been experimented
and evaluated on two real-life Web applications that are currently used by tens of thousands
users. Experiments have highlighted the effectiveness and efficiency of PMVT and shown a
strong improvement of vulnerability detection capabilities w.r.t. available automated Web application
scanners for these kind of vulnerabilities.
Keywords: Vulnerability Testing, Model-Based Testing, Vulnerability Test Patterns, Web applications, Cross-

Site Scripting, SQL Injections, Cross-Site Request Forgery, Privilege Escalation

Résumé :

Cette thèse propose une approche originale de test de vulnérabilité Web à partir de modèles et
dirigée par des patterns de tests, nommée PMVT. Son objectif est d’améliorer la capacité de détection
de quatre types de vulnérabilité majeurs, Cross-Site Scripting, Injections SQL, Cross-Site Request
Forgery, et Privilege Escalation. PMVT repose sur l’utilisation d’un modèle comportemental de
l’application Web, capturant ses aspects fonctionnels, et sur un ensemble de patterns de test de
vulnérabilité qui adressent un type de vulnérabilité de manière générique, quelque soit le type de
l’application Web sous test.
Par l’adaptation de technologies MBT existantes, nous avons développé une chaîne outillée complète
automatisant la détection des quatre types de vulnérabilité. Ce prototype a été exprimenté et évalué
sur deux applications réelles, actuellement utiliseés par plusieurs dizaines de milliers d’utilisateurs.
Les résultats d’expérimentation démontrent la pertinence et de l’efficience de PMVT, notamment en
améliorant de façon significative la capacité de détection de vulnérabilités vis à vis des scanners
automatiques d’applications Web existants.

Mots-clés : Test de Vulnérabilité, Test à partir de Modèles, Patterns de Test de Vulnérabilité, Applications
Web, Cross-Site Scripting, Injections SQL, Cross-Site Request Forgery, Privilege Escalation
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