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Introduction

The theoretical description of transport at mesoscopic scales is based on quantum
mechanics, since the phase coherence matters at the typical length scales of nanos-
tructures. A conduction electron is thus characterized by its wavefunction, its charge,
and a set of quantum numbers, most importantly the spin. Electron transport gives
consequently rise to charge and spin currents and a manipulation of the spin properties
may modify the charge current. The control of charge currents via a control of the spin
properties is especially interesting for nanostructures containing superconductors, since

superconductivity provides macroscopic coherence.

Superconductivity was discovered more than a century ago by Kamerlingh Onnes [1]
via the vanishing electrical resistivity of mecury below a threshold (critical) tempera-
ture. Superconductors are perfect diamagnets [2], expelling magnetic fields from their
interior. Early phenomenological explanations [3] could explain these electromagnetic
properties of superconductors, but not, e.g., the isotope effect [4, 5], i.e., the depen-
dence of the critical temperature on the isotope. A more rigorous thermodynamical,
but still phenomenological, treatment was provided by Ginzburg — Landau theory [6].
The breakthrough in the understanding of superconductivity was BCS theory [7, 8],
named after Bardeen, Cooper, and Schrieffer, providing for the first time a microscopic
theory. The key idea of BCS theory is that the Fermi surface becomes unstable for a
small attractive interaction mediated by phonons, leading to a new groundstate, in
which electrons form bosonic Cooper pairs [9]. In a conventional BCS superconductor,
such a Cooper pair is a spin singlet state, consisting of two electrons of opposite spins
and momenta. A dissipationless current may flow via this ground state. Furthermore,
in conventional BCS superconductors, the ground state is separated by a gap from the
excitation spectrum. Beyond the gap that was experimentally verified using tunneling

spectroscopy [10, 11], a continuum of states exists.

The field of superconductivity has been boosted by the discovery of the high T. super-
conductors [12] in two ways. First, applications became easier to realize, since the
critical temperature exceeded for the first time the boiling point of liquid nitrogen at
ambient pressure, as e.g., for YBCO [13]. Second, high T. superconductors posses an

unconventional (d-wave) pairing mechanism [14, 15]. Even though unconventional




superconductors were already known [16, 17], the technological interest of finding
even higher critical temperatures led to intensified investigations of pairing mechanisms.
Unconventional superconductors are characterized by a momentum-dependent pair
potential and can, in the presence of inversion symmetry, be classified by the angular
momentum of the orbital part of their wave function [18]. Particularly interesting
are p-wave superconductors that posses an odd orbital part, giving rise to an even
spin part, i.e., spin triplet pairing. An example for a recently investigated spin triplet

superconductor is SrRuQO,4 [19].

Bulk superconductors are interesting for themselves, but new phenomena emerge
for superconducting junctions. Josephson predicted that the current between two
superconductors in tunnel junctions depends sinusoidally on the superconducting
phase difference [20]. This so-called Josephson effect was measured shortly after
its prediction [21]. It can be explained via the microscopic properties of the normal
metal/superconductor (N/S) interface. An electron impinging towards an N/S interface
with an energy below the gap can be reflected as a hole, adding a Cooper pair to the
condensate [22]. This mechanism of Andreev reflection is thus crucial for the transport
across an N/S interface. Additionally, it leads to the formation of bound states in
Josephson junctions. Since these Andreev bound states depend on the macroscopic
phase difference, they determine the current-phase relation. Modifying them will thus

change the transport properties of superconducting junctions.

Recently Josephson junctions made of topological superconductors [23], materials with
a full pairing gap in the bulk and gapless surface states, have attracted most attention,
since they display a 47-periodic Josephson effect [24-27]. It is due to a 4x-periodic
bound state spectrum, which, unlike in conventional junctions, is not spin degenerate.
However, non-topological junctions containing unconventional superconductors also
deserve attention for their peculiar properties. Since the energy-phase relation of
their Andreev bound states is modified with respect to conventional junctions, their
current-phase relation is different [28-36]. Notably, the periodicity of the current-phase
relation may differ from 27, e.g., for incompatible spin pairing symmetries. Furthermore,
Josephson junctions with a non-zero phase difference in the ground state may exist, e.g.,
¢o-junctions [30, 37-39]. Experiments that measure the current-phase relation might
thus be able to clarify the momentum dependence of the pair potential [14, 40]. Most
experiments that investigate the momentum dependence use spectroscopic methods, as

for example tunneling spectroscopy [41, 42] or microwave spectroscopy [43].
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Particularly interesting are unconventional Josephson junctions realized between spin
singlet and spin triplet superconductors. Here, the incompatible spin symmetries
prohibit the transfer of a single Cooper pair across the junction. As a consequence, at
least two pairs have to be transferred, leading to the lowest harmonics in the current-
phase relation being sin 2¢ [36]. Amongst singlet/triplet junctions, a junction realized
between a conventional s-wave superconductor and a one-dimensional unconventional
px-wave superconductor is the simplest. In this s/p, junction the transfer of only an
even number of Cooper pairs across the junction leads to a w-periodic equilibrium
current-phase relation [28, 29, 35, 36, 44]. On the microscopic level, this junction
in known to host spin-polarized Andreev bound states [44], in strong contrast to
conventional junctions, where the bound states are not spin-polarized. These spin
polarized Andreev bound states lead to an equilibrium magnetization [44, 45]. This
opens the possibility to change the occupation of the bound states by manipulating the

spin.

In order to manipulate the spin, an external control parameter and its coupling to the
spin is needed. A natural choice is to use a magnetic field that couples via the Zeeman
effect [46] to the spin. The Zeeman effect is the splitting of energy levels of a system
subjected to a constant magnetic field. The splitting occurs according to the angular
momentum, which in the case of zero orbital momentum is solely given by the spin.
Historically, the Zeeman effect led to the proposition of the spin degree of freedom of
the electron [47]. If the magnetic field is time-dependent, it may provide a spin-flip
mechanism. In a typical magnetic resonance setup, a static field provides the Zeeman
splitting and a time-dependent rf-field, perpendicular to the static field, couples the

Zeeman levels. This coupling gives rise to coherent Rabi oscillations between the states.

Transitions between Andreev levels have been predicted to appear as resonances in
the current-phase relation [48, 49] in the following setup: A single channel (point
contact) conventional Josephson junction is subject to an external monochromatic
microwave field. The field generates an ac voltage bias acting as an ac phase bias for
the junction. Resonances in the zero temperature current-phase relation appear, if the
Andreev level spacing matches a multiple of the microwave frequency. Experimentally,
these transitions have been used in order to perform spectroscopy on the Andreev levels
of superconducting break junctions [50-52]. In these experiments, a voltage-biased
Josephson junction was used as a microwave emitter and detector. Remarkably, the

coherent manipulation of Andreev bound states of such atomic contacts is possible, plac-




ing the junction into a microwave resonator using a circuit quantum electrodynamics
architecture [53]. Resonances may also be expected due to a time-dependent magnetic
field in spin-active Josephson junctions, i.e., Josephson junctions containing a local
classical magnetization [54]. Rabi resonances appear, if the magnetization direction is
resonantly driven, provided the ground state of the junction is magnetic, which was not
achieved in a model that considered a Josephson junction through a precessing spin
[55].

In part I of this thesis we consider the presented s/p, Josephson junction and show that
a time-dependent Zeeman-field indeed induces transitions between the Andreev bound
states. The induced Rabi oscillations map to resonances in the current-phase relation.
For a circularly polarized magnetic field, Rabi oscillations are only present in a certain
range of superconducting phase differences due to a spin selection rule, thus giving a
spin detection scheme. The selection rule is lifted for a linearly polarized magnetic field.
The magnetic field also induces non-coherent transitions including continuum states.
We may distinguish refill and ionization processes, depending on whether a bound state
is filled or emptied. These processes are subject to energy and spin constraints, which
guarantee that these incoherent field-induced transitions do not provide any decay
mechanism for the Rabi oscillations. We provide a detailed discussion of the transition
rates due to theses processes and discuss the visibility of the Rabi resonances in the

current-phase relation depending on the junction transparency.

Ferromagnets are another class of materials with peculiar spin properties. In a ferromag-
net the spins tend to align due to the exchange interaction, discovered by Heisenberg
[56] and Dirac [57]. The well-known ferromagets Fe, Co, and Ni are itinerant ferro-
magnets, where the ferromagnetism arises due to the 3d orbitals. If the orbital part of
the wavefunction is antisymmetric, the exchange interaction leads to a larger average
distance between the indiscernible electrons, lowering the Coulomb repulsion. Then,
the symmetric spin part leads, due to Pauli exclusion, to a higher kinetic energy. In
itinerant ferromagnets, the gain due to the exchange interaction overcomes the loss
in kinetic energy, giving rise to ferromagnetism. The exchange interaction splits the
density of states for the different spin species. A ferromagnet may thus be characterized
by its degree of spin polarization, i.e., the number of majority spin carriers divided by
the total number. Ferromagnets with perfect spin polarization of the electrons at the

Fermi level are called half-metals, as for example CrO, [58].
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Junctions containing ferromagnets are of both technological and fundamental research
interest. For example, they are widely used for data storage. Old hard drives are
still based on the giant magnetoresistance effect [59, 60] in ferromagnet/normal
metal/ferromagnet junctions. Nowadays, modern hard drives use magnetic tunnel
junctions with an insulating layer separating the ferromagnets, and their operation is
based on tunnel magnetoresistance [61]. These mechanisms use charge currents and

static magnetization directions in the ferromagnetic layers.

Time-dependent magnetization directions can be achieved using ferromagnetic reso-
nance (FMR), i.e., the resonant absorption of external electromagnetic radiation in
ferromagnets [62]. FMR has first been acchieved in bulk ferromagnets [63, 64]. It
works analogously to nuclear magnetic resonance (NMR), discovered in molecular
beams [65, 66], and electron spin resonance [67]. The discovery of NMR has not
only revolutionized the spectroscopic methods available to fundamental research, but
has also — after its expansion to liquids and solids — opened the possibility of medical
imaging by magnetic resonance tomography [68-70]. However, in contrast to NMR
and depending on the geometry, no static field is needed for FMR [71].

Concerning dynamical magnetization effects in ferromagnet/normal metal (F/N) junc-
tions under FMR conditions, it has been theoretically [72, 73] and experimentally [74,
75] shown that the precessing magnetization direction looses angular momentum. This
spin pumping process injects a spin current into the adjacent normal metal. This is the
inverse effect of the spin transfer torque [76-79], where a spin current driven through
a ferromagnetic layer exerts a torque onto the magnetization of the ferromagnet. The
creation (and detection) of spin currents is hoped to lead to spintronics [80, 81] appli-
cations, i.e., using the spin degree of freedom of the electrons (instead of the charge)

for information technology devices.

In a ferromagnet the spins tend to align due to the exchange interaction, whereas in a
conventional spin singlet superconductor opposite spins are paired. The interplay be-
tween these two antagonistic effects, spin singlet superconductivity and ferromagnetism,
becomes important in ferromagnet/superconductor (F/S) junctions. It is consequently
relevant to study the interplay between ferromagnetism and superconductivity at inter-
faces, especially because in bulk ferromagnets superconductivity has only been found
in some uranium compounds [82-85], in which the Cooper pairs are equal spin pairs,

resolving the antagonism. It has been shown that F/S interfaces can be used to analyze




spin-dependent states in magnetic materials [86—-88]. The Andreev reflection at an F/S
interface is affected by the exchange interaction and the conductance of the interface
may be larger or smaller than the conductance of an F/N interface, depending on the

degree of spin polarization [89].

Andreev reflections at N/S interfaces induce superconducting correlations into the
normal metal. This effect, called proximity effect, is particularly interesting at F/S
interfaces. Here, a triplet pairing component, pairing equal spins, can be induced in the
ferromagnet. It penetrates over a much longer length scale than the singlet component,
since it is not limited by the short pair breaking length due to the exchange field.
The first long-range triplet pairing induced at F/S interfaces was found in resistance
measurements [90, 91]. Subsequently, long-range triplet pairing was predicted in the
presences of local magnetic inhomogenities at F/S interfaces [92]. The corresponding
Josephson effect through S/F/S junctions has been predicted for magnetic inhomogen-
ities [93] and layered heterostructures with non-collinear magnetization directions
[94-99]. It has been succesfully measured for a single half-metallic layer [100], a
ferromagnetic trilayer [101] and multilayers [102, 103]. Singlet pairs may also be
converted to triplet pairs in S/F/F layers, so called triplet spin valves [104]. This

growing field of research is called superconducting spintronics [105, 106].

The coupling between superconductivity and a time-dependent magnetization direction
has already been studied, e.g., the coupling of two conventional superconductors via a
single precessing spin [55, 107] has been considered. In this context the manipulation
of magnetic moments using the Josephson current has been investigated [108-110], as
well as the inverse effect, i.e., a current induced via the manipulation of the magnetiza-
tion [111]. For an F/S junction it is known that a ferromagnet under FMR conditions
tunnel coupled to a superconductor induces a voltage across the junction in an open
circuit geometry [112]. In this tunnel regime, the transport is due to excited quasiparti-
cles, since Andreev reflection processes are suppressed. Due to the BCS singularity in
the density of states, the induced voltage (compared to the driving frequency) is much
larger in F/S tunnel junctions than the voltage predicted for tunnel junctions with a
normal metal or a static reference ferromagnet, where charge pumping is adiabatic
[113-115]. In ferromagnet/normal metal tunnel junctions, spin accumulation at the
interface leads to a voltage across the junction [115]. The spin accumulation strongly

depends on spin relaxation. In the F/S junction, no spin accumulation is needed and
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the voltage builds up, since the superconductor in the rotating frame behaves effectively

as a static ferromagnet [112].

A half-metal/conventional superconductor (HM/S) junction is especially interesting,
since the perfect spin polarization forbids Andreev reflection processes. This blockade
may be lifted, if the half-metal is subject to FMR conditions, providing a spin-flip
mechanism. In part II of this thesis we show that an Andreev current is indeed induced
in such a HM/S junction under FMR conditions. This is a purely dynamical effect, since
no Andreev current flows for a static magnetization direction. The time-dependent
magnetization creates a non-equilibrium situation for the charge carriers, driving the
current. If we assume fast spin relaxation, there is no zero-voltage charge current
through a point contact geometry in the normal state, even in the presence of a
precessing magnetization. We also show that the effect persists for a non-zero minority
carrier concentration (i.e., a ferromagnet instead of a half-metal). However, the current
is attenuated and vanishes for equal spin polarizations. Furthermore, we consider a
more realistic extended interface geometry. Motivated by disorder enhanced currents
reported for N/S interfaces [116, 117], we study the influence of disorder. We show
that disorder is irrelevant in a point contact geometry. For the extended interface
geometry, however, we obtain that disorder is most relevant in the ferromagnet and
that the Andreev current in the presence of disorder is much larger than the ballistic

current through the same interface geometry.




Outline of the thesis

Chapter 2 introduces the main physical concepts. After an introduction to both con-
ventional and unconventional superconductivity, we turn towards superconducting
junctions. The microscopic process of Andreev reflection at a normal metal/supercon-
ductor interface is the key to understand the formation of bound states in Josephson
junctions. The phase-dependence of these Andreev bound states gives rise to the dissipa-
tionless Josephson current. We finish this chapter with an introduction to ferromagnetic

resonance in bulk ferromagnets and junctions.

Chapter 3 introduces the theoretical tools used to obtain the results of this thesis. The
Bogoliubov — de Gennes formalism is a method to calculate the wave function of a
system with a space-dependent pair potential. In order to solve a superconducting
transport problem, it is convenient to combine this formalism with the scattering matrix
approach. A different way to tackle non-equilibrium transport across a superconduct-
ing junction is to use the non-equilibrium Green’s functions formalism. Further, we
introduce the Markov master equation approach for density matrices that is suitable to
deal with open quantum systems. The Andreev bound states of a Josephson junction
can be seen as such an open system, coupled to a reservoir, i.e., the continuum of
states. Within the master equation approach, the dynamics of the Andreev bound state

occupations is accessible.

Part I of this thesis examines the manipulation of the Andreev levels in a singlet/triplet
Josephson junction between a conventional s-wave superconductor and an unconven-
tional p,-wave superconductor using a time-dependent Zeeman field. We focus on
the modification of the transport properties, mainly the current-phase relation. In
chapter 4 we present the spin-polarized Andreev bound states that form in the junction.
Further, using a free energy approach, we determine the equilibrium magnetization
and the equilibrium current-phase relation. Chapter 5 discusses the processes induced
by a time-dependent Zeeman field. Our main finding is that the Zeeman field leads
to coherent Rabi oscillations between different spin states of the junction that appear
as resonances in the current-phase relation. For a circularly polarized magnetic field,
the current-phase relation is spin sensitive due to a spin selection rule. The field also

induces non-coherent processes including continuum states giving rise to refill and
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ionization processes of the bound states. We discuss the corresponding transition rates

in detail.

In part II of this thesis we consider a half-metal/superconductor junction under fer-
romagnetic resonance. Chapter 6 sets the stage, providing the non-equilibrium distri-
bution function of the ferromagnet. In Chapter 7 we show that an Andreev current
flows through a point-contact junction between a half-metal and a superconductor, if
the half-metal is subjected to FMR conditions. No applied bias voltage is needed, due
to the non-equilibrium situation created by FMR. If the superconductor is in its normal
state, a spin current flows due to the precessing magnetization direction that in the
superconducting state is rectified to a charge current. In Chapter 8, we consider two
extensions of our model. First, we show that the Andreev current persists for a ferro-
magnet with non-zero minority carrier concentration, but is attenuated with respect
to perfect spin polarization. Second, we consider a more realistic extended interface
geometry, in which the Andreev current is enhanced for a disordered ferromagnet. An

introduction to the disorder formalism is provided in this chapter.

Chapter 9 summarizes the main results of this thesis and provides a short discussion of

possible future research directions.

The appendix provides technical details on calculations that are important to obtain the

results presented in the main part, but that provide limited insight into the physics.







Concepts

This chapter is an introduction to the concepts that are used in this thesis. The idea is to
provide the reader with the basic notions he needs to follow the main part that discusses
magnetic resonance in an unconventional s/p, Josephson junction (Part I, Chapters 4
and 5) and the Andreev current through a half-metal/superconductor interface under
ferromagnetic resonance conditions (Part II, Chapters 6 — 8). This chapter focuses
on the physics, more details on the formalisms and theoretical tools are provided in
Chapter 3. In this chapter, Sec. 2.1 introduces conventional superconductivity and its
theoretical description, BCS theory, for bulk superconductors. The bulk properties are
of importance, since they determine the properties of more complicated junctions of
superconductors. Sec. 2.2 introduces unconventional superconductors with momentum-
dependent pair potentials. Having introduced bulk superconductors, we consider simple
superconducting junctions in Sec. 2.3. Here, we present the microscopic process of
Andreev reflection at a normal metal/superconductor interface that is relevant for the
formation of bound states in Josephson junctions consisting of two superconductors.
We discuss these bound states for conventional junctions of two s-wave superconduc-
tors and introduce the notion of the current-phase relation. The last section of this
chapter, Sec. 2.4, introduces ferromagnetic resonance both in bulk ferromagnets and in
ferromagnet/normal metal junctions. We study the interplay between ferromagnetic

resonance and superconductivity in part II of this thesis.

2.1 Conventional superconductivity

The microscopic theory of superconductivity is of importance, since it is a building
block for the microscopic description of superconducting junctions. In this section we
will show that it predicts an excitation gap in the density of states of a conventional
superconductor. The peculiar excitation spectrum governs the transport properties of
superconducting junctions.

Historically, superconductivity was discovered by Kamerlingh Onnes (see Ref. [1]). BCS
theory [7, 8], named after Bardeen, Cooper, and Schrieffer, was the first microscopic

description of the superconducting state for a class of superconductors nowadays called
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conventional (or s-wave) superconductors. It followed a work of Cooper [9], who
showed that an attractive interaction between two electrons above the Fermi sea leads
to the formation of a bound state. The main idea of BCS theory is that electrons form
bosonic Cooper pairs, which condense into a macroscopic quantum state. These Cooper
pairs consist of two electrons of opposite spins and opposite momenta. BCS proposed

to describe the new ground state by the following many-body state

[Wpes) = [T (ur + veckrcl 1)) 0) . 2.1)

k
Here, |0) is the vacuum state, ¢},  is an operator creating an electron with momentum k
and spin o. The probability to find the spin-singlet pair (k 1, —k |) occupied is hence
lug|®, whereas it is unoccupied with the probability |ux|* = 1 — |vk|*. us and vy, are
called BCS coherence factors. This BCS ground state does not have a fixed particle
number. However, for large systems the particle number is strongly peaked around the

mean particle number (see e.g. Ref. [118]).

The total wave function contains an orbital and a spin part. It has to be antisym-
metric, since electrons are fermions. For the BCS ground state the orbital part is
symmetric, whereas the spin part is antisymmetric (spin singlet pairing). We discuss

superconductors with spin triplet pairing in Sec. 2.2.

BCS originally used a variational method (see also [7, 118, 119]), using their wave
function in Eq. (2.1), in order to determine the ground state energy. Here, we choose a
different approach (see e.g. Ref. [119]) in order to obtain the excitation spectrum. We
start from the pairing Hamiltonian, for which we assume that it contains all important
terms for superconductivity, even though we neglect all terms, where electrons are not
paired in a state of the form (k 1, —k | ). It reads

H = Z £kCL,Cka + Z qucLTcT_mc,qwﬁ. (2.2)

k,o kq

Here, & is the kinetic energy measured with respect to the Fermi level and k, q are
momenta. Vj, is the interaction that scatters a pair (¢ 1,—q |) to (k 1, —k |). Here, we

assumed an interaction that is local in real space. We make a mean-field approximation,
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assuming that the deviations of products of operators from their expectation values are

small. Introducing the pair potential
A== Vig{c-qiqt) , (2.3)
q

where the expression (c_4 ¢4t is called anomalous average, we obtain the mean-field
BCS Hamiltonian

Hpos = Y &ChoCho — 3 |Archpcly +hee]. (2.4)
ko k

Here, we neglected a constant shift of the energy. In BCS theory, the attractive interac-
tion between the electrons is mediated by phonons and assumed to be constant, if the
kinetic energy of the electrons is below a cutoff energy, and zero otherwise. This form
of the interaction yields a constant absolute value of the pair potential |A|, isotropic in
momentum space (if the kinetic energy is below the cutoff). We discuss superconduc-
tors with momentum-dependent pair potential in Sec. 2.2. The BCS Hamiltonian in
Eq. (2.4) is diagonalized using a Bogoliubov transformation [120]. More details on this
method are provided in Chapter 3. This procedure allows to obtain the expression for

the coherence factors, reading

2 1 &k
lug|” = 3 (1 + Ek> : (2.5)

where
By =G +|AP (2.6)

is the excitation energy for quasiparticles. Note that the relative phase between u; and
vy, is the phase of A. It is thus possible to choose u; real and give v, a phase factor of
e¢'. According to Eq. (2.1), the phase factor is the same for all pairs in the condensate
and is therefore called “macroscopic” phase. Note that due to the U(1) symmetry of the
Schrodinger equation only phase differences can have physical effects. When dealing
with junctions of superconductors, phase differences of this macroscopic phase will
become important (see Sec. 2.3.2). According to Eq. (2.6), the excitation spectrum
is gapped with a minimum excitation energy of |A| for ¢, = 0. Therefore, |A| is also

called the (superconducting) gap. The minimum energy required to break a Cooper

2.1 Conventional superconductivity
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pair being in the ground state, separated by |A| from the excitation spectrum, is thus
2|A|. More precisely, the BCS density of states reads

E

VE? —|AP

where 1, denotes the density of states of a normal metal at the Fermi level and E is

Vs = 1)

O(F — |A]), 2.7)

the excitation energy measured with respect to the Fermi level. The density of states
displays a divergence at £ = |A|. The states that in the normal state are within the
gap are moved above the gap, enhancing the density of states in comparison to the
normal state. Together with the filling factor, the density of states determines the
number of states available for transport. The modifications of the density of states with
respect to a normal metal have a crucial influence on the transport properties, especially
within heterostructures. Furthermore, we will see that a normal metal/superconductor

interface allows for Andreev reflections (see Sec. 2.3.1) within the gap.

BCS theory is able to describe the properties of elemental superconductors, like alu-
minum or niobium. In the next section, we will discuss superconductors, for which an

extension of BCS theory is necessary.

2.2 Unconventional superconductivity

The superconductors that we considered so far are based on a phonon mediated spin
singlet pairing mechanism with constant pair potential. However, superconductors
can have different, exotic microscopic pairing mechanisms. Following Ref. [121], we
may define an unconventional superconductor by the symmetries that are broken
during the transition from the normal to the superconducting state. In a conventional
superconductor, one macroscopic phase value ¢ of the order parameter is chosen, which
can be interpreted as a spontaneous breaking of the U(1) gauge symmetry. If additional
symmetries of the symmetry group of the crystal are broken during the transition to a

superconducting state, we will speak of unconventional superconductivity.
Since only the total wave function has to be antisymmetric, unconventional super-

conductors can have spin triplet pairing with an odd momentum dependence. In this

section, we provide the theoretical description of superconductors with momentum-
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dependent pair potentials with a general spin dependence, containing singlet and triplet

parts.

The most prominent example are the high-7, superconductors [12], even though
unconventional superconductors have been discovered earlier [16, 17]. Recently, in
the context of topology in condensed matter, topological superconductors (for a review
see [23]) with momentum-dependent pair potentials have attracted a lot of attention.
These are bulk superconductors with conducting surface states, the superconducting
analogue of topological insulators ([122, 123], for a review see [124]). Topological
phases may be characterized according to their symmetries [125, 126], i.e., particle-hole
symmetry, time-reversal symmetry and chiral symmetry. A chiral superconductor, which
is characterized by broken time-reversal symmetry, is the superconducting analogue
of the quantum Hall phase, whereas a helical superconductor, which conserves time-
reversal symmetry, is the analogue of the quantum spin Hall phase [23]. The edge
states of a helical superconductor are a pair of Majorana fermions [127], which in

condensed matter systems are fermionic quasiparticles that are its own antiparticles.

Let us give a theoretical description of unconventional superconductivity based on
Ref. [121] and consider a bulk superconductor, described by the generalized mean-field

Hamiltonian (generalization of Eq. (2.4))

H =" &chytroe = O [Dap(k)choc s +hoc]. (2.8)
ko kapf

Here, the pair potential is spin dependent (greek indices) and fulfills
Ans(—k) = —Apa(k). (2.9)

Let us assume the presence of spatial inversion symmetry. Then, the pair wave function
is either symmetric or antisymmetric under inversion symmetry, giving rise to spin
singlet, spin triplet pairing, respectively [121]. It is convenient to separate the spin
singlet contributions from the spin triplet contributions. Let us therefore introduce the
singlet creation operator

2.2 Unconventional superconductivity
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and the three triplet creation operators

tL:c = CLJ,CT—kJ, - CLTCT_M; (2.11D)
thy = i [chycliy + chyel ] (2.12)
the = chycl iy + el g (2.13)

With help of these definitions, we reexpress the pairing term in Eq. (2.8) as

ZAa@ )chall s = do(k)s) + d(k) - ], (2.14)

where the vector of triplet operators is defined as ¢}, = (¢} . tLy, t! )T. The spin singlet
part of the general pair potential is thus described by d,, whereas the vector d char-
acterizes the triplet part. The pair potential can be expressed using the d-vector and
reads

A(k) = [do(k) + d(k) - ol ioy, (2.15)

where o; denotes the i-th Pauli matrix in spin space. Eq. (2.9) implies the following

symmetries:

do(—k) = do(k), (2.16)
d(—k) = —d(k). (2.17)

The singlet part is thus an even function and the triplet part an odd function of the
momentum. A BCS superconductor is obviously described by a momentum-independent
dp and d = 0. In the presence of inversion symmetry and in isotropic systems, we may
label unconventional superconductors according to their orbital angular momentum. In
analogy to the atomic orbitals, we speak of s-wave, p-wave, and d-wave, etc. pairing. A
spin triplet p-wave superconductor, for example, is thus characterized by an even spin
symmetry and an odd momentum symmetry with an angular momentum equal to one.
In general, the details of the momentum dependence of the pair potential depend on
the symmetry groups of the crystal. On a generic two-dimensional square lattice, the
momentum dependences for s, p, d superconductors can be expressed as const, ~ cos ¢,
~ cos(2¢), where ¢ = arctan . A sketch of these generic pair potentials is shown in
Fig. 2.1. The p-wave and the d—wave superconductor have gap closing points, at which

the sign of the pair potential changes. In Chapter 5, we will deal with a one-dimensional
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Fig. 2.1: From left to right: s-wave, p-wave, and d-wave pair potentials in a Fermi surface
representation for two momentum dimensions. The horizontal direction is k., whereas
the vertical direction is k. The gray shaded area is the isotropic Fermi surface. The s-
wave superconductor in the left panel has a constant gap. The p-wave superconductor
in the middle panel has a momentum-dependent gap with two gap closing points,
at which the sign of the pair potential changes. Blue (red) color corresponds to a
positive (negative) sign. The d-wave pair potential has four gap closing points, at
which sign changes occur.

p.-wave superconductor. Its pair potential corresponds to a cut along the horizontal
axis in the middle panel of Fig. 2.1. Consequently, the sign of the pair potential for
positive momenta is opposite to the sign for negative momenta. This sign change can
also be seen from Eq. (2.17). Note that the one-dimensional p,-wave superconductor is

fully gapped.

Prominent examples for (intrinsic) unconventional superconductors are SroRuO, [19],
which is possibly a spin triplet p-wave superconductor, and the high-T. cuprates [15]
that are spin singlet d-wave superconductors. More recently, iron pnictides have
attracted a lot of attention [128]. They are a class of materials, for which various
different superconducting phases have been predicted. Another class of unconventional
superconductors are the uranium ferromagnetic superconductors [82], which have spin

triplet pairing.

Intrinisic unconventional superconductors are hard to engineer in a controlled way.
Therefore, effective setups realizing unconventional superconductors have attracted a
lot of attention, especially to realize effective p-wave superconductors. The main idea in
common for these setups is to use the proximity effect of a conventional superconductor
in order to induce superconductivity. Using a toy-model, it has been shown by Kitaev
[24] that a one-dimensional spinless p-wave superconductor has a topological phase, in
which it hosts Majorana fermions [127]. Experimental realizations of this toy-model

have been proposed [129, 130], e.g., based on spin-orbit coupled nanowires subjected

2.2 Unconventional superconductivity
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to a Zeeman field, and realized [131], giving some evidence for Majorana fermions.
More recently, the 47-periodic Josephson effect that is a signature of induced effective

p-wave pairing has been reported [27].

2.3 Superconducting heterostructures

Heterostructures are of both technological interest and of interest for fundamental
research, since new effects emerge at interfaces. For superconducting heterostructures,
we will see that the modifications of the density of states and the macroscopic phase
determine the transport properties. This section considers heterostructures containing
conventional superconductors in order to introduce the main notions. Unconventional
junctions are discussed in Chapter 4. In order to probe the transport properties
of a superconductor, it has to be connected to a normal metal, since the current
and voltage detection devices are made of normal metals. An understanding of the
microscopic processes at such a normal metal/superconductor (N/S) interface is thus
necessary. Sec. 2.3.1 introduces the N/S interface and explains the microscopic process
of Andreev reflection. In Sec. 2.3.2, we consider a Josphson junction consisting of two
superconductors, where Andreev reflection processes lead to the formation of bound
states. Further, the macroscopic phase difference across the junction determines the
current. In order to calculate the properties of complicated junctions, the Bogoliubov —

de Gennes formalism, that we introduce in Sec. 3.1, is needed.

2.3.1 Normal metal/superconductor junctions - Andreev

reflection

The normal metal/superconductor (N/S) interface is the building block for Josephson
junctions. The microscopic processes at the N/S interface determine the Andreev bound
states and therefore the transport through Josephson junctions. In this section we

provide a microscopic description of this interface.

Consider an N/S junction, as sketched in Fig. 2.2, with a small insulating barrier
separating the normal metal from the superconductor, giving rise to backscattering.
Consider an electron in the normal metal impinging towards the superconductor. If its

energy is smaller than the gap (#1 in Fig. 2.2), no density of states is available. It can
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Fig. 2.2: Normal metal (N)/superconductor (S) interface for a step-like pair potential A and
a barrier (gray), giving rise to backscattering. The band structure is shown for both
the normal metal and the superconductor. Red (blue) color corresponds to a hole
(electron) branch. The superconductor mixes electrons and holes (linear interpolation
of the color, depending on the mixing degree). An impinging electron below the gap
(#1) can either be normal reflected (#2) as an electron or Andreev reflected (#3)
as a hole. An impinging electron above the gap (#4) can enter the superconductor,
forming a quasiparticle (#6 or #7) with electron and hole component. Fig. adapted
from [132].

thus not enter the superconductor. There are in principle two possible processes. First, it
can be normal reflected as an electron (#2), since the barrier gives rise to backscattering.
The corresponding momentum change is large and approximately given by 2kr, where
the Fermi momentum is denoted by kr. Second, the electron can be Andreev reflected
[22] as a hole (#3) with a small momentum change of approximately 2%, where the
Fermi velocity is denoted by vg. Here, we assumed that the excitation energy is much
smaller than the Fermi energy, which for the superconducting gap implies A < Fr. We
can thus linearize the spectrum around kr and above expression for the momentum
change follows. This approximation is called Andreev approximation. The Andreev
reflection process consists in transferring two electrons from the normal metal with
opposite spin and opposite momenta to the superconductor and adding them as a
Cooper pair to the condensate. From the point of view of the normal metal, an incident
electron is thus reflected as a hole. If the energy of the impinging electron is larger
than the gap of the superconductor (#4), it can, as before, be normal reflected (#5)
or Andreev reflected (#6). Note that the probability of Andreev reflection decreases
as the energy of the quasiparticle increases until reaching the normal metal limit for
large energies. Additionally, the impinging electron can enter the superconductor as a
(Bogoliubov [120]) quasiparticle, i.e., a superposition of an electron and a hole. The
quasiparticle is either electron-like (#7), i.e., its electron component exceeds its hole

component (|uk\2 > \vk|2), or hole-like (#8).

2.3 Superconducting heterostructures
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For a more quantitative description, the Bogoliubov — de Gennes equations [118, 120]
have to be solved for the junction (see also Sec. 3.1). Solving them by parts yields the
bandstructure sketched in Fig. 2.2. Additionally, this approach allows to obtain the
Andreev reflection probability (for details see e.g. [132-136] ) that reads

ra =e PeiX, (2.18)

where ¢ denotes the phase of the superconductor. Further,

2
e B (i) 1 (2.19)

which below the gap (0 < E < A) yields x = arccos £, which is the energy-dependent
phase shift an electron acquires in an Andreev reflection process. For the conversion
of a hole into an electron, the sign in front of the superconducting phase is inverted.
These phase shifts play a crucial role in the formation of bound states in Josephson
junctions (see Sec. 2.3.2). Since in an Andreev reflection process the charge of 2e is
transferred across the interface, Andreev reflection enhances the current through the

N/S interface, whereas normal reflection decreases the current.

Via Andreev reflection electrons and holes in the normal metal have a fixed phase
relation. An Andreev reflected hole retraces back the same path as the incident electron,
since its velocity is opposite. This means, superconducting correlations are induced
in the normal metal. Note that this non-zero anomalous average (see also Eq. (2.3))
does not mean that the pair potential is non-zero, since the pairing interaction is zero
in the normal metal. However, at finite energy, the electron and hole dephase, such
that the correlations only extend over the finite phase coherence length ~ ’%F At finite
hw

—. Note that we considered a ballistic normal

metal. This so-called proximity effect also exists for disordered metals.

temperature the length is given by ~

2.3.2 Josephson junctions - Andreev bound states

We now want to consider Josephson junctions consisting of two superconductors. As
we will see, the Andreev reflections at the two N/S interfaces lead to the formation
of Andreev bound states. These bound states, whose energy depends on the phase
difference across the junction, are responsible for a phase-dependent current across the

junction.
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Fig. 2.3: Quasiclassical picture for the formation of Andreev bound states. A spin-up elelectron
in the normal region (N) travelling to the right is Andreev reflected as a spin-down
hole at the right superconductor (S), adding a Cooper pair to the condensate. The
hole travels towards the left superconductor, where it is Andreev reflected as an
electron, removing a Cooper pair from the condensate. A bound state forms, if the
phases acquired add up to a multiple of 27 (quasiclassical quantization condition).

Let us consider an S/N/S junction, where a second conventional superconductor is
attached to the N/S interface discussed in the previous section. For simplicity, we want
to consider two superconductors with the same gap. If the length of the normal region
is smaller than the phase coherence length, interference effects in the junction play a
role. Let us in the following consider short junctions, i.e., the junction length (length of
the normal region) fulfilling L. <« £ = ’%F. Here, ¢ is the superconducting coherence
length for a ballistic junction at zero temperature. We now want to give an intuitive,
quasiclassical description of how the microscopic process of Andreev reflection at a
ballistic N/S interface leads to the formation of a bound state in the S/N/S junction.
Fig. 2.3 shows schematically the following process: Consider an electron in the normal
region (N) with an energy smaller than the gap. It travels towards the superconductor
and thereby picks up a phase of k°L, where k¢ is the wave vector of the electron. As
described in Sec. 2.3.1, it is then Andreev reflected at the right superconductor, adding
a Cooper pair to the condensate. According to Egs. (2.18) and (2.19), the electron
picks up a phase of ¢, + x. The hole is now travelling to the left superconductor and
picks up a phase of k"L, where k" is the hole wave vector. It is then Andreev reflected
at the superconductor with a phase shift of —¢; + x. A Cooper pair is removed from the

condensate and the original electron is restored. We can write down a quasiclassical

2.3 Superconducting heterostructures
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Bohr-Sommerfeld quanitization condition, requiring that the total phase shift for such a
closed path is a multiple of 27 [137, 138]:

E
KL+ kML + ¢ + 2 arccos N 2n. (2.20)

Here, n € Z and we introduced the phase difference across the junction ¢ = ¢ — ¢;. In
the short junction limit, Eq. (2.20) yields two phase-dependent bound state energies
given by F. = +A cos % Note that these Andreev bound states are spin degenerate,
since we can reason in the same way starting with an electron with spin down. If we
allow for backscattering in the normal region, giving rise to a finite transmission 7" of

the junction, the bound state energies are modified and read [133]

E, = +A41 - T sin? Z (2.21D)

This is the result for a single channel point contact. We generalize this expression in
Chapter 4. The dispersion of the bound states is shown in Fig. 2.4(a). The process
described above and depicted in Fig. 2.3 transfers a Cooper pair from the left super-
conductor to the right superconductor. This gives rise to a dissipationless supercurrent
across the junction. Since the bound state energies depend on the phase difference, the
supercurrent across the junction will also depend on the phase difference. The effect
was first theoretically predicted by Josephson [20] for tunnel junctions (7" < 1). In a
conventional junction consisting of two s-wave superconductors with equal gaps, the
Josephson current is entirely transported via the bound states and can be obtained from

the dispersion of the bound states. At zero temperature it reads

(2.22)

Z

VE{:E} ¢

Note that the last factor is the zero temperature occupation factor. Further, this relation
is derived from a more general relation in terms of the free energy that we present
in Chapter 4. From Eq. (2.22) it is apparent that modifications of the Andreev bound
states will modify the supercurrent across the junction. Note that the expression for
the supercurrent is more complicated, if the gaps of the two superconductors are not

equal. Fig. 2.4(b) shows the zero temperature Josephson current through the junction.
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Fig. 2.4: (a) Energy of the bound states of an S/N/S junction as a function of the phase
difference ¢ across the junction. The bound states are given for three different
transmissions: 7" = 1 (black, dashed), T = 0.8 (red) and 7" = 0.1 (blue). (b)
Corresponding Josephson current at zero temperature, normalized by the critical
current, as a function of the phase difference. Note that the current in the tunnel
junction case (blue) is sinusoidal, as predicted from the first Josephson relation in
Eq. (2.23).

In the tunnel regime, the current expression reduces to the well-known first Josephson
relation [20]
I = 1I.sin ¢. (2.23)

Note that this expression holds true in the tunnel regime for any temperature and for
large temperatures at any transparency. The critical current [, i.e., the maximum value
of the dissipationless supercurrent, scales linearly with 7" in the tunnel regime. In gen-
eral, e.g., for a transparent junction for example, the relation between the supercurrent
and the phase difference, i.e., the current-phase relation, is more complicated. The
Josephson effect without applied bias voltage is called dc Josephson effect, since it
gives rise to a time-independent current. If a constant bias voltage V' is applied across
the junction, the phase difference becomes time dependent and reads according to the
second Josephson relation W 2
(&

i EV' (2.24)
The supercurrent is thus an ac current and the effect is called ac Josephson effect. A
formalism to calculate the current-phase relation at finite temperature is presented in

Sec. 4.4 and Appendix B.

Experimentally, the Josephson effect has been measured via (V') curves shortly after

its prediction [139]. The current-phase relation /(¢) has been measured, e.g., in
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superconducting bridges and in superconducting weak links [140-142]. More recently,
the current-phase relation has been measured for atomic point contacts and could
be compared to theory without adjustable parameters [143]. In this experiment,
the atomic point contact was formed by a break junction that was embedded into
an assymetric SQUID with a tunnel junction. A similar setup has been used for the
spectroscopy of the Andreev levels of a single channel point contact [50, 52] and their
coherent manipulation [53]. The experimental observations are in agreement with the

theoretical predictions given in this section.

2.4 Ferromagnetic resonance

In part II of this thesis, we want to study an interface between a ferromagnet under
ferromagnetic resonance conditions and a superconductor. This section provides an
introduction to ferromagnetic resonance in bulk ferromagnets and in ferromagnet/nor-
mal metal (F/N) junctions. Ferromagnetic resonance has first been discovered in
bulk ferromagnets, where it is well-described by a quasiclassical theory, based on the
Landau-Lifshitz-Gilbert equation (Sec. 2.4.1). More recently ferromagnetic resonance
has attracted a lot of attention, especially in the spintronics community, since F/N

junctions may provide pure spin currents, as we will see in Sec. 2.4.2.

2.4.1 Ferromagnetic resonance in bulk ferromagnets

Since we want to consider junctions under ferromagnetic resonance conditions, we first
have to understand ferromagnetic resonance in bulk ferromagnets, where the resonance
mechanism is similar. We mainly follow Ref. [62] for this section, where ferromagnetic
resonance is defined as the resonant absorption of external electromagnetic radiation

in ferromagnets. It was experimentally discovered by [63, 64].

In a ferromagnet, the exchange interaction aligns the electron magnetic moments to
yield a macroscopic magnetization M. If a magnetic field By is applied, a torque acts
onto the magnetic moment of the ferromagnet, trying to align it with the field. As a
consequence, the magnetization precesses around the magnetic field direction. The

magnetization dynamics can be described by the classical equation of motion

M
= M B, (2.25)
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Here, 1 is the magnetic constant, - denotes the gyromagnetic ratio that for the electron
takes the form |y.| = g.“?, where up denotes the Bohr magneton. Further, g. denotes
the electron g-factor, which is the proportionality constant between the magnetic
moment and the angular momentum of the electron. Under the assumption that the
spins only precess in the field By, the precession frequency is given by the Larmor
frequency

wo = vBy. (2.26)

In ferromagnets, there is not only the external field, but there are also demagnetization

and crystal anisotropy fields. It is therefore convenient to introduce an effective

magnetic field B.g that takes into account these fields and replaces By in Eq. (2.25).

In thermodynamic equilibrium, the effective magnetic field can be obtained from the

free energy as
OF

Beff,j — _8M
J

(2.27)

Here, j denotes the component of the magnetization/effective magnetic field vector. A
ferromagnetic resonance (FMR) experiment consists of applying a static field By and a
much smaller dynamic field b,¢ (with by < By) that is perpendicular to the static field.
Due to the internal magnetic field in ferromagnets, the resonance frequency deviates
from the Larmor frequency. Further, in contrast to a nuclear magnetic resonance
experiment, the ferromagnetic resonance frequency may be finite for zero static field.
Let us specify the resonance frequency. Following Kittel [71, 144, 145] and considering
an ellipsoidal specimen, the resonance frequency obtained from Eq. (2.25) can be

written as

N - Nz Nx - Nz
=B 2 ) (5o ). @aw
47 4

Here, the static field is By = By2 and N, is the demagnetization factor in direction 2.
Let us consider three specific geometries. First, for a sphere, N, = N, = N, giving
wo = 7By, which is the Larmor frequency. Second, for a flat plate, to which the static
field is applied perpendicular, N, = N, = 0 and N, = 4x, giving wy = 7 |By — poM]|.
This geometry is an example for a geometry, where no static field is necessary in order

to yield a finite resonance frequency. Third, for a flat plate with the static field applied

in plane, N, = N, = 0 and N, = 4, giving wy = 7\/ Bo(Bo + oM ). These expressions
are only valid for a uniform magnetic field inside the specimen, corresponding to a

single magnetic domain.

2.4 Ferromagnetic resonance
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So far, we have not taken into account any damping. Damping may be provided by
interactions, for example magnetic dipole interaction or phonons. Phenomenologically,
a damping term is added to Eq. (2.25), yielding the Landau-Lifshitz-Gilbert equation
[146]

dfi‘f — —YM x Beg + %M x dcjl‘f. (2.29)
Here, « is the dimensionless Gilbert damping constant. Eq. (2.29) can be recast into
the Landau-Lifshitz equation that has been originally proposed on a phenomenological
basis [147] and later been derived from thermodynamics [148]. Therefore, we take
the vector product of M and Eq. (2.29) and insert the resulting expression it back into

Eq. (2.29). After short algebra, we obtain

dM
= —v'M x Beg — NM x (M X Beg). (2.30)

Here, the effective gyromagnetic ratio is defined as

N = (2.31)
and the effective relaxation frequency is given by

(6]

N = ?7@2 (2.32)
Note that )\ is given in units of the frequency divided by the magnetic field. The
damping gives rise to a finite imaginary part of the susceptibility. Let us consider
the susceptibility for a simple example. Assuming Gilbert damping and an external
perturbation of the form By ~ §(t)x, the susceptibility as a function of the magnetic
field displays a Lorentzian resonance peak [149]. Its half width at half maximum is
given as [149]

AB =22 (2.33)

g

Consequently, the Gilbert damping parameter can be measured from the susceptibility

in a resonance experiment.

In the steady-state, the precession of the magnetization direction around the precession
axis forms a cone. The cone angle of this precession cone (angle between the magneti-

zation direction and the precession axis) is a function of the resonance width and the
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applied fields, as well as the saturation magnetization [150, 151]. At resonance it is

determined by [151] (solving the linearized Landau-Lifshitz-Gilbert equation)

brf

0 ~ AL (2.34)

The angle is small due to the small applied rf-field. Note that it is in general not possible
to revert the magnetization direction (in contrast to nuclear magnetic resonance). For
sufficiently large driving powers of the rf-field, spin waves will be excited instead of a

further driving of the ferromagnetic resonance.

2.4.2 Ferromagnetic resonance in a ferromagnet/normal

metal junction

The ferromagnet/normal metal (F/N) junction corresponds to the ferromagnet/super-
conductor (E/S) junction, when the superconductor is in its normal state. It is therefore
relevant to discuss the properties of the former junction, with the ferromagnet being
subjected to ferromagnetic resonance (FMR), before considering the F/S junction. As
we will see, the ferromagnet under FMR conditions injects a spin current into the
adjacent normal metal. The idea of the injection of a spin polarized current into a
non-magnetic material [152] and its realization [153, 154] are quite old. In these
realizations, a spin-polarized current is injected from a ferromagnet into an adjacent
semiconductor. A spin accumulation is created in the semiconductor over a length scale
of the spin diffusion length. One important difference between these realizations and
the more recent proposals is that in the latter, which rely on dynamical effects, pure

spin currents, i.e., without a net charge current, are possible.

It is well-known that a spin current driven through a ferromagnetic layer may change
the magnetization direction of this layer. This effect is called spin transfer torque
(theoretical prediction in [76, 77], experimental verification in [78], for an introduction
see for example Ref. [79]). The spin current is responsible for a torque onto the
magnetization direction, opposing the Gilbert damping. Tserkovnyak and coworkers
[72] proposed to consider the inverse effect: A moving magnetization vector looses
torque by emitting a spin current. The authors consider a junction of a ferromagnet
and a normal metal, where the ferromagnet is subjected to FMR. The precession of

the magnetization transfers angular momentum from the ferromagnet to the normal
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metal, injecting a spin current into the normal metal. The net spin current flowing
gives rise to an additional damping mechanism for the magnetization, enhancing the
Gilbert damping. Slonczewski [76] has shown that a spin transfer torque gives rise to
extra terms in the Landau-Lifshitz-Gilbert equation (Eq. (2.29)). Ref. [73] identified
this torque as being the spin current for the setup under consideration, corresponding
to the extra term in Eq. (2.29) being

MLVIS. (2.35)
Here, V denotes the volume of the ferromagnet. The net spin current I, = JPu™P — Pack
vanishes in the absence of spin-flip scattering in the normal metal. Assuming, in
contrary, the normal metal being a perfect spin sink, there is no backflow current,
yielding maximum spin current. The pump current can be expressed via the complex
valued spin pumping conductance. If the ferromaget is thicker than the transverse spin
coherence length, the spin pumping conductance equals the mixing conductance, giving
[73]

h dm dm
e — (N e 0 N 2.
s dr (gr “Tar Y a (2.36)

Here, m = 2 is the magnetization direction. The indices r and i label the real and

imaginary part of the dimensionless conductance matrix, defined by [155]

g% = Z {5mn — rfnnr,‘j{n} , (2.37)
where o, ¢’ are spin indices and m, n are mode indices. For most systems, the imaginary
part of the mixing condutance is small [156] and can thus be neglected [157]. In this
case, according to Egs. (2.35) and (2.36), the contribution of the spin pumping to the
Gilbert damping is given by

hy
_ 1
o 47TMVgr ) (2.38)

We still consider an F/N interface with the ferromagnet subjected to FMR conditions.
Assuming a diffusive normal metal, Ref. [157] has shown by solving a spin diffusion
equation that a time-averaged spin accumulation close to the interface builds up. It
depends on the ratio between spin injection rate and spin relaxation rate. The spin
accumulation is maximal, if the spin injection rate is much larger than the spin-flip rate

and is zero in the opposite limit.
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Ref. [158] considered the same setup with additional spin-flip scattering in the ferro-
magnet. The authors found that the spin accumulation is reduced and that a chemical
potential difference builds up across the junction. The reason is that a backflowing
spin current parallel to the magnetization direction of the ferromagnet builds up that
charges the ferromagnet. This opens the possibility of an electrical detection of the
spin accumulation that has been realized experimentally both for an F/N interface [74]
and an F/I/N junction [113]. In the latter experiment the voltage detected for this
tunnel junction was an order of magnitude larger than for ohmic contacts. This was
unexpected, since the tunnel barrier decreases significantly the injection rate compared
to ohmic contacts, which should suppress the spin pumping effect. The spin pump-
ing theory developed by Ref. [158] would need an unrealistically large spin mixing
conductance to explain this large voltage. Therefore, Ref. [115] proposed a different
mechanism for the voltage generation. Based on phenomenological Bloch equations,
they consider longitudinal and transversal spin relaxation due to disorder. Spin is accu-
mulated along the magnetization direction of the ferromagnet. This nonequilibrium
spin accumulation is then transformed into a voltage by the tunnel barrier. In order
to obtain a linear scaling with the precession frequency as in the experiment ([113]),
Ref. [115] has to assume that a fraction of the disorder follows the magnetization
dynamics. If the normal metal is replaced with a ferromagnet with fixed magnetization
direction, we obtain an F/I/F junction with one ferromagnet being in FMR and the
other one having a fixed, static magnetization direction. In this junction an additional
mechanism exists, i.e., the spin bias drives a charge current through the junction. As
shown by Ref. [115], the charge current gives rise to a voltage depending on the spin
polarizations of the ferromagnets. This charge pumping voltage can be distinguished
from the spin accumulation voltage, noting that the former changes sign if the direction
of one of the ferromagnets is flipped, whereas the latter does not change sign [115].
The inverse effect, to use a voltage in order to induce ferromagnetic resonance has been

proven experimentally in magnetic tunnel junctions [159].

Another experimental detection technique for FMR in F/N junctions is based on the
spin Hall effect [160-163]. In a paramagnetical material with spin-orbit interaction
a pure spin current is generated transverse to an applied electrical field, even in the
absence of a magnetic field. Analogous to the Hall effect, where charge accumulation
leads to a transverse voltage, spin will be accumulated at the edges of the sample

leading to spin-dependent transverse chemical potentials. The inverse spin Hall effect
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[164-166] may be used in the following way: FMR in the ferromagnet generates a
spin current in the adjacent normal metal by the previously described spin pumping
mechanism. The inverse spin Hall effect transforms the spin current into a transverse
charge current. The charge current has been experimentally measured as a dc voltage
[150, 164, 167, 168]. As for example in Ref. [150], in experiments the F/N junction is
placed into a coplanar waveguide to excite the FMR using a microwave field. We will

discuss experiments containing superconductors in Sec. 6.1.
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Formalisms - theoretical

framework

This chapter gives an overview on the different theoretical tools used to achieve the
results in the following two parts of this thesis. Note that details concerning the
disorder formalism are integrated into Chapter 8, since they are only relevant for a
small part of this thesis. In this chapter, Sec. 3.1 introduces the Bogoliubov — de Gennes
formalism that is suitable to solve the eigenvalue problem for a Hamiltonian describing
a junction of superconductors. We use it in Chapters 4 and 5 and Appendices A, C, and
D to obtain the Andreev bound states and the wavefunctions of the s/p, junction. In
Sec. 3.2, we present the scattering matrix formalism for the description of quantum
transport through a scattering region between two leads that we use in Appendix
A and Chapter 4 for the calculation of the bound states. Further we use scattering
matrices in Appendices C and D for the calculation of the continuum wave functions
that determine the transistion rates in the s/p, junction. In Sec. 3.3, we introduce the
non-equilibrium Green’s functions formalism in the Keldysh formulation that allows
to perform perturbation theory of non-equilibrium systems. We use it in Chapter 7 in
order to calculate the current through the half-metal/superconductor interface with
the half-metal being at ferromagnetic resonance. Finally, Sec. 3.4 gives details for the
master equation approach using density matrices that we use in Chapter 5 in order to
calculate the occupations of the Andreev levels of the s/p, junction in the presence of a

time-dependent magnetic field.

3.1 Bogoliubov — de Gennes formalism

In order to theoretically describe superconducting junctions, we need the Bogoliubov —

de Gennes formalism that can treat space-dependent pair potentials.

The BCS Hamiltonian in Eq. (2.4) describes a bulk s-wave superconductor. Soon after
BCS theory was published, Bogoliubov [120] and Valatin [169] proposed independently
to use a unitary transformation to diagonalize the Hamiltonian. This so-called Bogoli-
ubov transformation introduces quasiparticles that are a linear combination of electrons

and holes. De Gennes [118] generalized this formalism to a real space description that
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allows to treat space-dependent pair potentials. The so-called Bogoliubov — de Gennes
formalism can consequently treat junctions containing superconductors. In this section,
we want to present the formalism generalized to junctions containing unconventional
superconductors. Therefore, we need to consider momentum-dependent pair potentials
and a general spin dependence of the pair potential, i.e., pair potentials containing
spin singlet and spin triplet components. Parts of this derivation and its idea are taken
from Refs. [31, 170]. This generalized formalism is used in Chapter 4 to determine the

spectrum and the wavefunctions of the s/p, junction.

Let us start from the general interaction Hamiltonian
H = Hy+ Hiy. 3.1
Here, the single particle part of the Hamiltonian is given by

Hy = /er\Iﬁ )W (), (3.2)

where « and 3 are spin indices and ¥/ () is a field operator that creates an electron
with spin a at position r. The fields are fermionic, i.e., {U}, ('), ¥, (z)} = 0,-0(x — ).
Here, we used the anti-commutator, defined by {A, B} = AB + BA. The interaction
part of the Hamiltonian (Eq. (3.1)) is given by

Hipy = —¢ Z // d""d'l“lqﬂL \IJT( )Vaﬁfy5(rar,)\lj5(r,)qj’y<r)' (33)

aﬁ'y&
Here, the spin-dependent potential V,4.s(7, r’) mediates the superconducting interac-
tion. We use a mean-field approximation for the interaction (see for example [118,
121]). It consists of assumimg that the difference between the product of two field

operators and its expectation value is small.

We introduce the superconducting pair potential as the following matrix in spin space

Ays(r,r) z(; Vagrs(r, ') (Ws(r') W, (r)), (3.4)
Agﬁ(r, r') =— 25: Vosap(r, ") <\I/L(r)\llf5('r')> : (3.5)
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We obtain (up to a constant shift in energy) for the interaction part of the Hamiltonian

Hi = ;Z// d’rd’r'[Aaﬂ(r,r')\I/IY(r)\I!L(T') + ALB(T, r)Ws(r" )W, (7)]. (3.6)
af

The total Hamiltonian (Eq. (3.1)) can be written (up to a constant shift in energy) as
H= ; / / drdr" W () Hgac (r, 7 ) B (). (3.7)
Here, we introduced a Nambu basis, defining
V(r) = (Uy(r), Uy (r), U)(r), ¥ (r)) " (3.8)

Further, the Bogoliubov — de Gennes (BdG) Hamiltonian reads

(3.9

Ho (") — (H(r)a(r — ) A(r, ) ) |

AT(r',7) —H*(r)o(r — ')
Here, A and H(r) are 2 x 2 matrices in spin space, according to Egs. (3.2) and (3.4).

We now use a unitary Bogoliubov transformation U, (7), a 4 x 4 matrix in spin space,
defined via

U(r) = Un(r)vn. (3.10)

Here, the electron field operators are expressed via quasiparticle operators -, that are
fermionic, i.e., {7}, s} = Omndas- @, 3 denote spin indices, whereas n labels all re-
maining quantum numbers. Additionally, we defined the Nambu vector of quasiparticle

operators

Yo = (s T Vs ) - (3.11)

The commutation relations ensure the unitarity of the Bogoliubov transformation, i.e.,
/ drUL () Un () = 6y (3.12)

Using this relation, the inverse transformation that relates the electron operators to the

quasiparticle operators is just given by

Yo = [ drUj(r)e(r). (3.13)
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With help of the unitarity relation in Eq. (3.12) it is easy to show that the BAG Hamilto-
nian in Eq. (3.9) can be written as

1
H= 3 > Yo Euvn, (3.14)
if the following condition holds true:
/ dr' Haaa(r,7")U, (') = U, () E,. (3.15)

The equations of this matrix equation are called Bogoliubov — de Gennes equations and
E, is a diagonal matrix. We have thus diagonalized the Hamiltonian (see Eq. (3.14)).
We now need to solve the BAG equations, in order to obtain the eigenenergies and
explicit expressions for the unitary BdG transformation. Therefore, let us further
analyze and simplify the BdG equations. We denote a column vector of the matrix U by
w. Then, for each column, Eq. (3.15) reads

/d’r'HBdG(T, rw,(r") = e,w,(r), (3.16)

where ¢, is a scalar. We will now derive approximate equations, suitable for describing

wy(r) = (un(r)) : (3.17)

v, (T)

junctions. Defining

we introduce a vector of electron components u, () and a vector of hole components
v,(r). Far from the junction, the quasiparticle states may be labeled by their wave
vector (the label n corresponding to the wave vector) [170]. We can then separate a

fast oscillation on the scale of k' and introduce new envelope functions, given by

() vn(T)
Let us drop the index n for clarity of the notation. Using Eq. (3.17), Eq. (3.16) splits

into two equations. Integrating the first equation of Eq. (3.16) over 7/, we obtain

/ dr / dr' [(H(r) = E)s(r —r')a(r) + A(r,r/)o(r')e )] = 0, (3.19)
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The manipulation of the second equation given by Eq. (3.16) is similar. Therefore, we
restrict the presentation to the first one. Changing the integration to a center of mass
coordinate R = %T' and a difference coordinate, s = » — ’, we obtain an equation for
the integrand of [ dR:

[ as [(H <R+ ;) - E) 5(s)@ (R - ;) + A(R, 5)8 (R + ;) ek] —0. (3.20)

We expand the second term in lowest order in kr (note that v depends also on k), see
also Ref. [170], i.e.,

/dsA(R, $)% <R+ ;) ¢ ~ A(R, k)3(R). (3.21)
We defined the Fourier transform of the pair potential as
A(R, k) = / dsA(R, s)e™s. (3.22)

We finally obtain (using also the second equation from Eq. (3.16))

( H(R) A(R, kz)) (ﬂ(R)) . (a(m) | (3.23)
A" (R, k) —H*(R)) \3(R) U(R)

These Bogoliubov equations can treat space-dependent pair potentials (junctions),
where the space dependence is taken into account via the center of mass variable
R. Further, the pair potential may be momentum-dependent (k), which allows to
treat unconventional superconductors. We can thus treat junctions of unconven-
tional superconductors. As an example, consider an unconventional superconductor
in the right half-space. Then, using a step function model, the pair potential reads
A(R,k) = O(R&)A(k), where © denotes the Heaviside function and & is the unit
vector perpendicular to the interface. A(k) contains the momentum dependence. For
example, a one-dimensional p,-wave superconductor will have a dependence on ,’j—;
If these equations are solved in the bulk (far from the junction), it is convenient to
Fourier transform the coordinate R, giving simply an algebraic eigenvalue problem to
solve. Note that A(R, k) and H(R) are matrices in spin space. We will also refer to the
matrix in Eq. (3.23) as the BAG Hamiltonian, since it is an approximation of Eq. (3.9).
This set of equations will be used in Chapters 4 and 5. For the simplest case, i.e., if

Eq. (3.23) is solved for a bulk s-wave superconductor, the coefficients v and v define

3.1 Bogoliubov — de Gennes formalism
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the bulk transformation given by Bogoliubov [120]. In this case, the coefficients are
simply the BCS coherence factors, given in Eq. (2.5). Then, u (v) can be interpreted as
the electron (hole) amplitude of the Bogoliubov quasiparticle. Note that for an s-wave
superconductor the separation of scales is not necessary, since the pair potential does

not have a momentum dependence.

Note that we have doubled the number of solutions introducing the particle-hole space.
There are two convenient choices to solve this “double counting” problem (double
counting is also discussed in Ref. [171], see also Refs. [28, 172]). First, we can restrict
ourselves to positive energies only and consider both spins. This choice is called the
excitation picture. Second, we can restrict ourselves to one spin species and consider

both positive and negative energies. This choice is called the semiconductor picture.

3.2 Scattering matrices for quantum transport

The scattering matrix formalism can be used to solve transport problems through nanos-
tructures. It is suitable to treat junctions of different materials. For superconducting

junctions, it can be combined with the Bogoliubov — de Gennes formalism.

The aim of this section is to provide a brief introduction to the concept of scattering
matrices that are used in part I of this thesis. For a more detailed introduction, we refer
the reader to the books [136, 173]. The idea to describe the transport in a mesoscopic
system solving a scattering problem has been developed by Landauer [174, 175] and
Biittiker [176-178]. According to the Landauer — Biittiker approach, a nanostructure
can be divided into a scattering region (mesoscopic sample) and leads attached to it.
The leads shall be macroscopic reservoirs in equilibrium, providing electrons that are
scattered in the sample. Confining all scattering to the sample, the wavefunctions for

incoming and outgoing electrons in the leads can be expressed as

g =3 "o, (3.24)

pout — Z C%ut %ut (3.25)
B

where the sets {¢}'} and {¢3"} form an orthonormal basis. The scattering region being

mesoscopic, it has to be treated quantum mechanically. Since the Schrédinger equation

Chapter 3 Formalisms - theoretical framework




is a linear equation, the outgoing wavefunctions are linearly related to the incoming
wavefunctions. The coefficients thus fulfill

=" Spacik. (3.26)

The matrix S, defined by this equation, that relates the incoming coefficient vector to
the outgoing coefficient vector, is called the scattering matrix. In general, the scattering
matrix can be determined solving the Schrodinger equation in the scattering region and

matching the solutions to the wavefunctions in the leads.

Let us discuss some basic properties of the scattering matrix. Particle number conserva-
tion in the scattering process can be written as

[arlwef = [ar jw ], (3.27)
imposing for the coefficients to fulfill
S e = 3 fene (3.28)
Using Eq. (3.26), we obtain for the scattering matrix
ST =1. (3.29)

Hence, the scattering matrix is a unitary matrix. Consider a time-reversal invariant
system. Then, the time-reversal operation corresponds to complex conjugation of the
scattering coefficients and interchanging incoming and outgoing coefficients. It directly

follows that the scattering matrix of this system is symmetric, i.e., ST = S.

The current through a nanostructure can be expressed using the scattering matrix. Let
us consider the simple case of a two terminal junction. We parametrize the scattering

problem in the following way

éout r t/ éin
L L

_ ) (3.30)
e t or') \cp

Here, the superscript distinguishes outgoing from incoming modes and the subscript

distinguishes the right hand side from the left hand side of the junction. In general,

3.2 Scattering matrices for quantum transport
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the c¢’s in above equation are vectors, containing one entry per mode. Further, the
reflection matrix r (r’) describes the reflection of waves inciding from the left (right).
The transmission matrix ¢ (¢') gives the transmission across the nanostructure from left
to right (right to left). According to [178], ¢ is an electron destruction operator. The

current operator on the left hand side of the junction reads
I, oc (@m)fein — (eoutyfaout (3.31)

Using the unitarity of the scattering matrix and assuming a Fermi-Dirac distribution

f(E) of the electrons on both sides of the junction, we have

() =2 [ ABTH( 0 f(B) (B (3.32)

Tr(t't) can be expressed using the transmission eigenvalues 7, of the nanostructure.
If a bias voltage is applied, that is much smaller than the energy dependence of the
transmission values, the conductance of the nanostructure (defined via (I,) = GV) is
given by
G=Gy> T, (3.33)
p

Here, Gy = % is the conductance quantum. This equation is the Landauer formula
[174]. For a single channel point contact, that we widely use in the following, the
conductance is thus defined by a single parameter, i.e., the transmission value of the
channel.

We want to deal with complicated nanostructures that can sometimes be divided into
simpler constituents. One might know the scattering matrices for each constituent
and want to obtain the combined scattering matrix. We will encouter such a case in
Chapter 4 (Appendix A). Consider a system of two scatterers in a row, in a two terminal

geometry, where the scatterer i is described by the scattering matrix

it
&:C ﬁ. (3.34)
ti 7“{

The total scattering matrix for the combined nanostructure is given by (for a derivation
see [179])
S = Si1 + S12(Ze — Sa2) " Sat, (3.35)
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where the N x N matrix X, reads

(S2)ap = Oan—s- (3.36)

Here, we defined the four matrices

ri 0 th 0 tiy 0 i 0
Su={" . Se=(" ). Su={_ |, Se=[' "]. 637
0 T9 0 tz 0 t/Q 0 T2

Scattering matrices are thus not multiplicative, meaning that the total scattering matrix

is not the product of the scattering matrices of the subsystem. However, it is possible to

ty—1 141—1
e ((u-) ! ) (3.38)

-1 —1

define the transfer matrix

such that the total transfer matrix M = M, M, is simply the product of the transfer
matrices of each scatterer. In contrast to the scattering matrix S that maps the incoming
modes to the outgoing modes, the transfer matrix M/ maps the modes in the right hand
region to the modes in the left hand region. Eq. (3.38) gives the mapping between a
scattering matrix and the corresponding transfer matrix. The transfer matrix is thus a

completely equivalent description.

In this thesis we want to investigate the transport properties of junctions containing
superconductors. The scattering matrix formulation of quantum transport has been
generalized to superconductors [133-135]. A Josephson junction is described by two
superconducting leads that are connected to a normal scattering region that gives rise
to the transmission of the junction. The scattering matrix of a single N/S interface takes
into account the basic microscopic process of Andreev reflection. The eigenfunctions
in the superconducting leads can be obtained solving the Bogoliubov — de Gennes

equations (see Sec. 3.1). For details we refer to Refs. [135, 136] and Appendix A.

3.3 Keldysh Green’s functions formalism

The aim of this section is to present the non-equilibrium Green’s functions formalism
that has been developed by Kadanoff and Baym [180] and Keldysh [181]. Here, we use
the Keldysh formulation. This formalism is suitable for the calculation of observables of

non-equilibrium systems. We use this formalism in Chapter 7, in order to calculate the

3.3 Keldysh Green’s functions formalism
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current through a half-metal/superconductor interface, when the half-metal is subjected
to ferromagnetic resonance. We follow a review article [182] and a book chapter [183]

for this presentation.

The Keldysh formalism allows to develop a diagrammatic perturbation theory for non-
equilibrium systems. It is assumed that the system has been in equilibrium, described
by a statistical average, at some point in the past. Then, a perturbation of the system is
“switched on”. The aim is to obtain an equation of motion for the single particle Green’s
function. One finds that this equation of motion involves a hierarchy of correlation

functions.

Let us be more precise and consider a system described by the Hamiltonian
H(t)=H+ H'(t). (3.39)

H'(t) is a perturbation that is “switched on” at ¢ = ¢y, i.e., H'(t) = 0 for ¢t < ¢,. Before
the perturbation is switched on, the system shall be in thermodynamic equilibrium
and is then described by the statistical operator py = Z~'e #H. Here, the temperature
is given by 3 = (kT)~! and the partition function reads Z = Tre ##. The aim is to

calculate the expectation value of an operator O for t > t,, given by

(On(t)) = Tr(prOn(1)), (3.40)

where Oy (t) is the operator in the Heisenberg picture (with respect to the Hamiltonian

H).

We define the greater (>) and lesser (<) Green’s functions as the following correlation

functions

G=(1,1') = +i (v}, (1)u(1)), (3.41)
G>(1,1) = =i (Yu(1)y},(1)), (3.42)

where ¢! (1) is a fermionic field creation operator in the Heisenberg picture. The
dependence on space and time is abbreviated by 1 = (x1, ;). Let us define the contour

Green’s function [184]

G(1,1) = —i (Tpn (1)} (1)) (3.43)
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(a)to c t (b) C+
) > - >

Fig. 3.1: (a) Integration contour for the transformation to the interaction picture, used in
Eq. (3.47). (b) Keldysh contour extending from —oo to 400, consisting of an upper c
and lower c_ integration branch, covered in opposite directions. Fig. adapted from
[182].

Here, we introduced the concept of a contour ¢ for time integration, i.e., a path
through the complex plane. The contour time-ordering operator 7, orders the operators
depending on their time arguments on the contour that we will specify later (see
Fig. 3.1), i.e.,

A(t)B(tz)  if 1y > 1,

B(t)A(ty)  if ty >t

TLA(H)B(ts) = (3.44)

The contour Green’s function in Eq. (3.43) can thus be expressed via the greater and

lesser Green’s functions in Egs. (3.41) and (3.42).

We want to perform perturbation theory on the contour-ordered Green’s function. We
use an interaction picture representation and express the operator in the Heisenberg
picture Oy via the operator in the interaction picture Oy (with respect to H), using the
transformation
On(t) = U'(t, to)Ou(t)U(t, 1), (3.45)
where the time-evolution operator is defined as
)

t
Ut to) = T exp [_n dt’H}{(t’)} . (3.46)
to

T denotes the usual time-ordering operator (for a time-integration over the real axis)

and Hy,(t) is the operator H'(¢) in the interaction picture with respect to H.

Using the contour ¢, shown in Fig. 3.1(a), we can write

On(t) = T. {exp [—; / dTH}{(T)] OH(t)} , (3.47)

3.3 Keldysh Green’s functions formalism
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giving for the contour ordered Green’s function

Go(1,1)) = —i <TC exp [—; /CdTH}{(T)] ¢H(1)¢L(1’)> . (3.48)

We want to transform the contour integration back into a regular time integration.
We now argue how this can be done using the Keldysh contour ¢k [181], depicted in
Fig. 3.1(b). If we neglect initial correlations, we can put t; — —oo [185-188]. Using
the unitarity of the time-evolution operator, the contour can be extended from the
largest time to infinite times. The Keldysh contour ck consists of an upper branch ¢,
run through in positive time sense, and a lower branch c_, run through in negative time
sense. The contour ordered Green’s function for the Keldysh contour can be written in
a matrix representation G, such that the element C?ij has the time ¢; on ¢; and the time

t1- on ¢;. The components of G explicitly read

G (1,1) = =i (T (1), (1)) (3.49)
G (1,1) = G<(1,1) (3.50)
G_.(1,1) = G~ (1,1) (3.51)
G__(1,1) = =i (Tn()e},(1)) (3.52)

Here, 7T is the anti-time-ordering operator that orders in the opposite sense. Larkin and

Ovchinnikov [189] introduced a slightly different representation, given by
G = LnGL. (3.53)

Note the difference between the notations (¢ and G. Here, 7 denotes a Pauli matrix in
Keldys space and L is given by

1

L=—(19—172). 3.54
\/5( 0 — iT2) (3.54)
The time-ordered Green’s function reads in this matrix representation
v G%* G¥
G = . (3.55)
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Here, we introduced the retarded (R), advanced (A), and Keldysh (K) Green’s functions
as

GH(1,1) = =iO(t — tv) ({Pn(1), Uy (1)}) = O(t1 — t2)[G7(1,1') = G=(1,1')],

GMLLT) = +iO(ty — 1) ({Tn (1), Tyy(1)}) = =Bty — 1)[G7 (L, 1) — G=(1, 1),
GX(1,1) = =i ([T (1), B (1)) — G7(L 1) + GS(L1).

(3.56)

We want to express the total Green’s function via the equilibrium Green’s function.

Therefore, we consider a perturbation expansion. Let us first of all consider the simplest
case of a scalar potential. The first order diagram contribution of the contour ordered
Green’s function given in Eq. (3.48) reads

a(1,1) = p! / drs / drGO(1,2)V(2)GO (2, 1'). (3.57)

Here, G{) is the contour ordered Green’s function of the unberturbed system. We
have used Wick’s theorem, i.e., that the expectation value (quadratically weighted)
of a product of contour ordered operators is the sum of all possible products of two
operators:

(Texe(ma) - e(m)) = 3 T (Teey(7)ey (7)) (3.58)

I q,q
The sum is taken over all possible products I of two operators without distinguishing
the order. The operators c are either annihilation or creation operators and ¢, ¢’ label
the state that is created/destroyed. We now decompose the contour integration into a
forward and backward integration over a real time coordinate. Further introducing the
potential in Keldysh space
Vii(1) = VI(1)(73)s5, (3.59)

we obtain
GO =Y / drs / TGO (1,2 V(260 2,1). (3.60)
k,l o0

The perturbation expansion can be iterated and resummation of terms yields again
the full Green’s function. Introducing a short notation, we obtain the following Dyson
equation

A

G=GY+G0VeVa, (3.61)

3.3 Keldysh Green’s functions formalism
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where matrix multiplication in Keldysh space is implied for the product of matrices. Fur-
ther, ® denotes matrix multiplication over internal degrees of freedom and integration

over all space and time coordinates.

This approach can be generalized, yielding the more general non-equilibrium Dyson
equation
G=Co+GoY®d, (3.62)

that contains the self energy ¥. Note that this is an equation for the matrix representa-
tion of the time-ordered Green’s function, defined in Eq. (3.55). Further, the self-energy

in matrix representation is defined as

R K
> = (E > ) (3.63)
0 xA
where
YR, 1) =0t — t) (27 (1,1) — £5(1, 1)), (3.64)
YA1L,1) = —O(ty — 1) (27 (1,1) — B<(1, 1), (3.65)
YE(1L, 1) =27 (1,1) + 35(1,1). (3.66)

Further, we identified ¥, = < and X_, = ¥~. The self-energy can be calculated in a
diagrammatic approach, summing over all single-particle irreducible diagrams without
external propagator lines. Knowing the unperturbed matrix Green’s function G, we

are thus able to calculate the full Green’s function with help of Eq. (3.62).

The usefulness of this formalism becomes more apparent in Chapter 7. We will see that
we can express the expectation value of the current using the Keldysh Green’s function.

The main task for that kind of problem is thus to determine G, and 3.

3.4 Master equation approach - density matrix
theory

We start this section by a brief introduction into density matrices. Afterwards, we will
show (following Ref. [190]) the main steps for the derivation of a master equation

in Markov approximation for the density matrix elements of a system coupled to a
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reservoir. Coupling to a reservoir gives rise to relaxation processes for the states of the
system. We use this formalism in Chapter 5, where the states of the s/p, Josephson
junction are coupled via a Zeeman field to the continuum of states of the junction,
which plays the role of a reservoir.

A (quantum) master equation is a first order differential equation that describes the
time-evolution of the density matrix elements. It is a generalization of a classical master
equation that describes the time-evolution of probabilities (diagonal elements of the
density matrix). The general idea is to divide the system into a small observed system
S and a large unobserved reservoir R. R and S are weakly coupled by an interaction,
which is treated perturbatively. It is assumed that R has many degrees of freedom,
such that the interaction with S does not significantly modify R. Further, it is assumed
that dissipation processes in R are fast. Finally, the Markov approximation consists
of assuming that the system S does not have any memory of its past. Markov master
equations are used for the quantum theory of relaxation. The coupling of the system S
with the reservoir R gives rise to relaxation, since energy dissipated from S to R may
stay in R. Markov master equations are for example relevant in quantum optics, e.g.,
for the coupling of a two level system with a cavity. They are also used for NMR (Bloch
equations).

Before going into more detail concerning the master equation, let us introduce density
matrices. The density operator, which is also called statistical operator, describing a

mixture of states |V,,), is defined as
p=> W,|¥,)(T,]|. (3.67)

Here, W, is the probability to find the system in the state |¥,). Let us choose an

orthonormal basis given by the set {|¢,,) }. The matrix formed of the elements

pij = (bi |p| ¢;) (3.68)

is called density matrix. The diagonal elements of the density matrix fulfill p;; > 0 and
give the probability of the system to be in the basis state |¢;). The expectation value of

an operator is given by
_ Tr(pA)
(A) = Top (3.69)

3.4 Master equation approach - density matrix theory
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Normalizing the sum of the probabilities to unity corresponds to imposing Trp = 1.
A state is called a pure state, if it fulfills Tr(p?) = (Trp)? = 1 (where the last equality
holds for a normalized state). The off-diagonal elements of the density matrix are called
coherences, since they are non-zero for a coherent superposition of states. Let us now
consider the time evolution of a state that is given by the Schrédinger equation. For the
density operator it takes the form

Ip(t)

ih=C= = [H (1), p(t)] (3.70)

This equation is called Liouville equation. Assuming that we can write
H(t) = Hy+ V (1), (3.71)

where H, is time independent, we obtain the Liouville equation in the interaction
picture
Ip(t)

ih=5= = [V (1), p(t)]. (3.72)

Here, the operators in the interaction picture are defined via

A(t) = enot A(t)e wHot (3.73)

We now want to give the main steps for the derivation of the master equation. We
follow the ideas given in Ref. [190]. We divide our system into a small observed system
S, described by the Hamiltonian Hg and an unobserved reservoir R, described by Hg.
The total Hamiltonian is given by H = Hs + Hg + V (t), where V (t) is the interaction
between the system and the reservoir. We assume that the interaction is switched on
at t = 0. Prior to this point the reservoir and the system are decoupled. The weak
interaction between the reservoir and the system is treated perturbatively. Further, we
assume that the reservoir is not significantly changed by the perturbation, such that it

stays in a thermal state throughout the entire time evolution.

We now define the reduced density matrix of the system as

ﬁs = TrRﬁ, (3 . 74)
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where the trace is taken over all reservoir degrees of freedom. At ¢ = 0, the system and

the reservoir are decoupled and uncorrelated, such that

5(0) = ps(0)w (0). (3.75)

We now assume that the reservoir has many degrees of freedom, such that the changes
in the reservoir due to the interaction with the system can be neglected [191]. This
assumption is valid, if the system is much smaller than the reservoir. The density
matrix of the reservoir is thus for all times given by the initial (t = 0) density matrix
of the reservoir. This assumption is also called condition of irreversibility, since it
prevents energy dissipated into the reservoir from returning back to the system. Formal

integration of the Liouville equation (Eq. (3.72)) gives

- )
Py = —5 [ @[V (e), it (3.76)
0
Inserting this expression into the Liouville equation (Eq. (3.72)) we obtain

pi(t) = = TenlV (6), ps(0)on(0)] = 3y [ deTenl V(0 [V(0), s )pn 0}, (B77)

where the dot denotes the time derivative. Eq. (3.77) gives the equation of motion
for the density operator up to second order in the interaction V'(¢). We now make the
Markov approximation: We assume that the system has no memory of its past. This
corresponds to ps(t) only depending on ps(t), i.e., replacing js(t') — ps(t) under the
integral in Eq. (3.77). If the correlation time 7 of the reservoir is much smaller than the
decay time, i.e., 7 < v~ ! (where  is the decay rate), then the Markov approximation

holds true. Following Ref. [192], we decompose the interaction
V(t) =" Ri(t)Si(t), (3.78)

where R and S are operators acting only on the reservoir, the system, respectively. Let

us analyze the appearing time correlation functions of the form

(Ri(t)R;(¢)) = Trg (Ri(t) R; () (0)) (3.79)

First note that the correlation function is only a function of ¢ — ¢’. Second, since we

assumed quick dissipation in the reservoir, these correlation functions will only be

3.4 Master equation approach - density matrix theory
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non-zero for ¢t — ¢’ < 7. Traces over a single reservoir operator are zero and therefore
the first term in Eq. (3.77), which is linear in the interaction V, is zero. We now choose

a set of basis states {|n)} that are eigenstates of Hs and obtain from Eq. (3.77)

d 1 o m Q Q ~ D (+\ D

S = = | a3 {(m[Sio)| ) (k [Ss(¢ = 9]1) e (R s 0))
Sl a0 (RORO) -
—<ms<>\ >pkl<z\59<t )|

)| 1) (1|Si(

Here, we could extend the integration to infinity, since contributions from times larger

Si(t)|n) <R(0)Ri ")}

than the correlation time are negligible. Eq. (3.80) is used in Chapter 5. In order to
evaluate the remaining matrix elements, the interaction has to be specified. At this point,
we will only make two general comments. First, if the reservoir is fermionic and in
thermal equilibrium, the correlation functions appearing in Eq. (3.80) are the product
of a Fermi-Dirac distribution function and a phase factor ¢**' containing the time
dependence. In Chapter 5, we will treat the continuum of states of an s/p, Josephson
junction as a fermionic thermal reservoir. Second, note that Eq. (3.80) is linear in the
elements of the density matrix p;;. We can thus rewrite this expression, defining a

vector of length N? of the entries of the N x N density matrix, given by

P = (P11, P125 -y PINs P215 - P2Ns - PNN) - (3.81)

Then, Eq. (3.80) formally reads
p(t) = P(t)p(1), (3.82)

where P(t) is a (in general time-dependent) N? x N? matrix. This equation is a
master equation, since it is a first order differential equation for the occupations (and
coherences). If P(t) is time independent, solving this system of coupled differential
equations reduces to an eigenvalue problem. Further, the stationary solution at large
time scales is given by P(t)p(t) = 0. In Chapter 5, we will be interested in the stationary

occupations of the s/p, junction that determine the current through the junction.
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Singlet/triplet Josephson junction






Equilibrium properties of the
singlet/triplet junction

We have seen in Sec. 2.3.2 that the current-phase relation of a conventional Josephson
junction contains information about the Andreev levels and their occupations. If we
replace one of the conventional superconductors by an unconventional superconductor,
we obtain a junction having exotic bound states leading to unusual current-phase
relations. Amongst unconventional Josephson junctions, those realized between singlet
and triplet superconductors are of special interest, because of their incompatible spin
pairing symmetries. Their equilibrium properties have been studied for various types of
heterogeneous junctions [28, 31, 35, 193-196]. It has been shown that their current-
phase relation is non-sinusoidal, since the incompatible spin properties forbid the

transfer of a single Cooper pair across the junction.

In this chapter, we want to focus on the simplest singlet/triplet Josephson junction be-
tween a conventional spin singlet, s-wave superconductor and a quasi one-dimensional
unconventional spin triplet, p.-wave superconductor. This junction is presented in
Sec. 4.1. All equilibrium properties can be obtained knowing the density of states
and the free energy. In order to calculate the density of states, we use a scattering
matrix formalism, developed in Appendix A for junctions containing unconventional
superconductors that have a constant absolute value of the pair potential. In Sec. 4.2,
we will use this formalism to show that the s/p, junction hosts two spin-polarized
Andreev bound states, which have the same spin [44]. In Sec. 4.3, we determine the
free energy of the junction. Based on the density of states obtained from the scattering
matrix formalism and the free energy exp