PhD Joseph Boudou 
  
Stéphane Demri 
  
Martin Lange 
  
Florence Bannay 
  
Yannick Chevalier 
  
Martin Dieguez 
  
Luis Fari 
  
Olivier Gasquet 
  
Andreas Herzig 
  
Dominique Longin 
  
Emiliano Lorini 
  
Mathias Paulin 
  
Decision Procedures for Modal Logics of Actions, Resources and Concurrency

Aknowledgments

Firstly I wish to sincerely thank my supervisor Philippe Balbiani, for his constant sup-

Chapter 1 Introduction

Actions, resources and concurrency

An action can be defined as the possibility to change the state of the system under consideration. The concept of actions is ubiquitous in computer science. An action may be the execution of an instruction in a program, the learning of a new fact, a concrete act of an autonomous agent, a spoken word or a planned task. Modal logics have been successful in modeling actions. The relational semantics of a unary modality is1 an accessibility binary relation over states. Hence a unary modality allows to change the current state, just as an action. More precisely, an action can be modeled by a unary modality , formula of the form ϕ being read "the action can be executed such that after its execution, the resulting state satisfies ϕ".

Similarly, the concept of resources is ubiquitous in computer science. Resources may be memory cells in a computer, performing agents, different meanings of a phrase, time intervals or access rights. An important characterization of the notion of resources is that resources can be divided, for instance to be shared. In modal logics, the ability of resources to be shared can be captured by binary modalities. The relational semantics of a binary modality is a ternary relation over states. This ternary relation can be interpreted as the separation of the initial state into two substates. Hence a binary modality / can be used to model resources, formulas of the form ϕ / ψ being read "the current state of resources can be divided into two parts, the first part satisfying ϕ and the other one satisfying ψ". Additionally, the residual -/ of the modality / can model the necessity of additional resources, formulas of the form ϕ -/ ψ being read "whenever resources satisfying ϕ are added to the current state of resources, the formula ψ is satisfied".

Concurrency can be defined as the ability to perform more than one task at the same moment. This is a main concern in computer science. The combination of the notions of actions and resources gives an interesting notion of concurrency: concurrent actions are actions executed at different parts of the available resources. For instance, the concurrency of a multi-processors system can be modeled as instructions (the actions) operating on different memory cells (the resources). The concurrency of a group of agents can be interpreted similarly: actions are collective and the resources are the agents. Some modal logics exploit this idea to model concurrency. A first example is the interpretation of Separation Logics by O'Hearn and Brookes [O'Hearn.04, Brookes.04] which combines a logic to reason about pointers (with a binary modality and its residual) and a Hoare logic of programs. Another example is the Propositional Dynamic Logic with Parallel composition, Recover and Store proposed by Benevides, de Freitas and Viana [BFV.11] which features a constructor for parallel actions whose semantics is based on a ternary relation.

The thesis is divided in three parts, corresponding to each of the three aforementioned notions. The first part deals with modal logics to reason about actions, namely the propositional dynamic logic (PDL) and some of its variants. The second part deals 1. Introduction with logics to reason about resources, namely some substructural logics and modal logics with a binary modality. The last part deals with logics to reason about concurrency, namely some extensions of PDL with a construct for parallel compositions of programs. Each part starts with a chapter describing the state of the art. Then the next chapters of each part present new results.

There is another transversal reading of the thesis corresponding to the goal of designing a modal logic to reason explicitly about concurrent actions with a relatively low computational complexity. In Chapter 7, the extension PPDL det of the Propositional Dynamic Logic recalled in Chapter 2 is proved to be a good candidate for that goal. In this logic, a binary normal modality can be defined which corresponds to the separation of resources. Concurrency in PPDL det is closely related to this modality. Although the results in Chapter 7 are promising, we believe that PPDL det could be improved by forcing the binary modality to be associative. Since such a modification usually makes a logic undecidable, the associativity of binary modalities is studied in Chapter 5 where new decidable and expressive logics with an associative binary modality are proposed.

Contribution of the thesis

In this thesis, I study the expressivity, decidability and complexity of modal logics which can be used to reason about actions, resources or concurrency. In particular, I propose decision procedures for the satisfiability problem of some logics. The satisfiability problem consists in deciding for any given formula whether there exists a situation (a model) in which the formula holds (is satisfied). The following list details all the contributions, in the order they appear in the thesis.

• In Section 2.1, I define the property for a logic to be conservative. Intuitively a logic is conservative if the addition of new syntactic atoms (like propositional variables) does not change the validity of formulas. This property is used in Section 3.1 to explain why I discard a particular semantics for the language of Ockhamist propositional dynamic logics.

• In Section 2.2, I define what is a comprehensive decomposition of a formula. This definition tries to capture the essential property of decompositions like subformula for the minimal unary normal modal logic (K) or the Fischer-Ladner decomposition for the propositional dynamic logic (PDL), which allows to apply wellknown methods like filtration.

• In Chapter 3, I propose sound and complete decision procedures for the satisfiability problems of the two main variants of Ockhamist propositional dynamic logics. These logics extend the expressivity of PDL with features of branching time logics. I also proved that the given decision procedures are optimal and that both variants are 2EXPTIME-complete. The results of this chapter have been published in [BouLor.16].

• In Chapter 5, I propose a new family of logics with an associative binary modality. These logics, called counting logics, have a nonstandard semantics for the propositional variables. I first prove that counting logics are more general than the propositional dependence logic and some separation logics. Then I prove the decidability of two logics in the family.

• In Chapter 6 and Section 7.2, I study the expressivity of five variants of PDL to reason about concurrency. I define three kinds of situations of cooperation, in which some actions can be executed concurrently whereas some other actions cannot be executed independently. Then I check whether the variants of PDL allow these situations as models.

• In Section 6.5, I further study the expressivity of the propositional dynamic logic with parallel composition, recover and store (PRSPDL). I prove that some pro-Conventions and notations 1.3 gram operators cannot be removed from the language without changing the expressive power of the logic. This work is an improved version of results published in [BalBou.15a].

• In Section 6.6, I propose a decision procedure for a variant of PDL to reason about concurrency. This decision procedure is based on the selection method published in [BalBou.14] for another variant of PDL.

• In Section 7.5, I prove that the propositional dynamic logic with deterministic separating parallel composition (PPDL det ) has a strong finite model property. This logic is an interesting variant of PDL to reason about concurrency, in which all situations of cooperation defined in Section 6.1 can be modeled. This result and some other parts of Chapter 7 have been published in [Boudou.15].

• In Section 7.6, I propose a sound and complete decision procedure for PPDL det . This decision procedure is based on the method of eliminating Hintikka sets.

Since the procedure can be executed in deterministic exponential time, it is optimal and PPDL det is EXPTIME-complete. This is the main result of the thesis as it states that the addition of a separating parallel composition of programs to PDL does not increase its complexity. This result has been published in [Boudou.16].

• In Chapter 8, I propose tableaux methods for PPDL det and one of its fragment. In contrast with the decision procedure proposed in Section 7.6, tableaux methods are implementable in practice. These decision procedures have been published in [BalBou.15b].

Conventions and notations

Sets, relations and functions

We use the standard mathematical notations for sets. In particular, given a set S, we write |S| to denote the cardinality of S and P (S) to denote the set of all subsets of S. We sometimes use the power notation for Cartesian products: S 1 = S and for all k > 1, S k = S k-1 × S. We write N for the set of all natural numbers, ω for the cardinality of N and Z for the set of integers. For all natural numbers a, b ∈ N, we write a . . b for the set {x ∈ N | a ≤ x ≤ b} and a . . ω for the set {x ∈ N | a ≤ x}.

A relation is a subset of the Cartesian product of some sets. In particular, for n ∈ N, an n-ary relation is a subset of S n . A partial function is a binary relation f ⊆ A × B which is deterministic: for all (a, b), (c, d) ∈ f , if a = c then b = d. A function is a partial function which is also serial: for all a ∈ A there is b ∈ B such that (a, b) ∈ f . Therefore, all the set operations (like union or inclusion) are properly defined for functions (even if the result is generally not a function). We write f : A ---B to denote that f is a partial function from A to B and f : A -→ B to denote that f is a function from A to B. Given any partial function f : A ---B, for any subset S ⊆ A, we write f [S] for the image {y ∈ B there is x ∈ S such that y = f (x)} of S by f . Moreover, the domain dom(f ) is defined as {x ∈ A there is y ∈ B such that y = f (x)} and the range ran(f ) as f [dom(f )].

1. Introduction of σ from its i th element 2 The notations σ <i , σ >i and σ i..j are shorthands for σ ≤i-1 , σ ≥i+1 and (σ ≤j ) ≥i , respectively.

Modal logics

The vocabulary and notations of the textbook [BRV.01] of Blackburn, de Rijke and Venema will be used throughout this work. In particular, modal logics studied in this thesis have more than one unary modality. Hence we briefly recall the definition of similarity types, modal language over a similarity type τ, τ-frame and model. Definition 1.1 (Similarity type). A similarity type is a pair τ = (O, ρ) where O is a non-empty set of symbols and ρ : O -→ N assigns an arity to each symbol in O.

Definition 1.2. Given a similarity type τ = (O, ρ) and a set Φ 0 of propositional variables, the modal language over τ and Φ 0 is defined by:

ϕ, ψ, ϕ 1 . . . p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | ∆(ϕ 1 , . . . , ϕ ρ(∆) )
where p ∈ Φ 0 and ∆ ∈ O.

Definition 1.3. Let τ = (O, ρ) be a similarity type and Φ 0 a non-empty set of propositional variables. A τ-frame is a pair F = (W , R) where W is a non-empty set of states and R is a function assigning a (ρ(∆) + 1)-ary relation over W to each symbol ∆ in O. A τ-model over Φ 0 is a triple M = (W , R, V ) where (W , R) is a τ-frame and V is a valuation function assigning a subset of W to each propositional variable in Φ 0 .

Definition 1.4. Let τ = (O, ρ) be a similarity type, L a subset of a modal language over τ and C a class of τ-models. A logic L obtained by interpreting L in C is a modal logic over τ iff formulas in L are interpreted at states and for any symbol ∆ ∈ O, any formulas ϕ 1 , . . . , ϕ ρ(∆) ∈ L such that ∆(ϕ 1 , . . . , ϕ ρ(∆) ) ∈ L , any model M = (W , R, V ) ∈ C and any state w ∈ W , w satisfies ∆(ϕ 1 , . . . , ϕ ρ(∆) ) in M if and only if there are w 1 , . . . , w ρ(∆) ∈ W such that (w, w 1 , . . . , w ρ(∆) ) ∈ R(∆) and for all k ∈ 1 . . ρ(∆), w k satisfies ϕ k in M.

Part I

Actions

Chapter 2

Propositional Dynamic Logic

The propositional dynamic logic (PDL) [FisLad.77] is a multimodal logic designed to reason about behaviors of programs. A modal operator α is associated to each program α, formulas α ϕ being read "the program α can be executed from the current state to reach a state where the formula ϕ holds". The set of programs is structured by the following operators: sequential composition (α ; β) of programs α and β executes β after α; nondeterministic choice (α ∪ β) of programs α and β executes α or β; test ϕ? on formula ϕ checks whether the current state satisfies ϕ; iteration α * of program α executes α a nondeterministic number of times.

In contradistinction with other logics of programs, atomic programs are abstract in PDL. Therefore, programs can easily be replaced by some other kinds of actions. Indeed, PDL has been adapted to many different domains like knowledge representation or linguistics (see for instance [DHK. 07,EijSto.06,Schild.91]). Hence PDL can be regarded as a prominent logic of actions.

PDL has been intensively studied in the last decades and a lot is known about it (see for instance [HKT.00] for a starting point). We do not recall all these results in the present chapter. Instead, we present the methods and techniques which we adapt to other logics in the remainder in the thesis, along with some results we use to compare other logics to PDL. Moreover, we use this chapter to introduce notations, conventions and vocabulary used throughout the thesis.

Syntax and semantics

Let Π 0 be a countable set of atomic programs (denoted by a, b . . .) and Φ 0 a countable set of propositional variables (denoted by p, q . . .). The sets Π PDL (Π 0 , Φ 0 ) and Φ PDL (Π 0 , Φ 0 ) of programs (denoted by α, β . . .) and formulas (denoted by ϕ, ψ . . .) are defined simultaneously by the following grammar:

α, β a | (α ; β) | (α ∪ β) | ϕ? | α * ϕ p | ⊥ | ¬ϕ | α ϕ
As usual for modalities, we define the dual modality [α] of α by: [α] ϕ ¬ α ¬ϕ. As it will become clear from the semantics, all the Boolean connectives can be defined in PDL, starting for instance with ϕ → ψ [ϕ?] ψ. Parentheses may be omitted for clarity, but they are taken into account when counting occurrences of symbols. We write |α| and |ϕ| for the number of occurrences of symbols in the program α and the formula ϕ, respectively. The negation deserves some comments. Since negation is classical, it would be convenient if it was involutive 1 . Since it is not the case, we define the syntactic function ∼ over formulas such that ∼ϕ = ψ if ϕ = ¬ψ for some formula ψ and ∼ϕ = ¬ψ otherwise. Obviously, ∼ is involutive. Hence, in most situations we would prefer to use ∼ instead of ¬. Therefore, we abusively consider that ¬ is in fact ∼. For instance, we will abusively assume that [α] ϕ is defined as ¬ α ∼ϕ and that ¬¬ϕ? and ϕ? are the same 1 An involutive function is a function which is its own inverse. 13 2. Propositional Dynamic Logic program. Put differently, we consider equivalence classes of programs and formulas by the elimination of double negations instead of proper programs and formulas.

A PDL Kripke frame over Π 0 is a labeled transition system, i.e., a pair F = (W , R) where:

• W is a nonempty set of states (denoted by w, x, y . . .) and

• R is a function associating a binary relation over W to each atomic program in Π 0 . We usually write x R(a) y instead of (x, y) ∈ R(a). Intuitively, x R(a) y means that y can be reached from x by the program a. From a more general action-based perspective, x R(a) y means that the action a can be performed in the state x and can change the state x into the state y. A PDL Kripke model over (Π 0 , Φ 0 ) is a tuple M = (W , R, V ) where:

• (W , R) is a PDL Kripke frame over Π 0 and

• V is a valuation function associating a set of states to each propositional variable in Φ 0 . Formulas from Φ PDL (Π 0 , Φ 0 ) are evaluated at states in a PDL Kripke model over (Π 0 , Φ 0 ). We write M, w | = ϕ if the formula ϕ holds at the state w in the model M. The relation | = is defined by simultaneous induction with the extension R of R to all programs by: where R(α) * is the reflexive and transitive closure of R(α)

M, w | = p iff w ∈ V (p) M, w | = ⊥ never M, w | = ¬ϕ iff M, w | = ϕ M, w | = α ϕ iff ∃x ∈ W , w R(α) x
Usually, R and R are not distinguished and R is written instead of R. Remark that we could have extended the function V to all formulas instead and defined the relation | = such that M, w | = ϕ iff w ∈ V (ϕ). Moreover, consider the similarity type τ(Π 0 , Φ 0 ) = (O, ρ) where O = Π PDL (Π 0 , Φ 0 ) and ρ(∆) = 1 for all ∆ ∈ O. Given any PDL Kripke model (W , R, V ) over (Π 0 , Φ 0 ), the triple (W , R, V ) is a τ(Π 0 , Φ 0 )-model and PDL(Π 0 , Φ 0 ) is a modal logic over τ(Π 0 , Φ 0 ). As usual in modal logics, a formula ϕ ∈ Φ PDL (Π 0 , Φ 0 ) is satisfiable iff there exists a model M = (W , R, V ) and a state x ∈ W such that M, x | = ϕ. Conversely, a formula ϕ ∈ Φ PDL (Π 0 , Φ 0 ) is valid iff for any model M = (W , R, V ) and any state x ∈ W , M, x | = ϕ. PDL(Π 0 , Φ 0 ) is the logic obtained by interpreting the language Φ PDL (Π 0 , Φ 0 ) in the class of all PDL Kripke models over (Π 0 , Φ 0 ).

Until now, we have been a little pedantic in parameterizing languages, classes of frames, classes of models and logics by the sets Π 0 and Φ 0 of atoms. Our intention was to emphasize the fact that, strictly speaking, we usually do not have one logic but a family of logics parameterized by some sets of atoms. To (abusively) consider such a family of logics as one logic, the family of logics must have the following property of being conservative.

Definition 2.1 (Conservative logic). Let L be a family of languages parameterized by a class C of tuples (A 1 , . . . , A n ) of sets of atoms, and L a family of logics over the family L of languages. The family L is conservative iff for all tuples (A 1 , . . . , A n ) and (B 1 , . . . , B n ) in C, if A k ⊆ B k for all k ∈ 1 . . n then L(B 1 , . . . , B n ) is a conservative extension of L(A 1 , . . . , A n ), i.e., the set of valid formulas of L(B 1 , . . . , B n ) which are in the language L(A 1 , . . . , A n ) is exactly the set of valid formulas of L(A 1 , . . . , A n ).

If a family of logics is conservative, then the validity of any formula depends only on the atoms occurring in the formula. In that case only, the set of tuples parameterizing logics and languages is not relevant and can be omitted. Hopefully, most logic families have this property. In particular, as stated by the following proposition, PDL has this property. Hence we will (abusively) consider PDL as a logic. In the remainder of the thesis, we will parameterize languages, classes of frames, classes of models and logics by sets of atoms only when some considered families of logics are not conservative (like in Section 3.1).

Proposition 2.2. PDL is conservative.

Proof. Let us consider a set Π 0 of atomic programs, a set Φ 0 of propositional variables, and two PDL Kripke models M 1 = (W 1 , R 1 , V 1 ) over (Π 1 , Φ 1 ) and M 2 = (W 2 , R 2 , V 2 ) over (Π 2 , Φ 2 ) such that Π 0 ⊆ Π 1 ∩ Π 2 and Φ 0 ⊆ Φ 1 ∩ Π 2 . A function f from W 1 to W 2 is an isomorphism from M 1 to M 2 limited to (Π 0 , Φ 0 ) iff f is a bijection such that:

w ∈ V 1 (p) iff f (w) ∈ V 1 (p) w R 1 (a) x iff f (w) R 2 (a) f (x)
for all w, x ∈ W 1 , all p ∈ Φ 0 and all a ∈ Π 0 . If there is such a function, it can easily be proved by induction on n that for all n ∈ N, all w, x ∈ W 1 , all ϕ ∈ Φ PDL (Π 0 , Φ 0 ) and all α ∈ Π PDL (Π 0 , Φ 0 ):

IH.1 if |ϕ| = n then M 1 , w | = ϕ iff M 2 , f (w) | = ϕ;
IH.2 if |α| = n then w R 1 (α) x iff f (w) R 2 (α) f (x). Suppose now that Π 1 ⊆ Π 2 and Φ 1 ⊆ Φ 2 . Since the negation is classical, a formula is valid if and only if its negation if satisfiable, hence we can reason about satisfiability instead of validity. Suppose a formula ϕ ∈ Φ PDL (Π 1 , Φ 1 ) is satisfiable in PDL(Π 1 , Φ 1 ). There is a model M 1 = (W 1 , R 1 , V 1 ) over (Π 1 , Φ 1 ) satisfying ϕ. We construct the model M 2 = (W 2 , R 2 , V 2 ) over (Π 2 , Φ 2 ) such that W 2 = W 1 , R 2 (a) = R 1 (a) for all a ∈ Π 1 and V 2 (p) = V 1 (p) for all p ∈ Φ 1 . The identity over W 1 is an isomorphism limited to (Π 1 , Φ 1 ) from M 1 to M 2 . Therefore, ϕ is satisfiable in PDL(Π 2 , Φ 2 ). The other direction is similar and we do not detail it.

Fischer-Ladner closure

For many usual techniques and methods in modal logics, the set of subformulas of the considered formula is used. For basic modal logics like K, this set has some interesting properties. First it is finite and usually its cardinality is even linear in the number of occurrences of symbols in the formula. Second, for any formula ψ and any state w in a Kripke model, checking whether w and its successors satisfy some subformulas of ψ is sufficient to decide whether w satisfy ψ. These properties are necessary for instance for the filtration technique or for the tableaux method, both adapted to PDL in the following sections. We define the second property more formally.

Definition 2.3. Let τ = (O, ρ) be a similarity type, L a modal logic over τ, a wellfounded order over the formulas of L and ϕ a formula in L's language. A set C of L's formulas is comprehensive for ϕ with respect to iff there are two finite subsets L and S of C and a terminating deterministic procedure Check such that for any model M = (W , R, V ) for L and any state w ∈ W :

• Check succeeds if and only if w satisfies ϕ in M; • Check has access to M and w only through the following queries:

-Given some formula ψ ∈ L, does w satisfies ψ in M ? -Given a symbol ∆ ∈ O, a tuple (Q 0 , . . . , Q ρ(∆) ) of subsets of S and an index i ∈ 0 . . ρ(∆), is there a tuple w 0 , . . . , w n ∈ R(∆) such that w i = w and for all k ∈ 0 . . ρ(∆) if k i then w k satisfies in M all formulas in Q k ? -Given a symbol ∆ ∈ O, a tuple (Q 0 , . . . , Q ρ(∆) ) of subsets of S and an index i ∈ 0 . . ρ(∆), is it the case that for any tuple (w 0 , . . . , w ρ(∆) ) ∈ R(∆) if w i = w then there is k ∈ 0 . . ρ(∆) such that k i and w k satisfies in M all formulas in Q k ?

• Either ϕ is minimal for or for all formula ψ ∈ L, ψ ≺ ϕ where ≺ is the strict order corresponding to . The set C is globally comprehensive iff C is comprehensive for all ϕ ∈ C. If there is a terminating deterministic procedure which computes for any formula ϕ in L's language a set C(ϕ) such that ϕ ∈ C and C is globally comprehensive then L has comprehensive decompositions.

When formulas are defined inductively from some symbols, the well-founded order is usually defined such that ψ ϕ iff the number of occurrences of symbols in ψ is less or equal than the number of occurrences of symbols in ϕ. In such cases, may be omitted. Besides, it must be outlined that to have comprehensive decomposition is just a necessary condition to apply some usual method like the filtration and does not imply any other properties.

For PDL, the set of subformulas of any formula is not comprehensive. The culprits are the program operators. Consider for instance the simple formula ϕ = a ; b p. The only strict subformula of ϕ is p and it is clearly not sufficient to decide whether a state satisfies ϕ.

Fischer and Ladner [FisLad.79] devised sets which have these two properties. Given a PDL formula ϕ 0 , the Fischer-Ladner closure FL(ϕ 0 ) of ϕ 0 , is the least set (by inclusion) containing ϕ 0 and closed by the rules of Figure 2.1. These rules are read as follows: if the premise belongs to the set then all the conclusion must belong to the set too. It can easily be proved by induction that for any formulas ϕ 0 ∈ Φ PDL and α ψ ∈ FL(ϕ 0 ), ψ ∈ FL(ϕ 0 ). The following propositions prove that the Fischer-Ladner closure has the two aforementioned properties.

Proposition 2.4 from [FisLad.79]. There is a natural number K such that for any PDL formula ϕ 0 , the cardinality of FL(ϕ 0 ) is less than K • |ϕ 0 |.

Proof sketch. The method used in the proof of Fischer and Ladner is very convenient and we use it for different proofs in the remainder of the thesis (for instance in the completeness of our tableaux method in Chapter 8). Hence we give here a sketch of the original proof.

The restricted Fischer-Ladner closure rFL(ϕ 0 ) of any formula ϕ 0 is defined similarly to the Fischer-Ladner closure except that the rules for the non-deterministic choice, the

Fischer-Ladner closure 2.2 α ∪ β ϕ α Q ϕ β Q ϕ ϕ α * ϕ α Q α * ϕ ϕ ¬ϕ ϕ Figure 2
.2: Restricted Fischer-Ladner closure rules iteration and the negation are replaced with the ones in Figure 2.2. In this figure, the negation operator ¬ is not the function ∼. New propositional variables of the form Q ϕ are introduced by these rules. The Fischer-Ladner closure can be obtained from the restricted Fischer-Ladner closure by recursively replacing each occurrence of any new propositional variable Q ϕ with ϕ and by adding ∼ϕ for each ϕ in the restricted Fischer-Ladner closure.

Let ∆ +ϕ 0 be the set of new propositional variables needed for the restricted Fischer-Ladner closure of ϕ 0 and define Φ +ϕ 0 0 as Φ 0 ∪∆ +ϕ 0 . The restricted Fischer-Ladner closure of ϕ 0 is a subset of Φ PDL (Π 0 , Φ +ϕ 0 0 ). In some situation though, it is more convenient to use the new propositional variables Q ϕ , hence to consider the restricted Fischer-Ladner closure instead of the Fischer-Ladner closure. Since PDL is conservative, this has no impact on the satisfiability of formulas. Any model M = (W , R, V ) over (Π 0 , Φ 0 ) can be transformed into the model M = (W , R, V ) over (Π 0 , Φ +ϕ 0 0 ) by extending V to V such that w ∈ V (Q ϕ ) iff M, w | = ϕ for any new propositional variable Q ϕ ∈ ∆ +ϕ 0 .

To prove that the cardinality of rFL(ϕ 0 ) is linear in |ϕ 0 |, Fischer and Ladner defined the following measure on programs and formulas. γ(p) = 1, for all p ∈ Φ 0 γ(a) = 1, for all a ∈ Π 0 γ(Q ϕ ) = 0, for all Q ϕ ∈ ∆ +ϕ 0 γ(α ; β) = γ(α) + γ(β) + 1

γ(⊥) = 1 γ(α ∪ β) = γ(α) + γ(β) + 1 γ(¬ϕ) = γ(ϕ) + 1 γ(ϕ?) = γ(ϕ) + 1 γ( α ϕ) = γ(α) + γ(ϕ) γ(α * ) = γ(α) + 1
Then the following facts can easily be checked:

• For any rule of the restricted Fischer-Ladner closure, let ϕ be the formula in the premises and ψ 1 , . . . , ψ n the formulas in the conclusions. We have γ(ϕ) = 1 + i∈1..n γ (ψ i ).

• For any formula ϕ, there is at most one rule of the restricted Fischer-Ladner closure applicable to ϕ.

• For any Q ϕ ∈ ∆ +ϕ 0 , ϕ ∈ rFL(ϕ 0 ).

Therefore the cardinality of the restricted Fischer-Ladner closure is linear and so is the Fischer-Ladner closure.

Proposition 2.5. For any formula ϕ ∈ Φ PDL , FL(ϕ) is comprehensive for ϕ. 

( ) = {(∅, )} next(aσ ) = {(∅, aσ )} next((α ; β)σ ) = next(αβσ ) next((α ∪ β)σ ) = next(ασ ) ∪ next(βσ ) next((ϕ?)σ ) = {(L ∪ {ϕ}, σ 1 ) | (L, σ 1 ) ∈ next(σ )} next(α * σ ) = next(σ ) ∪ {(L, σ 1 α * σ ) | (L, σ 1 ) ∈ next(α)}
The following hypothesis can easily be proved for all sequences σ ∈ Π * PDL , by induction

on k∈1..|σ | σ k . IH.1 for any formula ϕ ∈ Φ PDL , any model M = (W , R, V ) and any state w ∈ W , M, w | = form (σ , ϕ) if and only if there is (L, σ 1 ) ∈ next(σ ) such that M, w | = form (σ 1 , ϕ) ∧ ψ∈L ψ. IH.2 for all ϕ ∈ Φ PDL and all (L, σ 1 ) ∈ next(σ ), L ∪ {form (σ 1 , ϕ)} ⊆ FL(form (σ , ϕ)); IH.3 for all (L, σ 1 ) ∈ next(σ ), σ 1 = or σ 1 1 ∈ Π 0 ; IH.4 for all (L, σ 1 ) ∈ next(σ ) and all ψ ∈ L, ψ < k∈1..|σ | σ k .
Then for any formula of the form α ϕ, the procedure check if there is a pair (L, σ

) ∈ next(α) such that • M, w | = ψ for all ψ ∈ L and • if σ = aσ 1 for some a ∈ Π 0 then there is a successor x ∈ W of w by R(a) such that M, x | = form (σ 1 , ϕ).
The procedure is similar for formulas of the form [α] ϕ.

Strong finite model property by filtration

A logic has the finite model property iff any satisfiable formula is satisfiable in a finite model, i.e., a model with a finite number of states. A logic has the strong finite model property iff there exists a computable function f on natural numbers such that any satisfiable formula ϕ 0 is satisfiable in a model with at most f (|ϕ 0 |) states. Filtration is the usual technique in modal logic to prove strong finite model properties. We illustrate it here for PDL.

Proposition 2.6 from [FisLad.79].

There is a natural numbers K such that any PDL satisfiable formula ϕ 0 is satisfiable in a model with at most 2 K•|ϕ 0 | states.

Let K be defined by Proposition 2.4. To prove Proposition 2.6 above, suppose that ϕ 0 is satisfiable. Then there exists a PDL Kripke model M 0 = (W 0 , R 0 , V 0 ) and a state x 0 ∈ W 0 such that M 0 , x 0 | = ϕ 0 . Let ≡ be the binary relation on W 0 such that w ≡ x iff for all ψ ∈ FL(ϕ 0 ), M 0 , w | = ψ if and only if M 0 , x | = ψ. The relation ≡ is obviously an equivalence relation. For all x ∈ W 0 , we write [x] for the equivalence class of x by ≡. Each of these equivalence classes corresponds to a distinct subset of FL(ϕ 0 ). Therefore, there are at most 2 K•|ϕ 0 | equivalence classes.

Then, we define the model

M f = (W f , R f , V f ) where • W f is the quotient W 0 / ≡ of W 0 by ≡, • for all a ∈ Π 0 , [w] R f (a) [x] iff there is w ∈ [w] and x ∈ [x] such that w R 0 (a) x , • [x] ∈ V f (p) iff x ∈ V 0 (p).
M f has at most 2 K•|ϕ 0 | states. It remains to prove the following truth lemma.

Lemma 2.7 from [FisLad.79]. For all ψ ∈ FL(ϕ 0 ) and all

x ∈ W 0 , M 0 , x | = ψ if and only if M f , [x] | = ψ.
Tree-like model property by unraveling 2.4

Proof sketch. Fischer and Ladner used the restricted Fischer-Ladner closure. Let us define the extensions M + 0 and M + f of M 0 and M f over (Π 0 , Φ +ϕ 0 0 ) as described in the proof of Lemma 2.4. It can easily be checked that whenever w ≡ x for some w, x ∈ W 0 then for any formula ψ ∈ rFL(ϕ 0 ), M + 0 , w | = ψ if and only if M + 0 , x | = ψ. Fischer and Ladner proved that for all ψ ∈ rFL(ϕ 0 ):

IH.1 for all w ∈ W 0 , M + 0 , x | = ψ if and only if M + f , [x] | = ψ; IH.2 if ψ = α ϕ for some α and ϕ then for all w, x ∈ W 0 , if w R + 0 (α) x then [w] R + f (α) [x].
The proof is by induction on γ(ψ) as defined in the proof of Proposition 2.4. The restricted Fischer-Ladner closure is useful for the proof of IH.

1 when ψ = [α * ] ϕ. Sup- pose that M + 0 , w | = [α * ] ϕ and [w] R + f (α * ) [x].
There is a finite sequence w 0 . . . w n such that w 0 ≡ w, w n ≡ x and for all k < n,

[w k ] R + f (α) [w k+1 ]. We prove that for all k ≤ n, M + 0 , w k | = [α * ] ϕ. Suppose M + 0 , w k | = [α * ] ϕ. Then M + 0 , w k | = [α] Q [α * ]ϕ . By induction M + f , [w k ] | = [α] Q [α * ]ϕ , hence M + f , [w k+1 ] | = Q [α * ]ϕ . By definition, M + 0 , w k+1 | = Q [α * ]ϕ , therefore M + 0 , w k+1 | = [α * ] ϕ. Finally, we have proved that M + 0 , x | = [α * ] ϕ. Therefore, M + 0 , x | = ϕ and by induction M + f , [x] | = ϕ.

Tree-like model property by unraveling

The tree-like model is an interesting property of logics with relational semantics. Since this property (and its absence) is important for the remainder of this thesis, we define it in full generality. 2Definition 2.8 (Tree-like frame). Given a similarity type τ = (O, ρ), a τ-frame F = (W , R) is tree-like iff there exists a symmetric binary relation E over W such that (W , E) is an acyclic graph and for any symbol ∆ ∈ O, any tuple (w 0 , . . . , w ρ(∆) ) ∈ R (∆) and any index i, j ∈ 0 . . ρ(∆), there is a path in ({w 0 , . . . , w ρ(∆) }, E) between w i and w j .

Definition 2.9 (Tree-like model property). A logic has the tree-like model property iff any satisfiable formula is satisfiable in a model with a tree-like frame.

We prove that PDL has the tree-like model property.

Proposition 2.10. PDL has the tree-like model property.

Since the method used to prove this proposition has been adapted to other logics in the remainder of the thesis, we recall the sketch of the proof. Suppose that ϕ 0 is satisfiable. There must exists a Kripke PDL model M 0 = (W 0 , R 0 , V 0 ) and a state x 0 ∈ W 0 such that M 0 , x 0 | = ϕ 0 . By Proposition 2.6, we can assume that W 0 is countable. We now use the unraveling technique. Intuitively, it consists in constructing a model where states are all the paths from x 0 in M 0 . It is a special case of the more general method of fixing defects in which we start with a model which does not meet all the needed requirements, we list all the possible defects of this model and then we iteratively fix all these defects one by one.

For the unraveling of M 0 , a defect is a triple (n, a, w) ∈ N × Π 0 × W 0 . Since PDL is conservative, we can assume that Π 0 is finite but not empty. Therefore, there is an ω-sequence δ of defects in which each defect appears infinitely often.

We inductively construct the pairs (M k , h k ) for all k ∈ N where

M k = (W k , R k , V k ) is a PDL Kripke model with W k ⊆ N and h k is a PDL homomorphism from M k to M 0 . Definition 2.11 (PDL homomorphism). A PDL homomorphism from M to M is a func- tion h from W to W such that 2. Propositional Dynamic Logic
1. for all w ∈ W and all p ∈ Φ 0 , w ∈ V (p) if and only if h(w ) ∈ V (p). 32. for all w , x ∈ W and all a ∈ Π 0 , if w R (a) x then h(w ) R(a) h(x );

The construction proceeds as follows.

Initial step

We start with W 0 = {0}, R 0 (a) = ∅ for all a ∈ Π 0 and h 0 (0) = x 0 . The valuation V 0 is defined implicitly by h 0 .

Inductive step

For k > 0, (M k , h k ) is constructed from (M k-1 , h k-1
). Let (n, a, w) = δ k be the k th possible defect in δ. If one of the following conditions does not hold:

n ∈ W k-1 (2.1) h k (n) R 0 (a) w (2.2) there is no w ∈ W k-1 such that n R k-1 (a) w (2.3) then let (M k , h k ) = (M k-1 , h k-1
). Otherwise, the condition (2.3) above is falsified in M k by adding k as the successor of n by R k (a). Formally, (M k , h k ) is defined such that for all b ∈ Π 0 and all w ∈ W k :

W k = W k-1 ∪ {k} R k (b) =        R k-1 (a) ∪ {(n, k)} if b = a R k-1 (b) otherwise h k (w ) =        w if w = k h k-1 (w ) otherwise
Once again, the valuation V k is defined implicitly from h k .

Finally, the model M T and the function h T are constructed as the union of all M k and h k respectively. Formally, M T = (W T , R T , V T ) and h T are defined such that for all a ∈ Π 0 , all p ∈ Φ 0 and all w ∈ W T :

W T = k∈N W k R T (a) = k∈N R k (a) V T (p) = k∈N V k (p) h T (w) = h w (w)
By construction, (W T , R T ) is a tree-like frame. Moreover, it can easily be checked that h T is a bounded morphism from M T to M 0 , as defined below.

Definition 2.12 (PDL bounded morphism). A PDL bounded morphism from a PDL model M to a PDL model M is a homomorphism h from M to M which satisfies the following additional condition:

3. For all w ∈ W , all x ∈ W and all a ∈ Π 0 , if h(w ) R(a) x then there exists x ∈ W such that h(x ) = x and w R (a) x .

The following result is well known for all normal modal logics (for instance [BRV.01, Proposition 2.14]).

Elimination of Hintikka sets 2.5 Proposition 2.13. Bounded morphisms preserve satisfiability.

Therefore, ϕ 0 is satisfiable in M T . We have proved Proposition 2.10.

Elimination of Hintikka sets

The elimination of Hintikka sets is a general method to devise decision procedures for satisfiability problems. Given a formula ϕ 0 to be checked for satisfiability, a pseudomodel is first constructed where states are some subsets of a comprehensive set for ϕ 0 . These subsets are called Hintikka sets. Then the states which cannot satisfy all the subformulas they contain are eliminated. If the comprehensive set for ϕ 0 was finite, the procedure terminates. It succeeds if and only if there is still a state containing ϕ 0 in the pseudo-model.

Pratt proposed in [Pratt.79] the procedure of elimination of Hintikka sets for PDL. The comprehensive set is the Fischer-Ladner closure as defined in Section 2.2. A Hintikka set H for a formula ϕ 0 is defined as a subset of FL(ϕ 0 ) such that:

• for any ϕ ∈ FL(ϕ 0 ), ϕ ∈ H iff ∼ϕ H

• for any α ; β ϕ ∈ FL(ϕ 0 ), α ; β ϕ ∈ H iff α β ϕ ∈ H • for any α ∪ β ϕ ∈ FL(ϕ 0 ), α ∪ β ϕ ∈ H iff α ϕ ∈ H or β ϕ ∈ H • for any ϕ? ψ ∈ FL(ϕ 0 ), ϕ? ψ ∈ H iff ϕ ∈ H and ψ ∈ H • for any α * ϕ ∈ FL(ϕ 0 ), α * ϕ ∈ H iff ϕ ∈ H or α α * ϕ ∈ H
Given a formula ϕ 0 , the elimination of Hintikka sets procedure for PDL constructs a sequence W 0 W 1 W 2 . . . of sets of Hintikka sets for ϕ 0 . For each W k the binary relation R k is defined by:

w R k (a) x iff for each formula ϕ, if [a] ϕ ∈ w then ϕ ∈ x w R k (α ; β) x iff ∃y ∈ W , w R k (α) y and y R k (β) x w R k (α ∪ β) x iff w R k (α) x or w R k (β) x w R k (ϕ?) x iff w = x and ϕ ∈ w w R k (α * ) x iff w R k (α) * x where R k (α) * is the reflexive and transitive closure of R k (α)
An eventuality is a formula of the form α ϕ. The eventuality α ϕ is fulfilled at a set w ∈ W k iff there is a set x ∈ W k such that w R(α) x and ϕ ∈ x. A set w ∈ W k fulfills all eventualities iff all the eventualities α ϕ ∈ w are fulfilled at w. The sequence W 0 W 1 . . . is constructed inductively as follows.

Base case. W 0 is the set of all Hintikka sets for ϕ 0 .

Inductive case. Let E be the set of all sets in W k which do not fulfill all eventualities.

If E is empty the procedure stops. Otherwise, W k+1 is set to W k \ E.

Lemma 2.14. The elimination of Hintikka set procedure for PDL can be executed in deterministic exponential time.

Proof sketch. By Proposition 2.4, there is K (fixed for all ϕ 0 ) such that 

|FL(ϕ 0 )| ≤ K • |ϕ 0 |. Therefore |W 0 | ≤ 2 K•|ϕ 0 | .
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Proof sketch. We use the vocabulary of the dual problem of validity. The proof of soundness is closely related to the filtration. Suppose ϕ 0 is satisfiable. There is a model M 0 satisfying ϕ 0 . Let M = (W , R, V ) be the filtration of M 0 by FL(ϕ 0 ). We construct for all k an injective function f k from W to W k such that for any states w, x ∈ W , any formula ϕ ∈ FL(ϕ 0 ) and any program α such that α ψ ∈ FL(ϕ 0 ) for some ψ, the following two conditions hold:

M, w | = ϕ iff ϕ ∈ f k (w) if w R(α) x then f k (w) R k (α) f k (x)
Since there is w 0 ∈ W such that M, w 0 | = ϕ 0 , the elimination of Hintikka set procedure is successful.

For the completeness proof, we suppose that the elimination of Hintikka sets procedure for the formula ϕ 0 is successful and constructs the sequence

W 0 . . . W n . We construct from W n the model M = (W n , R, V ) such that w R(a) x iff w R n (a) x and V (p) = {w ∈ W n | p ∈ w}.
We prove by induction that for any states w, x ∈ W n , any formula ϕ ∈ FL(ϕ 0 ) and any program α such that α ψ ∈ FL(ϕ 0 ) for some ψ, the following two conditions hold:

M, w | = ϕ iff ϕ ∈ w w R(α) x iff w R k (α) x
Since there is a state w 0 ∈ W n such that ϕ 0 ∈ w, M satisfies ϕ 0 .

We have proved the following proposition. 

Tableaux methods

Fischer and Ladner proved in [FisLad.77] that the satisfiability problem of PDL is EXP-TIME-hard. Therefore, the elimination of Hintikka sets procedure for PDL presented in the previous section is optimal. But this procedure is not useful in practice because it always requires exponential time to construct the initial pseudo-model. In contrast, tableaux methods construct a model state by state. Hence they are more interesting in practice. Tableaux methods for PDL are quite complicated though. Hence, we will not detail a comprehensive formal definition of any tableaux method for PDL in this section. Instead, we give a general framework for such decision procedures, we outline the difficult points and we mention solutions proposed in the literature. The first tableaux method for PDL has been devised by Pratt in [Pratt.78] and interesting variants have been proposed by Goré and Widmann in [GorWid.09] and by De Giacomo and Massacci in [De Mas.96].

Consider the saturation rules in Figure 2.3. Each rule has one premise and at least one conclusion. A premise is a single formula whereas a conclusion is a set of formulas with a conjunctive meaning. Conversely the set of conclusions of any rule has a disjunctive meaning. Besides, these rules are similar to the rules of the Fischer-Ladner closure and it can easily be checked that any conclusion of any saturation rule is included in the Fischer-Ladner closure of the premise. A saturation rule applies to a set S of formulas: if a formula in S is an instantiation of the premise of the rule and there is no conclusion of the rule whose instantiation is already included in S then the rule can be applied by adding the instantiation of one of the conclusion to S. Hence, the rule for ϕ? ψ adds both ϕ and ψ to the current set of formulas whereas the rule for [ϕ?] ψ adds either ∼ϕ or ψ. A set of formulas is saturated iff no rule can be applied to it.

Given a formula ϕ 0 , the tableaux method procedure constructs a directed graph where nodes are subsets of FL(ϕ 0 ) and edges are labeled with either a program in Π 0 Tableaux methods 2.6 or the symbol ∨ (we assume ∨ Π 0 ). Initially there is only one node {ϕ 0 } and no edge. Then the procedure recursively performs one of the following steps:

α ; β ϕ α β ϕ [α ; β] ϕ [α] [β] ϕ α ∪ β ϕ α ϕ β ϕ [α ∪ β] ϕ [α] ϕ [β] ϕ ϕ? ψ ϕ ψ [ϕ?] ψ ∼ϕ ψ α * ϕ ϕ α α * ϕ [α * ] ϕ ϕ [α] [α * ] ϕ
• if an instantiation π of a rule is applicable to a node w which has no successor, then for each conclusion C of π, add the node x C = w ∪ C if it does not already exist and add an edge from w to x C labeled with ∨;

• for any saturated node w with no successor, and each formula a ϕ ∈ w, add the node x a ϕ = ϕ ∪ {ψ [a] ψ ∈ w} if it does not already exist and add an edge from w to x a ϕ labeled with a. Saturated nodes are called states and unsaturated nodes pre-states. If an instantiation of a rule has been applied to a pre-state, the premise is called the main formula of the pre-state. The procedure terminates when no more step can be applied. Since each node of the graph is a subset of FL(ϕ 0 ), the graph can be constructed in deterministic exponential time in |ϕ 0 |. Now, good graphs corresponding to a satisfiable formula must be distinguished from bad graphs corresponding to an unsatisfiable formula. A general solution is to mark unsatisfiable nodes as closed and to define that the tableaux method is successful if and only if the initial node of the graph is open (i.e., not closed). In particular we want the following rules:

1. a node w is closed if ⊥ ∈ w or both ϕ ∈ w and ¬ϕ ∈ w for some ϕ;

2. a saturated node is closed if one of its successor is closed;

3. an unsaturated node is closed if all its successors are closed; But the difficulties come from cycles in the graph. Consider for instance the graphs for the satisfiable formula [a * ] a and the unsatisfiable formula a * ⊥ in Figure 2.4 on the following page. The first one has a "good" cycle whereas the second one has a "bad" cycle. But the previous rules for closed node are not sufficient to distinguish these two graphs.

To address this issue, Pratt [Pratt.78] and Goré and Widmann [GorWid.09] introduce an accessibility relation from eventualities to formulas. An eventuality is a formula of the form α ϕ. For instance, if an instantiation of a saturation rule with premise ϕ? ψ is applied to the node w then the successor of ϕ? ψ in w is the formula ψ in the successor of w. Similarly, if an instantiation of a saturation rule with premise α * ϕ is applied to the node w then the successors of α * ϕ in w are the formula ϕ in the first successor of w and the formula α α * ϕ in the second successor of w. Then, the following condition is added for the propagation of the "closed" mark: 4. a node w is closed if for some eventuality α ϕ ∈ w there is no finite acyclic path from α ϕ in w by the accessibility relation over eventualities passing only through open nodes. An interesting variation of this method has been proposed by De Giacomo and Massacci in [De Mas.96]. In this variant, whenever an eventuality of the form α * ϕ arises
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.4: Examples of tableaux graphs for PDL in a node, it is replaced by a fresh special propositional variable. These special propositional variables are considered as the eventualities they replace but since they are somehow unique, they make the additional condition for cycles easier to check.

Comparison with LTL

We end this chapter by comparing PDL with Pnueli's linear temporal logic [Pnueli.77].

Not only this comparison prepares the next chapter which proposes a variant of PDL related to branching temporal logics, but it also introduces the important notions of embedding and of a logic being more general than another one. Pnueli's linear temporal logic (LTL) is a temporal logic where the flow of time is discrete and deterministic: each moment has exactly one successor. This logic features a unary modality X and a binary modality U . Intuitively, the formula Xϕ means that ϕ will hold at the next moment and the formula ϕ U ψ means that ψ will eventually hold and that ϕ will hold until ψ holds.

Formally, the language of LTL is defined from a set Φ 0 of propositional variables by:

ϕ, ψ p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | Xϕ | (ϕ U ψ)
A linear model is a tuple M = (W , S, V ) where W is a nonempty set of states, S is the successor function from W to W and V is the valuation function assigning a subset of W to each propositional variable in Φ 0 . LTL formulas are interpreted at states in linear models. We write M, w | = LTL ϕ if the formula ϕ holds at the state w in M. The relation | = LTL is defined as usual for the boolean connectives and as follows for the modalities:

M, w | = LTL Xϕ iff M, S(w) | = LTL ϕ M, w | = LTL ϕ U ψ iff there is n ∈ N such that M, S n (w) | = LTL ψ and for all k < n, M, S k (w) | = LTL ϕ
where S 0 is the identity function and for all k > 0, S k = S • S k-1 . We prove that we can see LTL as the logic obtained by interpreting a fragment of the language of PDL into a subclass of PDL models. We say that PDL is more general than LTL, according to the following definition.

Comparison with LTL 2.7 Definition 2.17. A modal logic L 1 is more general than a logic L 2 if there is a function τ from the language of L 2 to the language of L 1 , called the translation function, and a function f from pointed models4 of L 2 to pointed models of L 1 , called the forward function, such that for any pointed model (M, x) of L 2 and any formula ϕ of L 2 's language, M,

x | = L 2 ϕ iff f (M, x) | = L 1 τ(ϕ).
Intuitively, we can model the discrete flow of time in PDL by choosing an action a to represent the passing of time. We use these ideas to prove that PDL is more general than LTL.

Proposition 2.18. PDL is more general than LTL.

Proof sketch. We define the translation function τ from the language of LTL to Φ PDL such that:

τ(p) = p for all p ∈ Φ 0 τ(⊥) = ⊥ τ(¬ϕ) = ¬τ(ϕ) τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ) τ(Xϕ) = a τ(ϕ) τ(ϕ U ψ) = (τ(ϕ)? ; a) * τ(ψ)
Similarly, we define the forward function f such that for any linear model M = (W , S, V ) and any state x ∈ W , we define (M , x ) = f (M, x) such that M = (W , R, V ) with R(a) = S and R(b) = ∅ for all b a, and x = x. It can easily be proved that for any formula

ϕ of L 2 , M, x | = LTL ϕ iff M , x | = τ(ϕ).
The property for a logic L 1 to be more general than a logic L 2 gives some hints about the relative expressive power of L 1 and L 2 . But this notion has some limitations. First, the computational complexity of the translation function matters. Second, formulas of L 2 are interpreted through the translation function in a subclass of L 1 's models, and it may be the case that L 1 is not expressive enough to characterize this subclass. This second limitation is fixed by the following definition of a logic being embeddable into another one.

Definition 2.19. A logic L 2 is embeddable into another logic L 1 if L 1 is more general than L 2 with translation function τ and for any

L 2 formula ϕ, if τ(ϕ) is L 1 satisfiable then ϕ is L 2 satisfiable. In such a case, τ is called an embedding of L 2 into L 1 .
For the comparison of PDL and LTL, it can be easily checked that the images of the forward function as defined in the proof of Proposition 2.18 have the following properties of being serial and deterministic for a:

for all x ∈ W , there is y ∈ W such that x R(a) y (seriality) for all x, y, z ∈ W , if x R(a) y and x R(a) z then y = z (determinism)
Whereas the seriality for a (from x) can easily be expressed in PDL by the formula [a * ] a , this is not the case for the determinism of a. Indeed, using the van Benthem Characterization Theorem, it can easily be proved that the determinism of a (from x) cannot be defined modally, since this property is not preserved by bisimulation. This fact does not prove that LTL is not embeddable in PDL but it indicates that finding such an embedding is hard.

Therefore, we prove instead that LTL is embeddable in deterministic PDL. Deterministic PDL [Harel.84] is the logic obtained by interpreting Φ PDL in the class of PDL models which are deterministic for all programs.
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Proposition 2.20. LTL is embeddable in deterministic PDL.

Proof sketch. Let τ and f be defined as in the proof of Proposition 2.18. The translation function θ from the language of LTL to Φ PDL is defined by θ(ϕ) = τ(ϕ) ∧ [a * ] a for all formula ϕ. It can easily be checked that LTL is more general than deterministic PDL with translation function θ and forward function f . Suppose that M, w | = θ(ϕ) for some model M = (W , R, V ) deterministic for all programs and some LTL formula ϕ.

Let M = (W , R , V ) be the PDL model such that W = {x ∈ W | w R(a * ) x}, R (a) = R(a) ∩ (W × W ), R (b) = ∅ for all b a and V (p) = V (p) ∩ W for all p ∈ Φ 0 . It can easily be proved that M , w | = θ(ϕ) and that there is a pointed linear model (M , w ) such that f (M , w ) = (M , w).
Chapter 3

Ockhamist Propositional Dynamic Logics

The Propositional Dynamic Logic (PDL) presented in the previous chapter has interesting connections with temporal logics. For instance, we proved that the Linear Temporal Logic (LTL) of Pnueli [Pnueli.77], can be embedded in deterministic PDL. The full Computation Tree Logic (CTL * ) proposed by Emerson and Halpern in [EmeHal.83], is a branching time temporal logic: the evolution of the system is supposed to be nondeterministic and different futures are considered. There is no known embedding between CTL * and PDL. Some logics like Kozen's µ-calculus [Kozen.83] or Vardi and Wolper's YAPL [VarWol.83] embed both PDL and CTL * . But the embedding of CTL * in these logics use automata and is not polynomial.

In [BalLor.13], Balbiani and Lorini proposed a new variant of PDL, the Ockhamist Propositional Dynamic Logic (OPDL), which embeds both PDL and CTL * in polynomial time. In this chapter, we propose sound, complete and optimal decision procedures for the satisfiability problems of this logic and one of its variant. This solves the question, left open in [BalLor.13], of the exact complexity of these problems.

Syntax and Semantics

The language of Ockhamist propositional dynamic logics is the language of PDL with one special additional program ≡ called the branching program. Formally, assume a countable set Φ 0 = {p, q, . . .} of atomic propositions and a countable set Π 0 = {a, b, . . .} of atomic programs (or actions). The language L OPDL (Π 0 , Φ 0 ) of OPDL consists of a set Π OPDL (Π 0 , Φ 0 ) of programs and a set Φ OPDL (Π 0 , Φ 0 ) of formulas, defined as follows:

α, β a | ≡ | (α ; β) | (α ∪ β) | ϕ? | α * ϕ p | ⊥ | ¬ϕ | α ϕ
where ≡ is a syntactic symbol distinct from atomic programs. We adopt the standard definitions for the remaining Boolean operators. The dual [α] of the modality α is defined in the expected way: [α] ϕ ¬ α ∼ϕ. We write |α| and |ϕ| to denote the numbers of occurrences of symbols in the program α and the formula ϕ. Like for PDL, the formula [α] ϕ has to be read as "ϕ holds after all possible executions of α".

Ockhamist semantics

Ockhamist models are structures with two dimensions: a vertical dimension corresponding to the concept of history and a horizontal dimension corresponding to the concept of moment. Formally, an Ockhamist model is a tuple M = (W , Q, L, R (≡) , V ) where:

• W is a nonempty set of states (or worlds),

• Q is a partial function Q : W -→ W assigning a successor to each state,

• L is a mapping L : W × W -→ P (Π 0 ) from pairs of states to sets of atomic programs such that L(w, x) ∅ iff x is the successor of w, i.e., x = Q(w),
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• R (≡) ⊆ W × W is an equivalence relation between states in W ,

• V : W -→ P (Φ 0 ) is a valuation function for atomic propositions, and such that for all w, x, y ∈ W : (3.1) if Q(w) = x and x R(≡) y then there is z ∈ W such that w R(≡) z, Q(z) = y and L(z, y) = L(w, x).

(3.2) if w R(≡) x then V (w) = V (x).
R (≡)-equivalence classes are called moments. A history starting in w is a maximal sequence σ of states such that σ 1 = w and

σ k = Q σ k-1 for all k ∈ 2 . . |σ |.
The truth of an OPDL formula is evaluated with respect to a world w in an Ockhamist model M. Let M = (W , Q, L, R (≡) , V ) be an Ockhamist model. Given a program α, we define a binary relation R (α) on W with w R(α) v meaning that v is accessible from w by performing α. We also define a binary relation | = between worlds in M and formulas with M, w | = ϕ meaning that formula ϕ is true at w in M. The rules inductively defining R (α) and | = are:

M, w | = p iff w ∈ V (p) M, w | = ⊥ never M, w | = ¬ϕ iff M, w | = ϕ M, w | = α ϕ iff there is x ∈ W such that w R(α) x and M, x | = ϕ w R(a) x iff Q(w) = x and a ∈ L(w, x) w R(α ; β) x iff there is y ∈ W such that w R(α) y and y R(β) x w R(α ∪ β) x iff w R(α) x or w R(β) x w R(ϕ?) x iff w = x and M, w | = ϕ w R(α * ) x iff w R(α) * x
where R(α) * is the reflexive and transitive closure of R(α)

OPDL is the logic obtained by interpreting the language L OPDL (Π 0 , Φ 0 ) in the class of all Ockhamist models. An OPDL formula ϕ is OPDL valid, denoted by | = OPDL ϕ, iff for every Ockhamist model M and for every world w in M, we have M, w | = ϕ. An OPDL formula ϕ is OPDL satisfiable iff ¬ϕ is not OPDL valid. It can be observed that if we consider instead that ≡ belongs to Π 0 then OPDL is the logic obtained by interpreting the language of PDL in the class of models M = (W , R, V ) such that all the following conditions hold:

• for all a, b ∈ Π 0 \ {≡} and all w, x, y ∈ W , if w R(a) x and w R(b) y then x = y ;

• R(≡) is an equivalence relation ;

• for all a ∈ Π 0 \ {≡} and all w, x, y ∈ W , if w R(a) x and x R(≡) y then there is z ∈ W such that w R(≡) z and z R(a) y ;

• for all p ∈ Φ 0 and all w, x ∈ W , if w R(≡) x and w ∈ V (p) then x ∈ V (p). This proves that PDL is more general then OPDL in the sense of Definition 2.17.

Path semantics

We now describe some alternative semantics for L OPDL (Π 0 , Φ 0 ), called path semantics and inspired by the path semantics for branching time logics [Reynolds.01]. In these semantics, histories are not implicit as in the Ockhamist semantics. Instead, the set of all histories is explicit in the model and formulas are interpreted at histories. We show that one of these semantics is equivalent to the Ockhamist semantics of the previous section, while another defines the OPDL lc logic studied in Sections 3.4 and 3.5.

A path model is a tuple M = (W , L, B, V ) where:

• W is a nonempty set of states, Syntax and Semantics 3.1

• L : W × W -→ P (Π 0 ) is a function assigning a set of atomic programs to each pair of states,

• B ⊆ W ∞ is a bundle, i.e., a nonempty set of sequences of states (histories) such that for each sequence σ ∈ B and all k ∈ 1 . . (|σ | -1), L(σ k , σ k+1 ) ∅ and

• V : W -→ P (Φ 0 ) is a valuation for the propositional variables. In path semantics, the states in W are the moments and the sequences in the bundle B are histories. The binary relations R (α) over B for all programs α and the forcing relation | = between M, sequences in B and formulas are defined by simultaneous induction such that:

M, σ 1 | = p iff σ 1 1 ∈ V (p) M, σ 1 | = ⊥ never M, σ 1 | = ¬ϕ iff M, σ 1 | = ϕ M, σ 1 | = α ϕ iff there is σ 2 ∈ B such that σ 1 R(α) σ 2 and M, σ 2 | = ϕ σ 1 R(a) σ 2 iff σ 2 = σ ≥2 1 and a ∈ L(σ 1 1 , σ 1 2 ) σ 1 R(≡) σ 2 iff σ 1 1 = σ 1 2 σ 1 R(α ; β) σ 2 iff there is y ∈ W such that σ 1 R(α) y and y R(β) σ 2 σ 1 R(α ∪ β) σ 2 iff σ 1 R(α) σ 2 or σ 1 R(β) σ 2 σ 1 R(ϕ?) σ 2 iff σ 1 = σ 2 and M, σ 1 | = ϕ σ 1 R(α * ) σ 2 iff σ 1 R(α) * σ 2
where R(α) * is the reflexive and transitive closure of R(α)

The main interest in path semantics is that, by adding additional conditions restricting the possible bundles, they provide a convenient framework to analyze and distinguish different logics on the same language. We list some such conditions and discuss their impact on logics. We abusively write that a model has one of these conditions whenever its bundle has it. In contrast with CTL * , as long as seriality is not imposed, this condition does not change the logic, as the next lemma proves. But since this condition makes the definition of R (a) more natural, we will usually consider suffix closed models.

Lemma 3.1. If ϕ 0 is satisfiable in a path model then ϕ 0 is satisfiable in a suffix closed path model.

Proof. Let M = (W , L, B, V ) be a path model, and f a function from B to W ∞ such that f (σ ) = σ if for all k ∈ 1 . . |σ |, σ ≥k ∈ B and f (σ ) = σ ≤k if σ ≥k+1 B and for all k ∈ 1 . . k, σ ≥k ∈ B. We define M = (W , L, B , V ) where B = f [B].
Clearly, B is suffix closed by construction. Moreover, it can easily be proved by induction on n that for all σ 1 ∈ B and all n ∈ N:

• for any formula ϕ, if |ϕ| = n and M, σ 1 | = ϕ then M, f (σ 1 ) | = ϕ;

• for any sequence σ 2 ∈ B and any program α ∈ Π 0 , if |α| = n and σ 1 R(α) σ 2 then f (σ 1 ) R (α) f (σ 2 );

• for any sequence σ 2 ∈ B and any program α, if |α| = n -1 and f (σ 1 ) R (α) σ 2 then there is σ 3 ∈ B such that f (σ 3 ) = σ 2 and σ 1 R(α) σ 3 .

Fusion closure. B is fusion closed iff for any two sequences

σ 1 , σ 2 ∈ B, if σ k 1 = σ k 2
for some k and k then the sequence σ <k 1 σ ≥k 2 is in B. This condition corresponds to condition (3.1). Indeed, we have the following proposition.
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Proposition 3.2. OPDL is the logic obtained by interpreting L OPDL (Π 0 , Φ 0 ) in the class of all suffix and fusion closed models.

Proof. Given an Ockhamist model M = (W , Q, L, R (≡) , V ), let [w] denote the class of w ∈ W by R (≡). Moreover, to each state w ∈ W we associate the (possibly infinite) maximal sequence σ (w) = [w 1 ][w 2 ] . . . such that w 1 = w and for all k ∈ 2 . .

|σ (w)|, Q (w k-1 ) = w k . The path model M = (W , L , B , V ) is defined such that W = W / R (≡) , L ([w], [x]) = y∈[w],z∈[x] L(y, z), B = σ [W ], V ([w]) = V (w). Clearly M is suffix closed. To prove that M is fusion closed, suppose σ 1 , σ 2 ∈ B and σ k 1 = σ k 2 .
It can easily be proved by induction that for all i ∈ 1 . . k, σ i..k 1 σ >k 2 ∈ B. The base case when i = k is trivial and the inductive case is straightforward using condition (3.1). Finally, it can easily be proved by induction on n that for all n ∈ N, all w, x ∈ W , all ϕ ∈ Φ OPDL and all α ∈ Π OPDL :

• if |ϕ| = n then M, w | = ϕ iff M , σ (w) | = ϕ; • if |α| = n then w R(α) x iff f (w) R (α) f (x).
The other direction is similar and we only detail the construction. Given a suffix closed, fusion closed path model

M = (W , L, B, V ), the Ockhamist model M = (W , Q , L , R (≡) , V ) is defined such that W = B, Q is defined exactly at all σ ∈ W such that |σ | > 1 by Q (σ ) = σ >1 , L (σ 1 , σ 2 ) = L(σ 1 1 , σ 2 1 ), R (≡) = (σ 1 , σ 2 ) ∈ W σ 1 1 = σ 1 2 and V (σ ) = V (σ 1
). It can easily be checked that conditions (3.1) and (3.2) hold for M and that M satisfies the same formulas as M.

Proposition 3.3. OPDL is conservative.

Proof. The proof is similar to the proof of Proposition 2.2. Let us consider a set Π 0 of atomic programs, a set Φ 0 of propositional variables, and two path models

M 1 = (W 1 , L 1 , B 1 , V 1 ) over (Π 1 , Φ 1 ) and M 2 = (W 2 , L 2 , B 2 , V 2 ) over (Π 2 , Φ 2 ) such that Π 0 ⊆ Π 1 ∩ Π 2 and Φ 0 ⊆ Φ 1 ∩ Φ 2 . A function f from W 1 to W 2 is an isomorphism from M 1 to M 2 limited to (Π 0 , Φ 0 ) iff f is a bijection such that: • V 1 (w) ∩ Φ 0 = V 2 (f (w)) ∩ Φ 0 ; • L 1 (w, x) ∩ Π 0 = L 2 (f (w), f (x)) ∩ Π 0 ;
• there is a surjection

f + from B 1 to B 2 such that f + (σ 1 ) k = f (σ k 1 ) for all σ 1 ∈ B 1 and all k ∈ 1 . . |σ 1 | such that k = 1 or L 1 (σ k-1
1 , σ k 1 ) ∩ Π 0 ∅. for all w, x ∈ W 1 . We prove similarly than for PDL that isomorphisms limited to (Π 0 , Φ 0 ) preserve validity of formula in L OPDL (Π 0 , Φ 0 ). Suppose now that Π 1 ⊆ Π 2 and Φ 1 ⊆ Φ 2 . It is usually easy to construct a path model M 2 over (Π 2 , Φ 2 ) from a path model M 1 over (Π 1 , Φ 1 ) such that M 2 satisfies the same conditions as M 1 and the identity is a isomorphism limited to (Π 1 , Φ 1 ) from M 1 to M 2 . For the other direction, care must be taken that the constructed model satisfies all the semantic conditions. It is not difficult for the suffix closure and the fusion closure.

Let M 2 = (W 2 , L 2 , B 2 , V 2 ) be a suffix and fusion closed path model over (Π 2 , Φ 2 ). We construct the path model

M 1 = (W 1 , L 1 , B 1 , V 1 ) over (Π 1 , Φ 1 ) such that • W 1 = W 2 , • L 1 (w, x) = L 2 (w, x) ∩ Π 1 , • V 1 (w) = V 2 (w) ∩ Φ 1 and • B 1 is the set of maximal prefixes σ 1 of all σ 2 ∈ B 2 such that for all k ∈ 2 . . |σ 1 |, L(σ k-1 2 , σ k 2 ) ∩ Π 1 ∅.
It can easily be checked that the identity is an isomorphism limited to (Π 1 , Φ 1 ) from M 1 to M 2 and that M 1 is suffix closed and fusion closed. Syntactic structures 3.2 Limit closure. B is limit closed iff whenever an infinite sequence σ ∈ W ω is such that for all k ≥ 1, there is a sequence σ k ∈ B such that σ ≤k k = σ ≤k then σ ∈ B. A similar condition makes the difference between BCTL * and CTL * [Reynolds.01]. The logic obtained by interpreting L OPDL (Π 0 , Φ 0 ) in the class of suffix, fusion and limit closed models is called OPDL lc .

Proposition 3.4. OPDL lc is conservative.

Proof. We use exactly the same constructions as in the proof of Proposition 3.3. We only have to prove that the path model M 1 constructed from M 2 is limit closed. Let σ ∈ W ω 1 be an infinite sequence such that for all k ∈ N there is

σ 1,k ∈ B 1 such that σ ≤k 1,k is a prefix of σ . By definition, for all k ∈ N there is σ 2,k ∈ B 2 such that σ 1,k is a prefix of σ 2,k . Since M 2 is limit closed by hypothesis, σ ∈ B 2 . If σ B 1 it means that for some ∈ 2 . . ω, L(σ -1 , σ ) ∩ Π 1 = ∅ which is not possible because σ 1, ≥ and σ ≤ 1, is a prefix of σ .
Total maximality. B is totally maximal iff B is the set of all maximal paths. The logic obtained by interpreting L OPDL (Π 0 , Φ 0 ) in the class of totally maximal models is OPDL lts (Φ 0 , Π 0 ), studied in [BalLor.13]. Unlike OPDL and OPDL lc , OPDL lts (Φ 0 , Π 0 ) is not conservative. As a counter-example, consider the formula [a] ⊥ ∧ ≡ ; a . This formula is not OPDL lts (Φ 0 , {a}) satisfiable but is OPDL lts (Φ 0 , {a, b}) satisfiable. It can be proved that OPDL lc and OPDL lts (Φ 0 , Π 0 ) are the same if and only if Π 0 is infinite. Moreover, the proof from [BalLor.13] that CTL * can be embedded into OPDL lts can easily be adapted to prove that CTL * can be embedded into OPDL lc .

Seriality. B is serial iff all paths in B are infinite (B ⊆ W ω ). Combining this condition with suffix closure corresponds, in the Ockhamist semantics, to enforcing Q to be a total function. The logic obtained by interpreting the language L OPDL (Π 0 , Φ 0 ) in the class of all serial path models is not conservative: consider for instance the formula [a] ⊥ which is not satisfiable if Π 0 = {a}. But if Π 0 is infinite, then any path model satisfying a formula ϕ 0 can be turned into a serial path model satisfying ϕ 0 by choosing an atomic program e not occurring in ϕ 0 and by adding for each finite sequence σ ∈ B a state w σ such that w σ is a successor by {e} of itself and of the last state in σ . This transformation preserves satisfiability and the suffix closed, fusion closed and limit closed conditions. Therefore, since OPDL and OPDL lc are conservative, we can assume that these logics are interpreted in serial path models.

Total seriality. B is totally serial iff B is the set of all infinite paths. By the constructions used in the proofs of Corollary 3.12, we can prove that the logic obtained by interpreting L OPDL (Π 0 , Φ 0 ) in the class of all suffix closed, fusion closed and totally serial models is OPDL lc .

Syntactic structures

In the next section, we describe a decision procedure for the satisfiability problem of OPDL, based on the elimination of Hintikka sets procedure for PDL presented in Section 2.5 and its adaptation to BCTL * by Reynolds [Reynolds.07]. Since OPDL embeds both PDL and BCTL * [BalLor.13], the decision procedure for OPDL combines features of both the aforementioned decision procedures. As presented in Section 2.5, the general idea of elimination of Hintikka sets procedures is, given a formula ϕ 0 , to construct a syntactic structure which contains all the possible states then to eliminate the states preventing the structure to be a proper satisfying model for ϕ 0 . For PDL the possible states are Hintikka sets (hues in [Reynolds.07]). For BCTL * , states are sets of Hintikka sets, called clusters in this chapter (colors in [Reynolds.07]). For OPDL, states must be There are two main results. First, Proposition 3.6 gives a syntactic characterization of the satisfiability of a formula using syntactic structures. Second, the Witness Lemma (Lemma 3.8) provides a decomposition of any formula of the form α ϕ into a set of formulas for the current state on one hand and a formula for a successor state on the other hand. We first define the basic concepts of Hintikka sets and clusters, then the syntactic structures and the paths in such structure, before proving the aforementioned results.

Hintikka sets and clusters

We extend the definition of the Fischer-Ladner closure from Section 2.2 to the language L OPDL (Π 0 , Φ 0 ). From a purely syntactic point of view, ≡ is indistinguishable from atomic programs. Hence, it suffices to add the rule in Figure 3.1 to extend the Fischer-Ladner closure to OPDL. As usual, we write FL(ϕ 0 ) for the Fischer-Ladner closure of the OPDL formula ϕ 0 . It is straightforward to adapt the proof of Proposition 2.4 to prove that the cardinal of FL(ϕ 0 ) is linear in |ϕ 0 |. We write SP (ϕ 0 ) to denote the set {α | ∃ϕ, α ϕ ∈ FL(ϕ 0 )}.

A set H ⊂ FL(ϕ 0 ) is a Hintikka set for ϕ 0 iff all the following conditions are satisfied:

• for any ϕ ∈ FL(ϕ 0 ), ϕ ∈ H iff ∼ϕ H

• for any α ; β ϕ ∈ FL(ϕ 0 ), α ;

β ϕ ∈ H iff α β ϕ ∈ H • for any α ∪ β ϕ ∈ FL(ϕ 0 ), α ∪ β ϕ ∈ H iff α ϕ ∈ H or β ϕ ∈ H
• for any ϕ? ψ ∈ FL(ϕ 0 ), ϕ? ψ ∈ H iff ϕ ∈ H and ψ ∈ H 

• for any α * ϕ ∈ FL(ϕ 0 ), α * ϕ ∈ H iff ϕ ∈ H or α α * ϕ ∈ H • if [≡] ϕ ∈ H then ϕ ∈ H A set C of

Syntactic structures and paths

A syntactic structure is a pseudo-model where the valuation has been replaced with a function assigning clusters and where the bundle is implicit. Intuitively, each Hintikka set in the cluster associated to a state w corresponds to the set of formulas satisfied by a history starting at w. Formally, a syntactic structure for a formula ϕ 0 is a tuple S = (W , L, C) where:

Syntactic structures 3.2 • W is a nonempty set of states,
• L assigns a set of atomic programs to each pair of states,

• C assigns a cluster for ϕ 0 to each state such that for all w, x ∈ W , if L(w, x) ∅ then C(w) S L(w,x) C(x). A syntactic structure is standard iff:

• ϕ 0 ∈ H for some H ∈ C(w) and some w ∈ W and • for all w ∈ W , there exists x ∈ W such that L(w, x) ∅.

A path in a syntactic structure S is a (possibly infinite) nonempty sequence π over the alphabet composed by the special branching symbol • and all pairs (H, w) such that w ∈ W and H ∈ C(w). Any path π must satisfy all the following conditions, for all k ∈ 1 . . |π|:

• π 1 • and if |π| < ω, π |π| •;
• if π k = • then we have that π k-1 = (H, w) and π k+1 = (H , w) for some w ∈ W and some H, H ∈ C(w);

• if π k = (H k , w k ) and π k+1 = (H k+1 , w k+1 ) then we have that L(w k , w k+1 ) ∅ and

H k S L(w k ,w k+1 ) H k+1 .
The relation carries between a finite path and a program is defined as the least relation satisfying the following conditions:

• (H 1 , w 1 )(H 2 , w 2 ) carries a iff a ∈ L(w 1 , w 2 ).

• (H 1 , w) • (H 2 , w) carries ≡.

• (H 1 , w 1 ) carries ϕ? iff ϕ ∈ H 1 .

• π carries (α ∪ β) iff π carries α or β.

• π carries (α ; β) iff for some m ∈ 1 . . |π|, π ≤m carries α and π ≥m carries β.

• π carries α * iff there is a nonempty list k 0 , . . . , k m such that k 0 = 1, k m = |π| and for all i < m, k i < k i+1 and π k i ...k i+1 carries α.

An unbranching path is a path which contains no occurrences of the branching symbol •.

The trunk of a path is its longest unbranching prefix. The support of an unbranching path (H 1 , w 1 )(H 2 , w 2 ) . . . is the sequence w 1 w 2 . . .. An eventuality chain is a nonempty sequence η = α 1 . . . α n ϕ where the last element is a formula and the other elements are programs. To an eventuality chain η = α 1 . . . α n ϕ corresponds the formula form (η) = α 1 . . . α n ϕ. This correspondence is not injective, for instance the eventuality chains aap, a a p and a a p all correspond to the same formula a a p. The maximal eventuality chain for a formula ϕ is the longest eventuality chain η such that form (η) = ϕ. Fulfillment of an eventuality chain η by a path π is defined inductively as follows:

• The path π fulfills a one-element eventuality chain η = ϕ iff π = (H 1 , w 1 ) and ϕ ∈ H 1 for some state w 1 and some Hintikka set H 1 ∈ C(w 1 );

• The path π fulfills an eventuality chain η = αη iff there is k ∈ 1 . . |π| such that π ≤k carries α and π ≥k fulfills η .

For any eventuality chain η = αϕ of length two, the corresponding formula α ϕ is called an eventuality and any path fulfilling η is said to fulfill the eventuality α ϕ. A state w ∈ W is fulfilling if for any Hintikka set H ∈ C(w) and any eventuality α ϕ ∈ H, there is a path π from (H, w) fulfilling α ϕ. A syntactic structure S fulfills all eventualities iff all its states are fulfilling. A justifying path is an infinite unbranching path π such that for all k, if π k = (H k , w k ) for some H k and w k then for any eventuality α ϕ ∈ H k , there is a fulfilling path π for α ϕ starting at (H k , w k ) such that the trunk of π is a prefix of π ≥k .
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Syntactic characterization and witness lemma

We first prove the following useful Diamond Lemma.

Lemma 3.5 (Diamond Lemma). For any path π = (H 1 , w 1 ) . . . (H n , w n ) in any syntactic structure for ϕ 0 , if π fulfills α ϕ ∈ FL(ϕ 0 ) then α ϕ ∈ H 1 .

Proof. By an easy induction on |α|. We detail only the case for ≡. Suppose that π fulfills ≡ ϕ, ≡ ϕ ∈ FL(ϕ 0 ) and ≡ ϕ H 1 . Then π = (H 1 , w 1 ) • (H 1 , w 2 ) and ϕ ∈ H 1 .

Since H 1 is a Hintikka set and ≡ ϕ H 1 , [≡] ∼ϕ ∈ H 1 . Therefore ∼ϕ ∈ H 1 which is not possible.

We can now state the main result of this section.

Proposition 3.6. A formula ϕ 0 is OPDL satisfiable if and only if there is a standard syntactic structure for ϕ 0 fulfilling all eventualities.

For the left-to-right direction, let M = (W , L, B, V ) be a suffix closed, fusion closed, serial path model satisfying ϕ 0 at σ 0 ∈ B. The syntactic structure S = (W , L , C) is constructed such that W ⊆ W is the subset of states w for which there is a sequence in B starting at w, L (w, x) = L(w, x) if there is a sequence in B with prefix wx and is empty otherwise and C(w) is the set of the sets h(σ ) = {ϕ ∈ FL(ϕ 0 ) | M, σ | = ϕ} for all sequences σ ∈ B starting at w. To prove that S fulfills all eventualities, it suffices to prove that for all σ 1 , σ 2 ∈ B and all α ∈ SP (ϕ 0 ), if σ 1 R(α) σ 2 then there is a path in S from (h(σ 1 ), σ 1 1 ) to (h(σ 2 ), σ 1 2 ) carrying α. This latter proof is by an easy induction on |α|. For the right-to-left direction, given a standard syntactic structure S = (W , L, C) for ϕ 0 fulfilling all eventualities, we define the path model M = (W , L, B, V ) such that B is the set of supports of the justifying paths in S and V (w) = H ∩ Φ 0 for any H ∈ C(w). We prove that B is fusion closed and that M satisfies ϕ 0 . For BCTL * , these two points are resolved by the fact that any eventuality ϕ U ψ is either resolved at the current state or still satisfied in the successor state. For OPDL, we need the Witness Lemma below. Then, using the Diamond Lemma and the Witness Lemma, we prove the Existence Lemma (Lemma 3.9) and that M is fusion closed (Lemma 3.10). Finally, we state the Truth Lemma (Lemma 3.11) which prove that if ϕ 0 ∈ H for some H ∈ C(w) and w ∈ W , then there is a sequence σ 0 ∈ B such that M, σ 0 | = ϕ 0 .

To state the Witness Lemma, we inductively define the function next from eventuality chains to sets of pairs composed of a set of formulas (the guard) and an eventuality chain:

next(ϕ) = {(∅, ϕ)} next(aη) = {(∅, aη)} next(≡η) = {(∅, ≡η)} next((β 1 ; β 2 )η) = next(β 1 β 2 η) next((β 1 ∪ β 2 )η) = next(β 1 η) ∪ next(β 2 η) next(ψ?η) = (G ∪ {ψ}, η ) (G, η ) ∈ next(η) next(α * η) = next(η) ∪ (G, β 1 . . . β n -1 α * η) n > 1 and (G, β 1 . . . β n -1 form (α * η)) ∈ next(αform (α * η))
Some properties of this function can easily be checked. First, for any eventuality chain η 1 and any formula ϕ 0 , if form (η 1 ) ∈ FL(ϕ 0 ) then for all (G, η 2 ) ∈ next(η 1 ), G ⊆ FL(ϕ 0 ) and form (η 2 ) ∈ FL(ϕ 0 ). Second, for any eventuality chain η 1 and any pair (G, η 2 ) ∈ next(η 1 ), η 1 2 is either a formula or an atomic program or the branching program ≡. Moreover, the following lemma states another important property of the function next.

Lemma 3.7. For any eventuality chain η 1 and any Hintikka set H, if form (η 1 ) ∈ H then there is (G, η 2 ) ∈ next(η 1 ) such that G ∪ {form (η 2 )} ⊆ H.

Proof. The proof is by a straightforward induction on the sum

η 1 -1 k=1 η k
1 of the length of the programs in η 1 .

We now prove the Witness Lemma.

Lemma 3.8 (Witness Lemma). For any syntactic structure S = (W , L, C), any state w ∈ W , any Hintikka set H ∈ C(w), any eventuality chain η 1 such that form (η 1 ) ∈ H and any path π in S from (H, w), π fulfills η 1 if and only if there is (G, η 2 ) ∈ next(η 1 ) such that G ∪ {form (η 2 )} ⊆ H and π fulfills η 2 .

Proof. The proof is by induction on the sum

η 1 -1 k=1 η k
1 of the length of the programs in η 1 . We only detail the case when η 1 1 is an iteration, the other cases being straightforward.

For the left-to-right direction, suppose that π fulfills α * η. By definition, there is a nonempty list k 0 . . . k m such that k 0 = 1, π ≥k m fulfills η and for all i < m, k i < k i+1 and π k i ..k i+1 carries α. If m = 0 then π fulfills η and the property holds by induction hypothesis. Suppose m > 0. By Lemma 3.5, form (α

* η) ∈ H k 1 for (H k 1 , C k 1 ) = π k 1 and form (αα * η) ∈ H. By induction hypothesis, there is (G, η 2 ) ∈ next(αform (α * η)) such that G ∪ {form (η 2 )} ⊆ H and π ≤k 1 fulfills η 2 . It is the case that η 2 > 1 because otherwise k 1 = k 0 which is not possible. Therefore π fulfills η < η 2 2 α * η and (G, η < η 2 2 α * η) ∈ next(α * η).
For the right-to-left direction, suppose there is (G, η 2 ) ∈ next(α * η) such that G ∪ {form (η 2 )} ⊆ H and π fulfills η 2 . If (G, η 2 ) ∈ next(η) then by induction hypothesis, π fulfills η. Therefore, π fulfills α * η. Suppose now that (G, η 2 ) next(η). For some eventuality chain η 3 we have (G, η 3 ) ∈ next(αform (α * η)) and η 2 = η < η 3 3 α * η. There must exists a nonempty list k 0 . . . k m such that k 0 = 1, π ≥k m fulfills α * η and for all i ∈ 1 . . m, k i-1 ≤ k i and π k i-1 ..k i carries η i 3 . Moreover, by Lemma 3.5, form (α * η) ∈ H k m for (H k m , C k m ) = π k m . Therefore, by induction hypothesis, π ≤k m carries α. Hence, by definitions, π fulfills α * η.

We can now prove the other lemmas mentioned in the proof of Proposition 3.6. Lemma 3.9 (Existence Lemma). For any finite unbranching path π in a standard syntactic structure S fulfilling all eventualities, there is a justifying path π in S such that π is a prefix of π .

Proof. Suppose S = (W , L, C) is a standard syntactic structure for ϕ 0 fulfilling all eventualities. Given a finite unbranching path π 0 = (H 1 , w 1 ) . . . (H n , w n ), we collect the set E of pairs (k, α ϕ) such that k ∈ 1 . . n, α ϕ ∈ H k and there is no path π 1 from (H k , w k ) in S such that π 1 fulfills α ϕ and the trunk of π 1 is a prefix of π ≥k 0 . If E is empty, since S is standard, there exists (H n+1 , w n+1 ) such that π 0 (H n+1 , w n+1 ) is a path. If E is not empty, we choose (k, α ϕ) ∈ E such that for all (k , α ϕ ) ∈ E, k ≥ k. Then we extend π 0 to π 0 π + such that there is a path π 1 from (H k , w k ) fulfilling α ϕ and such that the trunk of π 1 is π ≥k 0 π + . By repeating this procedure infinitely, a justifying path with prefix π is clearly obtained. The only point to prove is that there always exists such a path π + . If k = n, since S fulfills all eventuality, π + exists. Otherwise, by the Witness Lemma, if for some eventuality chain η k , (k, form (η k )) ∈ E, then there is another eventuality chain η k+1 such that (k + 1, form (η k+1 )) ∈ E and for any path π 1 from (H k+1 , w k+1 ) fulfilling η k+1 , the path (H k , w k )π 1 fulfills η k . Therefore, π + always exists.

Lemma 3.10. The set of the supports of the justifying paths in any syntactic structure is fusion closed.

Proof. Let S = (W , L, C) be a syntactic structure and B the set of the supports of the justifying paths in S. Suppose σ 1 , σ 2 ∈ B are two sequences such that σ 1 = σ m 2 for some , m ∈ N. Since B is suffix closed, there is a justifying path π 2 in S from (H , σ 1 ) whose support is σ ≥m 2 . We prove by induction on that there is a justifying path π 1 such that π ≥ 1 = π 2 and the support of π ≤ 1 is σ ≤ 1 . The case when = 1 is trivial. For > 1, by induction hypothesis, there is a justifying path π 1 such that π ≥ -1

1 = π 2 and the support of π ≤ -1 1 is σ 2.. 1 . Let (H 2 , w 2 ) = π 1 1 and w 1 = σ 1 1 .
By definition, there is H 1 ∈ C(w 1 ) such that H 1 S L(w 1 ,w 2 ) H 2 . By Lemma 3.8, for any eventuality α ϕ ∈ H 1 , either (H 1 , w 1 ) is the trunk of a path fulfilling α ϕ, or there is an eventuality chain η such that form (η) ∈ H 2 and for any path π 3 from (H 2 , w 2 ) fulfilling η, the path (H 1 , w 1 )π 3 fulfills α ϕ. Therefore, (H 1 , w 1 )π 1 is justifying.

Lemma 3.11 (Truth Lemma). For any justifying path (H 1 , w 1 ) . . . with support σ , and any formula ϕ ∈ H 1 , M, σ | = ϕ.

Proof. We prove, by induction on N ∈ N, that the following conditions hold for any justifying path π from (H 1 , w 1 ) with support σ and any N ∈ N:

IH.1 For any formula ϕ ∈ H 1 , if |ϕ| = N then M, σ | = ϕ.

IH.2 For any program α, any finite path π

1 = (H 1 , w 1 ) . . . (H n , w n ) and any integer ∈ 1 . . n, if |α| = N , π ≤
1 carries α and the trunk of π 1 is a prefix of π then there exists a justifying path π 2 with support σ 2 such that σ R(α) σ 2 and the trunk of π ≥ 1 is a prefix of π 2 .

IH.3

For any program α ∈ SP (ϕ 0 ) and any infinite sequence σ 1 ∈ B, if |α| = N -1 and σ R(α) σ 1 then there is an infinite path π 1 from (H 1 , w 1 ) justifying σ 1 and a finite path from (H 1 , w 1 ) to (H 1 , w 1 ) carrying α. All the cases are straightforward. We detail only the proof of hypothesis IH.2 for sequential compositions. Suppose π ≤ 1 carries α ; β. By definition, there is ∈ 1 . . such that π ≤ 1 carries α and π .. 1 carries β. Since |α| < N , by induction hypothesis, there is a justifying path π 2 with support σ 2 such that σ R(α) σ 2 and the trunk of π ≥ 1 is a prefix of π 2 . Similarly, since β < N , by induction hypothesis, there is a justifying path π 3 with support σ 3 such that σ 2 R(β) σ 3 and the trunk of π ≥ 1 is a prefix of π 3 . Moreover, σ R(α ; β) σ 3 .

In the proof of Proposition 3.6, given a standard syntactic structure S = (W , L, C) fulfilling all eventualities, we construct the path model M = (W , L, B, V ) in which B is the set of the supports of the justifying paths in S. Therefore if the set of the supports of the justifying paths in S is limit closed then B is limit closed too. Hence the following corollary can be deduced from Proposition 3.6.

Corollary 3.12. A formula ϕ 0 is OPDL lc satisfiable if and only if there is a standard syntactic structure S for ϕ 0 which fulfills all eventualities and such that the set of the supports of the justifying paths in S is limit closed.

Optimal decision procedure for OPDL

We describe a procedure which, given a formula ϕ 0 , either fails or exhibits a standard syntactic structure for ϕ 0 fulfilling all eventualities. The procedure inductively constructs a finite sequence S 0 . . . S n of syntactic structures for ϕ 0 .

The initial syntactic structure S 0 = (W 0 , L 0 , C 0 ) is defined such that: • W 0 is the set of all pairs (P , C) where P is a nonempty subset of SP + (ϕ 0 ) and C is a cluster for ϕ 0 ,

• L((P 1 , C 1 ), (P 2 , C 2 )) = P 2 if C 1 S P 2 C 2 and is empty otherwise,

• C(P , C) = C. where SP + (ϕ 0 ) SP (ϕ 0 ) ∪ {e} for some fixed e SP (ϕ 0 ). Then for all k, the syntactic structure S k+1 is constructed from S k = (W k , L k , C k ) by removing from W k the states (P , C) which are not fulfilling or such that for some H ∈ C, there is no (P , C ) ∈ W k and H ∈ C such that C S P C and H S P H .

There exists a constant K such that the number of states in W 0 for any ϕ 0 is bounded by 2 2 K• where = |ϕ 0 |. Therefore, for some n ≤ 2 2 K• no state can be eliminated from S n . The procedure terminates successfully iff there is a state (P , C) ∈ W n and a Hintikka set H ∈ C such that ϕ 0 ∈ H. Lemma 3.13. The procedure for ϕ 0 is successful if and only if ϕ 0 is OPDL satisfiable.

Proof. The completeness proof is direct by Proposition 3.6. For the soundness proof, by Proposition 3.6 there is a standard syntactic structure S = (W , L, C) for ϕ 0 fulfilling all eventualities. We first define the function g from Π 0 to SP + (ϕ 0 ) by g(a) = a if a ∈ SP (ϕ 0 ) else g(a) = e. Then, for all k ∈ 0 . . n, the function f k is defined inductively by

f (P , (H, w)) = (H, (p, C(w))) f (P , (H 1 , w 1 )π) = (H 1 , (P , C(w 1 )))f (g [L(w 1 , w 2 )] , π) where (H 2 , w 2 ) = π 1 f (P , (H 1 , w 1 ) • π) = (H 1 , (P , C(w 1 ))) • f (P , π)
for all subsets P ⊆ SP + (ϕ 0 ) and all finite paths π in S. It can easily be proved by induction on k that for all k ∈ 0 . . n, all w ∈ W , all P ⊆ SP + (ϕ 0 ), all paths π in S and all eventuality chains η:

IH.1 (P , C(w)) ∈ W k IH.2 if π fulfills η in S and form (η) ∈ FL(ϕ 0 ) then f (P , π) fulfills η in S k .
Proposition 3.14. The satisfiability problem of OPDL is 2EXPTIME-complete.

Proof. We have already proved that the number of steps in our decision procedure is bounded by a double exponential in |ϕ 0 |. The method used in [Lange.06] can easily be adapted to prove that the eventuality condition can be checked in deterministic polynomial time in the number of pairs (H, (P , C)) such that H ∈ C and (P , C) in W k . Therefore, the decision procedure can be executed in deterministic double exponential time in |ϕ 0 |. By a polynomial faithful translation of BCTL * into OPDL, it has been shown in [BalLor.13] that the satisfiability problem for OPDL is 2EXPTIME-hard. Therefore the satisfiability problem for OPDL is 2EXPTIME-complete.

Tree syntactic structure property of OPDL lc

The procedure of Section 3.3 is difficult to adapt to OPDL lc because no simple condition can be checked during the construction of the syntactic structure to guarantee that the set of the supports of all justifying paths is limit closed. Therefore, we prove in this section that OPDL lc has a particular tree model property. This property is used in the next section to reduce the satisfiability problem of OPDL lc to the (dual of) the emptiness problem of an automaton on infinite trees. Because syntactic structures are more convenient than models for decision procedures, we prove a tree syntactic structure property, from which the usual tree model property can be deduced using the construction of Section 3.2.

Ockhamist Propositional Dynamic Logics

An N -ary ω-tree over an alphabet Σ is a function T : [1 . . N ] * -→ Σ. In such a tree, nodes are labeled with elements of Σ. A branch in T is an infinite sequence σ 1 = λ 1 λ 2 . . . for which there exists σ 2 ∈ [1 . . N ] ω and i ∈ N such that for all k > 0, λ k = σ ≤i+k 2 . Like in the previous section, we need nodes to be labeled with pairs (P , C) where P is the set of atomic programs labeling the incoming edge and C is a cluster. To simulate incomplete trees, we allow P to be empty, in which case the branch is said to be pruned. Definition 3.15. An N -ary syntactic tree for a formula ϕ 0 is an N -ary ω-tree T over Σ = P (Π 0 ) × Clusters(ϕ 0 ) where Clusters(ϕ 0 ) is the set of clusters on ϕ 0 and such that:

(3.3) T P ( ) = ∅ and there is σ ∈ [1 . . N ] ω such that for all i > 0, T P (σ ≤i ) ∅; (3.4) for all λ ∈ [1 . . N ] * and k ∈ 1 . . N , T P (λk) = ∅ or T C (λ) S T P (λk) T C (λk);
where T P and T C are the projections of T on P (Π 0 ) and Clusters(ϕ 0 ), respectively. A branch σ in T is valid if for all k > 1, T P (σ k ) ∅ and pruned otherwise.

To any N -ary syntactic tree T = (T P , T C ) naturally corresponds the syntactic structure

S(T ) = ([1 . . N ] * , L, T C ) where L(λ 1 , λ 2 ) = T P (λ 2 ) if λ 2 = λ 1 k for some k ∈ 1 . . N
and is the empty set otherwise. Therefore, an N -ary syntactic tree can be seen as a tree syntactic structure. Indeed, we will abusively write about paths in syntactic trees. For the following definition of a good syntactic tree, since we do not assume that the corresponding syntactic structure fulfills all eventualities, we adapt the definition of a justifying path. A pseudo-justifying path is an infinite unbranching path π such that for all k > 0, if π k = (H k , w k ) then for any eventuality α ϕ ∈ H k there is ≥ k such that π = (H , w ) and either π k.. fulfills α ϕ or there is an eventuality chain η such that η 1 = ≡, form (η) ∈ H and for any path π 2 from π fulfilling η, π k..( -1) π 2 fulfills α ϕ. By the Witness Lemma, any justifying path is a pseudo-justifying path. Definition 3.16. An N -ary syntactic tree T = (T P , T C ) for a formula ϕ 0 is good iff all the following conditions hold: (3.5) any valid branch σ is the support of a pseudo-justifying path;

(3.6) for any node λ in a valid branch of T , if there is H ∈ T C (λ) such that ≡ ψ ∈ H for some formula ψ, then there is a Hintikka set H ∈ T C (λ) and a finite path π in T from (H , λ) such that

• π fulfilling the maximal eventuality chain for ψ and • for all k ∈ 2 . . |π|, if π k = (H , λ ) then there is a pseudo-justifying path in T from (H , λ );

(3.7) there is a pseudo-justifying path in T from (H, ) such that ϕ 0 ∈ H.

Lemma 3.17. In a good N -ary syntactic tree, any pseudo-justifying path whose support is on a valid branch is a justifying path.

Proof. Let π be a pseudo-justifying path in a good N -ary syntactic tree such that π 1 = (H, λ) for some λ in a valid branch. We prove that π is a justifying path. Suppose that

π k = (H k , λ k ) and α ϕ ∈ H k .
Since π is a pseudo-justifying path, there is ≥ k such that π = (H , λ ) and either π k.. fulfills α ϕ or there is an eventuality chain η such that η 1 = ≡, form (η) ∈ H and for any path π 2 from π fulfilling η, π k..( -1) π 2 fulfills α ϕ.

In the latter case, since λ is in a valid branch, by condition (3.6) there is a path from (H k , λ k ) fulfilling α ϕ.

Let N ≡ ϕ 0 be the number of eventualities of the form ≡ ψ in FL(ϕ 0 ) plus one. The tree property of OPDL lc is stated as follows.

Proposition 3.18. A formula ϕ 0 is OPDL lc satisfiable if and only if there is a good N ≡ ϕ 0 -ary syntactic tree for ϕ 0 .

Proof. For the left-to-right direction, suppose T is a good syntactic tree for ϕ 0 . Consider the tuple S (T ) = ([1 . . N ≡ ϕ 0 ] * , L, C) where L is define as for S(T ) and C(λ) is the set of Hintikka set H such that there is a pseudo-justifying path in T starting with (H, λ). It can easily be checked that S (T ) is a syntactic structure and fulfills all eventualities. Moreover, to each pseudo-justifying path in T corresponds a justifying path in S (T ) and since the set of valid branches is limit closed, the set of the supports of the justifying paths in S (T ) is limit closed. By Corollary 3.12, ϕ 0 is OPDL lc satisfiable.

For the left-to-right direction, suppose ϕ 0 is satisfiable. By Corollary 3.12, there is a standard syntactic structure S = (W , L, C) for ϕ 0 which fulfills all eventualities and such that the set of the supports of the justifying paths in S is limit closed. We construct from S a good N ≡ ϕ 0 -ary syntactic tree for ϕ 0 . The construction is inspired by a similar construction for CTL * [EmeSis.84]. Let ≡ ψ 2 , . . . , ≡ ψ N ≡ ϕ 0 be an ordering of the eventualities of the form ≡ ψ in FL(ϕ 0 ). We first define the N ≡ ϕ 0 -ary ω-tree T path over the alphabet of all the paths in S plus the empty word . By Lemma 3.9, there is a justifying path π 0 from (H 0 , w 0 ). We label the root of T path with this path:

T path ( ) = π 0 . For each node λ ∈ [1 . . N ≡ ϕ 0 ] * , if T path (λ)
, the labeling path continues at the first successor:

T path (λ1) = T path (λ) ≥2 . For the other successors k ∈ 2 . . N ≡ ϕ 0 of λ, let (H λ , w λ ) = T path (λ) 1 . If ≡ ψ k ∈ H λ then
let π 1 be the shortest path in S fulfilling the maximal eventuality chain for ψ k and such that π 1 1 = (H , w λ ) for some H . By Lemma 3.9, there is a justifying path π λk which has the trunk of π 1 as prefix. We label the k th successor of λ with it:

T path (λk) = π ≥2 λk . Otherwise, if ≡ ψ k-1 H λ then T path (λk) = .
All successors of a node labeled with are labeled with .

The good N ≡ ϕ 0 -ary syntactic tree T for ϕ 0 is constructed from T path as follows. For the root node,

T ( ) = (∅, C(w 0 )). For λ ∈ [1 . . N ≡ ϕ 0 ] * and k ∈ 1 . . N ≡ ϕ 0 , if T path (λ) 1 = (H λ , w λ ) and T path (λk) 1 = (H λk , w λk ) then T (λk) = (L(w λ , w λk ), C(w λk )). Otherwise, T (λk) = (∅, C)
for some arbitrary cluster C. T is a syntactic tree because, by construction, for all λ ∈ [1 . . N ≡ ϕ 0 ] * and k ∈ 1 . . N ≡ ϕ 0 , if T path (λ) 1 = (H λ , w λ ) and T path (λk) 1 = (H λk , w λk ), then T P (λk) ∅ and C(w λ ) S T P (λk) C(w λk ). It remains to be proved that T is good. Let us define the N ≡ ϕ 0 -ary ω-tree T W over W ∪ {⊥} (we assume ⊥ W ) such that for all 1 and T W (λ) = ⊥ otherwise. A valid path in T is a path π whose support is a valid branch, i.e., for all (H, λ) occurring in π, T W (λ) ⊥. To each valid path π = (H 1 , λ 1 )(H 2 , λ 2 ) . . . in T we associate the sequence f (π) = (H 1 , T W (λ 1 ))(H 2 , T W (λ 2 )) . . .. We prove the following two claims:

λ ∈ [1 . . N ≡ ϕ 0 ] * , T W (λ) = w λ if (H λ , w λ ) = T path (λ)
Claim 1. If π is a valid path in T then f (π) is a path in S.
Moreover, if π is finite then π and f (π) carry the same programs.

Proof. For the first part of the claim, the proof is by transfinite induction on the length of π. The base case when the length of π is 1 is trivial. Consider now a path π of length n ∈ N and let

π n = (H n , λ n ) and T (λ n ) = (P n , C n ). If π n-1 = (H n-1 , λ n-1 ), then λ n = λ n-1 k for some k ∈ 1 . . N ≡ ϕ 0 . Moreover, P n ∅, H n-1 S P n H n and L(T W (λ n-1 ), T W (λ n )) = P n . Hence, since by induction hypothesis, f (π <n ) is a path in S, f (π) is a path in S. If π n-1 = • then π n-2 = (H n-2 , λ n ) for some H n-2 ∈ T C (λ n ) and since by induction hypothesis, f (π ≤n-2 ) is a path in S, f (π) is a path in S. Fi- nally, if π is infinite, by transfinite induction hypothesis, for all k > 0, f (π ≤k ) is a path in S.
Since the set of all the paths in any syntactic structure is limit closed, f (π) is a path in S. The second part of the claim can easily be proved by induction on the length of the program.

Claim 2. For any valid branch σ = λ 1 λ 2 . . . in T , there is a justifying path in S with support T W (λ 1 )T W (λ 2 ) . . .. Proof. Since the set of the supports of the justifying paths in S is limit closed, it suffices to prove that for any valid branch σ = λ 1 λ 2 . . . in T and for all n > 0 there is a justifying path π in S such that the support of π ≤n is a prefix of T W (λ 1 )T W (λ 2 ) . . .. The proof is by induction on n. For the base case when n = 1, the property holds by Lemma 3.9. For n > 1, by induction hypothesis, there is a justifying path π n-1 in S such that the support of π ≤n-1 n-1 is a prefix of T W (λ 1 )T W (λ 2 ) . . .. Moreover, by definition, λ n = λ n-1 k for some k ∈ 1 . . N ≡ ϕ 0 . Since T is a syntactic tree, for some Hintikka sets

H n-1 and H n , (H n-1 , λ n-1 )(H n , λ n ) is a path in T . By the previous claim, (H n-1 , T W (λ n-1 ))(H n , T W (λ n )
) is a path in S and by Lemma 3.9 this path can be extended to a justifying path π + . Finally, since by Lemma 3.10 the set of the supports of the justifying paths in S is fusion closed, there is a justifying path π n in S such that the support of π ≤n n is a prefix of T W (λ 1 )T W (λ 2 ) . . .. Now we prove that T satisfies condition (3.5) of Definition 3.16. Let σ = λ 1 λ 2 . . . be a valid branch in T . By Claim 2, there is a justifying path

π 1 = (H 1 , T W (λ 1 ))(H 2 , T W (λ 2 )) . . . in S. Obviously, π 2 = (H 1 , λ 1 )(H 2 , λ 2 ) . . . is a valid path in T . For any eventuality α ϕ ∈ H k , for any k > 1, there is a finite path π 3 of length in S fulfilling α ϕ and such that the trunk of π 3 is a prefix of π ≥k 1 . If π 3 is unbranching then π k..(k+ ) 2
fulfills α ϕ in T . Otherwise, there is m < such that π ≤m 3 is unbranching and π m+1 3 = •. By the Witness Lemma, there is an eventuality chain η such that η 1 = ≡, form (η) ∈ H k+m and for all path π 4 from (H k+m , T W (λ k+m )) in S fulfilling η, the path π <m 3 π 4 fulfills α ϕ. Therefore, if π 5 is a path from (H k+m , λ k+m ) in T fulfilling η, by the first claim f (π 5 ) fulfills η too. Hence, by the first claim again, π k..(k+m-1) 2 π 5 fulfills α ϕ. Therefore, π 2 is pseudo-justifying. Condition (3.7) can be proved similarly.

To prove that T satisfies condition (3.6), suppose 1 . Hence a minimal path π from (H λ , w λ ) in S fulfilling the maximal eventuality chain η for ψ has been selected during the construction of T path . We construct inductively a sequence of triple (π T ,i , η i , π S,i ) where the length of π S,i is strictly decreasing and such that for all i: (3.8) π T ,i is a finite path from (H λ , λ) in T ;

≡ ψ ∈ H for some H ∈ T C (λ) and some λ ∈ [1 . . N ≡ ϕ 0 ] * such that T P (λ) ∅. By construction, ≡ ψ ∈ H λ where (H λ , w λ ) = T path (λ)
(3.9) π S,i is a minimal path in S fulfilling η i ;

(3.10) π 1 S,i = (H i , T W (λ i )) where (H i , λ i ) = π π T ,i T ,i ; (3.11) for any path π + from (H i , λ i ) in T , if π + fulfills η i then π T ,i π ≥2 + fulfills η; (3.12) if π 2 S,i = (H i+1 , w i+1
) for some w i+1 ∈ W and H i+1 ∈ C(w i+1 ) then for some k, T path (λ i k) starts with π 2 S,i and H i S T P (λ i k) H i+1 . The initial triple is defined as ((H 1 , λ 1 ), η, π) where (H 1 , T W (λ 1 )) = π 1 . It can easily be checked that all the invariants hold. Suppose all the invariants hold for the triple (π

T ,i , η i , π S,i ). If π S,i is of length 1 then π T ,i fulfills η and condition (3.6) is proved for T . If π 2 S,i = (H i+1 , w i+1 ) by the invariant (3.12), π T ,i+1 = π T ,i (H i+1 , λ i k) is a path in T . It can easily be checked that (π T ,i+1 , η ≥2 i , π ≥2 S,i ) satisfies all the invariants. Finally, if π 2 S,i = • then η 1 i = ≡ and by construction, form (η i ) ∈ H λ i where (H λ i , w i ) = T path (λ i ) 1
, hence a minimal path π S,i+1 from (H i+1 , w i ) in S fulfilling η i has been selected during the construction of T path . By minimality, the length of π S,i+1 is strictly less than the length of π S,i . Hence, it can easily be checked that (π

T ,i • (H i+1 , λ i ), η ≥2 i , π S,i+1
) satisfies all the invariants.

Optimal decision procedure for OPDL lc

The decision procedure for OPDL lc presented in this section is by reduction to the dual of the emptiness problem of Streett tree automata. By Proposition 3.18, whenever a formula ϕ 0 is satisfiable, there is a good N ≡ ϕ 0 -ary syntactic tree for ϕ 0 . Therefore, we con-Optimal decision procedure for OPDL lc 3.5 struct an automaton which recognizes exactly the good N ≡ ϕ 0 -ary syntactic trees for ϕ 0 . We first recall the definitions of the automata used in the procedure before describing the construction of our automaton.

Automata

A word automaton is a tuple A = (Σ, S, ρ, S 0 , F) where

• Σ is the input alphabet,

• S is the set of states of the automaton,

• ρ : S × Σ -→ P (S) is a non-deterministic transition function,

• S 0 ⊆ S is the set of initial states and

• F is the termination condition. The word automaton A is deterministic iff for any state s ∈ S and any symbol a ∈ Σ, ρ(s, a) ≤ 1. Given an infinite word µ over Σ, a run of A on µ is a word r over S such that r 1 ∈ S 0 and for all k ≥ 1, r k+1 ∈ ρ(r k , µ k ). The set of states occurring infinitely often in a run r is denoted by inf(r). For B üchi word automata, the termination condition is a subset F ⊆ S of accepting states. A word µ is accepted by a B üchi word automaton A iff there is a run r of A on µ in which accepting states occur infinitely often: inf(r) ∩ F ∅.

An N -ary tree automaton is a tuple A = (Σ, S, ρ, S 0 , F) similar to a word automaton except that ρ : S × Σ -→ P S N assigns a set of N -ary tuples of states. Given an N -ary ω-tree T over Σ, a run of A on T is a tree T r over S such that T r ( ) ∈ S 0 and for all λ ∈ [1 . . N ] * , (T r (λ1), . . . , T r (λN )) ∈ ρ(T r (λ), T (λ)). For all branches σ in T r , the set of states occurring infinitely often in σ is denoted by inf(σ ). For B üchi tree automata, the termination condition is a subset F ⊆ S of accepting states, as for B üchi word automata. A tree T is accepted by a B üchi tree automaton A iff there is a run T r of A on T such that for any branch σ in T r , inf(σ ) ∩ F ∅. For Streett tree automata, the termination condition F ⊆ P (S) × P (S) is a set of pairs of set of states. A tree T is accepted by a Streett tree automaton A iff there is a run T r of A on T such that for any branch σ in T r and any pair (A,

B) ∈ F, if inf(σ ) ∩ A ∅ then inf(σ ) ∩ B ∅.
There is a natural translation from any word automaton to a tree automaton such that a tree is accepted by the tree automaton iff all its branches, considered as infinite words, are accepted by the word automaton. However, to directly translate a word automaton to a tree automaton, the word automaton must be deterministic, because otherwise different branches may have to perform different choices at the same node. Hence, to any deterministic B üchi word automaton (Σ, S, ρ, S 0 , F), corresponds the B üchi tree automaton (Σ, S, ρ , S 0 , F) where ρ (s, a) = (ρ(s, a), . . . , ρ(s, a)). Moreover, a B üchi tree automaton (Σ, S, ρ, S 0 , F) is equivalent to the Streett tree automaton (Σ, S, ρ, S 0 , {(S \S 0 , S 0 )}).

Decision procedure

Given a formula ϕ 0 we construct a Streett tree automaton A which recognizes exactly the good N ≡ ϕ 0 -ary syntactic trees for ϕ 0 . We first describe three automata, A S , A J and A E over the same alphabet Σ = P (Π 0 ) × Clusters(ϕ 0 ). Each of these automata checks conditions from Definitions 3.15 and 3.16. Then we combine them into A.

Condition (3.4) is checked by the "safety" B üchi word automaton A S = (Σ, S S , ρ S , S S,0 , F) where:

• S S is the set of clusters on ϕ 0 plus the special state I,

• S S,0 = {I}, F S = S S and

• s 1 ∈ ρ S (s 0 , (P , C)) iff either s 1 = I and P = ∅ -or s 1 = C, P ∅, s 0 is a cluster and s 0 S P s 1 .
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Condition (3.5) is checked by the "justifying" B üchi word automaton A J = (Σ, S J , ρ J , S J,0 , F J ) where:

• S J is the set of pairs (H, E) where E is a set of eventuality chains to be fulfilled and H is a subset of FL(ϕ 0 ) which is either a Hintikka set of the parent cluster or the empty set if the current node is the root or FL(ϕ 0 ) if the current branch is pruned;

• S J,0 = {(∅, ∅)} and F J = (H, E) ∈ S J H ∅ and E = ∅ ;

• (H 1 , E 1 ) ∈ ρ J ((H 0 , E 0 ), (P , C)) if one of the following conditions holds:

-H 0 is a Hintikka set, E 0 ∅, H 1 ∈ C, P ∅, H 0 S P H 1 and for all η 0 ∈ E 0 , form (η 0 ) ∈ H 1 and there is (G 1 , η 1 ) ∈ next(η 0 ) such that G 1 ∪ {form (η 1 )} ⊆ H 1 and if η 1 1 ∈ Π 0 then η ≥2 1 ∈ E 1 . -H 0 FL(ϕ 0 ), E 0 = ∅, H 1 ∈ C, if H 0 ∅ then H 0 S P H 1 and for any eventuality α ϕ ∈ H 1 , there is (G 1 , η 1 ) ∈ next(αϕ) such that G 1 ∪ {form (η 1 )} ⊆ H 1 and if η 1 1 ∈ Π 0 then η ≥2 1 ∈ E 1 . -H 1 = FL(ϕ 0 ) and E 1 ∅. -H 1 = FL(ϕ 0 ), E 1 = ∅ and P = ∅. -H 1 = FL(ϕ 0 ), E 1 = ∅, H 0 = FL(ϕ 0 ) and E 0 = ∅.
Finally, the "existential" Streett tree automaton A E = (Σ, S E , ρ E , S E,0 , F E ) ensures that there is a pseudo-justifying path π from (H 1 , ) where ϕ 0 ∈ H 1 and such that the support of π is the branch obtained by always choosing the first successor (conditions (3.3) and (3.7)). Moreover, A E checks conditions (3.6). It is defined such that:

• S E is the set of triples (H, E, t) where H and E play the same role as in A J and t is a Boolean value ( or ⊥) indicating whether the state is final; ,(P ,C)) then all the following conditions hold:

• S E,0 = {(∅, ∅, ⊥)} and F E = {(S E , F)} where F = {(H, E, t) ∈ S E | t = }. The transition function ρ E is defined such that if ((H 1 , E 1 , t 1 ), . . . , (H N ≡ ϕ 0 , E N ≡ ϕ 0 , t N ≡ ϕ 0 )) ∈ ρ E ((H 0 , E 0 , t 0 )
• for all k ∈ 1 . . N ≡ ϕ 0 , either

H k ∈ C or H k = FL(ϕ 0 ); • if H 0 = ∅ then H 1 is a Hintikka set and ϕ 0 ∈ H 1 ;
• if H 0 is a Hintikka set then P ∅, H 1 is a Hintikka set and H 0 S P H 1 ;

• if H 1 is a Hintikka set and E 0 = ∅ then for all eventuality α ϕ ∈ H 1 there is

(G 2 , η 2 ) ∈ next(αϕ) such that G 2 ∪ {form (η 2 )} ⊆ H 1 , if η 1 2 ∈ Π 0 then η ≥2 2 ∈ E 1 ; • if H 1 is a Hintikka set then for all η 1 ∈ E 0 , form (η 1 ) ∈ H 1 and there is (G 2 , η 2 ) ∈ next(η 1 ) such that G 2 ∪ {form (η 2 )} ⊆ H 1 , if η 1 2 ∈ Π 0 then η ≥2 2 ∈ E 1 and if η 1 2 = ≡ then t k = ⊥ for k such that form (η 2 ) = ≡ ψ k-1 ; • for all k ∈ 2 . . N ≡ ϕ 0 , if H 1 is a Hintikka set and ≡ ψ k-1 ∈ H 1 then H k is a Hintikka set, ψ k-1 ∈ H k and there is (G 2 , η 2 ) ∈ next(η 1 ) where η 1 is the maximal eventuality chain for ψ k-1 such that G 2 ∪ {form (η 2 )} ⊆ H k , if η 1 2 ∈ Π 0 then η ≥2 2 ∈ E k and if η 1 2 = ≡ then form η ≥2 2 < ψ k-1 ; • if E 1 ∅ then t 1 = ⊥.
A S is deterministic and the number of its states is double exponential in |ϕ 0 |. It can be directly translated into a Streett tree automaton with no termination pair. A J has an exponential number of states but it must be determinized before being transformed into a tree automaton because the choice of the Hintikka sets depends on the successor of the node. Piterman [Piterman.06] proved that a nondeterministic B üchi word automaton with n states can be translated into a deterministic Street word automaton with n 2n+2 states and n termination pairs. Hence, the resulting Streett tree automaton corresponding to A J has a double exponential number of states and an exponential number of termination pairs. A E has an exponential number of states and a single termination pair. The product of these three tree automata gives a Streett tree automaton A with a double exponential number of states and an exponential number of pairs. Emerson and Jutla [EmeJut.99] proved that the emptiness of a Streett tree automaton with s states and p termination pairs can be decided in deterministic time (s • p) O(p) . We have proved the following result.

Lemma 3.19. The emptiness problem for A can be decided in double exponential time in |ϕ 0 |.

Soundness

In this section we prove that if there is a good N ≡ ϕ 0 -ary syntactic tree T for ϕ 0 then there is a N ≡ ϕ 0 -ary ω-tree over Σ = P (Π 0 ) × Clusters(ϕ 0 ) that is accepted by A as defined previously for ϕ 0 . For that matter, we prove Lemmas 3.20, 3.21 and 3.22. Notice that since A E imposes an ordering of the branches, the tree accepted by A is not necessarily T .

Lemma 3.20. Any branch of any N ≡ ϕ 0 -ary syntactic tree for ϕ 0 is accepted by A S .

Proof. Let σ = λ 1 λ 2 . . . be a branch in an N ≡ ϕ 0 -ary syntactic tree T for ϕ 0 . The infinite sequence r = s 1 s 2 . . . of A S 's states is defined such that s 1 = I and for all i > 1,

s i = T C (λ i-1 ) if T P (λ i-1 ) ∅ and s i = I otherwise. By condition (3.4) of Definition 3.15, r is an accepting run of A S .
Lemma 3.21. Any branch of any good N ≡ ϕ 0 -ary syntactic tree for ϕ 0 is accepted by A J .

Proof. Let σ = λ 1 λ 2 . . . be a branch in a good N ≡ ϕ 0 -ary syntactic tree T for ϕ 0 . We construct the infinite sequence r = s 1 s 2 . . . of A S 's states and we prove that r is an accepting run of A J on σ . If σ is pruned then there is > 0 such that T P (λ ) = ∅. Let us define r such that s 1 = (∅, ∅), s k = (FL(ϕ 0 ) , {⊥}) for all k ∈ 2 . . and s k = (FL(ϕ 0 ) , ∅) for all k > . It can easily be checked that r is an accepting run of A J on σ .

If σ is valid, by Lemma 3.17, σ is the support of a justifying path (H 1 , λ 1 )(H 2 , λ 2 ) . . .. We define inductively the infinite sequence (E 1 , f 1 )(E 2 , f 2 ) . . . such that for all k > 0:

• E k is is a set of eventuality chains such that for all η ∈ E k , form (η) ∈ H k and • f k is a function assigning to each η ∈ E k a path from (H k , λ k ) fulfilling η.
Initially, let (E 1 , f 1 ) = (∅, ∅). Then, for all k > 0, two cases are distinguished. First suppose that E k = ∅. For all eventualities α ϕ ∈ H k there is a path π αϕ fulfilling αϕ and whose trunk is a prefix of (H k , λ k )(H k+1 , λ k+1 ) . . .. Moreover, by the witness Lemma 3.8, there is (η αϕ , G αϕ ) ∈ next(αϕ) such that G αϕ ∪ form η αϕ ⊆ H k and π αϕ fulfills η αϕ . Let E k+1 be the set of all eventuality chains η such that η αϕ = aη for some eventuality α ϕ ∈ H k and some atomic program a ∈ Π 0 . Similarly, define f k+1 (η ) = π ≥2 αϕ for some eventuality α ϕ ∈ H k such that η αϕ = aη for some a ∈ Π 0 . Now suppose that

E k ∅. For all η ∈ E k , form (η) ∈ H k and f k (η) is a path fulfilling η and whose trunk is a prefix of (H k , λ k )(H k+1 , λ k+1 ) . . .. By the witness Lemma, for each η ∈ E k , there is (η η , G η ) ∈ next(η) such that G η ∪ form η η ⊆ H k and f k (η) fulfills η η
. Let E k+1 be the set of all eventuality chains η such that η η = aη for some eventuality chain η ∈ E k and some atomic program a ∈ Π 0 . Similarly, define f k+1 (η ) = f k (η) ≥2 for some eventuality chain η ∈ E k such that η η = aη for some a ∈ Π 0 . It can easily be checked that the sequence r = (∅, E 1 )(H 1 , E 2 )(H 2 , E 3 ) . . . is a run of A J on σ . Moreover, since fulfilling paths are finite, r is accepting.

Lemma 3.22. If there is a good N ≡ ϕ 0 -ary syntactic tree for ϕ 0 then there is a good N ≡ ϕ 0 -ary syntactic tree that is accepted by A E .

Ockhamist Propositional Dynamic Logics

Proof. Given a good N ≡ ϕ 0 -ary syntactic tree T for ϕ 0 , we construct simultaneously both the N ≡ ϕ 0 -ary ω-tree T and the run T r of A E on T . For any word λ ∈ [1 . . N ≡ ϕ 0 ] * , the tuple (C λ , P λ , H λ , E λ , t λ , π λ , σ λ ) is constructed inductively as defined below. In each of these tuples:

• the pair (C λ , P λ ) is the label of λ in T , i.e., T (λ) = (C λ , P λ ), hence C λ is a cluster and P λ a set of atomic programs;

• the triple (H λ , E λ , t λ ) is the state of A E at λ, i.e., T r (λ) = (H λ , E λ , t λ ), hence H λ is a set of formulas, E λ is a set of eventuality chains and t λ ∈ { , ⊥};

• π λ is a path in T and σ λ is a justifying path in T such that the trunk of π λ is a prefix of σ λ and for any eventuality chain η ∈ E λ , there is a path π η in T fulfilling η and whose trunk is a prefix of π λ .

Base case. Let (C , P ) = T ( ), (H , E , t ) = (∅, ∅, ⊥), π = and σ be a pseudo-justifying path in T such that σ 1 = (H 0 , ) for some H 0 such that ϕ 0 ∈ H 0 . By condition (3.7), σ exists and by Lemma 3.17, σ is a justifying path in T .

Pruned branch. If H λ = FL(ϕ 0 ) or P λ = ∅ then for all k ∈ 1 . . N ≡ ϕ 0 , P λk = ∅, H λk = FL(ϕ 0 ), E λk = ∅ and t λk = , the other components being non-significant.

First child. The tuple for λ1 is constructed from the tuple for λ.

Let (H, µ) = σ 1 λ and (H , µ ) = σ 2 λ . We set C λ1 = T C (µ ), P λ1 = T P (µ ), H λ1 = H and σ λ1 = σ ≥2 λ .
For the remaining components, two cases are distinguished.

• If E λ = ∅ then, since σ λ is a justifying path, for any eventuality α ϕ ∈ H there is a minimal path π α ϕ fulfilling α ϕ and such that the trunk π α ϕ is a prefix of σ λ . Moreover, by the Witness Lemma (Lemma 3.8), there is (G α ϕ , η α ϕ ) ∈ next(αϕ) such that G α ϕ ∪ form η α ϕ ⊆ H and π α ϕ fulfills η α ϕ . We set

E λ1 = η there is α ϕ ∈ H s.t. η 1 α ϕ ∈ Π 0 and η ≥2 α ϕ = η , t λ1
= and π λ1 is the shortest prefix of σ λ1 such that for all α ϕ ∈ H, π α ϕ is a prefix of σ 1 λ π λ1 . • If E λ ∅ then for any eventuality η ∈ E λ , there is a path π η fulfilling η and such that the trunk of π η is a prefix of π λ . Moreover, by the Witness Lemma, there is (G η , η η ) ∈ next(η) such that G η ∪ form η η ⊆ H and π η fulfills η η . We set

E λ1 = η there is η ∈ E λ s.t. η 1 η ∈ Π 0 and η ≥2 η = η , t λ1 = ⊥ and π λ1 = π ≥2 λ .
Other children. For any k ∈ 2 . . N ≡ ϕ 0 , the tuple for λk is constructed from the tuple for λ. Let (H, µ) = σ 1 λ . If ≡ ψ k-1 H then set P λk = ∅, H λk = FL(ϕ 0 ) and t λk = , the remaining components being non-significant. Otherwise, by condition (3.6), there is H ∈ C λ and a path π k from (H , µ) in T that fulfills the maximal eventuality chain η k for ψ k-1 . If the trunk of π k has length one then again set P λk = ∅, H λk = FL(ϕ 0 ) and t λk = , the remaining components being non-significant. Otherwise, let (H , µ ) = π 2 k . By condition (3.6) and Lemma 3.17, there is a justifying path θ k from (H , µ ) in T . Moreover, by the Witness Lemma, there is

G η k , η η k ∈ next (η k ) such that G η k ∪ form η η k ⊆ H and π k fulfills η η k . Set C λk = T C (µ ), P λk = T P (µ ), H λk = H , E λk = η ≥2 η k , π λk = π ≥2 k and σ λk = θ. Finally, if there is η ∈ E λ such that form (η) = ≡ ψ k-1 then t λk = ⊥, otherwise t λk = .
It can easily be proved that T is a good N ≡ ϕ 0 -ary syntactic tree for ϕ 0 and that T r is an accepting run of A E on T .

In this section, we prove that if a N ≡ ϕ 0 -ary ω-tree T over Σ = P (Π 0 ) × Clusters(ϕ 0 ) is accepted by A then T is a good N ≡ ϕ 0 -ary syntactic tree for ϕ 0 . It can easily be proved that for any N ≡ ϕ 0 -ary ω-tree T over Σ = P (Π 0 ) × Clusters(ϕ 0 ), if T is accepted by A E then T satisfies condition (3.3) and if T is accepted by A S then T satisfies condition (3.4). Each of the following lemmas proves that T satisfies one of the remaining conditions in Definitions 3.15 and 3. 16.

First, we define that a finite path π 1 pseudo-fulfills an eventuality chain η 1 iff π 1 fulfills η 1 or there is an eventuality chain η 2 such that

• η 1 2 = ≡, • form (η 2 ) ∈ H |π 1 | where π |π 1 | 1 = (H |π 1 | , w |π 1 | ) and • for any path π 2 from π |π 1 | 1 fulfilling η 2 , π 1 π ≥2
2 fulfills η 1 . These definition extends naturally to pseudo-fulfillment of eventualities. It can easily be checked that an infinite unbranching path π is pseudo-justifying if and only if for all i > 0 and any eventuality α ϕ ∈ H i where π i = (H i , w i ), there is j ≥ i such that π i..j pseudo-fulfills α ϕ. The first lemma can now be stated.

Lemma 3.23. Any N ≡ ϕ 0 -ary syntactic tree T accepted by A J satisfies condition (3.5).

Proof. Suppose that a valid branch σ of a N ≡ ϕ 0 -ary syntactic tree is accepted by A J with the run r = (H 0 , E 0 ) . . . (H k , E k ) . . .. We construct the path π = (H 1 , σ ≤1 ) . . . (H k , σ ≤k ) . . .. We have that for all k ∈ N and all η ∈ E k , form (η) ∈ H k+1 . We first prove the following claim.

Claim. For all k ∈ N and all η ∈ E k , there is j > k such that π k+1..j pseudo-fulfills η.

Proof. By construction, for all k ∈ N there is a least d(k) such that E k+d(k) = 0. The proof is by induction on d(k). The base case is trivial. For the inductive case, let

η 0 ∈ E k . By construction, there is (G, η 1 ) ∈ next(η 0 ) such that G ∪ {form (η 1 )} ⊆ H k+1 and if η 1 1 ∈ Π 0 then η ≥2 1 ∈ E k+1 . If η 1 1 ∈ Π 0 ,
by induction there is j > k + 1 such that π k+2..j pseudo-fulfills η ≥2

1 . Otherwise, it suffices to set j = k + 1.

The proof that π is pseudo-justifying is similar (by induction on d(k)) and uses the previous claim along with Lemma 3.7.

Lemma 3.24. Any N ≡ ϕ 0 -ary syntactic tree T accepted by A E satisfies condition (3.7).

Proof. The proof is similar to the proof of the previous lemma.

Lemma 3.25. Any N ≡ ϕ 0 -ary syntactic tree T accepted by A E satisfies condition (3.6).

Proof. Let T r be a successful run of A E on a N ≡ ϕ 0 -ary syntactic tree T . Using the same method as for the previous lemma, it can be proved that for any node λ in T and any k ∈ 1 . . N ≡ ϕ 0 , if for all i ∈ 2 . . |λ|, T P λ ≤i ∅ and T P (λk) ∅, then there is a pseudo-justifying path in T from (H λk , λ) where H λk is the first component of T r (λk).

A guided path is defined as a pair (π, θ) such that:

• π is a finite path in T such that for all i ∈ 1 . . |π|, if π i = (H, λ) for some node λ in T and some Hintikka set H then H is the projection of T r (λk) on its first component for k such that if i < |π| and π i+1 = (H , λ ) then λk = λ , otherwise k = 1;

• θ is a finite sequence of eventuality chains such that |θ| = |π| and for all i ∈ 1 . . |θ|,

if π i = (H i , λ i ) then form θ i ∈ H i and there is (G, η) ∈ next(θ i ) such that G ∪ {form (η)} ⊆ H i and -i = |π| iff η 1 ∈ Φ; 3. Ockhamist Propositional Dynamic Logics -if η 1 ∈ Π 0 then θ i+1 = η ≥2 and π i+1 •; -if η 1 = ≡ then i + 1 < |π|, θ i+2 = η ≥2 and π i+1 = •.
The following properties can easily be proved for any guided path (π, θ):

1. for all i ∈ 2 . . |π|, if π i • then (π ≥i , θ ≥i ) is a guided path;
2. π fulfills θ 1 ;

3. for all i ∈ 2 . . |π|, if π i = (H, λ) then there is a pseudo-justifying path from (H, λ) in T . Suppose that ≡ ψ k-1 ∈ H for some node λ on a valid branch in T , some Hintikka set H ∈ T C (λ) for ϕ 0 and some k ∈ 2 . . N ≡ ϕ 0 . Then ≡ ψ k-1 ∈ H λ1 where H λ1 is the first component of T r (λ1). Let (H λk , E λk ) = T r (λk) and η 1 be the maximal eventuality chain for ψ k-1 . Following the construction of T r , a guided path (π, θ) can easily be constructed such that π 1 = (H, λ) and θ 1 = η 1 .

We can now state the final results on the complexity of OPDL lc .

Lemma 3.26. The formula ϕ 0 is satisfiable in OPDL lc if and only if there is an N ≡ ϕ 0 -ary ω-tree over Σ = P (Π 0 ) × Clusters(ϕ 0 ) which is accepted by A.

Proof. By Proposition 3.18 and Lemmas 3.20, 3.21, 3.22, 3.23, 3.24 and 3.25.

Proposition 3.27. The satisfiability problem of OPDL lc is 2EXPTIME-complete.

Proof. The upper bound is given by Lemmas 3.19 and 3.26. For the lower bound, the proof from [BalLor.13] that OPDL lts is 2EXPTIME-hard can easily be adapted to OPDL lc .

Part II

Resources

Chapter 4

Resources, Separation and Binary Modalities

Γ ϕ Γ ψ Γ ϕ ∧ ψ ∧ r Γ ϕ ∆ ψ Γ , ∆ ϕ ⊗ ψ ⊗ r
The operator ∧ is called the additive conjunction whereas ⊗ is the multiplicative conjunction (or tensor product).

The conditional of such a logic, denoted by , is defined as the right adjunct of the multiplicative conjunction. Two binary operators and are logical adjuncts iff the following rules1 are admissible:

ϕ χ ψ ϕ χ ψ
Here, is called the left adjunct of and reciprocally is the right adjunct of . The operator is also called the residual of . In substructural logics without weakening and contraction the following rules are admissible:

Resources, Separation and Binary Modalities ϕ ⊗ χ ψ ϕ χ ψ

In substructural logics, it may be the case that the following structural rule of commutativity does not hold.

Γ , ∆ ϕ ∆, Γ ϕ

Commutativity

In this case there are two residuals of the multiplicative conjunction ⊗, namely the left residual and the right residual , defined by the following rules:

ϕ ⊗ χ ψ ϕ χ ψ ϕ ⊗ χ ψ χ ϕ ψ
We will not enter into details of substructural logics here (see [Restall.00] for an introduction). What is interesting for this thesis is the resources-based reading of these logics, which has been first introduced for Linear Logic [Girard.87]. In this reading, a formula represents a resource as the possibility to perform an action2 . For instance, let s be the possibility to spend one euro, p the possibility to buy one item and q the possibility to buy one other item. The multiplicative conjunction ⊗3 represents the possibility to perform both actions. For instance, p ⊗ q is the possibility to buy both items (at once) and s ⊗ s is the possibility to spend two euros. Hence there is clearly no equivalence between s and s ⊗ s. The additive conjunction ∧ represents the possibility to choose one action between two. For instance, p ∧ q is the possibility to buy one or the other item but not both. There is some disjunctiveness in the additive conjunction, but it is clearly distinct from the (additive) disjunction ∨ which does not give any choice. For instance, p ∨ q is either the possibility to buy one item or the possibility to buy the other item. The conditional represents the possibility to transform a resource into another one. For instance, s p represents the possibility to spend one euro to be able to buy one item. Clearly, it cannot be deduced from s p and s q that s p ⊗ q but s p ∧ q or s ⊗ s p ⊗ q can be. Even more interesting is the fact that the antecedents of a conditional have to be "used" exactly once. For instance, neither s ⊗ s p nor s ∧ q p can be deduced from s p. Finally, in Linear Logic, the modality !, called the exponential, provides unlimited use of a resource. Intuitively, !ϕ can be understood as n∈N k∈1..n ϕ. For instance, !s represents the possibility to spend an arbitrary amount of euros. This exponential modality is used in Linear Logic to express the intuitionistic implication: ϕ → ψ in intuitionistic logic is translated in Linear Logic into !ϕ 0 ψ 0 , where ϕ 0 and ψ 0 are the translation of ϕ and ψ respectively.

Boolean logic of Bunched Implications

The logic of Bunched Implication (BI) [O'HPym.99, Pym.02] and its Boolean variant (BBI) [Pym.02, GalLar.06] have been devised to reason about resources, which was not the case of Linear Logic. The main difference is that in Linear Logic, formulas are the resources whereas in BI and BBI, formulas describe the resources. Let us adapt the previous example to this new reading. Now, s represents any situation in which I have enough resources to be able to spend one euro, p represents any situation in which I can buy an item and q represents any situation in which I can buy another item. The multiplicative conjunction, denoted by /, represents any situation in which there are enough resources for both situations to hold simultaneously. For instance, p / q means Boolean logic of Bunched Implications 4.2 that I can buy both items. In other words, ϕ / ψ means that the current resources can be split into two parts, one part being enough for ϕ to hold and the other part enough for ψ to hold. As we will see in the next sections, the separation of the current state into two substates as done by the multiplicative conjunction of BI and BBI, is a very interesting feature which can be used to express many different properties. The other main contribution of BI and BBI is the presence of a multiplicative implication -/ called the magic wand. This implication is the adjunct of the multiplicative conjunction. Intuitively, the formula ϕ -/ ψ represents any situation such that if enough resources for ϕ to hold were added to the current resources then there would be enough resources for ψ to hold. For instance s -/ p means that if I had one more euro then I could buy an item. BI and BBI also have additive operators, which are equivalent to the intuitionistic operators for BI and to the classical operators for BBI. For instance, p ∧ q means that I can buy one item, I can buy the other item, but maybe I cannot buy them both. Similarly, p → q means that if I can buy one item then I can buy the other one. To outline the differences between the logics of Bunched Implication and the Linear Logic, here are some example from [Pym.02]. In Linear Logic, !ϕ ψ can be deduced from ϕ ψ. This is not the case in BI. Suppose for instance that I have one euro and the first item costs two euros. Then s -/ p holds but not s → p. Another example is the formula (s ∧ (s → p)) -/ p which is valid in BI whereas (s ∧ (!s p)) p is not valid in Linear Logic because only one of s and !s p can be used by the multiplicative implication.

In this thesis we are not interested in intuitionism, therefore we will only describe the Boolean variant BBI. The language of this logic is defined from a set Φ 0 of propositional variables (denoted p, q . . .) by the following grammar:

ϕ, ψ p | ¬ϕ | | (ϕ ∧ ψ) | (ϕ → ψ) | I | (ϕ / ψ) | (ϕ -/ ψ)
As usual parentheses may be omitted for clarity, the conjunctions having precedence over the implications. The missing Boolean operators are defined by ⊥ ¬ and ϕ∨ψ ¬(¬ϕ ∧ ¬ψ). The constant I is the neutral element of the multiplicative conjunction /.

The septraction operator -/ ¬ from [BDL.08] is defined by ϕ -/ ¬ ψ ¬(ϕ -/ ¬ψ).

There are many different semantics for BBI, hence different logics. The terminology of all these logics is not fixed yet. In this thesis, we will consider that BBI is the logic obtained by interpreting the previous language in non-deterministic monoids as defined below (this logic is sometimes called BBI ND ). This semantics has been introduced by Galmiche and Larchey-Wendling in [GalLar.06] and the other semantics can be defined as special cases of it.

Let us consider a set M and a binary function • : M × M -→ P (M). The function • can be extended to a binary operator on P (M) by X • Y {x • y x ∈ X and y ∈ Y } for all X, Y ⊆ M. Therefore, by identifying any element a ∈ M with the singleton {a}, we abusively write expression like a • X instead of {a} • X.

Definition 4.1. A non-deterministic monoid 4 is a triple (M, •, e) where • M is a set of elements, • • : M × M -→ P (M)

is the composition and

• e ∈ M the neutral element for which the following properties hold for all a, b, c ∈ M:

e • a = {a} (identity) a • b = b • a (commutativity) a • (b • c) = (a • b) • c (associativity)
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A BBI model is a tuple M = (M, •, e, V ) where (M, •, e) is a non-deterministic monoid and V is a valuation assigning a subset of M to each propositional variable in Φ 0 . BBI formulas are evaluated at element of a BBI model. We write M, a | = ϕ when ϕ holds at the element a of M and the relation | = is defined inductively by:

M, a | = p iff a ∈ V (p) M, a | = ¬ϕ iff M, a | = ϕ M, a | = always M, a | = ϕ ∧ ψ iff M, a | = ϕ and M, a | = ψ M, a | = ϕ → ψ iff M, a | = ϕ or M, a | = ψ M, a | = I iff a = e M, a | = ϕ / ψ iff there exist b, c ∈ M s.t. a ∈ b • c, M, b | = ϕ and M, c | = ψ M, a | = ϕ -/ ψ iff for all b, c ∈ M, if c ∈ b • a and M, b | = ϕ then M, c | = ψ
BBI has been axiomatized in [GalLar.06] by extending any Hilbert axiomatization for the classical propositional logic containing the modus ponens and the uniform substitution with the following three axioms p ↔ I / p p / q → q / p p / (q / r) → (p / q) / r and the following three inference rules

ϕ / ψ → χ ϕ → (ψ -/ χ) -/ 1 ϕ → (ψ -/ χ) ϕ / ψ → χ -/ 2 ϕ 1 → ψ 1 ϕ 2 → ψ 2 ϕ 1 / ϕ 2 → ψ 1 / ψ 2 /
The added axioms correspond to the properties of non-deterministic monoids listed in Definition 4.1 and that the first two inference rules make -/ and / adjuncts. The last inference rule is the monotonicity rule of / (see Section 4.3).

The two other main semantics for the language of BBI add a condition on nondeterministic monoids: Partial deterministic monoids are non-deterministic monoids (M, •, e) with the additional condition that for all a, b ∈ M, the cardinality of a•b is at most one. The logic obtained by interpreting the language of BBI in the class of partial deterministic monoids is denoted by BBI PD .

Total deterministic monoids are non-deterministic monoids (M, •, e) with the additional condition that for all a, b ∈ M, the cardinality of a • b is exactly one. The logic obtained by interpreting the language of BBI in the class of total deterministic monoids is denoted by BBI TD . Remark that total deterministic monoids are equivalent with commutative monoids by the bijection between elements and singletons.

The logics BBI, BBI PD and BBI TD have all been proved to be undecidable [LarGal.10, BroKan.10, LarGal.13]. In Section 5.1, we give a different argument for the undecidability of this logics which outline the role of the associativity of /.

Normal binary modal logics

The most studied modal logics (like K, S4, S5 or PDL) have unary modalities. But as it is done in [BRV.01], modal logics can be generalized to languages with any number of modalities of any arity. In this thesis, we are particularly interested in binary modalities, because such modalities can express the key notion of separation which leads to both resources and concurrency.

Given a set Φ 0 of propositional variables (denoted as usual by p, q . . .), the basic binary modal language Φ K 2 is defined inductively by the following grammar:

ϕ, ψ p | ⊥ | ¬ϕ | (ϕ ∧ ψ) | (ϕ • ψ)
The missing Boolean operators are defined as usual. The dual binary modality is defined by ϕ • ψ ¬(¬ϕ • ¬ψ). Parentheses may be omitted for clarity, the modalities having precedence over the other operators.

A logic L over the language Φ K 2 is a normal binary modal logic iff all the axioms of the classical propositional logic plus the axioms (K 2 ) and (K 2 r) below are valid in L and the inference rules of modus ponens, uniform substitution and the two rules of necessitation (gen 2 ) and (gen 2 r) below are admissible in L.

(p → q) • r → (p • r → q • r) (K 2 ) p • (q → r) → (p • q → p • r) (K 2 r) ϕ ψ • ϕ gen 2 ϕ ϕ • ψ gen 2 r
The minimal normal binary modal logic is named K 2 . Similarly, given a logic L in which all the axioms of the classical propositional logic are valid and the rules of modus ponens and uniform substitution are admissible, and a binary modality • of L, • is normal iff (K 2 ) and (K 2 r) are valid in L and (gen 2 ) and (gen 2 ) are admissible.

The previous definition of normal binary modal logic is the traditional one (see for instance [BRV.01]). But it is often useful to have a characterization of normal binary modal logics in terms of the existential modality • instead of the universal • . The following proposition is a well-known result in modal logic.

Proposition 4.2. A logic L over the language Φ K 2 is a normal binary modal logic iff all the axioms of the classical propositional logic plus the axioms (⊥ 2 ), (⊥ 2 r), (K 2 ) and (K 2 r) below are valid in L and the inference rules of modus ponens, uniform substitution and monotonicity below are admissible in L.

⊥ • p → ⊥ (⊥ 2 ) p • ⊥ → ⊥ (⊥ 2 r) (p ∨ q) • r ↔ (p • r) ∨ (q • r) (K 2 ) p • (q ∨ r) ↔ (p • q) ∨ (p • r) (K 2 r) ϕ 1 → ψ 1 ϕ 2 → ψ 2 ϕ 1 • ϕ 2 → ψ 1 • ψ 2 monotonicity
We now prove that normal binary modal logics are more general than BBI, i.e., that both / and -/ ¬ are normal binary modalities in BBI. We will shortly see a semantical argument for this claim, but we first prove it syntactically.

Proposition 4.3. The multiplicative conjunction / is a normal binary modality in BBI.

Proof. We use Proposition 4.2 and the axiomatization of BBI from [GalLar.06] presented in Section 4.2. The monotonicity is the rule (/), the axioms (⊥ 2 ) and (K 2 ) have been proved in [GalLar.06, Proposition 1] and the two remaining axioms can be easily derived by commutativity of /.

Resources, Separation and Binary Modalities

Proposition 4.4. Let • be a normal binary modality. Ifis the left residual of • then the binary modality -• defined by ϕ -• ψ ¬(ϕ -¬ψ) is normal. Similarly, ifis the right residual of • then the binary modality •defined by ϕ •ψ ¬(ϕ -¬ψ) is normal.

Proof. We prove the proposition for the left residual, the proof for the right residual being similar. We first prove the necessitation rules.5 

ϕ ϕ gen 2 ϕ • ¬ϕ → ⊥ ⊥ → ψ ϕ • ¬ϕ → ψ res. ϕ → ¬ϕ -ψ ¬ϕ -ψ ψ ψ ψ • ¬ϕ → ψ res. ψ → ¬ϕ -ψ ¬ϕ -ψ For (K 2 ), we first prove (p -q) • p → q. p -q → p -q res. (p -q) • p → q
We also prove (pr) ∧ (qr) → (p ∨ q)r. Let X be the abbreviation for (pr) ∧ (qr).

(K 2 r) X • (p ∨ q) → (X • p) ∨ (X • q) X → p -r res. X • p → r X → q -r res. X • q → r (X • p) ∨ (X • q) → r X • (p ∨ q) → r res. X → (p ∨ q) -r
Then we prove the following inference.

ψ -χ → ψ -χ ϕ → ψ mon. (ψ -χ) • ϕ → (ψ -χ) • ψ (ψ -χ) • ψ → χ (ψ -χ) • ϕ → χ res. ψ -χ → ϕ -χ Finally we prove (K 2 ). ((p ∧ q) -r) ∧ (¬p -r) → ((p ∧ q) ∨ ¬p) -r q → ((p ∧ q) ∨ ¬p) ((p ∧ q) ∨ ¬p) -r → q -r ((p ∧ q) -r) ∧ (¬p -r) → q -r ((p ∧ ¬q) -r) → ((¬p -r) → ¬q -r) Similarly, for (K 2 r) we first prove the theorem (p ∧ q) • r → (p • r) ∧ (q • r).
Normal binary modal logics 4.3

p ∧ q → p r → r mon. (p ∧ q) • r → p • r p ∧ q → q r → r mon. (p ∧ q) • r → q • r (p ∧ q) • r → (p • r) ∧ (q • r)
We also prove the theorem (pq) ∧ (pr) → p -(q ∧ r). We write Q and R for pq and pr respectively.

(Q ∧ R) • p → (Q • p) ∧ (R • p) Q • p → q R • p → r (Q • p) ∧ (R • p) → q ∧ r (Q ∧ R) • p → q ∧ r res. (p -q) ∧ (p -r) → p -(q ∧ r)
Then we prove the following inference.

(ϕ -ψ) • ϕ → ψ ψ → χ (ϕ -ψ) • ϕ → χ res. ϕ -ψ → ϕ -χ Finally, we prove (K 2 r). (p -(q → r)) ∧ (p -q) → (p -((q → r) ∧ q)) (q → r) ∧ q → r (p -((q → r) ∧ q)) → (p -r) (p -(q → r)) ∧ (p -q) → (p -r)
Corollary 4.5. The septraction operator -/ ¬ is a normal binary modality in BBI.

Kripke semantics for normal binary modal logics

A Kripke binary frame is a pair F = (W , ) where W is a non-empty set of states (denoted by w, x . . .) and is a ternary relation over W . We write w (x, y) for (w, x, y) ∈ . Intuitively, w (x, y) means that the state w can be decomposed into two states x and y. We say that x and y are substates of w by the decomposition (w, x, y) ∈ . Equivalently, w (x, y) means that the substates x and y can be merged together to obtain the state w.

A Kripke binary frame F = (W , ) may have the following properties.

Separation The frame F is separated iff for all w, x 1 , x 2 , y 1 , y 2 ∈ W , if w (x 1 , y 1 ) and w (x 2 , y 2 ) then x 1 = x 2 and y 1 = y 2 .

Determinism The frame F is deterministic iff for all w 1 , w 2 , x, y ∈ W , if w 1 (x, y) and w 2 (x, y) then w 1 = w 2 .

Seriality The frame F is serial iff for all x, y ∈ W there exists w ∈ W such that w (x, y).

Commutativity The frame F is commutative iff for all w, x, y ∈ W , if w (x, y) then w (y, x).

Left associativity The frame F is left associative iff for all w, w , x, y, z ∈ W , if w (w , z) and w (x, y) then there exists w ∈ W such that w (x, w ) and w (y, z).

Right associativity

The frame F is right associative iff for all w, w , x, y, z ∈ W , if w (x, w ) and w (y, z) then there exists w ∈ W such that w (w , z) and w (x, y).

Associativity The frame F is associative iff F is both left and right associative.

Resources, Separation and Binary Modalities

Given any set W , there is a trivial bijection between the set of functions W × W -→ P (W ) and the set of ternary relations over W . Therefore, non-deterministic monoids (as defined page 51) are isomorphic with commutative associative Kripke binary frames. Similarly, partial deterministic monoids add the determinism condition and total deterministic monoids further add the seriality condition.

A Kripke binary model is a triple M = (W , , V ) where (W , ) is a Kripke binary frame and V is a valuation function assigning a subset of W to each propositional variable in Φ 0 . If (W , ) has some of the previously listed properties then M is said to have these properties too. For instance, a deterministic Kripke binary model is a model over a deterministic Kripke binary frame.

A formula in Φ K 2 can be interpreted at a state of a Kripke binary model. We write M, w | = ϕ when the formula ϕ ∈ Φ K 2 holds at the state w ∈ W of the model M = (W , , V ). The relation | = is defined inductively by:

M, w | = p iff w ∈ V (p) M, w | = ⊥ never M, w | = ¬ϕ iff M, w | = ϕ M, w | = ϕ ∧ ψ iff M, w | = ϕ and M, w | = ψ M, w | = ϕ • ψ iff there exist x, y ∈ W s.t. w (x, y) , M, x | = ϕ and M, y | = ψ
It is well-known that the logic obtained by interpreting the language Φ K 2 in the class of all Kripke binary frames is the minimal binary normal logic K 2 (see for instance [BRV.01, Section 4.2]).

Chapter 5

Decidability of Associative Binary Modal Logics

The Boolean logic of Bunched Implications (BBI) presented in the previous chapter has been proved to be undecidable [LarGal.10, BroKan.10]. Actually, most logics with an associative binary modality are undecidable, as it has been proved by Kurucz, Németi, Sain and Simon [KNSS.95]. Some are decidable though, like the separation logics kSL0 and the Propositional Dependance logic (PD). We conjecture that these logics are decidable because of their non-standard semantics for propositional variables.

After succinctly reproving the undecidability of BBI in Section 5.1 and introducing the aforementioned decidable logics with a binary modality in Sections 5.2 and 5.3, we propose in Section 5.4 a new family of logics with an associative binary modality, called counting logics. The semantics of the propositional variables in counting logics is inspired by the semantics of kSL0 and PD. Indeed, we draw in Section 5.5 some links between counting logics and both kSL0 and PD. In Section 5.6, we prove that the satisfiability problems of some counting logics are decidable.

Minimal associative binary modal logic

Let us consider the following axioms in the basic binary modal language Φ K 2 (see Section 4.3):

p • (q • r) ↔ (p • q) • r (A) p • q → q • p (C)
From an algebraic point of view, these axioms correspond respectively to the associativity and the commutativity of the binary modality. An associative modal logic is a logic over the language Φ K 2 in which all the propositional tautologies plus the axioms (K 2 ), (K 2 r) and (A) are valid and the inference rules of modus ponens and uniform substitution are admissible (see on page 53). The minimal associative normal modal logic (K 2 A) is the minimal associative modal logic which further admits the rules of necessitation (see on page 53), i.e., K 2 A is the minimal normal binary modal logic in which the axiom (A) is valid. Similarly, the minimal associative and commutative modal logic is the minimal logic in which all the propositional tautologies plus the axioms (K 2 ), (K 2 r), (A) and (C) are valid and the inference rules of modus ponens and uniform substitution are admissible. The minimal associative and commutative normal modal logic (K 2 AC) further admits the rules of necessitation, i.e., K 2 AC is the minimal normal binary modal logic in which the axioms (A) and (C) are valid.

The axiom (A) can be decomposed into two implications which are Sahlqvist formulas. By the Sahlqvist completeness theorem (see for instance [BRV.01]), K 2 A is sound and complete with respect to the class of associative Kripke frames. Similarly, the axiom (C) is a Sahlqvist formula and K 2 AC is sound and complete with respect to the class of associative and commutative Kripke frames. We say that a logic is valid in a frame F iff all the theorems of this logic are valid in F .

Kurucz, Németi, Sain and Simon proved that all the aforementioned associative modal logics are undecidable. The undecidability of the minimal associative and commutative normal modal logic is not proved explicitly in [KNSS.95]. Since this result is important to prove that BBI is undecidable, we show that the proof of the undecidability of the minimal associative and commutative modal logic given in [AKNSS.96] applies to the minimal associative and commutative normal modal logic. We first recall some definitions about groups:

• A group is non-trivial iff its carrier set is not a singleton.

• Let G k = (A k , + k , 0 k ) be a group for all k ∈ 1 . . n for some n ≥ 2. The direct product G = G 1 ×. . .×G n of G 1 , . . . , G n is the group G = (A, +, 0
) such that A is the Cartesian product of all the A k , + is defined component wise, i.e., for all (x 1 , . . . , x n ), (y 1 , . . . , y n ) ∈ A, (x 1 , . . . , x n ) + (y 1 , . . . , y n ) = (x 1 + 1 y 1 , . . . , x n + n y n ) and 0 = (0 1 , . . . , 0 n ). Moreover, given any group G = (A, +, 0), the group frame of G is the Kripke frame F G = (A, ) where x (y, z) iff x = y + z. The proof uses the following result.

Proposition 5.2 from [AKNSS.96]. An associative modal logic L is undecidable if to each n ≥ 2 there are n nontrivial finite groups G 1 , . . . , G n such that L is valid in the group frame of the direct product G 1 × . . . × G n .

Corollary 5.3. The minimal associative and commutative normal logic is undecidable.

Proof. Let (Z/2Z, +) be the commutative group of integers modulo 2 with addition. It can be easily checked that for all n ≥ 2, the frame group of the direct product of n occurrences of (Z/2Z, +) is a commutative and associative Kripke frame. Since K 2 AC is sound with respect to the class of all commutative and associative Kripke frames, by Proposition 5.2, K 2 AC is undecidable.

We can now prove that BBI is undecidable. The possibility to prove the undecidability of BBI in this way is mentioned in [BroKan.10].

Lemma 5.4. BBI is a conservative extension of K 2 AC.

Proof. We identify the symbols / and • . By Proposition 4.3, (K 2 ) and (K 2 r) are theorems of BBI and the inference rules of modus ponens, uniform substitution and necessitation are admissible. Therefore, any theorem of K 2 AC is a theorem of BBI. Conversely, we prove that any theorem of the fragment of BBI without -/ and I is valid in the class of all associative and commutative Kripke frames. Let ϕ be a theorem of BBI and M = (W , , V ) an associative and commutative Kripke model. We define

M = (W , •, e, V ) such that e W , W = W ∪ {e}, a • b = {c ∈ W | c (a, b)} if a, b ∈ W , a • e = e • a =
a for all a ∈ W and V (p) = V (p) for all p ∈ Φ 0 . It can easily be checked that (W , •, e) is a nondeterministic monoid. Therefore, ϕ is valid in M . Furthermore, it can easily be proved by induction on the number of occurrences of symbols in ψ that for all a ∈ W and all

ψ ∈ Φ K 2 , if M , a | = BBI ψ then M, a | = K 2 AC ψ. Therefore, ϕ is valid in M.
Corollary 5.5. BBI is undecidable.

Propositional Separation Logics kSL0

Separation logics have been devised to reason about programs with pointers to memory cells [Reynolds.02]. They are instantiations of the first-order variant of BBI with atomic propositions of the form x 0 → x 1 . . . x k meaning intuitively that the address x 0 points to the vector x 1 . . . x k of values (see [DemDet.15] for an overview). Separation logics are named kSLn where k is the length of the vectors of values addresses point to and n is Propositional Separation Logics kSL0 5.2 the number of first-order variables. In the present work, we are only interested in the family kSL0 of propositional separation logics.

Formally, let V be a countable set of program variables (denoted by x, y . . .) and k > 0 a strictly positive natural number. The language Φ k SL0 of kSL0 is defined by:

ϕ, ψ x 0 → x 1 . . . x k | x 0 = x 1 | ⊥ | ¬ϕ | ϕ ∧ ψ | | ϕ / ψ | ϕ -/ ψ
where x 0 , . . . , x k ∈ V and V . Intuitively, corresponds to an empty memory and / and -/ have the same meaning as in BBI, but with memory states in place of the more abstract states of BBI.

Formulas of kSL0 are evaluated at memory states which are pairs (s, h) where s : V -→ N is the stack assigning a value1 to any program variable and h : N ---N k is a partial function called the heap assigning vectors of values to values. For any fixed k > 0, two heaps h 1 and h 2 are disjoint iff dom (h 1 )∩dom (h 2 ) = ∅. The partial binary operator over heaps is defined for all disjoint heaps h 1 , h 2 such that dom (h

1 h 2 ) = dom (h 1 )∪dom (h 2 ), (h 1 h 2 ) (x) = h 1 (x) if x ∈ dom (h 1 ) and (h 1 h 2 ) (x) = h 2 (x) if x ∈ dom (h 2 ).
The expression s, h | = ϕ denotes the fact that the formula ϕ ∈ Φ k SL0 is satisfied at the memory state (s, h). The relation | = is defined inductively by:

s, h | = x 0 → x 1 . . . x k iff s(x 0 ) ∈ dom(h) and h (s(x 0 )) = (s(x 1 ), . . . , s(x k )) s, h | = x 0 = x 1 iff s(x 0 ) = s(x 1 ) s, h | = ⊥ never s, h | = ¬ϕ iff s, h | = ϕ s, h | = ϕ ∧ ψ iff s, h | = ϕ and s, h | = ψ s, h | = iff dom(h) = ∅ s, h | = ϕ / ψ iff there is h 1 and h 2 such that h = h 1 h 2 , s, h 1 | = ϕ and s, h 2 | = ψ s, h | = ϕ -/ ψ iff for all h 1 and h 2 if h 2 = h h 1 and s, h 1 | = ϕ then s, h 2 | = ψ A formula ϕ ∈ Φ k SL0
is satisfiable if ϕ is satisfiable at some memory state. The expression | = ϕ denotes the fact that the formula ϕ ∈ Φ k SL0 is valid, i.e., ϕ is satisfied at any memory state. Atomic formulas of the form x 0 → x 1 . . . x k can be defined by

x 0 → x 1 . . . x k x 0 → x 1 . . . x k ∧ ¬ (¬ / ¬ ). Moreover, since | = x 0 → x 1 . . . x k ↔ ( / x 0 → x 1 . . . x k )
, it is possible to define kSL0 such that → is the primitive and → is defined from →. We chose to use → as primitive because of its "existential" nature which will be useful for comparison purposes.

Calcagno, Yang and O'Hearn [CYO.01] proved that the validity problem of kSL0 is decidable for all k > 0.

Proposition 5.6 from [CYO.01]. For all k > 0, the validity problem of kSL0 is decidable.

Proof sketch. We consider → as primitive. The proof proceeds in four steps.

First, the model checking problem of kSL0 is proved to be decidable, i.e., given any memory state (s, h) and any formula ϕ ∈ Φ k SL0, it can be decided whether s, h | = ϕ. The difficult point is to prove that formulas of the form ϕ -/ ψ can be checked by considering only a finite number of heaps. A measure on formulas is given which intuitively indicates the number of cells in the heap to consider for deciding whether the formula holds. For instance, the measure of both x 0 → x 1 . . . x k and is one. Then for any memory state (s, h) and any formulas ϕ, ψ ∈ Φ k SL0 the finite sets D, R ⊆ N are defined using for D the previous measure and for R the image by s of the program variables occurring 5. Decidability of Associative Binary Modal Logics in ϕ and ψ. It is proved that if for all heaps h 1 , h 2 such that dom(h 1 ) ⊆ D, ran(h 1 ) ⊆ R, h 2 = h 1 h and s, h 1 | = ϕ it is the case that s, h 2 | = ψ then s, h | = ϕ -/ ψ. This proves that the model checking problem of kSL0 is decidable.

Second, consider the following decision problem of stack validity: given a stack s and a formula ϕ ∈ Φ k SL0, is it the case that s, h | = ϕ for any heap h. It can easily be proved that this problem is equivalent to deciding whether s, h ∅ | = -/ ϕ where h ∅ is the heap with empty domain. Therefore the stack validity problem is decidable.

Third, for any subset V ⊆ V of program variables, the equivalence relation ≡ V over memory states is defined such that (s 1 , h 1 )

≡ V (s 2 , h 2 ) iff there is a bijection b from N to N such that for all x ∈ V , s 2 (x) = b (s 1 (x)), dom(h 2 ) = b [dom (h 1 )] and for all v ∈ dom(h 1 ), h 2 (b(v)) = (b(v 1 ), . . . , b(v k )) where (v 1 , . . . , v k ) = h 1 (v).
It is proved that for any formula ϕ ∈ Φ k SL0 and any memory states (s 1 , h 1 ) and (s 2 , h 2 ), if (s 1 , h 1 ) ≡ V (s 2 , h 2 ) where V is the set of program variables occurring in ϕ then s 1 ,

h 1 | = ϕ iff s 2 , h 2 | = ϕ.
Finally, given a formula ϕ ∈ Φ k SL0, let V ⊆ V be the set of program variables occurring in ϕ and ∈ N the cardinality of V . The finite set S ϕ 0 of stacks is defined such that s ∈ S ϕ 0 iff s(x) ∈ 1 . . for all x ∈ V and s(x) = 0 for all x ∈ V \ V . It can be proved that for any memory state (s 1 , h 1 ) there is a memory state (s 2 , h 2 ) such that s 2 ∈ S ϕ 0 and (s 1 , h 1 ) ≡ V (s 2 , h 2 ). Therefore, to decide the validity of ϕ it suffices to check the stack validity of ϕ 0 in all stacks in S ϕ 0 . Since S ϕ 0 is finite and computable and the stack validity problem is decidable, the validity problem of kSL0 is decidable.

Trump semantics and the Propositional Dependence logic

Dependence Logics arose from considerations about existential quantifications in firstorder logic. Such existentially quantified variables can be skolemized, i.e., replaced by a call to a function. But which universally quantified variables should be set as arguments of a Skolem function ? Whereas in traditional first-order logic, all previously universally bound variables are used as arguments of Skolem functions, in Dependence Logics, any subset of these variables can be specified as the arguments of a Skolem function. Consider for instance the formula ∀x 1 .∃y 1 .∀x 2 .∃y 2 .ϕ(x 1 , y 1 , x 2 , y 2 ). In traditional first-order logic, the choice of y 2 depends on both x 1 and x 2 . Hintikka and Sandu proposed in [HinSan.89] to allow to specify after any existential quantification a set of variables the quantification does not depend on. For instance, the previous formula can be changed into ∀x 1 .∃y 1 .∀x 2 .∃y 2 /{x 1 }.ϕ(x 1 , y 1 , x 2 , y 2 ) in which the choice of y 2 depends only on x 2 . Hodges gave in [Hodges.97] a compositional semantics of the logic of Hintikka and Sandu, called the trump semantics. The very interesting point in these semantics is that assignments are replaced with sets of assignments. In the propositional fragment, the corresponding shift is to replace valuations with sets of valuations. We illustrate the interest of such a semantics by presenting the Propositional Dependence logic (PD) [Yang.14] which is the propositional variant of Väänänen's dependence logic [Väänänen.07].

Let Φ 0 be a non-empty set of propositional variables. The language Φ PD of PD is defined by:

ϕ, ψ p | ¬p | ϕ ∧ ψ | ϕ ∨ ψ | = (q 1 , . . . , q n , p)
where n ≥ 1 and p, q 1 , . . . , q n ∈ Φ 0 . Notice that, in contradistinction with the separation logics kSL0, n is not fixed here and Φ PD contains atomic formulas of the form = (q 1 , . . . , q n , p) for all n ≥ 1. A formula of the form = (q 1 , . . . , q n , p) is called a dependence atom and means intuitively that the truth value of p can be deduced deterministically from the truth values of q 1 , . . . , q n . PD formulas are evaluated at trumps. A trump is a set of valuations and a valuation is a function assigning a truth value in {0, 1} to each propositional variable. The expression T | = ϕ denotes the fact that the formula ϕ ∈ Φ PD is satisfied by the trump T . The relation | = is defined inductively as follows:

T | = p iff for all V ∈ T , V (p) = 1 T | = ¬p iff for all V ∈ T , V (p) = 0 T | = ϕ ∧ ψ iff T | = ϕ and T | = ψ T | = ϕ ∨ ψ iff there are T 1 and T 2 such that T = T 1 ∪ T 2 , T 1 | = ϕ and T 2 | = ψ T | = = (q 1 , . . . , q n , p) iff for all V , V ∈ T , if V (q k ) = V (q k ) for all k ∈ 1 . . n then V (p) = V (p)
Some points are worth being mentioned about this semantics. First, as noticed for instance in [AbrVää.09], the semantics of the "disjunction" is very similar to the one of a binary modality and hence ∨ is more like a multiplicative conjunction. Second, it can easily be proved that for any trump T and any formula ϕ ∈ Φ PD not containing any dependence atom, T | = ϕ if and only if ϕ is classically satisfied by all valuations in T . Third, since negations can only appear in front of propositional variables, the inference rule of substitution is not admissible in PD. Forth, the logic has the downward closure property: if T | = ϕ then for any subset T ⊆ T , T | = ϕ. Finally, since the empty trump is allowed, formulas like p∧¬p are satisfiable. Indeed, it can easily be proved by induction on the size of the formula ϕ that for all ϕ, ∅ | = ϕ. Hence, the satisfiability problem of PD is trivial. This is not the case for the validity problem of PD which has been proved by Virtema [Virtema.14] to be NEXPTIME-complete

Syntax and semantics of counting logics

In [AbrVää.09], Abramsky and Väänänen noticed the similarity between the "disjunction" in PD and the multiplicative conjunction in BI. They proposed a variant of BI with a trump semantics, called BID2 . In the present section, we propose slight variations of BID, making the following modifications: 1. We use classical additive connectives instead of intuitionistic ones. Hence our logics are variants of BBI.

2. We reintroduce the neutral element I of the multiplicative conjunction.

3. We use the disjoint union instead of the union as partial operator for the separation. These modifications provide some interesting properties. First, the cardinality of the trump can be expressed. For this reason, we call these logics counting logics. Moreover, dependence atoms can be defined. Therefore we remove them from the language. Finally, at least some of these logics are decidable.

The language of counting logics is the language of BBI. Only the semantics distinguishes these logics. We recall that the language Φ BBI of BBI is defined inductively from a set Φ 0 of propositional variables by:

ϕ, ψ p | | ¬ϕ | (ϕ ∧ ψ) | I | (ϕ / ψ) | (ϕ -/ ψ)
We introduce the following abbreviations:

• The dual of / is defined by ϕ ψ ¬ (¬ϕ / ¬ψ).

• The minimal cardinality predicate ≥n is defined inductively by ≥0 , ≥1 ¬I and for all n > 1, ≥n ¬I / ≥(n -1).

• The cardinality predicate =n is defined for all n ∈ N by =n ≥n ∧ ¬≥(n + 1).

• The universal modality is defined by ϕ ⊥ (I ∨ ϕ).

Decidability of Associative Binary Modal Logics

Models for counting logics are subset models as proposed by Moss and Parikh for a modal logic with two unary modalities in [MosPar.92]. Formally, a subset model is a tuple M = (X, O, V ) where:

• X is an arbitrary set called the universe,

• O is a non-empty set of subsets of X and

• V is valuation function assigning a subset of X to each propositional variable in Φ 0 . Notice that these subsets do not need to belong to O. Our subset semantics for the language of BBI interprets formulas at subsets S ∈ O in a subset model M = (X, O, V ) as follows:

M, S | = S p iff S ∩ V (p) ∅ M, S | = S always M, S | = S ¬ϕ iff M, S | = ϕ M, S | = S ϕ ∧ ψ iff M, S | = S ϕ and M, S | = S ψ M, S | = S I iff S = ∅ M, S | = S ϕ / ψ iff there is S 1 , S 2 ∈ O such that S = S 1 S 2 , M, S 1 | = S ϕ and M, S 2 | = S ψ M, S | = S ϕ -/ ψ iff for all S 1 , S 2 ∈ O, if S 2 = S 1 S and M, S 1 | = S ϕ then M, S 2 | = S ψ
where is the disjoint union of sets, i.e. the partial binary operator over sets such that

A = B C iff B ∩ C = ∅ and A = B ∪ C. A formula ϕ ∈ Φ BBI is valid in a subset model M = (X, O, V ), denoted by M | = ϕ, iff M, S | = ϕ for all S ∈ O.
Since is commutative, the separating conjunction / is commutative in these semantics. We define the following additional properties:

Associativity A subset model M = (X, O, V ) is associative iff for all S, S 1 , S 2 , S 3 ∈ O, if
{S 1 , S 2 , S 3 } is a partition of S and S 2 ∪ S 3 ∈ O then S 1 ∪ S 2 and S 1 ∪ S 3 belong to O.

Decomposability A subset model M = (X, O, V ) is decomposable iff for all S ∈ O if |S| > 1 then there is {S 1 , S 2 } ⊆ O which is a partition of S.
Closure under inclusion A subset model M = (X, O, V ) is closed under inclusion iff for all S ∈ O and S 1 ⊆ S, S 1 ∈ O.

Closure under union

A subset model M = (X, O, V ) is closed under union iff for all S 1 , S 2 ∈ O, S 1 ∪ S 2 ∈ O. Subset-finiteness A subset model M = (X, O, V ) is subset-finite iff all subsets in O are finite. Subset-infiniteness A subset model M = (X, O, V ) is subset-infinite iff all subsets in O are infinite.
Atomicity A subset model M = (X, O, V ) is atomic iff for all x ∈ X and all p, q ∈ Φ 0 , if x ∈ V (p) and p q then x V (q). A counting logic is a logic obtained by interpreting the language Φ BBI of BBI in a class of closed-under-inclusion subset models. The name is justified by the following proposition. Closed under inclusion models are obviously associative and decomposable. But the converse is not true. To prove it, consider any model M = (X, O, V ) where X is infinite and O is the set of all infinite subsets of X. Since any infinite set can be partitioned into two infinite subsets, M is decomposable and since the union of two infinite sets is infinite, M is closed under union hence associative. But since ∅ O, M is not closed under inclusion.

The following proposition proves that the class of all subset-infinite decomposable models is modally definable.

Proposition 5.8. For any subset model M, M is subset-infinite and decomposable if and only if M | = ¬I / ¬I .

Proof. For the left-to-right direction, let M = (X, O, V ) be a subset-infinite decomposable subset model. First suppose that M | = ¬I / ¬I. There must exists S 1 ∈ O such that M, S 1 | = I I. Since M is decomposable and S 1 is infinite, there must be a subset S 2 ∈ O such that M, S 2 | = I, which is not possible.

For the right-to-left direction, let M = (X, O, V ) be a subset model such that M | = ¬I / ¬I. Clearly, M is decomposable and there is no subset S ∈ O with a cardinality less than 2. We prove by induction on n that for all n ∈ N, there is no subset S ∈ O such that |S| ≤ n. We already proved the cases when n < 2. For n ≥ 2, suppose that S ∈ O and

|S| = n. Since M is decomposable, there is a partition {S 1 , S 2 } of S such that S 1 , S 2 ∈ O. But since |S 1 | ≤ n -1, S 1 O.
It is easy to prove that counting logics are conservative.

Proposition 5.9. The logics obtained by interpreting the language Φ BBI in a class of models corresponding to any combination of the properties defined on the preceding page are all conservative.

Proof. Suppose Φ 1 ⊆ Φ 2 . From a subset model M 1 = (X 1 , O 1 , V 1 ) over Φ 1 , we construct the model M 2 = (X 1 , O 1 , V 2 ) such that: V 2 (p) =        V 1 (p) if p ∈ Φ 1 ∅ otherwise
It can easily be proved by induction that • if M 1 has any property defined on the facing page then M 2 has it too;

• for any formula ϕ ∈ Φ(Φ 1 ) and any

S ∈ O 1 , M 1 , S | = ϕ iff M 2 , S | = ϕ.
To conclude this section, we would like to outline that what makes counting logics different from most undecidable logics with an associative modality is the constrained valuation of propositional variables: the valuation of any subset is determined by the valuation of the singletons it contains. We observe that valuations are constrained too for many decidable logics with an associative modality. This is the case for the propositional separation logics and the propositional dependence logic presented in this chapter, but for some other logics too, like Pandya's variant of interval logic [Pandya.95]. We conjecture that, because of this constrained valuation, most counting logics are decidable. In Section 5.6, we prove that two of them are. Constrained valuation has some drawbacks though, as the one stated by following proposition.

Proposition 5.10. Let L be a counting logic obtained by interpreting the language Φ BBI in a class C L of closed-under-intersection subset models such that there is a model M = (X, O, V ) in C L with |O| > 1. Then the inference rule of uniform substitution is not admissible in L.

Proof. We prove that the formula (p / ¬I) → p is valid in L while (I / ¬I) ∧ ¬I is satisfiable in L. Suppose M, S | = p / ¬I for some model M = (X, O, V ) in C L and some S ∈ O. There is a subset

S 1 ∈ S such that S 1 ∩ V (p) ∅. Therefore, S ∩ V (p) ∅ and M, S | = p. Now, let M = (X, O, V ) be a model in C L such that |O| > 1. There is a subset S ∈ O such that S ∅, hence M, S | = ¬I. Moreover, since M is closed under inclusion, ∅ ∈ O. Since S = ∅ S, M, S | = I / ¬I.

Expressivity of counting logics

In this section, we study the expressivity of counting logics by proving that the counting logic obtained by interpreting the language Φ BBI in the class of all closed-underinclusion subset models, called the basic counting logic, is more general, in the sense of Definition 2.17, than both the propositional separation logics kSL0 and the propositional dependence logic PD.

Comparison with the propositional separation logics kSL0

We prove the following proposition Proposition 5.11. For any natural number k, the basic counting logic is more general than the propositional separation logic kSL0.

Fix a natural number k. First, the atomic formulas of the form x 0 → x 1 . . . x k and x 0 = x 1 must be mapped to propositional variables in Φ 0 . Since V is countable and the basic counting logic is conservative, there is an injective function from the set of these atomic formulas to Φ 0 and we write [x 0 → x 1 . . . x k ] and [x 0 = x 1 ] for the image of x 0 → x 1 . . . x k and x 0 = x 1 by this function.

The forward function f from memory states to pairs (M, S) where M = (X, O, V ) is a subset model closed by inclusion and S ∈ O is defined such that f (s, h) = ((X, O, V ), S) if

X = N k+1 O = S ⊆ X S is finite and for all (n 0 . . . n k ), (m 0 . . . m k ) ∈ S , if n 0 = m 0 then (n 0 . . . n k ) = (m 0 . . . m k )} V ([x 0 → x 1 . . . x k ]) = {(n 0 . . . n k ) ∈ X | for all i ∈ 0 . . k, n i = s(x i )} V ([x 0 = x 1 ]) =        X if s(x 0 ) = s(x 1 ) ∅ otherwise S = h
It can easily be checked that M = (X, O, V ) is a subset model closed by inclusion and that S ∈ O.

The translation function τ from the language of kSL0 to Φ BBI is defined in the natural straightforward way for the constructs which are common to both languages and as follows for atomic formulas:

τ ( ) = I τ (x 0 → x 1 . . . x n ) = [x 0 → x 1 . . . x k ] τ (x 0 = x 1 ) = (¬I) -/ [x 0 = x 1 ]
Notice that the translation of atoms of the form x 0 = x 1 is not straightforward because obviously ∅∩V ([x 0 = x 1 ]) = ∅. Hence, it is needed to check whether V ([x 0 = x 1 ]) contains some element that can be added to the empty set. Now, it suffices to prove the following lemma to prove Proposition 5.11.
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Lemma 5.12. For any formula ϕ ∈ Φ k SL0 and any memory state (s, h), s, h

| = ϕ if and only if f (s, h) | = τ(ϕ).
Proof. The proof is by a straightforward induction on the number of occurrences of symbols in ϕ. We detail only the case for atomic formulas of the form x 0 = x 1 to justify their translation. Suppose that s, h | = x 0 = x 1 and let f (s, h) = (M, S) with M = (X, O, V ). We have s(x 0 ) = s(x 1 ) and V ([

x 0 = x 1 ]) = X. Therefore, for any S ∈ O such that S ⊃ S, M, S | = [x 0 = x 1 ]. Conversely, suppose that M, S | = (¬I ) -/ [x 0 = x 1 ]
for some M = (X, O, V ), some S ∈ O and some memory state (s, h) such that f (h, h) = (M, S). Since by construction, S is finite, there is some S ∈ O such that S ⊃ S. Hence, V ([x 0 = x 1 ]) can not be empty and it must be the case that s(x 0 ) = s(x 1 ).

Comparison with the propositional dependence logic PD

We prove the following proposition.

Proposition 5.13. The basic counting logic is more general than the propositional dependence logic.

Since both the basic counting logic and the propositional dependence logic are conservative, we assume that they have the same set Φ 0 of propositional variables.

The forward function f from trumps to pairs (M, S) where M = (X, O, V ) is a subset model closed by inclusion and S ∈ O is defined such that f (T ) = ((X, O, V ), S) if

X = P (Φ 0 ) O = P (X) V (p) = {x ∈ X | p ∈ x} S = {x ∈ X | there is v ∈ T , x = {p ∈ Φ 0 | v(p) = 1}}
Notice that the model M = (X, O, V ) does not depend on T and that T is just the characteristic function of S.

To define the translation function τ from the language Φ PD to the language Φ BBI , let us first define the following syntactic function for all formulas ϕ ∈ Φ BBI : same(ϕ) (ϕ / ϕ) ∨ ((¬I ∧ ¬ϕ) / (¬I ∧ ¬ϕ))

Intuitively, for any propositional variable p ∈ Φ 0 , same(p) means that the current subset can be partitioned into two non-empty subsets which agree on p. The translation function τ is defined as follows:

τ(p) = p τ(¬p) = ¬p τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ) τ(ϕ ∨ ψ) = τ(ϕ) / τ(ψ) τ(= (q 1 , . . . , q n , p)) =        =2 →        i∈1..n same(q i )        → same(p)       
Now, to prove Proposition 5.13, it suffices to prove the following lemma.

Lemma 5.14. For any formula ϕ ∈ Φ and any trump T ,

T | = ϕ iff f (T ) | = τ(ϕ).
Proof. The proof is by induction on the number of occurrences of symbols in ϕ. We detail only some cases, the other cases being straightforward. For propositional variables, it can be easily proved that for any subset model M = (X, O, V ) closed by inclusion, any subset S ∈ O and any formula ψ ∈ Φ BBI , M, S | = ψ iff M, S 1 | = ψ for all S 1 ⊆ S. For the left-to-right direction of the case for disjunctions, suppose T | = ϕ 1 ∨ ϕ 2 . There are two trumps T 1 , T 2 such that

T S = T 1 ∪ T 2 , T 1 | = ϕ 1 and T 2 | = ϕ 2 . But since PD is downward closed, T 2 \ T 1 | = ϕ 2 . By induction, there are S, S 1 , S 2 ∈ O such that {S 1 , S 2 } is a partition of S, M, S 1 | = ϕ 1 , M, S 2 | = ϕ 2
and f (T ) = (M, S). For dependence atoms, consider any subset {x, y} ∈ O such that x y. For all p ∈ Φ 0 , since M, ∅ | = p, M, {x, y} | = (p / p) iff {x, y} ⊆ V (p). Similarly, M, {x, y} | = (¬I ∧ ¬p) / (¬I ∧ ¬p) iff {x, y} ∩ V (p) = ∅. Therefore, f (T ) | = τ(= (q 1 , . . . , q n , p)) if and only if for all

{v 1 , v 2 } ∈ T such that v 1 v 2 , if v 1 (p i ) = v 2 (p i ) for all i ∈ 1 . . n then v 1 (q) = v 2 (q).

Decidable counting logics

The complete finite counting logic (CBL comp ) is the logic obtained by interpreting the language Φ BBI in the class C comp of all subset models which are closed under inclusion, closed under union and subset-finite. Similarly, the complete atomic finite counting logic (CBL atom ) is the logic obtained by interpreting the language Φ BBI in the class C atom of all subset models which are closed under inclusion and union, subset-finite and atomic.

Let

M 1 = (X 1 , O 1 , V 1 ) be a subset model which is closed under inclusion and union. Define M 2 = (X 2 , O 2 , V 2 ) such that X 2 = O 1 , O 2 = O 1 and V 2 (p) = V 1 (p) ∩ X 2 for all p ∈ Φ 0 .
Clearly, M 2 is a closed under inclusion and union. Moreover, it can easily be proved that for any formula ϕ ∈ Φ BBI and any subset

S ∈ O 1 , M 1 , S | = ϕ iff M 2 , S | = ϕ.
Therefore, since whenever M 1 is subset-finite, M 2 is subset-finite too, we will assume that any model M = (X, O, V ) in C comp is such that O is the set of all finite subsets of X. Similarly, since whenever M 1 is atomic, M 2 is atomic too, we will assume that any model M = (X, O, V ) in C atom is such that O is the set of all finite subsets of X.

We prove that the satisfiability problems of CBL comp and CBL atom are decidable and we give a complexity upper bound.

Decidability of the satisfiability problem of CBL atom

We prove the following proposition.

Proposition 5.15. The satisfiability problem of CBL atom is in 3EXPTIME.

The proof proceeds as follows. First we propose a new semantics for the language of BBI. We temporarily call B the logic obtained by interpreting Φ BBI in the new semantics. Then, we give a polynomial reduction from the satisfiability problem of B to the satisfiability problem of Presburger arithmetic. Finally we prove that B and CBL atom are the same logic. Since CBL atom is conservative, we will assume that Φ 0 is infinite.

A B-model is a partial function M from Φ 0 to N. Let M (M) be the set of functions m from Φ 0 to N such that for all p ∈ dom (M), m(p) ≤ M(p). Formulas in Φ BBI are evaluated at functions m ∈ M (M) as follows:

M, m | = B p iff m(p) > 0 M, m | = B always M, m | = B ¬ϕ iff M, m | = ϕ M, m | = B ϕ ∧ ψ iff M, m | = B ϕ and M, m | = B ψ M, m | = B I iff m(p) = 0 for all p ∈ Φ 0 M, m | = B ϕ / ψ iff ∃m 1 , m 2 ∈ M (M) . m = m 1 + m 2 , M, m 1 | = B ϕ and M, m 2 | = B ψ M, m | = B ϕ -/ ψ iff ∀m 1 , m 2 ∈ M (M) . if m 2 = m 1 + m and M, m 1 | = B ϕ then M, m 2 | = B ψ
where the binary operator + over M (M) is defined such that for all p,

(m 1 + m 2 )(p) = m 1 (p) + m 2 (p)
The logic B is obtained by interpreting the language Φ BBI in B-models.

Presburger arithmetic is the first-order theory of the natural numbers N with addition +. The set of quantified variables of Presburger arithmetic is denoted by V . Formulas of this theory are called constraints. A Presburger assignment is a function A from V to N. We write A | = P A C to denote that the constraint C is satisfied by the assignment A.

To establish the reduction from the satisfiability problem of B to the satisfiability problem of Presburger arithmetics, we use vectors which are ordered finite sets, i.e., finite sequences without repetitions (each component of a vector occurs exactly once). In addition to the notations for sequences introduced in Section 1.3, we use the following ones. Vectors are distinguished by an arrow accent, for instance -→ p is a vector of propositional variables. We write p i instead of -→ p i . We may abusively consider a vector to be the set of its components and write for instance q ∈ -→ p .

A B-correspondence is a tuple -→ p , -→ x , -→ r , -→ s where -→ p is a vector of propositional variables in Φ 0 , -→ x , -→ r and -→ s are vectors of Presburger arithmetic variables of same length as -→ p and such that the sets of components of -→ x , -→ r and -→ s are disjoint ( - 

→ x ∩ - → r = - → r ∩ - → s = - → s ∩ - → x = ∅). A B-
- → p , - → x , - → r , - → s , denoted by M, m - → p , - → x , - → r , - → s A, iff the following conditions hold: • for all i < - → p , A(x i ) = m(p i ),
• dom(M) ∩ -→ p < -→ p = p i i < -→ p and A(r i ) = 0 ,

• for all i < -→ p , if A(r i ) = 0 then A(s i ) = M(p i ),

• A(x - → p ) = p - → p < - -- → p m(p) • A r - → p = 0 iff Φ 0 \ - → p < - → p ⊆ dom(M), • if A(r - → p ) = 0 then A(s - → p ) = p - → p < - -- → p M(p)
Similarly, a B-correspondence establishes a syntactic link between B-logic and Presburger arithmetic, by means of a translation θ -→ p , -→ x , -→ r , -→ s . First the Presburger arithmetic formula Ψ -→ p , -→ x , -→ r , -→ s is defined by:

Ψ - → p , - → x , - → r , - → s i∈1.. - → p (r i > 0 ∨ x i ≤ s i )
As stated by the following lemma, this formula ensures that there is a pair (M, m) corresponding to any assignment satisfying it.

Lemma 5.16. Let -→ p , -→ x , -→ r , -→ s be a B-correspondence.

• For any B-model M, any function m ∈ M (M) and any Presburger arithmetic as-

signment A, if M, m - → p , - → x , - → r , - → s A then A | = Ψ - → p , - → x , - → r , - → s .
• For any B-model M and any function m ∈ M (M), there is a Presburger arithmetic assignment A such that M, m

- → p , - → x , - → r , - → s A.

• For any Presburger arithmetic assignment

A, if A | = Ψ - → p , - → x , - → r , - → s then there is a B-model M and a function m ∈ M (M) such that M, m - → p , - → x , - → r , - → s A. 67 
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Proof. Straightforward.

For any formula ϕ ∈ Φ BBI such that all propositional variables occurring in ϕ occur in -→ p < -→ p , the translation function θ -→ p , -→ x , -→ r , -→ s is defined inductively as follows:

θ - → p , - → x , - → r , - → s (p i ) = x i > 0 θ - → p , - → x , - → r , - → s ( ) = θ - → p , - → x , - → r , - → s (¬ϕ) = ¬θ - → p , - → x , - → r , - → s (ϕ) θ - → p , - → x , - → r , - → s (ϕ ∧ ψ) = θ - → p , - → x , - → r , - → s (ϕ) ∧ θ - → p , - → x , - → r , - → s (ψ) θ - → p , - → x , - → r , - → s (I) = i∈1.. - → p x i = 0 θ - → p , - → x , - → r , - → s (ϕ / ψ) = ∃ - → y , - → z . i∈1.. - → p x i = y i + z i ∧ Ψ - → p , - → y , - → r , - → s ∧ θ - → p , - → y , - → r , - → s (ϕ) ∧ Ψ - → p , - → z , - → r , - → s ∧ θ - → p , - → z , - → r , - → s (ψ) θ - → p , - → x , - → r , - → s (ϕ -/ ψ) = ∀ - → y , - → z . i∈1.. - → p z i = x i + y i → Ψ - → p , - → y , - → r , - → s → θ - → p , - → y , - → r , - → s (ϕ) → Ψ - → p , - → z , - → r , - → s → θ - → p , - → z , - → r , - → s (ψ)
where the sets of variables in -→ x , -→ y , -→ z , -→ r and -→ s are pairwise disjoint. The following lemma proves that this translation is faithful.

Lemma 5.17 

M, m | = ϕ iff A | = θ - → p , - → x , - → r , - → s (ϕ)
Proof. By induction on the number of occurrences of symbols in ϕ. All the cases are straightforward, hence we detail only the case for the magic wand. For the left-to-right direction, suppose M, m | = ϕ and for some assignment A,

A | = i∈1.. - → p z i = x i + y i ∧ Ψ - → p , - → y , - → r , - → s ∧ θ - → p , - → y , - → r , - → s (ϕ) ∧ Ψ - → p , - → z , - → r , - → s
We define m 1 and m 2 such that, for all i ∈ 1 . .

- → p , m 1 (p i ) = A(y i ) and m 2 (p 2 ) = A(z i ).
It can easily be checked that M, m 1

- → p , - → y , - → r , - → s A, M, m 2 - → p , - → z , - → r , - → s A, m 1 , m 2 ∈ M (M)
and

m 2 = m + m 1 , By induction, M, m 1 | = ϕ hence M, m 2 | = ψ and by induction again, A | = θ - → p , - → z , - → r , - → s (ψ).
For the right-to-left direction suppose

A | = θ - → p , - → x , - → r , - → s (ϕ -/ ψ), m 2 = m + m 1 and M, m 1 | = ϕ.
It can be easily checked that for any assignment A such that for all v ∈

- → x ∪ - → r ∪ - → s , A (v) = A(v): A | = i∈1.. - → p z i = x i + y i → Ψ - → p , - → y , - → r , - → s → θ - → p , - → y , - → r , - → s (ϕ) → Ψ - → p , - → z , - → r , - → s → θ - → p , - → z , - → r , - → s (ψ)
By Lemma 5.16, there is A 1 and A 2 such that M, m 1

- → p , - → y , - → r , - → s A 1 , M, m 2 - → p , - → z , - → r , - → s A 2 , A 1 | = Ψ - → p , - → y , - → r , - → s and A 2 | = Ψ - → p , - → z , - → r , - → s . Moreover, by induction we have A 1 | = θ - → p , - → y , - → r , - → s (ϕ).
We define A 0 such that:

A 0 (v) =            A(v) if v ∈ - → x ∪ - → r ∪ - → s A 1 (v) if v ∈ - → y A 2 (v) if v ∈ - → z Since for all v ∈ - → r ∪ - → s , A 0 (v) = A(v) = A 1 (v) = A 2 (v)
, we have:

A 0 | = i∈1.. - → p z i = x i + y i ∧ Ψ - → p , - → y , - → r , - → s ∧ θ - → p , - → y , - → r , - → s (ϕ) ∧ Ψ - → p , - → z , - → r , - → s Therefore A 0 | = θ - → p , - → z , - → r , - → s (ψ) and A 2 | = θ - → p , - → z , - → r , - → s (ψ). By induction, M, m 2 | = ψ.
We have proved that the satisfiability problem of B is decidable.

Lemma 5.18. The satisfiability problem of B is in 3EXPTIME.

Proof. Let ϕ ∈ Φ BBI . Since Φ 0 is infinite, there is q ∈ Φ 0 which does not occur in ϕ. Therefore there is a B-correspondence -→ p , -→ x , -→ r , -→ s such that -→ p < -→ p are the propositional variables occurring in ϕ and -→ p -→ p = q. The Presburger arithmetic formula We prove now that B is indeed the same logic as CBL atom . We first prove the following lemma. We say that a B-model Proof. Define M 2 and m 2 from M 1 , m 1 , Q, P and q such that 

Ψ - → p , - → x , - → r , - → s ∧θ - → p , - → x , - → r , - → s (ϕ)
M M is flat on a subset Q ⊆ Φ 0 iff Q ⊆ dom (M M )
m 2 (p) =            0 if p ∈ Q p∈Q∪{q} m 1 (p) if p = q m 1 (p) otherwise and if Q ∪ {q} ⊆ dom(M 1 ): dom (M 2 ) = dom (M 1 ) M 2 (p) =            0 if p ∈ Q p∈Q∪{q} M 1 (p) if p = q M 1 (p) otherwise otherwise: dom (M 2 ) = Q ∪ dom (M 1 ) \ {q} M 2 (p) =        0 if p ∈ Q M 1 (p)
1 , m 1 - → p , - → x , - → r , - → s A iff M 2 , m 2 - → p , - → x , - → r , - → s A.
We can now prove the main lemma.

Lemma 5.20. For any formula ϕ ∈ Φ BBI , ϕ is satisfiable in a B-model if and only if ϕ is CBL atom satisfiable.

Proof. For the left-to-right direction, suppose

M 0 , m 0 | = ϕ 0 . Define M = (X, O, V ) such that • X = {(p, n) ∈ Φ 0 × N | if p ∈ dom (M 0 ) then n < M 0 (p)},
• O is the set of all finite subsets of X and

• V (p) = {(q, n) ∈ X | q = p}
for all p ∈ Φ 0 . Clearly, M is in C atom . Further define the function h from O to M (M 0 ) such that for all S ∈ O and all p ∈ Φ 0 , h(S)(p) is the cardinality of {(q, n) ∈ S | q = p}. This function is "homomorphic" in the sense that h (S 1 S 2 ) = h(S 1 ) + h(S 2 ). Let P be the set of propositional variables occurring in ϕ 0 , q ∈ Φ 0 \P and Q = Φ 0 \(P ∪ {q}). By Lemma 5.19, we can assume that M 0 is flat on Q. Therefore, for all m ∈ M (M 0 ), there is only a finite number of propositional variables p such that m(p) > 0. Hence, h is surjective. Moreover, we state the following claim.

Claim. For any subset S ⊆ X and any m 1 ∈ M (M 0 ), if for all p ∈ Φ 0 , the cardinality of {(q, n) ∈ S | q = p} is greater than or equal to m 1 (p) then there is S 1 ∈ O such that S 1 ⊆ S and h(S 1 ) = m 1 .

Proof. It suffices to choose m 1 (p) elements of the form (p, n) in S for all p. Since there is only a finite number of propositional variables p such that m 1 (p) > 0, this subset is finite. Now we prove that for all S ∈ O and all ψ ∈ Φ BBI such that the set of propositional variables occurring in ψ is a subset of P :

IH.1 M, S | = ψ iff M 0 , h(S) | = ψ
The proof is by induction on the number of occurrences of symbols in ψ. We only detail the two following cases, the other ones being easy. For the right-to-left direction of separating conjunction's case, suppose M 0 , h(S)

| = ψ 1 / ψ 2 . There is m 1 , m 2 ∈ M (M 0 ) such that h(S) = m 1 + m 2 , M 0 , m 1 | = ψ 1 and M 0 , m 2 | = ψ 2 . By the previous claim, there is S 1 ⊆ S such that h(S 1 ) = m 1 . Moreover, it can be easily checked that h(S \ S 1 ) = m 2 . By induction, M, S 1 | = ψ 1 and M, S \S 1 | = ψ 2 . Therefore, M, S | = ψ 1 / ψ 2 . For the left-to-right direction of magic wand's case, suppose M 0 , h(S) | = ψ 1 -/ ψ 2 . There is m 1 , m 2 ∈ M (M 0 ) such that m 2 = h(S) + m 1 , M 0 , m 1 | = ψ 1 and M 0 , m 2 | = ψ 2 . For all p ∈ Φ 0 , the cardinality of {(q, n) ∈ X \ S | q = p}
is greater or equal than m 1 (p) because otherwise we would have that p ∈ dom (M 0 ) and m 2 (p) > M 0 (p). Therefore, by the previous lemma, there is

S 1 ∈ O such that S 1 ∩ S = ∅ and h(S 1 ) = m 1 . Since M is closed under union, S S 1 ∈ O. By induction, M, S 1 | = ψ 1 and M, S 2 | = ψ 2 . Therefore, M, S | = ψ 1 -/ ψ 2 .
The proof of the right-to-left direction of the lemma is similar to the left-to-right direction. Suppose M 0 , S 0 | = ϕ 0 for some subset model M 0 = (X 0 , O 0 , V 0 ) in C atom . Let P be the set of propositional variables occurring in ϕ 0 and q ∈ Φ 0 \ P . Define the valuation V 1 such that for all p ∈ Φ 0 :

V 1 (p) =            V 0 (p) if p ∈ P p P V 0 (p ) if p = q ∅ otherwise
The subset model M 1 = (X 0 , O 0 , V 1 ) is clearly in C atom . Moreover, it can be easily proved by induction that for any formula ϕ ∈ Φ BBI such that the set of propositional variables occurring in ϕ is included in P and any subset It can be easily checked that this function h is surjective and "homomorphic" in the sense that h (S 1 S 2 ) = h(S 1 ) + h(S 2 ). The remainder of the proof is identical to the proof of the left-to-right direction.

S ∈ O 0 , M 0 , S | = ϕ iff M 1 , S | = ϕ. Define the B-model M such that dom (M) = {p ∈ Φ 0 | V 1 (p) is
We have proved Proposition 5.15.

Decidability of the satisfiability problem of CBL comp

We prove the following proposition.

Proposition 5.21. The satisfiability problem of CBL comp is in 4EXPTIME.

The proof is by an exponential reduction to the satisfiability problem of CBL atom . We first define a power correspondence as a triple (Q 1 , b, Q 2 ) such that Q 1 and Q 2 are subsets of Φ 0 and b is a bijection assigning an element of Q 2 to every subset of Q 1 . Then, given a power correspondence (Q 1 , b, Q 2 ) and a formula ϕ ∈ Φ BBI such that the set of propositional variables occurring in ϕ is included in Q 1 , the translation τ (Q 1 , b, Q 2 )(ϕ) of ϕ is obtained by replacing each occurrence of p in ϕ with p∈P ⊆Q 1 b(P ) for all p ∈ Q 1 . The resulting formula has size exponential in the size of the original formula. Moreover, given any universe X and any power correspondence

(Q 1 , b, Q 2 ), the rela- tion Q 1 ,b,Q 2 X over valuations on X is defined such that V 1 Q 1 ,b,Q 2 X V 2 iff for all x ∈ X and all Q ⊆ Q 1 x ∈ V 2 (b (Q)) iff Q = {p ∈ Q 1 | x ∈ V 1 (p)}
We first state the following lemmas.

Lemma 5.22. For any subset model M = (X, O, V 1 ) in C comp and any power correspondence

(Q 1 , b, Q 2 ), there is a valuation V 2 on X such that V 1 Q 1 ,b,Q 2 X V 2 and (X, O, V 2 ) is a subset model in C atom . Proof. Define V 2 by V 2 (p)        x ∈ X b -1 (p) = {q ∈ Q 1 | x ∈ V 1 (p)} if p ∈ Q 2 ∅ otherwise for all p ∈ Φ 0 . It can easily be checked that V 1 Q 1 ,b,Q 2 X V 2 and (X, O, V 2 ) is a subset model in C atom .
Lemma 5.23. For all subset model M = (X, O, V 2 ) in C atom and all power correspondence

(Q 1 , b, Q 2 ), there is a valuation V 1 on X such that V 1 Q 1 ,b,Q 2 X V 2 and (X, O, V 1 ) is a subset model in C comp . Proof. Define V 1 by V 1 (p) p∈P ⊆Q 1 V 2 (b (P )) for all p ∈ Φ 0 . It can easily be checked that V 1 Q 1 ,b,Q 2 X V 2 and (X, O, V 1 ) is a subset model in C comp .
Lemma 5.24. For any subset models M 1 = (X, O, V 1 ) and M 2 = (X, O, V 2 ), any power correspondence (Q 1 , b, Q 2 ), any subset S ∈ O and any formula ϕ ∈ Φ BBI such that the set of propositional variables occurring in ϕ is included in Q 1 :

M 1 , S | = ϕ iff M 2 , S | = τ (Q 1 , b, Q 2 )(ϕ)
Proof. The proof is by induction on the number of occurrences of symbols in ϕ. The cases for propositional variables and their negations are straightforward by definition of τ (Q 1 , b, Q 2 ). All the other cases are trivial.

Suppose now that we want to check whether a formula ϕ 0 ∈ Φ BBI is satisfiable in CBL comp . Since CBL comp is conservative, we can assume that Φ 0 is infinite. Hence we can construct a power correspondence (Q 1 , b, Q 2 ) such that Q 1 is the set of all the propositional variables occurring in ϕ 0 . Then we check whether

τ (Q 1 , b, Q 2 )(ϕ) is satisfiable in CBL atom . If it is the case, then there is a model M 2 in C atom satisfying τ (Q 1 , b, Q 2 )(ϕ).
By Lemmas 5.23 and 5.24, there is a model M 1 in C atom satisfying ϕ. Therefore, our procedure is complete. Conversely, if there is a model M 1 in C comp satisfying ϕ then, by Lemmas 5.22 and 5.24, there is a model M 2 in C comp satisfying τ (Q 1 , b, Q 2 )(ϕ). Therefore, our procedure is sound. Finally, computing (Q 1 , b, Q 2 ) and τ (Q 1 , b, Q 2 )(ϕ) takes deterministic exponential time and the satisfiability problem of CBL atom can be decided in triple exponential time in the size of the input formula. Therefore, the satisfiability problem of CBL comp is in 4EXPTIME. We have proved Proposition 5.21.

Part III

Concurrency

The Propositional Dynamic Logic (PDL), presented in Chapter 2, has not been devised to reason about concurrent actions. There is no construct in the language of PDL for parallel composition of programs. Different variations of PDL have been proposed to overcome this limitation. Some of the most interesting ones are presented in this chapter. These logics can be divided into three categories. In PDL with Interleaving (Section 6.2), two programs can be executed concurrently only if an interleaving of their atoms can be executed. Hence, two atomic programs are never executed at the same moment. In Concurrent PDL and PDL with Intersection (Sections 6.3 and 6.4), concurrency is considered as a dual of PDL's nondeterministic choice. Finally, in PDL with Parallel composition, Recover and Store and in PDL with fork and separation (Section 6.5 and 6.6), concurrency is expressed by means of separation: to execute two programs concurrently, the initial state must be separated in two substates or the final state must be the composition of two substates. Hence, these two latter logics are logics of resources as well as logic of actions and concurrency.

We recall the complexity of all these logics and study the notions of concurrency they can express. Although concurrency can be seen just as the possibility to do different things at the same time or as a mean to speed up some task, in the present work, we are interested in the possibilty to perform with concurrent actions things that could not have been done without concurrency. In such a notion of concurrency, some situations of cooperation are possible. For instance, we can have a situation where a set of agents can move a heavy item only if they cooperate. Formal definitions of three situations of cooperation are given in the first section. These definitions are used to analyse the notion of concurrency expressible in the variants of PDL to reason about concurrency. It turns out that none of the logics presented in this chapter can express all these kinds of cooperation. This fact justifies the interest in the logic studied in the next chapter which allows all the situations of cooperation defined here.

Situations of Cooperation

To precisely characterize the level of cooperation allowed in each logic, three categories of situations of cooperation are defined.

• A situation of simple cooperation is a situation where two actions α and β can be executed concurrently but neither α nor β can be executed independently.

• A situation of atomic cooperation is a situation where two actions α and β can be executed concurrently but no subaction of neither α nor β can be executed.

• A situation of forced cooperation is a situation where the only way to change the state of the system is to perform some concurrent actions.

Clearly, a situation of atomic cooperation is a situation of simple cooperation. Whether a situation of forced cooperation is a situation of atomic cooperation is not so obvious. It is generally the case though when actions are defined inductively from non-concurrent atomic actions. We first give some illustrations of situations of cooperation then we formally define what it means for a logic to allow situations of cooperation. 

Examples of situations of cooperation

Situations of cooperation arise naturally in some applications. Consider for instance a group of agents. In this case, any action of the group as a whole is a concurrent composition of some actions of its members. Another example is when some parts of a system need to synchronize themselves. Then the synchronization action as a whole can be done only as the concurrent execution of the synchronization of each part. It may even be the case that the system cannot evolve until the synchronization occurs. Petri nets with capacities and concurrency give a good and concise illustration of forced cooperation. We briefly recall their definition. Definition 6.1. A Petri net with capacities is a tuple P = (S, T , W , K, m 0 ) where:

• S and T are sets of places and transitions respectively, with S ∩T = ∅ and S ∪T ∅;

• W : (S × T ) ∪ (T × S) -→ N is the weight of the arcs, W (x, y) = 0 meaning that there is no arc from x to y;

• K : S -→ N ∪ {ω} is the capacity function indicating the maximum number of tokens in each place.

• m 0 : S -→ N is the initial marking indicating the current number of tokens in each place. A marking of a Petri net P is a function m : S -→ N. A marking m is acceptable iff m(s) ≤ K(s) for all s ∈ S.

Graphically, a Petri net is represented as a directed graph with transitions being depicted as bold vertical segments and places as circles containing a number of dots representing tokens. Petri nets are dynamic objects: given a Petri net P and a multiset θ : T -→ N of transitions, the concurrent firing of θ in P transforms any marking m into the marking m defined by

m (s) = m(s) - t∈T θ(t) • W (s, t) + t∈T θ(t) • W (t, s)
for all s ∈ S. The difficult point is to define which multisets of transitions are enabled, i.e., can be fired, given a marking. We choose the synchronous variant of the enabling rule E2 from [Devillers.88], which best fits our needs. Definition 6.2. Given a Petri net P and a marking m, a multiset θ : T -→ N is enabled at m iff for all s ∈ S:

m(s) ≥ t∈T θ(t) • W (s, t) and m(s) - t∈T θ(t) • W (s, t) + t∈T θ(t) • W (t, s) ≤ K(s)
With these definitions, the Petri net depicted in Figure 6.1 illustrates a situation of cooperation. Neither the transition a nor b can be fired, because the capacities of some place would be exceeded. But the synchronous concurrent firing of {a, b} is possible and Situations of Cooperation 6.1 leads to the same marking. This is clearly a situation a simple cooperation and, since the actions a and b are atomic, also a situation of atomic cooperation. Strictly speaking, this Petri net is not in a situation of forced cooperation because the concurrent execution of a and b does not change the state of the system. But the Petri net could easily be modified to be in a situation of forced cooperation, for instance by adding an empty outgoing place for the transition b.

Formal definitions of cooperations

In this section, we formally define how a PDL-like logic allows cooperations. This property is not necessary for a logic to be able to express some useful notions of concurrency, but since cooperation is common in some application, this property is desirable. It turns out that none of PDL's extensions for concurrency presented in this chapter allows atomic cooperation. These facts justify the existence of the logic studied in the next chapter.

First, a formal definition of PDL-like logics is needed. Basically, a PDL-like logic is just a multimodal logic whose unary modalities are called programs. Since cooperation concerns concurrency, a definition of PDL-like logics with concurrency is provided. Finally, forced cooperation induces that actions allow to change the current state. Hence PDL-like logics with accessibility function are defined too. Definition 6.3. A PDL-like logic is a logic L having all the following properties:

• L embeds the classical propositional logic;

• L features a set Π L of syntactic elements called programs, representing actions;

• to each program α ∈ Π L corresponds a unary modality α ;

• formulas of L are evaluated at states in a model for L.

Definition 6.4. A PDL-like logic with concurrency is a PDL-like logic featuring a binary operator on programs designated as the concurrency operator. In such a logic, all programs where the operator (syntactically) occurs are called concurrent programs.

Definition 6.5. A PDL-like logic with accessibility function is a PDL-like logic L such that, given any model M for L, an accessibility function R assigning a binary relation over states to each program can be defined such that any state w in M satisfies any formula α ϕ iff there is a state x in M such that w R(α) x and x satisfies ϕ. A model for a PDL-like logic with accessibility function is called a PDL-like model with accessibility function.

It has to be outlined that the previous definitions are just ad-hoc definitions for the sole purpose of having convenient definitions for situations of cooperation. In a more general context, these definitions would be either too strong or too weak. This is particularly the case for Definition 6.4 which formally only enforces that the logic of the language features a binary operator. In fact, the important point in this definition is that this binary operator has been designated to express concurrency of actions. We now give definitions for situations of cooperation. We say that a logic allows a particular kind of situations of cooperation if and only if a model of this logic can represent such a situation of cooperation. We give a formal definition of this notion for the three kinds of situations proposed previously. Definition 6.6. A PDL-like logic L with concurrency operator allows simple cooperation iff for some programs α and β, some model M for L and some state w in M, the formula α β is satisfied at w in M but neither α nor β is satisfied at w in M. Definition 6.7. A PDL-like logic L with concurrency operator allows atomic cooperation iff for some programs α and β, some model M for L and some state w in M, the formula α β is satisfied at w in M but for all subprograms γ of α and β, the formula γ

is not satisfied at w in M.

Definition 6.8. A PDL-like logic L with accessibility function and concurrency operator allows forced cooperation iff there is a model M for L and a state w in M such that both the following conditions hold: (6.1) there are two programs α and β and a state x w such that w R(α β) x;

(6.2) there is no non-concurrent program γ and no state x w such that w R(γ) x.

The notion of subprograms in Definition 6.7 is not defined formally. When programs are defined inductively, they can be identified with their syntactic tree and the subprograms of a program α are usually defined as the subtrees of α which are programs. We assume though that any program is a subprogram of itself, hence the following lemma is trivial. Lemma 6.9. If a logic L allows atomic cooperation then L allows simple cooperation.

PDL with Interleaving

To reason about concurrency, Abrahamson [Abrahamson.79,Abrahamson.80] proposed the Propositional Dynamic Logic with Interleaving (IlPDL) which extends PDL with the interleaving operator | corresponding to the shuffle operator ¡ for languages. The shuffle product L 1 ¡ L 2 of the languages L 1 and L 2 is the language of all the words x 1 y 1 . . . x n y n such that x 1 . . . x n ∈ L 1 and y 1 . . . y n ∈ L 2 where the x k and the y k are possibly empty words. Obviously, the shuffle operator does not increase the expressive power of regular expressions. But Gruber and Holzer [GruHol.08] proved that, for any alphabet with at least two symbols, there is a regular expression with one shuffle operator which is at least exponentially more succinct than any equivalent regular expression without the shuffle operator. For finite automata, the shuffle operator corresponds to the asynchronous product.

The interleaving operator of IlPDL is the inverse image of the shuffle operator by the trivial function L from programs to languages over the alphabet consisting of all the atomic programs and all the tests. Hence, the program α | β is the non-deterministic choice over all the possible interleavings of α and β. The kind of concurrency expressed by this operator can be compared to a multiprocessus system on a monoprocessor computer.

Formally, given a set Π 0 of atomic programs (denoted a, b . . .) and a set Φ 0 of propositional variables (denoted p, q . . .), the languages Π IlPDL and Φ IlPDL of programs and formulas are defined simultaneously by:

α, β a | (α ; β) | (α ∪ β) | ϕ? | α * | (α | β) ϕ p | ⊥ | ¬ϕ | α ϕ
As usual: parentheses may be omitted; the dual modalities are defined by [α] ϕ ¬ α ¬ϕ and the missing Boolean operators can be defined using modalities and tests, starting with ϕ → ψ [ϕ?] ψ. An IlPDL model is a triple M = (W , ρ, V ) where • W is a nonempty set of states (denoted by w, x . . .),

• ρ is a function assigning to each atomic program a set of words of length one 1 over the alphabet (W × W ) and PDL with Interleaving 6.2

• V is a valuation function assigning a subset of W to each propositional variable. In this context, finite words over the alphabet W × W are called computation sequences. A computation sequence σ ∈ (W × W ) * is legal iff for all k < |σ |, the second component of σ k = (w k , x k ) is equal to the first component of σ k+1 = (w k+1 , x k+1 ), i.e., x k = w k+1 . A computation sequence σ ∈ (W × W ) * is from w to x, where w and x are states in W , iff either σ = and w = x or the first component of σ 1 = (w 1 , x 1 ) is w and the second component of

σ |σ | = (w |σ | , x |σ | ) is x, i.e., w 1 = w and x |σ | = x.
IlPDL formulas are evaluated at states of an IlPDL model. We write M, w | = ϕ to denote that the formula ϕ ∈ Φ IlPDL is satisfied at the state w ∈ W of the model M = (W , ρ, V ). The relation | = is defined by simultaneous induction with the extension of ρ to all programs as follows:

M, w | = p iff w ∈ V (p) M, w | = ¬ϕ iff M, w | = ϕ M, w | = α ϕ iff there is σ ∈ ρ(α) and x ∈ W s.t.
σ is a legal computation sequence from w to x and M,

x | = ϕ ρ(α ; β) = ρ(α).ρ(β) ρ(α ∪ β) = ρ(α) + ρ(β) ρ(ϕ?) = {(w, w) | M, w | = ϕ} ρ(α * ) = (ρ(α)) * ρ(α | β) = ρ(α) ¡ρ(β)
The extension of ρ to all programs assigns languages over the alphabet W × W . Hence, ., +, * and ¡ are operations on languages, respectively the concatenation, union, Kleene star and shuffle. As usual, a formula ϕ ∈ Φ IlPDL is satisfiable iff there is a model M = (W , ρ, V ) and a state w ∈ W such that M, w | = ϕ. Mayer and Stockmeyer [MaySto.96] proved that the satisfiability problem of IlPDL is 2EXPTIME-complete. The accessibility function R can be defined in IlPDL such that for any program α ∈ Π IlPDL , R(α) is the set of all the pairs (w, x) such that there is a legal computation sequence from w to x in ρ(α). Hence, IlPDL is a PDL-like logic with accessibility function as stated in Definition 6.5. We prove that IlPDL allows only simple cooperation. Intuitively, this is the case because for all programs α and β which are either atomic programs or tests, the formula α | β → α ∨ β is valid. Formally, we first prove the following lemma. Lemma 6.10. For any program α ∈ Π IlPDL , any model M = (W , ρ, V ), any computation sequence σ ∈ ρ(α) and any pair (w, x) occurring in σ , there is a subprogram γ of α such that (w, x) ∈ ρ(γ). Moreover, if w x then there is an atomic program a such that (w, x) ∈ ρ(a).

Proof. By a straightforward induction on the number of occurrences of symbols in α. Proposition 6.11. IlPDL allows simple cooperation.

Proof. Let Π 0 = N and M = (N, {(n, {(n, n + 1)}) | n ∈ N} , V ) for some V . Then the computation sequence (0, 1)(1, 2)(2, 3) ∈ ρ((0 ; 2) | 1) is legal but there is no legal computation sequences from 0 in neither ρ(0 ; 2) = {(0, 1)(2, 3)} nor ρ(1) = {(1, 2)}. Proposition 6.12. IlPDL does not allow atomic cooperation.

Proof. Suppose that the formula α | β is satisfied at a state w ∈ W of a model M = (W , ρ, V ). There is a legal computation sequence σ ∈ ρ(α | β) from w. If σ = then ∈ ρ(α) and M, w | = α . If σ then let (w, x) = σ 1 .
There is a computation sequence 6. PDL with Concurrency σ 1 such that (w, x) = σ 1 1 and either σ 1 ∈ ρ(α) or σ 1 ∈ ρ(β). In both cases, by Lemma 6.10, there is a subprogram γ of α or β such that M, w | = γ . Proposition 6.13. IlPDL does not allow forced cooperation.

Proof. Suppose condition (6.1) of Definition 6.8 holds: for some programs α and β in Π IlPDL , some model M = (W , ρ, V ) and some distinct states w, x ∈ W , w R(α | β) x. By definition, there is a legal computation sequence σ ∈ ρ(α | β) from w to x. Since w x, |σ | > 0 and there is a positive integer k such that σ k = (w, y) with w y. By Lemma 6.10, there exists a ∈ Π 0 such that w R(a) y. Therefore, condition (6.2) of Definition 6.8 does not hold.

Concurrent Dynamic Logic

Peleg [Peleg.85,Peleg.87] proposed an interpretation of concurrency as the dual of nondeterminism. This interpretation is inspired by alternating Turing machine [CKS.81] where computation is viewed as a tree with existential and universal nodes. At existential nodes, only one computation path has to be considered whereas at universal nodes all computation paths have to be considered. Hence existential nodes represent non-determinism whereas universal nodes represent concurrency.

The Concurrent Propositional Dynamic Logic (CPDL) extends PDL with the dual ∩ of the non-deterministic choice ∪. Whereas the non-deterministic choice has a disjunctive meaning illustrated by validities of the form α ∪ β ϕ ↔ α ϕ ∨ β ϕ, the concurrency operator ∩ has a conjunctive meaning and all formulas of the form α ∩ β ϕ ↔ α ϕ ∧ β ϕ are valid in CPDL. Formally, given a set Π 0 of atomic programs (denoted a, b . . .) and a set Φ 0 of propositional variables (denoted p, q . . .), the languages Π CPDL and Φ CPDL of programs and formulas are defined simultaneously by:

α, β a | (α ; β) | (α ∪ β) | ϕ? | α * | (α ∩ β) ϕ p | ⊥ | ¬ϕ | α ϕ
Once again, parentheses may be omitted for clarity; the dual modalities are defined by [α] ϕ ¬ α ¬ϕ and the missing Boolean operators can be defined using modalities and tests, starting with ϕ → ψ [ϕ?] ψ. Like in IlPDL, the semantics of CPDL deviates from PDL's semantics, the accessibility function being modified to cope with concurrency. Following the interpretation of computation in alternating Turing machines, more than one successor may have to be considered when running concurrent programs. Hence accessibility relations link states to sets of states.

Formally, a CPDL model is a triple M = (W , ρ, V ) where • W is a nonempty set of states,

• ρ is the accessibility function2 assigning a subset of W × P (W ) to each atomic program a ∈ Π 0 such that for all (w, S) ∈ ρ(a), S is a singleton and • V is the valuation function assigning a subset of W to each propositional variable in Φ 0 . CPDL formulas are evaluated at states in a CPDL model. The expression M, w | = ϕ denotes the fact that the formula ϕ ∈ Φ CPDL is satisfied at the state w ∈ W of the model M = (W , ρ, V ). The relation | = is defined by simultaneous induction with the extension of ρ to all programs in Π CPDL by:

M, w | = p iff w ∈ V (p) M, w | = ¬ϕ iff M, w | = ϕ M, w | = α ϕ iff there is S ⊆ W s.t. (w, S) ∈ ρ(α) and for all x ∈ S, M, x | = ϕ PDL with Intersection 6.4 ρ(α ; β) = ρ(α) • ρ(β) ρ(α ∪ β) = ρ(α) ∪ ρ(β) ρ(ϕ?) = {(w, {w}) | M, w | = ϕ} ρ(α * ) = Iter (ρ(α)) ρ(α ∩ β) = (w, S) ∃T , U s.t. S = T ∪ U , (w, T ) ∈ ρ(α) and (w, U ) ∈ ρ(β)
where for any subsets P and Q of W × P (W ): 

P • Q = {(w, S) | ∃x 1 , S 1 ,
(Q) = ρ( ?) ∪ (P • Q).
As usual, a formula ϕ ∈ Φ CPDL is satisfiable iff there is a model M = (W , ρ, V ) and a state w ∈ W such that M, w | = ϕ. The satisfiability problem of CPDL has been proved in [Peleg.87] to be EXPTIME-complete. It can easily be checked that for any programs α, β ∈ Π CPDL and any formula ϕ ∈ Φ CPDL , the formula α ∩ β ϕ ↔ α ϕ ∧ β ϕ is valid. Indeed, this is an axiom schema of the axiomatization of CPDL proposed in [Peleg.87]. Hence, the following proposition is trivial. Proposition 6.14. CPDL does not allow neither simple cooperation nor atomic cooperation.

Strictly speaking, it cannot be stated whether CPDL allows forced cooperation because CPDL is not a PDL-like logic with accessibility function. In fact, CPDL is not a normal modal logic: it can easily be observed from the proof of the following proposition that

[α] ϕ ∧ [α] ψ → [α] (ϕ ∧ ψ) is not a valid schema in CPDL.
Proposition 6.15. CPDL is not a PDL-like logic with accessibility function.

Proof. The proof relies on the satisfaction condition for box modalities which reads:

M, w | = [α] ϕ iff for all S ⊆ W , if (w, S) ∈ ρ(α) then there is x ∈ X such that M, x | = ϕ Let M = ({1, 2}, ρ, V ) where ρ(a) = {(1, {1})}, ρ(b) = {(1, {2})} and V (p) = {2}. We have ρ (a ∩ b) = {(1, {1, 2})}. Suppose R is defined such that it satisfies the conditions of Defini- tion 6.5. Because M, 1 | = a ∩ b , there exists w ∈ {1, 2} such that 1 R(a ∩ b) w. But since M, 1 | = [a ∩ b] p, w 1 and since M, 1 | = [a ∩ b] ¬p, w 2.

PDL with Intersection

A very natural extension of PDL consists in adding a semantic dual ∩ of the non-deterministic choice ∪ such that R(α ∩ β) = R(α) ∩ R(β). The resulting logic is the Propositional Dynamic Logic with Intersection (IPDL) which has been first mentioned by Harel in [Harel.83]. Although IPDL and CPDL both have a dual of the non-deterministic choice and use the same symbol for it, the two logics are different. For instance, as it will be clear shortly, the schema α ϕ ∧ β ϕ → α ∩ β ϕ is not valid in IPDL, which means that being able to perform two actions in a given situation does not imply that these actions can be executed concurrently. Another noteworthy difference between IPDL and CPDL is that IPDL is a normal modal logic.

Formally, the language of IPDL is the same as the language of CPDL: the set Π IPDL and Φ IPDL of programs and formulas are defined inductively from Π 0 and Φ 0 by:

α, β a | (α ; β) | (α ∪ β) | ϕ? | α * | (α ∩ β) ϕ p | ⊥ | ¬ϕ | α ϕ

PDL with Concurrency

For any program α and any formula ϕ, |α| and |ϕ| denote the number of occurrences of symbols in α and ϕ respectively. An IPDL model is a PDL model, i.e., a triple M = (W , R, V ) where W is a nonempty set of states, R is the accessibility function assigning a binary relation over W to each atomic program and V is the valuation function assigning a subset of W to each propositional variable. As expected, IPDL formulas are evaluated at states in IPDL models. The expression M, w | = ϕ denotes that the formula ϕ ∈ Φ IPDL is satisfied at the state w ∈ W of the model M = (W , R, V ). The relation | = is defined by simultaneous induction with the extension of R to all programs by:

M, w | = p iff w ∈ V (p) M, w | = ⊥ never M, w | = ¬ϕ iff M, w | = ϕ M, w | = α ϕ iff ∃x ∈ W , w R(α) x and M, x | = ϕ w R(α ; β) x iff ∃y ∈ W , w R(α) y and y R(β) x w R(α ∪ β) x iff w R(α) x or w R(β) x w R(α ∩ β) x iff w R(α) x and w R(β) x w R(ϕ?) x iff w = x and M, w | = ϕ w R(α * ) x iff w R(α) * x
where R(α) * is the reflexive and transitive closure of R(α) Two other important (negative) properties of IPDL must be mentioned. First, IPDL does not have the tree-like model property. For instance, it can easily be checked that for any model M = (W , R, V ) satisfying the formula (a ; a) ∩ a , the graph (W , R(a)) has cycles. Second, IPDL does not have comprehensive decompositions (see Definition 2.3). This property comes from the fact that bounded-morphisms do not preserve intersection (see [BRV.01, pages 59-60] for a definition). Hence by the Goldblatt-Thomason theorem [GolTho.75] the intersection is not modally definable. The following proposition gives another, more direct, proof. Proposition 6.16. IPDL does not have comprehensive decompositions.

A formula ϕ ∈ Φ IPDL is satisfiable iff there is a model M = (W , R, V )
Proof. Consider the formula ϕ 0 = a ∩ b and the models

M 1 = ({0, 1}, R 1 , V ) and M 2 = ({2, 3, 4}, R 2 , V ) such that R 1 (a) = R 1 (b) = {(0, 1)}, R 2 (a) = {(2, 3)}, R 2 (b) = {(2, 4)}, R 1 (c) = R 2 (c) = ∅ for all c ∈ Π 0 \{a, b} and V (p) = ∅ for all p ∈ Φ 0 . Clearly M 1 , 0 | = ϕ 0 , M 2 , 2 | = ¬ϕ 0 and for any formula ψ ∈ Φ IPDL , if ∩ occurs in ψ then ψ ≥ |ϕ 0 |. Hence, it suffices to prove the following hypotheses for all ψ ∈ Φ IPDL . IH.1 M 1 , 1 | = ψ iff M 2 , 3 | = ψ iff M 2 , 4 | = ψ; IH.2 if ∩ does not occur in ψ then M 1 , 0 | = ψ iff M 2 , 2 | = ψ.
The proofs are by induction on ψ . We only detail the cases when ψ = α * ψ for some α and ψ , the other cases being either similar or straightforward. For IH.1, let P = {(1, 1), (2, 3), (2, 4)} and first observe that for any program β ∈ Π IPDL and any state x ∈ 0 . . 4, if w R i (β) x for some (i, w) ∈ P then x = w. Since w R i (α * ) w for all (i, w) ∈ P then M i , w | = ψ iff M i , w | = ψ . Since, ψ < ψ , IH.1 holds by induction. For IH.2, the proof is similar: it suffices to observe that M i , w The notion of concurrency expressed by means of the intersection in IPDL is rather weak. By definition, whenever a a state can be reached by the execution of the program α ∩ β, the same state can be reached by both α and β alone. Hence, the following proposition can easily be proved. Proposition 6.17. IPDL does not allow neither simple, nor atomic, nor forced cooperation.

| = ψ iff M i , w | = ψ or M i , w | = α ψ for (i, w) ∈ {(1, 0), (2, 2)}.

PDL with Parallel composition, Recover and Store

Benevides, Freitas and Viana proposed in [BFV.11] an extension of PDL inspired by fork algebras (see [Frias.02] for an overview) and called the Propositional Dynamic Logic with Parallel composition, Recover and Store (PRSPDL). This logic features an operator for parallel composition of programs based on the cross product of fork algebras. Intuitively, for the parallel program (α β) to be executed at some state w, w must be decomposed into two states w 1 and w 2 by a ternary relation called the separation relation, then α is executed at w 1 reaching w 3 , β is executed at w 2 reaching w 4 and the final state x is obtained by composing w 3 and w 4 by the separation relation (see Figure 6.2). This ternary relation is identical to the ternary relation in normal binary modal logics. Indeed, the corresponding binary modalities (often called the multiplicative conjunction) can be defined in PRSPDL. Hence, PRSPDL embeds both PDL and K 2 . Moreover, the interpretation of concurrency by means of separation is very natural: for two actions to be performed simultaneously, the agent or current state must somehow be separated. This is the case for instance in multiprocessus systems on multiprocessor computers. This kind of separation contrasts with the temporal separation of logics with interleaving. To outline this difference, PRSPDL's separation is sometimes called a spacial separation.

Formally, given a set Π 0 of atomic programs (denoted a, b . . .) and a set Φ 0 of propositional variables (denoted p, q . . .), the languages Π PRSPDL and Φ PRSPDL of programs and formulas are defined simultaneously by:

α, β a | (α ; β) | (α ∪ β) | ϕ? | α * | r 1 | r 2 | s 1 | s 2 | (α β) ϕ p | ⊥ | ¬ϕ | α ϕ
The special programs r 1 , r 2 , s 1 and s 2 are respectively the left recover program, the right recover program, the left store program and the right store program. These special programs allow to access a state from its substate and conversely from a state to one of its substates. Their names come from the fact that by going from a substate to a state, the substate is stored in the state. Conversely, by going from a state to one of its substate, a previously stored substate can be recovered.

PDL with Concurrency

A PRSPDL frame is a triple F = (W , R, ) where • W is a nonempty set of states,

• R is the accessibility function assigning a binary relation over W to each atomic program and

• is a ternary relation over W called the separation relation. Both R and are used infix, i.e., we write w R(a) x and w (x, y) instead of (w, x) ∈ R(a) and (w, x, y) ∈ . Intuitively, w (x, y) means that w can be split into the states x and y (in that order). We say that x and y are substates of w by the decomposition (w, x, y) ∈ . Equivalently, w (x, y) means that the substates x and y can be merged to obtain w. The same frame properties as for Kripke binary frames can be defined for PRSPDL frames. We recall the ones which are used in the remainder of the thesis.

-separation The frame F = (W , R, ) is -separated iff for all w, x 1 , x 2 , y 1 , y 2 ∈ W , if w (x 1 , y 1 ) and w (x 2 , y 2 ) then x 1 = x 2 and y 1 = y 2 .

-determinism The frame F = (W , R, ) is -deterministic iff for all w 1 , w 2 , x, y ∈ W , if w 1 (x, y) and w 2 (x, y) then w 1 = w 2 .

-associativity The frame F = (W , R, ) is -associative iff for all w, x, y, z ∈ W , there is x ∈ W such that w (x, x ) and x (y, z) if and only if there is z ∈ W such that w (z , z) and z (x, y). A PRSPDL model is a tuple M = (W , R, , V ) where (W , R, ) is a PRSPDL frame and V is a valuation function assigning a subset of W to each atomic program. Given a frame property, a model is said to have this property iff its frame has it. PRSPDL formulas are evaluated at states in PRSPDL models. The expression M, w | = ϕ denotes that the formula ϕ ∈ Φ PRSPDL is satisfied at the state w ∈ W of the model M = (W , R, , V ). The relation | = is defined by simultaneous induction with the extension of R to all programs as follows:

M, w | = p iff w ∈ V (p) M, w | = ⊥ never M, w | = ¬ϕ iff M, w | = ϕ M, w | = α ϕ iff there is x ∈ W such that w R(α) x and M, x | = ϕ w R(α ; β) x iff there is y ∈ W such that w R(α) y and y R(β) x w R(α ∪ β) x iff w R(α) x or w R(β) x w R(ϕ?) x iff w = x and M, w | = ϕ w R(α * ) x iff w R(α) * x where R(α) * is the reflexive and transitive closure of R(α) w R(r 1 ) x iff there is y ∈ W such that w (x, y) w R(r 2 ) x iff there is y ∈ W such that w (y, x) w R(s 1 ) x iff there is y ∈ W such that x (w, y) w R(s 2 ) x iff there is y ∈ W such that x (y, w) w R(α β) x iff there are w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ) , w 1 R(α) w 3 , w 2 R(β) w 4 and x (w 3 , w 4 )
Given a class C of models, a PRSPDL formula ϕ is satisfiable in C iff there is a model M = (W , R, , V ) in C and a state w ∈ W such that M, w | = ϕ. The satisfiability problem of PRSPDL in the class of all models has been proved in [BalBou.15b] to be in 2EXPTIME. The proof is by a polynomial faithful translation to ICPDL. Balbiani and Tinchev [BalTin.14] proved that the satisfiability of PRSPDL in the class of -separated models is undecidable. The proof is by the encoding of a tiling problem and can be compared to the proof of the undecidability of IPDL with two deterministic programs [Harel.83]. Note that in the class of -separated PRSPDL models, r 1 and r 2 are deterministic. Finally, since K 2 can be embedded in PRSPDL (see below), by Proposition 5.1, PRSPDL interpreted in the class of -associative models is undecidable.

Expressivity of PRSPDL

A normal binary modality interpreted by a ternary relation can be defined in PRSPDL.

Let ϕ / ψ ϕ? ψ? . It can easily be checked that, for any model M = (W , R, , V ), any state w ∈ W and any formulas ϕ, ψ ∈ Φ PRSPDL , M, w | = ϕ / ψ if and only if there are x, y ∈ W such that w (x, y), M, x | = ϕ and M, y | = ψ. In the class of -separated models, the left and right residuals of / can be defined by ϕ -/ ψ [r 1 ; ¬ψ? ; s 2 ] ¬ϕ and ϕ /ψ [r 2 ; ¬ψ? ; s 1 ] ¬ϕ. We give a semantical proof for the left residual in Proposition 6.18, the proof for the right one being symmetrical. Proposition 6.19 shows that the residuals of / cannot be defined in PRSPDL interpreted in the class of all PRSPDL models. For the right-to-left direction, suppose that w R(r 1 ; ¬ψ? ; s 2 ) y 0 and for all x, y ∈ W , if x (w, y) and M, y | = ϕ then M, x | = ψ. Then there is x 0 ∈ W such that w R(r 1 ) x 0 , M, x 0 | = ¬ψ and x 0 R(s 2 ) y 0 . Moreover, there are w 1 , y 1 ∈ W such that x 0 (w, y 1 ) and x 0 (w 1 , y 0 ). Since M is -separated, w 1 = w and

y 1 = y 0 . If M, y 0 | = ϕ then M, x 0 | = ψ which is impossible. Therefore, M, y 0 | = ¬ϕ.
Proposition 6.19. Given two propositional variables p, q ∈ Φ 0 , there is no formula ϕ ∈ Φ PRSPDL such that for any PRSPDL model M = (W , R, , V ) and any states w ∈ W , M, w | = ϕ if and only if for all x, y ∈ W , x (w, y) and M, y | = p implies M, x | = q.

Proof. Suppose that there is such a formula ϕ ∈ Φ PRSPDL and consider the model M = (W , R, , V ) where

• W = 0 . . 4,

• R(a) = ∅ for all a ∈ Π 0 ,

• = {(0, 1, 2), (0, 3, 4)},

• V (p) = {4} and V (r) = ∅ for all r ∈ Φ 0 \ {p}. By hypothesis, it must be the case that M, 1 | = ϕ and M, 3 | = ϕ. We prove that for all n > 0, all ψ ∈ Φ PRSPDL , all α ∈ Π PRSPDL and all w ∈ W :

IH.1 if ψ = n and M, 1 | = ψ then M, 3 | = ψ; IH.2 if |α| = n, w 1 and 1 R(α) w then 3 R(α) w. IH.3 if |α| = n, w 1 and w R(α) 1 then w R(α) 3. IH.4 if |α| = n and 1 R(α) 1 then 3 R(α) 3.
The proof is by induction on n.

For IH.1, the cases for ⊥, , propositional variables and their negations are trivial. For eventualities, suppose that M, 1 | = α ψ. There must exists w ∈ W such that 1 R(α) w and M, w | = ψ. Remark that |α| < α ψ . Then if w 1, by IH.2, 3 R(α) w. If w = 1, by IH.4, 3 R(α) 3 and since ψ < α ψ , by IH.1, M, 3 | = ψ. The case for necessities is similar.

For IH.2, we only detail the cases for sequential compositions and iterations, the other cases being straightforward. For sequential compositions, suppose that 1 R(β ; γ) w and w 1. There must exist x ∈ W such that 1 R(β) x and x R(γ). Clearly, β < β ; γ 3 For iterations, suppose that 1 R(β * ) w and w 1. There must exist a number m > 0 and a sequence x 0 . . . x m of states such that x 0 = 1, x m = w and for all k < m, x k R(β) x k+1 . Moreover, there is a number < m such that x = 1 and

x +1 1. Since β < |α * |, by IH.2, 3 R(β) x +1 hence 3 R(β * ) w.
The proofs for IH.3 and IH.4 are similar to the proofs for IH.2.

We prove now that the test (Proposition 6.20), r 1 (Proposition 6.21) and parallel composition (Proposition 6.22) constructs are not modally definable in PRSPDL. The first proposition extends a well-known result of Berman and Paterson [BerPat.81] to PRSPDL. The second proposition can easily be modified to prove that r 2 is not modally definable in PRSPDL. Proof. Suppose that such a formula ϕ exists and consider the models M = (W , R, , V ) and M = (W , R , , V ) defined by

• W = 1 . . 12,

• R(a) = {(2, 5), (3, 4), (

}, R(b) = {(4, 8)} and R(c) = ∅ for all c ∈ Π 0 \ {a, b}, • = {(1, 2 4, 6), (3, 9), (9, 11) 
•

V (p) = ∅ for all pΦ 0 , • W = 1 . . 12 , • R (a) = {(2 , 5 ), (3 , 4 ), (4 , 11 ), (3 , 9 ), (9 , 6 )}, R (b) = {(4 , 8 )} and R (c) = ∅ for all c ∈ Π 0 \ {a, b}, • = {(1 , 2 , 3 ), (7 , 5 , 6 ), (12 , 10 , 11 )}, 
• V (p) = ∅ for all pΦ 0 . These two models are represented in Figure 6.3, where the unlabeled edges are implicitly labeled with a. Intuitively these two models are similar except that the edges (4, 6) and (9, 11) have been replaced in M with (4 , 11 ) and (9 , 6 ). It can easily be checked that M, 1 | = a (a ; b ? ; a) but M , 1 | = a (a ; b ? ; a) . Therefore, by hypothesis, it must be the case that M, 1 | = ϕ and M , 1 | = ¬ϕ. We will prove though that

M, 1 | = ϕ if and only if M , 1 | = ϕ.
Let f and f be functions on W and W respectively such that • f (9) = 4, f (10) = 5, f (11) = 6, f (12) = 7 and for all w ∈ W \ {9, 10, 11, 12}, f (w) = w;

• f (4 ) = 9 , f (10 ) = 5 , f (11 ) = 6 , f (12 ) = 7 and for all w ∈ W \{4 , 10 , 11 , 12 } f (w ) = w . Let Z ⊆ W × W be the binary relation defined by Z = {(1, 1 ), (2, 2 ), (3, 3 ), (4, 4 ), (5, 5 ), [START_REF]γ) (k y , d y , y). Hypothesis IH.3 when α = a. First, it has to be verified that whenever Link is called, x R o (α) y, which is straightforward when M o is -separated. Finally[END_REF][START_REF]γ) (k y , d y , y). Hypothesis IH.3 when α = a. First, it has to be verified that whenever Link is called, x R o (α) y, which is straightforward when M o is -separated. Finally[END_REF], (7, 7 ), (8, 8 ), (9, 9 ), (10,10 ), (11,11 ), (12, 12 ), (5, 10 ), [START_REF]γ) (k y , d y , y). Hypothesis IH.3 when α = a. First, it has to be verified that whenever Link is called, x R o (α) y, which is straightforward when M o is -separated. Finally[END_REF]11 ), (7, 12 ), (10, 5 ), (11,[START_REF]γ) (k y , d y , y). Hypothesis IH.3 when α = a. First, it has to be verified that whenever Link is called, x R o (α) y, which is straightforward when M o is -separated. Finally[END_REF], (12, 7 )}. We first prove the following claims.

Claim 1. For any test-free program α, any states w, x ∈ W and w , x ∈ W :

• if w ∈ {10, 11, 12} and w R(α) x then x ∈ {10, 11, 12};

• if w ∈ {10 , 11 , 12 } and w R (α) x then x ∈ {10 , 11 , 12 }; • if 8 R (α) x then x = 8 .
Proof. By straightforward induction on |α|.

Claim 2. For any test-free program α, any states w, x ∈ W , w ∈ W and x ∈ W \ {8 }:

1. if w R(α) x then f (w) R(α) f (x); 2. if w R (α) x then f (w ) R (β) f (x ).
Proof. By induction on |α|. We detail only the proof of 2 for iterations, the other cases being either similar or straightforward. Suppose w R (α * ) x and x 8 . There is a sequence y 0 . . . y n such that y 0 = w , y n = x and for all k < n, y k R (α) y k+1 . By Claim 1, for all k ≤ n, y k 8 . Hence by induction, for all k < n, f (y k ) R (α) f (y k+1 ) and w R (α * ) x . Now we prove that for all n > 0, all test-free program α ∈ Π PRSPDL , all test-free formula ψ ∈ Φ PRSPDL and all states w ∈ W and w ∈ W such that w Z w : IH.1 if |α| = n and for some x ∈ W , w R(α) x then there is x ∈ W such that x Z x and w R (α) x ;

IH.2 if |α| = n and for some x ∈ W , w R (α) x then there is x ∈ W such that x Z x and w R(α) x;

IH.3 if ψ = n and M, w | = ψ then M , w | = ψ.
The proof is by induction on n. We detail only the proof of IH.1 for parallel compositions, the other cases being either similar or straightforward. Suppose that w R(β γ) x and w Z w . There is w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ), w 1 R(β) w 3 , w 2 R(γ) w 4 and x (w 3 , w 4 ). Clearly, there are w 1 , w 2 ∈ W such that w 1 Z w 1 , w 2 Z w 2 and w w 1 , w 2 . Since β < β γ and γ < β γ , by IH.1, there are w 3 , w 4 ∈ W such that w 3 Z w 3 , w 4 Z w 4 , w 1 R (β) w 3 and w 2 R (γ) w 4 . It remains to prove that there is x ∈ W such that x Z x and x w 3 , w 4 . The only non-straightforward cases are when (w 3 , w 4 ) = (5 , 11 ) or (w 3 , w 4 ) = (10 , 6 ). If w 3 = 5 and w 4 = 11 , by Claim 2, f (w 2 ) R(γ) 6 . By Claim 1, w 1 {10 , 11 , 12 } and since w w 1 , w 2 , w 2 {4 , 10 , 11 , 12 } and f (w 2 ) = w 2 . Clearly, w 4 Z 6 , x Z 7 and w R(β γ) 7 . The proof when w 3 = 10 and w 4 = 6 is symmetrical. Proposition 6.21. There is no r 1 -free formula ϕ ∈ PRSPDL such that for any model M = (W , R, , V ) and any state w ∈ W , M, w | = ϕ iff M, w | = r 1 ? .

Proof. Suppose such a formula ϕ does exist and consider the model

M = (W , R, , V ) where • W = 1 . . 13,
• R(a) = ∅ for all a ∈ Π 0 ,

• = {(1, 4, 5), (2, 6, 5), (3, 6, 7), (4, 8, 9), [START_REF]γ) (k y , d y , y). Hypothesis IH.3 when α = a. First, it has to be verified that whenever Link is called, x R o (α) y, which is straightforward when M o is -separated. Finally[END_REF]10,11), (12, 8, 5), (13, 10, 7)},

• V (p) = ∅ for all p ∈ Φ 0 . The model M is depicted in Figure 6.4. Clearly, M, 1 | = r 1 ? but M, 2 | = r 1 ? . Therefore, by hypothesis, it must be the case that M, 1 | = ϕ and M, 2 | = ¬ϕ. We will prove though that for all r 1 -free formula ψ, M,

1 | = ψ if M, 2 | = ψ.
First, W is partitioned into W L = {1, 2, 4, 5, 8, 9, 12} and W R = {3, 6, 7, 10, 11, 13} and the function f and g from W L to W R and reciprocally are defined by:

• f (1) = f (2) = 3, f (4) = 6, f (5) = 7, f (8) = 10, f (9) = 11 and f (12) = 13;

• g(3) = 1, g(6) = 4, g(7) = 5, g(10) = 8, g(11) = 9 and g(13) = 12. The following claims are proved.

Claim 1. For any r 1 -free program α and any states w, x ∈ W , if w R(α) x and w ∈ W L then x ∈ W L .

Proof. By straightforward induction on |α|. For instance suppose that w R(β γ) x.

There is w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ), w 1 R(β) w 3 , w 2 R(γ) w 4 and x (w 3 , w 4 ). Clearly, w 2 ∈ W L , hence by induction, w 4 ∈ W L and x ∈ W L .

Claim 2. For any integer n > 0, any r 1 -free program α such that |α| = n, any r 1 -free formula ψ such that ψ = n, and any states w, x ∈ W such that w R(α) x:

1. if w, x ∈ W L then f (w) R(α) f (x); 2. if w, x ∈ W R then g(w) R(α) g(x); 3. if w ∈ W R and x ∈ W L then w R(α) f (x); 4. if w ∈ W L and M, w | = ψ then M, f (w) | = ψ; 5. if w ∈ W R and M, w | = ψ then M, g(w) | = ψ.
Proof. The proof is by induction on n. We only detail the proof of 1. for parallel compositions, the other cases being either similar or straightforward. Suppose w R(β γ) x and w, x ∈ W L . There is The proof is by induction on |α|. We detail only the case for parallel composition. Suppose w x and w R(α β) x. There is w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ), w 1 R(α) w 3 , w 2 R(β) w 4 and x (w 3 , w 4 ). If w 1 w 3 , by induction there is a sequential program γ such that w 1 R(γ) w 3 , hence w R(r 1 ; γ ; s 1 ) x. If w 1 = w 3 then w R(r 1 ; s 1 ) x.

w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ), w 1 R(β) w 3 , w 2 R(γ) w 4 and x (w 3 , w 4 ). If w 2 then w 1 , w 2 ∈ W L and by Claim 1, w 3 , w 4 ∈ W L hence x 2. In that case, by induction, f (w 1 ) R(β) f (w 3 ) and f (w 2 ) R(γ) f (w 4 ) hence f (w) R(β γ) f (x). If w = 2 and x 2 then w 1 = 6, w 2 = 5 and w 3 , w 4 ∈ W L . By in- duction, w 1 R(β) f (w 3 ) and f (w 2 ) R(γ) f (w 4 ) hence 3 R(β γ) f (x). If w = x = 2 then w 1 = w 3 =

Iteration-free PDL with fork and separation

In this section we study the variant (PDL∆ 0 ) of PRSPDL where the semantics of the parallel composition operator ∆ differs slightly: there is no split of the current state at the start of parallel programs but there is still a merge of the substates at the end. More clearly, to execute the parallel program α ∆ β, α and β are executed from the initial state, resulting in two states which are merged by the separating relation to obtain the final state. Figure 6.6 illustrates the execution of parallel programs in PDL∆ 0 . From a fork algebra perspective, while parallel composition in PRSPDL corresponds to the cross operator, the parallel composition in PDL∆ 0 corresponds to the fork operator. Moreover, since the multiplicative disjunction is not definable in PDL∆ 0 , it is added as primitive of the language along with its two residuals3 . Formally, given a set Π 0 of atomic programs (denoted a, b . . .) and a set Φ 0 of propositional variables (denoted p, q . . .), the languages Π PDL∆ 0 and Φ PDL∆ 0 of programs and formulas of PDL∆ 0 are defined by simultaneous induction as follows:

α, β a | (α ; β) | (α ∆ β) | ϕ? ϕ, ψ p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | (ϕ • ψ) | (ϕ ψ) | (ϕ ψ) | α ϕ
The missing Boolean constructs and the dual modalities [α] are defined as usual. Similarly, the dual binary modalities •, ¯ and ¯ are defined by ϕ • ψ ¬ (∼ϕ • ∼ψ), ϕ ¯ ψ ¬ (∼ϕ ∼ψ) and ϕ ¯ ψ ¬ (∼ϕ ∼ψ) respectively, for all ϕ, ψ ∈ Φ. We write |ϕ| and |α| to denote the number of occurrences of symbols in ϕ and α respectively. The size of programs is defined inductively by: size(ϕ?) = 0 size(a) = 1 size(α ; β) = size(α) + size(β) size(α ∆ β) = min (size(α), size(β)) + 1 PDL∆ 0 formulas are interpreted at states in a PRSPDL model. We will be mainly interested in the class of separated models. We write M, w | = ϕ to denote that the formula 

M, w | = p iff w ∈ V (p) M, w | = ⊥ never M, w | = ¬ϕ iff M, w | = ϕ M, w | = ϕ ∨ ψ iff M, w | = ϕ or M, w | = ψ M, w | = ϕ • ψ iff ∃x, y ∈ W s.t. w (x, y) , M, x | = ϕ and M, y | = ψ M, w | = ϕ ψ iff ∃x, y ∈ W s.t. x (w, y) , M, x | = ϕ and M, y | = ψ M, w | = ϕ ψ iff ∃x, y ∈ W s.t. y (x, w) , M, x | = ϕ and M, y | = ψ M, w | = α ϕ iff ∃x ∈ W s.t. w R(α) x and M, x | = ϕ w R(α ; β) x iff ∃y ∈ W s.t. w R(α) y and y R(β) x w R(α ∆ β) x iff ∃y, z ∈ W s.t. w R(α) y, w R(β) z and x (y, z) w R(ϕ?) x iff w = x and M, w | = ϕ
It can easily be checked that the following lemma holds.

Lemma 6.25. For any model M = (W , R, , V ), any states x, y ∈ W and any program α ∈ Π, if x R(α) y and size(α) = 0 then x = y.

We prove that PDL∆ 0 interpreted in the class of -separated models has the strong finite model property. The proof is by a selection procedure. For that procedure, formulas must be decomposed in a comprehensive set of subformulas similar to the Fischer-Ladner closure. Moreover, we associate a measure, called the depth, to each subformula. During the selection procedure, this measure must be decreasing in some specific way for the procedure to terminate. Proof sketch. We first replace the rule for negation by the rule producing d : ϕ from d : ¬ϕ, obtaining the closure Cl + (ϕ). Then it can easily be checked that the sum of the number of occurrences of symbols in the conclusions of the rules is strictly inferior to the number of occurrences of symbols in the premise. Finally, we observe that Cl(ϕ) ⊆ Cl + (ϕ) ∪ d : ¬ψ d : ψ ∈ Cl + (ϕ) .

PDL with Concurrency

Lemma 6.27. The function assigning max {d | either ∃ϕ, d : ϕ ∈ Cl(ϕ) or ∃α, d : α ∈ Cl(ϕ)} to every formula ϕ ∈ Φ PDL∆ 0 is linear in |ϕ|.

Proof sketch. Let us write ν for both a program or a formula. We first prove by induction on n that for all n > 0, if for some d ∈ N and program α, d : α ∈ Cl(ϕ) and size(α) = n, then there exists ν such that d + n -1 : ν ∈ Cl(ϕ). Then it can easily be proved that if d : ν ∈ Cl(ϕ) for some d > 0 and ν, then there exists ν such that d -1 : ν ∈ Cl(ϕ).

Selection Procedure

Given a formula ϕ 0 , a model M o and a state w 0 such that M o , w 0 | = ϕ 0 , a model M s is constructed such that M s satisfies ϕ 0 and the number of states in M o is bounded by an exponential in |ϕ 0 |. The construction of M s is performed by the procedure Selection on the facing page. Selection uses the recursive procedure Link described on page 94. Whereas Selection ensures that the satisfiability of all subformulas is preserved, Link ensures that subprograms can be executed between states in M s . The following lemmas are used to prove the strong finite model property.

Lemma 6.28. The procedure Selection terminates and the cardinality of W s is exponential in |ϕ 0 |.

Proof. We consider the tree (V , E) such that V = W s and there is an edge from (k x , d x , x) to (k y , d y , y) iff (k y , d y , y) has been added to W s while (k x , d x , x) was chosen in Selection. It can easily be proved by induction on |α| that during any call to Link with program argument α, the number of states added to W s is inferior or equal to 2 • |α|. Hence, by Lemma 6.26, the branching factor of (V , E) is bounded by a quadratic function in |ϕ 0 |. To prove that the depth of (V , E) is bounded by a linear function in |ϕ 0 |, we use Lemma 6.27 and prove that d is strictly increasing along the branches of (V , E). For that matter, it suffices to verify that whenever Link(M s , n, (k x , d x , x), (k y , d y , y), α) is called while (k w , d w , w) is chosen in Selection, then d x ≥ d w and d y > d w . Lemma 6.29. Whenever Link is called, d y ≤ d x + size(α).

Proof. For the call at line 16 of Selection, the property holds by the assignment at line 13. For the recursive calls of Link, we suppose that d y ≤ d x + size(α). Suppose first that α = β ; γ. Then d y ≤ d x + size(β) + size(γ). Therefore, if size(β) = 0 then d y ≤ d x + size(γ) and the property holds for the call at line 5. The proof is identical for the call at line 7. For the calls at lines 13 and 14, the assignment line 11 set d z = d x + size(β), therefore these two calls satisfies the property. Suppose now that α = β∆γ. For the calls at lines 31 and 39, by the assignments at lines 28 and 35, we have that d w ≤ d x + size(β). The proof is identical for the calls at lines 24 and 40.

The following lemma is essential for the forthcoming truth lemma (Lemma 6.33) as it makes the proof for the dual modalities •, ¯ and ¯ trivial. Lemma 6.30. For all (k y ,d y ,y),(k w ,d w ,w),(k z ,d z ,z) ∈ s : Result: A finite model M s = (W s , R s , s , V s ). Data: A subset K ⊆ W s of marked nodes and an integer n ∈ N. 

y o (w, z) |d y -d w | ≤ 1 |d y -d z | ≤ 1 |d w -d z | ≤ 1 Proof. We prove
1 initialization 2 n = 0 3 W s = {(0, 0, w 0 )} 4 R s (a) = ∅ for all a ∈ Π 0 5 s = ∅ 6 K = ∅ 7 while K W s do 8 choose an unmarked state (k, d, w) ∈ W s \ K 9 while (k, d, w) K do let V s (p) = {(k x , d x , x) ∈ W s | x ∈ V o (p)} for all p ∈ Φ 0 if there exists d : α ϕ ∈ Cl(ϕ 0 ) such that size(α) > 0, d ≥ d, M o , w | = α ϕ and M s , (k, d, w) | = α ϕ then choose y s.t. w R o (α) y and M o , y | = ϕ let d y = d + size(α) let n = n + 1 add (n, d y , y) to W s call Link M s , n, (k, d,
(n + 1, d + 1, x) and (n + 2, d + 1, y) to W s add ((n + 2, d + 1, y), (n + 1, d + 1, x), (k, d, w)) to s let n = n + 2 else if there exists d : ϕ ψ ∈ Cl(ϕ 0 ) such that d ≥ d, M o , w | = ϕ ψ and M s , (d, w) | = ϕ ψ then choose x and y s.t. x s (w, y), M o , x | = ϕ and M o , y | = ψ add (n + 1, d + 1, x) and (n + 2, d + 1, y) to W s add ((n + 1, d + 1, x), (k, d, w), (n + 2, d + 1, y)) to s let n = n + 2 else add (k, d, w) to K Chapter 7

PDL with Deterministic Separating Parallel Composition

The separating parallel composition of programs as found in PDL with Parallel composition, Recover and Store (PRSPDL) or PDL with fork and separation, both presented in the previous chapter, adds an interesting and natural notion of concurrency to dynamic logics. The separation allows a fine-grain control over concurrency. In this chapter, a variant of PRSPDL is studied. This logic, called the Propositional Dynamic Logic with Deterministic separating Parallel composition (PPDL det ) is the fragment of PRSPDL without the four store and recover programs, interpreted in the class of -deterministic frames. With this syntactic restriction, PPDL det allows all situations of cooperations defined in Section 6.1. The semantic restriction to deterministic separation is very natural: whereas there often are different ways to split a state into substates, there is only one way (if any) to merge two substates. Hence this restriction, which turns the ternary separation relation into a partial binary operator, is common in binary modal logics. However, PPDL det , like PRSPDL and PDL with intersection, lacks the two important properties of having comprehensive decompositions and the tree-like model property. After the presentation of the syntax and semantics of PPDL det in Section 7.1 and of some expressivity results in Section 7.2, the absence of these two properties is overcome in the next two sections. For the lack of comprehensive decompositions, the language is extended in Section 7.3 such that an adaptation of the Fischer-Ladner closure is possible. For the lack of the tree-like model property, the alternative neat model property is defined then proved for PPDL det in Section 7.4. These two constructions are then used in the remaining sections to prove decidability and complexity results for PPDL det and its iteration-free variant.

Syntax and Semantics

The Propositional Dynamic Logic with Deterministic separating Parallel composition (PPDL det ) is the fragment of PRSPDL without the store and recover special programs, interpreted in the class of -deterministic frames. Formally, let Π 0 be a countable set of atomic programs (denoted by a, b . . .) and Φ 0 a countable set of propositional variables (denoted by p, q . . .). The sets Π PPDL and Φ PPDL of programs and formulas are defined by:

α, β a | (α ; β) | (α ∪ β) | ϕ? | α * | (α β) ϕ p | ⊥ | ¬ϕ | α ϕ
As usual: parentheses may be omitted for clarity; the dual modalities are defined by [α] ϕ ¬ α ¬ϕ; the missing Boolean operators are defined from ϕ → ψ [ϕ?] ψ and |α| and |ϕ| denote the number of occurrences of symbols in the program α and the formula ϕ. Moreover, we will sometimes explicitly use the syntactic operator ∼ of involutive negation defined such that ∼ϕ = ψ if ϕ = ¬ψ for some ψ and ∼ϕ = ¬ϕ otherwise (see Section 2.1 for a discussion about negations). A PPDL det frame is a -deterministic PRSPDL frame, i.e., a triple F = (W , R, ) where W is a nonempty set of states (denoted by w, x, y . . .), R is the accessibility function assigning a binary relation over W to each atomic program and is a ternary relation over 97 7. PDL with Deterministic Separating Parallel Composition W called the separation relation and such that for all x, y, w 1 , w 2 ∈ W : ( -determinism) if x (w 1 , w 2 ) and y (w 1 , w 2 ) then x = y Intuitively, x R(a) y means that the program a can be executed in state x, reaching state y. Similarly, x (y, z) means that x can be split into the states y and z. We say that y and z are substates of x by the decomposition (x, y, z) ∈ . Equivalently, x (y, z) means that the substates y and z can be merged to obtain x. PPDL det frames being -deterministic, the merging of substates is functional. Hence is equivalent to a partial binary operator on W . A PPDL det model is a -deterministic model, i.e., a tuple M = (W , R, , V ) where (W , R, ) is a -deterministic frame and V is a valuation function associating a subset of W to each propositional variable. PPDL det formulas are evaluated at states in PPDL det models. The expression M, w | = ϕ denote the fact that the formula ϕ ∈ Π PPDL is satisfied at the state w ∈ W of the model M = (W , R, , V ). The relation | = is defined by parallel induction along with the extension of R to all programs as follows:

M, w | = p iff w ∈ V (p) M, w | = ⊥ never M, w | = ¬ϕ iff M, w | = ϕ M, w | = α ϕ iff there is x ∈ W such that w R(α) x and M, x | = ϕ w R(α ; β) x iff there is y ∈ W such that w R(α) y and y R(β) x w R(α ∪ β) x iff w R(α) x or w R(β) x w R(ϕ?) x iff w = x and M, w | = ϕ w R(α * ) x iff w R(α) * x
where R(α) * is the reflexive and transitive closure of R(α) w R(α β) x iff there are w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ) , w 1 R(α) w 3 , w 2 R(β) w 4 and x (w 3 , w 4 )

PPDL det is the logic with language Φ PPDL interpreted in -deterministic frames. A formula ϕ ∈ Φ PPDL is PPDL det satisfiable iff there exists a -deterministic model M = (W , R, , V ) and a state w ∈ W such that M, w | = ϕ. The satisfiability problem of PPDL det is the decision problem answering whether a formula in Φ PPDL is PPDL det satisfiable. This problem is proved to be in EXPTIME in Section 7.6. Finally, the following proposition can easily be proved by a straightforward adaptation of the proof of Proposition 2.2. Proposition 7.1. PPDL det is conservative.

Expressivity

Most of the expressivity results of PRSPDL proved in Section 6.5 hold for PPDL det . Specifically, the binary modality / defined by ϕ / ψ ϕ? ψ? for any formulas ϕ, ψ ∈ Φ PPDL , is such that for any -deterministic model M = (W , R, , V ), any state w ∈ W and any formulas ϕ, ψ ∈ Φ PPDL , M, w | = ϕ / ψ iff there are x, y ∈ W such that w (x, y), M, x | = ϕ and M, y | = ψ. Moreover, the models used in the proofs of Propositions 6.19, 6.20, 6.21 and 6.23 are all -deterministic, hence all these propositions hold for PPDL det too. Namely: no residual of / can be defined in PPDL det , neither test nor the recover programs are modally definable in PPDL det and PPDL det allows both simple and atomic cooperations. The following proposition proves that unlike PRSPDL, PPDL det allows forced cooperation. Proposition 7.2. PPDL det allows forced cooperation. Proof. Consider the model M = (W , R, , V ) where W = 0 . . 5, R(a) = {(1, 3)(2, 4)} and R(b) = ∅ for all b ∈ Π 0 \ {a}, = {(0, 1, 2), (5, 3, 4)} and V (p) = ∅ for all p ∈ Φ 0 . Then M, 0 | = a a . Moreover, it can easily be proved by induction on |α| that for all α ∈ Π PPDL and all w ∈ W if does not occur in α and 0 R(α) w then w = 0.

Like for PDL with intersection, it is not possible to adapt the Fischer-Ladner closure directly to PPDL det , as the following proposition shows. The adaptation proposed in Section 7.3 extends the language of PPDL det with some non-standard propositional variables.

Proposition 7.3. PPDL det does not have comprehensive decomposition.

Proof. Consider the formula ϕ = a a and the same two models M = (W , R, , V ) and M = (W , R , , V ) as in the proof of Proposition 6.22, defined by:

• W = 1 . . 5, • R(a) = {(1, 3), (2, 4)} and for all b ∈ Π 0 \ {a}, R(b) = ∅, • = {(0, 1, 2), (5, 3, 4)}, • V (p) = ∅, for all p ∈ Φ 0 , • W = 1 . . 8 , • R (a) = {(1 , 3 ), (2 , 4 )} and for all b ∈ Π 0 \ {a}, R (b) = ∅, • = {(0 , 1 , 2 ), (5 , 3 , 6 ), (7 , 8 , 4 )}, 
• V (p) = ∅, for all p ∈ Φ 0 . These two models are depicted in Figure 6.5 on page 89 where edges are implicitly labeled with a. It can easily be checked that M, 0 | = a a but M , 0 | = a a .

Since does not occur in any formula ψ ∈ Φ PPDL such that ψ < |ϕ|, we already proved for Proposition 6.22 that 0 and 0 cannot be distinguished by any formula ψ ∈ Φ PPDL such that ψ < |ϕ|. It remains to prove that 1 and 2 cannot be distinguished from 1 and 2 by any formula in Φ PPDL . The binary relation Z between W and W is first defined by Z = {(1, 1 ), (2, 2 ), (3, 3 ), (4, 4 ), (5, 5 ), (4, 6 ), (5, 7 ), (3, 8 )}. We prove the following hypotheses for all n ∈ N, all α ∈ Π PPDL , all ψ ∈ Φ PPDL and all (w, w ) ∈ Z: IH.1 for any x ∈ W , if |α| = n and w R(α) x then x 0 and there is x ∈ W such that

x Z x and w R (α) x ;

IH.2 for any x ∈ W , if |α| = n and w R (α) x then x 0 and there is x ∈ W such that x Z x and w R(α) x;

IH.3 if ψ = n then M, w | = ψ iff M , w | = ψ.
The proof is by a straightforward induction on n.

Interpretation of PPDL det for Petri nets with capacities and concurrency

We briefly illustrate Proposition 7.2 by giving an interpretation of PPDL det for Petri nets with capacities and concurrency as defined in Section 6.1. Given a Petri net P = (S, T , W , K, m 0 ) (see Definition 6.1 on page 76), a corresponding -deterministic model M P = (W P , R P , P , V P ) over the set Π 0 = T of atomic programs is defined such that:

• W P is the set of all acceptable markings of P ;

• m R P (a) m iff for all s ∈ S m(s) ≥ W (s, a) and m (s) = m(s) -W (s, a) + W (a, s);

• m 1 P (m 2 , m 3 ) iff m 1 (s) = m 2 (s) + m 3 (s) for all s ∈ S. Remark that M P is -associative.

Considering again the Petri net P from Figure 6.1, Figure 7.1 illustrates how the execution of the program a b in M P corresponds to the firing of the multiset {a, b}. This result is generalized by the following proposition. 

Fischer-Ladner closure

As proved by Proposition 7.3, PPDL det does not have comprehensive decompositions. Hence there is no hope to have a comprehensive set of subformulas for every formula. To workaround this difficulty, a more expressive logic is devised by extending PPDL det as follows. Firstly, symbols of parallel composition are annotated with unique identifiers called indices. Secondly, to each such index i are associated two specials formulas L i and R i called placeholders. Placeholders are reminiscent of nominals as found in hybrid logics [Prior. [START_REF] Vaughan | Models of Program Logics[END_REF]PasTin.85]. Intuitively, we want formulas of the form α i β ϕ to be satisfied at some state w if and only if there are states w 1 , w 2 , w 3 , w 4 , x and an interpretation of L i and R i such that M, x | = ϕ, x (w 3 , w 4 ), w (w 1 , w 2 ), M, w 1 | = α L i , M, w 2 | = β R i and L i and R i are satisfied only at w 3 and w 4 respectively.

Formally, using the same sets Π 0 and Φ 0 of atomic programs and propositional variables as for PPDL det , the sets Π P H and Φ P H of annotated programs and annotated formulas 100 are defined by parallel induction as follows:

α, β a | (α ; β) | (α ∪ β) | ϕ? | α * | (α i β) ϕ p | ⊥ | ¬ϕ | [α]ϕ | L i | R i
where i ranges over N. For any annotated program α ∈ Π P H and any annotated formula ϕ ∈ Φ P H , |α| and β denote the number of occurrences of symbols in α and β, placeholders and annotated symbol of parallel composition each counting as one symbol.

To interpret annotated formulas, placeholders cannot be interpreted "statically" like ordinary propositional variables. Consider for instance the model M = (W , R, , V ) depicted in Figure 7.2 where edges are implicitly labeled with a and such that V (p) = {1, 3, 12, 14}. The formula [a] ( a 0 a p → p) is satisfied at 0 but it is not possible that for all w ∈ W , M, w | = a 0 a p if and only if there are w 1 , w 2 ∈ W such that w (w 1 , w 2 ), M, w 1 | = a L 0 and M, w 2 | = a R 0 . Therefore we add flexibility in the interpretation of placeholders by adding marking functions which are functions from placeholders to subset of W . Thus, annotated formulas are interpreted at pairs (w, m) where w is a state and m is a marking function. The set of all marking functions over the set W of states is denoted by B W . The empty marking function m ∅ W ∈ B W binds the empty set to all placeholders. The expression M, w, m | = F ϕ denotes the fact that the formula ϕ ∈ Φ P H is satisfied at the pair (w, m) ∈ W × B W of the model M = (W , R, , V ). The relation | = F is defined by simultaneous induction along with the extension of R to all annotated programs by:

M, w, m | = F p iff w ∈ V (p) M, w, m | = F ⊥ never M, w, m | = F ¬ϕ iff M, w, m | = ϕ M, w, m | = F α ϕ iff there is x ∈ W such that w R(α) x and M, x, m | = F ϕ M, w, m | = F L i iff w ∈ m(L i ) M, w, m | = F R i iff w ∈ m(R i ) w R(α ; β) x iff there is y ∈ W such that w R(α) y and y R(β) x w R(α ∪ β) x iff w R(α) x or w R(β) x w R(ϕ?) x iff w = x and M, w, m ∅ W | = F ϕ w R(α * ) x iff w R(α) * x
where R(α) * is the reflexive and transitive closure of R(α) w R(α i β) x iff there are w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ) , w 1 R(α) w 3 , w 2 R(β) w 4 and x (w 3 , w 4 ) An annotated formula ϕ in which there is no occurrence of any placeholder and such that, for all i ∈ N, there is at most one occurrence of i in ϕ, is called a pure formula. The set of all pure formulas is denoted by Φ pure . There exists a forgetful surjection 7. PDL with Deterministic Separating Parallel Composition • : Φ pure -→ Φ associating to each pure formula ϕ the formula ϕ obtained by removing all indices in ϕ. Thanks to the following proposition, the satisfiability of pure formulas can be considered instead of the satisfiability of PPDL det formulas.

(µ, ϕ) (µ, ∼ϕ) (µ, a ϕ) (µ, ϕ) (µ, α ; β ϕ) (µ, α β ϕ) (µ, α ∪ β ϕ) (µ, α ϕ) (µ, β ϕ) (µ, ϕ? ψ) (µ, ϕ) (µ, ψ) (µ, α * ϕ) (µ, α α * ϕ) (µ, ϕ) (µ, α i β ϕ) (µ. , α L i ) (µ.r, β R i ) (µ, ϕ)
(µ, α ∪ β ϕ) (µ, α Q ϕ ) (µ, β Q ϕ ) (µ, ϕ) (µ, α * ϕ) (µ, α Q α * ϕ ) (µ, ϕ) (µ, ¬ϕ) (µ, ϕ)
Proposition 7.5. For any model M = (W , R, , V ), any formula ϕ ∈ Φ pure and any state

w ∈ W , M, w, m ∅ W | = F ϕ iff M, w | = ϕ.
Proof. By a straightforward induction on |ϕ|.

Now, the Fischer-Ladner closure (see Section 2.2) is adapted to annotated formulas. For some constructions done in the next sections, we need to keep track of the level of separation (called depth) of each subformula. Hence we consider localized formulas. A location is a word on the alphabet { , r}, the empty word being denoted by . A localized formula is a pair (µ, ϕ) composed of a location µ and a formula ϕ.

Given a localized annotated formula (µ, ϕ), the closure FL(µ, ϕ) of (µ, ϕ) is the least set of localized annotated formulas which contains (µ, ϕ) and is closed by the application of the rules in Figure 7.3. In the remainder of this chapter, we will be mainly interested in closure of localized pure formulas of the form ( , ϕ 0 ). For all pure formulas ϕ 0 ∈ Φ pure , the following abbreviations are defined:

FL(ϕ 0 ) = FL( , ϕ 0 ) SP(ϕ 0 ) = α ∃µ, ∃ϕ, (µ, α ϕ) ∈ FL(ϕ 0 ) Loc(ϕ 0 ) = µ ∃ϕ, (µ, ϕ) ∈ FL(ϕ 0 )
where SP stands for "subprograms". The cardinality of FL(ϕ 0 ) is denoted by N ϕ 0 . We state the following proposition.

Proposition 7.6. N ϕ 0 is linear in |ϕ 0 |.

Proof. The proof is similar to the proof of Proposition 2.4. We define for any localized annotated formula (µ, ϕ) the restricted closure rFL(µ, ϕ) by replacing the rules for nondeterministic choices, iterations and negations of Figure 7.3 by the rules of Figure 7.4 where new propositional variables of the form Q ψ are added to the language.

The function γ on annotated programs and annotated formulas is inductively defined by:

γ(p) = 1 for all p ∈ Φ 0 γ(⊥) = 1 γ(L i ) = γ(R i ) = 1 for all i ∈ N γ(Q ϕ ) = 1 γ(¬ϕ) = γ(ϕ) + 1 γ( α ϕ) = γ(α) + γ(ϕ) γ(a) = 1 for all a ∈ Π 0 γ(α ; β) = γ(α) + γ(β) + 1 γ(α ∪ β) = γ(α) + γ(β) + 3 γ(ϕ?) = γ(ϕ) + 1 γ(α * ) = γ(α) + 2 γ(α i β) = γ(α) + γ(β) + 3
The following properties can easily be proved by induction on n > 0:

• For any annotated program α, if n = |α| then γ(α) ≤ 3n.

• For any annotated formula ϕ, if n = |ϕ| then γ(ϕ) ≤ 3n.

• For any localized annotated formula (µ, ϕ), if γ(ϕ) = n then rFL(µ, ϕ) ≤ n. Finally, FL(ϕ) can be recovered from rFL( , ϕ) by adding the negations of all formulas and by recursively replacing all occurrences of formulas of the form Q ψ with ψ.

Moreover, the following two lemmas can easily be proved.

Lemma 7.7. For any location µ, any program α, any pure formula ϕ 0 ∈ Φ pure and any annotated formulas ψ ∈ Φ P H , if (µ, α ψ) ∈ FL(ϕ 0 ) then (µ, ψ) ∈ FL(ϕ 0 ). Lemma 7.8. For any location µ, any pure formula ϕ 0 ∈ Φ pure and any annotated formulas ψ ∈ Φ P H , if (µ, ψ) ∈ FL(ϕ 0 ) and ψ? ∈ SP(ϕ 0 ) then ψ is a pure formula.

Since annotated formulas are evaluated at pairs consisting of a state and a marking function, Definition 2.3 does not apply and PPDL det extended with indices and placeholders does not have comprehensive decompositions. Nevertheless, the adaptation of the Fischer-Ladner closure presented above is sufficient for some adaptations of the usual method like the filtration (see Section 7.5) or the elimination of Hintikka sets (see Section 7.6). The difficulty of these adaptations can be understood by the necessity to choose suitable current marking functions at some steps and to remember these choices at some other steps.

Neat model property

As stated by the following proposition, PPDL det does not have the tree-like model property as defined by Definition 2.9 on page 19. Proposition 7.9. PPDL det does not have the tree-like model property.

Proof. Consider the formula ϕ = (¬p ∧ ¬q? ; a ; p ∧ ¬q?) (¬p ∧ q? ; a ; p ∧ q?) and suppose there is a model M = (W , R, , V ) over a tree-like frame, satisfying ϕ at w ∈ W . There is w 1 , w 2 , w 3 , w 4 , x ∈ W such that w (w 1 , w 2 ), w 1 R(a) w 3 , w 2 R(a) w 4 , x (w 3 , w 4 ) and the states w 1 , w 2 , w 3 , w 4 are pairwise distinct. Since (W , R, ) is tree-like, there is a symmetric binary relation E over W such that w 1 E w 3 , w 2 E w 4 , there is a path in ({w, w 1 , w 2 }, E) between w 1 and w 2 and there is a path in ({x, w 3 , w 4 }, E) between w 3 and w 4 . Hence (W , E) is cyclic.

As a replacement for the tree-like model property, we prove that PPDL det as the neat model property, i.e., that any PPDL det satisfiable formula is satisfiable in the class of neat models. This property is very useful to prove decidability results about PPDL det and is at the core of all the main results in the remainder of the thesis. Unfortunately, the notion of neat model is involved and Definition 7.12 uses many auxiliary concepts. Intuitively, a neat model is a model which can be partitioned into a hierarchy of tree-like models (for the union of all the accessibility relations), where the hierarchic order corresponds to the depth of formulas.

For a formal definition, we first introduce the notion of hierarchical models, which have a depth corresponding directly to the locations of subformulas in the Fischer-Ladner closure of Section 7.3. Notice that if M is hierarchical, all states in any thread T have the same depth, noted λ(T ). To strengthen the link between threads and depth, threads are grouped into pairs, each thread in a pair corresponding to one side of the separations. These pairs of threads are called twines. A twine is either a thread which contains no substates of another state or a pair of threads such that whenever a state in one thread is a substate by a decomposition then the other substate by this decomposition belongs to the other thread in the twine.

Definition 7.11. A twine is an ordered pair (T L , T R ) of threads such that for all x, y, z ∈ W if x (y, z) then y T R , z T L and y ∈ T L ⇔ z ∈ T R .

A twine (T 1 , T 2 ) is often identified with the set T 1 ∪T 2 . Obviously, if a thread T is such that for all (x, y, z) ∈ , y T and z T , then for any thread T having the same property, (T , T ) is a twine. Such a thread is called an isolated thread. It can easily be proved that if (T 1 , T 2 ) and (T 1 , T 3 ) are twines, then T 2 = T 3 or T 1 , T 2 and T 3 are all isolated. The notion of neat models can now be defined formally. Definition 7.12. A model M = (W , R, , V ) is neat if it satisfies all the following conditions:

1. for any thread T 1 in M, there exists a thread T 2 such that (T 1 , T 2 ) or (T 2 , T 1 ) is a twine;

2. there is exactly one isolated thread T 0 ;

3. there exists a hierarchy function λ for M such that λ(T 0 ) = .

We now prove Proposition 7.29 on page 110 which states that whenever a PPDL det formula is satisfiable in a -deterministic model, it is satisfiable in a -deterministic neat model. Supposing that the formula ϕ 0 ∈ Φ PPDL is PPDL det satisfiable, the proof proceeds in the three following steps:

1. by Proposition 7.13 below, there exists a countable model M C satisfying ϕ 0 ;

2. M C is unraveled into M U .

3. unreachable states from M U are pruned to obtain M N and M N is proved to be a -deterministic neat model satisfying ϕ 0 .

split defect, then δ w has been fixed before δ x and δ y get fixed and ρ(x) = ρ(y) = ρ(w). If δ w is a merge defect, then ρ(w) = Out and ρ(x) = ρ(y) = Out.

Lemma 7.24. If z N (x, y) then there exists z ∈ W N such that z N (ρ(x), ρ(y)) and (z , ρ(x), ρ(y)) has been added to U by a split defect.

Proof. If (z, x, y) has been added to N by a split defect, the property trivially holds. Suppose (z, x, y) has been added to N by a merge defect. Since ρ(z) Out, by construction, there must exist z ∈ W N such that z N (ρ(x), ρ(y)). Now, let k be the greatest integer such that (z , ρ(x), ρ(y)) k and suppose δ k is a merge defect. Since M U is -deterministic, there is no z ∈ W k such that z k (ρ(x), ρ(y)). Therefore, by construction, ρ(z ) = Out which is impossible since ρ(z) = ρ(z ).

Lemma 7.25. For all x 1 , x 2 , y 1 , y 2 , z 1 , z 2 ∈ W N , if z 1 N (x 1 , y 1 ) and z 2 N (x 2 , y 2 ) then ρ(x 1 ) = ρ(x 2 ) iff ρ(y 1 ) = ρ(y 2 ).

Proof. Suppose that z 1 N (x 1 , y 1 ) and z 2 N (x 2 , y 2 ). By Lemma 7.24, there exist z 1 , z 2 ∈ W N such that both (z 1 , ρ(x 1 ), ρ(y 1 )) and (z 2 , ρ(x 1 ), ρ(x 2 )) have been added to N by split defects. Then, by construction, ρ(x 1 ) = ρ(x 2 ) iff ρ(y 1 ) = ρ(y 2 ).

Lemma 7.26. The state x 0 is the only x ∈ W N such that ρ(x) = x and for all (w, y, z) ∈ N , ρ(y) x and ρ(z) x.

Proof. We first prove that x 0 satisfies these properties. Obviously, ρ(x 0 ) = x 0 . Suppose w N (y, z) and ρ(y) = x 0 , the case when ρ(z) = x 0 being similar. By Lemma 7.24, there exists w ∈ W N such that (w , ρ(y), ρ(z)) has been added to U by a split defect, which is impossible by construction. We now prove the uniqueness. By construction, for all x ∈ W N , either ρ(x) = x 0 or ρ(x) has been added to W U by a split defect. In the former case, ρ(x) = x implies that x = x 0 . In the latter case, there exist w, y ∈ W U such that w U (ρ(x), y ) or w U (y , ρ(x)). By construction, since ρ(ρ(x)) = ρ(x) Out, w, y ∈ W N . Hence, if ρ(x) = x then there exist y, z ∈ W N such that w N (y, z) and either ρ(y) = x or ρ(z) = x.

Lemma 7.27. There is a hierarchical function λ for M N such that λ(x 0 ) = .

Proof. Let us define the function λ which assigns a word over the alphabet { , r} to each state in W N . The function is constructed by induction on the unraveling. Initially, λ(x 0 ) = . Then, when fixing a split defect (w, v 1 , v 2 ) by adding w 1 and w 2 , with ρ(w) Out, we set λ(w 1 ) = λ(ρ(w)). and λ(w 2 ) = λ(ρ(w)).r. Thereafter, λ is extended to W N by stating λ(x) = λ(ρ(x)) for all x ∈ W N . Now, it suffices to show that if (x, y, z) has been added to U when fixing a merge defect and {x, y, z} ⊆ W N then λ(y) = λ(x). and λ(z) = λ(x).r. By Lemma 7.24, there exists x ∈ W N such that (x , ρ(y), ρ(z)) has been added to W U by a split defect. By construction λ(ρ(y)) = λ(x ). and λ(ρ(z)) = λ(x ).r. Since ρ(x ) = ρ(x), λ(y) = λ(x). and λ(z) = λ(x).r.

Lemma 7.28. M N is a neat -deterministic model satisfying ϕ 0 at x 0 .

Proof. The -determinism of M N directly comes from the -determinism of M U and the satisfaction of ϕ 0 at x 0 is proved by Lemma 7.22. For the neat property, Lemmas 7.26 and 7.27 prove conditions 2 and 3 of Definition 7.12. For condition 1, suppose T 1 be a non-isolated thread of M N and x ∈ T such that ρ(x) = x. By Lemma 7.26, there is (w, y, z) ∈ N such that x = y or x = z. Suppose x = y, the other case being symmetrical. Let T 2 be the thread of z. We prove that (T 1 , T 2 ) is a twine. Suppose w N (x , z ) for some w , x , z ∈ W N and let λ be the hierarchical function for M N as defined in Lemma 7.27. Obviously, λ(x) and λ(x ) end with whereas λ(z) and λ(z ) end with r. Therefore x T 2 and z T 1 . Finally, by Lemma 7.25, x ∈ T 1 iff z ∈ T 2 . 109
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We have proved the following proposition.

Proposition 7.29. Any PPDL det satisfiable formula ϕ ∈ Φ PPDL is satisfiable in a neat -deterministic model.

Strong finite model property

We now prove the first decidability result for the full logic PPDL det , namely that PPDL det has the exponential-model property. Hence the satisfiability of PPDL det formulas can be decided in nondeterministic exponential time.

Proposition 7.30. Whenever a formula ϕ ∈ Φ PPDL is satisfiable in a -deterministic model, it is satisfiable in a -deterministic finite model M = (W , R, , V ) in which the cardinality of W is bounded by an exponential in |ϕ|.

Corollary 7.31. The satisfiability problem of PPDL det is in NEXPTIME.

Proof. The method used in [Lange.06] can easily be adapted to give a polynomial decision procedure for the model checking of PPDL det . Hence, the corollary holds by the previous proposition.

The method used to prove these results is the traditional filtration method. Annotated formulas and the Fischer-Ladner closure adaptation of Section 7.3 are used. But since the Fischer-Ladner closure is not (really) comprehensive, the filtration method must be further altered. Using Proposition 7.29, the initial model is supposed to be neat and the filtration is applied on each twine independently. We call this method a piecewise filtration.

Suppose the formula ψ 0 ∈ Φ PPDL is PPDL det satisfiable. By Propositions 7.5 and 7.29, there is a neat -deterministic model M N = W N , R N , N , V N with hierarchy function λ, a state x 0 ∈ W N and a pure formula ϕ 0 ∈ Φ pure such that ϕ 0 = ψ 0 , M N , x 0 , m ∅ W | = F ϕ 0 and λ(x 0 ) = . The model M F with a number of states bounded by a fixed exponential function in |ϕ 0 | is inductively constructed from M N . At the initial step, the filtration by FL(ϕ 0 ) of the thread containing x 0 is added to M F . At the inductive steps, for each pair of states (w, x) ∈ M F which must be connected by a parallel program, the filtration by FL(ϕ 0 ) of a twine of M N corresponding to an execution of this parallel program from w to x is added to M F .

In order to preserve the -determinism of M N during the filtration, we need to distinguish for any filtered twine, the forward (split) decomposition from the backward (merge) one. For that purpose, placeholders are duplicated and the special pair {L 0 , R 0 } of placeholders is used to mark the forward decomposition. Formally, for any formula ϕ ∈ Φ P H and any k ∈ N, let f dup (k, ϕ) be the formula obtained from ϕ by replacing each occurrence of L i and R i in ϕ with L 2i+k and R 2i+k respectively, for all i ∈ N. We define the sets

FL + (ϕ 0 ) = (µ, f dup (k, ϕ)) k ∈ {1, 2}, (µ, ϕ) ∈ FL(ϕ 0 ) ∪ ((µ, L 0 ), (µ, ¬L 0 ), (µ, R 0 ), (µ, ¬R 0 ) µ ∈ Loc(ϕ 0 ) SF + (ϕ 0 ) = ϕ ∃µ, (µ, ϕ) ∈ FL + (ϕ 0 )
The filtrations are done using the ≡ m equivalence relations over W N , defined for any marking function m ∈ B W N by x ≡ m y iff λ(x) = λ(y) and for all (µ, ϕ)

∈ FL + (ϕ 0 ) if µ = λ(x) then M N , x, m | = F ϕ iff M N , y, m | = F ϕ.
The functions Ω and Ψ are defined for all X ⊆ W N and m ∈ B W N by:

Ω(X, m) = Y ∩ X Y ∈ W N / ≡ m Ψ (X, m) = ϕ ∃x ∈ X, (λ(x), ϕ) ∈ FL + (ϕ 0 ) and M N , x, m | = F ϕ
Finally, the set PC compiles all the parallel program links for which we may have to add the filtration of a twine. Formally, PC is the greatest subset of N × { , r} * × P (SF + (ϕ 0 )) × SP(ϕ 0 ) × P (SF + (ϕ 0 )) such that for all (k, µ, F, α, G) ∈ PC:

• α is of the form (α 1 i α 2 ),

• for all ψ ∈ F ∪ G, (µ, ψ) ∈ FL + (ϕ 0 ) and • there exists ϕ ∈ Φ P H such that (µ, α ϕ) ∈ FL + (ϕ 0 ). Since P (SF + (ϕ 0 )) and SP(ϕ 0 ) are finite, there exists a total order over PC with a least element and such that (k, µ, F, α, G) < (k , µ , F , α , G ) implies k ≤ k . This order determines a bijective function from N to PC. Moreover, if (k, µ, F, α, G) is the n th tuple in PC then k ≤ n. Now we inductively construct the models

M n = (W n , R n , n , V n ) for n ∈ N, where W n ⊆ N × P W N × B W N .
The following invariants hold for all n ∈ N:

(7.15) for all (k, X, m) ∈ W n , all ϕ ∈ Ψ (X, m) and all x ∈ X, M N , x, m | = F ϕ;

(7. 16) for all (k, X, m), (k , Y , m ) ∈ W n , if k = k then m = m and for all x ∈ X and all y ∈ Y , x and y belong to the same twine and x ≡ m y iff X = Y .

Therefore, for all (k, X, m) ∈ W k , the location λ(X) can be defined such that λ(x) = λ(X) for all x ∈ X.

Initial step. Let T 0 be the thread in M N containing x 0 . We set:

W 0 = (0, X, m ∅ W N ) X ∈ Ω(T 0 , m ∅ W N ) R 0 (a) = ((k, X, m), (k , X , m )) ∈ W 0 × W 0 k = k and ∃x ∈ X, ∃x ∈ X , x R N (a) x 0 = ∅ V 0 (p) = {(k, X, m) ∈ W 0 | p ∈ Ψ (X, m)}
If PC = ∅ then M n = M 0 for all n ∈ N. Otherwise the following inductive step is applied.

Inductive step. Suppose M n has already been defined and let (k, µ, F, α 1 i α 2 , G) be the n th tuple in PC. If for all X, Y ⊆ W N and all m ∈ B W N , one of the following conditions is not satisfied

(k, X, m) ∈ W n and (k, Y , m) ∈ W n (7.17) Ψ (X, m) = F and Ψ (Y , m) = G (7.18) λ(X) = λ(Y ) = µ (7.19) ∃x ∈ X, ∃y ∈ Y , x R N (α 1 i α 2 ) y (7.20) then M n+1 = M n .
Otherwise, by the invariants (7.15) and (7. 16), there is exactly one tuple (X, Y , m) satisfying (7.18) and (7.17). By condition (7.20), there exist x ∈ X, y ∈ Y and w 1 , w 2 , w 3 , w 4 ∈ W N such that x N (w 1 , w 2 ), w 1 R N (α 1 ) w 3 , w 2 R N (α 2 ) w 4 and y N (w 3 , w 4 ). The marking function m n+1 is defined such that

m n+1 (L 0 ) = {w 1 } m n+1 (L i ) = w ∃β 1 , β 2 s.t. (β 1 i-1 2 β 2 ) ∈ SP(ϕ 0 ) and w 1 R N (β 1 ) w , if i is odd m n+1 (L i ) = w ∃β 1 , β 2 s.t. (β 1 i-2 2 β 2 ) ∈ SP(ϕ 0 ) and w 3 R N (β 1 ) w , if i is even and i > 0 111 7. PDL with Deterministic Separating Parallel Composition m n+1 (R 0 ) = {w 2 } m n+1 (R i ) = w ∃β 1 , β 2 s.t. (β 1 i-1 2 β 2 ) ∈ SP(ϕ 0 ) and w 2 R N (β 2 ) w , if i is odd m n+1 (R i ) = w ∃β 1 , β 2 s.t. (β 1 i-2 2
β 2 ) ∈ SP(ϕ 0 ) and w 4 R N (β 2 ) w , if i is even and i > 0 Since M N is neat, w 1 , w 2 , w 3 and w 4 belong to the same twine θ. For all t ∈ 1 . . 4, there exists X t ∈ Ω(θ, m n+1 ) such that x t ∈ X t . M n+1 is defined by:

W n+1 = W n ∪ {(n + 1, X, m n+1 ) | X ∈ Ω(θ, m n+1 )} R n+1 (a) = ((k, X, m), (k , X , m )) ∈ W n+1 × W n+1 k = k and ∃x ∈ X, ∃x ∈ X , x R N (a) x n+1 = n ∪ {((k, X, m), (n + 1, X 1 , m n+1 ), (n + 1, X 2 , m n+1 )), ((k, Y , m), (n + 1, X 3 , m n+1 ), (n + 1, X 4 , m n+1 ))} V n+1 (p) = {(k, X, m) ∈ W n+1 | p ∈ Ψ (X, m)} Finally, M F = W F , R F , F , V F is
defined as the union of M n for all n ∈ N. Similarly, the marking function m F is defined by:

m F (L i ) = (k, X, m) ∈ W F L i ∈ Ψ (X, m) m F (R i ) = (k, X, m) ∈ W F R i ∈ Ψ (X, m)
The following lemmas prove that M F is a -deterministic model which satisfies ϕ 0 and has a number of states bounded by an exponential in |ϕ 0 |.

Lemma 7.32. The cardinality of W F is bounded by an exponential in the number of symbols in ϕ 0 .

Proof. Let G(n) = (k, X, m) ∈ W F k = n for all n ∈ N and G = {n ∈ N | G(n) ∅}.
The graph T whose nodes are elements from G is constructed such that there is an edge from n to m iff m > 0 and the (m -1) th tuple (k, F, α, G) in PC is such that k = n. Obviously, T is connected and a directed tree. Since the cardinalities of SF + (ϕ 0 ) and SP(ϕ 0 ) are bounded by 2N ϕ 0 + 2 and N ϕ 0 respectively, the branching factor of T is bounded by N ϕ 0 2 4N ϕ 0 +4 . Since M N is hierarchical, for all n ∈ N the length (n) of λ(x) is the same for all x ∈ X and all (k, X, m) ∈ G(n). Moreover, (n) is strictly increasing along the edges of T and for some d ≤ N ϕ 0 there is no program of the form (α i β) such that for some µ with length d and some ϕ ∈ Π P H , (µ, α i β ϕ) ∈ FL + (ϕ 0 ). Therefore, the depth of T is bounded by N ϕ 0 . Hence the cardinality of G is bounded by 2 4N 2 ϕ 0 +4N ϕ 0 +N ϕ 0 log(N ϕ 0 ) . By construction, for all n ∈ N, the cardinality of G(n) is bounded by 2 2N ϕ 0 +2 . Therefore, the cardinality of W F is bounded by 2 4N 2 ϕ 0 +6N ϕ 0 +N ϕ 0 log(N ϕ 0 )+2 .

Lemma 7.33. M F is -deterministic.

Proof. Suppose that

(k 0 , X 0 , m 0 ) F ((k 2 , X 2 , m 2 ), (k 3 , X 3 , m 3 )) (k 1 , X 1 , m 1 ) F ((k 2 , X 2 , m 2 ), (k 3 , X 3 , m 3 )) (k 0 , X 0 , m 0 ) (k 1 , X 1 , m 1 )
By construction, k 2 = k 3 and k 0 = k 1 , hence by the invariant (7.16), m 2 = m 3 , m 0 = m 1 and X 0 ∩ X 1 = ∅. Moreover, there exist x 0 ∈ X 0 , x 1 ∈ X 1 , w 0 ∈ X 2 , w 1 ∈ X 3 , w 2 ∈ X 2 and w 3 ∈ X 3 such that m 2 (L 0 ) = {w 0 }, m 3 (R 0 ) = {w 1 }, x t N (w 0 , w 1 ) and x 1-t N (w 2 , w 3 ), for some t ∈ {0, 1}. But since L 0 ∈ Ψ (X 2 , m 2 ) and R 0 ∈ Ψ (X 3 , m 3 ), w 0 = w 2 and w 1 = w 3 . Since M N is -deterministic, x 0 = x 1 , which is a contradiction. Since M N is neat, z ∈ θ x and there exists Z ∈ Ω(θ x , m) such that z ∈ Z. Moreover, (λ(x), β 1 β 2 ϕ) ∈ FL(ϕ 0 ) and (λ(x), β 2 ϕ) ∈ FL(ϕ 0 ). Thus by the induction hypothesis IH.2, (k, X, m) R F (β 1 ) (k, Z, m) and (k, Z, m) R F (β 2 ) (k, X, m). The proof for the case when the program is an iteration is similar to the proof for sequential compositions. When the program α is a parallel composition, suppose the left side of the implication holds for α = (β 1 i β 2 ). Let F = Ψ (X, m) and G = Ψ (Y , m). Since M N is hierarchical, there exists n such that (k, F, α, G) is the n th tuple in PC. Therefore, either (k, X, m) R n (α) (k, Y , m) and the property holds or there exist

X 1 , X 2 , X 3 , X 4 ⊆ W N , m n+1 ∈ B W N , w 1 ∈ X 1 , w 2 ∈ X 2 , w 3 ∈ X 3 and w 4 ∈ X 4 such that (k, X, m) n+1 ((n + 1, X 1 , m n+1 ), (n + 1, X 2 , m n+1 )), (k, Y , m) n+1 ((n + 1, X 3 , m n+1 ), (n + 1, X 4 , m n+1 )), w 1 R N (β 1
) w 3 and w 2 R N (β 2 ) w 4 . Moreover, λ(w 1 ) = λ(w 3 ) = λ(x). and λ(w 2 ) = λ(w 4 ) = λ(x).r. Obviously, (λ(x).L, β 1 L 2i+1 ) and (λ(x).R N , β 2 R 2i+1 ) belong to FL + (ϕ 0 ). Thus, by the induction hypothesis IH.2,

(n + 1, X 1 , m n+1 ) R F (β 1 ) (n + 1, X 3 , m n+1 ) and (n + 1, X 2 , m n+1 ) R F (β 2 ) (n + 1, X 4 , m n+1 ).

Induction hypothesis IH.3. The case when the program is an atomic

program is triv- ial. When the program is a test, suppose (k, X, m) R F (ϕ?) (k, Y , m) and [ϕ?]ψ ∈ Ψ (X, m). Obviously, X = Y and M F , (k, X, m), m F | = F ϕ. Since (λ(X), ϕ) ∈ FL(ϕ 0 ), by induction hy- pothesis IH.1, ϕ ∈ Ψ (X, m). For all x ∈ X, M N , x, m | = F [ϕ?]ψ and M N , x, m | = F ϕ, hence M N , x, m | = F ψ. Since (λ(X), ψ) ∈ FL + (ϕ 0 ), ψ ∈ Ψ (X, m). When the program is a nondeter- ministic choice, suppose that (k, X, m) R F (α ∪ β) (k, Y , m) and [α ∪ β] ϕ ∈ Ψ (X, m). Then {[α] ϕ, [β] ϕ} ⊆ Ψ (X, m) and either (k, X, m) R F (α) (k, Y , m) or (k, X, m) R F (β) (k, Y , m). In both cases, by induction hypothesis IH.3, ϕ ∈ Ψ (Y , m). When the program is a se- quential composition, suppose that (k, X, m) R F (α ; β) (k, Y , m) and [α ; β] ϕ ∈ Ψ (X, m). There exists Z ⊆ W N such that (k, X, m) R F (α) (k, Z, m) and (k, Z, M) R F (β) (k, Y , m). Since [α] [β] ϕ ∈ Ψ (X, m), by the induction hypothesis IH.3, [β] ϕ ∈ Ψ (Z, m)
and by the same induction hypothesis, ϕ ∈ Ψ (Y , m). When the program is an iteration, suppose (k, X, m) R F (α * ) (k, Y , m) and [α * ] ϕ ∈ Ψ (X, m). There exists a chain Z 0 , . . . , Z n such that X = Z 0 , Y = Z n and for all j < n, (k, Z j , m) R F (α) (k, Z j+1 , m). It can be proved by subinduction on j that for all j ≤ n,

{[α * ] ϕ, ϕ, [α] [α * ] ϕ} ⊆ Ψ (Z j , m). When the program is a parallel composition, suppose (k, X, m) R F (β 1 i β 2 ) (k, Y , m) and [β 1 i β 2 ] ϕ ∈ Ψ (X, m). For all ∈ 1 . . 4, there is (k , X , m ) ∈ W F such that (k, X, m) F ((k 1 , X 1 , m 1 ), (k 2 , X 2 , m 2 )), (k, Y , m) F ((k 3 , X 3 , m 3 ), (k 4 , X 4 , m 4 )) and (k , X , m ) R F (β ) (k +1 , X +1 , m +1 ) for all ∈ {1, 2}. By construction, k 1 = k 2 , m 1 = m 2 , k 3 = k 4 , m 3 = m 4 and there exist x ∈ X, y ∈ Y , w 1 ∈ X 1 , w 2 ∈ X 2 ,
w 3 ∈ X 3 and w 4 ∈ X 4 such that x N (w 1 , w 2 ) and y N (w 3 , w 4 ). Moreover, there exists t ∈ {1, 2} such that for all w ∈ W N :

w 1 R N (β 1 ) w iff w ∈ m 1 (L 2i+t ) (7.21) w 2 R N (β 2 ) w iff w ∈ m 2 (R 2i+t ) (7.22) Hence, M N , w 1 , m 1 | = F [β 1 ] L 2i+t and M N , w 2 , m 2 | = F [β 2 ] R 2i+t . Since M N is hierarchical, (λ(X 1 ), [β 1 ] L 2i+t ) ∈ FL(ϕ 0 ) and (λ(X 2 ), [β 2 ] R 2i+t ) ∈ FL(ϕ 0 )
. By the induction hypothesis IH.3, L 2i+t ∈ Ψ (X 3 , m 3 ) and R 2i+t ∈ Ψ (X 4 , m 4 ). By (7.21) and (7.22), w 1 R N (β 1 ) w 3 and

w 2 R N (β 2 ) w 4 . Hence, x R N (β 1 i β 2 ) y and since [β 1 i β 2 ] ϕ ∈ Ψ (X, m), ϕ ∈ Ψ (Y , m).
We have proved Proposition 7.30. Beside having a number of states bounded by an exponential, the model M F has some interesting properties. We prove that by eliminating the unreachable states of M F , a neat model M R is obtained which has the additional property that for each thread T in M R there are at most two decompositions (w, x, y) ∈ R such that {x, y} ∩ T ∅. This latter property is used implicitly in the next section. We first define the reach M function and state general results about it.

Definition 7.37. Given a model M = (W , R, , V ) and a state w ∈ W , the set reach M (w) of reachable states from w is the least set by inclusion such that: (7.23) w ∈ reach M (w), replacing all occurrences in ϕ of L i and R i , for any i ∈ N, with L k and R k respectively. For any pure formula ϕ 0 ∈ Φ pure , we define the set

FL -(ϕ 0 ) = (µ, f red (k, ϕ)) k ∈ {1, 2} and (µ, ϕ) ∈ FL(ϕ 0 )
Clearly, the cardinality of FL -(ϕ 0 ) is bounded by 2 • N ϕ 0 . Now, the procedure of eliminating Hintikka sets for PPDL det is described formally.

Definition 7.45. Let ϕ 0 ∈ Φ be a pure formula and µ a location in Loc(ϕ 0 ). A Hintikka set H over ϕ 0 at µ is any maximal subset of FL -(ϕ 0 ) verifying all the following conditions: 

1. If (µ , ϕ) ∈ H, then µ = µ. 2. If (µ, ¬ϕ) ∈ FL -(ϕ 0 ), then (µ, ¬ϕ) ∈ H iff (µ, ϕ) H. 3. If (µ, α ; β ϕ) ∈ FL -(ϕ 0 ), then (µ, α ; β ϕ) ∈ H iff (µ, α β ϕ) ∈ H. 4. If (µ, α ∪ β ϕ) ∈ FL -(ϕ 0 ), then (µ, α ∪ β ϕ) ∈ H iff (µ, α ϕ) ∈ H or (µ, β ϕ) ∈ H. 5. If (µ, ϕ? ψ) ∈ FL -(ϕ 0 ), then (µ, ϕ? ψ) ∈ H iff (µ, ϕ) ∈ H and (µ, ψ) ∈ H. 6. If (µ, α * ϕ) ∈ FL -(ϕ 0 ), then (µ, α * ϕ) ∈ H iff (µ, α α * ϕ) ∈ H or (µ, ϕ) ∈ H. µ is
(λ(H), α β ϕ) ∈ FL -(ϕ 0 ), if (λ(H ), ϕ) ∈ H and (λ(H 1 ), α L t ) ∈ H 1 and (λ(H 2 ), β R t ) ∈ H 2 then (λ(H), α β ϕ) ∈ H.
The set of all sockets for ϕ 0 is denoted by S(ϕ 0 ). The location set of a socket S, denoted by Λ(S), is defined such that Λ(∅) = { } and for all S ∅, Λ(S) = {λ(P ). , λ(P ).r | P ∈ S}.

Given a pure formula ϕ 0 ∈ Φ we inductively construct for each k ∈ N the tuple 

M H k = W H k , R H k , H k , V H k where W H k ⊆ Hin (ϕ 0 ) × S(ϕ 0 ). Each of these tuples is a model iff W H k ∅. The restricted accessibility relation R k (α) over W H k is inductively defined for all k ∈ N and all α ∈ Π by: • (H, S) R k (a) (H , S ) iff (H, S) R H k (a) (H , S ), • (H, S) R k (ϕ?) (H , S ) iff (H, S) = (H , S ) and (λ(H), ϕ) ∈ H, 117 7. PDL with Deterministic Separating Parallel Composition • (H, S) R k (α ; β) (H , S ) iff there is (H , S ) ∈ W H k such that (H, S) R k (α) (H , S ) and (H , S ) R k (β) (H , S ), • (H, S) R k (α ∪ β) (H , S ) iff (H, S) R k (α) (H , S ) or (H, S) R k (β) (H , S ), • (H, S) R k (α * ) (H , S ) iff (H, S) R k (α) * ( 
= W H 0 , R H 0 , H 0 , V H 0 is constructed as follows:
• W H 0 is the set of pairs (H, S) ∈ Hin (ϕ 0 ) × S(ϕ 0 ) such that λ(H) ∈ Λ(S),

• for all a ∈ Π 0 , (H, S) R H 0 (a) (H , S ) iff S = S and for all (µ, ϕ)

∈ H , if (µ, a ϕ) ∈ FL -(ϕ 0 ) then (µ, a ϕ) ∈ H, • (H, S) H 0 ((H 1 , S 1 ) , (H 2 , S 2 )) iff S 1 = S 2 and (H, H 1 , H 2 ) ∈ S 1 , • for all p ∈ Φ 0 , V H 0 (p) = (H, S) ∈ W H 0 (λ(H), p) ∈ H . Inductive (k + 1) th step. Suppose M H k = W H k , R H k , H k , V H k has already been defined. A state (H, S) ∈ W H k is demand-satisfied in M H k iff for any program α and any formula ϕ, if (λ(H), α ϕ) ∈ H then there exists (H , S ) ∈ W H k such that (H, S) R k (α) (H , S ) and (λ(H ), ϕ) ∈ H . Define M H k+1 = W H k+1 , R H k+1 , H k+1 , V H k+1 as the reduction of M H k to the demand-satisfied states, i.e.: W H k+1 = (H, S) ∈ W H k (H, S) is demand-satisfied in M H k R H k+1 (a) = R H k (a) ∩ (W H k+1 × W H k+1 ), for all a ∈ Π 0 H k+1 = H k ∩ (W H k+1 × W H k+1 × W H k+1 ) V H k+1 (p) = V H k (p) ∩ W H k+1 , for all p ∈ Φ 0
It can easily be proved that there are less than 2 14•N ϕ 0 +1 states in W H 0 . Hence, there exists n ≤ 2 14•N ϕ 0 +1 such that M

H n = M H n+k for all k ∈ N. Let M H = W H , R H , H , V H = M H n and R = R n . Our procedure succeeds iff there is a state (H 0 , S 0 ) ∈ W H such that ( , ϕ 0 ) ∈ H 0 .
Lemma 7.48. Given a pure formula ϕ 0 ∈ Φ pure , to construct the corresponding model M H and to check whether there is a state (H 0 , S 0 ) ∈ W H such that ( , ϕ 0 ) ∈ H 0 can be done in deterministic exponential time.

Proof. We have already stated that the procedure constructs at most an exponential number of models. The method from [Lange.06] can easily be adapted to prove that R k (α) can be computed in time polynomial in the cardinality of W H k . Therefore, the whole procedure can be executed in deterministic exponential time.

The next subsections are devoted to prove that this procedure is a decision procedure for the satisfiability problem of PPDL det . We use the traditional vocabulary used for the dual problem of validity. 

i = (k i , (H i , S i )) ∈ W D such that (k, (H, S)) D (w 1 , w 2 ), w 1 R D (β) w 3 , w 2 R D (γ) w 4 and (k , (H , S )) D (w 3 , w 4 ). By IH.1, k 1 = k 3 , k 2 = k 4 , (H 1 , S 1 ) R(β) (H 3 , S 3 ) and (H 2 , S 2 ) R(γ) (H 4 , S 4 ). By the construction of M D , we have that k = k , S 1 = S 2 = S 3 = S 4 and {(H, H 1 , H 2 ), (H , H 3 , H 4 )} ⊆ S 1 .

Soundness

We now prove that, for any a pure formula ϕ 0 , if ϕ 0 is PPDL det satisfiable, then the procedure of eliminating Hintikka sets succeeds for ϕ 0 . Suppose the pure formula ϕ 0 ∈ Φ pure is satisfiable in a -deterministic model and let M H = W H , R H , H , V H be the model obtained by the procedure of eliminating Hintikka sets for ϕ 0 . The proof proceeds as follows. First, considering a -deterministic model M satisfying ϕ 0 , a correspondence between the states of M and some states of W H 0 is constructed. Then, it is proved that the states of W H 0 corresponding to states in M cannot be deleted by the procedure and that one of these states (H 0 , S 0 ) ∈ W H 0 is such that ( , ϕ 0 ) ∈ H 0 . The difficulties come from the involved structure of M H 0 with locations, Hintikka sets, plugs, sockets and placeholders. To overcome these difficulties, we use Proposition 7.43 and assume there is a model M = (W , R, , V ) with hierarchy function λ and a state x 0 ∈ W such that M, x 0 , m ∅ W | = ϕ 0 and λ(x 0 ) = . To define the correspondence between W and W H 0 , the functions h hin , h plug , h socket and h state are defined such that for all x, y, z ∈ W , T ⊆ and m, m ∈ B W : Proof. Define m ∅ such that m ∅ (P ) = ∅ for all P ∈ ∆ + . Since M, x 0 , m ∅ W | = ϕ 0 and λ(x 0 ) = , ( , ϕ 0 ) ∈ h hin (x 0 , m ∅ ). Moreover, h socket (∅, m ∅ , m ∅ ) = ∅ is trivially a socket and since

h hin (x, m) = (µ, ϕ) ∈ FL -(ϕ 0 ) µ = λ(x) and M, x, m | = ϕ h plug ((x, y, z), m, m ) = (h hin (x, m ), h hin (y, m), h hin (z, m)) h socket (T , m, m ) = h plug (D, m, m ) D ∈ T h state (x, T , m, m ) = (h hin (x, m), h socket (T , m, m )) A state (H, S) ∈ W
Λ(∅) = { }, h state (x 0 , ∅, m ∅ , m ∅ ) ∈ W H 0 . Lemma 7.54. For all x ∈ W , all T ⊆ and all m, m ∈ B W , if h state (x, T , m, m ) ∈ W H 0 then for all k ∈ N, h state (x, T , m, m ) ∈ W H k .
Proof. We prove by induction on k that for all k ∈ N, x ∈ W , T ⊆ and m, m ∈ B W :

IH.1 if h state (x, T , m, m ) ∈ W H 0 then h state (x, T , m, m ) ∈ W H k ; IH.2 for all y ∈ W and all α ∈ Π P H such that ∃ϕ, (λ(x), α ϕ) ∈ FL -(ϕ 0 ), if x R(α) y and h state (x, T , m, m ) ∈ W H k then h state (y, T , m, m ) ∈ W H k and h state (x, T , m, m ) R k (α) h state (y, T , m, m ).
Base case. IH.1 is trivial. For IH.2, we first prove that h state (y, T , m, m ) ∈ W H 0 . By hypothesis, h socket (T , m, m ) is a socket. Hence it only remains to prove that λ(y) ∈ Λ (h socket (T , m, m )) which is the case by (7.2) since λ is a hierarchy function and λ(x) ∈ Λ (h socket (T , m, m )). The proof that h state (x, T , m, m ) R 0 (α) h state (y, T , m, m ) is by subinduction on |α|. We detail only the case for parallel compositions, the other cases being straightforward. Suppose x R(β γ) y. There exists w 1 , w 2 , w 3 , w 4 ∈ W such that x (w 1 , w 2 ), w 1 R(β) w 3 , w 2 R(γ) w 4 and y (w 3 , w 4 ). Let m be defined such that m (L 1 ) = {w 1 }, m (R 1 ) = {w 2 }, m (L 2 ) = {w 3 } and m (R 2 ) = {w 4 }. Since, by hypothesis, there exists ϕ such that (λ(x), β γ ϕ) ∈ FL -(ϕ 0 ), by Lemma 7.7, (λ(x). , L 1 ) ∈ FL -(ϕ 0 ) and (λ(x).r, R 1 ) ∈ FL -(ϕ 0 ). Therefore, since λ is a hierarchy function, h plug ((x, w 1 , w 2 ), m , m) is a plug of type 1. By a similar reasoning, h plug ((y, w 3 , w 4 ), m , m) is a plug of type 2. Let T = {(x, w 1 , w 2 ), (y, w 3 , w 4 )}, S = h socket (T , m , m) and H i = h hin (w i , m ) for all i ∈ 1 . . 4. By definition, (H i , S ) = h state (w i , T , m , m) for all i ∈ 1 . . 4. We prove that S is a socket. For Condition 1 of Def. 7.47, suppose first that h plug ((x, w 1 , w 2 ), m , m) has both types. Then (λ(w 1 ), L 2 ) ∈ H 1 and (λ(w 2 ), R 2 ) ∈ H 2 , hence w 1 = w 3 , w 2 = w 4 and T is a singleton. The case is similar if h plug ((y, w 3 , w 4 ), m , m) has both types. If the plugs have different types, since M is hierarchical, they have the same location. For Condition 2 of Def. 7.47, suppose that (λ(x), α β ϕ ) ∈ FL -(ϕ 0 ), (λ(y), ϕ ) ∈ h hin (y, m), (λ(w 1 ), α L 2 ) ∈ H 1 and (λ(w 2 ), β R 2 ) ∈ H 2 , the other case being symmetrical. By definition of m , w 1 R(α ) w 3 and w 2 R(β ) w 4 , hence M, x, m | = α β ϕ and (λ(x), α β ϕ ) ∈ h hin (x, m). Therefore, S is a socket. Moreover, since Λ(S ) = {λ(x). , λ(x).r} and M is hierarchical, {(H 1 , S ), (H 2 , S ), (H 3 , S ), (H 4 , S )} ⊆ W H 0 . By the subinduction hypothesis, we have (H 1 , S ) R 0 (β) (H 3 , S ) and (H 2 , S ) R 0 (γ) (H 4 , S ). Therefore, by definition of the restricted accessibility relation, h state (x, T , m, m ) R 0 (β γ) h state (y, T , m, m ).

Inductive step. Suppose now that IH.1 and IH.2 hold for a given k. Here the order of the proofs matters since we use IH.1 for k + 1 to prove IH.2 for k + 1. To prove IH.1 for k + 1, suppose that h state (x, T , m, m ) ∈ W H k . Then for any formula α ϕ such that (λ(x), α ϕ) ∈ h hin (x, m), there exists y ∈ W such that x R(α) y and M, y, m | = ϕ. By IH.2 and Lemma 7.7, h state (y, T , m, m ) ∈ W H k , h state (x, T , m, m ) R k (α) h state (y, T , m, m ) and (λ(y), ϕ) ∈ h hin (y, m). Therefore h state (x, T , m, m ) is demand-satisfied and belongs to W H k+1 . The proof of IH.2 for k + 1 is similar to the corresponding proof in the base case except that the hypothesis IH.1 for k + 1 is used. For instance, in the case for parallel compositions, once it has been proved that h state (w i , T , m , m) ∈ W H 0 for all i ∈ 1 . . 4, we use IH.1 to state that h state (w i , T , m , m) ∈ W H k+1 for all i ∈ 1 . . 4. Thus the subinduction hypothesis can be used to conclude. x : 11). Let f = f and g defined such that g ((w 1 , w 2 )) = m ∅ W and g (θ) = g(θ) for all θ ∈ dom(g). Lemma 8.9. For any pure formula ϕ 0 ∈ Φ pure , there is a tableau for ϕ 0 in which every branch is saturated.

x : [α ∪ β] ϕ x : [α] ϕ x : [β] ϕ ∪=00 (x, x) : α ∪ β (x, x) : α (x, x) : β size(α) 1, size(β) 1 ∪=01 (x, x) : α ∪ β (x, x) : α size(α) 1, size(β) = 1 ∪=10 (x, x) : α ∪ β (x, x) : β size(α) = 1, size(β) 1 ∪ 11 (x, y) : α ∪ β (x,
[α i β]ϕ (x, y, z) : F y : [α]L i z : [β]R i size (α i β) 0 1B y : L i z : R i (x, y, z) : B x : G(i) 0 x : [α i β]ϕ x : ϕ x : [uniter (α i β)] ⊥ size (α i β) 1 0⊥ x : [α i β]⊥ (x, y, z) : ∆ y : [α]⊥ z : [β]⊥ size (α i β) = 0 00 (x, x) : α i β (x, n 1 , n 2 ) : F (n 1 , n 1 ) : α (n 2 , n 2 ) : β 0 (x, y) : α i β Z 0 size(α) = 0, x y 0 (x, y) : α i β Z 0 size(β) = 0, x y 11 (x, y) : α i β Z 11 size(α) = 1, size(β) = 1 1 * (x, y) : α i β Z 0 Z 11 size(α) = 1, size(β) = * * 1 (x, y) : α i β Z 0 Z 11 size(α) = * , size(β) = 1 * * (x, y) : α i β Z 0 Z 0 Z 11 size(α) = size(β) = * , x y Z 0 = {(x,
Proof. For all nodes of any tableau for ϕ 0 , let us order the rule instantiations applicable to this node with a strict total order defined inductively as follows. By construction, for the root node there is only one rule instantiation applicable. For any edge from a parent node η to a child node η, let P be the set of all rule instantiations applicable to η and < the strict total order on P . The strict total order < over the rule instantiations applicable to η is defined such that:

π 1 < π 2 if (π 1 ∈ P and π 2 P ) or π 1 < π 2
Since the number of rule instantiations applicable to a node in a tableau is finite, any strict total order as defined above has a least element. Hence, a tableau such that only least rule instantiations are applied can easily be constructed. It can easily be checked that such a tableau would have all its branches saturated.

Lemma 8.10. If ϕ 0 is satisfiable and T is a tableau for ϕ 0 in which all open branches are saturated, then T has an open saturated demand-satisfied branch.

Proof. Suppose that M , x , m ∅ W | = ϕ 0 for some model M = (W , R , , V ), some state x and some pure formula ϕ 0 and that T is a tableau for ϕ 0 in which all open branches are saturated. We identify the branch B of T using the procedure from the proof of Lemmas 8.7 and 8.8. By construction, B is interpretable, hence open. By hypothesis, B is saturated. Suppose B is not demand-satisfied. By saturation, B is infinite. For all k ∈ N, let η k be the k th node in B (η 0 being the root). By construction, we have an infinite sequence (f 0 , g 0 ), (f 1 , g 1 ), . . . such that for all k ∈ N, (f k , g k ) is an interpretation of η k in M and for all x ∈ dom(f k ), f k+1 (x) = f k (x). By saturation again, there exists a program α ∈ Π P H , a state y ∈ W B , an infinite sequence of states x 0 , x 1 , . . . ∈ W B and a strictly increasing function σ : N -→ N such that for all k ∈ N, the rule ( * ) is applied to η σ (k) with premise instantiation {(x k , y) : α * } and the child of η σ (k) in B corresponds to the conclusion instantiation {(x k , x k+1 ) : α, (x k+1 , y) : α * }. For all k ∈ N, let m k be the least integer such that there exists a list x k,0 , . .

. , x k,m k ∈ W such that x k,0 = f σ (k) (x k ), x k,m k = f σ (k) (y) and for all i < m k , x k,i R(α) x k,i+1 . Since, f σ (k+1) (x k+1 ) = f σ (k)+1 (x k+1
), m k+1 < m k . Therefore, there must exists ∈ N such that m < 0, which is impossible.

We have proved the following proposition.

Proposition 8.11. If ϕ 0 ∈ Φ pure is satisfiable, there exists a tableaux for ϕ 0 with an open saturated demand-satisfied branch.

Completeness

We now consider a satisfying tableau T for ϕ 0 . We construct a model satisfying ϕ 0 . Since T is satisfying, it has an open saturated demand-satisfied branch B. The model M = (W , R, , V ) and the marking function m are defined by: By construction of T , M is -deterministic. It remains to prove that M satisfies ϕ 0 . There are two difficult points. The first is to prove that whenever w :

W = W B R(a) = (x, y) ∈ W 2 (x, y) : a ∈ J B = (x, y, z) ∈ W 3 ∃∆ ∈ {F, B}, (x, y, z) : ∆ ∈ J B V (p) = {x ∈ W | x : p ∈ J B } m(P ) = {x ∈ W | x : P ∈ J B } 131 8. Tableaux Methods for PDL with Separating Parallel Composition * x : [α * ]ϕ x : ϕ x : [α]Q [α * ]ϕ Q x : Q [α * ]ϕ x : [α * ] ϕ
[α * ] ϕ ∈ J B , M, w, m | = F [α * ] ϕ.
For that purpose, we use a slightly modified version of the tableaux calculus where the applications of rule ( * ) are replaced by applications of rules ( * ) and (Q) in Figure 8.7. In these rules, new propositional variable of form Q [α * ]ϕ are added like in the restricted Fischer-Ladner closure for PPDL det (see the proof of Proposition 7.6 on page 102). The second difficulty is to prove that whenever w :

[α i β] ϕ ∈ J B , M, w, m | = F [α i β] ϕ.
For that matter, we prove that M is acyclic by studying the binary relation J B defined below. Definition 8.12. Given a set J of judgments about a set W of states and two states x, y ∈ W , a judgment path from x to y in J is a chain w 0 , . . . , w n of length n such that w 0 = x, w n = y and for all k < n there exists α k ∈ Π P H such that (w n , w n+1 ) : α k ∈ J. The binary relation J over W is defined such that x J y iff there exists a judgment path from x to y in J. Lemma 8.13. Proof. First notice that if w = x, w = y or y = x, then the property trivially holds. Then we prove the following claims.

Claim 1. For any node η ∈ B, labeled with S η = (W η , J η , K η ), and any y ∈ W η , there is at most one pair (x, α) ∈ W η × Π P H such that x y and (x, y) : α ∈ J η \ K η .

Proof. By induction on the length of the path from the root node to η. Claim 2. For any node η ∈ B, labeled with S η = (W η , J η , K η ), any x, y, z ∈ W η and any

α ∈ Π P H , if (x, y) : α ∈ J η \ K η , x J η z and z J η y, then either z = x or z = y.
Proof. By induction on the length of the path from the root node to η. The property trivially holds for the root of the tableaux. Suppose now the property holds for the parent node η ∈ B labeled with S η = (W η , J η , K η ). We will prove the property holds for the child η of η in B, labeled with S η = (W η , J η , K η ). The only non-straightforward cases are when η has been obtained by applying one of the rules ( ;11), ( ;1 * ), ( ; * 1), ( ; * * ) or ( * ), with premise instantiation (x, y) : α 1 , and conclusions instantiation (x, n) : α 2 and (n, y) : α 3 , with n W η . In that cases, suppose (x , y ) : α ∈ J η \ K η , x n. In the latter case, (x , y) : α ∈ J η \ K η and since (x, y) : α 1 ∈ J η \ K η , by the previous claim x = x and α = α 1 . But (x, y) : α 1 ∈ K η and (x , y ) : α ∈ J η \ K η , which is a contradiction. Now, we will prove that for any node η ∈ B, with label S η = (W η , J η , K η ), and any w, x, y ∈ W η , if w x, w y, y x, w The proof is by induction on the length l of the path from the root to η. When l = 0, the property trivially holds since there is no judgment of the form (x, y) : α in the initial structure. When l > 0, suppose the property holds for the parent node η ∈ B labeled with S η = (W η , J η , K η ). We will prove the property holds for the child η of η in B, labeled with S η = (W η , J η , K η ). The only non-straightforward case is when η has been obtained by applying one of the rules ( ;11), ( ;1 * ), ( ; * 1), ( ; * * ) or ( * ), with premise instantiation (x, y) : α 1 , and conclusions instantiation (x, n) : α 2 and (n, y) : α 3 , with n W η . In that case, suppose w Proof. We give the proof for the first implication only, the proof for the second one being similar. We first prove the following claim.

Claim. If (x, y) : α ∈ J B and x y then there exist z ∈ W and β ∈ Π P H such that z y and the judgment (z, y) : β has been introduced by the rule application which introduced y.

Proof. The property is proved for all structures labeling a node η in B and the proof is by induction on the length of the path from the root node to η. The initial case for the root node is trivial. Suppose η ∈ B is a child of η, S η = (W η , J η , K η ) and S η = (W η , J η , K η ) being their respective labels, and (x, y) : α ∈ J η for some x y. If y W η or there exists β ∈ Π P H such that (x, y) : β ∈ J η then the property trivially holds. Suppose y ∈ W η and for all β ∈ Π P H , (x, y) : β J η . It can easily be checked that the rule applied to η is one of ( ;11), ( ;1 * ), ( ; * 1), ( ; * * ) and ( * ). Moreover, there exist z ∈ W η and α , β ∈ Π P H such that (z , x) : α ∈ J η \ J η , (z , y) : β ∈ J η and z y. By induction hypothesis, there exist z ∈ W η and β ∈ Π P H such that z y and the judgment (z, y) : β has been introduced by the rule application which introduced y. The proof of the lemma is by induction on the length n of the shortest judgment path from w to y. Suppose that (x, y, z) : F ∈ J B and w J B y. When n = 0, the property trivially holds. When n = 1, there exists α ∈ Π P H such that (w, y) : α ∈ J B . If w y, by the previous claim there exist w ∈ W and β ∈ Π P H such that w y and the judgment (w , y) : β has been introduced by the rule application which introduced y. But since the rule application which introduced y is the one which introduced the judgment (x, y, z) : F, then w = y which is a contradiction. Hence w = y. When n > 1, let w 0 , . . . , w n be a judgment path from w to y. By induction w 1 = y and by induction again w 0 = y. Lemma 8. 16. If x R(α) y then x J B y.

Lemma 8.17. If x R(α i β) y and x y, then there exist w 1 , w 2 , w 3 , w 4 ∈ W such that (x, w 1 , w 2 ) : F ∈ J B , (y, w 3 , w 4 ) : B ∈ J B , w 1 R(α) w 3 and w 2 R(β) w 4 .

Proof of both Lemmas 8.16 and 8.17. We prove that for all n ∈ N and all x, y ∈ W : IH.1 For all α, β ∈ Π P H and all i ∈ N, if |α| + β = n, x R(α i β) y and x y, then there exist w 1 , w 2 , w 3 , w 4 ∈ W such that (x, w 1 , w 2 ) : F ∈ J B , (y, w 3 , w 4 ) : B ∈ J B , w 1 R(α) w 3 and w 2 R(β) w 4 .

IH.2 For all α ∈ Π P H , if |α| = n and x R(α) y, then x J B y.

The proof of this property is by induction on n. The cases for n < 2 are trivial.

Hypothesis IH.1. Suppose that x R(α i β) y and x y. There must exist w 1 , w 2 , w 3 , w 4 ∈ W and ∆ 1 , ∆ 2 ∈ {F, B} such that (x, w 1 , w 2 ) : ∆ 1 ∈ J B , (y, w 3 , w 4 ) : ∆ 2 ∈ J B , w 1 R(α) w 3 and w 2 R(β) w 4 . We will prove that ∆ 1 = F and ∆ 2 = B. If both w 1 = w 3 and w 2 = w 4 , since the model is -deterministic, then x = y. Therefore we will assume, that w 1 w 3 , the other case when w 2 w 4 being symmetrical. Since w 1 R(α) w 3 , by IH.2, w 1 J B w 3 .

Hence by Lemma 8.15, ∆ 2 = B. Suppose that ∆ 1 = B. There exists x , w 1 , w 2 ∈ W and α 1 , α 2 ∈ Π P H such that the judgments (x , w 1 , w 2 ) : F, (w 1 , w 1 ) : α 1 and (w 2 , w 2 ) : α 2 have been introduced by the rule application which introduced (x, w 1 , w 2 ) : B. Similarly, there exist y , w 3 , w 4 ∈ W and α 3 , α 4 ∈ Π P H such that the judgments (y , w 3 , w 4 ) : F, (w 3 , w 3 ) : α 3 and (w 4 , w 4 ) : α 4 have been introduced by the rule application which introduced (y, w 3 , w 4 ) : B. Since w 1 J B w 3 and w 3 J B w 3 , by Lemma 8.14, either w 1 J B w 3 or w 3 J B w 1 . In the former case, by Lemma 8.15, w 1 = w 3 , which is impossible since w 1 and w 3 cannot have been introduced by the same rule application. In the latter case, since w 1 J B w 1 , by Lemma 8.14, w 1 J B w 3 or w 3 J B w 1 . In both cases, by Lemma 8.15, w 1 = w 3 . Therefore, w 1 and w 3 must have been introduced by the same rule application, which is impossible. We have proved that ∆ 1 = F.

Hypothesis IH.2. When x = y the property trivially holds. Only the case for parallel compositions will be detailed, the other cases being straightforward. Suppose that x R(α i β) y and x y. By IH.1, there exist w 1 , w 2 , w 3 , w 4 ∈ W such that (x, w 1 , w 2 ) : F ∈ J B , (y, w 3 , w 4 ) : B ∈ J B , w 1 R(α) w 3 and w 2 R(β) w 4 . Moreover, there exist y , w 3 , w 4 ∈ W , α , β ∈ Π P H and i ∈ N such that (y , y) : α i β ∈ J B and the judgments (y , w 3 , w 4 ) : F, (w 3 , w 3 ) : α and (w 4 , w 4 ) : β have been introduced by the rule application which introduced (y, w 3 , w 4 ) : B. Since w 1 R(α) w 3 , by IH.2 w 1 J B w 3 . Since w 3 J B w 3 , by Lemma 8.14, w 1 J B w 3 or w 3 J B w 1 . In both cases, by Lemma 8.15, w 1 = w 3 . Therefore x = y , (x, y) : α i β ∈ J B and x J B y.

Lemma 8.18. M is acyclic.

Proof. We first prove the following claims.

Claim 1. For any node η, any state x ∈ W and any program α ∈ Π P H , if (x, x) : α ∈ J η then size(α) 1, where S η = (W η , J η , K η ) is the label of η.

Proof. The proof is by induction on the length of the path from the root to η. The initial case is obvious and the inductive case is by a straightforward case by case analysis of each tableaux rule.

Claim 2. For any states w, w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ) and w (w 3 , w 4 ), w 1 = w 3 iff w 2 = w 4 .

Proof. Suppose w (w 1 , w 2 ), w (w 3 , w 4 ) and w 1 = w 3 , the other direction being symmetrical. There is ∆ 1 , ∆ 2 ∈ {F, B} such that (w, w 1 , w 2 ) : ∆ 1 and (w, w 1 , w 4 ) : ∆ 2 . If (∆ 1 , ∆ 2 ) = (B, B) then w 2 = w 4 because whenever a judgment of the form (x, y, z) : B is introduced, y and z are fresh. The case is similar if (∆ 1 , ∆ 2 ) = (F, F). Suppose (∆ 1 , ∆ 2 ) = (F, B). For the same freshness reason, the judgments (w, w 1 , w 2 ) : F and (w, w 1 , w 4 ) : B must have been introduced by the same rule application π which can only be an instance of ( 0 ), ( * 1) or ( * * ). The premise of π must be (w, w) : α i β for some α, β and i. But π cannot be an instance of ( 0 ) or ( * * ), because their side conditions state x y. Finally, π can neither be an instance of ( * 1), because the side condition states that size(α) = * and size(β) = 1, hence size(α i β) = 1 which is not possible by Claim 1. Now condition (7.9) directly follows from Claim 1. For condition (7.10), suppose w R(α) x and x R(β) w. By Lemma 8.16, w J B

x and

x J B w. Since J B
is antisymmetric, w = x.

For condition (7.11), suppose w (w 1 , w 2 ), w (w 3 , w 4 ), (w 1 , w 2 ) (w 3 , w 4 ) and w 1 R(α) w 3 , the case when w 2 R(α) w 4 being identical. By Claim 2, w 1 w 3 and w 2 w 4 . By Lemma 8. 16 Proof. Supposing that the number n of occurrences of symbols are the same in both ϕ and α, we will prove by induction on n that the hypothesis (8.9) and (8.10) hold for all n ∈ N. The proof for hypothesis (8.10) is straightforward, hence we detail only the proof of hypothesis (8.9).

The cases for propositional variables and placeholders are trivial. For formulas of the form α ϕ, suppose x : α ϕ ∈ J B . By saturation, there exists y ∈ W such that (x, Output: A (possibly empty) structure S f = (W f , J f , K f ). Data: A set J 0 of judgments and a structure S = (W , J , K ).

7 J 0 ← {j ∈ J | j involves only x} 8 S ← (W , J 0 , K ∩ J 0 )

9 while there is a rule's instantiation π appropriate to S and x do (line 2 to 3). Finally the recursive procedure Extend is called and it is checked whether it returns the empty structure. Extend uses the empty structure as a marker for a closed branch. The procedure Extend operates in two steps. First, in the existential loop (lines 9 to 10), successors of x are added and the structure is locally saturated. Second, in the universal loop (lines 15 to 16), Extend is recursively called for each state created by the existential loop. We prove the following lemmas.

Lemma 8.23. At each run of Extend, the existential loop adds a number of new states bounded by a polynomial in |ϕ 0 |.

Proof. We define the fertility measures on formulas and programs by:

|p| F = |⊥| F = |¬ϕ| F = 0 |a| F = |ϕ?| F = 0 | α ϕ| F = |α| F + 1 α ; β F = |α| F + β F + 1 α i β F = |α| F + β F + 4
Given a set W of states and a state x ∈ W , the fertility measure of any judgment about W with respect to x is defined by:

y : ϕ x =        |ϕ| F if y = x 0 otherwise (y, z) : α x =            |α| F if y = x |α| F if y z 0 otherwise (w, y, z) : ∆ x = 0
Finally, the fertility of any structure S = (W , J, K) with respect to x ∈ W is defined as the sum of the fertility of all active judgments in S with respect to x:

|S| x = j∈J\K |j| x
It can easily be proved that for all α ∈ Π 0,PH , |α| F < 2 |α| and for all ϕ ∈ Φ 0,PH , |ϕ| F < 2 |ϕ|. We now consider a run of the Extend procedure with arguments S and x. Let

Chapter 9

Conclusion

In this thesis, different decision procedures for the satisfiability problem of different modal logics of actions, resources and concurrency have been proposed. Whereas the methods used to devise these decision procedures are standart (elimination of Hintikka sets, reduction to the emptiness problems of ω-tree automata, reduction to Presburger arithmetic, selection of a finite model, filtration and tableaux), the adaptation of these methods to the considered logics was difficult, because each of the studied logics lacks some properties usualy satisfied by modal logics like for instance the existence of a comprehensive decomposition, the tree-like model property or the admissibility of the inference rule of uniform substitution. The complexity of a decision procedures gives a complexity upper bound for the problem solved by the procedure. The complexity of almost all the decision procedures in the thesis is equal to the best known upper bound for the corresponding satisfiability problem. Moreover, the complexity of many decision procedures in the thesis matches the best known complexity lower bound, hence these procedures are optimal. The detail of these results is sumed up in Figure 9.1.

Propositional Dynamic Logics with separating parallel composition

The main part of the thesis is dedicated to the study of variants of PDL featuring a construct for parallel composition of programs whose semantics is based on a ternary relation called the separation relation. PRSPDL is such a logic (recalled in Section 6.5) and PPDL det , presented in Chapter 7, is one of its variants. These logics have some strong connections with resources logics like BBI. Moreover, we showed in the thesis that the notion of concurrency expressible in these logics is new and somehow more powerful than previous notions of concurrency expressible in other variants of PDL. Therefore, the decidability and the complexity of these logics are of great interest and have been studied in the current thesis and in some related works.

Logic

Sect In this table, the last column corresponds to the class of -deterministic -separated models. The full language interpreted in the class of all frame is the logic PRSPDL whose satisfiability problem has been proved in [BalBou.15b] to be in 2EXPTIME. Balbiani and Tinchev proved in [BalTin.14] that PRSPDL interpreted in the class of -separated models and many subclasses is highly undecidable. The satisfiability problem of the iteration-free fragment of PRSPDL interpreted in the class of -deterministic models and many subclasses has been proved in [BalBou.14] to be in NEXPTIME, using a method similar to the one presented in Section 6.6. Finally, the fragment of PRSPDL without the four special programs, interpreted in the class of -deterministic frame, is the logic PPDL det . We proved in this thesis that the satisfiability problem for PPDL det is EXPTIME-complete and that the satisfiability problem for the iteration-free fragment of PPDL det is PSPACE-complete. Despite all these results, the table is not complete yet, leaving room for future works.

Toward a decidable dynamic logic of cooperative concurrency

An important aim of the present work was to devise an extension of PDL in which it would be possible to reason about cooperative concurrent actions. Intuitively, the concurrent execution of some actions is said to be cooperative if its outcome can not be obtained by non-concurrent executions of actions. We discussed this notion in Chapter 6 and showed in Chapter 7 that PPDL det is a good candidate. Moreover, the main result of the thesis states that the complexity of PPDL det is the same as the complexity of PDL. While these results are quite promising, we believe that PPDL det could be further improved. The main drawback of PPDL det is that the separation relation is not associative. This means that it is not really possible to execute concurrently three actions (or more), because (α (β γ)) is not equivalent with ((α β) γ). Furthermore, by the result of Kurucz, Németi, Sain and Simon recalled in Section 5.1, PPDL det interpreted in the class of -deterministic -associative models is undecidable. For that reason, we devised and investigated Counting Logics in Chapter 5. We believe that in most practical situations of cooperative concurrency, Counting Logics' constraints on valuations are natural, as it is the case for instance in separation logics. Therefore, we think that the natural continuation of the current work would be to first investigate further the complexity and the expressivity of different variants of Counting Logics, then to combine some of these logics with PPDL det to obtain a decidable expressive variant of PDL with an associative separating parallel composition of programs. The concepts of action and resource are ubiquitous in computer science. The main characteristic of an action is to change the current state of the modeled system. An action may be the execution of an instruction in a program, the learning of a new fact, a concrete act of an autonomous agent, a spoken word or a planned task. The main characteristic of resources is to be divisible, for instance in order to be shared. Resources may be memory cells in a computer, performing agents, different meanings of a phrase, time intervals or access rights. Together, actions and resources often constitute the temporal and spatial dimensions of a modeled system. Consider for instance the instructions of a computer executed at memory cells or a set of cooperating agents. We observe that in these cases, an interesting modeling of concurrency arises from the combination of actions and resources: concurrent actions are actions performed simultaneously on disjoint parts of the available resources. Modal logics have been successful in modeling both concepts of actions and resources. The relational semantics of a unary modality is a binary relation which allows to access another state from the current state. Hence, unary modalities are convenient to model actions. Similarly, the relational semantics of a binary modality is a ternary relation which allows to access two states from the current state. By interpreting these two states as substates of the current state, binary modalities allow to divide states. Hence, binary modalities are convenient to model resources. In this thesis, we study modal logics used to reason about actions, resources and concurrency. Specifically, we analyze the decidability and complexity of the satisfiability problem of these logics. These problems consist in deciding whether a given formula can be true in any model. We provide decision procedures to prove the decidability and state the complexity of these problems. Namely, we study modal logics with a binary modality used to reason about resources. We are particularly interested in the associativity property of the binary modality. This property is desirable since the separation of resources is usually associative too. But the associativity of a binary modality generally makes the logic undecidable. We propose in this thesis to constrain the valuation of propositional variables to make modal logics with an associative binary modality decidable. The main part of the thesis is devoted to the study of variants of the Propositional Dynamic Logic (PDL). These logics features an infinite set of unary modalities representing actions, structured by some operators like sequential composition, iteration and non-deterministic choice. We first study branching time variants of PDL and prove that the satisfiability problems of these logics have the same complexity as the corresponding branching-time temporal logics. Then we thoroughly study extensions of PDL with an operator for parallel composition of actions called separating parallel composition and based on the semantics of binary modalities. This operator allows to reason about resources, in addition to actions. Moreover, the combination of actions and resources provides a convenient expression of concurrency. In particular, these logics can express situations of cooperation where some actions can be executed only in parallel with some other actions. Finally, our main contribution is to prove that the complexity of the satisfiability problem of a practically useful variant of PDL with separating parallel composition is the same as the satisfiability problem of plain PDL.

Index

Résumé

Les concepts d'action et de ressource sont omniprésents en informatique. La caractéristique principale d'une action est de changer l'état actuel du système modélisé. Une action peut ainsi être l'exécution d'une instruction dans un programme, l'apprentissage d'un fait nouveau, l'acte concret d'un agent autonome, l'énoncé d'un mot ou encore une tâche planifiée. La caractéristique principale d'une ressource est de pouvoir être divisée, par exemple pour être partagée. Il peut s'agir des cases de la mémoire d'un ordinateur, d'un ensemble d'agents, des différent sens d'une expression, d'intervalles de temps ou de droits d'accès. Actions et ressources correspondent souvent aux dimensions temporelles et spatiales du système modélisé. C'est le cas par exemple de l'exécution d'une instruction sur une case de la mémoire ou d'un groupe d'agents qui coopèrent. Dans ces cas, il est possible de modéliser les actions parallèles comme étant des actions opérant sur des parties disjointes des ressources disponibles. Les logiques modales permettent de modéliser les concepts d'action et de ressource. La sémantique relationnelle d'une modalité unaire est une relation binaire permettant d'accéder à un nouvel état depuis l'état courant. Ainsi une modalité unaire correspond à une action. De même, la sémantique d'une modalité binaire est une relation ternaire permettant d'accéder à deux états. En considérant ces deux états comme des sous-états de l'état courant, une modalité binaire modélise la séparation de ressources. Dans cette thèse, nous étudions des logiques modales utilisées pour raisonner sur les actions, les ressources et la concurrence. Précisément, nous analysons la décidabilité et la complexité du problème de satisfaisabilité de ces logiques. Ces problèmes consistent à savoir si une formule donnée peut être vraie. Pour obtenir ces résultats de décidabilité et de complexité, nous proposons des procédures de décision. Ainsi, nous étudions les logiques modales avec des modalités binaires, utilisées notamment pour raisonner sur les ressources. Nous nous intéressons particulièrement à l'associativité. Alors qu'il est généralement souhaitable que la modalité binaire soit associative, puisque la séparation de ressources l'est, cette propriété rend la plupart des logiques indécidables. Nous proposons de contraindre la valuation des variables propositionnelles afin d'obtenir des logiques décidables ayant une modalité binaire associative. Mais la majeure partie de cette thèse est consacrée à des variantes de la logique dynamique propositionnelle (PDL). Cette logiques possède une infinité de modalités unaires structurée par des opérateurs comme la composition séquentielle, l'itération et le choix non déterministe. Nous étudions tout d'abord des variantes de PDL comparables aux logiques temporelle avec branchement. Nous montrons que les problèmes de satisfaisabilité de ces variantes ont la même complexité que ceux des logiques temporelles correspondantes. Nous étudions ensuite en détails des variantes de PDL ayant un opérateur de composition parallèle de programmes inspiré des logiques de ressources. Cet opérateur permet d'exprimer la séparation de ressources et une notion intéressante d'actions parallèle est obtenue par la combinaison des notions d'actions et de séparation. En particulier, il est possible de décrire dans ces logiques des situations de coopération dans lesquelles une action ne peut être exécutée que simultanément avec une autre. Enfin, la contribution principale de cette thèse est de montrer que, dans certains cas intéressants en pratique, le problème de satisfaisabilité de ces logiques a la même complexité que PDL.

  and M, x | = ϕ w R(α ; β) x iff ∃y ∈ W , w R(α) y and y R(β) x w R(α ∪ β) x iff w R(α) x or w R(β) x w R(ϕ?) x iff w = x and M, w | = ϕ w R(α * ) x iff w R(α) * x
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 2 Figure 2.1: Fischer-Ladner closure rules

  Proof. A procedure can easily be devised for all the program constructs but the iteration because | α α * ϕ| > | α * ϕ|. Hence, sequences of programs are considered. The functions form and form assign the formulas σ 1 . . . σ |σ | ϕ and σ 1 . . . σ |σ | ϕ respectively to every pair (σ , ϕ) ∈ Π * PDL × Φ PDL . The function next assigns to each sequence σ ∈ Π * PDL a set of pairs (L, σ ) where the first component L is a set of formulas and the 2. Propositional Dynamic Logic second component σ is a sequence of programs. It is defined inductively as follows: next

Figure 2 . 3 :

 23 Figure 2.3: Saturation rules for PDL tableaux methods

  Suffix closure. B is suffix closed iff for any sequence σ ∈ B and any k ∈ 1 . . |σ |, σ ≥k ∈ B.

Figure 3 . 1 :

 31 Figure 3.1: Additional rule for the Fischer-Ladner closure in OPDL

57 5 .

 5 Decidability of Associative Binary Modal Logics Proposition 5.1 from [KNSS.95]. The minimal associative modal logic, the minimal associative normal modal logic and the minimal associative and commutative modal logic are all undecidable.

Proposition 5. 7 .

 7 For any closed-under-inclusion subset model M = (X, O, V ), any S ∈ O and any n ∈ N, M, S | = ≥n iff |S| ≥ n.Proof. The proof is by induction on n. The base case and the left-to-right direction of the inductive case are trivial and do not use the closure under inclusion property of M. For the right-to-left direction, suppose |S| ≥ n > 0. There is x ∈ S and since M is closed under inclusion, {x} and S \ {x} belong to O. The conclusion is straightforward.

.

  For any B-correspondence -→ p , -→ x , -→ r , -→ s , any B-model M, any function m ∈ M (M), any Presburger arithmetic assignment A and any formula ϕ ∈ Φ BBI , if M, m -→ p , -→ x , -→ r , -→ s A and all propositional variables occurring in ϕ occur in -→ p < -→ p then

  and for all p ∈ Q, M M (p) = 0. Lemma 5.19. Let ϕ ∈ Φ BBI and P the set of propositional variables occurring in ϕ. If M 1 , m 1 | = ϕ and the subsets Q, P and {q} are pairwise disjoint then there exists a B-model M 2 and a function m 2 ∈ M (M 2 ) such that M 2 is flat on Q and M 2 , m 2 | = ϕ.

  finite} and for all p ∈ dom (M), M(p) = |V (p)|. Moreover, define the function h from O 0 to M (M) such that for all S ∈ O 0 and all p ∈ Φ 0 , h(S)(p) = |V (p) ∩ S|.

Figure 6 .

 6 Figure 6.1: A Petri net in a situation of cooperation

  and a state w ∈ W such that M, w | = ϕ. The satisfiability problem of IPDL is 2EXPTIME-complete. The upper bound has been proved by Danecki [Danecki.84] and the lower bound was proved more than twenty years later by Lange and Lutz [LanLut.05]. It has to be noted too that the satisfiability of IPDL interpreted in the class of models where at least two atomic programs are deterministic has been proved to be undecidable in[Harel.83]. A program α is deterministic in a model M = (W , R, V ) iff for all states w, x, y ∈ W , if w R(α) x and w R(α) y then x = y.

Figure 6 . 2 :

 62 Figure 6.2: Semantics of the parallel program α β in PRSPDL

Proposition 6 .

 6 18. For any -separated model M = (W , R, , V ), any state w ∈ W and any formulas ϕ, ψ ∈ Φ PRSPDL , M, w | = ϕ -/ ψ if and only if for all x, y ∈ W , if x (w, y) and M, y | = ϕ then M, x | = ψ. Proof. For the left-to-right direction, suppose M, w | = ϕ -/ ψ, x (w, y) and M, y | = ϕ. Then w R(r 1 ) x and x R(s 2 ) y. If M, x | = ψ then M, y | = ¬ϕ which is impossible. Therefore M, x | = ψ.
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 63 Figure 6.3: Models used in the proof of Proposition 6.20.

Proposition 6 .

 6 20. There is no test-free formula ϕ ∈ PRSPDL such that for any model M = (W , R, , V ) and any state w ∈ W , M, w | = ϕ iff M, w | = a (a ; b ? ; a) .
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 64 Figure 6.4: Model used in the proof of Proposition 6.21.
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 66 Figure 6.6: Semantics of the parallel programs α ∆ β in PDL∆ 0
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 67 Figure 6.7: Rules for the decomposition of localized programs and formulas

  Formally, a localized program or formula is a pair (d, α) or (d, ϕ), written d : α or d : ϕ, where d ∈ N is a natural number called the depth, α ∈ Π is a program and ϕ ∈ Φ is a formula. Given any localized program or formula d : α or d : ϕ, the decomposition of d : α or d : ϕ is the least set Cl(d : α) or Cl(d : ϕ) of localized programs and formulas containing d : α or d : ϕ and closed by application of the rules in Figure 6.7. We write Cl(ϕ) for Cl(0 : ϕ) and prove the following lemmas. Lemma 6.26. The cardinality of Cl(ϕ) is linear in |ϕ|.

  that at line 38 of Link, |d yd w | ≤ 1 and |d wd z | ≤ 1, the others cases and properties being either similar or straightforward. Suppose first that d w = d y + 1. Then obviously |d yd w | ≤ 1. If d z = d y + 1, then |d wd z | ≤ 1 is trivial too. If d z = d x + size(β) + 1, by minimality, d z ≤ d y + 1 and size(β) < Procedure 1: Selection

  w), (n, d y , y), α else if there exists d : ϕ • ψ ∈ Cl(ϕ 0 ) such that d ≥ d, M o , w | = ϕ • ψ and there is no (k x , d x , x), (k y , d y , y) ∈ W s such that (k, d, w) s (k x , d x , x), (k y , d y , y) then choose x and y s.t. w s (x, y), M o , x | = ϕ and M o , y | = ψ add (n + 1, d + 1, x) and (n + 2, d + 1, y) to W s add ((k, d, w), (n + 1, d + 1, x), (n + 2, d + 1, y)) to s let n = n + 2 else if there exists d : ϕ ψ ∈ Cl(ϕ 0 ) such that d ≥ d, M o , w | = ϕ ψ and M s , (k, d, w) | = ϕ ψ then choose x and y s.t. y s (x, w), M o , x | = ϕ and M o , y | = ψ add
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 7 Figure 7.1: Concurrent firing of transitions a and b with PPDL det semantics.

FischerFigure 7 . 2 :

 72 Figure 7.2: Countermodel for a static interpretation of placeholders.

Figure 7

 7 Figure 7.3: Fischer-Ladner closure rules for localized annotated formulas.

Figure 7

 7 Figure 7.4: Restricted Fischer-Ladner closure rules for PPDL det .

Definition 7. 10 .

 10 Given a model M = (W , R, , V ), a function λ :W -→ { , r} * is a hierarchy function for M iff ∀x, y, z ∈ W , x (y, z) ⇒ λ(y) = λ(x). and λ(z) = λ(x).r (7.1) ∀x, y ∈ W , ∀α ∈ Π P H , x R(α) y ⇒ λ(x) = λ(y) (7.2) λ(x)is called the depth of x. A model for which there exists a hierarchy function is a hierarchical model. Secondly, we introduce the notions of threads and twines. Given a model M = (W , R, , V ), consider the reachability relation R ∃ = ∪ α∈Π P H R(α). This relation is obviously reflexive. Hence its symmetric and transitive closure, denoted by M , is an equivalence relation. The equivalence classes of W by M are called threads and M the thread relation. Thus threads are maximal sets of states which can be reached from each other by some programs.

IH. 2

 2 for all (µ, ϕ) ∈ FL -(ϕ 0 ), if n = |ϕ| and λ(H) = µ then:(µ, ϕ) ∈ H iff M D , (k, (H, S)) | = ϕFirst note that by Lemma 7.50 and by the construction of M D , if (k, (H, S)) ∈ W D and (H, S) R(α) (H , S ) then (k, (H , S )) ∈ W D . Then for IH.1, we detail only the case for parallel compositions, the other cases being straightforward. Suppose α = β γ. For the right-to-left direction, (k, (H, S) , α, (H , S )) ∈ P L, hence by construction and by IH.1, (k, (H, S)) R D (α) (k , (H , S ). For the left-to-right direction, for each i ∈ 1 . . 4 there is w

H0

  has a correspondence if there exist x ∈ W , T ⊆ and m, m ∈ B W such that h state (x, T , m, m ) = (H, S). Obviously, for all x ∈ W and all m ∈ B W , h hin (x, m) is a Hintikka set. The following lemmas prove that this correspondence has the desired properties. Lemma 7.53. There is x ∈ W , T ⊆ and m, m ∈ B W such that ( , ϕ 0 ) ∈ h hin (x, m) and h state (x, T , m, m ) ∈ W H 0 . 121 7. PDL with Deterministic Separating Parallel Composition

  Figure 8.2: Sequence rules of the tableaux calculus

∪

  

Figure 8 . 3 :

 83 Figure 8.3: Nondeterministic choice rules of the tableaux calculus

Figure 8 . 7 :

 87 Figure 8.7: Modified iteration rules

  It suffices to prove that for any node η ∈ B, labeled with S = (W , J, K), J is antisymmetric. The proof is by induction on the length of the path from the root to η. The initial case is obvious and the inductive case is by a straightforward case by case analysis of each tableaux rule.

y

  for some x , y , z ∈ W η and α ∈ Π P H . If x = n, then y = y and y J η z. Hence by antisymmetry z = y. Similarly, if y = n, then x = x, z J η x and by antisymmetry z = x. If n x and n y , then 132 Completeness 8.4 (x , y ) : α ∈ J η \ K η . Moreover, if n z then x the induction hypothesis either z = x or z = y . If n x, n y and n = z, then x hypothesis either y = x or y = y . As n y and n J η y, the former case is impossible by antisymmetry since it would imply that y J η

x

  for some pairwise distinct w , x , y ∈ W η . If n {w , x , y }, then w J η x and y J η x and the property holds by induction hypothesis. If n = x , then w J η x and y J η x and again the property holds by induction hypothesis. If n = w , then y In the former case, it can be concluded that n the former case, it can be concluded that y J η n. In the latter case, by Claim 2, y = x or y = y. case when n = y is identical to the previous one. Lemma 8.15. If (x, y, z) : F ∈ J B , for all w ∈ W , w J B y ⇒ w = y w J B z ⇒ w = z

133 8 .

 8 Tableaux Methods for PDL with Separating Parallel Composition

  y) : α ∈ J B and y : ϕ ∈ J B . And by the induction hypothesis, M, x, m | = F α ϕ. For formulas of the form [a]ϕ with a ∈ Π P H , suppose x : [a]ϕ ∈ J B and x R(a) y. By definition, (x, y) : a ∈ J B . By saturation, y : ϕ ∈ J B . And by induction, M, x, m | = F [a]ϕ. For formulas of the form [ϕ?]ψ, suppose x : [ϕ?]ψ ∈ J B . By saturation, either x : ¬ϕ ∈ J B or 8. Tableaux Methods for PDL with Separating Parallel Composition Procedure 4: Extend Input: A locally saturated structure S = (W , J, K) and a state x ∈ W .

10 S 14 S

 1014 ← a nondeterministically chosen successor of S by π11 if S is inconsistent then 12 S f ← (∅, ∅, ∅) 13 else f ← (W , J ∪ J , K ∪ K ) 15 foreach y ∈ W \ W do 16 S f ← Extend S f , y 17 return S f

Figure 9 . 2 :

 92 Figure 9.2: Complexity of the satisfiability problem of some PRSPDL's variants

  

  Hence, the length of the sequence W 0 W 1 . . . is at most exponential in |ϕ 0 |. Moreover, by adapting the method in [Lange.06], R

k can be computed in time polynomial in |W k |.

Lemma 2.15. Any formula ϕ 0 ∈ Φ PDL is satisfiable if and only if the elimination of Hintikka set procedure for ϕ 0 is successful.

  Proposition 2.16 from [Pratt.78]. The satisfiability problem of PDL is in EXPTIME.

  Hintikka sets for ϕ 0 is a cluster for ϕ 0 iff C ∅ and for any H 1 , H

	2 ∈ C the
	following conditions are satisfied:
	• for any propositional variable p ∈ FL(ϕ 0 ), p ∈ H 1 iff p ∈ H 2
	• for any formula ≡ ϕ ∈ FL(ϕ 0 ), ≡ ϕ ∈ H 1 iff ≡ ϕ ∈ H 2
	Given a set P ⊆ Π 0 of atomic programs, the successor relation S P over Hintikka sets
	is defined such that H 1 S P H 2 iff
	• for any formula a ϕ ∈ H 1 , a ∈ P and
	• for any formula a ϕ ∈ FL(ϕ 0 ) such that a ∈ P , a ϕ ∈ H 1 iff ϕ ∈ H 2 .
	These relations are extended to clusters: given a set P ⊆ Π 0 , C 1 S P C 2 iff for all H 2 ∈ C 2
	there exists H 1 ∈ C 1 such that H 1 S P H 2 .

  Decidability of Associative Binary Modal LogicsLet -→ p be a vector of length |P | + 1 such that p i ∈ P for all i ∈ 1 . . |P | and p |P |+1 = q. For any

	5. vectors -→ x , -→ r and -→ s such that -→ p , -→ x , -→ r , -→ s is a B-correspondence and any assignment
	A, it can be easily checked that M
	otherwise
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  x 2 , S 2 . . . s.t. S = ∪ i S i , (w, {x 1 , x 2 . . .}) ∈ P and ∀i, (x i , S i ) ∈ Q} and Iter(P ) is the least fixed point of the function F P defined by F P

  called the location of H, denoted by λ(H). The set of all Hintikka sets over ϕ 0 at all µ ∈ Loc(ϕ 0 ) is denoted by Hin (ϕ 0 ). Definition 7.46. A plug for ϕ 0 is a triple P = (H, H 1 , H 2 ) of Hintikka sets from Hin (ϕ 0 ) Notice that a plug may have more than one type. Two plugs have different types if there is no t ∈ {1, 2} such that t is a type of both plugs. The location of the plug P = (H, H 1 , H 2 ), denoted by λ(P ), is the location of H. Definition 7.47. A socket for ϕ 0 is a set S of plugs for ϕ 0 such that :

such that: 1. λ(H 1 ) = λ(H). and λ(H 2 ) = λ(H).r;

2. P has a type, which is an index t ∈ {1, 2} such that (λ(H 1 ), L t ) ∈ H 1 and (λ(H 2 ), R t ) ∈ H 2 .

1. S is either the empty set, a singleton or an unordered pair {P , P } such that P and P have the same location but different types; 2. for any (H, H 1 , H 2 ), (H , H 3 , H 4 ) ∈ S, any type t of (H , H 3 , H 4 ) and any α, β, ϕ such that

  Since any subset of a socket is a socket, (H, S) R(α) (H , S ). For IH.2, the cases for propositional variables and their negation are trivial. For diamond modalities, suppose ϕ = α ψ. By construction of M H , there is (H , S ) ∈ W H such that (H, S) R(α) (H , S ) and (λ(H ), ψ) ∈ H . By IH.1 and IH.2, M D , (k, (H, S)) | = α ψ. The case for box modalities is handled by Lemma 7.51. By hypothesis, there exists (H, S) ∈ W H such that ( , ϕ 0 ) ∈ H. By construction, for any state (H, S) ∈ W H , if λ(H) = then (0, (H, S)) ∈ W D . Therefore, Lemma 7.52 proves M D satisfy ϕ 0 .

  , w 1 J B w 3 . By Lemma 8.15, (w, w 3 , w 4 ) : B ∈ J B . By construction, there are x, x 1 , x 2 ∈ W and α x ∈ Π P H such that x w, (x, x 1 , x 2 ) : F ∈ J B and (x 1 , w 3 ) : α x ∈ J B . Suppose that (w, w 1 , w 2 ) : B ∈ J B . By construction, there are y, y 1 , y 2 ∈ W and α y ∈ Π P H such that y w, (y, y 1 , y 2 ) : F ∈ J B and (y 1 , w 1 ) : α y ∈ J B . By Lemma 8.16, x 1 J B w 3 and y 1 J B w 1 . Therefore, by Lemmas 8.14 and 8.15, x 1 J B w 1 . Since we already have y 1 J B w 1 , (y, y 1 , y 2 ) : F ∈ J B and (x, x 1 , x 2 ) : F ∈ J B , by Lemmas 8.14 and 8.15 again, we have reached a contradiction. Suppose now that (w, w 1 , w 2 ) : F ∈ J B . Since x 1 J B w 3 and w 1 J B w 3 , by Lemmas 8.14 and 8.15, x = w which is not possible since x w by construction. Lemma 8.19. For all x, y ∈ W , ϕ ∈ Φ P H and α ∈ Π P H , x : ϕ ∈ J B ⇒ M, x, m | = F ϕ (8.9) (x, y) : α ∈ J B ⇒ x R(α) y (8.10)

The word "semantics" is a plural noun, in particular when its meaning is "the field of linguistics or logic concerned with meaning". But in logic, this word is mostly used to mean "the way to give meanings to formulas" and different semantics are often defined for the same language. Therefore, for the sake of clarity, we abusively use "semantics" as an ordinary (singular) noun when it has the latter meaning.

Notice that, by the definitions of the previous subsection, if i ∈ 1 . . ω then i ∈ N.

The definition of the tree-like model property given here is slightly different from the definition given in [BRV.01]. In particular, for modalities of arity greater than one, we consider any spanning of the tuples in the relation.

For the sake of simplicity, our definition is slightly different from Definition 2.7 in [BRV.01] where there is only the right-to-left implication for the valuation. Notice that this modification does not turn the homomorphism into a strong homomorphism.

A pointed model is a pair (M, w) consisting of a model and a state. More generally, we can consider that a pointed model is any structure at which formulas are evaluated.

This chapter gives an overview of propositional logics to reason about resources. The first ones of them, like Girard's Linear Logic [Girard.87] and Pym's logic of Bunched Implication[Pym.02] are substructural logics (Section 4.1) and arose from proof-theoretic considerations. The notion of resources is handled in these logics by means of a multiplicative conjunction and its residuals. Simple, convenient and natural semantics for these multiplicative conjunction is given by the notion of separation (Section 4.2). Since this separation can be represented as a ternary relation, it turns out that the multiplicative conjunction can be considered as a binary modality (Section 4.3).4.1 Substructural and Linear LogicsIn Gentzen's sequent calculi of both classical and intuitionistic logics, there are two possible equivalent rules for the right introduction of the conjunction:Γ ϕ Γ ψ Γ ϕ ∧ ψ ∧ r 1 Γ ϕ ∆ ψ Γ , ∆ ϕ ∧ ψ ∧ r 2These two rules are equivalent because of the structural rules of weakening and contraction:Γ ϕ Γ , ∆ ϕ Weakening Γ , Γ ϕ Γ ϕContractionIn substructural logics, some structural rules may be missing (hence the name). If both weakening and contraction are missing, logics with two conjunctions are obtained with the following right introduction rules.

A double line in an inference rule means that the rule can be read both top-down and bottom-up. Hence there are in fact two rules.

It is interesting to note that in this reading, Linear Logic is simultaneously a logic of resources and a logic of actions.

To not add unnecessary new notations, we use the notation of substructural logic and not the symbols of Linear Logic. Therefore ∧, ∨ and ⊕ correspond respectively to , ⊕ and .

Strictly speaking, such a tuple should be called a non-deterministic commutative monoid. We use the original terminology from [GalLar.06] though, for the sake of succinctness and also to emphasize the fact that such a tuple is not a monoid.

In the proofs, "res." denotes the residuation rule and "mon." the monotonicity rule.

We use N as the set of values for simplicity and because this is the set of values which is used in practice. But any other infinite set can be used instead.

Whereas BID is defined as a first-order logic in [AbrVää.09], we consider only propositional logics in the present work.

This rather complicated definition of a binary relation is justified by the extension of ρ to all programs.

Although ρ is called an accessibility function, it does not satisfy the conditions of Definition 6.5.

The multiplicative conjunction is not commutative in PDL∆ 0 .

• R(a) = {(1, 3), (2, 4)} and for all b ∈ Π 0 \ {a}, R(b) = ∅,

• = {(0, 1, 2), (5, 3, 4)},

• V (p) = ∅, for all p ∈ Φ 0 ,

• W = 1 . . 8 ,

• R (a) = {(1 , 3 ), (2 , 4 )} and for all b ∈ Π 0 \ {a}, R (b) = ∅,

• = {(0 , 1 , 2 ), (5 , 3 , 6 ), (7 , 8 , 4 )},

• V (p) = ∅, for all p ∈ Φ 0 . These two models are depicted in Figure 6.5, where edges are implicitly labeled with a. It can easily be checked that M, 0 | = a a but M , 0 | = a a . Hence, by hypothesis, it must be the case that M, 0 | = ϕ and M , 0 | = ¬ϕ. We prove though that M, 0 | = ϕ if and only if M , 0 | = ϕ.

The binary relation Z between W and W is defined by Z = {(0, 0 ), (1, 1 ), (2, 2 ), (3, 3 ), (4, 4 ), (5, 5 ), (4, 6 ), (5, 7 ), (3, 8 )}. The following hypothesis are proved for all integers n > 0, all -free programs α, all -free formulas ψ and all pairs of states (w, w ) ∈ Z: IH.1 if |α| = n and w R(α) x for some x ∈ W then there is x ∈ W such that x Z x and w R (α) x ;

IH.2 if |α| = n and w R (α) x for some x ∈ W then there is x ∈ W such that x Z x and w R(α) x;

The proof is by a straightforward induction on n.

Interestingly, PRSPDL allows atomic cooperation (Proposition 6.23), hence simple cooperation, but not forced cooperation (Proposition 6.24). This latter property is due to the presence of the special programs of recover and store, as it will become clear in the next chapter. Proposition 6.23. PRSPDL allows atomic cooperation.

Proof. Consider the model M = (W , R, , V ) where W = 0 . . 5, R(a) = {(1, 3), (2, 4)} and R(b) = ∅ for all b ∈ Π 0 \ {a}, = {(0, 1, 2), (5, 3, 4)} and V (p) = ∅ for all p ∈ Φ 0 . Then M, 0 | = a a . Moreover, the only subprogram of a is a and M, 0 | = a . Proposition 6.24. PRSPDL does not allow forced cooperation.

Proof. Sequential programs are defined inductively by:

• r 1 , r 2 , s 1 , s 2 and all atomic programs in Π 0 are sequential;

• if α and β are sequential then α ; β is sequential.

Procedure 2: Link Input: A finite model M s = (W s , R s , s , V s ), an integer n, two states (k x , d x , x), (k y , d y , y) ∈ W s and a program α such that x R o (α) y. Result: M s and n modified. ((k y ,d y ,y),(n,d w ,w),(k x ,d x ,x)) to s call Link (M s ,n,(k x ,d x ,x),(n,d w ,w),β sketch. From Lemmas 6.29 and 6.30 by an easy induction on |α|. Lemma 6.32. If M o is -separated, then M s is -separated too.

Proof. Let us suppose that the tuple t = (k w , d w , w), (k w 1 , d w 1 , w 1 ), (k w 2 , d w 2 , w 2 ) has been added to s while (k w , d w , w) s (k w 1 , d w 1 , w 1 ), (k w 2 , d w 2 , w 2 ) . Then t cannot have been added to s in Selection because at lines 25 and 30, (k w , d w , w) is fresh and at line 20, the condition ensures that (k w , d w , w), (k w 1 , d w 1 , w 1 ), (k w 2 , d w 2 , w 2 )

s . The tuple t cannot have been added to s in Link neither, because whenever Link is called there is no (k y 1 , d y 1 , y 1 ) and (k y 2 , d y 2 , y 2 ) in W s such that (k y , d y , y) s (k y 1 , d y 1 , y 1 ), (k y 2 , d y 2 , y 2 ) . Hypothesis IH.2 when α = β ; γ and size(β) = 0. First, it has to be verified that whenever Link is called, there exists d ∈ N such that d ≥ d x and d : α ∈ Cl(ϕ 0 ), which is Proposition 7.13. For any satisfiable pure formula ϕ 0 , there exists a countable model satisfying ϕ 0 .

Proof. The proof is identical to the proof of Corollary 6.3 in [BalTin.14]. By the Standard Translation (see for instance [BRV.01, pages 83-90]), any PPDL det formula (hence any pure formula) can be faithfully translated in L ω1ω , the infinitary logic that allows countably infinite conjunctions and disjunctions in addition to the usual first-order constructs. By the Löwenheim-Skolem theorem for L ω1ω , any satisfiable formula is satisfiable in a countable model.

Unraveling

Let M C = W C , R C , C , V C be a countable -deterministic model satisfying a formula ϕ 0 at x 0 . We will construct the unraveling of M C at x 0 . The following method is an adaptation of the well-known unraveling method (see Section 2.4). The key difference is that the resulting model is not a tree-like model.

Let W ∞ be a countably infinite set. For all k ∈ N we will construct the tuple

Merge defect (w , w 1 , w 2 ). If w C (h k (w 1 ), h k (w 2 )) but there is no w ∈ W k such that h k (w) = w and w k (w 1 , w 2 ), then U k+1 is obtained from U k by adding a new state w ∈ W ∞ \ W k such that h k+1 (w) = w and w k+1 (w 1 , w 2 ). Since PPDL det is conservative, it can be assumed that Π 0 is finite, and since W ∞ and W C are countable sets, there is a sequence δ 0 , δ 1 , . . . of possible defects such that each possible defect appears infinitely often. We enforce that for all k ∈ N, either δ k is a defect for U k fixed in U k+1 or δ k is not a defect for U k and U k+1 = U k . The unraveling

To prove that M U is a -deterministic model satisfying ϕ 0 (Lemma 7.18), we first prove the following lemma.

Lemma 7.14. The model M U is -deterministic.

Proof. Suppose v U (x, y) and w U (x, y). Let k v and k w be the greatest integers such that (v, x, y) k v and (w, x, y) k w , respectively. If k v = k w then v = w. Suppose v < w, the other case being identical. We have

To prove that M U satisfies ϕ 0 , we adapt the bounded morphism definition to PPDL det and prove Proposition 7. 16. Then, considering the functions (h k ) k∈N as subsets of W U × W C , we define h as their union and prove that h is a bounded morphism (Lemma 7.17).

Definition 7.15. Given two PPDL det models M = (W , R, , V ) and M = (W , R , , V ), a mapping h : M -→ M is a bounded morphism iff it satisfies the following conditions for all v, w, w 1 , w 2 ∈ W , w , w 1 , w 2 ∈ W and a ∈ Π 0 : w and h(w) satisfy the same propositional variables

Proof. We prove that for any states w, x ∈ W and x ∈ W , any program α ∈ Π PPDL , any formula ϕ ∈ Φ PPDL and any integer n > 0, the following hypotheses hold:

The proof is by a straightforward induction on n.

Lemma 7.17. The homomorphism h is a bounded morphism from M U to M C . Proof. Conditions (7.3), (7.4) and (7.6) trivially hold. Conditions (7.5), (7.7) and (7.8) are ensured by exhaustivity of the successor, split and merge defects, respectively. Lemma 7.18. M U is a -deterministic model satisfying ϕ 0 at x 0 .

Proof. By Lemmas 7.14 and 7.17 and Proposition 7.16. Despite M U not being tree-like, it has some form of acyclicity, as defined below.

Definition 7.19. A model M = (W , R, , V ) is acyclic iff for any programs α, β and any states w, w 1 , w 2 , w 3 , w 4 , x, all the following conditions hold: (7.9) if α ∈ Π 0 then (w, w) R(α);

(7.10) if w R(α) x and x R(β) w then w = x;

(7.11) if w (w 1 , w 2 ), w (w 3 , w 4 ) and (w 1 , w 2 ) (w 3 , w 4 ) then (w 1 , w 3 ) R(α) and (w 2 , w 4 ) R(α).

Lemma 7.20. M U is acyclic.

Proof. First notice that condition (7.9) and the following claim hold by construction of M U .

Claim. For all x, w 1 , w 2 , w 3 , w 4 ∈ W U such that x U (w 1 , w 2 ) and x U (w 3 , w 4 ), w 1 = w 3 if and only if w 2 = w 4 .

Then we prove the following two properties by induction on k:

IH.1 for all x, y ∈ W k and α, β ∈ Π PPDL , if x R k (α) y and y R k (β) x then x = y;

IH.2 for all x, w 1 , w 2 , w 3 , w 4 ∈ W k , if x k (w 1 , w 2 ), x k (w 3 , w 4 ) and w 1 w 3 , then for all α ∈ Π PPDL , (w 1 , w 3 ) R k (α) and (w 2 , w 4 ) R k (α).

Both properties trivially hold for k = 0. Let us suppose they hold for k and prove them for k + 1. When fixing a successor defect (w, a, v) by adding the world w , we first notice that for all α ∈ Π PPDL and all y ∈ W k+1 , if w R k+1 (α) y, then y = w . Moreover, for all x, y, z ∈ W k+1 , if x k+1 (y, z) then x k (y, z). Then it can be proved by induction on α that for all α ∈ Π PPDL and all x, y ∈ W k , if x R k+1 (α) y, then there exists β ∈ Π PPDL such that x R k (β) y.

Similarly, when fixing a split defect (w, v 1 , v 2 ) by adding the worlds w 1 and w 2 , we first notice that for all α ∈ Π PPDL , all x ∈ W k+1 and all n ∈ {1, 2}, if w n R k+1 (α) x or x R k+1 (α) w n , then x = w n . Then it can be proved by induction on α that for all α ∈ Π PPDL and all x, y ∈ W k , if x R k+1 (α) y, then there exists β ∈ Π PPDL such that x R k (β) y.

When fixing a merge defect (v, w 1 , w 2 ) by adding the world w, we prove the following three properties for all α ∈ Π PPDL and all x, y ∈ W k :

The proofs are by simultaneous sub-inductions on |α|. We detail only the proof of IH.3 for iterations and the proof of IH.5 for sequential compositions, the other cases being either obvious or similar. To prove IH.3 for iterations, suppose x R k+1 (α * ) w. There must exist a chain z 0 , . . . , z n such that z 0 = x, z n = w and for all m < n, z m R k+1 (α) z m+1 . Let be the lowest integer such that z = w. Obviously, 0 hence z -1 R k+1 (α) w. By the induction hypothesis IH.3, there exist z, w 3 , w 4 ∈ W k and β 1 , β 2 , β 3 ∈ Π PPDL such that z k (w 3 , w 4 ), z -1 R k (β 1 ) z, w 3 R k (β 2 ) w 1 and w 4 R k (β 3 ) w 2 . By the induction hypothesis IH.5, for all m < -1, z m R k (α) z m+1 . Therefore, x R k α -1 ; β 1 z. To prove IH.5 for sequential compositions, suppose x R k+1 (α ; β) y. There must exist z ∈ W k+1 such that x R k+1 (α) z R k+1 (β) y. If z w, the proof terminates by two applications of the induction hypothesis IH.5. If z = w, by induction hypotheses IH.3 and IH.4, there exist

To prove IH.2, suppose x k+1 (w 3 , w 4 ) and x k+1 (w 5 , w 6 ). Since {w 3 , w 4 , w 5 , w 6 } ⊆ W k , by IH.5 and by induction the property holds. To prove IH.1, suppose x R k+1 (α) y and y R k+1 (β) x. If x w and y w, by IH.5 and by induction the property holds. Hence suppose y = w (the case when x = w being similar). By IH.3 and IH.4, there exist z 1 , z 2 , w 3 , w 4 , w 5 , w 6 ∈ W k and

and z 2 R k (β 6 ) x. By the induction hypothesis IH.1, x = z 1 = z 2 . By the induction hypothesis IH.2, w 3 = w 5 and w 2 = w 6 . Hence w 3 R k (β 2 ) w 1 and w 1 R k (β 4 ) w 3 and by IH.1, w 1 = w 3 . Similarly, w 2 = w 4 . Finally, by -determinism, x = w.

Therefore we have the following proposition.

Proposition 7.21. Whenever a formula ϕ 0 ∈ Φ PPDL is satisfiable, it is satisfiable in an acyclic model.

Pruning

In this section, we remove unreachable states from M U and prove that the resulting model is neat. The method consists in identifying reachable threads and relies on the fact that new reachable threads are added only by split defects. We use a function ρ associating to each state x ∈ W U either the first state of x's thread if this thread is reachable or the special value Out otherwise. The function ρ : W U -→ W U ∪ {Out} is defined by induction on the construction of M U as follows: 0. initially, ρ(x 0 ) = x 0 ;

1. when fixing a successor defect (w, a, v) by adding w , ρ(w ) = ρ(w) ;

2. when fixing a split defect (w, v 1 , v 2 ) by adding w 1 and w 2 , if ρ(w) Out then ρ(w 1 ) = w 1 and ρ(w 2 ) = w 2 , otherwise ρ(w 1 ) = ρ(w 2 ) = Out ;

3. when fixing a merge defect

defined as the reduction of M U to the worlds x for which ρ(x) Out.

Let

M N be the thread relation of M N . The following lemmas prove that M N is a neat -deterministic model satisfying ϕ 0 .

Proof. The proof is by simultaneous induction on |α| and |ϕ|. To prove (7.12) for parallel compositions, it has to be noted that for all x, y, z ∈ W U , if x U (y, z) and ρ(x) Out then ρ(y) Out and ρ(z) Out. All other cases are straightforward.

Proof. We first state the following claim.

Proof. By a straightforward induction on k.

The left-to-right direction follows directly from the previous claim and (7.12). For the right-to-left direction, since the relation (

symmetric and transitive, it suffices to prove that for all α ∈ Π PPDL and all x, y ∈ W U , x R U (α) y implies ρ(x) = ρ(y). The proof is by induction on |α|. We detail only the case for parallel composition, the other cases being straightforward. Suppose that x R U (α i β) y. There exists

w 4 and y U (w 3 , w 4 ). Let δ x and δ y be the defects such that (x, w 1 , w 2 ) and (y, w 3 , w 4 ) have been added to U when fixing δ x and δ y , respectively. If δ y is a split defect, then ρ(w 3 ) = w 3 and ρ(w 4 ) = w 4 . By the previous claim, there exist α , β ∈ Π PPDL such that w 3 R U (α ) w 1 and w 3 R U (β ) w 2 . By (7.13), M N inherits the acyclicity property of M U (Lemma 7.20). Hence w 1 = w 3 , w 2 = w 4 and by -determinism, x = y. If δ x is a split defect and δ y a merge defect, then by induction ρ(w 3 ) = ρ(w 1 ) = w 1 and ρ(w 4 ) = ρ(w 2 ) = w 2 and by construction ρ(y) = ρ(x). Suppose now that both δ x and δ y are merge defects. By -determinism, there is at most one w ∈ W U such that w U (ρ(w 1 ), ρ(w 2 )). If there is no such w, then ρ(x) = ρ(y) = Out. If there is one, let δ w be the defect such that (w, ρ(w 1 ), ρ(w 2 )) has been added to U when fixing δ w . If δ w is a Strong finite model property 7.5

Proof. By a straightforward induction on |α|.

Lemma 7.35. For all (k, X, m) ∈ W F and all formulas ϕ such that (λ(X), ϕ)

Proof. By the invariant (7.15).

Lemma 7.36. M F satisfies ϕ 0 .

Proof. The following properties are proved for all states (k, X, m) ∈ W F , all formulas ϕ ∈ Φ P H , all programs α ∈ Π P H and all integers n > 0:

The proof is by induction on n.

Left-to-right direction of the induction hypothesis IH.1. When the formula is a propositional variable, a placeholder or the false constant, the property trivially holds. When the formula is a negation, suppose ¬ψ ∈ Ψ (X, m). By Lemma 7.35, ψ Ψ (X, m) and by the right-to-left direction of the induction hypothesis IH.1,

When the formula ϕ is of the form α ψ, by invariant (7.15), for any x ∈ X, M N , x, m | = F α ψ. Hence there exists y ∈ W N such that x R N (α) y and M N , y, m | = F ψ. Since M N is neat, y ∈ θ x where θ x is the twine of x. Therefore, there exists Y ∈ Ω(θ x , m) such that y ∈ Y and by the induction hypothesis IH.2, (k,

Right-to-left direction of the induction hypothesis IH.1. When the formula is a propositional variable, a placeholder or the false constant, the property trivially holds. When the formula is a negation, suppose (λ(X), ¬ψ) ∈ FL + (ϕ 0 ) and ¬ψ Ψ (X, m). By Lemma 7.35, ψ ∈ Ψ (X, m) and by the left-to-right direction of the induction hypothe- 

Then, when the program α is atomic, the induction hypothesis IH.2 trivially holds. When the program α is a test, suppose the left side of the implication holds for α = ϕ?. Then x = y and

Hence by the induction hypothesis IH.1, M F , (k, X, m), m F | = F ϕ. When the program α is a nondeterministic choice, suppose the left side of the implication holds for α = (β 1 ∪ β 2 ). Then both (λ(x), β 1 ϕ) ∈ FL(ϕ 0 ) and (λ(x),

When the program α is a sequential composition, suppose the left side of the implication holds for α = (β 1 ; β 2 ). There exists z ∈ W N such that x R N (β 1 ) z and z R N (β 2 ) y.

(7.24) if x ∈ reach M (w) and x R(α) y for some α ∈ Π PPDL then y ∈ reach M (w), (7.25) if x ∈ reach M (w) and x (y, z) then {y, z} ⊆ reach M (w). The restriction of M to reach M (w), called the generated submodel of M from w, is the model

Proof. The canonical injection from W to W is not a bounded morphism, because it does not satisfy condition (7.8) of Definition 7. 15. Therefore, we prove that for all formulas ϕ ∈ Φ PPDL , all programs α ∈ Π PPDL , all n > 0 and all states w ∈ W and x ∈ W :

The proof is by induction on n and most of the cases are straightforward. We detail the right-to-left direction of IH.2 for parallel compositions though. Suppose w R(β γ) x and w ∈ W . By condition 7.24 of Definition 7.37, x ∈ W . There exists w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ), w 1 R(β) w 3 , w 2 R(γ) w 4 and x (w 3 , w 4 ). By condition 7.25 of Definition 7.37, w 1 , w 2 , w 3 , w 4 ∈ W . Finally, by induction,

Proof. It suffices to check that M w satisfies the three conditions of Definition 7.37. Lemma 7.40. Let M = (W , R, , V ) be a model with hierarchic function λ. For all w ∈ W and x ∈ reach M (w), if λ(x) λ(w) then there exist x , y, z ∈ W and α ∈ Π PPDL such that y ∈ reach M (w), x R(α) x and either y (x , z) or y (z, x ).

Proof. Suppose the lemma does not hold for some x and define S by S {y ∈ W y R(α) x for some α ∈ Π PPDL } It can easily be checked that reach M (w) \ S satisfies the three conditions of Definition 7.37, which is impossible by minimality of reach M (w).

We recall that x 0 is the state in W N satisfying ϕ 0 and T 0 is the thread of

. It can easily be checked, using Lemma 7.34, that the function

and let T 2 be the thread of (k, X 2 , m). Further suppose that λ(X 1 ) = λ(X 2 ) ends with , the other case being symmetrical. By Lemma 7.40, there are

By construction of M F , there are x 4 ∈ X 4 , x 7 ∈ X 7 , α ∈ Π P H and i > 0 such that (λ(X 1 ), α L i ) ∈ FL + (ϕ 0 ) and either x 4 = x 7 or x 4 R N (α) x 7 or x 7 R N (α) x 4 . In both latter cases, by hypothesis IH.2 in the proof of Lemma 7.36, T 1 = T 2 .

Lemma 7.42. M R is neat.

Proof. By construction, the thread in M R of each state (k, X, m) ∈ W R is uniquely identified by the pair (k, λ(X)). Hence, we write T k,λ(X) to denote this thread. The uniqueness of the isolated thread T 0,λ(x 0 ) is proved by Lemma 7.40. By Lemma 7.39, for all (k, X, m) ∈ W R , λ(x 0 ) is a prefix of λ(k, X, m). Hence the function obtained from λ by removing this prefix satisfies condition 3 of Definition 7.12. Finally, we prove that for all k > 0 and all µ such that for some

By construction, k 3 = k and λ(X 3 ) = µ.r. Finally, since k > 0, by Lemma 7.40, there are such (k 1 , X 1 , m 1 ) and (k 3 , X 3 , m 3 ). Therefore T k,µ.r is a thread and (T k,µ. , T k,µ.r ) is a twine.

We have proved the following proposition which will be useful in the remaining sections of this chapter.

Proposition 7.43. Whenever a PPDL det formula ϕ 0 is satisfiable, there is a neat -deterministic model M = (W , R, , V ) with hierarchy function λ such that • for some state x 0 ∈ W , λ(x 0 ) = and M, x 0 | = ϕ 0 ;

• for any twine θ in M, there are at most two decompositions (w, x, y) ∈ such that {x, y} ⊆ θ.

Optimal decision procedure for the satisfiability problem

We describe a decision procedure for the satisfiability problem of PPDL det which runs in deterministic exponential time. Since PDL is trivially embedded in PPDL det , the complexity of this decision procedure is optimal and the following proposition is proved.

Proposition 7.44. The satisfiability problem of PPDL det is EXPTIME-complete.

In short, the addition of deterministic separating parallel composition of programs to PDL extends its expressive power (see Proposition 6.22) without increasing the complexity of the satisfiability problem. This result contrasts with the 2EXPTIME-hardness of the satisfiability problems of concurrent PDL and PDL with intersection, presented in the previous chapter.

The decision procedure presented in this section is based on the procedure of eliminating Hintikka sets devised for PDL by Pratt [Pratt.79] and recalled in Section 2.5. There are two main difficulties in adapting this decision procedure to PPDL det . Firstly, Hintikka sets are not sufficient to characterize states of PPDL det models. The decomposition path leading to each state is an essential information. Therefore, we introduce plugs, which correspond to decompositions by the separation relation, and sockets, which are sets of plugs and correspond to twines. A state of the initial model is a pair (H, S) where H is a Hintikka set and S a socket. Secondly, the resulting model is not -deterministic. Hence to prove that whenever the procedure succeeds the formula is satisfiable, a -deterministic model must be constructed from the final model.

Before introducing the procedure formally, we adapt the general Fischer-Ladner closure introduced in Section 7.3 to the particular needs of the procedure. Indeed, for the sake of simplicity, only four placeholders are used in the procedure: by Proposition 7.43 it is possible to have at most two decompositions per twine and we need only one placeholder for each substate in these decompositions. Since only the set

of placeholders is used, indices are useless and will be omitted. Formally, for any formula ϕ ∈ Φ P H and any integer k ∈ N, let f red (k, ϕ) be the formula obtained from ϕ by

Completeness

We prove that if the procedure of eliminating Hintikka sets succeeds for a pure formula ϕ 0 then ϕ 0 is PPDL det satisfiable. Suppose that M H = W H , R H , H , V H has been constructed, for a given formula ϕ 0 ∈ Φ, by the procedure of eliminating Hintikka sets for PPDL det and that there exists (H 0 , S 0 ) ∈ W H such that ( , ϕ 0 ) ∈ H 0 . Obviously, M H is a model. But in the general case, M H is not -deterministic. Therefore we will construct from M H a -deterministic model M D = W D , R D , D , V D satisfying ϕ 0 . The main idea is to consider the equivalence classes by the relation over W H defined such that (H, S) (H , S ) iff S = S . These equivalence classes are called pseudo-twines because each copy of such a twine in M D will be a twine (modulo unreachable states). Remark that each such pseudo-twine corresponds exactly to a socket. The initial pseudo-twine θ 0 corresponds to the empty socket ∅. The model M D is constructed inductively as follows. Initially, the model contains only a copy of the initial twine θ 0 . Then, whenever two states in M D are copies of states reachable in M H by a parallel program, a copy of the pseudo-twine linking these two states in M H is added to M D . Since there are no decompositions within pseudo-twines, we can ensure that M D is -deterministic, while preserving the satisfiability of ϕ 0 . Formally, to be able to copy pseudo-twines, hence states, the states of M D are pairs (i, (H, S)) where i is a positive natural number and (H, S) is a state from M H . We define the set P L ⊆ N × W H × SP(ϕ 0 ) × W H of parallel links such that (n, (H, S) , α, (H , S )) ∈ P L iff (H, S) R(α) (H , S ) and there exist β, γ ∈ Π such that α = β γ. As both W H and SP(ϕ 0 ) are finite, P L can be totally ordered such that if

such an order has a least element, hence the k th element of P L is well defined for all k ∈ N. Moreover, if (n, (H, S) , α, (H , S )) is the k th element of P L, then n ≤ k. Now, we inductively construct the models M D k k∈N as follows.

0 is defined such that:

Otherwise, the following step is applied recursively.

Inductive (k +1) th step. Suppose that M D k has already been constructed and (n, (H, S) , α β, (H , S )) is the k th tuple in P L.

). Let θ be the pseudo-twine corresponding to S . The model M D k+1 is defined by: Finally, the model M D is defined as the union of all the models M D k for k ∈ N. We now prove that M D is a -deterministic model satisfying ϕ 0 .

Lemma 7.49. M D is -deterministic.

Proof. Let us suppose that (k, (H, S)) D ((k 1 , (H 1 , S 1 )), (k 2 , (H 2 , S 2 ))) and (k , (H , S )) D ((k 1 , (H 1 , S 1 )), (k 2 , (H 2 , S 2 ))). By construction, k 1 = k 2 and S 1 = S 2 . Moreover, those two tuples have been added to D at the k 1 th inductive step. Therefore, k = k , S = S and {(H, H 1 , H 2 ), (H , H 1 , H 2 )} ∈ S(ϕ 0 ). Since the types of (H, H 1 , H 2 ) and (H , H 1 , H 2 ) only depend on H 1 and H 2 , these two plugs have the same types. Hence, by Definition 7.47, H = H .

To prove that M D satisfies ϕ 0 (Lemma 7.52), we need the following two lemmas.

Lemma 7.50. For all k ∈ N, all (H, S) , (H , S ) ∈ W H k and all programs α, if (H, S) R k (α) (H , S ), then S = S , λ(H) = λ(H ) and for all i ≤ k, (H, S) R i (α) (H , S ).

Proof. The proof is by induction on |α|. We detail only the case for parallel compositions. Suppose that (H, S) R k (α β) (H , S ). By definition, S = S and there exist

Proof. The proof is by induction on |α|. We only prove the case when α is a parallel composition. The other cases are straightforward and left to the reader. Suppose that (λ(H), [α β] ϕ) ∈ H and (H, S) R(α β) (H , S ). By definition, there exist H 1 , H 2 , H 3 , H 4 ∈ Hin (ϕ 0 ) such that, S = {(H, H 1 , H 2 ), (H , H 3 , H 4 )} ∈ S(ϕ 0 ), (H 1 , S ) R(α) (H 3 , S ) and (H 2 , S ) R(β) (H 4 , S ). As H is a Hintikka set, (λ(H), α β ¬ϕ) H. Since (H , H 3 , H 4 ) is a plug, there exists t ∈ {1, 2} such that (λ(H 3 ), L t ) ∈ H 3 and (λ(H 4 ), R t ) ∈ H 4 . Since S is a socket, by Condition 2 of Definition 7.47, one of the following statements holds:

which is a contradiction. The case when (7.27) holds is similar. Finally, if (7.28) holds then (λ(H ), ϕ) ∈ H .

We can now state the following truth lemma. Tableaux Methods for PDL with Separating Parallel Composition

In this chapter, we propose tableaux methods for PPDL det and one of its fragments. Such tableaux methods are not trivial because of the lack of the tree model property in PPDL det . To deal with the merging of states at the end of parallel compositions, we borrow Massacci's idea [Massacci.01] to allow non-atomic programs as labels of edges in the built structure. We also use the fact that whenever a PPDL det formula is satisfiable, it is satisfiable in an acyclic model (Proposition 7.21). Moreover, we use the placeholders, indices and marking functions defined in Section 7.3.

Preliminary

In this section, we define and describe some functions used by the tableaux methods. We first prove the following lemma.

Lemma 8.1. For any pure formula ϕ 0 and any i ∈ N, there is at most one formula of the form [α i β] ϕ in SF(ϕ 0 ).

Proof. First notice that because of the Fischer-Ladner rule for iteration, there may be, for some i ∈ N, an annotated formula in FL(ϕ 0 ) with more than one occurrence of i . Therefore, we use the restricted closure rFL( , ϕ 0 ) as defined in the proof of Proposition 7.6. We prove that for all ϕ 0 ∈ Φ pure and all i ∈ N, there is at most one formula of the form [α i β] ϕ in rFL( , ϕ 0 ). First, it can easily be proved by induction that for all ϕ ∈ rFL( , ϕ 0 ) and all i ∈ N, there is at most one occurrence of i in ϕ. Then, for any annotated formula ϕ, let I(ϕ) = {i ∈ N | i occurs in ϕ}. It suffices to check that for any rules of the restricted Fischer-Ladner closure calculus with premise ϕ and conclusions ψ 1 , . . . , ψ n , I(ψ k ) and I(ψ l ) are disjoint for all k l and ∪ k∈1..n I(ψ k ) ⊆ I(ϕ).

Therefore, the function G ϕ 0 can be defined such that, for all i ∈ N, if there exist α, β

When the index ϕ 0 is obvious from the context, we write G instead of G ϕ 0 .

We also define the size function which assigns a value in {0, 1, * } to each annotated program. This function gives a hint during the tableaux construction about whether a state reachable by a program α must be the same state as the current state. If size(α) = 0 then it must be the same state. If size(α) = 1 then it should be a different state. If size(α) = * then both possibilities must be considered. The size function is defined inductively as follows: 

We state the following lemmas to strengthen intuitions about the meaning of the size function. The first one is quite important as it explains why -determinism simplifies reasoning about PDL with separating parallel composition.

Lemma 8.2. For any -deterministic model M = (W , R, , V ) any states x, y ∈ W and any program α, if x R(α) y and size(α) = 0 then x = y.

Proof. By induction on |α|.

Lemma 8.3. For any PPDL det model M = (W , R, , V ), any states w, x ∈ W and any program α ∈ Π P H , if w R(α) x, size(α) = * and w x then there is β ∈ Π P H such that size(β) = 1 and w R(β) x.

Proof. The proof is by an easy induction on |α|. We detail only the case for parallel compositions. Suppose w R(γ 1 i γ 2 ) x, w x and size(γ 1 ) = * . There is w 1 , w 2 , w 3 , w 4 such that w (w 1 , w 2 ), w 1 R(γ) 1 w 3 , w 2 R(γ) 2 w 4 and x (w 3 , w 4 ). Moreover, size(γ 1 ) = * or size(γ 2 ) = * . Let us suppose the former, the latter case being symmetric. If w 1 = w 3 since w x and M is -deterministic, w 2 w 4 and by Lemma 8.2, size(γ 2 ) = * . Therefore, by symmetry, we assume that size(γ 1 ) = * and w 1 w 3 . By induction, there is β 1 such that size(β 1 ) = 1 and w 1 R(β 1 ) w 3 . Therefore w R(β 1 i γ 2 ) x and size (β 1 i γ 2 ) = 1.

Lemma 8.4. A PPDL det model M = (W , R, , V ) is acyclic iff the two following conditions hold: (8.1) for all w ∈ W and all α ∈ Π P H , if w R(α) w then size(α) 1;

(8.2) for all w, w 1 , w 2 , w 3 , w 4 ∈ W such that w (w 1 , w 2 ) and w (w 3 , w 4 ), there is an annotated program α such that w 1 R(α) w 3 if and only if there is an annotated program β such that w 2 R(α) w 4 .

Proof. For the left-to-right direction, condition (8.2) follows from condition (7.11) of Definition 7.19 and condition (8.1) is proved by induction on |α|. We detail only the cases for sequential and parallel compositions. For sequential compositions, suppose w R(β ; γ) w. There is x ∈ W such that w R(β) x and x R(γ) w. By condition (7.10), x = w and by induction size(β) 1 and size(γ) 1. Therefore size(α ; β) 1. For parallel compositions, suppose w R(β i γ) w. There is w 1 , w 2 , w 3 , w 4 such that w (w 1 , w 2 ), w 1 R(γ 1 ) w 3 , w 2 R(γ 2 ) w 4 and w (w 3 , w 4 ). By condition (7.11), (w 1 , w 2 ) = (w 3 , w 4 ) and by induction size(β) 1 and size(γ) 1. Therefore size(α i β) 1.

For the right-to-left direction, condition (7.9) follows from condition (8.1). For condition (7.10), suppose w R(α 1 ) x and x R(β 1 ) w. By condition (8.1), there are no programs α 2 , β 2 ∈ Π P H such that w R(α 2 ) x, x R(β 2 ) w and size(α 2 ) = 1 or size(β 2 ) = 1. Therefore, by Lemma 8.3, size(α 1 ) = 0 and by Lemma 8.2, w = x. For condition (7.11), suppose w (w 1 , w 2 ), w (w 3 , w 4 ) and for some α, w 1 R(α) w 3 or w 2 R(α) w 4 . By condition (8.2), there are β, γ ∈ Π P H such that w 1 R(β) w 3 and w 2 R(γ) w 4 . By a similar reasoning than for sequential composition, we prove that size(β) = size(γ) = 0. By Lemma 8.2, (w 1 , w 2 ) = (w 3 , w 4 ).

Since programs of size * have to be considered as programs of both size 0 and 1, we use the function uniter to transform a program of size * to a program of size 0. The function is defined inductively by: uniter(a) = a uniter(α ; β) = uniter(α) ; uniter(β)

if size(α) 1 and size(β) = 1 uniter(β) if size(α) = 1 and size(β) 1 uniter(α) ∪ uniter(β) otherwise uniter(ϕ?) = ϕ? uniter(α * ) = ? uniter(α i β) = uniter(α) i uniter(β)

The following lemma lists some interesting properties of the function uniter.

Lemma 8.5. For all annotated program α ∈ Π P H , we have the following properties:

Moreover, for any model M = (W , R, , V ) and any states w, x ∈ W , if w R(uniter(α)) x then w R(α) x.

Proof. By a straightforward induction on |α|.

Additionally, we state the following lemma which characterizes the use of uniter in the tableaux method.

Lemma 8.6. For any model M = (W , R, , V ), any state w ∈ W and any annotated program α ∈ Π P H , if M is acyclic and w R(α) w then w R(uniter(α)) w.

Proof. The proof is by induction on |α|. We detail only the following cases, the missing ones being straightforward. For sequential compositions, suppose w R(β ; γ) w. There is x ∈ W such that w R(β) x and x R(γ) w. By condition (7.10) of Definition 7.19, x = w. Hence by induction w R(uniter(β) ; uniter(γ)) w. For nondeterministic choices, suppose w R(β ∪ γ) w. By condition (8.1) of Lemma 8.4, it is not possible that uniter(β ∪ γ) = uniter(β) and w R(γ) w neither that uniter(β ∪ γ) = uniter(γ) and w R(β) w. Therefore, by induction, w R(uniter(β ∪ γ)) w. For parallel compositions, suppose w R(β i γ) w. There is w 1 , w 2 , w 3 , w 4 such that w (w 1 , w 2 ), w 1 R(β) w 3 , w 2 R(γ) w 4 and w (w 3 , w 4 ). By condition (7.11), (w 1 , w 2 ) = (w 3 , w 4 ). Therefore, by induction we have that w R(uniter(β) i uniter(γ)) w.

Tableaux Method

The rules of the proposed tableaux method act on judgments about a given set W of states. A judgment about W is either:

• a judgment x : ϕ stating that x must satisfy ϕ; 125 8. Tableaux Methods for PDL with Separating Parallel Composition

x : [a]ϕ (x, y) : a y : ϕ • a judgment (x, y, z) : ∆ with ∆ ∈ {F, B}, stating that x can be decomposed forwardly (if ∆ = F) or backwardly (if ∆ = B) into y and z. where w, x, y ∈ W , ϕ ∈ Φ P H and α ∈ Π P H . A judgment j involves a state x iff x appears on the left side of j. A structure is a tuple S = (W , J, K) where W is the set of states, J the set of judgments about W and K ⊆ J the subset of inactive judgments. An inactive judgment is a judgment which already triggered the application of one of the rule and which must not trigger another one.

A tableau T for a pure formula ϕ 0 ∈ Φ pure is a finitely branching, ordered, possibly infinite tree whose nodes are labeled with structures. The root of a tableau for ϕ 0 must be labeled with an initial structure ({w 0 }, {w 0 : ϕ 0 }, ∅) for some arbitrary w 0 . Successor nodes are constructed in accordance with the rules in Figures 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6. Rules have the general form:

where X 0 is the set of premises, (X k ) k∈1.. are the sets of conclusions, C is the set of side conditions and > 0. The rules ( ), ( 1F), ( 1B), ( 0 ) and ( 0⊥) are called universal. States denoted by n, n 1 , n 2 , n 3 and n 4 in the conclusions must be fresh. A rule instantiation is applicable to a node η 0 labeled with S 0 = (W 0 , J 0 , K 0 ) if all the following conditions are met:

• the instantiation X 0 of the set of premises is a subset of J 0 \ K 0 ,

• all side conditions' instantiations are satisfied,

• if the rule is universal then for all k ∈ 1 . . , there is a judgment j k in X k 's instantiation such that j k J 0 . When applying a rule instantiation, the child nodes η 1 , . . . , η of η 0 , labeled with S 1 , . . . , S , are created such that for all k ∈ 1 . . ,

The rules ensure that for any judgment (x, y) : α ∈ J, if size(α) = 0 then x = y and if size(α) = 1 then x y. When size(α) = * , both cases must be considered. For instance rule ( * ) may be seen as the disjunction of the rules ( 1) and ( 0). When a program α of size * is considered as having size 0, it is implicitly replaced by uniter(α). The replacement is made explicit in the right-hand side conclusion of rule ( 0 ) in order to enable the application of rule ( 0⊥) afterward.

For judgments of the form (x, y, z) : ∆, we distinguish forward (∆ = F) and backward (∆ = B) decompositions. The rules ensure that if (x, y, z) : ∆ ∈ J, (x , y , z ) : ∆ ∈ J and y and z are reachable from y and z respectively, then either (y, z) = (y , z ) or ∆ = F and ∆ = B. This property is used in rules ( 1F) and ( 1B) to ensure that no new judgments about a state is added after all successors of that state have been added (see Soundness 8.3 Lemma 8.22 on page 137). Rules ( 1F) and ( 1B) ensure that if x : [α i β] ϕ ∈ J then for any state y x reachable from x by α i β, y : ϕ ∈ J. Similarly, rules ( 0 ) and ( 0⊥) ensure that if x : [α i β] ϕ ∈ J then either x : ϕ ∈ J or x is not reachable from x by α i β. When size(α i β) = * , since the rules ( 1F) and ( 0 ) are both universal, they could be both applied on the same judgment x : [α i β] ϕ.

In a tableau, a maximal path from the root is called a branch. For any branch B, we write W B (resp. J B ) for the union of the W (resp. J) such that there exists a node in B labeled with (W , J, K) for some J (resp. W ) and K. A structure S = (W , J, K) is inconsistent if there exists x ∈ W such that x : ⊥ ∈ J or both x : ϕ ∈ J and x : ¬ϕ ∈ J for some ϕ ∈ Φ P H . A branch is open if its nodes are all labeled with a consistent structure. A branch B is saturated iff for any node η ∈ B labeled with S = (W , J, K) and any rule's instantiation π applicable on S, there exists a node η in B labeled with S = (W , J , K ) and such that one of π's conclusions sets is a subset of J . A branch B is demand-satisfied iff for any node η ∈ B labeled with S = (W , J, K) and any judgment in J of the form (x, y) : α * there is a node η ∈ B labeled with S = (W , J , K ) and a list x 0 , . . . , x m ∈ W such that x 0 = x, x m = y and for all i < m, (x i , x i+1 ) : α ∈ J . A tableau is satisfying if it has an open saturated demand-satisfied branch. We will prove that for any pure formula ϕ 0 , there exists a satisfying tableau for ϕ 0 if and only if ϕ 0 is satisfiable.

Soundness

We prove the soundness of the tableaux method by interpreting branches into a satisfying model. The use of placeholders necessitates the selection of marking functions to interpret judgments. We assign the same marking function to states in the same twine. We first identify twines using the twine function. Given a branch B in a tableau for ϕ 0 , the twine function t B assigns to each state in W B an element in W 2 B ∪{θ 0 } where θ 0 W 2 B . The function t B is constructed from the root of B as follows:

• If x is the unique state in the label of the root, then t(x) = θ 0 .

• If x has been added by an application of a rule which did not add a judgment of the form (z, w 1 , w 2 ) : F (rules ( 1), ( * ), ( ;11), ( ;1 * ), ( ; * 1), ( ; * * ) and ( * )) then t(x) = t(y), y being any state involved in the premises of the rule instantiation.

A careful analysis of the rules shows that the choice of y does not matter, because whenever (y 1 , y 2 ) : α ∈ J B then t(y 1 ) = t(y 2 ). • If x has been added by an application of a rule which did add a judgment of the form (z, w 1 , w 2 ) : F (rules ( 00), ( 0 ), ( 0), ( 11), ( 1 * ), ( * 1) and ( * * )), then t(x) = (w 1 , w 2 ). Let Θ B be the image of the twine function. For any pair (w 1 , w 2 ) ∈ Θ B \ {θ 0 }, there is a unique x ∈ W B such that (x, w 1 , w 2 ) : F ∈ J B . In that case, we write θ for t(x).

Given a branch B with twine function t B , a structure S = (W , J, K) labeling a node in B and a model

If there is such an interpretation, S is said to be interpretable in M with respect to B. If the label of each node in B is interpretable in M with respect to B, then B is interpretable in M . 129 8. Tableaux Methods for PDL with Separating Parallel Composition Obviously, interpretable branches are open and the rules preserve the interpretability. We establish the soundness of the tableaux method by proving the following lemmas.

Lemma 8.7. If a pure formula ϕ 0 ∈ Φ pure is satisfiable then the initial structure S 0 = ({w 0 }, {w 0 : ϕ 0 }, ∅) is interpretable with respect to any branch of any tableau for ϕ 0 .

Proof. Let B be a branch in a tableau for ϕ 0 and M a model satisfying ϕ 0 at x 0 . The function f and g are defined by f (w 0 ) = x 0 and g(θ) = m ∅ W for all θ ∈ Θ B . It can easily be checked that (f , g) is an interpretation of ({w 0 }, {w 0 : ϕ 0 }, ∅) into M with respect to B.

Lemma 8.8. Let ϕ 0 ∈ Φ pure be a pure formula satisfiable in a model M , B a branch in a tableaux T for ϕ 0 and η ∈ B a non-leaf node labeled with the structure S. If S is interpretable in M with respect to B, then there are a child η of η and a branch B in T such that η ∈ B and the label of η is interpretable in M with respect to B .

Proof. Suppose the label S = (W , J, K) of a non-leaf node η is interpretable in M with respect to B by (f , g) and π is the rule applied to η in T . We will prove there exist η , f and g such that η is a child of η in T and (f , g ) is an interpretation of the label S = (W , J , K ) of η into M with respect to any branch containing η . The proof is by a case by case analysis of all the rules. We detail the cases for rules ( * ), ( ;00), ( * ), ( 1F), ( 0 ) and ( 11) only, the other cases being either similar or routine. We use the same notations as in Figure 8.1 to 8.6, identifying rules variables with the corresponding states of the structures.

Rule ( * ). If f (x) R (α) f (x) and f (x) R (uniter(α)) f (x) then the leftmost child is chosen with (f , g ) = (f , g). Otherwise, by condition (8.3), there exists w ∈ W such that f (x) R (α) w and M , w , g(t(x)) | = F ϕ. The rightmost child of η is chosen with g = g and f defined such that f (n) = w and for all w ∈ W , f (w) = f (w).

Rule ( ;00). Let (f , g ) = (f , g). By construction, size(α ; β) 1, hence size(α) 1 and size(β) 1. By condition (8.5), f (x) R (uniter(α ; β)) f (x). Thus there exists w ∈ W such that f (x) R (uniter(α)) w and w R (uniter(β)) f (x). Since size(uniter(α)) = size(uniter(β)) = 0, by Lemma 8.2, w = f (x).

Rule ( * ). First notice that by condition (8.6), f (x) f (y). If f (x) R (α) f (y) then the leftmost child is chosen with (f , g ) = (f , g). Otherwise, by condition (8.4), let be the least integer such that there exist x 0 , . . . , x ∈ W such that x 0 = f (x), x = f (y) and for all k < , x k R (α) x k+1 . Obviously, > 1, x 1 f (x) and x 1 f (y). The rightmost child of η is chosen with g = g and f defined such that f (n) = x 1 and for all w ∈ W , f (w) = f (w).

Rule ( 1F). Let f = f . By construction of the twine function, t B (y) = t B (z) = (y, z). By Lemma 8.1 and by construction of the tableau, there is no judgment w : ψ in J such that L i or R i occurs in ψ and t(w) = (y, z). Let m be the marking function defined such that

w } and m(P ) = g(t B (y))(P ) for P {L i , R i }. We define g such that g (t B (y)) = m and g (θ) = g(θ) for all θ t B (y).

Rule ( 0 ). If M , f (x), g(t(x)) | = F ϕ then the leftmost child is chosen with (f , g ) = (f , g). Otherwise, (f (x), f (x)) R (α i β). By Lemma 8.5, (f (x), f (x)) R (uniter(α i β)). Since size (uniter (α i β)) = 0, by Lemma 8.2, M , f (x), g(t(x)) | = F [uniter(α i β)] ⊥. The rightmost child of η is chosen with (f , g ) = (f , g). For formulas of the form [α i β]ϕ, suppose x : [α i β]ϕ ∈ J B and x R(α i β) y. There is w 1 , w 2 , w 3 , w 4 ∈ W such that x (w 1 , w 2 ), w 1 R(α) w 3 , w 2 R(β) w 4 and y (w 3 , w 4 ). We first consider the case when x = y. Since M is acyclic, by Lemma 8.4 we have that size(α i β) 1. Therefore, by saturation, x : ϕ ∈ J B or x : [uniter (α i β)] ⊥ ∈ J B . In the former case we conclude by induction hypothesis. In the latter case, suppose that x : [uniter (α i β)] ⊥ ∈ J B . Since (x, w 1 , w 2 ) : ∆ ∈ J B for some ∆ ∈ {F, B}, by saturation, w 1 : [uniter(α)] ⊥ ∈ J B and w 2 : [uniter(β)] ⊥ ∈ J B . By Lemma 8.5 we have that

By condition (7.11), w 1 = w 3 and w 2 = w 4 . Therefore, by Lemma 8.6, w 1 R(uniter(α)) w 1 and w 2 R(uniter(β)) w 2 . Hence, M, w 1 , m | = F ⊥ and M, w 2 , m | = F ⊥ which is impossible. We now consider the case when x y. By Lemma 8.2, size (α i β) 0. By Lemma 8.17, we can assume that (x, w 1 , w 2 ) : F ∈ J B and (y, w 3 , w The completeness of the tableaux method follows directly from Lemma 8.19.

Proposition 8.20. For any pure formula ϕ 0 , if there exists a satisfying tableau for ϕ 0 then ϕ 0 is satisfiable.

Optimal Decision Procedure for an iteration-free fragment

In this section, we consider the logic PPDL det 0 obtained by interpreting the fragment of Φ PPDL without iterations and nondeterministic choices. We prove that the satisfiability problem of this logic is in PSPACE. We write Π 0,PH for the set of annotated programs without iterations and nondeterministic choices, Φ 0,PH for the set of annotated formulas without iterations and nondeterministic choices and Φ 0,pure for the set of pure formulas without iterations and nondeterministic choices. Obviously, for any program α ∈ Π 0,PH , size(α) * . Moreover, it can easily be checked that for all ϕ 0 ∈ Φ 0,pure , SF(ϕ 0 ) ⊆ Φ 0,PH .

Tableaux Method

The rules for the tableaux calculus of PPDL det 0 are the rules ( ), ( 1), ( 0), ( ;), ( ;00), ( ;11), ( ;0 ), ( ; 0), ( ?), ( ?), ( 1F), ( 1B), ( 0 ), ( 0⊥), ( 00), ( 0 ), ( 0) and ( 11) 1 S ← ({w 0 }, {w 0 : ϕ 0 }, ∅) 2 while there is a local rule's instantiation π applicable to S do 3 S ← a nondeterministically chosen successor of S by π 4 S ← Extend(S, w 0 ) 5 if W ∅ then return SAT 6 else return UNKNOWN following lemma can be proved by induction on the length of the path from the root of the tableau to the node η.

Lemma 8.21. Let S = (W , J, K) be a structure labeling a node in a tableau for ϕ 0 . For any judgment x : ϕ ∈ J, ϕ ∈ SF + (ϕ 0 ) and for any judgment (x, y) : α ∈ J, α ∈ SP(ϕ 0 ).

Optimal Decision Procedure

We will prove that the nondeterministic procedure Decision defined above solves the satisfiability problem of PPDL det 0 in polynomial space. Called with a pure formula ϕ 0 , this procedure constructs a branch of a tableau for ϕ 0 and returns SAT if this branch is open and saturated. In order to reduce memory usage, the procedure ensures that after any application of an instantiation π of the rules ( 1) and ( 00), no new judgments can be added which involve only the states in π's premises (see Lemma 8.22). A local rule is a rule which is neither ( 1) nor ( 00). A structure is locally saturated iff no local rule instantiations can be applied to it. A rule's instantiation π is appropriate to S and x iff π is applicable to S and either π is an instantiation of a local rule or the instantiations of the premises involve only x. Lemma 8.22. Let S = (W , J, K) be a locally saturated structure labeling a node η in a branch of a tableau. For any descendant node η of η with label S = (W , J , K ) and any judgment j ∈ J involving only one state x ∈ W , if x ∈ W then j ∈ J.

Proof. First notice that the judgments in the conclusion of each of the rules involve only fresh states or states involved by one of the premises. Now, we suppose Rule ( 1) is applied to S on premise x : α ϕ. Since S is locally saturated, either α = a for some a ∈ Π 0 or α = β i γ for some β, γ ∈ Π P H and i ∈ N. In the former case, the only rule for which (x, n) : a may be a premise is Rule ( ), whose conclusion does not involve x. In the latter case, one of the rules ( 0 ), ( 0) and ( 11) can be applied on the new premise (x, n) : β i γ. For all of these rules, the only conclusion involving x is (x, n 1 , n 2 ) : F. The judgment (x, n 1 , n 2 ) : F can only be used to apply rules ( 1F) and ( 0⊥), whose conclusions do not involve x. Similarly, supposing Rule ( 00) is applied to S on premise (x, x) : α i β, the only conclusion involving x is (x, n 1 , n 2 ) : F which can be used only with rules ( 1F) and ( 0⊥).

The procedure Decision proceeds as follows. First, the structure for the root node (line 1) is created. Then the structure is locally saturated without adding any new state S 1 , S 2 , . . . be the successive values of S across the iterations of the existential loop. It can easily be proved that for all ψ ∈ SF + (ϕ 0 ), ψ < |ϕ 0 |. Therefore, since the number of judgments involving only x is O(|ϕ 0 |) and for any judgment j

Then, for all k, the rule's instantiation π applied to S k is appropriate for S k and x. Moreover, by Lemma 8.22 no judgment in any conclusion of π involves x only. Therefore, a case by case analysis of all rules shows that if S k+1 is a successor of S k by π,

Lemma 8.24. During a call to Decision(ϕ 0 ), the recursion depth of the calls to Extend is bounded by a polynomial in |ϕ 0 |.

Proof. New measures |•| R for formulas, programs and judgments are defined by:

For any pure formula ϕ ∈ Φ 0,pure and any program α ∈ Π 0,PH , |ϕ| R ≤ |ϕ| and |α| R ≤ |α|. Moreover, if a structure S = (W , J, K) has been obtained from the initial structure ({w 0 }, {w 0 : ϕ 0 }, ∅) by applying only local rules, then for all j ∈ J, |j| R ≤ |ϕ 0 | R . Now, for a given execution of the Extend procedure, let us use the same notation as in the procedure Extend. It suffices to prove that for any y ∈ W \ W , and any judgment j ∈ J involving y, there exists a judgment j ∈ J 0 such that |j | R < |j| R . The proof is by induction on the number of iteration of the existential loop. The only non obvious case is when the existential loop's iteration applies rule ( 0 ). But in this case, since S is locally saturated, the x in the premise of the rule is different from the currently selected state, and by induction there exists j ∈ J 0 such that x : [α i β]ϕ R < |j| R , hence

x : [α i β]⊥ R < |j| R .

Lemma 8.25. Decision(ϕ 0 ) returns SAT only if a saturated branch for ϕ 0 has been constructed.

Proof. Let B be the branch constructed by an execution of Decision(ϕ 0 ) returning SAT. First notice that for each rule in the tableaux calculus there is at most one premise involving more than one state and there is exactly one premise involving all the states involved in all the premises. We suppose a rule's instantiation π is applicable to a node η in B. Suppose first that the premises of π involve exactly one state w . If π is local and w = w 0 , at the end of the loop lines 2 to 3 of the Decision procedure, by local saturation, all premises of π must belong to J and π cannot be applicable to S. Similarly, if π is local and w w 0 , at the end of the existential loop of the call to Extend introducing w , all premises of π must belong to J and π cannot be applicable to S . If π is not local, there exists S = (W , J, K) such that Extend(S, w ) is called at some step. Since S is locally saturated, all premises of π belong to J and π is either not applicable or appropriate to S and w.

Suppose now there is one premise j of π involving more than one state. Then π is local and any other premises of π involve only one state. Let η, labeled with S η = (W η , J η , K η ), be the first node in B such that j ∈ J η . Obviously, this node has been obtained by an iteration of the existential loop of a call of Extend(S, w) for some S and w. Since the structure the existential loop operates on, initially has judgments involving 139 8. Tableaux Methods for PDL with Separating Parallel Composition only the selected state w, all the states involved in j and different from w have been introduced by the existential loop of the call of Extend(S, w). Hence, by local saturation, before the end of this existential loop, all the premises of π belong to J . Therefore at the end of the existential loop, π cannot be applicable to S . By Proposition 7.6 and Lemma 8.21, the number of judgments added by the loop at lines 2 to 3 is polynomial in |ϕ 0 |. Hence this loop terminates. By Lemma 8.23, the number of new states added by the existential loop (lines 9 to 10) is polynomial in |ϕ 0 |. Therefore, by Proposition 7.6 and 8.21, the cardinality of J is always bounded by a polynomial in |ϕ 0 |. Hence the existential loop terminates. By Lemmas 8.24 and König's lemma, the execution tree of Extend is finite, hence the whole procedure terminates. Moreover, each call to Extend(S, x) needs to keep track of the judgments involving only states in {x}∪(W \ W ) and the number of these judgments is polynomial in |ϕ 0 |. Finally, by Lemma 8.23, only a polynomial number of such configurations have to be stored. We have proved the following proposition.

Proposition 8.26. All executions of Decision(ϕ 0 ) terminate and Decision can be implemented using polynomial space.

Given a pure formula ϕ 0 ∈ Φ 0,pure , the set of executions of Decision(ϕ 0 ) corresponds to a collection Γ of tableaux for ϕ 0 where each execution corresponds to a branch of a tree. If ϕ 0 is satisfiable, by soundness of the tableaux method (Lemmas 8.7 and 8.8), there is an open branch in each tree of Γ . Since Decision returns UNKOWN only when the corresponding branch is close, there is an execution of Decision(ϕ 0 ) returning SAT. Conversely, by Lemma 8.25, if an execution of Decision(ϕ 0 ) returns SAT, the corresponding branch B is saturated. Since B is open too, by completeness of the tableaux method (Proposition 8.20), ϕ 0 is satisfiable. As a result: