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Introduction 
The development of a single cell to an entire organism is a fascinating process that begs 
several basic questions: how subsets of cells regularly adopt a specific behavior, while their 
neighbors concurrently adopt others?  At what time of development cells know that they 
should execute a given program of differentiation? Which are the mechanisms orchestrating 
different developmental processes across the whole body? 
 

It is now well established that development primarily relies on the elaboration of fine 
patterns of gene expression, which progressively define the fate of specific groups of cells. 
Therefore a main issue is to understand the mechanisms underlying the spatiotemporal 
regulation of genome transcription. While we have a wealth of information to explain the 
regulatory interactions that build sophisticated patterns of spatial expression, little remains 
known on the mechanisms ensuring temporal control of development. Indeed, time is a 
fundamental aspect of development that is involved at each scale of a biological system. 
From the cycle of cell division to differentiation, the organization of tissues and organs, and 
finally organism-wide integration and appropriate final body size, all these aspects require a 
proper timing that should be regulated by internal and external cues.  

Various intrinsic timing parameters may be involved in controlling development such 
as the rate of protein production, diffusion, degradation, etc... Many studies have shown the 
existence of molecular circuits, where the half-life of regulatory factors and their feedback 
interactions produce oscillating transcriptional outputs, as well illustrated by the circadian 
clock (Hirayama and Sassone-Corsi, 2005; Webb and Oates, 2016), or the regular production 
of somites in vertebrates (Gomez et al., 2008; Keyte and Smith, 2014). Another striking case 
is provided by recent work on neurogenesis in flies. Proliferating neural stem cells utilize 
transcription factor cascades as a generic mechanism for temporal patterning, providing 
remarkable diversity of cell types in the developing nervous system (Yasugi and Nishimura, 
2016).  

A broader systemic control is yet to consider for understanding how different 
programs are synchronized across tissues and evolve over embryonic and postembryonic 
development. It is known that these two latter actions are regulated by several mechanisms. 
An Open Reading Frame (ORF) is a messenger RNA sequence (mRNA) (corresponding to a 
gene), translated by ribosomes to a protein. A small Open Reading Frame (smORF) is 
translated to a small peptide < 100 amino acids. Among these smORFs there are those who 
are localized on noncoding RNAs since they have no known ORF. Groundbreaking studies 
have shown the role of noncoding RNAs in regulating developmental timing both in plants 
and in animals. The so-called heterochronic mutations in nematodes lead to premature or 
delayed differentiation, desynchronizing development. For example, lin-28 mutants start 
producing an adult cuticle, while animals are still in a sexually immature juvenile stage 
(Faunes and Larrain, 2016; Rougvie, 2001). Likewise, external cues such as nutrition or 
environment may control the duration of developmental intervals. A growing body of 
evidence shows that modifications in human dietary may have adverse impacts on the proper 
timing of puberty, becoming a serious health concern (Rogol et al., 2000).  

Therefore, an interesting problem is to figure out how genetically encoded 
developmental programs are connected with a systemic control of timing, integrating both 
internal and external cues. Through studying the mechanisms regulating the transcription of 
an apparently noncoding RNA that actually produces small peptides, we addressed this 
question for the development of epidermal derivatives in flies.  

http://www.wormbase.org/db/gene/locus?name=lin-28;class=Locus�
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1. The physical elements regulating eukaryotic gene transcription 
Gene expression is a multistep process that decodes the information carried by a given gene 
and translated into an active protein. In eukaryotes, each individual step is finely regulated 
from the chromatin level, to the transcriptional and post-transcriptional levels, and finally 
translational and post-translational levels. A major dimension of developmental control relies 
on the specific patterns of gene transcription.  
 

A first lock consists on the DNA structure that is wrapped around histones with a high 
compaction level, making the DNA sequences hardly accessible for proteins to induce 
transcription. Transcription is yet fundamentally regulated by two major elements: cis-
regulatory DNA sequences and their associated trans-regulatory factors. A same gene may be 
expressed from several alternative promoters that produce different transcripts and/or proteins 
(Landry et al., 2003; Zavolan et al., 2002). Eukaryotic promoters are typically composed by a 
combination of two kinds of cis-regulatory sequences on which various transcriptional factors 
will bind. The first type of these sequences is implicated in the transcription initiation and 
found across most promoters. The second type gathers specific regulatory elements for a 
promoter category and builds specific patterns of expression, according to tissues and 
developmental stages. 
Thereby a package of different structures is responsible to orchestrate gene transcription 
necessary for development. 
 

 Cis-regulatory modules 
Cis-regulatory modules (CRM) are key sequences distal to promoters that serve as a podium 
for the attachment of transcription factors (TFs) and thereby control the transcription. CRMs 
may be localized upstream or downstream of a gene, even very far away from it, or within the 
transcribed part of a gene such as untranslated regions of the RNA (UTR) or introns (Fig.1). 
 

 
 
 

CRMs play a crucial role in development by regulating gene expression. They gather 
the effects of signaling and transcriptional networks and translate them into highly specific 
expression patterns (Bulger and Groudine, 2011). Depending on their role in genetic 

 

 

 Figure 1: Schematic representation of the transcription initiation complex, which displays common core 
promoter elements and associated factors such as RNA polymerase (RNA POL II), TATA box Binding protein 
(TBP), and general factors TF (A, B, F, E and H).  
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expression regulation, CRMs were initially separated in two classes. Enhancers stand at first 
for regulatory regions that activate target gene expression, while silencers repress it, as 
observed by artificial constructs containing regulatory elements in front of a reporter gene, in 
culture cells or in transgenic animals. However, depending on cell types a same regulatory 
region may act either as enhancer or silencer. In addition, the specific output of a given CRM 
often incorporates both positive and negative regulatory inputs, in the same cell type. 
Nowadays, the term enhancer is often used as a synonymous of CRM. As pioneered by 
studies on the eve gene in flies (Halfon et al., 2000; Hare et al., 2008; Small et al., 1992; 
Wilson and Odom, 2009), one developmental gene may otherwise have many distinct 
CRM/enhancers driving specific expressions in different tissues. Thus, the different 
enhancers of the same gene can be seen as a regulatory network, integrating different spatial 
and temporal information to output a finely controlled pattern of gene expression (Buchler et 
al., 2003).  

Enhancers often contain multiple sites for the binding of TFs as well illustrated for the 
first enhancer discovered, that of simian virus 40 (Schirm et al., 1987). Such clustering of 
Transcription Factor Binding Sites (TFBs) is indeed widespread in developmental enhancers, 
with multiple binding sites for a given TF (homotypic clustering) and/or several TFs 
(heterotypic clustering) (Aerts, 2012). According to the respective organization of these 
binding sites and to the mode of TF assembling on the enhancer, different types of 
architectures are generally distinguished.  

In the so-called “enhanceosome” model, the binding site architecture is critical for 
enhancer function. The paradigm of the enhanceosome is an enhancer from the human 
interferon-beta gene, which requires the cooperative binding of at least eight TFs 
(Panne, 2008). To be active, the enhancer must recruit all individual TFs. Their binding sites 
are precisely arranged along the enhancer sequence that acts as a DNA scaffold, creating the 
final complex of TFs fastened to DNA and acting as a single control unit (fig. 2A). So this 
kind of assembly depends on constrained interactions between TFs and DNA sequences, and 
thus a strict spacing or orientation of TFBs within the enhancer is crucial for its activity.  

 
On the other hand, the “Billboard” or “information display” model of enhancers 

corresponds to a largely flexible architecture regarding the order, orientation or spacing of the 
TFBs, even if it may require a relatively fixed composition of motifs (Kulkarni and Arnosti, 
2003). In this case, the position of TFBs within the enhancer displays no strict spacing or 
orientation rules (fig. 2B), and the lack of a given TF or the disruption of a TFB is generally 
not sufficient to inactivate the enhancer. For example, loss of cell type-specific repressive 
input often leads to ectopic target gene expression, but not to a breakdown of the enhancer 
(Slattery et al., 2014).  

A third model called “TF collective” has been proposed to explain the regulatory 
logic underlying Drosophila heart development (Erceg et al., 2014; Junion et al., 2012; 
Slattery et al., 2014). A same set of TFs regulates multiple enhancers showing largely flexible 
organization and composition of motifs, since the TFs can use different manners to recognize 
their targets (fig. 2C). This occurs either through direct DNA-binding or through specific 
protein/protein interactions between TFs. In that case, both DNA and proteins act as scaffold 
and contribute to cooperative binding (Slattery et al., 2014); therefore enhancers harboring 
strikingly different combinations of TFBs can generate similar outputs for regulating gene 
expression. 
 
Instead of following one or the other model, it is likely that TFs assemble on enhancers in a 
continuum manner, from a strict grammar to a highly flexible organization of regulatory 
motifs. Nevertheless, results from high-throughput discovery and dissection of CRMs 
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(Patwardhan et al., 2012; Smith et al., 2013) suggest that most animal enhancers do not 
use a constrained grammar of motifs and generally handle varying levels of flexibility in their 
functional organization (Slattery et al., 2014)  
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 2: Different models of the functional organization of enhancers. (a) In the enhanceosome model, 
the enhancer should receive simultaneous inputs from multiple transcription factors, which rely on 
highly ordered protein/protein and DNA/protein interactions, to provide a single output to the basal 
transcription machinery. (b) Billboard enhancer: in this model, each enhancer displays a flexible 
distribution of binding sites, which mediate largely independent interactions with different transcription 
factors. (c) The TF collective model represents a situation in which the same set of TFs bind to many 
enhancers, using various combinations of direct (DNA/protein) or indirect (protein/protein) manners to 
recognize these enhancers (Kulkarni and Arnosti, 2003; Spitz and Furlong, 2012).  
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 Transcription factors 
Transcription factors are proteins able to bind the DNA in a sequence-specific manner and 
their activity is responsible for the genome expression in particular cells and at a particular 
time. There are several kinds of transcription factors according to their DNA binding 
domains, including: Helix-Loop-Helix, Homeobox, Zinc Fingers, etc… To regulate gene 
expression, each TF binds to a specific short DNA motif, which often tolerates varying 
degrees of deviations from the consensus sequence. Therefore, TFBs are generally pictured as 
position weight matrixes (PWMs) that represent the frequency of nucleotides at each position 
of the consensus, as defined by compiling known binding sites for a given TF (Santolini et 
al., 2014). Strikingly, TFs bind only some of their potential binding sites, given their big 
number in the genome. In addition, the development of genome-wide profiling of TF-bound 
sequences (e.g., Chromatin Immuno-Precipitation and sequencing, ChIP-seq) shows that a 
substantial proportion of binding events do not necessarily represent functional enhancers.  
 
Therefore, it remains difficult to predict the location of enhancers from the genome-wide 
distribution of putative TFBs, or even that of ChIP peaks. Several studies have shown that 
combining data for several TFs that cooperate for regulating the expression of a category of 
genes may help predicting animal enhancers. A nice illustration is provided by the parallel 
mapping of genome-wide binding events for five TFs, at successive times throughout 
embryonic development, leading to the definition of TFBs signatures that can predict 
spatiotemporal activity of some enhancers in mesodermal derivatives (Bonn et al., 2012; 
Zinzen et al., 2009). Several bioinformatic pipelines similarly search for the local 
accumulation of TFBs, arranged in homo and/or heterotypic clusters, as a way to increase the 
accuracy of enhancer prediction (Aerts, 2012; Markstein et al., 2002). In most cases, 
however, analysis of DNA motif composition remains poorly efficient to predict functional 
enhancers.  
 

Several parameters contribute to the difficulty of sequence-based enhancer detection. 
First, as mentioned above, cis-regulatory modules are often located far away from their target 
genes, dispersed throughout noncoding intergenic or intronic DNA, and there is no efficient 
means to prefigure the enhancer location. Second, we still don’t know the DNA-binding 
specificity for most eukaryotic TFs, and several studies have suggested that PWMs defined 
from in vitro assays may not accurately represent TFBs active in vivo. For example, TFs can 
bind in vivo to degenerate sequences, which display very weak if any binding in vitro, and 
therefore are not well represented by PWMs (Croker et al, 2015). 

 
Finally, mounting evidence supports that both base and shape readout can contribute 

to the recognition of DNA by the TFs. A base readout describes interactions between the 
amino acids and the functional groups of the bases. Namely, this relation includes direct 
hydrogen bonds, water-mediated hydrogen bonds, and hydrophobic contacts (Kitayner et al., 
2010; Slattery et al., 2014) (fig. 3A). On the other hand, shape readout is based on the 
recognition of TFs to the structural features of their binding sites (fig. 3B). Both the global 
shape of the DNA helix (e.g., an overall bend) and local shape of individual base pairs (e.g., a 
local kink or narrow minor groove) can impact on TF/DNA recognition and binding 
(Hancock et al., 2013; Slattery et al., 2014; Stella et al., 2010). These findings highlight the 
importance of the three dimensional structure of both macromolecules for the interactions 
between them. Therefore, the DNA structure or topology may be as important as protein 
structure, in mediating a functional DNA/protein interaction (Parker et al., 2009). Based on a 
growing number of structures for TF/DNA complexes, it has been proposed that whereas 
specificity between different families of TFs frequently involves base readout in the major 
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groove, the different parameters of shape readout may provide an additional level of high 
resolution specificity to distinguish between transcription factors harboring the same family 
of DNA-binding domains (Rohs et al., 2010). New methods have been developed to predict 
DNA structural features (e.g., minor groove width, roll, twist, …) and are amenable to the 
analysis of both DNA-sequence and shape for genome-wide data such as ChIP-seq (Zhou et 
al., 2013). 
 

In sum, for all these reasons, enhancer discovery and delineation still generally relies 
on time-consuming experimental approaches, making large use of ex and in vivo reporter 
assays.  
 
 
 

 
 
  

 

Figure 3: Base and shape readout contribute to TF–DNA binding specificity. (A) Base readout describes 
direct interactions between amino acids and the functional groups of the bases. Whereas the pattern of 
hydrogen bond acceptors (red) and donors (blue), heterocyclic hydrogen atoms (white) and the 
hydrophobic methyl groups (yellow) is base pair-specific in the major groove, the pattern is degenerate in 
the minor groove. (B) Shape readout includes any form of structural readout based on global and local 
DNA shape features, including conformational flexibility and shape-dependent electrostatic potential. The 
DNA target of the IFN-b enhanceosome (PDB ID 1t2k; top) varies in minor groove shape. The human 
papillomavirus E2 protein binds to a DNA binding site (PDB ID 1jj4; bottom) with intrinsic curvature 
(Slattery et al., 2014) 



16 

2. Development relies on spatiotemporal regulation of gene 
expression 

Many studies have well demonstrated that specific spatiotemporal domains of gene 
expression play crucial roles in driving developmental progression. Drosophila genetics has 
provided good support to this notion, as nicely illustrated by the striking phenotypes resulting 
from the misregulation of homeotic gene expression. One of the most spectacular 
demonstration that experimental manipulation of gene expression can deeply modify the fate 
of developing tissues may be the work on Eyeless, a transcription factor that function as a 
“master regulator” of eye morphogenesis in Drosophila (Halder et al., 1995) (fig. 4). This 
seminal paper has shown that targeting the ectopic expression of Eyeless in various tissues, at 
early stages of development, is sufficient to induce the formation of ectopic “eyes” in wings, 
legs or in the antennae of adult Drosophila. 
 

 

 

 

 

Likewise, the control of time seems to be crucial in order to mature at a suitable step. Studies 
in several model species have focused on the importance of timing during development 
crowned by three ways of timing biological processes: ordering, interval timing and rhythm 
(Webb and Oates, 2016). In vertebrates, the so-called segmentation clock manages the timing 

Figure 4: GAL4-driven ectopic expression of Eyeless induces the formation of eye-
like structures in various adult tissues, such as the antennae (A) and (C), the wing 
(B), or the leg that display an eye-outgrowth on the base of the tibia (D) (Halder 
et al., 1995). 
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of formation of somite boundaries from cells within the presomitic mesoderm (PSM) in the 
embryo (Keyte and Smith, 2014; Pourquie, 2011). Seminal work using the chicken embryo as 
a model system has shown that c-hairy1, encoding a transcription factor, displays a striking 
cycling expression during somitogeneis (Palmeirim et al., 1997). c-hairy1 expression is first 
activated in the posterior PSM, then moves progressively towards the anterior, and finally 
restricts to the posterior-most cells of the newborn somite. The same cycle of spatiotemporal 
patterns of c-hairy expression regularly occurs for the successive formation of each somite 
(fig. 5). 
 

 

Similar oscillating expression of transcription factors belonging to the Hes/Her/Hairy family 
were also reported across vertebrates species, showing the evolutionary conservation of this 
mechanism. Additional genes display a rhythmic expression pattern in the PSM, including 
members of the Wnt, FGF and Notch signaling pathways, the latter likely representing a key 
determinant of the vertebrate segmentation clock (Dequeant and Pourquie, 2008).  
Although the precise function of the segmentation clock clearly involves complex 
interactions between dozens of regulatory factors that may have evolved across species, a 
general notion is the importance of molecular feedbacks to generate oscillating outputs 
(Pourquie, 2011).  
 
For example, a simple model of the zebrafish oscillator involves a negative feedback loop, 
with transcriptional delay, to control the periodic expression of DeltaC, a ligand of the Notch 

 
Figure 5: The Segmentation Clock during chicken somitogenesis. (A–I) In situ hybridization showing the 
patterns of c-hairy1 expression in 15 (A, B, and C), 16 (D, E, and F), and 17 (G, H, and I) somites chicken 
embryos. Anterior is to the top. (J) Schematic representation of c-hairy1 expression in the presomitic 
mesoderm (PSM) and the progression of somite formation.  From Palmeririm et al., 1997. 
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pathway (Lewis, 2003). Her1/7 transcription factors display a cyclic expression in the PSM, 
which is indispensable for proper segmentation (Holley et al., 2002). Notch activation 
triggers the expression of Her1/7 and DeltaC and, once produced, Her1/7 TFs shutdown the 
transcription of DeltaC and finally of their own transcription (Giudicelli et al., 2007; Holley 
et al., 2002). This circuitry thus endows oscillating production of the DeltaC ligand, which in 
turn results in periodic activation of Notch in the neighboring cells (fig. 6), and therefore may 
act as a central pacemaker of the segmentation clock of the zebrafish (Giudicelli et al., 2007).  
 
 
 

 
 
 
 
 
 
 
 
 
 
The periodic timing of gene expression has also been involved in the segmentation of 
arthropod species (Chipman and Akam, 2008; Schoppmeier and Damen, 2005).  

In the Tribolium castaneum beetle, posterior segments are progressively added over 
time, from a posterior growth zone region; this mode of development, called short germband, 
likely being the ancestral mode of insect segmentation. The expression of Tc-odd, the 
ortholog of the pair-rule gene odd-skipped in flies, is expressed in sequential stripes, with a 
double segment periodicity, and inactivation of Tc-odd results in dramatic and almost 
asegmental phenotypes (Choe et al., 2006). Further work has recently shown Tc-odd cycles 
with periodic waves of expression (fig. 7). Strong evidence of this conclusion comes from 

Figure 6: Model of the zebrafish oscillator. In response to the Notch pathway, the inhibitory activity of 
Her1/Her7 transcription factors controls the periodic repression of DeltaC, allowing the synchronous 
activation of Notch signaling in adjacent cells. Through activating the expression of Her13.2, a functional 
partner of Her1/Her7, FGF signaling provides further fine control of clock-synchronized oscillations (from 
Pourquié, 2011). 
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experimental anteroposterior bisection of developing embryos, and in vitro culture of the two 
halves during different times before being simultaneously subjected to in situ hybridization. 
This elegant approach (previously been taken by (Palmeirim et al., 1997) for the chicken 
segmentation clock) clearly showed that Tc-odd expression in the growth zone displays 
temporal oscillation during the production of primary stripes (Sarrazin et al., 2012), for the 
proper segmentation of the beetle embryo. 
 

 
 
 
Taken together, these iconic examples well illustrate that specific control of gene expression, 
both in space and time, is of fundamental importance to underwrite developmental programs 
in animals. 
 

 

Figure 7: Expression of Tc-odd mRNA during germband elongation in Tribolium embryos. A-F show in situ 
hybridization to Tc-odd mRNA at successive stages of development (embryos are in ventral view), A’-F’ the 
intensity profiles of Tc-odd expression along the anterior-posterior axis. The growth zone (gz) is located 
posterior to the black arrowhead and is underlined by grey shading in the intensity plots (Sarrazin et al., 
2012).  
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3. Drosophila as a fruitful model of animal development 
Drosophila species are insects of the Diptera order, i.e. provided with a single pair of wings. 
They are holometabolous animals, which have an indirect development, passing through 
three larval stages, before undergoing a metamorphosis that gives the fertile adult form. 
Drosophila melanogaster is widespread in the world and its cosmopolitan distribution is quite 
probably related to human activities and increased trade that allowed it to migrate over long 
distances (Lachaise D., 1988). The female of Drosophila melanogaster lays her eggs on a 
medium that will serve as food substrate to larvae that emerge. The female can lay several 
hundred eggs during her life. Depending on food substrate and temperature, development 
time of newly laid individuals will vary showing the influence of environmental inputs for the 
temporal control of Drosophila development. For example, the entire development will be in 
about 10 days at 25 °C, whereas development will last about 20 days if the temperature is 
only lowered to 18 °C (Thompson et al., 1977). 
  

 An overview of embryonic development 
The egg laid measures a millimeter in length, where the yolk that it contains is stored in its 
center. In 1985, Campos-Ortega and Hartenstein divided the different morphogenetic events 
of Drosophila embryogenesis into 17 successive stages (fig. 8). Embryonic development 
begins with a series of 13 fast nucleus divisions giving rise to a syncitial blastoderm, which 
will undergo cellularization three hours after fertilization. After cellularization, comes the 
gastrulation, an important process, where a whole set of movements implements the digestive 
structures of the animal. It is the first manifestation of cell fate and cell differentiation 
program besides the early individualization of pole cells. The embryo is divided into three 
presumptive territories: the ectoderm that will gives the nervous system and the epidermis, 
the mesoderm that will give rise to muscles and interstitial tissues, whilst endoderm 
represents the future digestive system. Approximately 3 hours after fertilization, the germinal 
band starts growing rapidly. It is placed at the origin in the ventral part of the embryo and 
grows first in a posterior-anterior dorsal direction that doubles its length and reduces its width 
twice. There are two types of cells involved in the extension of the germ band, the epidermal 
cells that start to divide before this process and stop at its beginning, and the neurogenic cells 
that do not divide, but get bigger. This germ band will give rise to three thoracic segments 
and nine abdominal segments and each segment has epidermal, neural and mesodermal 
constituents (Irvine and Wieschaus, 1994). Neurogenesis starts forty minutes later, with 
neural progenitors migrating from the ectoderm. The two hours that follow are marked by a 
period of growth with the appearance of furrows that will mark the limit of the different 
segments in the epidermis. Seven hours after fertilization, the germinal band stops its 
extension and begins shortening. This will result in several morphogenetic movements that 
will participate in the functional establishment of the different structures of the animal. Thus, 
the posterior portion of the intestine will be found at the posterior pole of the animal. The 
anterior and posterior part of the midgut move toward each other, forming two bands of cells 
on each side of the yolk that remains at the center of the embryo. While midgut closure 
continues, at the same time begins involution of the head that involves complex 
morphogenetic movements allowing implementation of the mouthparts and other head 
structures. 
Shortening the germband leaves a membrane in the dorsal part, the aminoserosa, which will 
gradually be covered by lateral epidermis that progresses dorsally on each side to be merged 
(Schock and Perrimon, 2003). Dorsal closure involves interactions between integrins and the 
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extracellular matrix, contributing to epidermal cell migration over the amnioserosa (Schock 
and Perrimon, 2003).  
 
 
 

 

 

 

 

 

 

 Figure 8: Schematic representation of the successive stages of 
Drosophila embryogenesis, with all embryos shown in lateral view. 
From the Atlas of Drosophila development, by V. Hartenstein. 
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 Segmentation 
The anteroposterior axis of the insect body is characterized by the serial repetition of a large 
morphological unit, called segments. Genes that regulate the Drosophila segmentation were 
initially discovered from large scale genetic screening (Nusslein-Volhard and Wieschaus, 
1980). Further work has shown that there are many players, connected in a successive series 
of regulatory cascades involving: maternal genes, gap genes, pair-rule genes, segment 
polarity genes and ultimately the homeotic genes that differentiate individual segments along 
the anteroposterior axis. I will here briefly remind the general principles of their action. 
 

In Drosophila and other long germband insects, determination of the anterior-
posterior (AP) and dorsal-ventral (DV) axes is controlled by maternal genes. These genes are 
expressed by the mother and their products are deposited in the oocyte by ovarian cells before 
fertilization. Along the AP axis, there are in the anterior part bicoid and hunchback which 
determine the head and thorax, on the other hand there are nanos and caudal in the posterior 
part determining the abdomen. Following their translation from a localized source of RNA, 
the diffusion of maternal proteins forms concentration gradients that act in a dose-dependent 
manner to activate specific targets, while repressing the reciprocal gradient. For example, 
nanos and bicoid mutually repress their translation. The terminal regions are additionally 
specified by the cell signaling pathway of the Torso receptor tyrosine kinase, which is locally 
activated at each pole of the embryo (Baek and Lee, 1999). Maternal TFs will then activate 
the transcription of gap genes (Jackle and Sauer, 1993).  

 
Gap genes are the first zygotic segmentation genes expressed in wide transversal 

stripes, as readout of maternal gradients. Inactivation of a gap gene causes a characteristic 
phenotype where mutant embryos lack a set of adjacent segments. Gap genes are thus 
essential to specify large regions along the AP axis. They include orthodenticle, empty 
spiracle and button head to define the future embryonic head, zygotic hunchbach, the gnatal 
and thoracic segments, krüppel, the thorax and first abdominal segments, knirps, the abdomen 
and giant, expressed in the head and the posterior part of the abdomen. In the terminal 
regions, huckebein and tailless are expressed in response to the Torso pathway. 

 
In response to gap genes, the next tier of regulatory factors is pair-rule genes. They 

are expressed in seven AP stripes with a double segment register. Accordingly, inactivation 
of a pair rule gene leads to abnormal embryos where one segment over two disappears in the 
trunk. Several studies have demonstrated that the expression of pair-rule genes is driven by 
an array of largely independent enhancers, each incorporating various inputs from upstream 
segmentation genes. For example, the 6th stripe of Hairy expression is driven by a short 
enhancer, directly bound and activated by Giant and Knirps TFs (Howard and Struhl, 1990; 
Pankratz et al., 1990; Riddihough and Ish-Horowicz, 1991). In addition, Krüppel and Tailless 
provide negative regulatory inputs, specifying the anterior and posterior border of stripe 6. 
Hairy is a transcription factor of the basic-helix-loop-helix (bHLH) family and it associates 
with the Groucho corepressor, via a protein-protein binding domain (WRPW), to repress the 
transcription of other target segmentation genes, such as fushi-tarazu (Poortinga et al., 1998). 
fushi-tarazu is representative of the so-called secondary pair-rule  genes, since its expression 
depends not only from maternal and gap genes but also from primary pair-rule genes. Indeed, 
the expression of fushi-tarazu is initially activated in a uniform manner in the embryo, then 
repressed by a combination of primary pair rules including hairy, runt and even-skipped, to 
produce seven AP stripes. Fushi-tarazu is a homeodomain TF that directly interacts with the 
aFtz-f1 nuclear receptor to regulate target gene expression (Florence et al., 1997).  
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During Drosophila development, there are two distinct segmentation units that overlap: 
segments and parasegments. Segments correspond to the units observed in adults, with 3 
segments composing the head, 3 the thorax and 9 the abdomen. In embryos, the parasegments 
are delimited by transient mesodermal and ectodermal folds; the posterior part of each 
parasegment corresponds to the anterior compartment of a segment. Soon after 
cellularization, segment polarity genes are expressed and divide the pair-rule domains into 
two, forming 14 narrow stripes along the AP axis. Segment polarity genes expressed in 
neighboring cells interact between them and define the anterior and posterior compartments 
of each segment. When a segment polarity gene is mutated, one of the compartments (either 
the anterior or the posterior) disappears and is replaced by a mirror duplication of the 
remaining portion, as well seen on the larval cuticle. Transcription of segment polarity genes 
is initially regulated by a combination of positive and negative inputs from pair-rule genes. 
For example, the expression of wingless is activated by Odd-paired and repressed by Fushi-
tarazu and Even-skipped. Then, reciprocal interactions between engrailed and wingless 
further establish and reinforce the boundary between segmental compartments. 
 
After the establishment of the segmental boundaries, homeotic genes that encode homeobox 
(Hox) TFs then act to specify the individual identity of each segment. The third chromosome 
of Drosophila contains two different regions gathering clusters of Hox genes. The 
Antennapedia complex that comprises the labial, Antennapedia, sex comb reduced, deformed 
and proboscipedia genes, specifies the identity of the head and thoracic segments. The 
Bithorax complex comprises three genes, Ultrabithorax, abdominal A and B, involved in the 
determination of the identity of the third thoracic segment and abdomen. Hox genes are 
expressed in adjoining segments, under the control, in a first step, of segmentation genes, 
then by functional interactions between homeotic genes. For example, the induction of 
Antennapedia expression is initiated by fushi-tarazu and krüppel, while knirps represses it. 
Later on, Ultrabithorax will repress Antennapedia to prevent its expression in the posterior 
thoracic and abdominal segments. Several studies have shown functional dominance among 
Hox genes, such as repression prevailing over activation to define posterior prevalence 
(Capovilla and Botas, 1998). The activity of Hox genes governs the execution of a broad 
range of developmental programs, giving rise to segment-specific patterns of cell 
differentiation across the different tissues contained in each segment. This is well illustrated 
by their effects on the larval cuticle development. The first abdominal segment (A1) that 
expresses Ubx differentiates a specific pattern of cuticular trichomes, as it will be further 
introduced in the later sections. In the absence of Ubx, these are transformed in a thoracic-
like pattern of trichomes. Reciprocally, the ectopic expression of Ubx is sufficient to 
transform thoracic trichomes towards an A1 fate. It should be noticed, that the molecular 
mechanisms by which Hox factors impose segmental identities remain however not fully 
understood. Functional interactions between Hox factors also occurs during post-embryonic 
development, for example for the remodeling of the larval cardiac tube (Perrin et al., 2004), 
where steroid signaling temporally regulate the expression of Ubx and the function of AbdA 
(Monier et al., 2005).  
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 Larval development 
After roughly 24h of development, the animal emerges from embryonic envelops and starts 
the first larval stage. This small larva is highly mobile and able to feed autonomously. The 

 

Figure 9: An overview of maternal and zygotic segmentation genes, which 
progressively define and differentiate the anteroposterior pattern of the fly 
embryonic segments (Sanson, 2001). 
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animal will then go through three larval stages and therefore undergo two molts under the 
control of the steroid hormone ecdysone, and by analogy with other insects, of juvenile 
hormone (Ashburner, 1980). During these stages, most larval cells proper do not divide but 
their size increases in very large proportions, almost 5 folds over the larval life (Nijhout et al., 
2014). Most actively proliferating cells are found in 10 major pairs of groups of cells, called 
imaginal discs, which will later form adult structures during metamophosis. There are three 
pairs of discs that will participate in the establishment of the head, three pairs for the 
formation of the thorax (including the wings and the halters), three other pairs that give the 
legs, and finally a genital disc (fig. 10). 
 

 

 
The first larval stage lasts about 24 hours at 25 ° C. The larva starts feeding upon its outbreak 
and will exploit the substrate surface. The second larval stage also lasts 24 hours; the larva 
begins to dig the medium in which it is located. The third larval stage lasts meanwhile about 
48 hours; the larvae actively dig the medium. Approximately 110 hours after spawning, the 
third stage of larva stops eating and starts looking for a suitable site to accomplish its 
metamorphosis. 
 
 

 Metamorphosis 
Almost ten hours after it finishes eating and starting to look for a favorable place for 
metamorphosis, larva becomes less active (Robertson, 1936); the pupariation begins. The 
animal secretes glue, synthesized in the salivary glands that will allow it to firmly secure the 
substrate. The cuticle of the animal hardens to form the puparium (Zdarek and Slama, 1972). 

 

Figure 10: Locations of imaginal discs in a drawing of 
a third instar larva. Actual pictures of wing, haltere 
and leg discs are also shown (Morata, 2001). 
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Drosophila is then in the prepupal stage and will undergo very significant morphological 
changes.  
 

Some larval organs yet undergo little change, including the gonads that continue to 
grow, but at a slower pace than in larval stages, the Malpighian tubules that ensure renal 
function, and the brain that continues to grow without undergoing fundamental changes 
during metamorphosis. In a striking contrast, the epidermis, salivary glands, gastrointestinal 
tract, the sense organs and muscles will be completely replaced by new structures formed 
from the imaginal discs (Robertson, 1936). About three hours after the start of prepupal stage, 
a gas bubble is formed in the posterior part of the pupa. This will move the animal to the back 
of the pupal case. These movements of the gas bubble, under the effect of muscle 
contractions, will ensure that the animal epidermis is released from the puparium (Bainbridge 
and Bownes, 1981).  

 
Ten hours after the pre-pupal stage, legs begin to go out from bags of imaginal discs 

and wings become slowly visible, while the gas bubble disappears. Around 12 hours after 
pre-pupae, we pass to the pupal stage when the head imaginal bag goes out. Between 34 and 
50 hours after the onset of metamorphosis, the transparent pupal cuticle separates from the 
epidermis of the animal; we speak of the adult stage pharate. During this period, the eyes start 
turning yellow and will gradually be redder. Sensory organs, including microchaetes and 
macrochaetes, will become more and more visible, taking a darker color. In the hours that 
precede the adult hatching, the wings will also become darker. Four and a half days after 
pupal stage, the cover of the pupal case opens to let out the animal. The newly hatched adult 
will gently unfold its wings and let harden in the air a few minutes before it can use them 
(Bainbridge and Bownes, 1981). The males start their sexual activity nine hours after 
hatching, while the females have at hatching period a vaginal plug that prohibits fertilization 
before seven hours. 
 

Reminding the multiple stages of Drosophila development, and the description of 
large changes in the animal organization and behavior that characterized each of these steps 
that successively occurs in a timed manner, highlight the importance of temporal control of 
development. The next issue we will discuss in the following is the importance of hormonal 
control for the developmental timing of Drosophila development.  
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4. The ecdysone steroid hormone times Drosophila development 
Studies on the successive developmental stages featuring holometabolous insects have played 
a key role in elaborating the concept of developmental timing, as well as for first mechanistic 
insights into the action of hormones. Pioneering studies, starting with Kopec in 1917, have 
shown firstly that the metamorphosis is initiated by a hormone and, secondly, that this one is 
secreted by the prothoracic gland of insects (Beaulaton, 1968). In 1965, Huber and Hoppe 
were able to determine the precise formula of ecdysone: 2beta, 3beta, 14alpha, 22R, and 25-
pentahydroxy-5beta-cholest-7-ene-6-one. In Drosophila, it is generally accepted that the 20-
hydroxy-ecdysone (20- OH-ecdysone), not ecdysone, is the most active ecdysteroid. For the 
sake of simplification, we will use here, unless otherwise stated, the term 20E to designate the 
20-OH-ecdysone. 

 Ecdysone : making the signal 
If we look closer at the life cycle of Drosophila, we realize that its growth is restricted to the 
three larval stages and that maturation occurs during metamorphosis. Each of these major 
developmental transitions, including the two molts and puparium formation, is triggered by 
peaks in the steroid hormone ecdysone (fig. 11). 
 

 
 
Drosophila is not able to synthesize sterol compounds de novo, because it lacks the enzymes 
necessary for the sterol biosynthesis pathway that exist in vertebrates (Kurzchalia and Ward, 
2003). Hence, Drosophila strictly depends on diet and thus must intake cholesterol from its 
food for steroid hormone biosynthesis (fig. 12). Cholesterol uptake occurs in the intestine, 
and then it is secreted into the hemolymph and finally assimilated by the prothoracic gland. 
The prothoracic gland is the center place for ecdysone biosynthesis from cholesterol, 
throughout all larval life. The secretion of ecdysone in the hemolymph is triggered by another 
hormone, the prothoracicotrope hormone or PTTH. When the larva reaches a certain size, 
PTTH is secreted by neurosecretory cells of the intercerebralis pars of the brain, then it is 
transferred via the axons into the corpora cardiaca, neurohumoral organs also associated 
with the brain, where it is stored before being secreted. In Drosophila, the prothoracic glands 

 

Figure 11: Ecdysone pulses provide temporal control to the major 
developmental transitions that occur throughout Drosophila 
development (Guttman and Rinn, 2012; Thummel, 1995). 
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are incorporated into an endocrine complex, the "ring gland" or Weismann ring, which, 
besides the two fused prothoracic glands includes the corpora allata involved in the secretion 
of juvenile hormone and corpora cardiaca. Once in the hemolymph, ecdysone will be 
assimilated by the fat body to be finally converted into 20E, through the 20-mono-oxygenase. 
In Drosophila, the prothoracic gland is destroyed during metamorphosis and thus absent from 
adults. However, ecdysteroids can be synthesized in the ovaries to be deposited in oocytes, to 
be used and eventually produced by the embryo.  
 
Many studies have been conducted to understand the conversion of dietary cholesterol into 
20E, showing that this mechanism is catalyzed by several enzymatic steps (Gilbert et al., 
2002). Soon after uptake, a dehydrogenation of cholesterol leads to the formation of 7-
dehydrocholesterol in the endoplasmic reticulum, which is then transported into mitochondria 
for oxidations (fig. 12).  
 
The first step involves neverland (nvd), which is specifically expressed in prothoracic gland 
(PG) (a pair of endocrine glands that secrete ecdysteroids and regulate molting) and encodes 
an oxygenase-like protein indispensable for ecdysone production (Yoshiyama et al., 2006). 
At least eight other enzymes essential for 20E biosynthesis have been identified in 
Drosophila (Niwa et al., 2004; Niwa and Niwa, 2016; Warren et al., 2004). The so-called 
Halloween genes encode a family of cytochrome P450 mono-oxygenases (CYP450), 
including phantom (phm), Disembodied (Dib), Shadow (Sad), and spook (spk) (Namiki et al., 
2005; Ono et al., 2006). A disability to synthesize 20E and thus to induce ecdysone-
responsive genes has been demonstrated following mutation of any of these genes, which are 
expressed in the PG. Other studies have identified shade (shd) as a gene responsible for 
catalyzing the final conversion of ecdysone to 20E in peripheral tissues, and it too encodes a 
CYP450 (Niwa et al., 2004; Niwa and Niwa, 2014; Petryk et al., 2003; Warren et al., 2004). 
Four additional genes are further required for ecdysone biosynthesis: Spookier (Spok) (Ono et 
al., 2006), CYP6T3 (Ou et al., 2011), Non-molting glossy/Shroud (Nm-g/ Sro) (Niwa et al., 
2010) and spook (spk) (Namiki et al., 2005; Ono et al., 2006). The corresponding enzymes 
have not yet been biochemically characterized and they are thus hypothesized to act in the so-
called “Black Box” steps, which remain to be further elucidated. Interestingly, it has been 
realized that ecdysone-producing genes are not only specifically expressed in the PG, they are 
also temporally expressed in correlation with the ecdysone peaks during larval development 
(Niwa et al., 2004; Ono et al., 2006; Warren et al., 2004). Therefore, the regulation of 
ecdysone biosynthetic enzymes is likely to play a role in the proper temporal series of 
ecdysones pulses, for example contributing to a feed forward loop, in order to reach high 
levels of ecdysone titers in a narrow time window. Despite these recent progresses in 
understanding the ecdysone biosynthesis, it is clear that the multistep control of this pathway 
remains to be fully understood. For example, additional players are likely to regulate sterol 
metabolism and intracellular trafficking.  
 
Having reached the target tissues, the next issue is to explain how ecdysone triggers 
developmental control. In other words, how ecdysone can modify the execution of genetic 
programs of differentiation. We will review some of these aspects in the following. 
 
 
 
 

https://en.wikipedia.org/wiki/Endocrine_gland�
https://en.wikipedia.org/wiki/Molting�
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Figure 12: The ecdysone biosynthesis pathway, showing sterol 
intermediates and known enzymes of the pathway (Niwa and Niwa, 2014). 
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 The Ecdysone receptor (EcR) 
 
The actual form in which ecdysone circulates in the hemolymph of Drosophila is not 
precisely known. Despite its lipophilic nature, it dissolves relatively well in aqueous solutions 
and may circulate freely in the hemolymph. Yet it is not excluded that it can bind to transport 
proteins that circulate with it in hemolymph. In the same way, how ecdysone penetrates into 
the cells is unclear, although it may passively diffuse through the membrane. Once in the cell, 
ecdysone binds its specific receptor: the heterodimer Ecdysone Receptor / Ultraspiracle (Yao 
et al., 1992). The Ecdysone Receptor (EcR) is a transcription factor of the nuclear receptors 
superfamily (Koelle et al., 1991) which as such presents five characteristics regions: the A / B 
domain that contains the activation domain AF1, C is the DNA binding domain that has two 
zinc fingers, the hinge domain D, the domain E capable of binding ecdysone and containing a 
second activation domain AF2, and finally domain F. 
 

 Ultraspiracle (Usp) is also a nuclear receptor (Henrich et al., 1990; Oro et al., 1990) 
that is homologous to the vertebrate RXR (Retinoid X Receptor), but to date no bona fide 
ligand could be associated with it, although crystallization experiments showed the presence 
of a phospholipid molecule into the ligand fixing pocket (Billas et al., 2001; Clayton et al., 
2001). In the EcR / Usp heterodimer complex, ecdysone binds solely to EcR, whilst Usp is 
essential to this fixation. Once formed, the complex 20E / EcR / USP recognizes and binds to 
an extended DNA sequence (fig. 13), called the ecdysone response elements (ECRE) 
(Antoniewski et al., 1996; Cherbas et al., 1991; Riddihough and Pelham, 1987), and promotes 
the transcription of associated genes.  
 

The EcR gene codes three different protein isoforms. The most distal promoter allows 
the formation of EcRA, while the proximal promoter produces both EcRB1 and B2 (fig. 13). 
The three proteins only differ in their A/B domains. Unlike EcR, the USP gene encodes a 
single transcript but it seems that the latter possesses at least two translation initiation sites 
(Henrich et al., 1994) (fig. 13). Thus, there is the possibility of forming at least three 
EcR/USP complexes that may provide a more specific regulation between different tissues, 
following the combination(s) of receptors expressed therein at any given time (Talbot et al., 
1993).  

 
EcR/Usp recruits coregulators, including chromatin remodelers such as the NURF 

complex (Kugler et al., 2011). In the presence of ecdysone, EcR/Usp interact with enzymes 
modifying histones to assist in activating target genes: the methyltransferase TRR (Carbonell 
et al., 2013), the acetyltransferases Taiman & p300/CBP (Lozano et al., 2014; Yoshida et al., 
2005; Zhang et al., 2015), and the polyA polymerase PARP. In the absence of hormone, EcR 
interacts with the SMRTER corepressor (Heck et al., 2012; Tsai et al., 1999), which recruits 
histone deacetylases. Additional levels of control are to consider since both Usp and EcR also 
dimerize with alternative nuclear receptors (Baker et al., 2003) and more than half of family 
of nuclear receptors participate directly or indirectly in the ecdysone pathway (Ou and King-
Jones, 2013). 
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 Known targets of the ecdysone pathway: multitiered TFs 
The study of ecdysone response at the molecular level begins with the work of Ashburner on 
chromosomal "puffs", which are kind of swelling at polytene chromosomes that appear in a 
specific order between the middle of the third larval stage and late prepupal stage (Becker, 
1959). Many studies on ecdysone-induced puffs have been carried out in the salivary glands, 
because their giant polytene chromosomes are easily observable. Ashburner and colleagues 
studied the behavior of puffs through in vitro cultures of salivary glands of a certain age, in 
presence or absence of ecdysone, and with or without various inhibitors. This work allowed 

 

                 

Figure 13: Functional organization of the EcR-USP heterodimer receptor. (A) the EcR gene encodes 3 
isoforms : EcRA, B1 et B2, and usp a single one. Region C is the DNA-binding domain (DBD); region E, 
the ligand-binding domain (LBD). The three EcR isoforms are identical in sequence except in the A/B 
regions that are unrelated (Cherbas et al., 2003; Hu et al., 2003). (B) The binding site for EcR-USP 
transcription factor heterodimer is shown as a Position Weight Matrix (From the Jaspar database). 
 

A 

B 
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Ashburner to propose a model of hormonal response (Ashburner, 1974). Assuming that puffs 
actually reflect the transcriptional activity of certain genes they contain, Ashburner proposes 
that the ecdysone bound to its receptor induces the expression of a limited number of genes 
(early puffs), while repressing the expression of other genes (late puffs). The products of the 
early genes in turn allow expression of late genes and eventually repress their own 
expression, as schematized below.  
 

 
 
Figure 14: Model of thea ction of ecdysone receptor that activates the expression of early genes and represses 
late genes, as initially proposed by Ashburner. Figure taken from (Tata, 2002). 
 
The Ashburner model also posits to the existence of genes positively regulated by 20E/EcR, 
but that additionally requires the function of early gene products to be expressed: these are 
early-late transcripts. There are also genes qualified as intermoult, since their expression 
occurs before or after molting, when the hormone titers are lowered back to basal levels.  
 

Early transcripts 
At the beginning of ecdysone response in the end of the third instar larvae, ecdysone induces 
six early puffs. One of these puffs contains the Broad Complex (BR-C), for which no less 
than 14 mRNAs -from three different promoters and alternative splicing- can be produced 
(DiBello et al., 1991). However, it seems that Br-C encodes “only” 4 different transcription 
factors, called BR-C Z1, Z2, Z3 and Z4 (Bayer et al., 1996). Other early puff transcripts are 
E74A and B, two isoforms of the E74 gene generated by utilization of two different 
promoters. These two proteins are relatively different between them, but they share a 
common region in their C-terminal part (Burtis et al., 1990). Similarly, the E75 gene encodes 
three transcripts E75A, E75B, and E75C (Feigl et al., 1989) and both E75A and E75C have 
two zinc fingers (features of nuclear receptor).  E63-1 and E63-2 are genes which don’t 
encode transcription factors; E63-1 being homologous to calcium binding proteins (Andres 
and Thummel, 1995; Vaskova et al., 2000) (fig. 15). 
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Early-late transcripts 
The gene E78 contained in the early-late puff encodes two isoforms, E78A and B (Stone and 
Thummel, 1993). Indeed, E78A, as E75A, is a homolog of the vertebrate nuclear receptor 
Rev-erb, while E78B has an incomplete DNA binding motif as E75B. However, only E78B is 
classified among the early-late transcripts. DHR3 (Drosophila hormone receptor 3, aka 
Hr46) also encodes a nuclear receptor (Koelle et al., 1992). (Koelle et al., 1992). The ligand 
binding domain (LBD) of DHR3 is essential for metamorphosis, since growth defects were 
detected in DHR3 LBD mutant cells (Montagne et al., 2010). This gene is located in the 
early-late puff 46F and encodes at least three transcripts. The early-late gene DHR39 was 
later identified on the basis of its strong homology with Ftz-f1 (Ohno and Petkovich, 1993) 
(fig. 15). 
 

The main late transcripts 
There are over a hundred of late puffs and Ashburner proposed that these puffs result from 
the expression of transcripts from which the proteins have an effector role, rather than a 
regulatory function. Despite their large number, the molecular function of most late genes 
remains poorly understood. For example, L82 is a late gene that encodes a protein necessary 
for development, but without known homologs that could shed light on its putative role 
(Stowers et al., 1999). L63 also encodes several isoforms of uncharacterized function 
(Stowers et al., 2000). 
 

The Inter-moult transcripts 
Inter-moult transcripts are expressed only when the hormone titer is down and increasing the 
levels of ecdysone leads to their repression. The intermolt puffs are present in mid-third instar 
larvae, and disappear when the 20E concentrations increase, later in the instar. One important 
gene in the mid-prepupal puffs is Ftz-f1, which is expressed between molts. Ftz-f1 encodes 
two transcripts: αFtz-f1 and βFtz-f1 (Lavorgna et al., 1993; Lavorgna et al., 1991; Ueda and 
Hirose, 1990) encoding orphan nuclear receptors which share a common C-term region but 
have different N-termini. While αFtz-f1 is expressed in early stage embryos, βFtz-f1 appears 
later on, and shows periodic expression at the end of larval and prepupal stages, and finally in 
the late pupal stage. βFtz-f1 expression is repressed by EcR and its activation requires DHR3 
and Hr4 activity. The inactivation of βFtz-f1 severely affects the ecdysone signaling pathway 
at the onset of metamorphosis and leads to lethality at the prepupal stage (Ou and King-Jones, 
2013). 
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Later on during prepupal development, βFtz-f1 is considered as a factor of 
competence, that’s to say that its expression before the increasing of hormone is necessary to 
make the cells able to respond adequately to ecdysone. Thus when the ecdysone titer 
increases again and the hormonal response of the end of pupal stage begins, βFtz-f1 allows 
the re-induction of BR-C, E74A and E75A (Woodard et al., 1994). βFtz-f1 also directly 
induces the expression of E93, a gene essential for the destruction of salivary glands at the 
end of prepupal stage. Finally, as knowledge gradually increases on ecdysone hormonal 
response, it seems that these responses make a real network of regulations rather than a linear 
series of inductions and repressions.  
 
 

Genome wide analysis defines different ecdysone responses amongst tissues. 
Reaching a global view of genes that respond to ecdysone and those that require EcR for their 
regulation was a precious step that has been propelled by genome-wide approaches 
(Beckstead et al., 2005; Li and White, 2003; White et al., 1999). For example, high-density 
oligonucleotide microarrays has been used to profile EcR binding events in a cell line 
(Kc167) that maintains many characteristics of the original insect tissues such as 
differentiation in response to ecdysone (Gauhar et al., 2009). This work identified 502 
regions of EcR/Usp binding throughout the genome, often located near ecdysone-regulated 
genes across various cell types (fig. 16). Moreover, three of the direct targets of EcR/USP 
(hairy, vrille and Hr4) were found to be required for cellular differentiation in response to 
ecdysone. Hence, it was demonstrated, in vivo, the important role of vrille for metamorphosis 
(Gauhar et al., 2009). 
 

 

Figure 15: Regulatory interactions at the onset of metamorphosis. The blue boxes 
represent genes that encode ecdysone-inducible transcription factors. The orange 
boxes represent secondary response target genes. Green arrows represent inductive 
effects and red lines represent repressive effects (Kumar and Cakouros, 2004; 
Thummel, 2001a). 
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Other studies demonstrated that differences in the transcriptional response may in part 

be due to differences in the EcR isoforms present in different cell types since there are large 
differences between Kc cells and salivary glands concerning their genome-wide 
transcriptional response to 20E and since the level of induction of EcR isoforms differs 
between these two tissues (Gonsalves et al., 2011). Recently, a first genome-wide analysis of 
conditional mutants has been performed to model together the ecdysone and EcR gene 
expression regulation. This was done by integrating classical genetic mutant experiments 
with functional genomic techniques in Drosophila, where the ecdysone signaling response 
was investigated at the onset of metamorphosis. Thus traditional and novel ecdysone target 
genes were revealed. About 12% of the genome responds to the ecdysone signaling at the 
onset of metamorphosis and over half of these are independent of the receptor (Davis and Li, 
2013). In a same vein, a recent study has profiled the genome-wide transcriptional response 
to ecdysone in a large panel of 41 different Drosophila cell lines, identifying a total of 1645 
genes whose expression is significantly modified by ecdysone, in at least one cell line 
(Stoiber et al., 2016). Besides a small number of early genes (including E75, Hr4, Hr46, bip1 
or CG44004) that are induced in all 41 cell lines, most of ecdysone responsive genes appear 
cell-type specific. This specificity involves both the expression of different EcR isoforms, as 
well as the specific combination of a large number of TFs expressed in each cell line (Stoiber 
et al., 2016). 
 

 

 

 

 

 

Ecdysone responsive TFs feed back on hormone production 
The temporal expression of ecdysteroidogenic enzyme genes is correlated with periodic 
pulses of ecdysone titers, suggesting a tight transcriptional regulation. Several studies have 
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shown that downstream regulatory components of the ecdysone hierarchy also play important 
roles in the regulation of ecdysone production (reviewed in Niwa and Niwa, 2016; Ou and 
King-Jones, 2013). For example, the specific EcR-A isoform is expressed in the prothoracic 
gland where it may have a negative feedback role on ecdysone synthesis (Talbot et al., 1993). 
Also, mutation of E75A gives rise to a severe decrease in ecdysone levels (Bialecki et al., 
2002). β-Ftz-f1, an homolog of Ad4BP/AS-1, the key regulator of steroid synthesis in 
mammals, is also required for proper levels of Phm and Dib proteins in the PG (Parvy et al., 
2005). More recently, broad has been characterized as a gene involved in 
ecdysteroidogenesis by positively controlling the expression of Npc1a and thus coordinating 
cholesterol availability in the prothoracic gland (Xiang et al., 2010). Npc1a mRNA levels are 
strongly decreased in broad mutants, or following RNAi-mediated knocking down of broad 
function specifically in the ring gland. However, reexpression of Npc1a is not sufficient to 
compensate for broad loss of function, and the broad isoforms Br-Z1 and Br-Z4 bind directly 
to phm and dib cis-regulatory regions to regulate their expression (Moeller et al., 2013). 
Additional evidence have shown the involvement of other ecdysone-regulated transcription 
factors in the control of ecdysone synthesis, including EcR (Moeller et al., 2013; Parvy et al., 
2014), Ultraspiracle (Koyama et al., 2014), DHR3 (Parvy et al., 2014) and DHR4 (Ou et al., 
2011). 

The two latter cases are of peculiar interest since they allow the integration of 
additional levels of regulation. DHR4 integrates PTTH signaling in PG cells for the proper 
timing of ecdysone. The DHR4 protein shuttles between the nuclear and cytoplasmic 
compartments, with a cycle that closely matches the oscillating levels of PTTH mRNA 
(McBrayer et al., 2007). Following the ablation of PTTH neurons, DHR4 remains mostly 
nuclear, while PTTH overactivation keeps DHR4 in the cytoplasm. It has been reported that 
DHR4 might repress an ecdysogenic enzyme, called Cypt6t3 (Ou et al., 2011). Moreover, 
Nitric oxide (NO) signaling regulates the interaction between E75 and DHR3. E75 contains a 
heme moiety that binds the NO messenger to promote the interaction with DHR3 (Reinking 
et al., 2005) and modulate the activation of βFtz-f1 (Caceres et al., 2011). βFtz-f1 also 
regulates the expression of Snmp1 which is involved in lipid uptake in PG cells (Talamillo et 
al., 2013). It should be noticed that DHR3 also favors the ring gland growth in an 
autonomous fashion, integrating nutrient sensing and insulin signaling pathway (Montagne et 
al., 2010). Reciprocally, E75 and βFtz-f1 counteract DHR3 to prevent precocious repression 
of ecdysone production (Caceres et al., 2011; Parvy et al., 2014). In addition to PTTH and 
20E, ecdysteroidogenic gene expression is influenced by other pathways, such as insulin-like 
peptides-TOR (Colombani et al., 2005), TGFβ/Activin-Smad (Gibbens et al., 2011) and 
many other cues are required for the proper timing of ecdysteroid biosynthesis during 
development (Niwa and Niwa, 2014; Niwa and Niwa, 2016). In sum, whereas these studies 
clearly establish the importance of both positive and negative feedbacks between ecdysone 
hierarchy factors and hormone synthesis, further large-scale studies are expected to provide 
novel insights into our comprehension of ecdysone hormone biosynthesis and regulation 
(Danielsen et al., 2016; Ou et al., 2016). 
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 A neglected role of ecdysone in embryonic development 
 
As mentioned above, the ecdysone hormone is secreted by the PG throughout all larval 
stages. Formation of the PG occurs during late embryogenesis and therefore the significant 
levels of ecdysone detected in newly deposited eggs are likely of maternal origin. In addition, 
previous studies on the embryonic PG have noticed that it harbors a poorly differentiated 
appearance, without the well-developed smooth and rough endoplasmic reticulum that 
characterize the mature larval organ, suggesting that the PG is unlikely to assume efficient 
ecdysone synthesis in embryos (Dorn and Romer, 1976).  
 
Using a transgenic reporter system, Kozlova and Thummel detected a strong activation of 
EcR-dependent gene expression in the amnioserosa during mid-embryogenesis (Kozlova and 
Thummel, 2003b). Interestingly, a hormone-dependent role of the amnioserosa may be 
consistent with several defects observed following EcR inactivation in the embryo, including 
aberrant germ band retraction and defects in head involution that both involve interactions 
with the amnioserosa (Bender et al., 1997; Kozlova and Thummel, 2003b).  
 
Another set of studies showed that the TFs E74, E75, DHR3, and βFtz-f1 mediating response 
to ecdysone at the onset of metamorphosis (Henrich et al., 1999; Thummel, 2001b), also 
display a similar pattern of sequential expression during mid-late embryogenesis (Sullivan 
and Thummel, 2003). In addition, it was demonstrated that there are similar regulatory 
interactions among these genes at both stages (Ruaud et al., 2010). Embryonic lethality was 
observed following the inactivation of DHR3 or Ftz-f1 (Bender et al., 1997; Yamada et al., 
2000). Embryos carrying a null mutation of DHR3 die at the end of embryogenesis (Carney et 
al., 1997; Ruaud et al., 2010), with weak alterations in the peripheral nervous system (Ruaud 
et al., 2010), but these defects are only partially penetrant and so are not likely responsible for 
the embryonic lethality (Kolodkin et al., 1993). Ftz-f1 mutant embryos display poorly 
differentiated epidermal derivatives, including small and weakly pigmented denticles, but no 
other obvious strong alterations of the embryonic development (Carney et al., 1997; Ruaud et 
al., 2010; Yamada et al., 2000). Both DHR3 and Ftz-f1 mutations yet lead to a highly 
penetrant defect in air filling of the trachea (Ruaud et al., 2010). Since both mutants show 
normal muscle movements, it was suggested that only some developmental events are 
blocked during embryogenesis; it was also shown that DHR3 fulfills essential functions 
independently of βFtz-f1 (Ruaud et al., 2010).   
 
Additional evidence of the role of ecdysone in embryos came from several studies on the 
enzymes required for ecdysone production, using null mutations in the corresponding genes 
(Chavez et al., 2000; Ono et al., 2006; Ruaud et al., 2010). For example, the inactivation of 
phantom (phm), disembodied (dib) or shadow (sad) leads to strong morphogenetic defects in 
late embryos, which display a shorter size, defects in head involution and dorsal closure. In 
addition, all these mutants are characterized by the absence of a proper cuticle production that 
is very thin and almost transparent with no signs of differentiated denticles (fig. 17-18), 
revealing the existence of key functions for ecdysone in epidermal derivatives in late 
embryos. 
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All together, these data demonstrate that ecdysone production and signaling play key 
roles during embryogenesis. In particular they highlight that ecdysone is critical for the 
development of the epidermis, a topic that I will now introduce in more detail below. 

 

 
Figure 17: Phenotypes of sad and dib mutant embryos. Panels (a, e, i) show cuticle 
preparations; (b,f,j)  spectrin immuno-staining on stage-14 embryos in lateral view; 
(c,g,k) spectrin staining on stage 16 embryos in dorsal view. From (Gilbert, 2004). 

Figure 18: Phenotypes of phm mutant 
embryos. Pictures (A-D) show wild type 
embryos, (F-I) phmE7 mutant embryos. 
Panels A and F show cuticle preparations, 
all other panels show staining with an 
anti-spectrin antibody. (G-I) While the 
lack of phm function does not lead to 
obvious defects up to stage-14 (B,G), it 
causes the failure of head involution that 
normally occurs at stages-15/16 (C,H), 
and of proper dorsal closure, as seen in 
stage-16 embryos (D,I). White arrows 
point to head defects in phm mutant 
embryos at stage-15 (H), and dorsal 
closure defects in phm mutant embryos 
at stage-16 (I). From (Warren et al., 
2004) 
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Figure 19: (A) Scheme of the trichome pattern along the whole body of a Drosophila first instar larva, seen 
laterally. (B) Details of the dorsal and ventral cuticle corresponding to the fourth abdominal segment (A4). 
The dorsal region differentiates four kinds (1-4) of cuticle. From Payre, 2004. 

5. Epidermis development 
 
The adult insect is protected from the environment by a hard sclera exoskeleton, called 
cuticle. During embryonic and larval development, epidermal cells secrete a cuticle, thinner 
than at adult stage, thus facilitating the larvae movements. Immediately prior to cuticle 
deposition, a subset of epidermal cells undergo a spectacular rearrangement of the actin 
cytoskeleton, leading to apical cell extensions called ventral denticles, or dorsal hairs, and 
collectively referred to as trichomes. Thus the larval cuticle displays a stereotyped pattern of 
cuticle trichomes that alternate with smooth cells, which produce the so-called naked cuticle, 
along the whole body (fig. 19A). This trichome pattern is a major morphological feature or 
Drosophila larvae. It has been widely used by geneticists to study embryonic development 
(Nusslein-Volhard and Wieschaus, 1980), because the trichome pattern underlines the 
segmented organization and differentiation along both the anteroposterior and dorsoventral 
axes of the animal. 

When looking at a closer detail in the ventral part of each abdominal segment, we 
distinguish 6 to 7 rows of cells producing denticles, with a characteristic hook shape, size or 
orientation and all strongly pigmented (fig. 19B). The trichomes that cover most of the dorsal 
segments are thinner, poorly pigmented, and without hook (fig. 19B) (Payre, 2004). There are 
also clear differences in the trichome pattern between segments, as well illustrated between 
thoracic and abdominal segments, both in the ventral and dorsal compartments. Even within a 
given segment, trichome rows display different identities as easily seen along the antero-
posterior axis. All trichomes are nevertheless formed roughly at the same time, and result 
from the ordered assembly of the cuticle that retains the various shapes of underlying 
epidermal cells. 
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 Cuticle composition and secretion  
Like in all arthropods, the structure and bio-chemical composition of the Drosophila cuticle 
is specific at each stage of the animal life. At larval hatch, the cuticle is formed by three 
layers, called envelope, epicuticule and procuticle. The lipid-rich envelope is in contact with 
the external milieu; it is mostly composed by lipoproteins and hydrocarbons and arranged 
into a fine trilamellar structure. Under, there is a thicker epicuticle which is made by a broad 
variety of proteins, contributing to the physical properties of the cuticle (rigid/hard, vs 
flexible/soft). Finally, the procuticle that is in direct contact with the plasma membrane is 
made of regularly arranged layers of chitin fibers. Chitin is a large polymer of N-acetyl-
glucosamine residues, which represents the second most abundant polysaccharide on earth 
after cellulose. The complex assembly of cuticle begins twelve hours after fertilization, when 
relevant proteins are synthesized then secreted by epidermal cells. Secretion specifically 
occurs at the apical membrane, which forms a dense array of microvilli, and continues up to 
15 hours after fertilization (Payre, 2004). Then the cuticle becomes harder and the 
microvillus on the apical membrane disappears (Ring and Martinez Arias, 1993). The 
procuticle further expands in stage 17, in the last couple of hours of embryonic development, 
and the three layers continue to thicken till the hatching of the first instar larva (Locke and 
Krishnan, 1971; Moussian, 2010). In addition, several enzymes of the catecholamine 
biosynthetic pathway produce active quinones, which contribute both to pigmentation and 
hardening (sclerotization) of the cuticle (Walter et al., 1991). 

As mentioned above, the larval cuticle needs to be replaced to allow the large increase 
in size resulting from larval growth, as the animal will molt giving rise to the second and 
third instar larvae (Locke and Krishnan, 1971). Larval molts involve a complex series of 
physiological and behavioral changes and production of the new cuticle basically involves 
mechanisms similar to those described for embryogenesis. The main difference is that it 
begins by detachment of the old cuticle from the underlying epidermis. Epidermal cells also 
secrete a kind of gel that will later serve to digest the old cuticle, and the different steps of 
cuticle assembly start by epicuticle deposition, when ecdysone titers elevate to the highest 
levels. Following the rebuilding of a new cuticle, the old one is shed during ecdysis, when 
ecdysone is back to intermolt basal levels. Of note, cuticle assembly continues after ecdysis 
when the next instar larva has inflated, as manifested by deposition of chitin layers, increased 
sclerotization and pigmentation. 

Major proteins required for cuticle formation and molts obviously include cuticle 
proteins, which broad range of spatiotemporal patterns likely contribute to both stage-specific 
and region-specific properties of the cuticle (reviewed in (Charles, 2010)). It also relies on the 
activity of the Chitin Synthase-1 (CS-1) gene, called krotzkopf verkehrt (kkv), which 
inactivation affects procuticle formation and epicuticle stability, as well as cuticle 
pigmentation (Moussian et al., 2005) (fig. 14). Regulators of the intracellular trafficking are 
also of importance. For example, proper cuticle deposition depends on Syntaxin, a member of 
the SNARE family that mediates vesicle-fusion (Moussian et al., 2007). A few transcription 
factors have also been shown for their role in cuticle formation, including Grainy Head, a TF 
implicated in epidermal wound healing (Mace et al., 2005; Wang et al., 2009). The intermolt 
factor FtzF1, indirectly activated by ecdysone, plays as well key roles in the expression of 
cuticle proteins throughout Drosophila development (Charles, 2010; Chavoshi et al., 2010) 
(fig. 15). 
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 Establishing the pattern of epidermal trichomes 
As we have seen, the larval cuticle is characterized by the segmental alternance of 
smooth/naked regions and cuticular trichomes, the latter being involved in larval motility. 
Hundreds of TFs impact on the trichome pattern and many segmentation genes have been 
identified, and classified, according to the defects observed in the trichome pattern following 
their inactivation. However, our lab has well established that the key player in trichome 
pattering and differentiation is a transcription factor called Ovo/Shavenbaby (Svb). 
 

Molecular organization of ovo/shavenbaby locus. 
Svb is expressed from the ovo/svb locus (fig. 20), which is indispensable for trichomes and 
female germ line development (Mevel-Ninio et al., 1991). Two alternative promoters drive 
the expression of the germline-specific protein isoforms OvoA and OvoB. A third promoter is 
acting in somatic tissues and expresses an N-terminally extended isoform, Svb. The three 
isoforms share a common DNA binding domain and a region mediating transcriptional 
activation (Mevel-Ninio et al., 1995). Consistently, OvoB, the shortest germline isoform acts 
as an activator (Andrews et al., 2000; Mevel-Ninio et al., 1995). OvoA has an additional N-
terminal region, carrying a repressor domain that dominates the transcriptional activity of this 
TF (Andrews et al., 2000). Svb basically correspond to a further N-term extension, encoded 
from the soma-specific exon 1S (Delon et al., 2003), and therefore contains all functional 
regions present in the OvoA repressor. 
 
 

 
 
 
 
 

Figure 20: Functional organization of the ovo/svb locus, showing the three different promoters and 
corresponding transcripts, with coding regions in blue.  The three protein isoforms are also shown, with 
the repressor and activator domains in red and green, respectively. The Svb specific N-terminal region is 
in light blue; grey ovals symbolize the zinc fingers. From Kondo et al., 2010. 
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Svb governs the pattern and differentiation of epidermal trichomes 
The first svb mutants were isolated by Nusslein-Volhard and Wieshaus in 1980. It was later 
demonstrated that svb encodes a zinc fingered transcription factor (Mevel-Ninio et al., 1991) 
and that its epidermal expression is specific for trichome cells (Mevel-Ninio et al., 1995). 
Further work showed that svb is both necessary and sufficient for trichome formation and has 
elucidated some aspects of its regulation, focusing on ventral denticle cells (Payre et al., 
1999).  
 

Following its role in embryonic segmentation, wingless (wg), a founding member of 
the Wnt cell signaling pathway, is determining the extent of naked cuticle. wg loss of 
function leads to a continuous lawn of denticles. Reciprocally, ectopic expression of the wg 
ligand or ectopic activation of the pathway completely represses denticles, leading to a bald 
ventral phenotype. These defects are indeed mediated by the action of wg to repress svb 
expression, which is respectively upregulated or downregulated throughout the ventral 
epidermis. In addition, the artificial re-expression of svb is sufficient to restore denticle 
formation in conditions of ectopic wg signaling. On the other hand, svb expression in 
trichome cells is activated by the EGF-r pathway. The normal expression domain of svb 
coincides with the location of active EGF signaling, as shown by patterns of the Erk kinase 
phosphorylation, or the expression of sptiz, the ligand that activates EGF-r in epidermal cells. 
As observed with Wingless, svb is epistatic to EGF activity, in other words the trichome 
defects observed following manipulation of EGF signaling are mediated by alterations of svb 
expression. For example, inhibiting the EGF-r pathway leads to the lack of trichomes, 
resulting from downregulated expression of svb. In sum, the reciprocal activities of Wg and 
EGF-r act together to finely control the expression domain of svb in epidermal cells, in turn 
determining the pattern of trichomes (Payre et al., 1999). 
 

Additional data showed that various modifications in the trichome pattern observed 
following the inactivation of segmentation genes are prefigured by modifications of svb 
expression, strongly suggesting that Svb is the most downstream regulatory factor for the 
formation of trichomes. Independent support to this conclusion came from evolutionary 
studies focusing on the evolution of the trichome pattern across distant Drosophila species 
(Delon and Payre, 2004; Stern and Frankel, 2013). In all cases examined so far, the evolution 
of trichome patterns is due to changes in svb enhancers (Khila et al., 2003; Sucena et al., 
2003), modifying the pattern of svb expression in epidermal cells (Arif et al., 2015; Frankel et 
al., 2011; McGregor et al., 2007; Stern, 2013; Stern and Frankel, 2013). 
 

All together, these data show that the Shavenbaby transcription factor determines the 
formation of epidermal trichomes and that the pattern of svb expression defines the spatial 
pattern of embryonic epidermal cells forming trichomes (fig. 21). 
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Figure 21: Expression of svb mRNA in a stage-14 embryo, and schematic representation of the different 
enhancers driving svb expression in overlapping subsets of epidermal cells. The drawings correspond to a 
lateral view of an abdominal segment, with the pattern of expression in dorsal (top) and ventral (bottom) 
cells driven by each of the svb epidermal enhancer. From Stern and Frankel (2013) 
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 How svb controls the epidermal differentiation 
 
The key role of svb in establishing the trichome pattern reveals that it likely sits at the nexus 
between upstream regulatory cascades that progressively pattern the embryonic epidermis 
and the terminal program of differentiation that trigger epidermal cell remodeling for the 
formation of trichomes.  
 

Indeed, svb is necessary and sufficient to trigger actin remodeling within epidermal 
cells and directs the whole sequence of transformations required for the formation of cuticle 
trichomes (Delon et al., 2003). Several studies done by our team aimed to understand how the 
Svb TF controls the reorganization of epidermal cell shape. This work has shown that Svb 
directly activates a large battery of cellular effectors, collectively responsible for the 
formation of epidermal trichomes (fig. 21). Svb downstream targets include genes encoding 
regulatory factors of the actin organization, such as Fascin (singed), Espin (forked) or Wasp; 
their individual inactivation leads to thin and broken trichomes (Chanut-Delalande et al., 
2006). Likewise, Svb also activates the expression of genes encoding cuticle proteins and 
pigmentation enzymes (Andrew and Baker, 2008; Chanut-Delalande et al., 2006; Menoret et 
al., 2013) (fig. 22). More surprisingly, Svb also activates a whole family of extracellular 
matrix (ECM) components, which are required for trichome morphogenesis. Indeed, this 
includes eight genes encoding proteins of the Zona Pellucida family (Plaza et al., 2010), 
which collectively build an highly regulated apical extracellular scaffold that sustains the 
reorganization of epidermal cells for trichome differentiation (Fernandes et al., 2010).  
 

Genome-wide molecular profiling, which combined transcriptomics and ChIP-seq of 
Svb-bound regions in epidermal cells, has further revealed that Svb directly activates the 
transcription of approximately 150 different targets (Menoret et al., 2013), encoding various 
effectors, or proteins of currently unknown function. This finding provides additional support 
to conclude that Svb is the most downstream TF required for trichome formation, thus acting 
as a “master gene”. In addition, the team has further delineated and dissected two dozens of 
enhancers driving effector gene expression in response to Svb. This work shows that Svb 
uses a small number (1-3) of TFBs to recognize its target enhancers. In addition, 
computational analyses coupled to in vivo mutational analyses of effector enhancers have 
disclosed the existence of additional motifs required for enhancer function, without any sign 
of a constrained grammar of cis-regulatory motifs (Menoret et al., 2013). Instead, the 
different functional elements comprising the Svb TFBs and other motifs display various 
combinations among enhancers driving very similar patterns, which indicate that these 
enhancers are based on a pretty flexible functional architecture (Slattery et al., 2014).  
 

To summarize, a large body of evidence show that the cis-regulatory elements of svb 
integrate many inputs from early-acting regulatory cascades in order to define the specific 
subsets of epidermal cells that form trichomes. In turn, the Svb transcription factor directly 
activates the expression of many cellular effectors, which remodel distinct aspects of 
epidermal cell organization to produce epidermal trichomes. Furthermore, svb is also 
important in the adult epidermis for the morphogenesis of trichomes that cover the animal 
surface (Delon et al., 2003). 
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Figure 22: Genetic networks involved in the morphogenesis of trichome cells governed by Svb. 
Signals cues from Wg, EGF-R, Notch and Hedgehog (Hh) signaling pathways, are integrated by the 
regulatory regions of svb, causing expression specifically in trichome cells. In turns, Svb directly 
activates the transcription of different classes of trichome effectors.  
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 Pri peptides 
One apparent paradox raised by the above mentioned data was to understand how the 
Shavenbaby TF activates the expression of many genes for trichome morphogenesis in 
Drosophila. Indeed, how this TF that bears a repressor domain can nevertheless act as an 
activator? In this part I will talk about the discovery of unexpected additional key players of 
epidermis differentiation which thus allow filling the gap of this question mark. 
 

The development of high-throughput profiling of cellular RNAs has revealed that a 
substantial proportion of them surprisingly do not encode proteins. For example, almost half 
of mammalian RNAs don’t contain large Open Reading Frames (ORFs) and they are thus 
categorized as non-coding RNAs (ncRNAs) (Ota et al., 2004). While we now have a wealth 
of information to explain the activities of small ncRNAs (i.e., miRNAs involved in gene 
regulation, siRNAs involved in the defense against viruses and transposon activity, etc…), 
the putative function of long ncRNAs remains poorly understood (Dogini et al., 2014). 
Recent studies converge on the conclusion that small ORFs (smORF) that are pervasive 
among large-sized RNAs often produce a wide diversity of small peptides (Albuquerque et 
al., 2015; Hashimoto et al., 2008; Kastenmayer et al., 2006). Therefore, various molecules 
annotated as long ncRNAs may act, at least in part, through the production of smORF-
encoded peptides. One of them, called polished rice, tarsal less or mille pattes (pri) is 
required for epidermis differentiation in flies and has become a paradigm for studying the 
function of smORF peptides. 
 
 

The Polished rice gene (pri) expresses a polycistronic RNA encoding smORF peptides 
A long ncRNA (MRE29) was initially identified because of its evolutionary conservation and 
highly dynamic pattern of expression in developing tissues, throughout Drosophila 
embryogenesis (Inagaki et al., 2005). Independent studies have serendipitously identified its 
ortholog in Tribolium, named mille pattes, and demonstrated its key role in embryonic 
segmentation and leg formation (Savard et al., 2006). These authors also proposed that this 
putative ncRNA may instead represent a polycistronic transcript encoding four highly related 
smORF peptides (fig. 23).  

This was later proven true, by the work of two laboratories focusing on different 
aspects of Drosophila development. As deduced form the analysis of an hypomorphic mutant 
allele, the same transcript (aka MRE29) was shown to be required for adult leg formation in 
flies and thus renamed tarsal-less (tal) (Galindo et al., 2007). In the meantime, another work 
has shown that the loss of function of this gene leads to embryonic lethality, with dramatic 
defects in the epidermis including the complete absence of trichomes, a phenotype at the 
origin of the name polished-rice (pri) (Kondo et al., 2007). Furthermore, the two studies 
provided compelling evidence that pri/tal actually produces 4 smORF peptides (11-32aa) 
(fig. 23), evolutionarily conserved throughout all arthropods, and most importantly are 
mediating the function of pri during development (Galindo et al., 2007; Kondo et al., 2007).  
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smORF1: MAAYLDPTGQY 
smORF2: MAAYLDPTGQY 
smORF3: MSHDLDPTGTY 
smORF4: MLDPTGTYRRPRDTQDSRQKRRQDCLDPTGQY 

Figure 23: Representation of pri RNA, where blue boxes highlight the four small ORFs. The graph 
shows the distribution of a coding index, calculated from the pattern of evolutionary mutations that 
keep the coding potential (positive score, in blue) of introduce noncoding changes (negative scores, in 
red). Below are pictured the sequence of Pri peptides of 11 to 32 amino acids, encoded by each of the 
evolutionarily conserved pri smORF (adapted from Guttman and Rinn, 2012). 

Figure 24: Dynamics of pri expression during embryogenesis, as revealed by in situ hybridization 
against the pri mRNA. Successive stages of embryonic development are shown from left to right.  
Taken from Kondo et al. (2007). 
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During embryogenesis, pri RNA is first expressed in 7 anteroposterior stripes at the 
blastoderm stage (fig. 24), then it displays fast evolving patterns of expression at different 
times, and in various tissues, including the spiracles, gut, trachea and epidermal cells (Kondo 
et al., 2007).  

Pri mutant embryos display strongly affected trachea, the respiratory system of 
Drosophila made of a connected array of epithelial tubes mediating gas exchanges. There are 
early defects both in the shape and connection of tracheal branches, as well as later defects in 
the final differentiation of tracheal tubes, suggesting that pri is involved in multiple stages of 
trachea development (Kondo et al., 2007). Despite its early embryonic expression that evokes 
that of pair rule genes, the absence of Pri functions does not apparently impinge on 
embryonic segmentation. However, head structures seem also severely affected and ruling 
out a putative function of Pri in anterior most segmentation will require further work. The 
most prominent phenotype is nevertheless the one seen in the embryonic epidermis. Mutant 
embryos display a very thin and poorly differentiated cuticle, characterized by the absence of 
trichomes both in the dorsal and in the ventral regions. This phenotype is thus reminiscent of 
that observed in svb mutant embryos, even though the former appears even more severe. 
Importantly, experimental evidence has demonstrated that the re-expression of one or the 
other of the four pri smORF-encoding peptides is sufficient to rescue the denticle and 
tracheal phenotypes (Kondo et al., 2007).  
 

Pri/tal is not only involved in embryogenesis, but its widespread function is also 
engaged in late larvae for the patterning of the leg imaginal disc (Galindo et al., 2007; Pueyo 
and Couso, 2008), and later for the proper development of adult legs during metamorphosis. 
Indeed, the inactivation of pri impairs proper leg formation and leads to adult legs lacking the 
whole tarsal region (Galindo et al., 2007) (Fig. 25). 
 
 

 

 
Figure 25: Pri/tal is required for the proper development of adult legs. Different combinations 
of pri (aka tal) mutant alleles prevent the formation of the five distal most tarsal segments of 
the leg (1-5), while the more proximal tibia (Ti) appears unaffected. Reexpression of pri/tal is 
sufficient to restore normal leg development, from Galindo et al., (2007). 
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The mechanism by which pri acts for epidermal development: a duo with Svb  
As seen before, the Shavenbaby TF is the key regulator that directly activates the expression 
of cellular effectors underlying the development of embryonic trichomes (Chanut-Delalande 
et al., 2012). Because the phenotypes of pri and svb mutant embryos are strikingly similar, 
the two players were expected to functionally interact at some point. Therefore an important 
issue was to understand the molecular mode of action of these atypical Pri peptides.  
 

To address this question, our team engaged a fruitful collaboration with the 
Kageyama laboratory in Japan. Despites the similarity of mutant phenotypes, the absence of 
pri does not impinge on svb expression in epidermal cells, showing that Pri peptides are not 
involved in the control of svb gene transcription. Reciprocally, the distribution of pri mRNA 
is not affected in svb mutant embryos, indicating that Pri peptides are not a novel svb target 
directly required for the remodeling of epidermal trichome cells. However, pri is critically 
required for the expression of Svb downstream targets. These results lead to the impairment 
of the svb transcriptional activation, since Svb-dependent enhancers become silent in the 
absence of pri, as observed both in cultured cell assays and in vivo (Kondo et al., 2010). This 
requirement for Pri peptides is yet alleviated when substituting Svb by the short germline 
isoform OvoB (see fig. 20), sufficient to activate effector-CRM expression, as well as 
trichome formation, with or without Pri peptides. Similarly, the activity of the intermediate-
sized OvoA repressor is independent of pri function (Kondo et al., 2010). These findings 
therefore show that Pri peptides are specifically required for the function of the long Svb 
isoform, and that they should act in a way to control its transcriptional activity.  
 

 Indeed, biochemical characterization of the Svb transcription factor further showed 
that Pri peptides induce a postranslational cleavage of the Svb protein. Svb is translated as a 
long protein of 1351aa that behaves, like OvoA, as a transcriptional repressor. The expression 
of Pri peptides then triggers the production of a shorter product (907aa), removing the whole 
N-terminal region of Svb that contains the repressor domain, and thereby acts (like OvoB) as 
a transcriptional activator (Kondo et al., 2010). In early stages of epidermal development, the 
Svb repressor starts to accumulate in presumptive trichome cells. Later on, following the 
onset of pri expression in the epidermis, Pri peptides induce the maturation of Svb that allows 
the activation of the whole set of trichome effector genes. In pri mutant embryos, this 
maturation never occurs and Svb keeps accumulating in epidermal cells as the full-length 
repressor, thereby preventing the expression of Svb regulated cellular effectors and thus of 
trichome formation. Therefore, the main role of Pri peptides is to trigger an activating 
maturation of the Shavenbaby factor, switching its transcriptional activity from a large-sized 
repressor to an N-terminally truncated activator (fig. 26). These data therefore explain the key 
role of Pri in the regulation of epidermal trichome formation and provide one of the first 
cases that elucidate the function of smORF-encoded peptides in the control of animal 
development.  
 

Additional work showed that that this functional interaction between Pri and Svb is 
not restricted to the embryonic epidermis, since Svb maturation is also involved at least in 
some functions of pri during adult leg morphogenesis (Pueyo and Couso, 2011). However, 
Pri peptides may also have Svb-independent functions, since svb mutants do not display the 
tracheal defects observed in the absence of pri function (Kondo et al., 2010). 
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Figure 26: Pri smORF peptides switch the transcriptional activity of the Shavenbaby transcription factor. As 
observed in stage-15 embryos, the absence of pri leads to the accumulation of the large-sized Svb 
repressor (detected using an antibody specific for the N-terminal region, in red) that prevents the 
expression of Svb target effectors and thus of trichome formation. Nascent trichomes (in green) are 
revealed using an antibody directed against Dusky-like, a Zona Pellucida protein encoded by a downstream 
target gene of Svb. Nuclei are in blue. Adapted from Kondo et al. (2010). 
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At the beginning of my PhD work, the team had discovered the key role of Pri peptides in 
regulating the transcriptional activity of the Shavenbaby transcription factor (Kondo et al., 
2010). While previous work has provided mechanistic insights into the molecular mode of 
action of Pri peptides (Kondo et al., 2010), as further deciphered in great details recently by 
our team (Zanet et al., 2015), the developmental function of this complex regulatory 
mechanism remained unknown. The rationale for synthesizing a transcription repressor, then 
expressing small peptides that elicit its processing into a shorter activator, and ultimately the 
expression of effectors of epidermal differentiation was unclear. 
 

Because the timing of epidermal trichome differentiation is not primarily determined 
by the expression dynamics of the Shavenbaby TF, but instead relies on the onset of pri 
expression that turns ON Svb transcriptional activity, elucidating the control of pri expression 
might help to better understand the logics of this system. In addition, it might be also 
informative to unravel the wide range of pri functions across tissues and throughout the 
successive stages of the Drosophila lifecycle. 
 

Therefore, my research program has focused on the functional definition of the cis-
regulatory regions responsible for the control of pri expression during Drosophila 
development, with the aim of disclosing the mechanisms of their activity. This work has 
contributed to demonstrate the notion that pri is a direct target of the ecdysone pathway and, 
thereby, implements systemic hormonal control within genetically encoded programs for the 
temporal control of Drosophila development.  
 

Main data are presented within two articles, the results of which will be briefly further 
discussed in the last part of my manuscript. 
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Results 
 

6. Pri peptides are mediators of ecdysone for the temporal control of 
development 

 

 Résumé 
Le développement animal requiert un contrôle précis, à la fois dans l’espace et le temps, de 
l’expression du génome. Si nous disposons aujourd’hui de nombreuses informations 
concernant l’établissement des patrons spatiaux d’expression à travers différents tissus, les 
mécanismes assurant le contrôle temporel du développement restent mal connues. Dans ce 
travail, nous montrons que les peptides Pri, codés par quatre petits cadres ouverts de lecture, 
sont des médiateurs directs de l’hormone stéroïde ecdysone pour le timing de programmes de 
développement chez la drosophile. Nous identifions une nouvelle enzyme requise pour la 
biosynthèse de l’ecdysone, GstE14, et montrons que l’ecdysone déclenche l’expression de pri 
pour définir la temporalité d’exécution de la différenciation des trichomes épidermiques, en 
contrôlant l’activité transcriptionnelle du facteur de transcription Ovo/Shavenbaby. Nous 
montrons que la manipulation de l’expression de pri est suffisante soit pour mettre en pause, 
soit pour anticiper, la différenciation des trichomes épidermiques. De plus, le contrôle de 
l’expression de pri par l’ecdysone n’est pas restreint à l’épiderme embryonnaire et il est aussi 
important dans différents tissus et stades de développement. Ensemble, ces données élaborent 
un cadre conceptuel pour comprendre les mécanismes moléculaires par lesquels un signal 
hormonal systémique coordonne des programmes de différenciation spécifiques avec le 
contrôle temporel du développement. 
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Pri peptides are mediators of ecdysone for the
temporal control of development
Hélène Chanut-Delalande1,2,8, Yoshiko Hashimoto3,8, Anne Pelissier-Monier1,2, Rebecca Spokony4, Azza Dib1,2,
Takefumi Kondo3,9, Jérôme Bohère1,2, Kaori Niimi5, Yvan Latapie1,2,10, Sachi Inagaki5, Laurence Dubois1,2,
Philippe Valenti1,2, Cédric Polesello1,2, Satoru Kobayashi3, Bernard Moussian6, Kevin P. White4, Serge Plaza1,2,
Yuji Kageyama5,7,11 and François Payre1,2,11

Animal development fundamentally relies on the precise control, in space and time, of genome expression. Whereas we have a
wealth of information about spatial patterning, the mechanisms underlying temporal control remain poorly understood. Here we
show that Pri peptides, encoded by small open reading frames, are direct mediators of the steroid hormone ecdysone for the
timing of developmental programs in Drosophila. We identify a previously uncharacterized enzyme of ecdysone biosynthesis,
GstE14, and find that ecdysone triggers pri expression to define the onset of epidermal trichome development, through
post-translational control of the Shavenbaby transcription factor. We show that manipulating pri expression is sufficient to either
put on hold or induce premature differentiation of trichomes. Furthermore, we find that ecdysone-dependent regulation of pri is
not restricted to epidermis and occurs over various tissues and times. Together, these findings provide a molecular framework to
explain how systemic hormonal control coordinates specific programs of differentiation with developmental timing.

Recent studies have established that eukaryotic genomes express a
wide variety of long non-coding RNAs (reviewed in refs 1,2). Small
open reading frames (smORFs) are still pervasive among long non-
coding RNAs, and a growing body of evidence3,4 indicates that at
least some of them are actually translated into peptides5–7. However,
the function and mechanistic roles of smORF-encoded peptides are
largely unknown.

The polished rice (pri, also known as mlpt or tal) RNA encodes
four smORF peptides (11–32 amino acids) that regulate various
developmental steps across insect species8–11. In Drosophila embryos,
the absence of pri results in severe epidermal defects9,11, preventing the
formation of actin-rich cell protrusions, called trichomes12. Previous
work has shown that trichome patterning relies on a transcription
factor, Shavenbaby (Svb, also known as Ovo), that specifies which
subset of epidermal cells form trichomes13–17. Svb directly activates
the expression of cell effectors including actin regulators18,19, cuticle
components18–20 and zona pellucida extracellular proteins19,21,
collectively responsible for trichome formation. We previously found
that Pri peptides are required for the post-translational maturation

of Svb, switching its activity from a repressor to an activator of
transcription22. The developmental function of this sophisticated
mechanism remained poorly understood.

Here, we report that pri defines when the Svb-driven trichome
program is executed, at distinct developmental points, in response
to ecdysone signalling. From a genetic screening, we isolated
a previously uncharacterized gene, Glutathione S transferase E14
(GstE14), indispensable for trichome formation. We find that GstE14
is required for ecdysone biosynthesis from dietary cholesterol, and
show that ecdysone controls the transcription of pri, across different
tissues and developmental times. The ecdysone steroid hormone has
classically been shown to provide a systemic control on developmental
timing23,24. Recent work further demonstrated that its production
integrates various inputs from the internal and external milieu,
including tissue growth25, body size26, nutritional uptake27 and
light28. The ecdysone–Pri–Svb circuit thus represents a molecular
elucidation of how a global signal implements local differentiation
programs, at defined points, to synchronize development with
the environment.
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Figure 1 GstE14 encodes a component of the ecdysone pathway. (a) In situ
hybridization to GstE14 mRNA shows ubiquitous expression in early
cellularized embryos (st-4). Following weak signal throughout mid-
embryogenesis (st-13), GstE14 is specifically expressed in the ring gland
at later stages (st-17). Dissected third instar larval brain shows GstE14
expression in the ring gland, as previously noticed for other genes involved
in ecdysone synthesis. vnc, ventral nerve chord; br, brain; rg, ring gland.
Scale bar, 100 µm. (b) GstE14 mutant embryos show strongly affected
embryonic development, with severe defects collectively reminiscent of the
phenotype of Halloween mutants33,34,37,40,41. These defects include poorly
differentiated cuticle (left panels), defective head involution and mouth hooks
(middle), and the abnormal expression pattern of kkv (right) encoding chitin
synthase, a main player of cuticle formation. GstE14 mutants also often
show defects in dorsal closure (arrow). Scale bars, 100 µm. (c) GstE14
function in the larval ring gland is required for developmental transitions
and adult viability. When compared with control (phm > GFP, green

fluorescent protein gene), silencing GstE14 in the ring gland (phm > UAS–
dsRNA–GstE14; UAS, upstream activating sequence) leads to developmental
arrest at larval stages, with animals ultimately dying before pupation.
phm > GstE14 larvae are often blocked at the L2–L3 transition, showing
characteristic double mouth hooks (four hooks instead of two, red arrows).
Scale bar, 10 µm. A similar, slightly weaker, phenotype is observed with
the 2–286–Gal4 line also driving expression in the ring gland. In contrast,
GstE14 knockdown in mesodermal derivatives (twi–Gal4) does not affect
embryonic and post-embryonic development. The graph plots percentage
of viability in each condition, using two different RNA interference lines
(v101884 and v40316), with mean values representing three experiments.
Error bars are s.d. The total numbers of counted individuals are the
following: phm–Gal4 > UAS–GFP, n> 1,000; twi–Gal4 > UAS–dsRNA–
GstE14, n>1,000; phm–Gal4 > UAS–dsRNA–GstE14, n=624; 2–286–
Gal4 > UAS–dsRNA–GstE14, n= 154 (see Supplementary Table 2 for
further details).

RESULTS
GstE14 functions for ecdysone biosynthesis
To identify further regulators of epidermal differentiation, we
conducted a genetic screen by systematically assaying a set of small
deletions, each removing a molecularly defined genomic region
and collectively representative of the whole second chromosome
(approximately 30% of the genome; Supplementary Table 1). The
Dusky-like (Dyl) Zona Pellucida protein provided a suitable readout,
as it localizes in growing trichomes and is required for their
formation21. Our screening identified a gene, GstE14, as an important
player in trichome formation because its absence leads to a complete
lack of Dyl staining (Supplementary Fig. 1).GstE14 encodes an epsilon
class glutathione S-transferase (Supplementary Fig. 2), an insect-
specific enzyme that has not been studied yet in any species29,30.
We thus sought to analyse the developmental function of GstE14 in
more detail.

Unexpectedly, GstE14 is not expressed in epidermal cells. Instead,
GstE14 messenger RNA accumulates in the ring gland from mid-
embryogenesis, where it persists throughout larval stages (Fig. 1).
The ring gland is an endocrine organ that produces ecdysone, the
main steroid hormone in insects24. Ecdysone is synthesized from
cholesterol, through a series of enzymes including Nvd (refs 31,32),
Spo (ref. 33), Spok (ref. 33), Sro (ref. 34), Phm (ref. 35), Dib (ref. 36)
and Sad (ref. 37) (Fig. 2), all specifically expressed in the ring gland24,38.

Inactivation of any of these genes leads to a characteristic phenotype,
called Halloween because of poorly differentiated cuticle33,34,37,39–41, as
alsomanifest in embryos lackingGstE14 (Figs 1b and 2a). These results
therefore suggested that GstE14 is involved in ecdysone synthesis,
which we further investigated.

A main role for ecdysone is the timing of post-embryonic
development, triggering larval moults and the larval–pupal
transition24. To investigate whether GstE14 contributes to ecdysone
function, we knocked down GstE14 specifically in the ring gland
(Supplementary Table 2). Reduced levels of GstE14 lead to arrested
development at larval stages (Fig. 1c). We observed larvae arrested at
the transition from the second to the third instar (Fig. 1c), a phenotype
characteristic of defective ecdysone signalling42. Finally, we found
that treatment with ecdysone suppresses the embryonic lethality of
GstE14mutants (Supplementary Fig. 3), therefore demonstrating that
GstE14 is required for ecdysone production.

Ecdysone triggers the differentiation of embryonic epidermal
cells
Having established the role of GstE14 in ecdysone synthesis, we next
examined how compromised ecdysone production can explain the
observed epidermal defects.

We found that the lack of GstE14 prevents the expression
of ecdysone-responsive genes in embryonic epidermal cells
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Figure 2 The ecdysone pathway controls epidermal differentiation. (a) Cuticle
preparations of wild-type, Df(2R)BSC272 (hereafter abbreviated Df(GstE14))
and spook (ref. 1) (spo) mutant embryos. The phenotype observed for
Df(GstE14) is similar to that of spo mutants, as further supported by
transmission electron microscopy (TEM), which shows strong defects in
the epicuticle (epi) and envelope (env) layers, in both mutant backgrounds
(scale bar, 500nm). Df(GstE14) and spo mutant embryos also show a
reduced and disorganized procuticle (pro), when compared with wild type.
Red brackets highlight the whole cuticle compartment. Pictures show ventral
views of larvae and ventral close-ups of A4 segments; scale bars are 100 µm

and 10 µm, respectively. (b) Scheme of ecdysone biosynthesis, showing
intermediate products and known enzymes required for this pathway (adapted
from ref. 34). (c) As observed following the introduction of the P[GstE14]
rescuing construct in Df(GstE14) embryos, the lack of trichomes seen in
Df(GstE14) and spo mutant embryos is compensated by incubation in 20E.
Scale bar, 10 µm. (d) Confocal microscopy images of the apical surface
of trichome cells in stage-15 embryos. F-actin (red) bundles that support
growing trichomes are absent from Df(GstE14) and spo mutant embryos;
DE-cadherin (DE-cad) staining of cell junctions is in green. The scale bar
represents 15 µm.

(Supplementary Fig. 4). In addition, the inactivation of GstE14
or known ecdysone synthesizing enzymes33,34,43, for example Spook
(Spo; Fig. 2b), leads to strong defects in epidermal differentiation,
including the lack of trichomes (Fig. 2a). We next assayed whether
incubating embryos with 20-hydroxyecdysone (20E), the active
form of the hormone, could rescue these defects. 20E addition was
sufficient to restore trichomes in embryos mutant for GstE14 or spo
(Fig. 2c). A similar rescue was observed (Supplementary Fig. 3) on
incubation with ecdysone (for GstE14 and spo) or with cholesterol
(only for GstE14), showing that GstE14 acts in the very first steps of
ecdysone synthesis.

Although cuticle defects have been previously noticed for
Halloween mutants31,33–37,39,41,43, the precise role of ecdysone in
epidermal differentiation remains unelucidated. For example, the
lack of trichomes could be an indirect consequence of poorly
differentiated cuticle44 or defects in epithelial organization45. To

discriminate between these possibilities, we examined the actin
cytoskeleton and cell junctions in stage-15 embryos, that is before
full cuticle deposition (Fig. 2d). Wild-type epidermis shows a regular
alternation of large smooth cells, and rows of elongated cells forming
actin protrusions that prefigure trichomes45. Whereas epidermal cells
showed unaffected junctions, the most striking defect observed in
GstE14 or spo mutant embryos was the lack of actin protrusions;
instead, aberrant actin filaments co-localized with DE-cadherin in
both mutants (Fig. 2d).

Hence, these data demonstrate that ecdysone is required for actin
reorganization in embryonic epidermal cells, that is for the early steps
of trichome cell remodelling.

Ecdysone regulates pri expression and thereby Svb maturation
Trichome development is governed by the Svb transcription
factor, which defines the spatial pattern of trichomes13,14,16,17,46.
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Figure 3 The ecdysone hormone is required for pri expression and
Svb maturation in trichome cells. (a) pri encodes four small peptides
that trigger a proteolytic maturation of the Svb transcription factor,
switching its activity from a repressor to an activator. Activated Svb, in
turn, triggers the expression of direct effectors of trichome formation,
including dyl and sha. The red and green boxes schematize the
repressor and activator protein regions, respectively. (b) Whole mount

in situ hybridization of svb, pri, dyl and sha mRNA in wild-type,
Df(GstE14) and spo embryos (scale bar, 100 µm). (c) Consistent with
the decrease in pri mRNA levels that is observed in Df(GstE14) or
spo mutant embryos, ecdysone is required for the proper maturation
of Svb, as demonstrated by staining with anti-Svb1s, an antibody that
specifically recognizes the long repressor form of Svb (a). Scale bar,
15 µm.

Svb needs to be activated by a proteolytic release of its amino-
terminal region, triggered by Pri peptides22. Once maturated,
Svb activates the transcription of various cell effectors18–20,
including dyl and shavenoid (sha) (Fig. 3a). To define at which
step(s) the ecdysone pathway was required, we evaluated the
consequences of the lack of 20E on the different players of trichome
formation.

In situ hybridization revealed a striking reduction in dyl mRNA
levels, in both spo and GstE14 mutant embryos (Fig. 3b), consistent
with the absence of protein staining (Supplementary Fig. 1).
Furthermore, the absence of 20E also resulted in the downregulation
of other Svb targets. For example, whereas sha mRNA is normally
high in trichome cells, it is strongly reduced in GstE14 or spomutants
(Fig. 3b). This general failure in the expression of Svb target genes
was suggestive of impaired svb function. Significant amounts of
svb mRNA, however, were detected in mutant embryos (Fig. 3b).
In contrast, we found a strong decrease in pri mRNA levels in
GstE14 embryos, as well as in spo and phantom (phm) mutants
(Fig. 3b and Supplementary Fig. 4a). These results show that ecdysone
controls the expression of pri, suggesting that the lack of trichomes
observed in the absence of 20E results from impaired activation of

the Svb protein, which relies on pri activity22. Indeed, whereas Svb
is fully matured in stage-15 wild-type embryos, the repressor form
of Svb persists and prevents target gene expression in pri mutants22.
Similarly, the repressor form of Svb accumulates in GstE14 and spo
mutants (Fig. 3c), confirming a lack of pri function in the absence
of 20E.

Taken together, these results indicate that ecdysone is a requisite
for pri expression in the embryonic epidermis and, thereby, for
trichome formation.

Pri expression in the epidermis is sufficient to overcome
ecdysone depletion
Ecdysone regulates gene expression following binding to, and
activation of, the nuclear ecdysone receptor47–49 (EcR). The maternal
contribution, however, hampers analysis of EcR zygotic function
during embryogenesis43, and the requirement of EcR for oogenesis
prevents generation of embryos lacking EcR activity50. Because of
these genetic limitations, we undertook a combination of assays to
investigate the role of EcR for pri expression.

We found that EcRDN, an ecdysone-blind EcR variant that acts
as a constitutive repressor51, was sufficient to repress pri expression
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Figure 4 The ecdysone pathway drives epidermal remodelling through the
regulation of pri transcription. (a) Representation of the pri genomic region,
showing the intensity of ChIP-seq signal (arbitrary units, brown) for sequences
bound by EcR. Providing internal control for specificity, EcR binding is
restricted to regions flanking the pri transcriptional unit, when compared with
neighbouring sequences. Similar EcR binding profiles are also seen for known
direct targets of EcR, such as Hr46 and Blimp-1 (Supplementary Fig. 6a).
Genes are drawn with blue arrows and boxes schematize genomic regions
carried by transgenic lacZ reporter constructs. (b) The pri-G–lacZ construct

(green box in a) drives strong expression in the embryonic epidermis.
Epidermal expression of pri-G is abolished in the absence of ecdysone, as
observed in phmE7 mutant embryos. (c) Cuticle preparations showing the
phm phenotype, characterized by a poorly differentiated cuticle and the
absence of trichomes. Restoring pri expression in the epidermis, by means of
ptc–Gal4 > UAS–pri, is sufficient for a significant rescue of trichome
formation in the absence of ecdysone. Upper panels show lateral views of
whole larvae and lower panels show ventral views of A4 segments. Scale bars
are 100 µm, except for cuticle close-ups, where it represents 15 µm.

(Supplementary Fig. 5a). EcRDN provoked strong defects when
expressed in the epidermis, including a thin cuticle and lack of
trichomes. Similar defects were observed on expression of an enzyme
that inactivates ecdysteroids52, indicating that both the hormone and
its receptor are required in epidermal cells for trichome formation
(Supplementary Fig. 5).

We then used genome-wide chromatin immunoprecipitation
sequencing (ChIP-seq) to identify the set of EcR binding sites. We
observed strong ChIP peaks at the pri locus, showing that EcR binds
in vivo to presumptive pri cis-regulatory sequences (Fig. 4a). ChIP
peaks were also detected in known direct targets of EcR, but not in
later ecdysone-responsive genes that are not directly regulated by EcR
(Supplementary Fig. 6a).

To assess the transcriptional properties of pri genomic regions,
we generated a systematic series of β-galactosidase (lacZ) reporters,
including all EcR-binding regions (Fig. 4a). This analysis identified
an enhancer, pri-G, driving a strong expression that mimics the
endogenous pri pattern in the embryonic epidermis (Fig. 4b). Further
evidence supported that pri is under direct control of ecdysone
signalling. First, pri-G contains in vivo binding sites for EcR (Fig. 4a).
Second, the activity of pri-G requires ecdysone, as its expression was
abolished in phmmutants (Fig. 4b). Finally, ecdysone is also required
for pri expression in cultured cells, probably in an EcR-dependent
manner, as we deduced from recent genome-wide data53.

Collectively, these data suggested that, on 20E binding, EcR
directly activates pri transcription, thereby inducing Svb maturation

NATURE CELL BIOLOGY VOLUME 16 | NUMBER 11 | NOVEMBER 2014 1039

© 2014 Macmillan Publishers Limited. All rights reserved. 

 



ART ICLES

 4
1 

h 
A

P
F

36
 h

 A
P

F

Flip-out Gal4

F-actin GFP DE-cad F-actin

40
 h

 A
P

F
36

 h
 A

P
F

Apical view Basolateral view
sv

b
W

ild
 t

yp
e 

Adult notuma b c

5 µm 2 µm

svb dsRNA

Svb-CA

NucleiSvb1sF-actin  DE-cad

Figure 5 Svb specifies the differentiation of trichomes in the pupal notum.
(a) Scanning electron micrographs of adult notum in wild type (top) and
svb mutant (bottom). (b) Confocal microscopy pictures of presumptive adult
epidermal cells at different times of differentiation APF. Left panels show
apical views of pupal cells stained for F-actin (magenta) and DE-cadherin
(green). Whereas at 36h APF (top) microfilaments are mainly associated
with cell junctions, growing trichomes are easily visible from 40h APF,
when F-actin bundles accumulate at the posterior vertex of each cell. In
the meantime, basolateral optical sections show accumulation of the Svb
repressor form, revealed by anti-Svb1s staining (green), in epidermal cell
nuclei (red) at 36 h APF. Trichome formation coincides with the timing of

Svb maturation at 40h APF (disappearance of anti-Svb1s signal). Sensory
bristles are marked with white arrows. (c) Mosaic clones of cells labelled
by GFP (green cytoplasm) co-stained for DE-cadherin (green cell contours)
and F-actin (magenta). Upper panels show cell clones expressing Svb-CA at
36h AFP. In lower panels, clones of GFP-positive cells at 41h APF express a
dsRNA inactivating Svb function and thereby preventing trichome formation.
White outlines in F-actin panels indicate the locations of manipulated
cells. All pictures are shown with the anterior at the top, using the same
magnification for each immunostaining panel. A typical experiment contains
from five to ten notum samples. Each experiment has been reproduced at least
three times.

in epidermal cells. This model predicts that restoring pri expression
should compensate for impaired ecdysone signalling, a hypothesis we
tested experimentally. Indeed, the re-expression of pri in phmmutant
embryos was sufficient to restore cuticle differentiation and, notably,
to rescue trichome formation (Fig. 4c).

These data thus establish that a main role of ecdysone signalling, in
epidermal cells, is mediated by the control of pri expression.

Pri times the expression of trichome effectors
Given the key role of ecdysone in developmental timing24, we next
tested whether Pri peptides provide temporal control of the trichome
program.

Whereas Svb starts accumulating as the long-form repressor in
presumptive trichome cells at stage 11/12, the epidermal expression
of pri is turned on later (stage 13/14), coinciding with Svb maturation
and abutting the onset of effector expression (Supplementary Fig. 7).
The dynamics of pri expression is thus consistent with a response to
20E (refs 49,54), as also supported by comparisonwith 20E-responsive
genes (Supplementary Fig. 6b,c). If pri acted as a timing mediator, the
trichome program should be paused without this signal, a prediction
congruent with all alterations of the trichome gene network observed
in the absence of pri (Fig. 3). Reciprocally, one would expect that
the premature expression of pri should trigger a faster onset of
the trichome program. To test this prediction, we forced early pri
expression in dorsal cells and found that it is sufficient to induce
premature expression of trichome effectors. This was probably due
to precocious activation of Svb, as we observed similar results with
a constitutively active form of Svb (Svb-CA) that behaves as a pri-
independent activator (Supplementary Fig. 7).

Hence these results support a model whereby pri mediates 20E-
dependent temporal control of trichome effector expression.

Pri is a temporal regulator of epidermal morphogenesis
To further test the notion that pri mediates the temporal control
of epidermis development, we assayed its role in a later wave
of epidermal differentiation that occurs for adult tissues. Svb is
required for adult trichomes (Fig. 5a), and the inactivation of Svb
embryonic targets also causes adult trichome defects (Supplementary
Fig. 8). Focusing on the dorsal thorax (notum), we thus explored the
timing of adult epidermal cell remodelling, which takes longer than
embryogenesis and thus enables more detailed analyses of temporal
hierarchies.

Whereas the differentiation of sensory organs is already seen at
30 h after puparium formation (APF), epidermal cells keep a smooth
apical surface, with F-actin at cell junctions, as illustrated at 36 h APF
(Fig. 5b). Trichome differentiation begins at 38–39 h APF, and actin-
rich extensions are easily visible at 40 h APF (Fig. 5b). Interestingly,
the formation of trichomes accurately coincides with the timing of
Svb maturation. The uncleaved Svb repressor accumulated from early
pupation to 36 h APF. The repressor form of Svb was no longer
detected once cells developed apical extensions (Fig. 5b), whereas
svb activity was cell-autonomously required for their formation
(Fig. 5c).

These results argue that the trichome program is paused in notum
cells until 38–39 h APF, through the repressor form of Svb. Hence, the
expression of pri might provide a timing cue to turn on the trichome
program in notum cells. We tested this hypothesis in a series of
experiments. First, in situ hybridization revealed a strong but transient
expression of pri throughout the notum at 40 h APF, whereas it was
not detected at 36 h APF and was no longer seen at 44 h APF (Fig. 6a).
It is worth noting that this time window matches the strongest peak
of ecdysone throughout the life cycle23,55. Second, young notum cells
are competent for differentiating, as Svb-CA enabled the premature
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Figure 6 Pri mediates ecdysone-dependent temporal control of epidermal
trichome differentiation. (a) In situ hybridization of whole notum dissected
from wild-type pupae at different developmental times APF for pri mRNA
(purple). Pri is transiently expressed in epidermal cells, in a time window
that matches the timing of Svb maturation. Anterior is to the left; scale bar,
100 µm. (b) Premature expression of pri is sufficient to trigger the formation
of ectopic trichomes in differentiating epidermal cells. Mosaic clones (flpGal4
> UAS–pri) are visualized by cytoplasmic GFP (green), F-actin is in magenta
and the cell contour is outlined by DE-cadherin (green). Left images show

individual cell clones and right panels larger clones. (c) Mosaic clones
of cells expressing EcRDN are unable to produce trichomes (left panels;
F-actin is in magenta; GFP and DE-cadherin are in green). As revealed by
fluorescent in situ hybridization, this results from the inhibition of pri mRNA
(red) expression in GFP-positive cells that express EcRDN (green, in right
panels). All pictures in b,c panels are oriented with the anterior at the top,
using the same magnification. White outlines highlight the location of clones
in F-actin panels. All experiments have been reproduced at least three times,
with five to ten dissected samples of the same genotype per experiment.

formation of trichomes at 36 h APF (Fig. 5c). Third, we found
that precocious expression of pri can force premature execution of
the trichome program (Fig. 6b). Indeed, single cells that artificially
express pri produce long precocious trichomes. In larger clones, pri
also induces premature trichomes in neighbouring cells (Fig. 6b), a
non-cell-autonomous effect consistent with previous observations9,11.
Therefore, manipulating pri expression is sufficient to trigger untimely
trichome differentiation.

Next, we tested whether the timing of pri expression in the notum
depends on ecdysone signalling. We found that expressing EcRDN
in notum cells prevents trichome formation (Fig. 6c). As observed in
embryos, this is likely to be due to the inhibition of pri expression,
because we observed a strong decrease in pri levels in EcRDN cells
when compared with their wild-type neighbours (Fig. 6c).

We therefore conclude that Pri peptides act to provide, at successive
steps of development, tight temporal regulation to the transcriptional
program of trichomes.

Ecdysone-dependent control of pri expression at developmental
transitions
An important question was to determine whether or not this
regulatory mechanism is generalizable to other pri-dependent
processes, that is whether Pri peptides play a broader role in ecdysone
control of developmental timing. To address this question, we focused
on the transition that occurs between larval stages and pupation, the
paradigm of ecdysone action in insects24.

We observed marked temporal changes in whole-body levels of
pri mRNA, which matched well with ecdysone dynamics (Fig. 7a,b).
There is a sharp pulse of pri at 2–4 h APF, that is following a major
ecdysone peak, and then a second wave of expression at 10–12 h

(Fig. 7a,b). Periodic pulses of pri expression were also manifest within
individual tissues, for example in the leg imaginal disc, where pri
regulates morphogenesis of adult tarsal segments9,10. Following a weak
pattern at mid-third-instar, pri expression shuts down in late larval leg
discs. The expression of pri then bursts across a broader region of the
disc at pupariation, and fades again at later stages (Fig. 7c). As in the
epidermis, we found that pri expression is regulated by ecdysone in the
leg primordium. In vitro incubation of larval discs with 20E further
showed that ecdysone is sufficient to induce pri expression (Fig. 7c).
Finally, the expression of EcRDN in post-embryonic tissues blocks
metamorphosis51, and the co-expression of pri in these conditions
is sufficient to rescue pupal lethality (Fig. 7d and Supplementary
Table 4).

Taken together, these data show that the expression and function
of pri, across embryonic and postembryonic development, rely on its
temporally specific direct regulation by ecdysone.

CONCLUSIONS
Periodic pulses of steroid hormones orchestrate the timing of
organism-wide developmental transitions23,24, as is well illustrated by
moulting cycles in invertebrates. Themain steroid hormone in insects,
ecdysone (20E), is synthesized from cholesterol through the action of
seven P450 enzymes33–37,41 and a Rieske protein31. This work identifies
an unexpected extra enzyme, GstE14, which similarly to other
members of the pathway is specifically expressed in the ring gland.
GstE14 might participate in either early stages of 20E synthesis34

or cholesterol homeostasis56,57. Indeed, silencing GstE14 alters
cholesterol levels (Supplementary Fig. 3), and a mutant (noppera-bo)
that inactivates GstE14 shows defects in cholesterol transport and
metabolism58. Importantly, the absence of GstE14 can be compensated
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Figure 7 Ecdysone controls pri expression at the larval–pupal developmental
transition. (a) Northern blot analysis of pri mRNA during prepupal stages in
wild-type animals. A strong induction of pri expression is detected between 2
and 4h APF, then a weaker peak appears at 10–12h APF. rp49, encoding
the ribosomal protein L32, is shown as a control. (b) Estimated relative
levels of pri mRNA, as measured from three independent northern blot
replicates. Error bars are s.d. (c) In situ hybridization shows dynamics of
pri expression in leg discs at the onset of metamorphosis (upper panels).
Lower panels show in situ hybridization of pri mRNA in late-third-instar
larvae treated with 20E dissolved in ethanol. Discs with or without in vitro
culture, or treated by ethanol only (EtOH), were used as controls. Scale
bar, 100 µm. (d) pri counteracts the lethality induced by EcRDN expression

during metamorphosis. UAS–EcRDN (a construct expressing EcR-B2 isoform
with the F645A point mutation51) was driven in photoreceptor cells by
glass multimer reporter (GMR)–Gal4, alone or in combination with UAS–
GFP, for control, and in combination with UAS–Pri. Whereas EcRDN causes
developmental arrest at prepupal–pupal transition, before stage 10 (P10),
or later (stage P12–P14), the simultaneous expression of pri restores a
large proportion of flies that reach adulthood. The total number of counted
individuals are the following: GMR–Gal4, 3,035; GMR–Gal4 > UAS–GFP,
1,743; GMR–Gal4 > UAS–pri, 5,013. Similar results were obtained with
each of two other EcR isoforms (EcR-A and EcR-B1) and dominant negative
mutations (F645A and W650A). See Supplementary Table 4 for further
information and data.

by feeding animals a high-cholesterol diet (Supplementary Fig. 3
and Table 2), showing the importance of the external milieu for the
temporal regulation of development. Although decisive progress has
been made on how ecdysone synchronizes whole-body development
with varying environmental conditions24,27, little is known about
the mechanisms implementing this systemic control within
developmental programs.

Our results unravel a scheme of interlocking molecular
events explaining how ecdysone instructs the timing of trichome
development, from reception of the hormone down to the terminal
effectors of differentiation (Fig. 8). In response to ecdysone pulses, the
EcR receptor directly activates the transcription of pri, providing a key
temporal control on epidermis differentiation. Before the ecdysone
signal, the whole transcriptional program that specifies trichome
spatial patterning has been progressively assembled by hard-wired
genetic interactions13,45, but it is kept on hold through expression
of the Svb repressor. Pri peptides thus time the conversion of Svb
from a repressor to an activator22, which, in turn, triggers the onset
of trichome effector expression18. The same mechanisms are used
during embryogenesis and metamorphosis, showing how Pri peptides
mediate temporal cues for the execution of a transcriptional program,
at successive steps of development.

Interestingly, we find that pri can act at a distance, across
several cells in the notum. It has been proposed that, probably
owing to their tiny size (<1.3 kDa), Pri peptides can pass from
one cell to another, to explain how clones of pri mutant cells
are rescued by wild-type neighbours9,11. Reciprocally, Pri peptides
expressed at high levels within manipulated cells might pass into
neighbouring cells, for example through gap junctions or cytoplasmic
bridges59,60. Although elucidating the underlying mechanism(s)
will require further work, Pri diffusion could contribute to a
robust temporal output, ensuring the synchronous differentiation of
adjacent cells.

Beyond epidermal development, pri plays important roles
in other tissues9–11,61,62, for example for the formation of adult
appendages8–10,61. Our data show that pri expression in the leg
primordium is also regulated in a timely manner by ecdysone
signalling. On the organismic scale, there is a wide upregulation of pri
levels at the larval–pupal transition, further extending the spectrum
of pri in mediating response to ecdysone.

We propose that a major function of Pri peptides is to synchronize
different genetic programs with the ecdysone-mediated systemic
control of developmental timing. These data open new ways to
explore the full range of developmental functions of Pri peptides,
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differentiation of epidermal trichome cells. Pri thus constitutes a key mediator
of ecdysone action for the temporal control of epidermal differentiation.
In response to ecdysone, the expression of pri also pulses across extra
tissues, at successive times throughout the larval–pupal transition. Temporal
dynamics of pri mRNA includes a 20E-dependent strong burst within the
adult leg primordium, where pri controls morphogenesis of tarsal segments.
Pri peptides therefore provide a molecular framework to explain how
systemic hormonal signalling implements the temporal execution of different
hard-wired genetic programs, throughout embryonic and post-embryonic
development.

as well as the mechanisms regulating the temporal control of
development. �

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary Information is available in the online version of the paper
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METHODS
Fly stocks and clonal analysis. Deficiency lines (Supplementary Table 1) were
obtained from the Bloomington Drosophila Stock Center (http://flystocks.bio.
indiana.edu/). Extra strains were spo[1]/TM3,Dfd–YFP, phm[E7]/FM7a,Dfd–YFP
(YFP, yellow fluorescent protein), UAS–EcRDN (EcR-A-F645A; EcR-A-W650A;
EcR-B1-F645A; EcR-B1-W650A; EcR-B2-F645A; EcR-B2-W650A) (ref. 51), UAS–
E22oxidase (ref. 52), Ptc–Gal4, pnr–Gal4, e22C–gal4, GMR–Gal4, UAS–svbCA
(ref. 63), UAS–pri (ref. 11) and UAS–dsRNA–svb, UAS–dsRNA–GstE14 (v40316 and
v101884, Vienna Drosophila RNAi Center, http://stockcenter.vdrc.at/). To knock
down GstE14 in specific tissues, UAS–dsRNA–GstE14 lines were crossed with phm–
Gal4, 2–286–Gal4, P0206–Gal4 or twi–Gal4 drivers. To ensure development in
controlled conditions of larval density, 30 eggs were placed into food tubes, with
yeast paste supplemented or not with 100 µgml−1 of cholesterol. For mosaic clones
of Gal4-expressing cells in the thorax, hs-flp; actin < y + < Gal4; UAS–GFP flies
were crossed with UAS lines and larvae heat shocked for 30min at 37 ◦C, 8 h before
puparium formation.

Screening procedure. Deficiency lines from the Bloomington Drosophila Stock
Centerwere balanced over aCyO–wg–LacZ chromosome to genotype embryos. Eggs
were collected overnight at 25 ◦C. To facilitate screening, embryos from 24 strains
were treated simultaneously using the Fly Condo device (Flystuff). Embryos were
dechorionated by bleach treatment, fixed in heptane saturated in formaldehyde for
40min and subsequently devitellinized with heptane/methanol. Embryos were kept
in methanol before immunostaining. Anti-Dyl immunostaining was processed in
parallel for 22 samples at once, using a homemade device and standard procedures.
Revelation was carried out with 3,3′-diaminobenzidine (Sigma), supplemented
with nickel.

DNA constructs. The rescue construct for GstE14 was obtained by PCR
amplification of a 4.6-kilobase (kb) genomic DNA fragment, subsequently cloned
into the pAttB transformation vector. LacZ reporter constructs were produced
by cloning 5–6 kb DNA fragments of the pri genomic region into the pAttB–
LacZ (ref. 18) reporter vector. All constructs were verified by sequencing.
Transgenic lines, including bacterial artificial chromosome constructs (from
P[acman] Resources, http://www.pacmanfly.org/), were generated using the PhiC31
system and inserted at the 86F position (BestGene). Further details are provided in
Supplementary Table 3.

ChIP-seq experiments. EcR ChIP-seq data were generated by the modENCODE
consortium and were extracted from the modMine pipeline (http://intermine.
modencode.org). Although embryonic samples (7–10 h) gave low signal–noise
ratio, we observed strong peaks for samples collected at pupal stages (5 h
APF), well known for high ecdysone titres. Similar patterns of EcR binding
were retrieved at later stages (33 h APF). The data have been submitted to the
Gene Expression Omnibus. The accession number for combined ChIP-seq is
GSM628268, and the input data are available at the accession numbers GSM628269
and GSM628270.

Embryo, larval and pupal staining. Homozygous embryos were identified
by the lack of balancer chromosome (marked with GFP/YFP or LacZ). Sibling
controls and mutant embryos were in all cases processed in the same batch;
a typical collection includes more than 300 embryos in total. The staging of
mutant embryos, subjected to in situ hybridization or immunohistochemistry,
was determined according to the age of 2 h embryo collections. Staining was
carried out as previously described21 using anti-Dyl (1:400), anti-Svb1s (1:3,000),
anti-DE-cadherin (DCAD2, 1:100 from DSHB), AlexaFluor-488 or 555 secondary
antibodies (1:1,000,Molecular Probes), biotinylated goat anti-rabbit (1:1,000, Vector
Laboratories) and TRITC-phalloidin (Sigma). For anti-DE-cadherin staining,
embryos were fixed for 5min in 37% formaldehyde and devitellinized by
hand. Digoxigenin (DIG)-labelled RNA antisense probes were synthesized in
vitro from complementary DNA clones and processed for in situ hybridization
as described19.

Staging of larvae was carried out as previously described64. 20–30 adult flies
were placed on Drosophila medium containing 0.05% bromophenol blue, and
well-developed third instar larvae from their progeny were staged according to
gut colour. White prepupae were collected and kept in humid vials until further
processing for in situ hybridization or northern blot. Pupal thoraces were dissected
in PBS–Tween 0.1%, fixed for 20min in 4% paraformaldehyde and processed for
immunostaining or in situ hybridization65. Each mosaic animal showed clones
of mutant cells surrounded by wild-type neighbouring cells, providing excellent
internal controls. A typical experiment contains five to ten dissected samples, of
proper stage and genotype. Data have been collected in at least three independent
experiments. Samples were imaged with a Nikon 90i fluorescent microscope or a
Zeiss710 confocal microscope.

Ecdysone and cholesterol treatment on embryos and cuticle preparation.
Embryos collected from deficiency lines or individual mutants, placed over
CyO–Wg–LacZ or TM3–Dfd–LacZ balancers, were processed for 5-bromo-
4-chloro-3-indolyl-β-D-galactoside staining for genotyping and cuticles
were prepared in Hoyer’s–lactic acid (1:1). For steroid rescuing assays,
mutant chromosomes were balanced over CyO–Dfd–YFP or TM3–Dfd–YFP.
Embryos were dechorionated and permeabilized with heptane for 5min, then
incubated with 25mgml−1 of 20E, ecdysone or cholesterol (Sigma) diluted
in Schneider’s medium (Sigma) for 1 h, under mild agitation. Following
incubation, embryos were covered with Voltalef oil and placed in a moisture
chamber at 25 ◦C for further development. Mutant larvae were selected under
a stereomicroscope equipped for epifluorescence and processed for cuticle
preparation. Each rescue experiment has been carried out, independently, at least
three times.

In vitro culture of leg imaginal discs and ecdysone treatment. Wandering
mid-third-instar larvae were dissected in Schneider’s medium and staged by
salivary gland morphology as previously described66. Dissected staged larvae
without guts and ring glands were incubated at 22 ◦C for 17 h with rotation
(198 r.p.m.), in 200 µl of Schneider’s medium supplemented with 5 µM 20E (Sigma)
dissolved in ethanol, or the corresponding amount of ethanol as a control. After
incubation, samples were washed with Schneider’s medium once and with PBS
three times, fixed in 4% paraformaldehyde and subjected to in situ hybridization as
described above.

Northern blot analysis. Whole-body RNA was isolated from staged animals
using RNeasy (Qiagen) or Isogen (Nippon Gene). RNA was separated by
formaldehyde–agarose gel electrophoresis and then transferred to a nylon
membrane (Roche). Hybridization and wash procedures were carried out
according to the DIG Application Manual (Roche). DIG-labelled pri probes11
were reacted with an alkaline phosphatase-conjugated anti-DIG antibody (Roche)
and visualized with chemiluminescence using CSPD (Tropix) or CPD-Star
(Roche), and LAS-1000 or LAS 4000mini (GE Healthcare). For quantification,
northern blots of three independent collections (five animals were of each
staged sample) were quantified with LAS 4000mini and normalized by the
co-electrophoresed internal control (5 pg of dsDNA plasmid including the
pri probe region). Expression levels are represented as percentages of the
maximum intensity, with mean values and standard deviations being plotted in
the graph.

Transmission electron microscopy. Embryos were cryo-immobilized in a high-
pressure freezer (Bal-Tec HPM 010, Balzers). Samples were transferred to 2%
osmium tetroxide, 0.5% uranyl acetate and 0.5% glutaraldehyde in anhydrous
acetone at−90 ◦C for 32 h at−60 ◦C and 4 h at−40 ◦C. After washing with acetone,
samples were transferred into an acetone–EPON mixture at−30 ◦C (1:1 for 4 h, 1:2
for 12 h), warmed up to room temperature, infiltrated with EPON (three changes
within 30 h) and polymerized at 60 ◦C for 48 h. Ultrathin sections (70 nm) were
stained with 2% uranyl acetate in 70% methanol for 10min, and in 0.4% lead
citrate in 0.1N NaOH for 2min, and viewed in a Philips CM10 electron microscope
at 60 kV.

Sterol quantification in embryos and larvae. Total cholesterol levels were
determined using the Amplex Red Cholesterol Assay Kit (Invitrogen), as previously
described56,57. For each assay, we collected 100 embryos, either of wild-type or
Df(GstE14) mutant genotype, the latter being selected by the lack of GFP-marked
balancer. After washing, embryos were homogenized in 150mM NaCl, 50mM Tris
at pH = 7.5, 2mM EGTA, adjusted to a concentration of 100mgml−1, and the
homogenate was clarified by centrifugation at 2,700g for 5min. Supernatant aliquots
were used to assay sterol content according to the kit instructions and measured
using a spectral fluorometer (Victor 3; Perkin Elmer), including a gradual series of
cholesterol samples as internal standard. The same protocol was used for wild-type
and phm > UAS–dsRNA–GstE14 larvae, in this case with extracts prepared from
30 individuals aged for 4 days after egg laying. For each sample, sterol levels were
expressed as percentages of matched wild-type levels. Experiments were repeated at
least three times. Statistical analyses used nonparametric Mann–Whitney tests (two
tailed).

Cholesterol diet assay. Parental rescue experiments were carried out using
Df(GstE14)/CyO–Dfd–YFP adult flies fed for two days in tubes containing normal
medium supplementedwith 200 ngml−1 of cholesterol, as described56. Then, fed flies
were placed on agar plates to collect eggs. Homozygous individuals, selected from
the absence of YFP, were transferred to culture tubes for the rest of development.
Df(GstE14)/CyO–Dfd–YFP flies fed without cholesterol and Spo/TM6b–Dfd–GFP
fed on high cholesterol were used as controls. The larval stages raised by rescued
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animals were determined according to the morphology of their mouth hooks.
Experiments were repeated at least three times, and all data are reported as themean
with standard deviation. Statistical analyses used nonparametric Mann–Whitney
tests (two tailed).

63. Delon, I., Chanut-Delalande, H. & Payre, F. The Ovo/Shavenbaby transcription factor
specifies actin remodelling during epidermal differentiation in Drosophila.Mech. Dev.
120, 747–758 (2003).

64. Andres, A. J. & Thummel, C. S. Methods for quantitative analysis of transcription in
larvae and prepupae. Methods Cell Biol. 44, 565–573 (1994).

65. Founounou, N., Loyer, N. & Le Borgne, R. Septins regulate the contractility of
the actomyosin ring to enable adherens junction remodeling during cytokinesis of
epithelial cells. Dev. Cell 24, 242–255 (2013).

66. Dunne, J. C., Kondylis, V. & Rabouille, C. Ecdysone triggers the expression of
Golgi genes in Drosophila imaginal discs via broad-complex. Dev. Biol. 245,
172–186 (2002).
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Supplementary Figure 1 GstE14 is required for Dusky-like expression in 
trichome cells. A. Schematic representation of the second chromosome of 
Drosophila melanogaster, focusing on the cytogenetic position 49F10-F13 
and associated genes (blue arrows). From all lines we tested in this screen 
(see Supplementary Table 1), we observed a complete absence of Dyl staining 
only in the two overlapping deletions Df(2R)BSC273 and Df(2R)Exel7124 
(dark red). A neighbouring deletion with unaffected Dyl expression (Df(2R)
ED2311) is in dark green. A secondary screening with a smaller deficiency, 
Df(2R)BSC272, restricted the genetic interval to 9 genes. To identify the 
responsible gene(s), we generated a series of transgenic lines carrying BAC 
genomic constructs (see Supplementary Table 3) and assayed their rescuing 

activity when reintroduced in the Df(2R)BSC272 background. While BAC-
126C02 (red box) did not restore Dyl staining, BAC-157I07, -146O12 and 
-83L02 (light green boxes) fully rescued Dyl expression in Df(2R)BSC272 
embryos. Since the three latter regions share a single gene, GstE14, we 
generated a construct narrowed down to a 4,6kb DNA fragment encompassing 
only this locus (P[GstE14]). B. As observed for rescuing BACs, P[GstE14] was 
sufficient to fully rescue Dyl expression within trichomes, as seen in stage-15 
embryos (ventral views). Of note, P[GstE14] also suppressed the embryonic 
lethality observed for homozygous Df(2R)BSC272 mutants. Rescuing assays 
have been performed in at least three independent experiments. Scale bars 
are 100 mm (whole embryo) and 20 mm for closeup pictures.
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Supplementary Figure 2 GstE14 encodes an insect-specific Glutathione S 
transferase. A. Alignment of GstE14 protein sequences across Drosophila 
species. Dmel, Drosophila melanogaster; Dsec, Drosophila sechellia; Dyak, 
Drosophila yakuba; Dsim, Drosophila simulans; Dere, Drosophila erecta; 
Dana, Drosophila ananassae; Dper, Drosophila persimilis; Dpse, Drosophila 
pseudoobscura; Dvir, Drosophila virilis; Dmoj, Drosophila mojavensis; 
Dgrim, Drosophila grimshawi; Dwil, Drosophila willistoni. B. Cladogram 

showing the distribution of GstE14 sequences within Drosophila species. 
The GstD1 protein from Drosophila melanogaster was introduced as 
outgroup. Protein sequences were extracted from flybase (http://flybase.
org), multiple alignment, curation, phylogenetic tree reconstruction and 
rendering were processed using ClustalW2 (http:/www.ebi.ac.uk), and 
MUSCLE, Gblocks, PhyML, TreeDyn packages available at http://www.
phylogeny.fr.
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Supplementary Figure 3 GstE14 functions in cholesterol metabolism. A. 
Cuticle preparation of Df(GstE14) and spo mutant embryos incubated in 
Schneider’s medium supplemented with either 20E, ecdysone or cholesterol 
during mid-embryogenesis. Incubation with Schneider’s medium alone 
(mock) was used as control. All three compounds significantly suppressed 
embryonic lethality, as well as rescued epidermal differentiation, i.e. 
cuticle differentiation and trichome formation, for Df(GstE14) mutants. In 
contrast, spo mutants were rescued by the exogenous addition only of 20E 
and ecdysone, but not by cholesterol, consistently with the documented 
requirement of spo activity for the transformation of 7-dehydro-cholesterol 
to ketodiol33. Scale bar is 100 mm. B. Schematic representation of the 
successive steps of the biosynthetic pathway leading to ecdysone production 
from dietary sterols. As deduced from rescuing experiments, GstE14 activity 
is required for the very early stages of the pathway, since its lack can be 
rescued by cholesterol.  C. High cholesterol diet of parental flies suppresses 
the embryonic lethality of GstE14 mutants, allowing a dramatic increase in 
life span. Df(GstE14)/CyoDfdYFP and spo/TM3DfdYFP heterozygous flies 
were fed for two days with high cholesterol diet, or regular food medium 
for control, and transferred to egg collection devices. Parental high-
cholesterol diet led to the survival of approx 10% of Df(GstE14) mutants, 
which hatched into viable L1 larvae. The experiments have been made four 
times independently. The total number of mutant embryos analyzed is 422 

individuals for GstE14 and >1000 for spo. Rescued larvae displayed no 
obvious morphological defects when compared to wild type larvae. Although 
these animals remained alive for several days (up to 7 days), they failed 
to proceed for pupariation, or even larval stage transitions, and instead 
remained long-lived L1 larvae as deduced from the examination of mouth 
hooks, a phenotypical marker of larval stages. Arrows highlight the number 
of mouth hook teeth in wild type, which displays a characteristic increase 
across larval stages. The chart plot means values, for three independent 
experiments. Errors bars are s.d., scale bar is 25 mm. D. Inactivation of 
GstE14 impinges on whole body cholesterol levels, both in embryos and in 
larvae. The sterol content of Df(GstE14) mutant embryos, and larvae driving 
UAS-dsRNA-GstE14 (line #1: HMJ21555; line #2 v1018884) in the ring 
gland (phm-Gal4) was assessed using a commercial assay. When compared 
to wild type controls, GstE14 embryos display higher levels of sterol (P 
value= 0.0028). The same was true for phm>dsRNA-GstE14 larvae (P 
value = 0.0006), showing that GstE14 activity in the ring gland is required 
for maintaining proper cholesterol levels. Extracts were made from hand-
counted embryos or larvae, with 1 to 5 independent samples of the same 
genotype per experiment. All experiments have been repeated independently 
three times. The graph shows all data points. Statistical tests used two-tailed 
Mann Whitney tests, error bars are s.d. (blue), means are indicated by a red 
dotted line.
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Supplementary Figure 4 Regulatory interactions within the ecdysone signalling 
pathway. A. phmE7 mutant embryos that are defective in 20E production (see 
Fig. 2B) show a strong down-regulation in the epidermal expression of sha 
and pri mRNAs. In contrast, svb mRNA remains expressed at normal-looking 

levels in phmE7 mutants. B. In situ hybridization showing that GstE14 activity 
is required for the embryonic expression of early ecdysone-responsive genes, 
such as Blimp-1 and Hr46. These defects mimic the reduction of Blimp-1 and 
Hr46 expression observed in phmE7 mutant embryos. Scale bars are 100 mm.
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Supplementary Figure 5 Ecdysone signalling is required for trichome 
formation. A. Expression of EcRDN driven by ptc-Gal4 in epidermal cells 
represses pri expression (right panel) compared to wild type embryos 
(left panel). White arrows highlight the reduction of pri expression in ptc 
cells. B. Cuticle of first instar larvae expressing EcRDN alone (left), or in 
combination with pri (right), throughout embryonic epidermal cells (using 
the e22cGal4 driver). Pri over-expression allows a significant suppression 

of EcRDN-induced epidermal defects, including the rescue of misshapen 
trichomes. Upper panels are lateral view of whole larvae, lower panels 
ventral views of A3-A4 segments. C. The enzymatic inactivation of ecdysone 
in epidermal cells, using UAS-E22oxidase driven by ptc-Gal4, prevents 
trichome formation in corresponding cells (red arrows). Scale bars are 100 
mm for pictures of whole embryos (A) and cuticles (B), and 10 mm for higher 
magnification (B and C).
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Supplementary Figure 6  pri is an early ecdysone-responsive gene. A. 
Snapshots of genomic regions encompassing the ecdysone-responsive genes 
Hr46, Blimp-1 and ftz-f1, showing in vivo EcR binding events (4h APF) 
visualized by the intensity of ChiP-seq signal (brown). Genomic coordinates 
and gene position are indicated within an approx 150kb window. B. Dynamics 
of relative mRNA levels, extracted from modENCODE Temporal expression 
Data (mRNA-Seq). Throughout the Drosophila life cycle, pri displays temporal 
variations that strikingly parallels the ecdysone-responsive Hr46 gene, and 

correlates to a lesser extend to Blimp-1. In contrast, the temporal dynamics of 
ftz-f1 mRNA levels appears clearly delayed, when compared to pri expression. 
C. In situ hybridization to Hr46, Blimp-1 and pri mRNAs in wild type embryos, 
from stage-11 to stage-16. While their expression is restricted to a limited 
number of cell patches in early stages (stage-11), the three genes display a 
concomitant onset of their expression in embryonic epidermal cells at stage-14. 
Later on, the expression fades and only residual signal is detected at stage-16. 
All embryos are shown at the same magnification. Scale bar is 100 mm.
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Supplementary Figure 7 Premature expression of trichome effectors during 
embryogenesis. In situ hybridization to pri and dyl mRNA show dynamics 
of their epidermal expression in wild type embryos, with an onset at 
stage-13 and stage-14/15, respectively. The precocious expression of pri, 
triggered by the early pnr-Gal4 driver, induces premature dyl expression in 
pnr dorsal cells, showing that pri controls the temporal onset of trichome 
effectors in epidermal cells. Similar results were observed when driving a 
constitutively activated form of Svb (SvbCA), further demonstrating that 
pri expression normally times the onset of Svb activation, and thereby, the 
whole program of trichome formation. Of note, this artificial advance in 
the onset of trichome effector expression was nevertheless not sufficient 

to induce premature trichomes, indicating that embryonic epidermal cells 
at stage-13 are yet not competent to engage morphological differentiation. 
Therefore, while Svb defines the spatial pattern and pri the temporal onset 
of epidermal trichomes, their formation can occur only once epidermal 
cells have reached a competent stage, likely relying on independent factors 
involved in the general differentiation of the embryonic epidermis. Such 
general factors known for their role in epidermal differentiation can include 
transcription factors (e.g., Grh, Vri, Ribbon, Ttk, and/or Gata factors) 44, as 
well as regulators of apico-basal polarity, cell junctions, vesicle trafficking 
or secretion (reviewed in 44, 45). All pictures are at the same magnification. 
Scale bar is 100 mm.
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Supplementary Figure 8 Effectors of embryonic trichome formation 
are required for the differentiation of adult trichomes in the notum. 
Scanning Electron Micrographs of trichomes in the adult notum, showing 
consequences of the inactivation of three genes: singed (sn), forked (f) and 

miniature (m), which are direct targets of the Svb transcription factor during 
embryonic epidermal differentiation19, 21. When compared to wild type, 
the notum trichomes of sn3, f36A and m1 mutants display characteristic 
alterations of their shape and improper organization. Scale bars are 3 mm.

© 2014 Macmillan Publishers Limited. All rights reserved. 
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Supplementary Figure 9 Full scans.

© 2014 Macmillan Publishers Limited. All rights reserved. 
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Supplementary Table Legends

Supplementary Table 1 List of tested deficiencies. For each line carrying a small deletion on chromosome II, the table indicates the stock ID number at 
the Bloomington Drosophila Stock Center at Indiana University (http://flystocks.bio.indiana.edu), as well as detailed genotype, cytolocation and molecular 
breakpoints when available. Additional information for each line is available at Flybase (http://flybase.org).

Supplementary Table 2 GstE14 is required in the ring gland for survival and developmental transitions. Gal4 drivers were used to target expression of UAS-
dsRNA-GstE14 to specific tissues/cells. Tissue specificity is indicated for each driver line. The ring gland endocrine centre is functionally subdivided into the 
Corpus Cardiacum, Corpus Allatum, and Prothoracic Gland, the latter being responsible for ecdysone secretion. UAS-dsRNA lines used in these experiments 
are indicated. The percentage of animals arrested at pupal stages, or eclosing in adults is calculated by dividing the number of rescued animals with the 
number of sibling animals that do not express RNAi. Each experiments has been independently repeated at least three times.  All data has been pooled for 
each genotype, and values are expressed as percentage of the expected population (total number). N.D., not determined.

Supplementary Table 3 Transgenic and Bac constructs. Location of the genomic regions carried by transgenic reporters and BAC constructs, according to the 
fly genome (release FB2014_01, January 17th, 2014). 

Supplementary Table 4 pri expression counteracts the lethality induced by EcR-DN expression during metamorphosis. GMR-Gal4 driven expression of each 
of the EcR isoform (EcB-A, EcR-B1 and EcR-B2), carrying one or the other Dominant Negative point mutation (F645A or W650A), induces lethality during 
pupariation and prevents the emergence of adults. The simultaneous expression of wild-type pri mRNA (pri), or of an artificial construct that expresses only the 
small-ORF1 of pri (ORF1) strongly suppresses pupal lethality. In contrast, a construct encoding pri mRNA with four point mutations frameshifting each of the 
four pri small ORF (1-4FS) is devoid of rescuing activity, as also observed when driving GFP (GFP) as a negative control. Raw data, percentage and a summary 
graph are presented in the table, including the data presented in Figure 7D. The table also contains data source for pri mRNA levels shown in Figure 7B.

© 2014 Macmillan Publishers Limited. All rights reserved. 
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7. Multiple enhancers drive the spatio-temporal expression of 
polished rice, involving direct control by the ecdysone receptor 

 

 

 Résumé 
Le développement de la drosophile passe par des stades embryonnaires et post-
embryonnaires successifs, dont la temporalité dépend de pics périodiques de l’hormone 
stéroïde ecdysone. Comment ce signal systémique est intégré dans différents tissus pour 
générer des réponses variées et spécifiques reste cependant mal connu. Nous avons montré 
récemment que le gène polished rice (pri), qui code quatre petits peptides, agit comme un 
médiateur de l’ecdysone pour le contrôle temporel de la différenciation épidermique. Dans ce 
présent travail, nous identifions fonctionnellement différentes régions cis-régulatrices (ou 
enhancers), qui dirigent l’expression de pri à travers différents tissus et au cours des stades 
progressifs du développement. Si ces enhancers possèdent des activités transcriptionnelles 
indépendantes, ils sont cependant individuellement régulés par l’ecdysone. Se concentrant sur 
un enhancer dirigeant l’expression de pri dans l’épiderme embryonnaire, nous montrons que 
la mutation de deux sites de fixation au complexe nucléaire de réponse à l’ecdysone est 
suffisante pour abolir son activité. Ces données montrent que différents enhancers du gène pri 
intègrent probablement directement la signalisation ecdysone, suggérant que ce type 
d’architecture cis-régulatrice pourrait contribuer à spécifier différents profils de réponse à 
l’ecdysone au cours du développement. 
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Summary 

Drosophila development progresses through successive embryonic and post-

embryonic stages, the timing of which relies on periodic pulses of the steroid 

hormone ecdysone. How this systemic hormonal signal is integrated to generate 

various temporal and tissue-specific responses remains yet not fully understood. We 

have recently found that the polished-rice gene (pri), encoding four small Open 

Reading Frame (smORF) peptides, acts as a mediator of ecdysone for the temporal 

control of epidermal differentiation. Here we report the functional identification of a 

large array of separate enhancers, driving specific subsets of pri expression across 

tissues and developmental stages. Although these enhancers display distinct 

spatiotemporal activities, they are nevertheless individually responsive to ecdysone. 

Focusing on a main enhancer driving pri expression in the embryonic epidermis, we 

provide evidence that the mutation of ecdysone receptor binding sites is sufficient to 

abolish its transcriptional activity. Furthermore, we identify an ecdysone-dependent 

function of pri during eye development. All together, these data show that different 

enhancers capture ecdysone signaling for the regulation of pri expression, further 

suggesting that this cis-regulatory architecture may contribute to specifying distinct 

patterns of ecdysone response throughout development. 
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Introduction 
Animal development requires a precise coordination, across the whole organism, of 

genetic programs underlying the formation of the different tissues and organs. In 

many species, major morphological changes highlight this synchronization, as well 

illustrated by the transition of immature juveniles into reproductive adults. Steroid 

hormones are playing a key role in the temporal control of such developmental 

transitions. These diffusible molecules act as systemic signals, timely released in 

response to various inputs from both the internal milieu and the environment. 

The Drosophila life cycle comprises successive developmental stages, from the egg, 

followed by three larval stages separated by molts, and ultimately metamorphosis, a 

stunning remodeling process where most larval structures are destroyed and 

replaced by adult tissues. Periodic pulses of ecdysteroid hormones orchestrate these 

developmental transitions and provide timing cues for larval molting and 

metamorphosis (Riddiford, 1993; Thummel, 1995). The major form of ecdysteroids is 

ecdysone, also known as the molting hormone, synthesized from dietary cholesterol 

in the endocrine prothoracic gland. The hormone is released in the haemolymph to 

target peripheral tissues, where it is converted to its active form 20-hydroxyecdysone 

(20E), often referred to as ecdysone. The small lipophilic 20E acts as a ligand, which 

directly binds to and activates the Ecdysone Receptor (EcR), a transcription factor of 

the nuclear receptor superfamily. EcR generally hetero-dimerizes with Ultraspiracle 

(Usp), an orphan nuclear receptor homolog to mammalian RXR (Bender et al., 1997; 

Koelle et al., 1991; Thomas et al., 1993; Yao et al., 1992). The mechanisms of 

ecdysone response have been extensively studied at the onset of metamorphosis 

and the hormone triggers the expression of a temporal series of transcription factors 

(Ou and King-Jones, 2013; Thummel, 2001). Bound to 20E, the activated receptor 

directly induces the expression of early response genes (Ashburner, 1974), which 

encode transcription factors, including Broad-complex (Br-C), E74 and E75. This 

cascade goes on with the activation of late genes, while inhibitory feedback loops 

repress early genes to ensure tight temporal regulation (Ou and King-Jones, 2013; 

Thummel, 2001). Ecdysone signaling is also critical during early development; 

mutations inactivating EcR are embryonic lethal (Bender et al., 1997; Kozlova and 

Thummel, 2003) and ecdysone responsive transcription factors are expressed in late 

embryos, following a similar temporal regulation (Ruaud et al., 2010). Genome-wide 
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profiling has further uncovered hundreds of genes whose expression is influenced 

directly or indirectly by ecdysone (Gauhar et al., 2009; Li and White, 2003). Besides 

a few number of early genes, the sets of genes regulated in response to ecdysone 

are however strikingly different between cell types (Li and White, 2003; Stoiber et al., 

2016). How the systemic ecdysone signal can provide this broad range of tissue-

specific responses is poorly understood. In addition, little remains known about the 

mechanisms physically implementing ecdysone signaling within a specific 

developmental program. 

A prominent target of ecdysone is the epidermis that secretes a new cuticle 

exoskeleton at each developmental transition. The cuticle produced by epidermal 

cells displays different composition and organization across developmental stages 

(Moussian, 2010). This also holds true along the animal body that is decorated by a 

stereotyped pattern of cuticle extensions, called denticles or hairs, and collectively 

referred to as trichomes (Payre, 2004). We recently identified a novel target of 

ecdysone, the atypical gene polished rice (pri), which mediates its action for timing 

the onset of trichome differentiation (Chanut-Delalande et al., 2014).  

Pri, also known as tarsal less or mille pattes, was initially identified as a long 

noncoding RNA (Inagaki et al., 2005; Tupy et al., 2005), and is involved in various 

developmental processes in insects (Galindo et al., 2007; Kondo et al., 2007; Savard 

et al., 2006). Mounting evidence suggests that apparently noncoding RNAs may 

often encode smORF peptides (Andrews and Rothnagel, 2014; Pauli et al., 2015; 

Pueyo et al., 2016) and pri represents a good paradigm of this emerging field 

(Andrews and Rothnagel, 2014; Zanet et al., 2016). Further work has demonstrated 

that pri acts through the production of evolutionarily conserved peptides, encoded 

from small Open-Reading-Frames (smORFs). In Drosophila, pri encodes four 

smORF peptides (from 11 to 32 aa), all bearing the conserved LDPTGLY motif. 

Hypomorphic mutations have revealed a role of pri/tarsal less in the formation of 

adult appendages, mutant animals displaying atrophic legs with missing/fused distal 

segments (Galindo et al., 2007; Pueyo and Couso, 2008). pri displays highly 

dynamic expression during embryogenesis, and loss-of-function mutations are 

embryonic lethal. pri mutants display altered differentiation of the tracheal respiratory 

system (Kondo et al., 2007; Kondo et al., 2010; Ozturk-Colak et al., 2016), whilst the 

most striking phenotype is the complete absence of epidermal trichomes (Galindo et 
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al., 2007; Kondo et al., 2007). Previous work has established the pivotal role of a 

transcription factor, Ovo/Shavenbaby (Svb), whose expression integrates regulatory 

inputs to define the trichome pattern (Crocker et al., 2015; Delon et al., 2003; Payre 

et al., 1999; Stern and Frankel, 2013). Svb directly activates the expression of genes 

encoding cellular effectors (Menoret et al., 2013), regulating the cytoskeleton and the 

extracellular matrix (Fernandes et al., 2010), as well as cuticle organization (Andrew 

and Baker, 2008) and pigmentation (Chanut-Delalande et al., 2006; Chanut-

Delalande et al., 2012). We showed that Pri peptides are essential for trichomes, 

since they trigger a postranslational conversion of Svb from a large-sized repressor 

to a shorter activator, which triggers the expression of trichome effectors (Kondo et 

al., 2010). Recent findings have further identified the mode of pri action. Through a 

direct interaction, Pri peptides activate an E3 ubiquitin-ligase, Ubr3, allowing its 

binding and subsequent ubiquitination of the Svb N-terminal region, which is 

degraded by the proteasome to release the Svb activator (Zanet et al., 2015). 

From an unbiased genetic screen, we found that ecdysone signaling regulates the 

expression of pri, at different stages throughout Drosophila development (Chanut-

Delalande et al., 2014) and pri thus acts as a mediator of ecdysone to control the 

timing of epidermal trichome differentiation, both in the embryo and in pupae.  

Here, we describe a detailed analysis of the transcriptional regulation of pri 

expression during development. We characterized the functional genomic region of 

pri necessary for epidermal differentiation and adult development. We identified cis-

regulatory sequences driving pri expression during embryogenesis, two in epidermis 

and one in the tracheal system. These enhancers are, at least partially, controlled by 

ecdysone. The dissection of epidermal enhancers led to the definition of the minimal 

regions driving epidermal expression and we identified for one of them two EcR 

binding sites essential for enhancer activity. We extended this analysis to the 

larval/prepupal transition and identified an additional ecdysone-dependent enhancer 

driving pri expression in the adult leg and eye/antenna primordia. Furthermore, we 

find that pri function is required in the eye and that its re-expression is sufficient to 

suppress the defects resulting from compromised ecdysone signaling in this tissue. 

All together, these data provide insights into the mechanisms regulating pri 

expression, to better understand how this novel mediator of ecdysone signaling may 

be involved in the temporal control of various developmental programs.  
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Results 

 

Defining the functional unit of the pri gene  

The pri gene is transcribed as an intron-less polyadenylated RNA of 1.5kb in length 

and is separated from neighboring genes by large upstream and downstream 

intergenic regions (Fig. 1A). To investigate the transcriptional control of pri 

expression, we first sought to define the extent of the genomic locus required for its 

functions throughout development.  

We generated a series of transgenic lines bearing overlapping genomic constructs 

(selected from available libraries of Bacterial Artificial Chromosomes (BAC)(Venken 

et al., 2009)) and assayed their rescuing activity when reintroduced in a genetic 

background lacking pri function. We used a combination of two null pri alleles placed 

in trans (pri1/pri3) to avoid the possible influence of additional mutations that may 

exist on each individual mutant chromosome. We tested two parameters: the 

differentiation of embryonic trichomes and the restoration of full development up to 

adult viability. All BAC constructs, which largely covered the transcribed region of pri, 

were able to significantly restore the formation of cuticular trichomes (Fig. 1 A). This 

result suggested that the genomic region required for pri function in trichome 

formation in the embryonic epidermis was included in the sequence shared by all 

rescue constructs, which is 8,7 kb long (bright yellow region, Fig. 1A) although we 

could not rule out the existence of separate cis-regulatory regions of similar functions 

in the different rescuing BACs. None of the two smaller BAC constructs (176K10 and 

150C8, of 20,4kb and 21,9kb, respectively) was sufficient to restore animal viability. 

In contrast, the large 51O1 construct (98,7kb) fully rescued the emergence of viable 

and fertile adults and trichomes when introduced in a pri null genetic context. Similar 

rescuing activity was also observed for BAC 08H01 (Fig. 1B), restricting the minimal 

genetic interval for pri function to a 52,6kb region (light yellow, Fig. 1A). These data 

show that, despite a compact transcribed region, the developmental functions of pri 

relies on the activity of large upstream and downstream genomic sequences, 

contained within a 50kb region. 
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Activity of pri enhancers during embryogenesis 

Having defined the functional genomic unit of pri for Drosophila development, we 

next aimed to delineate the cis-regulatory sequences controlling its expression. We 

used a series of transgenic LacZ reporter lines (Chanut-Delalande et al., 2014) to 

systematically examine the entire region. 

Genomic DNA fragments were approximately 5kb long and displayed overlapping 

regions to ensure coverage of the entire pri locus (Fig. 2A). We performed LacZ 

staining to define the spatial and temporal patterns of expression driven by each 

region during embryogenesis. Three DNA sequences drove an embryonic 

expression that reproduced part of the endogenous pattern of pri mRNA. As 

previously described (Chanut-Delalande et al., 2014), priG-LacZ is expressed in the 

epidermis from stage-13 mostly in ventral cells, and its activity extends to the dorsal 

region in stage 15/16 (Fig. 2B). A second remote enhancer, priA, also exhibited 

epidermal expression in the dorsal and ventral regions of embryos. Following a faint 

onset of epidermal expression detected at stage 13, the priA-LacZ construct drove 

strong expression in the embryonic epidermis, which peaked at stage 15/16 (Fig. 

2B). While priA and priG enhancers drove distinct patterns in the embryonic 

epidermis, they both displayed stronger expression in anteroposterior stripes (as 

best seen in the ventral region), consistently with the expression of pri mRNA that is 

reinforced in broad epidermal stripes overlapping the pattern of trichome cells 

(Kondo et al., 2007; Kondo et al., 2010). Finally, we identified the priB element that 

was strongly activated in the embryonic tracheal system from stage 12 to 16 (Fig. 

2B). This activity was yet slightly delayed when compared to the endogenous 

expression of pri in the tracheal system, the onset of which being already visible at 

stage 11. All additional DNA regions we tested, including those comprising the 

proximal promoter of pri, either displayed barely detectable activity (priC,I,J), or 

expression in other tissues (pri D,E,F,H, posterior gut, groups of mesodermal cells, 

see Fig. S1) that might reveal additional aspects of pri expression, but which 

currently lack functional evidence. 

All together, these results identify three main embryonic enhancers of pri. Two 

separate cis-regulatory regions, priA and priG, drive pri expression in the epidermis 

and a third one, priB, in the tracheal system. 
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Ecdysone regulates embryonic pri enhancers 

Consistently with the requirement of ecdysone for the expression of pri (Chanut-

Delalande et al., 2014), in vivo ChiP-seq shows strong peaks of EcR binding at the 

pri locus at pupal stages and their specificity is well illustrated when compared to a 

large window of neighboring regions (Fig. 3A). The three embryonic enhancers priA, 

B, G contain major EcR peaks (highlighted in blue in Fig. 3A). In addition, profiling of 

EcR binding in cultured S2 cells (Shlyueva et al., 2014) also detected a strong EcR 

peak in the priA sequence, as well as weak but significant binding to priB and priG, 

since the signal was only seen in presence of ecdysone (Fig. 3A). The same study 

has used high throughput profiling of enhancers active in cultured cells, and the priA 

region contains the strongest ecdysone responsive enhancer of the third 

chromosome in S2 cells (Shlyueva et al., 2014). A weaker activity was also found in 

the priG region in S2 cells, while it matches the major ecdysone responsive 

enhancer (Fig. 3A) in this region in another cell type (OSCs, (Shlyueva et al., 2014)) 

highlighting the cell type specific response to ecdysone. 

The regulation of pri expression by ecdysone is further demonstrated during 

embryogenesis since the endogenous expression of pri mRNA detected in the 

tracheal system, epidermis, gut and pharynx is abolished in phantom (phm) mutant 

embryos (Fig. 3B), which are unable to synthesize ecdysone (Warren et al., 2004). 

We next tested whether the lack of ecdysone also influenced the activity of the pri 

embryonic enhancers. In embryos deprived of ecdysone, the activity of the priG 

enhancer was strongly impaired (Chanut-Delalande et al., 2014), preventing the 

detection of any epidermal expression (Fig. 3B). For additional validation purposes 

we drove a dominant negative form of EcR using ptc-gal4, leading to a strong 

reduction of priG epidermal expression in corresponding cells, as also observed for 

endogenous pri mRNA (Fig. S2). The activity of the second epidermal enhancer, 

priA, was also dramatically decreased in absence of ecdysone (Fig. 3B). Finally, 

although not entirely abolished, expression of the priB-LacZ enhancer was strongly 

reduced in the tracheal system (Fig. 3B). Taken together, these data indicate that 

ecdysone is required for the activity of priA and priG epidermal enhancers in the 

embryo, and to a lesser extent of the tracheal enhancer priB.   
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Molecular dissection of embryonic epidermal pri enhancers 
Although the 20E/EcR complex directly regulates the expression of many genes, 

experimental evidence on the role of its binding sites for in vivo expression of 

ecdysone responsive enhancers remains limited. We aimed to get a deeper 

understanding of pri regulation in epidermis by ecdysone and the priA and priG 

enhancers could constitute good examples for direct regulation by EcR.  

We carried out systematic dissection of these two enhancers to identify the minimal 

cis-regulatory regions, sufficient to drive expression in embryonic epidermis. The 

priA element contains a sequence of 288bp, previously shown to drive ecdysone-

dependent expression in S2 cells and its activity was abolished following the 

mutation of two EcR binding sites (Shlyueva et al., 2014) (see Fig. 4A-C). These two 

sites are evolutionarily conserved across Drosophila species (Fig. 4C) and a 3’ 

deletion of priA that lacks this region, priAb1, was devoid of activity (not shown). 

Reciprocally, the priAb2 region displayed epidermal expression, although 

significantly decreased when compared to the full priA enhancer (Fig. 4B). However, 

the enhancer active in S2 cells (priAs) was not sufficient to drive in vivo expression in 

the embryonic epidermis. Instead, we observed ectopic expression in scattered cells 

that likely represent blood cells. The same result was also observed with an 

overlapping region extended to 421bp, priAse (Fig. 4B). These data indicate that the 

in vivo activity of priA requires cis-regulatory elements present in the 5’ region of the 

priA sequence, which may include other EcR binding sites. Accordingly, mutations of 

one or both EcR binding sites in the backbone of the entire priA enhancer were not 

sufficient to significantly impact on its epidermal expression (Fig. 4C).  

The priG enhancer was further dissected in a series of overlapping DNA fragments 

(priG1-5, see Fig. 4D). Corresponding transgenic lines revealed no epidermal activity 

for priG1 and priG4, while priG3 and priG5 only displayed weak expression (Fig. 4E). 

In contrast, priG2 exhibited a strong epidermal activity comparable to priG. We 

searched in this region for predicted EcR/Usp binding sites using the JASPAR 

database that contains an updated list of experimentally defined transcription factor 

binding sites (Mathelier et al., 2014). We found two putative juxtaposed EcR sites, 

which are also well evolutionarily conserved across Drosophila species (Fig. 4F). We 

inactivated the EcR binding sites in the priG2 construct by site-directed mutagenesis 

and the disruption of both sites, priG2-EcRmut, abolished the activity of the enhancer 
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(Fig. 4F). Hence, we identified a 1kb minimal regulatory region, priG2, sufficient to 

drive expression in epidermal cells. Its epidermal activity is dependent on ecdysone 

signaling, likely through a direct action of EcR since the mutation of EcR binding 

sites is sufficient to inactivate this enhancer. 

 

Analysis of pri regulation in the larval/pupal leg 

The complex regulation of pri expression through tissue specific enhancers, 

highlighted above, led us to study the regulatory mode of pri in other tissues where 

pri is required. pri is essential for leg morphogenesis (Galindo et al., 2007; Pi et al., 

2011; Pueyo and Couso, 2008, 2011) and we previously showed that endogenous 

pri expression in the larval leg disc is activated by ecdysone (Chanut-Delalande et 

al., 2014). Using our comprehensive set of LacZ reporter lines, we searched for 

putative genomic regions driving pri expression during leg morphogenesis. LacZ 

staining revealed no expression for priC, D, E, F, H, J and a faint activity for priA, B 

and G. In contrast, we observed a very strong activity for priI in the leg primordium 

from the 3rd instar larval stage to 6h APF (Fig. 5A). Previous work has described a P-

lacZ insertion in 5’ of pri coding region (tal-LacZ) that is expressed in the leg 

primordium (Galindo et al., 2007). When compared to tal-LacZ staining (Fig. 5B), we 

observed that priI drove a comparable pattern, but with far stronger activity (Fig. 5) 

suggesting that priI efficiently captures the expression of pri during leg 

morphogenesis.  

We studied further the priI enhancer by testing whether its activity in the leg is linked 

to ecdysone. For this, we expressed EcR-DN in the posterior compartment of the leg 

disc using the en-Gal4 driver and performed Engrailed staining to label the posterior 

region of the disc. This led to a clear reduction in priI expression, specifically in the 

posterior region, when compared to the non-manipulated anterior compartment (Fig. 

5C). Therefore, the priI enhancer contributes to the expression of pri in the adult leg 

primordium, under control of the ecdysone pathway. Consistent with this conclusion, 

we found that targeting EcRDN in the distal region of the leg disc (using the distal-

less (dll)-Gal4 driver) led to tarsal fusion (Fig. 6C), a phenotype reminiscent of 

interfering with pri function either by genetic inactivation (see Fig. S3) or by 

expressing an RNAi construct (Fig. 7C). 
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Functional characterization of pri during eye development 

The global levels of pri mRNA vary at the larval/prepupal transition following periodic 

pulses of ecdysone (Chanut-Delalande et al., 2014). Given the important expression 

of pri at this developmental stage, we undertook the characterization of pri 

expression during morphogenesis of other adult tissues. In situ hybridization 

revealed a strong expression of pri in the eye-antenna imaginal disc. Once again, the 

pattern of pri expression was highly dynamic, both spatially and temporally (Fig. 6A). 

In third instar larvae, pri started to be expressed in the morphogenetic furrow, where 

the differentiation of photoreceptors occurs. Then, from 0 to 3 hours APF, a strong 

burst of expression was detected across the entire imaginal tissue.  

We went further in the examination of pri expression during eye formation by the 

identification of pri regulatory regions active in this tissue. Using the same strategy 

as above, we performed LacZ staining on eye discs expressing pri-LacZ reporters 

during eye morphogenesis. The priI sequence was the sole enhancer that drove 

expression in the eye disc from third instar larvae to 6 hours APF (Fig. 6B). to test 

whether the activity of priI was also controlled by ecdysone in the eye disc, we 

expressed EcR-DN in the morphogenetic furrow using the GMR-Gal4 driver (Fig. 

6C), and observed a great decrease in priI activity.  

Finally, we aimed to study the function of pri during eye formation by producing 

mosaic clones of pri mutant cells. We generated new mutant alleles for pri by 

imprecise transposon excision, pri4 and pri5; both of them are embryonic lethal. We 

produced null mutant clones using mitotic recombination, in a background context 

aimed to favor the pri mutant cells to develop. While mutant cells in small clones did 

not exhibit obvious defects, larger clones led to roughened eyes with necrotic 

melanized patches (Fig. 7A-C). This phenotype was occasionally observed in the 

center of large clones, consistent with the non-cell autonomous function of pri 

(Galindo et al., 2007; Kondo et al., 2007). Histochemical experiments revealed large 

defects in eye retinas of pri mutant cells (Fig. 7C). 

Ecdysone signaling regulates eye development in Drosophila (Cherbas et al., 2003) 

and the expression of EcR-DN in the eye induces strong eye deformation and 
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necrotic melanized patches in adult escapers (Fig. 7B), since it also causes lethality 

at the pupal stages. We used this condition of impaired ecdysone signaling in the 

eye to test whether the expression of pri was sufficient to restore the defects due to 

EcR-DN expression. Co-expression of pri and EcR-DN rescued adult lethality and 

reduced eye defects (Fig. 7B). These rescuing effects were also manifest with the 

coexpression of the pri ORF1 region, coding only for the first 11aa smORF peptide. 

In contrast, the 1-4FS mutant of pri mRNA that introduces four point mutations frame 

shifting the sequence of Pri peptides (Kondo et al., 2007), was devoid of any 

rescuing activity of EcR-DN-induced defects. These data highlight an additional 

function of pri for the proper development of adult eyes. In addition, it shows that the 

regulation of pri expression is an important target for the function of ecdysone during 

eye formation.  
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Discussion 

We recently found that polished rice (pri) smORF peptides play a key role in 

epidermal differentiation in flies, as a novel target of ecdysone signaling. pri induces 

the maturating activation of Svb (Kondo et al., 2010; Zanet et al., 2015), a 

transcription factor that governs the formation of epidermal trichomes (Chanut-

Delalande et al., 2012; Stern and Frankel, 2013), and thereby pri mediates the action 

of ecdysone for the temporal control of trichome development (Chanut-Delalande et 

al., 2014). Pri function extends to additional developmental programs (Galindo et al., 

2007; Pueyo and Couso, 2008, 2011), also in a svb independent manner (Kondo et 

al., 2007; Kondo et al., 2010). Here, we report further analyses on the regulation of 

pri developmental expression. We find that the pri locus involves a large genomic 

region and we delineate several enhancers driving expression across various tissues 

and developmental stages. A complementary set of evidence supports that the 

separate pri enhancers capture direct inputs from ecdysone signaling, providing a 

framework to explain how pri can contribute to mediate tissue- and stage-specific 

regulation of developmental processes. 

 

pri as a direct target of ecdysone signaling 

The steroid hormone ecdysone is well established to regulate major developmental 

transitions, as well as morphogenetic changes in many developing tissues, at given 

time points, from the embryonic to the adult stages (for review (Ou and King-Jones, 

2013; Yamanaka et al., 2013)). While we now have a wealth of information on the 

regulation of ecdysone production (Andersen et al., 2013; Niwa and Niwa, 2014; Ou 

and King-Jones, 2013; Yamanaka et al., 2013), how ecdysone signaling is integrated 

within terminal differentiation programs remains to be fully elucidated.  

Recent unraveling of Pri peptide function provides a molecular connection between 

the intimate mechanisms of epidermal differentiation and ecdysone signaling. 

Several arguments show that pri behaves as a primary response gene of ecdysone. 

First, the embryonic expression of pri is abrogated in mutant embryos deficient for 

ecdysone production. Of note, the inactivation of any enzyme of the ecdysone 

biosynthetic pathway causes a similar phenotype, referred to as Halloween (Chanut-
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Delalande et al., 2014; Enya et al., 2014; Gilbert, 2004; Namiki et al., 2005; Niwa et 

al., 2004; Niwa et al., 2010; Ono et al., 2006; Petryk et al., 2003; Warren et al., 2002; 

Warren et al., 2004), since mutant embryos produce –as also manifest in pri 

mutants- a poorly differentiated cuticle and the complete lack of trichomes. 

Furthermore, the re-expression of pri is sufficient to restore trichomes in the absence 

of ecdysone, showing that pri is an important mediator of ecdysone action in the 

epidermis (Chanut-Delalande et al., 2014). In the same vein, the expression of 

functional Pri peptides is sufficient to counteract the defects resulting from targeted 

expression of EcRDN (Cherbas et al., 2003) in developing adult eyes, restoring both 

the viability and the proper differentiation of ommatidia. Second, genome-wide 

profiling identified prominent peaks of EcR binding to pri genomic regions in vivo 

(Chanut-Delalande et al., 2014), as well as in different cells lines following ecdysone 

treatment that induces a rapid burst of pri transcription (Shlyueva et al., 2014; 

Skalska et al., 2015). We show that, when assayed in vivo, several of these regions 

act as tissue-specific enhancers responsive to ecdysone during development. 

Indeed the activity of priA, priB and priG embryonic enhancers is compromised in 

embryos lacking ecdysone. The targeted expression of EcR-DN represses the 

expression of priG and priI enhancers in corresponding cells, respectively in 

embryos and larval/pupal tissues. Finally, for one short epidermal enhancer, priG2, 

we show that mutation of two motifs matching the EcR/USP binding site 

(Antoniewski et al., 1994; Gauhar et al., 2009; Shlyueva et al., 2014) is sufficient to 

knockout its activity in the embryonic epidermis. Therefore, we interpret these data to 

imply that the transcription of the pri gene involves a direct control by the activated 

20E/EcR nuclear receptor complex. 

 

pri expression is controlled by a wide cis-regulatory landscape 

Contrasting with the compact size of its transcribed region, pri functions throughout 

development involve an unexpectedly large genomic locus, as defined by rescuing 

assays. The smallest DNA fragment that allows full rescue of pri activity spans over 

50kb, strongly suggesting that pri expression relies on a large array of cis-regulatory 

regions scattered over this region, which may underlie the highly dynamic expression 

of pri across tissues and developmental stages (Galindo et al., 2007; Kondo et al., 
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2007; Savard et al., 2006). Consistently with this conclusion, we identify remote 

enhancers located as far as 20kb upstream and 10kb downstream of the pri 

transcriptional unit. The systematic scanning of 50 kb pri genomic region showed 

that two separate enhancers priG and priA are active in the embryonic epidermis. 

Although priA and priG expressions overlap, each enhancer displays a distinct 

pattern according to cell rows suggesting both complementary and redundant 

functions of these enhancers to mediate ecdysone action in embryonic epidermal 

cells. Later on, during leg morphogenesis, the spatiotemporal regulation of pri is 

required for both patterning and leg joint formation (Galindo et al., 2007; Pueyo and 

Couso, 2008, 2011). In a same way, whereas the priI enhancer sustains most 

expression in the leg disc, additional regions may also contribute to a lesser extent to 

the regulation of pri expression in this tissue. Some important developmental genes 

contain apparently redundant or shadow enhancers that ensure robust spatio-

temporal expression, in particular when development proceeds under non optimal 

conditions or in slightly compromised genetic backgrounds (Frankel et al., 2010; 

Lagha et al., 2012; Perry et al., 2010). It is therefore tempting to speculate that the 

multiple enhancers we identified could collectively provide robustness against 

genetic and/or environmental variations to ensure the proper regulatory activities of 

pri, throughout embryonic and post-embryonic development. 

The attribution of cis-regulatory elements located within large intergenic regions to 

their respective target genes is a common difficulty in functional genomics. For 

example, the priI enhancer overlaps with Mst87F, a male specific transcript only 

expressed from late pupal stages onwards and specific of the male germline (Kuhn 

et al., 1991). Despite this peculiar arrangement, the remote priI enhancer captures 

the ecdysone responsive expression of pri in the developing larval/prepula leg disc. 

Also, the strong EcR binding peak contained in the priA enhancer was previously 

attributed to Dip-B (Shlyueva et al., 2014), which is located closer than pri. Several 

pieces of evidence are however consistent with its role in the regulation of pri 

expression. First, priA drives a stage-specific embryonic expression in epidermal 

cells like pri mRNA, while Dip-B is mostly expressed in the hindgut and malpighian 

tubules. Second, priAb2 that exhibits epidermal expression is contained in the 

smaller pri rescuing BAC. Third, levels of pri mRNA induction triggered as soon as 1 

to 3 hours of ecdysone treatment is several times higher than for Dip-B, as seen in 
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Kc cells (Skalska et al., 2015), well in line with the strength of this ecdysone 

responsive element (Shlyueva et al., 2014). It remains nevertheless possible that this 

enhancer contributes, at least in part, to the control of Dip-B expression, or might 

influence both Dip-B and pri. The priA region also represents an interesting case to 

compare the functions of a given enhancer between cultured cells and in vivo 

assays. While ex vivo assays have demonstrated the strong activity of a short region 

and its requirement for direct EcR binding (Shlyueva et al., 2014), neither this 

sequence nor an extended version of it is sufficient to faithfully drive pri (or Dip-B) 

expression in the embryo. Instead, it leads to ectopic expression in blood cells. It is 

interesting to note that its activity in S2 cells also requires putative binding sites for 

GATA factors (Shlyueva et al., 2014), and the blood cell lineage is also controlled by 

the expression of the GATA factor Serpent (Muratoglu et al., 2007; Rehorn et al., 

1996). Therefore, these data show the interest of studies using cultured cells for 

high-throughput discovery of enhancers and associated transcription factors, even 

though in vivo transgenic assays are further required to validate these data, well 

illustrating the complementarities of these approaches. 

 

Conclusion 

To explain the tissue-specific expression of a primary gene, a simple model could 

involve a single ecdysone-responsive element gating the temporal activity (Potier et 

al., 2014) of additional enhancers, for example in controlling their communication 

with the proximal promoter (Spitz, 2016). In contrast, our findings show that pri 

expression involves several independent enhancers, each of them integrating both 

spatial regulatory cues and ecdysone timing. This complex cis-regulatory 

architecture appears more adapted to generate various spatiotemporal patterns of 

expression in the response to ecdysone, and suggests that hormonal signaling has 

evolved at the level of individual enhancers rather than at the whole gene level. 

Future work will be necessary to further test these alternative models and their 

respective prevalence for the hormonal control of animal development. 
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Materials and Methods 
 

Fly stocks  

Most mutants were obtained from the Bloomington Drosophila Stock Center 

(http://flystocks.bio.indiana.edu/). The strains we used were: spo[1]/TM3,Dfd-YFP, 

phm[E7]/FM7a,Dfd-YFP; UAS-EcRDN (EcR-A-F645A; EcR-A-W650A; EcR-B1-

F645A; EcR-B1-W650A; EcR-B2-F645A; EcR-B2-W650A)(Cherbas et al., 2003), 

Ptc-Gal4, en-Gal4, wg-Gal4, GMR-Gal4, Dll-Gal4, UAS-pri (Kondo et al., 2007). For 

larval studies, to ensure development in controlled conditions of larval density, 30 

eggs were placed into food tubes, supplemented with fresh yeast paste.  

 

Isolation of novel pri alleles 

To obtain new pri alleles, we remobilized the two insertions P{XP}d01244 and 

P{XP}d06750 (Thibault et al., 2004) by crossing to the P{∆(2 -3)}99B jumpstarter 

strain (Robertson et al., 1988). The white-eyed imprecise excision strains were 

established, which failed to complement both pri1 (Kondo et al., 2007) and 

P{XP}d01244, and did not develop into adult flies. Genomic DNA of these strains 

was extracted and subjected to PCR, followed by sequencing for molecular 

definition:  pri4 and pri5 contain a 1,096 base deletion (9,638,623 – 9,639,719) with a 

28-base insertion at 9,638,739 and a 3,104-base deletion (9,637,336 - 9,640,440, 

respectively (Fig. S3).  pri4 and pri5 lack the upstream region, and all four functional 

smORFs of the pri gene, indicating that they are amorphic mutations. Alleles were 

balanced with a TM6B,Tb chromosome bearing Ubi-GFP to distinguish mutants.  

 

Clonal analysis 

Since previously reported null alleles (pri1, pri2, and pri3) (Kondo et al., 2007) contain 

an FRT sequence at the pri locus that may interfere with the production of mutant 

clones (Parks et al., 2004), we used newly isolated amorphic, pri4 and pri5 alleles 

(see above). To generate pri mutant clones, pri4 and pri5 alleles were recombined 



70 

into a P{ry+7.2, hs-neo, FRT}82B (FRT82B) chromosome (Xu and Rubin, 1993). To 

generate pri mutant clones specifically in the eye we generated y w ey-FLP;FRT82B 

pri4/w+ FRT82B w+ 90E flies, as well as ey-FLP;FRT82B pri4/FRT82B w+ l(3)cl-R3 

to increase the size of mutant clones. Alternatively, w;ey-GAL4 UAS-FLP;FRT82B 

pri4/FRT82B GMR-hid l(3) flies were also used to obtain eyes consisting of only 

mutant cells. In these flies, hid–induced apoptosis completely removed wild type 

ommatidia, resulting in expanded necrotic patch; as pri4 and pri5 showed the same 

phenotypes in these clonal analyses. 

 

DNA constructs 

lacZ reporter constructs were produced by cloning 5-6 kb DNA fragments of the pri 

genomic region into the pAttB-LacZ (Menoret et al., 2013) reporter vector. All 

constructs were verified by sequencing. Transgenic lines, including BAC constructs 

(from P[acman] Resources, http://www.pacmanfly.org/), were generated using the 

PhiC31 system and inserted at the 86F position (BestGene). BAC transgenic lines 

were recombined with pri1 mutants. w+ (BAC) recombinants were first screened for 

lethality (pri mutant). Candidates were verified for the presence of pri1 deficiency by 

PCR amplification using a forward primer located in the promoter region of pri and a 

reverse primer in the residual P element present in the deficiency. Additional details 

are provided in Supplementary Table 4. 

 

ChIP Seq and related data 

EcR ChIP_seq data were generated by the modENCODE consortium, and were 

extracted from the ModMine pipeline (http://intermine.modencode.org) (Chanut-

Delalande et al., 2014). The data is accessible in GEO; the accession number for 

combined ChIP-seq is GSM628268, and for the input are GSM628269 and 

GSM628270. Other genome-wide data were from Shlyueva et al (2014).  

 

Embryo, larval and pupal staining 

Homozygous mutant embryos were identified by the lack of balancer chromosome 
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(marked with GFP/YFP or LacZ). Sibling controls and mutant embryos were in all 

cases processed in the same batch; a typical collection includes >300 embryos in 

total. The staging of mutant embryos, subjected to in situ hybridization or immuno-

histochemistry, was determined according to the age of 2h embryo collections. 

Embryos were dechorionaned by bleach treatment, fixed in heptane saturated in 4% 

formaldehyde for 20 min and subsequently devitellinized with heptane/methanol. 

Embryos were kept in methanol before immunostaining. Staining was performed as 

previously described (Fernandes et al., 2010) using: anti-β-gal (1/400), biotinylated 

goat anti-rabbit or anti-mouse (1/1000, Vector Laboratories) preincubated with 

streptavidin-HRP (Vector Laboratories) and revelation was performed with DAB (3, 

3’-diaminobenzidine) (Sigma). For fluorescence immuno-staining, embryos were 

devitellinized by hand and treated with 80% ethanol to preserve actin organization. 

We used AlexaFluor-488 secondary antibodies (1/1000, Molecular Probes) and 

TRITC-phalloidin (Sigma). DIG-labeled RNA antisense probes were synthesized in 

vitro from cDNA clones, processed for in situ hybridization and reacted with an 

alkaline phosphatase-conjugated anti-DIG antibody (Roche) as described (Chanut-

Delalande et al., 2006). 

Staging of larvae was performed as previously described (Andres and Thummel, 

1994). 20-30 adult flies were placed on Drosophila medium containing 0.05 % 

bromophenol blue, and well-developed third instar larvae from their progeny were 

staged according to gut colour. White prepupae were collected and kept in humid 

vials until further processing for dissection and staining. Data have been collected in 

at least three independent experiments. Samples were imaged with a Nikon 90i 

fluorescent microscope or a Zeiss710 confocal microscope. 

 

Cuticle preparation  

Embryos collected from individual mutants, placed over TM3-Dfd-LacZ balancers, 

were processed for X-Gal staining for genotyping and cuticles were prepared in 

Hoyers/lactic acid (1/1). Each rescuing experiment has been performed, 

independently, at least three times. 
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Histology 

For the histological analysis of eyes with melanized patches in pri mosaic animals, 

fly heads were prefixed with 2% glutaraldehyde, postfixed with 1% OsO4 for one 

hour, washed with PBS (1% Tween20), dehydrated in an ethanol series, embedded 

in EPON (TAAB), and polymerized for 48 hours at 60˚C according to standard 

routines. The EPON-embedded samples were sectioned at 1-µm thickness and 

stained with boracic Toluidine Blue.  
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Figure Legends 
 

 

Figure 1: the polished rice functional unit extends over a large genomic region 

A. Schematic representation of the genomic region encompassing the pri locus. The 

different genes are drawn as blue arrows, reflecting the sense of their transcription, 

and deleted regions in the pri1 and pri3 null alleles are indicated as brackets. Purple 

lines show the genomic regions carried by BAC transgenes and the table on the right 

summarizes their respective rescuing activity for the restoration of embryonic 

trichomes of adult viability and fertility. B. Cuticle preparations of whole embryos (top 

row) and close-ups of the ventral region of abdominal segments A3-A4 (bottom). The 

denticle belts featuring wild type embryos are completely lacking in pri1/pri3 mutant 

embryos. Introduction of the BAC-08H01 in this pri null background fully restores 

denticle formation. 

 

 

Figure 2: Functional identification of pri embryonic enhancers 

A. Grey boxes represent the genomic location of the regions tested using LacZ-

reporter transgenic lines. B. Time course of pri mRNA expression and enhancers 

from mid to late embryogenesis, as revealed by in situ hybridization (top). 

Expression driven by the three main embryonic enhancers (priA, priB and priG) at 

corresponding stages of development was revealed by anti-β−Gal immunostainning. 

Embryos are oriented with the anterior at the left, and the ventral region at the 

bottom of each picture. 
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Figure 3: Ecdysone controls pri expression and the activity of embryonic 
enhancers 

A. Snapshot of the UCSC genome browser focusing on the pri genomic region and 

surrounding genes; pri regions tested in transgenic lacZ-reporter lines are drawn as 

grey boxes. The different tracks represent signal intensity profiles of in vivo EcR 

Chip-Seq 4h and 33h after puparium formation, APF (orange), EcR ChIP-seq in S2 

cells with or without ecdysone treatment (blue and green, respectively), STARR-seq 

profiling of active enhancers with or without ecdysone (brown and dark red 

respectively) in S2 cells, as well as STARR-seq profiling with or without ecdysone 

(red) in Ovarian Somatic Cells (OSC). Data from in vivo EcR ChIP-seq are from 

Chanut-Delalande et al (2014), all data for cultured cells are from (Shlyueva et al., 

2014). B. Expression of the endogenous pri gene (left panels) and of the priA, priB 

and priG enhancers in control conditions (top) and in phmE7 mutant embryos that are 

unable to synthesize ecdysone (Warren et al., 2004). 

 

Figure 4: EcR binding sites are required for the activity of pri epidermal 
enhancer 

A. Scheme of the priA full enhancer and sub-regions of it that have been tested in 

lacZ-transgenic reporter lines. Red ovals represent the EcR binding sites shown in 

C. B. Expression of priA, priAb2 and priAse, as revealed by fluorescence staining (β-

gal is in green, actin in red). The right panels show black and white pictures of the β-

gal channel to better appreciate quantitative variations. All pictures have been 

acquired using the same set-ups for confocal microscopy. C. The logo represents a 

position weight matrix of consensus EcR binding sites. Sequence alignment of EcR 

binding sites in priA, showing their evolutionary conservation across Drosophila 

species (melanogaster, sechellia, yakuba, erecta, elegans, ananassae and 

pseudoobscura). Nucleotides mutated in priA-EcRmut are in red. D. Drawing of the 

molecular dissection of the priG epidermal enhancer. E. Expression of priG-lacZ, 

priG2-lacZ and priG5-lacZ. F. Sequence alignment of EcR binding sites of priG2 and 

effect of their mutation (priG2-EcRmut) on the enhancer activity (ventral closeup). 
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Figure 5: Expression of the priI enhancer in leg primordia at the larval/ 
prepupal transition and regulation by EcR 

A. Time course of the expression of priI-lacZ in larval/prepupal imaginal leg discs, as 

revealed by X-gal staining. B. Expression of the LacZ gene in the PlacW-talS011041 

reporter line in late larval leg disc. C. Immunostaining showing the activity of priI-

LacZ (in red), co-stained with anti-Engrailed antibody (in green), in control leg disc 

and in disc expressing EcR-DN under the control of the en-Gal4 driver. D. Pictures of 

adult legs showing tarsal defects and a lack of joints when EcR-DN is expressed 

under the dll-Gal4 driver. Knocking-down pri function in the dll domain also impairs 

leg development.  

 

Figure 6: Expression of the priI enhancer in the adult eye-antenna primordium 
at the larval/ prepupal transition and regulation by EcR 

A. Time course of the expression of pri mRNA in larval/prepupal imaginal eye-

antenna discs, as revealed by in situ hybridization. B. X-gal staining showing the 

activity of the priI-lacZ transgenic reporter, in imaginal eye-antenna discs of 

comparable stages of development. C. Expression of priI-lacZ  in late larval eye disc 

in a wild-type context, or following GMR-Gal4 driven expression of EcRDN (C’). C’’ 

shows the expression of UAS-lacZ in the eye disc under the control of the GMR-Gal4 

driver. 

 

 

 

 

Figure 7: pri is required for the differentiation of adult eyes and compensates 
defects induced by the targeted expression of EcRDN. 

A. Mosaic genetic analysis of pri function in the adult eye. pri4 mutant cells are 

lacking the white marker, allowing their distinction from wild type sibling cells (red). 

While small clones of pri mutant cells do not affect eye formation, larger clones 
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induce a necrotic appearance of affected cells in the center of large mutant clone. As 

control, the right-most picture shows a mosaic eye with wild type cells and cells only 

lacking the white marker. Whole mutant eyes generated by depleting wild-type cells 

appeared necrotic and were covered solely by melanized materials. B. GMR-gal4 

driven expression of EcR-DN strongly affects eye size and differentiation. 

Concomitant expression of wild-type pri mRNA, or a synthetic construct encoding 

only the first smORF of pri is sufficient to rescue EcR-DN-induced defects. In 

contrast, a mutated version that frame shifts each of the four pri smORF is devoid of 

rescuing activity. C. Semi-thin plastic-mounted sections of wild type and pri-mutant 

eyes were stained with Toluidine Blue. Double-headed arrows indicate the retinal 

region.  
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Supplementary material 
 

 

Figure S1 

A. Schematic representation of the pri locus. The genomic regions tested using lacZ-reporter 

transgenic lines are represented as grey boxes. B. Activity of pri genomic regions C, D, E, H, 

I and J from stage-11 to 16, showing weak embryonic expression and/or expression in other 

tissues than the epidermis and trachea.  

 

Figure S2  

A. In situ hybridization showing pri RNA expression in wild type (left column) and embryos 

expressing EcR-DN driven by ptc-Gal4 (right column). The top row shows lateral views, the 

bottom row ventral views. B. LacZ immunostaining showing that priG activity is impaired in 

epidermal cells expressing EcR-DN under the control of the ptc-Gal4 driver (right panel) 

compared to control (left panel). 

 

Figure S3 

A. Schematic representation of the pri mutations generated in this study. XP d06750 and XP 

d01244 are parental insertion strains used to generate the pri mutants; pri4 and pri5 are 

amorphic alleles lacking a promoter and all four functional ORFs, resulting in embryonic 

lethality and the complete loss of ventral denticles and dorsal trichomes (data not shown). B. 

Mosaic flies showing clones of pri mutant cells. Under moderate heat shock conditions (heat 

shock for one hour during 48-72 hours after egg laying), hs-Flp; FRT82B RpS3/FRT82B pri4 

flies showed malformed appendages, with kinked femur segments (fe) and fused tarsal leg 
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segments (T2-5). Mitotic clones of pri mutant cells (hs-FLP;FRT82B y+ RpS20/FRT82B pri4) 

in the thoracic epidermis (right panel), showing loss of dorsal hairs at the center of large 

mutant clones.  

 

Table S4 

Genomic position of the DNA fragments used for lacZ-reporter lines and transgenic rescuing 

BACs. The sequence of oligonucleotide primers used for these studies is also indicated. 
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release R5
 constructs start (3R:) end (3R:) size (bp)
priA-LacZ 9 615 076 9 617 126 2 051
priA-EcR1mut-LacZ 9 615 076 9 617 126 2 051
priA-EcR2mut-LacZ 9 615 076 9 617 126 2 051
priA-EcRmut-LacZ 9 615 076 9 617 126 2 051
priAb1-LacZ 9 615 071 9 616 426 1 355
priAb2-LacZ 9 616 323 9 617 126 803
priAse-LacZ 9 616 475 9 616 896 421
priAs-LacZ 9 616 557 9 616 883 326
priB-LacZ 9 616 627 9 622 245 5 619
priC-LacZ 9 621 746 9 626 730 4 985
priD-LacZ 9 626 231 9 632 835 6 605
priEA-LacZ 9 632 336 9 639 247 6 912
priES-LacZ 9 632 336 9 638 545 6 210
priFA-LacZ 9 636 122 9 639 247 3 126
priFS-LacZ 9 636 122 9 638 545 2 424
priG-LacZ 9 640 288 9 645 061 4 773
priG1-LacZ 9 640 288 9 641 279 991
priG2-LacZ 9 641 262 9 642 281 1 019
priG2-EcRmut-LacZ 9 641 262 9 642 281 1 019
priG3-LacZ 9 642 258 9 643 278 1 020
priG4-LacZ 9 641 019 9 641 602 583
priG5-LacZ 9 642 001 9 642 584 583
priH-LacZ 9 645 042 9 650 045 5 003
priI-LacZ 9 650 026 9 655 081 5 055
priJ-LacZ 9 655 070 9 660 195 5 125  

Table S4 
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Discussion 
 

 Spatio-temporal expression of pri during Drosophila development 
 
pri distribution is dynamic in several tissues during morphogenesis. 

Understanding when and where developmental genes are expressed often provides insights 
into their function and underlying mechanisms. Several studies have monitored the 
developmental expression of pri RNA across tissues and stages throughout the development 
of insects and this has helped disclosing various developmental functions of pri.  

A characteristic feature of pri is its specific expression in a restricted set of 
developing tissues, as well as highly dynamic changes between successive developmental 
stages of Drosophila embryogenesis (Inagaki et al., 2005; Tupy et al., 2005). In a same vein, 
the highly specific expression in the posterior growth zone of mille pattes, the pri ortholog in 
Tribolium, was a first hint of its function in the segmentation of the beetle embryo (Savard et 
al., 2006). In flies, the dynamics of pri mRNA often prefigures tissues the differentiation of 
which are altered in pri mutant embryos. pri is well expressed in the developing tracheal 
system from stages 9 to 15 (Kondo et al., 2007), and the lack of pri function leads to various 
defects in its initial formation (Galindo et al., 2007) and later differentiation (Kondo et al., 
2010; Ozturk-Colak et al., 2016). pri mutant embryos display breaks in the dorsal trunk 
branches of the trachea, as seen during mid-embryogenesis (Kondo et al., 2007; Kondo et al., 
2010) and, later on, pri mutant tracheal cells fail to differentiate actin-rich tenidiae, which are 
apical supra-cellular structures involved in the physical properties of the tracheal system 
(Kondo et al., 2010; Ozturk-Colak et al., 2016). pri also displays a transient but prominent 
wave of expression in the embryonic epidermis and pri mutants display severe defects in 
epidermal differentiation including the complete lack of trichomes (Chanut-Delalande et al., 
2014; Galindo et al., 2007; Kondo et al., 2007; Kondo et al., 2010). However, other specific 
domains of pri expression remain hitherto unlinked to any known function of pri. Blastoderm 
embryos display a clear segmental expression of pri, evoking that of even-skipped for 
example, but previous studies failed to detect obvious defects in segmentation, including in 
embryos depleted for both the maternal and zygotic contribution of pri (Galindo et al., 2007; 
Kondo et al., 2007) (H. Chanut, unpublished results). Whether this expression represents an 
evolutionary remnant (tribolium etc…) of pri function in the segmentation of more basal 
insect species is a possibility. In addition, work in our team has not detected segmentation 
defects in maternal and zygotic E3 ligase Ubr3 (Ubr3 mat+zyg) mutant embryos. It should be 
noted yet that Svb displays early expression in two anterior ventral stripes in blastoderm 
embryos and work is ongoing to test a possible role of pri/ubr3/svb in the proper formation of 
head segments, which segmentation is more delicate to analyze than in the trunk. There are 
additional embryonic tissues showing specific pri expression, such as the foregut and hindgut 
primordia (See fig. 23) and testing a possible function of pri in these tissues will await further 
studies.  

The highly dynamic expression of pri is also obvious upon monitoring whole body 
levels of pri RNA, both from RNA-seq data and northern blot experiments, across embryonic 
and post-embryonic stages (Chanut-Delalande et al., 2014). These temporal waves of pri 
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RNA expression strikingly match those of the early-late 20E-response gene DHR3/Hr46 
(Drosophila hormone receptor 3, aka Hr46), while they are clearly distinct from the inter-
moult transcript β-FtzF1 (Chanut-Delalande et al., 2014), consistent with the hypothesis that 
pri behaves as a primary ecdysone responsive gene. In situ hybridization of pri RNA at the 
larval/pupal transition shows a specific expression in leg discs that begins at mid L3 touches-
down at late L3 and then becomes strong again and relatively ubiquitous between 0 and 3h 
APF (Chanut-Delalande et al., 2014). Interestingly, this expression of pri is also required for 
adult leg development and tarsal joint differentiation (Galindo et al., 2007; Pueyo and Couso, 
2008, 2011). Similarly, pri expression displays highly dynamic spatiotemporal patterns in the 
eye/antenna and wing discs during third instar development and larval/prepupal transition 
(see fig. 25).  

Hence the remarkable dynamics of pri expression is suggestive of functions for Pri 
peptides in a wide variety of tissues. In addition, the temporal waves of pri expression seen 
over developmental stages may also indicate its implication in the control of developmental 
timing. 
 
 

Identification of pri cis-regulatory regions. 

To better understand the role of pri during development, it thus was of interest to identify the 
cis-regulatory regions responsible for its complex expression pattern, both across tissues and 
over time.  
 

As a first step, we sought to define the functional unit of the pri gene during 
development, using genetic rescuing assays of null pri mutant alleles that completely remove 
the pri transcription unit (Kondo et al., 2007) as well as the trichomes. We generated 
Bacterial Artificial Chromosomes (BAC) genomic constructs and tested their ability to rescue 
the lack of pri activity, when introduced in a trans-heterozygous pri mutant combination. 
Concerning the embryonic trichomes, we observed a rescuing activity in all four BACs used 
in order to cover the entire region of pri, allowing us to restrict the minimal region 
indispensable in the embryonic epidermis to an 8.7 kb DNA region that represents the 
overlapping region of all BACs. On the other hand, the smaller BAC capable of restoring the 
full development and adult viability of pri mutants spans over more than 50kb. This region 
outlines the common region of the two BACs that rescue the lethality. 

Thus the function of the pri gene, which encodes an intron-less RNA of 1.5 kb, 
requires an unexpectedly large genomic region. To go further and decode the expression of 
the regulatory sequences of this area, we next dissected this genomic region into ten DNA 
fragments, called priA to priJ; priA is about 2 kb in length while the others are almost 5 kb 
each. We inserted them upstream of a LacZ reporter, generated corresponding transgenic 
targeted lines and their activity was profiled using immunocoloration. In the embryonic 
tracheal system, we observed an expression that begins at stage-12, i.e. little after the 
endogenous expression of pri that starts at stage-11 of embryogenesis. On the other hand, we 
noticed an embryonic epidermal expression in both the priA and priG enhancers, with 
different expression patterns. priG represents sort of a mirror of the endogenous expression of 
pri in the embryonic epidermis, and thus it is strongly expressed in cells which give 
trichomes, while priA is expressed in both naked and trichome epidermal cells. The activity 
of both epidermal enhancers starts at stage 13, as the timing of the onset of endogenous 
expression. Interestingly, only 3 kb from the 5’ extremity of priG are included in the minimal 
region indispensable for the function of pri in the embryonic epidermis, while priE and priF 
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are not. This allows us to restrict the region necessary for pri expression in the embryonic 
epidermis from 8.7kb to 3kb. Surprisingly, priA that resides almost 20 kb upstream of the pri 
promoter is not included in this minimal region. Thereby, priA may likely be considered as a 
shadow enhancer (Frankel et al., 2010; Lagha et al., 2012) of pri in the embryonic epidermis, 
whereas priG is the main enhancer responsible of pri expression pattern. Since pri is 
expressed at early stages during Drosophila development, it was of interest to know which 
enhancers are able to recapitulate this early expression. Thus we aimed to have an overview 
of the enhancer pattern in this context, and we found two enhancers, priC and priE, which 
possess some early expression in embryos. However, none of them were sufficient to 
faithfully capture endogenous expression of pri at early blatoderm stages.  
 
As mentioned above, pri is expressed in the larval leg primordium and plays a pivotal role in 
adult leg formation, so we purposed to look for the enhancers responsible for driving the 
expression of pri in imaginal discs at larval and prepupal stages. We therefore systematically 
assayed for the expression of our series of ten pri enhancers, at several times from the early 
third instar larvae till 8 hours after puparium formation (APF). While we noticed a relatively 
weak and transient expression of priA, priB and priG in the leg primordium, the priI enhancer 
appears as the main element driving expression in the developing leg. Pri-I is highly 
expressed in the leg disc, specifically in the central region that ultimately gives rise to the 
tarsal segments. PriI is not solely expressed in leg discs, it also drives strong expression both 
in the eye/antennal and wing discs, at larval and prepupal stages. Remarkably, the Male-
specific transcript at 87F gene (Mst87F) is included in the priI enhancer. It was shown in the 
literature that this gene has little expression in the fat body of larvae and not in other larval 
tissue. Contrariwise, a significant expression has been reported in the adult male testis (Kuhn 
et al., 1991). This probably rules out Mst87F being expressed in leg and eye-antennae discs, 
but it does not prevent to test this hypothesis eventually.  
 
 

 Pri regulation and the crosstalk with the ecdysone hormone. 

Several regulatory regions driving pri expression are under the control of ecdysone. 

Steroid hormones are well known for their role in the temporal coordination of development, 
and the ecdysone secreted from the prothoracic gland is the major insect hormone that 
controls the larval/prepupal transition (Ou and King-Jones, 2013; Yamanaka et al., 2013). 
How the systemic action of ecdysone is ultimately implemented within genetic programs 
governing tissue-specific differentiation remains not fully understood. Our studies show that 
the expression of pri is under direct control of ecdysone signaling, providing an additional 
piece of evidence to better understand the hormonal control of Drosophila development. 
The first hint supporting a possible link between pri and ecdysone signaling came from 
indirect evidence gleaned in the literature. A study on ecdysone function during 
embryogenesis, has reported that mutants unable of ecdysone synthesis (sad and shd) display 
defects both in head involution and tracheal morphogenesis (Chavoshi et al., 2010), both 
phenotypes having been noticed in pri mutant embryos. In addition, the proper development 
of the tracheal system requires both EcR and Usp functions, and Eip75B (E75; an early 20E-
response gene) consistently displays an ecdysone- dependent expression manifest in tracheae 
(Chavoshi et al., 2010). Finally, defective air-filling of the tracheal lumen in late 
embryogenesis was observed in DHR3 and Ftz-f1 mutants (Ruaud et al., 2010), a phenotype 
that was likewise observed in pri mutants (Galindo et al., 2007; Kondo et al., 2007).  
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More compelling evidence was provided by a forward genetic screening performed in 
the lab, systematically examining consequences of short genomic deletions on the 
differentiation of trichomes. Screening of the whole second chromosome identified a single 
region whose deletion fully prevents trichome formation. Consistently, the expression of 
trichome effectors was lost in this background, a similar phenotype of that observed in a pri 
mutant. However, the expression of shavenbaby mRNA was unaffected, suggestive of an 
impaired maturation of the Svb TF, as further demonstrated by the persistence of the large-
sized repressor form. Indeed, these epidermal defects resulted from a complete absence of pri 
expression. Rescuing experiments making use of BAC constructs and a series of smaller 
transgenes identified the gene responsible for this phenotype, encoding a Glutathione S-
Transferase enzyme, called GstE14 (Chanut-Delalande et al., 2014) or noppera-bo (Enya et 
al., 2014). When the screening of the third chromosome started, it became clear that several 
regions displayed the same phenotype and available mutants rapidly identified known 
components of the ecdysone biosynthetic pathway. Several pieces of evidence further 
demonstrated that GstE14 was a novel member of the ecdysone synthetic pathway. First, 
GstE14 was expressed in the prothoracic gland, from late embryogenesis to larval stages. 
Second, the lack of GstE14 or its specific depletion in the ring gland produces developmental 
arrest accompanied by a global increase into sterol levels. Importantly, the lethality of 
GstE14 embryos was suppressed when mothers were fed with high cholesterol diet. Finally, 
the epidermal defects observed in the absence of GstE14 function could be largely rescued by 
incubation of mutant embryos with ecdysone. Furthermore, we observed an abolishment of 
the endogenous expression of the svb target gene dyl in absence of ecdysone, similar result 
observed for pri mRNA in GstE14 mutant. Together, these data therefore showed that pri 
expression in the embryo requires ecdysone. In later stages of development, pri RNA levels 
display temporal cycling at the larval to prepupal transition. These temporal waves of pri 
expression were also obvious within individual tissues, as well illustrated in the developing 
leg disc. Furthermore, we found that incubation of dissected leg discs with ecdysone was 
sufficient to induce premature expression of pri in this tissue.  

Whereas these data established that ecdysone is required, and somehow sufficient, to 
induce pri expression, molecular profiling demonstrated direct in vivo binding of EcR on 
presumptive pri cis-regulatory elements, showing that pri is a primary response gene 
(Chanut-Delalande et al., 2014). Chip-seq analyses for EcR in pupal stages well known for 
their high ecdysone titer outline the fact that EcR binds to regions flanking the pri gene, 
contrasting with the absence of EcR peaks in neighboring genes (Chanut-Delalande et al., 
2014). In addition the independent Chip-seq analysis done in cultured cells, shows that EcR 
binds to the pri locus, and specifically upon the addition of ecdysone (Shlyueva et al., 2014). 
The same study also confirmed that EcR/20E binding promotes the transcription of pri in S2 
cells.  

Interestingly several of the major peaks of EcR binding, either in vivo or ex vivo 
overlaps with the location of pri enhancers, which were identified by our transgenic assays. 
As observed for the endogenous expression of pri RNA, we found that the activity of the 
three main embryonic enhancers is compromised in mutants devoid of ecdysone. For 
example, introducing priG-LacZ in a phm mutant background abolished its epidermal 
expression. We performed the same experience to test the priA enhancer and, as expected, its 
expression is likewise under the control of ecdysone. Still in the embryo, the priB enhancer 
also undergoes a significant reduction of its expression in phm mutant embryos. 
Subsequently, in order to delineate the smallest region capable of driving epidermal 
expression, we dissected priG into five shorter segments (priG1-5). While priG1 and priG4 
didn’t display detectable expression, priG3 and priG5 drove only weak expression in the 
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embryonic epidermis. In contrast, we observed a strong epidermal expression driven by 
priG2 reminiscent to that of pri RNA. As for endogenous pri, and the priG enhancer, the 
expression of priG2 was also under the control of ecdysone. We then used the JASPAR 
database to look for EcR binding sites in that enhancer and it predicted two putative EcR/Usp 
putative binding sites. The mutation of both conserved EcR binding sites found in priG2 
leads to the abolishment of epidermal activity of priG2, thus we defined priG2 about 1 kb in 
length as a sufficient DNA fragment to drive epidermal activity directly dependent on 
EcR/20E binding. 
Concerning the priA enhancer, it contains a short region recently identified as one of the 
strongest ecdysone-dependent enhancer in S2 cells (Shlyueva et al., 2014). Furthermore, the 
mutagenesis of this fragment showed that its activity relies on direct EcR/20E binding, as 
well as on the integrity of two DNA motifs that resemble GATA Binding sites (Shlyueva et 
al., 2014). However, when assayed in vivo neither this short region (priAs), nor an extended 
region of it (priAse), were able to drive any epidermal expression. Instead, we observed a 
likely ectopic expression in embryonic hemocytes, and it is noteworthy that the GATA factor 
Serpent (Srp) is a regulator of blood cell differentiation (Rehorn et al., 1996) and is active in 
S2 cells (Ramet et al., 2002). Taken together, these results suggest that the expression of 
priAse in hemocytes could be the fruit of GATA activity. We found that the mutation of both 
EcR binding sites in the backbone of priA does not significantly affect its epidermal 
expression; a work is in progress to define whether the mutation of both mutated EcR binding 
sites is sufficient to affect the activity of priAb2, the smallest subregion of priA we delineated 
to drive expression in the embryonic epidermis. 
Therefore, these results identified three ecdysone-dependent enhancers driving pri expression 
during embryogenesis. They all correspond to prominent peaks of EcR binding, as confirmed 
by our and independent ChIP-seq studies. Focusing on epidermal expression, the two remote 
pri enhancers contain functional EcR/Usp binding sites, required for their activity as 
demonstrated for priG2 in vivo, and as supported for priA by ex vivo data.  
 
 
 

Pri relays ecdysone signaling for the temporal control of epidermal differentiation 

Our work demonstrates that the onset of the differentiation of embryonic trichome cells is 
triggered by ecdysone. Indeed, others and we have observed drastic defects in epidermal 
differentiation following the inactivation of any ecdysone synthesizing enzyme (Chanut-
Delalande et al., 2014; Chavez et al., 2000; Enya et al., 2014; Namiki et al., 2005; Niwa et al., 
2004; Niwa et al., 2010; Ono et al., 2006; Petryk et al., 2003; Warren et al., 2004; Yoshiyama 
et al., 2006). More specifically, we show that ecdysone is required for the early steps of 
trichome cell remodeling, even before cuticle deposition, as revealed by the absence of any 
sign of actin reorganization in embryonic epidermal cells lacking ecdysone (Chanut-
Delalande et al., 2014). In addition, we provide evidence that pri expression, and thereby Svb 
maturation, are under the direct control of ecdysone signaling. Importantly, we found that 
restoring pri expression in the epidermis is sufficient for a significant rescue of trichome 
formation in the complete absence of ecdysone. Therefore, the ecdysone pathway drives 
epidermal trichome remodeling through the regulation of pri and more broadly the expression 
of pri in the epidermis is sufficient to outdo the lack of ecdysone. These results thus provide 
an uninterrupted molecular pathway to explain the action of ecdysone in the terminal 
differentiation of trichome cells.  



101 

Knowing that ecdysone signaling plays a crucial role in the control of developmental 
timing (Yamanaka et al., 2013), it was our aim to decipher if the main role of pri peptides is 
likewise to provide a temporal control of the execution of the trichome differentiation 
program. Consistent with this idea, the onset of pri expression occurs at stage-13/14, in wild 
type embryonic epidermal cells, i.e. is nicely concomitant with the timing of Svb maturation. 
To further challenge this notion, we assayed whether anticipating pri expression was 
sufficient to trigger a premature expression of the transcriptional program of trichome 
differentiation. Indeed, we found that pushing an early pri expression in dorsal epidermal 
cells is sufficient to induce premature expression of trichome effectors in these cells, likely 
because of a precocious activation of the Svb TF, since we observed a similar phenotype 
when driving a constitutive activator form of Svb. Hence these results show that pri mediates 
EcR/20E-dependent temporal control of the expression of trichome effectors in the 
embryonic epidermis. 

Epidermal differentiation repeatedly occurs before each of the developmental 
transitions, which are well known to be temporally controlled by ecydsone pulses (Yamanaka 
et al., 2013). Therefore we assayed whether the same ecdysone/pri/svb circuit could be 
reactivated during post-embryonic development, investigating the terminal differentiation of 
adult epidermal cells. Indeed, most adult epidermal cells make trichomes and previous work 
has shown that svb is required for their differentiation (Delon et al., 2003). In addition, the 
cellular effectors identified as direct targets of Svb in the embryo (Andrew and Baker, 2008; 
Chanut-Delalande et al., 2006; Chanut-Delalande et al., 2012; Chanut-Delalande et al., 2014; 
Fernandes et al., 2010; Menoret et al., 2013) are also required for the differentiation of adult 
trichomes (Adler et al., 2013; Bilousov et al., 2012; Lu et al., 2010; Nagaraj and Adler, 2012; 
Ren et al., 2006; Ren et al., 2005; Roch et al., 2003; Sobala and Adler, 2016; Yan et al., 
2008).  

To address this issue in more depth, we explored the timing of adult epidermal cell 
remodeling, focusing on the dorsal thorax (notum) as a model system. We found that the first 
signs of trichome formation as monitored by actin remodeling occur at 38-40h APF, when 
epidermal cells have finished their proliferation and have well established apico-basal and 
PCP polarity (Bosveld et al., 2012; Herszterg et al., 2013). Interestingly, we observed that the 
Svb repressor accumulates in epidermal cell nuclei from early stages of prepupal/pupal 
development, and its maturation adequately coincides with the onset of trichome 
differentiation. Furthermore, the expression of pri RNA in the pupal notum is also 
concomitant, displaying a transient wave of expression at 38-42h. Several pieces of evidence 
further support the conclusion that the ecdysone-dependent expression of pri also times the 
onset of trichome differentiation in the adult notum. First, the artificial expression of a 
constitutive activator form of Svb is sufficient to induce, in a cell autonomous manner, the 
premature formation of trichomes when neighboring cells are still kept undifferentiated 
through the activity of the endogenous Svb repressor. Reciprocally, the expression of a 
constitutive repressor form of Svb, which is thus insensitive to pri, is capable of blocking the 
formation of trichomes. Together, these data show the importance of the temporal control of 
Svb maturation in adult epidermal cells. Second, the expression of pri in clones of early 
epidermal cells is sufficient to promote premature differentiation of trichomes. Finally, the 
expression of a dominant negative form of the EcR nuclear receptor, which prevents pri 
expression, also causes epidermal cells to be refractory to trichome formation (Chanut-
Delalande et al., 2014). We therefore interpret these results to imply that a main role of Pri 
peptides is to provide, in the response to ecdysone, a strict temporal control of the 
differentiation of trichome cells throughout embryonic and post-embryonic Drosophila 
development. 
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Additional functions of pri as a mediator of ecdysone signaling during development. 

Having firmly established that pri plays a key role in mediating the ecdysone signal for 
proper developmental timing of epidermal trichomes, I will present here additional evidence 
that Pri peptides are also involved in relaying ecdysone action throughout other stages and 
tissues.  

pri RNA expression in the leg disc at larval/prepupal transition requires ecdysone, 
which is further sufficient to induce a premature burst of pri expression in larval leg discs 
upon their in vitro incubation with synthetic ecdysone hormone (Chanut-Delalande et al., 
2014). Following our profiling of the transcriptional activity of pri cis-regulatory regions, we 
found that priI captures, at least in large part, the regulation of pri in this tissue. The priI 
enhancer is expressed in leg primordia, where it accumulates a series of concentric rings in 
the central region, which will ultimately give rise to the distal structures of legs (Estella et al., 
2012; Guarner et al., 2014; Lecuit and Cohen, 1997) including the tarsal segments affected in 
the absence of pri (Galindo et al., 2007; Pueyo and Couso, 2008, 2011; Suzanne, 2016). 
Disrupting ecdysone signaling through targeted expression of a dominant negative form of 
the ecdysone receptor (EcR-DN) (Cherbas et al., 2003) down regulated priI activity in the leg 
disc. Furthermore, we found that EcR-DN also strongly impaired adult leg formation, which 
lack well-differentiated tarsal segments, as also seen following the RNAi-mediated 
knockdown of pri function under similar conditions. These results thus support that ecdsyone 
is also an important aspect of the regulation of pri expression and function for the 
development of adult legs.  

Morphogenesis of the Drosophila eye begins early in the third larval stage (L3) and 
continues during pupal development (Huang et al., 2015). We found a priI activity in the 
developing eye/antenna imaginal disc, which is also influenced by perturbing ecdysone 
signaling. This expression yet only partly reproduces endogenous pri expression, which 
displays again a very dynamic spatiotemporal pattern across larval and prepupal stages, as 
monitored by in situ hybridization. Collaborative work done in the Kageyama’s lab shows 
that pri function is actually indispensable for the proper differentiation of adult eyes. Indeed, 
while small clones of pri mutant cells do not affect eye differentiation, reinforcing by that the 
conclusion that the action of Pri peptides is not cell autonomous in different tissues (Chanut-
Delalande et al., 2014; Kondo et al., 2007; Pueyo and Couso, 2008, 2011), larger clones and 
eyes completely lacking pri function display strong defects, with cells unable of 
differentiation and presenting instead features of necrotic melanized cells. Driving EcR-DN 
impinges on the development of various tissues (Cherbas et al., 2003) and it has been shown 
that endogenous EcR function is required for the differentiation of photoreceptors during 
pupal stages (Sprecher and Desplan, 2008). Interfering with EcR function in post-mitotic eye 
cells produces strong defects, with a pronounced reduction in the eye size and the presence of 
necrotic melanized cells. Importantly, we show that these defects are completely rescued 
following co-expression of pri together with EcR-DN. Furthermore, an artificial construct 
that encodes a single smORF Pri peptide also displays full rescuing activity of EcR-DN 
defects, both for eye development and pupal lethality. In marked contrast, a pri RNA 
construct that contains four point mutations frame-shifting the sequence of Pri peptides is 
devoid of any rescuing activity. These functional data therefore established that pri is 
required for adult eye differentiation. In addition, pri re-expression in cells which are unable 
to interpret the ecdysone signal (in presence of EcRDN) is sufficient to rescue their proper 
differentiation, suggesting that pri is also an important mediator of ecdysone for adult eye 
development during pupal metamorphosis.  
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Conclusion 

During embryonic development, cells are oriented towards their final destiny, through cell 
signaling pathways and TFs, which are expressed specifically in those cells. These regulatory 
cues converge at CRMs, which in turn promote the expression of differentiation genes, thus 
defining the developmental fate of each cell. 

In this dissertation, we presented our progress to shed light on the temporal function 
and expression of a novel kind of regulatory gene, pri, which encodes four small peptides 
throughout Drosophila development. These results provide a conceptual framework to better 
understand the mechanisms coordinating cell behavior in response to endocrine steroid 
hormone signals. Our work establishes a continuous molecular pathway allowing the 
connection from early stages of ecdysone production (GstE14), to the direct control of pri 
enhancers by EcR/20, and their consequences for the temporal control of epidermal trichome 
differentiation (maturation of the Svb TF and activation of trichome effectors). We hope that 
these findings may contribute to a better understanding of how a systemic hormonal signal 
can be integrated in a spatiotemporal pattern of gene activity and directly implement a genetic 
program of terminal differentiation. Our results further suggest that Pri peptides represent a 
fruitful entry point to decipher the whole range of ncRNAs and peptides action in mediating 
steroid function across Shavenbaby-dependent and independent developmental processes. 
Current work in the laboratory exploits some of these ideas and should not miss to provide 
additional insights into both the action of smORF peptides and the molecular mechanisms 
implementing temporal control of development. 
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Summary 
Recent advances in genomics have revealed that most species produce a broad variety of long non-
coding RN As, whose functions remain generally not weil understood. A growing body of evidence yet 
indicates that apparently non-coding RNAs can often encode peptides from small Open-Reading 
Frames (smORFs). While additional data clearly support their translation in cells, an important issue is 
to elucidate the putative mode of action of smORF peptides and whether these peptides could 
contribute to the regulation of differentiation or development. 

Our team is studying the development of epidermal derivatives in flies. Previous work has identified a 
key transcription factor, OvoL/Shavenbaby (Svb ), that governs the differentiation of epidermal 
trichomes, which are cuticle extensions contributing to different aspects of the insect !ife. Svb is both 
required and sufficient to determine trichome formation, and thus Svb expression defines which 
subsets of cells form trichomes. Recent studies showed that Svb directly activates the expression of a 
large number of genes encoding cellular effectors, collectively responsible for trichome 
differentiation. Unexpectedly, trichome formation also requires an atypical RNA, called polished rice/ 
tarsallessl mille pattes (pri), which was initially considered as non-coding but that acts through the 
production of four smORF peptides (ll-32aa). The absence of pri leads to embryos lacking any 
trichomes, as seen following the inactivation of Svb, thus suggesting a functional interaction between 
Pri & Svb. Indeed, a collaborative work has demonstrated that Pri peptides induce a post-translational 
maturation of the Svb protein, switching its activity from a transcriptional repressor to an activator. 
Therefore, whereas Svb expression defines the spatial pattern of epidermal cells forming trichomes, 
Pri peptides are required to turn ON the genetic program of trichome differentiation. While recent 
work in the team now unravels the molecular mechanisms by which Pri peptides achieve Svb 
maturation, the developmental rationale of such a complex process remained to be explored. 

To address this question, the aim of my PhD has been to investigate the transcriptional control of pri 
expression. This issue appeared important since this is ultimately the onset of pri expression that 
de fines wh en the transcriptional program of trichome is executed, in Svb positive ce lis. In a first step, 
1 used a series ofbacterial artificial chromosomes to functionally delineate the extent of the pri genetic 
locus. Although pri is an intron-less RNA of approx. 1.5kb, rescuing assays showed that pri function 
relies on distant genomic regions, spanning more than 50 kb. Using a battery of in vivo reporter 
constructs, 1 then characterized pri genomic regions and found that they include a large array of cis-
regulatory regions driving pri expression in different tissues, and at severa! stages of embryonic and 
post-embryonic development. In collaboration with other members of the team, our studies further 
demonstrate that pri expression is regulated by the ecdysone steroid hormone, a signaling pathway 
weil known for providing a temporal control of developmental transitions. We collected a set of 
complementary pieces of evidence showing that the Ecdysone Receptor activates the expression of 
pri, directly binding to different enhancers that drive various spatiotemporal patterns of pri expression. 
Ali together, these data establish that a main role of pri is to mediate the systemic signal of steroid 
hormone to precisely time the execution of epidermal differentiation, at the successive stages of 
Drosophila development. This allows us to explain the developmental importance of Pri peptides in 
the temporal control of epidermis differentiation, and additional results suggest a broader implication 
of Pri in implementing ecdysone signaling for the timing of different programs of development. 
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Résumé 
Les avancées de la génomique montrent que les êtres vivants produisent de nombreux long 
ARNs noncodant, dont les fonctions restent globalement mal connues. Des données récentes 
indiquent que ces long ARNs apparemment noncodants peuvent cependant traduire des 
peptides à partir de petits cadres ouverts de lecture (smORFs). Si différentes approches 
établissent l'existence de ces smORF peptides, un enjeu important est d'élucider leur mode 
d'action et de déterminer s'ils peuvent participer à la régulation du développement. 

Notre équipe étudie le développement de l'épiderme chez la drosophile. Des travaux 
antérieurs ont bien établi le rôle clé d'un facteur de transcription, OvoL/Shavenbaby (Svb), 
qui gouverne la différenciation des cellules à trichomes de l'épiderme. Des études récentes de 
l'équipe ont permis d'identifier le répertoire des gènes cibles de Svb, qui codent différents 
effecteurs cellulaires collectivement responsables de la formation des trichomes. De manière 
inattendue, la différentiation des trichomes nécessite aussi la fonction d'un ARN atypique: 
polished rice 1 tarsal less 1 mille pattes (pri). Initialement découvert comme un long ARN 
noncodant, pri agit en réalité par la production de quatre smORF peptides (ll-32aa). Une 
collaboration internationale a permis de démontrer que les peptides Pri induisent une 
maturation post-traductionnelle de la protéine Svb, la transformant d'un répresseur à un 
activateur de transcription. Ainsi, alors que l'expression de Svb définit le registre spatial des 
cellules à trichome, les peptides Pri sont requis pour mettre en route le programme 
transcriptionnel de leur différenciation. Si les travaux de l'équipe viennent d'identifier les 
mécanismes moléculaires de l'activation de Svb par les peptides Pri, la logique 
développementale de cette régulation complexe restait à explorer. 

Pour aborder cette question, mes travaux de thèse ce sont concentrés sur la recherche des 
mécanismes transcriptionnels contrôlant l'expression du gène pri. En effet, cette 
problématique apparaissait particulièrement importante car c'est finalement l'expression de 
pri qui va déclencher la formation des trichomes dans les cellules Svb positives. Dans une 
première étape, j'ai utilisé une série de chromosomes bactériens artificiels introduits chez la 
drosophile pour délimiter l'étendue du locus génétique indispensable à la fonction de pri. 
Bien que pri code un ARN sans intron d'environ 1,5 kilobases (kb), mes test génétiques ont 
montré que l'unité fonctionnelle du gène pri s'étend sur plus de 50kb ! J'ai construit une 
batterie de lignées transgéniques rapportrices, qui ont permis d'identifier un ensemble de 
régions cis-régulatrices distinctes, dirigeant l'expression de pri dans différents tissus et stades 
de développement. En collaboration avec les autres membres de l'équipe, nos travaux ont 
montré que l'expression de priest sous le contrôle de l'ecdysone, une hormone stéroïde bien 
connue pour son rôle clé dans la régulation temporelle des transitions développementales, 
incluant les mues larvaires et la métamorphose. Des données complémentaires soutiennent un 
rôle direct du récepteur nucléaire à l 'ecdysone (EcR) pour l'expression de pri, et j'ai complété 
ces résultats en montrant l'importance du site de liaison à EcR pour l'activité de la région cis-
régulatrice dirigeant la transcription de pri dans l'épiderme. L'ensemble de ces données 
établit donc qu'un rôle majeur de priest de relayer l'action systémique de l'hormone stéroïde 
pour définir précisément la temporalité d'exécution de la différenciation épidermique, aux 
stades successifs du développement embryonnaire et post-embryonnaire. Ces résultats 
permettent ainsi d'expliquer l'importance développementale des peptides Pri dans le contrôle 
temporel de la différenciation de l'épiderme, et des données additionnelles suggèrent une 
implication plus large de Pri dans 1 'implémentation du signal ecdysone pour la régulation 
temporelle de différents programmes transcriptionnels du développement. 


