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Using image-based large-eddy simulations to investigate the

intracardiac flow and its turbulent nature

Abstract:

The first objective of this thesis is to generate and analyse CFD-based databases for

the intracardiac flow in realistic geometries. To this aim, an image-based CFD strategy

is applied to both a pathological and a healthy human left hearts. The second objective

is to illustrate how the numerical database can be analysed in order to gain insight

about the intracardiac flow, mainly focusing on the unsteady and turbulent features.

A numerical framework allowing insight in fluid dynamics inside patient-specific

human hearts is first presented. The heart cavities and their wall dynamics are extracted

from medical images, with the help of an image registration algorithm, in order to

obtain a patient-specific moving numerical domain. Flow equations are written on

a conformal moving computational domain, using an Arbitrary Lagrangian-Eulerian

framework. Valves are modelled using immersed boundaries.

Application of this framework to compute flow and turbulence statistics in both a

realistic pathological and a realistic healthy human left hearts is presented. The blood

flow is characterized by its transitional nature, resulting in a complex cyclic flow. Flow

dynamics is analysed in order to reveal the main fluid phenomena and to obtain insights

into the physiological patterns commonly detected. It is demonstrated that the flow is

neither laminar nor fully turbulent, thus justifying a posteriori the use of Large Eddy

Simulation.

The unsteady development of turbulence is analysed from the phase averaged flow,

flow statistics, the turbulent stresses, the turbulent kinetic energy, its production and

through spectral analysis. A Lagrangian analysis is also presented using Lagrangian

particles to gather statistical flow data.

In addition to a number of classically reported features on the left heart flow, this

work reveals how disturbed and transitional the flow is and describes the mechanisms

of turbulence production.

Keywords: Arbitrary Lagrangian-Eulerian, Immersed Boundary Method, Image reg-

istration, Hemodynamics, Heart, Patient-specific, Turbulence, Lagrangian particles.
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Utilisation de simulations aux grandes échelles à partir d’images

médicales pour l’étude de l’écoulement intracardiaque et de sa nature

turbulente

Résumé :

Le premier objectif de cette thèse est de générer et d’analyser une base de données

pour l’écoulement intracardiaque dans des géométries réalistes. Dans ce but, une

stratégie couplant simulation numérique et imagerie médicale est appliquée à un cœur

gauche pathologique et à un cœur gauche sain. Le second objectif est d’illustrer com-

ment cette base de données peut être analysée afin de mieux comprendre l’écoulement

intracardiaque, en portant une attention particulière aux caractéristiques instationnaires

de l’écoulement et à sa nature turbulente.

Une châıne numérique pour simuler l’ écoulement dans des géométries spécifiques au

patient est tout d’abord présentée. La cavité cardiaque et ses mouvements sont extraits

à partir d’images médicales à l’aide d’un algorithme de recalage d’image afin d’obtenir

le domaine de calcul. Les équations qui régissent l’écoulement sont écrites dans le cadre

d’un maillage se déformant au cours du temps (approche arbitrairement Lagrangienne

ou Eulérienne). Les valves cardiaques sont modélisées à l’aide de frontières immergées.

L’application de cette châıne numérique à deux cœurs gauches, l’un pathologique,

l’autre sain est ensuite détaillée. L’écoulement sanguin est caractérisé par sa nature

transitoire, donnant un écoulement complexe et cyclique. Il est montré que l’écoulement

n’est ni laminaire, ni pleinement turbulent, justifiant a posteriori l’utilisation de simu-

lation aux grandes échelles.

Le développement instationnaire de la turbulence est analysé à l’aide de l’écoulement

moyenné sur un nombre suffisant de cycles cardiaques. Les statistiques de l’écoulement,

l’énergie turbulente, la production de turbulence et une analyse spectrale sont notam-

ment présentées. Une étude Lagrangienne est aussi effectuée en utilisant des statistiques

calculées à l’aide de particules ensemencées dans l’écoulement.

En plus des caractéristiques habituellement rapportées, ce travail met en évidence

le caractère perturbé et transitoire de l’écoulement, tout en identifiant les mécanismes

de production de la turbulence.

Keywords: Approche Arbitrairement Lagrangienne ou Eulérienne, Frontières Im-

mergées, Recalage d’Image, Hémodynamique, Cœur, Simulation spécifique au patient,

Turbulence, Description Lagrangienne.
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Je tiens évidemment à remercier les doctorants, permanents et matheux de Mont-

pellier que j’ai pu côtoyer, que ce soit pour les discussions autour et au-delà de la thèse,
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In this introductory chapter, the general context of the thesis is exposed,

as well as the objectives and contributions of this work. The thesis outline

is then presented while the main results of each chapter are exposed.

1.1 Thesis general introduction

1.1.1 Motivations

Today, heart diseases still represent the leading cause of death in the world [111] and

causes each year over 2.0 million deaths in the European Union [6]. Intracardiac flow

vizualisation can provide novel methods to asses cardiac health of a subject. Intracardiac

hemodynamics is closely related to the morphology and function of the heart: changes

of the heart shape or of its wall dynamics alter the blood flow patterns. Therefore,

3
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Left ventricle

Left atrium

Figure 1.1: Visualization of blood flow in a left heart. (a) Phase-contrast magnetic
resonance imaging (from [109]) and (b) Echo-PIV (from [84]).

analysing the blood flow spatial and temporal distribution in the heart may provide

information on cardiac abnormalities.

Since the 1980s, recent technological innovations in medical imaging techniques have

provided valuable opportunities for non-invasive assessment of hemodynamics [154].

Blood flow velocities can be measured in vivo using phase-contrast magnetic resonance

imaging (PC-MRI) or by echocardiography techniques. However, these techniques still

suffer from several drawbacks.

As a matter of fact, in the clinical routine hemodynamics is mostly observed indi-

rectly through global variables such as the cardiac output in order to assess the cardiac

performance. Indeed, a synthetic description of the available flow information and its

relation with the heart function is still lacking. Yet, analyzing the spatial and tempo-

ral distribution of blood flow in the cardiovascular system may provide diagnostic and

prognostic information.

1.1.2 In vivo blood flow visualization

MRI phase-contrast technique

Using the velocity encoded MRI phase-contrast technique [121], blood flow velocities

can be measured in any direction, generating 3D flow velocity maps. PC-MRI stud-

ies have widely contributed to the understanding of hemodynamic features these last

years [20, 24, 51, 62, 90, 93, 109]. Although very comprehensive (see Fig. 1.1a), the

PC-MRI velocity mapping suffers from some drawbacks. In addition of the potentially

disruptive signal-to-noise ratio, the MRI operator must specify the range of velocities

a priori. If not appropriate, this choice leads to aliasing errors in the high-speed range.
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Note also that the flow mapping is not real-time. In order to encode the flow in all

the spatial directions, velocity components measurements are not done simultaneously.

Finally, the flow map is obtained by combining the information from several heartbeats.

Hence, beat-to-beat variations in the flow cannot be recorded (the k-space is filled over

many cardiac cycles). Moreover, PC-MRI suffers from a relatively low spatio-temporal

resolution. Today, cardiac blood flow can be measured with a spatial resolution of

roughly 3 mm3 with a temporal resolution of 50 ms, precluding observation of small-

scale and fast time-varying flow features [83, 94, 186].

Echocardiography techniques

Echocardiography techniques, with higher spatio-temporal resolution, make an alter-

native to PC-MRI (see Fig. 1.1b). However, an important limitation though is that

echocardiography only gives access to the velocity components directed towards or away

from the ultrasonic beam, while one would want to measure the full 3D flow vectors.

However, using color doppler one may reconstruct bi-directional velocity map under the

assumption of planar flow, by using the continuity equation [63].

Echo-PIV technique seems to be a promising approach. By using particles in a

contrast agent, the PIV principle [4, 88] is applied using the ultrasound beams as the

imaging source instead of the classical light sheet generated by a pulsed laser. However,

has several technical limitations inherent to the ultrasound technology such as its limited

field of view, and its relative dependence on the skills of the operator.

Nevertheless, using echocardiography techniques, investigations have been conducted

on normal and abnormal hearts, leading to potential hemodynamics-based biomarkers

for cardiac health [38, 55, 69, 84, 91].

What about the Lagrangian data?

Although these advances appear promising, Eulerian blood flow maps as obtained from

PC-MRI, color Doppler of echo-PIV are inadequate to observe particles trajectories in

such complex flows. Complementary information can be obtained through Lagrangian-

based descriptions. The motion of the blood itself or particles transported by the blood

flow provides supplementary information. Simulating Lagrangian particles mimicking

red blood cells can for example provide distribution of residence time data, which indi-

cates area potentially favouring thrombosis.

Studies have been conducted using MRI [20, 23, 51]. However, they usually suffered

from low spatio-temporal resolution, thus making the time integration difficult. An

interesting study has been conducted by Hendabadi et al. [79] using novel processing of

Doppler-echocardiography. The reconstructed velocity field is only two-dimensional but

the temporal resolution is better than MRI. The obtained velocity fields data are used to

perform trajectory-based computation of Lagrangian coherent structures in ventricles.
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1.1.3 CFD: a complementary and comprehensive method?

Computational fluid dynamics (CFD) has been more and more used to predict blood

flow in the heart over the last decade. In silico replications of heart chambers, mainly

the left ventricle (LV), have been considered. Simulations in idealised ventricles [12,

43, 137, 176] or in more realistic geometry [187] have been performed. As in vitro

experiments [27, 60], such fundamental CFD studies are particularly useful to isolate and

elucidate the effect of well-controlled parameters on the blood flow. Likewise, numerical

simulations focusing on Lagrangian-based descriptions in idealized left ventricle have

been conducted by Zheng et al. [188] and Seo et al. [156] focusing on residence time and

blood mixing. Still, Lagrangian data in the ventricle are fragmented and are lacking in

the entire heart.

Inherent simplifications of the human ventricle raise the question of the relevance of

the conclusions for individual clinical cases. CFD starts to be a mature technique for

arterial flows [67, 96, 157, 169], but its application to study the full heart haemodynamics

faces additional challenges:

• the geometry of the blood domain is complex and it undergoes large deformations,

• opening and closing valves make the topology of the domain change over the

cardiac cycle,

• the flow is the result of a complex electrical-fluid-structure interaction problem,

• the flow regime is most probably transitional between laminar and turbulent and

varies over the cardiac cycle.

Two main different strategies have been developed to obtain simulation of the blood

flow in realistic heart geometries. The most natural one is to extract the heart geome-

try at one particular instant in the heart cycle and to solve an electrical-fluid-structure

interaction (EFSI) problem [31, 49, 95, 132, 133, 166, 178]. In this approach, patient-

specific data are needed [162, 171]. What is the exact rheology of the myocardial muscle?

What is the load produced by the heart environment? How to reproduce the mechano-

electric coupling in the heart muscle? All these questions are still mostly open, thus

making this fully coupled approach extremely challenging. Another strategy consists in

using realistic heart wall movements extracted from cine MRI or Computed Tomogra-

phy (CT) scan data. The heart movement is not computed, but prescribed from the

patient-specific medical images, which can be acquired using standard clinical imaging

procedures. Such a computational approach, where the geometry and its deformation

are extracted from images will be referred to as image-based computational fluid dy-

namic (IB-CFD). Different research teams have developed IB-CFD methods for heart

flows, more specifically to study the left ventricle alone [101, 114, 146, 147, 151]. Re-

cently, more advanced work has been published, using a full heart model obtained from

CT images [116] or a heart model fed from MR images [42]. The feasibility of cardiac
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IB-CFD has been shown, but the flow results notably suffered from limited spatial res-

olution or partial geometries (LV only in the majority of the cases). Furthermore, there

has been remarkably little focus on the presence of turbulence in the heart, except in a

few experimental works [54, 143].

1.1.4 About turbulence

A signature of abnormal flows

Under pathological conditions, it is commonly believed that topological changes, not

only in the heart but also in the whole human cardiovascular system may result in

abnormally disturbed flows. However, little in vivo studies focusing on turbulence have

been reported on human beings, as the direct measurement of turbulence quantities

requires access to the patient instantaneous blood flow. Still, measurements of high-

frequency velocity fluctuations suggesting the presence of turbulence, or at least intense

cycle-to-cycle variations, were published in a few studies performed on humans in the

seventies. Ferguson [57] recorded sounds indicative of turbulence with a phonocatheter

from the sacs of 10 out of 17 intracranial aneurysms exposed at surgery (with a peak

Reynolds number of 400 approximately). Invasive conventional experimental fluid dy-

namics methods were used as well. Stein & Sabbah [165] used thermal anemometry to

estimate the intensity of velocity fluctuations. They measured the standard deviation

of repeated velocity measurements on a probe location within the ascending aorta. The

results of this study indicate that turbulent flows occurs consistently in the ascending

aorta of individuals with abnormal aortic valves.

In order to avoid the pitfall of in vivo studies, numerical simulations have been

carried out over the last years with an increased focus on the use of proper numerical

schemes, meshes and temporal resolution [174]. Highly unstable and turbulent flows

have been observed in numerical simulations, in areas where the physiological Reynolds

numbers are in the range of 100-2500, as in abdominal aorta aneurysms [96], carotid

siphons [173] or in cerebral aneurysms [117, 172]. These observations are in accordance

with idealized numerical simulations which showed that turbulence could occur for low

Reynolds numbers in simple geometries, with pulsatile inflows (e.g.: studies conducted

in idealized stenosis by [118] or [175]). In the heart, using numerical simulations in

an idealized left ventricle, Domenichini et al. [43] suggested that turbulence could be

observed in abnormal conditions. Particle image velocimetry experiments showed tur-

bulence as well in phantoms hearts [54, 143].

Only in abnormal flow?

Interestingly, the experiment conducted on human aorta by Stein & Sabbah [165] showed

that high-frequency disturbances can also occur in the ascending and in mid-ascending

aorta of subjects with normal cardiac function. Figure 1.2a and Fig. 1.2b show the

high frequency disturbances observed at these two sites. In the same period, thermal
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(a) (b)

(c) (d)

Figure 1.2: Velocity measurements on healthy human subject from [165]: high-frequency
disturbances were observed above the aortic valve (a) and in mid-ascending aorta (b).
(c) and (d) shows blood flow velocity records in a canine ascending aorta. (c) from [181]
and (d) from [153].

anemometry was used to estimate the intensity of velocity fluctuations in canine aortas.

The same type of signal has been observed in animal studies by Seed & Wood [153],

Nerem et al. [127] and by Yamagushi et al. [181, 182] (see Fig. 1.2c and Fig. 1.2d).

Through phase-contrast Magnetic Resonance Imaging (MRI) methods, which allow

non-invasive blood flow measurements, Stalder et al. [163] studied the aortic flow in a

large cohort of 30 healthy subjects. They computed a critical peak Reynolds number

for turbulent transition depending on the measured Womersley and Strouhal numbers

according to an empirical correlation proposed by Peacock et al. [136]. Their conclusion

was that flow instabilities were present in healthy subjects at rest in the ascending and

descending aorta as supracritical Reynolds numbers are likely. More recently, Dyverfeldt

et al. [47] developed a new MRI method based on the intravoxel velocity standard devia-

tion to calculate the flow turbulent kinetic energy (TKE). This MRI method strengthens

the idea that turbulence can occur in healthy human subjects, although it is weaker than

in pathological cases. Indeed, non-negligible levels of TKE values in healthy aorta, in

left atrium [48] and in left ventricles [185] were measured.

Under the light of the cited experiments and simulations, the idea of an always lami-

nar flow seems now questionable in the cardiovascular system, particularly in the human

heart. If transitional and turbulent flows are observed in a simple cerebral aneurysm,

what can be expected for a complex domain like the heart? It is believed that only

a pathological cardiovascular system topology may yield flow separation, recirculation
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and reattachment, as well as strong shear layers. These features combined with flow

pulsatility can result in periodic transition to turbulence. However, it appears that all

these features could be found in the healthy cardiovascular system as well, notably in

the left heart.

The left heart acts as a pump for the oxygenated blood coming from the lungs. The

left heart is composed of two cavities, the atrium and the ventricle. These heart cavities

have a complex shape and are deformed over the cardiac cycle. The ventricle is also

connected to the aorta. The atrium has generally four entrances (the four pulmonary

veins), connected to the lungs. The oxygenated blood pumping can be described in two

main phases. First, an admission phase called diastole, and an ejection phase called

systole. During diastole, blood rushes from the atrium, which is filled with oxygenated

blood, to the ventricle. Then, during systole, the ventricle volume decreases up to 60 %

of its maximum volume, to push out blood through the aorta. In the meantime, four

oxygenated blood jets are formed in the atrium thanks to four inlets: the left and right

superior pulmonary veins and the left and right inferior pulmonary veins.

Complex and highly moving cavities topology, Reynolds numbers up to 5000: in a

few words, the heart seems to be a breeding ground for turbulence. This suggests that

turbulence may exist in healthy subjects. Still, there has been little or no focus on the

turbulence in the heart blood flow simulation, despite its potential medical importance.

Turbulence in blood is not only interesting from a phenomenological point of view. It is

also from a pathological point of view as turbulence may be a cause of pathophysiological

changes [33] as initiation and progression of atherosclerosis [29], platelet activation [16],

red blood cells aggregation [164] or hemolysis [87].

However, patient-specific simulations have only focused on the laminar flow regime [42,

101, 114, 116, 147, 151]. There is a real gap between the knowledge gained through the

few in vivo studies, the numerical simulations in simple physiological system and the

heart simulations done today. It is even more puzzling that this gap exists between

experiments and simulations of the heart itself.

Whether or not haemo-turbulence analysis is clinically relevant remains an open

question. If the intracardiac flow is turbulent, when and where during the heart cycle

does turbulence occur? Because of which mechanisms? In addition, from a modelling

point of view, if turbulence is present, what is the impact of the blood flow on haemol-

ysis model based on integrated mean local stress? What about the residence time of

red blood cells commonly computed on averaged blood flows? If turbulent, is direct

numerical simulation of the flow possible? Could the turbulence be modelled and how?

1.2 Thesis aims

The first objective of this thesis is to generate and analyse CFD-based databases for

the intracardiac flow in realistic geometries. To this aim, an IB-CFD strategy is applied

to both a pathological and a healthy human left hearts. The second objective is to
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illustrate how the numerical database can be analysed in order to gain insight about

the intracardiac flow, mainly focusing on the unsteady and turbulent features.

The following tasks have been achieved during the course of this PhD work:

• Adapt an existing algorithm used for simple vessels (aorta and aneurysm) to

extract the heart deformations from medical images.

• Develop a new numerical solver within an existing code and develop models for

the heart valves.

• Use large eddy simulation (LES) for simulating blood flows within left hearts.

• Characterize the obtained flow in a full patient left heart and in an healthy subject.

• Investigate the obtained turbulent flows and compare them.

• Use this tool to investigate the Newtonian hypothesis by comparing two simula-

tions using either a Newtonian fluid or a Carreau-Yassuda fluid.

• Use a Lagrangian-based description to investigate blood transport using tracers

as red blood cells.

1.3 Thesis outline

1.3.1 Part I - Introduction

In addition to the current chapter, this introductory part contains a short chapter

(chapter 2) providing to the reader the required knowledge about the physiology, the

function and properties of the human left heart.

1.3.2 Part II - Image-based CFD method

The second part focuses on the numerical methods, either adapted from previous works

or developed specifically. An image-based CFD method is presented. As in the afore-

mentioned IB-CFD works [101, 114, 147, 151], medical images are used to generate a

moving patient-specific domain, in which the blood flow equations are solved. The ge-

ometry movements are generated from a 4D sequence (MRI or CT scan images) treated

by an appropriate image registration algorithm [122, 129]. This approach has been used

before to compute blood flow in aortas [115]. It is further developed for application to

the left heart flow, notably by introducing valve modelling.

This chapter is part of: C. Chnafa, S. mendez and F. Nicoud, ”Using image-based CFD

to investigate the intracardiac turbulence”. Published as a chapter in the book ”The

Cardio-Circulatory System: from Modeling to Clinical Applications”, 2014 [34].
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1.3.3 Part III - Eulerian analysis

Chapter 5 - First insights in a left heart flow

In order to demonstrate the ability of the method to compute the flow in the heart,

its application to a complete patient-specific left heart is exposed in the first chap-

ter of the second part of this manuscript. Using 4D CT scan images, a realistic left

heart flow is computed using large-eddy simulation. The dynamic Smagorinsky-Lilly

model [68] is used in this chapter. This heart is referred to as ”heart A” all along this

manuscript. As cycle-to-cycle velocity fluctuations are observed, 20 cardiac cycles are

simulated for phase averaging and results are presented in chapter 5. An extensive

description of the flow obtained is provided and the main flow characteristics usually

reported in the literature are emphasised. The flow sensitivity to LES models (the

dynamic Smagorinsky-Lilly model and the σ-model [130]) and a quick comparison be-

tween simulation of blood as a Newtonian fluid and blood as a Carreau-Yasuda fluid

are presented.

This chapter is part of: C. Chnafa, S. Mendez and F. Nicoud, ”Image-based large-eddy

simulation in a realistic left heart”. Published in Computers & Fluids, 2014 [35].

Chapter 6 - Turbulent assessment of a left heart flow

Chapter 6 provides an extended analysis of the flow in heart A. Large-eddy simulation is

used to compute flow and turbulence statistics over 50 cardiac cycles. In the light of the

conclusions drawn from the last chapter, the σ-model is used for the sub-grid scale (SGS)

model instead of the dynamic Smagorinsky-Lilly model. The resulting complex cyclic

flow shows a transitional nature, a significant amount of turbulence being generated

during some specific phases of the heart cycle.

The unsteady development of turbulence is analysed by studying flow statistics, the

turbulent stresses, the turbulent kinetic energy, its production and through spectral

analysis. It is revealed that two mechanisms create turbulence in the studied left heart:

the impingement of a vortex structure on the lateral wall of the ventricle during diastole

and the collision of inflowing jets in the atrium during both diastole and systole.

The transient turbulent field is also examined by the invariant map of the turbulent

stress anisotropy. It is revealed that the turbulence, when present, is close to an axisym-

metric state. The flow field relaminarizes when the systolic phase begins, thanks to the

stabilizing effect of the acceleration. The entire process of vortex structure undergoing

turbulent breakdown and subsequent relaminarization occurs at each cycle, although

significant cycle-to-cycle differences are observed.

This chapter is part of: C. Chnafa, S. Mendez and F. Nicoud, ”Turbulence characteri-

sation in a patient-specific human left heart. A numerical study”. To be submitted for
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publication in Journal of Fluid Mechanics.

Chapter 7 - A healthy subject: analysis and comparisons

In chapter 7, large-eddy simulation is used to compute flow and turbulence statistics

over 30 cardiac cycles in a healthy heart, referred to as ”heart B” in the following. The

numerical domain is extracted from a temporal series of 3D medical images from a MRI

exam. Thus, the blood flow unsteadiness is investigated thanks to a properly executed

subject-specific large-eddy simulation. As for heart A, the resulting complex cyclic flow

shows a transitional nature and turbulence is generated during some specific phases of

the heart cycle. A comparison of the two intracardiac flows A and B is provided.

1.3.4 Part IV - Lagrangian analysis

This last part contains one chapter: ”Study of tracers transport in left hearts”. Flows

described in Part III are seeded with massless particles to mimic the trajectories of red

blood cells in hearts (atrium and ventricle). Statistical data are gathered and analysed.

Statistics on the residence times, mean particle velocity will be provided for both atrium

and ventricle cavity. Particles penetration and travelled path length in the ventricle will

be described as well. Results between the two presented hearts are compared.

1.3.5 Conclusion

In this last chapter the main findings and conclusions drawn from this thesis are given.

Discussions about the presented results and the hypothesises made in this thesis are

provided. Perspectives for future researches are then discussed.
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Before getting to the heart of the matter, an introduction to the cardio-

vascular system is proposed to the reader. This short chapter provides the

necessary knowledge about the human heart and exposes the vocabulary

employed in this manuscript. The complexity of the cardiovascular system

is just sketched here. The interested reader can get a more exhaustive pre-

sentation by consulting a relevant bibliography as [17, 98, 158].

2.1 The cardiovascular system

2.1.1 The circulatory loop

The cardiovascular system transports approximately 5 litres of blood through a network

of vessels in the human body. This cardiovascular system is powered by a natural pump

about the size of a closed fist: the heart. Figure 2.1 provides a schematic view of

the circulation of blood (figure from [17]). This system is composed of two primary

circulatory loops: the pulmonary circulation loop and the systemic circulation loop.

The pulmonary circulation transports deoxygenated blood (parts in blue in Fig 2.1)

from the right side of the heart to the lungs, where the blood picks up oxygen and

returns to the left side of the heart. The pumping chambers of the heart that support

the pulmonary circulation loop are the right atrium and the right ventricle.

The systemic circulation carries highly oxygenated blood (parts in red in Fig 2.1)

13
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Figure 2.1: Sketch of the circulatory system (from [17]).
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Figure 2.2: Cardiac events occurring in the cardiac cycle (from [17]).

from the left side of the heart to all of the tissues of the body (with the exception of the

heart and lungs). Systemic circulation removes wastes from body tissues and returns

deoxygenated blood to the right side of the heart.

2.1.2 The cardiac cycle

The blood pumping performed by the heart includes two main phases: diastole and

systole. The term cardiac cycle refers to a complete heartbeat from the beginning of

the diastole to the end of the systole. Its frequency is described by the heart rate,

typically expressed in beats per minute (bpm). Each beat of the heart involves five
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steps. Figure 2.2 describes these steps. The first three steps consist in a phase lasting

roughly two thirds of the cardiac cycle and is referred to as the diastole.

During diastole, valves between atria and ventricles are open while valves between

the ventricles and pulmonary artery (in the case of the right ventricle) and the aorta

(in the case of the left ventricle) are closed. These valves prevent back-flow of the blood

into the corresponding chamber. Hence, blood passes from the atria into the ventricles.

In the left side of the heart, the ventricle filling is decomposed in two steps. At first,

the ventricle volume increases rapidly, resulting in the admission of a high amount of

blood coming from the atrium. This first blood wave is referred to as the ”E wave”.

Second, the atrium contracts (it is referred to as the ”atrial systole”) and a second wave

of oxygenated blood rushes in the ventricle. This second wave is referred to as the ”A

wave”.

During systole, the ventricle volume decreases rapidly in order to eject blood from

the ventricle to the pulmonary artery (in the case of the right ventricle) and the aorta

(in the case of the left ventricle). During systole, valves between atria and ventricles

are closed, while valves between the ventricles and the pulmonary artery (in the case of

the right ventricle) and the aorta (in the case of the left ventricle) are open.

2.1.3 The human heart

As described in the last section, the heart is a four-chambered organ, where each side

(left and right) operates as a separate pump during the cardiac cycle. Figure 2.3 displays

schematically the human heart geometry. The left and right sides of the heart are

separated by a muscular wall of tissue known as the septum of the heart. The right side

of the heart receives deoxygenated blood from the inferior and superior vena cava and

pumps it to the lungs through the pulmonary artery for oxygenation. The left side of the

heart receives oxygenated blood from the lungs through the pulmonary veins and pumps

it through the systemic arteries to the tissues of the body. Each heartbeat results in the

simultaneous pumping of both sides of the heart. The left heart is composed of the left

atrium (LA) and the left ventricle (LV). These cavities are the pumping chambers for

the systemic circulation loop and are separated by the mitral valve. The aortic valve

separates the aorta from the left ventricle.

Note that in cardiology, the performance of the ventricles are measured with sev-

eral volumetric parameters as the end-diastolic volume (EDV), the end-systolic volume

(ESV), the stroke volume (SV = EDV - ESV), the ejection fraction (EF = SV / EDV),

the cardiac output (CO = SV × bpm) and the E/A ratio (E/A = ’blood velocity of the

E wave’ / ’blood velocity of the A wave’).

Left ventricle

The left ventricle cavity is a long and narrow structure with a circular cross-section. It

forms the apex of the heart and constitutes most of the posterior surface of the heart.

Its walls are three times thicker then those of the right ventricle, being thickest near
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Figure 2.3: Sketch of the human heart. Blue components indicate de-oxygenated blood
pathways and red components indicate oxygenated pathways. from [158]

the base and thinnest at the apex. This is because the left ventricle pumps oxygenated

blood throughout the entire body while the right ventricle only pumps deoxygenated

blood to the lungs.

There are two papillary muscles arising from the area between the apical and mid-

dle thirds of the left ventricular wall: the antero-lateral (A-L) papillary muscle is often

composed of one body or head, and the postero-medial (P-M) papillary muscle usually

composed by two bodies or heads. Each papillary muscle are attached to chordae ten-

dinae, which are small fibrous strings connected to both mitral leaflets. These chordae

tendineae attach the papillary muscles to the cusps of the mitral valve and contract to

prevent inversion or prolapse of this valves during the cardiac cycle.

The endocardium surface of the left ventricle (the inner layer of the heart in contact

with blood) is not smooth. It is covered by trabeculae carneae (also called trabecula-

tions). The trabeculae carneae network is arranged like some sort of small wire mesh.
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Figure 2.4: Trabeculae carneae on the inner surface of a left ventricle (from [1]).

Figure 2.4 shows trabeculae carneae in a human left ventricle.

Left atrium

The left atrium (LA) receives oxygenated blood from the pulmonary veins and pumps

it into the left ventricle, via the mitral valve. The pulmonary veins (generally four) are

distinct vessels named by their position: the right superior pulmonary vein (RSPV),

the right inferior pulmonary vein (RIPV), the left superior pulmonary vein (LSPV) and

finally the left inferior pulmonary vein (LIPV). The surface of the atrium is smooth.

High in the upper part of the left atrium, between the LSPV and the LV, is an complex-

shaped muscular pouch, the left atrial appendage (LAA) (not shown in the figures here).

The left heart valves

The mitral valve (MV) separates the LA and the LV. This valve is formed by two leaflets

connected to the papillary muscles thanks to the cordae tendinae. It is the only valve

composed of two leaflets in the human heart. The mitral valve function is to prevent

back-flow of oxygenated blood in the LA when the LV volume decreases to eject blood

through the aorta (AO).

The aortic valve (AV) normally has three leaflets and lies between the LV and the

AO. During ventricular systole, pressure rises in the left ventricle. When the pressure in

the left ventricle rises above the pressure in the aorta, the aortic valve opens, allowing

blood to exit the left ventricle into the aorta. When ventricular systole ends, pressure

in the left ventricle rapidly drops. When the pressure in the left ventricle decreases, the

aortic pressure forces the aortic valve to close.
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This chapter describes the numerical methods developed and implemented

in the YALES2BIO1 solver [113]. The YALES2BIO solver is an adaptation

of the YALES22 [123] research solver dedicated to the computation of ener-

getic turbulent flows. As such it inherits from YALES2 its 4th-order central

scheme in space on unstructured meshes and its capabilities of massively par-

allel computations of turbulent flows [124]. The blood governing equations

in a general formulation are derived allowing the flow computation in a time

varying computational domain. The developed method implemented dur-

ing this work is described and tested. Subgrid-scale models for Large Eddy

1www.math.univ-montp2.fr/∼yales2bio
2www.coria-cfd.fr/index.php/YALES2
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Simulation of transitional flows are used for accounting for the turbulence

effects if present. Finally, the immersed boundary method implemented

during this work is described and tested.

3.1 Governing equations

Blood can be modelled as an incompressible fluid, but red blood cells induce a com-

plex rheological behaviour [59]. However, for high stress levels and in large vessels,

non-Newtonian effects are usually neglected and blood is usually modelled as an incom-

pressible Newtonian fluid in numerical simulations [169, 116]. Note that the numerical

method presented in this chapter can be applied to non-Newtonian fluids and will be

latter in this thesis. Taking the incompressible flow assumption into account and assum-

ing blood as a Newtonian fluid, the fluid motion is described by the Navier-Stokes (NS)

equations. These equations are solved on the moving blood domain Ωf (t) ⊂ R3 bounded

by ∂Ωf (t). The boundary ∂Ωf (t) is such that ∂Ωf (t) = ∂Ωi
f (t) ∪ ∂Ωw

f (t) ∪ ∂Ωo
f (t) and

∂Ωi
f (t) ∩ ∂Ωw

f (t) ∩ ∂Ωo
f (t) = ∅ where ∂Ωi

f (t) represents a fluid inlet boundary where a

Dirichlet condition is prescribed on the velocity field, ∂Ωw
f (t) represents the vessels and

heart wall boundary and ∂Ωo
f (t) represents a fluid outlet boundary. The NS equations

read:

∂uf

∂t
+ (u · ∇)u = −1

ρ
∇p+ νn∇2u+ f ,

∇ · u = 0,











on Ωf (t) (3.1)

where u is the fluid velocity field, p is the pressure field, νn the kinematic viscosity, ρ

the density and f a volumetric force. The corresponding initial and boundary conditions

are,

u(x, 0) = u0(x) on Ωf (0), (3.2)

u(x, t)|
x∈∂Ωw

f
(t) = us(x, t) on ∂Ωw

f (t), (3.3)

u(x, t)|
x∈∂Ωi

f
(t) = −U in(x, t)no(x) on ∂Ωi

f (t), (3.4)

where U in(x, t) is the inlet velocity profile imposed as a Dirichlet condition, no the

outward normal at the inlet faces, and us is the endocardium surface velocity field

imposed as a Dirichlet condition as well. A convective outlet boundary condition is

imposed on ∂Ωo
f (t) as,

∂u(x, t)

∂t
+ U conv ∂u(x, t)

∂n
= 0, (3.5)

where n is the outward normal at the outlet patch and U conv the convective velocity.

The uniform convective velocity U conv is imposed in such a way to meet the global

mass conservation over Ωf (t). The surface velocity us is not computed but extracted

from the medical images and applied as boundary conditions for the fluid problem (see

chapter 4).
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3.2 Fluid equations in moving domains

3.2.1 Conceptual aspects

The aim is to solve the NS equations given in the former section to describe heart flows

or more generally intra-vessels flows. Proper simulations require coping with potentially

strong distortions of the studied domain. The classical Eulerian description thus cannot

deal with this kind of simulation as the blood motion should be described relatively to

a fixed mesh in space and time throughout the entire calculation.

Another description of motion if the Lagrangian one. Using this description, each

blood subvolume corresponds to a mesh node which is thus charted over time. This

description is generally used in case of ”small” displacements (as in solid mechanics) and

cannot describe the class of flows handled here without massive remeshing operations.

The idea of keeping a proper description of the flow domain without the requirement

of frequent remeshing brought the idea of a framework combining the best features

of both the Lagrangian and the Eulerian world: the Arbitrary Lagrangian Eulerian

description [45, 58, 81, 82]. This description allows to move the mesh domain arbitrarily

with the desired boundary deformations whilst computing properly the fluid. As the

domain can be freely moved, domain deformation can be handled by a chosen continuous

node rezoning. This mesh update procedure will be developed later in this chapter.

3.2.2 ALE formulation

Let us consider a domain Ω̂ ⊂ R
nd (with nd is 2 or 3) an open bounded fluid domain.

Each point of this continuum domain can be described by its coordinates x̂i. This

reference domain follows a deformation all along the time t ∈ T , with T = [t0, tf [

(where t0 and tf are respectively the beginning and the end times of the observation)

thanks to a one-to-one ”material” mapping M,

M : Ω̂ × T → Ω(t) × T ,
(x̂, t) 7→ M(x̂, t) = (x, t)

where Ω(t) is the current state of the deformed domain Ω̂ thanks to a physical map as

Ω(t) = M(Ω̂, t). The Jacobian matrix of this deformation is defined as

JM =
∂x̂

∂x
. (3.6)

The determinant JM of the Jacobian JM is considered non null as the physical material

mapping M is considered invertible and positive as the transformation needs to be

orientation preserving. The velocity of each point of the domain Ω(t) can be defined

as the time derivative of the displacement between the points and their transformation,

thus

û(x̂, t) =
∂

∂t

(M(x̂, t) − x̂
)

(3.7)

=
∂

∂t

(M(x̂, t)
)

. (3.8)
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Let us now consider a third domain ω(t) ⊂ Ω(t). This domain can be considered as an

area where observation of the continuum is wanted. This domain is the future compu-

tational domain which will be latter discretized to compute the N.S. equations. This

domain is deformed with another mapping which this time is not necessarily physical.

This mapping will be named the ALE mapping A and defined as,

A : ω̃ × T → ω(t) × T ,
(x̃, t) 7→ A(x̃, t) = (x, t)

where ω̃ = ω(t = 0) is a domain of reference. As for the material mapping M, the

Jacobian is defined as

JA =
∂x̃

∂x
. (3.9)

Again, the determinant JA of the Jacobian JA is considered non null and positive. The

velocity of this domain ω(t) is defined as

w(x̂, t) =
∂

∂t

(A(x̃, t)
)

. (3.10)

Two observations:

• if the transformation A = Idω̃, i.e. the function A maps every element to itself, the

observation domain remains still during time. This is the Eulerian formulation.

• if the transformation A = M, i.e. the function A allows the observation domain

to move following the same physical law as the fluid continuum. In this case,

the observation domain follows the same material fluid particles all along the

observation time t.

Besides these two particular cases, the general case is the arbitrary Lagrangian Eule-

rian one, the ”arbitrary” term coming from the ”arbitrary” choice of the mapping A.

Figure 3.1 shows the different domains and mappings in this case.

To recast the NS equation in this general formulation, the time differential operators

need to be properly defined as they depend on the chosen formulation. The ALE time

derivative for a physical quantity q (which can be a tensor of any order) is define as

∂

∂t

∣

∣

∣

∣

A
q(x, t) =

d

dt

(

q(A(x̃, t))
)

. (3.11)

This ALE derivative of q at (x, t) is interpreted as the rate of total variation in time

of q on a particular point x̃ of the observation domain. This observation point moves

thanks to the map A and is located on the point x at the time t. The chain rule is then

applied to this ALE derivative and yields,

∂q

∂t

∣

∣

∣

∣

A
=

∂q

∂t
+ w · ∇q. (3.12)
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Ω(t)

ω(t)

Ω(t′)

ω(t′)

ω̃

Ω̂

A(x̃, t)

M(x̂, t)

A(x̃, t′)

M(x̂, t′)

Figure 3.1: Representation of a transformed material domain Ω and observation domain
ω at times t and t′ thanks to a material and a ALE mappings for the general case.

This relation can be reversed to the classical Eulerian derivative ∂·
∂t if mapping A =

Idω̃ or in other words, when w = 0. In the Lagrangian case, w becomes the material

velocity û and the relation is reversed to the classical Lagrangian derivative.

Now, the framework to recast the Eulerian NS equations expressed at 3.1 is fixed.

As only transient and convective terms change between the different formulations, equa-

tion 3.1 is rewritten as

∂u

∂t
+ (u · ∇)u = RHS, (3.13)

where the RHS contains the viscous fluxes, the pressure gradient and the body force.

By replacing the Eulerian derivative by the ALE one thanks to relation 3.11, the equa-

tion 3.13 is rewritten as

∂u

∂t

∣

∣

∣

∣

A
+ ((u− w) · ∇)u = RHS. (3.14)

Immediate observation is that introduction of the ALE formulation induces a correction

in the convective term thanks to velocity of the observation domain ω(t).

The YALES2BIO solver uses a finite volume method which is based on the spatial

integration of physical quantities on closed domains. Thus, equation 3.14 needs to be

integrated on a domain, let us say on the observation domain ω(t). Equation 3.14 yields
∫

ω(t)

∂u

∂t

∣

∣

∣

∣

A
dω +

∫

ω(t)
((u−w) · ∇)u dω =

∫

ω(t)
RHS dω. (3.15)

However, the future numerical time integration will be easier if the volume integration

of the time derivative commute. Here, the domain ω(t) is potentially time dependant
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which prevents this commutation. A way of bypassing this issue is the derivation of

a volume integration of the first left hand side term over a volume fixed in time, as

the reference one ω̃. In order to do this, the Jacobian determinant JA is introduced in

relation 3.15. Using

∂uJA

∂t

∣

∣

∣

∣

A
= JA

∂u

∂t

∣

∣

∣

∣

A
+ u

∂JA

∂t

∣

∣

∣

∣

A
, (3.16)

= JA
∂u

∂t

∣

∣

∣

∣

A
+ uJA∇ · w, (3.17)

the time derivative of equation 3.15 can be replaced and this expression is obtained:

∫

ω(t)

1

JA

∂uJA

∂t

∣

∣

∣

∣

A
dω +

∫

ω(t)
∇ · (u(u− w)) dω =

∫

ω(t)
RHS dω. (3.18)

As A is bijective, supposed a continuously differentiable function and u a continuous

function, successive integrations by substitution can be applied to on the first left hand

side term:
∫

ω(t)

1

JA

∂uJA

∂t

∣

∣

∣

∣

A
dω =

∫

ω̃

∂uJA

∂t

∣

∣

∣

∣

A
dω̃, (3.19)

=
∂

∂t

∣

∣

∣

∣

A

∫

ω̃
uJA dω̃, (3.20)

=
∂

∂t

∣

∣

∣

∣

A

∫

ω(t)
u dω. (3.21)

Finally, equation 3.13 in ALE formulation and integrated on a domain becomes

∂

∂t

∣

∣

∣

∣

A

∫

ω(t)
udω +

∫

ω(t)
∇ · (u(u− w)) dω =

∫

ω(t)c

RHS dω. (3.22)

The observation domain called ω(t) can now be discretized and the equations can be

solved.

3.3 Design of the time advancement scheme

3.3.1 Runge-Kutta scheme

In the following, the domain ω(t) is discretized thanks to a mesh. Defined as a finite

collection of disjoint simplices and form a partition of ω(t). The mesh topology remains

unchanged during the simulation time and each mesh node posses a velocity w as defined

in the last section. Here, data are node-located and a control volume named ωc(t) ⊂ ω(t)

is considered. Integrating equations 3.22 between tn=t0 + n∆t (∆t being the time step

size) and tn+1 yields,

un+1V n+1 − unV n +
∫ tn+1

tn

∫

ω(t)c

∇ · ((u− w)u) dωdt = RHS, (3.23)
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with V n the cell volume at time tn. The time advancement scheme applied on the

equations 3.23 is chosen as an explicit low-storage four-step Runge-Kutta scheme [180]

recast in an ALE formalism. This scheme is coupled with the Chorin’s projection

correction method [36] for the pressure term (details will be given in subsection 3.3.2).

Thus, velocity at time tn+1 is computed thanks to a time advancement scheme using

four sub-steps. Leaving the RHS term apart, they are computed as:

u0 = un

ui = un V n

V i
+ αi

∆t

V i

∫

ω
∇ · (ui−1 − wn+1)ui−1 dω for i = 1, ..., 4

un+1
⋆ = u4,

(3.24)

where un+1
⋆ =u⋆(tn+1) is the predicted (non-solenoidal) velocity field, αi is a coefficient

as αi = [1/4, 1/3, 1/2, 1] and V i the cell volume at time ti=tn + αi∆t. Note that if the

mesh velocity is zero, the volumes V n and V i are equal and a classical low-storage four-

step Runge-Kutta scheme is recovered. Grid nodal velocity w are considered constant

during the computational time step. Each Grid node x is advanced at the beginning of

each sub-step i as,

x0 = xn

xi = xi−1 +wn+1βi∆t for i = 1, ..., 4

xn+1 = u4 + βf ∆t,
(3.25)

and grid metrics are recomputed at the end of each sub-step. Coefficients βi are linked to

αi and are equal to βi = [1/8, 1/24, 1/12, 1/4]. They allow the grid to move at the wanted

midpoint configuration. At the end of the fourth step, the grid is at a configuration

corresponding to time tn+1/2 as confirmed by the summation of the β coefficients. A

final step is thus imposed to the grid with a coefficient of βf = 0.5 to reach its final

position. The reader’s attention is drawn to the integration volume ω in equation 3.24.

It is crucial to establish at which time evolving domain the equation must be integrated.

A way to answer this question is to require that the numerical method satisfies a discrete

version of the so-called Geometric Conservation Law (GCL) [56, 19]. Referring to the

classical interpretation of the GCL, the numerical method has to preserve the state of a

constant flow U . A discrete GCL arises from the presented numerical scheme for each

sub-step as:

V i − V n = −αi∆t
∫

ω
∇ · wn+1 dω for i = 1, ..., 4. (3.26)

For each control volume, this relation states that the change in volume where the equa-

tions are integrated between tn and tn+1 must be equal to the volume swept by the
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control volume boundary during tn+1 − tn. Grid nodal velocity w is constant and the

metrics evolve linearly during the computational time step. In order to satisfy exactly

Eq. 3.26, the integration must then be computed at the midpoint configuration for

each sub-step. Thus, the numerical scheme (3.24) satisfies the Discrete GCL for each

sub-step. The RHS is computed with values taken at i − 1 at the midpoint mesh

configuration as well.

A practical use of equation (3.26) is made in the YALES2BIO solver. During the

numerical integration of the NS equation, as stated by the scheme (3.24), intermediate

control volume is needed at time ti=tn + αi∆t for the i-th step. Beside, metrics are

needed at midpoint configuration of each of the sub step. In order to be efficient, the

Discrete GCL is used to transport the volumes for each sub-step. Thus, the Discrete

GCL is respected while an efficient volume computation is done.

3.3.2 Pressure treatment

At the end of this prediction step, the grid reaches its final position for the considered

time step. Hence, the projection step to calculate pressure is performed over this fixed

grid at the configuration corresponding to the time tn+1. The pressure contribution is

removed from the non-solenoidal predicted velocity equation,

un+1 = un+1
⋆ +

∆t

V n+1
∇p. (3.27)

The wanted velocity field u must be a solenoidal field. Application to the divergence

operator to equation 3.27 leads to the projection step and a Poisson equation for the

pressure needs to be solved:

∆p = −V n+1

∆t
∇ · un+1

⋆ . (3.28)

A Deflated Preconditioned Conjugate Gradient algorithm is used to solve this Poisson

equation [107]. A homogeneous Neumann condition is applied for the pressure calcula-

tion and the pressure constant is fixed as the averaged pressure in the numerical domain

so that the volume-averaged pressure over the domain ω(t) is zero. Next the correction

step is applied,

un+1 = un+1
⋆ − ∆t

V n+1
∇p. (3.29)

The obtained velocity field un+1 is a non-solenoidal field as wanted.

3.4 Large Eddy Simulation

Direct numerical simulation (DNS) is suitable for low Reynolds number flows: all

the large and small scales are resolved in this approach, requiring high grid densi-

ties. Reynolds Averaged Navier-Stokes (RANS) approaches for modelling turbulence are
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hardly predictive, especially in the case of transitional flows at moderate Reynolds num-

bers (one assumption often made when developping RANS models is that the Reynolds

number is very large if not infinite).

In the present work, the Large Eddy Simulation (LES) approach is used. While

the large scales of the flow are resolved, the smaller subgrid scales (SGS) are mod-

elled using two SGS models based on eddy-viscosity. The σ-model able to handle wall

bounded flows in complex geometries is used [130] as well as a well established Dynamic

Smagorinsky formulation [68] in order to assess the robustness of our results to the

turbulence modelling.

Under the incompressible flow assumption and assuming blood as a Newtonian fluid,

the fluid motion is described by the Navier-Stokes (NS) equations as previously stated.

The NS equations on the moving blood domain Ωf (t) ⊂ R3 bounded by ∂Ωf (t) can be

written for the resolved velocity U i and pressure P as

∂U i

∂t
+
∂U iU i

∂xj
= −1

ρ

∂P

∂xi
+ νn

∂2U i

∂xj∂xj
− ∂τij

∂xj
+ fi,

∂U i

∂xi
= 0,



















on Ωf (t) (3.30)

where νn is the kinematic viscosity, ρ the density and fi a volumetric force. Note that

the ·̄ operator is used to denote filtered quantities fluctuating over scales which are

large enough to be resolved by the computational mesh. The residual-stress tensor

τij = UiUj − U iU j results from the unresolved subgrid-scale contributions and are

modelled by a subgrid-scale (SGS) model in this study. Subscript i takes value of 1,2,3.

The chosen SGS model for the residual-stress tensor τij is:

τij = −2νtSij, (3.31)

with Sij = (∂U i

∂xj
+ ∂Uj

∂xi
)/2 and νt the turbulent viscosity:

νt = (C∆)2D, (3.32)

where ∆ is the filter length (the cube root of the cell volume), D the time-scale operator

and C the model constant. When using the Dynamic Smagorinsky model, the time-scale

operator is expressed as

Ds =
√

2SijSij, (3.33)

and the constant Cs is fixed dynamically [68]. Because of the ill-posedness of the

dynamic procedure, the common practice inspired by [97] when dealing with complex

geometries without homogeneous direction was adopted here: the classical least square

formula was applied over a small volume surrounding the grid-point of interest and the

remaining negative values of the dynamic constant were clipped to ensure νn + νt ≥ 0.

The Sigma model does not need extra filtering nor clipping since its timescale operator
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Dσ is positive by design:

Dσ =
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

. (3.34)

In this equation, σ1 ≤ σ2 ≤ σ3 are the singular values of the velocity gradient tensor ∂U i

∂xj
.

This formulation has several interesting properties: it vanishes for a various number of

canonical laminar flows, for which no SGS viscosity is expected: two-dimensional or

two-component flows, axisymetric and isotropic compression/dilatation. Furthermore,

it also has the proper cubic behaviour in near wall regions and thus does not require

any local dynamic procedure (the model constant Cσ was set to 1.35 as suggested

by [130]). The model was validated against different academic cases (homogeneous

isotropic turbulence, turbulent channel, periodic free jet), and with different numerical

solvers [130, 145, 14].

3.5 Immersed boundary method

Highly deformable objects immersed in the fluid are encountered in biomechanical prob-

lems. These objects are hardly described by an Eulerian framework though. To over-

come this issue, moving boundary can be taken into account by using immersed bound-

ary (IB) methods. IB methods allows the consideration of temporally highly distorted

interface between blood and vessel at the expense of potentially flaws on the geomet-

rical description of interface. This solution consists of the introduction of a body-force

field fi in the NS equations such that a desired velocity distribution ui can be assigned

over a boundary. This idea is not new since Peskin [138] reported at the beginning of

the seventies simulations of the blood flow through a model of mitral valve using this

technique.

The required body-force fi can be computed through two different methods. By

”feedback forcing” [74, 149] or by ”direct forcing”. In the first case, arbitrary constants

are needed and the scheme can results in spurious oscillation near the interfaces. The

”direct forcing” approach consists of an imposition of the velocity boundary conditions

on the immersed surface without introducing or computing any forcing term. If the

boundary configuration is known (as in this thesis), the computation of the body-force

fi becomes simpler. In this case, only local information is needed instead of the complete

force distribution over the immersed boundary. Mohd-Yusof [120] first proposed to

consider the problem of forcing directly in the context of the partially discretized NS

equations,

un+1

f
− un

f

∆t
= RHSn + fn, (3.35)

where ∆t is the simulation time step, fn the force imposed at time tn and RHSn the

right hand side containing the convective, viscous and pressure terms at tn. To mimic
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ω(t)

ωf (t)

∂ω(t)

Figure 3.2: Scheme illustrating where the body-force is applied in the body Ω, immersed
in the fluid domain Ωf .

a still solid in the flow, the forcing can be explicitly defined so that a zero velocity is

set in the immersed object as,

fn = −RHSn − un

f

∆t
. (3.36)

On top of the ease of implementation, the main advantage in this case is that no

additional parameters is introduced in the equations as in the ”feedback forcing”. This

expression for the forcing force must then be applied to the numerical nodes included

in the immersed object and at the interface. As the grid generally does not coincide

with the immersed boundary, an interpolation procedure is needed to reconstruct the

immersed object boundary. Many different techniques are available to do so; they can

be classified in two groups: a spreading of the forcing function in the vicinity of the

immersed surface [138] or schemes that produce a local reconstruction of the solution

based on the target boundary values [177].

In this work, the more simple approach has been implemented: the boundary is

reconstructed by applying the force fi to the neighbouring cell. In Fig. 3.2, Ω domain

is the solid object immersed in the fluid domain Ωf . The interface of the solid domain

is roughly reconstructed by applying the force fi at each node within Ω.
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3.6 Numerical test cases

3.6.1 ALE test cases

In this subsection, the accuracy, convergence and verify of the discrete geometric con-

servation law (DGCL) of an arbitrary Lagrangian Eulerian (ALE) method will be inves-

tigated. A proper designed ALE numerical scheme must notably to respect the DGCL

criterion in order to reproduce exactly a constant solution. This condition will be first

tested and the impact of a well-respected DGCL criterion will then be highlighted.

Finally, analytical solutions were developed in order to confront them to numerical

simulations in both two-dimensional and three-dimensional cases.

Uniform flow

The aim of this test case is to evaluate the ability of different numerical schemes to

meet their discrete geometric conservation laws (DGCLs). These tests are performed

on a two-dimensional non-zero uniform flow U(x, y, t) = U∗ inside a regular hexagon

of side length l = 0.4 m. The computational domain is initially discretized using twelve

triangular faces and periodic boundaries conditions are specified at the boundaries.

The boundaries of the domain are fixed but the inner mesh points move with a velocity

following

ẋi(t
n) = Aω cos(ω tn + φx

i ),

ẏi(t
n) = Aω cos(ω tn + φy

i ),

where ẋi and ẏi are the velocity components of node i, A is the movement ampli-

tude, ω the pulsation. For each node i, phases φx
i and φy

i are initially randomly set

in the interval [-π,π]. Each inner mesh point (xi, yi) possesses its own unique velocity

components. For our case, ω = 2π rad.s−1 and A = l/10. The mesh deformations are

illustrated by Fig. 3.6.1 for one period τ = 2 π /ω.

The simulations are run over 100 τ using a fixed time step ∆t = 5 ms. Four

simulations are presented, differing only by the numerical scheme used. The two schemes

are a temporal explicit Euler method and the already presented RK4 method. The tests

are done with both a 2nd- and a 4th-order finite-volume schemes. The relative error is

then computed using

E2(tn) =
‖U(tn) − U∗‖2

‖U∗‖2

Figure 3.4 shows these errors for the two different schemes; all the schemes satisfy

their DGCL criterion by preserving the flow uniformity.

In order to illustrate the necessity of respecting the DGCL, a non-respecting DGCL

criterion scheme is studied to compare with the previous tests. The parameters of this
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Figure 3.3: Visualization of the mesh deformation. From left to right, mesh at t = 0, t
= τ/3, t = 2τ/3
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Figure 3.4: Uniform flow case. Explicit Euler (left) and RK4 method (right). ◦ 2nd-
order; × 4th-order scheme in space.

simulation are the same except for the amplitude A which is divided by four (A = 0.01)

to emphasis the importance of the DGCL criterion. The simulation is done with the

RK4 time discretization scheme and the 4th-order scheme in space without taking any

precautions for the DGCL. The volume used in the scheme being set at a wrong time,

tn instead of tn+1/2. As a consequence, the scheme violates the DGCL criterionand

Fig. 3.5 shows how this impacts the result for this simple test case.

2D Validation - Wall-induced channel flow

Problem definition

In this section, two main issues are investigated in a simple case:

• the accuracy of the ALE method for the RK4 time scheme by comparing analytical

and numerical solutions,

• the convergence of the same method for both the 2nd- and 4th-order space schemes.
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Figure 3.5: Uniform flow case. RK4, 4th-order scheme in space. Non-respecting DGCL
scheme.

One of the simplest example of a flow in a time-dependent domain is provided by the

flow of a Newtonian fluid in a long, straight, two-dimensional channel subjected to a

time varying height (see Fig. 3.6). The flow is induced by a moving wall at y = h(t) on

the top of the channel which remains parallel to the x-axis and follows

h(t) = h0 (1 + ǫ e−jσt) (3.37)

where σ is the pulsation of the movement, h0 the mean distance between the symmetry

axis (y = 0) and the moving wall and ǫ the amplitude of the oscillations.

Moving wall

Fixed wall

Outlet

Figure 3.6: Principle of the test case. The fluid outlet is on the right.

Analytical solution

The analytical solution has been investigated by seeking a stream function of the form

Ψ = xF (η)e−j σ t, (3.38)
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where η is the reduced coordinate η = y/h(t). One may derive the following equation

for the function F (η)

F ′′′′ +
h′h

νn
(ηF ′′′ + 2F ′′) +

jσ

νn
h2F ′′ = 0. (3.39)

By expressing the function F (η) as a power series of the small parameter ǫ, F (η) =

ǫF0(η) + ǫ2F1(η) + o(ǫ3) and following the same method employed in Nicoud [128], one

obtains the following first order solution

F0 = jωh0
η − sinh(αη)/α cosh(α)

1 − tanh(α)/α
, (3.40)

where α = j3/2Wo is proportional to the Womersley parameter W0 = h0

√

ω
νn

.

Simulations

The flow must be considered at small Reynolds number in order to be in close agreement

with the analytical solution. The Reynolds number is set between zero and 0.4 (based

on the wall velocity ḣ(t), the height h(t) and the kinematic viscosity νn) using the

parameters :

• ǫ = 0.05,

• σ = 2 π rad.s−1,

• h0 = 0.001 m,

• νn = 8.10−7 m2.s−1.

The flow between the two walls is simulated on four grids using a domain (for the finest

grid) of 190,000 triangular elements and of dimensions [0,25h0] in the streamwise (x)

direction and [0,h(t)] in the vertical (y) direction. The grids are quasi-uniform for the

four grids used with a characteristic edge length of ∆x = 0.2h0, 0.1h0, 0.05h0, and

0.025h0. The velocity is assigned vertically at the wall on the top of the domain using

ḣ(t) (see Eq. (3.37)), while at the plane at y = 25h0 an outlet boundary condition is

specified. Free-slip condition is applied at the bottom of the domain. Simulations are

performed with both 2nd- and 4th-order space schemes and a respecting DGCL RK4

scheme in time.

Figure 3.7 shows the simulation at two different times. The results for the finest grid

are considered accurate, and the L2 and Linf norms of the error obtained on the coarser

grids are calculated and shown in Fig. 3.8. The results demonstrate the third-order,

almost fourth-order accuracy of the method.

The simulation results are then compared with the analytical data from the Eq. (3.40).

Figure 3.9 shows four phases: t = 0, t = T/4, t = T/2 and t = 3T/4. Numerical results

are in very close agreement with the numerical simulation results. However, a slightly
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Figure 3.7: Simulation at t = T/4 (top figure) and t = 3T/4 (bottom plot). Outlet is
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Figure 3.9: Analytical (symbols) and numerical (lines) streamwise (right) and normal
wise (left) velocity profiles at x = 5 mm and at times + t = 0; × t = T/4; 2 t = T/2;
◦ t = 3T/4. Dotted lines, 4th order in space; solid lines, 2nd.

better behaviour of the 4th-order space scheme with regard to the analytical solution

for low η values for each phase of the streamwise velocity. In addition, the maximum

differences between the velocity calculated using the approximated analytical solutions

and the simulation results for the four phases is less than 5% for the two space schemes

and take mainly place for low η values.

3D Validation - Wall induced pipe flow

Problem definition

In order to verify the accuracy of the schemes in a three-dimensional configuration,

the analytical solution used previously was first extended to the case of wall-induced

pipe flow (Fig. 3.6). The inner surface of the tube is considered as a moving wall

and its position is given by a function of time. A symmetry condition is imposed at

one boundary while an outlet one is prescribed to the other boundary as in the two-

dimensional case (see Fig. 3.6).

Analytical solution

Formulation of the mathematical problem

The analytical solution is calculated under the following hypothesis:

• the fluid is incompressible,

• the flow is axisymmetric,

• the amplitude of the oscillations are very small with regard to the radius R(t).
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Figure 3.10: Principle of the 3D test case. Left, beginning of the cycle. Right, half-cycle.

Owing to the axisymmetric of the flow, cylindrical polar coordinates (z, r, θ) are chosen

such that r = 0 is the symmetry axis of the tube. The equations of motion governing

the flow are

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z
= −1

ρ

∂p

∂r
+ νn

[

1

r

∂

∂r

(

r
∂ur

∂r

)

+
∂2ur

∂z2
− ur

r2

]

(3.41)

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z
+ νn

[

1

r

∂

∂r

(

r
∂uz

∂r

)

+
∂2uz

∂z2

]

(3.42)

1

r

∂

∂r
(rur) +

∂uz

∂z
= 0 (3.43)

where (uz, ur) are the velocity components in (z, r) directions respectively, p is the

pressure, νn is the kinematic coefficient of viscosity and ρ is the density. The oscillations

of the radius are set by the function,

R(t) = R0 S(ǫ, σ; t) (3.44)

= R0 (1 + ǫe−jσt) (3.45)

where σ is the pulsation of the movement, ǫ the amplitude of the oscillations and R0

the mean distance between the symmetry axis and the moving wall. According to the

physical configuration, the boundary conditions are:

• The condition that the solution has to be regular on the axis of the tube

ur(z, 0) = 0, (3.46)
∂uz

∂r
(z, 0) = 0. (3.47)
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• The velocity at the wall is prescribed as

ur(z,R(t)) = Ṙ(t), (3.48)

uz(z,R(t)) = 0. (3.49)

So as to simplify the resolution work and thanks to the symmetry, one can introduce

the Stokes stream function ψ and the vorticity ω

ur = −1

r

∂Ψ

∂z
(3.50)

uz =
1

r

∂Ψ

∂r
(3.51)

ω =
1

r

∂2Ψ

∂z2
− 1

r2

∂Ψ

∂r
+

1

r

∂2Ψ

∂r2
(3.52)

The curl of (3.41) and (3.42) can be taken and by seeking a stream function of the form

Ψ = z F (η)e−j σ t, (3.53)

where η is the reduced coordinate η = r/R(t), one may obtain the following differential

equation

∂ω

∂t
+

1

r

(

∂Ψ

∂r

∂ω

∂z
− ∂Ψ

∂z

∂ω

∂r
+

1

r

∂Ψ

∂z
ω

)

− νn

(

∂2ω

∂z2
+
∂2ω

∂r2
+

1

r

∂ω

∂r
− 1

r2
ω

)

= 0(3.54)

The boundary conditions (3.46) to (3.49) can now be written as

F ′ (1) = F ′ (0) = F (0) = 0, (3.55)

F (1) = − ǫ σ j R0R(t). (3.56)

Equations solutions

The function F (η) solution of the Eq. (3.54) is taken in the form

F (η) = ǫF0(η) + ǫ2F1(η) + ... (3.57)

Substituting (3.57) in (3.54) and identifying the powers of ǫ, one may obtain the fol-

lowing differential equation for the order o(ǫ)

η3F ′′′′
0 (η) − 2 η2F ′′′

0 (η) + F ′′
0 (η)

(

α2 η3 + 3 η
)

− F ′
0 (η)

(

α2η2 + 3
)

= 0 (3.58)

where α is equal to α = R0

√

iσ
νn

. The resolution of this equation leads to the general

solution:
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F0 (η) = C1 + C2 η2 + C3 η J (1, αη) + C4 ηK (1, −αη) (3.59)

where C1 to C4 are four constants, J (n, .) and K (n, .) are the Bessel function of

the first kind and the modified Bessel function of the second kind, respectively and n is

the order of the Bessel functions. The boundary conditions (3.55) to (3.56) are used to

determine the constants. One obtains

C1 = 0 (3.60)

C2 =
−iσ RSkα J (0, α)

α J (0, α) − 2 J (1, α)
(3.61)

C3 =
2 iσ RSk

α J (0, α) − 2 J (1, α)
(3.62)

C4 = 0 (3.63)

Using these constants, the solution for the first ǫ order is finally given by

F0 (η) =
−iσ RSkη (α J (0, α)η − 2 J (1, α η))

α J (0, α) − 2 J (1, α)
(3.64)

It is relevant for futur numerical application to consider the correction ǫ2 F1 negligeable.

Hence, the convective acceleration is disregarded. From the above solution, one can

determine the velocity components using the equations (3.50), (3.51) and (3.53). The

solution for the velocity components is then up to the first order in ǫ:

ur =
−ie−iσ tσ Sk (α J (0, α)η − 2 J (1, α η))

α J (0, α) − 2 J (1, α)
, (3.65)

uz =
2 ize−iσ tσ Skα (J (0, α) − J (0, α η))

R (α J (0, α) − 2 J (1, α))
. (3.66)

Simulations results

In this subsection, in order to illustrate the behaviour of the schemes in a three-

dimensional case, the numerical solution of the physical problem presented in the section

3.6.1 is compared to the analytical solution obtained previously.

The flow is simulated using a domain of dimensions [0, 25R0] in the streamwise (z)

direction and [0, R(t)] in the radial (r) direction using 100,000 tetrahedral elements.

The grid is quasi-uniform with a characteristic edge length of ∆x = 0.2R0. Non-zero

radial velocity is assigned at the wall using Ṙ(t) (see Eq. (3.44)), while at the plane

z = 25R0 an outlet boundary condition is specified. Free-slip conditions are applied on

the plane at z = 0.

The wall velocity used for the numerical simulation is set using the parameters :
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Figure 3.11: Analytical (lines) and numerical (symbols) streamwise (left) and normal
wise (right) velocity profiles at z = 0.05 m and at times 3 t = 0; 2 t = T/4; ▽ t =
T/2; ◦ t = 3T/4. Filled symbols, 4th order in space ; open symbols, 2nd.

• ǫ = 0.05,

• σ = 2π rad.s−1,

• R0 = 0.001 m.

The kinematic viscosity coefficient νn is set at νn = 1.517×10−5 m2.s−1. On account of

these parameters values, note that the Reynolds number is set to stay between zero and

0.02 which justifies the fact that there was no need to consider the superior order during

the analytical development in this case. Figure (3.11) shows the comparison between

the first order approximate solution (Eq. (3.65)) and the numerical profiles for z = 0.05

m using a fourth-order explicit time integration with a Runge-Kutta method and both a

2nd- and a 4th-order finite-volume schemes. The velocities from the analytical solution

are in close agreement with the numerical simulation results for the four phases. Note

that the 4th space order is closer to the analytical solution than the 2nd one for the

most negative wall speed (t = T/4) and the maximum wall speed (t = 3T/4).

3.6.2 Immersed boundary test cases

A laminar flow around a circular cylinder is considered to test the implementation of

the IBM. A rectangular domain is considered, with a cylinder of diameter D=0.01m

in its center. The flow around the cylinder is simulated using a domain of dimensions

[-8D,25D] in the streamwise direction and [-5D,5D] in the vertical direction; the center

of the cylinder is at (0, 0). A steady uniform velocity is assigned at the inlet plane

(Uinf), while at the outlet plane an outlet boundary condition are specified. Free-slip

conditions are applied on the top and the bottom of the domain. The grid is uniform

with δx = δy = 0.05D. ReD = 30, based on the free-stream velocity Uinf , the cylinder

diameter D and the kinematic viscosity νn = 10−5 m2.s−1. At such a low Re, the

flow can be assumed to be steady after initial unsteady flow development. After 3400
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a

b

l

Figure 3.12: Measured data on the simulations.

l/D a/D b/D

IBM 1.24 0.47 0.43
Conformal 1.57 0.54 0.52

Coutanceau and Bouard (exp.) [39] 1.55 0.54 0.54
Pinelli (num.) [140] 1.70 0.56 0.52

Table 3.1: Comparison of wake parameters for steady-state flow around a cylinder at
ReD = 30 with experimental and numerical data.

iterations, the probes put in the domain shows stable figures for the measured velocities.

The absolute error between two successive iterations is under 10−9m/s. Two simulations

were computed: one with a conformal mesh, one with all the rectangular domain meshed

with the cylinder immersed in the flow using the IBM. Figure 3.12 shows the measured

data on the simulations.

As the numerics used for IB is here very basic, weak results were expected on a

coarse mesh.
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Chapter key points:

• A RK4 scheme has been derived in a ALE framework and vali-

dated.

• SGS models used in this work have been introduced.

• The immersed boundary method used for representing the

valves has been presented and tested.
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This chapter describes the framework developed for performing patient

specific simulations based on 4D medical images. The method can be applied

to any blood vessels. Here, the focus is on the human left heart. The key

idea is to use image registration to deform the computational domain and

to account for the valves by using immersed boundary method. Boundary

45
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conditions are extracted from the domain movements. Patient specific 4D

domain is thus obtained through this workflow.

This chapter is part of: C. Chnafa, S. mendez and F. Nicoud,Using image-based

CFD to investigate the intracardiac turbulence. Published as a chapter in the book

”The Cardio-Circulatory System: from Modeling to Clinical Applications”, 2014 [34].

4.1 Methodology overview

Part of the framework described in this chapter is adapted from the work conducted dur-

ing the OCFIA1 (Optimised Computational Functional Imaging for Arteries) project,

mainly focused on flow computations in aortas [115, 122, 129, 144]. The key idea of

extracting deformations from medical images was kept and the method was adapted

and extended to handle intra-cardiac blood computations. Image treatment tools and

numerical methods for the fluid computation were not kept from the OCFIA project.

Determining the movement of the computational domain, where the NSE are solved

is all but an easy task. Two main different strategies have been developed in the scientific

community to obtain simulation of the blood flow in realistic heart geometries. The

most natural one is to extract the heart geometry at one chosen moment in the heart

cycle and to solve an electrical-fluid-structure interaction (EFSI) problem [31, 49, 95,

133, 166, 178]. In this approach, patient-specific data are needed [162, 171]. What is

the patient-specific rheology of the myocardial muscle? What is the load produced by

the heart environment? How to reproduce the mechano-electric coupling in the heart

muscle? All these questions make such an approach extremely challenging.

Another strategy consists in using realistic heart wall movements extracted from

cine MRI or Computed Tomography (CT) scan data. Heart movement is not com-

puted, but prescribed from the patient-specific medical images, which can be acquired

using standard clinical imaging procedures. Such a computational approach, where

the geometry and the movements are extracted from images will be referred to as

image-based computational fluid dynamic (IB-CFD). Different research teams have de-

veloped IB-CFD methods for heart flows, more specifically to study the left ventricle

alone [101, 114, 147, 151]. Recently, more advanced work has been published, using a full

heart model obtained from CT images [116] or a heart model fed from MR images [42].

In the following, an image-based CFD method is presented. As in the aforementioned

IB-CFD works, medical images are used to generate a moving patient-specific domain,

in which the blood flow equations are solved (see chapter 3 for the flow equations and

the related numerical methods). This section provides an introduction to the method.

It consists in three major steps and each of these steps are composed of diverse sub-

problems. Details about the sub-problems are the objects of the following chapter

sections.

1www.ocfia.org
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INPUT: N medical images

Valve measurements. Sampling.

Images cropping.Surface triangulation.

Template image
choice, segmentation.

OUTPUT 2OUTPUT 1

Figure 4.1: Flowchart representing the preparation to the intensity-based image reg-
istration process (see section 4.1.2) and the CFD preparation see section 4.1.3. 4D
medical images (given as input data) are segmented, measured and treated providing
the process outputs.

4.1.1 First major step: measurements and images treatments

Figure 4.1 shows the first major step of the workflow. Input data of the entire chain

are only N medical images taken at different times during the heart cycle. Three

actions have to be executed. Measurements of characteristics of the mitral valve and

aortic valve have to be done. These measurements are used to feed the valves models

describe in section 4.6. A template image has to be selected among the N medical

images. A 3D model for the heart is extracted from this template image by a process

called segmentation.Details about this procedure will be given in section 4.3. A surface

triangulation of the 3D model is then performed to feed the third major step. Finally,

the medical images are re-sampled in order to change their resolution if needed (note

that all the images need to have the same resolution). They are then cropped in order

to keep only the area of interest, according to a bounding box centred on the 3D model

created before.

In a nutshell, at the end of this first major step, the outputs are a patient-specific

triangulated surface of the studied heart, measurements of the heart valves and the set

of N medical images treated.

4.1.2 Second major step: image registration.

The following question must then be addressed: given the N 3D images of a heart taken

at different times in the heart cycle, how to extract the heart deformations from these

images and how to deform the patient-specific numerical grid accordingly? The first

part of the question is actually a classical image registration problem.

Nowadays, there is a growing interest in the development of cardiac image registra-
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tion methods [105, 106]. Given two cardiac images, a template and a reference one, a

transformation is determined to map the template image to the reference image. This

computed transformation itself is of great importance because of its intrinsic informa-

tion. The deformation field can notably provide clinical information on the myocardial

contractile function. Here, the same process is used to compute the heart deforma-

tions, but instead of focusing on functional data of the heart muscle, the computed

deformation is used to extract patient-specific boundary conditions for the blood flow

computation.

Registration algorithms can be separated in two classes [119]: landmark-based regis-

tration [160, 150] and voxel similarity measures [80] method. The first method is based

on the idea that the sought transformation is determined such as a finite number of fea-

tures of the template image is mapped onto the corresponding features of the reference

image. Note that however, compared to other human organs, the heart exhibits few

accurate anatomical landmarks. In addition, in pathological conditions the functional

alterations can also hide anatomical landmarks [72]. A voxel similarity measure tech-

nique was preferred in this study. This class of method operates directly on the image

grey values, providing a flexible algorithm suitable for the complex heart movements,

especially for intra-modality registration.

Figure 4.2 shows the second major step of the workflow: the image registration

procedure. Input data are the previously chosen template image (as explained in sec-

tion 4.1.1) and one of the medical image which is referred as the reference image. This

step has to be executed for each of the medical image (except the template one) in order

to obtain N − 1 fields of deformation between the template image and the others N − 1

ones. The algorithm treats first the two images by applying to them a gaussian filter.

By applying this filter, high frequency of the images are removed. A measure of the

similarity between the two images is then computed. If images are sufficiently close each

other in regards of a parameter set by the user, higher frequencies are re-introduced and

the distance is computed again. If the distance criterion is not met, an optimisation

process is executed to find a transformation allowing the reference image to be closer

to the template image. The optimisation process to find a suitable deformation field is

referred as the inner iterations and the successive frequencies filtering the outer itera-

tions. Finally, once the algorithm is converged, N − 1 deformation fields are obtained.

Section 4.4 provides details about the entire registration procedure.

4.1.3 Third major step: CFD preparation

The N−1 deformation fields computed from the medical images are then applied to the

template surface. N−1 surfaces are then generated. Each triangularized surface should

correspond to one 3D image of the heart cycle. As the deformed heart model is needed

at arbitrary instants, depending on the time step used in the future computation, a

trigonometric interpolation for each surface nodes is computed. The knowledge of the

trigonometric interpolation of each surface node provide the heart deformation at any
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Figure 4.2: Flowchart representing the image registration process fore each couple con-
stituted of the template and one reference image. 3D deformation field between the two
images (given as input data) is computed, providing the output of the process.
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wanted time of the heart cycle.

Then, a 3D volumetric grid of the template is generated and valves models are in-

cluded. Valves models are then fed by the measurements done during the first major

step. The trigonometric interpolation can finally be applied to the surface of the tem-

plate grid. The result is a 3D volumetric grid of the treated heart, deforming like the

patient’s heart during the heart cycle, with valve models included. Volumes of the dif-

ferent heart cavities are computed and fluid boundary conditions are computed from

them (see section 4.7).

4.2 Mathematical setting

Before detailing the procedures described in the former section, a proper mathematical

setting for the images is introduced. An image [119] can be seen as a mapping from

spatial point x belonging to an image volume Ω ⊂ R
3 to a voxel gray value b(x). Only

3D images are considered in this work and are defined as:

Definition 4.2.1. Any function b : R
3 → B is called a 3D image with B = {0,...,255}.

The following definition is also introduced:

Definition 4.2.2. The set of all 3D images is denoted by

Img:= {b : R3 → B|b is a 3D image}.

So, each spatial point x of the image has one light-intensity (a grey value) value

between 0 and 255. 3D imaging modalities as CT or MRI generate this kind of light-

intensity grey values. Thus, the scanned volume can be described by measured values at

points placed on a structured image grid. This structured image grid is defined as a set

G := {xk, k = 1, ..., N} with N an integer number defining the resolution of the image

grid. The grey value is considered node located in the following. Thus, points xk are

in the centre of contiguous but non overlapping bricks partitioning the scanned image

volume Ω. These bricks are called voxels, which are volumetric pixels (see Fig. 4.3d).

4.3 Model extraction from the template image

Before performing the model extraction, a suitable 3D image must be selected as the

template. Ideally, the template image must be

• of ”great” quality,

• far from the extremes times of the heart cycle (peak systole, end diastole).

The images quality can be heterogeneous for a set of images. Artefacts can be visible at

some instants for example, especially for images from MRI. Peak ventricular or atrial

systole should be avoided as well to minimize he distance between the template of the
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(a)

(c)

(b)

(d)

Figure 4.3: Heart image from a MRI scan. Down-sampling is applied to the image (a).
Images (b) and (c) represent image (a) with a reduced resolution by scaling 0.25 and
0.5 respectively. The voxel-centred image grid is shown in image (d) for a sub-part of
image (c).
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Figure 4.4: Chosen template image from a MRI scan (a). Images (b) represents the
threshold applied to image (a) to the grey values. The threshold is represented by the
histogram (grey values versus number of voxels np) and allow to keep the voxels with
a grey values between 60 and 255 here. The corresponding mask is then created and
depicted in red on the heart image.

N − 1 other images. Indeed, smaller the deformation between images is, better the

computed deformation will be. By experience, a good choice of template image could

be at the end of the E wave. Ventricle volume at this time is close to the cycle-averaged

volume and almost the same remark can be made for the atrium. In any case, this choice

has to be made with a good knowledge of the entire procedure and a trade-off has to

be found between the image quality and the position of this image in the heart cycle

(example, Fig 4.4a). From the selected template image, a 3D model of the blood domain

must be extracted. Emphasise on the term ”blood domain” is made here. Neither the

heart muscle, nor the heart environment is considered, only the domain where blood

flows. This model extraction is called segmentation [139]. Choices have to be done

about the required level of modelization. Is the left atrium appendage wanted? The

trabeculations? What about the papillary muscles2? Image resolution plays a role in

the potential domain simplification at this step. Physiological features (see chapter 1,

section 2.1) can either be kept or neglected depending on the image quality and spatial

resolution available. Image can be smoothed to erase noise inherent to the medical

imaging protocols but also to remove details as the trabeculations.

Once these choices are fixed, segmentation itself is executed. The template image is

imported into ScanIP, a commercial image processing software environment (Simpleware

Ltd., Exeter, UK). The simplest segmentation method is based on a threshold on the

voxels grey values. Observation of the medical image histogram (grey values versus

2In this thesis, hearts models with and without papillary muscles are presented.
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(a) (b) (c)

Figure 4.5: Segmentation from a CT scan. Slice of the volumetric image is depicted in
transparency. Image (a) represents a segmentation only based on the grey values of the
3D image. Image (b) represents the same 3D model after manual treatments and image
(c) the chosen area of interest for the blood computation.

number of voxels), as represented in Fig. 4.4b, helps the operator to chose a grey values

range. By doing so, a sub set of the medical image is selected. This sub set is referred as

the mask (in red in Fig. 4.4b). Choice of the threshold range is once again the choice of

the operator. Very large range can ”drown” the wanted blood domain by encompassing

the heart muscles in the mask for example. Figure 4.5a shows a mask from a CT scan.

Note that there is a lot of unwanted features as the spinal column (left of the figure)

or the plexus (right of the picture). As only the blood domain is wanted, non connex

features can be automatically deleted3 as represented in Fig. 4.5b. Nonetheless, a lot

of the pulmonary trunk is still here, the LAA as well. Depending on the desired level

of modelization wanted, the operator should treat the mask manually by deleting the

unwanted features (see Fig. 4.5c).

This process is time consuming and in a clinical point of view, expensive. The opera-

tor must be an expert who knows the segmentation tools, has got a good morphological

knowledge and has a lot of patience. In addition, inter- and intra- operator variability

can be observed. Fully automated segmentation is of course fast, cheap, reproducible

and hopefully robust. Automatic segmentation can be ”easily” used for simple vessels

but for the heart a tool which can be used for both CT scan and MRI modality is

still lacking. Still, admirable work in this way was developed for CT scan images by

Siemens [116].

Once the 3D model is extracted through the segmentation procedure, the surface of

the geometric reconstruction of the heart is triangulated providing the template model

surface.

3In the ideal case where these unwanted features are not connected to the left heart...
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4.4 Image registration

4.4.1 Mathematical problem

Let N 3D images Ii ∈ Img of a patient heart which are taken at different times ti,

0 ≤ t0, t1, ..., tN−1 < T during the heart cycle of period T . One of the N images is

selected as a template image. Note that this choice is somewhat arbitrary and that,

without loss of generality, one can always tune the time origin so that the template

corresponds to the I0 image at time t0. From this image, N − 1 transformations ψi are

computed such that the transformed template image becomes similar to images Ii (i

between 1 and N − 1) successively considered as the reference image: transformation

ψi is search so that I0(ψi(x)) = Ii(x) for each voxel. Here, Ii(x) stands for the voxel

grey-level value at position x in the i-th 3D discrete image.

Each mapping ψi : Rnd 7→ R
nd is calculated by minimizing a distance D : Img2 7→

R between I0(ψi(x)) and Ii(x), an appropriate distance measure being based on the

so-called sum of squared differences. The transformation ψi is computed through an

optimisation problem reading: given two images I0 and Ii, find a mapping ψi such that

the distance measure D defined as the squared intensity differences between I0(ψi(x))

and Ii(x) is minimized for each voxel.

4.4.2 Regularisation

At this point, the number of parameters describing the transformation is too high so

that the solution ψi of this problem is not unique. Additional constraints are needed to

reduce the search space where the mapping ψi is sought for.

In the present work, a constraint on ψi is applied thanks to prior knowledge of the

deformation sought for [11]. The idea is to penalize unlikely deformations by impos-

ing the heart deformations to be smooth. Bayesian statistics are used to obtain an a

posteriori computation of the deformation field. The prior deformation probability is

incorporated through the Bayes’ theorem: p(Y|I) ∝ p(I|Y)p(Y), where p(I|Y) is the

likelihood of observing the images data I (template I0 and reference Ii images) given the

deformation parameters Y. p(Y) is the prior knowledge of the deformation translated

in the a priori probability of seeing the parameters Y and p(Y|I) is the a posteriori

probability of getting Y knowing the two images data I. Using this Bayesian framework,

the goal is to maximise the probability p(Y|I). Knowing that a probability is related

to its Gibbs form by p(Y) ∝ e−H(Y), the problem can be seen as a minimisation of the

Gibbs potential:

H(Y|I) = H(I|Y) +H(Y) + c, (4.1)

where c is a constant. The likelihood potential H(I|Y) of observing the images data

given the deformation parameters Y is directly linked to the squared intensity difference

between I0(ψi(x)) and Ii(x) for each voxel:

H(I|Y) =
1

2

∫

Ω
(I0(ψi(x)) − Ii(x))2 dΩ, (4.2)
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where the integral is taken over the image volume Ω.

The second term H(Y) in the right hand side of equation (4.1) is the wanted con-

straint, applied thanks to prior knowledge. The prior deformation knowledge put in

this potential is expressed as a geometrical constraint on the mapping through the two

studied images. Here, the discrete images are considered as being on a mesh of tetrahe-

dra (see section 4.2 and Fig. 4.3d) and an uniform affine mapping between the voxels of

each images is assumed. In 2D, if the images grids are divided into a triangular mesh

where the nodes are centred on the pixels, the affine transformation can be defined as,






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m21 m22 m23

1 1 1
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
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
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1 1 1






, (4.3)

where (t11, t21), (t12, t22) and (t13, t23) are here the co-ordinates of the vertices of a

triangle in the template image and (r11, r21), (r12, r22) and (r13, r23) the vertices of

the corresponding triangle in the reference image. Thus, the mapping and its matrix

representation M can be defined as:

M =







r11 r12 r13

r21 r22 r23

1 1 1













t11 t12 t13

t21 t22 t23

1 1 1







−1

. (4.4)

A suitable prior probability is linked to the deformation of each voxel of the template

image and to the reverse deformation [10]. This potential acting as a regularization

term allows a penalization based on the Jacobian of the locals deformations J. As

the Jacobian of an linear application is the application itself, the Jacobian J is defined

simply as,

J =

[

m11 m12

m21 m22

]

. (4.5)

By using singular value decomposition, J can be decomposed as J = USVt where S

is a diagonal matrix containing the singular values representing the relative stretching of

the triangle and the matrices U and V represents rotations. Following Ashburner [10],

a suitable form for the regularization term is,

h = (1 + det(J))(log(s11)2 + log(s22)2)/2. (4.6)

Hence, this function take into account the triangle volume change and the triangle

stretching. This penalty function is minimized for a triangle when the is no deformation

(det(J) = s11 = s22 = 1). This regularization term is weighted by a parameter λ

linked to the belief in the amount of deformation of the heart. A high value of the λ

parameter results in a high penalty on the voxels deformation, hence only small and
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Figure 4.6: Heart image from a CT scan. Gaussian kernels applied from left to right:
3mm3, 1.5mm3 and 0 mm.

smooth deformations are allowed. Thus, the second term H(Y) in the right hand side

of equation (4.1) is defined for the whole image as,

H(Y) = λ
nt
∑

i=1

hi, (4.7)

where nt is the number of triangles in the image grid. A detailed description of this

penalty term can be found in Ashburner [10] and the 3D application as well.

In our implementation, λ is set as a constant. Note that given the high deformation

of the left heart, high λ values result in a high constraint thus, partial deformation and

a high residual squared difference between the template image and the reference one.

In the case of small values of λ, a lower residual squared difference will be reached, but

the resulting deformation can be non physical due to excessive warping. Actually, the

deformation of the flow domain is highly different from one region to the other. The

aorta needs a priori high values of λ, whereas small values are needed for the atrium or

the ventricle. Thus, search space is then bounded and one need to chose carefully the λ

parameter for constrained as possible the search space while the sought solution is still

in the search space.

4.4.3 Pyramidal strategy

One method of increasing the likelihood of achieving a good solution without introducing

a spatial variability on λ (and consequently avoiding more operator-dependant work as

well) is to apply successive filters to the images using a Gaussian smoothing convolution

kernel Gσ of width σ. This method is a classical Gaussian pyramid approach [3]. The

high-frequency content of the image is first removed thanks to this filter then gradually

re-introduced as the kernel width σ becomes smaller and smaller. This iterative process

is defined as the outer iterations: for each kernel width, distance between the images is

minimized. The process is illustrated in Fig 4.6 ; the registration algorithm works on

more and more detailed images. This ”coarse-to-fine” strategy has the effect of making
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the registration algorithm estimate the most global deformation during the first outer

iteration, leaving out fine-scale structures. The optimum transformation for this kernel

width is used to initialize the computation of the next optimum computation, which

deals with finer details. This method increases the likelihood of finding the globally

optimal match while avoiding the classical problem of the intensity-based method: their

susceptibility to poor starting estimates.

4.4.4 Final formulation

As the regularization term, the intensity difference (first term H(I|Y) in the right

hand side of the equation (4.1)) is weighted. The weight for the j-th inner iteration is

defined as the inverse of the residual sum of the squared differences computed at the

previous inner iteration of a given outer iteration of the algorithm and is denoted by
1

dj−1 . Because d has a high value for the first iterations, more weight is given to the

regularization term, in order to get smooth deformations. As the algorithm gets closer

to the final solution, d theoretically tends to zero, giving less weight to the priors and

letting the algorithm computing more detailed deformations.

A way of seeing the resolved problem is: the sought transformation ψj,k
i at the inner

iteration j and the outer iteration k minimizes the function f j,k defined as:

f j,k(ψj,k
i ) = f j,k

1 (ψj,k
i ) + λf j,k

2 (ψj,k
i ), (4.8)

with,

f j,k
1 (ψj,k

i ) =
1

2dj−1

∫

Ω
([Gσk ∗ I0](ψj,k

i (x)) − [Gσk ∗ Ii](x))2 dΩ, (4.9)

f j,k
2 (ψj,k

i ) = g(J(ψj,k
i )), (4.10)

where the function g is computed from the Jacobian singular values and determi-

nant [11].

4.4.5 Optimization

Minimizing f j,k(ψj,k
i ) is equivalent to finding the set of parameters Y minimizing the

equation 4.1, which is also equivalent to find the most probable set of parameters (i.e.

the maximum of p(Y|I)). The optimization algorithm used here is a gradient descent

one. It is a first-order optimization algorithm computing a local minimum; well chosen

outer iterations help the computing of the global minimum. For the j-th inner iteration,

the linear search reads,

yj+1
i = yj

i − ǫi
∂H(Y|I)

∂yi
, (4.11)

= yj
i − ǫi

{

∂H(I|Y)

∂yi
+
∂H(Y)

∂yi

}

(4.12)
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where ǫi is the distance ”travelled” in the direction of the gradient for this parameter.

This distance is set as a small value and can be modified during the optimisation process.

When the image grid is deformed, if on Jacobian determinant becomes negative, the

value of ǫi is halved and the image grid is deformed again. The same procedure is applied

until the Jacobian determinant is positive. Finally, theN−1 deformations corresponding

to the N − 1 medical images are computed through this iterative optimisation process.

4.5 Numerical domain deformation

Once the N − 1 mappings ψi are computed, a patient-specific computational grid must

be extracted from the template image and warped thanks to the computed deforma-

tions. The template image corresponding to volumetric data I0 is imported into the

image processing software (ScanIP;Simpleware Ltd., Exeter, UK). A suitable image in-

tensity range which encompasses the voxel intensities of the region occupied by blood

in the heart is selected. The process is described in section 4.3. The 3D geometric

reconstruction covers all the space occupied by blood in the left heart cavities. The

surface of the geometric reconstruction of the heart is triangulated.

Once a template 3D patient-specific surface mesh is created, a procedure to deform

this surface model thanks to the images must be provided. For each couple of images

(I0,Ii) a suitable spatial transformation ψi was found thanks to the method described

in the previous section. These deformations ψi are 3D deformation fields. Trilinear

interpolation from these deformation fields to the template surface mesh is done. Thus,

a set of N − 1 successive surface meshes matching the physiological cardiac images at

different times ti is produced as schematized in Fig. 4.7.

4.5.1 Application of the patient-specific deformation

Position and velocity of all surface points are needed at any discrete time of the simula-

tion, not only at the times t0, t1, ..., tN−1. Since all the generated surface meshes share

the same topology (number and connection between nodes, number of cells), temporal

interpolation is used to compute the position and velocity of each node. As geometry

variations are periodic, a trigonometric interpolation is used. The surface position and

velocities read:

xg(t) =
m
∑

i=0

[ai cos(2iπ
t

T
) + bi sin(2iπ

t

T
)],

ug(t) =
2iπ

T

m
∑

i=1

[−ai sin(2iπ
t

T
) + bi cos(2iπ

t

T
)],























on ∂Ωf (t) (4.13)

where T is the heart cycle period, m the number of Fourier modes (m = N−1
2 or N

2

depending on the parity of N) and ai, bi the Fourier coefficients. The surface velocity

us needed at the computation domain boundary ∂Ωf (t) is hence not computed as a
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Figure 4.7: Mesh deformation procedure applied to a left human heart. The template
mesh segmented from the image at time t0 is deformed thanks to ψi to obtain the mesh
at time ti. This procedure is done for each image in the cardiac cycle in order to obtain
the corresponding meshes.

FSI problem, but entirely extracted from the medical images. In the present study, it

is used to handle the cardiac chambers and their connected vessels.

4.5.2 Volumetric grid

The template surface is imported in a commercial mesher (Gambit, ANSYS) to generate

a template unstructured tetrahedral mesh. The computed boundary Fourier coefficients

of Eq. (4.13) are interpolated on this template numerical domain surface. The computa-

tional mesh boundary now follows the shape of the patient endocardium and is updated

in every step of the simulation. The motion of all internal points in the computational

mesh is deduced from this prescribed boundary motion thanks to a harmonic extension

of ug onto the numerical domain. At each iteration, nodal velocity ug is calculated as

the solution of the following problem [110]:

∇ · (k(x)∇ug(x)) = 0, on Ωf (t) (4.14)

and,

ug(x)|
x∈∂Ωf (t) = us(x) on ∂Ωf (t), (4.15)

where k(x) is the displacement diffusion coefficient. This coefficient is determined

to preserve a good computational grid quality. The larger elements will distort at a

faster rate than the smaller ones - a desirable feature for our application in order to

preserve grid quality. When the boundary displacement becomes too large compared
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Figure 4.8: Skewness histograms for a left heart grid at end diastole (top figure) and
mid-systole (bottom figure). Each left heart cavity is color tagged.

to the local cell sizes, the cell quality can be highly decreased and some cells can even

become degenerated. This can lead numerical stability issues or negative cell volumes.

The grid quality is this monitored all along the computation of each cell i in term of

skewness Si as,

Si =
Veq − Vi

Veq
, (4.16)

where Vi is the observed cell i volume and Veq the volume of an equilateral cell with the

same circumradius as the cell i. When a cell i is equilateral, Si is null, which means

that the quality is perfect. Cells quality is considered poor when Si is higher than 0.8.

Figure 4.8 shows an histogram of a test case. The upper figure shows a left heart at end

diastole while mid-systole is shown in the bottom part. The grid is notably degraded

as higher skewness values appears.

In this case, the numerical domain is re-meshed and the fluid solution is interpolated

on a new discretised domain. Fourier coefficients of Eq. (4.13) are interpolated as

well. The remeshing procedure is handled by MMG3D which is an isotropic/anisotropic

tetrahedral fully automatic remesher [41] coupled with YALES2BIO.

In this case the Fourier coefficients are interpolated from one grid to another. A local

orthogonal coordinate system associated to each node k of the new grid is introduced.

It is composed of the approximate normal to the surface (sum of the neighbouring faces

normals) and two unit orthogonal vectors: ξ and η. The origin of this coordinate system

is centred on node k of the new grid. In this coordinates system, a neighbour of node
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k has the following tangential coordinates:

xξ = (x − xk) · ξ;xη = (x − xk) · η, (4.17)

where xk is the coordinates of node k. The surface is then locally characterized as

a function of the tangential coordinates xξ and xη. The fitting procedure consists of

finding a paraboloid surface approximating the old grid on the new one locally and for

each node k. It is based on the procedure described in Garimella et al. [64]. A quadratic

patch f = f(xξ, xη) where f is one of the ai or bi Fourier coefficient is defined as,

f(xξ, xη) =
1

2
ax2

η + bxξxη +
1

2
cx2

ξ + dxη + exξ + f(xk). (4.18)

The values of the coefficients a, b, c, d and e are tuned in order to fit the paraboloid

surface in the neighbourhood of the node k as much as possible. This is achieved by

solving a system of form Ms = F :
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This system is over-constrained. To find the values of the coefficients (gathered in

the vector solution s) that provide the best fit, a least-square fitting approach is used.

The least-square problem can be written as a linear system to solve, s is then obtained

explicitly, provided that the inverse of (M tM) is calculated, s = (M tM)−1M tF . For

each node, this fitting procedure is applied for each Fourier coefficients.

4.6 Valves model

Models

Since the valves are thin highly-moving structures, their precise movements are hardly

extractable from MRI or CT scan exams. Besides, on the numerical side, incorporation

of moving valve leaflets in the grid topology would most probably imply a grid quality

degradation, making numerous re-meshing mandatory. Hence, it was chosen to model

the valves using an immersed boundary technique.

Valves annuli geometries are reconstructed by visual inspections of the medical im-

ages. The annulus geometry is represented as a cloud of points pi, whose nodal coordi-

nates are used to define the valves annulus within the numerical domain. These markers

allow the reconstruction of the aortic and mitral annuli.

The shape of the aortic valve is simply approximated by the plane passing through

the set of markers and obtained by a least squares method. As the focus of the study

is on the flow in the atrium and the ventricle, it is not mandatory to develop a more



62 CHAPTER 4. FROM MEDICAL IMAGES TO NUMERICAL SIMULATIONS

complex model for the aortic valve, since its morphology has very limited effects on

the LA/LV haemodynamics. Note also that the physiological aortic valve open position

offers virtually no resistance to the main flow passing through the aorta from the LV. The

regression plane modelling the aortic valve is thus made alternatively fully permeable

or impermeable depending on the phase in the cardiac cycle.

The mitral valve is represented by a more complex model, since its shape is expected

to strongly impact the LV haemodynamics. A regression plane Pα is defined from the

set of markers pi with a least squares method and the mitral annulus geometric center

Cα is computed. A plane Pβ parallel to Pα is defined at a distance l(t). When the MV

is open, it is assumed that the cross section area seen by blood is elliptical. An ellipse

ǫ of axes a(t), b(t) is defined on Pβ and its angle in its plane set manually to fit the

medical images. The ellipse center Cǫ is not a direct projection of Cα on plane Pβ , an

eccentricity e(t) is defined. The eccentricity e(t) is the distance between the projection

of Cα on plane Pβ and the ellipse center Cǫ. Leaflets are considered as the surface

linking the mitral annulus to the elliptical opening ǫ. Position of the annulus markers

are projected on the ellipse. Therefore, the leaflets surface is reconstructed by triangles

pieces between the annulus markers and the projected annulus markers on the ellipse

(see Fig. 4.9). To summarize, the quantities needed to feed this model are:

• the mitral annulus markers pi,

• the average leaflets length l(t) which is the distance between Cα and the generated

plane Pβ ,

• the eccentricity e(t) of the ellipse center Cǫ compared to the projection of Cα on

plane Pβ ,

• the ellipse axis a(t), b(t) and its angle in the Pβ plane.

The model and its numerical representation are shown in Fig. 4.9.

Time evolution of the ventricle volume is used to switch between the open or closed

positions for each valve. LV volume decreases during systole, then increases during

diastole: these two parts of the cardiac cycle are determined by computing the ventricle

volume variations. The opening and closing valve time is less than 5% of the heart

cycle duration [184]. Therefore, the opening of the mitral valve and closing of the aortic

valve (vice versa) can be considered as instantaneous and simultaneous events as a first

approximation. This means that the left heart has only two topological configurations

during the cardiac cycle:

• MV closed, AV open: this corresponds to the systolic phase,

• MV open, AV closed: this corresponds to the diastolic phase.

Note that MV and AV happen to be closed at the same time in physiological conditions.

This corresponds to the isovolumic phases which last for only a small fraction of the
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Figure 4.9: Top left: annulus markers and modelled MV leaflets. Parameters a, b of the
ellipse ǫ are indicated. Top right: full MV model included in the numerical domain (the
AV is represented as well). Bottom: MV scheme.

cardiac cycle. Given the poor time resolution reachable by 4D medical imaging systems

(IRM and CT scan), the isovolumic phase cannot be described accurately anyway.

Assuming that the MV and AV are never closed at the same time is thus an acceptable

assumption given the accuracy of the medical data used to feed the CFD solver.

Knowing the MV leaflets position during the heart cycle, their effect on the blood

flow is accounted for thanks to an immersed boundary method (IBM) [120] described

in chapter 3. For this purpose, the leaflets representations (plane for AV and triangle

by parts for the MV) are first given a thickness s so that a few mesh nodes are located

within the valves.

Grid nodes are tested to decide whether they are in the leaflets volume or not. For

the AV, the distance from the AV plane is computed. If the node distance is within the

closed interval [− s
2 ,

s
2 ] the node is tagged as belonging to the AV valve. For the MV,

each node being at a distance within [− s
2 ,

s
2 ] of one of the MV triangle are treated. The

node is projected on the corresponding triangle and the triangle barycentric coordinates
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Open mitral area

Right ventricle

Left ventricle

Figure 4.10: Manual measure of the open mitral area for a healthy subject (in red).
The right and left ventricles are indicated for information.

are computed. The node is tagged as belonging to the MV valve if all of the barycentric

coordinates are greater than zero. Then, a force f in the NS equations (3.1) is set to

impose the fluid velocity to zero within the leaflets as described in chapter 3 section 3.5.

The force f is used at each mesh node lying within one of the valve region. The finite-

volume scheme used being node centred and since the force fn is imposed at nodes lying

into valve leaflets, a null velocity is imposed in the entire dual cell where the governing

equations are integrated. Thus, there is no interpolation of the forcing term and the

valves geometry is described in a stepwise way. fn is set to zero anywhere else.

Note that, as the opening/closing of the valve is not resolved, valves switch instan-

taneously from closed position to open position and vice versa. When open, some small

displacements may be seen because of the displacement of the valve annulus, but they

are here neglected. As a consequence, the source term used mimics the presence of

valves as fixed obstacles.

Models parameters

Mitral valve parameters are measured manually on the medical images and with help of

3D model segmented from it. The mitral annulus can be distinguished easily with proper

imaging modalities. Markers coordinates are then measured on the template segmented

model. Once these markers are set on the numerical grid, they are moved in the same

way the grid nodes are moved or spatially interpolate in case of the computation needs

an interpolation.

The length of the valves are measured from the images. The length between the

tips of the valves and the mitral annulus is observed for the short and the long leaflet
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Figure 4.11: Measures (cross symbols) of the open mitral area during the diastole tdia.
The median of the measures is indicated by a dotted line at 520 mm2.

on each medical images during the heart cycle. The measures are averaged and used as

the leaflet length in the model.

The open mitral area is manually measured for each images taken during the diastole.

Figure 4.10 shows the mitral area measured at one instant and Fig. 4.11 shows the

measurements along the diastole for an healthy subject. Median of this area is then set

as the open area for the model. The form of the open area is approximatively an ellipse

(this approximation is commonly used). The large axis of the ellipse is the distance of

the extremal points on Fig. 4.10, the small axis is then deducted by the measured open

area. The orientation of the large axe is set to be parallel to the papillary muscles.

Finally, the eccentricity of the ellipse center is set as the averaged measured vectors

between the geometric center of the open area and the geometric center of the mitral

annulus. The eccentricity between the mitral annulus geometrical center and the open

mitral area can be observed on the example image Fig. 4.10.

4.7 Inlet and outlet boundary conditions

Inlet boundary conditions can be extracted from PC-MRI and interpolated on the com-

putational domain inlet surfaces. However, if only CT scan images are available, a

different strategy must be used. As blood is incompressible, a reasoning based on mass

conservation can be made to overcome the lack of inflow and outflow information. As

already stated in the last section, only two topological configurations are considered

(MV closed, AV open or AV closed, MV open). This assumption allows a consistent

definition of the inlet/outlet boundary conditions. Indeed, mass conservation imposes,

for the first case (MV closed, AV open):

Qi(t) =
dV1

dt
, (4.20)
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where Qi(t) is the inlet flow rate to be imposed at the pulmonary veins V1 the LA

volume. In the second case MV open, AV closed, mass conservation imposes:

Qi(t) =
dV1

dt
+
dV2

dt
, (4.21)

Where V2 is the LV volume. Therefore, the flow rates are only determined by the

time evolution of the heart geometry, which is directly related to the medical images.

Computation of each cavity volume must be done consistently with the valves definition.

In order to properly define each cavity, the valves were considered both closed and a

propagation ’tagging’ was set. Each inlet and outlet nodes were given a specific color.

Each node in a valve was given another specific number. As each node is linked to

another nodes by the grid connectivity, a test is made to compare the actual node and

the other nodes linked to this one. For one node i, the question for each related node

is: is the linked node color the same as for node i? If not, is it a valve node? In case

it is not, the node is coloured as node i. If it is a valve node, no color propagation is

made. Hence, each cavity is tagged with a specific color and the propagation stop when

a valve is encountered. In order to speed up the color tagging, the wall boundary is

color tagged first, then the volumetric propagation is made.

Once the volumes and their changes are computed, consistent velocity at the four

inlets U in
j (x, t) (j=1,..,4) can be prescribed once the shape of the profile is known. For

uniform inflows, the Dirichlet condition (see Eq. 3.4) simply reads:

U in
j (t) =

Qi(t)

Aj
ζj, (4.22)

where Aj is the cross-section area of the j-th pulmonary vein and ζj the flow distribution

between the four pulmonary veins (ζj=0.25 for all j corresponding to an equipartition

of the inflow). Note that in practice, only the inflow conditions are imposed as the

Dirichlet outflow condition automatically adjusts to ensure exact mass conservation in

the complete domain through a convective outflow scheme.

4.8 Discussions

The spatio-temporal resolution of the medical images, is an important limitation which

imposes temporal interpolation and geometrical simplifications of the heart model. It

also makes it difficult to accurately account for short phases as the isovolumic con-

traction and relaxation. Still, ten images per cardiac cycle enable a convincing flow

description as it will be shown in chapter 5. Indeed, most of the significant heart defor-

mations last more than T/10. However, specific tests of this point should be performed

to precisely assess the impact of the temporal resolution of the medical images on the

flow field.

Another limitation is the unknown flow distribution between the pulmonary veins,

which has to be prescribed in the simulations. In this work, an equipartition has been

supposed due to the lack of information.
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Figure 4.12: Volumes obtained for a ventricle from a set of 4D medical images. Solid
line, deformation (i), dashed line, deformation (ii).

About the valves, the model used here highly depends on the anatomical information

that can be extracted from the images. Consistently with their insufficient spatio-

temporal resolution, a rough model of the valves was used. Better valve models should

notably include valve opening and closing, change of aperture area along time. Aortic

valve leaflets were notably completely omitted during systole, which most probably

impacts the flow at the beginning of the aorta.

Two other sources of error are discussed more deeply in the following: the image

registration parameters and the tangential deformation extracted from the computed

deformations.

Image registration algorithm

Beside the segmentation itself and the choice of the template the parameters choice is

of prime importance. The validity of the computed deformation depends partly upon

the validity of the parameters.

Figure 4.12 shows the volume of deformed meshes with the same template, the set

of medical images and parameters excepting the regularization term λ. Deformation

(i) was computed using λ = 2, while deformation (ii) with λ = 1. In both cases the

global algorithm converged. However, the deformations are different. As the parameter

λ is linked to the belief in the amount of deformation of the heart, the deformations

are more important at the extrema volumes (0.34 T and T ). The optimal parameters

set giving the most realistic deformations is all but obvious. Several tests with different

parameters set are mandatory. Once the deformations are obtained (in the case where

the algorithm converged), visual inspection of the deformed meshes compared to medical

images must be done implying an expertise on the field.

Ventricle twist

It is well known that the ventricle has a twist-untwist movement during the heart

cycle [155]. Twist during ventricular ejection predominantly deforms the myocardial
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Figure 4.13: Average ventricle rotation obtained for from a set of 4D medical images.
Full line, tangential velocity kinetic energy Kt, dashed line, normal velocity kinetic
energy Kn.

fibre matrix, resulting in a storage of potential energy. The release of these forces

happens when the subsequent recoil of twist deformation occurs. This ’untwist’ during

diastole releases the mechanical energy and contributes to LV diastolic relaxation and

early diastolic filling [126].

Therefore, this movement is important in cardiac mechanics but mainly in a me-

chanical point of view. The common methods for measuring myocardial motion are

tagging or phase contrast velocity mapping using MRI [50] and tracking of unique

speckle patterns created by the interference of ultrasound beams within tissue using

echocardiography [92]. Conventional analysis of these images are computer-assisted.

Figure 4.13 shows the integrated kinetic energy of both the tangential myocardium

velocity and the normal velocity computed for heart A after deformation computed

through the presented image registration algorithm. The solid line represents the tan-

gential velocity kinetic energy Kt and the dashed line represents normal velocity kinetic

energy Kn. The energies are defined as,

Kn =
1

2S

∫

S
(ug · en)endS, (4.23)

Kt =
1

2S

∫

S
ug − (ug · en)endS, (4.24)

with S the endocardium surface, the grid nodal velocity ug, en the normal vector.

Two peaks are visible at the same moment for both energies. The first one at 0.2T

during the systole and the another one is at 0.5T . Considering a characteristic radius

for the heart of R = 0.025 m, and the diastolic peak rotational energy, Kt = 1.75 × 10−3

m2.s−2, the corresponding averaged velocity for the diastolic peak can be computed as√
2Kt/R ∼ 2.3 rad.s−1 or

√
2Kt ∼ 0.06 m.s−1. Velocity obtained from LES in the

ventricle is about 1 m.s−1 at this time of the heart cycle. Thus, it is believed that the

tangential velocity can be considered negligible in the blood dynamic.

Using MRI [134] and echocardiography [135], the same range of tangential velocity

is obtained. This is illustrated in Fig. 4.14. The averaged LV rotational and torsional

velocity profiles in 20 subjects at different location (from Notomi et al. [135]) is displayed.

Focus is on the violet line representing the total torsion during the heart cycle.
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Figure 4.14: Averaged LV rotational and torsional velocity profiles in 20 subjects. Blue,
light green, dark green, and violet lines indicate apical, middle, and basal rotations and
LV torsion, respectively. MC indicates mitral valve closure; AO, aortic valve opening;
Ej, peak ejection flow velocity in the outflow tract; AC, aortic valve closure (ie, end
systole); MO, mitral valve opening; Pk-E, peak early filling velocity; and En-E, end of
E wave. From [135].

Note that temporal evolution of the tangential velocity is qualitatively coherent

with our data (see Fig. 4.13). In addition, velocity magnitude order are similar. As

the image registration algorithm used in this thesis is based on a similar principle of

tracking unique patterns through deformation, it is believe that the twist-untwist of

the ventricle is roughly captured. The image registration performs well thanks to the

multitude of specific structures within the heart as the papillary muscles or the captured

trabeculations. Notwithstanding, observing a smooth object without special feature

would not allow to capture these movements. Let us consider an academic case: a

uniformly white cylinder surrounded by a black background. A rotation is then applied

to this object. The possible deformations are actually infinite. Hence, the algorithm

could not find the right deformation, but fortunately this is not the situation with the

human ventricle. Thus, it is believed that we retrieve a rather good tangential velocity

at the ventricle endocardium and even if one cannot be sure of the validity of these

velocities, they can be considered negligible in the blood dynamic.
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Chapter key points:

• A framework for hemodynamics simulations in patient-specific

hearts was presented.

• Heart movements are extracted from morphological medical im-

ages using an image registration algorithm.

• Valves models are fed with data from medical images.

• Blood boundary conditions are extracted from medical images

as well.
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First insights in a left heart flow
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This chapter describes the application of the developed framework on

a patient left heart referred to as heart A. Here, the attention is focused

on the physiological patterns commonly reported in the literature and the

flow is mainly analysed through phase-averaged data. A first look at the

cycle-to-cycle velocity variations is presented, paving the way for the more

advanced analysis provided in chapter 6. Finally, a rapid discussion on the

use of Carreau-Yasuda model and its consequences on the presented results

is provided.
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Figure 5.1: Template computational domain extracted from a 3D medical image. The
same domain is represented for four different points of view and the left ventricle (LV),
left atrium (LA) and Aorta (AO) are indicated. Black line passing through the left
heart indicates the position of slices used to describe the flow in section 5.3.

This chapter is part of: C. Chnafa, S. Mendez and F. Nicoud, Image-based large-

eddy simulation in a realistic left heart. Published in Computers & Fluids,

2014 [35].

5.1 Introduction

A first application of the framework detailed in the previous two chapters is presented

here. The blood flow computation of a patient-specific left heart flow is presented. The

flow is characterized by its transitional nature, resulting in a complex cyclic flow. Flow

dynamics is analysed in order to reveal the main fluid phenomena and to obtain insights

into the physiological patterns commonly detected. It is demonstrated that the flow is

neither laminar nor fully turbulent, thus justifying a posteriori the use of Large Eddy

Simulation. In this chapter, the dynamic Smagorinsky-Lilly model is used for the SGS

model.

5.2 Numerical simulation setup

5.2.1 Heart model and extraction of the deformation

Using the framework described in the last chapter, deformations along a cardiac cycle

are built from an actual CT exam of a patient treated at the University Hospital of

Toulouse Rangueil (France). The exam consists in N = 10 medical images of spatial

resolution 2×2×2 mm (corresponding to 128 × 148 × 156 voxels) which are available
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RSPV RIPV LSPV LIPV

Small diameter (mm) 11.8 12.0 14.0 10.3
Large diameter (mm) 14.9 12.7 15.5 15.2
Area (mm2) 138.1 119.7 170.43 123.0

Table 5.1: Geometric characteristics of the ostia. Ostia are oval in shape. The areas
reported are obtained by assuming elliptic shapes.

along the cardiac cycle lasting T = 1000 ms. The template geometry is extracted at a

given time t0 taken during mid-diastole (it is shown with different angles in Fig. 5.1).

Due to limitations in spatial and temporal resolutions, the complex intracardiac

geometry cannot be fully reconstructed from medical images. The acquisition frequency

of the images forbids precise observation of potential fast heart movements. However,

the analysis of the flow features in the next sections suggests that this frequency is

sufficient for this application. As shown in Fig. 5.1, the template numerical domain

extracted includes the LA, LV, the aortic root and four pulmonary veins. The left

atrial appendum and the papillary muscles are omitted. The LV has a height of 8.8 cm

from the MV to the apex (the lowest extremity of the LV in Fig. 5.1) and a maximum

diameter of the order of 5 cm. The LA has a height of 5.5 cm from the MV to the

upper pulmonary root and a maximum diameter of the order of 4 cm. Heart measures

are within the classical figures found on humans [5].

A focus on the left atrium and its four pulmonary veins is shown in Fig. 5.2 (left).

Sketch of inflow angles of the four pulmonary veins is also shown, to give an idea of the

flow trajectory in the atrium. Table 5.1 shows measures of the ostia in the atrium.

A nearly isotropic surface mesh is generated from the geometry reconstructed from

medical images. The characteristic length of each triangle is imposed to be close to

2 mm. The template surface grid is deformed based on the method described in chap-

ter 4. The deformation procedure uses 12 outer iterations: the initial Gaussian kernel

width being σ0 = 40 voxels with a decrement between each of the outer iterations of

3 voxels. The inner iterations are either stopped after 20 iterations or when the total

residual squared difference is under 0.01. The regularization weight λ is set to 1.0 (see

chapter 4). The boundary Fourier coefficients are computed from the obtained meshes

in order to deform the left heart during the flow numerical simulation.

5.2.2 Computational mesh and simulation details

A nearly isotropic grid is created from the heart model described in the above sec-

tion, using the commercial software Ansys Gambit, which was selected for its ability to

generate good-quality tetrahedral meshes, appropriate for finite-volume formulations.

The spatial resolution is imposed to be close to 0.8 mm in all three spatial directions

along the cycle, which yields grids of approximately three-million tetrahedral elements.
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Figure 5.2: Left: left atrium with its four pulmonary veins labelled. Right: sketch of
inflow angles and the four pulmonary veins projected on a plane (the plane is displayed
in the left picture). The dashed line indicates that the flow coming from the RSPV is
directed toward the MV compared to the others.

Computed Fourier coefficients are interpolated on this model surface. In this study,

re-meshing was used at each acquisition instant ti, i = 0, ..., 9 in order to ensure good

mesh quality and small numerical errors over the whole cardiac cycle.

Valves are modelled as explained in chapter 4 section (4.6). A close examination of

the medical images from the CT scan allowed to set the leaflets length to l = 12 mm

for the MV. The open area presented to the blood flow is represented by an ellipse of

axe a = 15 mm and b = 8 mm. This area is supposed constant over time when the MV

is open. Eccentricity is fixed to e = (0.0, 5.0) mm from the same medical data.

The simulation time step is fixed by a CFL condition (CFL=0.9) consistent with

the explicit time integration used in the CFD solver; this corresponds to a time step

varying from 3.0 × 10−4 s to 8.0 × 10−4 s in the present computation.

The flow waveform imposed at the four inlet conditions of the computational domain

(the four PV) is calculated based on the mass conservation principle, as explained in

chapter (4). The resulting flow rate varies in time during the cycle and is periodic. The

partition of the inflow is not known in this case and detailed information about averaged

flow rates repartition between PVs have not been found in the literature. From data

presented by Dahl [40], it has been chosen to set the flow rate at each of the pulmonary

vein equally distributed (ζj = 0.25). Note that the resulting blood flow, in particular in

the atrium, may be sensitive to this repartition. Figure 5.3 represents flow rates at the

aortic valve (top plot), mitral valve (middle plot) and the heart inflow which is the sum

of the flow rates from the four PV (bottom plot). Two vertical dotted lines separate the

systolic phase and the diastolic phase. For this heart, systole lasts 0.36Ta (from t/Ta =
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Figure 5.3: Flow rates at the aortic valve (top plot), mitral valve (middle plot) and the
total heart inflow (bottom plot) imposed at the pulmonary veins during the heart cycle.
Vertical dotted lines mark the limit between the systolic phase (t/Ta between 0.015 and
0.375) and the diastolic phase. The E wave, L wave and A wave are indicated on the
mitral flow.
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Heart A Normal range

Heart rate (bpm) 60 60 - 100
E/A ratio 5.5 1.0 - 2.0
EDV (mL) 130 65 - 240
ESV (mL) 55 16 - 143
SV (mL) 75 55 - 100

Cardiac output (L.min−1) 4.5 4.0 - 8.0
Ejection Fraction (%) 58 55 - 70
Open area MV (cm2) 3.77 4.0 - 6.0
Umax at MV (in m.s−1) 1.08 0.6 - 1.0

Remax at MV 5000 -
Umax at AV (in m.s−1) 0.96 ≤ 2.5

Remax at AV 5300 -
Acquisition CT scan -

Table 5.2: Main characteristics for heart A.

0.015 to 0.375) and diastole 0.64Ta.

The pulmonary flow rate is coherent with classical medical data, the flow rever-

sal associated with the atrial contraction being even visible from t/Ta=0.86 onward.

The aortic valve flow rate behaves as expected: it increases during systole until its

maximum (Q=320 mL.s−1) and then decreases until its shutting at t/Ta=0.375. The

aortic flow rate stays null until the next systolic event. The mitral flow rate is usu-

ally composed by two peaks: the E wave or rapid filling and a second one, the A

wave corresponding to the late diastole separated by a phase with almost no heart mo-

tions, called the diastasis. Here, the flow rate shows three peaks in this case: the first

one (t/Ta=0.51, Q=410 mL.s−1) represents the E wave, the last one a weak A wave

(t/Ta=0.98, Q=75 mL.s−1). The fact that the A wave is so weak is symptomatic of

pathologies [161]. The E/A ratio is thus high with a value of 5.5 which is higher than

the normal physiological range which is between 1 and 2 [125]. A weak third peak is

also present during diastasis (t/Ta=0.78, Q=85 mL.s−1). Having no information on the

velocity profile, it is assumed uniform for this simulation.

Due to the lack of medical information and to the small number of images in the

CT scan (N = 10), it is actually impossible to guarantee that this patient indeed has a

filling in three waves, with an additional L wave at t/Ta=0.78. However, this peak may

correspond to this so called L wave [77] and in order to simplify the flow description,

this peak will be referred to as the L wave. Note also that such type of filling flow

rate does exist for some patient. A high E/A ratio is symptomatic of a severe forms

of diastolic dysfunction and are referred to as ”restrictive filling dynamics”. Thus, it is

considered in all the following work that heart A suffers from restrictive filling.

The fluid density ρ and the kinematic viscosity νn are supposed to be constant in

the first part of this chapter: ρ = 1040 kg.m−3 and νn = 4 × 10−6m2.s−1.
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The Inlet Reynolds number for each pulmonary vein varies from 0 to approximately

2000, based on the vein inlet diameter. The Reynolds number at the mitral tips varies

from 0 to approximately 5000 (based on the effective mitral mean diameter D = 2Ra =

2
√
ab, the area of the open mitral valve, the kinematic viscosity and the maximum flow

rate). The maximum transmitral velocity Umax falls into the usual measurements [78].

The maximum Reynolds number of the aortic valve is about 5300. These ranges of

Reynolds numbers, the complex moving geometry of the heart and the pulsating nature

of the inlet flow indicate that the nature of this complex cyclic flow may be transitional

if not turbulent.

Table 5.2 reports the characteristics of heart A and the normal range [13, 22, 98, 125]

for comparison.

5.2.3 Phase-averaged and fluctuating velocity definitions

Using the framework described before, twenty cardiac cycles were simulated and phase-

averages were gathered over the last n=15 cycles. The phase average over n cardiac

cycles is defined as,

〈uf (x, t)〉 =
1

n

n−1
∑

k=0

uf (x, t + kT ), (5.1)

where 〈uf (x, t)〉 is the phase-averaged fluid velocity, x denotes the spatial coordinates

and t the time. The root mean square (r.m.s.) velocity urms is defined as

urms(x, t) =
√

〈u2
f (x, t)〉 − 〈u2

f (x, t)〉. (5.2)

5.2.4 LES quality assessment

The Kolmogorov length scale η was assessed using the fluctuating part of the velocity

u′ = uf - 〈uf 〉 (〈uf 〉 being defined in the section 5.2.3) over the last 15 heart cycles:

η = ν
3/4
n /(2(νn + νt)S′

ijS
′
ij)

1/4 (S′
ij is the symmetric part of the fluctuating strain rate

tensor). By estimating the small scales dissipation and under a the hypothesis of a

homogeneous isotropic turbulence, the smallest length scales are of order of 2 × 10−5 m

in the domain and the spatial averaged value is of order of 10−4 m. Such length scale

makes the DNS of numerous heart cycles hardly reachable today: more than one billion

cells would be needed to resolve all turbulence scales. Then, proper computation are

still manageable thanks to LES.

In order to achieve a quality assessment of the presented simulation, the Pope crite-

rion [142] is used. The evaluation of the LES quality is estimated through the fraction

of the turbulent kinetic energy in the resolved scales. This fraction M(x, t) is defined

as

M(x, t) =
ktot(x, t) − ksgs(x, t)

ktot(x, t)
, (5.3)

= 1 − ksgs(x, t)

ktot(x, t)
, (5.4)
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where ksgs is the SGS kinetic energy, kres the resolved kinetic energy of the velocity

fluctuations and ktot is the summation of kres and ksgs. Evaluation of this fraction

M(x, t) requires computing the resolved turbulent kinetic energy which is defined as

kres(x, t) =
1

2

(

u′
1(x, t)2 + u′

2(x, t)2 + u′
3(x, t)2

)

, (5.5)

The SGS kinetic energy ksgs was estimated from the expression [148]:

ksgs(x, t) =
νt(x, t)2

(∆(x, t)Cs(x, t))2
, (5.6)

where νt is the SGS turbulent viscosity given by the dynamic Smagorinsky-Lilly model,

Cs the dimensionless dynamic constant of this model and ∆ the filter width (equal

to the characteristic grid size in this work). According to the Pope criterion, a good

LES should be able to resolve at least 80% of the turbulent kinetic energy. Looking

at the phase where the turbulent activity is the highest (t/Ta=0.65), it was found that

computation captures more than 80% of the turbulent kinetic energy in 85% of the

numerical domain. The last 15% are mainly located on the atrium surface and in the

atrial cavity, where turbulence levels are actually low.

5.2.5 Data convergence

Several probes have been set in the numerical domain during simulations. The data of

two representative probes are shown here. Figure 5.4, left figure, shows the numerical

domain with the location of the two probes. The upper probe located in the atrium is

referred to as p1. The probe located in the ventricle is referred to as p2. Figure 5.4, right

figure, shows the corresponding probes data. Top plots display data from probe p1 while

the bottom plots display data from probe p2. For the four plots, solid lines represent

the phase-averaged velocity magnitude computed using nc cycles. nc being set from 1 to

the total number of simulated cycles, which is 15. The dots represent the instantaneous

velocity magnitude for the n-ith cycle. All the velocities are nondimensionalised by

a reference velocity. The reference velocity named ua is computed as ua = q̇ls/Vs =

0.1 m.s−1 where q̇ is the cardiac output (q̇=7.50 × 10−5 m3.s−1), Vs the end systolic

volume (Vs = 5.55 × 10−5 m3) and ls is the ventricle length at the end of the systole

(ls=7.40 × 10−2 m). The first column of plots represents the data at t/Ta = 0.20, the

second column at t/Ta = 0.65. First represented time at t/Ta = 0.20 is within the

systole while t/Ta = 0.65 occurs during the diastole.

For all four signals, the maximum velocity difference for the last three phase-averaged

values (δa) is compared to the maximum max velocity difference for the instantaneous

velocity (δi). These differences are defined for a velocity u as δ(u) = max(u) − min(u).

Considering probe p1 at t/Ta = 0.20, differences are δi = 0.99 ua and δa = 0.03 ua.

Same probe, at t/Ta = 0.65, differences are δi = 2.33 ua and δa = 0.04 ua. In the

ventricle at probe p2 and at t/Ta = 0.20, differences are δi = 1.37 ua and δa = 0.03 ua.

At t/Ta = 0.65, differences are δi = 5.67 ua and δa = 0.06 ua.
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Figure 5.4: Left: left heart with probes p1 and p2 indicated. Right: solid lines represent
the phase averaged velocity magnitude at probes locations using nc cycles. The dots
represent the instantaneous velocity magnitude for the n-ith cycle. The first column of
plots represents the data at t/Ta = 0.20, the second column at t/Ta = 0.65. Top plots
represent data from probe p1 while the bottom plots represent data from probe p2.

For both probes and both considered times, high instantaneous fluctuations are ob-

served. Still, the averaged velocity using 15 cycles shows δ differences of two order of

magnitude than the instantaneous velocity differences. The same behaviour were ob-

served on other probes in the numerical domain. Thus, this convergence study showed

that the number of simulated cycles were sufficient to look at the phase-averaged ve-

locity. Note that the averaged flow will be mainly described in this chapter and the

characterisation of the hight velocity fluctuations will be the main object of the next

chapter.

5.3 Results and discussion

5.3.1 Global description of the flow

Figure 5.5 shows 3D vorticity magnitude maps of the phase-averaged velocity field,

nondimensionalised by the period Ta. The following visualizations were made using

the software named Paraview. Six salient instants of the heart cycle are shown: the

ventricular mid-systole (t/Ta=0.25), the end of the ventricular systole (t/Ta=0.35), the

beginning of the E wave (t/Ta=0.45), its peak (t/Ta=0.55), its end (t/Ta=0.65) and the

end of the A wave, just before the beginning of the next ventricular systole (t/Ta=0.99).

In the first row of Fig. 5.5, the first two images correspond to systole. The mitral
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Figure 5.5: Volume rendering of non-dimensional vorticity magnitude of the phase-
averaged velocity fields at different times of the simulation. First row, left plot:
t/Ta=0.25. Center plot: t/Ta=0.35. Right plot: t/Ta=0.45. Second row, left plot:
t/Ta=0.55. Center plot: t/Ta=0.65. Right plot: t/Ta=0.99. Sketch of the inflow flow
rate presented in Fig. 5.3 is reported with a time indication. The mapping relating
vorticity magnitude with opacity is linear. Heart wall is made partially transparent to
allow observation of the flow behaviour.
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valve is closed, while the aortic valve is open. The ventricle volume is conspicuously

decreasing, causing ejection of the blood into the aorta. The narrowed geometry of the

aorta root generates high vorticity in the shear layer clearly shown at t/Ta=0.25, while

the ventricle remains free of vorticity. At the same time, the LA volume increases and

is filled with blood. Four jets are present, three of them colliding head on, while the

lower part of the LA remains vorticity-free. Blood coming from the RSPV (on the left

side of the images) follows a trajectory tangential to the atrial wall, giving rise to a net

swirling motion in the atrium as observed in vivo [62] and in experimental work [167].

High vorticity is visible at the pulmonary veins roots due to their narrowed geometry.

At the end of systole, the vorticity begins to decrease in the entire heart, as shown at

t/Ta=0.35 (top center plot in Fig. 5.5). At the end of the ventricle contraction, the

aortic valve closes and the mitral valve opens: the ventricle filling starts.

The ventricle diastole starts at t/Ta=0.375 (not shown): the LV volume increases

and blood passes from the LA to the LV, forming a strong jet through the MV. The

shear layer between the jet generated and the surrounding quiescent fluid rolls-up and

shapes the jet head as a vortex ring [95]. The top right plot in Fig. 5.5 depicts this

vortex ring at t/Ta=0.45. This mechanism was reported and studied by several authors,

notably by Domenichini [43]. A similar process is visible in the LA where formation of

four vortex rings takes place at the four pulmonary veins (only two are visible in the

top right image in Fig. 5.5).

At the E wave peak (bottom left image in Fig. 5.5, t/Ta=0.55), three of the LA jets

collide head on, as described before, but in a more intense way, as the pulmonary veins

flow rate is higher at the E wave peak than at t/Ta=0.25. Again, Fig. 5.5 shows that

blood coming from the RSPV follows clearly a trajectory that is tangential to the atrial

wall. As the E wave head jet is getting closer to the wall with an angle of approximately

50 degrees, a shear layer is generated at the lateral heart wall (the right hand sided wall

on plots). The part of the vortex ring that is closer to the lateral wall interacts with

it and dissipates. The other part of the vortex ring is marginally affected and thus

remains almost intact, moving towards the apex of the ventricle, as described in the

literature [116].

As expected for a flow at such a Reynolds number [30], small-scale vortices are also

generated with the vortex-wall interaction at t/Ta=0.65 (Fig. 5.5, bottom center plot).

At the end of the E wave, numerous small vortices are present in the whole LV.

As the inlet flow decreases, the vorticity magnitude decreases as well in the entire

heart. The LV volume remains stable during this phase called diastasis. Vorticity

magnitude progressively decreases in all the left heart due to dissipation of the vortices

by viscosity.

This is confirmed by the vorticity levels observed in Fig. 5.5 at t/Ta=0.99 (bottom

right image). Vorticity is now small everywhere, except near the mitral valve, due to

the small A wave. Note that contrary to what is seen during the E wave, blood is not

entering the LA during the A wave. The contraction of the LA to finish the LV filling
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Figure 5.6: Phase-averaged non-dimensional velocity field (uf/ua) projected on a slice of
the heart. Velocity vector scale is not constant though the heart cycle and is indicated
for each plot. First row, left plot: t/Ta=0.25. Center plot: t/Ta=0.35. Right plot:
t/Ta=0.45. Second row, left plot: t/Ta=0.55. Center plot: t/Ta=0.65. Right plot:
t/Ta=0.99. Sketch of the inflow flow rate presented in Fig. 5.3 is reported with a time
indication.

results in a small outward flow through the pulmonary veins, visible on the vorticity

field.
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5.3.2 Velocity fields

The velocity vector fields of the phase-averaged flow are shown in Fig. 5.6, for the same

instants shown in Fig. 5.5. The non-dimensional velocity vectors uf/ua are shown over

the slice through the left heart indicated in Fig. 5.1. The slice was selected and oriented

to encompass the specific regions of interest in this heart. Note that due to the strong

velocity variations along the cycle, the vector scale is adapted for the different instants.

Again, the first two images of Fig. 5.6 correspond to systole. At the beginning of systole,

high velocity is mainly observed in the ascending aorta as shown in Fig. 5.6 top left

image. About the end of systole at t/Ta=0.35 (top center image in Fig. 5.6), just before

the opening of the MV, blood entering the LA is already directed towards the LV. In

the lower half part of the LA, coexistence of an axial movement toward the MV and a

rotational movement is observed. This helical flow has been reported in-vivo [90, 109].

In order to see this flow feature hardly discernible in Fig. 5.6, Fig. 5.7 (left plot) shows

the velocity field projected on a plane perpendicular to the cutting plane of Fig. 5.6.

Above the MV at t/Ta=0.35, a net swirling motion is visible in this area. The axial

movement towards the MV is actually much smaller than the intensity of this rotational

structure.

In the ventricle, the contraction resulting in blood ejection through the aorta gener-

ates a small recirculation under the MV (on the right of the top center image). Another

recirculation area is noticeable in the aorta: a normal anatomic feature of the ascending

aorta is a dilatation of the vessel just above the AV. During the whole systole, blood

recirculation occurs in it [89], which can clearly be observed in the velocity field shown

at t/Ta=0.35. However, the aortic valve leaflets dynamics are not modelled here when

the valve is open. Consequently, the flow dynamics observed in that region may change

if a more realistic aortic valve model were used.

At the beginning of diastole (top right image in Fig. 5.6), blood enters the LA and

the LA contracts, resulting in the E wave through the MV. In the LA, blood is clearly

directed towards the MV [62]. The E wave vortex ring signature can also be seen in the

top right plot in Fig. 5.6 at t/Ta=0.45 and its evolution can be followed with the bottom

left plot, at t/Ta=0.55. There, the vortex ring is no more symmetric, as the lateral wall

prevents its full development. On the other side, the vortex ring gains strength, as

described in the previous section. At the same time, the atrial flow seems separated in

two halves again. Blood in the lower half is directed to the MV while in the upper half,

the flow is a more chaotic due to the collision of the pulmonary veins blood streams.

At t/Ta=0.65 (bottom, center plot in Fig. 5.6), a large recirculating cell is visible in

the LV, as described classically in the literature [84, 109, 101]. It is characteristic of the

flow in the ventricle after the E wave. Note that the intense upward motion along the

septum wall is responsible for the high values of vorticity already described in Fig. 5.5

at t/Ta=0.65. Two small blood recirculation zones can be detected: one at the apex,

which is visible during the whole diastole and an intermittent one between the aortic

valve and one of the MV leaflets. These blood recirculations were previously reported
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Figure 5.7: Phase-averaged non-dimensional velocity (uf/ua) vectors field projected
on planes and velocity magnitude. Planes are indicated on the heart sketches and are
viewed from the top of the heart in the apex direction (plane’s orientation is indicated).
The MV leaflets are visible in the right bottom plots and are coloured in gray. Left:
t/Ta=0.35. Right: t/Ta=0.65. Sketch of the inflow flow rate presented in Fig. 5.3 is
reported with a time indication.

in-silico [42, 116, 151]. Figure 5.7 (right image) shows the averaged non-dimensional

velocity field on another plane at t/Ta=0.65. As at t/Ta=0.35, in the lower part of

the atrium, the downward axial movement towards the MV is rather low compared to

the rotational movement: Fig. 5.7 shows a net swirling motion, visible not only above

the MV (top right plot) but also at the tip of the leaflets (bottom right plot). The

swirling motion at the MV is visible during all the remainder of diastole, supporting

the fact that the velocity field at the MV is not only skewed [40, 78] but has also a

non-negligible rotational component. This flow feature can actually be observed at

each of the decelerations of the pulmonary veins inflow: a swirling motion in the lowest

part of the atrium maintains blood motion in the LA even without net incoming flow

through the pulmonary veins. Figure 5.7 (right image) shows the phase-averaged non-

dimensional velocity magnitude on the same planes. Velocity fields show that for this

heart simulation, a skewed velocity profile is obtained. Both the order of magnitude and

the structure of the velocity fields show similarities with the ones presented by Dahl and

al [40]. Note however that the velocity field in the left atrium at the MV may strongly

depend on the chosen flow distribution at the pulmonary veins.

Between the E wave and the A wave, the recirculating cell core in the LV moves

from the ventricle center to the septum wall. During the A wave (bottom, right plot

in Fig. 5.6) occurring at t/Ta=0.99, the blood flux passing though the MV strengthens

the recirculating cell in the LV, as classically reported. The atrial contraction expels

blood from the LA, both through the MV, as seen in the lower half part of the LA, and

through the pulmonary veins, as shown by the upward velocity vectors visible in the

upper half part of the LA.
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Figure 5.8: Evolution of Q criterion isosurface (Q = 30u2
a/R

2
a) showing the struc-

tures present in the instantaneous field, through the heart cycle. First row, left plot:
t/Ta=0.25. Center plot: t/Ta=0.35. Right plot: t/Ta=0.45. Second row, left plot:
t/Ta=0.55. Center plot: t/Ta=0.65. Right plot: t/Ta=0.99. Sketch of the inflow flow
rate presented in Fig. 5.3 is reported with a time indication.

5.3.3 Instantaneous structures

Instantaneous flow features have been ignored in the previous sections. In order to

describe them, the Q criterion, first introduced by [85], is displayed. This criterion uses

the second invariant of the velocity gradient tensor,

Q =
1

2
(Ω2 − S2), (5.7)
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where Ω and S are respectively the antisymmetric and the symmetric components of

the velocity gradient tensor. Thus, a positive Q criterion indicates a higher rotation

rate compared to the strain rate, allowing to detect vortical structures. Images of Q

criterion isosurfaces are presented in Fig. 5.8 at different instants of the heart cycle. The

instants are the same as in the previous sections and the isosurface at Q = 30u2
a/R

2
a is

shown. The Q criterion is calculated using the instantaneous velocity fields.

At the beginning of systole (Fig. 5.8 top left image), the flow vortical structures

are the remnants of the late diastole flow field. The late diastole instantaneous flow

structure can be observed in the bottom right image in Fig. 5.8).

In the course of the following systole, such structures are convected and smoothly

elongated towards the aorta. During this process, a unique vortical structure of length

up to 10 Ra is formed as shown in Fig. 5.8 top left and center plots. Pieces of this

structure remain in the ventricle even after the aortic valve is closed. Figure 5.8 shows

the remnant structure under the aortic valve even after the beginning of the E wave

at t/Ta=0.55. The curvature of the aorta generates a helicoidal movement at the exit

of the ventricle. The LV remains almost free from vortical structures during systole,

as does the lower half part of the LA. However, the upper half of the LA shows many

structures and swirling flow is noticeable thanks to the Q criterion at the pulmonary

veins on the top left plot in Fig. 5.8.

At t/Ta=0.45 (top right plot in Fig. 5.8), vortex rings are created at the ostia of

the pulmonary veins, due to the unsteady flow entering the LA. Two of the vortices

are clearly visible in the figure. Figure 5.9, right plot, shows a better view of these

structures at t/Ta = 0.51. Two red arrows indicates the vortex ring structures. The

vortex ring at the MV described before is also visible. The MV vortex ring travels

about two radius Ra in direction of the apex during a time interval of Ta/10 before it

hits the lateral wall. The Q criterion isosurfaces in the left and bottom center images in

Fig. 5.8 show the evolution of the vortical structures in the LV from the initial ring-like

shape to the final complex 3D flow, when the ventricle cavity is almost completely filled

by vortical structures, at t/Ta=0.65. At the same time, the LA also shows an intense

vortical activity as well. The swirling motion at this time cannot be well represented by

the instantaneous structure although hardly discernible structure following the e3 axe

is generated by the swirl. Figure 5.9, left plot shows the instantaneous streamlines in

the atrium at 0.75Ta, the swirling being well visible.

During the late ventricle filling, the atrium contracts and generates a small vortex

ring (bottom right plot in Fig. 5.8). However, its intensity is much lower than the one

generated during the E wave, and it is hardly visible. The vortex head only travels

about one radius Ra within a time span of Ta/12, which corresponds to a velocity 60%

smaller than the vortex ring created by the E wave. Finally, vortical structures dissipate

almost everywhere in the heart. It has to be noticed that the swirling flows visible at the

pulmonary veins at t/Ta=0.25 and t/Ta=0.65 through the Q criterion are also visible

at t/Ta=0.99: the pulmonary veins geometry generates this helicoidal inflow.
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Figure 5.9: Left: streamlines in the atrium at 0.75Ta. Right, isosurface of Q-criterion

(5 u2
a

R2
a
) showing the structures present in the instantaneous field at 0.51Ta. Vortex rings

are indicated by the two red arrows.

5.3.4 Velocity fluctuations

This flow configuration is a breeding ground for weak turbulence. The transitional

nature of this cyclic flow due to high Reynolds numbers and unsteady inflows re-

sults in cycle-to-cycle variations. These variations can be quantified through the non-

dimensional kinetic energy of the velocity cycle-to-cycle fluctuations. Note that in the

present case, the fluctuations energy do not only measures the turbulent activity, but

more generally cycle-to-cycle variations. However, in this manuscript, this energy will

be referred to turbulent kinetic energy (TKE).

This turbulent kinetic energy (TKE) is defined as,

Ek =
1

2
(u2

rms + v2
rms + w2

rms), (5.8)

where urms, vrms and wrms are the root mean square values of the velocity fluctuations

in the three directions.

Figure 5.10 shows the spatial distribution of the TKE along the heart cycle, over

the same cutting plane as in Fig. 5.6.The beginning of systole is associated with a

relaminarization process in the LV. TKE intensity levels across the ventricle during

systole (top left and center plots in Fig. 5.10) stay almost null. The highest TKE levels

are present in the root of the aorta between t/Ta=0.25 and 0.35. Note however that

the TKE levels downstream of the AV may be mispredicted here, due to the absence of

AV leaflets modelling when the AV is open. Meanwhile, fluctuations are increasing in

the upper half of the LA (up to 10 u2
a) where the inflowing jets collide.
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Figure 5.10: Nondimensional fluctuating kinetic energy Ek/u
2
a. First row, left plot:

t/Ta=0.25. Center plot: t/Ta=0.35. Right plot: t/Ta=0.45. Second row, left plot:
t/Ta=0.55. Center plot: t/Ta=0.65. Right plot: t/Ta=0.99. Sketch of the inflow flow
rate presented in Fig. 5.3 is reported with a time indication.
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During the formation of the MV vortex ring at t/Ta=0.45 (top right plot in Fig. 5.10)

until the jet hits the wall, the TKE is more intense in the vicinity of the jet. These

fluctuations are mainly due to small differences in the location of the shear layer and of

the vortex ring, where the velocity gradients are high. At the E wave peak (t/Ta=0.55,

bottom left plot in Fig. 5.10), high TKE (about 5 u2
a) is observed in the jet edge

which becomes increasingly unstable throughout the onset of the MV flow deceleration.

Furthermore, high TKE levels are also visible along the lateral wall.

As shown by the TKE field at t/Ta=0.55, the impact of the vortex ring on the

lateral wall is a zone of high velocity fluctuations. At the same time, the E wave

starts to decrease. At t/Ta=0.65 (bottom center image in Fig. 5.10), the flow through

the mitral valve is approximately null. However, the flow in the ventricle is far from

quiescent. The mitral jet impact has made the initial vortex ring shatter into small

vortices, that occupy the main part of the ventricle. In accordance with this transition

to (weak) turbulence, the TKE field shows high values over almost the whole ventricle.

Largest values of TKE (from 6 to 10 u2
a) are observed at the core of the recirculating cell.

These high values of TKE are due to the differences in the position of recirculating cell

center between cycles, as previously reported in similar geometrical configuration [46].

The TKE in the LA also indicates that the pulmonary jets impact in the upper part of

the LA is associated with intense velocity fluctuations from one cycle to another. TKE

is about three times lower in the bottom half of the LA. Such a ratio of TKE between

the upper and bottom halves of the LA remains approximately the same during the

entire heart cycle.

At the end of diastole (t/Ta=0.99, bottom right plot in Fig. 5.10), the TKE becomes

more homogeneous in the heart, albeit with higher values at the center of the ventricle

recirculating cell (see also Fig. 5.6) and at the MV tips due to the A wave vortex

ring. As soon as systole begins, a relaminarization process is engaged in the ventricle:

blood acceleration reorganizes the blood flow and destroys all the remaining vortices.

Comparing the TKE fields at t/Ta=0.99 and at t/Ta=0.25 shows that late diastole

velocity fluctuations do not persist in systole.

5.4 Flow sensitivity to viscous effect

5.4.1 Blood rheology

The calculation reported in this chapter has limitations related to the blood modelling.

Blood has been modelled as a Newtonian fluid and we will keep this modelling as-

sumption in the next chapters. Even if this approximation is commonly accepted for

heart flow and more generally for cardiovascular flows in large vessels, a non-Newtonian

model could be included in the present method in order to assess the impact of the

rheological model on the flow. In order to take into account of the shear-thinning be-

haviour of blood, the Carreau-Yasuda model [18] was used. This model was chosen

among others [183] because of the following advantages. First, the bounded nature of
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the model is an advantage over other non-linear models. Then, the model is computa-

tionally effective, has a low implementation complexity and a negligible computational

cost compared to the Newtonian model by directly relating the shear strain rate to the

shear stress.

The popularity of the Carreau-Yasuda model is partly due to its success in reproduc-

ing experiments performed using a blood analogue fluid. Gijsen et al. [70, 71] conducted

a series of experiments on two academical configurations in order to investigate the influ-

ence of the non-Newtonian properties of blood on the velocity field. In these works, the

shear-thinning behaviour of the blood analogue fluid was accounted for in the numerical

simulations thanks to the Carreau-Yasuda model, leaving aside the thixotropic and vis-

coelastic properties of the fluid (and of blood). Gijsen et al. obtained a good comparison

between the experiment and the simulations with the Carreau-Yasuda model, while the

simulations with the Newtonian model showed larger differences. One could conclude

that the Carreau-Yasuda model is better than the Newtonian model. However, one

should not overrate the capability of the Carreau-Yasuda model to represent blood: the

Carreau-Yasuda model is actually a reasonable model of blood analogue fluids (which

are imperfect blood models), not of blood itself.

This simple model is far from describing accurately the blood rheology. In particular,

rheological models as the Carreau-Yasuda model assumes an instantaneous relation

between the shear rate and the effective viscosity. However, it is well known that the

increase of viscosity at low shear rates is strongly related to the formation of rouleaux

of red blood cells, which is a time-dependent process [32]. This effect is neglected in

the Carreau-Yasuda model. Nevertheless, simulations using a shear-thinning model

can provide some information about the importance of shear-thinning effects on the

configuration of interest. Configurations showing small differences between simulations

using a Newtonian model or the Carreau-Yasuda model are probably less sensitive to

rheological models.

A quick study has thus been conducted to compare simulations with a Newtonian

fluid or a Carreau-Yasuda fluid, to estimate the impact of the rheological model. Results

are briefly discussed in the next paragraphs. The reader will find further discussion on

blood modelling and its implication on flow and turbulence in the concluding chapter

of this thesis (chapter 9, section 9.2.2).

The Carreau-Yasuda model was then included in the YALES2BIO in order to make

comparisons with the results already presented in the Newtonian case. The Carreau-

Yasuda model reads
νc − ν∞

ν0 − ν∞
= (1 + (λcγ̇)ac)(nc−1)/ac , (5.9)

where γ̇ is a scalar measure of the rate of the deformation tensor D. It is related to the

second invariant of the rate of deformation tensor [104]:

D =
1

2
[∇u + (∇u)t], (5.10)

γ̇ =
√

2tr(D2). (5.11)
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ν0 (m2.s−1) 22 × 10−6

ν∞ (m2.s−1) 2.2 × 10−6

νn (m2.s−1) 4.0 × 10−6

ac 0.644
nc 0.392

λc (s) 0.110

Table 5.3: Set of parameters used in the Carreau-Yasuda model. Data fitted from work
by Thurston [170].

γ̇

ν

7.5 × 10−6

1.5 × 10−5

2.25 × 10−5

0
0.01 0.1 1 10 100 1000

Figure 5.11: Comparison of viscosity νc and shear rate γ̇ relationship as predicted by
the Carreau-Yasuda model (solid line). The constant viscosity νn used in the Newtonian
hypothesis is indicated using the red dashed line.

The other parameters are ν0 the viscosity at zero shear rate, νinf the viscosity at infinite

shear rate, λc a relaxation time, nc the power index coefficient and ac a dimensionless

parameter describing the transition between the first Newtonian plateau and the power-

law range. The numerical values of the parameters used here were also used in Gijsen et

al. [70] and in Chen et al. [28]. These parameters were obtained by fitting experimental

data from Thurston [170]. The parameters are reported in Tab. 5.3. The constant

viscosity used in the simulations under the Newtonian assumption, referred to as νn

here, is also recalled.

Figure 5.11 shows the viscosity behaviour under a large range of shear rate γ̇. Note

that at a scalar shear rate of 400 s−1, the Newtonian and Carreau-Yasuda fluids have

the same viscosity. At high shear rate (γ̇ ≫ 1), the viscosity value is below the constant

viscosity used in the simulations under the Newtonian hypothesis.

A 30-heart-cycle LES was conducted with the Carreau-Yasuda blood model. Fig-

ure 5.12 shows the spatial distribution of the ratio νc/νn, νc being the viscosity com-

puted by the Carreau-Yasuda model and νn the constant viscosity used all along this

manuscript. This ratio is mapped along the heart cycle, over the same cutting plane as

in Fig. 5.6.
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Figure 5.12: Ratio between viscosity νc computed with Carreau-Yasuda model and
constant viscosity νn. First row, left plot: t/Ta=0.25. Center plot: t/Ta=0.35. Right
plot: t/Ta=0.45. Second row, left plot: t/Ta=0.55. Center plot: t/Ta=0.65. Right plot:
t/Ta=0.99.
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Under the light of the previous section, it has to be noted that the location where

high fluctuations are observable correspond to high shear area and thus, low fluid vis-

cosity. Hence, the viscosity drops in the upper part of the atrium during disturbed

flow. Likely, the E wave jet in the ventricle and the following diastasis are associated

with low viscosity regions. Viscosity rises in regions of quiet flow, in the lower part of

the atrium or in the ventricle during diastole. During all the heart cycle, maximum

viscosity was approximately of 4 νn. The velocity distributions are not shown here, as

the differences against the Newtonian case are barely observable. Regarding the fluc-

tuating kinetic energy, the higher viscosity implies lower energy levels because of the

higher dissipation. However, the energy levels behaviour are almost identical and the

maximum decrease in fluctuating kinetic energy when using the shear-thinning model

is about ∼10% compared to the Newtonian case.

5.4.2 SGS modelling

As shown in section 5.3.4, turbulence is generated in the heart. It is hence anticipated

that the numerical results could be sensitive to both the numerical scheme and the SGS

model. We discuss in particular the impact of the SGS model on the flow as we have

performed computation with the dynamic Smagorinsky model in this chapter. This

section focuses on the comparison between the dynamic Smagorinsky model [68] and

the σ model [130].

Comparisons of the Sigma and Smagorinsky LES models against direct numerical

simulation has been conducted by Rieth et al [145] for grid-generated turbulence and in a

channel flow. The study showed that the σ-model and the dynamic Smagorinsky model

lead to comparable results for most of the settings examined. However in simulation with

the σ-model, in addition to its significantly lower computational costs (as no dynamic

procedure is used), the near wall region has been captured more accurately. Baya Toda

et al. [15] have conducted comparison of the σ-model and the dynamic Smagorinsky

model against experimental measurements on a pulsatile jet in turbulent cross-flow

impinging on a plate. Such a configuration is close to what happens in the heart

during diastole, when the E wave mitral jet impacts the lateral wall. Both subgrid-scale

models give similar results during the first phase of the experiment. However, it was

found that the dynamic Smagorinsky model could not accurately predict the vortex-

ring propagation, while the σ-model provides a better agreement with the experimental

measurements.

Here, the influence of the SGS viscosity model is investigated by comparing results

from the σ-model and the dynamic Smagorinsky model used in this chapter. In both

cases, the heart presented in this chapter is used and results are phase-averaged over

50 cycles.

Figure 5.13 shows the ratio of the SGS viscosity νt to molecular viscosity νn for both

models at t/Ta = 0.55 and t/Ta = 0.65. The model viscosity obtained with the σ-model

is much noisier than with the Smagorinsky model. High values (and thus non physical)
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(a) (b) (c) (d)
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Figure 5.13: Maps of ratio of the SGS viscosity νt to molecular viscosity νn. Plot (a)
and (c) display the ratio for the dynamic Smagorinsky model. Plot (b) and (d) are
maps of the σ-model SGS viscosity ratio. Left plots (a and b) are maps of the ratio at
t/Ta = 0.55 while the right plots (c and d) are maps at t/Ta = 0.65.

of SGS viscosity at wall nodes at t/Ta = 0.55 and t/Ta = 0.65 are observable for the

Smagorinsky model. During diastasis at t/Ta = 0.65, the SGS viscosity drops for both

models. The velocity magnitude is low and more likely resolved by the mesh, so that

the damping of the viscosity is successful.

Concerning the σ-model, the fully local definition of the time scale (no explicit

filtering or averaging needed) allows the subgrid-scale viscosity to automatically vanish

near solid boundaries as long as there are some nodes in the boundary layer. As a

result the viscosity level remains very low during the entire cardiac cycle, even when

the velocity gradient at the wall is high, as at t/Ta = 0.55. In addition, the results

shows that the σ-model adds less SGS viscosity than the dynamic Smagorinsky model,

so that simulation is closer to a DNS.

Figure 5.14 shows the phase-averaged velocity and TKE maps at the same instant

(t/Ta = 0.65). This instant was chosen for its high TKE magnitude levels. Velocity

maps show that the overall flow structure is the same for the two SGS viscosity models.

This statement stands for the rest of the heart flow apart for the recirculating cell in the

ventricle at the diastole end (results not shown here). The center position of this cell is

slightly different. However, turbulence characteristics changed, especially in turbulent

levels. This results were expected as the dynamic Smagorinsky model is slightly more

dissipative than the σ-model. The TKE results for the dynamic Smagorinsky model

and the σ-model share an overall similar behaviour for the turbulent kinetic energy

but differences in magnitudes are observed. TKE magnitude levels are roughly 10 %

higher with the σ-model, and at t/Ta = 0.65, fluctuations are more concentrated in the

ventricle center for the σ-model.

In the end, the changes in flow topology in heart A are not as drastic than the change
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Figure 5.14: Velocity (left plots) and TKE maps (right plots) obtained with the dynamic
Smagorinsky and with the σ-model . For each plots couple, the left is the results of
simulation with dynamic Smagorinsky model, the right with σ-model. The displayed
maps correspond to t/Ta = 0.65.

in Baya Toda et al. [15] case. However, the σ-model adds less viscosity to the flow, has

a better behaviour at the walls and is less CPU-consuming. The σ-model will be thus

used during the rest of this manuscript.

5.5 Conclusion and outlook

In this chapter, the application of the presented numerical framework to a patient left

heart has been exposed. This numerical framework only requires gated 4D images of

a patient heart and global morphological parameters of the mitral valve as input data

for the computation. A numerical domain is extracted from one 3D medical image and

the heart wall movements are automatically calculated to follow the heart wall displace-

ments recorded in the 4D medical images, thanks to an image registration algorithm.

Then, temporal interpolation of the geometry is used to generate a finite-volume mesh

of the left heart at any time over the cardiac cycle.

A computation of the blood flow in a full left heart including the left ventricle,

atrium and the aorta root has been conducted. The present numerical method provides

results consistent with the current knowledge in terms of left heart flow. The E wave

and the A wave are recovered showing high E/A ratio (5.5) characteristic of ventricle

with restrictive filling. At the pulmonary veins, the flow reversal associated with the

late atrial contraction is recovered as well.

In the left atrium, the flow reported shows a clear swirling motion, that maintains

blood in motion even without net blood flow coming from the pulmonary veins. Further-

more, the well-known mitral jet, preceded by an energetic vortex ring, is also observed.

The classical large recirculating cell, characteristic of the flow during diastasis, can also
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be seen in the phased-averaged velocity fields. All these features have been reported sev-

eral times in the literature, both in numerical and experimental studies and by medical

imaging.

Furthermore, the use of a numerical method well adapted to turbulent flows enables

the observation of cycle-to-cycle variations in the flow field. Such variations are expected

in the present flow, because of the Reynolds numbers encountered and the unsteadiness

of the flow coming from the pulmonary veins. The present results show that in spite

of the rigorously identical contraction and boundary conditions, fluid inertia makes the

flow differing from one cycle to the other. More precisely, cycle-to-cycle variations in

the left atrium can be observed in its upper part, where the collision of the jets issuing

from the pulmonary veins makes the flow particularly chaotic. Cycle-to-cycle variations

are high after each peak in the pulmonary vein flow rate, during flow deceleration. In

the left ventricle, velocity fluctuations are reported mainly in late diastole. Between the

impact of the E wave jet on the lateral wall and the end of diastole, the left ventricle

displays high levels of cycle-to-cycle fluctuations. Indeed, both the vortex ring impact

and the E wave deceleration occur approximately at the same time, and both are fea-

tures tending to promote turbulence. During late diastole, the large recirculation cell

classically reported in the literature is recovered in the phase-averaged field.

The spatio-temporal resolution of the medical images used to feed the whole numer-

ical procedure is an important limitation, which imposes temporal interpolation and

geometrical simplifications of the heart model. It also makes it difficult to accurately

account for short phases as the isovolumic contraction and relaxation. Although ten

images per cardiac cycle enables a convincing flow prediction, specific tests should be

performed to precisely assess the impact of the temporal resolution of the medical im-

ages on the flow field. Another limitation is the unknown flow distribution between the

pulmonary veins, which has to be prescribed in the simulations.

In the present work, the main element to improve is certainly the valve modelling.

The model used for valves highly depends on the anatomical information that can be

extracted from the images. Consistently with their insufficient spatio-temporal resolu-

tion, a rough model of the valves was used. Better valve models should notably include

valve opening and closing and the change of aperture area along time. Aortic valve

leaflets were also completely omitted during systole, which most probably impacts the

flow at the beginning of the aorta. In addition, the immersed forcing used in this work

could be improved [52], notably by accounting for the exact valve velocity.

Still, the presented method does include important aspects of the physiological heart:

the entire ventricle and atrium, the aorta root, the pulmonary veins and the valves. Such

a geometrical complexity has rarely been accounted for. As a consequence, rarely or

never reported features such as secondary vortex recirculation, vortical structure at the

aorta, swirling motion at the MV, vortex rings, swirling motion at the pulmonary veins

and velocity fluctuations have been discussed for the first time in details. Furthermore,

the presented results underline the fact that over-simplified geometries cannot fully
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reproduce certain physical events as for example the mitral in-plane swirling motion.

Chapter key points:

• The framework presented in the last chapters was successfully

applied to compute a patient-specific heart blood flow.

• Heart model and movements are extracted from morphological

medical images.

• Flow dynamics was analysed and commonly detected physiolog-

ical patterns are reported.

• Large cycle-to-cycles fluctuations were observed.

• Negligible changes are observed when using the Carreau-

Yassuda model instead of the Newtonian approximation.
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As seen in the previous chapter, in addition to retrieving the main fluid

flow phenomena commonly observed in the left heart, the developed method-

ology allows the observation of high levels of cycle-to-cycle fluctuations. The

present chapter focuses on these fluctuations and aims at characterizing

them in heart A. The unsteady development of turbulence is analysed using

mean flow, the flow statistics, the turbulent stresses, the turbulent kinetic

energy, its production and through spectral analysis.

This chapter is part of: C. Chnafa, S. Mendez and F. Nicoud. ”Turbulence charac-

terisation in a patient-specific human left heart. A numerical study”. To be submitted

for publication in Journal of Fluid Mechanics.
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Figure 6.1: Template computational domain extracted from a 3D medical image. The
same domain is represented from four different points of view and the left ventricle
(LV), left atrium (LA), Aorta (AO) and two pulmonary veins are indicated. Black line
passing through the left heart indicates the position of slices used to describe the flow
in section 6.3. Probes locations and outflow patch are also indicated.

6.1 Problem formulation

The procedure which allows producing a proper numerical representation of the intra-

cardiac flow from medical images was fully described in the last chapters. Only the

main ingredients are given in the following sections.

6.1.1 Numerical domain

The same CT exam used in the last chapter is used here. As a reminder, the exam

consists in N = 10 medical images which are available along the cardiac cycle lasting

T = 1000 ms. The numerical domain is extracted from one particular medical image

referred to as template image.

Fields of deformations between the template image and the other images taken at

different times in the cardiac cycle are computed by an image registration algorithm.

These deformations are then applied to the template mesh, producing a set of successive

meshes matching the physiological cardiac images at different times.

In this study, both the aortic (AV) and mitral (MV) valves are handled by an im-

mersed boundary method (IBM). The AV, which has a moderate impact on the ventric-

ular flow, is modelled as a planar region being alternatively permeable and impermeable

depending on the phase in the cardiac cycle. The MV is modelled by a more realistic

geometry based on measurements (open surface, leaflets lengths) on the medical images.
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6.1.2 Governing equations

Blood is modelled as an incompressible Newtonian fluid. so that the haemodynamics

is described by the Navier-Stokes (NS) equations. These equations are solved on the

moving blood domain Ωf (t) ⊂ R3 bounded by ∂Ωf (t). The boundary ∂Ωf (t) is such

that ∂Ωf (t) = ∂Ωi
f (t)∪∂Ωw

f (t)∪∂Ωo
f (t) and ∂Ωi

f (t)∩∂Ωw
f (t)∩∂Ωo

f (t) = ∅ where ∂Ωi
f (t)

represents a fluid inlet boundary where a Dirichlet condition is prescribed on the velocity

field, ∂Ωw
f (t) represents the vessels and heart wall boundary where a classical no-slip

condition is applied and ∂Ωo
f (t) represents a fluid outlet boundary. The NS equations

for the resolved velocity U i and pressure P are

∂U i

∂t
+
∂U iU i

∂xj
= −1

ρ

∂P

∂xi
+ νn

∂2U i

∂xj∂xj
− ∂τij

∂xj
+ fi,

∂U i

∂xi
= 0,



















on Ωf (t) (6.1)

where νn is the kinematic viscosity, ρ the density and fi a volumetric force. The residual-

stress tensor τij = UiUj − U iU j results from the unresolved subgrid-scale contribution

and is modelled by a subgrid-scale (SGS) model in this study. σ-model described in

chapter 3 is used here instead of the Smagorinsky model. On the domain presented in

Fig. 6.1 (left plot), x1, x2 and x3 corresponds to the forward to backward direction, the

right to left direction and the bottom to top direction respectively.

As the assumption that either the aortic valve or the mitral valve is closed is made,

the total mass flow rate entering the domain is entirely determined by the mass con-

servation constraint (see chapter 4). This total mass flow rate is equally distributed

between the four PV. Flow rate at the MV and the total flow rate are redisplayed in

Fig. 6.2 for the sake of completeness. Two vertical dotted lines separate the systolic

phase and the diastolic one. For this heart, systole lasts t/Ta=0.36 (from t/Ta 0.015 to

0.375) and diastole t/Ta=0.64.

6.1.3 Computational mesh and simulation details

A nearly isotropic grid is used during the whole cardiac cycle. The spatial resolution

is imposed to be close to 0.8 mm in all three spatial directions which yields grids of

approximately three-million tetrahedral elements.

The simulation time step is fixed by a CFL condition (CFL=0.9) and a Fourier

condition of Fo = 0.2 consistent with the explicit time integration used in the CFD

solver. This corresponds to a time step varying from 3.0 × 10−4 s to 8.0 × 10−4 s in

the present computation. The period of the whole cardiac cycle is T = 1 s.

The fluid density ρ and the fluid kinematic viscosity νn are supposed to be constant

in this chapter: ρ = 1040 kg.m−3 and νn = 4 × 10−6m2.s−1. The reference velocity

named ua is computed as ua = q̇ls/Vs = 0.1 m.s−1 where q̇ is the cardiac output

(q̇=7.50 × 10−5 m3.s−1), Vs the end systolic volume (Vs = 5.55 × 10−5 m3) and ls is

the ventricle length at the end of the systole (ls=7.40 × 10−2 m).
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Figure 6.2: Flow rates (in mL.s−1) at the aortic valve (top plot), mitral valve (middle
plot) and the total heart inflow (bottom plot) imposed at the pulmonary veins during
the heart cycle. Vertical dotted lines mark the limit between the systolic phase (t/Ta

between 0.015 and 0.375) and the diastolic phase. The E wave and the A wave are
indicated on the mitral flow.

Element Umax D = 2
√

A
π Remax tm/Ta

AV 0.96 m.s−1 2.20 cm 5300 0.16
MV 1.08 m.s−1 1.87 cm 5000 0.52

Pulm. vein 0.79 m.s−1 1.00 cm 2000 0.52

Table 6.1: Main flow characteristics describing the simulation. The section-averaged
maximum velocity over the cardiac cycle is indicated as Umax. The maximum Reynolds
number Remax is based on the mean diameter D (D = 2Ra = 2

√
ab) and maximum

velocity Umax. Time when the Remax is reached is reported as tm/Ta.
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Table 6.1 recalls the maximum velocity magnitude and the maximum Reynolds

number for different locations in the heart model: pulmonary veins, mitral valve and

aortic valve.

6.1.4 Data reduction

Using the framework described before, 70 cardiac cycles were simulated and phase-

average were gathered over the last n=50 cycles. The phase average over n cardiac

cycles of a generic variable G is defined as,

〈G〉(x, t) =
1

n

n−1
∑

k=0

G(x, t + kT ), (6.2)

where x denotes the spatial coordinates and t is time. Deviation from this averaged is

computed as,

g = G− 〈G〉. (6.3)

The phase average 〈G〉 represents the time-varying deterministic part of the flow while

a (turbulent) fluctuations are represented by the deviation g. Finally, the root mean

square (r.m.s.) value grms is defined as,

grms(x, t) =
√

〈G2〉(x, t) − 〈G〉2(x, t). (6.4)

Note that the .̄ denoting the filtered velocity and pressure fields is removed in the

remainder of the chapter for sake of simplicity.

6.2 Data convergence

In order to get precise local information on the velocity signal, the numerical domain

was seeded by Eulerian probes. Ten probes pi, i = 1, .., 10 were selected over a virtual

path that a red blood cell can follow, from one pulmonary vein (one of the four inflows)

to the outlet, at the aorta. The second plot of Fig 6.1 shows the location of these

probes. The ten selected probes provide one velocity signal near the RSPV ostium (p1

position), four signals in the left atrium (p2 to p5), four signals in the left ventricle (p6

to p8 with one probe just beneath the aortic valve: p9) and one in the ascending aorta

(p10). These probes will be used to analyse the flow. They are used here to observe the

data convergence.

Figure 6.3 shows velocity data for three probes: p3, p5 and p7. The top plot displays

data on probe p3 at t/Ta = 0.65. The middle plot and the bottom plot display data

from probe p5 at t/Ta = 0.9 and p7 at t/Ta = 0.65, respectively. For the three plots,

solid lines represent the phase-averaged velocity magnitude computed using nc cycles, nc

being set from 1 to the total number of cycles used for data averaging, which is 50. The

dots represent the instantaneous velocity magnitude for the nth cycle. All the velocities

are nondimensionalised by the reference velocity ua (as a remainder: ua =0.1 m.s−1).
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Figure 6.3: Solid lines represent the phase averaged velocity magnitude at probes lo-
cations using nc cycles. The dots represent the instantaneous velocity magnitude for
the nth cycle. Top, middle, bottom plots represent data from probe p3 at 0.65Ta, p5 at
0.90Ta and p7 at 0.65Ta respectively.

For all the three signals, the maximum velocity difference for the last five phase-

averaged values (δa) is compared to the maximum max velocity difference for the in-

stantaneous velocity (δi). These differences are defined for a velocity u as δ(u) =

max(u)− min(u). Considering probe p3 at t/Ta = 0.65, differences are δi = 5.12 ua and

δa = 0.05 ua. For probe p5, at t/Ta = 0.90, differences are δi = 0.19 ua and δa = 0.002

ua. In the ventricle, at probe p7 and at t/Ta = 0.65, differences are δi = 7.3 ua and δa

= 0.04 ua.

For all the probes and all the times considered, high instantaneous fluctuations are

observed. Still, the averaged velocity using 50 cycles shows δ differences of two orders

of magnitude smaller than the instantaneous velocity amplitudes. The same behaviour

were observed on other probes in the numerical domain. Thus, this convergence study

shows that the number of simulated cycles is sufficient to analyse at the phase-averaged

velocity.

Figure 6.4 shows probes data for the fluctuating energy of the third velocity compo-

nent. The top plot displays data from probe p3 at t/Ta = 0.65, bottom plot displays data

from probe p7 at t/Ta=0.65. For the three plots, solid lines represent the turbulence

kinetic energy computed using nc cycles. nc being set from 1 to the total number of

simulated cycles, which is 50. The local turbulence kinetic energy along the x3 direction

is defined as:

k3(x, t) =
1

2
〈u3u3〉. (6.5)
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Figure 6.4: Solid lines represent the turbulent kinetic energy at probes locations using
nc cycles. The dots represent the instantaneous fluctuating energy for the nth cycle.
Top and bottom plots represent data from probe p5 and p7 at 0.65Ta respectively.

In the figure, dots represent the instantaneous kinetic energy ki
3 of the fluctuations for

the third velocity component computed at the nth cycle. This energy, for cycle nc is

defined as

ki
3(x, t) =

1

2
(unc

3 − 〈U〉), (6.6)

〈U〉 being the average third velocity component computed with the 50 cycles and unc
3

the third velocity component for cycle nc. All energies are nondimensionalised by the

squared reference velocity u2
a.

For both signals, the maximum energy difference for the last five phase-averaged

values (δa) is compared to the maximum energy difference for the instantaneous velocity

(δi). Considering probe p3 at t/Ta = 0.65, the differences are δi = 8.0 u2
a and δa = 0.1

u2
a while they are δi = 7.9 u2

a and δa = 0.17 u2
a for probe p7.

For both probes, the energy computed using 50 cycles shows δ differences of almost

two orders of magnitude than the instantaneous energy differences. The same behaviour

is observed on other probes in the numerical domain. This convergence study thus

indicates that the number of simulated cycles is sufficient to provide quantitative data

regarding velocity fluctuations.

6.3 Results

6.3.1 Temporal evolutions

Fifty cardiac cycles were simulated and phase-averaged, in order to provide a clear view

of the flow organization over the cardiac cycle. A detailed flow description can be found

in the last chapter; only the main flow characteristics are recalled here. The phase-

averaged flow field is displayed over a cutting-plane through the left heart (see Fig. 6.1
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Figure 6.5: Phase-averaged non-dimensional velocity field (〈Ui〉/ua) over a cutting-plane
through the left heart (see Fig. 6.1 for the position of the plane). The velocity vector
scale is not constant through the heart cycle and is indicated for each plot. The mitral
valve is depicted in light grey and the aortic valve in dark grey.
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Figure 6.6: Phase-averaged non-dimensional velocity field (〈Ui〉/ua) over cutting-planes
through the left atrium. The velocity fields are projected through the plane indicated
in the left figure. The scale is fixed row by row.

for the position of the plane) at six salient instants in Fig. 6.5. The six instants are the

ventricular mid and end-systole (t/Ta=0.25 and t/Ta=0.35), the beginning, peak and

end of the E wave (respectively t/Ta=0.45, 0.55, 0.65) and the end of the A wave, just

before the beginning of the next ventricular systole (t/Ta=0.99). In addition, Fig. 6.6

illustrates the atrial flow through three planes, positioned perpendicularly to the plane

of Fig. 6.5. The velocity field is scaled for both figures by ua = q̇ls/Vs = 0.1 m.s−1

where q̇=7.50 × 10−5 m3.s−1 is the cardiac output, Vs = 5.55 × 10−5 m3 is the end

systolic volume and ls=7.40×10−2 m is the ventricle length at the end of systole. Note

that due to the strong velocity variations along the cycle, the vector scale was adapted

for each instant displayed. Note also that, as stated in the last chapter, the global

flow behaviour does not suffer major changes compared to the LES using the dynamic

Smagorinsky model. Only the recirculating cell at 0.99Ta changed of position sufficiently

to necessitating a slight change of the slice position to capture the velocity structure.

During systole, the mitral valve is closed (in light gray in Fig. 6.5), preventing

backflow towards the atrium, while the aortic valve is open (in dark gray in Fig. 6.5).

During this phase, the decrease of the ventricle volume causes ejection of blood into

the aorta while inflowing jets are entering and colliding in the upper atrium part. As

the atrium volume increases, high velocity magnitude is observed in upper part of the

cavity during the entire systole. The computed flow at mid-systole (t/Ta=0.25) in the

atrium is highly swirled, as reported in vivo [90, 109]. This movement is captured by

the computation but is hardly discernible in Fig. 6.5, because the vortical movement is
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Figure 6.7: Left: time history of normalized vertical velocity U3/ua over 10 of the 50
cycles used for phase-averaging for the 10 probes studied. Right: phase-averaged of
normalized vertical velocity 〈U3〉/ua at the same 10 points. The vertical dotted line
delimits the systolic phase from the diastolic phase at t/Ta = 0.375.
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perpendicular to the cutting plane. A better view of this feature is found in Fig. 6.6.

The vortical movement is clearly visible in the lower cutting-plane, above the MV at

t/Ta=0.35. A more disturbed flow, resulting from the complex interactions between the

four pulmonary vein jets entering the atrium, is visible on the two upper cutting-planes

in Fig. 6.6.

The systolic phase just described can be observed from another point of view thanks

to the probes placed in the domain. Figure 6.7 shows the normalized vertical velocity

signal U3 over 10 cardiac cycles and the vertical velocity phase-averaged 〈U3〉 over 50

cardiac cycles at the ten probes positions described in section 6.1.1 (Fig. 6.1). The

signal at probe p1 located in the RSPV and shown in Fig. 6.7, is very similar (with

opposite sign) to the inlet flow rate signal, as expected. This signal repeats itself

with minor disturbances during the 10 presented cycles, as shown by the left plot in

Fig. 6.7, suggesting laminar flow at this position. At positions p2 to p5, the phase-

averaged vertical velocity 〈U3〉, right plot in Fig. 6.7, remains small, expressing the

average planar flow motion, perpendicularly to the vertical heart axis. Instantaneous

velocities tend to be less and less prone to rapid fluctuations when observing the signals

from top to bottom locations in the atrium. The large fluctuations are visible in the

inflow jets collision region, while a more quiescent flow is present in the lower part of

the LA. In the ventricle region, probes p6 to p8 show repeatable instantaneous signals,

although with high-frequency fluctuations sometimes superimposed (see for position p6:

cycles number 32, 34, 38 or 39, for example), suggesting a transition to turbulence.

The phase-averaged velocities at these positions (located under the aorta) are positive

during systole, because of the upward motion through the aorta. Probe p9 measures an

instantaneous signal with high-frequency fluctuations at peak-systole while the phase-

averaged velocity has a similar shape as the outlet flow rate profile; positive velocity is

observed during the major part of systole. Finally, probe p10 has a velocity peak during

the peak systole. The averaged velocity then decreases to almost zero and the signal

shows some fluctuations after this.

At t/Ta=0.375 (not shown in Fig. 6.5), the aortic valve closes and the mitral valve

opens: the ventricle diastole starts. The LV volume increases and blood passes from

the LA to the LV, forming a strong jet through the MV. The shear layer between the

jet generated during the E wave and the surrounding quiescent fluid in the LV rolls

up (see Fig. 6.5 at t/Ta=0.45) and shapes the jet head as a vortex ring, as classically

reported [43, 95, 116]. The E wave vortex ring signature and its evolution are visible

in Fig. 6.5 at t/Ta=0.55. Then, the mean flow rearranges itself as a large recirculating

cell, clearly visible in the LV at t/Ta=0.65 (Fig. 6.5, bottom center). During the same

time, a recirculating cell perpendicular to the observed plane of Fig. 6.5 is visible in the

lower part of the atrium (see Fig. 6.6). This structure lasts until the end of diastole.

The upper part of the atrium has a less organised flow structure, but a recirculation is

visible on the right of the plane. During the A wave, occurring at t/Ta=0.99 (Fig. 6.5,

bottom right), the blood flux passing though the MV strengthens the recirculating cell
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in the LV as classically reported as well [137].

The diastolic phase just described is now observed through the local velocity at

the different signals probes (see Fig. 6.7). Right from the beginning of the ventricular

diastole (t/T = 0.375), an immediate amplification of the disturbances is visible in the

atrium on the instantaneous signals, for p2 and p3. Fluctuations are more and more

visible, reaching their maximum between t/Ta = 0.55 and 0.75. Then, the p2 signal

always shows strong disturbances while p3 stays flat. The signal of probe p4 shows

little fluctuations and p5 measures intermittent low fluctuations, as in cycle 35 or 39

suggesting a flow configuration on the onset of turbulent transition. In the atrium,

blood is directed towards the MV at this time and the phase-averaged velocity signal

of probes p3, p4 and p5 show its spatial acceleration: velocity magnitude is more and

more important in direction of the LV during the first half of the diastole (t/Ta ∼ 0.5),

promoting a more laminar flow than in the upper part of the LA.

In the ventricle during diastole, high fluctuations are reported. The passage of the

E wave jet vortex ring is clearly visible in the phase-averaged velocity signals, shown

by high negative velocity at probes p6, p7 and p8. Interestingly, the A wave velocity

is only visible at location p6, through negative velocity around t/Ta = 0.75, while the

signal at p7 is almost flat. Thus, the A wave vortex ring travels less than 2 Ra in

the ventricle, consistently with the weak A wave showed in section 6.1.3. As described

before, the E wave vortex ring hits the lateral wall at t/T = 0.55. The subsequent

generation of small eddies corresponds to an intense growth of the fluctuations. The

instantaneous signal at probes p6, p7 and p8 show high-frequency fluctuations repeated

from cycle to cycle suggesting a turbulent phase accompanying the jet breakdown. In

the aorta at probes p10, fluctuations can be observed in the instantaneous signal as

the flow velocity decreases. These fluctuations are observed at each cycle while the

phase-averaged velocity is near zero.

The fluctuations observed on the probes are sufficiently intense to sometimes al-

ter the flow field in a visible way. Figure 6.8 shows instantaneous velocity flows of

the last two successive cycles (Fig. 6.8a and Fig. 6.8b) at t/T = 0.65 as well as the

phase-averaged velocity field at the same instant(Fig. 6.8c). Large-scale fluctuations

are observable both in the atrium and the ventricle while a clean ventricle recirculating

cell is only retrieved after phase-averaging.

6.3.2 Kinetic energy

Volumetric kinetic energy

The volumetric turbulent kinetic energy kV and the volumetric mean flow kinetic energy

KV are defined as:

kV (t) =
1

2V (t)

∫

V (t)
〈uiui〉 dV, (6.7)

KV (t) =
1

2V (t)

∫

V (t)
〈Ui〉〈Ui〉 dV, (6.8)
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(a) (b) (c)

Figure 6.8: Left and middle plot: instantaneous non-dimensional velocity fields at t/T =
0.65. Right plot: phase-averaged non-dimensional velocity field at t/T = 0.65. Mitral
valve is depicted in light grey and the aortic one in dark grey and scale is the same for
all three images.
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Figure 6.9: Volumetric mean flow kinetic energy KV (full line) and five times the
turbulent kinetic energy kV (dashed line) in the left ventricle (top plot), and in the left
atrium (bottom plot). The energies are nondimensionalised by u2

a. The vertical dotted
lines delimit the systolic phase and the diastolic phase.
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Figure 6.10: Left, kinetic energy measurements in healthy left ventricles using MRI
(from [25]). Right, kinetic energy measurements in healthy left atria using MRI
(from [9]).

with V (t) being either the volume of the ventricle or of the atrium at time t. Figure 6.9

shows how these energies evolve over the heart cycle, both in the ventricle (top plot)

and the atrium (bottom plot). The volumetric turbulent kinetic energy includes all the

cycle-to-cycle fluctuations. Note that 5kV is plotted, so that the same scale is used to

represent both energies.

The mean flow kinetic energy evolves similarly in both cavities. During the systolic

phase (t/Ta between 0.015 and 0.375), it increases and reaches a peak at t/Ta=0.20

in the ventricle, 0.255 in the atrium. After a decrease just before the beginning of

diastole, the mean flow kinetic energy increases again and reaches a peak at t/Ta=0.54,

viz. 0.04Ta after the peak of the E wave for both cavities. The maximum value of

KV corresponds to the presence of high velocities when blood flows from the atrium to

the ventricle. It is three times (resp. four times) higher than the systolic peak in the

ventricle (resp. atrium).

Carlsson et al. [25] have reported similar behaviour during the heart cycle, thanks to

MRI. The same can be said for the atrial kinetic energy, the present results comparing

well with the results from Arvidsson et al. [9]. Figure 6.10) displays the results from

Carlsson et al. and Arvidsson et al.. Leaving aside our nondimensionalization for an

instant, the ventricle mean flow kinetic energy peak for the presented case is 5.2 mJ for

systole (Arvidsson et al. measured 4 mJ), and 16.7 mJ for diastole (Arvidsson et al.

measured values from 5 to 7 mJ). The systolic peak value is remarkably close and it

is not surprising that the peak diastole is two to three times higher as heart A suffers

restrictive filling.

The ventricular turbulent kinetic energy kV remains small, then decreases during

the systolic phase, due to the stabilizing effect of the flow acceleration. In diastole

it increases substantially, reflecting the amplification of the disturbances after the jet

impingement on the lateral ventricle wall. The turbulent energetic peak is reached

Ta/10 after the peak of mean flow kinetic energy, corresponding to the convection time

of the vortex ring. This instant corresponds to the decelerating phase of the flow. The
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Figure 6.11: TKE (blue solid line) and LV volume change (red dashed line) over diastole
(mean ± SD) for 11 healthy subjects using MRI (from [185]).

turbulence intensity kV /KV in the ventricle is as high as 37 % during the kV peak.

The peak of turbulent energy is found during the deceleration of the E wave as found

by Domenichini et al. [44] in an idealized ventricle. The same observation was made by

Zajac et al. [185] and the same order of magnitude is found for the turbulent energy

levels. Figure 6.11 displays measurements from Zajac et al. [185] for healthy ventricle.

Leaving aside our nondimensionalization for an instant, the ventricle mean turbulent

kinetic energy peak in heart A reaches value of 3.6mJ. This value is higher but of the

same order of magnitude from the values measured by Zajac et al.. Considering the

strong E wave of heart A, this was expected.

The atrial turbulent kinetic energy behaves somewhat differently. It increases dur-

ing the last half of the systolic phase, because of the interaction/collision of the four

inflowing jets issuing from the pulmonary veins. A first peak is thus reached just before

the beginning of diastole. Turbulence intensity then decreases during the flow acceler-

ation through the atrium, as expected, so that kV and KV have an opposite evolution

during early diastole. The atrial turbulent kinetic energy rises again at t/Ta=0.47 and

reaches its peak at t/T = 0.61, during the flow deceleration. Compared to the diastolic

kV , the atrium peak occurs earlier and is twice less intense. Still, it corresponds to a

large turbulence intensity of approximatively 30 %. As in the ventricle, the turbulent

kinetic energy then decreases until the end of the heart cycle.
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Figure 6.12: Nondimensional turbulent kinetic energy k/u2
a at three different times:

t/Ta = 0.25 (a), t/Ta = 0.55 (b) and t/Ta = 0.65 (c).

Turbulent kinetic energy map

In order to provide a more detailed description of the turbulent nature of the intracardiac

flow, maps of the local turbulence kinetic energy are shown. This energy is defined as:

k(x, t) =
1

2
〈uiui〉. (6.9)

Figure 6.12 displays the turbulent kinetic energy map at three salient instants t/Ta =

0.25, at the atrium systolic kV peak, t/Ta = 0.55 at the E wave peak and at t/Ta =

0.65 when kV is maximum in the ventricle.

The beginning of systole is associated with a relaminarization of the LV. The TKE

intensity within the ventricle stays almost null during systole, as shown in Fig. 6.12 (a)

at t/Ta = 0.25. The highest TKE levels are present in the root of the aorta between

t/Ta=0.25 and 0.35. Note however that the levels downstream of the AV may be

mispredicted here, due to the absence of AV leaflets modelling when the AV is open.

Meanwhile, fluctuations are increasing in the upper half of the LA (up to 6 u2
a) where

the inflowing jets collide.

At the E wave peak at t/Ta=0.55, (Fig. 6.12, b), high TKE levels (about 8 u2
a) are

observed in the jet edge, which becomes increasingly unstable throughout the MV flow

deceleration (until t/Ta=0.65). Furthermore, TKE levels of the same order are visible

at the lateral wall. As shown by the TKE field at t/Ta=0.55, the impact of the vortex

ring on the lateral wall is a zone of high velocity fluctuations. High energy values are

observable in the centre of the LV, up to 10 u2
a. At the same time, the E wave starts to

decrease.
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At t/Ta=0.65 (right plot in Fig. 6.12), the flow rate through the mitral valve is close

to zero. However, the flow in the ventricle is far from quiescent; the volumetric TKE

in the ventricle is maximum, as shown in Fig. 6.9. The mitral jet impact has made the

initial vortex ring shatter into small vortices that occupy the main part of the ventricle.

In accordance with this transition to turbulence, the TKE field shows high values over

almost the whole ventricle. The largest values of TKE (from 7 to 10 u2
a) are observed at

the core of the recirculating cell. These high values of energy are due to the differences

in the position of the recirculating cell center between cycles, as reported before in the

similar configuration of a in-cylinder engine flow [46]. The TKE in the LA also indicates

that the pulmonary jets impact in the upper part of the LA is associated with intense

velocity fluctuations from one cycle to another. The energy levels are about three times

lower in the lower half of the LA. This ratio of TKE between the upper and bottom

halves of the LA remains approximately constant during the entire heart cycle.

Local turbulent kinetic energy

Figure 6.13 shows the phase-averaged time evolution of the three components of r.m.s.

velocity and the turbulent kinetic energy k at the ten probes p1 - p10 (see Fig. 6.1 for

the probes location).

Probe p1 is the one with the smallest velocity fluctuations and TKE levels, with

velocity r.m.s. values less than 0.7 ua and negligible the TKE levels during the whole

cardiac cycle. Probe p2 displays low r.m.s. velocity values, of the order ua during systole

and maximum levels of about 3 ua for the x and z directions during diastole. The y

direction has r.m.s. velocity twice lower. This is because of the flow direction at this

location, the probe location being in the RSPV inflowing jet which lies in the xz plane.

The TKE at this location is as high as 8 u2
a, at around t/Ta = 0.6 which corresponds to

the beginning of diastole. This high value is caused by the high flow rate coming in the

atrium at this time. Probes p3, p4 and p5 show similar r.m.s. velocity magnitudes for

the three spatial directions. The TKE values decreases from p3 to p5, the probes being

further and further from the most turbulent region in the atrium (the upper half).

In the ventricle, probes p6, p7 and p8 present high r.m.s. values (about 3 ua) in

the three directions and high TKE values (about 10 u2
a) during diastole. Interestingly,

at t/Ta = 0.55, there is a sharp amplification of the turbulent energy levels at p7 and

p8, caused by the vortex ring hitting the lateral wall. At these locations, the levels

decrease after t/Ta = 0.65. On the contrary, at probe location p6, a sharp increase

of the turbulent energy level is measured and reaches its peak at t/Ta = 0.7. This is

explained by the necessary time for the turbulence to be transported from its zone of

production (the bottom of the LV) to the p6 probe location.

Probe p9 shows maximum r.m.s. velocity values of 0.7 ua and quasi null values

during systole where flow acceleration creates a very laminar unidirectional flow (see

Fig. 6.8). At probe location p10, velocity fluctuations resulting from the instability of

the shear layer created at the aortic valve annulus are visible (see Fig. 6.12). Energy
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Figure 6.13: Left plots: time evolution of the r.m.s. of the 3 velocities components,
nondimensionalised by ua. Right plot: turbulent kinetic energy nondimensionalised by
u2

a over the cardiac cycle at the ten probes p1 to p10. The vertical dotted line marks
the limit between the systolic phase and the diastolic phase at t/Ta = 0.375.
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Figure 6.14: Volume-averaged production of turbulent kinetic energy PV
k in the ventricle

(solid line) and in the left atrium (dashed line). Productions are both nondimension-
alised by u3

a/ls. Vertical dotted lines mark the limit between the systolic phase (t/Ta

between 0.015 and 0.375) and the diastolic phase.

level remains moderate, reaching a maximum of 4 u2
a at t/Ta = 0.25.

6.3.3 Production of turbulent kinetic energy

In what follows, production fields of the turbulent kinetic energy are presented and

discussed. The turbulent production Pk gives the rate at which energy is extracted

from the mean motion to feed the fluctuations and is defined as

Pk(t) = −〈uiuj〉Sij . (6.10)

This term is integrated over the ventricle and over the atrium to obtain a volume-

averaged production of turbulent kinetic energy defined as

PV
k (t) = − 1

V (t)

∫

V (t)
〈uiuj〉Sij dV, (6.11)

with V (t) the volume of the ventricle or the atrium at time t. Figure 6.14 shows the

volumetric production of turbulent kinetic energy PV
k in the two cavities nondimen-

sionalised by u3
a/ls. Remarkably, the TKE production in the ventricle is essentially

concentrated in the first half of the diastole. From the time when the E wave jet enters

in the ventricle cavity to some instants after the impingement of the jet, the production

PV
k rises until its peak at t/Ta = 0.57. Thus, in the ventricle the turbulence described in

the former section comes from the E wave jet and its loss of coherency. The production

decreases during all the remaining time of diastole. The production is virtually null

during the whole systole.

The atrium cavity sees non-zero production at two instants. During diastole, the

production level rises to reach its peak around t/Ta = 0.58 with a magnitude roughly

twice smaller than the ventricle production peak, then decreases at a similar rate than

the ventricle production. During systole, between t/Ta = 0.2 and 0.3, low values of TKE
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Figure 6.15: Production of turbulent kinetic energy Pk nondimensionalised by u3
a/ls at

t/Ta = 0.55. Left plot: production Pk in the same plane in Fig. 6.1. Center and right
plots: volume rendering of the non-dimensional TKE production Pk on two different
views. The mapping relating production magnitude with opacity is linear. Heart wall
is made partially transparent to allow observation and the aorta was deleted as focus
is on the LA and LV. On all plots, the three areas where Pk < 0 are indicated by the
letters A, B and C.

production in the atrium are observable, around ten times lower than the diastole peak.

The mechanisms behind these productions during systole and diastole in the atrium for

this heart are the collision and breaking of the inflowing jets coming from the pulmonary

veins; the same mechanism occurs twice, as described in section 6.3.1, with different

intensities. It is interesting to note that both atrial and ventricular production peaks

occur at roughly the same time.

Figure 6.15 shows the production of turbulent kinetic energy Pk in the heart at

t/Ta = 0.55, which is close to the time when diastolic production peaks are reached in

the atrium and in the ventricle. The left plot shows the production on the slice used

in the previous sections. The center and right plots are three dimensional volumetric

views of the turbulent kinetic energy production Pk, from different points of view. The

aorta was deleted on the three plots to ease the visualisation of other cavities as the

focus is on the atrium and the ventricle cavities.

Production in the atrium comes from the collision of the inflowing jets. The area

where the jets collide is visible in the three plots, in the upper half of the atrium. As

seen for other turbulence quantities, large production values are also obtained in the

shear layer of the trailing jet of the E wave vortex ring. Shear causes instabilities and

high turbulence production, resulting in strong velocity fluctuations as described in

section 6.3.2. Severe distortions of the jet seem to occur near the jet head where it hits

the lateral wall accompanying large TKE production.

It is worth pointing out that it is often supposed that the TKE production is a pos-
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itive quantity. However, regions with Pk < 0 may exist. In other words, kinetic energy

is transferred from the turbulent velocity fluctuations to the mean flow. This phe-

nomenon has been observed in several investigations through numerical simulations [76]

or experimental measurements [112]. In the present case, three locations show negative

production. These regions are indicated by the capital letters A, B and C in Fig. 6.15

and their contours correspond to production iso-value of -10 u3
a/ls.

The regions A and C are close to the heart wall and correspond to jets impinge-

ment areas. This is a class of flows for which negative production has already been

reported [65, 131]. Region A is the zone where the inflowing jet coming from the RIPV

impacts the atrium wall. In the region C, mitral jet from the E wave impinges on the

lateral wall. For this region, the negative production is visible in the area where the jet

head touches the heart wall. In region B, negative energy production is observed, but

there is no direct interaction with any solid boundary.

This phenomenon can be seen during short time windows; area A is visible for 8 %

of the heart cycle between t/Ta = 0.53 and 0.61; area B is visible for only 3 % of the

heart cycle between t/Ta = 0.54 and 0.58; area C is visible for 7 % of the heart cycle

between t/Ta = 0.53 and 0.61. Note that in terms of turbulence modeling, negative

production would cause Reynolds-averaged Navier-Stokes (RANS) models to fail [26].

In the three regions, examination of the Reynolds stress tensor components in its

eigenbasis shows high anisotropy. The turbulence is highly one dimensional; one eigen-

value value is at least one order of magnitude larger than the two others. In addition,

large positive spatial gradients of the mean velocity are present, which contributes to

the observed negative production.

6.3.4 Turbulence characteristics

The structure of turbulence is an interesting feature to study, as shown by the link

between negative turbulence production and the turbulence anisotropy described in the

last section. To study the structure of turbulence, the local Reynolds-stress anisotropy

tensor

bij =
〈uiuj〉
〈ukuk〉 − 1

3
δij , (6.12)

may be characterized by two invariants, considering that the trace bii vanishes by con-

struction [102, 103]. They can be calculated from the anisotropy tensor terms by

η =
(

1

6
bijbji

)1/2

, (6.13)

ξ =
(

1

6
bijbjkbki

)1/3

. (6.14)

For every locations in the numerical domain, at each instant during the heart cycle,

the invariants ξ and η can be computed from the Reynolds tensor [141]. Any physi-

cally realizable state of the flow produces invariants ξ and η which lie in a triangular
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Figure 6.16: Lumley triangles at times t/Ta = 0.5 (left plots) and 0.7 (right plots) for
the ventricle (top plots) and for the atrium (bottom plots).

domain in the (ξ - η)-plane (see Fig. 6.16). This domain, commonly called the Lumley

triangle, provides information about the Reynolds-stress character in a compact and

graphical way [103]. Each border of this domain describes a specific character of the

Reynolds-stress tensor. The upper line of the triangle corresponds to a two-dimensional

turbulence. The right-hand corner of the triangle corresponds to a one-dimensional tur-

bulence. The right-hand line to a ”cigar-shaped” axisymmetric turbulence. The origin

of the triangle (ξ = η = 0) corresponds to an isotropic turbulence and the left-hand

line to a ”pancake-shaped” axisymmetric turbulence. A detailed interpretation can be

found in Simonsen et al. [159]. As a reminder, the different turbulent states are recalled

in Fig. 6.16.
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As proposed by Lumley, the invariants ξ and η can also be combined to produce an

isotropy parameter,

I = 1 − 27(η2 − 2ξ3). (6.15)

As the two invariants are null in isotropic turbulence, the parameter I is equal to 1.0 in

this case. When the turbulence is two-dimensional or one-dimensional, the parameter

I is zero, expressing the most anisotropic cases.

In the following, the turbulence within the heart is described using both the Lumley

triangle and the isotropy parameter I. Figure 6.16 shows triangles for the ventricle

domain (top plots) and the atrium domain (bottom plots) during diastole at t/Ta =

0.5 (left plots) and t/Ta = 0.7 (right plots). Only the data points with a TKE lying in

the upper quartile of the data points are shown (the 25% most energetic data points).

Figure 6.17 shows the evolution of the averaged isotropy parameter I over time; using

the same data set, I is calculated every Ta/10 for the atrium and the ventricle cavities.

A first observation about Fig. 6.16 is that the majority of the points correspond as

either axisymmetric or one dimensional turbulence. A preference for the cigar-shaped

turbulent state is observed in the ventricle. Note also that here turbulence is almost

never two-dimensional, as data points on the upper line of the Lumley triangle are

rare, apart from the right-hand corner of the triangle (expressing one-dimensional tur-

bulence). This statement is actually valid for the whole heart cycle (corresponding

Lumley triangles are not shown here).

At t/Ta = 0.5 (left plots), several points corresponding to one-dimensional turbulence

are observed (right-hand corner of the Lumley triangle). This kind of turbulence is seen

in the jet trail of the E wave in the ventricle and for the inflowing jets in the atrium.

The two sorts of axisymmetric turbulence (pancake-shaped and cigar-shaped) have no

preferred physical location in the heart. At this time, the turbulence is highly anisotropic

in the entire heart, as shown by the mean value of the parameter I in the ventricle (I ≃
0.4) and in the atrium (I ≃ 0.55). Following the isotropy parameter values, the heart

most anisotropic turbulence occurs at the same time as the peak of the E wave occurs,

certainly because of the tendency to one-dimensional turbulence, which increases the

mean I value.

At t/Ta = 0.7 (right plots), one-dimensional turbulence is not observed any more

for the ventricle, while it is still visible for the atrium: some points near the atrium

surface have this turbulent state. In both cavities, turbulence becomes more isotropic

during the diastolic phase, as shown by Fig. 6.16. The data points move toward the

origin of the triangle, giving evidence of a trend to isotropy in the diastolic phase. The

isotropy parameter evolution confirms this tendency to isotropy: the parameter has a

similar behaviour in the atrium and the ventricle, reaching maximum values of about

0.75.

The turbulence stays far from isotropy all along the heart cycle with a maximum

mean value of I around 0.75 during diastole. During this phase, the isotropy decreases

in the ventricle each time fluid passes from the atrium to the ventricle (around t/Ta =



124 CHAPTER 6. TURBULENT ASSESSMENT OF A LEFT HEART FLOW

t/Ta

I

0 0.2
0.4

0.4

0.5

0.6

0.6

0.7

0.8

0.8 1

Figure 6.17: Evolution of the mean isotropy parameter I during the heart cycle for the
atrium cavity (dashed line) and the ventricle cavity (solid line). The data are calculated
every Ta/10 for the atrium and the ventricle cavities are are displayed respectively as
triangles and circles.

0.5, at t/Ta = 0.8 and at t/Ta = 1). In the atrium, the isotropy drops when inflowing

jets come in the atrium and during the flow reversal at the pulmonary veins. During

the systolic phase, turbulence becomes more and more anisotropic in both cavities. The

minimum isotropy state in the atrium is reached at t/Ta = 0.3 and turbulence regains

isotropy before passing to diastolic phase. In the ventricle, the systolic flow, where the

wall contracts to eject blood towards the aorta reorganizes the turbulent eddies in the

direction of the flow (see the Q criterion views in the previous chapter).

The return to isotropy never fully occurs in this flow. The flow turbulent state seems

to stabilize around value of I of 0.7 to 0.75, explained by the mean velocity gradient

and the wall-bounded nature of the studied flow. In addition, using experimental evi-

dence, Jacquin et al. [86] argued that solid flow rotation (in the case of a homogeneous

turbulent flow) reinforces anisotropy and decreases the energetic decaying. The recir-

culating cell visible on the phase-averaged velocity field (see section 6.3.1) behaves like

a solid-rotation with an angular velocity ωr which can be roughly be estimated as ωr =

(5ua)/(0.5ls) ∼ 13 rad/s. This is in the range where the rotation effect on turbulence

is non negligible. Also, homogeneous turbulence with positive ξ invariant (here the

majority of observed point in the ventricle) seems to returns to isotropy at much lower

rate than that with negative ξ invariant [66].
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6.3.5 Spectral analysis

General assessment

Additional information about the nature of turbulent fluctuations is usually provided

by observing the energy spectra of the velocity fluctuations. This has notably been

used in previous studies of pulsatile flows [118, 175]. The frequency spectra of the

vertical fluctuating velocity u3 at the ten probes spread over the domain are provided

in Fig. 6.18. They were computed by using the Welch’s overlapping averaged modified

periodogram method [179]. The data were divided into 50 segments with 50% overlap,

each section windowed with a Hann window; 50 modified periodograms were computed

and averaged. As the simulation time step was piloted by a CFL condition and hence

not constant, the velocity data were first resampled at a sampling rate of 2048 Hz,

which corresponds to a Nyquist frequency of 1024 Hz. Lines corresponding to the
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−5/3 and −7 slopes are included in Fig. 6.18, the former characterizing the inertial

sub range, where energy cascades from the large eddies to smaller ones with minimal

energy dissipation, and the latter corresponding to the viscous dissipation range [141].

Note that frequencies lower than 1 Hz are not considered here, as the heart cycle lasts

one second. Also, frequencies higher than 100 Hz are not analysed because of the

grid resolution. Considering a desired resolution of lc ∼ ∆x, the cutoff frequency is

estimated at fc = ua/lc ∼ 100 Hz (recall that ∆x ∼ 0.8mm). Note that eddies with a

larger frequency can be present in this flow: the maximum frequency is estimated with

fmax ∼
√

ǫ/(νn + νsgs) ∼ 2.5 kHz at maximum in the domain.

In Fig. 6.18(a), the power spectrum density (PSD) of u3 at probes p1, p2 and p3

(located in the upper atrium) are shown. Probe p1 shows low PSD levels (about one

decade less than the two following probes), as expected from the results discussed in

section 6.3.2. Locations p2 and p3 show a wider distribution of energy through the

frequency spectrum. A decay of slope close to -5/3 is observed over half a decade

followed by a smooth transition to a faster decay past f ∼ 70 Hz.

PSD levels decrease in the lower part of the atrium, at p4 and p5. Spectra shown in

Fig. 6.18(b) rapidly fall down and eventually attain a slope close to -7 as viscous effects

dominate this region.

Figure 6.18(c) shows spectra at probes p6, p7 and p8, located in the bulk of the

ventricular flow. The spectra show a more broadband nature, the ventricular flow being

turbulent over a significant part of the heart cycle. Spectra at probes p6 to p8 are similar

to the ones at p2 and p3, with higher levels and a broader distribution. In Fig. 6.18(c),

a decay of slope close to -5/3 is observed along one decade in frequency.

Figure 6.18(d) shows spectra at locations p9 and p10. At low frequency, p10 shows

energy levels one decade higher than p9. This difference decreases at higher frequencies

where low high-frequency PSD are obtained for both probes.

Time-frequency analysis

The spectra described in the last section essentially tell us which frequencies are con-

tained in the signal as well as their corresponding power, but do not give information at

which times these frequencies are present in the flow. Time-frequency representations

are thus considered in this section. The signal of the vertical fluctuating velocity u3

at each probes location is decomposed in 800 windows for which a Hann window with

50 % overlapping is applied and a short-time Fourier transform is used. The obtained

spectrogram is then phase-averaged over the 50 cycles. Spectrograms computed with

different overlappings and window functions display only small differences, showing that

the following results are robust to the details of the signal processing.

Figure 6.19 displays the computed spectrograms. Each horizontal slice of a spectro-

gram exhibits the frequency spectra of the flow at a specific time. Note that in majority

the spectra decrease by about three decades before exceeding 50 Hz during the heart

cycle. At some probe locations as p2, p3 in the atrium, p6, p7, p8 in the ventricle and
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p10 in the aorta, the spectra increases up to 100 Hz at certain instants.

Broadband spectra are visible in the atrium locations at t/Ta ∼ 0.65 corresponding

to the large TKE values described before (see section 6.3.2). Note that larger spectra at

p2 happens at t/Ta = 0.7 and earlier for p3 at t/Ta = 0.6. This can be explained by the

location of p2, more in the RSPV jet than p3, which is more exposed to the turbulence

production due to the jets collision (see the production map in section 6.3.3). These

developed spectra are only present in a tight time window; decays of three decades in

less than 40 Hz are observed in the atrium at the other instants of the cardiac cycle.

Broadband spectra are present in the ventricle more often over the cardiac cycle. At

probes locations p6, p7 and p8, broadband spectra are clearly visible during the diastole.

The widest spectrum is visible at probe p8 at t/Ta = 0.6, but only for a narrow time

window. Once the spectrum fills the frequency range from 1 to 100 Hz, the frequencies

present in the flow decrease during the whole diastole. Note that the A wave is not

visible on the spectra which indicates that it is too slow to strengthen the turbulent

activity in the ventricle. The broad band spectra are observed during diastasis, after the
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vortex ring structure of the E wave jet has scattered into small eddies. During systole,

the spectra lose three decades of energy within the frequency range from 1 to around

50 Hz. Larger spectrum during systole are visible just behind the mitral valve at probe

location p6.

The spectrum at probe location p9 (aortic valve location) shows a widening in the

frequency range during systole. Further, at probe location p10 (in the aorta root),

broadband spectra are visible at t/Ta = 0.65. Spectra fall down in time during the

diastole as the turbulence decays.

6.4 Final remarks

Although the intracardiac flow has been explored for many decades, there is still no con-

sensus on whether or not there is significant turbulence within the heart. In the past,

numerical simulations mainly used solvers based on low-order stabilizations terms, arti-

ficial viscosity or dissipative schemes and in most of the cases, the numerical grids were

insufficiently refined, annihilating the possibility of capturing hypothetical instabilities.

Proper computational modelling of such flow is challenging because of the heart geom-

etry and the variety of the spatial and temporal scales present in the flow. In addition,

the pulsatile nature of the heart flow prevents the conventional use of RANS turbulence

models which are designed for fully developed turbulent flows [152]. The LES approach

used here can handle transition and thus provides a satisfactory predictive tool. Using

the LES combined with the described method for extracting patient-specific boundary

conditions, this study describes the behaviour of a heart flow. A disturbed and tran-

sitional flow nature is revealed, accompanied by identified mechanisms of turbulence

production for heart A. Note that high frequencies have been observed in the flow.

These frequencies are intermittent and visible only in small period of time.

As these results have been obtained from a pathological heart, a legitimate question

would be: is the same turbulence observed in a healthy heart? This is the aim of the

next chapter.
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Chapter key points:

• The unsteady development of turbulence is analysed from the

mean flow, flow statistics, the turbulent stresses, the turbulent

kinetic energy, its production and through spectral analysis.

• Turbulence is intermittent and fluctuations reaches high fre-

quencies on short periods.

• It is revealed that two mechanisms create turbulence in the

heart A: the dissipation of a vortex structure impinging the

lateral wall of the ventricle during diastole and the colliding of

inflowing jets in the atrium during both diastole and systole.

• Unusually, negative production of turbulent kinetic energy is

measured in three locations in this heart

• It is revealed that the turbulence, when present, is close to

an axisymmetric state most of the time but never reaches an

isotropic state.
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This chapter describes the left heart flow in a young, healthy subject.

This heart is referred to as heart B. The heart model is extracted from

MRI instead of CT-SCAN images for heart A. The σ-model is used and

the Newtonian hypothesis for the flow is conserved for the presented LES.

The computed flow is described focusing in particular on the turbulence

characteristics. In the lights of the results described in chapters 5 and 6,

comparisons are made between hearts A and B.
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P-M muscle
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LVAO
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Figure 7.1: Full human left heart extracted from MRI images. The same domain is
shown from four different points of view. The left ventricle (LV), left atrium (LA),
Aorta (AO), Anterio Lateral (A-L) and Postero Medial (P-M) papillary muscles are
indicated. A black line passing through the left heart indicates the position of the slice
which will be used to describe the flow in the remainder of the chapter.

7.1 Heart model

7.1.1 Heart model and extraction of the deformations

Using the framework described in chapter 3 and 4, deformations along a cardiac cycle

are extracted from a MRI exam of a healthy subject. The exam was conducted at the

University Hospital of Toulouse Rangueil (France). The 4D image set consists in N = 20

three-dimensional images of spatial resolution 5.0×1.1×1.1 mm3, which correspond to

21×256×256 voxels. The patient was 26 years old and his cardiac cycles lasted Tb = 750

ms. The template geometry is extracted at a time when the ventricle volume is at its

median value. As shown in Fig. 7.1, the numerical domain contains the LA, LV a part

of the aorta and four pulmonary veins. As for heart A, this template domain does not

include the trabeculations and the left atrial appendage. However, it does include the

papillary muscles. The LV has a height of 7.8 cm from the tips of the MV to the apex

and a maximum diameter of the order of ∼ 4.0 cm. In comparison with heart A, this

heart is more narrow due to the full segmentation of the papillary muscles.

A nearly isotropic surface mesh is generated from this geometry. The characteristic

length of each triangle edges is close to 2 mm. This template surface grid is deformed

based on the method previously described in chapter 4. The deformation procedure

uses 10 outer iterations. The initial Gaussian Kernel width is set to σ0 = 32 voxels with

a decrement of 3 voxels between each of the outer iterations. The inner iterations are

either stopped after 10 iterations or when the total residual squared difference is under

0.01. The regularization weight λ is set to 1.0, which corresponds to an equal weight

between the likelihood potential and the regularization term (see chapter 4).
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Figure 7.2: Volume of the ventricle (V1 solid line) and of the left atrium (V2 dashed
line). The vertical black line marks the limit between the systolic phase and the diastolic
phase at t/Tb = 0.34.

The Fourier coefficients for the deformation are computed (see chapter 3). The

time evolution of the ventricular and atrial volumes are reported in Fig. 7.2. For the

ventricle, the end diastolic volume is here of 109 mL while the end systolic volume is of

41 mL. The stroke volume is then of 68 mL and the ejection fraction is 62%. All these

values are in normal range.

7.1.2 Computational mesh and simulation details

A nearly isotropic grid is generated from the heart model described in the above section

using the commercial software Gambit. The grid has approximately ten millions of

tetrahedral elements. The template grid spatial resolution is imposed to be close to

0.56 mm in all three spatial directions 1. As before, the surface is deformed thanks to

trigonometric interpolation. For this heart, one re-meshing was necessary at half-systole

(t/Tb = 0.22) as skewness became close to unity for some cells. Valves are modelled as

before. The MV leaflets length was set to l = 13 mm after examination of the MRI

images. The ellipse area is set in order to correspond to the median value of the open

MV area. This value is from extracted measurements on the medical images during

diastole. Hence, the open area presented to the blood flow is represented by an ellipse

of axis a = 15 mm and b = 11 mm. The angle on the Pβ plane is set to 20 degrees and

the eccentricity parameter to e = (2.0,−4.38) mm.

As shown in chapter 5, section 5.4.1, the impact of a non-Newtonian model repro-

ducing the shear-thinning behaviour of blood is small. Blood is thus modelled as an

Newtonian fluid in this chapter.

The simulation time step is fixed by a CFL condition, CFL = 0.9 and a Fourier

condition of Fo = 0.2. These conditions are set to be consistent with the explicit time

integration used in the CFD solver. The time step is thus varying from 7.0 ×10−5 s to

1Considering only regular tetrahedra, the spatial resolution is computed as ∆x ∼
3

√

12V

107
√

2
, where

V = 211mL is the template grid volume.
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4.0 ×10−4 s during the computation. In the light of the previous discussion on the SGS

model (see chapter 5, section 5.4.2), the LES presented in this chapter is performed

using the σ-model.

The flow waveform imposed at the four inlet conditions of the computational domain

is calculated based on the mass conservation principle. Despite the fact that an MRI

exam was used to obtain the medical images, no information on the velocity field was

measured. Hence, the pulmonary veins are lengthened, so that the inflow conditions are

five vessel diameters away from the ostium. There, a uniform velocity profile is applied.

In addition, the inflowing flow rate has been chosen to be equally distributed between

the PVs. Figure 7.3 displays the flow rates at the aortic valve (top plot) and the mitral

valve (middle plot) and the total inflow imposed at the pulmonary veins (bottom plot).

A vertical black line separates the systolic phase and the diastolic phase. For this heart,

systole starts at t/Tb = 0 and lasts 0.34 Tb. Diastole lasts 0.66 Tb. The hand rule for

the normal ratio of one third (systole) to two thirds (diastole) is respected.

The aortic outflow behaves as expected, with a peak flow rate of 560 mL.s−1 at

0.15Tb. The flow rate then decreases and reaches zero at 0.34 Tb. The aortic flow

rate is null during diastole. Note that the maximum flow rate at the aorta is 75%

higher than the peak systole flow rate of heart A, essentially because of the higher heart

rate. The mitral flow rate is here composed by two main peaks corresponding to the

E wave and the A wave. The E wave peak (0.57 Tb) corresponds to an entering flow

rate of 365 mL.s−1 in the ventricle. The A wave peak being at 0.9 Tb and corresponds

to an entering flow rate of 180 mL.s−1. The E/A ratio is very close to 2, which is a

normal physiological value compared to the value of 5.5 of heart A [161]. Note that the

E/A ratio is still high for heart B. However, this high value is normal for a young and

healthy subject (subject was 26 years old) [125]. A weak peak is present at the very

beginning of diastole. It should have little influence on the blood flood and is probably

not physiological. It could be due to small errors in the deformation algorithm.

The fluid density ρ and the fluid kinematic viscosity νn are supposed to be constant:

ρ = 1040 kg.m−3 and νn = 4 ×10−6 m2.s−1. The Reynolds number at the mitral valve

tips varies from 0 to approximately 4520 (the maximum was 5000 for heart A). This

value is based on the effective mitral mean diameter D = 2Ra = 2
√
ab, the area of

the open mitral, the kinematic viscosity and the maximum flow rate. The transmitral

velocity for the E wave is Umax = 0.7 m.s−1, which falls into the usual measurements [78].

The Reynolds number of the aortic valve is computed in the same way and is about

10,400 with a maximum velocity of Umax = 2.5 m.s−1. These two values seem high but

actually fall in the normal range [165]. Table 7.1 reports the characteristics of heart B

accompanied with the characteristics of heart A and the normal ranges [13, 22, 98, 125]

for comparison.

A reference velocity named ub is computed as ub = q̇bls/Vs = 0.16 m.s−1 where q̇b is

the cardiac output (q̇=9.7 × 10−5 m3.s−1), Vs the end systolic volume (Vs = 4.1 × 10−5 m3)

and ls is the ventricle length at the end of the systole (ls=6.8 × 10−2 m).
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Heart A Heart B Normal range

Heart rate (bpm) 60 85 60 - 100
E/A ratio 5.5 2.0 1.0 - 2.0
EDV (mL) 130 109 65 - 240
ESV (mL) 55 41 16 - 143
SV (mL) 75 68 55 - 100

Cardiac output (L.min−1) 4.5 5.8 4.0 - 8.0
Ejection Fraction (%) 58 62 55 - 70
Open area MV (cm2) 3.77 5.18 4.0 - 6.0
Umax at MV (in m.s−1) 1.08 0.70 0.6 - 1.0

Remax at MV 5000 4520 -
Umax at AV (in m.s−1) 0.96 2.5 ≤ 2.5

Remax at AV 5300 10,400 -
Acquisition CT scan MRI -

Table 7.1: Main characteristics for heart A and heart B.

7.2 Results and discussion

7.2.1 Data convergence

Due to the discretization applied on the numerical domain (roughly 10 millions of cells)

and the subsequent amount of data, a smaller number of cycles were simulated. 35

cycles were computed, using the same heart deformation for each cycle. Phase-averages

were gathered over the last n=30 cycles. The phase average over n cardiac cycles of a

generic variable G is defined as

〈G〉(x, t) =
1

n

n−1
∑

k=0

G(x, t + kT ), (7.1)

where x denotes the spatial coordinates and t the time. Deviation from this averaged

is computed as,

g = G− 〈G〉. (7.2)

The phase average 〈G〉 represents the time-varying deterministic part of the flow while

the (turbulent) fluctuations are represented by the deviation g. Finally, the root mean

square (r.m.s.) value grms is defined as,

grms(x, t) =
√

〈G2〉(x, t) − 〈G〉2(x, t). (7.3)

100 full data solutions with data for each grid node are written for each cycle, every

0.01Tb. In addition, in order to get precise local information, the velocity signal was

extracted at some specific locations at each simulation iteration. To do so, the numerical

domain was seeded by Eulerian probes. Seven probes pi, i = 1, .., 7 were selected over

a virtual path that a red blood cell could follow, from the top of the atrium to the
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Figure 7.4: Positions of the seven probes in heart B.
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Figure 7.5: Solid lines represent the phase-averaged velocity magnitude at 2 probes
locations using nc cycles. The dots represent the instantaneous velocity magnitude for
the nc-ith cycle. Top and bottom plots display data from probe p1 at 0.7Tb and p5 at
0.7Tb, respectively.

outlet at the aorta. Figure 7.4 shows the position of the probes. The seven selected

probes provide velocity signals near the top of the atrium to the mitral valve (p1 to

p3 positions), signals in the left ventricle (p4 to p6), and above the aortic valve (p7).

These probes will be used to analyse the flow. They are used here to observe the data

convergence.

Figure 7.5 shows velocity data for two probes: p1 and p5. Both plots display data

at t/Tb = 0.7. Solid lines represent the phase-averaged velocity magnitude computed
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Figure 7.6: Solid lines represent the phase averaged TKE magnitude at 2 probes lo-
cations using nc cycles. The dots represent the instantaneous TKE magnitude for the
nc-ith cycle. Top and bottom plots display data from probe p1 at 0.7Tb and p5 at 0.7Tb,
respectively.

using nc cycles. nc varies from 1 to the total number of cycles used for data averaging,

which is 30. The dots represent the instantaneous velocity magnitude for the n-ith cycle.

All the velocities are nondimensionalised by the reference velocity ub (as a reminder:

ub = 0.16 m.s−1).

For all the probes and all the considered times, high instantaneous fluctuations are

observed. Despite these high fluctuations, roughly 25 cycles are needed to reach data

convergence.

Figure 7.6 shows probes data for the fluctuating energy of the velocity. The top plot

displays data from probe p1, the bottom plot displays data from probe p5. Both plots

display data at t/Tb=0.7. Solid lines represent the turbulence kinetic energy (TKE)

computed using nc cycles. nc being set from 1 to the total number of simulated cycles,

which is 30. The local turbulence kinetic energy is defined as:

k(x, t) =
1

2
〈uiui〉. (7.4)

In the figure, dots represent the instantaneous kinetic energy of the velocity fluctuations

computed at the n-ith cycle. This energy, for cycle nc is defined as

ki(x, t) =
1

2
(unc − 〈U〉), (7.5)

〈U〉 being the phase-averaged velocity computed with the 30 cycles and unc the in-

stantaneous velocity for cycle nc. All energies are nondimensionalised by u2
b . High

fluctuations are observed. About 25 cycles were necessary to obtain converged data.
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Figure 7.7: Volume rendering of non-dimensional vorticity magnitude of the phase-
averaged velocity fields at different times of the simulation. First row, left plot:
t/Tb=0.15. Center plot: t/Tb=0.50. Right plot: t/Tb=0.57. Second row, left plot:
t/Tb=0.65. Center plot: t/Tb=0.75. Right plot: t/Tb=0.90. The mapping relating vor-
ticity magnitude with opacity is linear. The heart wall is made partially transparent to
allow a better observation of the flow behaviour.
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7.2.2 Global description of the flow

Figure 7.7 displays the 3D vorticity magnitude map of the phase-averaged velocity field

non-dimensionalised by the period Tb. Six salient instants of the heart cycle are shown:

the ventricular peak systole (0.15Tb), the first half of the E wave, its peak and the last

half of it at respectively 0.5, 0.57 and 0.65Tb, the diastasis (0.75Tb) and the peak A

wave (0.9Tb).

In the atrium, the blood flow coming from the PV increases almost constantly during

systole as shown by Fig. 7.3. No mechanism of violent collision is present for this heart

during systole, contrary to heart A. As exposed in the last chapter, turbulence came

with deceleration of the inflowing jets. The global swirling movement in the atrium

is not visible on the vorticity maps but is also present in heart B. High vorticity is

visible in the aorta root, the narrowed geometry of the aorta root plus the high flow

rate generating a strong shear layer. The flow rate here is 70% larger than for heart A,

also explaining the higher vorticity values here.

The ventricle diastole starts at 0.34Tb. As described for heart A, a vortex ring is

formed (at 0.5Tb here) and progresses through the ventricle (visible at the peak diastole

at 0.57Tb). The vortex ring has a larger radius than the one from heart A because of

the larger open MV area. The papillary muscles are hit by this vortex ring, the shear

layer against the anterio-lateral muscle being visible at 0.57Tb. The vortex ring changes

its orientation and breaks up by interacting with the lateral wall. The jet does not

penetrate the ventricle as deep as in the case of heart A. The velocity at the E wave

peak represents roughly 65% of the E wave peak velocity for heart A and the vortex

ring interacts earlier with the lateral wall, explaining the smaller penetration. During

diastasis, at 0.75Tb, the ventricle volume remains almost constant and the vorticity

magnitude decreases. From this moment, the atrial volume decreases and the A wave

begins. The formation of a new vortex ring is visible at 0.9Tb. This vortex stays between

the tips of the papillary muscles and the tip of the mitral valve. It does not have time

to hit the lateral wall before systole begins.

In the atrium, the RSPV and RIPV (pulmonary veins visible on Fig. 7.7) jets interact

which each other during the whole cycle. These two jets form a flow with a trajectory

tangential to the atrial wall. Jets do not seem to collide or disturb each other as in

heart A. Contrary to what occurs in heart A, the jets path seems smoother. However,

the general mechanism is the same that in heart A. The jets from the pulmonary veins

create a swirled motion of the blood in the atrium. As a side note, a vortical structure

is visible in the atrium, indicated by an arrow in Fig. 7.7 at 0.75Tb. The length of this

structure is of half the atrium height and is due to the swirling motion in the atrium.

This structure was present, though less visible, in heart A.

7.2.3 Instantaneous structures

The instantaneous flow features are studied in this section. The 35th cycle which is the

last simulated has been selected to display the instantaneous structures. The Q criterion
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Figure 7.8: Evolution of Q criterion isosurface (Q = 70u2
b/R

2
a) showing the vortical

structures present in a typical instantaneous velocity field.



142 CHAPTER 7. A HEALTHY SUBJECT: ANALYSIS AND COMPARISONS

is displayed. Q criterion isosurfaces are presented in Fig. 7.8 at different instants of the

heart cycle. The instants are the same as in the previous section and the isosurface at

Q = 70u2
b/R

2
a is shown.

During systole, really few structures are visible in the atrium. As said before, the

smooth and progressive increase in the pulmonary veins flowrate in this case does not

yield intense vortical structures during systole. This was not the case for heart A, where

many structures could be seen in the upper part of the atrium. At peak systole (0.15Tb

shown in Fig. 7.8), multiple elongated vortical structures roughly aligned with the main

flow direction can be observed from the upper part of the ventricle to the ascending

part of the aorta. This kind of structures has been reported in chapter 5. They seem

characteristic of the systolic phase.

At 0.5Tb, the structures which were visible in the aorta dissipate. However, a lot of

small eddies are formed in the atrium at this time. Meanwhile, traces of the E wave

vortex ring are visible at the MV tips (an arrow indicates it in Fig. 7.8 at 0.5Tb). The

vortex ring travels through the ventricle. It is then disturbed by the lateral wall and

the papillary muscles. Its progression to the apex is stopped earlier compared to heart

A. The non-dimensionally time interval where this vortex ring travels toward the lateral

wall is of the order of Tb/10, as for heart A, but its velocity of propagation is smaller.

The vortex ring evolves as a complex 3D flow after the impact. The small eddies do

not fill up the entire ventricle as for heart A but seem to fill the first three quarters.

Remarkably, the structure associated with the swirling motion in the atrium already

mentioned in the last section, is visible here at 0.65 and 0.75 Tb (two arrows indicate

it in Fig. 7.8). At 0.9 Tb, the A wave vortex ring is visible in the upper part of the

ventricle (an arrow indicates it).

7.2.4 Velocity fields and signals

The velocity vector fields of the phase-averaged flow solutions are shown in Fig. 7.9

for the same instants shown previously. The non-dimensional velocity vector fields are

shown over a slice in the left heart, as indicated in Fig. 7.1. The reference velocity used

to make the values non-dimensional is computed as ub = 0.16 m.s−1. Note that the

scale changes along the cycle and is indicated in the figure.

The global features reported in heart A are observable in heart B as well. During

systole, the flow is less chaotic in the atrium compared to heart A. At the end of diastole,

the recirculating cell in the ventricle does not move toward the septum wall as in heart

A. The center of this structure seems to remain at the same place during all the diastole.

Figure 7.10 shows the normalized vertical velocity signal U3 over 6 cardiac cycles

and 〈U3〉, the vertical velocity phase-averaged over 30 cardiac cycles at the 7 probes

positions described in section 7.2.1 (Fig. 7.4). In heart A, in the atrium, the velocity in

the z direction was null during systole. Here, the probes in the atrium display non null

velocity during systole, especially for p3 just above the mitral valve. This is explained

by the fact that the flow motion in heart A during the systole was perpendicular to
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Figure 7.9: Phase-averaged non-dimensional velocity field over a cutting plane through
the left heart (see Fig. 7.1 for the position of the plane). The velocity vector scale is
not constant and is indicated for each plot. The mitral valve is depicted in light grey
and the aortic valve in dark grey.
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Figure 7.10: Left: time history of normalized vertical velocity U3/ub over 6 cardiac
cycles of the 30 cycles used for phase-averaging at the 7 studied points. Right: phase-
averaged of normalized vertical velocity 〈U3〉/ub at the same 7 points. The vertical
dotted line delimits the systolic phase from the diastolic phase at t/Tb = 0.34.
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the z direction which is not the case here. The atrial vortical structure is described in

details in the next subsection.

The general behaviour of the velocity signal in the ventricle is really similar to

the signals in heart A. Notable differences during the diastole are due to the lower

penetration of the E wave vortex ring.

7.2.5 Atrial swirl motion

The swirling motion of the blood in the atrium has been mentioned not only in this

chapter but also in the two last ones about heart A. This chiral motion present in the

atrium was reported notably by Fyrenius [62] and Kilner [90] and its signature has been

shown on the field of vorticity and Q criterion. Here, we investigate its origin and its

evolution over the heart cycle. Figure 7.11 shows the 3D velocity vectors in the atrium,

at two different moments during diastole. In Fig. 7.11 the two top figures display the

atrium at 0.6Tb with two different views, while the bottom figure shows the atrium at

0.7Tb.

At 0.6Tb, the inflowing fluxes form a well organized flow (top figure), clearly less

chaotic than in heart A. The RIPV and RSPV jets merge and then follow a trajectory

tangential to the atrial wall. This trajectory is directed toward the MV, which is easily

visible on the center plot. The LIPV jet is directed toward the upper part of the atrium,

without interacting with the merged RIPV-RSPV flow. Part of the LSPV jet flows

directly to the MV while the other part is entrained by the LIPV flow, passing under

the RIPV-RSPV flow. The geometry of the pulmonary veins yields a general swirled

flow. In the upper part of the atrium, the axis of the swirled structure is perpendicular

to a plane in the atrium passing through all four pulmonary veins. The bottom figure

depicts the atrial flow at 0.7Tb. At this time, the flow rate passing through the mitral

valve is minimal: note the lower inclination of the velocity vectors at the cut plane

above the MV on the figure, indicating that the tangential flow component does not

weaken compared to the normal flow component.

This swirling motion is also visible during systole, although with a smaller intensity.

Figure 7.12 shows the swirling motion at 0.3Tb. A plane passing by the four pulmonary

veins is included in the figure. The axis of the swirled structure is perpendicular to this

plane.

The described swirling motion can be further quantified by computing the averaged

kinetic energy of the different velocity components. The tangential kinetic energy is

computed by K1,2 = (U2
1 + U2

2 )/2 and the kinetic energy of the axial flow velocity

(along z) is computed by K3 = U2
3 /2. These energies are computed using the phase-

averaged flow field. Figure 7.13 shows these energies computed on the plane above the

mitral valve which is visible in Fig. 7.11 (an arrow points at the plane).

During diastole, the axial flow energy K3 has two main peaks, corresponding to the

E wave and the A wave. This atrial swirling motion is very robust. It is generated at

the same time as the E wave, then is slowly dissipated, and does not seem to be affected
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Figure 7.11: 3D velocity vectors in the atrium at 0.6Tb and 0.7Tb. The velocity field
is only shown in the atrium. Pulmonary veins are indicated. The black arrow in the
bottom figure is pointing the plane where kinetic energy is computed in Fig. 7.13.
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Figure 7.12: 3D velocity vectors in the atrium during systole at 0.3Tb. The velocity
field is only shown in the atrium. A plane passing through the four veins is included.
Pulmonary veins are indicated.
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0.34.
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Figure 7.14: Volumetric mean flow kinetic energy KV (full line) and five times the
turbulent kinetic energy kV (dashed line) in the left ventricle (top plot), and in the left
atrium (bottom plot). The energies are nondimensionalised by u2

b . The vertical dotted
line delimits the systolic phase from the diastolic phase at t/Tb = 0.34.

by what accurs in the axial direction (in particular by the A wave). This shows that

even in the lower part of the atrium, blood motion is maintained thanks to this general

swirling motion, whatever the details of the flow rate through the mitral valve.

7.2.6 Kinetic energy

Volumetric kinetic energy

The volumetric turbulent kinetic energy kV and the volumetric mean flow kinetic energy

KV are defined as:

kV (t) =
1

2V (t)

∫

V (t)
〈uiui〉 dV, (7.6)

KV (t) =
1

2V (t)

∫

V (t)
〈Ui〉〈Ui〉 dV, (7.7)

with V (t) being either the volume of the ventricle or the atrium volume at time t.

Figure 7.14 shows how these energies evolve over the heart cycle, both in the ventricle

(top plot) and the atrium (bottom plot). Note that 5kV is plotted, so that the same

scale is used to represent both energies.
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In the ventricle, the volumetric turbulent kinetic energy kV and the volumetric mean

flow kinetic energy KV behave like in heart A. However, during systole, the KV level

is more than 3 times higher than in heart A because of the higher velocities present

at 0.17Tb in the ventricle for heart B. During diastole, the peak of KV (at 0.58Tb) is

two times lower than in heart A. The kV peak occurs at roughly 0.2Tb (it was 0.1Tb

for heart A) after the KV peak. The turbulent level during this peak in heart A is 1.7

times higher than in heart B. As described for heart A, the turbulent level measured in

the ventricle is mainly due to the E wave jet and its wall interaction. Here, the weaker

E wave jet explains the lower kV observed.

In the atrium, the general behaviour observed in heart B follows what was described

for heart A. Both energy levels stay small before the diastole. A first peak of mean

flow kinetic energy (at 0.38Tb), which was not present for heart A, is visible for heart B

in the atrium. At 0.58Tb, a peak of KV is present with roughly the same energy level

observed for heart A. The same remark stands for the turbulent kinetic energy.

Turbulent kinetic energy map

Figure 7.15 displays maps of the local turbulence kinetic energy. This energy is defined

as:

k(x, t) =
1

2
〈uiui〉. (7.8)

Figure 7.15 displays the turbulent kinetic energy map at the same six instants displayed

before. As expected, the beginning of systole is associated with a relaminarization of the

LV. However, high level of k is visible in the aorta root (0.15 Tb). In the ventricle, the E

wave vortex ring signature is visible from 0.5Tb to 0.65Tb. Meanwhile, turbulent kinetic

energy levels of the order of 2.3u2
b are observed in the atrium. No clear separation is

visible between the upper and the lower halves of the atrium, contrary to what was

seen in heart A. However, slightly higher k values are visible in the upper right part

of the atrium compared to the entire cavity. It is due to the interaction between the

RSPV, RIPV and LIPV flows as explained in section 7.2.5. During diastasis (0.75T ),

the k level is well distributed in the atrium. The vortical structure provoked by the

swirling motion in the atrium (described before in sections 7.2.2 and 7.2.3) is visible on

the k map. The cycle-to-cycle variations of the vortical structure core is indicated by

an arrow in Fig. 7.15. The ventricle is clearly not evenly filled by high values of k as in

heart A. Here, the lower part of the ventricle looks free from turbulence. This result is

due to the weaker E wave jet.

Production of turbulent kinetic energy

The turbulent production Pk gives the rate at which energy is extracted from the mean

motion to the fluctuations. It is defined as

Pk(t) = −〈uiuj〉Sij . (7.9)
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Figure 7.15: Nondimensional turbulent kinetic energy k/u2
b during the heart cycle.
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Figure 7.16: Volumetric production of turbulent kinetic energy energy PV
k in the ven-

tricle (solid line) and in the left atrium (dashed line). Productions are both nondimen-
sionalised by u3

b/ls. The vertical dashed line marks the limit between the systolic phase
and the diastolic phase at t/Tb = 0.34.

This term is integrated over the ventricle and over the atrium, to obtain a volumetric

production of turbulent kinetic energy defined as

PV
k (t) = − 1

V (t)

∫

V (t)
〈uiuj〉Sij dV, (7.10)

with V (t) the volume of the ventricle or the atrium at time t. Figure 7.16 shows the

volumetric production of turbulent kinetic energy PV
k in the two cavities, nondimen-

sionalised by u3
b/ls. The general behaviour remains the same compared to heart A.

Production peaks still occur roughly at the same time in both cavities. Production

level in the atrium are roughly the same as in heart A. However, in the ventricle of heart

B, the production level is half of the value measured in heart A.

Contrary to heart A, the TKE production in the ventricle is not essentially concen-

trated in the first half of diastole but for the first three quarters of Tb. From the time

when the E wave jet enters in the ventricle to some instants after the impingement of

the jet, the production PV
k rises until its peak at t/Tb = 0.65. As for heart A, turbulence

in the ventricle comes from the E wave jet and its loss of coherency. The production

decreases during all the remaining time of diastole with a slight increase when the A

wave enters the ventricle. As this vortex ring does not hit the lateral wall, the PV
k

raises because of the cycle-to-cycle fluctuations of the jet trail. Still in the ventricle,

non null PV
k levels exist during the systole. It was observed that part of the turbulence

production was located at the postero-medial papillary muscles (which is indicated in

Fig. 7.1). Physiologically, the papillary muscles are contracted during systole, leaving

little room for generating shear and thus turbulence. It is possible that the papillary

muscles deformations were not well modelled. On a side note, the chordae tendineae

(see chapter 2) which are not modelled here should offer resistance to the flow and thus

possibly creating turbulence in vivo.

In the atrium cavity of heart A, non-zero production was observed during systole.

Here in heart B, the PV
k level is virtually null during systole. During diastole, raise of
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Figure 7.17: Volume rendering of the production of turbulent kinetic energy Pk nondi-
mensionalised by u3

b/ls at t/Tb = 0.65. The mapping relating production magnitude
with opacity is linear. Heart wall is made partially transparent to allow observation.

PV
k in the atrium of heart B is not as sharp as in the atrium of heart A. The production

is spread over one third of Tb.

Figure 7.17 displays the volume rendering of the production of turbulent kinetic

energy at 0.65Tb for two different points of view. A part of the turbulent production in

the atrium comes from the interaction of the inflowing jets from the RSPV and RIPV.

The area where the jets are merging is visible in both plots in the upper right half

of the atrium. In addition, the merged jets and their interaction with the atrial wall

just before the LIPV ostium (merged jets can be seen in Fig. 7.11 top plot) generates

shear, instabilities and thus turbulence production. In a similar fashion, the interaction

between the merged jets and the inflowing jet from the LIPV is a source of turbu-

lence production. Although the turbulence level is the same as in heart A, turbulence

production does not come from direct jet collisions as in heart A.

In the ventricle, large production values are obtained in the shear layer of the trailing

jet of the E wave vortex ring. Severe distortions of the jet seem to occur near the

jet head, where it hits the lateral wall, accompanying large TKE production. The
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turbulence production in the ventricle is the same as in heart A. However, it is worth

pointing out that the production occurs in the upper half of the ventricle. As the E

wave jet penetrates less in the ventricle, the turbulence produced in this area is less

transported toward the ventricle apex.

7.2.7 Time-frequency analysis

Time-frequency representations are considered in this section. The signal of the vertical

fluctuating velocity u3 at each probe location is decomposed in 800 windows for which

a Hann window with 50 % overlapping is applied and a short-time Fourier transform

is used. The obtained spectrogram is then phase-averaged over the 30 cycles. Spectro-

grams computed with different overlappings and window functions display only small

differences, showing that the following results are robust to the details of the signal pro-

cessing. Frequencies higher than 200 Hz are not analysed because of the grid resolution.

Considering a resolution of lc ∼ ∆x, the cutoff frequency is estimated at fc = ub/lc ∼
280 Hz.

Figure 7.18 displays the computed spectrograms. Each horizontal slice of a spectro-

gram exhibits the frequency spectrum of the flow at a specific time. Note that globally,

the spectra decrease by about three decades before exceeding 50 Hz. In the ventricle

at p3, p4, p5, for certain times during diastole, significant fluctuations may be observed

even for frequencies higher than 100 Hz. p6 is indeed close to the apex, where turbulence

levels remain low in this heart. As in heart A, the high frequency fluctuations are only

visible for a small time window. This time interval corresponds to the entering of the

E wave jet in the ventricle and its scattering into small eddies. Then, the frequencies

in the flow decrease during the whole diastole. Note that at location p6, the observed

frequencies are under 75 Hz during the whole cycle. As expected regarding the high

TKE levels in the aorta root (see Fig. 7.15), probe p7 shows spectra exceeding 100 Hz

during the whole systole.

The time-frequency behaviour in heart B is similar to heart A, the main differences

being the A wave having influence in this heart and the fact that high frequencies are

not visible in the apex area.

7.3 Final remarks

Looking at the hearts characteristics, differences between heart A and heart B principally

lie in the E/A ratio, the mitral open area and the cycle duration. The general flow looks

similar between both hearts. The main differences revealed in this chapter between these

hearts are twofold. First, the flow seems more organized in the atrium and the general

swirling motion is stronger in heart B. Second, the E wave jet is weaker.

However, the mechanism of turbulence creation remains the same here. Turbulence

is created when jet impinges the heart wall or when velocity decreases. The TKE

behaviour through the cycle is quite similar, even through levels in heart A are higher
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Figure 7.18: Time-frequency representation of the Power Spectral Density (PSD) of the
vertical fluctuating velocity u3 at the 7 probes locations. PSD is color coded (scale on
the bottom right).
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Heart A Heart B

Cardiac cycle (s) Ta = 1.0 Tb = 0.75
E/A ratio 5.5 2.0

Ref. velocity (m.s−1) ua = 0.10 ub = 0.16
Remax at MV 5000 4520

Ventricle PV
k peak time 0.57Ta 0.65Tb

Ventricle PV
k peak value 8.75u3

a/ls 0.79u3
b/ls

Ventricle KV peak time (diastole) 0.54Ta 0.58Tb

Ventricle KV peak value (diastole) 15.0u2
a 2.9u2

b

Ventricle kV peak time 0.62Ta 0.71Tb

Ventricle kV peak value 2.9u2
a 0.59u2

b

Atrium PV
k peak time 0.58Ta 0.6Tb

Atrium PV
k peak value 3.75u3

a/ls 0.91u3
b/ls

Atrium KV peak time (diastole) 0.54Ta 0.57Tb

Atrium KV peak value (diastole) 10.0u2
a 2.9u2

b

Atrium kV peak time 0.6Ta 0.67Tb

Atrium kV peak value 1.75u2
a 0.62u2

b

Table 7.2: Main results for heart A and heart B.

than in heart B in the ventricle. However, same turbulence levels are measured in the

atrium.

As suggested by the last chapter, the turbulence energy levels in the ventricle are

determined by the energy of the E wave vortex ring. The E wave here is weaker: mi-

tral velocity represents 65 % of the mitral velocity of heart A. As a consequence, the

lower turbulence magnitude levels are not surprising. The peak value in the ventricle

represents roughly 65 % of the heart A turbulence magnitude level. Table 7.2 summa-

rizes some results of heart B accompanied with the counterpart results of heart A for

comparison.

High frequency perturbations in the flow followed by a frequency decrease are ob-

served as in heart A. Frequencies above 100Hz are only present during short time win-

dows, of the order of Tb/10.



156 CHAPTER 7. A HEALTHY SUBJECT: ANALYSIS AND COMPARISONS

Chapter key points:

• The E wave jet does not reach the apex in heart B.

• As in heart A, the E wave jet is responsible of turbulence pro-

duction in the ventricle.

• The E wave jet being weaker than in heart A, turbulence mag-

nitude levels in the ventricle are lower than in heart B.

• In the atrium, unlike in heart A, the flow seems more organized.

However, turbulence levels are similar between both atria.

• The TKE behaviour during the cycle is quite similar even if lev-

els in heart A are higher than in heart B. Turbulence is created

when jet impinges wall surface or when velocity decreases.

• High frequency fluctuations followed by more quiescent flow are

observed as in heart A.



Part IV

Lagrangian analysis

157





C
h

a
p

t
e

r

8
Study of tracers transport in left hearts
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This chapter describes the transit of blood through the two left hearts

described in the previous chapters. The flow is here described from a La-

grangian point of view. Flows are seeded with massless particles to mimic

the trajectories of red blood cell in the heart. Statistical data are gathered

and analysed.
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8.1 Introduction

As already shown, the complex geometry of the left heart and its movement lead to

complex flow patterns. In addition, cardiac cavities are not emptied at each cardiac

cycle. This raises questions about the transit of red blood cells in the heart. For

example, red blood cells can stay in the atrium or in the ventricle for several cycles.

What is the repartition of the residence time? What are the cells trajectory in the

heart? Transit of red blood cells was rarely accounted for in previous studies, due to

its complexity. An Eulerian point of view has been adopted to describe the blood flow

in this work so far. However, complementary information could be extracted from a

Lagrangian approach.

Studies have been conducted using MRI [20, 23, 51], but they suffer from low spatio-

temporal resolution thus making the results prone to large interpolation errors. A

promising study has been conducted by Hendabadi et al. [79], using novel processing of

Doppler-echocardiography. They were focusing on residence time and blood transport

patterns. Likewise, numerical simulations of an idealized left ventricle have recently

been conducted by Zheng et al. [188] and Seo et al. [156]. The focus was placed on

residence time and blood mixing for different E/A ratios.

Still, the effects of filling process considering an entire heart has not been fully

investigated in details. To this end, both models developed during this thesis is here

used. The first heart described in this chapter corresponds to the large E/A ratio heart

(ratio of 5.5) and described in chapter 5 and in chapter 6. It will be refereed as Heart

A as in the previous chapters. The second one is the healthy heart with a E/A ratio of

2.0 presented in chapter 7. It will be refereed as Heart B.

The method applied in this chapter is briefly described in section 8.2. Results will

be first presented qualitatively, providing a global view of the flow. Statistics on the

residence times and mean particle velocity will be provided for both the atrium and the

ventricle. Particles penetration and mean path length in the ventricle will be described

as well. The results for heart A and heart B are respectively detailed in section 8.3 and

section 8.4. Section 8.4, which focuses on the heart B, does not cover details about the

features shared by both hearts. Instead, the section details comparisons between them.

Finally, section 8.5 presents a discussion of the results and final remarks.

8.2 Method

The simulations presented in this chapter have been conducted simultaneously with the

ones presented before. In the light of the previous comparison and discussion on the

SGS model (chapter 5 section 5.4.2), the LES presented in this chapter are performed

using the sigma model. Blood is still modelled as an incompressible fluid. As shown

in chapter 5, the shear-thinning behaviour of blood does not have a major impact on

the flow results. Blood is thus modelled as an incompressible Newtonian fluid in this

chapter. The fluid motion is thus described, in the same way as the last chapters, by
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Figure 8.1: Scheme of heart A. The names of the four pulmonary veins are indicated.
Statistics are saved first when the particles pass through the mitral valve (coloured in
green in the right figure to indicate that they are accounted for in statistics) and then
when the particles pass through the aortic valve.

the NS equations. Other parameters such as the boundary conditions and deformations

were already described in chapter 6 for heart A and in chapter 7 for heart B.

The Stokes number indicates if the particles are tracers. The Stokes number (St)

corresponding to the behaviour of the red blood cells in the plasma is defined as:

St =
ρrd

2
rua

µf l
, (8.1)

where ρr is the red blood cell density, dr its diameter, µf the plasma dynamic viscosity

and l a characteristic length of the flow. Here, the red blood cell density is considered

the same as the plasma density, the flow characteristic length l is set to 10−2 cm and

red blood cell diameter is set to 7 × 10−6 m. The Stokes number is then small enough

to consider the red blood cells as tracers as St ≪ 1. Red blood cells are thus modelled

thanks to massless particles. Moreover, the particles have no effect on the fluid flow

and presumably do no interact with each other.

The velocity u(xp) of each particle is computed thanks to an interpolation from the

Eulerian velocity field. A classical inverse distance weighting interpolation method is

used to this respect. The particle position at the next time step is then given by,

xp(t + ∆t) = xp(t) +
∫ t+∆t

t
u(xp)dt, (8.2)



162 CHAPTER 8. STUDY OF TRACERS TRANSPORT IN LEFT HEARTS

3 × 105

2 × 105

1 × 105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
N cycles

n
p

ar
ti

cl
es

Figure 8.2: Convergence of the number of particles at the end of the diastole in the
heart A for each computed cycle.

where ∆t is the numerical time step and where the time integration is performed by

a three-stage Runge-Kutta method. Particles are introduced in the heart flow through

the numerical domain inlets. A color flag from 1 to 4 distinguishes where the particles

come from. Figure 8.1A shows these numerical flags traduced by different colors. the

flag is 1 for particles from LSPV, 2 for RIPV, 3 for LIPV and 4 for RSPV. The number

of particles injected depends on the flow rate imposed at the inlet patch. The injection

rate is fixed at 105 particles per second, but is scaled by the ratio between the flow rate

imposed at the pulmonary veins and its maximum: Qpv/Q
max
pv . During flow reversal at

the pulmonary veins, no particles are injected and they are deleted from the domain if

they leave it.

Particles data are saved when particles pass predefined planes: the first plane is the

elliptical mitral open area and the second plane is the aortic plane (see chapter 4 for

details on valve models). This procedure enables to obtain separate statistics for the

atrium and for the ventricle. The counting at the mitral is effective only during diastole,

as the mitral valve is closed the rest of the time. Similarly, for the aortic plane, the

particles statistics are gathered only during systole. Particles passing though the aortic

plane during systole are then removed from the numerical domain. For each particle,

the life time, integrated kinetic energy, path length and the color flag between 1 and

4 are saved first when passing though the mitral plane, then passing the AV plane. In

addition, at the aortic plane, the minimum level reached in the ventricle (z coordinate)

and the simulation total time are also stored. Mean and root mean square velocity

along the trajectory can be computed from these data. From the stored information,

particles entering in the LV during the E wave can be easily identified.

To ensure accurate statistics, several heart cycles were computed, until the number

of particles within the ventricle and the atrium is stabilized. Figure 8.2 shows the

convergence for heart A. Around six cycles were necessary to reach an almost constant

number of particles in the domain. Ten more cycles have been computed and statistics

have been gathered over the last three cycles. Thus, statistics cannot be computed for

particles with a life time greater than seven heart cycles. The stabilized number of

particles in the heart is close to 3 × 105.
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Figure 8.3: Particle residence time is shown for heart A. Six times during diastole are
shown. Only 50 000 particles are displayed for a better visualization.

8.3 Results for the heart A

8.3.1 Ventricle global behaviour

The time for a red blood cell to travel from the mitral opening plane to the aortic plane

is defined as τv = tao − tmv where tmv (resp. tao) is the time when the particle passes

through the mitral plane (resp. aortic plane). Figure 8.3 shows the ventricle residence

time for 50 000 particles in heart A. The number of particles was deliberately limited

in order to have a better visualization. Six different times are displayed, all of them

during diastole. Interestingly the particles issued from the RSPV follow the atrium wall
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Figure 8.4: Probability density function of residential time in the left ventricle (solid
line). The E wave contribution is plotted with a dotted line, the remaining contribution
(L and A wave) with a dashed line.

resulting in a direct pathway toward the mitral plane. This behaviour is in fact coherent

with the flow features discussed in chapter 5.

At t/Ta = 0.5, the E wave vortex ring is clearly bounded by the fresh particles

entering the ventricle. At t/Ta = 0.6 after the vortex ring hits the lateral wall, the

flow momentum redirection has an important effect on the particles. While a part of

the particles go toward the apex, a non negligible amount of particles are entrained

toward the mitral valve. What this means is that the particles repartition is strongly

influenced by the vortex ring, its interaction with the lateral wall and its velocity as

well. Between t/Ta = 0.7 and 0.9, the L and the A waves enter the ventricle.Older

particles are entrained from the base to the apex and from the apex to the septum wall

of the ventricle. Differentiation between lateral wall and septum wall is clearly seen in

term of residence time here. However a lot of fresh particles stays in the top half of the

ventricle.

8.3.2 Left ventricle: residence time

Particle residence times were gathered and a probability density function (p.d.f), shown

in Fig. 8.4, is computed to provide quantitative data. The probability density function

(in solid line) shows distinct peaks which individually look similar to normal distribu-

tions. Interestingly, there is finite time windows where the E wave particles have their

residence time as new particles can only enter during the diastole. For this heart, the

median residence time in the ventricle is 0.8 Ta. Half of the particles are hence ejected

through the aorta in less than one heart cycle. The term ”direct flow”, first introduced

by Bolger et al. [20], defines the particles ejected from the ventricle in one heart cycle.

Here, the direct flow represents 55 % of the particles. In the same spirit, 79 % of the

particles are ejected in two cycles, 90 % in less than three and 96 % in less than four
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heart cycles. These figures are way higher than the ones found in the rare literature on

this subject. Thanks to MRI methods, Bolger et al. [20] found a direct flow of 21±6

%, and Eriksson [51] 38±5 %. Hendabadi et al. [79] obtained a direct flow of 43±11%

using echocardiography, which is closer of our value of 55 %. Through numerical sim-

ulation of left ventricles, Seo and Mittal [156] found a direct flow between 48 and 54

% by changing the E/A ratio between 0.5 and 2, for normal haemodynamics. Through

simulation study of realistic left heart, Doenst et al. [42] computed the direct flow using

the ejection fraction. Doenst et al. direct flow is then computed by assuming that the

blood is perfectly mixed in the ventricle. The presented results shows that this estima-

tion is acceptable as the fraction ejection for this patient is 58 %, which is really close

of the measured direct flow of 55 % for heart A.

The residence time p.d.f. is now decomposed in two parts: an E wave contribution

(dotted line) and the remaining part (dashed line), composed by the L wave and A

wave contributions (see Fig. 8.4). Results show that the particles from the A wave

follow almost a normal distributions as well. This p.d.f. contribution can be read as a

sum of normal distributions with very similar standard deviations (σ ∼ 0.1) and similar

shifted means (∼ 68% of the considered cycle).

However, the remaining contributions deform these distribution (mainly visible in

the firsts cycles): for each cycle, the particles from the remaining contributions are

ejected first. Particles from the L and A wave contributions have a median residence

time of 0.44 Ta. Half of these particles are ejected in less than a half of heart cycle, and

65% of the particles in one cycle, 90% in less three cycles.

Note that the idea first introduced by Watanabe et al. [178] of ”first-in, first-out”

is not respected here. In this hypothesis, the ejection should remove the residual blood

before the blood freshly injected in the ventricle. Here on the contrary, a ”last-in, first-

out” is observed, as particles entering the LV during the L wave and the A wave are

located close to the aortic root at the beginning of the systole and a thus rapidly exiting

the LV.

8.3.3 Left ventricle: penetration

The study of the penetration of the particles within the heart can explain this ”last-in,

first-out” phenomenon. The penetration is defined as zmin/ld where the quantity zmin

for a particle is the minimum depth reached by this particle during its lifetime. ld is

the ventricle maximum length during diastole. The p.d.f. of the penetration zmin/ld is

plotted in Fig. 8.5. A particle reaching the apex at one moment along its trajectory has

the value of 0. In the contrary, a particle staying at the mitral valve level and exiting the

ventricle has the value 0. The p.d.f shows that particles can travel through the entire

ventricle. The p.d.f shows two distinct peaks, one around 0.1 ld and another around

0.75 ld. The median value of the penetration is 0.71 and about 90% of the particles

go deeper than 40% of the ventricle length. Decomposition of the p.d.f. between the

particles coming from the E wave and the others (see Fig. 8.5) shows that the E wave
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Figure 8.5: Penetration within the left ventricle is given by the particle minimum level
in the cavity. Here in solid line, the probability density function of the minimum level
zmin nondimensionalised by the maximum length of the ventricle ld is plotted. 0 being
the mitral valve level, 1 the apex. The E wave contribution is plotted with a dotted
line, the remaining contribution with a dashed line.

particles travel deeper in the ventricle. The median value of the E waves particles

penetration is 74% while the L and A waves particles have a median value of 33%.

Hence, because the L and A waves particles stay in the upper part of the ventricle, they

are ejected first. The reason why these particle do not travel deeper in the ventricle

because of the weak A wave for heart A. Anticipating on the results of section 8.4.3, we

can state that this low penetration is related to the weakness of the A wave in this heart.

Heart B, has a more intense A wave has also particle from the A wave reaching deeper

positions in the ventricle. Results for the E wave particles penetration are concentrated

mainly between 0.3 ld and 1 ld while the other particles can be found at every depth

in the ventricle. This can be explained by the fact that the particles from the L and A

wave stay in the ventricle for more than a cycle, and are dragged deeper in the heart

during the next diastole thanks to the E wave.

The two variables zmin/ld and τv/Ta can be observed through a bivariate distribution

(see Fig. 8.6). The upper plot is the bivariate p.d.f. of the particles only coming from

the E wave. The bottom plot shows the same distribution but for all the particles.

When looking at the p.d.f. for the E wave particles, the narrow time windows where

the ”close to normal” p.d.f. were observed (see Fig. 8.4) is visible; note also that the

median penetration in the ventricle does not show high variations with respect to the

residence time. In addition, residence time and penetration in the left ventricle have a

weak correlation (r = 0.52) suggesting that there is no stagnation zone.

When the L and A waves contributions are added (bottom plot), their contribution

is visible mainly in the upper left of the plot, expressing a low penetration and an

associated low residence time of these particles. For particles with a residence time
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Figure 8.6: Bivariate distributions of variables zmin/ld and τv/Ta. Top plot is the
distribution of the E wave contribution only while the bottom plot is the total p.d.f.

greater than 1Ta, the L and A waves contribution is more subtle. The particles mainly

go deeper than 60% of the ventricle, as the E wave particles. However, L and A waves

particles are ejected through the aorta earlier than the others, explaining why there is

a contribution visible in the left of the total distribution for each cycle.

These bivariate distribution of the residence time versus the penetration of the

particles is a bio-marker of a weak A wave and a strong E wave. This information

is another way of observing the E/A wave ratio which is classically used in clinical

routine [125]. This distribution could give more information than a simple velocity

ratio. Indeed the weak penetration is a consequence of the high E/A ratio for this

patient but it could give also an indication of a pathology. A patient with a normal

E/A ratio could have a pathological distribution if the intracardiac flow is not normal.

In pathological state a non-uniformity of the ventricle relaxation for example could

affect the A wave filling.
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Figure 8.7: Probability density function of path length in the left ventricle (solid line).
The E wave contribution is plotted with a dotted line, the remaining contribution with
a dashed line.

8.3.4 Left ventricle: path length travelled

The particles path length in the ventricle is measured. Figure 8.7 shows the p.d.f. of

the path length lv nondimensionalized by the length of the ventricle ld. The distribution

shows different peaks. Peaks are visible at roughly 0.9, 2.5, 5 and 7.5ld. After 10ld the

distribution decreases linearly. The median value is 3.15 and surprisingly, particles can

travel more than ten times the ventricle length.

Decomposition between the contributions of E and L-A waves show that the first

peak at lv/ld = 0.9 of the p.d.f. is due to the L-A waves particles. 65% of the L-A

waves particles travel less than 2ld. This L-A waves contribution shows lower peak at

around 3.9ld and another one at 6.4ld. The same differences of 2.5 ld is visible between

peaks of the E wave contribution at 2.5, 5 and 7.5ld. Theses peaks are certainly the

consequence of the recirculating cell in the ventricle, 2.5 ld being roughly the distance

travelled from the mitral valve plus the travel to the apex and back to the base of the

ventricle plus the velocity fluctuations. The L-A waves particles with a longer residence

time are ’trapped’ in the same mechanism as the E wave particles, explaining the deeper

penetration of the L-A waves with a residence time higher than 1 Ta as discussed in the

former section. Interestingly, the percentage of L-A waves particles travelling less than

2ld and the ones which have a residence time smaller than 1 Ta is the same.

The study of the path length by subclasses of residence time (not shown here) shows

that particles with a residence time of less than 1 Ta travel less than 4 ld. Apart from

this direct flow, other residence time subclasses correspond to normal distribution and

peak of each of the distribution corresponds to the peaks evoked before, reinforcing the

idea that for each heart cycle, the particles travel roughly 2.5ld in the ventricle.
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Figure 8.8: Probability density function of the mean particle velocity within the left
ventricle is plotted in dashed line. Each residence time subclass is defined as τk

v =
{τv|k − 1 < τv/T ≤ k}.

8.3.5 Left ventricle: mean particle velocity

The probability density of the mean particle velocity defined has lv/τv, and nondimen-

sionalized by ua (as a reminder, ua = 0.1 m.s−1), is plotted in Fig. 8.8. Here, the

velocity has not been decomposed in E and L-A contribution as the differences between

the two contributions is mainly due to their magnitude differences. The median ve-

locity is 2.8 ua. This p.d.f. is decomposed in residence time subclasses defined has

τk
v = {τv|k − 1 < τv/T ≤ k}. The four first subclasses are plotted in Fig. 8.8. All the

subclasses p.d.f. remarkably follow normal distributions, the mean being smaller and

smaller with larger residence time. The τ1
v subclass represents 55 % of the particles and

have a mean velocity of 3.2ua, the upper subclasses having a mean velocity decreasing

toward 2.25 ua. The higher velocity of the first τ1
v subclass can be explained by its

quick ejection through the aorta. These particles keep the high velocity of the E wave

which made them enter the ventricle. They stay for only one diastasis and leave before

systole, which feature both low velocity. Note that mean velocity and penetration zmin

are not correlated; the difference of velocities is not a consequence of penetration.

8.3.6 Left atrium: residence time

In order to provide an analysis of the atrial flow from the Lagrangian point of view, we

now detail the results for the atrium only. The particle residence time is gathered and

the probability density function is reported in Fig. 8.9. The probability density function

(in solid line) distinctly shows four peaks. Contrary to what happens in the ventricle,

the particles enter continuously in the atrium, which changes the general aspect of the

p.d.f. (compared to Fig. 8.4). However, no particle is measured with a residence time

smaller than 0.21 Ta, which must be the lowest time needed from the veins to the mitral
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Figure 8.9: Probability density function of residence time in the left atrium (solid line).
Each pulmonary vein contribution is plotted as well: RSPV (dashed line), RIPV (dotted
line), LIPV and LSPV contributions are plotted using the same line as differences
between the two are small.

valve. For this heart, the median residence time to travel in the atrium is 1Ta. Half of

the particles are hence ejected through the mitral valve in one heart cycle which is less

than in the ventricle.

The decomposition of the residence time p.d.f. into four contributions from the four

pulmonary veins show similar values. However, particles coming from the RSPV and

from the RIPV pass from the atrium to the ventricle in less time than the others. The

particles coming from the RSPV follow the atrial wall in a swirled trajectory and reach

the mitral valve fast. A part of particles coming from the RIPV passes ’under’ the

point of impact of the atrial jets. As first observed by Fyrenius [62], this result seems

paradoxical, given that the left lower pulmonary venous jet enters in closer proximity to

the mitral valve. Instead of exiting the atrium, the particles issuing the left sided inflows

are trapped and recirculate in vortices before finally moving toward the mitral valve.

This disparate behaviour between left and right venous particles can be anticipated

from the flow description from chapter 5. However, the particles remaining more than

one cycle lose memory of where they come from, as shown by the similar behaviour

observed for the the four PV for residence time superior to Ta.

8.3.7 Left atrium: mean particle velocity

The probability density of the mean particle velocity, defined has la/τa and nondimen-

sionalized by ua, is plotted in Fig. 8.10. Here, the velocity has been decomposed in the

fourth first subclasses of residence time defined has τk
a = {τa|k − 1 < τa/T ≤ k}. This

p.d.f. has the appearance of a gamma distribution instead of the normal distribution

aspect seen in the ventricle. Using a common gamma distribution parametrization with

a shape parameter k and a scale parameter θ, one can observe that the scale parameter
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Figure 8.10: Probability density function of the mean particle velocity within the left
atrium is plotted in dashed line. Each residence time subclass (defined as τk

a = {τa|k −
1 < τa/T ≤ k} ) contribution is plotted.
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Figure 8.11: Probability density function of the mean particle velocity within the left
atrium is plotted in solid line. Each pulmonary veins contribution is plotted. The
RSPV in dashed line, RIPV in dotted line. The LIPV and LSPV contribution are both
in dashed dotted dotted line as differences between the two are small.

remains similar, while the shape parameter decreases as higher residence time subclasses

are observed. The τ1
a subclass represents 45 % of the particles and have a median ve-

locity value of 4.9ua. The upper subclasses have a mean velocity decreasing to reach

2.1ua for the subclass τ6
a .

The higher velocity of the first τ1
v subclass can be explained by its quick ejection

through the aorta. These particles rapidly acquire high velocity of the E wave, during

which they enter the ventricle.
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Figure 8.12: Residence time is shown for the healthy subject: heart B. Six instants
during the diastole are shown. Only 50 000 particles are shown for a better visualization.

8.4 Results for the heart B

Results in heart A are specific to heart having a high E/A ratio. Heart B, which is

a healthy heart, presents more classic characteristics. The particle analysis is thus

reported here to highlight the common and distinct features in the two hearts.

8.4.1 Global behaviour

As for heart A, the ventricular residence time is calculated between the mitral opening

plane and the aortic plane. Figure 8.12 shows the particle residence time for 50 000
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Figure 8.13: Probability density function of residence time in the left ventricle (solid
line). The E wave contribution is plotted with a dotted line, the A wave contribution
with a dashed line.

particles in heart B. The number of particles was limited for a better visualization.

At t/Tb = 0.5, the E wave vortex ring transports fresh particles in the ventricle. At

t/Tb = 0.6 the vortex ring hits the lateral wall and the papillary muscles. Particles do

not go all the way down to the ventricle compared to heart A, the vortex ring travelling

not as far. Instead of scattering paricles vertically, along the lateral wall as in heart A,

the jet impact makes particles fill the heart mostly laterally. Between t/Tb = 0.7 and

0.9, A wave enters the ventricle. Older particles are entrained from the base to the apex

and from the apex to the septum wall of the ventricle. This movement is less evident

here. However, differentiation between lateral wall and septum wall is also observable in

term of residence time. A lot of fresh particles stay in the top half of the ventricle as for

heart A, showing that the weak A wave of heart A does not seem to be the explanation.

Also, it seems that a significant quantity of particles stays near the apex, compared to

heart A.

8.4.2 Left ventricle: residence time

Figure 8.13 shows the residence time probability density function (in solid line) for

heart B. As for heart A, the plot shows distinct peaks, similar to normal distributions.

For this heart, the median residence time in the ventricle is 0.72 Tb against 0.8 Tb for

heart A. This is explained by the larger quantity of A wave particles entering the left

heart during one cycle giving more weight to the younger particles. This is actually the

main difference here between the two hearts: A wave contribution is more important

as expected. Here, direct flow represents 54 % of the particles which is only slightly

lower than for heart A. Moreover, 81 % of the particles are ejected in two cycles, 92

% in less than three and 0.97 % in less than four heart cycles which is only slightly

higher results than for heart A. Overall, the E/A ratio does not seem to highly affect
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Figure 8.14: Penetration within the left ventricle is given by the particle minimum level
in the cavity. Here in solid line, the probability density function of the minimum level
zmin nondimensionalised by the maximum length of the ventricle ld is plotted. The
E wave contribution is plotted with a dotted line, the remaining contribution with a
dashed line.

the residence time results. Also, the residence times are still much higher than most of

the ones previously reported in the literature.

The decomposition of the residence time p.d.f. into an E wave contribution and an

A wave contribution shows that the particles from each E wave follow almost perfect

normal distributions, as in heart A. This p.d.f. contribution can be seen as a sum

of normal distributions with very similar standard deviations but different means (∼
60% of the considered cycle). However, the A wave contribution is responsible for the

contribution occurring in the first half of each cycle and mainly visible in the first cycles:

for each cycle, the particles from the remaining contributions are ejected first, as in the

heart A, refuting again the idea of ”first-in, first-out”. A ”last-in, first-out” type of

behaviour is observed, irrespective of the E/A ratio.

8.4.3 Left ventricle: penetration

Figure 8.14 shows the particle penetration in the heart ventricle. The penetration is

defined as in section 8.3.3. The p.d.f shows that particles can travel through the entire

ventricle, until the apex. However, for this heart, the p.d.f. does not show particular

peaks. It shows a wide range of possible particle penetration instead. The median value

of the penetration is 0.54 ld and 66% of the particles go deeper than 40% of the ventricle

length. The difference between heart A and B is here notable. The particles penetration

is not as high and is more homogeneous.

The decomposition of the p.d.f. between the particles coming from the E wave and

the ones from the A wave shows that the E wave particles travel deeper in the ventricle

than the A wave ones. However, the difference is less pronounced than in the heart A.
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Figure 8.15: Bivariate distributions of variables zmin/ld and τv/Tb. Top plot is the
distribution of the E wave contribution only while the bottom plot is the total p.d.f.

In addition, the A wave particles do not go much deeper than in heart A. While the A

wave is much stronger in heart B, the median value is of 0.25 ld, against 0.3 ld for heart

A. Note that for heart A, particles are entering the ventricle during the ’L wave’. These

particles have a higher residence time than if they would enter during the A wave. They

are likely to be captured in the large recirculating cell in the ventricle hence travelling

deeper in the heart. The median value of penetration for the E wave particles is 0.63

ld, against 0.74 ld in heart A.

Figure 8.15 shows the bivariate distribution of zmin/ld and τv/Tb. The upper plot

is the bivariate p.d.f. of the particles only coming from the E wave. The bottom plot

shows the same distribution for all the particles. Here, the median penetration in the

ventricle shows slight variations with the residence time. Further, residence time and

penetration in this healthy left ventricle are more correlated as r=0.67, against 0.52

for heart A. This suggests that stagnation might be more present in this healthy heart

than in heart A. Nonetheless, this result might be surprising but was already reported

by Zheng et al. [188]. It was suggested that a decreased E/A ratio reduces the mixing

level in the left ventricle. Our results suggest the same.
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Figure 8.16: Probability density function of path length in the left ventricle (solid line).
The E wave contribution is plotted with a dotted line, the remaining contribution with
a dashed line.

8.4.4 Left ventricle: path length travelled

Figure 8.16 shows the p.d.f. of the path length lv nondimensionalized by the length of

the ventricle ld. The distribution shows different modes. Peaks are visible at roughly

0.9, 1.8 and 3.1 ld. After 6 ld the distribution decreases linearly. The median value is

2 ld. For heart A median value is 60% higher. Path in heart B seems more optimized

in view of path length travelled. In addition, 99% of the particles travel less than 9 ld
against 15 ld for heart A, finding again the same 60% difference.

The decomposition between the contributions of the E wave and the A wave shows

that the first peak at lv/ld = 0.9 of the p.d.f. is mostly due to the A wave particles. 73%

of the A waves particles travel roughly 1.5 ld. This A waves contribution shows a smaller

peak at 2.6 ld and another one at 4.2 ld. This difference of 1.6 ld is close to the measured

differences of 1.3 ld visible between the two peaks of the E wave contribution at 1.85

and 3.15 ld. In the corresponding section of heart A, it was inferred that these peaks

are the consequence of the recirculating cell in the ventricle, measured distance being

roughly the distance travelled from the mitral valve plus the travel to the apex and back

to the base of the ventricle plus the velocity fluctuations. Heart A has a recirculating

cell of roughly all the length of the ventricle, the diastasis being longer than in heart B.

Here, the recirculating cell represents ∼ 65 % of the ventricle. A distance of ∼ 1.5 ld is

measured between each p.d.f. peak and roughly corresponds to two goes around in the

ventricle.

8.4.5 Left ventricle: mean particle velocity

The probability density function of the mean particle velocity defined has lv/τv and

nondimensionalized by ub is plotted in Fig. 8.17. The median velocity is 1.7 ub.
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Figure 8.17: Probability density function of the mean particle velocity within the left
ventricle is plotted in dashed line. Each residence time subclass is defined as τk

v =
{τv|k − 1 < τv/T ≤ k}.
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Figure 8.18: Probability density function of residence time in the left atrium (solid
line). Each pulmonary vein contribution is plotted as well: RSPV (dashed line), RIPV(
dotted line), LIPV (dashed dotted dotted line) and LSPV (dashed dashed dotted line).

This p.d.f. is decomposed in residence time subclasses as well, corresponding to

the first four cycles (see Fig. 8.17). All the subclasses p.d.f. follow remarkably normal

distributions, the mean being smaller and smaller as the residence time increases. The

τ1
v subclass has a mean velocity of 2.0 ub.

8.4.6 Left atrium: residence time

Figure 8.9 shows the probability density function (in solid line) of residence time in the

left atrium. The p.d.f. is similar to the corresponding one in the heart A. Three peaks

are clearly visible at τa/Tb = 0.33, 0.97 and 1.9. For heart A, a fourth peak was visible.



178 CHAPTER 8. STUDY OF TRACERS TRANSPORT IN LEFT HEARTS

0,05

0,15

0
0

0.1

1 2 3 4 5 6 7 8 9
l/(τa × ub)

p
.d

.f
.

Figure 8.19: Probability density function of the mean particle velocity within the left
atrium (solid line). Each pulmonary vein contribution is plotted as well. Contribution
of particles from the the RSPV is plotted with a dashed line and ones from the RIPV
in dotted line. The LIPV is plotted with a dashed dotted dotted line and the LSPV
contribution in dashed dashed dotted line.

The corresponding one here can be guessed at 1.14 Tb. No particle has been measured

with residence time lower than 0.2 Tb. the median residence time in this atrium is

0.95Tb. 94% of the particles are ejected within two cycles, and 99 % in three. These

values are very similar to the ones found for heart A.

The decomposition of the residence time p.d.f. in the four contributions from the four

pulmonary veins shows similar behaviours as in heart A. The particles coming from the

RSPV and from the RIPV pass from the atrium to the ventricle in less time. The LIPV

particles behaviour is more distinct than the LSPV in this heart. The LSPV particles

are ejected faster from the atrium than the LIPV while this behaviour, although present,

was hardly visible in heart A.

8.4.7 Left atrium: mean particle velocity

Figure 8.10 shows the probability density of the mean particle velocity in the atrium.

Unlikely in the heart A atrium, this p.d.f. has not the aspect of a gamma distribution.

The p.d.f. has a peak at 2.5 ub, but this peak is not unique. Another peak at 1.75 ub

is visible. Although the minimum mean velocity is the same (with 0.6 ub), the median

velocity is higher with 3.7 ub. The p.d.f. decomposition by pulmonary vein shows a

behaviour very different from heart A. Here, the particles from the LSPV have the

lowest velocity values with a median value of 3.0 ub, while the LIPV particles have a

median velocity of 3.6 ub. The RSPV and RIPV particles have the higher velocities

with respectively 4.0 and 4.2 ub.
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Heart A Heart B

Cardiac cycle (s) Ta = 1.0 Tb = 0.75
EF 58 62

Ref. velocity (m.s−1) ua = 0.10 ub = 0.16

Median residence time 0.8Ta 0.72Tb

Direct flow 55 % 54 %
Median zmin 0.71 ld 0.54 ld

Median zmin for the E wave particles 0.74 ld 0.63 ld
Median zmin for the other particles 0.33 ld 0.25 ld

Median path length 3.1 ld 2.0 ld
Median velocity 2.8 ua 1.7 ub

Table 8.1: Main results for heart A and heart B.

8.5 Conclusion

Using the developed methodology in this thesis, numerical simulations are employed

to investigate the blood transport in left hearts. Thanks to Lagrangian particles this

chapter compares the red blood cells transport in one heart with a restrictive filling

(heart A) and one healthy heart (heart B). Qualitatively, it seems that no stagnation

zone is present in both hearts. Particles pass quickly from the atrium to the ventricle.

In the ventricle, the three dimensional flow basically transport particle to the apex.

The E wave vortex ring carries blood from the atrium to the apex of the ventricle in

both hearts. However, the restrictive filling implies that the E wave is more powerful

for heart A. The result is that the E wave particles penetrate deeper in the unhealthy

subject. This transport mechanism takes place on the lateral wall side of the ventricle.

Then, particles reach the top of the ventricle along the septal wall. However, a large

part of particles stays near the mitral valve, especially for the healthy heart. This

can be explained by the fact that the A wave is weaker than the E wave. Table 8.1

summarizes some results of heart B accompanied with the counterpart results of heart

A for comparison.

It has been supposed in the literature that the healthy ventricle works as a mixing

chamber. In fact, the diseased heart shows more mixing thanks to its powerful E wave,

its direct flow being more closer to its ejection fraction. This observation was also made

by Zheng et al. zheng2014computational. In addition, the supposed ”first-in first-out

mode” assumption by Watanabe et al. [178] to describe the blood transport is not

verified here.

It has to be remarked that the presented results are close to Zheng et al. [188] while

they only use a prolate-spheroidal geometry. This point gives confidence in simple

academic geometry, allowing multiple cases simulation whilst avoiding complex patient-

specific model construction for particles transport. Information extracted from these

studies and the present should provide information on the normal behaviour of the
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human left heart and thus could help VAD design [61, 75, 99, 100]. Knowing the

normal residence time in the heart could help to tighten up the design requirements of

blood pumps. In addition, the present work opens possibilities of including hemolysis

models [8, 61, 168].

Finally, recall that strong hypotheses have been made to mimic blood transport.

Particles do not interact each others and are considered as tracers in a Newtonian fluid

flow. This cannot take into account the complex real blood rheology. In addition, walls

are modelled as boundaries generating elastic rebounds of the cells, a very simple view

of a very complex reality. In the physiological configuration, the endocardium of the

left ventricle is not smooth, trabeculae are present. These structure are not modelled

here, but might have a strong influence on the red blood cells behaviour. Mixing and

residence time could be affected as the interstitial regions within the trabeculae might

be prone to flow stasis.

Chapter key points:

• Measured direct flows are about 55 % in this study (close to ejection

fraction).

• No stagnation zone is visible.

• Main differences between hearts: the ventricle penetration ( due to strong

difference in the A wave intensity) and mean velocity in the atrium.
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In this last chapter, the main findings and conclusions drawn from this

thesis are recalled. Then, the physical modelling choices and their conse-

quences are discussed. Finally, possible directions for future research are

proposed.

9.1 Global conclusion

This thesis has been the occasion to develop and use a methodology allowing numerical

computations of blood flow in left hearts. The large eddy simulations have demonstrated

how computational fluid dynamics can provide an opportunity to study intracardiac flow

and to shed light on its turbulent nature.

We were able to provide results consistent with the current knowledge in terms of

left heart flow for each of the presented hearts. In the left atrium, the flow showed a

clear swirling structure that maintains blood in motion. In the ventricle, the well-known

mitral jets during the E and the A wave, preceded by a vortex ring, are also observed.

The classical large recirculating cell, characteristic of the flow during diastasis, is also

seen in the phased-averaged velocity fields. All these features have been reported sev-

eral times in the literature using medical imaging, numerical studies and experimental

studies. Additionally, the presented results underline the fact that over-simplified ge-

ometries cannot fully reproduce certain physical events as the blood swirling motion

183
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visible at the mitral tips.

The presented results also show that the use of a fluid numerical method well

adapted to turbulent flows is necessary. The intracardiac flow has been explored for

many decades but no consensus on whether or not there is significant turbulence within

a normal heart was established. In the majority of the past numerical studies, sim-

ulations mainly used solvers with low-order stabilizations terms, artificial viscosity or

dissipative schemes. In addition, in most of the cases the grid were insufficiently re-

fined, annihilating the possibility of capturing hypothetical instabilities. In this work,

the use of sufficiently refined numerical grid and of non-dissipative numerical schemes,

in conjunction with appropriate SGS model, enabled the observation of cycle-to-cycle

variations in the cardiac flow field. A disturbed and transitional flow nature is revealed,

accompanied by well identified mechanisms of turbulence production. Such variations

were expected in the present flow, due to the high Reynolds numbers encountered and

the unsteadiness of the flow coming from the pulmonary veins. The present results show

that in spite of rigorously identical contraction and boundary conditions, fluid inertia

makes the flow differ from one cycle to another.

In the left ventricle, velocity fluctuations are reported mainly in late diastole. Be-

tween the impact of the E wave jet on the lateral wall and the end of diastole, the flows

display non-negligible levels of cycle-to-cycle fluctuations for both presented subjects.

Indeed, both the vortex ring impact and the E wave jet deceleration occur approxi-

mately at the same time, and both are features promoting turbulence. The resulting

transient turbulent fields are examined through the invariant map of the turbulent stress

anisotropy. It reveals that turbulence, when present, is close to an axisymmetric state

most of the time, and never reaches an isotropic state. We also show that the late

diastole large recirculation cell is most probably perturbed by small vortices. The flow

field relaminarizes when the systolic phase begins, thanks to the stabilizing effect of

the acceleration provoked by the ventricle contraction. The entire process of vortex

structure undergoing turbulent breakdown and subsequent relaminarization occurs at

each cycle, although significant cycle-to-cycle differences are observed. In the atrium,

velocity fluctuations are reported mainly when the inflowing flow decelerates and when

inflowing jets interact with each other or impinge the atrial wall.

Finally, this thesis demonstrates how computer simulations can provide an oppor-

tunity to obtain data currently unobtainable by other modalities and with essentially

no risk for patients. In addition, the present work shows that turbulence must be con-

sidered for the heart and that haemo-turbulence might be a normal feature even for

healthy hearts.
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9.2 Discussions

9.2.1 Morphological modelling

Heart deformations

As exposed in chapter 2, section 2.1, the left heart is a complex biological object. In this

work, the heart deformations are computed thanks to medical images. Hence, the spatio-

temporal resolution of these images constitutes a limitation. The heart deformations

between each medical image is unknown and thus makes it difficult to accurately account

for short phases, as the isovolumic contraction and relaxation. Although the ten images

per cardiac cycle used for heart A enabled a convincing flow prediction, specific tests

should be performed to precisely assess the impact of the temporal resolution of the

medical images on the computed flow field.

Similarly, the tangential deformations of the endocardium may not be well captured.

However, as discussed in chapter 4, section 4.8, the captured tangential velocity is

coherent with the usual reported values. In addition, with respect to the flow velocity

magnitude, the obtained tangential velocity is negligible.

Another hypothesis is made about deformations: each computed heart cycle uses

rigorously the same deformations in this work. However, differences exist between

each heart beat in-vivo because of the heart rate variability. Variations in the time

interval between heartbeats probably have an influence on the flow and its cycle-to-

cycle variations and are not accounted for here.

Heart geometry

Besides the deformations, the level of modelling of the heart geometry depends on the

segmentation. For each presented heart, the simulations included the entire ventricle,

the atrium, the aorta root and the pulmonary veins. The heart B has also papillary

muscles. The left atrial appendage has not been modelled. Valves were included through

models which assume only two positions: open or close. This valve modelling is one of

the main drawbacks of the presented method.

In addition to the global geometry of the heart cavities, the human ventricle has

two additional features which were omitted in the presented simulations: the cordae

tendinae and the trabeculations. The cordae tendinae, between the papillary muscles

and the mitral valve, certainly disturb the intra-ventricular flow. Given their small

thickness, they could not be segmented in this work. This structure could only be

accounted for through a hypothetical model. Another omitted feature here is that

the endocardium of the human left ventricle is not smooth. As shown in chapter 2,

section 2.1, the trabeculations give a ”ridged” aspect to the endocardial surface. Here,

a smooth endocardial surface has been implicitly supposed. However, in real heart flow,

the roughness of the wall surface could play a role in the measured turbulence level. In

addition, the interstitial regions within the trabeculations could provoke flow stasis.
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Figure 9.1: Microfluidic experiments with a constriction. The blood cells are separated
from plasma (from [53]).

9.2.2 Blood modelling

Finally, the simulated fluid in this work is not blood but may be considered as ”viscous

plasma”. Plasma, which is the blood’s liquid medium, is essentially an aqueous solu-

tion. However, whole blood (plasma plus cells) exhibits complex non-Newtonian fluid

dynamics.

It has been shown in this work (chapter 5, section 5.4.1) that using a Carreau-Yasuda

fluid does not change drastically the intracardiac flow. However, the Carreau-Yasuda

model only takes into account a shear-thinning behaviour for a blood analogue fluid.

It is of course a poor model for full blood, for which the shear-thinning effect is the

results of the formation of ”rouleaux”. In addition, viscoelastic and thixotropic effects

are neglected. These blood properties are closely related to the blood structure and how

red blood cells suspension is distributed in the heart. The red blood cells determine

the rheological behaviour of blood depending on their aggregation, deformation and

alignment in the flow.

The complex movement of the red blood cells plays a role in the cells distribution,

especially in complex geometry. For example, red blood cells channel flows passing

through stenosis have a complex behaviour [2, 53]. Figure 9.1 displays a direct visual-

ization of a flow of red blood cells (from Faivre et al. [53]). The cell suspension is not

uniformly filling the left cavity in the figure. It is even more shrinking in the right cavity,

where a non-negligible percentage of the cavity is only filled by plasma. The cellular

content in the middle channel was reported to be enriched by 24%. What is the exact

rheological consequence? Another example is the red blood cells near-wall behaviour.

The natural tendency of sheared deformable cells to move away from boundaries [73]

creates cell-free layer adjacent to the vascular walls of size comparable to the size of a

single cell. Due to the drift of the deformable red cells away from the channel bound-

aries, the near-wall region is occupied by the plasma. How can this phenomenon be

properly modelled remembering that the ventricle endocardium is not smooth? Con-

sequences on the intracardiac flow are not known today and it seems illusory to think
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that basic blood model could handle these complex behaviours.

The blood nature raises other questions. Blood is considered as a continuum, mean-

ing the ”blood material” is continuously distributed and fills the entire heart cavities.

When the flow is the most turbulent, space averaged Kolmogorov length scale is of the

order of 100 µm in our computations, giving credit to the continuum model validity.

However locally, the Kolmogorov length scale reaches values of the order of 20 µm which

is only a few times the size of a red blood cell. Then locally, one could suppose that

the continuum model fails [7]. There are no appropriate models capable of describing

flow in deformable cells suspensions today, even less in turbulent flow. Further research

must be conducted in this direction in order to develop a proper model.

9.3 Perspectives

Some possibilities for further research directions and future work are indicated in this

section. This thesis raises new questions that can be (hopefully) addressed in the

future. Here is a list of further researches which should be or are considered using the

tool developed along this thesis.

• The heart rate is continually changing. These changes occur naturally as a result

of internal body changes, environment stresses or physical activity. The changes

in heart rate is expressed as changes of the E wave and the A wave duration

during diastole [21, 37]. This phenomenon could be modelled, thereby providing

information on the intracardiac flow under high heart beat rate. Is the flow

mapping is drastically modified? What about the turbulence?

• Transit of red blood cells as presented in chapter 9 has been conducted using

instantaneous flows. Does turbulence and the subsequent flow fluctuations have a

noticeable influence on the simulated tracers and their statistics? A comparison

between tracers convected by the phase-averaged flow and by the instantaneous

flow could answer this question. Additionally, this study could give information

on the relevance of the use of MRI for this type of studies.

• Very few numerical studies have been conducted on the right heart [108]. The

presented method can handle it. Figure 9.2 displays a rough segmentation of an

entire heart and its deformations during a heart cycle (deformations are extracted

from MRI images).

• A collaboration with Dr. Stephane Nottin and Claire Maufrais (EA4278 - Lab-

oratoire de Pharm-écologie cardiovasculaire, Avignon, France) has been initiated

to compare the intra-ventricular flow in high-level athlete hearts and in sedentary

subjects.

• A collaboration with Dr. Damien Garcia (RUBIC - Research Unit of Biomechanics

and Imaging in Cardiology, Montreal, Canada) has been initiated. The objective
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Figure 9.2: Full human heart during diastole. In light red, the left heart and the aorta.
In light blue, the right heart.

is to use our simulations as a database in order to participate to the validation of

an Echo-Doppler pressure mapping method [63].



Nomenclature

η The Kolmogorov length scale.

λ Penalty parameter for deformations.

λc Relaxation time used by the Carreau-Yasuda model.

Gσ Gaussian smoothing convolution kernel of width σ.

PV
k Volumetric production of turbulent kinetic energy.

νc Kinematic viscosity computed by the Carreau-Yasuda model.

νn Constant kinematic viscosity for Newtonian assumption.

νt Turbulent kinematic viscosity.

ν0 Kinematic viscosity at zero shear rate used by the Carreau-Yasuda model.

νinf Kinematic viscosity at infinite shear rate used by the Carreau-Yasuda model.

ρ Fluid density.

σ Kernel width of Gaussian smoothing.

ac A dimensionless parameter used by the Carreau-Yasuda model.

KV Volumetric mean flow kinetic energy.

kV Volumetric turbulent kinetic energy.

ld Ventricle length at the end of diastole.

ls Ventricle length at the end of systole.

nc Power index coefficient used by the Carreau-Yasuda model.

Ra Mean radius of the open mitral surface.

Ta The total duration of the cardiac cycle of heart A.

Tb The total duration of the cardiac cycle of heart B.

ua Reference velocity used for heart A (ua=0.10m.s−1).

ub Reference velocity used for heart B (ub=0.16m.s−1).
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[9] Arvidsson, P., Töger, J., Heiberg, E., Carlsson, M., and Arheden, H. Quantifi-

cation of left and right atrial kinetic energy using four-dimensional intracardiac

magnetic resonance imaging flow measurements. J. App. Physiol. 114 (2013),

1472–1481.

[10] Ashburner, J., Andersson, J. L. R., and Friston, K. J. High-dimensional image

registration using symmetric priors. NeuroImage 9 (1999), 619–628.

[11] Ashburner, J., Neelin, P., Collins, D. L., Evans, A., and Friston, K. J. Incorpo-

rating prior knowledge into image registration. NeuroImage 6 (1997), 344–352.

[12] Baccani, B., Domenichini, F., Pedrizzetti, G., and Tonti, G. Fluid dynamics of the

left ventricular filling in dilated cardiomyopathy. J. Biomech. 35 (2002), 665–671.

201



202 BIBLIOGRAPHY

[13] Baumgartner, H., Hung, J., Bermejo, J., Chambers, J., Evangelista, A., Griffin,

B., Iung, B., Otto, C., Pellikka, P., and Quiñones, M. Echocardiographic assess-
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[65] Geers, L., Tummers, M., and Hanjalić, K. Experimental investigation of impinging

jet arrays. Exps. Fluids 36 (2004), 946–958.

[66] Gence, J., and Mathieu, J. The return to isotropy of an homogeneous turbulence

having been submitted to two successive plane strains. J. Fluid Mech. 101 (1980),

555–566.

[67] Gerbeau, J. F., Vidrascu, M., and Frey, P. Fluid-structure interaction in blood

flows on geometries based on medical imaging. Comput. Struct. 83 (2005), 155–

165.

[68] Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. A dynamic subgrid-scale

eddy viscosity model. Phys. Fluids 3 (1991), 1760–1765.

[69] Gharib, M., Rambod, E., Kheradvar, A., Sahn, D., and Dabiri, J. Optimal vortex

formation as an index of cardiac health. Proc. Natl. Acad. Sci. U.S.A. 103 (2006),

6305–6308.

[70] Gijsen, F., Van de Vosse, F., and Janssen, J. The influence of the non-Newtonian

properties of blood on the flow in large arteries: steady flow in a carotid bifurcation

model. J. Biomech. 32, 6 (1999), 601–608.

[71] Gijsen, F., Van de Vosse, F., and Janssen, J. The influence of the non-Newtonian

properties of blood on the flow in large arteries: unsteady flow in a 90 curved

tube. J. Biomech. 32, 7 (1999), 705–713.

[72] Gilardi, M., Rizzo, G., Savi, A., and Fazio, F. Registration of multi-modal biomed-

ical images of the heart. Int. Assoc. of Radiopharma. 40, 1 (1996), 142–150.

[73] Goldsmith, H. Microscopic flow properties of red cells. In Federation proceedings

(1966), vol. 26, pp. 1813–1820.



BIBLIOGRAPHY 207

[74] Goldstein, D., Handler, R., and Sirovich, L. Modeling a no-slip flow boundary

with an external force field. J. Comput. Phys. 105, 2 (1993), 354–366.

[75] Goubergrits, L., and Affeld, K. Numerical estimation of blood damage in artificial

organs. Artif. organs 28, 5 (2004), 499–507.

[76] Grundestam, O., Wallin, S., and Johansson, A. Direct numerical simulations of

rotating turbulent channel flow. J. Fluid Mech. 598 (2008), 177–200.

[77] Ha, J. W., Oh, J. K., Redfield, M. M., Ujino, K., Seward, J. B., and Tajik, A. J.

Triphasic mitral inflow velocity with middiastolic filling: clinical implications and

associated echocardiographic findings. J. Am. Soc. Echo. 17 (2004), 428–431.

[78] Haugen, B. O., Berg, S., Brecke, K. M., Samstad, S. O., Slørdahl, S. A., Skjærpe,

T., and Torp, H. Velocity profiles in mitral blood flow based on three-dimensional

freehand colour flow imaging acquired at high frame rate. Eu. J. Echo. 1 (2000),

252–256.

[79] Hendabadi, S., Bermejo, J., Benito, Y., Yotti, R., Fernández-Avilés, F., del Álamo,
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