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USING IMAGE-BASED LARGE-EDDY SIMULATIONS TO INVESTIGATE THE
INTRACARDIAC FLOW AND ITS TURBULENT NATURE

Abstract:

The first objective of this thesis is to generate and analyse CFD-based databases for
the intracardiac flow in realistic geometries. To this aim, an image-based CFD strategy
is applied to both a pathological and a healthy human left hearts. The second objective
is to illustrate how the numerical database can be analysed in order to gain insight
about the intracardiac flow, mainly focusing on the unsteady and turbulent features.

A numerical framework allowing insight in fluid dynamics inside patient-specific
human hearts is first presented. The heart cavities and their wall dynamics are extracted
from medical images, with the help of an image registration algorithm, in order to
obtain a patient-specific moving numerical domain. Flow equations are written on
a conformal moving computational domain, using an Arbitrary Lagrangian-Eulerian
framework. Valves are modelled using immersed boundaries.

Application of this framework to compute flow and turbulence statistics in both a
realistic pathological and a realistic healthy human left hearts is presented. The blood
flow is characterized by its transitional nature, resulting in a complex cyclic flow. Flow
dynamics is analysed in order to reveal the main fluid phenomena and to obtain insights
into the physiological patterns commonly detected. It is demonstrated that the flow is
neither laminar nor fully turbulent, thus justifying a posteriori the use of Large Eddy
Simulation.

The unsteady development of turbulence is analysed from the phase averaged flow,
flow statistics, the turbulent stresses, the turbulent kinetic energy, its production and
through spectral analysis. A Lagrangian analysis is also presented using Lagrangian
particles to gather statistical flow data.

In addition to a number of classically reported features on the left heart flow, this
work reveals how disturbed and transitional the flow is and describes the mechanisms
of turbulence production.

Keywords: Arbitrary Lagrangian-Eulerian, Immersed Boundary Method, Image reg-
istration, Hemodynamics, Heart, Patient-specific, Turbulence, Lagrangian particles.
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UTILISATION DE SIMULATIONS AUX GRANDES ECHELLES A PARTIR D’'IMAGES
MEDICALES POUR L’ETUDE DE L'’ECOULEMENT INTRACARDIAQUE ET DE SA NATURE
TURBULENTE

Résumé :

Le premier objectif de cette these est de générer et d’analyser une base de données
pour l’écoulement intracardiaque dans des géométries réalistes. Dans ce but, une
stratégie couplant simulation numérique et imagerie médicale est appliquée a un coeur
gauche pathologique et a un coeur gauche sain. Le second objectif est d’illustrer com-
ment cette base de données peut étre analysée afin de mieux comprendre 1’écoulement
intracardiaque, en portant une attention particuliére aux caractéristiques instationnaires
de I’écoulement et a sa nature turbulente.

Une chaine numérique pour simuler I’ écoulement dans des géométries spécifiques au
patient est tout d’abord présentée. La cavité cardiaque et ses mouvements sont extraits
a partir d’images médicales a I'aide d’un algorithme de recalage d’image afin d’obtenir
le domaine de calcul. Les équations qui régissent I’écoulement sont écrites dans le cadre
d’un maillage se déformant au cours du temps (approche arbitrairement Lagrangienne
ou Eulérienne). Les valves cardiaques sont modélisées a 'aide de frontiéres immergées.

L’application de cette chaine numérique a deux coeurs gauches, I'un pathologique,
I’autre sain est ensuite détaillée. L’écoulement sanguin est caractérisé par sa nature
transitoire, donnant un écoulement complexe et cyclique. Il est montré que I’écoulement
n’est ni laminaire, ni pleinement turbulent, justifiant a posteriori 'utilisation de simu-
lation aux grandes échelles.

Le développement instationnaire de la turbulence est analysé a ’aide de ’écoulement
moyenné sur un nombre suffisant de cycles cardiaques. Les statistiques de ’écoulement,
I’énergie turbulente, la production de turbulence et une analyse spectrale sont notam-
ment présentées. Une étude Lagrangienne est aussi effectuée en utilisant des statistiques
calculées a 'aide de particules ensemencées dans I’écoulement.

En plus des caractéristiques habituellement rapportées, ce travail met en évidence
le caractere perturbé et transitoire de I’écoulement, tout en identifiant les mécanismes
de production de la turbulence.

Keywords: Approche Arbitrairement Lagrangienne ou Eulérienne, Frontieres Im-
mergées, Recalage d’Image, Hémodynamique, Coeur, Simulation spécifique au patient,
Turbulence, Description Lagrangienne.
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Thesis introduction
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In this introductory chapter, the general context of the thesis is exposed,
as well as the objectives and contributions of this work. The thesis outline
is then presented while the main results of each chapter are exposed.

1.1 Thesis general introduction

1.1.1 Motivations

Today, heart diseases still represent the leading cause of death in the world [111] and
causes each year over 2.0 million deaths in the European Union [6]. Intracardiac flow
vizualisation can provide novel methods to asses cardiac health of a subject. Intracardiac
hemodynamics is closely related to the morphology and function of the heart: changes
of the heart shape or of its wall dynamics alter the blood flow patterns. Therefore,

3
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Left atrium

Left ventricle

Figure 1.1: Visualization of blood flow in a left heart. (a) Phase-contrast magnetic
resonance imaging (from [109]) and (b) Echo-PIV (from [84]).

analysing the blood flow spatial and temporal distribution in the heart may provide
information on cardiac abnormalities.

Since the 1980s, recent technological innovations in medical imaging techniques have
provided valuable opportunities for non-invasive assessment of hemodynamics [154].
Blood flow velocities can be measured in vivo using phase-contrast magnetic resonance
imaging (PC-MRI) or by echocardiography techniques. However, these techniques still
suffer from several drawbacks.

As a matter of fact, in the clinical routine hemodynamics is mostly observed indi-
rectly through global variables such as the cardiac output in order to assess the cardiac
performance. Indeed, a synthetic description of the available flow information and its
relation with the heart function is still lacking. Yet, analyzing the spatial and tempo-
ral distribution of blood flow in the cardiovascular system may provide diagnostic and
prognostic information.

1.1.2 In vivo blood flow visualization
MRI phase-contrast technique

Using the velocity encoded MRI phase-contrast technique [121], blood flow velocities
can be measured in any direction, generating 3D flow velocity maps. PC-MRI stud-
ies have widely contributed to the understanding of hemodynamic features these last
years [20, 24, 51, 62, 90, 93, 109]. Although very comprehensive (see Fig. 1.1a), the
PC-MRI velocity mapping suffers from some drawbacks. In addition of the potentially
disruptive signal-to-noise ratio, the MRI operator must specify the range of velocities
a priori. If not appropriate, this choice leads to aliasing errors in the high-speed range.
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Note also that the flow mapping is not real-time. In order to encode the flow in all
the spatial directions, velocity components measurements are not done simultaneously.
Finally, the flow map is obtained by combining the information from several heartbeats.
Hence, beat-to-beat variations in the flow cannot be recorded (the k-space is filled over
many cardiac cycles). Moreover, PC-MRI suffers from a relatively low spatio-temporal
resolution. Today, cardiac blood flow can be measured with a spatial resolution of
roughly 3 mm? with a temporal resolution of 50 ms, precluding observation of small-
scale and fast time-varying flow features [83, 94, 186].

Echocardiography techniques

Echocardiography techniques, with higher spatio-temporal resolution, make an alter-
native to PC-MRI (see Fig. 1.1b). However, an important limitation though is that
echocardiography only gives access to the velocity components directed towards or away
from the ultrasonic beam, while one would want to measure the full 3D flow vectors.
However, using color doppler one may reconstruct bi-directional velocity map under the
assumption of planar flow, by using the continuity equation [63].

Echo-PIV technique seems to be a promising approach. By using particles in a
contrast agent, the PIV principle [4, 88] is applied using the ultrasound beams as the
imaging source instead of the classical light sheet generated by a pulsed laser. However,
has several technical limitations inherent to the ultrasound technology such as its limited
field of view, and its relative dependence on the skills of the operator.

Nevertheless, using echocardiography techniques, investigations have been conducted
on normal and abnormal hearts, leading to potential hemodynamics-based biomarkers
for cardiac health [38, 55, 69, 84, 91].

What about the Lagrangian data?

Although these advances appear promising, Eulerian blood flow maps as obtained from
PC-MRI, color Doppler of echo-PIV are inadequate to observe particles trajectories in
such complex flows. Complementary information can be obtained through Lagrangian-
based descriptions. The motion of the blood itself or particles transported by the blood
flow provides supplementary information. Simulating Lagrangian particles mimicking
red blood cells can for example provide distribution of residence time data, which indi-
cates area potentially favouring thrombosis.

Studies have been conducted using MRI [20, 23, 51]. However, they usually suffered
from low spatio-temporal resolution, thus making the time integration difficult. An
interesting study has been conducted by Hendabadi et al. [79] using novel processing of
Doppler-echocardiography. The reconstructed velocity field is only two-dimensional but
the temporal resolution is better than MRI. The obtained velocity fields data are used to
perform trajectory-based computation of Lagrangian coherent structures in ventricles.
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1.1.3 CFD: a complementary and comprehensive method?

Computational fluid dynamics (CFD) has been more and more used to predict blood
flow in the heart over the last decade. In silico replications of heart chambers, mainly
the left ventricle (LV), have been considered. Simulations in idealised ventricles [12,
43, 137, 176] or in more realistic geometry [187] have been performed. As in vitro
experiments [27, 60], such fundamental CFD studies are particularly useful to isolate and
elucidate the effect of well-controlled parameters on the blood flow. Likewise, numerical
simulations focusing on Lagrangian-based descriptions in idealized left ventricle have
been conducted by Zheng et al. [188] and Seo et al. [156] focusing on residence time and
blood mixing. Still, Lagrangian data in the ventricle are fragmented and are lacking in
the entire heart.

Inherent simplifications of the human ventricle raise the question of the relevance of
the conclusions for individual clinical cases. CFD starts to be a mature technique for
arterial flows [67, 96, 157, 169], but its application to study the full heart haemodynamics
faces additional challenges:

e the geometry of the blood domain is complex and it undergoes large deformations,

e opening and closing valves make the topology of the domain change over the
cardiac cycle,

e the flow is the result of a complex electrical-fluid-structure interaction problem,

e the flow regime is most probably transitional between laminar and turbulent and
varies over the cardiac cycle.

Two main different strategies have been developed to obtain simulation of the blood
flow in realistic heart geometries. The most natural one is to extract the heart geome-
try at one particular instant in the heart cycle and to solve an electrical-fluid-structure
interaction (EFSI) problem [31, 49, 95, 132, 133, 166, 178]. In this approach, patient-
specific data are needed [162, 171]. What is the exact rheology of the myocardial muscle?
What is the load produced by the heart environment? How to reproduce the mechano-
electric coupling in the heart muscle? All these questions are still mostly open, thus
making this fully coupled approach extremely challenging. Another strategy consists in
using realistic heart wall movements extracted from cine MRI or Computed Tomogra-
phy (CT) scan data. The heart movement is not computed, but prescribed from the
patient-specific medical images, which can be acquired using standard clinical imaging
procedures. Such a computational approach, where the geometry and its deformation
are extracted from images will be referred to as image-based computational fluid dy-
namic (IB-CFD). Different research teams have developed IB-CFD methods for heart
flows, more specifically to study the left ventricle alone [101, 114, 146, 147, 151]. Re-
cently, more advanced work has been published, using a full heart model obtained from
CT images [116] or a heart model fed from MR images [42]. The feasibility of cardiac
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IB-CFD has been shown, but the flow results notably suffered from limited spatial res-
olution or partial geometries (LV only in the majority of the cases). Furthermore, there
has been remarkably little focus on the presence of turbulence in the heart, except in a
few experimental works [54, 143].

1.1.4 About turbulence
A signature of abnormal flows

Under pathological conditions, it is commonly believed that topological changes, not
only in the heart but also in the whole human cardiovascular system may result in
abnormally disturbed flows. However, little in vivo studies focusing on turbulence have
been reported on human beings, as the direct measurement of turbulence quantities
requires access to the patient instantaneous blood flow. Still, measurements of high-
frequency velocity fluctuations suggesting the presence of turbulence, or at least intense
cycle-to-cycle variations, were published in a few studies performed on humans in the
seventies. Ferguson [57] recorded sounds indicative of turbulence with a phonocatheter
from the sacs of 10 out of 17 intracranial aneurysms exposed at surgery (with a peak
Reynolds number of 400 approximately). Invasive conventional experimental fluid dy-
namics methods were used as well. Stein & Sabbah [165] used thermal anemometry to
estimate the intensity of velocity fluctuations. They measured the standard deviation
of repeated velocity measurements on a probe location within the ascending aorta. The
results of this study indicate that turbulent flows occurs consistently in the ascending
aorta of individuals with abnormal aortic valves.

In order to avoid the pitfall of in vivo studies, numerical simulations have been
carried out over the last years with an increased focus on the use of proper numerical
schemes, meshes and temporal resolution [174]. Highly unstable and turbulent flows
have been observed in numerical simulations, in areas where the physiological Reynolds
numbers are in the range of 100-2500, as in abdominal aorta aneurysms [96], carotid
siphons [173] or in cerebral aneurysms [117, 172]. These observations are in accordance
with idealized numerical simulations which showed that turbulence could occur for low
Reynolds numbers in simple geometries, with pulsatile inflows (e.g.: studies conducted
in idealized stenosis by [118] or [175]). In the heart, using numerical simulations in
an idealized left ventricle, Domenichini et al. [43] suggested that turbulence could be
observed in abnormal conditions. Particle image velocimetry experiments showed tur-
bulence as well in phantoms hearts [54, 143].

Only in abnormal flow?

Interestingly, the experiment conducted on human aorta by Stein & Sabbah [165] showed
that high-frequency disturbances can also occur in the ascending and in mid-ascending
aorta of subjects with normal cardiac function. Figure 1.2a and Fig. 1.2b show the
high frequency disturbances observed at these two sites. In the same period, thermal
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Figure 1.2: Velocity measurements on healthy human subject from [165]: high-frequency
disturbances were observed above the aortic valve (a) and in mid-ascending aorta (b).
(c) and (d) shows blood flow velocity records in a canine ascending aorta. (c) from [181]
and (d) from [153].

anemometry was used to estimate the intensity of velocity fluctuations in canine aortas.
The same type of signal has been observed in animal studies by Seed & Wood [153],
Nerem et al. [127] and by Yamagushi et al. [181, 182] (see Fig. 1.2c and Fig. 1.2d).

Through phase-contrast Magnetic Resonance Imaging (MRI) methods, which allow
non-invasive blood flow measurements, Stalder et al. [163] studied the aortic flow in a
large cohort of 30 healthy subjects. They computed a critical peak Reynolds number
for turbulent transition depending on the measured Womersley and Strouhal numbers
according to an empirical correlation proposed by Peacock et al. [136]. Their conclusion
was that flow instabilities were present in healthy subjects at rest in the ascending and
descending aorta as supracritical Reynolds numbers are likely. More recently, Dyverfeldt
et al. [47] developed a new MRI method based on the intravoxel velocity standard devia-
tion to calculate the flow turbulent kinetic energy (TKE). This MRI method strengthens
the idea that turbulence can occur in healthy human subjects, although it is weaker than
in pathological cases. Indeed, non-negligible levels of TKE values in healthy aorta, in
left atrium [48] and in left ventricles [185] were measured.

Under the light of the cited experiments and simulations, the idea of an always lami-
nar flow seems now questionable in the cardiovascular system, particularly in the human
heart. If transitional and turbulent flows are observed in a simple cerebral aneurysm,
what can be expected for a complex domain like the heart? It is believed that only
a pathological cardiovascular system topology may yield flow separation, recirculation
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and reattachment, as well as strong shear layers. These features combined with flow
pulsatility can result in periodic transition to turbulence. However, it appears that all
these features could be found in the healthy cardiovascular system as well, notably in
the left heart.

The left heart acts as a pump for the oxygenated blood coming from the lungs. The
left heart is composed of two cavities, the atrium and the ventricle. These heart cavities
have a complex shape and are deformed over the cardiac cycle. The ventricle is also
connected to the aorta. The atrium has generally four entrances (the four pulmonary
veins), connected to the lungs. The oxygenated blood pumping can be described in two
main phases. First, an admission phase called diastole, and an ejection phase called
systole. During diastole, blood rushes from the atrium, which is filled with oxygenated
blood, to the ventricle. Then, during systole, the ventricle volume decreases up to 60 %
of its maximum volume, to push out blood through the aorta. In the meantime, four
oxygenated blood jets are formed in the atrium thanks to four inlets: the left and right
superior pulmonary veins and the left and right inferior pulmonary veins.

Complex and highly moving cavities topology, Reynolds numbers up to 5000: in a
few words, the heart seems to be a breeding ground for turbulence. This suggests that
turbulence may exist in healthy subjects. Still, there has been little or no focus on the
turbulence in the heart blood flow simulation, despite its potential medical importance.
Turbulence in blood is not only interesting from a phenomenological point of view. It is
also from a pathological point of view as turbulence may be a cause of pathophysiological
changes [33] as initiation and progression of atherosclerosis [29], platelet activation [16],
red blood cells aggregation [164] or hemolysis [87].

However, patient-specific simulations have only focused on the laminar flow regime [42,
101, 114, 116, 147, 151]. There is a real gap between the knowledge gained through the
few in vivo studies, the numerical simulations in simple physiological system and the
heart simulations done today. It is even more puzzling that this gap exists between
experiments and simulations of the heart itself.

Whether or not haemo-turbulence analysis is clinically relevant remains an open
question. If the intracardiac flow is turbulent, when and where during the heart cycle
does turbulence occur? Because of which mechanisms? In addition, from a modelling
point of view, if turbulence is present, what is the impact of the blood flow on haemol-
ysis model based on integrated mean local stress? What about the residence time of
red blood cells commonly computed on averaged blood flows? If turbulent, is direct
numerical simulation of the flow possible? Could the turbulence be modelled and how?

1.2 Thesis aims

The first objective of this thesis is to generate and analyse CFD-based databases for
the intracardiac flow in realistic geometries. To this aim, an IB-CFD strategy is applied
to both a pathological and a healthy human left hearts. The second objective is to
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illustrate how the numerical database can be analysed in order to gain insight about
the intracardiac flow, mainly focusing on the unsteady and turbulent features.
The following tasks have been achieved during the course of this PhD work:

e Adapt an existing algorithm used for simple vessels (aorta and aneurysm) to
extract the heart deformations from medical images.

e Develop a new numerical solver within an existing code and develop models for
the heart valves.

e Use large eddy simulation (LES) for simulating blood flows within left hearts.
e Characterize the obtained flow in a full patient left heart and in an healthy subject.
e Investigate the obtained turbulent flows and compare them.

e Use this tool to investigate the Newtonian hypothesis by comparing two simula-
tions using either a Newtonian fluid or a Carreau-Yassuda fluid.

e Use a Lagrangian-based description to investigate blood transport using tracers
as red blood cells.

1.3 Thesis outline

1.3.1 Part I - Introduction

In addition to the current chapter, this introductory part contains a short chapter
(chapter 2) providing to the reader the required knowledge about the physiology, the
function and properties of the human left heart.

1.3.2 Part II - Image-based CFD method

The second part focuses on the numerical methods, either adapted from previous works
or developed specifically. An image-based CFD method is presented. As in the afore-
mentioned IB-CFD works [101, 114, 147, 151], medical images are used to generate a
moving patient-specific domain, in which the blood flow equations are solved. The ge-
ometry movements are generated from a 4D sequence (MRI or CT scan images) treated
by an appropriate image registration algorithm [122, 129]. This approach has been used
before to compute blood flow in aortas [115]. It is further developed for application to
the left heart flow, notably by introducing valve modelling.

This chapter is part of: C. Chnafa, S. mendez and F. Nicoud, "Using image-based CFD
to investigate the intracardiac turbulence”. Published as a chapter in the book "The
Cardio-Circulatory System: from Modeling to Clinical Applications”, 2014 [34].



1.3. THESIS OUTLINE 11

1.3.3 Part III - Eulerian analysis
Chapter 5 - First insights in a left heart flow

In order to demonstrate the ability of the method to compute the flow in the heart,
its application to a complete patient-specific left heart is exposed in the first chap-
ter of the second part of this manuscript. Using 4D CT scan images, a realistic left
heart flow is computed using large-eddy simulation. The dynamic Smagorinsky-Lilly
model [68] is used in this chapter. This heart is referred to as "heart A” all along this
manuscript. As cycle-to-cycle velocity fluctuations are observed, 20 cardiac cycles are
simulated for phase averaging and results are presented in chapter 5. An extensive
description of the flow obtained is provided and the main flow characteristics usually
reported in the literature are emphasised. The flow sensitivity to LES models (the
dynamic Smagorinsky-Lilly model and the o-model [130]) and a quick comparison be-
tween simulation of blood as a Newtonian fluid and blood as a Carreau-Yasuda fluid
are presented.

This chapter is part of: C. Chnafa, S. Mendez and F. Nicoud, "Image-based large-eddy
simulation in a realistic left heart”. Published in Computers & Fluids, 2014 [35].

Chapter 6 - Turbulent assessment of a left heart flow

Chapter 6 provides an extended analysis of the flow in heart A. Large-eddy simulation is
used to compute flow and turbulence statistics over 50 cardiac cycles. In the light of the
conclusions drawn from the last chapter, the o-model is used for the sub-grid scale (SGS)
model instead of the dynamic Smagorinsky-Lilly model. The resulting complex cyclic
flow shows a transitional nature, a significant amount of turbulence being generated
during some specific phases of the heart cycle.

The unsteady development of turbulence is analysed by studying flow statistics, the
turbulent stresses, the turbulent kinetic energy, its production and through spectral
analysis. It is revealed that two mechanisms create turbulence in the studied left heart:
the impingement of a vortex structure on the lateral wall of the ventricle during diastole
and the collision of inflowing jets in the atrium during both diastole and systole.

The transient turbulent field is also examined by the invariant map of the turbulent
stress anisotropy. It is revealed that the turbulence, when present, is close to an axisym-
metric state. The flow field relaminarizes when the systolic phase begins, thanks to the
stabilizing effect of the acceleration. The entire process of vortex structure undergoing
turbulent breakdown and subsequent relaminarization occurs at each cycle, although
significant cycle-to-cycle differences are observed.

This chapter is part of: C. Chnafa, S. Mendez and F. Nicoud, "Turbulence characteri-
sation in a patient-specific human left heart. A numerical study”. To be submitted for
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publication in Journal of Fluid Mechanics.

Chapter 7 - A healthy subject: analysis and comparisons

In chapter 7, large-eddy simulation is used to compute flow and turbulence statistics
over 30 cardiac cycles in a healthy heart, referred to as "heart B” in the following. The
numerical domain is extracted from a temporal series of 3D medical images from a MRI
exam. Thus, the blood flow unsteadiness is investigated thanks to a properly executed
subject-specific large-eddy simulation. As for heart A, the resulting complex cyclic flow
shows a transitional nature and turbulence is generated during some specific phases of
the heart cycle. A comparison of the two intracardiac flows A and B is provided.

1.3.4 Part IV - Lagrangian analysis

This last part contains one chapter: ”Study of tracers transport in left hearts”. Flows
described in Part III are seeded with massless particles to mimic the trajectories of red
blood cells in hearts (atrium and ventricle). Statistical data are gathered and analysed.
Statistics on the residence times, mean particle velocity will be provided for both atrium
and ventricle cavity. Particles penetration and travelled path length in the ventricle will
be described as well. Results between the two presented hearts are compared.

1.3.5 Conclusion

In this last chapter the main findings and conclusions drawn from this thesis are given.
Discussions about the presented results and the hypothesises made in this thesis are
provided. Perspectives for future researches are then discussed.
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Before getting to the heart of the matter, an introduction to the cardio-
vascular system is proposed to the reader. This short chapter provides the
necessary knowledge about the human heart and exposes the vocabulary
employed in this manuscript. The complexity of the cardiovascular system
is just sketched here. The interested reader can get a more exhaustive pre-
sentation by consulting a relevant bibliography as [17, 98, 158].

2.1 The cardiovascular system

2.1.1 The circulatory loop

The cardiovascular system transports approximately 5 litres of blood through a network
of vessels in the human body. This cardiovascular system is powered by a natural pump
about the size of a closed fist: the heart. Figure 2.1 provides a schematic view of
the circulation of blood (figure from [17]). This system is composed of two primary
circulatory loops: the pulmonary circulation loop and the systemic circulation loop.

The pulmonary circulation transports deoxygenated blood (parts in blue in Fig 2.1)
from the right side of the heart to the lungs, where the blood picks up oxygen and
returns to the left side of the heart. The pumping chambers of the heart that support
the pulmonary circulation loop are the right atrium and the right ventricle.

13
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Figure 2.1: Sketch of the circulatory system (from [17]).
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Figure 2.2: Cardiac events occurring in the cardiac cycle (from [17]).

The systemic circulation carries highly oxygenated blood (parts in red in Fig 2.1)
from the left side of the heart to all of the tissues of the body (with the exception of the
heart and lungs). Systemic circulation removes wastes from body tissues and returns
deoxygenated blood to the right side of the heart.

2.1.2 The cardiac cycle

The blood pumping performed by the heart includes two main phases: diastole and
systole. The term cardiac cycle refers to a complete heartbeat from the beginning of
the diastole to the end of the systole. Its frequency is described by the heart rate,
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typically expressed in beats per minute (bpm). Each beat of the heart involves five
steps. Figure 2.2 describes these steps. The first three steps consist in a phase lasting
roughly two thirds of the cardiac cycle and is referred to as the diastole.

During diastole, valves between atria and ventricles are open while valves between
the ventricles and pulmonary artery (in the case of the right ventricle) and the aorta
(in the case of the left ventricle) are closed. These valves prevent back-flow of the blood
into the corresponding chamber. Hence, blood passes from the atria into the ventricles.
In the left side of the heart, the ventricle filling is decomposed in two steps. At first,
the ventricle volume increases rapidly, resulting in the admission of a high amount of
blood coming from the atrium. This first blood wave is referred to as the "E wave”.
Second, the atrium contracts (it is referred to as the "atrial systole”) and a second wave
of oxygenated blood rushes in the ventricle. This second wave is referred to as the ”A
wave”.

During systole, the ventricle volume decreases rapidly in order to eject blood from
the ventricle to the pulmonary artery (in the case of the right ventricle) and the aorta
(in the case of the left ventricle). During systole, valves between atria and ventricles
are closed, while valves between the ventricles and the pulmonary artery (in the case of
the right ventricle) and the aorta (in the case of the left ventricle) are open.

2.1.3 The human heart

As described in the last section, the heart is a four-chambered organ, where each side
(left and right) operates as a separate pump during the cardiac cycle. Figure 2.3 displays
schematically the human heart geometry. The left and right sides of the heart are
separated by a muscular wall of tissue known as the septum of the heart. The right side
of the heart receives deoxygenated blood from the inferior and superior vena cava and
pumps it to the lungs through the pulmonary artery for oxygenation. The left side of the
heart receives oxygenated blood from the lungs through the pulmonary veins and pumps
it through the systemic arteries to the tissues of the body. Each heartbeat results in the
simultaneous pumping of both sides of the heart. The left heart is composed of the left
atrium (LA) and the left ventricle (LV). These cavities are the pumping chambers for
the systemic circulation loop and are separated by the mitral valve. The aortic valve
separates the aorta from the left ventricle.

Note that in cardiology, the performance of the ventricles are measured with sev-
eral volumetric parameters as the end-diastolic volume (EDV), the end-systolic volume
(ESV), the stroke volume (SV = EDV - ESV), the ejection fraction (EF = SV / EDV),
the cardiac output (CO = SV x bpm) and the E/A ratio (E/A = ’blood velocity of the
E wave’ / "blood velocity of the A wave’).

Left ventricle

The left ventricle cavity is a long and narrow structure with a circular cross-section. It
forms the apex of the heart and constitutes most of the posterior surface of the heart.
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Figure 2.3: Sketch of the human heart. Blue components indicate de-oxygenated blood
pathways and red components indicate oxygenated pathways. from [158]

Its walls are three times thicker then those of the right ventricle, being thickest near
the base and thinnest at the apex. This is because the left ventricle pumps oxygenated
blood throughout the entire body while the right ventricle only pumps deoxygenated
blood to the lungs.

There are two papillary muscles arising from the area between the apical and mid-
dle thirds of the left ventricular wall: the antero-lateral (A-L) papillary muscle is often
composed of one body or head, and the postero-medial (P-M) papillary muscle usually
composed by two bodies or heads. Each papillary muscle are attached to chordae ten-
dinae, which are small fibrous strings connected to both mitral leaflets. These chordae
tendineae attach the papillary muscles to the cusps of the mitral valve and contract to
prevent inversion or prolapse of this valves during the cardiac cycle.

The endocardium surface of the left ventricle (the inner layer of the heart in contact
with blood) is not smooth. It is covered by trabeculae carneae (also called trabecula-
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Figure 2.4: Trabeculae carneae on the inner surface of a left ventricle (from [1]).

tions). The trabeculae carneae network is arranged like some sort of small wire mesh.
Figure 2.4 shows trabeculae carneae in a human left ventricle.

Left atrium

The left atrium (LA) receives oxygenated blood from the pulmonary veins and pumps
it into the left ventricle, via the mitral valve. The pulmonary veins (generally four) are
distinct vessels named by their position: the right superior pulmonary vein (RSPV),
the right inferior pulmonary vein (RIPV), the left superior pulmonary vein (LSPV) and
finally the left inferior pulmonary vein (LIPV). The surface of the atrium is smooth.
High in the upper part of the left atrium, between the LSPV and the LV, is an complex-
shaped muscular pouch, the left atrial appendage (LAA) (not shown in the figures here).

The left heart valves

The mitral valve (MV) separates the LA and the LV. This valve is formed by two leaflets
connected to the papillary muscles thanks to the cordae tendinae. It is the only valve
composed of two leaflets in the human heart. The mitral valve function is to prevent
back-flow of oxygenated blood in the LA when the LV volume decreases to eject blood
through the aorta (AO).

The aortic valve (AV) normally has three leaflets and lies between the LV and the
AO. During ventricular systole, pressure rises in the left ventricle. When the pressure in
the left ventricle rises above the pressure in the aorta, the aortic valve opens, allowing
blood to exit the left ventricle into the aorta. When ventricular systole ends, pressure
in the left ventricle rapidly drops. When the pressure in the left ventricle decreases, the
aortic pressure forces the aortic valve to close.
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This chapter describes the numerical methods developed and implemented
in the YALES2BIO! solver [113]. The YALES2BIO solver is an adaptation
of the YALES2? [123] research solver dedicated to the computation of ener-
getic turbulent flows. As such it inherits from YALES?2 its 4th-order central
scheme in space on unstructured meshes and its capabilities of massively par-

allel computations of turbulent flows [124]. The blood governing equations

in a general formulation are derived allowing the flow computation in a time

varying computational domain. The developed method implemented dur-
ing this work is described and tested. Subgrid-scale models for Large Eddy

Lwww.math.univ-montp2.fr/~yales2bio
2www.coria-cfd.fr/index.php/ YALES2
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Simulation of transitional flows are used for accounting for the turbulence
effects if present. Finally, the immersed boundary method implemented
during this work is described and tested.

3.1 Governing equations

Blood can be modelled as an incompressible fluid, but red blood cells induce a com-
plex rheological behaviour [59]. However, for high stress levels and in large vessels,
non-Newtonian effects are usually neglected and blood is usually modelled as an incom-
pressible Newtonian fluid in numerical simulations [169, 116]. Note that the numerical
method presented in this chapter can be applied to non-Newtonian fluids and will be
latter in this thesis. Taking the incompressible flow assumption into account and assum-
ing blood as a Newtonian fluid, the fluid motion is described by the Navier-Stokes (NS)
equations. These equations are solved on the moving blood domain Q4(¢) C R? bounded
by an(t). The boundary 0€Q(t) is such‘ that 0Q(t) = 8(23}(15) U 00F (1) U0Q%(t) and
Q% (t) N ONF (t) N 9Q%(t) = 0 where 0 (t) represents a fluid inlet boundary where a
Dirichlet condition is prescribed on the velocity field, 89’;’ (t) represents the vessels and
heart wall boundary and 89?(7&) represents a fluid outlet boundary. The NS equations
read:

1
% + (u-V)u= —;Vp—i— v V2 + f,

V.-u=0,

where u is the fluid velocity field, p is the pressure field, v, the kinematic viscosity, p

on  Q(t) (3.1)

the density and f a volumetric force. The corresponding initial and boundary conditions

are,
u(x,0) = u’(x) on  Q(0), (3.2)
U, Dlycpnyn = Us(t) on  IRY(), (33)
U(th)\xeaﬂj,(t) = _Um(xvt)no(x) on anf(t)v (3'4)

where U™ (x,t) is the inlet velocity profile imposed as a Dirichlet condition, n, the
outward normal at the inlet faces, and ug is the endocardium surface velocity field
imposed as a Dirichlet condition as well. A convective outlet boundary condition is
imposed on 9Q%(t) as,
Ju(x,t) L greom Ju(x,t)
ot On
where n is the outward normal at the outlet patch and U™ the convective velocity.

—0, (3.5)

The uniform convective velocity U™ is imposed in such a way to meet the global
mass conservation over Q¢(t). The surface velocity us is not computed but extracted
from the medical images and applied as boundary conditions for the fluid problem (see
chapter 4).
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3.2 Fluid equations in moving domains

3.2.1 Conceptual aspects

The aim is to solve the NS equations given in the former section to describe heart flows
or more generally intra-vessels flows. Proper simulations require coping with potentially
strong distortions of the studied domain. The classical Eulerian description thus cannot
deal with this kind of simulation as the blood motion should be described relatively to
a fixed mesh in space and time throughout the entire calculation.

Another description of motion if the Lagrangian one. Using this description, each
blood subvolume corresponds to a mesh node which is thus charted over time. This
description is generally used in case of "small” displacements (as in solid mechanics) and
cannot describe the class of flows handled here without massive remeshing operations.

The idea of keeping a proper description of the flow domain without the requirement
of frequent remeshing brought the idea of a framework combining the best features
of both the Lagrangian and the Eulerian world: the Arbitrary Lagrangian FEulerian
description [45, 58, 81, 82]. This description allows to move the mesh domain arbitrarily
with the desired boundary deformations whilst computing properly the fluid. As the
domain can be freely moved, domain deformation can be handled by a chosen continuous
node rezoning. This mesh update procedure will be developed later in this chapter.

3.2.2 ALE formulation

Let us consider a domain ) C R" (with ng4 is 2 or 3) an open bounded fluid domain.
Each point of this continuum domain can be described by its coordinates &;. This
reference domain follows a deformation all along the time ¢ € 7T, with T = [to, /[
(where to and ¢y are respectively the beginning and the end times of the observation)
thanks to a one-to-one "material” mapping M,
M OxT — Q) x T,
(3,8) = M t) = (2,t)

where Q(t) is the current state of the deformed domain Q) thanks to a physical map as
Q(t) = M(,t). The Jacobian matrix of this deformation is defined as
0z

Im = F

The determinant Jxq of the Jacobian J4 is considered non null as the physical material

(3.6)

mapping M is considered invertible and positive as the transformation needs to be
orientation preserving. The velocity of each point of the domain Q(¢) can be defined
as the time derivative of the displacement between the points and their transformation,
thus

wz,t) = %(M(aﬁ,t)—ﬁc) (3.7)
= 2(M(az,t)). (3.8)
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Let us now consider a third domain w(t) C €(¢). This domain can be considered as an
area where observation of the continuum is wanted. This domain is the future compu-
tational domain which will be latter discretized to compute the N.S. equations. This
domain is deformed with another mapping which this time is not necessarily physical.
This mapping will be named the ALE mapping A and defined as,

A oxT — w(t) x T,
(,t) — Az,t) = (z,1)

where @ = w(t = 0) is a domain of reference. As for the material mapping M, the
Jacobian is defined as

o
oz

Again, the determinant J 4 of the Jacobian 74 is considered non null and positive. The

Ja (3.9)

velocity of this domain w(t) is defined as
w(z,t) = = (A(Z,1)). (3.10)
Two observations:

e if the transformation A = Idg, i.e. the function A maps every element to itself, the

observation domain remains still during time. This is the Eulerian formulation.

e if the transformation A = M, i.e. the function A allows the observation domain
to move following the same physical law as the fluid continuum. In this case,
the observation domain follows the same material fluid particles all along the
observation time .

Besides these two particular cases, the general case is the arbitrary Lagrangian Eule-
rian one, the ”arbitrary” term coming from the ”arbitrary” choice of the mapping A.
Figure 3.1 shows the different domains and mappings in this case.

To recast the NS equation in this general formulation, the time differential operators
need to be properly defined as they depend on the chosen formulation. The ALE time
derivative for a physical quantity ¢ (which can be a tensor of any order) is define as

5| awt) = Sl (.11)

This ALE derivative of ¢ at (x,t) is interpreted as the rate of total variation in time
of ¢ on a particular point & of the observation domain. This observation point moves
thanks to the map A and is located on the point x at the time ¢. The chain rule is then
applied to this ALE derivative and yields,

dq|  Oq

i - 4 .Vo. 12
AP 6t+w Vq (3.12)
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Figure 3.1: Representation of a transformed material domain €2 and observation domain
w at times ¢ and ¢’ thanks to a material and a ALE mappings for the general case.

This relation can be reversed to the classical Eulerian derivative % if mapping A =

Idg or in other words, when w = 0. In the Lagrangian case, w becomes the material
velocity @ and the relation is reversed to the classical Lagrangian derivative.

Now, the framework to recast the Eulerian NS equations expressed at 3.1 is fixed.
As only transient and convective terms change between the different formulations, equa-
tion 3.1 is rewritten as

% + (v - V)u=RHS, (3.13)

where the RHS contains the viscous fluxes, the pressure gradient and the body force.
By replacing the Eulerian derivative by the ALE one thanks to relation 3.11, the equa-
tion 3.13 is rewritten as
ou
—| + ((u—w)-V)u=RHS. (3.14)
Immediate observation is that introduction of the ALE formulation induces a correction
in the convective term thanks to velocity of the observation domain w(t).
The YALES2BIO solver uses a finite volume method which is based on the spatial
integration of physical quantities on closed domains. Thus, equation 3.14 needs to be

integrated on a domain, let us say on the observation domain w(t). Equation 3.14 yields

[ o
w(t) Ot

However, the future numerical time integration will be easier if the volume integration

dw + (u—w) -V)u dw= / RHS dw. (3.15)
A w(t) w(t)

of the time derivative commute. Here, the domain w(t) is potentially time dependant
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which prevents this commutation. A way of bypassing this issue is the derivation of
a volume integration of the first left hand side term over a volume fixed in time, as
the reference one @. In order to do this, the Jacobian determinant J4 is introduced in
relation 3.15. Using

oud 4 ou 0J 4
= — — 1
ot ‘A TS L T T (3.16)
ou
= Jq—| +uJaV-w, (3.17)
ot | 4

the time derivative of equation 3.15 can be replaced and this expression is obtained:

/ iauJA‘ dw+/ V- (u(u — w)) dw:/ RHS dw.  (3.18)
wity Ja Ot |4 wl(t) w(t)

As A is bijective, supposed a continuously differentiable function and u a continuous
function, successive integrations by substitution can be applied to on the first left hand

side term:
1 OJudy 8uJ,4‘ -
— dw = d .1
/w(t) Jag Ot ‘A w /@ ot |4 s (3.19)
0 -
= E‘A/&JUJA dw, (3.20)
_ 9 / v dw. (3.21)
Ot| A Ju(t)

Finally, equation 3.13 in ALE formulation and integrated on a domain becomes

2‘ / udw —|—/ V(u(u—w)) dw= RHS dw. (3.22)
A Jw(t) w(t) w(t)e

ot
The observation domain called w(t) can now be discretized and the equations can be
solved.

3.3 Design of the time advancement scheme

3.3.1 Runge-Kutta scheme

In the following, the domain w(t) is discretized thanks to a mesh. Defined as a finite
collection of disjoint simplices and form a partition of w(t). The mesh topology remains
unchanged during the simulation time and each mesh node posses a velocity w as defined
in the last section. Here, data are node-located and a control volume named w..(t) C w(t)
is considered. Integrating equations 3.22 between t"=t" +nAt (At being the time step
size) and "t yields,

tn+1

TR VAL T 74U / V- ((u — w)u) dwdt = RHS, (3.23)
w(t)e

tn
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with V™ the cell volume at time t". The time advancement scheme applied on the
equations 3.23 is chosen as an explicit low-storage four-step Runge-Kutta scheme [180]
recast in an ALE formalism. This scheme is coupled with the Chorin’s projection
correction method [36] for the pressure term (details will be given in subsection 3.3.2).
Thus, velocity at time t"T! is computed thanks to a time advancement scheme using
four sub-steps. Leaving the RHS term apart, they are computed as:

uO s
, vn At i i ,
u = u” W+aiﬁ/wv-(uz Vow™™u = tdw  for i=1,...,4 (3.24)
UZ-H _ u4’

where u?t!=u, (#"*1) is the predicted (non-solenoidal) velocity field, o is a coefficient
as a; = [1/4,1/3,1/2,1] and V' the cell volume at time t'=t" + a;At. Note that if the
mesh velocity is zero, the volumes V™ and V' are equal and a classical low-storage four-
step Runge-Kutta scheme is recovered. Grid nodal velocity w are considered constant
during the computational time step. Each Grid node z is advanced at the beginning of
each sub-step 7 as,

0 _ "
= 21 +w" At for i=1,...,4
1 (3.25)
2" = ut + BrAL,

and grid metrics are recomputed at the end of each sub-step. Coeflicients j3; are linked to
a; and are equal to §; = [1/8,1/24,1/12,1/4]. They allow the grid to move at the wanted
midpoint configuration. At the end of the fourth step, the grid is at a configuration

corresponding to time ¢"t1/2

as confirmed by the summation of the g coefficients. A
final step is thus imposed to the grid with a coefficient of 3y = 0.5 to reach its final
position. The reader’s attention is drawn to the integration volume w in equation 3.24.
It is crucial to establish at which time evolving domain the equation must be integrated.
A way to answer this question is to require that the numerical method satisfies a discrete
version of the so-called Geometric Conservation Law (GCL) [56, 19]. Referring to the
classical interpretation of the GCL, the numerical method has to preserve the state of a
constant flow U. A discrete GCL arises from the presented numerical scheme for each

sub-step as:
ViVt = —aiAt/ V-wdw for i =1,...,4. (3.26)

For each control volume, this relation states that the change in volume where the equa-
tions are integrated between t" and t"*! must be equal to the volume swept by the
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control volume boundary during ¢"*! — ¢". Grid nodal velocity w is constant and the
metrics evolve linearly during the computational time step. In order to satisfy exactly
Eq. 3.26, the integration must then be computed at the midpoint configuration for
each sub-step. Thus, the numerical scheme (3.24) satisfies the Discrete GCL for each
sub-step. The RHS is computed with values taken at ¢ — 1 at the midpoint mesh
configuration as well.

A practical use of equation (3.26) is made in the YALES2BIO solver. During the
numerical integration of the NS equation, as stated by the scheme (3.24), intermediate
control volume is needed at time t'=t" + o;At for the i-th step. Beside, metrics are
needed at midpoint configuration of each of the sub step. In order to be efficient, the
Discrete GCL is used to transport the volumes for each sub-step. Thus, the Discrete
GCL is respected while an efficient volume computation is done.

3.3.2 Pressure treatment

At the end of this prediction step, the grid reaches its final position for the considered
time step. Hence, the projection step to calculate pressure is performed over this fixed

tTL+1

grid at the configuration corresponding to the time . The pressure contribution is

removed from the non-solenoidal predicted velocity equation,

At

n+1l _  n+l
=u, ~+ Vot

u Vp. (3.27)

The wanted velocity field u must be a solenoidal field. Application to the divergence
operator to equation 3.27 leads to the projection step and a Poisson equation for the
pressure needs to be solved:

Vn+1

Ap = — V-t (3.28)

At *

A Deflated Preconditioned Conjugate Gradient algorithm is used to solve this Poisson
equation [107]. A homogeneous Neumann condition is applied for the pressure calcula-
tion and the pressure constant is fixed as the averaged pressure in the numerical domain
so that the volume-averaged pressure over the domain w(t) is zero. Next the correction
step is applied,

At
1 1
"t =t - s Vp.

(3.29)

The obtained velocity field u"*! is a non-solenoidal field as wanted.

3.4 Large Eddy Simulation

Direct numerical simulation (DNS) is suitable for low Reynolds number flows: all
the large and small scales are resolved in this approach, requiring high grid densi-
ties. Reynolds Averaged Navier-Stokes (RANS) approaches for modelling turbulence are
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hardly predictive, especially in the case of transitional flows at moderate Reynolds num-
bers (one assumption often made when developping RANS models is that the Reynolds
number is very large if not infinite).

In the present work, the Large Eddy Simulation (LES) approach is used. While
the large scales of the flow are resolved, the smaller subgrid scales (SGS) are mod-
elled using two SGS models based on eddy-viscosity. The o-model able to handle wall
bounded flows in complex geometries is used [130] as well as a well established Dynamic
Smagorinsky formulation [68] in order to assess the robustness of our results to the
turbulence modelling.

Under the incompressible flow assumption and assuming blood as a Newtonian fluid,
the fluid motion is described by the Navier-Stokes (NS) equations as previously stated.
The NS equations on the moving blood domain Q(t) C R? bounded by 99(t) can be
written for the resolved velocity U; and pressure P as

GUZ " OUZUZ . _1@ Ty 82Uz - aTij s

aaUt o, R R A G (3.30)
% _ 07

a.%'i

where v, is the kinematic viscosity, p the density and f; a volumetric force. Note that
the ~ operator is used to denote filtered quantities fluctuating over scales which are
large enough to be resolved by the computational mesh. The residual-stress tensor
Tij = TUJ — UZ-U]- results from the unresolved subgrid-scale contributions and are
modelled by a subgrid-scale (SGS) model in this study. Subscript ¢ takes value of 1,2,3.
The chosen SGS model for the residual-stress tensor 7;; is:

Tij = —2I/tSZ‘j, (3.31)

with S;; = (gzi + %ixf) /2 and v; the turbulent viscosity:
vi = (CAPD, (3.32)

where A is the filter length (the cube root of the cell volume), D the time-scale operator
and C the model constant. When using the Dynamic Smagorinsky model, the time-scale
operator is expressed as

Dy = /2554, (3.33)

and the constant Cs is fixed dynamically [68]. Because of the ill-posedness of the
dynamic procedure, the common practice inspired by [97] when dealing with complex
geometries without homogeneous direction was adopted here: the classical least square
formula was applied over a small volume surrounding the grid-point of interest and the
remaining negative values of the dynamic constant were clipped to ensure v, + v4 > 0.
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The Sigma model does not need extra filtering nor clipping since its timescale operator
D, is positive by design:
D, = @““”@@_@f (3.34)

01

In this equation, 01 < o9 < o3 are the singular values of the velocity gradient tensor ‘gg?.
J

This formulation has several interesting properties: it vanishes for a various number of
canonical laminar flows, for which no SGS viscosity is expected: two-dimensional or
two-component flows, axisymetric and isotropic compression/dilatation. Furthermore,
it also has the proper cubic behaviour in near wall regions and thus does not require
any local dynamic procedure (the model constant C, was set to 1.35 as suggested
by [130]). The model was validated against different academic cases (homogeneous
isotropic turbulence, turbulent channel, periodic free jet), and with different numerical
solvers [130, 145, 14].

3.5 Immersed boundary method

Highly deformable objects immersed in the fluid are encountered in biomechanical prob-
lems. These objects are hardly described by an Eulerian framework though. To over-
come this issue, moving boundary can be taken into account by using immersed bound-
ary (IB) methods. IB methods allows the consideration of temporally highly distorted
interface between blood and vessel at the expense of potentially flaws on the geomet-
rical description of interface. This solution consists of the introduction of a body-force
field f; in the NS equations such that a desired velocity distribution u; can be assigned
over a boundary. This idea is not new since Peskin [138] reported at the beginning of
the seventies simulations of the blood flow through a model of mitral valve using this
technique.

The required body-force f; can be computed through two different methods. By
"feedback forcing” [74, 149] or by "direct forcing”. In the first case, arbitrary constants
are needed and the scheme can results in spurious oscillation near the interfaces. The
”direct forcing” approach consists of an imposition of the velocity boundary conditions
on the immersed surface without introducing or computing any forcing term. If the
boundary configuration is known (as in this thesis), the computation of the body-force
fi becomes simpler. In this case, only local information is needed instead of the complete
force distribution over the immersed boundary. Mohd-Yusof [120] first proposed to
consider the problem of forcing directly in the context of the partially discretized NS

equations,
n+1 n
up T —uy
At

where At is the simulation time step, f™ the force imposed at time t" and RHS™ the

— RHS™ ™, (3.35)

right hand side containing the convective, viscous and pressure terms at t”. To mimic
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Figure 3.2: Scheme illustrating where the body-force is applied in the body €2, immersed
in the fluid domain €.

a still solid in the flow, the forcing can be explicitly defined so that a zero velocity is
set in the immersed object as,

n

f* = —RHS"- L

A (3.36)

On top of the ease of implementation, the main advantage in this case is that no
additional parameters is introduced in the equations as in the ”feedback forcing”. This
expression for the forcing force must then be applied to the numerical nodes included
in the immersed object and at the interface. As the grid generally does not coincide
with the immersed boundary, an interpolation procedure is needed to reconstruct the
immersed object boundary. Many different techniques are available to do so; they can
be classified in two groups: a spreading of the forcing function in the vicinity of the
immersed surface [138] or schemes that produce a local reconstruction of the solution
based on the target boundary values [177].

In this work, the more simple approach has been implemented: the boundary is
reconstructed by applying the force f; to the neighbouring cell. In Fig. 3.2, 2 domain
is the solid object immersed in the fluid domain €1;. The interface of the solid domain
is roughly reconstructed by applying the force f; at each node within €.
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3.6 Numerical test cases

3.6.1 ALE test cases

In this subsection, the accuracy, convergence and verify of the discrete geometric con-
servation law (DGCL) of an arbitrary Lagrangian Eulerian (ALE) method will be inves-
tigated. A proper designed ALE numerical scheme must notably to respect the DGCL
criterion in order to reproduce exactly a constant solution. This condition will be first
tested and the impact of a well-respected DGCL criterion will then be highlighted.
Finally, analytical solutions were developed in order to confront them to numerical
simulations in both two-dimensional and three-dimensional cases.

Uniform flow

The aim of this test case is to evaluate the ability of different numerical schemes to
meet their discrete geometric conservation laws (DGCLs). These tests are performed
on a two-dimensional non-zero uniform flow U(z, y, t) = U* inside a regular hexagon
of side length [ = 0.4 m. The computational domain is initially discretized using twelve
triangular faces and periodic boundaries conditions are specified at the boundaries.
The boundaries of the domain are fixed but the inner mesh points move with a velocity
following

z;(t") = Awcos(wt" + ¢7),

Ui(t") = Awcos(wt" + ¢Y),

where &; and 9; are the velocity components of node i, A is the movement ampli-
tude, w the pulsation. For each node i, phases ¢¢ and ¢! are initially randomly set
in the interval [-7,7]. Each inner mesh point (x;,y;) possesses its own unique velocity
components. For our case, w = 27 rad.s~ ' and A = [/10. The mesh deformations are
illustrated by Fig. 3.6.1 for one period 7 = 2 7 /w.

The simulations are run over 100 7 using a fixed time step At = 5 ms. Four
simulations are presented, differing only by the numerical scheme used. The two schemes
are a temporal explicit Euler method and the already presented RK4 method. The tests
are done with both a 2nd- and a 4th-order finite-volume schemes. The relative error is
then computed using

[U@") — Ul

Eo(t"
2(t") 10T,

Figure 3.4 shows these errors for the two different schemes; all the schemes satisfy
their DGCL criterion by preserving the flow uniformity.

In order to illustrate the necessity of respecting the DGCL, a non-respecting DGCL
criterion scheme is studied to compare with the previous tests. The parameters of this
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Figure 3.3: Visualization of the mesh deformation. From left to right, mesh at ¢t = 0, ¢
=7/3,t=27/3
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Figure 3.4: Uniform flow case. Explicit Euler (left) and RK4 method (right). o 2nd-
order; x 4th-order scheme in space.

simulation are the same except for the amplitude A which is divided by four (A = 0.01)
to emphasis the importance of the DGCL criterion. The simulation is done with the
RK4 time discretization scheme and the 4th-order scheme in space without taking any
precautions for the DGCL. The volume used in the scheme being set at a wrong time,
" instead of t"*1/2. As a consequence, the scheme violates the DGCL criterionand

Fig. 3.5 shows how this impacts the result for this simple test case.

2D Validation - Wall-induced channel flow

Problem definition

In this section, two main issues are investigated in a simple case:

e the accuracy of the ALE method for the RK4 time scheme by comparing analytical

and numerical solutions,

e the convergence of the same method for both the 2nd- and 4th-order space schemes.
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Figure 3.5: Uniform flow case. RK4, 4th-order scheme in space. Non-respecting DGCL
scheme.

One of the simplest example of a flow in a time-dependent domain is provided by the
flow of a Newtonian fluid in a long, straight, two-dimensional channel subjected to a
time varying height (see Fig. 3.6). The flow is induced by a moving wall at y = h(¢) on
the top of the channel which remains parallel to the x-axis and follows

h(t) = ho(1+4ee ) (3.37)

where o is the pulsation of the movement, hy the mean distance between the symmetry
axis (y = 0) and the moving wall and e the amplitude of the oscillations.

Moving wall

Outlet

Fixed wall
Figure 3.6: Principle of the test case. The fluid outlet is on the right.

Analytical solution

The analytical solution has been investigated by seeking a stream function of the form

U = gF(ne 7t (3.38)
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where 7 is the reduced coordinate n = y/h(t). One may derive the following equation
for the function F'(n)
hh j
F o D oy + L2 p2pr = o, (3.39)
n I/Tl

By expressing the function F'(n) as a power series of the small parameter ¢, F(n) =
eFo(n) + €2Fi(n) + o(€3) and following the same method employed in Nicoud [128], one
obtains the following first order solution

— sinh(an) /a cosh(a)

. n
Fy = h
0 Jeno 1 — tanh(a)/a ’

(3.40)

where o = j3/2W, is proportional to the Womersley parameter Wy = hg,/ %

Simulations

The flow must be considered at small Reynolds number in order to be in close agreement
with the analytical solution. The Reynolds number is set between zero and 0.4 (based
on the wall velocity A(t), the height h(t) and the kinematic viscosity 1v,) using the
parameters :

e ¢ = (.05,

e 0 =2rmrads!,

e hy = 0.001 m,

e v, =810 m?s L.

The flow between the two walls is simulated on four grids using a domain (for the finest
grid) of 190,000 triangular elements and of dimensions [0,25h¢] in the streamwise (x)
direction and [0,h(t)] in the vertical (y) direction. The grids are quasi-uniform for the
four grids used with a characteristic edge length of Az = 0.2hg, 0.1hg, 0.05hg, and
0.025hg. The velocity is assigned vertically at the wall on the top of the domain using
h(t) (see Eq. (3.37)), while at the plane at y = 25ho an outlet boundary condition is
specified. Free-slip condition is applied at the bottom of the domain. Simulations are
performed with both 2nd- and 4th-order space schemes and a respecting DGCL RK4
scheme in time.

Figure 3.7 shows the simulation at two different times. The results for the finest grid
are considered accurate, and the Lo and Li,s norms of the error obtained on the coarser
grids are calculated and shown in Fig. 3.8. The results demonstrate the third-order,
almost fourth-order accuracy of the method.

The simulation results are then compared with the analytical data from the Eq. (3.40).
Figure 3.9 shows four phases: t =0, ¢t = T/4, ¢t = T/2 and t = 3T /4. Numerical results
are in very close agreement with the numerical simulation results. However, a slightly
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Figure 3.7: Simulation at ¢ = T/4 (top figure) and ¢ = 3T/4 (bottom plot). Outlet is

on the left,
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Figure 3.8: Grid convergence study. Left Liy¢, right Lo norms of the error.
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Figure 3.9: Analytical (symbols) and numerical (lines) streamwise (right) and normal
wise (left) velocity profiles at x = 5 mm and at times + ¢ = 0; x t = T/4; O t = T/2;
ot = 3T/4. Dotted lines, 4th order in space; solid lines, 2nd.

better behaviour of the 4th-order space scheme with regard to the analytical solution
for low n values for each phase of the streamwise velocity. In addition, the maximum
differences between the velocity calculated using the approximated analytical solutions
and the simulation results for the four phases is less than 5% for the two space schemes
and take mainly place for low n values.

3D Validation - Wall induced pipe flow
Problem definition

In order to verify the accuracy of the schemes in a three-dimensional configuration,
the analytical solution used previously was first extended to the case of wall-induced
pipe flow (Fig. 3.6). The inner surface of the tube is considered as a moving wall
and its position is given by a function of time. A symmetry condition is imposed at
one boundary while an outlet one is prescribed to the other boundary as in the two-
dimensional case (see Fig. 3.6).

Analytical solution
Formulation of the mathematical problem

The analytical solution is calculated under the following hypothesis:
e the fluid is incompressible,
e the flow is axisymmetric,

e the amplitude of the oscillations are very small with regard to the radius R(t).




38 CHAPTER 3. NUMERICAL METHODS FOR BLOOD SIMULATIONS

Figure 3.10: Principle of the 3D test case. Left, beginning of the cycle. Right, half-cycle.

Owing to the axisymmetric of the flow, cylindrical polar coordinates (z, r, ) are chosen
such that » = 0 is the symmetry axis of the tube. The equations of motion governing
the flow are

6ur+u %+u % — _1@_1_” 12 (Taur>+62ur_& (341)

ot " or 0z  por "lror\ or 022 12 )

ou, ou, ou, 190p 10 ou, 0%u,

ot +urﬁ+u25 N _p8z+yn lr@r <T 8r)+ 82’2] (3.42)
10 ou,

where (u,, u,) are the velocity components in (z, r) directions respectively, p is the
pressure, v, is the kinematic coefficient of viscosity and p is the density. The oscillations
of the radius are set by the function,

R(t) = RoS(e 0;3t) (3.44)
= Ro(1+ e (3.45)

where o is the pulsation of the movement, € the amplitude of the oscillations and Ry
the mean distance between the symmetry axis and the moving wall. According to the
physical configuration, the boundary conditions are:

e The condition that the solution has to be regular on the axis of the tube
ur(2,0) = 0, (3.46)

6;;2 (,0) = 0. (3.47)
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e The velocity at the wall is prescribed as

u-(z,R(t)) = R(t), (3.48)
uy(z,R(t)) = 0. (3.49)

So as to simplify the resolution work and thanks to the symmetry, one can introduce
the Stokes stream function v and the vorticity w

1 0V
1 0V
U = Do (3.51)

1020 19V 1020
w P S

r 022 r20r r Or? (3.52)

The curl of (3.41) and (3.42) can be taken and by seeking a stream function of the form
U = zF(ne 9, (3.53)
where 7 is the reduced coordinate n = r/R(t), one may obtain the following differential

equation

8_w+1(8_\118_w_8_\118_w+18_\11)_y a2_w+a2_w+18_w_i —(3)54)
ot r \Or 0z 0Oz Or razw "\ o2 or2  ror r2w o

The boundary conditions (3.46) to (3.49) can now be written as

F'(1) = F'(0) = F(0) = 0, (3.55)
F(1) = —eojRyR(t). (3.56)

Equations solutions
The function F' (1) solution of the Eq. (3.54) is taken in the form
F(n) = eFy(n)+eEF(n) + ... (3.57)

Substituting (3.57) in (3.54) and identifying the powers of €, one may obtain the fol-
lowing differential equation for the order o(e)

n°FY" (n) = 202 Fy" (n) + F§ (n) (o®n® +3n) = Fg () (a®n*+3) = 0 (3.58)

where « is equal to a = Rg/Z. The resolution of this equation leads to the general

vn "
solution:
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Fo(n)=C1+C20> +C3nJ(1, an) + C4nK (1, —an) (3.59)

where C1 to C4 are four constants, J (n, .) and K (n, .) are the Bessel function of
the first kind and the modified Bessel function of the second kind, respectively and n is
the order of the Bessel functions. The boundary conditions (3.55) to (3.56) are used to
determine the constants. One obtains

Cl1 = 0 (3.60)
—io RSka J (0, «)
2 = .61
¢ 2700, a)—27(L o) (3:61)
2i0 RSk

pu— . 2

3 alJ0,a)—2J(1, a) (3.62)
c4 = 0 (3.63)

Using these constants, the solution for the first € order is finally given by

—io RSkn (aJ (0, a)n —2J (1, an))
alJ(0, a)—2J(1, a)

Fo (n) (3.64)

It is relevant for futur numerical application to consider the correction €2 F; negligeable.
Hence, the convective acceleration is disregarded. From the above solution, one can
determine the velocity components using the equations (3.50), (3.51) and (3.53). The
solution for the velocity components is then up to the first order in e:

—ie % tg Sk (aJ (0, a)n —2J (1, an))
= aJ(0,a)—2J(1, a) ’ (3.65)

_ 2ize !0 Ska (J(0, a) — J (0, an))
s = R(@J0. a)—2J(La) (366)

Simulations results

In this subsection, in order to illustrate the behaviour of the schemes in a three-
dimensional case, the numerical solution of the physical problem presented in the section
3.6.1 is compared to the analytical solution obtained previously.

The flow is simulated using a domain of dimensions [0, 25Ry] in the streamwise (z)
direction and [0, R(t)] in the radial (r) direction using 100,000 tetrahedral elements.
The grid is quasi-uniform with a characteristic edge length of Az = 0.2Ry. Non-zero
radial velocity is assigned at the wall using R(t) (see Eq. (3.44)), while at the plane
z = 25 Ry an outlet boundary condition is specified. Free-slip conditions are applied on
the plane at z = 0.

The wall velocity used for the numerical simulation is set using the parameters :
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Figure 3.11: Analytical (lines) and numerical (symbols) streamwise (left) and normal

wise (right) velocity profiles at z = 0.05 m and at times ¢ ¢t =0; Ot =T/4; v t =

T/2; o t = 3T /4. Filled symbols, 4th order in space ; open symbols, 2nd.

e ¢ = 0.05,
e 0 =2rrads !,
e Ry = 0.001 m.

The kinematic viscosity coefficient v, is set at v, = 1.517 x 107® m?.s~!. On account of
these parameters values, note that the Reynolds number is set to stay between zero and
0.02 which justifies the fact that there was no need to consider the superior order during
the analytical development in this case. Figure (3.11) shows the comparison between
the first order approximate solution (Eq. (3.65)) and the numerical profiles for z = 0.05
m using a fourth-order explicit time integration with a Runge-Kutta method and both a
2nd- and a 4th-order finite-volume schemes. The velocities from the analytical solution
are in close agreement with the numerical simulation results for the four phases. Note
that the 4th space order is closer to the analytical solution than the 2nd one for the
most negative wall speed (¢ = T/4) and the maximum wall speed (¢ = 3T/4).

3.6.2 Immersed boundary test cases

A laminar flow around a circular cylinder is considered to test the implementation of
the IBM. A rectangular domain is considered, with a cylinder of diameter D=0.01m
in its center. The flow around the cylinder is simulated using a domain of dimensions
[-8D,25D)] in the streamwise direction and [-5D,5D] in the vertical direction; the center
of the cylinder is at (0, 0). A steady uniform velocity is assigned at the inlet plane
(Uing), while at the outlet plane an outlet boundary condition are specified. Free-slip
conditions are applied on the top and the bottom of the domain. The grid is uniform
with dz = dy = 0.05D. Rep = 30, based on the free-stream velocity Uj,¢, the cylinder
2571, At such a low Re, the
flow can be assumed to be steady after initial unsteady flow development. After 3400

diameter D and the kinematic viscosity v, = 107 m

0,4
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Figure 3.12: Measured data on the simulations.

/D | a/D | b/D

IBM 1.24 | 0.47 | 0.43

Conformal 1.57 | 0.54 | 0.52
Coutanceau and Bouard (exp.) [39] | 1.55 | 0.54 | 0.54
Pinelli (num.) [140] 1.70 | 0.56 | 0.52

Table 3.1: Comparison of wake parameters for steady-state flow around a cylinder at
Rep = 30 with experimental and numerical data.

iterations, the probes put in the domain shows stable figures for the measured velocities.
The absolute error between two successive iterations is under 10~%m/s. Two simulations
were computed: one with a conformal mesh, one with all the rectangular domain meshed
with the cylinder immersed in the flow using the IBM. Figure 3.12 shows the measured
data on the simulations.

As the numerics used for IB is here very basic, weak results were expected on a
coarse mesh.
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Chapter key points:

e A RK4 scheme has been derived in a ALE framework and vali-
dated.

e SGS models used in this work have been introduced.

e The immersed boundary method used for representing the
valves has been presented and tested.
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This chapter describes the framework developed for performing patient
specific simulations based on 4D medical images. The method can be applied
to any blood vessels. Here, the focus is on the human left heart. The key
idea is to use image registration to deform the computational domain and
to account for the valves by using immersed boundary method. Boundary
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conditions are extracted from the domain movements. Patient specific 4D
domain is thus obtained through this workflow.

This chapter is part of: C. Chnafa, S. Mendez, R. Moreno and F. Nicoud, Using
image-based CFD to investigate the intracardiac turbulence. Published as a
chapter in the book "Modeling the Heart and the Circulatory System?”, 2015 [34].

4.1 Methodology overview

Part of the framework described in this chapter is adapted from the work conducted dur-
ing the OCFIA! (Optimised Computational Functional Imaging for Arteries) project,
mainly focused on flow computations in aortas [115, 122, 129, 144]. The key idea of
extracting deformations from medical images was kept and the method was adapted
and extended to handle intra-cardiac blood computations. Image treatment tools and
numerical methods for the fluid computation were not kept from the OCFIA project.

Determining the movement of the computational domain, where the NSE are solved
is all but an easy task. Two main different strategies have been developed in the scientific
community to obtain simulation of the blood flow in realistic heart geometries. The
most natural one is to extract the heart geometry at one chosen moment in the heart
cycle and to solve an electrical-fluid-structure interaction (EFSI) problem [31, 49, 95,
133, 166, 178]. In this approach, patient-specific data are needed [162, 171]. What is
the patient-specific rheology of the myocardial muscle? What is the load produced by
the heart environment? How to reproduce the mechano-electric coupling in the heart
muscle? All these questions make such an approach extremely challenging.

Another strategy consists in using realistic heart wall movements extracted from
cine MRI or Computed Tomography (CT) scan data. Heart movement is not com-
puted, but prescribed from the patient-specific medical images, which can be acquired
using standard clinical imaging procedures. Such a computational approach, where
the geometry and the movements are extracted from images will be referred to as
image-based computational fluid dynamic (IB-CFD). Different research teams have de-
veloped IB-CFD methods for heart flows, more specifically to study the left ventricle
alone [101, 114, 147, 151]. Recently, more advanced work has been published, using a full
heart model obtained from CT images [116] or a heart model fed from MR images [42].

In the following, an image-based CFD method is presented. As in the aforementioned
IB-CFD works, medical images are used to generate a moving patient-specific domain,
in which the blood flow equations are solved (see chapter 3 for the flow equations and
the related numerical methods). This section provides an introduction to the method.
It consists in three major steps and each of these steps are composed of diverse sub-
problems. Details about the sub-problems are the objects of the following chapter
sections.

Lwww.ocfia.org
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{ INPUT: N medical images

Valve measurements. Temp late imagf} Sampling.
choice, segmentation.

[Surface triangulationﬂﬁ[ Images cropping. j

{ OouTPUT 1 } { OUTPUT 2

Figure 4.1: Flowchart representing the preparation to the intensity-based image reg-
istration process (see section 4.1.2) and the CFD preparation see section 4.1.3. 4D
medical images (given as input data) are segmented, measured and treated providing
the process outputs.

4.1.1 First major step: measurements and images treatments

Figure 4.1 shows the first major step of the workflow. Input data of the entire chain
are only N medical images taken at different times during the heart cycle. Three
actions have to be executed. Measurements of characteristics of the mitral valve and
aortic valve have to be done. These measurements are used to feed the valves models
describe in section 4.6. A template image has to be selected among the N medical
images. A 3D model for the heart is extracted from this template image by a process
called segmentation.Details about this procedure will be given in section 4.3. A surface
triangulation of the 3D model is then performed to feed the third major step. Finally,
the medical images are re-sampled in order to change their resolution if needed (note
that all the images need to have the same resolution). They are then cropped in order
to keep only the area of interest, according to a bounding box centred on the 3D model
created before.

In a nutshell, at the end of this first major step, the outputs are a patient-specific
triangulated surface of the studied heart, measurements of the heart valves and the set
of N medical images treated.

4.1.2 Second major step: image registration.

The following question must then be addressed: given the N 3D images of a heart taken
at different times in the heart cycle, how to extract the heart deformations from these
images and how to deform the patient-specific numerical grid accordingly? The first
part of the question is actually a classical image registration problem.
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Nowadays, there is a growing interest in the development of cardiac image registra-
tion methods [105, 106]. Given two cardiac images, a template and a reference one, a
transformation is determined to map the template image to the reference image. This
computed transformation itself is of great importance because of its intrinsic informa-
tion. The deformation field can notably provide clinical information on the myocardial
contractile function. Here, the same process is used to compute the heart deforma-
tions, but instead of focusing on functional data of the heart muscle, the computed
deformation is used to extract patient-specific boundary conditions for the blood flow
computation.

Registration algorithms can be separated in two classes [119]: landmark-based regis-
tration [160, 150] and voxel similarity measures [80] method. The first method is based
on the idea that the sought transformation is determined such as a finite number of fea-
tures of the template image is mapped onto the corresponding features of the reference
image. Note that however, compared to other human organs, the heart exhibits few
accurate anatomical landmarks. In addition, in pathological conditions the functional
alterations can also hide anatomical landmarks [72]. A voxel similarity measure tech-
nique was preferred in this study. This class of method operates directly on the image
grey values, providing a flexible algorithm suitable for the complex heart movements,
especially for intra-modality registration.

Figure 4.2 shows the second major step of the workflow: the image registration
procedure. Input data are the previously chosen template image (as explained in sec-
tion 4.1.1) and one of the medical image which is referred as the reference image. This
step has to be executed for each of the medical image (except the template one) in order
to obtain N — 1 fields of deformation between the template image and the others N — 1
ones. The algorithm treats first the two images by applying to them a gaussian filter.
By applying this filter, high frequency of the images are removed. A measure of the
similarity between the two images is then computed. If images are sufficiently close each
other in regards of a parameter set by the user, higher frequencies are re-introduced and
the distance is computed again. If the distance criterion is not met, an optimisation
process is executed to find a transformation allowing the reference image to be closer
to the template image. The optimisation process to find a suitable deformation field is
referred as the inner iterations and the successive frequencies filtering the outer itera-
tions. Finally, once the algorithm is converged, N — 1 deformation fields are obtained.
Section 4.4 provides details about the entire registration procedure.

4.1.3 Third major step: CFD preparation

The N — 1 deformation fields computed from the medical images are then applied to the
template surface. N —1 surfaces are then generated. Each triangularized surface should
correspond to one 3D image of the heart cycle. As the deformed heart model is needed
at arbitrary instants, depending on the time step used in the future computation, a
trigonometric interpolation for each surface nodes is computed. The knowledge of the
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Figure 4.2: Flowchart representing the image registration process fore each couple con-
stituted of the template and one reference image. 3D deformation field between the two
images (given as input data) is computed, providing the output of the process.
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trigonometric interpolation of each surface node provide the heart deformation at any
wanted time of the heart cycle.

Then, a 3D volumetric grid of the template is generated and valves models are in-
cluded. Valves models are then fed by the measurements done during the first major
step. The trigonometric interpolation can finally be applied to the surface of the tem-
plate grid. The result is a 3D volumetric grid of the treated heart, deforming like the
patient’s heart during the heart cycle, with valve models included. Volumes of the dif-
ferent heart cavities are computed and fluid boundary conditions are computed from
them (see section 4.7).

4.2 Mathematical setting

Before detailing the procedures described in the former section, a proper mathematical
setting for the images is introduced. An image [119] can be seen as a mapping from
spatial point x belonging to an image volume Q C R? to a voxel gray value b(x). Only
3D images are considered in this work and are defined as:

Definition 4.2.1. Any function b : R® — B is called a 3D image with B = {0,...,255}.
The following definition is also introduced:

Definition 4.2.2. The set of all 3D images is denoted by
Img:= {b: R® — Blbis a 3D image}.

So, each spatial point = of the image has one light-intensity (a grey value) value
between 0 and 255. 3D imaging modalities as CT or MRI generate this kind of light-
intensity grey values. Thus, the scanned volume can be described by measured values at
points placed on a structured image grid. This structured image grid is defined as a set
G :={xk,k=1,..., N} with N an integer number defining the resolution of the image
grid. The grey value is considered node located in the following. Thus, points zj are
in the centre of contiguous but non overlapping bricks partitioning the scanned image
volume €. These bricks are called voxels, which are volumetric pixels (see Fig. 4.3d).

4.3 Model extraction from the template image

Before performing the model extraction, a suitable 3D image must be selected as the
template. Ideally, the template image must be

e of "great” quality,
e far from the extremes times of the heart cycle (peak systole, end diastole).

The images quality can be heterogeneous for a set of images. Artefacts can be visible at
some instants for example, especially for images from MRI. Peak ventricular or atrial
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() (d)

Figure 4.3: Heart image from a MRI scan. Down-sampling is applied to the image (a).
Images (b) and (c) represent image (a) with a reduced resolution by scaling 0.25 and
0.5 respectively. The voxel-centred image grid is shown in image (d) for a sub-part of
image (c).
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b,

Figure 4.4: Chosen template image from a MRI scan (a). Images (b) represents the
threshold applied to image (a) to the grey values. The threshold is represented by the
histogram (grey values versus number of voxels n,) and allow to keep the voxels with
a grey values between 60 and 255 here. The corresponding mask is then created and
depicted in red on the heart image.

grey value

systole should be avoided as well to minimize he distance between the template of the
N — 1 other images. Indeed, smaller the deformation between images is, better the
computed deformation will be. By experience, a good choice of template image could
be at the end of the E wave. Ventricle volume at this time is close to the cycle-averaged
volume and almost the same remark can be made for the atrium. In any case, this choice
has to be made with a good knowledge of the entire procedure and a trade-off has to
be found between the image quality and the position of this image in the heart cycle
(example, Fig 4.4a). From the selected template image, a 3D model of the blood domain
must be extracted. Emphasise on the term "blood domain” is made here. Neither the
heart muscle, nor the heart environment is considered, only the domain where blood
flows. This model extraction is called segmentation [139]. Choices have to be done
about the required level of modelization. Is the left atrium appendage wanted? The
trabeculations? What about the papillary muscles?? Image resolution plays a role in
the potential domain simplification at this step. Physiological features (see chapter 1,
section 2.1) can either be kept or neglected depending on the image quality and spatial
resolution available. Image can be smoothed to erase noise inherent to the medical
imaging protocols but also to remove details as the trabeculations.

Once these choices are fixed, segmentation itself is executed. The template image is
imported into ScanIP, a commercial image processing software environment (Simpleware
Ltd., Exeter, UK). The simplest segmentation method is based on a threshold on the

2In this thesis, hearts models with and without papillary muscles are presented.
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Figure 4.5: Segmentation from a CT scan. Slice of the volumetric image is depicted in
transparency. Image (a) represents a segmentation only based on the grey values of the
3D image. Image (b) represents the same 3D model after manual treatments and image
(c) the chosen area of interest for the blood computation.

voxels grey values. Observation of the medical image histogram (grey values versus
number of voxels), as represented in Fig. 4.4b, helps the operator to chose a grey values
range. By doing so, a sub set of the medical image is selected. This sub set is referred as
the mask (in red in Fig. 4.4b). Choice of the threshold range is once again the choice of
the operator. Very large range can "drown” the wanted blood domain by encompassing
the heart muscles in the mask for example. Figure 4.5a shows a mask from a CT scan.
Note that there is a lot of unwanted features as the spinal column (left of the figure)
or the plexus (right of the picture). As only the blood domain is wanted, non connex
features can be automatically deleted® as represented in Fig. 4.5b. Nonetheless, a lot
of the pulmonary trunk is still here, the LAA as well. Depending on the desired level
of modelization wanted, the operator should treat the mask manually by deleting the
unwanted features (see Fig. 4.5¢).

This process is time consuming and in a clinical point of view, expensive. The opera-
tor must be an expert who knows the segmentation tools, has got a good morphological
knowledge and has a lot of patience. In addition, inter- and intra- operator variability
can be observed. Fully automated segmentation is of course fast, cheap, reproducible
and hopefully robust. Automatic segmentation can be "easily” used for simple vessels
but for the heart a tool which can be used for both CT scan and MRI modality is
still lacking. Still, admirable work in this way was developed for CT scan images by
Siemens [116].

Once the 3D model is extracted through the segmentation procedure, the surface of
the geometric reconstruction of the heart is triangulated providing the template model
surface.

3In the ideal case where these unwanted features are not connected to the left heart...
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4.4 Image registration

4.4.1 Mathematical problem

Let N 3D images I; € Img of a patient heart which are taken at different times t;,
0 < tg,t1,...,tny—1 < T during the heart cycle of period T. One of the N images is
selected as a template image. Note that this choice is somewhat arbitrary and that,
without loss of generality, one can always tune the time origin so that the template
corresponds to the Iy image at time tg. From this image, N — 1 transformations 1; are
computed such that the transformed template image becomes similar to images I; (i
between 1 and N — 1) successively considered as the reference image: transformation
; is search so that Iy(;(x)) = I;(x) for each voxel. Here, I;(x) stands for the voxel
grey-level value at position x in the ¢-th 3D discrete image.

Each mapping v; : R™ — R™ is calculated by minimizing a distance D : Img?
R between I(v;(x)) and I;(x), an appropriate distance measure being based on the
so-called sum of squared differences. The transformation ; is computed through an
optimisation problem reading: given two images Iy and [;, find a mapping 1; such that
the distance measure D defined as the squared intensity differences between Ij(1);(x))
and I;(x) is minimized for each voxel.

4.4.2 Regularisation

At this point, the number of parameters describing the transformation is too high so
that the solution ; of this problem is not unique. Additional constraints are needed to
reduce the search space where the mapping v; is sought for.

In the present work, a constraint on v; is applied thanks to prior knowledge of the
deformation sought for [11]. The idea is to penalize unlikely deformations by impos-
ing the heart deformations to be smooth. Bayesian statistics are used to obtain an a
posteriori computation of the deformation field. The prior deformation probability is
incorporated through the Bayes’ theorem: p(Y|I) o p(I|Y)p(Y), where p(I|Y) is the
likelihood of observing the images data I (template Iy and reference I; images) given the
deformation parameters Y. p(Y) is the prior knowledge of the deformation translated
in the a priori probability of seeing the parameters Y and p(Y|I) is the a posteriori
probability of getting Y knowing the two images data I. Using this Bayesian framework,
the goal is to maximise the probability p(Y|I). Knowing that a probability is related
to its Gibbs form by p(Y) oc e (Y) the problem can be seen as a minimisation of the
Gibbs potential:

H(YT)=HIY)+ H(Y) +c, (4.1)

where ¢ is a constant. The likelihood potential H(I|Y) of observing the images data
given the deformation parameters Y is directly linked to the squared intensity difference
between Iy(1;(x)) and I;(x) for each voxel:

HY) = 5 [ (o)) — i(x))* 42 (4.2
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where the integral is taken over the image volume 2.

The second term H(Y) in the right hand side of equation (4.1) is the wanted con-
straint, applied thanks to prior knowledge. The prior deformation knowledge put in
this potential is expressed as a geometrical constraint on the mapping through the two
studied images. Here, the discrete images are considered as being on a mesh of tetrahe-
dra (see section 4.2 and Fig. 4.3d) and an uniform affine mapping between the voxels of
each images is assumed. In 2D, if the images grids are divided into a triangular mesh
where the nodes are centred on the pixels, the affine transformation can be defined as,

mi1 M1z Miz| |T11 T12 713 t11 ti2 ti3
ma1 Moz Mma3| [ro1 Too 7To3| = |tor too to3z|, (4.3)
1 1 1 1 1 1 1 1 1

where (t11,%21), (t12,%22) and (t13,t23) are here the co-ordinates of the vertices of a
triangle in the template image and (r11,721), (r12,722) and (ri3,re3) the vertices of
the corresponding triangle in the reference image. Thus, the mapping and its matrix
representation M can be defined as:

i1 T2 ri3] [tin tie tiz]
M = |ror T2 7Tog| |to1 toz to3 . (4.4)
1 1 1 1 1 1

A suitable prior probability is linked to the deformation of each voxel of the template
image and to the reverse deformation [10]. This potential acting as a regularization
term allows a penalization based on the Jacobian of the locals deformations J. As
the Jacobian of an linear application is the application itself, the Jacobian J is defined
simply as,

J— |z (4.5)
ma1 M2

By using singular value decomposition, J can be decomposed as J = USV' where S
is a diagonal matrix containing the singular values representing the relative stretching of
the triangle and the matrices U and V represents rotations. Following Ashburner [10],
a suitable form for the regularization term is,

h = (1 + det(J))(log(s11)? + log(s22)2) /2. (4.6)

Hence, this function take into account the triangle volume change and the triangle
stretching. This penalty function is minimized for a triangle when the is no deformation
(det(J) = s11 = s22 = 1). This regularization term is weighted by a parameter A
linked to the belief in the amount of deformation of the heart. A high value of the A
parameter results in a high penalty on the voxels deformation, hence only small and
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Figure 4.6: Heart image from a CT scan. Gaussian kernels applied from left to right:
3mm?3, 1.5mm? and 0 mm.

smooth deformations are allowed. Thus, the second term H(Y) in the right hand side
of equation (4.1) is defined for the whole image as,

H(Y) = )\ihi, (4.7)

where n; is the number of triangles in the image grid. A detailed description of this
penalty term can be found in Ashburner [10] and the 3D application as well.

In our implementation, A\ is set as a constant. Note that given the high deformation
of the left heart, high A\ values result in a high constraint thus, partial deformation and
a high residual squared difference between the template image and the reference one.
In the case of small values of A, a lower residual squared difference will be reached, but
the resulting deformation can be non physical due to excessive warping. Actually, the
deformation of the flow domain is highly different from one region to the other. The
aorta needs a priori high values of A, whereas small values are needed for the atrium or
the ventricle. Thus, search space is then bounded and one need to chose carefully the A
parameter for constrained as possible the search space while the sought solution is still
in the search space.

4.4.3 Pyramidal strategy

One method of increasing the likelihood of achieving a good solution without introducing
a spatial variability on A (and consequently avoiding more operator-dependant work as
well) is to apply successive filters to the images using a Gaussian smoothing convolution
kernel G7 of width . This method is a classical Gaussian pyramid approach [3]. The
high-frequency content of the image is first removed thanks to this filter then gradually
re-introduced as the kernel width ¢ becomes smaller and smaller. This iterative process
is defined as the outer iterations: for each kernel width, distance between the images is
minimized. The process is illustrated in Fig 4.6 ; the registration algorithm works on
more and more detailed images. This ”coarse-to-fine” strategy has the effect of making
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the registration algorithm estimate the most global deformation during the first outer
iteration, leaving out fine-scale structures. The optimum transformation for this kernel
width is used to initialize the computation of the next optimum computation, which
deals with finer details. This method increases the likelihood of finding the globally
optimal match while avoiding the classical problem of the intensity-based method: their
susceptibility to poor starting estimates.

4.4.4 Final formulation

As the regularization term, the intensity difference (first term H(I|Y) in the right
hand side of the equation (4.1)) is weighted. The weight for the j-th inner iteration is
defined as the inverse of the residual sum of the squared differences computed at the

previous inner iteration of a given outer iteration of the algorithm and is denoted by
1

di—1-°

regularization term, in order to get smooth deformations. As the algorithm gets closer

Because d has a high value for the first iterations, more weight is given to the

to the final solution, d theoretically tends to zero, giving less weight to the priors and
letting the algorithm computing more detailed deformations.

A way of seeing the resolved problem is: the sought transformation %j k at the inner
iteration j and the outer iteration k minimizes the function f/* defined as:

FRRIRY = @R + AR W), (4.8)
with,
) = s [0 B0~ 67 s e, (49)
¢ 2d7-1 Jq ¢ ! ’
PRy = g, (4.10)

where the function g is computed from the Jacobian singular values and determi-
nant [11].

4.4.5 Optimization

Minimizing f]’k(zpzjk) is equivalent to finding the set of parameters Y minimizing the
equation 4.1, which is also equivalent to find the most probable set of parameters (i.e.
the maximum of p(Y|I)). The optimization algorithm used here is a gradient descent
one. It is a first-order optimization algorithm computing a local minimum; well chosen
outer iterations help the computing of the global minimum. For the j-th inner iteration,
the linear search reads,

N (4.11)
; OH(I|Y OH(Y
= yi — € { a(y| ) + ag(/ )} (4.12)
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where ¢; is the distance "travelled” in the direction of the gradient for this parameter.
This distance is set as a small value and can be modified during the optimisation process.
When the image grid is deformed, if on Jacobian determinant becomes negative, the
value of ¢; is halved and the image grid is deformed again. The same procedure is applied
until the Jacobian determinant is positive. Finally, the N —1 deformations corresponding
to the N — 1 medical images are computed through this iterative optimisation process.

4.5 Numerical domain deformation

Once the N — 1 mappings v; are computed, a patient-specific computational grid must
be extracted from the template image and warped thanks to the computed deforma-
tions. The template image corresponding to volumetric data Iy is imported into the
image processing software (ScanIP;Simpleware Ltd., Exeter, UK). A suitable image in-
tensity range which encompasses the voxel intensities of the region occupied by blood
in the heart is selected. The process is described in section 4.3. The 3D geometric
reconstruction covers all the space occupied by blood in the left heart cavities. The
surface of the geometric reconstruction of the heart is triangulated.

Once a template 3D patient-specific surface mesh is created, a procedure to deform
this surface model thanks to the images must be provided. For each couple of images
(Ip,I;) a suitable spatial transformation v; was found thanks to the method described
in the previous section. These deformations v; are 3D deformation fields. Trilinear
interpolation from these deformation fields to the template surface mesh is done. Thus,
a set of N — 1 successive surface meshes matching the physiological cardiac images at
different times t¢; is produced as schematized in Fig. 4.7.

4.5.1 Application of the patient-specific deformation

Position and velocity of all surface points are needed at any discrete time of the simula-
tion, not only at the times tg,t1,...,txy_1. Since all the generated surface meshes share
the same topology (number and connection between nodes, number of cells), temporal
interpolation is used to compute the position and velocity of each node. As geometry
variations are periodic, a trigonometric interpolation is used. The surface position and
velocities read:

= t ¢
Xg(t) = Z:O[ai cos(22‘7r?) +b; Sil’l(QZ‘TF?)],
gm m y y on  09Q(t) (4.13)
uy(t) = - ;[—ai sin(Zin) + b; cos(QiWT)],
where T is the heart cycle period, m the number of Fourier modes (m = % or %

depending on the parity of N) and a;, b; the Fourier coefficients. The surface velocity
ug needed at the computation domain boundary 0€2¢(t) is hence not computed as a
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Figure 4.7: Mesh deformation procedure applied to a left human heart. The template
mesh segmented from the image at time ¢y is deformed thanks to v; to obtain the mesh
at time t;. This procedure is done for each image in the cardiac cycle in order to obtain
the corresponding meshes.

FSI problem, but entirely extracted from the medical images. In the present study, it
is used to handle the cardiac chambers and their connected vessels.

4.5.2 Volumetric grid

The template surface is imported in a commercial mesher (Gambit, ANSYS) to generate
a template unstructured tetrahedral mesh. The computed boundary Fourier coefficients
of Eq. (4.13) are interpolated on this template numerical domain surface. The computa-
tional mesh boundary now follows the shape of the patient endocardium and is updated
in every step of the simulation. The motion of all internal points in the computational
mesh is deduced from this prescribed boundary motion thanks to a harmonic extension
of uy onto the numerical domain. At each iteration, nodal velocity ug is calculated as
the solution of the following problem [110]:

V. (k(x)Vuy(x)) =0, on Q¢(t) (4.14)

and,

ug(x)|xeagf(t):us(x) on  09Q¢(t), (4.15)

where k(x) is the displacement diffusion coefficient. This coefficient is determined
to preserve a good computational grid quality. The larger elements will distort at a
faster rate than the smaller ones - a desirable feature for our application in order to
preserve grid quality. When the boundary displacement becomes too large compared
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Figure 4.8: Skewness histograms for a left heart grid at end diastole (top figure) and
mid-systole (bottom figure). Each left heart cavity is color tagged.

to the local cell sizes, the cell quality can be highly decreased and some cells can even
become degenerated. This can lead numerical stability issues or negative cell volumes.
The grid quality is this monitored all along the computation of each cell ¢ in term of
skewness S5; as,

_ ‘/eq B V;

S; = Ve (4.16)
where V; is the observed cell ¢ volume and V,, the volume of an equilateral cell with the
same circumradius as the cell i. When a cell i is equilateral, S; is null, which means
that the quality is perfect. Cells quality is considered poor when S; is higher than 0.8.
Figure 4.8 shows an histogram of a test case. The upper figure shows a left heart at end
diastole while mid-systole is shown in the bottom part. The grid is notably degraded
as higher skewness values appears.

In this case, the numerical domain is re-meshed and the fluid solution is interpolated
on a new discretised domain. Fourier coefficients of Eq. (4.13) are interpolated as
well. The remeshing procedure is handled by MMG3D which is an isotropic/anisotropic
tetrahedral fully automatic remesher [41] coupled with YALES2BIO.

In this case the Fourier coefficients are interpolated from one grid to another. A local
orthogonal coordinate system associated to each node k of the new grid is introduced.
It is composed of the approximate normal to the surface (sum of the neighbouring faces
normals) and two unit orthogonal vectors: £ and 1. The origin of this coordinate system
is centred on node k of the new grid. In this coordinates system, a neighbour of node
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k has the following tangential coordinates:
ze = (X —Xp) - § 0y = (X — Xp) - 1, (4.17)

where xj, is the coordinates of node k. The surface is then locally characterized as
a function of the tangential coordinates x¢ and x,. The fitting procedure consists of
finding a paraboloid surface approximating the old grid on the new one locally and for
each node k. It is based on the procedure described in Garimella et al. [64]. A quadratic
patch f = f(x¢,xy,) where f is one of the a; or b; Fourier coefficient is defined as,

1 1
flxe,zy) = 5@3:727 + brexy, + 50:62 + dxy, + exe + f(xy). (4.18)

The values of the coefficients a, b, c,d and e are tuned in order to fit the paraboloid
surface in the neighbourhood of the node k as much as possible. This is achieved by
solving a system of form Ms = F:

a
1,2 1.2
590;71 95;7195/51 59”/51 95;71 95/51 b J1— f(x1)
: : : : : cl = : . (4.19)
1,..2 1.2
3T TymTen  3T6m  Tym  Tem d fm — f(zm)
e

This system is over-constrained. To find the values of the coefficients (gathered in
the vector solution s) that provide the best fit, a least-square fitting approach is used.
The least-square problem can be written as a linear system to solve, s is then obtained
explicitly, provided that the inverse of (M!'M) is calculated, s = (M'M)~*M!F. For
each node, this fitting procedure is applied for each Fourier coefficients.

4.6 Valves model

Models

Since the valves are thin highly-moving structures, their precise movements are hardly
extractable from MRI or CT scan exams. Besides, on the numerical side, incorporation
of moving valve leaflets in the grid topology would most probably imply a grid quality
degradation, making numerous re-meshing mandatory. Hence, it was chosen to model
the valves using an immersed boundary technique.

Valves annuli geometries are reconstructed by visual inspections of the medical im-
ages. The annulus geometry is represented as a cloud of points p;, whose nodal coordi-
nates are used to define the valves annulus within the numerical domain. These markers
allow the reconstruction of the aortic and mitral annuli.

The shape of the aortic valve is simply approximated by the plane passing through
the set of markers and obtained by a least squares method. As the focus of the study
is on the flow in the atrium and the ventricle, it is not mandatory to develop a more
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complex model for the aortic valve, since its morphology has very limited effects on
the LA/LV haemodynamics. Note also that the physiological aortic valve open position
offers virtually no resistance to the main flow passing through the aorta from the LV. The
regression plane modelling the aortic valve is thus made alternatively fully permeable
or impermeable depending on the phase in the cardiac cycle.

The mitral valve is represented by a more complex model, since its shape is expected
to strongly impact the LV haemodynamics. A regression plane P, is defined from the
set of markers p; with a least squares method and the mitral annulus geometric center
Cq is computed. A plane Pg parallel to P, is defined at a distance I(t). When the MV
is open, it is assumed that the cross section area seen by blood is elliptical. An ellipse
e of axes a(t), b(t) is defined on Ps and its angle in its plane set manually to fit the
medical images. The ellipse center C, is not a direct projection of C, on plane Pz, an
eccentricity e(t) is defined. The eccentricity e(t) is the distance between the projection
of C, on plane Pg and the ellipse center C,. Leaflets are considered as the surface
linking the mitral annulus to the elliptical opening €. Position of the annulus markers
are projected on the ellipse. Therefore, the leaflets surface is reconstructed by triangles
pieces between the annulus markers and the projected annulus markers on the ellipse
(see Fig. 4.9). To summarize, the quantities needed to feed this model are:

e the mitral annulus markers p;,

e the average leaflets length [(¢) which is the distance between C\, and the generated
plane P,

e the eccentricity e(t) of the ellipse center C, compared to the projection of C, on
plane Py,

e the ellipse axis a(t), b(t) and its angle in the Pg plane.

The model and its numerical representation are shown in Fig. 4.9.

Time evolution of the ventricle volume is used to switch between the open or closed
positions for each valve. LV volume decreases during systole, then increases during
diastole: these two parts of the cardiac cycle are determined by computing the ventricle
volume variations. The opening and closing valve time is less than 5% of the heart
cycle duration [184]. Therefore, the opening of the mitral valve and closing of the aortic
valve (vice versa) can be considered as instantaneous and simultaneous events as a first
approximation. This means that the left heart has only two topological configurations
during the cardiac cycle:

e MYV closed, AV open: this corresponds to the systolic phase,
e MV open, AV closed: this corresponds to the diastolic phase.

Note that MV and AV happen to be closed at the same time in physiological conditions.
This corresponds to the isovolumic phases which last for only a small fraction of the
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Figure 4.9: Top left: annulus markers and modelled MV leaflets. Parameters a, b of the
ellipse € are indicated. Top right: full MV model included in the numerical domain (the
AV is represented as well). Bottom: MV scheme.

cardiac cycle. Given the poor time resolution reachable by 4D medical imaging systems
(IRM and CT scan), the isovolumic phase cannot be described accurately anyway.
Assuming that the MV and AV are never closed at the same time is thus an acceptable
assumption given the accuracy of the medical data used to feed the CFD solver.

Knowing the MV leaflets position during the heart cycle, their effect on the blood
flow is accounted for thanks to an immersed boundary method (IBM) [120] described
in chapter 3. For this purpose, the leaflets representations (plane for AV and triangle
by parts for the MV) are first given a thickness s so that a few mesh nodes are located
within the valves.

Grid nodes are tested to decide whether they are in the leaflets volume or not. For
the AV, the distance from the AV plane is computed. If the node distance is within the
closed interval [—3, 5] the node is tagged as belonging to the AV valve. For the MV,
each node being at a distance within [—3, 5] of one of the MV triangle are treated. The
node is projected on the corresponding triangle and the triangle barycentric coordinates
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Open mitral area

Right ventricle
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Figure 4.10: Manual measure of the open mitral area for a healthy subject (in red).
The right and left ventricles are indicated for information.

are computed. The node is tagged as belonging to the MV valve if all of the barycentric
coordinates are greater than zero. Then, a force f in the NS equations (3.1) is set to
impose the fluid velocity to zero within the leaflets as described in chapter 3 section 3.5.
The force f is used at each mesh node lying within one of the valve region. The finite-
volume scheme used being node centred and since the force f™ is imposed at nodes lying
into valve leaflets, a null velocity is imposed in the entire dual cell where the governing
equations are integrated. Thus, there is no interpolation of the forcing term and the
valves geometry is described in a stepwise way. f™ is set to zero anywhere else.

Note that, as the opening/closing of the valve is not resolved, valves switch instan-
taneously from closed position to open position and vice versa. When open, some small
displacements may be seen because of the displacement of the valve annulus, but they
are here neglected. As a consequence, the source term used mimics the presence of
valves as fixed obstacles.

Models parameters

Mitral valve parameters are measured manually on the medical images and with help of
3D model segmented from it. The mitral annulus can be distinguished easily with proper
imaging modalities. Markers coordinates are then measured on the template segmented
model. Once these markers are set on the numerical grid, they are moved in the same
way the grid nodes are moved or spatially interpolate in case of the computation needs
an interpolation.

The length of the valves are measured from the images. The length between the
tips of the valves and the mitral annulus is observed for the short and the long leaflet
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Figure 4.11: Measures (cross symbols) of the open mitral area during the diastole ¢g4,.

The median of the measures is indicated by a dotted line at 520 mm?.

on each medical images during the heart cycle. The measures are averaged and used as
the leaflet length in the model.

The open mitral area is manually measured for each images taken during the diastole.
Figure 4.10 shows the mitral area measured at one instant and Fig. 4.11 shows the
measurements along the diastole for an healthy subject. Median of this area is then set
as the open area for the model. The form of the open area is approximatively an ellipse
(this approximation is commonly used). The large axis of the ellipse is the distance of
the extremal points on Fig. 4.10, the small axis is then deducted by the measured open
area. The orientation of the large axe is set to be parallel to the papillary muscles.

Finally, the eccentricity of the ellipse center is set as the averaged measured vectors
between the geometric center of the open area and the geometric center of the mitral
annulus. The eccentricity between the mitral annulus geometrical center and the open
mitral area can be observed on the example image Fig. 4.10.

4.7 Inlet and outlet boundary conditions

Inlet boundary conditions can be extracted from PC-MRI and interpolated on the com-
putational domain inlet surfaces. However, if only CT scan images are available, a
different strategy must be used. As blood is incompressible, a reasoning based on mass
conservation can be made to overcome the lack of inflow and outflow information. As
already stated in the last section, only two topological configurations are considered
(MV closed, AV open or AV closed, MV open). This assumption allows a consistent
definition of the inlet/outlet boundary conditions. Indeed, mass conservation imposes,
for the first case (MV closed, AV open):

A%

Qilt) = —- (4.20)
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where Q;(t) is the inlet flow rate to be imposed at the pulmonary veins Vi the LA
volume. In the second case MV open, AV closed, mass conservation imposes:

Qit) = % + %, (4.21)
Where V5 is the LV volume. Therefore, the flow rates are only determined by the
time evolution of the heart geometry, which is directly related to the medical images.
Computation of each cavity volume must be done consistently with the valves definition.
In order to properly define each cavity, the valves were considered both closed and a
propagation ’tagging’ was set. Each inlet and outlet nodes were given a specific color.
Each node in a valve was given another specific number. As each node is linked to
another nodes by the grid connectivity, a test is made to compare the actual node and
the other nodes linked to this one. For one node 4, the question for each related node
is: is the linked node color the same as for node 7?7 If not, is it a valve node? In case
it is not, the node is coloured as node . If it is a valve node, no color propagation is
made. Hence, each cavity is tagged with a specific color and the propagation stop when
a valve is encountered. In order to speed up the color tagging, the wall boundary is
color tagged first, then the volumetric propagation is made.

Once the volumes and their changes are computed, consistent velocity at the four
inlets U ;”(X, t) (j=1,..,4) can be prescribed once the shape of the profile is known. For
uniform inflows, the Dirichlet condition (see Eq. 3.4) simply reads:

Qi(t)
4;

Uj"(t) G (4.22)
where A; is the cross-section area of the j-th pulmonary vein and (; the flow distribution
between the four pulmonary veins ({;=0.25 for all j corresponding to an equipartition
of the inflow). Note that in practice, only the inflow conditions are imposed as the
Dirichlet outflow condition automatically adjusts to ensure exact mass conservation in
the complete domain through a convective outflow scheme.

4.8 Discussions

The spatio-temporal resolution of the medical images, is an important limitation which
imposes temporal interpolation and geometrical simplifications of the heart model. It
also makes it difficult to accurately account for short phases as the isovolumic con-
traction and relaxation. Still, ten images per cardiac cycle enable a convincing flow
description as it will be shown in chapter 5. Indeed, most of the significant heart defor-
mations last more than 7'/10. However, specific tests of this point should be performed
to precisely assess the impact of the temporal resolution of the medical images on the
flow field.

Another limitation is the unknown flow distribution between the pulmonary veins,
which has to be prescribed in the simulations. In this work, an equipartition has been
supposed due to the lack of information.
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Figure 4.12: Volumes obtained for a ventricle from a set of 4D medical images. Solid
line, deformation (), dashed line, deformation (7).

About the valves, the model used here highly depends on the anatomical information
that can be extracted from the images. Consistently with their insufficient spatio-
temporal resolution, a rough model of the valves was used. Better valve models should
notably include valve opening and closing, change of aperture area along time. Aortic
valve leaflets were notably completely omitted during systole, which most probably
impacts the flow at the beginning of the aorta.

Two other sources of error are discussed more deeply in the following: the image
registration parameters and the tangential deformation extracted from the computed
deformations.

Image registration algorithm

Beside the segmentation itself and the choice of the template the parameters choice is
of prime importance. The validity of the computed deformation depends partly upon
the validity of the parameters.

Figure 4.12 shows the volume of deformed meshes with the same template, the set
of medical images and parameters excepting the regularization term A. Deformation
(7) was computed using A = 2, while deformation (i) with A = 1. In both cases the
global algorithm converged. However, the deformations are different. As the parameter
A is linked to the belief in the amount of deformation of the heart, the deformations
are more important at the extrema volumes (0.34 T and T"). The optimal parameters
set giving the most realistic deformations is all but obvious. Several tests with different
parameters set are mandatory. Once the deformations are obtained (in the case where
the algorithm converged), visual inspection of the deformed meshes compared to medical
images must be done implying an expertise on the field.

Ventricle twist

It is well known that the ventricle has a twist-untwist movement during the heart
cycle [155]. Twist during ventricular ejection predominantly deforms the myocardial
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Figure 4.13: Average ventricle rotation obtained for from a set of 4D medical images.
Full line, tangential velocity kinetic energy Ky, dashed line, normal velocity kinetic
energy K,.

fibre matrix, resulting in a storage of potential energy. The release of these forces
happens when the subsequent recoil of twist deformation occurs. This 'untwist’ during
diastole releases the mechanical energy and contributes to LV diastolic relaxation and
early diastolic filling [126].

Therefore, this movement is important in cardiac mechanics but mainly in a me-
chanical point of view. The common methods for measuring myocardial motion are
tagging or phase contrast velocity mapping using MRI [50] and tracking of unique
speckle patterns created by the interference of ultrasound beams within tissue using
echocardiography [92]. Conventional analysis of these images are computer-assisted.

Figure 4.13 shows the integrated kinetic energy of both the tangential myocardium
velocity and the normal velocity computed for heart A after deformation computed
through the presented image registration algorithm. The solid line represents the tan-
gential velocity kinetic energy K; and the dashed line represents normal velocity kinetic
energy K,,. The energies are defined as,

1
K, =— . 4.2
n= 55 /S(ug e,)e,ds, (4.23)

1
K = 35 /S u,; — (ug - e,)ends, (4.24)

with S the endocardium surface, the grid nodal velocity ug, e, the normal vector.

Two peaks are visible at the same moment for both energies. The first one at 0.27T
during the systole and the another one is at 0.57". Considering a characteristic radius
for the heart of R = 0.025 m, and the diastolic peak rotational energy, K; = 1.75 x 1073
m?2.s72, the corresponding averaged velocity for the diastolic peak can be computed as
V2K /R ~ 2.3 rads™! or v2K; ~ 0.06 m.s~!. Velocity obtained from LES in the
ventricle is about 1 m.s™! at this time of the heart cycle. Thus, it is believed that the
tangential velocity can be considered negligible in the blood dynamic.

Using MRI [134] and echocardiography [135], the same range of tangential velocity
is obtained. This is illustrated in Fig. 4.14. The averaged LV rotational and torsional
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Figure 4.14: Averaged LV rotational and torsional velocity profiles in 20 subjects. Blue,
light green, dark green, and violet lines indicate apical, middle, and basal rotations and
LV torsion, respectively. MC indicates mitral valve closure; AO, aortic valve opening;
Ej, peak ejection flow velocity in the outflow tract; AC, aortic valve closure (ie, end
systole); MO, mitral valve opening; Pk-E, peak early filling velocity; and En-E, end of
E wave. From [135].

velocity profiles in 20 subjects at different location (from Notomi et al. [135]) is displayed.
Focus is on the violet line representing the total torsion during the heart cycle.

Note that temporal evolution of the tangential velocity is qualitatively coherent
with our data (see Fig. 4.13). In addition, velocity magnitude order are similar. As
the image registration algorithm used in this thesis is based on a similar principle of
tracking unique patterns through deformation, it is believe that the twist-untwist of
the ventricle is roughly captured. The image registration performs well thanks to the
multitude of specific structures within the heart as the papillary muscles or the captured
t