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1Introduction

The theoretical description of transport at mesoscopic scales is based on quantum

mechanics, since the phase coherence matters at the typical length scales of nanos-

tructures. A conduction electron is thus characterized by its wavefunction, its charge,

and a set of quantum numbers, most importantly the spin. Electron transport gives

consequently rise to charge and spin currents and a manipulation of the spin properties

may modify the charge current. The control of charge currents via a control of the spin

properties is especially interesting for nanostructures containing superconductors, since

superconductivity provides macroscopic coherence.

Superconductivity was discovered more than a century ago by Kamerlingh Onnes [1]

via the vanishing electrical resistivity of mecury below a threshold (critical) tempera-

ture. Superconductors are perfect diamagnets [2], expelling magnetic fields from their

interior. Early phenomenological explanations [3] could explain these electromagnetic

properties of superconductors, but not, e.g., the isotope effect [4, 5], i.e., the depen-

dence of the critical temperature on the isotope. A more rigorous thermodynamical,

but still phenomenological, treatment was provided by Ginzburg – Landau theory [6].

The breakthrough in the understanding of superconductivity was BCS theory [7, 8],

named after Bardeen, Cooper, and Schrieffer, providing for the first time a microscopic

theory. The key idea of BCS theory is that the Fermi surface becomes unstable for a

small attractive interaction mediated by phonons, leading to a new groundstate, in

which electrons form bosonic Cooper pairs [9]. In a conventional BCS superconductor,

such a Cooper pair is a spin singlet state, consisting of two electrons of opposite spins

and momenta. A dissipationless current may flow via this ground state. Furthermore,

in conventional BCS superconductors, the ground state is separated by a gap from the

excitation spectrum. Beyond the gap that was experimentally verified using tunneling

spectroscopy [10, 11], a continuum of states exists.

The field of superconductivity has been boosted by the discovery of the high Tc super-

conductors [12] in two ways. First, applications became easier to realize, since the

critical temperature exceeded for the first time the boiling point of liquid nitrogen at

ambient pressure, as e.g., for YBCO [13]. Second, high Tc superconductors posses an

unconventional (d-wave) pairing mechanism [14, 15]. Even though unconventional
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superconductors were already known [16, 17], the technological interest of finding

even higher critical temperatures led to intensified investigations of pairing mechanisms.

Unconventional superconductors are characterized by a momentum-dependent pair

potential and can, in the presence of inversion symmetry, be classified by the angular

momentum of the orbital part of their wave function [18]. Particularly interesting

are p-wave superconductors that posses an odd orbital part, giving rise to an even

spin part, i.e., spin triplet pairing. An example for a recently investigated spin triplet

superconductor is SrRuO4 [19].

Bulk superconductors are interesting for themselves, but new phenomena emerge

for superconducting junctions. Josephson predicted that the current between two

superconductors in tunnel junctions depends sinusoidally on the superconducting

phase difference [20]. This so-called Josephson effect was measured shortly after

its prediction [21]. It can be explained via the microscopic properties of the normal

metal/superconductor (N/S) interface. An electron impinging towards an N/S interface

with an energy below the gap can be reflected as a hole, adding a Cooper pair to the

condensate [22]. This mechanism of Andreev reflection is thus crucial for the transport

across an N/S interface. Additionally, it leads to the formation of bound states in

Josephson junctions. Since these Andreev bound states depend on the macroscopic

phase difference, they determine the current-phase relation. Modifying them will thus

change the transport properties of superconducting junctions.

Recently Josephson junctions made of topological superconductors [23], materials with

a full pairing gap in the bulk and gapless surface states, have attracted most attention,

since they display a 4π-periodic Josephson effect [24–27]. It is due to a 4π-periodic

bound state spectrum, which, unlike in conventional junctions, is not spin degenerate.

However, non-topological junctions containing unconventional superconductors also

deserve attention for their peculiar properties. Since the energy-phase relation of

their Andreev bound states is modified with respect to conventional junctions, their

current-phase relation is different [28–36]. Notably, the periodicity of the current-phase

relation may differ from 2π, e.g., for incompatible spin pairing symmetries. Furthermore,

Josephson junctions with a non-zero phase difference in the ground state may exist, e.g.,

φ0-junctions [30, 37–39]. Experiments that measure the current-phase relation might

thus be able to clarify the momentum dependence of the pair potential [14, 40]. Most

experiments that investigate the momentum dependence use spectroscopic methods, as

for example tunneling spectroscopy [41, 42] or microwave spectroscopy [43].

2 Chapter 1 Introduction



Particularly interesting are unconventional Josephson junctions realized between spin

singlet and spin triplet superconductors. Here, the incompatible spin symmetries

prohibit the transfer of a single Cooper pair across the junction. As a consequence, at

least two pairs have to be transferred, leading to the lowest harmonics in the current-

phase relation being sin 2φ [36]. Amongst singlet/triplet junctions, a junction realized

between a conventional s-wave superconductor and a one-dimensional unconventional

px-wave superconductor is the simplest. In this s/px junction the transfer of only an

even number of Cooper pairs across the junction leads to a π-periodic equilibrium

current-phase relation [28, 29, 35, 36, 44]. On the microscopic level, this junction

in known to host spin-polarized Andreev bound states [44], in strong contrast to

conventional junctions, where the bound states are not spin-polarized. These spin

polarized Andreev bound states lead to an equilibrium magnetization [44, 45]. This

opens the possibility to change the occupation of the bound states by manipulating the

spin.

In order to manipulate the spin, an external control parameter and its coupling to the

spin is needed. A natural choice is to use a magnetic field that couples via the Zeeman

effect [46] to the spin. The Zeeman effect is the splitting of energy levels of a system

subjected to a constant magnetic field. The splitting occurs according to the angular

momentum, which in the case of zero orbital momentum is solely given by the spin.

Historically, the Zeeman effect led to the proposition of the spin degree of freedom of

the electron [47]. If the magnetic field is time-dependent, it may provide a spin-flip

mechanism. In a typical magnetic resonance setup, a static field provides the Zeeman

splitting and a time-dependent rf-field, perpendicular to the static field, couples the

Zeeman levels. This coupling gives rise to coherent Rabi oscillations between the states.

Transitions between Andreev levels have been predicted to appear as resonances in

the current-phase relation [48, 49] in the following setup: A single channel (point

contact) conventional Josephson junction is subject to an external monochromatic

microwave field. The field generates an ac voltage bias acting as an ac phase bias for

the junction. Resonances in the zero temperature current-phase relation appear, if the

Andreev level spacing matches a multiple of the microwave frequency. Experimentally,

these transitions have been used in order to perform spectroscopy on the Andreev levels

of superconducting break junctions [50–52]. In these experiments, a voltage-biased

Josephson junction was used as a microwave emitter and detector. Remarkably, the

coherent manipulation of Andreev bound states of such atomic contacts is possible, plac-
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ing the junction into a microwave resonator using a circuit quantum electrodynamics

architecture [53]. Resonances may also be expected due to a time-dependent magnetic

field in spin-active Josephson junctions, i.e., Josephson junctions containing a local

classical magnetization [54]. Rabi resonances appear, if the magnetization direction is

resonantly driven, provided the ground state of the junction is magnetic, which was not

achieved in a model that considered a Josephson junction through a precessing spin

[55].

In part I of this thesis we consider the presented s/px Josephson junction and show that

a time-dependent Zeeman-field indeed induces transitions between the Andreev bound

states. The induced Rabi oscillations map to resonances in the current-phase relation.

For a circularly polarized magnetic field, Rabi oscillations are only present in a certain

range of superconducting phase differences due to a spin selection rule, thus giving a

spin detection scheme. The selection rule is lifted for a linearly polarized magnetic field.

The magnetic field also induces non-coherent transitions including continuum states.

We may distinguish refill and ionization processes, depending on whether a bound state

is filled or emptied. These processes are subject to energy and spin constraints, which

guarantee that these incoherent field-induced transitions do not provide any decay

mechanism for the Rabi oscillations. We provide a detailed discussion of the transition

rates due to theses processes and discuss the visibility of the Rabi resonances in the

current-phase relation depending on the junction transparency.

Ferromagnets are another class of materials with peculiar spin properties. In a ferromag-

net the spins tend to align due to the exchange interaction, discovered by Heisenberg

[56] and Dirac [57]. The well-known ferromagets Fe, Co, and Ni are itinerant ferro-

magnets, where the ferromagnetism arises due to the 3d orbitals. If the orbital part of

the wavefunction is antisymmetric, the exchange interaction leads to a larger average

distance between the indiscernible electrons, lowering the Coulomb repulsion. Then,

the symmetric spin part leads, due to Pauli exclusion, to a higher kinetic energy. In

itinerant ferromagnets, the gain due to the exchange interaction overcomes the loss

in kinetic energy, giving rise to ferromagnetism. The exchange interaction splits the

density of states for the different spin species. A ferromagnet may thus be characterized

by its degree of spin polarization, i.e., the number of majority spin carriers divided by

the total number. Ferromagnets with perfect spin polarization of the electrons at the

Fermi level are called half-metals, as for example CrO2 [58].
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Junctions containing ferromagnets are of both technological and fundamental research

interest. For example, they are widely used for data storage. Old hard drives are

still based on the giant magnetoresistance effect [59, 60] in ferromagnet/normal

metal/ferromagnet junctions. Nowadays, modern hard drives use magnetic tunnel

junctions with an insulating layer separating the ferromagnets, and their operation is

based on tunnel magnetoresistance [61]. These mechanisms use charge currents and

static magnetization directions in the ferromagnetic layers.

Time-dependent magnetization directions can be achieved using ferromagnetic reso-

nance (FMR), i.e., the resonant absorption of external electromagnetic radiation in

ferromagnets [62]. FMR has first been acchieved in bulk ferromagnets [63, 64]. It

works analogously to nuclear magnetic resonance (NMR), discovered in molecular

beams [65, 66], and electron spin resonance [67]. The discovery of NMR has not

only revolutionized the spectroscopic methods available to fundamental research, but

has also – after its expansion to liquids and solids – opened the possibility of medical

imaging by magnetic resonance tomography [68–70]. However, in contrast to NMR

and depending on the geometry, no static field is needed for FMR [71].

Concerning dynamical magnetization effects in ferromagnet/normal metal (F/N) junc-

tions under FMR conditions, it has been theoretically [72, 73] and experimentally [74,

75] shown that the precessing magnetization direction looses angular momentum. This

spin pumping process injects a spin current into the adjacent normal metal. This is the

inverse effect of the spin transfer torque [76–79], where a spin current driven through

a ferromagnetic layer exerts a torque onto the magnetization of the ferromagnet. The

creation (and detection) of spin currents is hoped to lead to spintronics [80, 81] appli-

cations, i.e., using the spin degree of freedom of the electrons (instead of the charge)

for information technology devices.

In a ferromagnet the spins tend to align due to the exchange interaction, whereas in a

conventional spin singlet superconductor opposite spins are paired. The interplay be-

tween these two antagonistic effects, spin singlet superconductivity and ferromagnetism,

becomes important in ferromagnet/superconductor (F/S) junctions. It is consequently

relevant to study the interplay between ferromagnetism and superconductivity at inter-

faces, especially because in bulk ferromagnets superconductivity has only been found

in some uranium compounds [82–85], in which the Cooper pairs are equal spin pairs,

resolving the antagonism. It has been shown that F/S interfaces can be used to analyze
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spin-dependent states in magnetic materials [86–88]. The Andreev reflection at an F/S

interface is affected by the exchange interaction and the conductance of the interface

may be larger or smaller than the conductance of an F/N interface, depending on the

degree of spin polarization [89].

Andreev reflections at N/S interfaces induce superconducting correlations into the

normal metal. This effect, called proximity effect, is particularly interesting at F/S

interfaces. Here, a triplet pairing component, pairing equal spins, can be induced in the

ferromagnet. It penetrates over a much longer length scale than the singlet component,

since it is not limited by the short pair breaking length due to the exchange field.

The first long-range triplet pairing induced at F/S interfaces was found in resistance

measurements [90, 91]. Subsequently, long-range triplet pairing was predicted in the

presences of local magnetic inhomogenities at F/S interfaces [92]. The corresponding

Josephson effect through S/F/S junctions has been predicted for magnetic inhomogen-

ities [93] and layered heterostructures with non-collinear magnetization directions

[94–99]. It has been succesfully measured for a single half-metallic layer [100], a

ferromagnetic trilayer [101] and multilayers [102, 103]. Singlet pairs may also be

converted to triplet pairs in S/F/F layers, so called triplet spin valves [104]. This

growing field of research is called superconducting spintronics [105, 106].

The coupling between superconductivity and a time-dependent magnetization direction

has already been studied, e.g., the coupling of two conventional superconductors via a

single precessing spin [55, 107] has been considered. In this context the manipulation

of magnetic moments using the Josephson current has been investigated [108–110], as

well as the inverse effect, i.e., a current induced via the manipulation of the magnetiza-

tion [111]. For an F/S junction it is known that a ferromagnet under FMR conditions

tunnel coupled to a superconductor induces a voltage across the junction in an open

circuit geometry [112]. In this tunnel regime, the transport is due to excited quasiparti-

cles, since Andreev reflection processes are suppressed. Due to the BCS singularity in

the density of states, the induced voltage (compared to the driving frequency) is much

larger in F/S tunnel junctions than the voltage predicted for tunnel junctions with a

normal metal or a static reference ferromagnet, where charge pumping is adiabatic

[113–115]. In ferromagnet/normal metal tunnel junctions, spin accumulation at the

interface leads to a voltage across the junction [115]. The spin accumulation strongly

depends on spin relaxation. In the F/S junction, no spin accumulation is needed and
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the voltage builds up, since the superconductor in the rotating frame behaves effectively

as a static ferromagnet [112].

A half-metal/conventional superconductor (HM/S) junction is especially interesting,

since the perfect spin polarization forbids Andreev reflection processes. This blockade

may be lifted, if the half-metal is subject to FMR conditions, providing a spin-flip

mechanism. In part II of this thesis we show that an Andreev current is indeed induced

in such a HM/S junction under FMR conditions. This is a purely dynamical effect, since

no Andreev current flows for a static magnetization direction. The time-dependent

magnetization creates a non-equilibrium situation for the charge carriers, driving the

current. If we assume fast spin relaxation, there is no zero-voltage charge current

through a point contact geometry in the normal state, even in the presence of a

precessing magnetization. We also show that the effect persists for a non-zero minority

carrier concentration (i.e., a ferromagnet instead of a half-metal). However, the current

is attenuated and vanishes for equal spin polarizations. Furthermore, we consider a

more realistic extended interface geometry. Motivated by disorder enhanced currents

reported for N/S interfaces [116, 117], we study the influence of disorder. We show

that disorder is irrelevant in a point contact geometry. For the extended interface

geometry, however, we obtain that disorder is most relevant in the ferromagnet and

that the Andreev current in the presence of disorder is much larger than the ballistic

current through the same interface geometry.
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Outline of the thesis

Chapter 2 introduces the main physical concepts. After an introduction to both con-

ventional and unconventional superconductivity, we turn towards superconducting

junctions. The microscopic process of Andreev reflection at a normal metal/supercon-

ductor interface is the key to understand the formation of bound states in Josephson

junctions. The phase-dependence of these Andreev bound states gives rise to the dissipa-

tionless Josephson current. We finish this chapter with an introduction to ferromagnetic

resonance in bulk ferromagnets and junctions.

Chapter 3 introduces the theoretical tools used to obtain the results of this thesis. The

Bogoliubov – de Gennes formalism is a method to calculate the wave function of a

system with a space-dependent pair potential. In order to solve a superconducting

transport problem, it is convenient to combine this formalism with the scattering matrix

approach. A different way to tackle non-equilibrium transport across a superconduct-

ing junction is to use the non-equilibrium Green’s functions formalism. Further, we

introduce the Markov master equation approach for density matrices that is suitable to

deal with open quantum systems. The Andreev bound states of a Josephson junction

can be seen as such an open system, coupled to a reservoir, i.e., the continuum of

states. Within the master equation approach, the dynamics of the Andreev bound state

occupations is accessible.

Part I of this thesis examines the manipulation of the Andreev levels in a singlet/triplet

Josephson junction between a conventional s-wave superconductor and an unconven-

tional px-wave superconductor using a time-dependent Zeeman field. We focus on

the modification of the transport properties, mainly the current-phase relation. In

chapter 4 we present the spin-polarized Andreev bound states that form in the junction.

Further, using a free energy approach, we determine the equilibrium magnetization

and the equilibrium current-phase relation. Chapter 5 discusses the processes induced

by a time-dependent Zeeman field. Our main finding is that the Zeeman field leads

to coherent Rabi oscillations between different spin states of the junction that appear

as resonances in the current-phase relation. For a circularly polarized magnetic field,

the current-phase relation is spin sensitive due to a spin selection rule. The field also

induces non-coherent processes including continuum states giving rise to refill and
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ionization processes of the bound states. We discuss the corresponding transition rates

in detail.

In part II of this thesis we consider a half-metal/superconductor junction under fer-

romagnetic resonance. Chapter 6 sets the stage, providing the non-equilibrium distri-

bution function of the ferromagnet. In Chapter 7 we show that an Andreev current

flows through a point-contact junction between a half-metal and a superconductor, if

the half-metal is subjected to FMR conditions. No applied bias voltage is needed, due

to the non-equilibrium situation created by FMR. If the superconductor is in its normal

state, a spin current flows due to the precessing magnetization direction that in the

superconducting state is rectified to a charge current. In Chapter 8, we consider two

extensions of our model. First, we show that the Andreev current persists for a ferro-

magnet with non-zero minority carrier concentration, but is attenuated with respect

to perfect spin polarization. Second, we consider a more realistic extended interface

geometry, in which the Andreev current is enhanced for a disordered ferromagnet. An

introduction to the disorder formalism is provided in this chapter.

Chapter 9 summarizes the main results of this thesis and provides a short discussion of

possible future research directions.

The appendix provides technical details on calculations that are important to obtain the

results presented in the main part, but that provide limited insight into the physics.
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2Concepts

This chapter is an introduction to the concepts that are used in this thesis. The idea is to

provide the reader with the basic notions he needs to follow the main part that discusses

magnetic resonance in an unconventional s/px Josephson junction (Part I, Chapters 4

and 5) and the Andreev current through a half-metal/superconductor interface under

ferromagnetic resonance conditions (Part II, Chapters 6 – 8). This chapter focuses

on the physics, more details on the formalisms and theoretical tools are provided in

Chapter 3. In this chapter, Sec. 2.1 introduces conventional superconductivity and its

theoretical description, BCS theory, for bulk superconductors. The bulk properties are

of importance, since they determine the properties of more complicated junctions of

superconductors. Sec. 2.2 introduces unconventional superconductors with momentum-

dependent pair potentials. Having introduced bulk superconductors, we consider simple

superconducting junctions in Sec. 2.3. Here, we present the microscopic process of

Andreev reflection at a normal metal/superconductor interface that is relevant for the

formation of bound states in Josephson junctions consisting of two superconductors.

We discuss these bound states for conventional junctions of two s-wave superconduc-

tors and introduce the notion of the current-phase relation. The last section of this

chapter, Sec. 2.4, introduces ferromagnetic resonance both in bulk ferromagnets and in

ferromagnet/normal metal junctions. We study the interplay between ferromagnetic

resonance and superconductivity in part II of this thesis.

2.1 Conventional superconductivity

The microscopic theory of superconductivity is of importance, since it is a building

block for the microscopic description of superconducting junctions. In this section we

will show that it predicts an excitation gap in the density of states of a conventional

superconductor. The peculiar excitation spectrum governs the transport properties of

superconducting junctions.

Historically, superconductivity was discovered by Kamerlingh Onnes (see Ref. [1]). BCS

theory [7, 8], named after Bardeen, Cooper, and Schrieffer, was the first microscopic

description of the superconducting state for a class of superconductors nowadays called

11



conventional (or s-wave) superconductors. It followed a work of Cooper [9], who

showed that an attractive interaction between two electrons above the Fermi sea leads

to the formation of a bound state. The main idea of BCS theory is that electrons form

bosonic Cooper pairs, which condense into a macroscopic quantum state. These Cooper

pairs consist of two electrons of opposite spins and opposite momenta. BCS proposed

to describe the new ground state by the following many-body state

|ΨBCS〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓) |0〉 . (2.1)

Here, |0〉 is the vacuum state, c†
kσ is an operator creating an electron with momentum k

and spin σ. The probability to find the spin-singlet pair (k ↑,−k ↓) occupied is hence

|vk|2, whereas it is unoccupied with the probability |uk|2 = 1 − |vk|2. uk and vk are

called BCS coherence factors. This BCS ground state does not have a fixed particle

number. However, for large systems the particle number is strongly peaked around the

mean particle number (see e.g. Ref. [118]).

The total wave function contains an orbital and a spin part. It has to be antisym-

metric, since electrons are fermions. For the BCS ground state the orbital part is

symmetric, whereas the spin part is antisymmetric (spin singlet pairing). We discuss

superconductors with spin triplet pairing in Sec. 2.2.

BCS originally used a variational method (see also [7, 118, 119]), using their wave

function in Eq. (2.1), in order to determine the ground state energy. Here, we choose a

different approach (see e.g. Ref. [119]) in order to obtain the excitation spectrum. We

start from the pairing Hamiltonian, for which we assume that it contains all important

terms for superconductivity, even though we neglect all terms, where electrons are not

paired in a state of the form (k ↑,−k ↓). It reads

H =
∑

k,σ

ξkc
†
kσckσ +

∑

kq

Vkqc
†
k↑c

†
−k↓c−q↓cq↑. (2.2)

Here, ξk is the kinetic energy measured with respect to the Fermi level and k, q are

momenta. Vkq is the interaction that scatters a pair (q ↑,−q ↓) to (k ↑,−k ↓). Here, we

assumed an interaction that is local in real space. We make a mean-field approximation,
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assuming that the deviations of products of operators from their expectation values are

small. Introducing the pair potential

∆k = −
∑

q

Vkq 〈c−q↓cq↑〉 , (2.3)

where the expression 〈c−q↓cq↑〉 is called anomalous average, we obtain the mean-field

BCS Hamiltonian

HBCS =
∑

k,σ

ξkc
†
kσckσ −

∑

k

[

∆kc
†
k↑c

†
−k↓ + h.c.

]

. (2.4)

Here, we neglected a constant shift of the energy. In BCS theory, the attractive interac-

tion between the electrons is mediated by phonons and assumed to be constant, if the

kinetic energy of the electrons is below a cutoff energy, and zero otherwise. This form

of the interaction yields a constant absolute value of the pair potential |∆|, isotropic in

momentum space (if the kinetic energy is below the cutoff). We discuss superconduc-

tors with momentum-dependent pair potential in Sec. 2.2. The BCS Hamiltonian in

Eq. (2.4) is diagonalized using a Bogoliubov transformation [120]. More details on this

method are provided in Chapter 3. This procedure allows to obtain the expression for

the coherence factors, reading

|uk|2 =
1

2

(

1 +
ξk

Ek

)

, (2.5)

where

Ek =
√

ξ2
k + |∆|2 (2.6)

is the excitation energy for quasiparticles. Note that the relative phase between uk and

vk is the phase of ∆. It is thus possible to choose uk real and give vk a phase factor of

eiφ. According to Eq. (2.1), the phase factor is the same for all pairs in the condensate

and is therefore called “macroscopic” phase. Note that due to the U(1) symmetry of the

Schrödinger equation only phase differences can have physical effects. When dealing

with junctions of superconductors, phase differences of this macroscopic phase will

become important (see Sec. 2.3.2). According to Eq. (2.6), the excitation spectrum

is gapped with a minimum excitation energy of |∆| for ξk = 0. Therefore, |∆| is also

called the (superconducting) gap. The minimum energy required to break a Cooper
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pair being in the ground state, separated by |∆| from the excitation spectrum, is thus

2 |∆|. More precisely, the BCS density of states reads

νS = ν0
E

√

E2 − |∆|2
Θ(E − |∆|), (2.7)

where ν0 denotes the density of states of a normal metal at the Fermi level and E is

the excitation energy measured with respect to the Fermi level. The density of states

displays a divergence at E = |∆|. The states that in the normal state are within the

gap are moved above the gap, enhancing the density of states in comparison to the

normal state. Together with the filling factor, the density of states determines the

number of states available for transport. The modifications of the density of states with

respect to a normal metal have a crucial influence on the transport properties, especially

within heterostructures. Furthermore, we will see that a normal metal/superconductor

interface allows for Andreev reflections (see Sec. 2.3.1) within the gap.

BCS theory is able to describe the properties of elemental superconductors, like alu-

minum or niobium. In the next section, we will discuss superconductors, for which an

extension of BCS theory is necessary.

2.2 Unconventional superconductivity

The superconductors that we considered so far are based on a phonon mediated spin

singlet pairing mechanism with constant pair potential. However, superconductors

can have different, exotic microscopic pairing mechanisms. Following Ref. [121], we

may define an unconventional superconductor by the symmetries that are broken

during the transition from the normal to the superconducting state. In a conventional

superconductor, one macroscopic phase value φ of the order parameter is chosen, which

can be interpreted as a spontaneous breaking of the U(1) gauge symmetry. If additional

symmetries of the symmetry group of the crystal are broken during the transition to a

superconducting state, we will speak of unconventional superconductivity.

Since only the total wave function has to be antisymmetric, unconventional super-

conductors can have spin triplet pairing with an odd momentum dependence. In this

section, we provide the theoretical description of superconductors with momentum-
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dependent pair potentials with a general spin dependence, containing singlet and triplet

parts.

The most prominent example are the high-Tc superconductors [12], even though

unconventional superconductors have been discovered earlier [16, 17]. Recently, in

the context of topology in condensed matter, topological superconductors (for a review

see [23]) with momentum-dependent pair potentials have attracted a lot of attention.

These are bulk superconductors with conducting surface states, the superconducting

analogue of topological insulators ([122, 123], for a review see [124]). Topological

phases may be characterized according to their symmetries [125, 126], i.e., particle-hole

symmetry, time-reversal symmetry and chiral symmetry. A chiral superconductor, which

is characterized by broken time-reversal symmetry, is the superconducting analogue

of the quantum Hall phase, whereas a helical superconductor, which conserves time-

reversal symmetry, is the analogue of the quantum spin Hall phase [23]. The edge

states of a helical superconductor are a pair of Majorana fermions [127], which in

condensed matter systems are fermionic quasiparticles that are its own antiparticles.

Let us give a theoretical description of unconventional superconductivity based on

Ref. [121] and consider a bulk superconductor, described by the generalized mean-field

Hamiltonian (generalization of Eq. (2.4))

H =
∑

kσ

ξkc
†
kσckσ −

∑

kαβ

[

∆αβ(k)c†
kαc

†
−kβ + h.c.

]

. (2.8)

Here, the pair potential is spin dependent (greek indices) and fulfills

∆αβ(−k) = −∆βα(k). (2.9)

Let us assume the presence of spatial inversion symmetry. Then, the pair wave function

is either symmetric or antisymmetric under inversion symmetry, giving rise to spin

singlet, spin triplet pairing, respectively [121]. It is convenient to separate the spin

singlet contributions from the spin triplet contributions. Let us therefore introduce the

singlet creation operator

s†
k = c†

k↑c
†
−k↓ − c†

k↓c
†
−k↑ (2.10)
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and the three triplet creation operators

t†kx = c†
k↓c

†
−k↓ − c†

k↑c
†
−k↑, (2.11)

t†ky = i
[

c†
k↓c

†
−k↓ + c†

k↑c
†
−k↑

]

, (2.12)

t†kz = c†
k↓c

†
−k↓ + c†

k↑c
†
−k↑. (2.13)

With help of these definitions, we reexpress the pairing term in Eq. (2.8) as

∑

αβ

∆αβ(k)c†
kαc

†
−kβ = d0(k)s†

k + d(k) · t
†
k, (2.14)

where the vector of triplet operators is defined as t
†
k = (t†kx, t

†
ky, t

†
kz)

T . The spin singlet

part of the general pair potential is thus described by d0, whereas the vector d char-

acterizes the triplet part. The pair potential can be expressed using the d-vector and

reads

∆(k) = [d0(k) + d(k) · σ] iσy, (2.15)

where σi denotes the i-th Pauli matrix in spin space. Eq. (2.9) implies the following

symmetries:

d0(−k) = d0(k), (2.16)

d(−k) = −d(k). (2.17)

The singlet part is thus an even function and the triplet part an odd function of the

momentum. A BCS superconductor is obviously described by a momentum-independent

d0 and d = 0. In the presence of inversion symmetry and in isotropic systems, we may

label unconventional superconductors according to their orbital angular momentum. In

analogy to the atomic orbitals, we speak of s-wave, p-wave, and d-wave, etc. pairing. A

spin triplet p-wave superconductor, for example, is thus characterized by an even spin

symmetry and an odd momentum symmetry with an angular momentum equal to one.

In general, the details of the momentum dependence of the pair potential depend on

the symmetry groups of the crystal. On a generic two-dimensional square lattice, the

momentum dependences for s, p, d superconductors can be expressed as const, ∼ cosφ,

∼ cos(2φ), where φ = arctan ky
kx

. A sketch of these generic pair potentials is shown in

Fig. 2.1. The p-wave and the d-wave superconductor have gap closing points, at which

the sign of the pair potential changes. In Chapter 5, we will deal with a one-dimensional
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Fig. 2.1: From left to right: s-wave, p-wave, and d-wave pair potentials in a Fermi surface
representation for two momentum dimensions. The horizontal direction is kx, whereas
the vertical direction is ky. The gray shaded area is the isotropic Fermi surface. The s-
wave superconductor in the left panel has a constant gap. The p-wave superconductor
in the middle panel has a momentum-dependent gap with two gap closing points,
at which the sign of the pair potential changes. Blue (red) color corresponds to a
positive (negative) sign. The d-wave pair potential has four gap closing points, at
which sign changes occur.

px-wave superconductor. Its pair potential corresponds to a cut along the horizontal

axis in the middle panel of Fig. 2.1. Consequently, the sign of the pair potential for

positive momenta is opposite to the sign for negative momenta. This sign change can

also be seen from Eq. (2.17). Note that the one-dimensional px-wave superconductor is

fully gapped.

Prominent examples for (intrinsic) unconventional superconductors are Sr2RuO4 [19],

which is possibly a spin triplet p-wave superconductor, and the high-Tc cuprates [15]

that are spin singlet d-wave superconductors. More recently, iron pnictides have

attracted a lot of attention [128]. They are a class of materials, for which various

different superconducting phases have been predicted. Another class of unconventional

superconductors are the uranium ferromagnetic superconductors [82], which have spin

triplet pairing.

Intrinisic unconventional superconductors are hard to engineer in a controlled way.

Therefore, effective setups realizing unconventional superconductors have attracted a

lot of attention, especially to realize effective p-wave superconductors. The main idea in

common for these setups is to use the proximity effect of a conventional superconductor

in order to induce superconductivity. Using a toy-model, it has been shown by Kitaev

[24] that a one-dimensional spinless p-wave superconductor has a topological phase, in

which it hosts Majorana fermions [127]. Experimental realizations of this toy-model

have been proposed [129, 130], e.g., based on spin-orbit coupled nanowires subjected
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to a Zeeman field, and realized [131], giving some evidence for Majorana fermions.

More recently, the 4π-periodic Josephson effect that is a signature of induced effective

p-wave pairing has been reported [27].

2.3 Superconducting heterostructures

Heterostructures are of both technological interest and of interest for fundamental

research, since new effects emerge at interfaces. For superconducting heterostructures,

we will see that the modifications of the density of states and the macroscopic phase

determine the transport properties. This section considers heterostructures containing

conventional superconductors in order to introduce the main notions. Unconventional

junctions are discussed in Chapter 4. In order to probe the transport properties

of a superconductor, it has to be connected to a normal metal, since the current

and voltage detection devices are made of normal metals. An understanding of the

microscopic processes at such a normal metal/superconductor (N/S) interface is thus

necessary. Sec. 2.3.1 introduces the N/S interface and explains the microscopic process

of Andreev reflection. In Sec. 2.3.2, we consider a Josphson junction consisting of two

superconductors, where Andreev reflection processes lead to the formation of bound

states. Further, the macroscopic phase difference across the junction determines the

current. In order to calculate the properties of complicated junctions, the Bogoliubov –

de Gennes formalism, that we introduce in Sec. 3.1, is needed.

2.3.1 Normal metal/superconductor junctions - Andreev

reflection

The normal metal/superconductor (N/S) interface is the building block for Josephson

junctions. The microscopic processes at the N/S interface determine the Andreev bound

states and therefore the transport through Josephson junctions. In this section we

provide a microscopic description of this interface.

Consider an N/S junction, as sketched in Fig. 2.2, with a small insulating barrier

separating the normal metal from the superconductor, giving rise to backscattering.

Consider an electron in the normal metal impinging towards the superconductor. If its

energy is smaller than the gap (#1 in Fig. 2.2), no density of states is available. It can
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Fig. 2.2: Normal metal (N)/superconductor (S) interface for a step-like pair potential ∆ and
a barrier (gray), giving rise to backscattering. The band structure is shown for both
the normal metal and the superconductor. Red (blue) color corresponds to a hole
(electron) branch. The superconductor mixes electrons and holes (linear interpolation
of the color, depending on the mixing degree). An impinging electron below the gap
(#1) can either be normal reflected (#2) as an electron or Andreev reflected (#3)
as a hole. An impinging electron above the gap (#4) can enter the superconductor,
forming a quasiparticle (#6 or #7) with electron and hole component. Fig. adapted
from [132].

thus not enter the superconductor. There are in principle two possible processes. First, it

can be normal reflected as an electron (#2), since the barrier gives rise to backscattering.

The corresponding momentum change is large and approximately given by 2kF, where

the Fermi momentum is denoted by kF. Second, the electron can be Andreev reflected

[22] as a hole (#3) with a small momentum change of approximately 2 E
~vF

, where the

Fermi velocity is denoted by vF. Here, we assumed that the excitation energy is much

smaller than the Fermi energy, which for the superconducting gap implies ∆ ≪ EF. We

can thus linearize the spectrum around kF and above expression for the momentum

change follows. This approximation is called Andreev approximation. The Andreev

reflection process consists in transferring two electrons from the normal metal with

opposite spin and opposite momenta to the superconductor and adding them as a

Cooper pair to the condensate. From the point of view of the normal metal, an incident

electron is thus reflected as a hole. If the energy of the impinging electron is larger

than the gap of the superconductor (#4), it can, as before, be normal reflected (#5)

or Andreev reflected (#6). Note that the probability of Andreev reflection decreases

as the energy of the quasiparticle increases until reaching the normal metal limit for

large energies. Additionally, the impinging electron can enter the superconductor as a

(Bogoliubov [120]) quasiparticle, i.e., a superposition of an electron and a hole. The

quasiparticle is either electron-like (#7), i.e., its electron component exceeds its hole

component (|uk|2 > |vk|2), or hole-like (#8).
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For a more quantitative description, the Bogoliubov – de Gennes equations [118, 120]

have to be solved for the junction (see also Sec. 3.1). Solving them by parts yields the

bandstructure sketched in Fig. 2.2. Additionally, this approach allows to obtain the

Andreev reflection probability (for details see e.g. [132–136] ) that reads

rA = e−iφe−iχ, (2.18)

where φ denotes the phase of the superconductor. Further,

e−iχ =
E

∆
−
√
(
E

∆

)2

− 1, (2.19)

which below the gap (0 < E < ∆) yields χ = arccos E
∆

, which is the energy-dependent

phase shift an electron acquires in an Andreev reflection process. For the conversion

of a hole into an electron, the sign in front of the superconducting phase is inverted.

These phase shifts play a crucial role in the formation of bound states in Josephson

junctions (see Sec. 2.3.2). Since in an Andreev reflection process the charge of 2e is

transferred across the interface, Andreev reflection enhances the current through the

N/S interface, whereas normal reflection decreases the current.

Via Andreev reflection electrons and holes in the normal metal have a fixed phase

relation. An Andreev reflected hole retraces back the same path as the incident electron,

since its velocity is opposite. This means, superconducting correlations are induced

in the normal metal. Note that this non-zero anomalous average (see also Eq. (2.3))

does not mean that the pair potential is non-zero, since the pairing interaction is zero

in the normal metal. However, at finite energy, the electron and hole dephase, such

that the correlations only extend over the finite phase coherence length ∼ ~vF

E
. At finite

temperature the length is given by ∼ ~vF

kT
. Note that we considered a ballistic normal

metal. This so-called proximity effect also exists for disordered metals.

2.3.2 Josephson junctions - Andreev bound states

We now want to consider Josephson junctions consisting of two superconductors. As

we will see, the Andreev reflections at the two N/S interfaces lead to the formation

of Andreev bound states. These bound states, whose energy depends on the phase

difference across the junction, are responsible for a phase-dependent current across the

junction.
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Fig. 2.3: Quasiclassical picture for the formation of Andreev bound states. A spin-up elelectron
in the normal region (N) travelling to the right is Andreev reflected as a spin-down
hole at the right superconductor (S), adding a Cooper pair to the condensate. The
hole travels towards the left superconductor, where it is Andreev reflected as an
electron, removing a Cooper pair from the condensate. A bound state forms, if the
phases acquired add up to a multiple of 2π (quasiclassical quantization condition).

Let us consider an S/N/S junction, where a second conventional superconductor is

attached to the N/S interface discussed in the previous section. For simplicity, we want

to consider two superconductors with the same gap. If the length of the normal region

is smaller than the phase coherence length, interference effects in the junction play a

role. Let us in the following consider short junctions, i.e., the junction length (length of

the normal region) fulfilling L ≪ ξ = ~vF

∆
. Here, ξ is the superconducting coherence

length for a ballistic junction at zero temperature. We now want to give an intuitive,

quasiclassical description of how the microscopic process of Andreev reflection at a

ballistic N/S interface leads to the formation of a bound state in the S/N/S junction.

Fig. 2.3 shows schematically the following process: Consider an electron in the normal

region (N) with an energy smaller than the gap. It travels towards the superconductor

and thereby picks up a phase of keL, where ke is the wave vector of the electron. As

described in Sec. 2.3.1, it is then Andreev reflected at the right superconductor, adding

a Cooper pair to the condensate. According to Eqs. (2.18) and (2.19), the electron

picks up a phase of φ2 + χ. The hole is now travelling to the left superconductor and

picks up a phase of khL, where kh is the hole wave vector. It is then Andreev reflected

at the superconductor with a phase shift of −φ1 +χ. A Cooper pair is removed from the

condensate and the original electron is restored. We can write down a quasiclassical
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Bohr-Sommerfeld quanitization condition, requiring that the total phase shift for such a

closed path is a multiple of 2π [137, 138]:

keL+ khL+ φ+ 2 arccos
E

∆
= 2nπ. (2.20)

Here, n ∈ Z and we introduced the phase difference across the junction φ = φ2 − φ1. In

the short junction limit, Eq. (2.20) yields two phase-dependent bound state energies

given by E± = ±∆ cos φ
2
. Note that these Andreev bound states are spin degenerate,

since we can reason in the same way starting with an electron with spin down. If we

allow for backscattering in the normal region, giving rise to a finite transmission T of

the junction, the bound state energies are modified and read [133]

E± = ±∆

√

1 − T sin2 φ

2
. (2.21)

This is the result for a single channel point contact. We generalize this expression in

Chapter 4. The dispersion of the bound states is shown in Fig. 2.4(a). The process

described above and depicted in Fig. 2.3 transfers a Cooper pair from the left super-

conductor to the right superconductor. This gives rise to a dissipationless supercurrent

across the junction. Since the bound state energies depend on the phase difference, the

supercurrent across the junction will also depend on the phase difference. The effect

was first theoretically predicted by Josephson [20] for tunnel junctions (T ≪ 1). In a

conventional junction consisting of two s-wave superconductors with equal gaps, the

Josephson current is entirely transported via the bound states and can be obtained from

the dispersion of the bound states. At zero temperature it reads

I =
2e

~

∑

ν∈{±}

dEν
dφ

sgn(Eν). (2.22)

Note that the last factor is the zero temperature occupation factor. Further, this relation

is derived from a more general relation in terms of the free energy that we present

in Chapter 4. From Eq. (2.22) it is apparent that modifications of the Andreev bound

states will modify the supercurrent across the junction. Note that the expression for

the supercurrent is more complicated, if the gaps of the two superconductors are not

equal. Fig. 2.4(b) shows the zero temperature Josephson current through the junction.
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(a) bound states (b) Josephson current

Fig. 2.4: (a) Energy of the bound states of an S/N/S junction as a function of the phase
difference φ across the junction. The bound states are given for three different
transmissions: T = 1 (black, dashed), T = 0.8 (red) and T = 0.1 (blue). (b)
Corresponding Josephson current at zero temperature, normalized by the critical
current, as a function of the phase difference. Note that the current in the tunnel
junction case (blue) is sinusoidal, as predicted from the first Josephson relation in
Eq. (2.23).

In the tunnel regime, the current expression reduces to the well-known first Josephson

relation [20]

I = Ic sinφ. (2.23)

Note that this expression holds true in the tunnel regime for any temperature and for

large temperatures at any transparency. The critical current Ic, i.e., the maximum value

of the dissipationless supercurrent, scales linearly with T in the tunnel regime. In gen-

eral, e.g., for a transparent junction for example, the relation between the supercurrent

and the phase difference, i.e., the current-phase relation, is more complicated. The

Josephson effect without applied bias voltage is called dc Josephson effect, since it

gives rise to a time-independent current. If a constant bias voltage V is applied across

the junction, the phase difference becomes time dependent and reads according to the

second Josephson relation
dφ

dt
=

2e

~
V. (2.24)

The supercurrent is thus an ac current and the effect is called ac Josephson effect. A

formalism to calculate the current-phase relation at finite temperature is presented in

Sec. 4.4 and Appendix B.

Experimentally, the Josephson effect has been measured via I(V ) curves shortly after

its prediction [139]. The current-phase relation I(φ) has been measured, e.g., in
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superconducting bridges and in superconducting weak links [140–142]. More recently,

the current-phase relation has been measured for atomic point contacts and could

be compared to theory without adjustable parameters [143]. In this experiment,

the atomic point contact was formed by a break junction that was embedded into

an assymetric SQUID with a tunnel junction. A similar setup has been used for the

spectroscopy of the Andreev levels of a single channel point contact [50, 52] and their

coherent manipulation [53]. The experimental observations are in agreement with the

theoretical predictions given in this section.

2.4 Ferromagnetic resonance

In part II of this thesis, we want to study an interface between a ferromagnet under

ferromagnetic resonance conditions and a superconductor. This section provides an

introduction to ferromagnetic resonance in bulk ferromagnets and in ferromagnet/nor-

mal metal (F/N) junctions. Ferromagnetic resonance has first been discovered in

bulk ferromagnets, where it is well-described by a quasiclassical theory, based on the

Landau-Lifshitz-Gilbert equation (Sec. 2.4.1). More recently ferromagnetic resonance

has attracted a lot of attention, especially in the spintronics community, since F/N

junctions may provide pure spin currents, as we will see in Sec. 2.4.2.

2.4.1 Ferromagnetic resonance in bulk ferromagnets

Since we want to consider junctions under ferromagnetic resonance conditions, we first

have to understand ferromagnetic resonance in bulk ferromagnets, where the resonance

mechanism is similar. We mainly follow Ref. [62] for this section, where ferromagnetic

resonance is defined as the resonant absorption of external electromagnetic radiation

in ferromagnets. It was experimentally discovered by [63, 64].

In a ferromagnet, the exchange interaction aligns the electron magnetic moments to

yield a macroscopic magnetization M . If a magnetic field B0 is applied, a torque acts

onto the magnetic moment of the ferromagnet, trying to align it with the field. As a

consequence, the magnetization precesses around the magnetic field direction. The

magnetization dynamics can be described by the classical equation of motion

dM

dt
= −γM × B0. (2.25)
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Here, µ0 is the magnetic constant, γ denotes the gyromagnetic ratio that for the electron

takes the form |γe| = ge
µB

~
, where µB denotes the Bohr magneton. Further, ge denotes

the electron g-factor, which is the proportionality constant between the magnetic

moment and the angular momentum of the electron. Under the assumption that the

spins only precess in the field B0, the precession frequency is given by the Larmor

frequency

ω0 = γB0. (2.26)

In ferromagnets, there is not only the external field, but there are also demagnetization

and crystal anisotropy fields. It is therefore convenient to introduce an effective

magnetic field Beff that takes into account these fields and replaces B0 in Eq. (2.25).

In thermodynamic equilibrium, the effective magnetic field can be obtained from the

free energy as

Beff,j = − ∂F

∂Mj

. (2.27)

Here, j denotes the component of the magnetization/effective magnetic field vector. A

ferromagnetic resonance (FMR) experiment consists of applying a static field B0 and a

much smaller dynamic field brf (with brf ≪ B0) that is perpendicular to the static field.

Due to the internal magnetic field in ferromagnets, the resonance frequency deviates

from the Larmor frequency. Further, in contrast to a nuclear magnetic resonance

experiment, the ferromagnetic resonance frequency may be finite for zero static field.

Let us specify the resonance frequency. Following Kittel [71, 144, 145] and considering

an ellipsoidal specimen, the resonance frequency obtained from Eq. (2.25) can be

written as

ω0 = γ

√
(

B0 +
Ny −Nz

4π
µ0M

)(

B0 +
Nx −Nz

4π
µ0M

)

. (2.28)

Here, the static field is B0 = B0ẑ and Ni is the demagnetization factor in direction î.

Let us consider three specific geometries. First, for a sphere, Nx = Ny = Nz, giving

ω0 = γB0, which is the Larmor frequency. Second, for a flat plate, to which the static

field is applied perpendicular, Nx = Ny = 0 and Nz = 4π, giving ω0 = γ |B0 − µ0M |.
This geometry is an example for a geometry, where no static field is necessary in order

to yield a finite resonance frequency. Third, for a flat plate with the static field applied

in plane, Nx = Nz = 0 and Ny = 4π, giving ω0 = γ
√

B0(B0 + µ0M). These expressions

are only valid for a uniform magnetic field inside the specimen, corresponding to a

single magnetic domain.
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So far, we have not taken into account any damping. Damping may be provided by

interactions, for example magnetic dipole interaction or phonons. Phenomenologically,

a damping term is added to Eq. (2.25), yielding the Landau-Lifshitz-Gilbert equation

[146]
dM

dt
= −γM × Beff +

α

M
M × dM

dt
. (2.29)

Here, α is the dimensionless Gilbert damping constant. Eq. (2.29) can be recast into

the Landau-Lifshitz equation that has been originally proposed on a phenomenological

basis [147] and later been derived from thermodynamics [148]. Therefore, we take

the vector product of M and Eq. (2.29) and insert the resulting expression it back into

Eq. (2.29). After short algebra, we obtain

dM

dt
= −γ′M × Beff − λ′M × (M × Beff). (2.30)

Here, the effective gyromagnetic ratio is defined as

γ′ =
γ

1 + α2
(2.31)

and the effective relaxation frequency is given by

λ′ =
αγ

1 + α2
. (2.32)

Note that λ′ is given in units of the frequency divided by the magnetic field. The

damping gives rise to a finite imaginary part of the susceptibility. Let us consider

the susceptibility for a simple example. Assuming Gilbert damping and an external

perturbation of the form B0 ∼ δ(t)x, the susceptibility as a function of the magnetic

field displays a Lorentzian resonance peak [149]. Its half width at half maximum is

given as [149]

∆B =
αω

γ
. (2.33)

Consequently, the Gilbert damping parameter can be measured from the susceptibility

in a resonance experiment.

In the steady-state, the precession of the magnetization direction around the precession

axis forms a cone. The cone angle of this precession cone (angle between the magneti-

zation direction and the precession axis) is a function of the resonance width and the
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applied fields, as well as the saturation magnetization [150, 151]. At resonance it is

determined by [151] (solving the linearized Landau-Lifshitz-Gilbert equation)

θ ∼ brf

∆B
. (2.34)

The angle is small due to the small applied rf-field. Note that it is in general not possible

to revert the magnetization direction (in contrast to nuclear magnetic resonance). For

sufficiently large driving powers of the rf-field, spin waves will be excited instead of a

further driving of the ferromagnetic resonance.

2.4.2 Ferromagnetic resonance in a ferromagnet/normal

metal junction

The ferromagnet/normal metal (F/N) junction corresponds to the ferromagnet/super-

conductor (F/S) junction, when the superconductor is in its normal state. It is therefore

relevant to discuss the properties of the former junction, with the ferromagnet being

subjected to ferromagnetic resonance (FMR), before considering the F/S junction. As

we will see, the ferromagnet under FMR conditions injects a spin current into the

adjacent normal metal. The idea of the injection of a spin polarized current into a

non-magnetic material [152] and its realization [153, 154] are quite old. In these

realizations, a spin-polarized current is injected from a ferromagnet into an adjacent

semiconductor. A spin accumulation is created in the semiconductor over a length scale

of the spin diffusion length. One important difference between these realizations and

the more recent proposals is that in the latter, which rely on dynamical effects, pure

spin currents, i.e., without a net charge current, are possible.

It is well-known that a spin current driven through a ferromagnetic layer may change

the magnetization direction of this layer. This effect is called spin transfer torque

(theoretical prediction in [76, 77], experimental verification in [78], for an introduction

see for example Ref. [79]). The spin current is responsible for a torque onto the

magnetization direction, opposing the Gilbert damping. Tserkovnyak and coworkers

[72] proposed to consider the inverse effect: A moving magnetization vector looses

torque by emitting a spin current. The authors consider a junction of a ferromagnet

and a normal metal, where the ferromagnet is subjected to FMR. The precession of

the magnetization transfers angular momentum from the ferromagnet to the normal
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metal, injecting a spin current into the normal metal. The net spin current flowing

gives rise to an additional damping mechanism for the magnetization, enhancing the

Gilbert damping. Slonczewski [76] has shown that a spin transfer torque gives rise to

extra terms in the Landau-Lifshitz-Gilbert equation (Eq. (2.29)). Ref. [73] identified

this torque as being the spin current for the setup under consideration, corresponding

to the extra term in Eq. (2.29) being

γ

MV
Is. (2.35)

Here, V denotes the volume of the ferromagnet. The net spin current Is = Ipump
s

−Iback
s

vanishes in the absence of spin-flip scattering in the normal metal. Assuming, in

contrary, the normal metal being a perfect spin sink, there is no backflow current,

yielding maximum spin current. The pump current can be expressed via the complex

valued spin pumping conductance. If the ferromaget is thicker than the transverse spin

coherence length, the spin pumping conductance equals the mixing conductance, giving

[73]

Ipump
s

=
~

4π

(

g↑↓
r m × dm

dt
− g↑↓

i

dm

dt

)

. (2.36)

Here, m = M
M

is the magnetization direction. The indices r and i label the real and

imaginary part of the dimensionless conductance matrix, defined by [155]

gσσ
′
=
∑

mn

[

δmn − rσmnr
σ′
mn

]

, (2.37)

where σ, σ′ are spin indices and m,n are mode indices. For most systems, the imaginary

part of the mixing condutance is small [156] and can thus be neglected [157]. In this

case, according to Eqs. (2.35) and (2.36), the contribution of the spin pumping to the

Gilbert damping is given by

α′ =
~γ

4πMV
g↑↓

r . (2.38)

We still consider an F/N interface with the ferromagnet subjected to FMR conditions.

Assuming a diffusive normal metal, Ref. [157] has shown by solving a spin diffusion

equation that a time-averaged spin accumulation close to the interface builds up. It

depends on the ratio between spin injection rate and spin relaxation rate. The spin

accumulation is maximal, if the spin injection rate is much larger than the spin-flip rate

and is zero in the opposite limit.

28 Chapter 2 Concepts



Ref. [158] considered the same setup with additional spin-flip scattering in the ferro-

magnet. The authors found that the spin accumulation is reduced and that a chemical

potential difference builds up across the junction. The reason is that a backflowing

spin current parallel to the magnetization direction of the ferromagnet builds up that

charges the ferromagnet. This opens the possibility of an electrical detection of the

spin accumulation that has been realized experimentally both for an F/N interface [74]

and an F/I/N junction [113]. In the latter experiment the voltage detected for this

tunnel junction was an order of magnitude larger than for ohmic contacts. This was

unexpected, since the tunnel barrier decreases significantly the injection rate compared

to ohmic contacts, which should suppress the spin pumping effect. The spin pump-

ing theory developed by Ref. [158] would need an unrealistically large spin mixing

conductance to explain this large voltage. Therefore, Ref. [115] proposed a different

mechanism for the voltage generation. Based on phenomenological Bloch equations,

they consider longitudinal and transversal spin relaxation due to disorder. Spin is accu-

mulated along the magnetization direction of the ferromagnet. This nonequilibrium

spin accumulation is then transformed into a voltage by the tunnel barrier. In order

to obtain a linear scaling with the precession frequency as in the experiment ([113]),

Ref. [115] has to assume that a fraction of the disorder follows the magnetization

dynamics. If the normal metal is replaced with a ferromagnet with fixed magnetization

direction, we obtain an F/I/F junction with one ferromagnet being in FMR and the

other one having a fixed, static magnetization direction. In this junction an additional

mechanism exists, i.e., the spin bias drives a charge current through the junction. As

shown by Ref. [115], the charge current gives rise to a voltage depending on the spin

polarizations of the ferromagnets. This charge pumping voltage can be distinguished

from the spin accumulation voltage, noting that the former changes sign if the direction

of one of the ferromagnets is flipped, whereas the latter does not change sign [115].

The inverse effect, to use a voltage in order to induce ferromagnetic resonance has been

proven experimentally in magnetic tunnel junctions [159].

Another experimental detection technique for FMR in F/N junctions is based on the

spin Hall effect [160–163]. In a paramagnetical material with spin-orbit interaction

a pure spin current is generated transverse to an applied electrical field, even in the

absence of a magnetic field. Analogous to the Hall effect, where charge accumulation

leads to a transverse voltage, spin will be accumulated at the edges of the sample

leading to spin-dependent transverse chemical potentials. The inverse spin Hall effect
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[164–166] may be used in the following way: FMR in the ferromagnet generates a

spin current in the adjacent normal metal by the previously described spin pumping

mechanism. The inverse spin Hall effect transforms the spin current into a transverse

charge current. The charge current has been experimentally measured as a dc voltage

[150, 164, 167, 168]. As for example in Ref. [150], in experiments the F/N junction is

placed into a coplanar waveguide to excite the FMR using a microwave field. We will

discuss experiments containing superconductors in Sec. 6.1.
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3Formalisms - theoretical

framework

This chapter gives an overview on the different theoretical tools used to achieve the

results in the following two parts of this thesis. Note that details concerning the

disorder formalism are integrated into Chapter 8, since they are only relevant for a

small part of this thesis. In this chapter, Sec. 3.1 introduces the Bogoliubov – de Gennes

formalism that is suitable to solve the eigenvalue problem for a Hamiltonian describing

a junction of superconductors. We use it in Chapters 4 and 5 and Appendices A, C, and

D to obtain the Andreev bound states and the wavefunctions of the s/px junction. In

Sec. 3.2, we present the scattering matrix formalism for the description of quantum

transport through a scattering region between two leads that we use in Appendix

A and Chapter 4 for the calculation of the bound states. Further we use scattering

matrices in Appendices C and D for the calculation of the continuum wave functions

that determine the transistion rates in the s/px junction. In Sec. 3.3, we introduce the

non-equilibrium Green’s functions formalism in the Keldysh formulation that allows

to perform perturbation theory of non-equilibrium systems. We use it in Chapter 7 in

order to calculate the current through the half-metal/superconductor interface with

the half-metal being at ferromagnetic resonance. Finally, Sec. 3.4 gives details for the

master equation approach using density matrices that we use in Chapter 5 in order to

calculate the occupations of the Andreev levels of the s/px junction in the presence of a

time-dependent magnetic field.

3.1 Bogoliubov – de Gennes formalism

In order to theoretically describe superconducting junctions, we need the Bogoliubov –

de Gennes formalism that can treat space-dependent pair potentials.

The BCS Hamiltonian in Eq. (2.4) describes a bulk s-wave superconductor. Soon after

BCS theory was published, Bogoliubov [120] and Valatin [169] proposed independently

to use a unitary transformation to diagonalize the Hamiltonian. This so-called Bogoli-

ubov transformation introduces quasiparticles that are a linear combination of electrons

and holes. De Gennes [118] generalized this formalism to a real space description that
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allows to treat space-dependent pair potentials. The so-called Bogoliubov – de Gennes

formalism can consequently treat junctions containing superconductors. In this section,

we want to present the formalism generalized to junctions containing unconventional

superconductors. Therefore, we need to consider momentum-dependent pair potentials

and a general spin dependence of the pair potential, i.e., pair potentials containing

spin singlet and spin triplet components. Parts of this derivation and its idea are taken

from Refs. [31, 170]. This generalized formalism is used in Chapter 4 to determine the

spectrum and the wavefunctions of the s/px junction.

Let us start from the general interaction Hamiltonian

H = H0 +Hint. (3.1)

Here, the single particle part of the Hamiltonian is given by

H0 =
∫

dr
∑

α,β

Ψ†
α(r)Hαβ(r)Ψβ(r), (3.2)

where α and β are spin indices and Ψ†
α(r) is a field operator that creates an electron

with spin α at position r. The fields are fermionic, i.e., {Ψ†
µ(x′),Ψτ (x)} = δµτδ(x− x′).

Here, we used the anti-commutator, defined by {A,B} = AB + BA. The interaction

part of the Hamiltonian (Eq. (3.1)) is given by

Hint = −1

2

∑

αβγδ

∫∫

drdr′Ψ†
α(r)Ψ†

β(r′)Vαβγδ(r, r
′)Ψδ(r

′)Ψγ(r). (3.3)

Here, the spin-dependent potential Vαβγδ(r, r′) mediates the superconducting interac-

tion. We use a mean-field approximation for the interaction (see for example [118,

121]). It consists of assumimg that the difference between the product of two field

operators and its expectation value is small.

We introduce the superconducting pair potential as the following matrix in spin space

∆αβ(r, r′) = −
∑

γδ

Vαβγδ(r, r
′) 〈Ψδ(r

′)Ψγ(r)〉 , (3.4)

∆†
αβ(r, r′) = −

∑

γδ

Vγδαβ(r, r′)
〈

Ψ†
γ(r)Ψ†

δ(r
′)
〉

. (3.5)
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We obtain (up to a constant shift in energy) for the interaction part of the Hamiltonian

Hint =
1

2

∑

αβ

∫∫

drdr′[∆αβ(r, r′)Ψ†
α(r)Ψ†

β(r′) + ∆†
αβ(r, r′)Ψβ(r′)Ψα(r)]. (3.6)

The total Hamiltonian (Eq. (3.1)) can be written (up to a constant shift in energy) as

H =
1

2

∫∫

drdr′
Ψ

†(r)HBdG(r, r′)Ψ(r′). (3.7)

Here, we introduced a Nambu basis, defining

Ψ(r) =
(

Ψ↑(r),Ψ↓(r),Ψ†
↑(r),Ψ†

↓(r)
)T
. (3.8)

Further, the Bogoliubov – de Gennes (BdG) Hamiltonian reads

HBdG(r, r′) =




H(r)δ(r − r′) ∆(r, r′)

∆†(r′, r) −H∗(r)δ(r − r′)



 . (3.9)

Here, ∆ and H(r) are 2 × 2 matrices in spin space, according to Eqs. (3.2) and (3.4).

We now use a unitary Bogoliubov transformation Un(r), a 4 × 4 matrix in spin space,

defined via

Ψ(r) =
∑

n

Un(r)γn. (3.10)

Here, the electron field operators are expressed via quasiparticle operators γnα that are

fermionic, i.e., {γ†
mα, γnβ} = δmnδαβ. α, β denote spin indices, whereas n labels all re-

maining quantum numbers. Additionally, we defined the Nambu vector of quasiparticle

operators

γn =
(

γn↑, γn↓, γ
†
n↑, γ

†
n↓
)T
. (3.11)

The commutation relations ensure the unitarity of the Bogoliubov transformation, i.e.,

∫

drU †
m(r)Un(r) = δmn. (3.12)

Using this relation, the inverse transformation that relates the electron operators to the

quasiparticle operators is just given by

γn =
∫

drU †
n(r)Ψ(r). (3.13)
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With help of the unitarity relation in Eq. (3.12) it is easy to show that the BdG Hamilto-

nian in Eq. (3.9) can be written as

H =
1

2

∑

n

γn
†Enγn, (3.14)

if the following condition holds true:

∫

dr′HBdG(r, r′)Un(r′) = Un(r)En. (3.15)

The equations of this matrix equation are called Bogoliubov – de Gennes equations and

En is a diagonal matrix. We have thus diagonalized the Hamiltonian (see Eq. (3.14)).

We now need to solve the BdG equations, in order to obtain the eigenenergies and

explicit expressions for the unitary BdG transformation. Therefore, let us further

analyze and simplify the BdG equations. We denote a column vector of the matrix U by

w. Then, for each column, Eq. (3.15) reads

∫

dr′HBdG(r, r′)wn(r′) = ǫnwn(r), (3.16)

where ǫn is a scalar. We will now derive approximate equations, suitable for describing

junctions. Defining

wn(r) =




un(r)

vn(r)



 , (3.17)

we introduce a vector of electron components un(r) and a vector of hole components

vn(r). Far from the junction, the quasiparticle states may be labeled by their wave

vector (the label n corresponding to the wave vector) [170]. We can then separate a

fast oscillation on the scale of k−1
F and introduce new envelope functions, given by




ũn(r)

ṽn(r)



 = e−iknr




un(r)

vn(r)



 . (3.18)

Let us drop the index n for clarity of the notation. Using Eq. (3.17), Eq. (3.16) splits

into two equations. Integrating the first equation of Eq. (3.16) over r′, we obtain

∫

dr
∫

dr′

[

(H(r) − E)δ(r − r′)ũ(r) + ∆(r, r′)ṽ(r′)eikn(r′−r)
]

= 0. (3.19)
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The manipulation of the second equation given by Eq. (3.16) is similar. Therefore, we

restrict the presentation to the first one. Changing the integration to a center of mass

coordinate R = r+r′

2
and a difference coordinate, s = r − r′, we obtain an equation for

the integrand of
∫

dR:

∫

ds
[(

H
(

R +
s

2

)

− E
)

δ(s)ũ
(

R − s

2

)

+ ∆(R, s)ṽ
(

R +
s

2

)

eiks

]

= 0. (3.20)

We expand the second term in lowest order in kF (note that v depends also on k), see

also Ref. [170], i.e.,

∫

ds∆(R, s)ṽ
(

R +
s

2

)

eiks ≈ ∆(R,k)ṽ(R). (3.21)

We defined the Fourier transform of the pair potential as

∆(R,k) =
∫

ds∆(R, s)eiks. (3.22)

We finally obtain (using also the second equation from Eq. (3.16))




H(R) ∆(R,k)

∆†(R,k) −H∗(R)








ũ(R)

ṽ(R)



 = E




ũ(R)

ṽ(R)



 . (3.23)

These Bogoliubov equations can treat space-dependent pair potentials (junctions),

where the space dependence is taken into account via the center of mass variable

R. Further, the pair potential may be momentum-dependent (k), which allows to

treat unconventional superconductors. We can thus treat junctions of unconven-

tional superconductors. As an example, consider an unconventional superconductor

in the right half-space. Then, using a step function model, the pair potential reads

∆(R,k) = Θ(Rx̂)∆(k), where Θ denotes the Heaviside function and x̂ is the unit

vector perpendicular to the interface. ∆(k) contains the momentum dependence. For

example, a one-dimensional px-wave superconductor will have a dependence on kx
kF

.

If these equations are solved in the bulk (far from the junction), it is convenient to

Fourier transform the coordinate R, giving simply an algebraic eigenvalue problem to

solve. Note that ∆(R,k) and H(R) are matrices in spin space. We will also refer to the

matrix in Eq. (3.23) as the BdG Hamiltonian, since it is an approximation of Eq. (3.9).

This set of equations will be used in Chapters 4 and 5. For the simplest case, i.e., if

Eq. (3.23) is solved for a bulk s-wave superconductor, the coefficients u and v define
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the bulk transformation given by Bogoliubov [120]. In this case, the coefficients are

simply the BCS coherence factors, given in Eq. (2.5). Then, u (v) can be interpreted as

the electron (hole) amplitude of the Bogoliubov quasiparticle. Note that for an s-wave

superconductor the separation of scales is not necessary, since the pair potential does

not have a momentum dependence.

Note that we have doubled the number of solutions introducing the particle-hole space.

There are two convenient choices to solve this “double counting” problem (double

counting is also discussed in Ref. [171], see also Refs. [28, 172]). First, we can restrict

ourselves to positive energies only and consider both spins. This choice is called the

excitation picture. Second, we can restrict ourselves to one spin species and consider

both positive and negative energies. This choice is called the semiconductor picture.

3.2 Scattering matrices for quantum transport

The scattering matrix formalism can be used to solve transport problems through nanos-

tructures. It is suitable to treat junctions of different materials. For superconducting

junctions, it can be combined with the Bogoliubov – de Gennes formalism.

The aim of this section is to provide a brief introduction to the concept of scattering

matrices that are used in part I of this thesis. For a more detailed introduction, we refer

the reader to the books [136, 173]. The idea to describe the transport in a mesoscopic

system solving a scattering problem has been developed by Landauer [174, 175] and

Büttiker [176–178]. According to the Landauer – Büttiker approach, a nanostructure

can be divided into a scattering region (mesoscopic sample) and leads attached to it.

The leads shall be macroscopic reservoirs in equilibrium, providing electrons that are

scattered in the sample. Confining all scattering to the sample, the wavefunctions for

incoming and outgoing electrons in the leads can be expressed as

Ψin =
∑

α

cin
α φ

in
α , (3.24)

Ψout =
∑

β

cout
β φout

β , (3.25)

where the sets {φin
α } and {φout

β } form an orthonormal basis. The scattering region being

mesoscopic, it has to be treated quantum mechanically. Since the Schrödinger equation

36 Chapter 3 Formalisms - theoretical framework



is a linear equation, the outgoing wavefunctions are linearly related to the incoming

wavefunctions. The coefficients thus fulfill

cout
β =

∑

α

Sβαc
in
α . (3.26)

The matrix S, defined by this equation, that relates the incoming coefficient vector to

the outgoing coefficient vector, is called the scattering matrix. In general, the scattering

matrix can be determined solving the Schrödinger equation in the scattering region and

matching the solutions to the wavefunctions in the leads.

Let us discuss some basic properties of the scattering matrix. Particle number conserva-

tion in the scattering process can be written as

∫

dr
∣
∣
∣Ψin

∣
∣
∣

2
=
∫

dr
∣
∣
∣Ψout

∣
∣
∣

2
, (3.27)

imposing for the coefficients to fulfill

∑

α

∣
∣
∣cin
α

∣
∣
∣

2
=
∑

α

∣
∣
∣cout
α

∣
∣
∣

2
. (3.28)

Using Eq. (3.26), we obtain for the scattering matrix

S†S = 1. (3.29)

Hence, the scattering matrix is a unitary matrix. Consider a time-reversal invariant

system. Then, the time-reversal operation corresponds to complex conjugation of the

scattering coefficients and interchanging incoming and outgoing coefficients. It directly

follows that the scattering matrix of this system is symmetric, i.e., ST = S.

The current through a nanostructure can be expressed using the scattering matrix. Let

us consider the simple case of a two terminal junction. We parametrize the scattering

problem in the following way




ĉout

L

ĉout
R



 =




r t′

t r′








ĉin

L

ĉin
R



 . (3.30)

Here, the superscript distinguishes outgoing from incoming modes and the subscript

distinguishes the right hand side from the left hand side of the junction. In general,
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the c’s in above equation are vectors, containing one entry per mode. Further, the

reflection matrix r (r′) describes the reflection of waves inciding from the left (right).

The transmission matrix t (t′) gives the transmission across the nanostructure from left

to right (right to left). According to [178], ĉ is an electron destruction operator. The

current operator on the left hand side of the junction reads

ÎL ∝ (ĉin
L )†ĉin

L − (ĉout
L )†ĉout

L (3.31)

Using the unitarity of the scattering matrix and assuming a Fermi-Dirac distribution

f(E) of the electrons on both sides of the junction, we have

〈IL〉 =
2e

h

∫

dETr(t†t)[fL(E) − fR(E)]. (3.32)

Tr(t†t) can be expressed using the transmission eigenvalues Tp of the nanostructure.

If a bias voltage is applied, that is much smaller than the energy dependence of the

transmission values, the conductance of the nanostructure (defined via 〈IL〉 = GV ) is

given by

G = G0

∑

p

Tp. (3.33)

Here, G0 = 2e2

h
is the conductance quantum. This equation is the Landauer formula

[174]. For a single channel point contact, that we widely use in the following, the

conductance is thus defined by a single parameter, i.e., the transmission value of the

channel.

We want to deal with complicated nanostructures that can sometimes be divided into

simpler constituents. One might know the scattering matrices for each constituent

and want to obtain the combined scattering matrix. We will encouter such a case in

Chapter 4 (Appendix A). Consider a system of two scatterers in a row, in a two terminal

geometry, where the scatterer i is described by the scattering matrix

Si =




ri t′i

ti r′
i



 . (3.34)

The total scattering matrix for the combined nanostructure is given by (for a derivation

see [179])

Stot = S11 + S12(Σx − S22)
−1S21, (3.35)
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where the N ×N matrix Σx reads

(Σx)αβ = δα,N−β. (3.36)

Here, we defined the four matrices

S11 =




r1 0

0 r′
2



 , S12 =




t′1 0

0 t2



 , S21 =




t1 0

0 t′2



 , S22 =




r′

1 0

0 r2



 . (3.37)

Scattering matrices are thus not multiplicative, meaning that the total scattering matrix

is not the product of the scattering matrices of the subsystem. However, it is possible to

define the transfer matrix

Mi =




(t†i )

−1 r′
it

′−1
i

−t′−1
i ri t′−1

i



 , (3.38)

such that the total transfer matrix M tot = M2M1 is simply the product of the transfer

matrices of each scatterer. In contrast to the scattering matrix S that maps the incoming

modes to the outgoing modes, the transfer matrix M maps the modes in the right hand

region to the modes in the left hand region. Eq. (3.38) gives the mapping between a

scattering matrix and the corresponding transfer matrix. The transfer matrix is thus a

completely equivalent description.

In this thesis we want to investigate the transport properties of junctions containing

superconductors. The scattering matrix formulation of quantum transport has been

generalized to superconductors [133–135]. A Josephson junction is described by two

superconducting leads that are connected to a normal scattering region that gives rise

to the transmission of the junction. The scattering matrix of a single N/S interface takes

into account the basic microscopic process of Andreev reflection. The eigenfunctions

in the superconducting leads can be obtained solving the Bogoliubov – de Gennes

equations (see Sec. 3.1). For details we refer to Refs. [135, 136] and Appendix A.

3.3 Keldysh Green’s functions formalism

The aim of this section is to present the non-equilibrium Green’s functions formalism

that has been developed by Kadanoff and Baym [180] and Keldysh [181]. Here, we use

the Keldysh formulation. This formalism is suitable for the calculation of observables of

non-equilibrium systems. We use this formalism in Chapter 7, in order to calculate the
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current through a half-metal/superconductor interface, when the half-metal is subjected

to ferromagnetic resonance. We follow a review article [182] and a book chapter [183]

for this presentation.

The Keldysh formalism allows to develop a diagrammatic perturbation theory for non-

equilibrium systems. It is assumed that the system has been in equilibrium, described

by a statistical average, at some point in the past. Then, a perturbation of the system is

“switched on”. The aim is to obtain an equation of motion for the single particle Green’s

function. One finds that this equation of motion involves a hierarchy of correlation

functions.

Let us be more precise and consider a system described by the Hamiltonian

H(t) = H +H ′(t). (3.39)

H ′(t) is a perturbation that is “switched on” at t = t0, i.e., H ′(t) = 0 for t < t0. Before

the perturbation is switched on, the system shall be in thermodynamic equilibrium

and is then described by the statistical operator ρH = Z−1e−βH . Here, the temperature

is given by β = (kT )−1 and the partition function reads Z = Tre−βH . The aim is to

calculate the expectation value of an operator O for t > t0, given by

〈OH(t)〉 = Tr(ρHOH(t)), (3.40)

where OH(t) is the operator in the Heisenberg picture (with respect to the Hamiltonian

H).

We define the greater (>) and lesser (<) Green’s functions as the following correlation

functions

G<(1, 1′) = +i
〈

ψ†
H(1′)ψH(1)

〉

, (3.41)

G>(1, 1′) = −i
〈

ψH(1)ψ†
H(1′)

〉

, (3.42)

where ψ†
H(1) is a fermionic field creation operator in the Heisenberg picture. The

dependence on space and time is abbreviated by 1 = (x1, t1). Let us define the contour

Green’s function [184]

G(1, 1′) = −i
〈

TcψH(1)ψ†
H(1′)

〉

. (3.43)
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(a) (b)

Fig. 3.1: (a) Integration contour for the transformation to the interaction picture, used in
Eq. (3.47). (b) Keldysh contour extending from −∞ to +∞, consisting of an upper c+

and lower c− integration branch, covered in opposite directions. Fig. adapted from
[182].

Here, we introduced the concept of a contour c for time integration, i.e., a path

through the complex plane. The contour time-ordering operator Tc orders the operators

depending on their time arguments on the contour that we will specify later (see

Fig. 3.1), i.e.,

TcA(t1)B(t2) =







A(t1)B(t2) if t1 >
c
t2,

B(t2)A(t1) if t2 >
c
t1.

(3.44)

The contour Green’s function in Eq. (3.43) can thus be expressed via the greater and

lesser Green’s functions in Eqs. (3.41) and (3.42).

We want to perform perturbation theory on the contour-ordered Green’s function. We

use an interaction picture representation and express the operator in the Heisenberg

picture OH via the operator in the interaction picture OH (with respect to H), using the

transformation

OH(t) = U †(t, t0)OH(t)U(t, t0), (3.45)

where the time-evolution operator is defined as

U(t, t0) = T exp
[

− i

~

∫ t

t0
dt′H ′

H(t′)
]

. (3.46)

T denotes the usual time-ordering operator (for a time-integration over the real axis)

and H ′
H(t) is the operator H ′(t) in the interaction picture with respect to H.

Using the contour c, shown in Fig. 3.1(a), we can write

OH(t) = Tc

[

exp
[

− i

~

∫

c
dτH ′

H(τ)
]

OH(t)
]

, (3.47)
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giving for the contour ordered Green’s function

Gc(1, 1
′) = −i

〈

Tc exp
[

− i

~

∫

c
dτH ′

H(τ)
]

ψH(1)ψ†
H(1′)

〉

. (3.48)

We want to transform the contour integration back into a regular time integration.

We now argue how this can be done using the Keldysh contour cK [181], depicted in

Fig. 3.1(b). If we neglect initial correlations, we can put t0 → −∞ [185–188]. Using

the unitarity of the time-evolution operator, the contour can be extended from the

largest time to infinite times. The Keldysh contour cK consists of an upper branch c+,

run through in positive time sense, and a lower branch c−, run through in negative time

sense. The contour ordered Green’s function for the Keldysh contour can be written in

a matrix representation Ĝ, such that the element Ĝij has the time t1 on ci and the time

t1′ on cj. The components of Ĝ explicitly read

Ĝ++(1, 1′) = −i
〈

TψH(1)ψ†
H(1′)

〉

(3.49)

Ĝ+−(1, 1′) = G<(1, 1′) (3.50)

Ĝ−+(1, 1′) = G>(1, 1′) (3.51)

Ĝ−−(1, 1′) = −i
〈

T̃ψH(1)ψ†
H(1′)

〉

(3.52)

Here, T̃ is the anti-time-ordering operator that orders in the opposite sense. Larkin and

Ovchinnikov [189] introduced a slightly different representation, given by

Ǧ = Lτ3ĜL
†. (3.53)

Note the difference between the notations Ĝ and Ǧ. Here, τ denotes a Pauli matrix in

Keldys space and L is given by

L =
1√
2

(τ0 − iτ2). (3.54)

The time-ordered Green’s function reads in this matrix representation

Ǧ =




GR GK

0 GA



 . (3.55)
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Here, we introduced the retarded (R), advanced (A), and Keldysh (K) Green’s functions

as

GR(1, 1′) = −iΘ(t1 − t1′) 〈{ΨH(1),ΨH(1′)}〉 = Θ(t1 − t1′)[G>(1, 1′) −G<(1, 1′)],

GA(1, 1′) = +iΘ(t1′ − t1) 〈{ΨH(1),ΨH(1′)}〉 = −Θ(t1′ − t1)[G
>(1, 1′) −G<(1, 1′)],

GK(1, 1′) = −i 〈[ΨH(1),ΨH(1′)]〉 = G>(1, 1′) +G<(1, 1′).

(3.56)

We want to express the total Green’s function via the equilibrium Green’s function.

Therefore, we consider a perturbation expansion. Let us first of all consider the simplest

case of a scalar potential. The first order diagram contribution of the contour ordered

Green’s function given in Eq. (3.48) reads

G(1)
c (1, 1′) = ~

−1
∫

dx2

∫

c
dτ2G

(0)
c (1, 2)V (2)G(0)

c (2, 1′). (3.57)

Here, G(0)
c is the contour ordered Green’s function of the unberturbed system. We

have used Wick’s theorem, i.e., that the expectation value (quadratically weighted)

of a product of contour ordered operators is the sum of all possible products of two

operators:

〈TcK
c(τn) · · · c(τ1)〉 =

∑

Π

∏

q,q′
〈Tccq(τ)cq′(τ ′)〉 (3.58)

The sum is taken over all possible products Π of two operators without distinguishing

the order. The operators c are either annihilation or creation operators and q, q′ label

the state that is created/destroyed. We now decompose the contour integration into a

forward and backward integration over a real time coordinate. Further introducing the

potential in Keldysh space

V̂ij(1) = V (1)(τ3)ij, (3.59)

we obtain

Ĝ
(1)
ij (1, 1′) = ~

−1
∑

k,l

∫

dx2

∫ ∞

−∞
dt2Ĝ

(0)
ik (1, 2)V̂kl(2)Ĝ

(0)
lj (2, 1′). (3.60)

The perturbation expansion can be iterated and resummation of terms yields again

the full Green’s function. Introducing a short notation, we obtain the following Dyson

equation

Ĝ = Ĝ(0) + Ĝ(0) ⊗ V̂ Ĝ, (3.61)
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where matrix multiplication in Keldysh space is implied for the product of matrices. Fur-

ther, ⊗ denotes matrix multiplication over internal degrees of freedom and integration

over all space and time coordinates.

This approach can be generalized, yielding the more general non-equilibrium Dyson

equation

Ǧ = Ǧ0 + Ǧ0 ⊗ Σ̌ ⊗ Ǧ, (3.62)

that contains the self energy Σ. Note that this is an equation for the matrix representa-

tion of the time-ordered Green’s function, defined in Eq. (3.55). Further, the self-energy

in matrix representation is defined as

Σ̌ =




ΣR ΣK

0 ΣA



 , (3.63)

where

ΣR(1, 1′) = Θ(t1 − t1′)(Σ>(1, 1′) − Σ<(1, 1′)), (3.64)

ΣA(1, 1′) = −Θ(t1′ − t1)(Σ
>(1, 1′) − Σ<(1, 1′)), (3.65)

ΣK(1, 1′) = Σ>(1, 1′) + Σ<(1, 1′). (3.66)

Further, we identified Σ+− = Σ< and Σ−+ = Σ>. The self-energy can be calculated in a

diagrammatic approach, summing over all single-particle irreducible diagrams without

external propagator lines. Knowing the unperturbed matrix Green’s function Ǧ0, we

are thus able to calculate the full Green’s function with help of Eq. (3.62).

The usefulness of this formalism becomes more apparent in Chapter 7. We will see that

we can express the expectation value of the current using the Keldysh Green’s function.

The main task for that kind of problem is thus to determine Ǧ0 and Σ̌.

3.4 Master equation approach - density matrix

theory

We start this section by a brief introduction into density matrices. Afterwards, we will

show (following Ref. [190]) the main steps for the derivation of a master equation

in Markov approximation for the density matrix elements of a system coupled to a
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reservoir. Coupling to a reservoir gives rise to relaxation processes for the states of the

system. We use this formalism in Chapter 5, where the states of the s/px Josephson

junction are coupled via a Zeeman field to the continuum of states of the junction,

which plays the role of a reservoir.

A (quantum) master equation is a first order differential equation that describes the

time-evolution of the density matrix elements. It is a generalization of a classical master

equation that describes the time-evolution of probabilities (diagonal elements of the

density matrix). The general idea is to divide the system into a small observed system

S and a large unobserved reservoir R. R and S are weakly coupled by an interaction,

which is treated perturbatively. It is assumed that R has many degrees of freedom,

such that the interaction with S does not significantly modify R. Further, it is assumed

that dissipation processes in R are fast. Finally, the Markov approximation consists

of assuming that the system S does not have any memory of its past. Markov master

equations are used for the quantum theory of relaxation. The coupling of the system S

with the reservoir R gives rise to relaxation, since energy dissipated from S to R may

stay in R. Markov master equations are for example relevant in quantum optics, e.g.,

for the coupling of a two level system with a cavity. They are also used for NMR (Bloch

equations).

Before going into more detail concerning the master equation, let us introduce density

matrices. The density operator, which is also called statistical operator, describing a

mixture of states |Ψn〉, is defined as

ρ =
∑

n

Wn |Ψn〉 〈Ψn| . (3.67)

Here, Wn is the probability to find the system in the state |Ψn〉. Let us choose an

orthonormal basis given by the set {|φn〉}. The matrix formed of the elements

ρij = 〈φi |ρ|φj〉 (3.68)

is called density matrix. The diagonal elements of the density matrix fulfill ρii ≥ 0 and

give the probability of the system to be in the basis state |φi〉. The expectation value of

an operator is given by

〈A〉 =
Tr(ρA)

Trρ
. (3.69)

3.4 Master equation approach - density matrix theory 45



Normalizing the sum of the probabilities to unity corresponds to imposing Trρ = 1.

A state is called a pure state, if it fulfills Tr(ρ2) = (Trρ)2 = 1 (where the last equality

holds for a normalized state). The off-diagonal elements of the density matrix are called

coherences, since they are non-zero for a coherent superposition of states. Let us now

consider the time evolution of a state that is given by the Schrödinger equation. For the

density operator it takes the form

i~
∂ρ(t)

∂t
= [H(t), ρ(t)]. (3.70)

This equation is called Liouville equation. Assuming that we can write

H(t) = H0 + V (t), (3.71)

where H0 is time independent, we obtain the Liouville equation in the interaction

picture

i~
∂ρ̃(t)

∂t
= [Ṽ (t), ρ̃(t)]. (3.72)

Here, the operators in the interaction picture are defined via

Ã(t) = e
i
~
H0tA(t)e− i

~
H0t. (3.73)

We now want to give the main steps for the derivation of the master equation. We

follow the ideas given in Ref. [190]. We divide our system into a small observed system

S, described by the Hamiltonian HS and an unobserved reservoir R, described by HR.

The total Hamiltonian is given by H = HS +HR + V (t), where V (t) is the interaction

between the system and the reservoir. We assume that the interaction is switched on

at t = 0. Prior to this point the reservoir and the system are decoupled. The weak

interaction between the reservoir and the system is treated perturbatively. Further, we

assume that the reservoir is not significantly changed by the perturbation, such that it

stays in a thermal state throughout the entire time evolution.

We now define the reduced density matrix of the system as

ρ̃S = TrRρ̃, (3.74)
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where the trace is taken over all reservoir degrees of freedom. At t = 0, the system and

the reservoir are decoupled and uncorrelated, such that

ρ̃(0) = ρ̃S(0)ρ̃R(0). (3.75)

We now assume that the reservoir has many degrees of freedom, such that the changes

in the reservoir due to the interaction with the system can be neglected [191]. This

assumption is valid, if the system is much smaller than the reservoir. The density

matrix of the reservoir is thus for all times given by the initial (t = 0) density matrix

of the reservoir. This assumption is also called condition of irreversibility, since it

prevents energy dissipated into the reservoir from returning back to the system. Formal

integration of the Liouville equation (Eq. (3.72)) gives

ρ̃(t) = − i

~

∫ t

0
dt′[Ṽ (t′), ρ̃(t′)]. (3.76)

Inserting this expression into the Liouville equation (Eq. (3.72)) we obtain

˙̃ρS(t) = − i

~
TrR[Ṽ (t), ρS(0)ρR(0)] − 1

~2

∫ t

0
dt′TrR[Ṽ (t), [Ṽ (t′), ρ̃S(t′)ρR(0)]], (3.77)

where the dot denotes the time derivative. Eq. (3.77) gives the equation of motion

for the density operator up to second order in the interaction V (t). We now make the

Markov approximation: We assume that the system has no memory of its past. This

corresponds to ˙̃ρS(t) only depending on ρ̃S(t), i.e., replacing ρ̃S(t′) → ρ̃S(t) under the

integral in Eq. (3.77). If the correlation time τ of the reservoir is much smaller than the

decay time, i.e., τ ≪ γ−1 (where γ is the decay rate), then the Markov approximation

holds true. Following Ref. [192], we decompose the interaction

Ṽ (t) =
∑

i

R̃i(t)S̃i(t), (3.78)

where R and S are operators acting only on the reservoir, the system, respectively. Let

us analyze the appearing time correlation functions of the form

〈

R̃i(t)R̃j(t
′)
〉

= TrR

(

R̃i(t)R̃j(t
′)ρ̃R(0)

)

. (3.79)

First note that the correlation function is only a function of t − t′. Second, since we

assumed quick dissipation in the reservoir, these correlation functions will only be
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non-zero for t− t′ < τ . Traces over a single reservoir operator are zero and therefore

the first term in Eq. (3.77), which is linear in the interaction V , is zero. We now choose

a set of basis states {|n〉} that are eigenstates of HS and obtain from Eq. (3.77)

d

dt
ρ̃mn = − 1

~2

∫ ∞

0
dt′′

∑

ijkl

{〈

m
∣
∣
∣S̃i(t)

∣
∣
∣ k
〉 〈

k
∣
∣
∣S̃j(t− t′′)

∣
∣
∣ l
〉

ρ̃ln
〈

R̃i(t
′′)R̃j(0)

〉

−
〈

m
∣
∣
∣S̃j(t− t′′)

∣
∣
∣ k
〉

ρ̃kl
〈

l
∣
∣
∣S̃i(t)

∣
∣
∣n
〉 〈

R̃i(t
′′)R̃j(0)

〉

−
〈

m
∣
∣
∣S̃i(t)

∣
∣
∣ k
〉

ρ̃kl
〈

l
∣
∣
∣S̃j(t− t′′)

∣
∣
∣n
〉 〈

R̃j(0)R̃i(t
′′)
〉

+ ρ̃mk
〈

k
∣
∣
∣S̃j(t− t′′)

∣
∣
∣ l
〉 〈

l
∣
∣
∣S̃i(t)

∣
∣
∣n
〉 〈

R̃j(0)R̃i(t
′′)
〉}

.

(3.80)

Here, we could extend the integration to infinity, since contributions from times larger

than the correlation time are negligible. Eq. (3.80) is used in Chapter 5. In order to

evaluate the remaining matrix elements, the interaction has to be specified. At this point,

we will only make two general comments. First, if the reservoir is fermionic and in

thermal equilibrium, the correlation functions appearing in Eq. (3.80) are the product

of a Fermi-Dirac distribution function and a phase factor eiωt
′′

containing the time

dependence. In Chapter 5, we will treat the continuum of states of an s/px Josephson

junction as a fermionic thermal reservoir. Second, note that Eq. (3.80) is linear in the

elements of the density matrix ρij. We can thus rewrite this expression, defining a

vector of length N2 of the entries of the N ×N density matrix, given by

ρ = (ρ11, ρ12, ..., ρ1N , ρ21, ...ρ2N , ...ρNN)T . (3.81)

Then, Eq. (3.80) formally reads

ρ̇(t) = P (t)ρ(t), (3.82)

where P (t) is a (in general time-dependent) N2 × N2 matrix. This equation is a

master equation, since it is a first order differential equation for the occupations (and

coherences). If P (t) is time independent, solving this system of coupled differential

equations reduces to an eigenvalue problem. Further, the stationary solution at large

time scales is given by P (t)ρ(t) = 0. In Chapter 5, we will be interested in the stationary

occupations of the s/px junction that determine the current through the junction.
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Part I

Singlet/triplet Josephson junction





4Equilibrium properties of the

singlet/triplet junction

We have seen in Sec. 2.3.2 that the current-phase relation of a conventional Josephson

junction contains information about the Andreev levels and their occupations. If we

replace one of the conventional superconductors by an unconventional superconductor,

we obtain a junction having exotic bound states leading to unusual current-phase

relations. Amongst unconventional Josephson junctions, those realized between singlet

and triplet superconductors are of special interest, because of their incompatible spin

pairing symmetries. Their equilibrium properties have been studied for various types of

heterogeneous junctions [28, 31, 35, 193–196]. It has been shown that their current-

phase relation is non-sinusoidal, since the incompatible spin properties forbid the

transfer of a single Cooper pair across the junction.

In this chapter, we want to focus on the simplest singlet/triplet Josephson junction be-

tween a conventional spin singlet, s-wave superconductor and a quasi one-dimensional

unconventional spin triplet, px-wave superconductor. This junction is presented in

Sec. 4.1. All equilibrium properties can be obtained knowing the density of states

and the free energy. In order to calculate the density of states, we use a scattering

matrix formalism, developed in Appendix A for junctions containing unconventional

superconductors that have a constant absolute value of the pair potential. In Sec. 4.2,

we will use this formalism to show that the s/px junction hosts two spin-polarized

Andreev bound states, which have the same spin [44]. In Sec. 4.3, we determine the

free energy of the junction. Based on the density of states obtained from the scattering

matrix formalism and the free energy expression, we show in Sec. 4.4 that there is a

π-periodic equilibrium supercurrent, which does not probe the exotic spin properties

[29, 36, 197]. Sec. 4.5 uses the free energy to show that in equilibrium the peculiar

Andreev bound states result in a spontaneous magnetization, which is 2π-periodic in

the superconducting phase difference. The spin polarization of the Andreev levels

opens the possibility for spin manipulation, using a time-dependent Zeeman field. The

resulting non-equilibrium properties are presented in Chapter 5.
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S

Fig. 4.1: (a) Model of a Josephson junction between an s-wave and a px-wave superconductor.
(b) Setup of an effective singlet/triplet junction using a semiconducting ferromagnetic
nanowire (F NW) contacted with conventional singlet superconductors (S). The gate
(G) allows to realize a barrier with tunable transparency. Fig. adapted from Ref. [198].

Parts of this chapter and of the following chapter (Chapter 5) are taken from Ref. [198],

the publication to which this part of the thesis has led.

4.1 Setup and Model

Fig. 4.1(a) schematically shows the junction that we want to consider. The left lead is a

conventional spin singlet s-wave superconductor, separated by a barrier from the right

lead, an unconventional spin triplet px-wave superconductor. A possible experimental

realization of this junction could be based on the (TMTSF)2X Bechgaard salts [17],

as suggested in Ref. [44]. For X = PF6 significant evidence for quasi one-dimensional

triplet pairing has been reported [199, 200]. In this material superconductivity persists

for magnetic fields that are much larger than the Pauli paramagnetic limit. However,

since the Bechgaard salts are long organic chains, it might be extremely challenging

to contact them with metallic superconductors as aluminum. Other intrinsic inorganic

quasi one-dimensional compounds with evidence for triplet pairing have been reported

[201–204]. In more detail, Li0.9Mo6O17 is a quasi one-dimensional layered superconduc-

tor [201], for which the upper critical field of superconductivity is strongly anisotropic

and superconductivity persists beyond the paramagnetic limit [205], making a triplet

pairing mechanism very probable [202]. Further, superconductivity has been reported

in two chromium pnictide compounds, namely K2Cr3As3 [203] and Rb2Cr3As3 [204].

In both compounds the upper critical field exceeds the Pauli limit. In Rb2Cr3As3 the
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electronic specific heat coefficient suggests the existence of nodes in the superconduct-

ing energy gap [204]. Alternatively, we propose to engineer a junction with effective

px-wave pairing. As illustrated in Fig. 4.1(b), this junction consists of two conventional

superconductors separated by a ferromagnetic semiconducting nanowire that is quasi

one-dimensional. The gate acts as a barrier with tunable transparency. The exchange

interaction in the ferromagnet spacially modulates the pair amplitude of the Cooper

pairs. Both singlet and triplet correlations are induced. They spacially oscillate with

the same period, but with a phase shift. At a distance ξF from the interface the singlet

Cooper pair wave function in the ferromagnet is zero and the triplet correlations are

non-zero [206–208]. Consequently, an effective px-wave superconductor is realized

when the length of the nanowire between the gate and one of the leads matches the

coherence length ξF for the superconducting correlations induced in the nanowire.

The Hamiltonian describing the Josephson junction between an s-wave superconductor

and a one-dimensional time-reversal symmetric px-wave superconductor reads

H =
∫

dx Ψ†HΨ, (4.1)

where we introduced the Nambu spinor Ψ = (R↓, L
†
↑, L↓, R

†
↑)
T with R†

σ and L†
σ being

creation operators for right-moving and left-moving electrons with spin σ =↑, ↓, re-

spectively. Here, we only considered one spin block, in order to prevent from double

counting (see also the discussion in Sec. 3.1). The Bogoliubov – de Gennes Hamiltonian

H is given as

H = vFpηzτz + U(x)ηxτz − ∆s(x)τx + ∆p(x)ηzτxe
−iτzφ , (4.2)

where τx,y,z and ηx,y,z denote Pauli matrices in particle-hole and R/L spaces, respectively.

The first term in Eq. (4.2), with Fermi velocity vF and momentum operator p, is the

kinetic energy. Introducing the the R/L space and working in Andreev approximation,

i.e., ∆ ≪ EF (where EF denotes the Fermi energy), allowed us to linearize the kinetic

energy. The second term describes a scalar potential U(x) in the central region of the

junction, 0 < x < L, where L is the junction length. It gives rise to an electronic

transmission probability T , when the junction is in the normal state. Note that the

first two terms of Eq. (4.2) correspond to H(R) in Eq. (3.23), where we worked in

a different basis (particle/hole space and spin space). The third term describes s-

wave pairing with gap ∆s(x) = ∆sθ(−x) in the left lead, where θ is the Heaviside
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step function and ∆s denotes the absolute value of the s-wave pair potential. Using

this step function model, we neglect the proximity effect and do not treat the pair

potentials self-consistently. As discussed in [134, 209], if the width of the junction W is

much smaller than the coherence length ξ, i.e., W ≪ ξ, the spacial variations of the

order parameter extend over a distance W . Since non-uniformities on a scale much

smaller than the coherence length do not influence the quasiparticle dynamics, the step

function model is valid. The last term in Eq. (4.2) describes time-reversal invariant

px-wave pairing between electrons having opposite spins in the right lead with gap

∆p(x) = ∆pθ(x − L), where ∆p denotes the absolute value of the pair potential. The

spin quantization axis (z-direction) is chosen along the d-vector [121] of the triplet

pair potential. Note that the momentum dependence of the px-wave pairing appears in

form of the ηz Pauli matrix. The superconducting phase difference across the junction

is denoted φ. Using the effective setup presented in Fig. 4.1(b), a SQUID-like geometry

can be realized, in which the enclosed magnetic flux fixes the phase difference across

the junction. In Chapter 5, we will consider the effect of a small ac magnetic field

applied to the junction. This field could be provided by an antenna ending close to the

junction.

4.2 Andreev bound states

As in a conventional Josephson junction (see Sec. 2.3.2), phase-dependent Andreev

bound states form in the s/px junction. Knowledge of their properties is imperative,

since they determine the equilibrium and non-equilibrium properties of the junction.

We use the scattering matrix formalism presented in Appendix A in order to deter-

mine the Andreev bound state energies. The scattering matrix for Andreev reflection

corresponding to the Hamiltonian in Eq. (4.2) reads

sσA =











0 0 σαL 0

0 0 0 −eiφαR

σαL 0 0 0

0 e−iφαR 0 0











, (4.3)
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where we defined

αβ(E) =







ǫβ − i
√

1 − ǫ2
β for ǫβ < 1

ǫβ −
√

ǫ2
β − 1 for ǫβ > 1

(4.4)

with β ∈ {L,R} denoting the side of the junction and ǫL = E
∆s

and ǫR = E
∆p

. For

the bound states we obtain αβ(E) = exp(iχβ(E)). This expression is a phase factor

that contains the energy-dependent phase shift χβ(E) due to Andreev reflection. Let

us consider spin-independent time-reversal invariant scattering in the normal region,

described by the disorder potential U(x) in Eq. (4.2) and giving rise to the following

normal region scattering matrix

sN =




se 0

0 sh



 , (4.5)

where the scattering matrix for electrons reads

se =




r(E) t(E)

t(E) r′(E)



 . (4.6)

Futher, the scattering matrix for holes is related to the scattering matrix for electrons via

sh(E) = s∗
e(−E). Assuming the short-junction limit, where the length of the junction L

is much shorter than the ballistic coherence length, i.e., L ≪ ~vF/∆, the entries of the

normal region scattering matrix are energy independent. Further, assuming a single

conduction channel, the entries r, t, r′ are scalars. Using the unitarity of the scattering

matrix, the determinant in Eq. (A.12) that determines the bound state energies reads

after some algebra

det(1 − sσA(E)sσN(E)) = (2 − T )
√

1 − ǫ2
LǫR + T

√

1 − ǫ2
RǫL + Tσ sinφ. (4.7)

Here T = tt∗ denotes the transmission of the normal region. The condition

det(1 − sσA(En)sσN(En)) = 0 (4.8)

determines the bound state energies En. This equation has a lengthy analytical solution

that does not give any insights. We will present the analytical solution in limiting cases

and show plots for selected parameter regimes.
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(a) conventional junction (b) unconventional s/px junction

Fig. 4.2: Andreev bound state energy as a function of the phase difference φ across the junction.
The solid (dashed) lines are given for a transparency of T = 1 (T = 0.8). The red
(blue) lines correspond to solutions from the right (left) moving direction subspace.
The red state is π-shifted in the unconventional junction, due to the momentum-
dependent pairing.

Let us first of all consider the special case of equal gaps, i.e., ∆s = ∆p = ∆ before

discussing the more general properties. Choosing the semiconductor representation

with σ = −1, Eq. (4.8) has the rather simple solution

Eν =
sgn(sinφ)√

2
∆

√

1 + ν
√

1 − T 2 sin2 φ, (4.9)

where ν ∈ ± labels the two bound states that have already been reported for this

junction in Ref. [28], obtained from a wave-matching approach. It is important to stress

that there are two bound states of the same spin for a given phase difference, which

both have the same sign of the energy.

There is a more intuitive way of understanding the bound states given by Eq. (4.9).

Consider a transparent (T = 1) conventional Josephson junction consisting of two s-

wave superconductors. The corresponding Andreev bound states in the semiconductor

picture (having the same “spin”) are shown in Fig. 4.2(a). If we replace one of the

superconductors by a px-wave superconductor, one of the bound states (the red one

in the figure) is phase-shifted by π (see Fig. 4.2(b)). This phase shift is due to the

momentum dependence of the pairing. It corresponds to the ηz Pauli matrice in the

Hamiltonian in Eq. (4.2). More precisely, an towards the px-wave superconductor

arriving electron has a positive momentum k ≈ kF, whereas an arriving hole has a

negative momentum k ≈ −kF. Hence, the electron “feels” the pair potential +∆ and
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Fig. 4.3: Andreev bound state energy normalized by the gap ∆s as a function of the phase
difference φ across the junction for a transparency of T = 0.8. The red, black, and blue
lines are the Andreev bound states for ∆s = 5

6∆p, ∆s = ∆p, ∆s = 6
5∆p, respectively.

The gray box shows the continuum of states in the s-wave superconductor, the blue
and red boxes indicate the continuum of the px-wave superconductor.

the hole −∆. One of the bound states is thus π shifted. The bound state energies are

consequently given by

ER = ∆ sin
φ

2
sgn(sinφ), (4.10)

EL = ∆ cos
φ

2
sgn(cosφ). (4.11)

Here, R,L stand for the moving direction that we can associate to each state for a

transparent junction. If backscattering is introduced, the moving directions are no

longer eigenstates, since they are coupled. Thus, a gap opens at the crossings of the

states. For the s/px junction the resulting Andreev bound states are given by Eq. (4.9).

At vanishing coupling, T = 0 (opaque junction), the two superconductors are decoupled.

The spectrum of the s-wave lead is gapped, as in a bulk superconductor. The px-wave

lead contains a zero-energy edge state, which can be understood as two copies of

the Kitaev model [24] (see also [210]) in opposite spin sectors. Note that a finite

phase difference across the junction breaks time-reversal symmetry and couples the two

Majoranas to one fermionic state. A finite coupling between the two superconductors

moves this state to finite energy and yields the bound state ν = −, while the second

bound state (ν = +) detaches from the continuum.

Let us now consider what changes if the gaps are different, i.e., ∆s 6= ∆p. The bound
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state energies are still the solutions of Eq. (4.8). Fig. 4.3 shows examples of the

bound state energies for different gap ratios. Again, we chose a semiconductor picture

representation with σ = −1. For a given phase difference φ across the junction, we

find one or two bound states. The bound state closer to the Fermi level (“lower” bound

state) that emerged from the p-wave edge state (at vanishing coupling) is present for

all phase values. Its maximum energy is always smaller than both gaps. The other

bound state (“upper” bound state) only exists in a certain phase range, or may even be

completely absent. A special case is the case of equal gaps, i.e., ∆s = ∆p, where the

upper state exists for all phases.

In order to investigate the phase range in more detail, let us introduce the ratio of the

gaps defined by η = ∆s

∆p
. Eq. (4.7) gives the following phase boundaries for the upper

bound state

φ0 =







arccos η for η < 1

arcsin 2−T
T

√
1 − η−2 for η > 1

. (4.12)

The bound state exists in the phase intervals [φ0, π − φ0] and [π + φ0, 2π − φ0]. If the

s-gap is smaller than the px-gap, the phase φ0 is independent of the transparency T .

The expression obtained for φ0 in this case is equivalent to the expression for the phase

boundary for the bound state of a junction formed of two s-wave superconductors with

unequal gaps (see for example Ref. [211]). Note that such a junction only displays

bound states for all phase differences, if the gaps are equal. In the opposite case, if the

s-gap is bigger than the px-gap, φ0 is transmission dependent. We conclude, that the

upper bound state detaches only significantly from the continuum, if the gaps of the

two superconductors are similar and the junction has a high transparency.

Eq. (4.7) has already been derived in Ref. [44]. However, the expression given in that

reference contains a misprint. The authors interchanged the two superconductors. As

Fig. 4.3 illustrates, Eq. (4.7) is not symmetric under this operation and it matters, which

superconducting gap is bigger. The main results of Ref. [44] are not affected by this

mistake. Beside this difference, the plots in Fig. 4.3 have already been presented in

Ref. [44].
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4.3 Free energy

We want to calculate the free energy, since we can deduce the equilibrium current

(Sec. 4.4) and the equilibrium magnetization (Sec. 4.5) from it. First, we diagonalize

the Hamiltonian (Eq. (4.2)) using a Bogoliubov transformation

Ψ(x) =
∑

ν=±
ψν(x)γν +

∑

E,µ

ψEµ(x)γEµ, (4.13)

where γν and γEµ are annihilation operators for quasiparticles in the bound state with

energy Eν (given by the solutions of Eq. (4.8)) and for quasiparticles in the continuum

with energy E and degeneracy index µ, respectively. ψ±(x) denotes the wavefunction

corresponding to the bound state ±. The continuum of (outgoing) propagating states

with energies E (|E| > ∆) and wavefunctions ψEµ(x) is four-fold degenerate, where µ

is a degeneracy index. Explicit expressions for the wavefunctions, that we will need

when considering out-of-equilibrium phenomena, are given in Appendix C (for equal

gaps). Note that the choice of the spinor Ψ implies that we are considering states with

spin down only. The diagonalized Hamiltonian reads

H =
∑

ν=±
Eνγ

†
νγν +

∑

E,µ

Eγ†
EµγEµ. (4.14)

Note that we neglected a constant term, that just redefines the energy zero. This form

of the Hamiltonian is most suitable for the determination of the bound states dynamics

in Chapter 5, since we separated explicitly bound states from continuum states. In order

to determine the free energy, however, it is advantageous not to distinguish explicitly

between bound and continuum states, but rather write the Hamiltonian as

H = E0 +
∑

m,σ

Emσ

(

γ†
mσγmσ − 1

2

)

. (4.15)

m is a set of quantum numbers. σ denotes the spin that we treat separately from

the other quantum numbers. E0 is a constant that does neither depend on the phase

difference nor the magnetic field. The difference between bound states and continuum

states is now encoded into the density of states. The free energy is defined as

F = − 1

β
lnZ, (4.16)
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where β = 1
kT

. Here k denotes the Boltzmann constant and T is the temperature. Z is

the partition function, defined as

Z = Tr[e−βH ]. (4.17)

The partition function for the Hamiltonian in Eq. (4.15) reads

Z = e−βE0
∏

m,σ

(

e
β

2
Emσ + e−β

2
Emσ

)

(4.18)

giving for the free energy

F = E0 − 1

β

∑

m,σ

ln

(

2 cosh
βEmσ

2

)

. (4.19)

We will use this expression in the following two sections in order to calculate the

equilibrium current and the equilibrium magnetization of the junction.

4.4 Current-phase relation

The Josephson current through the junction can be obtained from the free energy [212],

i.e.,

I =
2e

~

dF

dφ
. (4.20)

We follow an approach developed for conventional junctions in Ref. [213] and apply it

to our junction. We use the free energy expression in Eq. (4.19) and show in Appendix

B that after some manipulations the current reads

I = − 4e

~β
ℜ d

dφ

∑

σ∈{±}

∞∑

n=0

ln det(1 − sσA(iωn)sσN(iωn)), (4.21)

where the sum is evaluated at the fermionic Matsubara frequencies given by

ωn = (2n+ 1)πβ−1. (4.22)

60 Chapter 4 Equilibrium properties of the singlet/triplet junction



Fig. 4.4: Current-phase relation of the singlet/triplet Josephson junction. Both gaps are taken
to be equal and the transmission is T = 0.8. The different curves correspond to
different temperatures, as given in the legend. The change of sign at φ = π is
smoothed at finited temperatures. The curves are obtained from Eq. (4.26).

Let us briefly discuss the current through a short conventional Josephson junction with

N conduction channels. Eq. (4.21) yields

I =
e∆2

2~
sinφ

N∑

p=1

Tp
Ep

tanh

(

βEp
2

)

, (4.23)

where the bound state energies are given by

Ep = ∆

√

1 − Tp sin2 φ

2
. (4.24)

Tp is the eigenvalue of the matrix tt†, where t is the transmission matrix in Eq. (4.6).

This expression for the current has been given in [133] and was originally derived in a

different theoretical framework [214].

For the s/px junction, we evaluate Eq. (4.21) using Eq. (4.7). The resulting expression

for the current is suitable for numerical evaluation. Obviously, the expression

ℜ d

dφ
ln det(1 − sσA(iωn)sσN(iωn)) (4.25)

is π-periodic in the phase difference φ, resulting in a π-periodic current. Thus, the

current-phase relation does not probe the peculiar bound state properties. For equal
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con

(a) ∆s = ∆p

total

con

(b) ∆s = 5
6
∆p

Fig. 4.5: Contributions of the two bound states and the continuum to the total current at zero
temperature. (a) For equal gaps, the current flows entirely via the bound states. (b) If
the gaps are not equal, the continuum contributes to the current.

gaps ∆L = ∆R = ∆, Eq. (4.21) together with Eq. (4.7) yields the simple analytical

expression

I =
e

~
∆

T 2 sin2(2φ)

8
√

1 − T 2 sin2 φ

(

tanh βE+

2

E+

− tanh βE−
2

E−

)

. (4.26)

Here, we used the bound state expressions given in Eq. (4.9). For zero temperature,

i.e., β → ∞, the expression simplifies to

I = − e

~

d

dφ
(E+ + E−) =

e

~

T 2 sin2(2φ)

8
√

1 − T 2 sin2 φ

(

E−1
+ − E−1

−
)

. (4.27)

For equal gaps and at zero temperature, the current expression can thus be expressed

as the derivative of the energy of the bound states with respect to the phase difference

across the junction. The current is consequently entirely transported via the bound

states and the continuum does not contribute. At non-zero temperature, temperature

weighting factors enters the expression, as evident from Eq. (4.26). Fig. 4.4 shows

the current-phase relation of the junction for a transmission of T = 0.8 and for equal

gaps for different temperatures. At zero temperature it shows a discontinuity at φ = π,

that is smoothed for finite temperatures. Higher temperature decreases the critical

current. The zero-temperature current-phase relation has already been presented in

[28, 196]. Note that the first harmonic in the current-phase relation is sin(2φ) (and not

sinφ as in conventional junctions), reflecting the fact that a single Cooper pair cannot

be tranferred across the junction due to the incompatible spin pairing symmetries.

Fig. 4.5 shows the contributions to the current of the two bound states as well as the
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continuum at zero temperature. If both gaps are equal, the contributions of the two

bound states add up to the total current. If the gaps are different, the continuum also

contributes. For S/N/S junctions consisting of conventional s-wave superconductors

this is already well-known [211].

For equal gaps, we can write the Josephson current as

I =
2e

~

∑

ν=±

dEν
dφ

(

nν − 1

2

)

, (4.28)

where the occupation factor is defined via nν =
〈

γ†
νγν

〉

= f(Eν) and f is the Fermi-Dirac

distribution function.

We have seen that the equilibrium current does not probe the peculiar spin properties of

the bound states. Thus, in order to probe them, we have to consider out-of-equilibrium

effects. These are considered in chapter 5.

4.5 Spontaneous magnetization

A spontaneous equilibrium magnetization of the s/px Josephson junction has been

reported in Ref. [44]. Let us first of all present an intuitive way of grasping this effect

before turning towards a mathematical derivation using the free energy. Reconsider

Fig. 4.2. Note that one state has been brought from below the Fermi level to above the

Fermi level, when going from the conventional junction to the singlet/triplet junction.

This state changes consequently its occupation (at zero temperature). Knowing that

the conventional junction does not posses any equilibrium magnetization and that the

state has spin-1
2
, we conclude that the s/px junction has a zero temperature equilibrium

magnetization of µB

2
sgn(sinφ).

More quantitatively, the spontaneous equilibrium magnetization can be obtained as the

zero magnetic field limit of the magnetization, i.e.,

M = − lim
B→0

∂F

∂B
. (4.29)

Using the expression for the free energy in Eq. (4.19), we obtain after a partial integra-

tion

M =
µB

2

∫ 0

−∞
dE(ρ↑(E) − ρ↓(E)) tanh

βE

2
, (4.30)
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where ρσ(E) denotes the density of states for the spin σ and µB is the Bohr magneton.

We used ρ↑(−E) = ρ↓(E). We see that the magnetization at zero temperature is just

given by the difference of the density of states for the occupied states below the Fermi

level. Eq. (4.30) can be evaluated with the density of states obtained in the scattering

matrix formalism.

Eq. (4.30) has the advantage of being intuitive. However, its evaluation might be

lengthy. Therefore, we want to express the magnetization using the Matsubara frequen-

cies. Performing the same steps as in Sec. 4.4 and Appendix B, we can express the

magnetization as

M = −µB lim
h→0

β−1
∑

σ∈{±1}

∞∑

n=0

ℜ ∂

∂h
ln det(1 − sσA(iωn − σh)sσN(iωn − σh)). (4.31)

This expression can be numerically evaluated at arbitrary temperature. Let us now

continue the analytical evaluation of this expression at zero temperature, i.e., β = ∞.

Then, the spacing of the Matsubara freqencies goes to zero and the sum over the

frequencies becomes an integral.

M = −µB

2π

∑

σ

∫ ∞

0
dωℜ lim

h→0

∂

∂h
ln det(1 − sσA(iω − σh)sσN(iω − σh)) (4.32)

We can express the derivative with respect to h as a derivative with respect to ω. Further

using ℑ ln z = arctan ℑz
ℜz , we obtain

M =
µB

2π

∑

σ

σ
∫ ∞

0
dω

∂

∂ω
arctan

ℑ det(1 − sσA(iω)sσN(iω))

ℜ det(1 − sσA(iω)sσN(iω))
. (4.33)

The integration is trivial and we obtain

M =
µB

2π

∑

σ

σ

[

lim
ω→∞ arctan

ℑA(iω)

ℜA(iω)
− lim

ω→0
arctan

ℑA(iω)

ℜA(iω)

]

, (4.34)

where we introduced the short notation A(iω) = det(1 − sσA(iω)sσN(iω)). Using the

explicit determinant expression given in Eq. (4.7), we have

ℜA(iω) = Tσ sinφ, (4.35)

ℑA(iω) = (2 − T )
√

1 + ω2
LωR + T

√

1 + ω2
RωL, (4.36)
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(a) T = 0.8, η = 1 (b) T = 0.8, η = 5
6

(c) β∆ = 10, η = 1 (d) T = 0.8, β∆ = 10

Fig. 4.6: Magnetization of the singlet/triplet junction as a function of the phase difference
across the junction. (a) and (b) show the evolution with increasing temperature. (c)
shows the influence of the transmission and (d) compares different ratios of the gaps.

where ωβ = ω
∆β

. Using limω→∞ arctan(aω) = π
2
sgn(a), we finally obtain

M =
µB

2
sgn(sinφ). (4.37)

This is the expression that we previously obtained from our intuitive considerations.

The junction thus carries a spontaneous magnetization, which is 2π-periodic in the

phase difference [44]. Note that this zero temperature magnetization is independent of

the ratio of the gaps.

For non-zero temperatures we can numerically evaluate Eq. (4.31), using the deter-

minant expression in Eq. (4.7). Fig. 4.6 shows the curves from numerical evaluation.

As evident from Fig. 4.6(a), (b), a finite temperature smoothes the zero temperature

magnetization jumps at φ = 0, π. Fig. 4.6(c) shows that for a fixed temperature the

magnetization decreases when the transmission of the junction decreases. As evident
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from Fig. 4.6(d), the gap ratio also influences the magnetization. Similar magnetization

curves have first been presented in Ref. [44]. However, the authors only considered

the contribution from the ν = − bound state. Our treatment, in contrary, includes both

bound states and the continuum.

We can generalize the magnetization expression for equal gaps in order to treat non-

equilibrium situations. Introducing the bound state occupations nν = 〈γ†
νγν〉, we obtain

M = −µB

2

∑

ν=±

(

nν − 1

2

)

. (4.38)

In equilibrium nν = f(Eν), where f is the Fermi function.

Let us note that Eq. (4.31) indeed gives the result M = 0 for a conventional Josephson

junction (independently of the gap ratio). This can be easily seen, since the determinant

expression is real in that case.

The equilibrium magnetization of the s/px junction together with the spin polarization

of the Andreev bound states opens the possibility of manipulation of the spin properties

of the junction using a Zeeman field. The resulting non-equilibrium properties will be

analyzed in Chapter 5.
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5Non-equilibrium properties of

the singlet/triplet junction

In the previous chapter we have introduced the singlet/triplet Josephson junction

consisting of an s-wave and a px-wave superconductor. We have shown that the

junction has a spin-polarized Andreev spectrum leading to an equilibrium magnetization.

The current-phase relation is π periodic and hence not sensitive to the peculiar spin

properties. The aim of this chapter is to study non-equilibrium phenomena that probe

the spin properties. More precisely, the spin-polarization of the Andreev states opens the

possibility of manipulation of the spin state using a time-dependent Zeeman field that

creates spin-flip processes. We introduce the Zeeman field in Sec. 5.1 and show that it

induces transitions between the states. We will discuss the spin and energy constaints of

these transitions. In Sec. 5.2 we focus on the Andreev bound states dynamics induced by

the field. We use a master equation approach in order to determine the non-equilibrium

occupations of the Andreev levels. Further, we determine the relevant field-induced

transition rates for different junction transparencies that enter the expressions for the

occupations. The stationary occupations determine the non-equilibrium current-phase

relation of the junction that we show in Sec. 5.3 for different polarizations of the

magnetic field. The work presented in this chapter has led to a publication and parts of

this chapter are taken from this publication (Ref. [198]).

5.1 Processes induced by an ac magnetic field

For simplicity, we will restrict our non-equilibrium analysis to the case ∆s = ∆p ≡ ∆.

When ∆s 6= ∆p, the Rabi oscillations that we find are still possible in the interval of

superconducting phase differences with two Andreev bound states.

In order to manipulate the bound state occupations, we apply a weak ac magnetic field,

described by the Zeeman Hamiltonian

HZ = µB

∑

s,s′=↑,↓

∫

dx B ·
(

R†
sσss′Rs′ + L†

sσss′Ls′

)

. (5.1)
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We consider two different polarizations for the magnetic field B. First, let us consider a

circularly polarized field B = B(cos Ωt, sin Ωt, 0), where Ω is the driving frequency. Such

a circularly polarized field, perpendicular to the d-vector of the triplet pair potential

that defines the z-axis leads to spin-flip processes. Second, we investigate a linearly

polarized field B = 2B(cos Ωt, 0, 0). Such a field is the superposition of two circularly

polarized fields with opposite helicities. Therefore, we concentrate our discussion on

the case of circular polarization and comment afterwards on the linear polarization.

In order to identify the field-induced processes, we express Eq. (5.1) in terms of

quasiparticle operators using the Bogoliubov transformation (4.13). We find

HZ = µBBe
−iΩt



V+,−γ+γ− +
∑

E;µ,ν

Vν,EµγνγEµ +
1

2

∑

E,E′;µ,µ′
VEµ,E′µ′γEµγE′µ′



+ h.c. ,

(5.2)

where Vλ,λ′ =
∫

dx ψTλ ηx(−iτy)ψλ′ for λ, λ′ ∈ {+,−, Eµ}. The field thus couples two

quasiparticle states. According to Eq. (5.2), three different types of processes are

possible: transitions involving only bound states (first term), transitions involving

a bound state and a continuum state (second term), and transitions involving only

continuum states (third term). We will now discuss the spin (Sec. 5.1.1) and energy

(Sec. 5.1.2) constraints on the different terms.

5.1.1 Spin constraints

In this section we discuss the different processes described by Eq. (5.2) and analyze the

spin constraints they are subjected to. We note that the destruction of a quasiparticle

with spin down at negative energies corresponds to the creation of a quasiparticle with

spin up at positive energies. So far, we used both positive and negative energies for spin

↓ (semiconductor picture). In the following, we will work with both spin directions,

but only positive quasiparticle energies (excitation picture). Furthermore, we assume

that the temperature is low, such that the continuum states are empty. The occupation

of the continuum states is proportional to exp(−β∆), i.e., it is exponentially suppressed

for low temperatures.

Depending on the occupation of the Andreev levels, the junction can be in four different

states, as sketched in Fig. 5.1(a). If both bound states are empty (|0〉), the junction is

in equilibrium and has the equilibrium magnetization determined in Sec. 4.5. If one
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(a)

ionizationre ll

(b)

Rabi

Fig. 5.1: (a) Possible states of the junction and their magnetization M . Full (open) dots
represent occupied (empty) states. (b) Transitions induced by a circularly polarized
magnetic field with Ω < 0. The shaded region is the continuum of states. The thick
black arrows denote the spin of the states. Absorption (emission) of a photon changes
the spin by ∆Sz = −1 (∆Sz = +1). We distinguish Rabi oscillations (red), refill
processes (blue) and ionization processes (green). Fig. adapted from [198].

bound state with energy |Eν | is occupied and the other bound state is empty, we denote

this state of the junction by |ν〉. In this case, the magnetization of the junction is zero. If

both bound states are occupied (|2〉), the magnetization has opposite sign with respect

to equilibrium.

Let us start the discussion of the field-induced transitions with a circularly polarized

magnetic field. The spin of the system changes by ∆Sz = sgn(Ω) when a photon

is absorbed, whereas it changes by ∆Sz = −sgn(Ω) when a photon is emitted. For

definiteness, we consider the case Ω < 0.

The transitions involving only bound states correspond to Rabi oscillations, i.e., coherent

oscillations between the states |0〉 and |2〉. The spin selection rule imposes the constraint

that Rabi oscillations are only possible if both bound states have spin down, which is

the case in the interval 0 < φ < π.

Transitions involving a bound and a continuum state change the parity of the bound

state occupation, connecting the even-parity subspace {|0〉, |2〉} to the odd-parity sub-

space {|−〉, |+〉}. Such a process might represent a decay mechanism for the Rabi
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oscillations, since the transfer between the continuum of states and the bound states

may not happen in a coherent manner because we assume infinite leads. Whenever

a continuum quasiparticle is created, it has zero probability to return to the junction.

This corresponds to assuming a Markovian reservoir with short correlation time. We

may distinguish two different incoherent processes, sketched in Fig. 5.1(b).

In an ionization process, a quasiparticle from a bound state is promoted to a continuum

state. The spin selection rule imposes that the bound state has spin up, which is only

the case in the interval π < φ < 2π. Thus, Rabi oscillations and ionization processes

occur in different phase intervals.

In a refill process, a Cooper pair is broken such that one quasiparticle occupies a bound

state, whereas the second quasiparticle is promoted to a continuum state. Here, the

spin selection rule imposes that the bound state has spin down, which is the case in the

interval 0 < φ < π.

Let us now consider a linearly polarized magnetic field. As already mentioned, it is

the superposition of two circularly polarized fields with opposite helicities. Thus, the

spin selection rule is always met by one of the helicities and there is no spin constraint

anymore.

5.1.2 Energy constraints

Let us discuss the energy constraints for the different processes due to energy conser-

vation. Fig. 5.2 shows a schematical plot of the energy constraints imposed by energy

conservation.

The Rabi oscillations occur when the oscillation frequency of the magnetic field, |Ω|,
matches the Rabi frequency, ΩR = ~

−1|E+(φ) +E−(φ)|. Using the energy-phase relation

given by Eq. (4.9), the maximum frequency range in which Rabi oscillations may occur

is given by ∆ < ~|Ω| <
√

2∆. Note that the maximal value of |E+(φ) + E−(φ)| is

transmission dependent. It varies between its minimum ∆ at T = 0 and its maximum
√

2∆ at T = 1. Sweeping the phase at fixed frequency, the resonance condition

is met (if ∆ < ~ |Ω| < max |E+(φ) + E−(φ)|) for four different values of the phase:

φ0, π − φ0, π + φ0, 2π − φ0. These phase values are also indicated in Fig. 5.2. Due to

the spin selection rule previously discussed, the circularly polarized field leads to Rabi

oscillations only at the two phase values φ0 and π − φ0.
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Fig. 5.2: Visualization of the energy constraints as a function of the phase difference φ for
a junction with a transmission of T = 0.8 at a frequency of the magnetic field of
|Ω| = 1.3~−1∆. The solid red line indicates the condition for Rabi oscillations, that is
fulfilled at two phase values indicated by the dots and the vertical dashed lines. The
energy thresholds for the refill and ionization processes are shown by the solid blue
and green lines. The phase range, for which the frequency is larger than the threshold
energy for the refill process of the minus state, is shaded in gray. The critical phase
value is indicated by the dashed blue vertical lines. Note that the energy constraints
are π periodic and we can thus restrict the plot to the energy interval [0, π].

For the refill and ionization processes there is a threshold energy. It is given by a process,

where a continuum quasiparticle with an energy equal to ∆ is created. Since there

is a continuum of states with energies larger than ∆, this threshold energy is only a

lower bound. For ionization processes energy conservation imposes ~|Ω| > ∆ − |Eν |.
In the frequency range of interest for Rabi oscillations, this condition is always met,

as also illustrated in Fig. 5.2. However, remember that the spin constraints imposed

Rabi oscillations and ionization processes to be in different phase intervals. For refill

processes energy conservation imposes ~|Ω| > ∆ + |Eν |. In the frequency range of

interest for Rabi oscillations, this condition is never met for the state with energy |E+|.
By contrast, for the state with energy |E−|, one obtains a critical phase φc such that the

condition is met in the phase intervals [−φc, φc] and [π − φc, π + φc]. We find φc < φ0

for all transmissions (see also Fig. 5.2). Thus, Rabi oscillations and refill processes also

occur in different phase intervals.
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Finally, transitions involving only continuum states are only possible for ~|Ω| > 2∆.

Thus, they do not play a role in the frequency range of interest for Rabi oscillations.

We have seen that Rabi oscillations and both refill and ionization processes occur in

different phase intervals. We thus conclude that the field-induced transitions do not

provide a decay mechanism for the Rabi oscillations due to energy and spin constraints.

However, such a decay may be due to other parity non-conserving processes related to,

e.g., quantum phase fluctuations due to the resistive environment of the junction [215,

216]. In that case, the energy to ionize an Andreev level is provided by either an

environmental photon or phonon. Assuming that the environment can provide photons

or phonons of a large energy range, the energy constraints become irrelevant. Further,

the spin selection does not play a role in this case, since environmental photons are

unpolarized.

The situation is different for a linearly polarized field. As a consequence of the su-

perposition of both helicities, Rabi oscillations may now occur at the four phases

φ0, π − φ0, π + φ0 and 2π − φ0. Furthermore, the field-induced ionization rates are

non-zero for all superconducting phase differences. Hence, the ionization processes

provide a decay mechanism for the Rabi oscillations.

5.2 Andreev bound states dynamics

The modifications of the bound state occupations induced by the different processes

discussed in Sec. 5.1 may lead to strong deviations of the Josephson current (Eq. (4.28))

from its equilibrium value. To compute the steady-state Josephson current, we introduce

the matrix elements ραβ = 〈α|ρ|β〉 of the reduced density matrix ρ, where |α〉, |β〉 ∈
{|0〉, |+〉, |−〉, |2〉}, such that Eq. (4.28) reads

I = (I+ + I−)(ρ00 − ρ22) + (I+ − I−)(ρ−− − ρ++) (5.3)

with I± = − e
~

d|E±|
dφ

. Eq. (5.3) neglects a small modification of the current expectation

values I± (of order O(µ2
BB

2/∆2)), while it accounts for a large effect (of order O(1))

due to the modified Andreev level occupations. It also neglects charge-imbalance related

effects in the presence of an ac drive [216], where more electron-like quasiparticles

leave to one lead and more hole-like qasiparticles to the other. The resulting charge
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imbalance due to charge accumulation can be safely neglected with the standard

assumption of fast inelastic relaxation in the leads.

5.2.1 Master equation approach

To evaluate the current, we use the master equation approach introduced in Sec. 3.4, in

order to determine the steady-state occupations ραα. For the parity-changing processes

including a continuum quasiparticle, we make the Born-Markov approximation and

treat the continuum of states as a reservoir. The interaction between system and

reservoir is given by the Zeeman Hamiltonian in Eq. (5.2). As in Eq. (3.78), we can

thus decompose the interaction term for a given continuum energy E and degeneracy

index µ (here in the Schrödinger picture): V =
∑

ν∈{±} SνRν + h.c. For a circularly

polarized field (and in the Schrödinger picture), we find

Sν = Vν,Eµe
−iΩtγν , (5.4)

Rν = γEµ. (5.5)

We use these definitions to evaluate Eq. (3.80). Further, we assume the continuum to

be a thermalized reservoir. Also taking into account the first term in Eq. (5.2) leading to

the Rabi oscillations, the master equation describing the time evolution of the density

matrix entries for a circularly polarized field is given by

d

dt


















ρ00

ρ22

ρ̄02

ρ̄20

ρ−−

ρ++


















=


















−ΓR
− − ΓR

+ 0 i
ω∗

1

2
−iω1

2
ΓI

− ΓI
+

0 −ΓI
− − ΓI

+ −iω
∗
1

2
iω1

2
ΓR

+ ΓR
−

iω1

2
−iω1

2
iδω − ΓΣ

2
0 0 0

−iω
∗
1

2
i
ω∗

1

2
0 −iδω − ΓΣ

2
0 0

ΓR
− ΓI

+ 0 0 −ΓI
− − ΓR

+ 0

ΓR
+ ΓI

− 0 0 0 −ΓR
− − ΓI

+



































ρ00

ρ22

ρ̄02

ρ̄20

ρ−−

ρ++


















.

(5.6)

Here, ρ̄02 = eiΩtρ02 and ρ̄20 = e−iΩtρ20 are the coherences in the even sector and we

defined

ω1 = 2~−1V+,−µBB (5.7)

with

|V+,−|2 = T 2 |sinφ| (1 + |sinφ|)/(1 + T |sinφ|)2. (5.8)
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Additionally, we defined the frequency offset with respect to the resonance frequency

as δω = Ω + sgn(sinφ)ΩR. Further ΓI/R
ν are the ionization (I) and refill (R) rates of the

bound state with energy Eν , respectively.

Following the master equation approach in Sec. 3.4, we find that the rates are given by

Fermi’s golden rule expressions (for details see Sec. 5.2.2). We defined ΓΣ =
∑

ν=± Γν ,

where Γν = ΓI
ν + ΓR

ν . The other 10 elements of the 4 × 4 density matrix that are

not shown in Eq. (5.6) remain zero along the time evolution. For the coherences ρij,

where i and j are from different subsectors (even vs. odd), this is obvious, since only

a process including a continuum state can change between them and we assumed

short correlation times in the continuum. Finally, the coherence ρ+− is zero, since the

Hamiltonian in Eq. (5.2) can only either create both or destroy both bound states, but

not destroy one of them and create the other one.

The stationary occupations are obtained from the master equation, Eq. (5.6), by setting

ρ̇ = 0. They are most conveniently expressed in the form

ρst
αα = ρ∞

αα +
Γ2

Γ2 + (2δω)2
(ρ0
αα − ρ∞

αα). (5.9)

Here, the width of the resonance is determined by

Γ = ΓΣ

√
√
√
√1 +

|ω1|2
Γ+Γ−

. (5.10)

The occupations far from resonance (ρ∞
αα), i.e., for a large difference between the

resonance frequency and the applied frequency (large δω), corresponding to phase

differences across the junction far from φ0, are given as

ρ∞
00 =

ΓI
+ΓI

−
Γ+Γ−

, ρ∞
−− =

ΓI
+ΓR

−
Γ+Γ−

,

ρ∞
++ =

ΓI
−ΓR

+

Γ+Γ−
, ρ∞

22 =
ΓR

+ΓR
−

Γ+Γ−
.

(5.11)
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The occupations at the resonance (ρ0
αα) take the form

ρ0
00 = ρ∞

00

{

1 +
|ω1|2
Γ2

[(

1 +
ΓR

−
ΓI

+

)(

1 +
ΓR

+

ΓI
−

)

− Γ2
Σ

Γ+Γ−

]}

, (5.12)

ρ0
−− = ρ∞

−−

{

1 +
|ω1|2
Γ2

[

(ΓI
+ + ΓR

−)2

ΓI
+ΓR

−
− Γ2

Σ

Γ+Γ−

]}

, (5.13)

ρ0
++ = ρ∞

++

{

1 +
|ω1|2
Γ2

[

(ΓI
− + ΓR

+)2

ΓI
−ΓR

+

− Γ2
Σ

Γ+Γ−

]}

, (5.14)

ρ0
22 = ρ∞

22

{

1 +
|ω1|2
Γ2

[(

1 +
ΓI

+

ΓR
−

)(

1 +
ΓI

−
ΓR

+

)

− Γ2
Σ

Γ+Γ−

]}

. (5.15)

For the linearly polarized magnetic field, we introduce a rotating-wave approximation in

order to obtain the occupations. We may apply this approximation under two conditions.

First, the level spacing has to be smaller than the energy scale of the interaction, which

in our case reads µBB ≪ ∆, corresponding to Γ ≪ ~
−1∆. Second, the frequency has to

be close to the resonance frequency, i.e., |Ω| − ΩR ≪ |Ω| + ΩR. This condition is met in

the frequency range of interest, i.e., the frequency range, in which Rabi oscillations can

occur. Applying this rotating wave approximation, we find that the rates for a linearly

polarized field are given by the sum of the rates for a circular field with positive and

negative helicity, i.e. ΓX
ν = ΓX

ν (Ω) + ΓX
ν (−Ω), where X = I,R. With this substitution,

the expressions for the occupations given above remain valid for the linearly polarized

field.

As pointed out in Sec. 5.1, all field-induced decay rates are zero in the phase interval

[φc, π − φc] (see also Fig. 5.2). Therefore, we introduce phenomenological rates γ to

describe the parity non-conserving processes due to the environment. A refill process

requires either an excess quasiparticle above the gap or a spin-flip process. Therefore,

refill processes are negligible at low temperatures. Hence, we are left with the two

rates γI
ν for the ionization processes. The total rate for each process is given by the sum

of the field-induced and the phenomenological rate.

5.2.2 Transition rates

We will now compute the field-induced transition rates involving continuum states. We

assume small magnetic fields µBB ≪ ∆, such that we can treat the Zeeman Hamiltonian
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(a) (b)

(c) (d)

Fig. 5.3: Field-induced ionization (I) and refill (R) rates for T = 0.8 as a function of the driving
frequency Ω < 0 for several phase differences φ. (a) Ionization rate of the bound state
ν = +. (b) Ionization rate of the bound state ν = −. (c) Refill rate of the bound state
ν = +. (d) Refill rate of the bound state ν = −. Fig. adapted from [198].

in Eq. (5.2) perturbatively. Consequently, the rates for the ionization and refill processes

involving the bound state ν can be calculated from Eq. (5.2) using Fermi’s golden rule,

ΓI/R
ν (Ω) = 2π~−1(µBB)2

∫ ∞

∆
dE ρ(E)

∑

µ

∣
∣
∣Vν,∓Esgn(sinφ)µ

∣
∣
∣

2
δ [~Ω + (|Eν | ∓ E)sgn(sinφ)] .

(5.16)

Here ρ(E) = (2π~vF)−1E/
√
E2 − ∆2 is the density of states per mode in the leads (see

also Eq. (A.41)). The rates ΓI/R
ν , whose typical amplitude is ∼ (µBB)2/∆, vanish below

the threshold frequency ΩI/R
ν,c = ~

−1(∆ ∓ |Eν |), as discussed in Sec. 5.1. Furthermore,

they are suppressed at large frequencies |Ω| ≫ ~
−1∆, while they display a maximum

in the vicinity of the threshold frequency. In general, Eq. (5.16) can be evaluated

numerically. As an example, Fig. 5.3 shows plots of the different rates as a function of

the driving frequency for a transmission of T = 0.8. Analytical expressions for Eq. (5.16)

can be obtained in the limit of a transparent junction (T = 1, see Sec. 5.2.2.1) and
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(a) (b)
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Fig. 5.4: Field-induced ionization (I) and refill (R) rates for T = 1 as a function of the driving
frequency Ω < 0 for several phase differences φ. The corresponding analytical
expression is given in Eq. (5.17). (a) Ionization rate of the bound state ν = +. (b)
Ionization rate of the bound state ν = −. (c) Refill rate of the bound state ν = +. (d)
Refill rate of the bound state ν = −.

for a tunnel junction (T ≪ 1, see Sec. 5.2.2.2). Appendix D provides details for the

calculation of the refill and ionization rates.

5.2.2.1 Transparent junction

Details for the calculation of the rates for a transparent junction (T = 1) are provided

in Appendix D. We find

ΓI/R
ν =

(µBB)2

~∆

4 |ǫν̄ |
√

(|Ω̃| ± |ǫν |)2 − 1[|Ω̃| ± |ǫν | + sgn(Ω) |ǫν̄ | sinφ]

|Ω̃|2(|Ω̃| ± 2 |ǫν |)2[(|Ω̃| ± |ǫν |)2 − |ǫν̄ |2]
, (5.17)

where we defined Ω̃ = ~Ω/∆, ν̄ = −ν, and ǫν = Eν/∆, where Eν is given in Eq. (4.9).

Eq. (5.17) is valid above the threshold frequency, Ω̃I/R
ν,c = 1 ∓ |ǫν |, below which the rates

are zero. The rates are shown in Fig. 5.4. Near the threshold frequency the rates ΓI/R
ν
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grow as
√
δΩ̃, where δΩ̃ = |Ω̃| − Ω̃I/R

ν,c . At large frequencies they decrease as 1/Ω̃4. In

order to describe the rates around their maximum, where the crossover between the

two scaling behaviours takes place, we concentrate on the regime φ, δΩ̃ ≪ 1 (a similar

situation occurs for phases φ close to π). We obtain

Γ
I/R
− =

(µBB)2

~∆

2
√

2
√
δΩ̃

δΩ̃ + φ2

8

,

Γ
I/R
+ =

(µBB)2

~∆

√
δΩ̃φ√

2(δΩ̃ + φ2

8
)2
.

(5.18)

Thus we find that Γ
I/R
− reaches its maximum, Γ

I/R
−,max/[(µBB)2(~∆)−1] = 4/φ, at

δΩ̃−,max = φ2/8, while Γ
I/R
+ reaches its maximum, Γ

I/R
+,max/[(µBB)2(~∆)−1] = 6

√
3/φ2,

at δΩ̃+,max = φ2/24.

At larger φ, the maximum is less pronounced and further away from the threshold than

for small φ. Note that for φ = π/2, Γ
I/R
+ = Γ

I/R
− , since the bound states are degenerate.

5.2.2.2 Tunnel junction

Let us discuss the rates in the limit of an opaque junction (T = 0), before considering

the tunnel junction (T ≪ 1). As discussed in Sec. 4.2, only the bound state with ν = −
exists in the opaque case, and the rates read

Γ
I/R
− =

(µBB)2

~∆

16
√

|Ω̃|2 − 1

|Ω̃|5
. (5.19)

Since the bound state energy is zero, the rate is identical for refill and ionization

processes. Near the threshold frequency, Ω̃c = 1, the rate grows as
√
δΩ̃. It reaches its

maximum, Γmax/[(µBB)2(~∆)−1] = 28/(25
√

5), at |Ω̃max| =
√

5/2 and decreases as 1/Ω̃4

at large frequencies. Note that the rate does not depend on the superconducting phase

difference, since the bound state energy is independent of the phase.

At small, but finite, transparency (tunnel junction) an additional peak structure develops

near the threshold frequency for ionization/refill processes, Ω̃I/R
ν,c = 1 ∓ |ǫν |. For

δΩ̃ = |Ω̃| − Ω̃I/R
ν,c ≪ 1 the rates for the ν = − state take the form

Γ
I/R
− =

(µBB)2

~∆

[

f I/R

(

δΩ̃

T 2

)

+ TgI/R

(

δΩ̃

T 2

)]

, (5.20)
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(a) (b)

(c) (d)

Fig. 5.5: Schematical respresentation of the scaling of the rates for a tunnel junction T ≪ 1.
The rates, which are given in units of (µBB)2(~∆)−1, are shown as a function of δΩ̃,
i.e., the difference between the frequency and the threshold frequency. The total refill
and ionization rates are the sum of the rates for an outgoing quasiparticle in the s

lead and an outgoing quasiparticle in the p lead, i.e., Γ
I/R
± = Γp

± + Γs
±. Green color

corresponds to the scaling for electron-like quasiparticles, red color corresponds to
hole-like quasiparticles. The scaling is given in three different frequency ranges: For
frequencies close to the threshold frequency (first range), for frequencies significantly
larger than the frequency, at which the maximum of the rate occurs (second range),
and for very big frequencies (third range). The ticks on the horizontal axes show the
frequency, at which the maximum of the rates occurs and the limiting frequency, that
defines the third frequency range. The ticks on the vertical axes indicate the height of
the maximum.

where

f I/R(x) =
1√
2x

32x(1 ∓ |sinφ|)
8x+ sin2 φ

≈







16
√

2x1∓|sinφ|
sin2 φ

for x ≪ 1,

2
√

2
x
(1 ∓ |sinφ|) for x ≫ 1,

(5.21)

gI/R(x) =
1√
2x

16x(16x+ 1 ± |sinφ|)
8x+ sin2 φ

≈







8
√

2x1±|sinφ|
sin2 φ

for x ≪ 1,

16
√

2x for x ≫ 1.
(5.22)
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The first term in Eq. (5.20) describes a narrow peak of height (µBB)2(~∆)−1 near

δΩ̃ ∼ T 2 and corresponds to an ionization or refill process to the s-wave superconductor

lead. Fig. 5.5(d) shows a schematical plot of the corresponding rate, summarizing the

scaling behavior in each parameter region. The second term in Eq. (5.20) is dominant

for δΩ̃ > T , where it matches the result at T = 0 (opaque junction), given in Eq. (5.19).

This process corresponds to an ionization or refill process to the px-wave superconductor

lead. The corresponding rate is schematically drawn in Fig. 5.5(b)).

The rates for the ν = + state read

Γ
I/R
+ =

(µBB)2

∆T
h

(

δΩ̃

T 2

)

, (5.23)

where

h(x) =
1√
2x

64x |sinφ|
(8x+ sin2 φ)2

≈







64√
2

√
x 1

|sinφ|3 for x ≪ 1,

1√
2
x− 3

2 |sinφ| for x ≫ 1.
(5.24)

The rates display a narrow peak of height (µBB)2(T~∆)−1 near δΩ̃ ∼ T 2 and correspond

to ionization/refill processes to the px-wave lead. Fig. 5.5(a) shows a sketch of the

corresponding rate. The coupling to the s-wave lead is negligible in the entire frequency

range (see also Fig. 5.5(c)). At x ≫ 1, i.e., in the regime T 2 ≪ δΩ̃ ≪ 1, the rates vanish

as T 2(δΩ̃)− 3
2 . Thus, in the frequency range of interest for Rabi oscillations, ΓI

+ ≪ Γ
I/R
− .

5.3 Current-phase relation of the singlet/triplet

junction

Being equipped with the occupations of the Andreev levels and the expressions for

the field-induced transition rates, obtained in Sec. 5.2.2, we calculate the modified

current-phase relation in the presence of the magnetic field.

5.3.1 Circular polarization

Let us start with the discussion of the current-phase relation for a circularly polarized

magnetic field. Taking into account the considerations in Sec. 5.1, we analyze the

behavior of the current given by Eq. (5.3), depending on the phase interval. Recall that

we consider Ω < 0. Then, for φ ∈ [π, 2π] only ionization processes are possible. Thus, in
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the stationary regime of the Andreev bound state dynamics the bound states are empty

and the occupations read ρ00 = 1 and ρ−− = ρ++ = ρ22 = 0. As a consequence, the

current equals its equilibrium value, Ieq = I+ + I−. We have seen in Sec. 5.1.2 that in

the intervals [0, φc] and [π − φc, π] refill processes for the state ν = − are possible. We

assume that the rates for parity non-conserving processes (introduced in Sec. 5.2.1)

due to the environment are much smaller than the field-induced rates. Then, the ν = −
bound state is filled in the stationary regime, i.e., ρ−− = 1 and ρ00 = ρ++ = ρ22 = 0.

Thus, the current (Eq. (5.3)) is given by I = I+ − I−.

To evaluate the current in the interval [φc, π − φc], which includes the phases φ0 and

π − φ0, where Rabi oscillations take place (see Sec. 5.1.2), we insert the stationary

occupations, Eqs. (5.12) - (5.15), into the current expression, Eq. (5.3). We find that

the non-equilibrium current

I = I∞ +
Γ2

Γ2 + (2δω)2
(I0 − I∞), (5.25)

is the sum of a background term I∞ and a resonant term. The background term is given

as

I∞ =
∑

ν∈{±}
Iν

ΓI
ν − ΓR

ν

Γν
. (5.26)

The current at resonance reads

I0 =
ΓΣ

Γ2

[

ΓΣI
∞ +

|ω1|2
Γ+Γ−

(I+ − I−)
∑

ν=±
ν(ΓI

ν − ΓR
ν )

]

. (5.27)

The symbols used were defined in Sec. 5.2.1, where we also gave the expression for the

width of the resonance in Eq. (5.10).

We now assume the two phenomenological rates γI
ν introduced in Sec. 5.2.1 to be

non-zero. They are the only non-zero rates in the phase interval under consideration

([φc, π−φc]). I∞ reduces to the equilibrium current, i.e., I∞ = Ieq. Assuming γI
± ≪ |ω1|,

the current at resonance is obtained as

I0 ≈ (I+ − I−)
γI

+ − γI
−

γI
+ + γI

−
(5.28)
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Fig. 5.6: Current-phase relation for an s/px junction with transmission T = 0.8, and a cir-
cularly polarized ac magnetic field with amplitude µBB = 10−2∆ and frequency
Ω = −1.3~−1∆. The equilibrium current is given for comparison. The current-
phase relation is spin-sensitive. The phenomenological ionization rates are chosen as
γI

+ + γI
− = 10−6

~
−1∆. Fig. adapted from [198].

and the width of the resonance reads

Γ ≈ |ω1|
γI

+ + γI
−

√

γI
+γ

I
−
. (5.29)

As the state ν = + is closer to the continuum, we expect γI
+ ≥ γI

−. We can motivate

this assumption noting that ionization processes due to the resistive environment of a

conventional Josephson junction have been shown to be more probable, if the Andreev

level is closer to the continuum of states [215]. Depending on the relative magnitude of

the two phenomenological ionization rates, the current through the s/px junction may

be completely suppressed at resonance, when γI
− = γI

+, or change its sign as compared

to the equilibrium current, reaching the magnitude I0 ≈ I+ − I−, when γI
− ≪ γI

+.

Fig. 5.6 shows the non-equilibrium current-phase relation for a circularly polarized

Zeeman field at T = 0.8. The current is given for two different ratios of the phenomeno-

logical rates, illustrating the properties discussed above. The 2π-periodicity is due to

the spin-sensitive manipulation of the bound state occupations. The spin sensitivity is

a consequence of the circular polarization of the field, that pumps one spin direction

into the system (fixed by its helicity). If the sign of Ω was reversed, the spin pumped
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into the system would be opposite. According to the spin selection rule, the processes

would be possible if the spins involved were opposite. The spins of the bound states

are opposite, if the phase is shifted by π. Consequently, the current-phase relation is

phase-shifted by π, if the sign of Ω is reversed, i.e.,

I(Ω, φ) = I(−Ω, φ+ π). (5.30)

In highly transparent junctions, Rabi oscillations should be visible in a fairly wide range

of parameters. The conditions are more restrictive in tunnel junctions that we discuss

now.

5.3.1.1 Tunnel junction

At small transparency, the bound state energies are given by E+ ≃ sgn(sinφ)∆[1 −
(T 2/8) sin2 φ] and E− ≃ ∆(T/2) sinφ, up to quadratic order in T . Thus, the equilibrium

current-phase relation takes the form

Ieq(φ) ≃ −e∆

2~
T sgn(sinφ) cosφ. (5.31)

Rabi oscillations may be expected in a narrow frequency range ∆ < ~|Ω| < ~Ωmax ≃
∆(1 +T/2 −T 2/8). For a given frequency in that range, there is a small separation δφ ≡
φ0 − φc between the phase φ0 = arcsin [((~Ω)2/∆2 − 1)/T ], where a resonance in the

current-phase relation can be expected, and the phase φc ≃ arcsin [2((~Ω)/∆ − 1)/T ],

below which refill processes for the state ν = − are active. The relation ~Ω = ∆ +

E−(φc) = E−(φ0) + E+(φ0) yields

δφ ≃






(T/4) sin2 φ0/ cosφ0 for Ωmax − |Ω| ≫ T 2
~

−1∆,
√

T/2 for Ωmax − |Ω| ≪ T 2
~

−1∆.
(5.32)

Note that in the first case δφ ≪ π/2 − φ0, whereas in the second case δφ ≫ π/2 − φ0.

There are two constraints on the visibility of the resonance in the current-phase relation.

First, its width must be smaller than δφ, because in the intervals [0, φc] and [π − φc, π],

any remnant of Rabi oscillations is completely suppressed, since the hierachy of the

field-induced rates ΓR
+ ≪ ΓI

± ≪ ΓR
− (see Sec. 5.1) drives the system into the odd sector.

Second, the width of the resonance must be smaller than π/2 − φ0, in order to be

distinguishable from the zero of the equilibrium current at φ = π/2.
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(a) (b)

Fig. 5.7: Current-phase relation for an s/px junction with transmission T = 0.2, a magnetic
field of µBB = 10−2∆, phenomenological rates γI

+ +γI
− = 10−6

~
−1∆, and a frequency

of Ω = −1.08~−1∆ corresponding to φ0 ≈ 1.04. The frequency has been choosen such
that φ0 is the same as in Fig. 5.6 for T = 0.8. Panel (b) shows a zoom of panel (a)
around the resonance. Fig. adapted from [198].

According to Eqs. (5.25) and (5.31), the width of the resonances is given by δφR ∼
Γ/(T~−1∆ cosφ0). Using the assumption of small phenomenological rates γ for a

circular polarization, we estimate (using Eqs. (5.7), (5.8), and (5.29)) Γ ∝ T~−1µBB

and, thus, δφR ∼ µBB/(∆ cosφ0). When |Ω| is not too close to Ωmax, the condition

δφR ≪ δφ ≪ π/2 − φ0 yields µBB ≪ T∆. When Ωmax − |Ω| ≪ T 2
~

−1∆, on the

other hand, the condition δφR ≪ π/2 − φ0 ≪ δφ yields the more restrictive result

µBB ≪ (Ωmax − |Ω|)/T ≪ T∆. Fig. 5.7 shows an example for the current-phase

relation in the tunnel regime.

5.3.2 Linear polarization

Let us now discuss the case of a linearly polarized field. As discussed in Sec. 5.2.1, we

can use a rotating wave approximation for the linearly polarized field. It follows that

under the assumption Γ ≪ ~
−1∆ the steady-state current for a linearly polarized field

is given by Eqs. (5.25) - (5.27) with ΓX
ν = ΓX

ν (Ω) + ΓX
ν (−Ω), where X = I,R.

The current-phase relation for a linearly polarized field is shown in Fig. 5.8. As the

manipulation of the bound state occcupations is not spin sensitive, the current is π-

periodic as in equilibrium. As soon as the ac field carries a finite angular momentum,

the out-of-equilibrium current-phase relation is 2π-periodic due to the spin-dependent

rates. Consequently, any deviation from linear polarization (elliptic polarization) is

sufficient to gain spin sensitivity.
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Fig. 5.8: Current-phase relation for a junction with transmission T = 0.8, and a linearly polar-
ized ac magnetic field with amplitude µBB = 10−2∆ and frequency Ω = −1.3~−1∆.
The equilibrium current is given for comparison. As in equilibrium, the current-phase
relation is π-periodic. Note that the sign of the current at the resonances is inverted
compared to the curves for circular polarization (shown in Fig. 5.6) because ΓI

+ < ΓI
−.

Fig. adapted from [198].

For a deeper understanding of the form of the current-phase relation presented in

Fig. 5.8, let us discuss the relevant rates in more detail. While the refill process

of the state ν = + is energetically not possible in the frequency range, where Rabi

oscillations occur (see Sec. 5.1), the rate ΓR
− is non-zero in the phase intervals [−φc, φc]

and [π − φc, π + φc]. The current-phase relation displays a kink at the limit of these

intervals, see Fig. 5.8. The refill rate competes with both ionization rates that are

non-zero for all phase differences, since there is no spin selection rule. The width of

the Rabi resonances is determined by the two field-induced ionization rates, since we

assume that the phenomenological rates are smaller than the field-induced ones. Recall

that the refill processes are energetically impossible in that phase range. The current

at the resonances, I0, is determined by the ratio of the field-induced ionization rates,

for which we find ΓI
+ ≪ ΓI

− in the frequency range of Rabi oscillations. This finding

is also illustrated by Fig. 5.3(a), (b). Since the rates are most important close to the

threshold frequency, it is not astonishing that the rate ΓI
− is dominant. As can be seen

from Fig. 5.2, the frequency of the field is closer to the threshold frequency of ΓI
− for

the frequencies for which Rabi oscillations occur. Consequently, the current at the
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resonances is approximately I0 ≈ I− − I+ and has opposite sign with respect to the case

of circular polarization. In the latter, the phenomenological rates fufilled γI
+ ≥ γI

−.

In the case of a tunnel junction, the finding ΓI
+ ≪ ΓI

− yields a wide and shallow

resonance, which might make its observation difficult.
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Part II

Ferromagnet/superconductor junction





6The half-metal/superconductor

junction

In the previous part, we have seen how a time-dependent magnetic field modifies the

transport properties of a singlet/triplet Josephson junction due to field-induced spin-flip

processes. We now want to consider a different heterostructure, in which the charge

transport can be strongly modified by manipulating the spin.

More precisely, this heterostructure consists of a superconductor/half-metal junction. A

half-metal is a metallic ferromagnet with perfect spin polarization providing only one

spin species. The absence of the second spin direction has dramatic consequences for

the transport properties. Consider an electron in this heterostructure, located in the

half-metal and impinging onto the conventional superconductor. Due to spin-singlet

pairing in the superconductor, any transmitted Cooper pair consists of two electrons

of opposite spin directions. Therefore, an Andreev reflected hole needs opposite spin

compared to the incident electron. Consequently, Andreev reflection is forbidden at

the half-metal/superconductor interface. The aim of this chapter is to show how we

can restore Andreev reflection by providing a spin-flip mechanism. The spin may be

flipped due to magnetic impurities or spin-orbit impurities. However, these mechanisms

are not tunable. Here we want to consider an externally tunable mechanism, i.e., a

time-dependent magnetic field, that couples to the spin via the Zeeman effect and thus

provides a spin-flip mechanism. We show that a half-metal/superconductor junction,

where the half-metal is subjected to ferromagnetic resonance (having a time-dependent

magnetization direction), allows for Andreev currents.

This part of the thesis is organized in three chapters. This chapter introduces the

junction and the main notions of the model that is used in the two following chapters.

Chapter 7 presents the Andreev current through a ballistic junction for a point contact

geometry, obtained in the framework of the Keldysh Green’s functions formalism.

Chapter 8 discusses the Andreev current through a ferromagnet/superconductor tunnel

junction in an extended interface geometry, where the current expression is obtained

from a Fermi’s golden rule calculation. Additionally, we investigate the influence of

non-magnetic impurities (disorder) in the leads.
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I

V

Fig. 6.1: Setup of the junction: A 3D half-metal (HM, green, left part) is in contact with a 3D
superconductor (S, blue, right part). The half-metal is brought into ferromagnetic res-
onance condition applying an rf field, that provokes a time-dependent magnetization
direction (indicated by the arrows). In an open circuit geometry a voltage V can be
detected.

This chapter is organized in the following way. In Sec. 6.1 we present the setup of the

half-metal/superconductor junction. Sec. 6.2 gives details about the tunnel Hamiltonian

used to evaluate the current. In Sec. 6.3 we determine the non-equilibrium distribution

function of the ferromagnetic lead that determines the occupation of the energy levels.

6.1 Setup of the half-metal/superconductor

junction

Fig. 6.1 schematically shows the setup that we want to consider: A half-metal is brought

into ferromagnetic resonance (FMR) condition using an rf-field. The magnetization

direction precesses around the precession axis with a cone angle θ. The half-metal

forms a junction with a conventional superconductor. In an open circuit geometry

charge accumulation leads to a voltage buildup.

It is well-known that without breaking of the spin rotation symmetry no subgap current

flows across the half-metal/superconductor (HM/S) junction, since Andreev reflection

is blocked due to the perfect spin polarization. We will explicitly verify this fact within

our formalism in Sec. 7.4.4. Various possibilities to introduce spin-flip processes have
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already been proposed. One possibility is a spin-active interface, containing magnetic

impurities or spin-orbit impurities [217–223]. A spacially non-uniform magnetization

direction has been first proposed for a ferromagnet/superconductor (F/S) junction in

the context of long-range spin triplet pairing [92, 93, 224, 225]. Layered heterostruc-

tures with non-collinear magnetization directions [94–97, 99, 109, 226] have been

studied afterwards. The idea of a non-uniform magnetization has also been applied to

a half-metal [227]. Instead of using a space-dependent magnetization, our proposal

relies on using a time-dependent magnetization direction. Ferromagnetic Josephson

junctions [228–230] and half-metallic junctions [231] subjected to time-dependent

magnetizations have been investigated, where the idea of a time-dependent manipula-

tion of the spin properties was first studied in conventional Josephson junctions with

embedded spins [232, 233]. Further, magnon-assisted Andreev reflection has been

considered in F/S tunnel junctions [234, 235].

Andreev reflections due to spacially non-uniform magnetization directions have been

experimentally proven, both for half-metallic and ferromagnetic junctions. For half-

metallic junctions, the long-range Josephson effect has been measured in CrO2 junctions

[100, 236]. Further evidence was found in point contact junctions with LCMO, a

half-metallic compound, using a superconducting tip [237, 238]. Another important

experiment was performed on interfaces containing holmium (Ho), a ferromagnet

with an intrinsic non-uniform magnetization direction [239]. Other experiments on

ferromagnet/superconductor layers, that have measured a long-range Josephson effect,

involve Co [102, 103].

It is particularly interesting to study the case of a large spin polarization. It has been

shown for a ballistic F/S interface that the Andreev reflections are incomplete for large

spin polarizations [89]. For an S/F/S junction this effect provoques the critical current

to oscillate as a function of the exchange energy and of the length of the ferromagnet

[240].

If the superconductor is in its normal phase, the effects discussed in Sec. 2.4.2 for

ferromagnetic resonance in a ferromagnet/normal metal (F/N) junction are important.

In this context, Ref. [72] has shown that a precessing magnetization direction in a thin

ferromagnetic layer between two normal metal leads injects a spin current into one

of the adjacent normal metals. The pumped spin current slows down the precession.

This corresponds to an enhanced Gilbert damping constant with respect to a bulk
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ferromagnet. A slightly different setup, a ferromagnet at ferromagnetic resonance in

ohmic contact with a normal metal, has been shown to act as a “spin battery” [157].

A dc spin current is injected into the normal metal without a charge current flowing.

The pumped spin current may lead to a spin accumulation effect next to the interface,

depending on the ratio of the spin injection rate and the spin relaxation rate. In this

chapter, we investigate what happens if we replace the normal metal by a singlet

superconductor, which does not allow for a subgap spin current. For a ferromagnetic

superconductor under FMR, it has been predicted, that it injects a spin current and a

charge current into an adjacent normal metal [241].

The experiments [74, 113] that have measured spin injection into a normal metal

from a ferromagnet under FMR have used aluminum in its normal phase, at room

temperature. Cooling down the devices should make them superconducting. Further,

recent progress for the growth of the half-metal CrO2 [242] makes HM/S junctions

with high transparencies available.

An F/S bilayer with the ferromagnet under FMR has experimentally been studied [243].

The ferromagnet Ni80Fe20 (permalloy) has been used, deposited onto the superconductor

Nb. A sharpening of the resonance width of the ferromagnetic resonance below Tc has

been observed, which was attributed to a lowering of the Gilbert damping (see also

Eq. (2.33)). The authors interpreted their results within the spin-pumping model. In the

normal state, the spins can relax in the Nb layer, whereas in the superconducting state,

electrons cannot enter the superconductor below the gap and no relaxation takes place

in the adjacent layer. Since Andreev reflection processes do not relax the magnetization,

the Gilbert damping due to the spin-pumping is less efficient in the superconducting

state. Note that spin relaxation may still take place close to the interface, where the

superconducting gap is suppressed.

F/S interfaces with static magnetization directions have also been used to study spin

injection and spin relaxation in superconductors. Spin can be injected via the quasipar-

ticles above the gap. Non-local measurements in F/S tunnel junctions allow to measure

the spin relaxation length [244]. Using a non-local spin valve geometry, pure spin

currents could be injected into a superconductor [245]. For a lateral F/I/S/I/F spin

valve geometry, it has been shown that almost chargeless spin imbalance can be created

[246]. In such a geometry the created spin imbalance depends on the polarization of
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the injector electrode and the Zeeman splitting of the superconducting density of states

due to an applied in-plane magnetic field.

In a nutshull, F/S junctions have attracted much attention, since they are hoped to

be suitable for spintronics applications [105]. Especially, junctions with large spin

polarization are of interest. Our HM/S junction presented in Fig. 6.1 is the building

block for more complicated junctions. Its properties have to be understood in depth

before considering more complicated layered structures.

6.2 Tunnel Hamiltonian

In order to model the junction in Fig. 6.1, we use a tunnel Hamiltonian approach.

We use two leads, a half-metallic lead under FMR conditions and a superconducting

lead. The leads are tunnel coupled. In Chapter 7 we will assume a simple point

contact geometry, whereas in Chapter 8, we consider a more realistic extended interface

geometry. The tunnel amplitude depends on the interface geometry. Therefore, the

interface geometry defines how the leads are coupled. We apply a bias voltage V to the

junction and calculate the current I(V ). In an open circuit geometry, the situation is

inverted and a voltage can be measured. It builds up due to charge accumulation as a

consequence of the current flow. The results from our model can be easily converted to

an open geometry, solving I(V ) = 0 for the voltage V .

The rf-field forces the magnetization direction to precess around the precession axis,

which we choose as z-axis. The time-dependent magnetization reads

m(t) = m(sin θ cos(Ωt), sin θ sin(Ωt), cos θ)T , (6.1)

where θ is the angle between the magnetization direction and the precession axis.

m is the constant absolute value of m(t). Further, Ω denotes the angular precession

frequency, which is the angular frequency of the rf-field. The total Hamiltonian of the

junction is given by

H = HS +HF +HT. (6.2)

Here, the s-wave superconductor is modeled by the standard BCS Hamiltonian

HS =
∑

qσ

ζqa
†
qσaqσ + ∆

∑

q

a†
q↑a

†
−q↓ + h.c., (6.3)
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where a†
qσ creates an electron with spin σ and momentum q in the superconductor. The

first term ζq measures the kinetic energy in the normal state with respect to the Fermi

level for a state with momentum q, and ∆ is the gap. The half-metal is described by the

Hamiltonian

HF =
∑

kσσ′
b†
kσ(ξkσδσσ′ + hF(t) · σσσ′)bkσ′ , (6.4)

where b†
kσ creates an electron with spin σ and momentum k in the half-metal. The

first term is the kinetic energy and the second term is the coupling between the time-

dependent exchange field hF and the spin of the electrons. We assume the exchange

field to be momentum independent, which is a valid approximation for energies close to

the Fermi level. The direction of the exchange field, ĥF(t), is given by the direction of the

magnetization, m̂(t). At this point, Eq. (6.4) can describe a ferromagnet, that contains

both spin species with respect to the exchange field direction. In a generic ferromagnet

one spin species is more abundant (majority spin) than the other (minority spin). The

polarization of the ferromagnet is the difference between the majority and the minority

carrier concentration (normalized by the total carrier concentration). Eq. (6.4) can also

describe a half-metal with perfect spin polarization (if the minority carrier concentration

is zero). The tunnel Hamiltonian allows for the transfer of electrons between the two

reservoirs and reads

HT =
∑

σ,η

∑

kq

a†
qσt

ση
qk bkη + h.c. (6.5)

In the following, we want to consider spin conserving tunneling. Then, the interface

does not provide any spin-flip mechanism and the time-dependent magnetic field is the

only source of spin-flip mechanisms in our model. Consequently, the hopping element

can be written as tσηqk = tσqkδση, where

tσqk =
∫

dr
∫

dr′t(r, r′)φS∗
qσ(r′)φF

kσ(r). (6.6)

t(r, r′) is the tunnel amplitude for a tunnel event from position r in the ferromagnet to

position r′ in the superconductor. Choosing an interface geometry consists of defining

this tunnel amplitude. It will consequently be specified in the following chapters. The

spin index σ refers to the spin along the magnetization direction, i.e., the direction

that defines majority and minority carriers in the ferromagnet. φS
qσ (φF

kσ) denotes the

wave function of an eigenstate of the superconductor (half-metal/ferromagnet) with

momentum q (k) and spin σ.

94 Chapter 6 The half-metal/superconductor junction



The time-dependent Hamiltonian can be brought into a time-independent form, at

the cost of working in a rotating frame of reference. The transformation between the

laboratory frame and the rotating frame is given by the unitary transformation

U = e−iΩ
2
σ3t. (6.7)

The Pauli matrice σ3 acts in spin space. The Hamiltonian in the rotating frame of

reference is given by H ′ = U †HU − i~U †U̇ , where i~U †U̇ = ~Ω
2
σ3. Further, note that

U †m(t)σU = m(0)σ.

The spin quantization axis in the ferromagnet is given by the magnetization direction,

which is static in the rotating frame. Majority and minority carriers are defined with

respect to this axis, which is inclined by an angle α with respect to the z-axis, where α

is given by

tanα =
sin θ

Ω̃ + cos θ
. (6.8)

Here, we introduced the dimensionless frequency Ω̃ = ~Ω
2|hF(0)| . We use the unitary spin

rotation, W = e−iα
2
σy in order to map the direction of the effective exchange field onto

the z-axis. This unitary transformation diagonalizes HF at the cost of working with a

more complicated structure of the tunnel Hamiltonian. We denote the Hamiltonian

after spin rotation and in the rotating frame by H ′′ = W †H ′W and introduce creation

and annihilation operators for the half-metal in the new basis:




Bk↑

Bk↓



 = W




bk↑

bk↓



 (6.9)

The diagonalized Hamiltonian of the ferromagnet reads

H ′′
F =

∑

k,η

(ξk − ηJ)B†
kηBkη, (6.10)

where the effective exchange field J is given by

J = |hF(0)|
√

Ω̃2 + 2Ω̃ cos θ + 1. (6.11)

Here, J determines the splitting between the two spin bands. Fig. 6.2 schematically

shows the density of states of a ferromagnet as a function of the energy. Consider a

chemical potential that lies within the lower band and that is well separated from the
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E

DOS

Fig. 6.2: Schematic plot of the spin-dependent density of states (DOS) for a ferromagnet.
The bands for the two different spin species are offset by the exchange coupling
hF. Consider a chemical potential µ lying in the ↑-band and hF ≫ ∆, kBT, ~Ω, such
that excitations can only take place within the band, but the excitation energy is not
sufficient for excitations into the ↓-band. Then, the ferromagnet has effectively perfect
spin polarization at the Fermi level and is a half-metal.

upper band with opposite spin. If additionally the effective exchange coupling J is

the largest energy scale, i.e., J ≫ ∆, ~Ω, kBT , such that the energy for the occupation

of the upper band may not be provided by excitations, the ferromagnet is perfectly

spin polarized, i.e., a half-metal. In the following, we consider both ferromagnets and

half-metals with large exchange splittings |hF(0)| ≫ ~Ω, giving J ≈ |hF(0)| and α ≈ θ.

6.3 Distribution functions of the leads

In order to evaluate the current, knowledge about the occupation of the states of the

leads is needed. Therefore, we need to determine the distribution function of the leads

in the absence of tunneling. The precessing magnetization, described in the rotating

frame of reference, acts as a spin-dependent chemical potential

µS =
~Ω

2
ẑ, (6.12)

µF =
~Ω

2
cos θm̂, (6.13)
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where “ˆ” denotes the unit vector and we used m̂ẑ = cos θ for the projection of

the magnetization direction onto the z-axis. Since the effective exchange splitting is

much larger than the rotation frequency, i.e., J ≫ ~Ω, the chemical potential of the

ferromagnet does not have a significant component perpendicular to the magnetization

direction.

Since the BCS density of states of the superconductor is energy dependent, knowledge

of only the chemical potentials is not sufficient to obtain the current and the distribution

functions are needed.

For the superconducting lead the distribution function is only modified due to the

change of the frame of reference, and reads

fσS (E) = f

(

E + σ
~Ω

2

)

, (6.14)

where f(E) denotes the Fermi-Dirac distribution function. Changing the frame of

reference shifts the energy variable according to the spin-dependent chemical potential

given in Eq. (6.12).

The situation is more complicated in the ferromagnet, where the precessing magnetiza-

tion leads to a non-equilibrium situation for the conduction electrons. The distribution

function now depends on the microscopic relaxation processes. In the following, we

want to discuss two different relaxation models. First, we assume a relaxation model

that has been used in [228, 247, 248]. It consists of modeling the ferromagnet attached

to a normal metal region, in which the relaxation can take place. The normal region

is assumed to be in equilibrium and both spin species relax separately to their equi-

librium distributions. This model captures quite well the experimental reality, where

the ferromagnet is likely to be connected to a normal metal. In order to determine the

non-equilibrium distribution function f , we use a Boltzmann equation approach and

make the relaxation time approximation, yielding

i

~
[H ′

k, f ] = −f − fN

τ
. (6.15)

Here, τ denotes the relaxation time, fN = f+ + f−σ3 is the normal metal distribution

function in the rotating frame with f± = 1
2
[f(E + ~Ω

2
) ± f(E − ~Ω

2
)]. Further, H ′

k =
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ξk + Jm̂σ − ~Ω
2
σ3 is the Hamiltonian of the ferromagnet in the rotating frame. We solve

Eq. (6.15) using the ansatz

f = f0 + f1m̂σ + δf, (6.16)

where f0, f1 are scalar variables and δf is a matrix. We obtain f0 = f+, f1 = f− cos θ

and an equation for the determination of δf . Supposing J ≫ ~τ−1, which is assuming

that the relaxation rate is much smaller than the effective exchange coupling, we obtain

δf = 0. Thus, the strong effective exchange coupling J forces the alignment with the

magnetization direction. The off-diagonal elements of the distribution function will

consequently vanish in the eigenbasis. Indeed, applying the unitary transformation that

rotates the quantization axis to the distribution function we finally obtain

fF(E) = WfW † = f+ + f− cos θσ3. (6.17)

Using the definition of f±, this expression can be rewritten using the Fermi-Dirac

distribution function:

fσF (E) = cos2 θ

2
f

(

E + σ
~Ω

2

)

+ sin2 θ

2
f

(

E − σ
~Ω

2

)

(6.18)

The distribution function is thus a linear combination of shifted Fermi-Dirac distribution

functions.

A different distribution function has been proposed in [112]. In this publication, the

authors calculate the current through an F/I/S tunnel junction, under the assumption

of a precessing magnetization direction in the ferromagnet. The authors argue that the

injection currents are weak due to the tunnel barrier. As a consequence, they assume

the spin relaxation rate in the ferromagnet to be much larger than the tunnel rate

(see also [115]). Further, they assume that at each instant in time the electrons are in

equilibrium and thus the distribution function becomes a Fermi Dirac distribution with

the spin-dependent chemical potentials given by Eqs. (6.12) and (6.13), i.e.,

fσF =

(

1 + exp

[

E + σ ~Ω
2

cos θ

kBT

])−1

(6.19)

fσS =

(

1 + exp

[

E + σ ~Ω
2

kBT

])−1

(6.20)
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The idea is to consider the adiabatic response of the carriers to the magnetization that

is driven by external fields and to work in the adiabatic approximation [249]. The latter

is valid, if the frequency Ω is much smaller than the exchange coupling J .

We can show that this choice of distribution function corresponds to the following under-

lying relaxation model. We assume that both spin species interact via electron/phonon

interaction with a common bath of phonons at a fixed temperature. Consequently, the

distribution function is a shifted Fermi-Dirac distribution function, as can be shown in a

Boltzmann equation approach in relaxation time approximation. Further, we assume

spin-orbit interactions in the ferromagnet, giving a spin-flip mechanism. The spin-orbit

interaction fixes the spin-dependent chemical potential to be given by Eq. (6.13). It

follows the distribution function in Eq. (6.19).
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7Andreev current through the

point contact

half-metal/superconductor

junction

In the previous chapter we have shown the setup for the junction and given the tunnel

Hamiltonian that we will now use for the evaluation of the current. In this chapter we

use a point contact geometry, assuming that tunneling between the two leads may take

place at one point in real space. Even though this model may seem to be oversimplified,

it captures the basic physics. Further, a point contact geometry has even experimental

relevance: In a scanning tunneling microscope setup, electrons tunnel from the sample

to an atom size tip. We will consider an extended interface geometry in Chapter 8.

This chapter is organized in the following way. Sec. 7.1 explains the point contact model

used for the computation of the current. Sec. 7.2 gives the non-equilibrium Green’s

functions of the leads, needed for the calculation of the current. Sec. 7.3 shows how the

current operator can be written in terms of the Keldysh Green’s function and how the

latter can be calculated from the Green’s functions of the leads using a Dyson equation.

Sec. 7.4 gives the current expressions for different junctions. The normal metal/normal

metal (N/N) junction allows us to determine the transmission of the junction as a func-

tion of other model parameters. The current through the normal metal/superconductor

(N/S) junction contains a quasiparticle contribution and an Andreev current. We show

that the latter is reduced in a ferromagnet/superconductor (F/S) junction with a static

magnetization direction, when the concentrations of majority and minority spins are

not equal. For a precessing magnetization direction, we first determine the charge

current and the spin current through a ferromagnet/normal (F/N) metal junction that

allows to understand the properties of the half-metal/superconductor (HM/S) junction,

when the superconductor is in its normal state. Afterwards, we “switch on” supercon-

ductivity in Sec. 7.5. We present the main result of this part of the thesis: A precessing

magnetization direction in the half-metal drives an Andreev current at zero voltage

through the HM/S interface.
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Fig. 7.1: Effective setup of the junction presented in Fig. 6.1 in a point contact geometry.
The half-metallic lead on the left hand side is subjected to ferromagnetic resonance
conditions. The superconducting lead on the right hand side is coupled to the half-
metal in one point in real space with a constant tunnel amplitude t0. An applied bias
voltage V drives a current I through the junction.

7.1 Model and Formalisms

The aim of this section is to present the mathematical framework that we use to

calculate the current through the HM/S junction introduced in Chapter 6. We use

the non-equilibrium Green’s functions technique in the Keldysh formalism, introduced

in Chapter 3, to calculate the current. The main idea is to perform a perturbation

expansion in the tunnel coupling that connects the two leads [250, 251]. As we will

see, the expansion can be calculated up to infinite order yielding algebraic expressions,

which are exact.

In order to model the junction in Fig. 6.1, we use the simple effective setup shown in

Fig. 7.1. We model the junction using two leads, a half-metallic lead under ferromag-

netic resonance conditions and a superconducting lead. We assume a point contact

geometry, meaning that the leads are tunnel coupled at one point of real space. The

corresponding tunnel amplitude entering Eq. (6.6) reads

t(r1, r2) = t0δ(r1)δ(r2). (7.1)

The corresponding tunnel Hamiltonian given by Eq. (6.5) reads in real space

HT = t0b
†(r = 0)a(r = 0) + h.c. (7.2)
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We can absorb the wave functions at r = 0 into the definition of the hopping element,

reading

tσqk = t0φ
S∗
qσ(0)φF

kσ(0) ≡ t. (7.3)

We assume that the tunnel element is constant in the energy range of interest, i.e., for

energies around the Fermi level. We want to consider applied voltages V that are small

compared to the Fermi energy EF, i.e., eV ≪ EF.

In order to calculate the current I(V ), it is convenient to write the Hamiltonian

(Eq. (6.2)) in a Nambu basis. We introduce the Nambu vector of creation and an-

nihilation operators given by

Ψ†
aq = (a†

q↑, a
†
q↓, a−q↓,−a−q↑). (7.4)

This choice of the basis corresponds to particle-hole space ⊗ spin space. This represen-

tation allows us to write the Hamiltonian as H̃ ′′ = H̃ ′′
S + H̃ ′′

F + H̃ ′′
T. Here, we work in

the rotating frame and we have rotated the spin quantization axis in the ferromagnet.

Further, we defined

H̃ ′′
S =

1

2

∑

q

Ψ†
aqHqΨaq, (7.5)

H̃ ′′
F =

1

2

∑

k

Ψ†
BkHkΨBk, (7.6)

H̃ ′′
T =

1

2

∑

q,k

Ψ†
aqHθΨBk. (7.7)

Here the factor 1
2

compensates the doubling of the space due to the Nambu basis.

Additionally, we defined

Hq = ζqτ3 − ~Ω

2
σ3 + ∆τ1, (7.8)

Hk = ξkτ3 − Jσ3, (7.9)

Hθ = tei
θ
2
σ2τ3, (7.10)

where τi and σi are the i-th Pauli matrix in particle hole space, spin space, respectively.

The tunnel elements in the Hamiltonian in Eq. (7.10) have now acquired an angle

dependence due to the rotation of the spin quantization axis.
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7.2 Non-equilibrium Green’s functions of the

leads

We need the non-equilibrium Green’s functions of the leads in order to calculate the

Keldysh Green’s function of the junction that enters the current expression. First of

all, we determine the retarded and advanced Green’s functions to then determine the

matrix Green’s functions. We put the shift of the chemical potential due to the voltage

bias into the Green’s functions of the ferromagnet. Let us start with the superconducting

lead. The retarded/advanced Green’s function in Nambu space is defined by

g
R/A
SS =

∑

q

(E ± i0+ −Hq)
−1, (7.11)

where Hq is given by Eq. (7.8). We now replace the sum over the momenta by an

integral over energies. Using the density of states given by νS(ζ) =
∑

q δ(ζ − ζq) and

assuming a constant density of states in the normal state (which is a good approximation

for energies around the Fermi level), we obtain

g
R/A
SS = −νS

∫ ∞

−∞

dζ

(ζ +
√

∆2 − (ǫσ ± i0+)2)(ζ −
√

∆2 − (ǫσ ± i0+)2)

= −πνS
Eσ ± i0+ + ∆τ 1

√

∆2 − (Eσ ± i0+)2
.

(7.12)

We introduced the shifted energy variable Eσ = E + ~Ω
2
σ and obtain for the matrix

Green’s functions (see also Sec. 3.3)

ǧSS =







−πνS
Eσ+∆τ1√

∆2−E2
σ






1 0

0 1




 for |Eσ| < ∆,

−iπsgn(Eσ)νS
Eσ+∆τ1√
E2
σ−∆2






1 2FS

0 −1




 for |Eσ| > ∆.

(7.13)

The explicitly written matrix is in Keldysh space. Recall that τ and σ denote particle/hole

space, spin space, respectively. We use the thermal equilibrium relation

GK = (GR −GA) tanh
E

2kT
(7.14)
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for the uncoupled leads. Further using 1 − 2f(E) = tanh E
2kT

(where f denotes the

Fermi-Dirac distribution) for the distribution function of the superconductor given in

Eq. (6.14), we find

FS = tanh

(

E + ~Ω
2
σ3

2kT

)

. (7.15)

Let us now consider the ferromagnetic lead. The calculation is similar, where the

Hamiltonian in Eq. (7.9) determines the advanced/retarded Green’s function of the

ferromagnet. We obtain for the matrix Green’s function in triagonal representation

ǧFF = −iπνF




1 2FF

0 −1



 . (7.16)

Again, the explicitly written matrix is in Keldysh space. Let us assume a constant density

of states for a given spin species, since we are interested into energies around the Fermi

level. Then, the diagonal matrix νF reads

νF =
∑

η∈{↑,↓}
Pηνη, (7.17)

where ν↑ (ν↓) denotes the majority (minority) density of states and

P↑/↓ =
1

2
(1 ± σ3τ3) (7.18)

is the projector in Nambu space onto the majority spin (↑), minority spin (↓), respectively.

The function FF in Eq. (7.16) that determines the occupations depends on the model of

relaxation chosen. For the first model presented in Sec. 6.3, corresponding to relaxation

in an adjacent normal metal, the function is given by

FF = 1 − 2WfW † = cos2 θ

2
tanh

E + ~Ω
2
σ3 + eV τ3

2kT
+ sin2 θ

2
tanh

E − ~Ω
2
σ3 + eV τ3

2kT
,

(7.19)

where we used the previously calculated distribution function given in Eq. (6.18). For

the relaxation model including electron/phonon interaction and spin-orbit interaction,

the function FF corresponding to the distribution function given in Eq. (6.19) is given

by

FF = tanh
E + ~Ω

2
cos θσ3 + eV τ3

2kT
. (7.20)
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7.3 General current expression

In order to calculate the current through the junction, we follow the idea given in

Refs. [250, 251]. We formally treat the tunnel Hamiltonian as a perturbation of the

uncoupled electrodes. Our model consists of a single-channel atomic contact, where

the outer atoms of each lead are coupled via the tunnel element. In the following, we

will show how the current through the junction can be expressed using the Keldysh

Green’s function of the junction. Afterwards, we will show how the Keldysh Green’s

function of the junction can be obtained from the Green’s functions of the leads using a

Dyson equation for the perturbation expansion.

7.3.1 Current in terms of the Keldysh Green’s function

Since the charge current is a conserved quantity, we can calculate it at any point of our

junction. It is however advantageous to calculate it on the half-metal (ferromagnet)

side using the electron number operator on that side. The current operator is given by

I = eṄF =
ie

~
[H,NF], (7.21)

where NF =
∑

k,σ b
†
kσbkσ is the electron number operator for the ferromagnet. We use

the sign convention e > 0 implying that the current is positive, if electrons flow into

the half-metal. We work in the laboratory frame for the derivation of the current

expression. Obviously, NF commutes with HS (Eq. (6.3)) and HF (Eq. (6.4)). Assuming

a momentum-independent tunnel element and using Eq. (6.5) for a spin-dependent,

momentum-independent tunnel element, we obtain

I =
ie

~

∑

ση

[a†
σtσηbη − h.c.]. (7.22)

Here, we dropped the momentum indices of the operators for clarity of the notation.

We express the expectation value of the current in a symmetric way.

〈I(τ)〉 =
ie

2~

∑

ση

[tση
〈

a†
σ(τ)bη(τ)

〉

−tση
〈

bη(τ)a†
σ(τ)

〉

−t†ση
〈

b†
η(τ)aσ(τ)

〉

+t†ση
〈

aσ(τ)b†
η(τ)

〉

],

(7.23)
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where τ is the time argument. Let us define the following Green’s functions

(G+−
FS )ση11 (τ, τ ′) = i

〈

a†
σ(τ ′)bη(τ)

〉

, (7.24)

(G+−
FS )ση22 (τ, τ ′) = i

〈

aσ(τ ′)b†
η(τ)

〉

, (7.25)

(G−+
FS )ση11 (τ, τ ′) = −i

〈

bη(τ
′)a†

σ(τ)
〉

, (7.26)

(G−+
FS )ση22 (τ, τ ′) = −i

〈

b†
η(τ

′)aσ(τ)
〉

. (7.27)

Here G+− is a greater Green’s function, whereas G−+ is a lesser Green’s function. F

and S label the ferromagnet, the superconductor, respectively. The indices σ and η are

spin indices and the lower indices are Nambu indices. τ and τ ′ are time arguments.

These Green’s functions are standard definitions, that have been used for example in

[252–255]. With help of the definitions in Eqs. (7.24) - (7.27), the expectation value

of the current in Eq. (7.23) reads

〈I〉 =
e

4~

∑

ση

{tση[(G+−
FS )ση11 − (G−+

SF )ησ22 + (G−+
FS )ση11 − (G+−

SF )ησ22

+ t†ση[(G
−+
FS )ση22 − (G+−

SF )ησ11 + (G+−
FS )ση22 − (G−+

SF )ησ11 ]}.
(7.28)

We dropped the time arguments for clarity of the notation. We introduce the hopping

matrix in Nambu space

T =




t 0

0 −t†



 , (7.29)

where t is a 2 × 2 matrix in spin space. Further, we use the definition of the Keldysh

Green’s function

GK
ij = G+−

ij +G−+
ij . (7.30)

After Fourier transformation to energy space (and dropping the energy dependence of

the Keldysh Green’s function for clarity of the notation), we obtain

〈I〉 =
e

4~

∫ dE

2π

∑

ση

[T ση11 (GK
FS)ση11 + T ση22

†(GK
SF)ησ22 − T ση11

†(GK
SF)ησ11 − T ση22 (GK

FS)ση22 ], (7.31)

where the upper indices of T are spin indices and the lower indices are Nambu indices.

Using the relation

((GK
FS)σηii )† = −(GK

SF)ησii , (7.32)
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where η and σ are spin indices and i is a Nambu indix, we finally obtain

〈I〉 =
e

2~

∫ ∞

−∞

dE

2π
ℜ
[

Trστ (T GK
FSτ3)

]

, (7.33)

where the trace is over the spin (σ) and Nambu (τ) space, τ3 is a Pauli matrix in Nambu

space and we defined T = T T . This expression is a generalization of the expressions

given in Refs. [250, 252, 254]. We can now evaluate Eq. (7.33) in any basis, since the

trace is independent of the basis. Eq. (7.33) relates the Keldysh Green’s function of the

junction to the current flowing through the junction. In order to obtain the current, we

are left with the determination of the Keldysh Green’s function.

7.3.2 Dyson equation for the Keldysh Green’s function

In order to evaluate Eq. (7.33), we need to calculate the Keldysh Green’s function. We

have already calculated the Green’s functions of the leads in the absence of tunneling

in Sec. 7.2. We now switch on the tunnel coupling. The perturbation expansion up to

infinite order can be written as a Dyson equation for the matrix Green’s function (see

Sec. 3.3 and e.g., Ref. [253]) that reads in triangular representation

Ǧ = ǧ + ǧΣ̌Ǧ. (7.34)

Written in the basis of the leads, Eq. (7.34) reads

ǦFS = ǧFFΣ̌FSǦSS, (7.35)

ǦSS = ǧSS + ǧSSΣ̌SFǦFS. (7.36)

We combine both equations and obtain the matrix Green’s function of the junction.

ǦFS = (1 − ǧFFΣ̌FSǧSSΣ̌SF)−1ǧFFΣ̌FSǧSS (7.37)

The Keldysh component of this expression enters the current. Since the tunneling

is elastic, the components Σ+− and Σ−+ of the self energy vanish [253]. Further

Σ++ = −Σ−−, from which we get in triagonal representation

Σ̌SF =




T 0

0 T



 , (7.38)
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where T for the tunnel Hamiltonian in Eq. (7.10) reads

T = tei
θ
2
σ2τ3. (7.39)

Further, the self energy with interchanged lead indices reads

Σ̌FS = Σ̌†
SF. (7.40)

We have now all ingredients to evaluate the Keldysh Green’s function of the junction

and therefore the current through our ferromagnet/superconductor junction given in

Eq. (7.33).

In order to model a half-metal with perfect spin polarization, we put the minority

carrier density of states to zero. The calculation can be simplified applying the following

mathematical trick: We put the tunnel elements including the minority spin to zero,

such that only the majority spin contributes to the current. Defining the projector onto

the majority spin P = 1
2
(1 + σ3τ3), we obtain for the tunnel coupling T HM = T P . The

result is identical to calculating with the original tunnel expression and afterwards

putting the minority carrier density of states to zero. For definiteness we use ↑ for the

majority spin and ↓ for the minority spin.

7.4 Current expressions for various

heterostructures

We give the current expressions for heterostructures containing different combina-

tions of normal metals, superconductors or ferromagnets in this section. We focus

on junctions, that are important for the understanding of the physics of the half-

metal/superconductor junction (HM/S). The normal metal/normal metal (N/N) junc-

tion in Sec. 7.4.1 allows us to define the transparency in the normal state. The normal

metal/superconductor (N/S) junction in Sec. 7.4.2 is used to introduce the Andreev

current through a junction without spin polarization. Sec. 7.4.3 shows the current

and spin transport properties of a ferromagnet/normal metal junction (F/N) under

ferromagnetic resonance (FMR) conditions, which corresponds to a ferromagnet/super-

conductor (F/S) junction in the normal state. Finally, we discuss the properties of the

F/S junction for a static magnetization in Sec. 7.4.4 and show that no Andreev current
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flows through an HM/S interface with fixed magnetization direction. The expressions

for the current are obtained within the formalism presented in the preceding sections.

More precisely, we evaluate Eq. (7.33) using the Green’s function of the junction given

in Eq. (7.37) that is obtained using Eqs. (7.38) - (7.40) and the Green’s functions of

the leads given in Eqs. (7.13) and (7.16).

7.4.1 Normal metal/normal metal junction

Let us start with the simplest case of an N/N junction containing two normal metals.

It corresponds to an N/S junction, where the superconductor is in its normal phase

above the critical temperature. The aim is to obtain an expression for the normal

state transparency of the junction, expressed as a function of the microscopic model

parameters. Without an applied voltage, the junction is in equilibrium and no current

flows. Let us calculate the current for an applied voltage. For a normal metal in a static

frame (Ω = 0, θ = 0), the matrix Green’s function in triagonal representation reads

ǧjj = −iπνj




1 2Fj

0 −1



 , (7.41)

where j ∈ {L,R} labels the side of the junction. Further, we assume a constant density

of states νj in both leads. The occupation factor reads

Fj = tanh
E + eVjτ3

2kT
, (7.42)

where we put the voltages to VL = 0 and VR = V . Note that this expression is obtained

from the Green’s functions of the superconductor (Eq. (7.13)) and the ferromagnet

(Eq. (7.16)) in the limit of a normal metal. The evaluation of Eq. (7.33) involves

matrix inversions and taking the trace. For the latter operation, a useful decomposition

(presented for example in [256]) of the occupation factor is given by

tanh
E + eV τ3

2kT
= fL + fTτ3 (7.43)

with the definitions

fL/T =
1

2

(

tanh
E + eV

2kT
± tanh

E − eV

2kT

)

. (7.44)
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Deviations from equilibrium in the longitudinal component (fL) stem from a change in

the effective temperature, whereas deviations in the transverse component (fT) stem

from an effective chemical potential shift [256, 257]. It is consequently not surprising

that the remaining term for the N/N junction is fT, since the applied voltage shifts the

chemical potential. Using the relation tanh E
2kT

= 1 − 2f(E), where f(E) denotes the

Fermi-Dirac distribution function, the current can be expressed as

〈INN〉 =
2e

h

∫ ∞

−∞
dE T [f(E − eV ) − f(E)], (7.45)

where f(E) denotes the Fermi-Dirac distribution function and we introduced the

transmission

T =
4α

(1 + α)2
, (7.46)

that takes values between 0 and 1. The transmission is energy independent, since we

assumed a flat density of states. α = π2νRνL |t|2 is the product of the two reduced (unit-

less) hopping elements tj = πνj |t| (with j ∈ {L,R}), where the hopping amplitude

|t| (energy units) is divided by the bandwidth W = (πνj)
−1. A similar expression for

the transmission has been found by Refs. [252, 258, 259]. Further, note that a given

product of hopping elements α and its inverse α−1 have the same transmission value

T (α) = T (α−1). For a given transmission 0 < T < 1, there are consequently two values

of α. Consider for example a small transmission, which might be on the one hand

realized by a small hopping amplitude. In this tunnel limit the transfer of an electron is

unlikely. On the other hand, it might also be realized by a large hopping amplitude,

when (higher order) interference effects are important.

Let us comment on the expression for a tunnel junction, when the hopping elements

are small, i.e., tR, tL ≪ 1. Then, the transmission (Eq. (7.46)) is approximatively given

by T ≈ 4α. This result is also obtained in a Fermi’s golden rule calculation of the

current (for more details see Sec. 8.2.1), treating the hopping element as a perturbation

and calculating up to second order in the tunnel coupling. If the coupling strength is

increased, Fermi’s golden rule breaks down, since higher order contributions become

important. The non-equilibrium Green’s functions formalism is capable of capturing

this regime, since the perturbation expansion is taken to infinite order.

A microscopic theory for N/N junctions and N/S junctions is given in Ref. [260].

Within this so-called Blonder-Tinkham-Klapwijk (BTK) formalism the current through
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an interface is obtained from a simple microscopic model: The Bogoliubov – de Gennes

equations are solved by parts and their solutions are matched at the interface that is

modeled by a Dirac-δ potential barrier, which is characterized by its barrier height Z,

giving rise to a transmission T = (1 + Z2)−1. This wave matching gives the coefficients

for normal electron reflection and Andreev reflection, that enter the current expression.

Our current expression given in Eq. (7.45) coincides with the BTK result.

Let us calculate the conductance of the interface GNN, defined via 〈INN〉 = GNNV . The

integral over the distribution functions in Eq. (7.45) yields

∫ ∞

−∞
dE[f(E − eV ) − f(E)] = eV, (7.47)

where we used the explicit expression for the Fermi-Dirac distribution function. This

result is valid at any temperature. The conductance reads

GNN = G0T, (7.48)

where the conductance quantum is given by G0 = 2e2

h
. Note that we have only one

conduction channel, since we assumed a point contact. We expressed the conductance

of the interface as a product of the conductance quantum and the transmission of the

conduction channel, which is a well-known result from the Landauer-Büttiker formalism

[174].

7.4.2 Normal metal/superconductor junction

The N/S junction is of interest, since Andreev reflection modifies the conductance for

subgap energies. A deeper understanding of its properties is therefore necessary before

considering the F/S junction. The N/N junction, studied in the previous subsection,

corresponds to an N/S junction with the superconductor being in its normal phase. Let

us now “switch on” superconductivity. The current can be written as the sum of two

terms,

〈INS〉 = 〈I<〉 + 〈I>〉 , (7.49)

where the first term 〈I<〉 is due to Andreev reflections at an energy inferior to the

gap ∆. The second term 〈I>〉 is due to quasiparticles with an energy above the gap,

when Andreev reflection competes with normal reflection and direct transmission. The

Green’s function for the normal metal is given in Eq. (7.41). We take the Green’s
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function for the superconductor (Eq. (7.13)) in the laboratory frame (Ω = 0). After

lengthy algebraic manipulations, the current contribution from quasiparticles above the

gap can be expressed as

〈I>〉 =
2e

h

∫

|E|>∆
dE T>NS(E)[f(E − eV ) − f(E)]. (7.50)

Here we introduced the energy-dependent transmission

T>NS(E) =
4α |E|√

E2−∆2

1 + 2α |E|√
E2−∆2 + α2

, (7.51)

where α = π2νNνSt
2 contains the normal state density of states of the superconductor

νS, that we assume to be constant. The current contribution from quasiparticles below

the gap can be expressed as

〈I<〉 =
2e

h

∫

|E|<∆
dE T<NS(E)[f(E − eV ) − f(E)], (7.52)

where we introduced the energy dependent-transmission

T<NS(E) = 2
∆2

∆2 − E2

4α2

(1 + α2)2 + 4α2 E2

∆2−E2

. (7.53)

Let us first of all establish the connection to Subsection 7.4.1. If the junction is in

the normal state, i.e., ∆ = 0, the current contribution from pure Andreev reflection

vanishes, i.e., 〈I<〉 = 0. Further, the transmission in Eq. (7.51) becomes the normal

state transmission, i.e., T>NS(E) = T and the current is given by the expression obtained

for an N/N junction.

We express the energy-dependent transmissions using the normal state transmission

given in Eq. (7.46) and obtain

T>NS =
2

1 +
√
E2−∆2

|E|
2−T
T

, (7.54)

T<NS =
2∆2

E2

1 + ∆2−E2

E2

(
2−T
T

)2 . (7.55)
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(a) tunnel junction, transmission T = 0.1 (b) transmission T = 0.8

Fig. 7.2: Current I through the N/S interface as a function of the bias voltage V (red curve).
The black curve gives the current for an N/N junction (superconductor in the normal
state) for comparison. (a) Current for a tunnel junction. (b) Current for an interface
with a high transmission. Note that there is an excess current, i.e., the current through
the N/S junction exceeds the current through the N/N junction.

Let us now discuss the zero temperature properties of the current. The Fermi-Dirac

distribution function becomes a step function and the integrals in Eqs. (7.50) and (7.52)

are trivial. Further using Eqs. (7.54) and (7.55), it is straightforward to show that

〈I<〉 =
2e

h
∆

T 2

(2 − T )
√

1 − T







arctan(eV
∆

2
√

1−T
2−T ) for eV < ∆,

arctan(2
√

1−T
2−T ) for eV ≥ ∆,

(7.56)

and

〈I>〉 =







0 for eV < ∆,

4e
h

∆
∫ eV

∆
1

dǫ
2−T
T

√
ǫ2−1
ǫ

+1
for eV ≥ ∆.

(7.57)

The integral in the last line has a cumbersome analytical solution that does not give

much insight. Fig. 7.2 shows the current as a function of the bias voltage for different

transparencies. For a tunnel junction, the subgap contribution due to Andreev reflection

is small. For a junction with higher transparency, there is a so-called excess current,

defined ([260]) by

Iexc = lim
V→∞

[INS(V ) − INN(V )] . (7.58)

For certain bias voltages, the current through the N/S junction exceeds the N/N junction

value. The effect is due to Andreev reflections that are more probable for transparent

interfaces and give a larger contribution to the current in that case.

114 Chapter 7 Andreev current through the point contact half-metal/superconductor junction



If the voltage is small compared to the gap, i.e., eV ≪ ∆, the conductance of the

junction obtained from Eq. (7.56) reads

GNS = 2G0TA. (7.59)

As first shown by BTK [260], TA = T 2

(2−T )2 is the Andreev reflection probability. For

a transparent junction (T = 1), the conduction is twice the conduction quantum,

since in an Andreev reflection process the charge of 2e is transferred. For a tunnel

junction (T ≪ 1), the conductance is proportional to the square of the transparency,

i.e., GNS ∼ T 2 =
(
GNN

G0

)2
. Hence, the conductance is proportional to the square of the

normal state conductance, reflecting the fact that in an Andreev reflection process two

electrons are transferred in order to form a Cooper pair. This process is of order two in

the transparency (order four in the tunnel element).

More general, the expression for the subgap current contribution (Eqs. (7.52) and

(7.53)) contains only even powers of α ∼ t2, showing that only an even number of

electrons can tunnel. Above the gap, also single electrons can tunnel and the current

expression (Eqs. (7.50) and (7.51)) contains also odd powers of α.

An important experimentally accessible quantity is the differential conductance dI
dV

.

Let us without loss of generality assume V > 0. At zero temperature, we use that the

derivative of the Fermi-Dirac distribution function becomes a Dirac-δ distribution and

obtain from Eqs. (7.50) - (7.53)

d 〈INS〉
dV

=







2G0
(2−T )2

T2 − 4(1−T )

T2 ( eV
∆

)2
for eV < ∆,

2G0
2−T
T

√
1−( ∆

eV
)2+1

for eV > ∆.
(7.60)

For small voltages eV ≪ ∆, the differential conductance equals the previously es-

tablished Andreev conductance, given in Eq. (7.59). Consequently, there is a linear

relation between the current and the voltage in this parameter regime. For large

voltages eV ≫ ∆, the differential conductance equals the conductance of a junction

in the normal state (Eq. (7.48)). The reason is that at large energies well above the

superconducting gap the superconducting properties do not play a role for the charge

transport across the junction.
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Fig. 7.3: Differential conductance (in units of the normal state conductance) as a function of
the applied voltage of an N/S junction. The solid red, dotted blue, and solid black
lines are for transparencies of T = 0.1, T = 0.8, and T = 1, respectively.

Fig. 7.3 shows a plot of the differential conductance normalized by the normal state

conductance as a function of the bias voltage. For large voltages, the differential

conductance equals the normal state conductance, as discussed above. For a low

interface transparency T = 0.1, there is nearly no subgap differential conductance

and a very pronounced coherence peak at eV = ∆. The differential conductance is

known to map the density of states in the tunnel limit T ≪ 1. For a junction with

high transparency (T = 0.8), the subgap contribution is important and the coherence

peak is less pronounced. For an entirely transparent junction (T = 1), the subgap

conductance equals twice the conductance quantum. In this parameter regime only

Andreev reflection is possible. Each Andreev reflection process transfers two electron

charges across the junction, giving twice the normal state conductance.

The differential conductance curves presented in Fig. 7.3 can be found in Ref. [260].

Our results can be mapped to the BTK results and both formalism give the same

results for the current through the N/S junction. The non-equilibrium Green’s functions

formalism has the advantage that ferromagnets can be easily included (see the following

subsections).
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Let us finally comment on small transparencies, T ≪ 1, i.e., a tunnel junction. Ex-

panding in lowest order in α ≪ 1, the energy-dependent transmission above the gap,

defined in Eq. (7.51), reads

T>NS(E) = 4α
|E|√

E2 − ∆2
, (7.61)

and the energy-dependent transmission below the gap, defined in Eq. (7.53), reads

T<NS(E) = 8α2 ∆2

∆2 − E2
. (7.62)

Note that the transmission above the gap is in second order in the tunnel element

t, whereas the transmission below the gap is in forth order in t. There is no subgap

current (pure Andreev current) in second order in t, since Andreev reflection needs

the transfer of two electrons. These current expressions equal the expressions from a

Fermi’s golden rule calculation.

7.4.3 Ferromagnet/normal metal junction

Let us have a look at the properties of an F/N junction, that corresponds to an F/S

junction with the superconductor being in its normal phase. The HM/N junction is

obtained as a special case of the F/N junction. We will also study the spin properties of

the junction, that will change when the normal metal is replaced by a superconductor.

Consider a precessing magnetization, as described in Sec. 7.1. The current is obtained

from Eq. (7.33) using the Green’s functions of the leads given in Eqs. (7.16) and

(7.41) (with the distribution functions in the rotating frame given in Eqs. (7.15) and

(7.19)/(7.20)). After some algebra, the trace in Eq. (7.33) can be written as the product

of an energy-independent factor and a factor containing the distribution functions. We

can shift the integration variable, such that it absorbs the frequency dependence. The

resulting current expression is frequency independent and given by

〈IFN〉 =
2e

h

∫ ∞

−∞
dE TFN[f(E − eV ) − f(E)], (7.63)

where we defined the energy-independent transmission

TFN =
T↑ + T↓

2
(7.64)
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with

Tσ =
4ασ

(1 + ασ)2
. (7.65)

Thus, the current through the F/N junction does not depend on the magnetization

properties. It is independent both of the precession frequency Ω and of the tilt angle θ.

Further, both majority and minority spin species give independent contributions to the

current. Note that there is no charge current across the junction at zero voltage. Using

Eq. (7.47), we can write the conductance as GFN = G0TFN, which is a similar form as

obtained for the N/N junction.

The charge current through the F/N interface is independent of the choice of the

distribution function. It depends only on the spin-dependent chemical potentials (and

not on the precise form of the distribution function), since the density of states of both

the ferromagnet and the normal metal are energy independent.

Let us emphasize that in the limit of a normal metal with equal density of states for

both spin species, i.e., α↑ = α↓ = α, both spin species have the same transmission

values T↑ = T↓ = T . We obtain the current expression for the N/N junction, discussed

in Sec. 7.4.1.

Let us consider an HM/N metal junction as a special case of the more general F/N

junction. Then, due to perfect spin polarization, the density of states of the minority

carriers is zero, giving α↓ = 0. The current is then given by Eq. (7.63) with T↓ = 0

(Eq. (7.65)).

There is not only charge transport across the junction, but there is also a net spin

current injected into the adjacent normal metal. Instead of evaluating the charge

current operator IC = eṄF, we will now evaluate the spin current operator. We are

interested into the z-component of the spin current, for which the operator reads

IS
z = ~

2
(Ṅ↑ − Ṅ↓). Spin is pumped into the system due to the precessing magnetization,

that creates spin-flip processes. Hence, the ferromagnet acts as a source for the spin

current and the spin current is not a conserved quantity. We evaluate the spin current

in the adjacent normal metal. We can show that

〈

IS
z,FN

〉

=
1

8π

∫ ∞

−∞
dEℜ

[

Trστ (T GK
FNσ3)

]

. (7.66)
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The procedure of evaluation of this expression is similar to the charge current and we

obtain
〈

IS
z,FN

〉

=
~

2e
GpV cos θ − ~Ω sin2 θ

G↑↓

2πG0

, (7.67)

where we defined the conductance due to spin polarization as

Gp = G0
T↑ − T↓

2
. (7.68)

Further, we introduced the mixing conductance

G↑↓ = G0
α↑ + α↓

(1 + α↑)(1 + α↓)
. (7.69)

The first term of Eq. (7.67) is a spin current driven by the voltage difference. It is

proportional to the difference of transmissions of the two spin species. Within our

model, a difference in the density of states for the two spin components is needed, as

evident from Eq. (7.68). The cos θ factor is the projection of the magnetization direction

on the z-axis. This contribution to the spin current vanishes for a normal metal and is

maximal for a half-metal.

Let us now discuss the spin current in the absence of a bias voltage. The second term of

Eq. (7.67) is proportional to the frequency and the mixing conductance. The concept of

the mixing conductance for an F/N interface has been introduced in Ref. [155], where

the general definition

G↑↓ =
e2

h

[

M −
∑

n,m

rnm↑ (rnm↓ )∗
]

(7.70)

was given. Here M is the number of channels and rnmσ is the reflection of an electron in

mode m to an electron in mode n on the normal side of the junction. Assuming one

conduction channel (M = 1, point contact) and time-reversal invariant scattering in the

barrier, we can parametrize rσ =
√

1 − Tσ, where Tσ is the transmission of the barrier.

Using the previously established result for the transmission given in Eq. (7.65), the

mixing conductance indeed yields Eq. (7.69). As in Ref. [155], the mixing conductance

for our junction yields in the tunnel limit

G↑↓ =
G↑ +G↓

2
, (7.71)

where Gσ = 2ασG0. For a transparent (ballistic) junction, it reads G↑↓ = G0

2
, since

the conductance is e2

h
per channel. Note that in general the mixing conductance in
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Eq. (7.70) cannot be expressed using only the spin-dependent transmissions Tσ in

Eq. (7.65), but is rather a function of the ασ. We will see in Sec. 7.5, that the Andreev

current through the HM/S interface under ferromagnetic resonance conditions also

explicitly depends on the ασ, not on the Tσ.

The term proportional to the frequency in Eq. (7.67) is consistent with the spin-pumping

expression

IS =
~

4π
g↑↓m̂ × dm̂

dt
(7.72)

given in Refs. [72] and [157] (see also Sec. 2.4.2) and valid for a negligible imaginary

part of the (unitless) mixing conductance g↑↓ = h
e2G

↑↓ = 2
G0
G↑↓. It describes the spin

current emitted into a normal metal, coupled via an interface to an adjacent ferromagnet

under ferromagnetic resonance conditions. Note that Eq. (7.72) is given in units of

the mechanical torque. Using the explicit expression of the magnetization given in

Eq. (6.1), we obtain for the projection on the z-axis

ẑ(m̂ × dm̂

dt
) = Ω sin2 θ, (7.73)

yielding the same dependence as in Eq. (7.67).

We can interprete the zero voltage spin current in a slightly different way. Therefore, we

follow a consideration given in Ref. [115] in the context of an F/I/F spin valve. Consider

the difference in chemical potentials created by the time-dependent magnetization

across the junction. Using the expressions of the chemical potentials given in Eqs. (6.12)

and (6.13) and evaluating them in the z-basis, we obtain

∆µ = µFz − µNz = −~Ω

2
sin2 θ. (7.74)

The authors of Ref. [115] call this expression a “spin bias”. We can express the zero

voltage spin current as
〈

IS
z,FN

〉

∝ G↑↓∆µ. (7.75)

Consequently, the precessing magnetization creates a difference of chemical potentials,

that drives the spin current.

Ref. [157] reported a spin accumulation effect on the normal metal side of the F/N

interface. We do not obtain any spin accumulation on the normal side within our model,
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since we assume that our reservoirs are in equilibrium. This corresponds to assuming a

much higher spin-flip rate than spin injection rate. The latter is of the order of Ω.

Note that from Eqs. (7.63) and (7.67) follows that there is a non-zero spin current, but a

zero charge current for a half-metallic junction at zero voltage bias. The finding of a zero

charge current is consistent with other models (in the absence of spin accumulation)

[115].

7.4.4 Ferromagnet/superconductor junction - static

magnetization

If we replace the normal metal by a superconductor, the transport properties change.

The superconductor does not allow for spin currents below the gap, since the super-

current below the gap is due to spin singlet Cooper pairs, formed of electrons with

opposite spins. We will show that the spin current (obtained for an F/N interface) is

rectified to a charge current through the interface. The resulting Andreev current for a

dynamic magnetization direction is calculated and discussed in Sec. 7.5.

Before having a look at the dynamic case, let us consider an F/S junction with a fixed,

static magnetization direction m̂(t) = m̂(0). The current is obtained as previously

described, using Ω = 0. As for the N/S junction, it is useful to decompose the current

into the two contributions from quasiparticles above and below the superconducting

gap, i.e., 〈IFS〉 = 〈I<FS〉 + 〈I>FS〉. Below the gap, the current is a pure Andreev current

and can be written as

〈I<FS〉 =
2e

h

∫

|E|<∆
dE T<FS(E)[f(E − eV ) − f(E)] (7.76)

with

T<FS(E) = 2
∆2

∆2 − E2

4α↑α↓

1 + α2
↑α

2
↓ + (α2

↑ + α2
↓) E2

∆2−E2 + 2α↑α↓
∆2

∆2−E2

. (7.77)

Note that as for the subgap current through the N/S junction, only even powers of α

are present, indicating that only an even number of electrons can be transferred across

the junction. The contribution from quasiparticles above the gap reads

〈I>FS〉 =
2e

h

∫

|E|>∆
dE T>FS(E)[f(E − eV ) − f(E)] (7.78)
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with

T>FS(E) = 2

(

α↑(1 + α2
↓) + α↓(1 + α2

↑)
)

|E|√
E2−∆2 + 4α↑α↓

E2

E2−∆2

[

1 + α↑α↓ + (α↑ + α↓)
|E|√
E2−∆2

]2 . (7.79)

The current is independent of the orientation of the magnetization direction in the

ferromagnet, since the superconductor is isotropic (spin rotation invariant). In the limit

of the superconductor becoming a normal metal (∆ = 0), the pure Andreev current

vanishes and we get the expressions given in Eqs. (7.63) and (7.65) for an F/N junction.

In the limit of the ferromagnet becoming a normal metal (α↑ = α↓ = α), Eqs. (7.77)

and (7.79) yield the N/S junction result given in Eqs. (7.51) and (7.53).

Let us consider a ballistic junction with α↑ = α↓ = 1. Then, the subgap conductance

given by Eqs. (7.76) and (7.77) yields

G<
FS = 2G0. (7.80)

Here, we only have one conduction channel. Ref. [89] pointed out that for a ballistic

point contact with many conduction channels, the subgap conductance at an F/S

interface may be either larger or smaller as the normal state conductance, depending

on the ratio of the conduction channels for the different spin species.

Let us discuss the current for small voltages, i.e., eV ≪ ∆. Then, only the subgap current

is non-zero. The current is entirely due to Andreev reflections and the corresponding

conductance yields

G<
FS ≈ G0T

<
FS(eV ). (7.81)

We can approximate T<FS(eV ) ≈ T<FS(0) and obtain using Eq. (7.77)

G<
FS = G0

8α↑α↓
(1 + α↑α↓)2

. (7.82)

The conductance thus vanishes for perfect spin polarization. For a ballistic junction, we

recover Eq. (7.80).

Let us now consider a half-metal instead of the ferromagnet. The perfect spin polariza-

tion (α↓ = 0) gives for the current (using Eqs. (7.76) - (7.79))

〈IHMS(Ω = 0)〉 =
2e

h

∫

|E|>∆
dE

2α↑
|E|√
E2−∆2

(1 + α↑
|E|√
E2−∆2 )2

[f(E − eV ) − f(E)]. (7.83)
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In the normal state, this result becomes the result of the HM/N junction (see Sec. 7.4.3),

which is half the current through an N/N interface, since only one spin species is

available. The difference between the HM/S and HM/N junction is only the density of

states of the superconductor, that is energy dependent in the HM/S case, whereas it is

energy independent in the HM/N case. Contrary to the N/S junction, no other terms

containing the pair potential appear. The reason is that the tunneling electrons cannot

form a spin singlet Cooper pair, since the half-metal can only provide one spin species.

As a result, any Andreev reflection process is forbidden. For zero temperature, there is

consequently no subgap current for eV < ∆, as evident from Eq. (7.83).

7.5 Andreev current through the

half-metal/superconductor junction

In the previous sections we have developed the formalism and we have studied the

normal state properties as well as the static properties of the HM/S junction. Let us

now “turn on” superconductivity and the precession of the magnetization direction, i.e.,

consider the situation presented in Sec. 6.1 with the model given in Sec. 7.1.

We want to evaluate Eq. (7.33). This task can be divided into two steps: First, we

have to evaluate the trace and afterwards the integral. In order to evaluate the former,

we use the expressions for the Green’s functions of the leads (Eqs. (7.13) - (7.16),

(7.19)) and the Dyson equation (Eqs. (7.37) - (7.40)) to compute the Keldysh Green’s

function. Depending on whether Eσ = E + σ ~Ω
2

is smaller or bigger than the gap of the

superconductor ∆, the Green’s function of the superconductor takes a different form

(see Eq. (7.13)). This condition defines four energy intervals with the following current

contributions

Ii =
e

2h

∫ ∞

−∞
dEΘi(E)Si, (7.84)

where Si denotes ℜ
[

Tr(T GK
FSτ

3)
]

, evaluated for the interval i. The definitions of the

intervals and the corresponding integral boundaries Θi(E) (that can be expressed in

terms of Heaviside functions) are given in Tab. 7.1.

In the first interval, the absolute values of the energies for both spin species are smaller

than the superconducting gap, such that pure Andreev reflection occurs for both spin

species. In the second and third interval, only the absolute value of the energy for one

7.5 Andreev current through the half-metal/superconductor junction 123



i E↑ E↓ Θi(E)

1 |E↑| < ∆ |E↓| < ∆ Θ(− |E↑| + ∆)Θ(− |E↓| + ∆)

2 |E↑| > ∆ |E↓| < ∆ Θ(+ |E↑| − ∆)Θ(− |E↓| + ∆)

3 |E↑| < ∆ |E↓| > ∆ Θ(− |E↑| + ∆)Θ(+ |E↓| − ∆)

4 |E↑| > ∆ |E↓| > ∆ Θ(+ |E↑| − ∆)Θ(+ |E↓| − ∆)

Tab. 7.1: Definition of the energy intervals for the evaluation of the current.

of the spin species is smaller than the gap, whereas the other one is larger. In the forth

interval, the absolute values of the energies for both spin species are larger than the

gap. The total current is given by the sum of the four current contributions:

〈IHMS〉 =
4∑

i=1

Ii (7.85)

So far this decomposition is of purely mathematical nature. The evaluation of the trace

involves matrix inversions, that are readily done, since the matrices to be inverted are

triagonal matrices of the form M =




A B

0 D



 with inverse M−1 =




A−1 −A−1BD−1

0 D−1



.

After lengthy and cumbersome, but straightforward algebra, we obtain lengthy analyt-

ical expressions for the trace in each of the four intervals. These expressions can be

found in Appendix E for the distribution function of the ferromagnet corresponding to

relaxation in an adjacent normal metal layer. In this section we restrict the discussion

to the distribution function given in Eq. (7.19). We give expressions for the other distri-

bution function, corresponding to the relaxation model with phonons and spin-orbit

interaction in Chapter 8, when discussing tunnel junctions.

The interesting physics will appear in the parameter regime of pure Andreev reflection,

when then energy of the quasiparticles is smaller than the gap. Since the half-metal

provides only one spin species, no current flows in this regime for a static magnetization,

as we have seen in Sec. 7.4.4. Let us in the following consider this parameter regime.

In order to simplify the discussion, we consider zero temperature kBT = 0. Then, the

total current is due to Andreev reflections (〈IHMS〉 = I1), if

~Ω + eV < ∆. (7.86)
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The explicit expression for the trace in this parameter regime, obtained in the previously

described manner, reads

S1 = sin2 θ
N1

D1

(F↑↑ − F↓↓), (7.87)

where we defined

N1 =
(

ǫ−1
↑ α̃↑ − ǫ−1

↓ α̃↓
)2
, (7.88)

D1 =

[

1 −
(

α̃↑ cos2 θ

2
+ α̃↓ sin2 θ

2

)(

α̃↑ sin2 θ

2
+ α̃↓ cos2 θ

2

)

+ cos2 θ

2
sin2 θ

2

(

ǫ−1
↑ α̃↑ − ǫ−1

↓ α̃↓
)2
]2

+ (α̃↑ + α̃↓)
2 . (7.89)

Further we introduced the dimensionless quantities ǫ = E
∆

, ω = ~Ω
∆

and defined

α̃σ = α ǫσ√
1−ǫ2σ

and ǫσ = ǫ + σ ω
2
. Recall the definition of α↑ = π2ν↑νS |t|2 and note that

Fτσ is defined in Eq. (7.19). We note the following symmetries

I1(−Ω, θ) = −I1(Ω, π − θ), (7.90)

I1(−V, θ) = −I1(V, π − θ), (7.91)

that allow us without loss of generality to assume V > 0 and Ω > 0. Let us now further

evaluate the distribution functions that are step functions at zero temperature and thus

modify the integral boundaries in Eq. (7.84). The relevant expression in Eq. (7.87) can

be written as

F↑↑ − F↓↓ =2 cos2 θ

2
[f(E − ~Ω

2
− eV ) − f(E +

~Ω

2
+ eV )]

+ 2 sin2 θ

2
[f(E +

~Ω

2
− eV ) − f(E − ~Ω

2
+ eV )].

(7.92)

The current can thus be expressed as

〈IHMS〉 =
e∆

h
sin2 θ

[

cos2 θ

2

∫ ω+U

−ω−U

N1

D1

dǫ+ sin2 θ

2

∫ −ω+U

ω−U

N1

D1

dǫ

]

. (7.93)

Here we simplified the integral boundaries with help of the relation

∫ ∞

−∞
dǫΘ(−ǫ+ σ

w

2
+ µU)θ1 −

∫ ∞

−∞
dǫΘ(−ǫ+ σ′ω

2
+ µ′U)θ1 =

∫ σ ω
2

+µU

σ′ ω
2

+µ′U
dǫ, (7.94)
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where we defined θ1 = Θ(− |ǫ↑| + 1)Θ(− |ǫ↓| + 1). Further, we introduced the dimen-

sionless voltage U = eV
∆

.

Let us consider the scaling for frequencies and voltages much smaller than the gap ∆,

i.e., ω ≪ 1 and U ≪ 1. We expand the integrand in Eq. (7.93) in powers of ω:

N1

D1

≈ α2 ǫ2

(1 − ǫ2)3
ω2 + O

(

ω3
)

(7.95)

The approximation is valid for α ≪ ω−1. Since the integral boundaries also depend

on ω, we keep only the lowest order term in ǫ for a consistent approximation. Then,

integration yields the result

〈IHMS〉 =
8

3

e∆

h
sin2 θ α2

(

~Ω

2∆

)2



eV

∆





(
eV

∆

)2

+ 3

(

~Ω

2∆

)2




+
~Ω

2∆





(

~Ω

2∆

)2

+ 3
(
eV

∆

)2


 cos θ



 .

(7.96)

The current is due to the non-equilibrium situation created by the time-dependent

magnetization. The rf-field that drives the magnetization dynamics pumps spin into the

system. The spins cannot relax in the ferromagnet to reestablish equilibrium since we

do not assume any spin-flip mechanism in the ferromagnet. Further, the spin-singlet

pairing of the superconductor forbids a net spin current below the gap. It only allows

for a charge current to flow. Seen from a slightly different perspective, the situation is

as follows: The half-metal provides only one spin species. Therefore Andreev reflection

is impossible (see Sec. 7.4.4), since the Andreev reflected hole has opposite spin

compared to the impinging electron. The time-dependent magnetization provides a

spin-flip mechanism and makes Andreev reflection possible. Indeed, Eq. (7.96) gives

zero charge current if the magnetization is static, i.e., ω = 0 (or θ = 0).

Remarkably, there is a current at zero voltage (V = 0). If the superconductor was in its

normal state, zero charge current would flow, as we have seen in Sec. 7.4.3. However,

we have also seen that there is a spin current at V = 0 through the F/N junction,

which is now forbidden, since the spin singlet pairing in the superconductor does not

allow for a net spin current. First of all, we want to emphasize that the charge current

given by Eq. (7.96) is indeed zero in the limit ∆ → 0 (normal state). More precisely,

the zero voltage current scales with Ω5. This high suppression factor indicates that it
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is impossible to transfer two electrons at the same instant in time. Indeed, the two

electrons can only have opposite spins, if they are transferred with a delay with respect

to each other, since for a given instant in time the magnetization direction fixes the spin

polarization of the half-metal.

In the tunnel limit, i.e., for small transparencies, the zero voltage current through the

HM/S interface reads

〈IHMS〉 (α ≪ 1) =
e∆

h

sin2 θ cos θ

6

G2

G2
0

(

~Ω

2∆

)5

. (7.97)

The conductance in the tunnel limit reads G = 4α. Let us compare Eq. (7.97) for

the Andreev current to the Andreev current induced by ferromagnetic resonance in

a slightly different, but related system. The latter consists of a quantum dot, tunnel

coupled to a ferromagnetic and a superconducting lead and is discussed in Ref. [247]. If

the quantum dot is strongly coupled to the superconducting reservoir, the dot becomes

superconducting and we can identify the Thouless energy with the superconducting gap.

We are left with a system consisting of a ferromagnet and a superconductor coupled via

a tunnel barrier. The Andreev current given in Ref. [247] scales with the fifth power of

the precession frequency and has an angle dependence of cos θ sin2 θ. Remarkably, this

is the same scaling behavior as obtained within our model, given by Eq. (7.97). Further,

assuming perfect spin polarization, i.e., a half-metal, the current scales with the square

of the conductance between the half-metal and the dot, as within our model. However,

let us emphasize that the setup we use should be simpler to realize experimentally,

since no quantum dot is needed.

At non-zero voltages applied across the junction, the angular dependence of the current

is strongly modified. In general, the voltage competes with the frequency. In the limit

of U ≫ ω ≫ 1, the current scales with the third power of the voltage. However, note

that this is only true, if the spin polarization is perfect.

Note that the general current expression (at arbitrary ω and U) in the pure Andreev

regime is not invariant under α → α−1, as can be seen from Eqs. (7.87) - (7.89). Since

the normal state transparency is invariant under this operation (see Eq. (7.46)), the

general current expression is not a function of only the normal state transparency, but

rather a function of α.
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(a) (b)

Fig. 7.4: Current through the half-metal/superconductor interface as a function of the pre-
cession frequency Ω at zero voltage and zero temperature. In (b) the curves are
normalized to their maximum values. The red and green curves show the current for
a tunnel junction with the same transparency, but different values for α. The blue
curve is a transparent junction. The precession angle for all curves is θ = arctan

√
2,

which is the angle that yields the highest current in the tunnel limit (see Eq. (7.97)).

Let us now consider the Andreev current through the junction beyond the restrictive

limit of ω ≪ 1, but let us keep zero temperature and consider no voltage bias. In

the absence of a voltage bias the lowest order contribution to the current is in t4 for

the relaxation model considering an adjacent normal metal. Hence, the dominant

contribution to the current are Andreev processes. Note that in the subgap regime

(~Ω < ∆), the current is a pure Andreev current, since only even powers of α contribute.

The current can be evaluated numerically. Fig. 7.4 shows the current as a function of

the precession frequency for a tunnel junction (α = 0.1 and α = 10, that both give rise

to the same transmission T ≈ 0.33) and for a transparent junction (α = 1 with T = 1).

The cone angle of the magnetization θ = arctan
√

2 is chosen, such that it maximizes

the tunnel junction angular dependence function sin2 θ cos θ (see Eq. (7.97)).

For small frequencies ~Ω ≪ ∆, the curves follow the Ω5 scaling as evident from

Eq. (7.96). Beyond this interval, the current increases until its maximum at around

~Ω ≈ 2∆. Depending on α, the saturation value for large frequencies, discussed in

Appendix F, may be significantly smaller than the maximum. Note that the maximum

value of the current is not determined by the transmission T , but rather by the reduced

hopping element α, as evident from Fig. 7.4(a).

For large frequencies far beyond the gap, we find a finite zero voltage current driven by

the magnetization dynamics. This current is an excess current, since there is no current
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(a) angular dependence of the current (b) deviation from sin2 θ cos θ

Fig. 7.5: (a) Current through the half-metal/superconductor interface as a function of the
precession angle θ at zero voltage and zero temperature. The current is normalized
to its maximum value. The red curve is given for a transparent junction α = 1 and a
frequency of ~Ω = 3∆. The dashed black curve is the function sin2 θ cos θ (normalized
to its maximum value) for comparison. (b) The difference of the two curves in (a).

in the normal state (see Sec. 7.4.3). This excess current is similar to the (voltage driven)

excess current in N/S junctions.

Appendix F discusses in more detail the current at high frequencies, i.e., ω ≫ 1, for

zero voltage bias and zero temperature. The main result is that the angular dependence

follows the sin2 θ cos θ behavior in the tunnel limit. The angle dependence is changed

for a transparent junction. However, these changes are small, such that in a very good

approximation the angular dependence is still given by sin2 θ cos θ. Fig. 7.5(a) shows

the angular dependence of the current for a transparent junction at zero voltage bias

and zero temperature. The curve is given for a frequency of ~Ω = 3∆. Fig. 7.5(b)

gives the deviations of the angular dependence of the current from the tunnel junction

behavior. For smaller frequencies the dependence matches even better the sin2 θ cos θ

dependence.

Let us comment on the feasibility of an experimental detection of an Andreev current

through the HM/S junction. The zero voltage current scales with the fifth power of the

frequency (see Eq. (7.96)), which results in small currents. However, the frequency

can be chosen of the order of the gap, ~Ω ∼ ∆, giving a reasonable current amplitude.

Further, an interface with a high transparency should be favored. Since there is no

normal state current at zero voltage bias (see Sec. 7.4.3), the Andreev current can be

easily distinguished from a normal current by measuring once in the superconducting
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state, once in the normal state. Additionally, as we will show in Chapter 8, a more

realistic interface geometry and disorder in the ferromagnet both enhance the current.

So far, we have considered an HM/S junction, but we have formulated the formalism

generally enough to treat an F/S junction. However, since the general expressions were

already complicated for the half-metal, we will focus on F/S tunnel junctions, where

the problem can be treated in a Fermi’s golden rule calculation. The results are given in

Chapter 8.

We will also show in Chapter 8 that the other distribution function (given in Eq. (6.19)),

corresponding to a relaxation model with phonons and spin-orbit interaction, yields

the same result for tunnel junctions for small precession angles θ. The subgap Andreev

current is thus independent of the specific relaxation model chosen. However, there is a

region of intermediate frequencies for the distribution function given in Eq. (6.19), for

which a quasiparticle current in order |t|2 is dominant (see also Ref. [112]). For large

frequencies, there is again an excess current due to Andreev reflections. The crossover

takes place at ω ∼ (α lnα)−1.
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8Andreev current through the

extended

ferromagnet/superconductor

tunnel junction

In the previous chapter we established the current expression through an HM/S junction

in the point contact geometry. This geometry allowed us to capture the basic physics

of the system. In this chapter we want to focus on the experimentally more relevant

extended interface geometry. We restrict our considerations to tunnel junctions with

small transparency. In Sec. 8.1 we derive a general current expression from a golden

rule calculation and derive an expression for the tunnel conductance of the interface.

In Sec. 8.2 we evaluate the current for a ballistic F/S junction. In Sec. 8.3 we treat

disorder in the leads. We give a brief introduction to the disorder formalism and show

that disorder enhances the current through the interface.

8.1 Current expression from Fermi’s golden rule

We consider the setup presented in Sec. 6.1 with two modifications: First, throughout

the entire chapter we consider tunnel junctions with a small transparency. Second, we

consider a more general hopping element that allows us to treat different interface

geometries. Additionally, we are only interested in the subgap Andreev current. The

tunnel regime allows us to calculate this current using lowest order perturbation theory,

i.e., within a Fermi’s golden rule expression.

The following presentation of the general formalism is based on the calculation of

the Andreev current through a disordered N/S interface used in [117, 261] and given

in detail in [262]. This section gives the generalization of this formalism to an F/S

interface using the same steps as in the previously cited references. F/S interfaces

have been investigated within this formalism in the context of non-local processes in

multi-terminal structures [263] and for ferromagnets with domain walls [264].
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It is convenient to express the tunnel Hamiltonian using the eigenbasis of both leads. In

Sec. 6.2 we have seen that for the ferromagnet this corresponds to working in a rotating

frame of reference (Eq. (6.7)) and applying a spin rotation (Eq. (6.9)). So far (see

Chapter 7), we have used a description in terms of electrons for the superconductor,

since the Green’s functions had easy definitions in this basis. Now, we diagonalize the

BCS Hamiltonian using the following Bogoliubov transformation

aqσ = ei
φ

2 [uqγqσ − σvqγ
†
−(qσ)], (8.1)

where the BCS coherence factors read uq = 1√
2

√

1 + ζq
Eq

and vq = 1√
2

√

1 − ζq
Eq

and the

energy is given by Eq =
√

ζ2
q + ∆2. Further, we introduced the quasiparticle operator

γ†
qσ that creates a Bogoliubov quasiparticle, which is a superposition of an electron and

a hole. The diagonalized superconductor Hamiltonian in the rotating frame reads

H̃S =
∑

q,σ

(
√

ζq
2 + ∆2 − σ

~Ω

2

)

︸ ︷︷ ︸

Eqσ

γ†
qσγqσ. (8.2)

The excitations are fermionic with a Fermi-Dirac distribution function. Using the

Bogoliubov transformation in Eq. (8.1), we can write the tunnel Hamiltonian Eq. (6.5)

as

H̃T =
∑

qkσ

e−iφ
2 [u∗

qγ
†
qσ − σv∗

qγ−(qσ)](ũσt
↑
qkβk↑ − σṽσt

↓
qkβk↓) + h.c., (8.3)

where the hopping elements were previously defined in Eq. (6.6). We assume a spin

conserving hopping, giving a tunnel amplitude that does not have spin indices. The

rotation of the spin quantization axis given in Eq. (6.9) gives the factors ũ↑ = ṽ↓ = cos θ
2

and ṽ↑ = ũ↓ = sin θ
2
.

8.1.1 Tunnel conductance

The purpose of this subsection is to show how the tunnel conductance can be obtained

within this formalism. We derive a general expression that can be further evaluated

depending on the interface geometry. For a disordered junction, the disorder average

over the conductance has to be taken. The necessity of knowing the tunnel conduc-

tance becomes more apparent, when using a diagrammatic approach for the current

evaluation in the presence of disorder.
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We determine the tunnel conductance for the junction in the normal state with a static

magnetization. Fermi’s golden rule applied to the tunnel Hamiltonian given in Eq. (8.3)

yields for the current

I =
2πe

~

∑

k,q,σ

∣
∣
∣tσqk

∣
∣
∣

2
δ(ξk + eV − ζq)[f(ξk) − f(ζq)]. (8.4)

At zero temperature and in the limit of zero voltage the conductance reads

GT = 2π2G0

∑

k,q,σ

∣
∣
∣tσqk

∣
∣
∣

2
δ(ξk)δ(ζq), (8.5)

where we introduced the conductance quantum G0 = 2e2

h
. Let us introduce the non-local

density of states, which is also called spectral function,

KXσ
ξ (r1, r2) =

∑

k

δ(ξ − ξkσ)φXkσ(r1)φX∗
kσ (r2), (8.6)

where the superscript X ∈ {N, S,F} denotes the lead. Further using the expressions for

the hopping element in Eq. (6.6), the tunnel conductance can be expressed as

GT = 2π2G0

∑

σ

∫

dr1

∫

dr2

∫

dr′

1

∫

dr′

2
t(r1, r

′

1
)t∗(r2, r

′

2
)KNσ

0 (r′

2
, r′

1
)KFσ

0 (r1, r2).

(8.7)

We will evaluate this expression depending on the geometry and depending on whether

we consider a ballistic or a disordered junction.

8.1.2 Andreev current

In order to calculate the Andreev current perturbatively from Eq. (8.3), we consider the

following microscopic process. Two electrons from the ferromagnet are transferred to

the superconductor and form a Cooper pair, i.e., they are added to the condensate. The

intial (|i〉) and final (|f〉) states corresponding to this process, written in an excitation

basis, are given by

|i〉 = |0〉S |kσ, k′σ′〉F , (8.8)

|f〉 = |0〉S |0〉F . (8.9)
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Here the subscript S refers to quasiparticle states in the superconductor, whereas the

subscript F refers to the ferromagnet. The probability of a direct transfer of two

electrons is proportional to
∣
∣
∣〈i|H̃T|f〉

∣
∣
∣

2
and, therefore, vanishes. A direct transfer

corresponds to a process in second order in the tunnel element. As we have already

seen in Sec. 7.4.2, the lowest non-zero contribution to the Andreev current is in forth

order in the tunnel amplitude. The matrix element from the next order term in the

perturbation expansion is well-known and can be written as [265]

A =
∑

m

〈

f
∣
∣
∣H̃T

∣
∣
∣m
〉 〈

m
∣
∣
∣H̃T

∣
∣
∣ i
〉

Em − Ei
, (8.10)

where the sum runs over all virtuel intermediate states |m〉 and Em (Ei) denotes the

energy of the intermediate state (initial state). The Andreev current can be written as

I =
2πe

~

∑

σ,σ′

∑

k,k′

∣
∣
∣Aσσ

′
kk′

∣
∣
∣

2
δ(ξkσ + ξk′σ′ + 2eV )(1 − fσ(ξk) − fσ′(ξk′)). (8.11)

Here Aσσ
′

kk′ denotes the matrix element A (Eq. (8.10)) evaluated for the initial and

final states given in Eqs. (8.8) and (8.9). Recall that ξkσ denotes the kinetic energy

in the ferromagnetic lead. We use the previously derived distribution function of the

ferromagnet (for the relaxation model assuming relaxation in an adjacent normal

metal), given by Eq. (6.18) that reads

fF
σ (E) = cos2 θ

2
f

(

E + σ
~Ω

2

)

+ sin2 θ

2
f

(

E − σ
~Ω

2

)

, (8.12)

where f(E) is the Fermi-Dirac distribution function. We will afterwards compare the

result to the current that we obtain with the distribution function defined in Eq. (6.19),

proposed by Ref. [112] (corresponding to a relaxation model with phonons and spin-

orbit coupling). We rewrite the energies in the current expression (given in Eq. (8.11))

using
∫

dξδ(ξ − ξkσ)
∫

dξ′δ(ξ′ − ξk′σ′) = 1. (8.13)
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Further, we change the newly defined continuous energy variables ξ, ξ′ to a center of

mass variable ξ0 and a difference variable ǫ, defined via

ξ = ξ0 +
ǫ

2
, (8.14)

ξ′ = ξ0 − ǫ

2
. (8.15)

After integration over the center of mass energy variable ξ0 the current expression yields

I =
πe

~

∫

dǫ
∑

σ,σ′
Aσ,σ′(ǫ, eV )

[

1 − fσ

(
ǫ

2
− eV

)

− fσ′

(

− ǫ

2
− eV

)]

, (8.16)

where we defined the dimensionless quantity

Aσσ′(ǫ, eV ) =
∑

k,k′
δ
(
ǫ

2
− eV − ξkσ

)

δ
(

− ǫ

2
− eV − ξk′σ′

) ∣
∣
∣Aσσ

′
kk′

∣
∣
∣

2
. (8.17)

We will now evaluate this expression. Therefore, we need to evaluate the matrix element

Aσσ
′

kk′ . It is straightforward to evaluate Eq. (8.10) with the states given in Eqs. (8.8) and

(8.9). Note that the virtual intermediate state can be written as |m〉 = |qσ1〉S |k1η1〉F. In

the following we give the explicit expressions for all four different combinations of the

spin indices. We start the evaluation with the expression for A↑↑
kk′, which is the only

matrix element in the case of a half-metal. As in the previous chapter, we denote the

majority spin by ↑. We obtain

A↑↑
kk′ = e−iφ cos

θ

2
sin

θ

2

∑

q

uqvq
[

t↑−qk′t
↑
qk

(

(Eq↑ − Ek↑)
−1 − (Eq↓ − Ek↑)

−1
)

−t↑−qkt↑qk′

(

(Eq↑ − Ek′↑)
−1 − (Eq↓ − Ek′↑)

−1
)]

,

(8.18)

where the energy of the superconductor is given by Eqσ =
√

ζq
2 + ∆2 − σ ~Ω

2
(see

Eq. (8.2)) and the energy of the ferromagnet is given by Ekη = ξkη + eV , incorporating

the chemical potential shift due to the applied voltage to the ferromagnet side. As
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shown in Eq. (8.13), we change to continuous integration variables. Additionally

manipulating the summation indices (p → −p and q → −q), we obtain

A↑↑(ǫ, eV ) =
sin2 θ

4

∑

kk′qp

∫

dξ
∫

dξ′
∫

dζ
∫

dζ ′δ(ξ − ξk↑)δ(ξ
′ − ξ′

k′↑)δ (ζ − ζq) δ (ζ ′ − ζp)

· δ( ǫ
2

− eV − ξ)δ(− ǫ

2
− eV − ξ′)t↑−qk′t

↑
qkt

↑∗
−pk′t

↑∗
pk

· [G↑(ζ, ξ) −G↓(ζ, ξ) −G↑(ζ, ξ
′) +G↓(ζ, ξ

′)]

· [G↑(ζ
′, ξ) −G↓(ζ

′, ξ) −G↑(ζ
′, ξ′) +G↓(ζ

′, ξ′)],

(8.19)

where we defined

Gσ(ζ, ξ) = u(ζ)v(ζ)

(

E(ζ) − σ
~Ω

2
− ξ + eV

)−1

. (8.20)

We defined E(ζ) =
√
ζ2 + ∆2. Using the expression for the hopping element in Eq. (6.6),

we obtain

A↑↑(ǫ, eV ) =
sin2 θ

4

∫

dξ
∫

dξ′
∫

dζ
∫

dζ ′δ
(
ǫ

2
− eV − ξ

)

δ
(

− ǫ

2
− eV − ξ′

)

· Ξ↑↑(ζ, ζ ′, ξ, ξ′)[G↑(ζ, ξ) −G↓(ζ, ξ) −G↑(ζ, ξ
′) +G↓(ζ, ξ

′)]

· [G↑(ζ
′, ξ) −G↓(ζ

′, ξ) −G↑(ζ
′, ξ′) +G↓(ζ

′, ξ′)],

(8.21)

where we defined the dimensionless quantity

Ξσσ′
(ζ, ζ ′, ξ, ξ′) =

∫

dr1

∫

dr2

∫

dr3

∫

dr4

∫

dr′

1

∫

dr′

2

∫

dr′

3

∫

dr′

4
t(r1, r

′

1
)t(r2, r

′

2
)

· t(r3, r
′

3
)∗t(r4, r

′

4
)∗KS

ζ (r′

1
, r′

2
)KS

ζ′(r′

4
, r′

3
)KFσ

ξ (r2, r4)KFσ′
ξ′ (r1, r3).

(8.22)

Further, we used the non-local density of states, introduced in Eq. (8.6). Eq. (8.22)

depends on the interface geometry via the hopping amplitudes. Hence, the geometry

has to be specified for a further evaluation of Eqs. (8.16) and (8.21). The presented

formalism allows us to treat disorder. In the case of disordered leads, presented in

Sec. 8.3, we have to perform the disorder average over Eq. (8.22).

For a ferromagnet with both spin polarizations we have to evaluate Eq. (8.17) for the

remaining three spin combinations. For σ = σ′ =↓ the calculation is analogous to above
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calculation. A↓↓(ǫ, eV ) is given by the right hand side of Eq. (8.21) with Ξ↑↑ replaced

by Ξ↓↓.

Now consider nonequal spins σ =↑ and σ′ =↓. Evaluation of the matrix element from

Fermi’s golden rule (Eqs. (8.8) - (8.10)) yields:

A↑↓(ǫ, eV ) =
∑

k,k′
δ
(
ǫ

2
− eV − ξk↑

)

δ
(

− ǫ

2
− eV − ξk′↓

)
∑

pq

uqvqupvp

·
[

sin2 θ

2
(t↑−qkt

↓
qk′(Eq↑ − Ek′↓)

−1 + t↓−qk′t
↑
qk(Eq↓ − Ek↑)

−1)

+ cos2 θ

2
(t↑−qkt

↓
qk′(Eq↑ − Ek′↓)

−1 + t↓−qk′t
↑
qk(Eq↑ − Ek↑)

−1

]

·
[

sin2 θ

2
(t↑∗

−pkt
↓∗
pk′(Ep↑ − Ek′↓)

−1 + t↓∗
−pk′t

↑∗
pk(Ep↓ − Ek↑)

−1)

+ cos2 θ

2
(t↑∗

−pkt
↓∗
pk′(Ep↑ − Ek′↓)

−1 + t↓∗
−pk′t

↑∗
pk(Ep↑ − Ek↑)

−1

]

(8.23)

The energies for the superconductor Eqσ and the ferromagnet Ekη are defined as before.

The indices p, q refer to the superconductor, whereas the indices k, k′ refer to the

ferromagnet. Introducing continuous integration variables, the expression reads

A↑↓(ǫ, eV ) =
∫

dξ
∫

dξ′
∫

dζ
∫

dζ ′δ
(
ǫ

2
− eV − ξ

)

δ
(

− ǫ

2
− eV − ξ′

)

Ξ↓↑(ζ, ζ ′, ξ′, ξ)

·
[

sin2 θ

2
(G↑(ζ, ξ

′) +G↓(ζ, ξ)) + cos2 θ

2
(G↓(ζ, ξ

′) +G↑(ζ, ξ))

]

·
[

sin2 θ

2
(G↑(ζ

′, ξ′) +G↓(ζ
′, ξ)) + cos2 θ

2
(G↓(ζ

′, ξ′) +G↑(ζ
′, ξ))

]

.

(8.24)

Note that the arguments ξ and ξ′ in Ξ↓↑(ζ, ζ ′, ξ′, ξ) are interchanged with respect to the

definition given in Eq. (8.22). A↑↓(ǫ, eV ) can analogously be expressed by the right

hand side of Eq. (8.24) with cos θ
2

↔ sin θ
2

and Ξ↓↑(ζ, ζ ′, ξ′, ξ) → Ξ↓↑(ζ, ζ ′, ξ, ξ′). Note

that we expressed both terms A↑↓ and A↓↑ using the same function Ξ↓↑.

In order to further evaluate the expressions, we have to specify the geometry of the

junction. In the Sec. 8.2 we will evaluate the current for a ballistic junction in a point

contact geometry and in an extended interface geometry.
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8.2 Andreev current for a ballistic

ferromagnet/superconductor junction

In this section we want to evaluate the current given by Eq. (8.16) for ballistic junctions,

where the leads do not contain any disorder. We will use the ballistic results for

comparison with disordered junctions. In the following we consider a point contact

geometry, as in Chapter 7. The difference with respect to the previous chapter is that

we include a finite minority carrier concentration, i.e., we consider an F/S junction,

whereas previously we considered an HM/S junction with perfect spin polarization.

However, we are now restricted to the tunnel regime. We show that the point contact

results obtained in Sec. 8.2.1 can be easily generalized to the extended interface

(Sec. 8.2.2). In both cases, the main task is to evaluate Eq. (8.22) with the appropriate

hopping amplitudes corresponding to the interface geometries.

8.2.1 Point contact geometry

We now want to calculate the current for an F/S tunnel junction with ballistic leads

in a point contact geometry. The current through the HM/S junction can be obtained

from the F/S junction as a special case for a zero minority carrier concentration.

Using the tunnel amplitude for a point contact geometry introduced in Eq. (7.1) and

usingKSσ
0 (0, 0) = νS andKFσ

0 (0, 0) = νσ, valid for ballistic leads, the tunnel conductance

for a point contact defined in Eq. (8.7) reads

GBPC
T = 2G0

∑

σ

ασ (8.25)

As in Chapter 7, we assumed a constant (normal state) density of states. Recall the defi-

nition ασ = π2νSνσt
2. The tunnel conductance agrees with the lowest order expression

for the conductance from the NEGF formalism, obtained expanding Eqs. (7.65) and

(7.64) in lowest order in t.

Let us now calculate the Andreev current. First, we evaluate Eq. (8.22) for the point

contact hopping element in Eq. (7.1):

Ξσσ′
BPC(ζ, ζ ′, ξ, ξ′) = π−4ασασ′ (8.26)
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Ξσσ′
BPC does not depend on the energy variables and can thus be taken out of the integrals

in Eqs. (8.21) and (8.24). The integration over the ferromagnet variables ξ and ξ′ is

then trivial (Dirac-δ distributions). Further, the two integrals over the superconductor

variables ζ and ζ ′ separate. The remaining integrals can be solved using the following

relation that follows from Eq. (G.5) (for a < 1, see Appendix G):

∫

dζu(ζ)v(ζ)
(

(E(ζ) − a∆)−1 + (E(ζ) + a∆)−1
)

=
π√

1 − a2
(8.27)

Finally, the ballistic current in a point contact geometry reads

IBPC
FS = 4

e∆

h

∫ ∞

−∞
dǫΘ(− |ǫ↑| + 1)Θ(− |ǫ↓| + 1)

·







α2
↑
sin2 θ

4

∣
∣
∣
∣
∣
∣

1
√

1 − ǫ2
↑

− 1
√

1 − ǫ2
↓

∣
∣
∣
∣
∣
∣

2

[fF
↓ (ǫ+ U) − fF

↑ (ǫ− U)]

+ α↑α↓

∣
∣
∣
∣
∣
∣

cos2 θ
2

√

1 − ǫ2
↑

+
sin2 θ

2
√

1 − ǫ2
↓

∣
∣
∣
∣
∣
∣

2

[fF
↑ (ǫ+ U) − fF

↑ (ǫ− U)]

+ α↑α↓

∣
∣
∣
∣
∣
∣

sin2 θ
2

√

1 − ǫ2
↑

+
cos2 θ

2
√

1 − ǫ2
↓

∣
∣
∣
∣
∣
∣

2

[fF
↓ (ǫ+ U) − fF

↓ (ǫ− U)]

+α2
↓

∣
∣
∣
∣
∣
∣

1
√

1 − ǫ2
↑

− 1
√

1 − ǫ2
↓

∣
∣
∣
∣
∣
∣

2

[fF
↑ (ǫ+ U) − fF

↓ (ǫ− U)]







,

(8.28)

where we defined the dimensionless quantities U = eV
∆

, ǫσ =
E+σ ~Ω

2

∆
and ω = ~Ω

∆
. We

used that the distribution function given in Eq. (8.12) fulfills fF
↑ (−E) = fF

↓ (E). For

further evaluation we assume zero temperature. Additionally, we consider the small

voltages and small frequencies scaling for eV, ~Ω ≪ ∆. We can thus evaluate the

distribution functions using Eq. (7.94). Additionally we develop the integrand and

keep only the lowest order terms in Ω and ǫ. We obtain after integration and after some

algebra keeping only the lowest order terms

IBPC
FS =

e∆

h

8

3

(
ω

2

)2

sin2 θ

[

(α2
↑ + α2

↓)U

(

U2 + 3
(
ω

2

)2
)

+(α2
↑ − α2

↓)
ω

2

((
ω

2

)2

+ 3U2

)

cos θ

]

+
e∆

h
24α↑α↓U.

(8.29)
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First of all, note that for a half-metal with zero minority carrier concentration (α↓ = 0),

the expression coincides with the previously obtained (more general, since for any

transparency) expression given in Eq. (7.96).

Let us discuss the current in the absence of a bias voltage, i.e., U = 0. The zero bias

current is proportional to the difference of the squares of the reduced hopping elements

and therefore proportional to the difference of the squares of the spin-dependent density

of states. Expressing the reduced hopping elements ασ via the transmission using the

tunnel junction relation Tσ ≈ 4ασ, the current is proportional to the difference of

the squares of the transmissions, i.e., I ∝ (T 2
↑ − T 2

↓ ). The two spin species give thus

independent contributions with opposite signs to the current. For equal transmissions

(as in a normal metal) the current vanishes. As for the HM/S junction, the current

scales with the fifth power of the driving frequency. Further, the angular dependence is

not changed including a finite minority carrier concentration.

Let us now focus on U 6= 0. The term in the second line of Eq. (8.29) containing the

product of the reduced hopping elements α↑α↓ is absent in the half-metal case. This

term is due to Andreev processes that involve electrons with opposite spins. A voltage is

needed for this contribution. Further, it is independent of the magnetization dynamics.

Indeed, expanding our result for the current through an F/S junction with a static

magnetization from Sec. 7.4.4, i.e., Eqs. (7.76) and (7.77), in lowest order in the tunnel

amplitude t at zero temperature and using U ≪ 1, we reproduce this term.

Let us consider a finite bias voltage (U 6= 0) and a non-zero α↓. In this case Eq. (8.29)

simplifies to

IBPC
FS =

e∆

h

[

8

3
sin2 θ cos θ

(
ω

2

)5

(α2
↑ − α2

↓) + 24α↑α↓U

]

. (8.30)

The first term is only relevant if U ∼ ω5, i.e., at very low voltages U ≪ ω ≪ 1. At volt-

ages that are comparable to the frequency, the effect of the precessing magnetization is

negligible and we get a linear relation between current and voltage with a conductance

given by

G = G0
T↑T↓

2
. (8.31)

These results predict which parameter regime is most suitable for an experimental

detection. In order to detect the peculiar Andreev reflection properties, a zero voltage

measurement is preferrable. First, as we have seen in Sec. 7.4.3, no normal state effect
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exists. Second, the term involving Andreev reflections from electrons with opposite

spins is also absent. Even though any difference in the transparency for minority

and majority carriers gives rise to a non-zero current, a ferromagnet with strong spin

polarization is advantageous in order to maximize the effect. Ideally, a half-metal at

zero voltage bias is chosen.

In order to check in how far the result depends on the chosen relaxation machanism,

let us now use the other distribution function given in Eq. (6.19) and corresponding

to the relaxation model with phonons and spin-orbit coupling (see also Sec. 6.3). We

evaluate the current expression in Eq. (8.28) with this distribution function in the same

limits as before, i.e., at zero temperature and for small voltages and small frequencies

(ω, U ≪ 1). Performing the previously explained steps, the current yields after a lengthy

calculation

ĨBPC
FS =

e∆

h

8

3

(
ω

2

)2

sin2 θ

[

(α2
↑ + α2

↓)U

(

U2 + 3
(
ω

2

)2

cos2 θ

)

+(α2
↑ − α2

↓)
ω

2

((
ω

2

)2

cos2 θ + 3U2

)

cos θ

]

+
e∆

h
24α↑α↓U.

(8.32)

Here, we kept only the lowest order in ω, U contributions to the current. The difference

with respect to the previous result given in Eq. (8.29) is indicated in red. The additional

cos2 θ factor becomes important for large angles. However, in general, the precession

angle θ is small, since ~Ω ≪ J . For small angles, both models give identical expressions.

8.2.2 Extended interface

After having established the results for a point contact geometry, we can now consider a

more realistic geometry, i.e., an extended interface, as shown schematically in Fig. 6.1.

This geometry is easier to realize in a possible experiment. Further, it allows us to study

disorder effects in the leads. However, before considering disorder, let us understand the

basic properties, when the leads are ballistic and make the connection to the previously

established point contact results.
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We assume three dimensional leads. Let the tunnel barrier, separating the leads, be

located at z = 0. The corresponding tunnel amplitude is given by [266]

t(r1, r2) = δ′(z1)δ
′(z2)δ(ρ1 − ρ2)t(ρ1), (8.33)

where ′ denotes the derivative with respect to the argument. Further, we introduced

polar coordinates r = (ρ, z), where ρ lies in the plane of the junction.

In order to compute the current, we evaluate Eq. (8.22) using the tunnel amplitude in

Eq. (8.33). We are left with the evaluation of the non-local density of states, defined in

Eq. (8.6). Without disorder the non-local density of states reads

KX
ξ (r1, r2) = νXg0(r1 − r2), (8.34)

where X ∈ {S,F} and we defined

g0(r) =
sin kFr

kFr
. (8.35)

This expression can be obtained from Eq. (H.13) (expression in the presence of disorder

given in Appendix H) in the limit of r ≪ le, where r = |r| and le denotes the mean

free path. Using the expression for the density of states (Eq. (8.34)) and the tunnel

amplitude (Eq. (8.33)), Eq. (8.22) yields after partial integration over the z-coordinates

and evaluation of the Dirac-δ distribution functions

Ξσσ′
Bext(ζ, ζ

′, ξ, ξ′) = Ξσσ′
Bext = ν2

Sνσνσ′

∫

dρ1

∫

dρ2

∫

dρ3

∫

dρ4 t(ρ1)t(ρ2)t(ρ3)t(ρ4)

g̃0(ρ1 − ρ2)g̃0(ρ4 − ρ3)g̃0(ρ2 − ρ4)g̃0(ρ1 − ρ3).

(8.36)

We defined g̃0(r) =
g′

0(r)

|r| . We change the integration coordinates to a center of mass

system with center of mass coordinate R and difference coordinates defined as r1 =

ρ1 − ρ2, r2 = ρ3 − ρ4, and r3 = ρ2 − ρ3. Further, we assume that t depends only on

the center of mass coordinate and obtain

Ξσσ′
Bext = ν2

Sνσνσ′X
∫

dR t4(R), (8.37)
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where we defined

X =
∫

dr1

∫

dr2

∫

dr3 g̃0(r1)g̃0(−r2)g̃0(r2 + r3)g̃0(r1 + r3) =
(2π)3

6
k2

F (8.38)

We present the steps for the solution of the integrals in Appendix I. Here, we introduced

dimensionless variables xi = kFri. If we assume a homogeneous interface, where t is

space independent, we obtain

Ξσσ′
Bext = ν2

Sνσνσ′t4
(2π)3

6
k2

FS, (8.39)

where S denotes the area of the interface between the superconductor and the ferro-

magnet. This expression can be expressed in terms of the point contact result given in

Eq. (8.26), yielding

Ξσσ′
Bext = (2π)3k

2
F

6
SΞσσ′

BPC. (8.40)

Note that the number of open transport channels, as obtained from the Sharvin conduc-

tance [267], is given by

Nch =
Sk2

F

4π
(8.41)

The point contact has one conduction channel, whereas for the extended interface each

transverse mode is a conduction channel. We can think of the extended interface as

being a lot of point contacts in parallel. The transfer of electrons across the junction is

local. Thus, the main modification of the extended interface with respect to the point

contact is the larger number of transport channels. Using that above expression in

Eq. (8.40) is energy independent, we obtain

IBext
FS =

(2π)4

3
NchI

BPC
FS . (8.42)

The current through the extended ballistic interface IBext
FS is thus proportional to the

current through the ballistic point contact IBPC
FS . The proportionality factor is a number

times the large number of open transport channels, giving IBext
FS ≫ IBPC

FS . The entire

discussion of the physics of the ballistic tunnel junction in the point contact geometry is

thus also valid for the extended interface.
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8.3 Disorder formalism

So far, we considered ballistic leads. Let us now consider a junction containing disorder.

We focus on a low concentration of non-magnetic impurities in the leads. These

impurities induce spin conserving backscattering and may thus change the current

through the junction. Disordered junctions are experimentally relevant, since no sample

is a perfect crystal and thus any junction contains impurities.

It has been shown for an N/S junction in Ref. [117] that disorder has a strong influence

on the subgap current. The authors have shown that interference effects in the presence

of disorder lead to a current that largely exceeds the current for clean junctions. We will

show that this is also true for the subgap current through our F/S junction, subjected to

ferromagnetic resonance.

In the following we show that a point contact geometry is not sensitive to disorder

in the leads. We demonstrate that, in contrary, disorder affects the current flowing

through the extended interface. We want to evaluate the disorder averaged current,

i.e., the disorder average of Eq. (8.16). Therefore we need to compute the disorder

average of Eq. (8.22), for which we need to know the disorder average of products of

the non-local density of states, defined in Eq. (8.6).

8.3.1 General disorder formalism

A presentation of the disorder formalism can be found in [268]. Here, we present

the main underlying assumptions and the main concepts. For the presentation of the

general formalism we mainly follow Ref. [268].

We consider a Gaussian disorder model, where the disorder is described by a random

potential V (r) that has zero average 〈V (r)〉 = 0, but a non-zero second cumulant

〈V (r)V (r′)〉 = B(r − r′). (8.43)

All further cumulants shall be zero. The disorder potential scatters electrons. In the

following we assume weak disorder, where the momentum vector k and the mean free

path le fulfill kle ≫ 1.
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We treat the disorder potential perturbatively. We express the non-local density of states

in terms of advanced and retarded Green’s functions, for which we can write down a

perturbation expansion in form of a Dyson series. The Dyson series can be represented

as an infinite sum over different diagrams. It is convenient to separate the contribution

from connected diagrams from the contribution from disconnected diagrams.

Denoting the disorder average by 〈· · ·〉, we can write the disorder average over the

product of two non-local density of states as a sum of two terms:

〈

Kǫ(r1, r
′

1
)Kǫ−ω(r′

2
, r2)

〉

=
〈

Kǫ(r1, r
′

1
)Kǫ−ω(r′

2
, r2)

〉c
+
〈

Kǫ(r1, r
′

1
)
〉 〈

Kǫ−ω(r′

2
, r2)

〉

,

(8.44)

where the superscript c stands for connected diagrams. The disorder average over a

single non-local density of states is relatively easy to obtain. The explicit calculation

(see Ref. [268]) can be found in Appendix H. Here, we review the steps that need to be

done: The total Green’s function can be obtained from a perturbation expansion in the

potential V and the unperturbed Green’s function. The self-energy is taken until first

order and its imaginary part is expressed using the elastic mean collision time τe. In the

weak disorder limit, we obtain (see Eq. (H.13))

〈Kǫ(r1, r2)〉 = ν0g(r1 − r2), (8.45)

where ν0 denotes the local density of states, assumed to be constant. Further, we

defined

g(R) =
sin kR

kR
e− R

2le . (8.46)

In order to evaluate the contribution from connected diagrams in Eq. (8.44), we

make the “Diffuson” (or ladder) approximation (not to be confused with the diffusion

approximation). We assume that for weak disorder the typical length between two

scattering centers, i.e., the mean free path le, is much bigger than the length scale of

the Gaussian disorder potential. Then, the main contribution to the average is due to

trajectories that have the same scattering centers. For weak disorder, the scattering

events are independent. This has a second consequence: If the order of the scattering

centers for two trajectories is different, the paths taken differ at least by le, which

is much larger than the wave length λ. Consequently, the dephasing between two

such processes is large and we can neglect such a contribution. We are thus left with

two different coherent processes that give the main contribution: A diagram called
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(a)

(b)

(c)

(d)

Fig. 8.1: (a), (b): Real space representation of two different coherent processes. The arrows
indicate the paths taken by two electrons, the circles represent diffusion centers. For a
Diffuson (a) (Cooperon (b)) the path between the diffusion centers is covered in the
same (opposite) order. (c), (d): Diagrammatic representation of the relevant Green’s
functions. The retarded (advanced) Green’s function is drawn as a solid (dashed) line.
The interaction due to the disorder potential is indicated by a dotted line with an X.
The diagrams are shown for two scattering centers involved. In general, there are
many scattering centers involved.

“Diffuson” describes a coherent process between two trajectories having all scattering

centers in common and covering them in the same order. A diagram called “Cooperon”

describes a coherent process between two trajectories having all scattering centers in

common and covering them in opposite order. The processes are schematically depicted

in Figs. 8.1(a), (b).

We now calculate the contributions of the Cooperon and Diffuson diagrams to the

connected average in Eq. (8.44). We express the non-local density of states in terms of

Green’s functions:

Kǫ(r, r
′) =

i

2π

(

GR(r, r′, ǫ) −GA(r, r′, ǫ)
)

, (8.47)

where GR (GA) denotes the retarded (advanced) Green’s function. In the weak disorder

limit, we approximate the average of the product of the retarded Green’s functions by the

product of the averages of the retarded Green’s functions, i.e.,
〈

GR
1 G

R
2

〉

=
〈

GR
1

〉 〈

GR
2

〉

,

giving

〈

Kǫ(r1, r
′

1
)Kǫ−ω(r′

2
, r2)

〉c ≈ 1

2π2
ℜ
〈

GR
ǫ (r1, r

′

1
)GA

ǫ−ω(r2, r
′

2
)
〉c
. (8.48)
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The Cooperon and Diffuson diagrams for the Green’s functions, that give the main

contribution to the average are depicted in Fig. 8.1(c), (d). Following Ref. [268],

we introduce the structure factor Γω(r3, r4) that accounts for all scattering processes

between coordinates r3 and r4 in Fig. 8.1(c). The contribution for the Diffuson can

then be written as

∫

dr3

∫

dr4 Γω(r3, r4)
〈

GR
ǫ (r1, r3)

〉 〈

GR
ǫ (r4, r

′

1
)
〉 〈

GA
ǫ−ω(r3, r2)

〉 〈

GA
ǫ−ω(r′

2
, r4)

〉

.

(8.49)

Before evaluating this expression, let us comment on the structure factor. It can be

written as a recursive integral equation, where the structure factor is decomposed

into a sum of two parts: One scattering event is taken out of the structure factor and

the remaining structure factor is computed, taking into account the free propagation

between the scattering event taken out of the structure factor and the remaining

structure factor. Further, it is proportional to the diffusion probability and one can show

that the structure factor (and therefore the diffusion probability Pd) fulfill a diffusion

equation given by

(−iω −D∆r2
)Pd(r1, r2, ω) = δ(r1 − r2), (8.50)

where the diffusion constant reads D =
v2

Fτe

d
with d being the dimension. ∆r2

denotes

the Laplace operator with respect to the coordinate r2. We will thus express our results

in terms of the diffusion probability that we obtain for a given model solving above

diffusion equation. For our model, we solve this diffusion equation in Sec. 8.3.2.

We now turn back to the evaluation of the Diffuson contribution in Eq. (8.49). We

make the so called “diffusion approxmation” (not to be confused with the already

made Diffuson approximation). The approximation consists of neglecting the spacial

variations of the structure factor with respect to the spacial variations of the Green’s

functions. We can thus take Γ out of the integrals and the integral expression separates

into a product of two independent integrals. These are of the form

∫

dr3

〈

GR
ǫ (r1, r3)

〉 〈

GA
ǫ (r3, r2)

〉

= 2πν0τeg(r1 − r2). (8.51)
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Here, we neglected the frequency dependence of the advanced Green’s function. A

similar calculation can be done for the Cooperon contribution, where we denote Pc the

Cooperon diffusion probability. Finally, Eq. (8.44) yields

〈

Kσ
ǫ (r1, r

′

1
)Kσ′

ǫ−ω(r′

2
, r2)

〉

=νσνσ′g(r1 − r′

1
)g(r′

2
− r2)

+
νσ
π
δσσ′ℜ

[

Pd(r1, r
′

1
, ω)g(r1 − r2)g(r′

1
− r′

2
)

+Pc(r1, r
′

1
, ω)g(r1 − r′

2
)g(r′

1
− r2)

]

,

(8.52)

where the first line is due to the non-connected terms. The second (third) line is the

contribution from a Diffuson (Cooperon). We neglected diffusion terms that are due to

electrons of opposite spins, since their energy difference is big in the ferromagnet, due

to the large effective exchange splitting.

Contrary to a magnetic field, the exchange field does not couple to the momentum of

the electrons. Therefore, if we assume the driving ac field to be small, the Cooperon

and Diffuson will be described by the same diffusion equation.

8.3.2 Solution of the diffusion equation

For a further evaluation of the current, we need the diffusion probabilities that are

solutions of the diffusion equation given in Eq. (8.50) and that enter the expression for

the average of the non-local density of states in Eq. (8.52).

We assume 3D leads that occupy the half-space bounded by the interface. Let us first

of all present how the boundary condition can be enforced. There are two different

types of boundary conditions. First, the Neumann boundary condition ensures zero

probability current across the boundary. Consequently, as discussed for example in

Ref. [268], particles may not leave the diffusion region. This corresponds to an isolated

system. Second, Dirichlet boundary conditions ensure zero probability at the boundary.

This corresponds to the system being coupled to reservoirs, from which an injected

particle never returns. We want to consider Neumann boundary conditions for the

diffusion, since electrons should not leave their half-space by means of diffusion. The

only process that should allow for a transfer across the interface is the tunneling,

described by the tunnel Hamiltonian. We can enforce the boundary condition with the
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so-called “image method”. It consists in combining the diffusion probability with its

mirror image, such that the probability current vanishes:

PN(ρ, z ≥ 0,ρ′, z′ ≥ 0, t) = P (ρ, z,ρ′, z′, t) + P (ρ,−z,ρ′,−z′, t), (8.53)

where PN denotes the probability with Neumann boundary conditions and P the proba-

bility obtained in a free 3D space. We used the previously defined polar coordinates

r = (ρ, z).

After a Fourier transform in both the frequency and the real space coordinates, the

diffusion equation in Eq. (8.50) reads (for an isotropic space)

(∂t +Dk2)P (k, t) = δ(t) (8.54)

and has the solution P (k, t) = Θ(t)e−Dk2t. After a Fourier transform back from recipro-

cal space to real space, we have

P (R, t) = Θ(t)(4πDt)− d
2 e− R2

4Dt , (8.55)

where this result is valid for any integer dimension d. In d = 3, a Fourier transform

back to energy space yields

P (R, ω) =
1

4πDR
e−(1−i)R

√
ω

2D . (8.56)

We give the explicit calculation for the last Fourier transform, using complex integration

methods, in Appendix J. Due to the interface geometry, we need the diffusion probability

for two in plane coordinates, given by

Pξ−ξ′(ρ1,ρ2) =
1

2π~D |ρ1 − ρ2|e
−(1−i)|ρ1−ρ2|

√
ξ−ξ′
2~D . (8.57)

8.3.3 Point contact geometry

We want to show that disorder does not significantly change the results in the point

contact geometry. The disorder averaged current depends on the disorder average of
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the quantity Ξ, defined in Eq. (8.22). Using the hopping amplitude defined in Eq. (7.1),

we obtain for a point contact

〈

Ξσσ′
DPC

〉

= t4
〈

KS
ζ (0, 0)KS

ζ′(0, 0)
〉 〈

KFσ
ξ (0, 0)KFσ′

ξ′ (0, 0)
〉

. (8.58)

Let us further evaluate the disorder averages. Using Eq. (8.52), we obtain

〈

Kσ
ǫ (0, 0)Kσ′

ǫ−ω(0, 0)
〉

= νσνσ′ +
νσ
π
δσσ′ℜ

[

P d
ω (0, 0) + P c

ω(0, 0)
]

. (8.59)

We will now show that the second term is negligible with respect to the first term and

we thus recover the result for the ballistic junction. Using Eq. (8.55) the probability for

a Diffuson reads

P d
ω (0, 0) =

∫ dt√
2π

(4πDt)− 3
2 . (8.60)

Hence,

ℜP d
ω (0, 0) ∼

√

|ω|
~2D3

, (8.61)

where the diffusion constant is given by D =
v2

Fτe

3
and the frequency is the frequency

of the magnetization precession, i.e., ω = Ω. We use the expression for the density of

states in three dimensions ν =
k3

F

(2π)2EF
, where kF is the Fermi wave vector and EF is the

Fermi energy and obtain

P d
ω (0, 0)

ν
∼

√
√
√
√~Ω

EF

(

~τ−1
e

EF

)3

. (8.62)

We consider the diffusive regime of weak disorder, where ~τ−1
e ≪ EF and we maintain

the assumption of a small rotation frequency ~Ω ≪ EF, giving P d
ω (0, 0) ≪ ν. Thus, the

second term in Eq. (8.59) is negligible with respect to the first one, giving

〈

Ξσσ′
DPC

〉

≈ νσνσ′t4. (8.63)

Comparing this expression to Eq. (8.26), we see that it is equivalent to the ballistic

expression. Thus, disorder is not relevant in a point contact geometry. As we will see in

the following subsection, long-range diffusion processes give rise to modifications of

the current. However, these processes are absent in a point contact geometry, since all

trajectories are confined to one point.
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8.3.4 Extended interface

In Sec. 8.3.4.1 we show that the tunnel conductance through the extended disordered

interface is up to numerical factors given by the point contact tunnel conductance times

the number of open transport channels. In Sec. 8.3.4.2 and Sec. 8.3.4.3 we show that

the subgap current through the HM/S and the F/S interface is strongly enhanced in the

presence of disorder compared to the clean extended interface.

8.3.4.1 Tunnel conductance

Let us determine the tunnel conductance given in Eq. (8.7) for the disordered extended

interface geometry.

We evaluate the expression for the tunnel conductance in Eq. (8.7) using the tunnel

amplitude for the extended interface given in Eq. (8.33). Splitting the integrations

into an in-plane and a perpendicular part, partial integration over the perpendicular

coordinate and evaluation of the Dirac-δ distributions yields

〈

GDext
T

〉

= 4π2G0ν↑νS

∫

dρ1

∫

dρ2t(ρ1)t(ρ2)g̃(r1 − r2)g̃(r2 − r1), (8.64)

where

g̃(r) =
g′(r)

|r| . (8.65)

We transform to a center of mass coordinate ρ and the difference coordinate ρ12, giving

〈

GDext
T

〉

=
∫

dρgT(ρ), (8.66)

where the conductance per unit surface area is defined as

gT(ρ) = 4π2G0νSν↑t
2(ρ)

∫

dρ12g̃
2(ρ12). (8.67)

Assuming a homogeneous interface, the integration over the center of mass coordinate

yields the interface area S. Using the explicit expression of g(r) in the presence of

disorder, given in Eq. (8.46), we can write the remaining integral as

∫

dr g̃2(r) ≈ 2πk2
F

∫ ∞

0
dx

(x cosx− sin x)2

x5
+ O

(

(kFle)
−1
)

=
π

2
k2

F + O
(

(kFle)
−1
)

.

(8.68)
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We used the assumption of weak disorder kFle ≫ 1 and kept only the lowest order term

in (kFle)
−1. Finally, the conductance yields

〈

GDext
T

〉

= 2π3G0νSν↑t
2Sk2

F = GBPC
T

Sk2
Fπ

2
= 2π2NchG

BPC
T . (8.69)

Hence, the conductance of the extended interface is proportional to the point contact

conductance and the number of open conduction channels. The effect of disorder on

the tunnel conductance is negligible (see Eq. (8.68)), since no long-range diffusion

process is possible (see als Sec. 8.3.4.2).

8.3.4.2 Disordered extended half-metal/superconductor junction

Let us now evaluate the current in the presence of disorder through the HM/S junction

in the extended interface geometry. We evaluate Eq. (8.22) using the tunnel amplitude

in Eq. (8.33) and the disorder average over the non-local density of states in Eq. (8.52).

After partial integration and evaluation of the Dirac-δ distributions we have for a

homogeneous interface

〈

Ξσσ′
Dext(ζ, ζ

′, ξ, ξ′)
〉

= t4
∫

dρ1

∫

dρ2

∫

dρ3

∫

dρ4

[

ν2
Sg̃(ρ1 − ρ2)g̃(ρ4 − ρ3)

+
νS

π
ℜP d

ζ−ζ′(ρ1,ρ2)g̃(ρ1 − ρ3)g̃(ρ2 − ρ4) +
νS

π
ℜP c

ζ−ζ′(ρ1,ρ2)g̃(ρ1 − ρ4)g̃(ρ2 − ρ3)
]

·
[

νσνσ′ g̃(ρ2 − ρ4)g̃(ρ1 − ρ3) +
νσ
π
δσσ′ℜP d

ξ−ξ′(ρ2,ρ4)g̃(ρ2 − ρ3)g̃(ρ4 − ρ1)

+
νσ
π
δσσ′ℜP c

ξ−ξ′(ρ2,ρ4)g̃(ρ2 − ρ1)g̃(ρ4 − ρ3)
]

.

(8.70)

This expression is the sum of nine terms. In order to identify the leading terms, let

us consider the decay lengths of the different expressions. The function g̃ decays on

the length le as evident from Eq. (8.46). The diffusion probability in the ferromagnet

decays on the scale x ∼
√

~D
|ξ−ξ′| as evident from Eq. (8.57). Using le = vFτe, the ratio of

the decay lengths for the ferromagnet reads

x

le
∼
√

~τ−1
e

~Ω
≫ 1, (8.71)
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where we used the hierarchy of energy scales ~Ω ≪ ~τ−1
e ≪ EF. The main contribution

is thus given by terms, where the functions g̃ do not impose all four interface coordinates

to be close to each other, but where in contrary a long-range diffusion is possible.

For the superconductor the analogous range is given by x ∼
√

~D
|ζ−ζ′| . We will now argue

why ζ− ζ ′ > 2∆. Consider the propagator of the diffusion equation Eq. (8.50) given by

P (k) ∼ 1

~Dk2 + i(ζ − ζ ′)
∼ Ξ(ζ − ζ ′). (8.72)

The integrals that have to be solved in order to obtain the current (see Eq. (8.21)) will

be of the form

∫

dζ
∫

dζ ′ ∆

∆2 + ζ2

∆

∆2 + ζ ′2
1

~Dk2 + i(ζ − ζ ′)
≥ 1

2∆
, (8.73)

where the last identity can be proven using the residue theorem. Thus, ζ − ζ ′ > 2∆. In

the ferromagnet we had ξ− ξ′ = ~Ω. For small frequencies ~Ω ≪ ∆, the diffusion range

is consequently much shorter in the superconductor than it is in the ferromagnet. Note

that this is already well-known for an N/S junction [117]. For frequencies ~Ω ≪ ∆, we

can thus neglect the diffusion terms with diffusion in the superconductor with respect

to the terms in the ferromagnet.

So far the expressions are valid both for the HM/S and F/S junction. Let us now consider

the HM/S junction with perfect spin polarization (ν↓ = 0). Neglecting the diffusion

terms in the superconductor and imposing long-range diffusion in the ferromagnet, the

number of terms in Eq. (8.70) reduces to two, where one of the terms is the ballistic

term. Here, we neglect the ballistic term. We will show for the resulting current that it

is indeed much larger than the ballistic result and hence this approximation is valid.

Eq. (8.70) reads

〈

Ξσσ′
Dext(ζ, ζ

′, ξ, ξ′)
〉

≈ t4
∫

dρ1

∫

dρ2

∫

dρ3

∫

dρ4

ν↑ν
2
S

π
ℜP c

ξ−ξ′(ρ2,ρ4)·

· g̃2(ρ1 − ρ2)g̃2(ρ3 − ρ4)

(8.74)

The remaining process corresponds to a Cooperon in the ferromagnet and is depicted

in Fig. 8.2(a). Introducing center of mass and difference coordinates, we obtain

〈

Ξ↑↑
Dext(ξ − ξ′)

〉

=π−1ν2
Sν↑t

4
[∫

drg̃2(r)
]2 ∫

dR1

∫

dR2ℜP c
ξ−ξ′(R1,R2), (8.75)
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S F S F(a) (b)

Fig. 8.2: Contributions to the subgap conductivity. (a) Cooperon in the ferromagnet. (b)
Diffuson in the superconductor. Solid lines represent retarded Green’s functions,
dotted lines diffusion processes. Note that in the subgap regime the Green’s functions
in the superconductor are anomalous Green’s functions.

where we neglected the dependence of P c
ξ−ξ′ on the difference coordinate. We assume

a homogeneous interface, use the expression for the integral in Eq. (8.68) and the

solution of the diffusion equation given by Eq. (8.57) to obtain after integration

〈

Ξ↑↑
Dext(ξ − ξ′)

〉

= Ξ↑↑
BPC

√
2

(2π)3Sk2
F

32

ξF
B

ξF
D

= Ξ↑↑
Bext

3
√

2

16

ξF
B

ξF
D

, (8.76)

where Ξ↑↑
BPC is given in Eq. (8.26), and Ξ↑↑

Bext is given in Eq. (8.40). Further, we in-

troduced the ballistic coherence length ξF
B = vF

Ω
and the diffusive coherence length

ξF
D =

√
D
Ω

for the ferromagnet. We have thus expressed the quantity Ξ for the extended

diffusive interface using the point contact result, the ballistic extended result, respec-

tively. We use this expression to evaluate Eq. (8.21), where the remaining integral can

be solved as described in Sec. 8.3.3. For the calculation of the current in Eq. (8.16)

we consider the zero temperature expression at small frequencies and zero voltage.

After evaluating the distribution functions as described in Sec. 8.3.3 and using the

expression for the ballistic current in the same geometry in Eq. (8.42), we obtain after

some algebra
IDext

IBext
=

9

20
√

2

ξF
B

ξF
D

∼
√

~τ−1
e

~Ω
≫ 1 (8.77)

Thus, the current in the presence of disorder is much larger than the ballistic current

through the same interface geometry. A similar effect has been reported for N/S

interfaces [117].
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So far, we have neglected any orbital effect due to the magnetization of the ferromagnet.

Depending on the geometry, the orbital effect of the magnetization might be important

and lead to sufficient dephasing between the trajectories, such that no coherent process

is possible in the ferromagnet. In this case, the Diffuson in the superconductor is the

dominant term contributing. We evaluate this contribution in Sec. 8.3.4.3 and will

show that the corresponding current is also enhanced compared to the ballistic result.

8.3.4.3 Disordered extended ferromagnet/superconductor junction

Let us now consider the F/S junction. Ξ↓↓ can be obtained from Eq. (8.76) replacing

↑→↓. We now describe how to evaluate
〈

Ξ↓↑
Dext

〉

. First, note that there is no contribution

due to diffusion in the ferromagnet, since the spins are opposite. We have assumed

that the Zeeman splitting is sufficiently big, such that electrons with opposite spins

to not diffuse coherently. Using, as previously, that the main contribution is given for

long-range diffusion processes, we are left with two terms, i.e., the ballistic result and a

contribution due to a Diffuson in the superconductor. The latter diagram is depicted in

Fig. 8.2(b). The expression is analoguous to Eq. (8.75), where we have a dependence

of the diffusion probability on ζ − ζ ′ instead of ξ − ξ′. We have already established the

relation ζ − ζ ′ > 2∆. We now approximate ζ − ζ ′ ≈ 2∆ and obtain

〈

Ξ↓↑
Dext

〉

=
〈

Ξ↓↑
BPC

〉 (2π)3k2
FS

32

ξS
B

ξS
D

=
〈

Ξ↓↑
Bext

〉 3

16

ξS
B

ξS
D

, (8.78)

where the ballistic extended expression is defined in Eq. (8.40) and the point contact

result is given in Eq. (8.26). This expression is analoguous to Eq. (8.76), with the

difference that the coherence lengths are replaced by the corresponding coherence

lengths in the superconductor. We defined the ballistic coherence length ξS
B = ~vF

∆
and

the diffusive coherence length ξS
D =

√
~D
∆

of the superconductor. Note that Eq. (8.78)

is formally obtained from Eq. (8.76) replacing ~Ω → 2∆, which reflects the different

energy scale of the Diffuson in the superconductor with respect to the ferromagnet. The

ratio of the current contributions is given by the ratio of the Ξ, since they are energy

independent, giving
I↓↑

Dext

I↓↑
Bext

=
Ξ↓↑

Dext

Ξ↓↑
Bext

=
3

16

ξS
B

ξS
D

. (8.79)

8.3 Disorder formalism 155



The ratio of the coherence lengths is given by

ξS
B

ξS
D

∼
√

~τ−1
e

∆
≫ 1, (8.80)

where we used ∆ ≪ ~τ−1
e (corresponding to ξS

D ≫ le). Thus, we find that the disordered

current is much larger than the ballistic current through the same interface geometry.

The current contribution for both spins inverted fulfills analogous expressions.

Depending on the geometry, the dephasing due to the orbital effect of the magnetization

will destroy the Cooperon contribution, in which case this Diffuson contribution is

dominant.

The ratio of the coherence lengths can be written as

ξS
B

ξS
D

∼ ξS
D

le
∼ N

g
(8.81)

where g ∼ k2
Fleξ

S
D [268] is the dimensionless conductance and N ∼ (ξS

D)2k2
F is the

number of channels (diffusive junction).

Summing up the four contributions from
〈

Ξσσ′
Dext

〉

(for σ, σ′ ∈ {↑, ↓}) and extending to

non-zero voltages, we finally obtain

〈

IDext
FS

〉

=
4ω2

5
ID

0 sin2 θ

[

sgn
(
ω

2
+ U

) ∣
∣
∣
∣

ω

2
+ U

∣
∣
∣
∣

5
2

(

α2
↑ cos2 θ

2
+ α2

↓ sin2 θ

2

)

+sgn
(

−ω

2
+ U

) ∣
∣
∣
∣

ω

2
− U

∣
∣
∣
∣

5
2

(

α2
↑ sin2 θ

2
+ α2

↓ cos2 θ

2

)]

+ 24ID
0 α↑α↓U

(8.82)

with

ID
0 =

e∆

h

ξS
B

ξS
D

(2π)3

32
Sk2

F =
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D
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Here, the factor Nch reflects the increased number of transport channel with respect to

the point contact geometry. Further, the ratio of the coherence lengths appears due to

the disorder, giving a much larger disorder current than the ballistic current through

the same interface geometry. Note that the disorder changes the frequency dependence

of the current via the Cooperon that is frequency dependent. We conclude that for a

possible experiment it is thus advantageous to have some impurities. However, the

impurity concentration might be difficult to control in the growth process. Additionally,

the extended interface has to be favored over the point contact, due to the larger
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number of conduction channels. Even taking into account disorder, a half-metal at zero

voltage bias is still the ideal setup to detect the subgap current induced by ferromagnetic

resonance.
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9Conclusions

In this thesis we investigated the possibility to change the charge current in supercon-

ducting junctions manipulating the spin properties using magnetic resonance.

In part I of this thesis we considered an unconventional Josephson junction between a

conventional s-wave superconductor and an unconventional px-wave superconductor.

This junction hosts two spin-polarized Andreev bound states that are 2π-periodic, giving

rise to a spontaneous magnetization in equilibrium. The current-phase relation is

π-periodic and does hence not probe the peculiar bound state properties. We have

shown that a time-dependent magnetic field, that couples to the spin via the Zeeman

effect, may change the occupations of the bound states. The field induces coherent Rabi

oscillations between different spin states of the junction that due to energy constraints

are possible at four phase values. These oscillations appear as resonances in the current-

phase relation. For a circularly polarized magnetic field, a spin selection rule only

allows Rabi oscillations in a certain range of superconducting phase differences, giving

a spin detection scheme.

The field also induces non-coherent transitions including continuum states that act as

refill or ionization processes for the Andreev levels, depending on whether a bound state

is filled or emptied. For a circularly polarized field, these field-induced processes do not

provide a decay mechanism for the Rabi oscillations, due to spin and energy constraints.

In this case, the width of the resonances in the current-phase relation is thus determined

by other processes, such as, e.g., phase fluctuations. For a linear polarization, there is

no spin selection rule and Rabi oscillations appear at the four energetically possible

phase values. The resulting current-phase relation is thus spin insensitive, as long as

the field is purely linearly polarized. Further, the width of the resonances is determined

by the field-induced ionization processes. For both polarizations, the resonances are

clearly visible in transparent junctions, but their visibility is more challenging in tunnel

junctions.

Future research on this s/px junction could be focussed on a more detailed study of

the decay mechanisms that are not field-induced. In this thesis they were only treated

in a phenomenological manner. A resistive environment can induce transitions, as

known from conventional Josephson junctions [215]. Since these processes determine
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the width of the resonance in the current-phase relation for a circularly polarized

field, further investigation needs to be done. Further, it might be interesting to study

the combination of a bias voltage and an ac magnetic field that should give rise to

Shapiro steps in the current-voltage characteristics [269]. Due to the spin-polarization

of the bound states, a spin-dependent effect might be possible. So far, we have studied

ballistic leads. In experiments however, there is always disorder. Impurity scattering

due to disorder acts as a pair breaker in the px-wave superconductor, suppressing

superconductivity, whereas the s-wave superconductor is not sensitive to time-reversal

invariant scattering [270, 271]. Therefore, adressing the effect of disorder in the

superconducting leads is interesting. Last but not least, it is worth to consider the

proposed experimental setup using a ferromagnetic nanowire to engineer an effective

px-wave superconductor in more detail. We have only considered the idealized junction.

A more thorough investigation of all the elements in the SQUID-like geometry might be

necessary with the aim to understand possible modifications of our results.

In part II of this thesis we considered a half-metal/conventional superconductor (HM/S)

interface. No Andreev current may flow through this junction in the case of a static

magnetization direction, since the perfect spin polarization of the half-metal forbids

Andreev reflection processes at the interface. We have shown that if the half-metal is

subjected to ferromagnetic resonance (FMR) an Andreev current flows. The precessing

magnetization direction in the half-metal provides the necessary spin-flip mechanism.

If the superconductor was in its normal phase, a spin current would be injected due

to spin-pumping. In the superconducting state however, spin singlet pairing inhibits

any spin current, leading to a charge current. This Andreev current scales with the fifth

power of the precession frequency for small frequencies, showing that the transfer of

two electrons at the same time is strongly suppressed. The current does not require

any voltage bias across the junction, since a non-equilibrium situation is created for the

charge carriers in the ferromagnet due to the precession of the magnetization direction.

We have also shown that for a point contact junction, a non-zero minority carrier concen-

tration reduces the current that vanishes at equal carrier concentrations. Additionally,

we considered a more realistic extended interface geometry. For a ballistic junction, the

current is enhanced compared to a point contact geometry due to the larger number

of transport channels. This extended interface geometry allows to treat disordered

junctions. We have shown that disorder is more important in the ferromagnet than in
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the superconductor. Further, the current through the disordered junction is much larger

than the current through a ballistic junction in the same geometry.

Future research could investigate in more detail the effect of spin-orbit interaction

(SOI). SOI in the ferromagnet under FMR provides a spin-relaxation mechanism and

thus modifies the transport properties. There will thus be a competition between spin-

pumping due to the precession and spin-relaxation due to the spin-orbit coupling. It

has been shown that in a ferrmagnet/normal metal (F/N) junction, spin-orbit coupling

induces a backflow spin current, creating a voltage across the junction if spin may

be accumulated in the ferromagnet [158]. It is interesting to investigate how this

effect is modified, if the normal metal is replaced by a superconductor that does not

allow for subgap spin currents. Recently, spin-orbit coupling in a ferromagnet has

been used to electrically induce a non-equilibrium spin-polarization [272–275]. In

this setup, an oscillating electrical current is driven through a uniformely magnetized

sample, creating a non-equilibrium time-dependent spin polarization. The polarization

is responsable for a transverse component of the exchange field, exerting a torque

onto the magnetization and thereby driving the precession. It might be interesting to

investigate this effect, when the ferromagnet is coupled to a superconductor. Spin-orbit

coupling is not only relevant in the ferromagnet, but also in the superconductor. An

HM/S interface, in a lateral contact geometry and with spin-orbit coupling in the

superconductor, has been shown to lead to triplet Andreev reflections [276]. This

finding motivates further investigation of spin-orbit coupling in the superconductor. SOI

can also be relevant at the interface, where it leads to a spin-dependent transmission

probability of the barrier, therby influencing the charge transport across the barrier.

Recently, spin-orbit coupling at the interface between a ferromagnet under FMR and a

normal metal has been considered [277], as well as interfacial spin-orbit coupling for a

static ferromagnet/superconductor (F/S) interface [278].

Further, it is interesting to combine the HM/S interface with a second superconductor,

in order to create a Josephson junction. Such a S/HM/S junction under ferromagnetic

resonance (for a recent review on S/F/S junctions see [279]) has already been consid-

ered [231], but only for tunnel barriers between the superconductors and the half-metal.

Since Andreev reflection is most relevant for transparent interfaces, the study of such a

transparent junction might lead to an interesting interplay of superconducting phase

coherence and ferromagnetic resonance.
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In this thesis we have investigated magnetic resonance in superconducting junctions,

which is of interest for fundamental research. Nevertheless, it might be possible that the

advances in the understanding of dynamical effects in superconducting heterostructures

lead to the conception of new devices for applications at some point in the future.
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Résumé français

Contrôler le courant de charge par un contrôle des propriétés de spin est intéressant

pour des nanostructures qui contiennent des supraconducteurs, parce que le transport

de charge dans l’état fondamental d’un supraconducteur est cohérent. Dans cette

thèse, on analyse la possibilité de modifier le courant de charge dans des jonction

supraconductrices par une manipulation des propriétés de spin en utilisant la résonance

magnétique.

Le Chapitre 2 introduit les concepts physiques principaux. Dans un supraconducteur

conventionel qui est décrit par la théorie BCS, la surface de Fermi devient instable en

raison d’une interaction attractive médiée par des phonons. Le nouvel état fondamental,

dans lequel des électrons forment des paires de Cooper, est séparé du spectre d’excitation

par un gap. Cet état supporte un supracourant sans dissipation. Les supraconducteurs

non-conventionels sont caracterisés par une dépendence en impulsion des potentiels de

pair. En présence d’une symétrie d’inversion, ils peuvent être classifiés par le moment

angulaire de la partie orbitale de leur fonction d’onde. Les supraconducteurs de type p

sont particulairement intéressants, parce que leur fonction d’onde possède une partie

orbitale impaire, ce que donne lieu à une partie de spin paire, i.e., un appariement

triplet. La physique des jonctions supraconductrices est déterminée par la physique

de l’interface entre un métal normal et un supraconducteur (interface N/S). Une telle

interface N/S réfléchit un électron arrivant avec une énergie sous le gap comme un trou.

Un tel processus de réflexion d’Andreev ajoute une paire de Cooper dans le condensat.

Ce mécanisme mène, dans des jonctions conventionels, à la formation de deux états liés

dégénérés en spin. Ces états dépendent de la différence de phase à travers la jonction

et déterminent ainsi la relation courant-phase.

Dans cette thèse, on étudie également l’interaction entre la supraconductivité et le

ferromagnétisme qui est particulairement intéressante dans des jonctions avec une
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direction d’aimentation qui dépend du temps. Dans ce but, on commence par introduire

la résonance ferromagnétique (RFM) dans le Chapitre 2. Contrairement à la résonance

magnétique nucléaire et en fonction de la géométrie, aucun champ statique n’est

nécessaire pour la RFM. Les jonctions entre un matériau ferromagnétique et un métal

normal (jonctions F/N) sont intéressantes pour leurs effets quand elles sont soumises à

une aimentation dynamique. Le matériau ferromagnétique, étant soumis aux conditions

de la RFM, injecte un courant de spin dans le métal normal adjacent. L’aimantation

précessante perd du moment cinétique lors de ce processus de pompage de spin.

Le Chapitre 3 introduit des outils théoriques utilisés pour obtenir les résultats de cette

thèse. Le formalisme de Bogoliubov – de Gennes est une méthode pour calculer la

fonction d’onde d’un système avec un potentiel de paire dépendant de l’espace. Afin

de résoudre un problème de transport supraconducteur, il est approprié de combiner

ce formalisme à l’approche des matrices de diffusion. Une autre façon d’approcher

le transport hors équilibre à travers une jonction supraconductrice est d’utiliser le

formalisme des fonctions de Green hors équilibre, que l’on présente dans sa formulation

Keldysh. Dans ce formalisme, le couplage tunnel entre les deux côtés de la jonction

peut être traité comme une perturbation. En outre, on présente l’approche de l’équation

maîtresse de Markov pour les matrices de densité, adaptée pour faire face à des systèmes

quantiques ouverts. Les états liés d’une jonction Josephson peuvent être traités comme

un système couplé à un réservoir, i.e., le continuum d’états. Ce continuum joue le

rôle d’un réservoir thermique et possède un temps de relaxation court. L’approche de

l’équation maîtresse permet alors d’obtenir l’évolution temporelle des occupations des

états.

La Partie I de cette thèse examine la manipulation des niveaux d’Andreev dans une

jonction Josephson singulet/triplet entre un supraconducteur conventionel de type s

et un supraconducteur non-conventionel de type px en utilisant un champ Zeeman

dépendant du temps.

Dans le Chapitre 4, on montre que cette jonction s/px possède deux états liés d’Andreev

polarisés en spin, qui sont 2π-periodiques. Selon le rapport des gaps des supracon-

ducteurs, un de ces états liés peut exister seulement dans un certain intervalle de

différences de phases supraconductrices. La polarisation en spin des états liés donne

lieu à une aimantation spontanée en équilibre, que l’on détermine en utilisant une

approche d’énergie libre. La relation courant-phase de la jonction s/px est π-periodique
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et ne sonde donc pas les propriétés particulières des états liés. En outre, les symétries

de spin incompatibles interdisent le transfert d’une seule paire de Cooper à travers la

jonction. En conséquence, au moins deux paires doivent être transférées, entraînant

une valeur de sin 2φ pour l’harmonique la plus basse dans la relation courant-phase.

On calcule également la relation courant-phase et l’aimantation pour des températures

finies.

La polarisation en spin de la jonction ouvre la possibilité de changer l’occupation des

états liés en manipulant le spin. Afin de manipuler le spin, un choix naturel est d’utiliser

un champ magnétique, qui se couple au spin par l’effet Zeeman. Dans le Chapitre 5, on

montre qu’un champ magnétique dépendant du temps peut changer les occupations

des états liés. Pour simplifier le problème, on considère une jonction avec des gaps

égaux et à température zéro. Le champ induit des oscillations de Rabi cohérentes entre

les différents états de spin de la jonction, qui se manifestent comme des résonances

dans la relation courant-phase. Pour un champ magnétique polarisé circulairement, une

règle de sélection de spin autorise des oscillations de Rabi seulement dans un certain

intervalle de différences de phases supraconducteurs ce qui peut permettre de détecter

le spin. En raison de la conservation de l’énergie, des résonances apparaissent à deux

valeurs de phase.

Le champ induit aussi des transitions non-cohérentes comprenant des quasiparticules

dans le continuum. Ces transitions peuvent remplir ou vider les niveaux d’Andreev.

On appèlle une telle transition processus de recharge ou d’ionisation. Ces processus

changent la parité des occupations des états liés. Pour un champ polarisé circulairement,

ces processus induits par le champ ne fournissent pas de mécanisme de relaxation

pour les oscillations de Rabi, en raison des contraintes en spin et en énergie. Dans

ce cas, la largeur des résonances dans la relation courant-phase est donc déterminée

par d’autres processus, tels que, par exemple, des fluctuations de phase. Pour une

polarisation linéaire, il n’y a pas de règle de sélection de spin et les oscillations de Rabi

apparaissent à quatre valeurs de phase. Leur largeur est déterminée par les processus

d’ionisation induits par le champ. Les résonances sont clairement visibles dans des

jonctions transparentes, mais leur visibilité est plus difficile dans des jonctions tunnels.

Dans la partie II de cette thèse, on considère une interface entre un supraconducteur

conventionel et un demi-métal. Dans le cas d’une direction d’aimantation statique,

aucun courant d’Andreev ne peut circuler à travers cette jonction, que l’on présente
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dans le Chapitre 6. La raison est que la polarisation parfaite de spin du demi-métal

interdit les processus de réflexion d’Andreev à l’interface. On montre dans le Chapitre 7

pour une jonction de point contact, que si le demi-métal est soumis à la résonance ferro-

magnétique, un courant d’Andreev s’écoule. La précession de la direction d’aimantation

dans le demi-métal fournit le mécanisme de spin-flip nécessaire. Si le supraconducteur

était dans sa phase normale, un courant de spin serait injecté en raison du pompage de

spin. Dans l’état supraconducteur, cependant, l’appariement spin singulet inhibe tout

courant de spin, menant à un courant de charge. Le courant d’Andreev ne nécessite

aucun biais de tension à travers la jonction, étant donné qu’une situation hors équilibre

est créée pour les porteurs de charge dans le matériau ferromagnétique en raison de la

précession de la direction d’aimantation.

On montre aussi dans le Chapitre 8, que, pour une jonction de point contact, une densité

non-nulle de porteurs minoritaires (i.e., un matériau ferromagnétique) réduit le courant,

qui disparaît pour une proportion égale de porteurs majoritaires et minoritaires. De

plus, on considère une géométrie d’interface étendue, plus réaliste. Pour une jonction

balistique, le courant est augmenté par rapport à une géométrie de point contact

en raison du plus grand nombre de canaux de transport. Cette géométrie d’interface

étendue permet de traiter des jonctions désordonnées. Après une introduction au

formalisme de désordre, on montre que le désordre est le plus important dans le

matériau ferromagnétique. Le résultat principal est que le courant à travers la jonction

désordonnée est beaucoup plus grand que le courant traversant une jonction balistique

dans la même géométrie.

Le Chapitre 9 résume les principaux résultats de cette thèse et fournit une brève discus-

sion de futures pistes de recherche possibles. L’annexe fournit des détails techniques

sur les calculs, qui sont importants pour obtenir les résultats présentés dans la partie

principale, mais qui fournissent des informations limitées sur la physique.
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Abstract

In this thesis we investigate the possibility to change the charge current in supercon-

ducting junctions by manipulating the spin properties using magnetic resonance. We

consider two different junctions: First, an unconventional Josephson junction between

a conventional s-wave superconductor and an unconventional px-wave superconductor

and second a half-metal/conventional superconductor junction.

The s/px junctions hosts two spin-polarized Andreev bound states, which are 2π periodic,

giving rise to a spontaneous magnetization in equilibrium. This opens the possibility

to manipulate the occupations of the Andreev levels using a time-dependent magnetic

field. We show that the field induces coherent Rabi oscillations between different spin

states of the junction that appear as resonances in the current-phase relation. For a

cicularly polarized magnetic field, we find a spin selection rule, giving Rabi oscillations

only in a certain range of superconducting phase differences, which provides a spin

detection scheme. In contrary, for a linear polarization, there is no spin constraint on the

Rabi oscillations. The field also induces non-coherent transitions including continuum

states that act as refill and ionization processes for the Andreev levels. For a circularly

polarized field, these field-induced processes do not provide a decay mechanism for

the Rabi oscillations, due to spin and energy constraints. For a linear polarization,

the width of the Rabi resonances in the current-phase relation is determined by the

field-induced ionization processes.

No Andreev current may flow across the half-metal/conventional superconductor junc-

tion for a static magnetization direction, since the perfect spin polarization of the

half-metal forbids Andreev reflection processes at the interface. We show that an

Andreev current flows, if the half-metal is subjected to ferromagnetic resonance. The

precessing magnetization direction in the half-metal provides the necessary spin-flip

mechanism. The current is driven by the precession of the magnetization direction that
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creates a non-equilibrium situation for the charge carriers. We also show for a point

contact geometry that in a ferromagnet with non-zero minority carrier concentration

the current is reduced and vanishes at equal minority and majority carrier concentra-

tions. Additionally, we consider a more realistic, extended interface geometry. For a

ballistic junction, the current is enhanced compared to a point contact geometry due to

the larger number of transport channels. Furthermore, we show that disorder is most

important in the ferromagnet. The Andreev current through the disordered junction is

much larger than the current through a ballistic junction in the same geometry.
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Abstract français

Dans cette thèse, on analyse la possibilité de changer un courant de charge dans des

jonctions supraconductrices par une manipulation des propriétés de spin en utilisant la

résonance magnétique. On considère deux jonctions différentes : Premièrement, une

jonction Josephson non-conventionnelle entre un supraconducteur conventionel de

type s et un supraconducteur non-conventionel de type px. Deuxièmement, une jonction

entre un demi-métal et un supraconducteur conventionel.

La jonction s/px contient deux états liés d’Andreev qui sont 2π-periodiques. Ils donnent

lieu à une aimentation spontanée à l’équilibre. Ceci ouvre la possibilité de manipuler

l’occupation des niveaux d’Andreev en utilisant un champ magnétique dépendant du

temps. On demontre que ce champ induit des oscillations de Rabi cohérentes entre

différents états de spin de la jonction. Ces oscillations se manifestent comme des

résonances dans la relation courant-phase de la jonction. Pour un champ polarisé

circulairement, on trouve une règle de sélection de spin qui autorise des oscillations

de Rabi seulement dans un certain intervalle de phases dans la relation courant-phase

permettant une éventuelle détection du spin. De plus, le champ induit des transitions

non-cohérentes qui nécessitent la présence d’une quasiparticule dans le continuum

d’états. Ces transitions agissent comme processus de recharge et d’ionization pour les

niveaux d’Andreev. Pour un champ polarisé circulairement, ces processus induits par le

champ ne donnent pas lieu à un mécanisme de relaxation pour les oscillations de Rabi

à cause des contraintes en spin et en énergie. Pour un champ polarisé linéairement, il

n’y a pas de contraintes en spin et la largeur des résonances de Rabi dans la relation

courant-phase est déterminée par les processus d’ionization induits par le champs.

Dans la jonction entre le demi-métal et le supraconducteur conventionel, il n’y a pas

de courant d’Andreev pour une aimentation statique, puisque la polarization parfaite

en spin du demi-métal interdit les processus de réflexion d’Andreev à l’interface. On
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demontre que pour une géométrie de point contact, un courant d’Andreev passe, si le

demi-métal est soumis à la résonance ferromagnétique. La précession de la direction de

l’aimentation dans le demi-métal donne lieu au mécanisme de spin-flip nécessaire. Le

courant est forcé par la précession de la direction de l’aimentation qui crée une situation

hors équilibre pour les porteurs de charge. De plus, dans un matériau ferromagnétique

avec une densité de porteurs minoritaires non-nulle, le courant est réduit et disparaît

si les densités majoritaires et minoritaires sont égales. On considère, par ailleurs, une

géométrie d’interface étendue, plus réaliste. Pour une jonction ballistique, le courant est

augmenté par rapport à la géometrie de point contact, en raison du nombre plus élevé

de canaux. De plus, on demontre que le désordre est le plus important dans le matériau

ferromagnétique. Le courant d’Andreev à travers la jonction désordonnée est beaucoup

plus grand que le courant à travers la jonction ballistique dans la même géométrie.
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Appendix

A Density of states of unconventional

Josephson junctions

The aim of this appendix is to express the density of states of an unconventional

Josephson junction using the scattering matrix of the junction that can be obtained

solving the Bogoliubov – de Gennes equations by parts and matching them at the

interfaces. The equilibrium properties, as equilibrium current and magnetization, can

be determined knowing the density of states. Ref. [133] was the first to develop a

scattering matrix formalism for a conventional Josephson junction (see also the review

[135]). A generalization for conventional s-wave superconductors with different gaps

also exists [280]. Here we present and generalize the formalism to pair potentials

that are momentum dependent. However, let us only consider fully gapped pair

potentials with a momentum-independent absolute value, i.e., s, px and p+ip pairing.

For these pair potentials the momentum dependence can be written as a phase factor.

The formalism should be generalizable to pair potentials with momentum-dependent

absolute value.

The density of states can be obtained from the scattering matrix S of the junction via

[280, 281]

ρ(E) =
1

2πi
Tr

[

S† ∂S

∂E

]

=
1

2πi

∂

∂E
ln detS, (A.1)

where ρ(E) gives the density of states up to an energy-independent constant. The

expression is derived from the Wigner time-delay [282–284]. In more detail, following

Ref. [285], we may express the elements of the scattering matrix as Sij =
√
geiθ. The

corresponding Wigner time-delay is then given by τdelay = ~
dθ
dE

. The density of states
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Fig. A.1: Schematical representation of the modes and the scattering matrices. The total
scattering matrix of the system relates the modes in the two superconductors SR and
SL with each other. In order to define the modes in the normal region, we split it
into two small regions NL and NR containing no disorder and a central region NC,
described by the scattering matrix sN, containing the disorder. Solving the scattering
problem, we can determine the Andreev reflection matrices of the left (sL

A) and right
(sR

A) interface.

is proportional to the time-delay: ρ(E) = 1
2π

∑

i
dθi
dE

, where the sum is over all modes.

Using the unitarity of the scattering matrix, this expression yields Eq. (A.1).

In order to evaluate the total scattering matrix S of the junction, we will calculate the

modes in the left and the right superconductor. We use a central normal region that

allows for backscattering due to disorder, giving rise to a finite transmission of the

junction. For calculation purpose we follow the idea of [134] and split this region into

a region NC containing the disorder and two adjacent small regions NR and NL that

are disorder free and allow for the definition of the modes in the normal region. A

schematical plot of the junction is drawn in Fig. A.1.

Let us start to evaluate the modes in the superconductors. The most general form of

the pair potential with constant absolute value is given by

∆βσδ = ∆βe
iψβ
σδeiφβ . (A.2)

The index β ∈ {L,R} labels the left (right) superconductor. ∆β ∈ R is the absolute

value of the pair potential for the side β. φβ labels the superconducting phase value

for side β. σ is the spin index. The phase Ψβ
σδ ∈ R is due to the momentum-dependent

pairing. It may depend on δ, that is the sign of the real part of the momentum vector.
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Solving the linearized Bogoliubov-de Gennes equations (in Andreev approximation,

where ∆β ≪ EF) for a bulk superconductor (side β), we obtain the four eigenfunctions

χe+ =













ei
φβ

2 (αβσ)− 1
2 ei

ψ
β
σ+
2

e−iφβ
2 (αβσ)+ 1

2 e−i
ψ
β
σ+
2

0

0













eikβx,

χh+ =













ei
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2 (αβσ)+ 1
2 ei

ψ
β
σ+
2

e−iφβ
2 (αβσ)− 1

2 e−i
ψ
β
σ+
2

0

0













e−ikβx,

χe− =













0

0

ei
φβ

2 (αβσ)− 1
2 ei

ψ
β
σ−
2

e−iφβ
2 (αβσ)+ 1

2 e−i
ψ
β
σ−
2













e−ikβx,

χh− =













0

0

ei
φβ

2 (αβσ)+ 1
2 ei

ψ
β
σ−
2

e−iφβ
2 (αβσ)− 1

2 e−i
ψ
β
σ−
2













e+ikβx,

(A.3)

where kβ =

√
E2−∆2

β

vF
. The eigenfunctions are given in the basis η ⊗ τ , where η is the

index, that gives the sign of kF (“valley”) and τ is the particle-hole space. These four

modes will be the basis for the wave function represented by the coefficent vector

(c+
e (Sβ), c+

h (Sβ), c−
e (Sβ), c−

h (Sβ)). The coefficient cνt (Xβ) describes a particle of type t

(electron e or hole h) in valley ν ∈ {±} on side β ∈ {L,R} of the junction. X ∈ {S,N}
denotes either the normal metal or the superconductor. The scattering matrix relates

the coefficient vector of incoming modes to the coefficient vector of outgoing modes.
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We define the following four coefficient vectors for the junction (as drawn schematically

in Fig. A.1)

cout
N =

(

c−
e (NL), c+

e (NR), c+
h (NL), c−

h (NR)
)

,

cout
S =

(

c−
e (SL), c+

e (SR), c+
h (SL), c−

h (SR)
)

,

cin
S =

(

c+
e (SL), c−

e (SR), c−
h (SL), c+

h (SR)
)

,

cin
N =

(

c+
e (NL), c−

e (NR), c−
h (NL), c+

h (NR)
)

,

(A.4)

where the scattering matrix of the junction S relates the outgoing modes (in the

superconducting leads) to the incoming modes (in the superconducting leads), such

that

cout
S = Scin

S . (A.5)

Further, the normal region is described by a scattering matrix sN that fulfills

cout
N = sNc

in
N . (A.6)

The scattering in the normal region gives rise to a transmission T . There are now three

distinct parameter regimes. First, if the energy is larger than both absolute values

of the pair potentials, the modes in both superconductors are propagating. We will

refer to this parameter regime as the continuum. Second, if the energy is larger than

one gap, but smaller than the other, we only obtain propagating modes in one of the

superconductors. We call this parameter regime the intermediate regime. Third, if the

energy is smaller than both gaps, there are no propagating solutions in the leads and

we call this regime the bound state regime. In the following subsections we calculate

the density of states separately for each regime.

A.1 Continuum

In the continuum, we have propagating modes in both superconductors. We match

the wave functions at the left interface (between SL and NL) and the right interface

(between NR and SR). We treat sN as an input parameter to our theory and obtain after

some algebraic manipulations and using Eq. (A.1)

ρ(E) = − 1

π

∂

∂E
ℑ ln det(1 − sAsN) +

1

2πi

∂

∂E
ln det sN. (A.7)
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We defined the Andreev reflection matrix as

sA =











0 0 eiφLeiψ
L
σ+αL

σ 0

0 0 0 eiφReiψ
R
σ−αR

σ

e−iφLe−iψL
σ−αL

σ 0 0 0

0 e−iφRe−iψR
σ+αR

σ 0 0











(A.8)

with the definition

αβσ(E) =







ǫβσ − i

√

1 −
(

ǫβσ
)2

ǫβσ < 1

ǫβσ −
√
(

ǫβσ
)2 − 1 ǫβσ > 1

, (A.9)

where ǫβσ = Eσ
∆β

. For a conventional junction the expression for sA reduces to the

expression given in [133]. For the s/px junction, the density of states of the continuum

given in Eq. (A.7) reads after some lengthy algebra

ρcon(E) = −σ

π

∂

∂E
arctan

T sinφ

(2 − T )
√

ǫ2
L − 1ǫR + T

√

ǫ2
R − 1ǫL

. (A.10)

A.2 Bound state regime

There are no propagating modes in the superconductors, i.e., cin
S = 0, yielding the

relation

cin
N = sAc

out
N . (A.11)

sA has been defined in Eq. (A.8). Using the definition of sN (in Eq. (A.6)), we obtain

the relation

det(1 − sA(En)sN(En)) = 0. (A.12)

The solutions En of this determinant equation are the bound state energies of the

bound states formed in the normal region sandwiched between the superconductors.

Knowledge of the Andreev reflection matrix sA and the normal region scattering matrix

sN is thus sufficient to determine the bound state energies (given in Sec. 4.2). We

obtain the following density of states

ρabs(E) =
∑

n

δ(E − En) = − 1

π

∂

∂E
ℑ ln

det [1 − sA(E + i0+)sN(E + i0+)]
√

− det sA(E)
. (A.13)
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Note, that det sA(E) is phase independent.

A.3 Intermediate regime

Let us assume without loss of generality that the right superconductor has the larger

gap, such that ∆L < E < ∆R. Then, there are no propagating solutions in the right

superconductor. We divide the problem into two tasks: First, we derive a scattering

matrix for the disordered NS interface with perfect Andreev reflection at the right

superconductor. Afterwards, we add the left superconductor and calculate the scattering

matrix of the total system that relates the incoming and outgoing modes with each other.

This formalism has first been proposed for an N/S junction consisting of a conventional

superconductor [135, 286]. We will then show how the determinant expression can be

expressed in terms of quantities that we already defined for the continuum case.

We define the incoming and outgoing coefficient vectors for the N/S interface consisting

of the regions NL,NR, SR (see also Fig. A.1):

c̃in
N =




ce−(NL)

ch+(NL)



 , (A.14)

c̃out
N =




ce+(NL)

ch−(NL)



 . (A.15)

These coefficient vectors are connected via the scattering matrix of the N/S interface S̃

by

c̃out
N = S̃c̃in

N . (A.16)

The scattering matrix can be obtained by matching the wave functions at the interface

between NR and SR and using the normal region scattering matrix. After some algebra,

the scattering matrix can be parametrized as

S̃ =




see seh

she shh



 (A.17)

176 Appendix



with

see = r11 + t12(1 − (αR
σ )2ei(ψ

R
σ−−ψR

σ+)r∗
22r22)

−1(αR
σ )2ei(ψ

R
σ−−ψR

σ+)r∗
22t21, (A.18)

seh = t12(1 − (αR
σ )2ei(ψ

R
σ−−ψR

σ+)r∗
22r22)

−1αR
σ e

iψRσ−eiφt∗21, (A.19)

she = t∗12(1 − (αR
σ )2ei(ψ

R
σ−−ψR

σ+)r22r
∗
22)

−1αR
σ e

−iψR
σ+e−iφt21, (A.20)

shh = r∗
11 + t∗12(1 − (αR

σ )2ei(ψ
R
σ−−ψR

σ+)r22r
∗
22)

−1(αR
σ )2ei(ψ

R
σ−−ψR

σ+)r22t
∗
21. (A.21)

Here we parametrized the normal region scattering matrix as

sN =




s0(E) 0

0 s∗
0(−E)



 (A.22)

with

s0 =




r11 t12

t21 r22



 , (A.23)

where we dropped the energy argument for clarity of the notation. Now, we define the

scattering matrix of the junction in the intermediate regime Sint via

cout
S = Sintcin

S (A.24)

with the coefficient vectors defined as

cin
S =




ce+(SL)

ch−(SL)



 , (A.25)

cout
S =




ce−(SL)

ch+(SL)



 . (A.26)

Solving the matching problem at the interface between SL and NL, we obtain

detSint = det(1 − S̃s+
R)−1 det(1 − s−

RS̃
−1) det S̃ · (e−i(ψR

σ+−ψR
σ−)), (A.27)

where we defined the Andreev reflection matrix of the right interface

s±
R =




0 eiφReiψ

R
σ∓αR

σ

e−iφRe−iψR
σ±αR

σ 0



 . (A.28)
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We can relate the determinant expression in Eq. (A.27) to determinants of the 4 × 4

matrices defined for the continuum using

det(1 − S̃s+
R) = det(1 − sNsA) detM. (A.29)

Here, M is a matrix that will drop out again, since we can write after some algebra

det S̃ = detM det sL det sN det(M−1)†, (A.30)

where we introduced the Andreev reflection matrix of the left interface

sL =




0 eiφLeiψ

L
σ+αL

σ

e−iφLe−iψL
σ−αL

σ 0



 . (A.31)

Finally, we obtain for the density of states expression in the intermediate regime

ρint(E) = − 1

π

∂

∂E
ℑ(ln det(1 − sNsA)) +

1

2πi

∂

∂E
ln det sN +

1

2πi

∂

∂E
ln det sL. (A.32)

For an explicit evaluation, the following relation is useful: ln det sL = −2iχL with

χL = arccos E
|∆L| . We can easily generalize the problem to more than one conduction

channel. In this case, the parameters defined in Eq. (A.23) are matrices.

The density of states of the s/px junction in the intermediate regime depends on which

superconductor has the larger gap. For ∆p > ∆s, we obtain using Eq. (A.32) and after

some algebra

ρint = − 1

π

∂

∂E
arctan

T
√

1 − ǫ2
RǫL + Tσ sinφ

(2 − T )
√

ǫ2
L − 1ǫR

. (A.33)

In the opposite regime, ∆p < ∆s, Eq. (A.32) yields

ρint = − 1

π

∂

∂E
arctan

(2 − T )
√

1 − ǫ2
LǫR + Tσ sinφ

T
√

ǫ2
R − 1ǫL

. (A.34)

A.4 Contribution of the leads

So far, we have obtained the modification of the density of states due to the presence

of the junction. The contribution of the leads to the total density of states is however

missing. In order to obtain this contribution, we have to include the phase of the wave
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function acquired during a translation process. Let us consider a bulk superconductor

of a given length l. We define the modes on the right and left termination of this

superconductor (indices L,R). Choosing the following coefficient vectors

cin = (ce+(L), ch−(L), ce−(R), ch+(R)) , (A.35)

cout = (ce−(L), ch+(L), ce+(R), ch−(R)) , (A.36)

we can write the scattering matrix due to a translation in the superconductor as

ST =




0 Tβ(l)

Tβ(l) 0



 , (A.37)

where

Tβ(l) = e
i

√
E2−∆2

β

~vF
l
12×2. (A.38)

Let our junction be described by the scattering matrix S. We now attach on both sides

superconducting leads with different gaps and of different lengths. Then, the total

scattering matrix Stot of the junction plus the leads can be written as

Stot =




TL(lL) 0

0 TR(lR)



S




TL(lL) 0

0 TR(lR)



 , (A.39)

giving for the density of states

ρ(E) = ρcon(E) + ρL
lead(lL) + ρR

lead(lR), (A.40)

where we defined the density of states contribution due to the lead as

ρβlead(l) =
2l

π~vF

E
√

E2 − ∆2
β

. (A.41)

Note that we have four quasiparticle states (electrons and holes, left-moving and right-

moving), giving a factor of 4 with respect to the single mode result. Further note that

we could have chosen the wave functions normalized via the square root of the volume

(the length in 1D), such that the length does not appear in the density of states. For the

intermediate regime, the term corresponding to the lead with smaller gap will be absent

and for the bound state regime both additional terms will be absent. For a normal metal

lead the contribution reads ρN = nl
2π~vF

, where n is the number of modes. Consequently,
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the density of states contribution of the leads in above equation is just the BCS density

of states of the (bulk) superconductors.

For the s/px junction, we can write the explicit continuum expression of the density of

states (see Eq. (A.10)) in the following form

ρcon = A
1

∆R

+B
1

∆L

, (A.42)

where the coefficients A and B are unitless. The superconducting coherence length of

lead β is given by ξβ = ~vF

∆β
. In the short junction limit, the central part of length l that

is described by the scattering matrix S is short compared to the coherence lengths, i.e.,

l ≪ ξβ ∀β. The assumption of long leads, i.e., lβ ≫ ~vF

∆β
= ξβ ∀β, can be recast to

lβ
~vF

≫ 1

∆β

, (A.43)

giving

ρβlead ≫ ρcon. (A.44)

This relation ensures that the density of states is positive. Even though the modification

of the density of states due to the junction ρcon can be negative, ρβlead is always positive.

ρβlead does not depend on the phase difference φ and therefore does not contribute

to the current. Further, the density of states of the leads does not contribute to the

spontaneous magnetization.
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B Josephson current expression

The aim of this appendix is to derive Eq. (4.21) on page 60. We want to obtain an

expression for the current through the s/px Josephson junction at finite temperature.

We want to express the current using the scattering matrices that can be obtained in

a scattering approach. We follow an approach developed for conventional junctions

in Ref. [213] and apply it to our s/px junction. We use the free energy expression in

Eq. (4.19). Using the abstract expressions for the density of states given in Eqs. (A.7),

(A.13), and (A.32), we can express the free energy using a continuous energy variable.

After a partial integration and introducing a complex energy variable, the current can

be written as

I = −2e

~

1

iπβ

∑

σ

d

dφ

∮

C
dz ln det(1 − sσA(z)sσN(z)) tanh z. (B.1)

Here, we have chosen the integration contour C in the following way: We integrate

over a line parallel to the real axis and offset by 0+. We close the contour at infinity

for positive imaginary parts. The integration contour has to be offset by a positive

imaginary part, in order to obtain the correct expression for α in the continuum, defined

in Eq. (4.4). In the language of Green’s functions, the sign choice is imposed by causality.

We could close the integration contour, since lim|z|→∞ α(z) = 0. Further, in order to

establish Eq. (B.1), we used the following relation for the Andreev scattering matrix

ΣxsA(t+ i0+)Σx = −s∗
A(−t+ i0+), (B.2)

where

Σx =




0 1N×N

1N×N 0



 (B.3)

for N conduction channels. With help of Eq. (B.2), we could relate the complex

conjugate of the determinant to the determinant at negative energy arguments. This

enables us to rewrite the imaginary part of the determinant (in the density of states

expression) that is initially integrated over positive energies, as an integral over the

entire real axis. For the evaluation of the boundary term in the partial integration step,

we made use of

ln det(1 − sAsN) =
∞∑

k=1

− 1

2k
Tr(sAsN)2k (B.4)
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in order to determine the following scaling behavior

ln det(1 − sA(z)sN(z)) ∼ α2(z) + O(α4(z)), (B.5)

that shows that the boundary term obtained in the partial integration step vanishes.

Using the residue theorem the current in Eq. (B.1) reads

I = − 4e

~β
ℜ d

dφ

∑

σ∈{±}

∞∑

n=0

ln det(1 − sσA(iωn)sσN(iωn)), (B.6)

where the sum is evaluated at the fermionic Matsubara frequencies given by

ωn = (2n+ 1)πβ−1. (B.7)

Eq. (B.6) and Eq. (B.7) are Eq. (4.21) and Eq. (4.22) of the main text.
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C Wave functions of the s/px junction

The work presented in this appendix has been published as an appendix to Ref. [198].

In this appendix, we derive the eigenstates of the Bogoliubov – de Gennes Hamiltonian,

Eq. (4.2). In order to obtain the eigenstates of the Hamiltonian in Eq. (4.2), we

determine the general form of the wave functions in the leads in Sec. C.1. The wave

functions are given in the basis η ⊗ τ , where η denotes the R/L space and τ the particle-

hole space. Then we use the boundary condition at the junction to establish the wave

functions for the bound states in Sec. C.2, and for the continuum states in Sec. C.3. We

provide simple expressions both in the cases of a transparent and an opaque junction.

As the wave functions are 2π-periodic, we restrict our considerations to the interval

φ ∈ [0, 2π[.

C.1 Wave functions in the leads

In the left (s-wave) lead, x < 0, the Hamiltonian in (4.2) reduces to

Hs = ~vFpηzτz − ∆τx. (C.1)

It has a block-diagonal structure in the R/L space. In each block, characterized by

ηz = ±1, we thus need to solve an auxiliary 2 × 2 eigenvalue problem given by

(±~vFpτz − ∆τx)




u

v



 = E




u

v



 . (C.2)
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Using the solutions for this problem, we find that the most general form of the wave

functions associated with the Hamiltonian in Eq. (C.1) at energies above the gap,

|E| > ∆, is the superposition of four independent spinors,

ψ(x) =
1√

1 + α2











Ain
e











1

−α
0

0











eikx + Aout
h











−α
1

0

0











e−ikx

+ Aout
e











0

0

1

−α











e−ikx + Ain
h











0

0

−α
1











eikx











.

(C.3)

Here, α = (E − sgn(E)
√
E2 − ∆2)/∆ and k = sgn(E)

√
E2 − ∆2/(~vF). The prefactor

in Eq. (C.3) ensures that each 4-spinor is normalized to unity. Furthermore,

1√
1 + α2

=

√
√
√
√

1

2

(

1 +

√
E2 − ∆2

|E|

)

, (C.4)

α√
1 + α2

= sgn(E)

√
√
√
√

1

2

(

1 −
√
E2 − ∆2

|E|

)

(C.5)

are the BCS coherence factors. Thus, the spinors with the coefficientsAin
e , Aout

h , Aout
e , and

Ain
h in Eq. (C.3) describe right-moving electron-like, left-moving hole-like, left-moving

electron-like, and right moving hole-like quasiparticles, respectively.

Below the gap, |E| < ∆, there are only two evanescent solutions, such that the most

general form of the wave functions associated with the Hamiltonian in Eq. (C.1) reads

ψ(x) =











Bh











−α
1

0

0











+Be











0

0

1

−α





















eκx. (C.6)

Here α = (E − i
√

∆2 − E2)/∆, which may be written as α = e−iχ, where χ ∈ R

is the energy-dependent phase shift acquired in an Andreev reflection process, and

κ =
√

∆2 − E2/(~vF) gives the decay length in the lead.
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In the right (px-wave) lead, x > L, the Hamiltonian Eq. (4.2) reduces to

Hp = ~vFpηzτz − ∆ηzτxe
−iτzφ. (C.7)

We notice that

Hp = U †HsU, (C.8)

where

U = exp

[

iτz

(

φ

2
+
π

4
(1 + ηz)

)]

. (C.9)

This allows us to write the general form of the wave functions both in the continuum,

ψ(x) =
1√

1 + α2











Cout
e











1

αe−iφ

0

0











eikx + C in
h











αeiφ

1

0

0











e−ikx

+ C in
e











0

0

1

−αe−iφ











e−ikx + Cout
h











0

0

−αeiφ

1











eikx











,

(C.10)

and below the gap,

ψ(x) =











De











1

αe−iφ

0

0











+Dh











0

0

−αeiφ

1





















e−κx. (C.11)

To determine the coefficients in the wave functions introduced above, we need to match

them at the junction. For this, we derive the transfer matrix M associated with the

scalar potential U(x) = U0θ[x(L − x)] in the normal part of the junction. When U0 is
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large, the wave functions with energy E in the normal part of the junction, 0 < x < L,

are readily obtained as

ψ(x) = E<
e











1

0

−i
0











e−λx + E>
e











1

0

i

0











eλx + E<
h











0

i

0

1











e−λx + E>
h











0

−i
0

1











eλx, (C.12)

where λ = U0/(~vF). Using the continuity conditions for the wave functions at x = 0

and x = L, we can get rid of the coefficients E<
e , E

>
e , E

<
h , E

>
h , and establish the relation

ψ(L) = Mψ(0), (C.13)

where M = cosh(λL)+sinh(λL)ηy. The coefficients in the transfer matrix can be related

to the junction transparency, T = cosh−2(λL). (For definiteness, we will assume λ > 0

below.) At T = 0, the two superconductors are decoupled. In that case, the boundary

condition Eq. (C.13) reduces to

(1 + ηy)ψ(0) = 0, (C.14)

(1 − ηy)ψ(L) = 0. (C.15)

Below we use the matching condition Eq. (C.13) to obtain the bound state and conti-

nuum wave functions. Furthermore, we consider the short junction limit, L → 0, while

keeping the product U0L, that determines the transparency, constant.

C.2 Bound state wave functions

In the transparent case, T = 1, the matching equation provides two solutions in the R

and L sectors, respectively. The energy of the solution in the R sector is given by

ER = ∆ sin
φ

2
sgn(sinφ). (C.16)
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Its wave function is obtained with Dh = Be = 0 and De = ieiφ/2sgn(sinφ)Bh. Using the

normalization condition for the wave function, we can fix Bh =
√

∆| cos(φ/2)|/(2~vF) =
√

κR/2. The energy of the solution in the L sector is given by

EL = ∆ cos
φ

2
. (C.17)

Its wave function is obtained with De = Bh = 0 and Dh = −e−iφ/2Be, where Be =
√

∆| sin(φ/2)|/(2~vF) =
√

κL/2.

The two states cross at φ = π/2 and φ = 3π/2. The connection to the energy E+ (E−)

given in Eq. (4.9) is made by taking for each interval the state with the higher (lower)

absolute value of the energy, i.e.,

E+(φ) = sgn(sinφ) max{|ER(φ)| , |EL(φ)|}, (C.18)

E−(φ) = sgn(sinφ) min{|ER(φ)| , |EL(φ)|}. (C.19)

At finite backscattering, these solutions hybridize and an avoided crossing appears near

the phases φ = π
2

and φ = 3π
2

. In the opaque case, T = 0, the state with higher energy

merges with the continuum while the matching equation provides a unique bound state

solution with energy E− = 0 that resides on the right side of the junction only. The

coefficients are given as Bh = Be = 0 and Dh = e−iφDe with De =
√

∆/(2~vF) =
√

κ−/2.

At arbitrary transmission, we find two eigenstates with energies given by Eq. (4.9). Us-

ing the matching condition, Eq. (C.13), and the normalization condition,
∫

dx |Ψ(x)|2 =

1, we obtain the coefficients for the bound state with energy Eν:

Bν
e =

√
T cos

(

χν +
φ

2

)

Cν , (C.20)

Bν
h = −i

√

T (1 − T ) cos
φ

2
Cν , (C.21)

Dν
e =

√
1 − Tei

φ

2 sinχνC
ν , (C.22)

Dν
h =

[

(1 − T ) cos
φ

2
− e−iχν cos

(

χν +
φ

2

)]

Cν , (C.23)

where

Cν =

√
κν

2 cos 2χν(T cos2 φ
2

− sin2 χν)
. (C.24)
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Note that the expressions previously given for the special cases T = 0 and T = 1 differ

by an irrelevant global phase factor.

C.3 Continuum wave functions

For a fixed energy in the continuum, |E| > ∆, the relation between the four incoming

and four outgoing wave functions encoded in Eqs. (C.3) and (C.10) can be expressed

through a scattering matrix S(E) such that











Ain
e

C in
e

Ain
h

C in
h











= S−1(E)











Aout
e

Cout
e

Aout
h

Cout
h











. (C.25)

The scattering matrix is unitary, i.e., S−1 = S†. At energies |E| ≫ ∆, the scattering

matrix simplifies to S = −i
√

1 − Tτz +
√
Tηx, in agreement with the transfer matrix

introduced in Eq. (C.13).

For a transparent junction, T = 1, the scattering matrix is block diagonal as the R and L

sectors decouple. It reads

S =











0 1−α2

1−α2eiφ
α(1−eiφ)
1−α2eiφ

0
1−α2

1+α2e−iφ 0 0 − α(1+eiφ)
1+α2e−iφ

α(1+e−iφ)
1+α2e−iφ 0 0 1−α2

1+α2e−iφ

0 α(e−iφ−1)
1−α2eiφ

1−α2

1−α2eiφ
0











. (C.26)

For the opaque junction, T = 0, scattering states are confined within each lead and the

scattering matrix reads

S =











−i 0 0 0

0 iα
2−1

1+α2 0 − 2α
1+α2 e

iφ

0 0 i 0

0 2α
1+α2 e

−iφ 0 −iα2−1
1+α2











=











−i 0 0 0

0 i
√

1 − ∆2

E2 0 −∆
E
eiφ

0 0 i 0

0 ∆
E
e−iφ 0 −i

√

1 − ∆2

E2











, (C.27)

where we used Eqs. (C.4) and (C.5) in the last step.
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In the general case, using the matching condition in Eq. (C.13) and the continuum

wave functions in Eqs. (C.3) and (C.10), the inverse scattering matrix can be written as

S−1 = B−1A with

A =











0 −1 −α
√
T −i

√
1 − Tαeiφ

0 −αe−iφ √
T i

√
1 − T√

T −i
√

1 − T 0 αeiφ

−α
√
T −i

√
1 − Tαe−iφ 0 −1











, (C.28)

B =











−
√
T −i

√
1 − T 0 αeiφ

α
√
T iα

√
1 − Te−iφ 0 1

0 1 α
√
T i

√
1 − Tαeiφ

0 −αe−iφ −
√
T i

√
1 − T











. (C.29)

In the following we will use the outgoing continuum states. Their wave function is

obtained by setting one of the outgoing coefficients Aout
e , Cout

e , Aout
h , Cout

h to unity and

computing the incoming coefficients via the scattering matrix, Eq. (C.25).
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D Transition rates

The work presented in this appendix has been published as an appendix to Ref. [198].

In this section we calculate the ionization and refill rates induced by a weak ac Zeeman

field using second order perturbation theory. For this, we first derive the Hamiltonian

due to the Zeeman field, Eq. (5.2), in the unperturbed basis of the wave functions

introduced in Appendix C. Introducing the Bogoliubov transformation,

Ψ(x) =
∑

λ

ψλ(x)γλ, (D.1)

inserting it into Eq. (5.1), and symmetrizing the resulting expression, we obtain

HZ =
µBB

2

∑

λλ′
Vλ,λ′γλγλ′ + h.c., (D.2)

where Vλ,λ′ is given below Eq. (5.2) on page 68. Note that Vλ,λ′ = −Vλ′,λ. This allows

writing Eq. (D.2) as

HZ = µBBe
−iΩt



V+,−γ+γ− +
∑

E;µ,ν

Vν,EµγνγEµ +
1

2

∑

E,E′;µ,µ′
VEµ,E′µ′γEµγE′µ′



+ h.c.,

(D.3)

which is Eq. (5.2). Using the definition of the ionization and refill rates (shown in

Fig. 5.1 on page 69), we can calculate them by applying Fermi’s golden rule to the

Hamiltonian in Eq. (D.3). We obtain

ΓI/R
ν (Ω) = 2π~−1(µBB)2

∑

E,µ

|Vν,Eµ|2 δ(~Ω + Eν + E) θ(∓EEν). (D.4)

Here, the upper sign is for an ionization process, whereas the lower sign is for a refill

process. The Heaviside function θ appears due to the Fermi-Dirac distributions at

zero temperature, ensuring that in a refill process the bound state and the continuum

state are empty, and in an ionization process the bound state is occupied whereas the

continuum state is empty. Using sgn(Eν) = sgn(sinφ), we obtain

ΓI/R
ν (Ω) = 2π~−1(µBB)2

∑

E′>0,µ

∣
∣
∣Vν;∓E′sgn(sinφ),µ

∣
∣
∣

2
δ[~Ω + (|Eν | ∓ E ′)sgn(sinφ)]. (D.5)
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Using the density of states in the leads ρ(E), we can replace the sum by an integral and

obtain Eq. (5.16).

To obtain the matrix elements Vν,Eµ, we use the general expressions for the bound

state wave functions and the continuum wave functions, defined in Eqs. (C.6), (C.11)

and (C.3), (C.10), respectively. After integration over the real space coordinate and

reorganization, we obtain

Vν,Eµ =
1√

1 + α2

(
F ν

1

κν + ik
+

F ν
2

κν − ik

)

, (D.6)

where

F ν
1 = (BeA

in
e −BhA

in
h )(α− e−iχν ) + (DhC

in
h e

iφ +DeC
in
e e

−iφ)(α+ e−iχν ), (D.7)

F ν
2 = (BeA

out
h −BhA

out
e )(αe−iχν − 1) + (DhC

out
e −DeC

out
h )(1 + αe−iχν ). (D.8)

Using the outgoing wave functions, Eq. (D.6) can be evaluated numerically to obtain

the rates for arbitrary transmission, for an example see Fig. 5.3. In the following, we

consider the two special cases of a transparent and a tunnel junction, for which we give

analytical expressions.

D.1 Transparent junction

Here, we want to calculate the rates given by Eq. (5.16) for T = 1. We have seen,

that there are two bound states, labeled by R and L, with energies given in Eqs. (C.16)

and (C.17). For each of them, we need to evaluate (D.6). Since the calculation is very

similar in both cases, we will only show the explicit calculation for ν = L. Using the

coefficients for T = 1, given below Eq. (C.17), and χL = φ/2, we find

VL,Eµ =

√

κL

2(1 + α2)




Ain

e

(

α− e−iφ
2

)

− C in
h

(

αei
φ

2 + 1
)

κL + ik

+
Aout

h

(

αe−iφ
2 − 1

)

− e−iφ
2Cout

e

(

1 + αe−iφ
2

)

κL − ik



 .

(D.9)
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For the transparent junction, there are only two outgoing states, Cout
e = 1 or Aout

h = 1.

Then,

∑

µ

|VL,Eµ|2 =
κL

2(1 + α2)

{

2(1 + α2)

κ2
L + k2

+
α2 − 2αǫL + 1

κ2
L + k2

(

|S21|2 + |S31|2
)

+
α2 + 2αǫL + 1

κ2
L + k2

(

|S24|2 + |S34|2
)

− 2

κ2
L + k2

ℜ
[

(α− e−iφ
2 )(1 + αe−iφ

2 )(S∗
21S24 + S∗

31S34)
]

+ 2ℜ
[

1

(κL + ik)2
H1

]

+ 2ℜ
[

1

(κL − ik)2
H2

]}

,

(D.10)

where

H1 = (α− e−iφ
2 )(−S∗

21(αe
−iφ + ei

φ

2 ) + S∗
31(−1 + αei

φ

2 )), (D.11)

H2 = −(1 + αe−iφ
2 )(−S24(αe

−iφ + e−iφ
2 ) + S34(−1 + αe−iφ

2 )). (D.12)

Using the unitarity of the scattering matrix,
∑

k SikS
∗
jk = δij, we find

∑

µ

|VL,Eµ|2 =
2κL

κ2
L + k2

+
κL

1 + α2

(

κ2
L − k2

(κ2
L + k2)2

ℜ[H1 +H2] +
2κLk

(κ2
L + k2)2

ℑ[H1 −H2]

)

,

(D.13)

which after lengthy, but straightforward, algebraic manipulation yields

∑

µ

|VL,Eµ|2 =
2κL

κ2
L + k2

[

1 +
κ2

L − k2

κ2
L + k2

1 − 4α2 + α4 − 2α2 cosφ

1 + α4 + 2α2 cosφ

+
κLk

κ2
L + k2

8α2(α2 − 1) sinφ

(1 + α2)(1 + α4 + 2α2 cosφ)

]

.

=
~vF

∆

4
∣
∣
∣sin φ

2

∣
∣
∣ (ǫ2 − 1)

(ǫ2 − cos2 φ
2
)2(ǫ2 − sin2 φ

2
)



1 −
sinφ

∣
∣
∣sin φ

2

∣
∣
∣

ǫ



 ,

(D.14)

where ǫ = E/∆. Repeating the calculation for ν = R and using the expressions for the

bound state energies, Eqs. (C.16) and (C.17), we finally obtain

∑

η

|Vν,η|2 =
~vF

∆

4 |ǫν̄ | (ǫ2 − 1)

(ǫ2 − ǫ2
ν)

2(ǫ2 − ǫ2
ν̄)

[

1 − sinφ |ǫν̄ |
ǫ

]

, (D.15)
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where ǫν = Eν/∆ and R̄ = L and L̄ = R. Substituting (D.15) into (D.5) and using the

energy conservation condition, |ǫ| = |Ω̃|+|ǫν | for an ionization process and |ǫ| = |Ω̃|−|ǫν |
for a refill process, we find the rates given in Eq. (5.17).

D.2 Opaque junction

We evaluate (D.6) for the opaque junction, T = 0, where only the bound state ν = −
exists. Using the coefficients derived in Sec. C.2, we obtain

V−,Eµ = e−iφ
√

κ−
2(1 + α2)

[

−iC
in
h e

iφ + C in
e

κ− + ik
(1 + iα) +

Cout
e − Cout

h eiφ

κ− − ik
(1 − iα)

]

. (D.16)

As in the transparent case, there are only two outgoing states, either Cout
e = 1 or

Cout
h = 1. After some algebra and using the unitarity of the scattering matrix, we find

∑

µ

|V−,Eµ|2 =
κ−

1 + α2

{

2
1 + α2

κ2
− + k2

− ℑ
[

(1 − iα)2

(κ− − ik)2
(S22 − S24 + e−iφS44 − eiφS42)

]}

.

(D.17)

Using the scattering matrix in Eq. (C.27), we finally obtain

∑

µ

|V−,Eµ|2 =
~vF

∆

16(ǫ2 − 1)

ǫ6
. (D.18)

The corresponding rate is given in Eq. (5.19).
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E Expressions for the traces for the current

through the half-metal/superconductor interface

The procedure for the current calculation is explained in Sec. 7.5. Here, we only present

the results for the expressions obtained after a considerable amount of algebra and

after taking the trace over spin and Nambu space. These expressions enter Eq. (7.84).

The expression obtained for the regime of pure Andreev reflection S1 is particularly

important for the low frequency behavior of the junction. In the tunnel limit the

expressions agree with the results obtained from Fermi’s golden rule.

We use the previously defined dimensionless parameters ǫ = E/∆, ω = ~Ω
∆

, U = eV
∆

and

α = π2νSν↑t
2. Additionally, we define

α̃σ = α
ǫσ

√

1 − ǫ2
σ

, (E.1)

ᾱσ = α
|ǫσ|

√

ǫ2
σ − 1

, (E.2)

ǫσ = ǫ+ σ
ω

2
. (E.3)

Recall the following two definitions given in Eqs. (7.15) and (7.19):

(FS)σ = tanh
E + ~Ω

2
σ

2kT
, (E.4)

(FF)τσ = cos2 θ

2
tanh

E + ~Ω
2
σ + eV τ

2kT
+ sin2 θ

2
tanh

E − ~Ω
2
σ + eV τ

2kT
. (E.5)

Here, we use the distribution function obtained from the model considering relaxation

in an adjacent normal metal. The expression in the pure Andreev reflection regime

reads

S1 =
sin2 θ(ǫ−1

↑ α̃↑ − ǫ−1
↓ α̃↓)

2(F↑↑ − F↓↓)

D1

, (E.6)

where the denominator is given by

D1 =

[

1 −
(

α̃↑ cos2 θ

2
+ α̃↓ sin2 θ

2

)(

α̃↑ sin2 θ

2
+ α̃↓ cos2 θ

2

)

+ cos2 θ

2
sin2 θ

2

(

ǫ−1
↑ α̃↑ − ǫ−1

↓ α̃↓
)2
]2

+ (α̃↑ + α̃↓)
2.

(E.7)
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This expression is used to obtain the current in the limit of small frequencies, as

presented in Sec. 7.5. The other expressions can be written as

S2 =
−2

D2

{

cos θ cos2 θ

2
sin2 θ

2
ǫ−1

↑ ᾱ↑(ᾱ
2
↑ǫ

−1
↑ + α̃2

↓ǫ
−1
↓ )[(G↑ − F↓↓) + (G↑ − F↑↑)]

+ ǫ−1
↓ ᾱ2

↓ cos2 θ

2
sin2 θ

2
[2ǫ−1

↓ + ǫ−1
↓ ᾱ↑ + ǫ−1

↑ ᾱ↑](F↓↓ − F↑↑)

+ ᾱ↑ cos2 θ

2
[(1 + ᾱ↑ sin2 θ

2
)2 + α̃2

↓ cos4 θ

2
− cos2 θ

2
sin2 θ

2
(ǫ−2

↑ ᾱ2
↑ + ǫ−2

↓ α̃2
↓)](G↑ − F↑↑)

−ᾱ↑ sin2 θ

2
[(1 + ᾱ↑ cos2 θ

2
)2 + α̃2

↓ sin4 θ

2
− cos2 θ

2
sin2 θ

2
(ǫ−2

↑ ᾱ2
↑ + ǫ−2

↓ α̃2
↓)](G↑ − F↓↓)

}

,

(E.8)

D2 =

{

1 + ᾱ↑ + cos2 θ

2
sin2 θ

2
[ᾱ2

↑(1 − ǫ−2
↑ ) − α̃2

↓(1 − ǫ−2
↓ )]

}2

+ [α̃↓ + ᾱ↑α̃↓ + 2 cos2 θ

2
sin2 θ

2
ᾱ↑α̃↓(ǫ

−1
↑ ǫ−1

↓ − 1)]2,

(E.9)

S3 =
−2

D3

{

− cos θ cos2 θ

2
sin2 θ

2
ǫ−1

↓ ᾱ↓(α̃
2
↑ǫ

−1
↑ + ᾱ2

↓ǫ
−1
↓ )[(G↓ − F↓↓) + (G↓ − F↑↑)]

+ ǫ−1
↑ α̃2

↑ cos2 θ

2
sin2 θ

2
[2ǫ−1

↑ + ǫ−1
↑ ᾱ↓ + ǫ−1

↓ ᾱ↓](F↓↓ − F↑↑)

+ ᾱ↓ sin2 θ

2
[(1 + ᾱ↓ cos2 θ

2
)2 + α̃2

↑ sin4 θ

2
− cos2 θ

2
sin2 θ

2
(ǫ−2

↑ α̃2
↑ + ǫ−2

↓ ᾱ2
↓)](G↓ − F↑↑)

−ᾱ↓ cos2 θ

2
[(1 + ᾱ↓ sin2 θ

2
)2 + α̃2

↑ cos4 θ

2
− cos2 θ

2
sin2 θ

2
(ǫ−2

↑ α̃2
↑ + ǫ−2

↓ ᾱ2
↓)](G↓ − F↓↓)

}

,

(E.10)

D3 =

{

1 + ᾱ↓ + cos2 θ

2
sin2 θ

2
[ᾱ2

↓(1 − ǫ−2
↓ ) − α̃2

↑(1 − ǫ−2
↑ )]

}2

+ [α̃↑ + α̃↑ᾱ↓ + 2 cos2 θ

2
sin2 θ

2
α̃↑ᾱ↓(ǫ

−1
↑ ǫ−1

↓ − 1)]2,

(E.11)
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S4 =8

[(

1 + ᾱ↑ cos2 θ

2
+ ᾱ↓ sin2 θ

2

)(

1 + ᾱ↑ sin2 θ

2
+ ᾱ↓ cos2 θ

2

)

− sin2 θ

2
cos2 θ

2

(

ǫ−1
↑ ᾱ↑ − ǫ−1

↓ ᾱ↓
)2
]−2

·


D↑↓ᾱ↑ sin2 θ

2





(

1 + ᾱ↑ cos2 θ

2
+ ᾱ↓ sin2 θ

2

)2

−
(

ǫ−1
↑ ᾱ↑ − ǫ−1

↓ ᾱ↓
)

cos2 θ

2

(

sin2 θ

2
+ ǫ−1

↑ (ᾱ↑ − ᾱ↓) cos θ

))

+ D↓↓ᾱ↓ cos2 θ

2





(

1 + ᾱ↑ cos2 θ

2
+ ᾱ↓ sin2 θ

2

)2

−
(

ǫ−1
↑ ᾱ↑ − ǫ−1

↓ ᾱ↓
)

sin2 θ

2

(

cos2 θ

2
− ǫ−1

↓ (ᾱ↑ − ᾱ↓) cos θ

))]

.

(E.12)

Here, we introduced the distribution function combination Dαβ = (FS)α − (FF)ββ,

reading

Dαβ = cos2 θ

2

[

f(E + β
~Ω

2
+ βeV ) − f(E + α

~Ω

2
)

]

+ sin2 θ

2

[

f(E − β
~Ω

2
+ βeV ) − f(E + α

~Ω

2
)

]

.

(E.13)

The expressions given in this appendix are used to obtain Figs. 7.4 and 7.5. Further,

the calculation of the current for high frequencies, presented in Appendix F, uses these

expressions.
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F Current through the half-metal/superconductor

interface at high frequencies

In this appendix we determine the current through the half-metal/superconductor

interface at zero temperature, zero voltage (V = 0) and in the limit of infinite frequency

(ω → ∞). We assume relaxation in an adjacent normal metal layer corresponding to

the distribution function in Eq. (7.19). The current at infinite frequency corresponds to

the plateau value that the current may reach, see also Fig. 7.4 on page 128. As defined

by Eqs. (7.84) and (7.85) and Tab. 7.1 on page 124, the current is given as the sum of

four contributions. In the following we evaluate the total current in the limit of infinite

frequency, using the explicit expressions for the traces given in Appendix E.

For the first contribution the occupation factor gives directly I1 = 0, since ω > 2.

Note the following useful relation, valid for both distribution functions and also at

finite temperature and voltage bias: I2 = I3 since S2(−E) = S3(E) (as evident from

Eqs. (E.8) and (E.10)). Using ω → ∞ and shifting the integration variable, we can

show

I2 =
α2

2

e∆

h
sin2 θ cos θ

∫ 0

−1
dǫ
z0 + z2ǫ

2

n0 − n2ǫ2
, (F.1)

where we made the following definitions

z0 = 2(2 + α), (F.2)

z2 = −2(1 + α), (F.3)

n0 = (1 + α+ 2α2 cos2 θ

2
sin2 θ

2
)2, (F.4)

n2 = n0 − α2(1 + α− 2α cos2 θ

2
sin2 θ

2
)2. (F.5)

The integral is easily solved giving

I2 + I3 = α2 e∆

h
sin2 θ cos θ



− z2

n2

+
(
z0

n0

+
z2

n2

) arctanh
√

n2

n0
√

n2

n0



 . (F.6)

The contribution I4 can be evaluated numerically. We will now discuss the scaling of

the current in two limiting cases.
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Fig. F.1: Deviation of the angular dependence of the current for a transparent interface (given
in Eq. (F.8)) from the tunnel junction angular dependence cos θ sin2 θ. As evident
from this plot, the deviations from the angular dependence in the tunnel case are
small.

First, consider the tunnel limit α ≪ 1. In lowest order in α, we can use n2

n0
≈ 1 − α2 and

arctanh
√

1 − α2 ≈ ln 2
α

to obtain using Eq. (F.6)

I2 + I3 ≈ 2α2 e∆

h
sin2 θ cos θ ln

2

α
+ O

(

α2
)

. (F.7)

Numerically, we can prove that I4 ∼ α2 lnα for α ≪ 1. The angle dependence in the

tunnel limit is thus sin2 θ cos θ.

Now consider the limit of a transparent interface, i.e., α = 1. Eq. (F.6) simplifies to

I2 + I3 =
e∆

h
sin2 θ cos θ




1

sin2 θ
+

3 sin2 θ − 2(1 + sin2 θ
4

)2

2 sin3 θ(1 + sin2 θ
4

)
arctanh




sin θ

1 + sin2 θ
4







 . (F.8)

Numerically, we obtain I2 + I3(α = 1) ≫ I4(α = 1). Further note that we find I4 ∼ α2

for α ≫ 1, giving I ≈ I2 + I3 in this parameter regime.

For the transparent interface, the angle dependence is obviously more complicated

than in the tunnel case. The angle for the maximum current θmax ≈ 0.922 (as obtained

numerically from above expression), is slightly shifted with respect to the tunnel

case (arctan
√

2 ≈ 0.955). However, the term in the brackets [...] is nearly constant.

Therefore, the angle dependence is not significantly changed with respect to the tunnel

case. Fig. F.1 shows the difference between the angular dependence as given by Eq. (F.8)

with respect to the dependence in the tunnel limit sin2 θ cos θ.
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G Integral in the Andreev current

During the calculation of the Andreev current in Chapter 8 integrals of the following

form appear

A =
∫ ∞

1
dǫ

1√
ǫ2 − 1

1

ǫ− a
, (G.1)

where a ∈ R. We use three consecutive substitutions to solve the integral. With the first

substitution ǫ = 1
cosx

, we get rid of the square root, yielding

A =
∫ π

2

0
dx

cos−1 x

cos−1 x− a
. (G.2)

The aim of the second substitution is to replace the trigonometric functions. We use

s = tan x
2

and obtain

A = 2
∫ 1

0

ds

1 + s2 − a(1 − s2)
. (G.3)

With the third substitution u = s
√

1+a
1−a we obtain (supposing a < 1)

A =
2√

1 − a2

∫
√

1+a
1−a

0

du

1 + u2
. (G.4)

This is a standard integral giving the solution

A =
2√

1 − a2
arctan

√

1 + a

1 − a
. (G.5)

G Integral in the Andreev current 199



H Disorder average of the non-local density of

states

We want to calculate the disorder average of the non-local density of states. The

calculation presented in this appendix can be found in Ref. [268]. Consider a Gaussian

disorder model, where only the second cumulant of the disorder potential V (r) is

nonzero, i.e.,

〈V (r)〉 = 0, (H.1)

〈V (r)V (r′)〉 = B(r − r′). (H.2)

If the electron wavelength is much bigger than the characteristic decay length of the

correlations, the potential can be approximated as being local:

〈V (r)V (r′)〉 = Bδ(r − r′) (H.3)

Consecutive scattering events are thus uncorrelated. The non-local density of states is

defined by

Kǫ(r, r
′) =

∑

n

φ∗
n(r)φn(r′)δ(ǫ− ǫn)

= − 1

π

〈

r′

∣
∣
∣ℑGR

∣
∣
∣ r
〉

=
i

2π

(

GR(r, r′, ǫ) −GA(r, r′, ǫ)
)

,

(H.4)

where φn(r) is the eigenfunction for the energie ǫn. Further ℑ denotes the imaginary

part andGR (GA) is the retarded (advanced) Green’s function. A perturbation expansion

of the full Green’s function G, treating V as a perturbation, can be written as a Dyson

series

G(r, r′) = G0(r, r
′) +

∫

dr1G0(r, r1)V (r1)G0(r1, r
′)

+
∫

dr1

∫

dr2G0(r, r1)V (r1)G0(r1, r2)V (r2)G0(r2, r
′) + O

(

V 3
)

,
(H.5)
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where G0 is the unperturbed Green’s function. We take the disorder average, denoted

by 〈· · ·〉 and obtain

〈G(r, r′)〉 = G0(r, r
′) +

∫

dr1

∫

dr2G0(r, r1)B(r1 − r2)G0(r1, r2)G0(r2, r
′) + O

(

B2
)

.

(H.6)

After a Fourier transform we obtain

G(k) = G0(k) +G0(k)
[∫

dqB(q)G0(k − q)G0(k) + O
(

B2
)]

, (H.7)

from which we can extract the first order term of the self-energy

Σ1(k) =
∫

dqB(q)G0(k − q). (H.8)

We use the retarded self-energy in order to define the elastic mean collision time τe via

1

2τe

= −ℑΣR
1 (k, ǫ). (H.9)

Neglecting the real part of the self-energy (that shifts the energy levels), we have

〈

GR/A(k, ǫ)
〉

=
1

ǫ− ǫ(k) ± i
2τe

. (H.10)

We consider the dispersion ǫ(k) = k2

2m
and define k2

e = k2 ± i
2τe

. Let us further consider

the limit of weak disorder, i.e., kle ≫ 1, where le = kτe

m
is the mean free path. We obtain

ke ≈ k ± i

2le
. (H.11)

Using a three dimensional Fourier transform to real space, we obtain

〈

GR/A(ri, r, ǫ)
〉

=
m

2πR
e±ikRe− R

2le = −πρ0
e±ikR

kR
e− R

2le , (H.12)

where R = |r − ri|. Using this expression, the disorder averaged non-local density of

states (using Eq. (H.4)) reads

〈Kǫ(R)〉 = ρ0
sin kR

kR
e− R

2le . (H.13)

We can obtain the result for leads without disorder, developping this expression for

R ≪ le.
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I Integrals over Green’s functions for the

extended ballistic interface

We want to solve the integrals in Eq. (8.38) that read

X =
∫

dr1

∫

dr2

∫

dr3 g̃0(r1)g̃0(−r2)g̃0(r2 + r3)g̃0(r1 + r3) (I.1)

First, we rewrite Eq. (I.1) introducing the Fourier transform of g̃(r), given by

f(k) =
1

2π

∫

d2reikrg̃(r), (I.2)

giving a deconvoluted expression

X =
1

(2π)4

∫

dr1

∫

dr2

∫

dr3

∫

dk1

∫

dk2

∫

dk3

∫

dk4

· eik1r1eik2(−r2)eik3(r2+r3)eik4(r1+r3)f(k1)f(k2)f(k3)f(k4).

(I.3)

We use the definition of the Dirac-δ distribution

∫

dreir(k) = (2π)2δ(k) (I.4)

to obtain after integation

X = (2π)2
∫

dkf 3(k)f(−k). (I.5)

We now have to compute the Fourier transform in Eq. (I.2) with the radial symmetric

function g̃(r). In order to obtain dimensionless variables, we introduce x = kFr and

q = k−1
F k. We define g̃(r) = k2

Fh(x) with

h(x) =
x cosx− sin x

x3
. (I.6)

Using the integral representation of the Bessel function of first kind of nth order

Jn(x) =
1

2π

∫ π

−π
ei(nτ−x sin τ)dτ, (I.7)
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we can write Eq. (I.2) as

f(q) = H0(q) =
∫ ∞

0
dx xJ0(qx)h(x). (I.8)

Here, we used the definition of the Hankel transform of order ν of a function h(x) given

by

Hν(q) =
∫ ∞

0
h(x)Jν(qx)xdx. (I.9)

Let us use that the result depends only on the absolute value of q, giving for the integral

to be solved

X = (2π)3k2
F

∫ ∞

0
dq q[H0(q)]

4. (I.10)

Let us now evaluate H0(q). Using xh(x) = d
dx

sinx
x

, we obtain after a partial integration

for Eq. (I.8)

H0(q) = −1 + q
∫ ∞

0
dx J1(qx)

sin x

x
, (I.11)

where we used d
dx
J0(x) = −J1(x). Using the relation [287]

∫ ∞

0
Jν(αx)

sin(βx)

x
dx =







1
ν

sin(ν arcsin β
α
) for β ≤ α,

αν sin νπ
2

ν(β+
√
β2−α2)

for β ≥ α,
(I.12)

that is valid for ℜν > −1, we obtain

H0(q) = −
√

1 − q2Θ(1 − q), (I.13)

giving for the integral to be solved (Eq. (I.10))

X =
(2π)3

6
k2

F. (I.14)
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J Fourier transform of the solution of the 3D

diffusion equation

We want to calculate the Fourier transform of the function f(ω) = e−(1−i)a√
ω, given by

f(t) =
∫ ∞

−∞

dω√
2π
e−iωtf(ω). (J.1)

The idea is to transform this integral into a Gaussian integral, since the exponent

contains an ω and a
√
ω term. We use the complex substitution iω = z2. Consider the

complex frequencies plane. The original integral is taken over the real frequency axis

ω. After the substitution, the integral is over an axis that is rotated by π
4

with respect

to the real axis. Let us define a contour in the complex plane that is given by the real

axis, the rotated axis, and two parts of a circle that connect the two axes (at infinity).

Since the function f(ω) decays exponentially for the frequency going to infinity, the

parts at infinity do not contribute to the integral. Further, the exponential function is

holomorphic everywhere and therefore no singularity is enclosed by the contour. Using

the residue theoreme, the total integral over the contour is zero, giving that the two

contributions (over the real and the rotated axis) are identical. The resulting integral

reads

f(t) = − 2i√
2π
e−a2

2t

∫ ∞

−∞
dzze

−t(z−i a√
2t

)2

. (J.2)

Now, we have to use a complex linear substitution x = z − i a√
2t

. The new integration

axis is parallel to the old one, offset by a√
2t

. Let us define an integration contour that is

a parallelogram, containing both integration axes and being closed at infinity. Then,

the two parts at infinity do not contribute to the integral. Again, since the exponential

function is holomorphic, we obtain using the residue theorem

f(t) = − 2i√
2π
e−a2

2t

∫ ∞

−∞
dx(x+ i

a√
2t

)e−tx2

. (J.3)

The integral
∫∞

−∞ dxxe−tx2
is trivially integrated and gives zero. The other integral gives

the well-known result
∫∞

−∞ dxe−tx2
=
√

π
t
, where we suppose t > 0. We finally obtain

the Fourier transform

f(t) = ae−a2

2t t−
3
2 . (J.4)
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: Moscow : MFTI, 1998. Amsterdam, The Netherlands: Gordon and Breach Science
Publishers, 1999 (cit. on pp. 14, 15, 32, 54).

[122] Liang Fu, C. L. Kane, and E. J. Mele. “Topological Insulators in Three Dimensions”. In:
Phys. Rev. Lett. 98 (Mar. 2007), p. 106803. DOI: 10.1103/PhysRevLett.98.106803

(cit. on p. 15).

[123] Markus König, Steffen Wiedmann, Christoph Brüne, et al. “Quantum Spin Hall Insulator
State in HgTe Quantum Wells”. In: Science 318.5851 (2007), pp. 766–770. DOI: 10.

1126/science.1148047 (cit. on p. 15).

[124] M. Z. Hasan and C. L. Kane. “Colloquium : Topological insulators”. In: Rev. Mod. Phys.

82 (Nov. 2010), pp. 3045–3067. DOI: 10.1103/RevModPhys.82.3045 (cit. on p. 15).

[125] Shinsei Ryu, Andreas P. Schnyder, Akira Furusaki, and Andreas W. W. Ludwig. “Topolog-
ical insulators and superconductors: tenfold way and dimensional hierarchy”. In: New

Journal of Physics 12 (June 2010). DOI: 10.1088/1367-2630/12/6/065010 (cit. on
p. 15).

[126] Ching-Kai Chiu, Jeffrey C. Y. Teo, Andreas P. Schnyder, and Shinsei Ryu. “Classification
of topological quantum matter with symmetries”. In: (May 2015). arXiv: 1505.03535

(cit. on p. 15).

[127] Ettore Majorana. “Teoria simmetrica dell’elettrone e del positrone”. Italian. In: Il Nuovo

Cimento 14.4 (1937), pp. 171–184. DOI: 10.1007/BF02961314 (cit. on pp. 15, 17).

[128] G. R. Stewart. “Superconductivity in iron compounds”. In: Rev. Mod. Phys. 83.4 (Dec.
2011), 1589–1652. DOI: 10.1103/revmodphys.83.1589 (cit. on p. 17).

[129] Yuval Oreg, Gil Refael, and Felix von Oppen. “Helical Liquids and Majorana Bound
States in Quantum Wires”. In: Phys. Rev. Lett. 105 (Oct. 2010), p. 177002. DOI: 10.

1103/PhysRevLett.105.177002 (cit. on p. 17).

[130] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma. “Majorana Fermions and a Topologi-
cal Phase Transition in Semiconductor-Superconductor Heterostructures”. In: Phys. Rev.

Lett. 105 (Aug. 2010), p. 077001. DOI: 10.1103/PhysRevLett.105.077001 (cit. on
p. 17).

216 References

http://dx.doi.org/10.1016/0375-9474(67)90080-2
http://dx.doi.org/10.1007/BF02745585
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://arxiv.org/abs/1505.03535
http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1103/revmodphys.83.1589
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.077001


[131] V. Mourik, K. Zuo, S. M. Frolov, et al. “Signatures of Majorana Fermions in Hy-
brid Superconductor-Semiconductor Nanowire Devices”. In: Science 336.6084 (2012),
pp. 1003–1007. DOI: 10.1126/science.1222360 (cit. on p. 18).

[132] Alexandre M. Zagoskin. Quantum Theory of Many-Body Systems. Springer New York,
1998. DOI: 10.1007/978-1-4612-0595-1 (cit. on pp. 19, 20).

[133] C. W. J. Beenakker. “Universal limit of critical-current fluctuations in mesoscopic
Josephson junctions”. In: Phys. Rev. Lett. 67 (Dec. 1991), pp. 3836–3839. DOI: 10.

1103/PhysRevLett.67.3836 (cit. on pp. 20, 22, 39, 61, 171, 175).

[134] C. W. J. Beenakker. “Three ‘universal’ mesoscopic Josephson effects”. In: Transport

Phenomena in Mesoscopic Systems. Proceedings of the 14th Taniguchi Symposium. Ed.
by H. Fukuyama and T. Ando. Transport Phenomena in Mesoscopic Systems. 14th
Taniguchi Symposium, 10-14 Nov. 1991, Shima, Japan. Berlin, Germany: Springer-
Verlag, 1992, 235–53. DOI: 10.1007/978-3-642-84818-6_22 (cit. on pp. 20, 39, 54,
172).

[135] C. W. J. Beenakker. “Random-matrix theory of quantum transport”. In: Reviews of

Modern Physics 69.3 (July 1997), pp. 731–808. DOI: 10.1103/RevModPhys.69.731

(cit. on pp. 20, 39, 171, 176).

[136] Yuli V. Nazarov and Yaroslav M. Blanter. Quantum transport: introduction to nanoscience.
Cambridge: Cambridge Univ. Press, 2009. DOI: 10.1080/00107510903282549 (cit. on
pp. 20, 36, 39).

[137] I. O. Kulik. “Macroscopic quantization and proximity effect in S-N-S junctions”. In:
Soviet Physics JETP-USSR 30.5 (1970), p. 944 (cit. on p. 22).

[138] I. O. Kulik and A. G. Omelyanchuk. “Properties of Superconducting Microbridges in the
Pure Limit”. In: Sov. J. Low Temp. Phys. 3 (1978), pp. 459–461 (cit. on p. 22).

[139] P. W. Anderson and J. M. Rowell. “Probable Observation of the Josephson Supercon-
ducting Tunneling Effect”. In: Physical Review Letters 10.6 (Mar. 1963), 230–232. DOI:
10.1103/physrevlett.10.230 (cit. on p. 23).

[140] T. A. Fulton and R. C. Dynes. “Current-Phase Relations in Superconducting Bridges”.
In: Physical Review Letters 25.12 (Sept. 1970), 794–797. DOI: 10.1103/physrevlett.

25.794 (cit. on p. 24).

[141] L. D. Jackel, R. A. Buhrman, and W. W. Webb. “Direct measurement of current-phase
relations in superconducting weak links”. In: Physical Review B 10.7 (Oct. 1974),
2782–2785. DOI: 10.1103/physrevb.10.2782 (cit. on p. 24).

[142] Robert Rifkin and Bascom S. Deaver. “Current-phase relation and phase-dependent
conductance of superconducting point contacts from rf impedance measurements”. In:
Phys. Rev. B 13 (May 1976), pp. 3894–3901. DOI: 10.1103/PhysRevB.13.3894 (cit. on
p. 24).

[143] M. L. Della Rocca, M. Chauvin, B. Huard, et al. “Measurement of the Current-Phase
Relation of Superconducting Atomic Contacts”. In: Physical Review Letters 99.12 (Sept.
2007). DOI: 10.1103/physrevlett.99.127005 (cit. on p. 24).

References 217

http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1007/978-1-4612-0595-1
http://dx.doi.org/10.1103/PhysRevLett.67.3836
http://dx.doi.org/10.1103/PhysRevLett.67.3836
http://dx.doi.org/10.1007/978-3-642-84818-6_22
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1080/00107510903282549
http://dx.doi.org/10.1103/physrevlett.10.230
http://dx.doi.org/10.1103/physrevlett.25.794
http://dx.doi.org/10.1103/physrevlett.25.794
http://dx.doi.org/10.1103/physrevb.10.2782
http://dx.doi.org/10.1103/PhysRevB.13.3894
http://dx.doi.org/10.1103/physrevlett.99.127005


[144] Charles Kittel. “Interpretation of Anomalous Larmor Frequencies in Ferromagnetic
Resonance Experiment”. In: Physical Review 71.4 (Feb. 1947), 270–271. DOI: 10.1103/

physrev.71.270.2 (cit. on p. 25).

[145] C. Kittel. Introduction to Solid State Physics. Wiley, 2004 (cit. on p. 25).

[146] T. L. Gilbert. “A Lagrangian Formulation of the Gyromagnetic Equation of the Magneti-
zation Field”. In: Phys. Rev. 100 (1955), p. 1243 (cit. on p. 26).

[147] L. D. Landau and E. Lifshitz. “On the theory of the dispersion of magnetic permeability
in ferromagnetic bodies”. In: Phys. Z. Sowjet. 8 (1935), p. 153 (cit. on p. 26).

[148] Takao Iwata. “A thermodynamical approach to the irreversible magnetization in single-
domain particles”. In: Journal of Magnetism and Magnetic Materials 31-34 (Feb. 1983),
1013–1014. DOI: 10.1016/0304-8853(83)90774-6 (cit. on p. 26).

[149] D. D. Stancil and A. Prabhakar. Spin Waves: Theory and Applications. Springer US, 2009.
DOI: 10.1007/978-0-387-77865-5 (cit. on p. 26).

[150] O. Mosendz, J. E. Pearson, F. Y. Fradin, et al. “Quantifying Spin Hall Angles from Spin
Pumping: Experiments and Theory”. In: Physical Review Letters 104.4 (Jan. 2010). DOI:
10.1103/physrevlett.104.046601 (cit. on pp. 27, 30).

[151] Y. Guan, W. E. Bailey, E. Vescovo, C.-C. Kao, and D. A. Arena. “Phase and amplitude
of element-specific moment precession in Ni81Fe19”. In: Journal of Magnetism and

Magnetic Materials 312.2 (May 2007), 374–378. DOI: 10.1016/j.jmmm.2006.10.1111

(cit. on p. 27).

[152] A. G. Aronov and G. E. Pikus. “Spin Injection into semiconductors”. In: Soviet Physics

Semiconductors-USSR 10.6 (1976), 698–700 (cit. on p. 27).

[153] M. Johnson and R. H. Silsbee. “Interfacial charge-spin coupling: Injection and detec-
tion of spin magnetization in metals”. In: Physical Review Letters 55.17 (Oct. 1985),
1790–1793. DOI: 10.1103/physrevlett.55.1790 (cit. on p. 27).

[154] M. Johnson and R. H. Silsbee. “Spin-injection experiment”. In: Physical Review B 37.10
(Apr. 1988), 5326–5335. DOI: 10.1103/physrevb.37.5326 (cit. on p. 27).

[155] Arne Brataas, Yu. V. Nazarov, and Gerrit E. W. Bauer. “Finite-Element Theory of
Transport in Ferromagnet–Normal Metal Systems”. In: Physical Review Letters 84.11
(Mar. 2000), 2481–2484. DOI: 10.1103/physrevlett.84.2481 (cit. on pp. 28, 119).

[156] K. Xia, P. J. Kelly, G. E. W. Bauer, A. Brataas, and I. Turek. “Spin torques in
ferromagnetic/normal-metal structures”. In: Physical Review B 65.22 (May 2002).
DOI: 10.1103/physrevb.65.220401 (cit. on p. 28).

[157] Arne Brataas, Yaroslav Tserkovnyak, Gerrit E. W. Bauer, and Bertrand I. Halperin. “Spin
battery operated by ferromagnetic resonance”. In: Physical Review B 66.6 (Aug. 2002).
DOI: 10.1103/physrevb.66.060404 (cit. on pp. 28, 92, 120).

[158] Xuhui Wang, Gerrit E. W. Bauer, Bart J. van Wees, Arne Brataas, and Yaroslav
Tserkovnyak. “Voltage Generation by Ferromagnetic Resonance at a Nonmagnet to
Ferromagnet Contact”. In: Physical Review Letters 97.21 (Nov. 2006). DOI: 10.1103/

physrevlett.97.216602 (cit. on pp. 29, 161).

218 References

http://dx.doi.org/10.1103/physrev.71.270.2
http://dx.doi.org/10.1103/physrev.71.270.2
http://dx.doi.org/10.1016/0304-8853(83)90774-6
http://dx.doi.org/10.1007/978-0-387-77865-5
http://dx.doi.org/10.1103/physrevlett.104.046601
http://dx.doi.org/10.1016/j.jmmm.2006.10.1111
http://dx.doi.org/10.1103/physrevlett.55.1790
http://dx.doi.org/10.1103/physrevb.37.5326
http://dx.doi.org/10.1103/physrevlett.84.2481
http://dx.doi.org/10.1103/physrevb.65.220401
http://dx.doi.org/10.1103/physrevb.66.060404
http://dx.doi.org/10.1103/physrevlett.97.216602
http://dx.doi.org/10.1103/physrevlett.97.216602


[159] J. Zhu, J. A. Katine, G. E. Rowlands, et al. “Voltage-Induced Ferromagnetic Resonance
in Magnetic Tunnel Junctions”. In: Physical Review Letters 108.19 (May 2012). DOI:
10.1103/physrevlett.108.197203 (cit. on p. 29).

[160] M.I. Dyakonov and V.I. Perel. “Current-induced spin orientation of electrons in semi-
conductors”. In: Physics Letters A 35.6 (July 1971), 459–460. DOI: 10.1016/0375-

9601(71)90196-4 (cit. on p. 29).

[161] M. I. D’yakonov and V. I. Perel’. “Possibility of Orienting Electron Spins with Current”.
In: Soviet Journal of Experimental and Theoretical Physics Letters 13 (June 1971), p. 467
(cit. on p. 29).

[162] J. E. Hirsch. “Spin Hall Effect”. In: Physical Review Letters 83.9 (Aug. 1999), 1834–1837.
DOI: 10.1103/physrevlett.83.1834 (cit. on p. 29).

[163] Y. K. Kato. “Observation of the Spin Hall Effect in Semiconductors”. In: Science 306.5703
(Dec. 2004), 1910–1913. DOI: 10.1126/science.1105514 (cit. on p. 29).

[164] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara. “Conversion of spin current into charge
current at room temperature: Inverse spin-Hall effect”. In: Applied Physics Letters 88.18
(2006), p. 182509. DOI: 10.1063/1.2199473 (cit. on p. 30).

[165] Hui Zhao, Eric J. Loren, H. M. van Driel, and Arthur L. Smirl. “Coherence Control of
Hall Charge and Spin Currents”. In: Physical Review Letters 96.24 (June 2006). DOI:
10.1103/physrevlett.96.246601 (cit. on p. 30).

[166] S. O. Valenzuela and M. Tinkham. “Direct electronic measurement of the spin Hall
effect”. In: Nature 442.7099 (July 2006), 176–179. DOI: 10.1038/nature04937 (cit. on
p. 30).

[167] K. Ando, Y. Kajiwara, S. Takahashi, et al. “Angular dependence of inverse spin–Hall
effect induced by spin pumping investigated in a Ni81Fe19/Pt thin film”. In: Physical

Review B 78.1 (July 2008). DOI: 10.1103/physrevb.78.014413 (cit. on p. 30).

[168] F. D. Czeschka, L. Dreher, M. S. Brandt, et al. “Scaling Behavior of the Spin Pumping
Effect in Ferromagnet-Platinum Bilayers”. In: Physical Review Letters 107.4 (July 2011).
DOI: 10.1103/physrevlett.107.046601 (cit. on p. 30).

[169] J. G. Valatin. “Comments on the theory of superconductivity”. In: Il Nuovo Cimento

(1955-1965) 7.6 (1958), pp. 843–857. DOI: 10.1007/BF02745589 (cit. on p. 31).

[170] C. Bruder. “Andreev scattering in anisotropic superconductors”. In: Phys. Rev. B 41
(Mar. 1990), pp. 4017–4032. DOI: 10.1103/PhysRevB.41.4017 (cit. on pp. 32, 34,
35).

[171] Nikolai M. Chtchelkatchev and Yu. V. Nazarov. “Andreev Quantum Dots for Spin Ma-
nipulation”. In: Physical Review Letters 90.22 (June 2003). DOI: 10.1103/physrevlett.

90.226806 (cit. on p. 36).

[172] Anthony J. Leggett. “A theoretical description of the new phases of liquid 3He”. In: Rev.

Mod. Phys. 47.2 (Apr. 1975), 331–414. DOI: 10.1103/revmodphys.47.331 (cit. on
p. 36).

References 219

http://dx.doi.org/10.1103/physrevlett.108.197203
http://dx.doi.org/10.1016/0375-9601(71)90196-4
http://dx.doi.org/10.1016/0375-9601(71)90196-4
http://dx.doi.org/10.1103/physrevlett.83.1834
http://dx.doi.org/10.1126/science.1105514
http://dx.doi.org/10.1063/1.2199473
http://dx.doi.org/10.1103/physrevlett.96.246601
http://dx.doi.org/10.1038/nature04937
http://dx.doi.org/10.1103/physrevb.78.014413
http://dx.doi.org/10.1103/physrevlett.107.046601
http://dx.doi.org/10.1007/BF02745589
http://dx.doi.org/10.1103/PhysRevB.41.4017
http://dx.doi.org/10.1103/physrevlett.90.226806
http://dx.doi.org/10.1103/physrevlett.90.226806
http://dx.doi.org/10.1103/revmodphys.47.331


[173] M. V. Moskalets. Scattering Matrix Approach to Non-Stationary Quantum Transport.
World Scientific Publishing Co, Sept. 2012. DOI: 10.1142/9781848168350_0001 (cit.
on p. 36).

[174] R. Landauer. “Spatial Variation of Currents and Fields Due to Localized Scatterers in
Metallic Conduction”. In: IBM Journal of Research and Development 1.3 (July 1957),
pp. 223–231. DOI: 10.1147/rd.13.0223 (cit. on pp. 36, 38, 112).

[175] Rolf Landauer. “Electrical resistance of disordered one-dimensional lattices”. In: Philo-

sophical Magazine 21.172 (Apr. 1970), 863–867. DOI: 10.1080/14786437008238472

(cit. on p. 36).

[176] M. Büttiker. “Four-Terminal Phase-Coherent Conductance”. In: Physical Review Letters

57.14 (Oct. 1986), 1761–1764. DOI: 10.1103/physrevlett.57.1761 (cit. on p. 36).

[177] M. Büttiker. “Scattering theory of thermal and excess noise in open conductors”. In:
Physical Review Letters 65.23 (Dec. 1990), 2901–2904. DOI: 10.1103/physrevlett.

65.2901 (cit. on p. 36).

[178] M. Büttiker. “Scattering theory of current and intensity noise correlations in conductors
and wave guides”. In: Physical Review B 46.19 (Nov. 1992), 12485–12507. DOI: 10.

1103/physrevb.46.12485 (cit. on pp. 36, 38).

[179] Pier A. Mello and Narendra Kumar. Quantum Transport in Mesoscopic Systems. Oxford
University Press (OUP), May 2004. DOI: 10.1093/acprof:oso/9780198525820.001.

0001 (cit. on p. 38).

[180] L. P. Kadanoff and G. Baym. Quantum statistical mechanics: Green’s function methods in

equilibrium and nonequilibrium problems. Frontiers in physics. W. A. Benjamin, 1962.
DOI: 10.1126/science.139.3553.399-b (cit. on p. 39).

[181] L. V. Keldysh. “Diagram technique for nonequilibrium processes”. In: Soviet Physics

JETP-USSR 20.4 (1965), p. 1018 (cit. on pp. 39, 42).

[182] J. Rammer and H. Smith. “Quantum field-theoretical methods in transport theory of
metals”. In: Rev. Mod. Phys. 58.2 (Apr. 1986), 323–359. DOI: 10.1103/revmodphys.58.

323 (cit. on pp. 40, 41).

[183] Jørgen Rammer. Quantum Field Theory of Non-Equilibrium States. Cambridge: Cam-
bridge Univ., 2007. DOI: 10.1017/CBO9780511618956 (cit. on p. 40).

[184] Julian Schwinger. “Brownian Motion of a Quantum Oscillator”. In: Journal of Mathe-

matical Physics 2.3 (1961), p. 407. DOI: 10.1063/1.1703727 (cit. on p. 40).

[185] S. Fujita. “Thermodynamic Evolution Equation for a Quantum Statistical Gas”. In:
Journal of Mathematical Physics 6.12 (1965), p. 1877. DOI: 10.1063/1.1704736 (cit.
on p. 42).

[186] Shigeji Fujita. “Resolution of the Hierarchy of Green’s Functions for Fermions”. In:
Physical Review A 4.3 (Sept. 1971), 1114–1122. DOI: 10.1103/physreva.4.1114

(cit. on p. 42).

220 References

http://dx.doi.org/10.1142/9781848168350_0001
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1080/14786437008238472
http://dx.doi.org/10.1103/physrevlett.57.1761
http://dx.doi.org/10.1103/physrevlett.65.2901
http://dx.doi.org/10.1103/physrevlett.65.2901
http://dx.doi.org/10.1103/physrevb.46.12485
http://dx.doi.org/10.1103/physrevb.46.12485
http://dx.doi.org/10.1093/acprof:oso/9780198525820.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198525820.001.0001
http://dx.doi.org/10.1126/science.139.3553.399-b
http://dx.doi.org/10.1103/revmodphys.58.323
http://dx.doi.org/10.1103/revmodphys.58.323
http://dx.doi.org/10.1017/CBO9780511618956
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.1704736
http://dx.doi.org/10.1103/physreva.4.1114


[187] A. G. Hall. “Non-equilibrium Green functions: generalized Wick’s theorem and diagram-
matic perturbation with initial correlations”. In: Journal of Physics A: Mathematical and

General 8 (1975), p. 214. DOI: 10.1088/0305-4470/8/2/012 (cit. on p. 42).

[188] Y. A. Kukharenko and S. G. Tikhodeev. “Diagram technique in the theory of relaxation
processes”. In: Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 83 (1982), 1444–1456
(cit. on p. 42).

[189] A. I. Larkin and Y. N. Ovchinnikov. “Nonlinear conductivity of superconductors in
mixed state”. Russian. In: Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 68.5 (1975),
1915–1927 (cit. on p. 42).

[190] Karl Blum. “Density Matrix Theory and Applications”. In: Springer Series on Atomic,

Optical, and Plasma Physics (2012). DOI: 10.1007/978-3-642-20561-3 (cit. on pp. 44,
46).

[191] U. Fano. “Description of States in Quantum Mechanics by Density Matrix and Operator
Techniques”. In: Rev. Mod. Phys. 29.1 (Jan. 1957), 74–93. DOI: 10.1103/revmodphys.

29.74 (cit. on p. 47).

[192] W. H. Louisell. Quantum statistical properties of radiation. Wiley Series in Pure and
Applied Optics Series. John Wiley & Sons Canada, Limited, 1973 (cit. on p. 47).

[193] Yasuhiro Asano and Satoshi Yamano. “Josephson effect in noncentrosymmetric super-
conductor junctions”. In: Physical Review B 84.6 (Aug. 2011). DOI: 10.1103/PhysRevB.

84.064526 (cit. on p. 51).

[194] Pablo Burset, Felix Keidel, Yukio Tanaka, Naoto Nagaosa, and Björn Trauzettel. “Trans-
port signatures of superconducting hybrids with mixed singlet and chiral triplet states”.
In: Phys. Rev. B 90.8 (Aug. 2014). DOI: 10.1103/physrevb.90.085438 (cit. on p. 51).

[195] Chi-Ken Lu and Sungkit Yip. “Spin current and spin accumulation near a Josephson
junction between a singlet and triplet superconductor”. In: Phys. Rev. B 80.2 (July
2009). DOI: 10.1103/physrevb.80.024504 (cit. on p. 51).

[196] Suk Bum Chung, Joshua Horowitz, and Xiao-Liang Qi. “Time-reversal anomaly and
Josephson effect in time-reversal-invariant topological superconductors”. In: Physical

Review B 88.21 (Dec. 2013). DOI: 10.1103/physrevb.88.214514 (cit. on pp. 51, 62).

[197] Z. H. Yang, J. Wang, and K. S. Chan. “Spin accumulation in triplet Josephson junction”.
In: Journal of Physics: Condensed Matter 23.8 (Mar. 2011), p. 085701. DOI: 10.1088/

0953-8984/23/8/085701 (cit. on p. 51).

[198] Lars Elster, Manuel Houzet, and Julia S. Meyer. “Magnetic resonance in a singlet-triplet
Josephson junction”. In: Physical Review B 93.10 (Mar. 2016). DOI: 10.1103/physrevb.

93.104519 (cit. on pp. 52, 67, 69, 76, 82, 84, 85, 183, 190).

[199] I. J. Lee, M. J. Naughton, G. M. Danner, and P. M. Chaikin. “Anisotropy of the Up-
per Critical Field in (TMTSF)2PF6”. In: Physical Review Letters 78.18 (May 1997),
3555–3558. DOI: 10.1103/physrevlett.78.3555 (cit. on p. 52).

References 221

http://dx.doi.org/10.1088/0305-4470/8/2/012
http://dx.doi.org/10.1007/978-3-642-20561-3
http://dx.doi.org/10.1103/revmodphys.29.74
http://dx.doi.org/10.1103/revmodphys.29.74
http://dx.doi.org/10.1103/PhysRevB.84.064526
http://dx.doi.org/10.1103/PhysRevB.84.064526
http://dx.doi.org/10.1103/physrevb.90.085438
http://dx.doi.org/10.1103/physrevb.80.024504
http://dx.doi.org/10.1103/physrevb.88.214514
http://dx.doi.org/10.1088/0953-8984/23/8/085701
http://dx.doi.org/10.1088/0953-8984/23/8/085701
http://dx.doi.org/10.1103/physrevb.93.104519
http://dx.doi.org/10.1103/physrevb.93.104519
http://dx.doi.org/10.1103/physrevlett.78.3555


[200] I. J. Lee, P. M. Chaikin, and M. J. Naughton. “Exceeding the Pauli paramagnetic limit
in the critical field of (TMTSF)2PF6”. In: Phys. Rev. B 62 (Dec. 2000), R14669–R14672.
DOI: 10.1103/PhysRevB.62.R14669 (cit. on p. 52).

[201] M. Greenblatt, W. H. McCarroll, R. Neifeld, M. Croft, and J. V. Waszczak. “Quasi two-
dimensional electronic properties of the lithium molybdenum bronze, Li0.9Mo6O17”.
In: Solid State Communications 51.9 (Sept. 1984), 671–674. DOI: 10.1016/0038-

1098(84)90944-x (cit. on p. 52).

[202] A. G. Lebed and O. Sepper. “Possible triplet superconductivity in the quasi-one-
dimensional conductor Li0.9Mo6O17”. In: Physical Review B 87.10 (Mar. 2013). DOI:
10.1103/physrevb.87.100511 (cit. on p. 52).

[203] Jin-Ke Bao, Ji-Yong Liu, Cong-Wei Ma, et al. “Superconductivity in Quasi-One-
Dimensional K2Cr3As3 with Significant Electron Correlations”. In: Physical Review

X 5.1 (Feb. 2015). DOI: 10.1103/physrevx.5.011013 (cit. on p. 52).

[204] Zhang-Tu Tang, Jin-Ke Bao, Yi Liu, et al. “Unconventional superconductivity in quasi-
one-dimensional Rb2Cr3As3”. In: Physical Review B 91.2 (Jan. 2015). DOI: 10.1103/

physrevb.91.020506 (cit. on pp. 52, 53).

[205] J.-F. Mercure, A. F. Bangura, Xiaofeng Xu, et al. “Upper Critical Magnetic Field far
above the Paramagnetic Pair-Breaking Limit of Superconducting One-Dimensional
Li0.9Mo6O17 Single Crystals”. In: Physical Review Letters 108.18 (May 2012). DOI:
10.1103/physrevlett.108.187003 (cit. on p. 52).

[206] E. A. Demler, G. B. Arnold, and M. R. Beasley. “Superconducting proximity effects
in magnetic metals”. In: Physical Review B 55.22 (June 1997), 15174–15182. DOI:
10.1103/physrevb.55.15174 (cit. on p. 53).

[207] A. I. Buzdin. “Proximity effects in superconductor-ferromagnet heterostructures”. In:
Rev. Mod. Phys. 77.3 (Sept. 2005), 935–976. DOI: 10.1103/revmodphys.77.935

(cit. on p. 53).

[208] Matthias Eschrig. “Spin-polarized supercurrents for spintronics”. In: Physics Today 64.1
(2011), p. 43. DOI: 10.1063/1.3541944 (cit. on p. 53).

[209] K. K. Likharev. “Superconducting weak links”. In: Rev. Mod. Phys. 51.1 (Jan. 1979),
101–159. DOI: 10.1103/revmodphys.51.101 (cit. on p. 54).

[210] J. Alicea. “New directions in the pursuit of Majorana fermions in solid state systems”.
In: Reports on Progress in Physics 75.7 (July 2012), p. 076501. DOI: 10.1088/0034-

4885/75/7/076501 (cit. on p. 57).

[211] Li-Fu Chang and Philip Bagwell. “Ballistic Josephson-current flow through an asym-
metric superconductor–normal-metal–superconductor junction”. In: Physical Review

B 49.22 (June 1994), pp. 15853–15863. DOI: 10.1103/PhysRevB.49.15853 (cit. on
pp. 58, 63).

[212] P. W. Anderson. “Special Effects in Superconductivity”. In: Lectures on the Many-Body

Problem. Ed. by E. R. Caianiello. 1964, p. 113 (cit. on p. 60).

222 References

http://dx.doi.org/10.1103/PhysRevB.62.R14669
http://dx.doi.org/10.1016/0038-1098(84)90944-x
http://dx.doi.org/10.1016/0038-1098(84)90944-x
http://dx.doi.org/10.1103/physrevb.87.100511
http://dx.doi.org/10.1103/physrevx.5.011013
http://dx.doi.org/10.1103/physrevb.91.020506
http://dx.doi.org/10.1103/physrevb.91.020506
http://dx.doi.org/10.1103/physrevlett.108.187003
http://dx.doi.org/10.1103/physrevb.55.15174
http://dx.doi.org/10.1103/revmodphys.77.935
http://dx.doi.org/10.1063/1.3541944
http://dx.doi.org/10.1103/revmodphys.51.101
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1103/PhysRevB.49.15853


[213] P. W. Brouwer and C. W. J. Beenakker. “Anomalous temperature dependence of the
supercurrent through a chaotic Josephson junction”. In: Chaos, Solitons & Fractals 8.7-8
(July 1997), pp. 1249–1260. DOI: 10.1016/S0960-0779(97)00018-0 (cit. on pp. 60,
181).

[214] W. Haberkorn, H. Knauer, and J. Richter. “A theoretical study of the current-phase
relation in Josephson contacts”. In: Phys. Stat. Sol. (a) 47.2 (June 1978), K161–K164.
DOI: 10.1002/pssa.2210470266 (cit. on p. 61).

[215] D. G. Olivares, A. Levy Yeyati, L. Bretheau, et al. “Dynamics of quasiparticle trapping in
Andreev levels”. In: Phys. Rev. B 89 (Mar. 2014), p. 104504. DOI: 10.1103/PhysRevB.

89.104504 (cit. on pp. 72, 82, 159).

[216] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov. “Shooting quasiparticles from
Andreev bound states in a superconducting constriction”. In: Journal of Experimental

and Theoretical Physics 119.6 (2014), pp. 1028–1033 (cit. on p. 72).

[217] M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schön. “Theory of Half-Metal/Superconductor
Heterostructures”. In: Physical Review Letters 90.13 (Apr. 2003). DOI: 10 . 1103 /

physrevlett.90.137003 (cit. on p. 91).

[218] J. Kopu, M. Eschrig, J. C. Cuevas, and M. Fogelström. “Transfer-matrix description of
heterostructures involving superconductors and ferromagnets”. In: Physical Review B

69.9 (Mar. 2004). DOI: 10.1103/physrevb.69.094501 (cit. on p. 91).

[219] Yasuhiro Asano, Yukio Tanaka, Alexander A. Golubov, and Satoshi Kashiwaya. “Conduc-
tance Spectroscopy of Spin-Triplet Superconductors”. In: Physical Review Letters 99.6
(Aug. 2007). DOI: 10.1103/physrevlett.99.067005 (cit. on p. 91).

[220] Matthias Eschrig and Tomas Löfwander. “Triplet supercurrents in clean and disordered
half-metallic ferromagnets”. In: Nature Physics 4.2 (Jan. 2008), 138–143. DOI: 10.

1038/nphys831 (cit. on p. 91).

[221] Artem V. Galaktionov, Mikhail S. Kalenkov, and Andrei D. Zaikin. “Josephson current
and Andreev states in superconductor–half metal–superconductor heterostructures”.
In: Physical Review B 77.9 (Mar. 2008). DOI: 10.1103/physrevb.77.094520 (cit. on
p. 91).

[222] Jacob Linder, Takehito Yokoyama, and Asle Sudbø. “Theory of superconducting and
magnetic proximity effect in S/F structures with inhomogeneous magnetization textures
and spin-active interfaces”. In: Physical Review B 79.5 (Feb. 2009). DOI: 10.1103/

physrevb.79.054523 (cit. on p. 91).

[223] Kuei Sun, Nayana Shah, and Smitha Vishveshwara. “Transport in multiterminal su-
perconductor/ferromagnet junctions having spin-dependent interfaces”. In: Physical

Review B 87.5 (Feb. 2013). DOI: 10.1103/physrevb.87.054509 (cit. on p. 91).

[224] A. Kadigrobov, R. I. Shekhter, and M. Jonson. “Quantum spin fluctuations as a source
of long-range proximity effects in diffusive ferromagnet-super conductor structures”.
In: Europhys. Lett. 54.3 (May 2001), 394–400. DOI: 10.1209/epl/i2001-00107-2

(cit. on p. 91).

References 223

http://dx.doi.org/10.1016/S0960-0779(97)00018-0
http://dx.doi.org/10.1002/pssa.2210470266
http://dx.doi.org/10.1103/PhysRevB.89.104504
http://dx.doi.org/10.1103/PhysRevB.89.104504
http://dx.doi.org/10.1103/physrevlett.90.137003
http://dx.doi.org/10.1103/physrevlett.90.137003
http://dx.doi.org/10.1103/physrevb.69.094501
http://dx.doi.org/10.1103/physrevlett.99.067005
http://dx.doi.org/10.1038/nphys831
http://dx.doi.org/10.1038/nphys831
http://dx.doi.org/10.1103/physrevb.77.094520
http://dx.doi.org/10.1103/physrevb.79.054523
http://dx.doi.org/10.1103/physrevb.79.054523
http://dx.doi.org/10.1103/physrevb.87.054509
http://dx.doi.org/10.1209/epl/i2001-00107-2


[225] F. S. Bergeret, A. F. Volkov, and K. B. Efetov. “Odd triplet superconductivity and related
phenomena in superconductor-ferromagnet structures”. In: Rev. Mod. Phys. 77.4 (Nov.
2005), 1321–1373. DOI: 10.1103/revmodphys.77.1321 (cit. on p. 91).
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