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Abstract

In this dissertation we address the problem of weakly supervised object detec-

tion, wherein the goal is to recognize and localize objects in weakly-labeled images

where object-level annotations are incomplete during training. To this end, we pro-

pose two methods which learn two different models for the objects of interest.

In our first method, we propose a model enhancing the weakly supervised De-

formable Part-based Models (DPMs) by emphasizing the importance of location

and size of the initial class-specific root filter. We first compute a candidate pool

that represents the potential locations of the object as this root filter estimate, by

exploring the generic objectness measurement (region proposals) to combine the

most salient regions and “good” region proposals. We then propose learning of the

latent class label of each candidate window as a binary classification problem, by

training category-specific classifiers used to coarsely classify a candidate window

into either a target object or a non-target class. Furthermore, we improve detec-

tion by incorporating the contextual information from image classification scores.

Finally, we design a flexible enlarging-and-shrinking post-processing procedure

to modify the DPMs outputs, which can effectively match the approximate object

aspect ratios and further improve final accuracy.

Second, we investigate how knowledge about object similarities from both vi-

sual and semantic domains can be transferred to adapt an image classifier to an ob-

ject detector in a semi-supervised setting on a large-scale database, where a subset

of object categories are annotated with bounding boxes. We propose to transform

deep Convolutional Neural Networks (CNN)-based image-level classifiers into ob-

ject detectors by modeling the differences between the two on categories with both

image-level and bounding box annotations, and transferring this information to

convert classifiers to detectors for categories without bounding box annotations.

We have evaluated both our approaches extensively on several challenging de-
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tection benchmarks, e.g. , PASCAL VOC, ImageNet ILSVRC and Microsoft COCO.

Both our approaches compare favorably to the state-of-the-art and show signif-

icant improvement over several other recent weakly supervised detection methods.

Keywords: object detection, weakly supervised learning, deformable part

models, region proposals, deep learning, convolutional neural networks, transfer

learning
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Résumé

Dans cette thèse, nous nous intéressons au problème de la détection d’objets faible-

ment supervisée. Le but est de reconnaître et de localiser des objets dans les im-

ages, n’ayant à notre disposition durant la phase d’apprentissage que des images

partiellement annotées au niveau des objets. Pour cela, nous avons proposé deux

méthodes basées sur des modèles différents.

Pour la première méthode, nous avons proposé une amélioration de l’approche

”Deformable Part-based Models” (DPM) faiblement supervisée, en insistant sur

l’importance de la position et de la taille du filtre racine initial spécifique à la

classe. Tout d’abord, un ensemble de candidats est calculé, ceux-ci représentant

les positions possibles de l’objet pour le filtre racine initial, en se basant sur une

mesure générique d’objectness (par region proposals) pour combiner les régions

les plus saillantes et potentiellement de bonne qualité. Ensuite, nous avons pro-

posé l’apprentissage du label des classes latentes de chaque candidat comme un

problème de classification binaire, en entrainant des classifieurs spécifiques pour

chaque catégorie afin de prédire si les candidat sont potentiellement des objets cible

ou non. De plus, nous avons amélioré la détection en incorporant l’information

contextuelle à partir des scores de classification de l’image. Enfin, nous avons

élaboré une procédure de post-traitement permettant d’élargir et de contracter les

régions fournies par le DPM afin de les adapter efficacement à la taille de l’objet,

augmentant ainsi la précision finale de la détection.

Pour la seconde approche, nous avons étudié dans quelle mesure l’information

tirée des objets similaires d’un point de vue visuel et sémantique pouvait être util-

isée pour transformer un classifieur d’images en détecteur d’objets d’une manière

semi-supervisée sur un large ensemble de données, pour lequel seul un sous-

ensemble des catégories d’objets est annoté avec des boîtes englobantes nécessaires

pour l’apprentissage des détecteurs. Nous avons proposé de transformer des clas-
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sifieurs d’images basés sur des réseaux convolutionnels profonds (Deep CNN)

en détecteurs d’objets en modélisant les différences entre les deux en considérant

des catégories disposant à la fois de l’annotation au niveau de l’image globale et

l’annotation au niveau des boîtes englobantes. Cette information de différence est

ensuite transférée aux catégories sans annotation au niveau des boîtes englobantes,

permettant ainsi la conversion de classifieurs d’images en détecteurs d’objets.

Nos approches ont été évaluées sur plusieurs jeux de données tels que PASCAL

VOC, ImageNet ILSVRC et Microsoft COCO. Ces expérimentations ont démontré

que nos approches permettent d’obtenir des résultats comparables à ceux de l’état

de l’art et qu’une amélioration significative a pu être obtenue par rapport à des

méthodes récentes de détection d’objets faiblement supervisées.

Mots-clés: détection d’objets, apprentissage faiblement supervisé, deformable

parts models, apprentissage profond, réseaux de neurones convolutionnels,

transfert d’apprentissage

iv



Acknowledgments

There are a number of people without whom this dissertation would never have

been written. First and foremost, I would like to express my sincere and deep grat-

itude to my advisor, Prof. Liming Chen, for his academic guidance and enthusias-

tic encouragement throughout my PhD process. He showed me how to research a

problem and achieve goals. He spent endless time reviewing and proofreading my

papers, and supported me during the difficult times in my research. Besides, I am

deeply grateful for precious advice and consistent support from my co-advisor Dr.

Emmanuel Dellandréa, who has taught me a great deal. Working and discussing

with him has truly strengthened my passion for science. The quality of this piece

of work owes much to the creativity and insight from both my advisors.

I would like to thank the members of my PhD thesis committee Dr. Francesc

Moreno-Noguer, Dr. Guoying Zhao, Prof. Amaury Habrard and Dr. Georges

Quénot for accepting to evaluate this work and for their meticulous evaluations

and valuable comments.

I give my thanks to all the collaborators (too many to list here) within the Vi-

sual Sense (Visen) project for our many discussions. A special thanks goes to Dr.

Josiah Wang, for his thoughtful advise in the Natural Language Processing domain

and for his help on the experiments, writing and proofreading of our CVPR paper.

Many thanks to my co-authors Dr. Chao Zhu, Dr. Boyang Gao, Dr. Xiaofang Wang

for their collaboration in this project.

In addition, I am also grateful to all the colleagues and friends in Lyon, includ-

ing: Dr. Huanzhang Fu, Dr. Di Huang, Dr. Huibin Li, Dr. Dongming Chen,

Dr. Huiliang Jin, Wuming Zhang, Li Wang, Wei Chen, Ying Lu, Huaxiong Ding,

Yinhang Tang, Fei Zheng, Zehua Fu, Chen Wang, Hao Zhang, Xiangnan Yin and

Haoyu Li, for their discussions and the happy time they have brought to me.

Moreover, many thanks to the Jacquier family and the Gachet family for their



Chapter 0. Acknowledgments

enthusiastic help to make our life easier and happier in France.

I cannot end without thanking my family, my parents and my parents-in-law,

for their constant care and encouragement. Specifically, this thesis is dedicated to

Yang, my wife, for her unconditional love and company in the past years.

vi



Contents

Abstract i

Résumé iii

Acknowledgments v

1 Introduction 1

1.1 Object Detection: Definition . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges and Motivations . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 General Challenges for Object Detection . . . . . . . . . . . . . 4

1.2.2 Challenges for Fully Supervised Object Detection . . . . . . . 5

1.2.3 Challenges for Weakly Supervised Object Detection . . . . . . 7

1.2.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Approaches and Contributions . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Learning Weakly Supervised Deformable Part-Based Models

for Object Detection Using Region Proposals . . . . . . . . . . 9

1.3.2 Transferring Visual and Semantic Knowledge for Large Scale

Semi-supervised Object Detection . . . . . . . . . . . . . . . . 10

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 13

2.1 Image and Object Representations . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Global Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Local Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2.1 Key points/regions detection . . . . . . . . . . . . . 16

2.1.2.2 Local descriptor extraction . . . . . . . . . . . . . . . 17

2.1.2.3 Feature encoding and aggregation . . . . . . . . . . . 18

2.1.3 Learned Features . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3.1 Supervised feature learning . . . . . . . . . . . . . . 19



Contents

2.1.3.2 Unsupervised feature learning . . . . . . . . . . . . . 19

2.2 Machine Learning Methods for Classification & Detection . . . . . . 20

2.2.1 Discriminative Approaches . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Generative Approaches . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Fully Supervised Object Detection . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Sliding Window Based Approaches . . . . . . . . . . . . . . . 24

2.3.1.1 Deformable part-based models . . . . . . . . . . . . 25

2.3.2 Region Proposal Based Approaches . . . . . . . . . . . . . . . 28

2.3.2.1 Region-based convolutional neural networks . . . . 30

2.4 Weakly Supervised Object Detection . . . . . . . . . . . . . . . . . . . 35

2.4.1 Initialization Strategies . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Iterative Learning Strategies . . . . . . . . . . . . . . . . . . . . 38

2.4.3 Transfer Learning Strategies . . . . . . . . . . . . . . . . . . . . 39

3 Weakly Supervised Learning of Deformable Part-Based Models for Ob-

ject Detection via Region Proposals 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Fusing Generic Objectness and Deformable Part-Based Models for

Weakly Supervised Object Detection . . . . . . . . . . . . . . . . . . . 48

3.2.1 Object Estimations: Initialization . . . . . . . . . . . . . . . . . 49

3.2.1.1 Region extraction . . . . . . . . . . . . . . . . . . . . 50

3.2.1.2 Salient reference region . . . . . . . . . . . . . . . . . 50

3.2.1.3 Coarse candidate window pool . . . . . . . . . . . . 51

3.2.1.4 Object invariant estimations . . . . . . . . . . . . . . 51

3.2.2 Learning Latent Object Classes via Region Classification . . . 54

3.2.2.1 Region representation . . . . . . . . . . . . . . . . . . 55

3.2.2.2 Region classification . . . . . . . . . . . . . . . . . . . 55

3.2.3 Weakly Supervised DPMs Training and Testing Details . . . . 57

3.2.3.1 Single region initialization for weak DPMs (S-

WDPMs) detection . . . . . . . . . . . . . . . . . . . 57

viii



Contents

3.2.3.2 Multiple region initialization for weak DPMs (M-

WDPMs) detection . . . . . . . . . . . . . . . . . . . 57

3.2.4 Bounding Box Post-processing . . . . . . . . . . . . . . . . . . 59

3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Experiments with S-WDPMs on PASCAL VOC Subsets . . . . 62

3.3.1.1 Datasets and settings . . . . . . . . . . . . . . . . . . 62

3.3.1.2 Evaluation protocol . . . . . . . . . . . . . . . . . . . 63

3.3.1.3 Experimental evaluation . . . . . . . . . . . . . . . . 63

3.3.2 Experiments with M-WDPMs on PASCAL VOC . . . . . . . . 66

3.3.2.1 Dataset and settings . . . . . . . . . . . . . . . . . . . 66

3.3.2.2 Parameter selection . . . . . . . . . . . . . . . . . . . 68

3.3.2.3 Annotation evaluation . . . . . . . . . . . . . . . . . 69

3.3.2.4 Detection evaluation . . . . . . . . . . . . . . . . . . . 72

3.3.2.5 Error analysis . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2.6 Running time . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.3 Preliminary Results with M-WDPMs on MS COCO . . . . . . 78

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Large Scale Semi-supervised Object Detection Using Visual and Seman-

tic Knowledge Transfer 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Similarity-based Knowledge Transfer . . . . . . . . . . . . . . . . . . . 86

4.3.1 Background on LSDA . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Knowledge Transfer via Visual Similarity . . . . . . . . . . . . 89

4.3.3 Knowledge Transfer via Semantic Relatedness . . . . . . . . . 91

4.3.4 Mixture Transfer Model . . . . . . . . . . . . . . . . . . . . . . 93

4.3.5 Transfer on Bounding-box Regression . . . . . . . . . . . . . . 94

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Dataset Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 96

ix



Contents

4.4.3 Quantitative Evaluation on the “Weakly Labeled” Categories

with “Alex-Net” . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.4 Experimental Results with “VGG-Nets” . . . . . . . . . . . . . 104

4.4.5 Experimental Results with Bounding-box Regression . . . . . 105

4.4.6 Detection Error Analysis . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusion and Future Work 109

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Perspective for Future Directions . . . . . . . . . . . . . . . . . . . . . 111

6 List of Publications 115

Bibliography 117

x



List of Figures

1.1 An example of real world image that can be easily understood by a

pre-school child. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Object detection aims to recognize and localize objects of interest in

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 General challenges in generic object detection. . . . . . . . . . . . . . 4

1.4 Some example images from PASCAL VOC 2007 with ground-truth

bounding box annotations. . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 A training example for weakly supervised object detection. . . . . . . 7

2.1 Architecture of LeNet-5 Convolutional Neural Networks (CNN) for

handwritten digit recognition. . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Architecture of AlexNet Convolutional Neural Networks (CNN) for

large-scale image classification. . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Detections obtained with a two component bicycle model of DPM. . 25

2.4 The matching process of DPM at one scale. . . . . . . . . . . . . . . . 27

2.5 An illustration of the Selective Search region proposal method. . . . . 30

2.6 R-CNN object detector system overview. . . . . . . . . . . . . . . . . . 31

2.7 SPP-net network structure with a spatial pyramid pooling (SPP) layer. 32

2.8 Fast R-CNN object detector system overview. . . . . . . . . . . . . . . 33

2.9 Faster R-CNN object detector system overview. . . . . . . . . . . . . . 34

2.10 An illustration of the Region Proposal Network (RPN) to generate

region proposals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 An illustration of Multiple Instance Learning (MIL) problem. . . . . . 36

3.1 Illustration of our proposed method to extract the initial object esti-

mations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Some heat map examples generated by our methods. . . . . . . . . . 54

3.3 Illustration of our latent class learning framework for the horse cate-

gory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



List of Figures

3.4 Illustration of detection rescoring using an M-WDPMs and CNN

softmax classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Examples of bounding box enlarging-and-shrinking. . . . . . . . . . . 62

3.6 Examples of localization results for our S-WDPMs on PASCAL VOC

2007 images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 The impact of number of selected regions for each image in the mul-

tiple region initialization scheme. . . . . . . . . . . . . . . . . . . . . . 69

3.8 Three example images and their 10 selected regions. . . . . . . . . . . 70

3.9 Analysis of top-ranked detections on PASCAL VOC 2007 test set. . . 75

3.10 Analysis of false positives for some classes on which our M-WDPMs

outperforms supervised DPMs. . . . . . . . . . . . . . . . . . . . . . . 76

3.11 Detection results of weakly supervised DPMs detectors on MS

COCO 2014 val2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Semi-supervised object detection: Problem definition. . . . . . . . . . 83

4.2 An illustration of our similarity-based knowledge transfer model. . . 84

4.3 The pipeline of the LSDA framework. . . . . . . . . . . . . . . . . . . 88

4.4 Some example visualizations of visual, semantic and mixture simi-

larity between a target category and its source categories. . . . . . . . 99

4.5 Sensitivity of parameter α vs. mAP. . . . . . . . . . . . . . . . . . . . . 101

4.6 Examples of correct detections of our mixture knowledge transfer

model on ILSVRC2013 images. . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Examples of incorrect detections of our mixture knowledge transfer

model on ILSVRC2013 images. . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Some example detections before and after bounding box regression

on the “weakly labeled” categories. . . . . . . . . . . . . . . . . . . . . 106

4.9 Analysis of detection errors of our model. Error trend and fractions

before and after bounding-box regression are compared. . . . . . . . 107

xii



List of Tables

3.1 Average localization accuracy of our S-WDPMs compared with

state-of-the-art competitors on the two variations of the PASCAL

VOC 2007 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Comparison of class level localization accuracy for the VOC07-6×2

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Comparison of weakly supervised object detectors on PASCAL VOC

2007 trainval set in terms of correct localization. . . . . . . . . . . . . 71

3.4 Comparison of weakly supervised object detectors on PASCAL VOC

2007 in terms of AP in the test set. . . . . . . . . . . . . . . . . . . . . . 73

4.1 Mean average precision (mAP) of detection results on ILSVRC2013

val2 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Comparison of mean average precision (mAP) for semantic similar-

ity measures/representations, using Weighted - 100. . . . . . . . . . 101

4.3 Comparison of detection mean average precision (mAP) on the

“weakly labeled” categories of ILSVRC2013 val2, using the “VGG-

Nets”. For LSDA, our visual similarity and semantic relatedness

transfer models, Weighted - 100 scheme is adopted. . . . . . . . . . . 105





Chapter 1

Introduction

Contents
1.1 Object Detection: Definition . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges and Motivations . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 General Challenges for Object Detection . . . . . . . . . . . . . 4

1.2.2 Challenges for Fully Supervised Object Detection . . . . . . . 5

1.2.3 Challenges for Weakly Supervised Object Detection . . . . . . 7

1.2.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Approaches and Contributions . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Learning Weakly Supervised Deformable Part-Based Models

for Object Detection Using Region Proposals . . . . . . . . . . 9

1.3.2 Transferring Visual and Semantic Knowledge for Large Scale

Semi-supervised Object Detection . . . . . . . . . . . . . . . . 10

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

We may hope that machines will eventually compete with men in all purely

intellectual fields. But which are the best ones to start with? Even this is

a difficult decision. Many people think that a very abstract activity, like the

playing of chess, would be best. It can also be maintained that it is best to

provide the machine with the best sense organs that money can buy, and then

teach it to understand and speak English. This process could follow the normal

teaching of a child. Things would be pointed out and named, etc.

-Alan Turing, Computing Machinery and Intelligence (1950)



Chapter 1. Introduction

Figure 1.1: An example of real world image that can be easily understood by a
pre-school child. Image from Microsoft COCO dataset [Lin et al. 2014b].

According to Alan Turing [Turing 1950], the goal of Artificial Intelligence is to

create intelligent machines that can think and act humanly. To achieve this goal,

the intelligent machines should be able to “function appropriately and with fore-

sight in their environment” [Nilsson 2009] like humans do. Visual perception is the

ability to interpret the surrounding environment by processing information that is

contained in visible light. Humans are extraordinarily capable of perceiving and

understanding the rich visual world. Even a pre-school child can easily recognize

the objects (e.g. , person, bus, car, traffic light) in real world images as Figure 1.1.

While in a computer, this image is represented as an array of numbers indicating

the brightness at any position.

Over the last few decades, an explosive growth of image and video data

digitally available both online and offline (e.g. , social media sharing web-

sites/applications and personal photo albums) drives the computer vision com-

munity to make endeavors to empower machines to mimic humans’ ability to dis-

cover and understand the visual content. A significant aspect of image content is

2
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Figure 1.2: Object detection aims to recognize and localize objects of interest in
images. Image courtesy of [Russakovsky 2015].

the object composition: the identities and positions of the objects the images con-

tain (See Figure 1.2). Designing an intelligent visual understanding model that can

recognize the object composition gives rise to many challenging applications such

as automatic image annotation, image retrieval, self-driving cars, robotics, video

surveillance, searching online shopping catalogs, home and health-care automa-

tion, etc.

1.1 Object Detection: Definition

Visual (scene) understanding started with the goal of building machines that can

see like humans to infer general principles and current situations from imagery.

Typically, the most essential component of an intelligent visual understanding

model is its object detection module [Andreopoulos & Tsotsos 2013]. We begin

with a definition of the object detection problem. Given an arbitrary image, an

ideal object detection method aims not only to recognize but also to locate objects

in categories of interest within the image. Figure 1.2 shows an object detection ex-

3
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Figure 1.3: General challenges in generic object detection. Image courtesy: http:
//cs231n.github.io/classification/

ample that recognize all the objects of interest and determine the location together

with the extent of each object instance by drawing a rectangular bounding box.

The success of early detection methods starts from localizing constrained object

categories, such as face [Viola & Jones 2001] or pedestrian [Dalal & Triggs 2005].

Recent approaches are moving to the detection of various categories of generic ob-

jects with large appearance variations, e.g. , from the 20 categories of PASCAL VOC

[Everingham et al. 2010] to 80 categories of Microsoft COCO [Lin et al. 2014b] and

200 categories of ImageNet ILSVRC [Russakovsky et al. 2015]. In this dissertation,

we focus on object detection of generic object categories, since it is a necessary first

step to the scene understanding problem.

1.2 Challenges and Motivations

1.2.1 General Challenges for Object Detection

There are many difficulties and challenges associated with the object detection task,

most of which are caused by the fact that visual appearances of objects in images

vary largely by the following factors:

Viewpoint variation: An important cause of the variability in visual appearance

is that a single instance of an object can be oriented in many ways with respect to

the camera during image acquisition.

Illumination conditions: A variation in illumination condition can change the

4
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pixel intensities of an object surface. A good object detection system should be

invariant to several illumination transformations.

Scale variation: Variation in size of same object category often exists not only in

terms of their extent in the image, but also in the real world. An ideal detector

should be able to detect object instances existing in various scales.

Deformation: Many objects of interest are not rigid bodies thus can undergo var-

ious deformations. For example, animals and people can have different poses and

actions such as walking, sitting, lying, etc. A successful object detection method

must have the ability to recognize objects across a wide range of deformations.

Background clutter: In real world images, the objects of interest may blend into

their environment, making them hard to identify.

Occlusion: Some parts of objects of interest can be occluded by other objects or

stuff. Sometimes only a small portion of an object could be visible due to occlu-

sion.

Intra-class variation: Within an object category, the object instances can vary sig-

nificantly in forms of color, texture, shape, number of parts, etc. For example, for

the aeroplane class from the PASCAL VOC dataset, fighter jet, jumbo passenger jet,

single-engine propeller plane, and biplane are all labeled as “aeroplane”, although

they are visually very dissimilar.

Figure 1.3 shows some examples of different general challenges in generic object

detection.

In addition to these variations, the similarity between object categories also ex-

ists in real world images. For example, a small number of object instances annotated

as “dog” and “cat” are visually very similar, which are fairly hard to differentiate.

1.2.2 Challenges for Fully Supervised Object Detection

For most of the object detection methods, a fully supervised learning

(FSL) approach is adopted [Dalal & Triggs 2005, Felzenszwalb et al. 2010b,

Szegedy et al. 2013, Girshick et al. 2014], where positive training images are

manually annotated with bounding boxes encompassing the objects of inter-
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aeroplane 

car 

Figure 1.4: Some example images from PASCAL VOC 2007 with ground-truth
bounding box annotations.

est. We show some examples of PASCAL VOC 2007 [Everingham et al. 2010]

bounding box annotations in Figure 1.4. Most conventional fully supervised

methods for object detection learn a discriminative model on these fully an-

notated data. During training, they typically reduce a detection problem to a

binary classification problem by treating different object categories indepen-

dently. Binary classifiers run within the image in a sliding window manner

[Dalal & Triggs 2005, Felzenszwalb et al. 2010b], or on a set of region proposals

[Alexe et al. 2012, Uijlings et al. 2013] to considerably reduce computation effort.

Fully supervised learning methods has been improving rapidly during

the last decade in terms of both accuracy and speed [Dalal & Triggs 2005,

Felzenszwalb et al. 2010b, Girshick et al. 2014, Girshick 2015, Ren et al. 2015a,

Liu et al. 2016]. Moreover, the key to the success of deep Convolutional Neural

Networks (CNN) [Krizhevsky et al. 2012] for object detection is the ability to

learn from large quantities of fully annotated data. However, fully supervised

learning is not scalable due to the lack of fully annotated data, especially for large

scale data. For example, only about 3,000 of 21,841 synsets in ImageNet dataset

6
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Bicycle: no 
Bird: yes 
Car: yes 
Motobike: no 
Person: no 
… 

Figure 1.5: A training example for weakly supervised object detection. Image from
PASCAL VOC 2007 [Everingham et al. 2010].

[Russakovsky et al. 2015] are annotated with bounding boxes. Therefore, fully

supervised object detection has limitations in extending to new object categories

without manually labeled bounding box annotations.

1.2.3 Challenges for Weakly Supervised Object Detection

Although annotations on objects localization are extremely valuable, the process of

manually annotating object bounding boxes is extremely laborious and unreliable,

especially for large-scale databases. For example, annotating the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) dataset [Russakovsky et al. 2015] for

object detection, which has hundreds of thousands of images of 200 object cate-

gories required 42 seconds per bounding-box by crowd-sourcing on Amazon Me-

chanical Turk1. On the other hand, it is usually much easier to obtain annotations at

image level, indicating the absence or presence of object instances of the category (A

training example is shown in Figure 1.5). For example, from user-generated tags on

Flickr or Web queries. One could directly apply classifiers trained at image-level

1https://www.mturk.com/
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to detect object categories, but it performs poorly as there are differences in the

statistical distribution between the training data (whole images) and the test data

(localized object instances). This phenomenon is known as “domain shift”.

In recent years, there has been a substantial amount of work on weakly super-

vised object detection. Based on weakly annotated examples, the common practice

is to jointly learn an appearance model together with the latent object location. The

majority of related work treats the weakly supervised object detection as a multi-

ple instance learning (MIL) [Maron & Ratan 1998] problem. In the MIL framework,

there are some positive and some negative bags. A bag is positive when it has at

least one positive instance, while it is negative if all the instances are negative. The

object detector is then obtained by alternating detector training, and using the de-

tector to select the most likely object instances in positive images. In most MIL

framework, there is a huge number of examples in each bag when using exhaus-

tive searching (e.g. , sliding window approach). Although region proposal meth-

ods [Alexe et al. 2012, Uijlings et al. 2013, Zitnick & Dollar 2014, Bilen et al. 2014]

can significantly reduce the search space per image, the selection of windows across

a large number of images is inherently a challenging problem, where an iterative

weakly supervised method can typically find only a local optimum depending on

the initial windows [Cinbis et al. 2014]. A good initialization is crucial, however,

this is a “chicken and egg” problem: a good model can be learned if we start from

a selection of good initial windows, but the latent annotations are needed to in-

fer a good model. Moreover, multiple objects and small objects are widely ex-

isted in recent dataset such as PASCAL VOC [Everingham et al. 2010], ImageNet

[Russakovsky et al. 2015], Microsoft COCO [Lin et al. 2014b], which makes the task

of weakly supervised object detection more challenging.

1.2.4 Objective

Based on the above discussion, in this dissertation, in contrast to the traditional

fully supervised learning (FSL), we are concerned with weakly supervised learning

(WSL) for object detection, where image-level labels indicating the presence or the

8
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absence of the object are given, but the exact object locations in positive training

examples are not provided or only partially provided.

Deformable Part-based Models (DPMs) [Felzenszwalb et al. 2010b] and Region-

based Convolutional Neural Networks �CNNs� [Girshick et al. 2016, Girshick 2015,

Ren et al. 2015a] are successful frameworks for object detection in recent years.

Therefore, our objective is to propose approaches with weak supervision based on

these two models.

1.3 Approaches and Contributions

In this dissertation, we propose two novel approaches for weakly supervised ob-

ject detection. Our approaches and contributions are summarized in the following

subsections.

1.3.1 Learning Weakly Supervised Deformable Part-Based Models for

Object Detection Using Region Proposals

We propose a model enhancing the weakly supervised Deformable Part-based

Models (DPMs) by emphasizing the importance of location and size of the ini-

tial class-specific root filter. To adaptively select a discriminative set of candidate

bounding boxes as this root filter estimate, first, we explore the generic objectness

measurement (region proposals) to combine the most salient regions and “good”

region proposals. Second, we propose learning of the latent class label of each

candidate window as a binary classification problem, by training category-specific

classifiers used to coarsely classify a candidate window into either a target object or

a non-target class. Furthermore, we incorporate the contextual information from

image classification, by combining the image-level classification score with object-

level DPM detection score, to obtain a final score for detection so as to improve

detection. Finally, we design a flexible enlarging-and-shrinking post-processing

procedure to modify the DPMs outputs, which can effectively match the approx-

imate object aspect ratios and further improve final accuracy. Extensive experi-

mental results on the challenging PASCAL Visual Object Class (VOC) 2007 and the
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Microsoft Common Objects in Context (MS COCO) 2014 dataset demonstrate that

our proposed framework is effective for initialization of the DPMs root filter. It

also shows competitive final localization performance with state-of-the-art weakly

supervised object detection methods, particularly for the object categories which

are relatively salient in the images and deformable in structures. This work is pub-

lished and was awarded the Top 10% Paper Award at the IEEE International Con-

ference on Image Processing (ICIP) 2014 [Tang et al. 2014b] and its extended version

[Tang et al. 2016b] is published in the IEEE Transactions on Multimedia.

1.3.2 Transferring Visual and Semantic Knowledge for Large Scale

Semi-supervised Object Detection

We investigate how knowledge about object similarities from both visual and se-

mantic domains can be transferred to adapt an image classifier to an object detec-

tor in a semi-supervised setting, where a subset of object categories are annotated

with bounding boxes. We propose to transform deep CNN-based image-level clas-

sifiers into object detectors by modeling the differences between the two on cate-

gories with both image-level and bounding box annotations, and transferring this

information to convert classifiers to detectors for categories without bounding box

annotations. The intuition behind our proposed method is that visually and se-

mantically similar categories should exhibit more common transferable properties

than dissimilar categories, e.g. , a better detector would result by transforming

the differences between a dog classifier and a dog detector onto the cat class, than

would by transforming from the violin class. Experimental results on the challeng-

ing ILSVRC2013 detection dataset demonstrate that each of our proposed object

similarity based knowledge transfer methods outperforms the baseline methods.

We found strong evidence that visual similarity and semantic relatedness are com-

plementary for the task, and when combined notably improve detection, achiev-

ing state-of-the-art detection performance in a semi-supervised setting. This work

is published in the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) 2016 [Tang et al. 2016a] and its extended version will be submitted to a top

10
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journal.

1.4 Outline

The remaining of this dissertation is organized as follows:

In Chapter 2 we introduce the fundamental of object detection and reviews the

literature of various fully supervised and weakly supervised object detection meth-

ods.

In Chapter 3 we present our selection model to learn Deformable Part-based

Models in a weakly supervised manner.

In Chapter 4 we present our knowledge transfer method to transform a CNN

image classifier into an object detector in a semi-supervised manner.

In Chapter 5 we conclude our work and discuss the remaining challenges.

Finally, in Chapter 6 we list our publications.
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Object detection involves locating the target objects of particular categories in

the image. Generally, an object detector can be regarded as a combination of an

image feature set and a detection algorithm. Image feature representation involves

dense or sparse extraction of features vectors from image patches; and the detec-

tion architecture engages learning algorithms to recognize instances of an object

category based on the feature vectors.

In this chapter, we provide an overall review of the literature on object detection

related work. We start by briefly reviewing image and object representations in Sec-

tion 2.1. Then, we introduce some general classification and detection methods in

Section 2.2. Next, we provide an overview of the fully supervised object detection

approaches in Section 2.3. Finally, we review the existing weakly supervised learn-

ing models for object detection, where the goal is to learn object detection models

with no or incomplete bounding box annotations.

In our overview, we focus mainly on the close related work of this dissertation,

while a detailed review of the object recognition methods can be found in the ex-

cellent survey paper by [Andreopoulos & Tsotsos 2013].

2.1 Image and Object Representations

The first step of object recognition is to transform the content of an image or an

image region into a set of feature vectors, or descriptors, which are expected to dis-

criminatively represent the image content with efficient computation, reasonable

size, and robustness to image variations resulted by illumination, scale, pose, etc..

The feature exaction step is critical to ensure good detection performance, and is

considered as the basis of the whole detection process.

Extensive literature exists on the exploitation of feature extraction, in order to

improve recognition. Prior to deep Convolutional Neural Network (CNN) feature

[Krizhevsky et al. 2012], there were two contrasting views in computer vision on

how to compute feature vectors: global features and local features.
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2.1.1 Global Features

Early research on appearance-based recognition mainly used global features based

on color, texture or shape histograms from the whole image.

Color is arguably the most direct and expressive visual information. Methods

for extracting color features (e.g. , color histogram [Swain & Ballard 1991], color

moments [Stricker & Orengo 1995], color coherence vectors [Pass et al. 1996]) cap-

ture color information, such as color distribution, relationship between different

colors, etc., contained in an image.

Texture features can be intuitively considered as the repeated patterns of local

variation of pixel intensities. Gabor [Daugman 1988] filters are widely adopted to

extract global texture features for image analysis.

Shape is a geometrical description of the external boundary of an object which

can be described by basic geometry units such as points, lines, curves and planes.

Popular shape features [Park et al. 2000, Pujol & Chen 2007] mainly focus on the

edge or contour of an object to capture its shape information.

The raw extracted global features can be projected into a lower dimen-

sional feature space, for instance, using Principal Component Analysis (PCA)

[Murase & Nayar 1995], which is more easily amenable to powerful classifiers for

recognition.

The main drawback of aforementioned global features is that they are very

sensitive to background clutter, occlusion, and illumination variations. Moreover,

these global methods implicitly assume that objects of interest take up most of the

image content, which is not always desirable in real world images. All these con-

straints make global features gradually give their way to local features.

2.1.2 Local Features

Local feature based recognition methods have drawn a lot of attention

since the second half of the 1990s due to their robustness in background

clutter and partial occlusion. Almost twenty years passed, local features

are still at the center of many fundamental computer vision problems in-

15



Chapter 2. Literature Review

cluding registration, stereo vision, motion estimation, matching, retrieval,

recognition of objects and actions. Local features can be based on points

[Harris & Stephens 1988, Mikolajczyk & Schmid 2002], blobs (Laplacian of

Gaussian [Lindeberg 1998] or Difference of Gaussian [Lowe 2001]), intensities

[Kadir & Brady 2001], color [Zhu et al. 2013], texture (Local Binary Patterns (LBP)

[Ojala et al. 2002] and its variants which have extensive applications in texture

classification [Zhao et al. 2012], face recognition [Ahonen et al. 2006], facial expres-

sion detection [Zhao & Pietikainen 2007], etc.), gradient [Mikolajczyk et al. 2004],

or combinations of several of these. Generally, local feature extraction consists of

three main steps: (1) key points/regions detection, (2) local descriptor extraction

from the detected key points/regions, (3) feature encoding and aggregation.

2.1.2.1 Key points/regions detection

Local features are extracted from local image regions, thus it is important to obtain

a representative set of image regions/patches covering the essential information

of a given image. There are two mainly strategies for this purpose. The first one is

sparse sampling based on points, image fragments or part detectors and the second

one is dense sampling using image intensities or gradients.

Sparse sampling: Interest point detectors aim to find a sparse set of discrimina-

tive regions containing plenty of information about image structures like edges and

corners, or local blobs with uniform brightness. The final detector are then based

on the feature vectors computed from the extracted key points/regions. Many

key point/region detectors have been proposed in the literature, the most com-

monly used key point/region detectors include Harris [Harris & Stephens 1988],

Laplacian [Lindeberg 1998], Difference of Gaussians (DoGs) [Lowe 2004], scale in-

variant Harris-Laplace [Mikolajczyk & Schmid 2004], maximally stable extremal

regions (MSER) [Matas et al. 2004]. An advantage of sparse sampling by find-

ing key points is that the number of interest points is much fewer than that of

image pixels, thus generating a compact representation, which speeds up lat-

ter classification/detection process. However, most of the key point detectors
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are designed to fire repeatedly on particular objects and might have constraints

when generalizing to generic object categories. Comprehensive reviews and eval-

uations of key point/region detectors can be found in [Schmid et al. 2000] and

[Mikolajczyk et al. 2005].

Dense sampling: Another approach is to extract visual features densely (often

pixel-wise) over an entire image or detection window and to collect them into a

high-dimensional descriptor vector that can be used for discriminative image clas-

sification or object recognition. Typically the representation is based on image

intensities [Vidal-Naquet & Ullman 2003], gradients [Ronfard et al. 2002] or higher

order differential operators [Viola & Jones 2001]. Dense sampling methods have

been observed to outperform the sparse sampling methods for object recognition

[Nowak et al. 2006]. One potential reason for this is that dense sampling avoids

losing significant information by sampling uniformly from the entire image, while

sparse sampling may skip some crucial information for object recognition by only

looking around key points/regions. In order to have decent categorization ac-

curacy, the sampling frequency should be increased to ensure obtaining similar

patches across images, which results in a significant increase in feature extraction

cost. [Tuytelaars 2010] proposes to find interest points with a dense grid to alleviate

this issue.

2.1.2.2 Local descriptor extraction

After sampling image patches, the next step is to extract feature vectors (or lo-

cal descriptors). Various of local descriptors have been proposed in the lit-

erature, and the most popular ones are distribution-based descriptors, which

represent region properties by histograms. The most popular local descrip-

tors applied to object recognition include: Scale Invariant Feature Transform

(SIFT) [Lowe 2004], Histogram of Oriented Gradient (HOG) [Dalal & Triggs 2005],

DAISY [Winder et al. 2009], Speeded-Up Robust Features (SURF) [Bay et al. 2008]

and shape context [Belongie et al. 2002]. There have been numerous research stud-

ies contributed to improve the pioneer work of [Lowe 2004, Dalal & Triggs 2005]
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by integrating new features. The combination of these feature with color or mo-

tion information has proved to increase the detectors performance. These local de-

scriptors are designed to be discriminative, computationally efficient, and robust

against various image variations such as scaling, affine distortions, viewpoint and

illumination variations.

2.1.2.3 Feature encoding and aggregation

After local feature extraction, each image is represented by a set of local descriptors.

Efficient feature encoding and aggregation methods are required to transform the

high dimensional raw local descriptors into a more compact, informative and fixed-

length representation for constructing a suitable image descriptor.

Bag-of-words (BoW, a.k.a. bag-of-visual-words (BoVW), bag-of-features(BoF))

[Sivic & Zisserman 2003, Csurka et al. 2004] has been one of the most popular im-

age representation methods. The key idea of BoW is to represent an image with

orderless distributions of local image features based on an intermediate represen-

tation called visual vocabulary. Typically it consists of three steps: (1) visual vo-

cabulary (a.k.a. dictionary or codebook) construction (e.g. , using k-means cluster-

ing [Macqueen 1967], Guassian mixture models (GMM) [Fernando et al. 2012]), (2)

feature encoding (e.g. , sparse coding [Olshausen & Field 1997]), Super Vector (SV)

[Zhou et al. 2010], Fisher Vector (FV) [Sánchez et al. 2013]), (3) feature aggregation

(e.g. , average [Carreira et al. 2012], max pooling [Boureau et al. 2010]). A compre-

hensive analysis and evaluation of feature encoding and aggregation methods can

be found in [Chatfield et al. 2011].

Since BoW method views images as an orderless collection of local features,

the spatial relationships between them were not explicitly considered. The most

popular method for incorporating global layout into the image representation is

the Spatial Pyramid Matching (SPM) proposed by [Lazebnik et al. 2006]. This pro-

vides a mid-level representation which bridges the semantic gap between low-level

features extracted from an image patch and high-level concepts to be categorized.
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2.1.3 Learned Features

The aforementioned global and local features are hand-crafted features which are

usually designed for specific purposes: HOG for appearance and shape, LBP for

texture, shape context for shape, etc., and their modeling capacities are limited by

the fixed transformations (filters) that stay the same for different sources of data.

On the other hand, feature learning, which aims to automatically learn useful fea-

tures or representations from raw data without requiring expensive human labor

or expert knowledge, has received a lot of attention. Typically, feature learning

methods can be categorized into two different groups: (1) supervised and (2) un-

supervised learning.

2.1.3.1 Supervised feature learning

In supervised feature learning, features are learned with labeled input data.

Examples include neural networks [Bishop 1995], multilayer perceptron (MLP)

[Attardi et al. 2009], and supervised dictionary learning [Mairal et al. 2009]. In the

last few years, a prominent supervised feature learning example is Convolu-

tional Neural Networks (CNN or ConvNet) [LeCun et al. 1990, Lecun et al. 1998,

Krizhevsky et al. 2012]. Features extracted from the intermediate layers of

a CNN are proved to be very powerful for many computer vision tasks.

[Simo-Serra et al. 2015] learn compact discriminative feature point descriptors us-

ing a CNN to represent an image patch. We will elaborate the architecture of CNNs

in Section 2.2.3.

2.1.3.2 Unsupervised feature learning

In unsupervised feature learning, features are learned with unlabeled in-

put data. Examples include dictionary learning [Lee et al. 2006], indepen-

dent component analysis (ICA) [Hyvärinen & Oja 2000], sparse autoencoders

[Makhzani & Frey 2014], matrix factorization [Srebro et al. 2005], and various

forms of clustering [Csurka et al. 2004]. An autoencoder neural network is an unsu-

pervised learning algorithm that applies backpropagation, setting the target values
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to be equal to the inputs by learning a function hW,b(x) ≈ x. Sparse coding is a class

of unsupervised methods for learning sets of over-complete bases to represent data

efficiently. The aim of sparse coding is to find a set of basis vectors ϕ(i) such that

we can represent an input vector x as a linear combination of these basis vectors:

x =
∑k

i=1 a(i)ϕ(i).

2.2 Machine Learning Methods for Classification & Detec-

tion

Object detection systems construct a model for each object category from a set of

training examples. Generally, object detection methods can be categorized into dis-

criminative approaches and generative approaches [Amit & Felzenszwalb 2014].

Both discriminative and generative models start with an initial choice of image

features. The principal differences between discriminative and generative mod-

els are in the methods of training and computation. A significant distinction is that

discriminative methods need data from both foreground object and background

regions to learn the decision boundaries whereas generative models do not need

data from background to train the object models. In this section, we will review

the popular classification methods for object recognition.

2.2.1 Discriminative Approaches

Discriminative approaches typically build a classifier that can discriminate between

images (or image regions) containing the object instance and those not containing

the object. The parameters of the classifier are learned to minimize errors on the

training data, often with a regularization term to avoid overfitting. Machine learn-

ing techniques such as Support Vector Machine (SVM) [Cortes & Vapnik 1995] and

Boosting [Schapire 2001] have become popular as classifiers for object recognition

owing to their ability to automatically select relevant descriptors or features from

large feature sets and their decent performance.

Support Vector Machine (SVM) classifiers have been widely used for object
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recognition for the past decade [Cortes & Vapnik 1995]. SVM constructs a hyper-

plane in a high or infinite dimensional space to separate the samples from different

classes for classification. A good separation is is to construct a decision boundary

(hyperplane) that maximizes the margin (gap) between the object class and non-

object class in either the input feature space or a kernelized version of this. The

maximum margin problem can be formulated as the following unconstrained con-

vex optimization problem:

arg min
w

J(w) = arg min
w
{C

∑
i

max(0, 1− yi(w
Txi + b)) +

1

2
∥w∥2} (2.1)

where J(w) is the objective function, (w, b) is the hyperplane, x is a sample, y ∈

{+1,−1} is the label and C is a trade-off parameter that penalizes the margin vio-

lations.

Adaptive Boosting (a.k.a. AdaBoost) [Freund & Schapire 1997] gathers a col-

lection of weak classifiers to form a stronger one, which is used particularly to build

cascades of pattern rejecters, with at each level of the cascade choosing the features

that are most relevant for its rejection task. Although AdaBoost cascades take rel-

atively long time to train, owing to their selective feature encoding they offer sig-

nificant improvement (compared to SVMs) in the run-time of the final detectors.

2.2.2 Generative Approaches

In contrast to discriminative approaches, generative approaches produce a proba-

bility density (joint probability distribution) model over all the variables and then

adopt it to compute classication functions. The most common generative models

are based on Bayesian or graphical models. [Weber et al. 2000] adopt Bayesian gen-

erative models learned with expectation maximization (EM) to characterize classes,

and use likelihood ratios for classification. [Fergus et al. 2003] also use likelihood

ratios, but with a more elaborate model of conditional probabilities that includes

the position and scale of the features as well as their appearance.
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2.2.3 Deep Learning

In recent years, deep learning based methods such as deep Convolutional Neu-

ral Networks (CNN) have become prominent since their ability to learn con-

cepts with minimal feature engineering, end-to-end and in a purely data driven

fashion. Typically, a CNN is composed of a sequence of layers that convolve

the input image with filters, apply non-linear transformations on filter responses

and spatially pool the resulting values. CNNs are very similar to ordinary

neural networks (NN) since they are both consist of neurons that have learn-

able weights and biases, but they are different from NNs: (1) CNNs use con-

volution in place of general matrix multiplication in at least one of their lay-

ers, (2) the number of parameters in CNNs is significantly reduced in compar-

ison with fully connected NNs due to weights sharing. Although it has been

decades since the introduction of CNNs [LeCun et al. 1990, Lecun et al. 1998] (best

known work is LeNet-5 for handwritten digit recognition, see Figure 2.1), only

recently CNNs have seen a surge of attention from the computer vision com-

munity [Krizhevsky et al. 2012], demonstrating previously unattainable perfor-

mance on the tasks of image classification[Krizhevsky et al. 2012, He et al. 2016],

object detection [Girshick et al. 2016, Girshick 2015, Ren et al. 2015a], localization

[Sermanet et al. 2014] and semantic segmentation [Girshick et al. 2014]. The im-

provements in CNN training techniques(e.g. , rectified linear unit (ReLU) non-

linearity [Nair & Hinton 2010]), computational resources (e.g. , large memory

GPUs) and large scale datasets (e.g. , ImageNet [Russakovsky et al. 2015]) have

made the CNN-based architectures more powerful.

In CNNs, a feature map can be obtained after a series of convolutional oper-

ation followed by an element-wise non-linearity. Each convolutional layer is typ-

ically followed by a pooling layer – an operation which outputs a maximum (or

an average, i.e. max pooling or average pooling) value within a local neighbor-

hood, reducing the size of a feature map and introducing additional invariance

to small local translations. An example of first major success of deep learning in

computer vision on large scale image dataset for image classification is the AlexNet
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Figure 2.1: Architecture of LeNet-5 Convolutional Neural Networks (CNN) for
handwritten digit recognition.

CNN [Krizhevsky et al. 2012]. The architecture of AlexNet is shown in Figure. 2.2.

It has eight layers (five convolutional layers and three fully connected layers) and

it contains 60 million parameters, which are automatically learned on the Ima-

geNet dataset containing 1.2 million training images of 1000 image categories. The

AlexNet was the winner of the ImageNet ILSVRC challenge for image classification

in 2012 and significantly outperformed the second runner-up (top 5 error of 16%

compared to runner-up with 26% error). A number of more advanced and complex

convolutional networks, especially in the context of visual recognition and detec-

tion from images, have been proposed over last years, including Zeiler & Fergus

Net (ZF-Net) [Zeiler & Fergus 2014], Network in Network (NIN) [Lin et al. 2014a],

Inception modules (or GoogLeNet) [Szegedy et al. 2015], VGG-Nets (VGG-16 and

VGG-19) [Simonyan & Zisserman 2015]. Recently, the Residual network (ResNet)

[He et al. 2016] with more than 150 layers won the first place for many tasks in

ILSVRC [Russakovsky et al. 2015] and COCO [Lin et al. 2014b] challenge in 2015.

Since a deep learning model implicitly learns an image representation, the

upper-layers of a pre-trained model on a large scale dataset can be used as a high-

level feature extractor. For instance, [Girshick et al. 2014] use fc6 and fc7 layer out-

put of the AlexNet, which is a 4096-dimensional feature vector, as an input to SVM

for classification.
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Figure 2.2: Architecture of AlexNet [Krizhevsky et al. 2012] Convolutional Neural
Networks (CNN) for large-scale image classification.

2.3 Fully Supervised Object Detection

The most common approach to object detection reduces the problem to a set of

binary classification problems by applying class-specific classifiers which classi-

fying each candidate window (sub-image) into target category that contains the

object of interest, or non-target category that does not contain the object. In

this section, we review the fully supervised object detection [Dalal & Triggs 2005,

Felzenszwalb et al. 2010b, Szegedy et al. 2013, Girshick et al. 2014, Ren et al. 2015a,

Liu et al. 2016], where positive training images are manually annotated with

bounding boxes encompassing the objects of interest. Localization Strategies can

be divided into two different groups: (1) sliding window approaches and (2) region

proposal approaches.

2.3.1 Sliding Window Based Approaches

In the context of computer vision, a sliding window is rectangular region of fixed

width and height that “slides” across an image. The sliding window approach to

object detection involves explicitly considering and classifying every possible win-

dow over an exhaustive list of positions, scales, and aspect ratios. For each of these

windows, some class-specific image classifiers can be applied to it, to determine if

the window has an object of interest. Normally, utilizing both a sliding window

and an image pyramid we are able to detect objects in images at various scales and
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Figure 2.3: Detections obtained with a two component bicycle model of DPM
[Felzenszwalb et al. 2010b].

locations.

[Dalal & Triggs 2005] use a sliding window approach based on a single rigid

template and Histogram of Oriented Gradients (HOG) descriptors to build a detec-

tion model for pedestrian in images and videos. The pedestrian model is trained

using linear SVM based on bounding boxes from positive images, and negative

window set from person-free images.

2.3.1.1 Deformable part-based models

The deformable part-based models (DPM) [Felzenszwalb et al. 2010b] extend the

single template model to mixture of deformable part-based models to handle small

shape deformations, pose and viewpoint variations. The key idea behind de-
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formable parts is to represent an object model using a lower-resolution root tem-

plate, together with a set of spatially flexible high-resolution part templates. Each

part captures local appearance properties of an object, and the deformations are

characterized by links connecting them. Figure. 2.3 shows an example of detec-

tions obtained by a 2 component bicycle model of DPM. This example illustrates

the importance of deformations mixture models. In this model the first component

captures sideways views of bicycles while the second component captures frontal

and near frontal views.

In the standard fully supervised DPMs framework, the root filter is initialized

with the positive ground-truth object bounding box, and is allowed to move around

in its small neighborhood to maximize the filter score. The locations of object parts

are always treated as latent information due to the unavailability of object part an-

notations upon most occasions. A latent SVM (LSVM) is adopted to learn object

deformation, which can alternate between fixing latent variables (e.g. , object part

locations, instance-component membership) for positive examples and optimizing

its objective function. The overall score of each root location p0 is based on the best

placement of all parts (i.e. p1, . . . , pn):

score(p0) = max
p1,...,pn

score(p0, . . . , pn) (2.2)

Figure. 2.4 shows the matching process at one scale. Responses from the root

and part filters are computed a different resolutions in the feature pyramid. The

transformed responses are combined to yield a final score for each root location.

The responses and transformed responses for the “head” and “right shoulder”

parts are shown. The combined scores clearly show two good hypothesis for the

object at this scale.

The deformable part model is the foundation of several champion systems for

object detection challenges in PASCAL VOC 2007-2011 [Everingham et al. 2010].

It is successfully extended to many related tasks such as face detection

[Zhu & Ramanan 2012], pedestrian detection [Xu et al. 2014], human pose estima-

tion [Yang & Ramanan 2013]. DPM HSC [Ren & Ramanan 2013] replaces HOG
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Figure 2.4: The matching process of DPM at one scale. Responses from the root
and part filters are computed a different resolutions in the feature pyramid. The
transformed responses are combined to yield a final score for each root location.
Figure from [Felzenszwalb et al. 2010b].

with histograms of sparse codes (HSC), which learns sparse code dictionaries to

significantly improve object detection accuracy. [Trulls et al. 2014] propose pro-

pose to combine bottom-up segmentation (in the form of superpixels computed
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at different scales) with DPM to ‘clean up’ HOG features, for both root and part

filters.

DPM and its various variants have advantages in handling large appearance

variations for challenging datasets, however, the speed is a bottleneck of DPMs in

real-time application, where speed is often considered as important as accuracy.

The speed constraint mainly comes from the correlation between a sequence of

root & part filters and HOG features at exhaustive sliding window locations. Some

works accelerated DPM using cascade [Felzenszwalb et al. 2010a], coarse-to-fine

[Pedersoli et al. 2011], branch-and-bound [Kokkinos 2011], fast Fourier transform

(FFT) [Dubout & Fleuret 2012], discriminative low rank root filter with neighbor-

hood aware cascade [Yan et al. 2014].

2.3.2 Region Proposal Based Approaches

Sliding window classifiers scale linearly with the number of test windows.

Typically, a single-scale detection requires classifying around 104 – 105 win-

dows per image, and the number of windows grows by an order of mag-

nitude for multi-scale detection. Recent object detection datasets such as

PASCAL VOC [Everingham et al. 2010], ILSVRC [Russakovsky et al. 2015], COCO

[Lin et al. 2014b] adopt the IoU (Intersection over Union) to evaluate the predicted

windows, which require more accurate predictions matching the aspect ratio of

the objects, further increasing the search space to 106 to 107 windows per image

[Hosang et al. 2014].

To keep the computational cost feasible, recently, class-independent region pro-

posal (or object proposal, detection proposal) attracts a lot of attention to consider-

ably reduce computation compared to the (dense) sliding window detection frame-

work by generating smaller number of candidate proposals that may contain ob-

jects.

Given an image, a region proposal method aims to generate a set of candidate

detection windows (around 103 - 104) that are likely to contain the objects with a

high recall, under the assumption that all objects of interest share common visual
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properties that distinguish them from the background. Region proposal methods

are mostly based on low-level image features to generate candidate windows. Very

recently, some work [Ren et al. 2015a, Liu et al. 2016] utilize deep convolutional fea-

ture maps to generate region proposals.

Two general approaches have been proposed for generating object propos-

als in recent years: grouping methods such as Selective Search [Uijlings et al. 2013],

Constrained Parametric Min-Cuts (CPMC) [Carreira & Sminchisescu 2012], Mul-

tiscale Combinatorial Grouping (MCG) [Arbeláez et al. 2014] and window scoring

methods such as Objectness [Alexe et al. 2012], BING [Cheng et al. 2014], EdgeBoxes

[Zitnick & Dollar 2014]).

Among these object proposal methods, Objectness [Alexe et al. 2012] is one of

the earliest and well known proposal methods. The objectness model is trained on

a small set of training examples of mixed object categories. An initial set of propos-

als is selected from salient locations in an image, these proposals are then scored

according to multiple cues including color contrast, edge density, location, size,

and the strong “superpixel straddling” cue. Non-Maximum Suppression (NMS)

is adopted to sample the initial set of candidate windows to sample high scored

windows and cover diverse image locations. It is shown that more than 90% of the

object instances in PASCAL VOC detection datasets can be covered (recall > 90%)

by these region proposals by sampling around 1000 windows per image, which

is far fewer than that of sliding window approach. Therefore, a major advantage

of this approach is that it enables utilization of the complex recognition models

that are otherwise too slow or incompatible with the aforementioned localization

strategies.

Another popular region proposal method is Selective Search proposed by

[Uijlings et al. 2013]. It greedily merges superpixel segments with similar color and

texture descriptor to generate a hierarchical segmentation tree (See Figure. 2.5).

The bounding boxes of the resulting segments in the hierarchy are collected as can-

didate windows. This method has no learned parameters, instead features and sim-

ilarity functions for merging superpixels are manually designed. Selective Search

region proposal has been broadly used by many state-of-the-art object detectors,
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Figure 2.5: An illustration of the Selective Search region proposal method
[Uijlings et al. 2013].

including the deep learning based R-CNN [Girshick et al. 2014, Girshick et al. 2016]

and Fast R-CNN [Girshick 2015] detectors. It has a recall rate of 98% on PASCAL

VOC and 92% on ImageNet with around 2000 region proposals per image.

[Hosang et al. 2016] discuss common strengths and weaknesses of ten recent

region proposal methods, and give insights and metrics for choosing and tuning

proposal methods.

2.3.2.1 Region-based convolutional neural networks

Convolutional neural networks achieved great success first in large scale image

classification. Thereafter, researchers began to investigate how can the CNN

be made to work as an object detector [Sermanet et al. 2014, Szegedy et al. 2013,

Girshick et al. 2014]. Currently, the state-of-the-art object detection systems

[Girshick et al. 2014, He et al. 2015, Ren et al. 2015a, Ren et al. 2015a, Liu et al. 2016]

are deep learning (CNN) based frameworks, which benefit from the high-level fea-

tures and rich representations learned by CNN.

R-CNN (Region-based Convolutional Neural Networks) [Girshick et al. 2014,

Girshick et al. 2016] is one of the first deep learning based object detection frame-

works which adopt region proposals. It consists of three main modules: (1) class-

independent region proposals, (2) convolutional neural networks, and (3) a set of

class-specific linear SVMs. In R-CNN, a CNN is first pre-trained on a large scale
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Figure 2.6: R-CNN [Girshick et al. 2014] object detector system overview. The sys-
tem (1) takes an input image, (2) extract around 2,000 bottom-up selective search
region proposals, (3) computes features for each region proposal using a large
convolutional neural network (CNN), and then (4) classifies each region using
class-specific linear SVMS. R-CNNs achieves a mean average precision (mAP)
of 53.7% on PASCAL VOC 2010. For comparison, [Uijlings et al. 2013] reports
35.1% mAP using the same region proposals, but with a spatial pyramid and
bag-of-visual-words approach. The popular deformable part-based models (DPM)
[Felzenszwalb et al. 2010b] perform at 29.6%.

dataset (e.g. , ImageNet 2012 classification dataset [Russakovsky et al. 2015] with

1,000 object categories). For each image in the target dataset, about 2,000 selec-

tive search [Uijlings et al. 2013] region proposals are extracted per image. The pre-

trained CNN is then fine-tuned by the warped region proposals from the training

images in the target dataset. This fine-tuned CNN can act as a feature extractor (e.g.

, pool5, fc6 or fc7 output as feature vector) to extract features from warped regions

with fixed length feature vectors (e.g. , 4096-dimensional features for fc6 and fc7

output). Finally, class-specific linear SVMs can be trained and used as classifiers to

classify each region proposal from test images into target or non-target class. Non-

maximum Suppression (NMS) sampling is used to discard near duplicate detected

windows.

SPP-net [He et al. 2015] introduce a spatial pyramid pooling (SPP) layer into R-

CNN to eliminate the requirement of a fixed-size input image (e.g. , 224 × 224

warped region in R-CNN). The requirement of fixed sizes is only due to the fully

connected layers that demand fixed-length vectors as inputs, while the convolu-

tional layers accept inputs of arbitrary sizes. SPP partitions the convolutional fea-
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Figure 2.7: SPP-net [He et al. 2015] network structure with a spatial pyramid pool-
ing (SPP) layer. Here conv5 is the last convolutional layer, and 256 is the filter
number of the conv5 layer.

ture maps into divisions from finer to coarser levels, and aggregates local features

in them to generate a fixed-length output regardless of the input size. Therefore,

feature maps can be computed from the entire image only once by using SPP-net,

rather than forwarding about 2,000 overlapping image regions for computation for

each image. In practice, multiple SPP layers can exist in a network. Features for

each (selective search) region proposals are extracted from the conv5 feature map

of the full image. The SPP-net-based system built upon the R-CNN pipeline com-

putes features 24 to 102 times faster than R-CNN, while has better or comparable

accuracy.

A main drawback of SPP-net is that the parameters below the SPP layer can not

be updated during backpropagation in training, only classifier layers (fully con-

nected layers) are fine-tuned. However, training the convolutional layers is im-

portant for very deep networks (it was not that important for the smaller AlexNet

and ZF-Net). Moreover, similar to R-CNN, SPP-net detection is also a multi-stage

32



Chapter 2. Literature Review

Figure 2.8: Fast R-CNN [Girshick 2015] object detector system overview. An in-
put image and multiple regions of interest (RoIs) are input into a convolutional
network. Each RoI is pooled into a fixed-size feature map and then mapped to a
feature vector by fully connected layers. The network has two output vectors per
RoI: softmax probabilities and per-class bounding-box regression offsets. The ar-
chitecture is trained end-to-end with a multi-task loss.

pipeline that involves extracting features, fine-tuning a network with log loss, train-

ing SVMs, and finally fitting bounding-box regressors. Features are written to

disk thus relatively slow. Fast R-CNN [Girshick 2015] solves these problems by

proposing one network with two loss branches: (1) softmax classifier and (2) linear

bounding-box regressors. The overall loss is the sum of the two loss branches. It

takes in an entire image, and then passes it to the convolutional network to create

a feature map. For each region proposal, it finds the corresponding local feature

map. On top of that a single layer of SPP is applied which is called the RoI (re-

gion of interest) pooling layer (as opposed to multiple layers SPP that is applied in

SPP-net). Then multitask loss is calculated based on bohtn the softmax classifier

and bounding box regressors. This single-stage training mechanism using a multi-

task loss makes the convolutional layers also trainable. Moreover, no disk storage

is required for feature cashing. Training Fast R-CNN with the very deep VGG-16

network is 9 times faster than R-CNN, while at test time is 213 times faster. Fast

R-CNN achieves a higher mAP on PASCAL VOC 2012. Compared to SPP-net, Fast

R-CNN trains VGG-16 3 times faster, tests 10 times faster, and is more accurate.

Fast R-CNN achieves near real-time rates using very deep ConvNets, when ig-

noring the time spent on generating region proposals (e.g. , Selective Search). Re-

33



Chapter 2. Literature Review

image 

CNN 

feature map 

Region Proposal Network 

proposals 

classifier 

RoI pooling 

Figure 2.9: Faster R-CNN [Girshick 2015] object detector system overview. Faster
R-CNN is a single, unified network for object detection. The RPN (Region Proposal
Network) module serves as the ‘attention’ of this unified network.

gion proposals are the test-time computational bottleneck in many detection sys-

tems. In Faster R-CNN [Ren et al. 2015a] (Figure. 2.9), Region Proposal Networks

(RPNs) are introduced for efficient and accurate region proposal generation. By

sharing convolutional features with the down-stream detection network (Fast R-

CNN), the region proposal step is nearly cost-free (Figure. 2.10). A Region Pro-

posal Network is a fully convolutional network that simultaneously predicts object

bounds and objectness scores at each position. The RPN is trained end-to-end to

generate high-quality region proposals, which are used by Fast R-CNN for detec-

tion. Faster R-CNN enables a unified, deep-learning-based object detection system
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Figure 2.10: An illustration of the Region Proposal Network (RPN)
[Ren et al. 2015a] to generate region proposals.

to run at near real-time frame rates.

All the aforementioned object detectors take a fully supervised approach, in

which all the training images are annotated with bouding boxes indicating the cat-

egory label and location of interesting objects.

2.4 Weakly Supervised Object Detection

Although localized object annotations are extremely valuable for object detection

systems, the process of manually annotating object bounding boxes is extremely

laborious, time consuming and unreliable (subjective to human bias), especially for

very large-scale datasets. However, it is usually much easier to obtain annotations

at image level (e.g. , from user-generated tags on Flickr or Web queries). Weakly

supervised object detection aims to learn recognition models relying on training

images with incomplete ground-truth bounding box annotations, given only image

level (binary) labels indicating the presence or absence of object instances in the

images.

Weakly supervised object detection has attracted increasing attention in recent
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Figure 2.11: An illustration of Multiple Instance Learning (MIL) problem. In the
MIL framework, there are some positive and some negative bags. A bag is positive
when it has at least one positive instance, while it is negative if all the instances are
negative. The objective of MIL is to train a classifier which can correctly classify a
test image window as either positive or negative.

years. Based on weakly annotated examples, the common practice is to jointly

learn an appearance model together with the latent object location. The major-

ity of related work considers weakly supervised object detection as a multiple in-

stance learning (MIL) [Maron & Ratan 1998] problem. In the MIL framework, there

are some positive and some negative bags (see Figure. 2.11). A bag is positive

when it has at least one positive instance, while it is negative if all the instances are

negative. The objective of MIL is to train a detector (or classifier) which can cor-

rectly classify a test image window as either positive or negative. MIL problems

are usually solved by finding a local minimum of non-convex objective functions

(e.g., MI-SVM [Andrews et al. 2003]). [Galleguillos et al. 2008] first use the MIL

model to recognize and localize objects based on multiple stable segmentations.

[Nguyen et al. 2009] and [Siva & Xiang 2011] use variants of MIL to learn object de-

tectors from weakly labeled images and videos. Typically, the number of examples
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per bag is manageable for MIL methods when utilizing region proposal methods

such as Objectness [Alexe et al. 2012], Selective Search [Uijlings et al. 2013], Edge-

Boxes [Zitnick & Dollar 2014]. However, it remains challenging for an algorithm

to select detection windows across a large number of images. An iterative weakly

supervised learning method could typically find only a local optimum depending

on the initial windows. Therefore, both initialization and iterative weakly super-

vised learning methods are significant for the detection performance.

An other line of strategy is to exploit knowledge transfer from various do-

mains to help weakly supervised learning for detection. Transfer learning (TL)

[Shao et al. 2015] aims to transfer knowledge across different domains or tasks.

In this section, we will review the weakly supervised learning methods for ob-

ject detection.

2.4.1 Initialization Strategies

A good number of different initialization strategies for training MIL detectors

have been proposed in the literature. A simple strategy is random initialization

[Kim & Torralba 2009, Pandey & Lazebnik 2011], which is to initialize randomly

from relatively large windows in positive images that cover most content of the full

images. [Pandey & Lazebnik 2011] modify the fully supervised Deformable Part-

based Models in a weakly supervised manner without object level annotations for

scene recognition and object detection: this treats the location of root filter and

part filters fully latent and learns structural object detectors based on the entire

image. Root filter location is initialized randomly, based on a window that has at

least 40% overlap with the positive training image, while its aspect ratio is initial-

ized roughly to the average of the aspect ratios of positive training examples. By

random initialization, the object detector tends to learn spurious models of other

classes or background regions, leading to lower accuracy during testing.

Another strategy is to leverage the category-independent visual saliency to

avoid exhaustive search from the images. A salient region in an image should

be more likely to contain object of interest than background [Borji et al. 2015].
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Some methods use a category-independent measure which aims to predict

whether an image window contains an object of interest or not. For instance,

[Deselaers et al. 2012] generate candidate windows based on the Objectness re-

gion proposal method [Alexe et al. 2012] and assign per-window weights using

a saliency model trained on a small meta-training set of non-target object cate-

gories. [Cinbis et al. 2014] rely on the category-independent Selective Search win-

dows [Uijlings et al. 2013], and propose a multi-fold training procedure for MIL. To

get rid of bad local minima, [Song et al. 2014a] initialize the object locations via a

discriminative submodular covering method. [Wang et al. 2015] propose to cluster

the Selective Search windows into sub-categories using the probabilistic Latent Se-

mantic Analysis (pLSA), and then learn the latent categories by selecting the most

discriminative subcategory for each object category. [Bilen et al. 2015] formulate to

jointly learn a discriminative model and enforce the similarity of the selected object

regions via a discriminative convex clustering algorithm.

Some methods adopt the category-specific initialization strategies. For exam-

ple, [Siva & Xiang 2011] propose to initially select a single window from Objectness

region proposals [Alexe et al. 2012] per image so that the selected windows max-

imize the objective function which based on intra-class and inter-class pairwise

similarities. This is based on the fact that an image region containing an object

instance should be similar with the regions containing the same category of ob-

jects in other images, while an image region should be dissimilar with any regions

that are from negative images that are known to not contain the object of inter-

est. [Siva et al. 2012] later propose a simplified method to maximize the distance

between a selected candidate windows and its nearest neighbor among windows

from negative images.

2.4.2 Iterative Learning Strategies

To improve the initial localization in the training image, an iterative learn-

ing approach is typically employed to generate more accurate detector. For

example, [Deselaers et al. 2012] employ a Conditional Random Field (CRF)
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[Lafferty et al. 2001] based model that jointly infers object hypotheses across all pos-

itive training images, by exploiting a fully-connected graphical model that encour-

ages visual similarity across all selected object hypotheses. Except for the pairwise

function, the CRF-based model is accompanied also by a unary potential function

that scores candidate windows individually. The parameters of the pairwise and

unary potential functions are updated and the positive windows are selected in an

iterative manner. [Pandey & Lazebnik 2011] propose to iteratively run DPM de-

tectors based on the prediction of last iteration to obtain better detection perfor-

mance. However, running detectors iteratively is time-consuming for expensive

detectors. [Cinbis et al. 2014] divide positive training images randomly into multi-

ple fold and perform MIL iteratively on different combinations of multiple folds to

avoid quickly converging to poor local optima. et al. [Oquab et al. 2015] develop

a weakly supervised CNN end-to-end learning pipeline that learns from complex

cluttered scenes containing multiple objects by explicitly searching over possible

object locations and scales in the image, which can predict image labels and coarse

locations (but not exact bounding boxes) of objects. [Bilen & Vedaldi 2016] propose

a Weakly Supervised Deep Detection Network (WSDNN) method that extends a

pre-trained network to a two-stream CNN: recognition and detection. The recog-

nition and detection scores for region proposals are aggregated to predict the object

category.

2.4.3 Transfer Learning Strategies

MIL-based methods tend to get stuck in local optima. Hence, a number of re-

searchers propose to transform the easily obtained image classifiers into object de-

tectors by transferring knowledge from external categories or other domains.

Transfer learning (TL) [Shao et al. 2015] aims to transfer knowledge

across different domains or tasks. Two general categories of TL have

been proposed in previous work: homogeneous TL [Donahue et al. 2013,

Oquab et al. 2014, Hoffman et al. 2014] in a single domain but with differ-

ent data distributions in training and testing sets, and heterogeneous TL
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[Rochan & Wang 2015, Shu et al. 2015, Zhu et al. 2011] across different domains or

modalities. [Shi et al. 2012] formulate a ranking based transfer learning method,

which effectively transfers a model for predicting object location from an auxiliary

dataset to a target dataset with completely unrelated object categories, which

is a homogeneous TL problem. [Hoffman et al. 2014] propose LSDA (Large

Scale Detection through Adaptation), which treats the transfer from classifiers

to detectors as a homogeneous TL problem as the data distributions for image

classification (whole image features) and object detection (image region features)

are different. The adaptation from a classifier to a detector is however restricted

to the visual domain. LSDA learns the difference between the CNN parameters

of the image classifier and object detector of a “fully labeled” category, and

transfers this knowledge to CNN classifiers for categories without bounding box

annotated data, turning them into detectors. For LSDA, auxiliary object-level

annotations for a subset of the categories are required for training “strong”

detectors. [Rochan & Wang 2015] propose an appearance transfer method by

transferring semantic knowledge (heterogeneous TL) from familiar objects to help

localize novel objects in images and videos. [Singh et al. 2016] transfer tracked

object boxes from weakly labeled videos to weakly labeled images to automatically

generate pseudo ground-truth bounding boxes. Our work integrates knowledge

transfer via both visual similarity (homogeneous TL) and semantic relatedness

(heterogeneous TL) to help convert classifiers into detectors. [Shu et al. 2015]

propose a weakly-shared Deep Transfer Network (DTN) that hierarchically learns

to transfer semantic knowledge from web texts to images for image classification,

building upon Stacked Auto-Encoders [Bengio et al. 2007]. DTN takes auxiliary

text annotations (user tags and comments) and image pairs as input, while our

semantic transfer method only needs image-level labels.

Recently, there exist some works [Tang et al. 2014a, Cho et al. 2015, Li et al. 2016]

focus on the problem of unsupervised object detection through co-localization,

which further alleviates the need for annotations, requiring only a set of images

each containing some common object to be localized. In object co-localization, we
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do not know which objects are contained in the image set, and no negative images

or images known not to contain the object are provided. Co-localization outputs

bounding boxes as weakly supervised localizations without strong supervision.

[Tang et al. 2014a] proposes a joint optimization of the prior, similarity, and dis-

criminability of both images and boxes. The proposed formulation is capable of

accounting for noisy annotations in real-word images.
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The success of deformable part-based models (DPMs) for visual object detection

relies on a large number of labeled bounding boxes. With only image-level anno-

tations, our goal is to propose a model enhancing the weakly supervised DPMs

by emphasizing the importance of location and size of the initial class-specific root

filter. To adaptively select a discriminative set of candidate bounding boxes as this

root filter estimate, first, we explore the generic objectness measurement to com-

bine the most salient regions and “good” region proposals. Second, we propose

learning of the latent class label of each candidate window as a binary classifica-

tion problem, by training category-specific classifiers used to coarsely classify a

candidate window into either a target object or a non-target class. Moreover, we

incorporate the contextual information from image classification, by combining the

image-level classification score with object-level DPM detection score, to obtain a

final score for detection. Finally, we design a flexible enlarging-and-shrinking post-

processing procedure to modify the DPMs outputs, which can effectively match the
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approximative object aspect ratios and further improve final accuracy. Extensive

experimental results on the challenging PASCAL Visual Object Class (VOC) 2007

and the Microsoft Common Objects in Context (MS COCO) 2014 dataset demon-

strate that our proposed framework is effective for initialization of the DPMs root

filter. It also shows competitive final localization performance with state-of-the-art

weakly supervised object detection methods, particularly for the object categories

which are relatively salient in the images and deformable in structures.

3.1 Introduction

Object detection/localization in images/videos is one of the most widely stud-

ied problems in computer vision applications [Zhang et al. 2010, Zhu et al. 2014,

Girshick et al. 2014] with the explosive growth of online images/videos today. It

can also be extended to numerous applications related to the multimedia com-

munity, e.g., image and video retrieval, video surveillance [Foresti et al. 2002,

Nascimento & Marques 2006], traffic safety: self or assisted driving systems, etc.

This task remains challenging mainly due to scale and viewpoint variation, defor-

mation, occlusion, background clutter, intra-class variations and inter-class sim-

ilarities for objects in real world images/videos. For most of the existing meth-

ods, a fully supervised learning (FSL) approach is adopted [Dalal & Triggs 2005,

Felzenszwalb et al. 2010b, Szegedy et al. 2013, Zhu et al. 2014, Girshick et al. 2014],

where positive training images are manually annotated with bounding boxes en-

compassing the objects of interest. This manual annotation of object location for

large-scale image databases is extremely laborious and unreliable though quite

valuable for learning accurate object detectors. However, it is usually far easier

to obtain weakly labeled data, where image-level labels (e.g., user generated im-

age tags on Internet) are presented. For example, the recently popular ImageNet

ILSVRC dataset [Russakovsky et al. 2015] contains far fewer object-level annota-

tions (bounding boxes) than image-level labels. As a result, in our work, in contrast

to the traditional FSL, we are concerned with weakly supervised learning (WSL) for

object detection, where the exact object locations in positive training examples are
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not provided, giving only the binary labels indicating the presence or absence of

the objects of interest.

Deformable part-based models (DPMs) [Felzenszwalb et al. 2010b] and their

variants [Girshick et al. 2011, Azizpour & Laptev 2012, Ren & Ramanan 2013] have

achieved remarkable success in supervised object detection on challenging PAS-

CAL VOC datasets [Everingham et al. 2010] for a long period. The DPMs represents

an object with a holistic root filter that approximately covers an entire object and

with several higher resolution part filters that capture smaller local appearances

(parts) of the object. It also characterizes the deformations by links connecting dif-

ferent parts. In the standard (fully supervised) DPMs framework, the root filter is

initialized with the positive ground-truth object bounding box, and is allowed to

move around in its small neighborhood to maximize the filter score. The locations

of object parts are always treated as latent information due to the unavailability

of object part annotations upon most occasions. A latent SVM (LSVM) is adopted

to learn object deformation, which can alternate between fixing latent values (part

locations) for positive examples and optimizing its objective function.

[Pandey & Lazebnik 2011] modify the fully supervised DPMs in a weakly su-

pervised manner without object level annotations: this treats the location of root

filter and part filters fully latent and learns structural object detectors based on the

entire image. Root filter location is initialized randomly, based on a window that

has at least 40% overlap with the positive training image, while its aspect ratio is

initialized roughly to the average of the aspect ratios of positive training exam-

ples. However, the specific size and location of the initial root filter, as well as their

aspect ratio, are indicated to have a significant impact on the final localization re-

sult [Dalal & Triggs 2005, Felzenszwalb et al. 2010b, Pandey & Lazebnik 2011]. By

random initialization, the object detector tends to learn spurious models of other

classes or background regions, leading to lower accuracy during testing. To the

best of our knowledge, methods for initializing the root filter based on theoretical

deduction in weakly supervised DPMs, as well as the definition of the object aspect

ratios, have not been properly studied in [Pandey & Lazebnik 2011].

To make up the performance gap between weakly and fully supervised DPMs,
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in this paper, our goal in this paper is to propose a model enhancing the weakly

supervised DPMs by emphasizing the importance of location and size of the ini-

tial class specific root filter. To be more precise, our goal is to discover a reli-

able initial set of image windows that are likely to contain the target objects in

the positive training images with only category level annotations, so as to rep-

resent the object instances. Hence, our WSL framework incorporates adaptive

window selection from class independent object proposals and training of de-

formable part-based models. In particular, we explore the “objectness” approaches

[Alexe et al. 2012, Uijlings et al. 2013], which generate class independent object pro-

posals with corresponding scores indicating their probabilities of being object in-

stances. We then adaptively select a reliable set of windows from the derived ob-

ject proposals for each image as initialization, by incorporating visual saliency and

“objectness” scores. Two different initialization schemes are developed: single re-

gion and multiple region initilization. The former tends to select one relative larger

bounding box which may contain the most salient part in the image, while the lat-

ter is far more general, which selecting a small number of object estimations that

can also capture smaller and scattered objects. For multiple region initialization,

the region labels are latent information. We learn the latent class label by framing it

as a classification problem, which tries to coarsely classify each region into a target

object class or a non-target class by some class specific classifiers. The generated

object estimations are treated as the initial root filter estimates for training DPMs

detectors.

The main contributions in this work are several-fold:

1. We propose a selection model based on generic “objectness” (region propos-

als) and visual saliency to adaptively select a discriminative set of candidate

windows which tend to represent the object instances in each weakly labeled

training image.

2. We frame the learning of the latent class label of each candidate window as a

binary classification problem, by training category specific classifiers, which

try to coarsely classify a candidate window into either a target object or a
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non-target class.

3. We incorporate the contextual information from image classification, by com-

bining the image-level classification score with object-level DPM detection

score, to improve object detection.

4. We propose to use a flexible enlarging-and-shrinking post-processing pro-

cedure to modify the predicted output of the DPMs detector, which can ef-

fectively generate more accurate bounding boxes by better conserving fore-

ground and cropping out plain background regions, to approximatively

match the object aspect ratios.

5. Extensive experiments are carried out on two subsets and on the entire set

of the challenging PASCAL VOC 2007 database [Everingham et al. 2010] with

different criteria, namely annotation accuracy in terms of correct localization

on training set, and detection accuracy in terms of average precision on test

set. Experimental results demonstrate that our proposed framework is ef-

fective for initialization of the DPMs root filter and that it shows shows com-

petitive final localization performance with the state-of-the-art weakly super-

vised object detection methods. To the best of our knowledge, we are the first

to present weakly supervised results on the Microsoft COCO 2014 dataset

[Lin et al. 2014b].

The rest of this chapter is organized as follows: we present our weakly super-

vised DPMs framework in detail in Section 3.2, while in Section 3.3 we present our

experimental results and the comparison with other methods on PASCAL VOC

2007 and Microsoft COCO 2014 datasets. Section 3.4 concludes this chapter.

3.2 Fusing Generic Objectness and Deformable Part-Based

Models for Weakly Supervised Object Detection

In this section, we detail our approach of the weakly supervised DPMs for object de-

tection. First, we introduce our approach to adaptively select the representative and
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(a) Original image (b) Object proposals 
with scores 

(c) Saliency map 

(e) Thresholding 

(d) Reference region 

(f) Candidate windows (g) Initial object estimations 

Multiple regions 

Single region 

Region 
Selection 

Figure 3.1: Illustration of our proposed method to extract the initial object esti-
mations: for an input image (a), object proposals (b) and corresponding scores in-
dicating the probabilities of containing objects are generated using the Objectness
[Alexe et al. 2012] or Selective Search [Uijlings et al. 2013] method. (c) is the saliency
map derived from (b), and (d) is the reference region obtained by thresholding (c).
A coarse set of candidate windows (f) is selected based on the sorted scores of ob-
ject proposals (e) after non-maximum suppression (NMS). In the top image of (g),
which indicates the single region selection scheme, the blue window is our initial
object estimation obtained by optimizing the overlap between (d) and (f). The bot-
tom image of (g) indicates the multiple region selection scheme. Its color windows
with solid lines are multiple finer regions which are assumed to represent the ob-
jects in the original image. For both images of (g), the green dot line windows are
ground-truth bounding boxes for person and horse, respectively.

discriminative candidate regions from the category-independent object proposals.

Second, we elaborate how to learn latent class information when multiple regions

are selected. We then briefly describe the weakly supervised learning procedures

using the selected regions with DPMs and the detection rescoring algorithm using

classification scores as contextual information for testing. Finally, we propose our

new post-processing method to further refine the predicted object bounding box

obtained by a weak DPMs detector, so as to cover the object more precisely.

3.2.1 Object Estimations: Initialization

In the weakly supervised DPMs training procedure, good initialization of the root

filter is crucial. Our goal is thus to discover a reliable initial set of image windows

likely to contain the target objects in the positive training images with only image-

level annotations, so as to represent the object instances.
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3.2.1.1 Region extraction

Two general approaches have been proposed for generating class-independent

object proposals in recent years: window scoring methods such as Objectness

[Alexe et al. 2012], BING [Cheng et al. 2014], EdgeBoxes [Zitnick & Dollar 2014]

and grouping methods such as Selective Search [Uijlings et al. 2013], Constrained

Parametric Min-Cuts (CPMC) [Carreira & Sminchisescu 2012], Multiscale Combi-

natorial Grouping (MCG) [Arbeláez et al. 2014]). We use Selective Search since it

has been used as the proposal generating method by the state-of-the-art supervised

R-CNN detector [Girshick et al. 2014]. We also report results using the Objectness

method [Alexe et al. 2012] to compare with prior detection work [Alexe et al. 2012],

[Tang et al. 2014b].

Given an input image I (shown in Figure 3.1(a)), we first select top n scored

windows W = {w1, w2, . . . , wn} and corresponding scores, denoted as S =

{s1, s2, . . . , sn}, indicating the probabilities of covering objects within them, gen-

erated by Selective Search (shown in Figure3.1 (b)). To balance a high recall (i.e.,

covering more objects) and computation efficiency (i.e., small number of region

proposals), we set n = min(1000, N) according to [Hosang et al. 2014], where N is

the number of proposals generated by Selective Search.

Based on the fact that the region proposal method is designed to capture all pos-

sible objects within an image, we assume that it is sufficiently reliable to provide a

set of good candidate windows W∗ ⊆W covering the objects of interest. However,

windows with higher scores are not always the effective choices [Shi et al. 2012]:

they usually encompass other noisy background, or they may cover only some ob-

ject parts. To extract a reliable set of object estimations from the pool of n windows,

we design a sequential selection scheme shown in Figure3.1 (c)-(g).

3.2.1.2 Salient reference region

For weakly supervised learning of DPMs detectors, it is obvious that the initial-

ization of the root filter is significant. The detector will be seriously damaged if it

shoots on the background region. Consequently, it is an absolute necessity to start
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from visually meaningful regions (foreground objects). Identifying visually salient

regions is essentially useful in object detection. Inspired by the success of visual

saliency applied in salient object recognition [Zhang et al. 2010, Li et al. 2013], we

compute the reference region R (shown in Figure 3.1 (d)) by taking the threshold

and merging the discrete saliency map (or heat map) M into one or more connected

region(s) using [Otsu 1979] (shown in Figure 3.1 (c)). The value of saliency map M

at pixel I(i, j) is obtained by summing up the scores of the windows that cover this

pixel:

M(i, j) =

n∑
k=1

Mk(i, j) (3.1)

where,

Mk(i, j) =

 sk, if I(i, j) ∈ wk, ∀wk ∈W,

0, otherwise.
(3.2)

The reference region R can be one connected (continuous) region or several discrete

regions in the image according to the score range and threshold value.

3.2.1.3 Coarse candidate window pool

It is known that the score predicted by Selective Search (i.e., objectness score) cor-

responds to the probability of containing a target object to some extent. To take

advantage of this auxiliary information, we concurrently select the top 200 scored

windows out of n windows as candidates, (shown in Figure 3.1(e)). To avoid

near duplicate candidate windows, we further perform non-maximum suppres-

sion (NMS) to obtain a finer set of candidates. Figure 3.1 (f) illustrates the derived

smaller set of l confident candidates Ŵ = {ŵ1, ŵ2, . . . , ŵl} and their corresponding

scores denoted as Ŝ = {ŝ1, ŝ2, . . . , ŝl}.

3.2.1.4 Object invariant estimations

Given the reference region R which implies the most salient region (or regions)

within an image, and confident candidate windows Ŵ with scores Ŝ, the overlap

between them provides valuable information for finding the locations of target ob-
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jects. We will propose two different schemes to fuse the salient region(s) with the

extracted candidate windows.

Single region initialization: In [Pandey & Lazebnik 2011], the root filter of the

DPMs is randomly initialized from a single window which covers at least a 40%

overlap with the original image. Hence, we also filter out only one single win-

dow w∗ from the candidate pool Ŵ in order to obtain a direct comparison with

[Pandey & Lazebnik 2011]. Intuitively, we expect this window estimation to have

a larger overlap with the salient reference region R, as well as a relatively higher

objectness score. Therefore, the estimation of the initial object bounding box with

objectness score (w∗, s∗) (Figure 3.1(g), top image) can be determined by optimizing

the following function:

(w∗, s∗) = arg max
ŵi∈Ŵ,ŝi∈Ŝ

[αŝi + (1− α)
area(R ∩ ŵi)

area(R ∪ ŵi)
], i ∈ [1, l] (3.3)

where α is a parameter used to control the influence of the objectness score si. In

practice, α = 0.2, was selected by a grid search over {0.1, 0.2, 0.3, 0.4} on a valida-

tion set, for the purpose of emphasizing the priority of the intersection over union

(IoU) overlap between the candidate window and the merged salient reference re-

gion.

The single region initialization scheme prefers to select a relatively large region

which may contain the most salient part in the image. When very few objects are

closely gathered in images, it can produce good DPMs object detectors in a weakly

supervised manner. For example, by adopting the single region scheme, the blue

window in Fig.3.1(g) top image, is used as a positive training example (i.e. DPMs

root filter initialization) for both the horse and the person categories. Moreover, the

strategy of taking large windows in positive images exploits the inclusion structure

of the multiple instance learning (MIL) problem for object detection: although large

windows may contain a significant amount of background features, they are likely

to include positive object instances and their contextual information.
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Multiple region initialization: In fact, multiple objects (e.g. , 2.5 objects on aver-

age for PASCAL VOC 2007 trainval dataset, 7.7 for MS COCO 2014) can be scattered

anywhere in an image. We can therefore further improve DPMs detectors by pro-

viding more object estimations as root filter initialization, instead of training the

object detectors with a single window for each image. For each image, we are mo-

tivated to select a small number of object estimations that can also capture smaller

and scattered objects, better representing the original image.

Meanwhile, object proposal algorithms such as Selective Search and Object-

ness tend to generate more overlapping bounding boxes on larger objects than on

smaller ones. Consequently, scattered small objects are likely to be ignored using

Eq. (3.1). Hence, in order to fully consider these objects which were originally ig-

nored by Eq. (3.1), we modified it by dividing the sum of scores by the square root

of the number of windows that cover this pixel:

M(i, j) =
1√
k̂

n∑
k=1

Mk(i, j) (3.4)

where, Mk(i, j) is defined as the same in Eq. (3.2), and k̂ is the number of windows

that cover pixel I(i, j). We show some heat map examples generated by Eq. (3.1)

and Eq. (3.4) in Figure 3.2.

We adopt similar criteria to the score function Eq. (3.3), with the best α being

set to 0.4 (for both PASCAL VOC 2007 and MS COCO 2014) from a grid search

over {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Instead of only selecting the maximum scoring

window in Eq. (3.3), we pick out top Q scored windows W ∗ for each image. We

will discuss the value of Q in the experiment part.

After generating several object estimations from each image, the next step is to

approximately identify the class label of each estimation given only the labels of the

whole image. For example, in Fig. 3.1(g) bottom image, the color windows with

solid lines are associated with the horse and person labels. However, so far we have

no idea which object(s) (or even background) is/are inside each bounding box. Our

goal will be to solve this problem in the next subsection.
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Original image Heat map by Eq. (1) Heat map by Eq. (4) 

Figure 3.2: Some heat map examples generated by Eq. (3.1) and Eq. (3.4).

3.2.2 Learning Latent Object Classes via Region Classification

For each positive training image, we have generated Q object invariant estimations

with the multiple region initialization scheme (Q = 1 for single region initializa-

tion, and we use the image-level labels as training annotations). Consider an object

category (e.g. , horse), which has P positive training images, we can obtain a total

number of z = P ∗ Q object estimations. Obviously, some of these object estima-

tions come from other categories (e.g. , person, sheep, object parts or the background
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regions as well), where the class labels are latent information. For single region ini-

tialization, the unique generated window is used to initialize the DPMs root filter

for any categories appearing in the image. As for multiple region initialization, in

this paper we frame the latent class learning problem as a classification problem by

coarsely classifying these object estimations into either the target object category or

the non-target category (i.e., other classes, object parts or background).

3.2.2.1 Region representation

We use the deep convolutional neural network (CNN) features to represent the

regions (object estimations). Firstly, we pre-train an eight-layer (five convolutional

layers and three fully-connected layers) Alex-Net [Krizhevsky et al. 2012] CNN with

caffe implementation [Jia et al. 2014] on the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2012 classification dataset [Russakovsky et al. 2015],

which contains 1.2 million images of 1000 categories. We then warp each region

into a required fixed pixel size of 227 × 227, and subtract it with the mean RGB

image of the training set, before forward propagating it through the network. Fi-

nally, we take the output of the fc6 layer as R-CNN [Girshick et al. 2014], which is

a 4096-dimensional feature vector, to represent the input region. While this fea-

ture extraction process is similar to that of R-CNN, it is worth noticing that we do

not fine-tune the pre-trained CNN on the target dataset. This is because the ob-

ject level annotations are assumed not to be available in the weakly annotated data.

We do not pad the region with additional image context around it either, as our

region estimation is already expected to have a significant coverage of the context

information due to our selection schemes in Section 3.2.1.3.

3.2.2.2 Region classification

Consider training a horse detector. For all the P positive training images in the

horse category, we generate z object invariant estimations. Intuitively, only part of

these z regions contains the target horse object, others may have person, sheep, dog

or even background. We learn the latent categories in these regions via region
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Figure 3.3: Illustration of our latent class learning framework for the horse category.
For each object category, we train a linear SVM classifier with the CNN features
(output of CNN’s fc6 layer) of image-level samples (as shown in the left part). Ob-
ject estimations from the positive training images of this category are scored by its
SVM. We select the regions with higher scores by thresholding as the representative
objects of this category (horse vs. non horse for this example).

classification.

We first train a horse linear SVM classifier [Chang & Lin 2011] using the images

labeled with horse as positive training examples and those without horses as nega-

tive examples. We compute the fc6 4096-dimensional CNN features as in Section

3.2.2.1 on whole images. We then run the trained horse classifier on the z object

invariant estimations in the positive training images. By thresholding the SVM

scores, finally we obtain a subset z′ regions from z estimations (z′ < z). These z′

regions are assumed to represent the target horse category, which can be treated as

positive training examples of the horse detector.

Suppose we have K categories that we want to detect. We train one binary

SVM classifier on positive and negative images of each category, and run these K

classifiers on their corresponding object estimations. We select high scoring regions

for each target category so as to represent the objects of interest. Fig. 3.3 shows the

latent class learning framework using SVM classification on the horse category.
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3.2.3 Weakly Supervised DPMs Training and Testing Details

We design two different kinds of deformable part-based models for weakly super-

vised object detection according to different initialization schemes in Section 3.2.1.

3.2.3.1 Single region initialization for weak DPMs (S-WDPMs) detection

Similarly to [Felzenszwalb et al. 2010b], each root filter hypothesis in a posi-

tive training image is initialized with the corresponding derived bounding box

from the single region initialization scheme. The size and aspect ratio of the

DPMs root filter are decided by the average size and aspect ratio of the ob-

ject estimation boxes (ground-truth bounding box and aspect ratio are used in

[Felzenszwalb et al. 2010b]). The root filter hypothesis is allowed to move around in

a small neighborhood to maximize the filter score so as to compensate for impre-

cise bounding box estimation from single region initialization scheme of Section

3.2.1.4. In order to obtain a direct comparison with [Pandey & Lazebnik 2011], we

also represent an image by a multiscale HOG feature pyramid [Dalal & Triggs 2005]

of 16 levels. For this S-WDPMs model, we use only a single component, since

the multiple components are used for detecting objects with different views (S-

WDPMs is trained on each view/category, e.g., Left, Right). We set the number

of parts in this DPMs to 8 as in [Felzenszwalb et al. 2010b]). For negative train-

ing examples, we use random negatives from other object categories. For testing,

the sliding window approach is adopted. This single region initialized weakly su-

pervised DPMs detection model is denoted as S-WDPMs. We refer the reader to

[Felzenszwalb et al. 2010b] for more details concerning the DPMs training and de-

tection procedures.

3.2.3.2 Multiple region initialization for weak DPMs (M-WDPMs) detection

For the M-WDPMs (multiple region initialized weakly supervised DPMs), we make

it much “deeper” with the DeepPyramid feature [Girshick et al. 2015], for the rea-

son that the HOG feature is suboptimal compared to deep features computed by

CNN [Szegedy et al. 2013, Sermanet et al. 2014, Girshick et al. 2014, He et al. 2015,
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Wang et al. 2015]. The feature map is computed by the fifth convolutional layer

(conv5), which has 256 feature channels. We represent each image (or region) with

a feature pyramid of 7 levels as in [Girshick et al. 2015]. For training, the selected

object estimations from Section 3.2.2.2 are treated as positive training examples,

and the random windows from negative images are defined as negative exam-

ples. We use a DPMs with 3 components and 8 parts per component according to

[Girshick et al. 2015]. The training and testing procedures are similar to S-WDPMs

above, but we add a simple bounding box rescoring stage with the help of a front-

to-end CNN padded with a softmax classifier as follows.

The contextual information provided by classification and detection can mutu-

ally boost the performance of the other, based on the assumption that they adopt

different information[Song et al. 2011, Ouyang et al. 2015]. Classification looks at

the objects and their contextual information, while detection mainly focuses on the

object shape and all parts. For example, if an object is occluded or truncated, it will

be difficult for the detector while the classifier could still have enough information

such as context and certain parts. Inversely, the detector is able to find small objects

and objects appearing in non standard context, while the classifier may fail. Hence,

we are motivated to combine the classification score and the detection score. We

formulate the rescoring function as a linear combination of the DPMs detection

score and region classification score:

sidet = κsiM−WDPMs + (1− κ)sicls, i ∈ [1,K] (3.5)

where, 0 ⩽ siM−WDPMs ⩽ 1 is the normalized DPMs detection score on a sub-

window of the ith detector, and 0 ⩽ sicls ⩽ 1 is the softmax classification score of

the corresponding ith category on this sub-window. κ is a hyper-parameter used

to leverage the two scores, which ranges from 0.5 to 1.0. K is the number of object

categories. The final predicted windows are obtained by thresholding the Si
det in

Eq. (3.5).

To train this front-to-end CNN classifier described above, we fine-tune the pre-

trained CNN with image level annotations on the training set of the target dataset.
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Figure 3.4: Illustration of detection rescoring using an M-WDPMs and CNN soft-
max classifier. For a testing image, K (number of classes in the target dataset) class-
specific M-WDPMs are applied on it in a sliding window manner. For each sub-
window detected by M-WDPMs, the normalized detection score is rescored by the
softmax classifier of the detected category. In this example, the wrongly detected
car and bicycle are finally discarded by the detector after the rescoring stage.

We implement it by removing the last 1000-way softmax layer while keeping all the

other parameters and adding a new randomly initialized K-way softmax classifi-

cation layer. We then fine-tune the entire network based on the image-level labels.

In [Felzenszwalb et al. 2010b], contextual information is exploited to rescore

the bounding boxes. However, it needs object-level annotations to extract the

contextual information. Our detection rescoring method does not require the

object-level annotations, and leads to a remarkable improvement in average pre-

cision on several classes in the PASCAL VOC 2007 dataset (see Section 3.3.2). In

[Ouyang et al. 2015], the image classification scores are used as contextual features,

and concatenated with the object detection scores to form a final feature vector,

based on which a linear SVM is learned to refine the detection score. An example

of our bounding box rescoring procedure is shown in Fig. 3.4.

3.2.4 Bounding Box Post-processing

In many cases, the bounding boxes generated by DPMs detectors are too large
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Algorithm 1 Bounding box post-processing pipeline.
INPUT:

Original bounding box: w = (xmin, ymin, xmax, ymax);
Original image width: wo; original image height: ho;
Maximal expanding rate: β = 1.2;
Laplacian filter shape: γ = 0.2.

OUTPUT:
Cropped bounding box: w′ = (x′min, y

′
min, x

′
max, y

′
max).

1: centroid: (xc, yc) = (xmin+xmax
2 , ymin+ymax

2 )
2: augmented width: a = β ∗ (xmax − xmin)
3: augmented height: b = β ∗ (ymax − ymin)
4: if xc − a

2 > 0 then
5: xaugmin = ceil(xc − a

2 )
6: else
7: xaugmin = 1
8: end if
9: if xc + a

2 < wo then
10: xaugmax = floor(xc +

a
2 )

11: else
12: xaugmax = wo

13: end if
14: yaugmin and yaugmax: process in the same way as x;
15: waug = (xaugmin, y

aug
min, x

aug
max, y

aug
max);

16: Lwaug = filter(image(waug),′ laplacian′, γ);
17: L′

waug = norm(resize(|Lwaug |, [100, 100]), 1);
18: Lmax = max(L′

waug);
19: for i = 1, 2, . . . , 100 do
20: for j = 1, 2, . . . , 100 do
21: if L′

waug(i, j) < 0.1 ∗ Lmax then
22: L′

waug(i, j) = 0
23: end if
24: end for
25: end for
26: current centroid: (x′c, y′c)← average energy point of L′

waug ;
27: while energy in w′′ < 0.98 ∗

∑
(L′

waug) do
28: w′′ = (x′′min, y

′′
min, x

′′
max, y

′′
max)← update by expanding bounding box in four

directions (−x,−y, x+, y+) from the current centroid (x′c, y
′
c).

29: end while
30: project w′′ into original image: w′ = (x′min, y

′
min, x

′
max, y

′
max) ← w′′ =

(x′′min, y
′′
min, x

′′
max, y

′′
max)
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(resp. small) when detecting very small (resp. large) objects due to the restrictions

of the size of the root filter and the scale of the feature pyramid. To improve local-

ization and obtain a more precise prediction of the bounding box aspect ratio, we

post-process each bounding box by enlarging or shrinking (ES post-processing) it

to cover the object as much as possible. This is done using an improved version of

the method proposed in [Ke et al. 2006], which measures the amount of area that

the edge energy occupies. In brief, we first augment the original bounding box

w = (xmin, ymin, xmax, ymax) to 120% of the original width and height (i.e., 144%

in total area, denoted as waug = (xaugmin, y
aug
min, x

aug
max, y

aug
max). We expand from the cen-

troid if applicable. Otherwise, we stop when reaching the border of the image and

calculate the absolute values of the gradients Lwaug by applying a 3 × 3 Laplacian

filter with γ = 0.2 over the augmented bounding box. To simplify calculation of

the edge spatial distribution, we then resize the gradient magnitude image size

to 100 × 100 and normalize the image sum to 1, i.e., L′
waug . Moreover, we set the

values that are less than 10% of the maximum Lmax to 0. Finally, we expand the

bounding box in four directions from the current centroid (x′c, y
′
c) and stop when it

contains 98% of the total gradient magnitude (edge energy) in the augmented box.

The detailed algorithms are shown in Algorithm 1.

This post-processing technique is not only able to crop out plain back-

ground regions, but can also expand to cover the foreground regions which

are not encompassed by the original box. However, the cropping method in

[Pandey & Lazebnik 2011] can only shrink to reduce the background. Fig. 3.5

shows a few examples of our bounding box post-processing results. It is also worth

noticing that this post-processing technique works efficiently for the objects with

a unique or plain background, but is of limited help for those with cluttered or

textured backgrounds.

3.3 Experimental Evaluation

In this section, we present the experimental results of our proposed framework

with two different initialization schemes (i.e., S-WDPMs using single region ini-
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Figure 3.5: Examples of bounding box enlarging-and-shrinking. Boxes before (resp.
after) post-processing are shown in red (resp. yellow).

tialization and M-WDPMs using multiple region initialization) on the challenging

PASCAL VOC 2007 dataset [Everingham et al. 2010] and the Microsoft COCO 2014

dataset [Lin et al. 2014b].

3.3.1 Experiments with S-WDPMs on PASCAL VOC Subsets

3.3.1.1 Datasets and settings

Following the protocol used in previous works [Pandey & Lazebnik 2011,

Deselaers et al. 2012, Siva et al. 2012, Tang et al. 2014a], we evaluate the perfor-

mance of our proposed S-WDPMs (single region initialized weak DPMs) frame-

work on two subsets from the training and validation set (trainval) of the PAS-

CAL VOC 2007 dataset (VOC07) [Everingham et al. 2010]: VOC07-6×2 and VOC07-

14. The VOC07-6×2 subset contains 6 classes (aeroplane, bicycle, boat, bus, horse

and motorbike) with Left and Right views (aspects) of each class, resulting in a
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total of 12 separating classes. The VOC07-14 subset (same as PASCAL07-all de-

fined in [Pandey & Lazebnik 2011]) consists of 42 class/view combinations cover-

ing 14 classes and 5 views (Left, Right, Frontal, Rear and Unspecified). Similar to

[Pandey & Lazebnik 2011, Deselaers et al. 2012, Siva et al. 2012, Tang et al. 2014a],

we remove all the images annotated as difficult or truncated in both the training

and the evaluation steps.

3.3.1.2 Evaluation protocol

To make fair comparisons with previous works [Pandey & Lazebnik 2011,

Deselaers et al. 2012, Siva et al. 2012, Shi et al. 2013], we only choose the detec-

tion window with the highest DPMs score per image, although our method

can detect multiple instances appearing in the image using the sliding window

approach. We also report both results for initial and refined localization as

[Pandey & Lazebnik 2011, Siva et al. 2012]. A refined localization is obtained by an

iteratively trained DPMs detector for one/several iteration(s) to refine the initial de-

tection using the previous annotations as ground truth. Performance is evaluated

with the percentage of training (train + val) images in which an object is correctly

covered by the window (i.e. CorLoc [Deselaers et al. 2012]), if the strict PASCAL-

overlap criterion IoU (intersection-over-union) ⩾ 0.5 is satisfied.

3.3.1.3 Experimental evaluation

We compare our S-WDPMs with Weak DPMs [Pandey & Lazebnik 2011], Weak

objectness [Deselaers et al. 2012] and the Joint topic model [Shi et al. 2013]. For

the Weak objectness approach [Deselaers et al. 2012], the region proposal with the

highest “Objectness” score is selected as the predicted window. As shown in Ta-

ble 3.1, our method outperforms [Deselaers et al. 2012] and our baseline approach

[Pandey & Lazebnik 2011] on both datasets. Both [Pandey & Lazebnik 2011] and

our S-WDPMs use the same HOG feature pyramid for the DPMs. We present

our results using two kinds of object proposal generating methods: Objectness

(obj) and Selective Search (SS). For obj, our average performance of initial detec-
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Table 3.1: Average localization accuracy (as a %) of our S-WDPMs (single region
initialized weak DPMs with HOG features) compared with state-of-the-art com-
petitors on the two variations of the PASCAL VOC 2007 datasets. “crop” and “ES”
denote the cropping method from [Pandey & Lazebnik 2011] (denoted as [P&L] in
the table) and our enlarging & shrinking post-processing. “obj” and “SS” denote
the objectness and Selective Search region proposal generating method. “S” and
“G” denote the Sampling and Gaussian strategy from [Shi et al. 2013] (denoted as
[Shi] in the table). Results from [Deselaers et al. 2012] are denoted as [Deselaers].

no post-processing with post-processing

[P&L] S-WDPMs [P&L]-crop S-WDPMs(crop) S-WDPMs(ES) [Shi]

obj SS obj SS obj SS S G

Dataset VOC07-6×2

Initialization 37.22 38.74 41.52 44.62 47.85 48.40 48.59 51.01 50.8 51.5

Refinement 1 51.63 55.85 63.31 53.11 56.78 64.25 58.02 67.13 65.5 66.1

Refinement 2 56.99 59.82 — 59.31 63.31 — 63.91 — — —

Refinement 3 59.32 — — 61.05 — — — — — —

[Deselaers] 50.00

Dataset VOC07-14

Initialization 19.98 21.73 24.87 23.00 24.20 26.30 25.12 31.84 32.2 30.5

Refinement 1 25.11 27.46 31.15 26.38 28.21 33.10 28.94 34.91 33.8 32.5

Refinement 2 27.69 28.95 — 29.39 32.87 — 32.82 — — —

Refinement 3 28.98 — — 30.31 — — — — — —

[Deselaers] 26.00

tion before post-processing the bounding boxes on the VOC07-6×2 and VOC07-

14 subsets is 38.74% and 21.73% respectively, versus 37.22% and 19.98% in

[Pandey & Lazebnik 2011]. These improvements are due to the initial object es-

timate of our method described in Section 3.2.1.4, which ensures better initializa-

tion of the root filter of DPMs detectors. We can also observe that both the post-

processing method of cropping [Pandey & Lazebnik 2011] (i.e., S-WDPMs(crop)

in Table 3.1) and our enlarging-or-shrinking (i.e., S-WDPMs(ES)) post-processing

method steadily improves average localization accuracy.

In particular, our ES method is superior to the cropping method of

[Pandey & Lazebnik 2011], as our cropped bounding box is able not only to shrink

to crop out the background regions, but is also capable of enlarging to cover the
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whole foreground object resulting from incomplete coverage of the original win-

dow. An example is shown in the last row of Fig. 3.6, where the target object

(motorbike) is only partially localized by the initial detector (shown in red rectan-

gles in the middle and right images) for both [Pandey & Lazebnik 2011] and our

method. However, in the final detection (shown in yellow) after post-processing,

our method is able to enlarge the bounding box to approximately include the whole

object, while [Pandey & Lazebnik 2011] tends to crop out both foreground and

background regions.

Furthermore, the rows starting with “Refinement” in Table 3.1 indicate that

localization accuracy can benefit from the iterative refinement process. It is

worth mentioning that with a better initialization, our models converge to a

steady level of performance after one less round of costly re-training than in

[Pandey & Lazebnik 2011] (both using Objectness), and achieve slightly better re-

sults in the meantime.

The detailed comparisons for our S-WDPMs using Objectness with the state-

of-the-arts on the VOC07-6×2 dataset are listed in Table 3.2. The results

show that our method outperforms [Pandey & Lazebnik 2011, Siva et al. 2012,

Deselaers et al. 2012] for many of the categories. In particular, our method achieves

the state-of-the-art results in the classes where the target object possesses the

most salient regions in that category (e.g., aeroplane, bus, horse). Interestingly,

even without the refinement process, the accuracy of our method in certain cat-

egories (e.g., aeroplane left) is superior to competitors using the time-consuming

refinement procedure. Fig. 3.6 visually compares some of our results with

those of [Pandey & Lazebnik 2011]. We also list the co-localization results of

[Tang et al. 2014a], which does not utilize negative images.

We find that the best detection result using Selective Search (63.31%) is 3.49%

better than Objectness (59.82%) within the same S-WDPMs detection model without

post-processing, and is 3.22% better (67.13% vs. 63.91%) with post-processing, on

the VOC07-6×2 dataset. This tallies with the conclusion in [Hosang et al. 2014],

where Selective Search provides more reliable detection proposals than Objectness.

Moreover, it achieves comparable or slightly better results than the sophisticated
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Table 3.2: Class level localization accuracy (as a %) for the VOC07-6×2 dataset
for our S-WDPMs(ES) using Objectness proposals vs. [Pandey & Lazebnik 2011,
Deselaers et al. 2012, Siva et al. 2012, Tang et al. 2014a].

Initialization Refined by detector

ours [P&L-11] [Siva-12] [Tang-14] ours [P&L-11] [Deselaer-12]

aero left 65.1 55.8 39.1 41.9 69.7 65.1 58.0

aero right 64.1 61.5 50.0 51.3 84.6 82.1 59.0

bike left 31.3 31.3 28.4 25.0 85.4 87.5 46.0

bike right 42.0 44.0 30.6 24.0 54.0 68.0 40.0

boat left 9.1 4.6 15.1 11.4 13.6 2.3 9.0

boat right 9.3 9.3 20.7 11.6 14.0 7.0 16.0

bus left 23.8 23.8 31.0 38.1 42.9 28.6 38.0

bus right 65.2 52.2 35.1 56.5 69.6 47.8 74.0

horse left 64.6 60.4 48.5 43.8 87.5 83.3 58.0

horse right 73.9 67.4 45.2 52.2 76.1 80.4 52.0

mbike left 64.1 48.7 46.3 51.3 87.2 92.3 67.0

mbike right 70.6 76.5 55.3 64.7 82.4 88.2 76.0

mean 48.6 44.6 37.1 39.3 63.9 61.1 50.0

joint topic learning models in [Shi et al. 2013] when running DPMs refinement only

once. As shown in Table 3.1, SS also outperforms obj on the VOC07-14 dataset.

Consequently, we entirely adopt the Selective Search method (“fast” option) for our

subsequent experiments.

The localization accuracy on full PASCAL VOC 2007 trainval set and detection

precision on test set using S-WDPMs are shown in the first row of Table 3.3 and

Table 3.4.

3.3.2 Experiments with M-WDPMs on PASCAL VOC

3.3.2.1 Dataset and settings

We evaluate our generalized model: M-WDPMs (multiple region initialized weak

DPMs) on the far more challenging dataset: the whole PASCAL VOC 2007 dataset.

This contains a total number of 9963 images of 20 object categories, which are split
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Ground Truth  Pandey et al. ICCV2011 Our S-WDPM 

Figure 3.6: Examples of localization results for our S-WDPMs on PASCAL VOC
2007 images. The left column: ground-truth bounding boxes in green rectangles.
The middle and right columns are detection results with [Pandey & Lazebnik 2011]
and our S-WDPMs framework, respectively. Initial detections are shown in red,
while detections refined by detectors are shown in yellow. Both results use the
individual post-processing approach.
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into training (2501), validation (2510) and test (4952) sets. This dataset is challeng-

ing because it has large inter-class similarities, intra-class variances, cluttered back-

grounds, and scale changes. We only use the image level category labels for this

task. Moreover, images labeled as “difficult” are discarded as common practice

in previous studies. With respect to M-WDPMs testing, we only run the DPMs

once for efficiency, although iterative detector refinement can steadily improve fi-

nal performance to a certain extent. Annotation accuracy (i.e., correct localization,

CorLoc) on the trainval (training + validation) set and average precision (AP) for

detection on the test set are reported. For DeepPyramid feature extraction, we use

NVIDIA GeForce GTX Titan X GPUs, each with a 12 GB memory, thus allowing us

to upsample image pyramids to 1713× 1713 as in [Girshick et al. 2015] to facilitate

detection of small objects.

3.3.2.2 Parameter selection

As discussed in Section 3.2.1.4, we can generate Q region estimations for each im-

age. Q is a parameter which impacting the quality of the positive training examples.

If it is too large, there would be an enormous number of noisy samples for latent

class learning. However, if it is set to be very small, the instances in the original

image could not be comprehensively represented. Therefore, we experimentally

vary Q = {3, 5, 10, 15, 20, 30} to see which one performs best on the PASCAL VOC

2007 validation set. We implement this by directly measuring average annotation

accuracy for all classes, on the generated bounding boxes (Q per image) with the

PASCAL-overlap criterion. Figure 3.7 shows annotation accuracy for different Q.

We find that Q = 10 obtains the best result (36.1% average accuracy). When it is

very small (e.g., 3), performance drops dramatically to 26.8%. This is because some

of the “good” region proposals are not selected due to very small Q, while some

selected “bad” regions may degenerate the model. When Q rises from 10 to 30, per-

formance deteriorates progressively.. One explanation for this might be that many

object parts or background regions would be included when Q is large. Hence, we

set Q = 10 in all of our experiments on PASCAL VOC. Fig. 3.8 shows three exam-

ple images and their 10 selected regions. The κ in Eq. (3.5), which leverages the
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Figure 3.7: The impact of parameter Q (number of selected regions for each im-
age in the multiple region initialization scheme). The average annotation accuracy
on PASCAL VOC 2007 validation (HOG feature) and MS COCO 2014 val1 (CNN
feature) is evaluated with different Q.

classification and detection scores, is set to 0.7 according to cross-validation on a

subset of the validation data.

3.3.2.3 Annotation evaluation

We evaluate the same CorLoc [Deselaers et al. 2012] as in Section 3.3.1.2 on the PAS-

CAL VOC 2007 trainval set. Table 3.3 reports our experimental results compared

with the state-of-the-art WSL methods for object detection.

Concerning our M-WDPMs-HOG baseline, which computes the HOG fea-

tures and does not make use of auxiliary training data from the ILSVRC 2012

classification task [Russakovsky et al. 2015] as [Wang et al. 2015, Bilen et al. 2015],

it outperforms most of the previous works [Nguyen et al. 2009, Siva & Xiang 2011,

Shi et al. 2012, Shi et al. 2013, Siva et al. 2012, ?] (ours: 37.9% vs. best from the previ-
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Figure 3.8: Three example images and their 10 selected regions (resized to the same
squared size for regularity).

ous works (Joint topic): 36.2%). The M-WDPMs-HOG outperforms the S-WDPMs-

HOG (by 7.7%) by benefiting initialization of DPMs from multiple regions in the

image. Our M-WDPMs-HOG shows modest improvement in most of the classes,

thus proving that our multiple region initialization method has very discriminative

power for selecting the “good” regions in the original image for training the DPMs

root filters.

We also observe that, with the help of auxiliary training data and recently pop-

ular deep features, the average accuracy of our M-WDPMs-deep model increases

by 4.1% in comparison with the M-WDPMs-HOG model. Moreover, our detection

rescoring method (i.e., M-WDPMs-rescore) further improves performance for most
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Table 3.3: Comparisons of weakly supervised object detectors on PASCAL VOC
2007 trainval set in terms of correct localization (CorLoc [Deselaers et al. 2012], as a
%) on positive training images. († indicates methods using auxiliary training data
from ILSVRC 2012.)

method / class aero bike bird boat bottle bus car cat chair cow

our S-WDPMs-HOG 49.1 32.8 27.2 9.8 6.6 38.0 46.7 48.2 8.9 35.7

our M-WDPMs-HOG 67.9 52.4 34.4 21.9 12.1 42.0 59.9 58.4 9.9 42.0

our M-WDPMs-deep† 72.0 58.8 38.5 24.6 14.8 46.2 63.4 63.0 18.4 49.9

our M-WDPMs-rescore† 80.3 59.1 38.9 26.0 14.9 48.8 65.4 65.1 16.6 58.5

Joint Learning [Nguyen et al. 2009] 30.7 16.5 23.0 14.9 4.9 29.6 26.5 35.3 7.2 23.4

MI-SVM [Andrews et al. 2003] 37.8 17.7 26.7 13.8 4.9 34.4 33.7 46.6 5.4 29.8

Model Drift [Siva & Xiang 2011] 42.4 46.5 18.2 8.8 2.9 40.9 73.2 44.8 5.4 30.5

MIL-Negative [Siva et al. 2012] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8

Transfer Learning [Shi et al. 2012] 54.7 22.7 33.7 24.5 4.6 33.9 42.5 57.0 7.3 39.1

Joint Topic [Shi et al. 2013] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4

Convex Cluster.† [Bilen et al. 2015] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2

LCL-pLSA† [Wang et al. 2015] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4

method / class table dog horse mbike person plant sheep sofa train tv mean

our S-WDPMs-HOG 15.3 34.5 42.2 49.5 16.7 13.8 31.6 26.3 47.8 23.1 30.2

our M-WDPMs-HOG 13.5 38.9 48.1 58.6 20.4 19.5 40.8 24.9 48.9 42.7 37.9

our M-WDPMs-deep† 17.0 40.3 52.6 63.2 22.2 22.9 46.1 26.2 52.8 46.8 42.0

our M-WDPMs-rescore† 17.3 42.7 58.8 69.6 22.8 20.7 52.9 24.0 53.3 46.6 44.1

Joint Learning [Nguyen et al. 2009] 20.5 32.1 24.4 33.1 17.2 12.2 20.8 28.8 40.6 7.0 22.4

MI-SVM [Andrews et al. 2003] 14.5 32.8 34.8 41.6 19.9 11.4 25.0 23.6 45.2 8.6 25.4

Model Drift [Siva & Xiang 2011] 19.0 34.0 48.8 65.3 8.2 10.6 16.7 32.3 54.8 5.5 30.4

MIL-Negative [Siva et al. 2012] 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2

Transfer Learning [Shi et al. 2012] 24.1 43.3 41.3 51.5 25.3 13.3 28.0 29.5 54.6 11.8 32.1

Joint Topic [Shi et al. 2013] 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2

Convex Cluster.† [Bilen et al. 2015] 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7

LCL-pLSA† [Wang et al. 2015] 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

of the categories. The average improvement for detection rescoring on all 20 classes

is 2.1% (44.1% vs. 42.0%). Our M-WDPMs-rescore method is slightly better than

the newly invented convex clustering approach [Bilen et al. 2015], but is worse than

the LCL-pLSA method [Wang et al. 2015] on average. Though [Wang et al. 2015]

achieves state-of-the-art performance on many classes, it depends on more sophis-

ticated Super-Vector (SV) coding [Zhou et al. 2010] of the deep CNN features, thus
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unfortunately increasing feature dimensionality (e.g., 10,000 visual words). It also

fails in some categories such as boat and table. However, our M-WDPMs-rescore ex-

hibits a steady agreeable performance in all the categories with acceptable feature

dimension (256 dimensional conv 5 features for detection and 4,096 dimensional fc6

features for classification). In particular, our M-WDPMs-rescore works well in cat-

egories where target objects are relatively salient, such as aeroplane, boat, cow, horse

and motorbike. Among these categories, cow, horse and motorbike have deformable

shapes, thus ensuring good detection for the DPM.

3.3.2.4 Detection evaluation

Table 3.4 shows the comparison of our M-WDPMs and other methods for ob-

ject detection on the PASCAL VOC 2007 test set. Our M-WDPMs-HOG base-

line method achieves an mAP of 23.6%, which outperforms [Siva & Xiang 2011]

(13.9%) by a large margin, and is slightly better than [Cinbis et al. 2014] (22.4%).

Both [Siva & Xiang 2011] and [Cinbis et al. 2014] represent the image windows with

a SIFT [Lowe 1999] descriptor. [Siva & Xiang 2011] uses a Bag-of-Words (BOW)

[Csurka et al. 2004] histogram with 2000 dimensions, while [Cinbis et al. 2014] use

Fisher Vectors (FV) encoding [Perronnin et al. 2010] to represent the candidate

windows. [Pandey & Lazebnik 2011] uses the same HOG pyramid features. M-

WDPMs shows consistently better performance than S-WDPMs (19.1%), except for

the sofa category, where S-WDPMs shows trivial superiority. Among these meth-

ods that adopt low level visual features, our M-WDPMs-HOG works best. Al-

though [Song et al. 2014a] utilizes powerful deep CNN features to represent the

discovered object windows, its performance (22.7%) is more or less the same with

our HOG based M-WDPMs, which proves the stronger discrimination of our win-

dow selection method. When using the deep features with additional training

data from ImageNet [Russakovsky et al. 2015], our M-WDPMs-deep can achieve an

mAP of 25.7%. The boost (2.1%) is not as much as that of the annotation task (4.1%,

see Section. 3.3.2.3), it is probably due to the use of distinct measuring criteria

(mean average precision v.s percent of correct localization). Our detection rescor-

ing method M-WDPMs-rescore continues to improve the average precision (mAP
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Table 3.4: Comparison of weakly supervised object detectors on PASCAL VOC 2007
in terms of AP (Average Precision, as a %) in the test set. († supervised methods
using object level annotations.)

method / class aero bike bird boat bottle bus car cat chair cow

our S-WDPMs-HOG 26.2 25.0 8.8 9.1 6.5 37.4 40.7 22.9 5.8 19.8

our M-WDPMs-HOG 34.5 41.6 10.0 14.1 9.0 39.8 43.9 26.6 5.8 22.8

our M-WDPMs-deep 38.3 43.2 18.1 15.9 10.3 40.2 41.9 33.1 6.2 31.4

our M-WDPMs-rescore 43.3 43.5 18.6 16.8 10.5 45.2 42.3 33.8 6.6 37.2

Model Drift [Siva & Xiang 2011] 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3

Multi-fold MIL [Cinbis et al. 2014] 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0

Min-Supervision [Song et al. 2014a] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9

Pattern Config [Song et al. 2014b] 36.3 47.6 23.3 12.3 11.1 36.0 46.6 25.4 0.7 23.5

Posterior Reg. [Bilen et al. 2014] 42.2 43.9 23.1 9.2 12.5 44.9 45.1 24.9 8.3 24.0

Convex Cluster. [Bilen et al. 2015] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3

LCL-pLSA [Wang et al. 2015] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6
†DPMs 5.0 [Felzenszwalb et al. 2010b] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1
†DP-DPMs conv5 [Girshick et al. 2015] 42.3 65.1 32.2 24.4 36.7 56.8 55.7 38.0 28.2 47.3
†R-CNN [Girshick et al. 2014] 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5

method / class table dog horse mbike person plant sheep sofa train tv mean

our S-WDPMs-HOG 10.6 20.6 27.9 35.1 8.2 6.6 15.3 14.9 27.8 12.2 19.1

our M-WDPMs-HOG 10.8 24.1 32.2 41.7 10.0 12.3 22.5 14.6 32.9 19.1 23.6

our M-WDPMs-deep 11.3 27.4 34.3 45.2 12.7 12.5 25.0 14.9 34.3 19.1 25.7

our M-WDPMs-rescore 12.5 32.7 36.7 50.8 14.1 13.8 28.2 14.7 38.0 20.6 27.7

Model Drift [Siva & Xiang 2011] 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0 13.9

Multi-fold MIL [Cinbis et al. 2014] 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4

Min-Supervision [Song et al. 2014a] 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

Pattern Config [Song et al. 2014b] 12.5 23.5 27.9 40.9 14.8 19.2 24.2 17.1 37.7 11.6 24.6

Posterior Reg. [Bilen et al. 2014] 13.9 18.6 31.6 43.6 7.6 20.9 26.6 20.6 35.9 29.6 26.4

Convex Cluster. [Bilen et al. 2015] 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7

LCL-pLSA [Wang et al. 2015] 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
†DPMs 5.0 [Felzenszwalb et al. 2010b] 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
†DP-DPMs conv5 [Girshick et al. 2015] 37.1 39.2 61.0 56.4 52.2 26.6 47.0 35.0 51.2 56.1 44.4
†R-CNN [Girshick et al. 2014] 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

= 27.7%) for nearly all classes except for the sofa class (0.2% decrease ). Its per-

formance is better when compared with [Song et al. 2014b, Bilen et al. 2014], and

it displays the same range of performance in comparison with [Bilen et al. 2015].
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The performance gap (3.2%) between our method and that of [Wang et al. 2015]

might be partly caused by the use different deep feature representations as dis-

cussed in Section 3.3.2.3. We conjecture that our detection performance could be

further boosted if a complex feature encoding method such as SV [Zhou et al. 2010]

was adopted as [Wang et al. 2015]. We achieve the best detection results for the

boat, bus, cow, horse, sheep and train classes for this dataset. We attribute the success

on these categories to object saliency (e.g., boat, bus), deformable structures (e.g.,

cow, horse, sheep), and possibly their combination (e.g., train) which united by our

framework. Image saliency and object structures provide good representations for

these kinds of object categories. Hence, the combination of the two ensures good

detection results on these categories. And our M-WDPMs yields moderately low

average precision on categories such as bird, bottle, chair and potted plant. These

categories typically have notably small and/or textured instances, where object

proposal method such as Selective Search can be misleading, and they are hard

to detect even by supervised DPMs [Felzenszwalb et al. 2010b, Girshick et al. 2015].

In addition, we provide the results obtained by popular supervised object de-

tection methods [Felzenszwalb et al. 2010b, Girshick et al. 2015, Girshick et al. 2014]

in the bottom lines of Table 3.4. It is clear that there is still a gap between the

weakly supervised detection framework and supervised frameworks, although our

weakly supervised DPMs yields better results for some classes (e.g., aeroplane, cat,

dog, sheep) than the supervised DPMs 5.0 [Felzenszwalb et al. 2010b] which uses the

low level HOG feature. The state-of-the-art supervised object detection framework

(i.e., Faster R-CNN [Ren et al. 2015a]) achieves 78.9% mAP by adopting very deep

neural networks (VGG-16 [Simonyan & Zisserman 2015]).

3.3.2.5 Error analysis

We present an analysis of the types of errors that our M-WDPMs make on the PAS-

CAL VOC 2007 test set. We use the diagnosis tool of [Hoiem et al. 2012] and con-

sider four types of false positive (FP) errors: Loc (poor localizations), Sim (confusion

with similar objects), Oth (confusion with other objects, e.g., correctly localizing an

object but classifying it to a wrong class) and BG (confusion with background or
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         (a) M-WSDPM-HOG                              (b) M-WSDPM-deep        (c) M-WSDPM-rescore     (d) state-of-the-art supervised: NoC  
                mAP = 23.6%         mAP = 25.7%               mAP = 27.7%        mAP = 68.8% 

Figure 3.9: Analysis of top-ranked detections on PASCAL VOC 2007 test set. Pie
charts show the distributions of the true positives (TP) and false positives (FP) gen-
erated by the detection error analysis tool of [Hoiem et al. 2012]. Percentage of the
top T detections (T is the number of ground truth objects in the whole test dataset)
that are correct (Cor), or false positives due to poor localization (Loc), confusion
with similar objects (Sim), confusion with other objects (Oth), or confusion with
background or unlabeled objects (BG) [Hoiem et al. 2012]. The three charts on the
left show the analysis of our methods, while the one on the right is the analysis of
the state-of-the-art supervised detection results obtained by NoC [Ren et al. 2015b].

unlabeled objects). In addition, Cor indicates correctly located true positives (TP).

We visually show the fraction of correct detections (TP) and errors of each kind

(FP) among the top ranking T windows in Figure 3.9, where T is the number of

ground-truth object windows in the PASCAL VOC 2007 test set.

We consider the M-WDPMs-HOG as our baseline and show the distribution of

TP and each kind of FP in Figure 3.9(a). We can see that the majority of errors are

due to poor localizations (Loc) and confusion with background regions (BG). When

adopting the deep features, our M-WDPMs-deep encounters fewer Loc and Oth,

but continues to suffer from the Sim and BG error (as shown in Figure 3.9(b)). On

the contrary, after detection rescoring, our best performing method M-WDPMs-

rescore has fewer errors caused by Loc, BG and Oth (Figure 3.9(c)), thus confirming

that our rescoring approach is very efficient in excluding the background regions

and avoiding misclassification. Figure 3.9(d) shows the error distribution of the

state-of-the-art supervised object detection framework NoC (Networks on Con-

volutional feature maps) [Ren et al. 2015b]. NoC adopt even deeper VGG-16 nets

[Simonyan & Zisserman 2015] with bounding box fine-tuning on PASCAL VOC

2007+2012 trainval. A comparison between NoC and our M-WDPMs indicates
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aeroplane cat dog sheep 

Figure 3.10: Analysis of false positives for some classes on which our M-WDPMs
outperforms DPMs 5.0 [Felzenszwalb et al. 2010b]. Each category named within
“Sim” shows the category names on which detector tends towards confusion.

that: (1) a deeper network helps increase correct localization (Cor) substantially;

(2) fine-tuning deep CNN and supervised training with ground-truth bounding

boxes yield far fewer Sim and Oth errors.

We also display some class specific false positive analysis in Fig. 3.10, on the

classes where our M-WDPMs outperforms DPMs 5.0 [Felzenszwalb et al. 2010b].

3.3.2.6 Running time

The time it takes to extract the Selective Search region proposals (can be shared

among different detector learning) is 10.27s. Reference region computation takes

778ms, generation of initial object estimations from region proposals and reference

regions takes 190ms, while computation of CNN features is 18.97s and conv5 fea-

ture pyramid from CNN feature is 631ms. Running time is averaged on 100 ran-

dom PASCAL images, and is evaluated on an Intel Core i7-5960X CPU @ 3.00GHz

with 32GB memory and a single NVIDIA Titan X GPU. For M-WDPMs, training

binary SVM and learning latent class takes 228.20s on the horse class and 196.05s

on the motorbike class (except for CNN pre-training and feature extraction time).

Besides, training of the horse DPMs detector takes 84.82 minutes and 76.45 minutes

for motorbike. Running a detector costs 9.76s per image (including rescoring time)

on average on the PASCAL dataset.
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Figure 3.11: Detection results of weakly supervised DPMs detectors on MS COCO
2014 val2 in terms of AP (Average Precision, as a %). For both methods, deep con5
features are adopted.
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3.3.3 Preliminary Results with M-WDPMs on MS COCO

The Microsoft Common Objects in Context (MS COCO) dataset [Lin et al. 2014b]

involves 80 object categories. It contains considerably more object instances per

image (7.7) compared to PASCAL VOC (2.5), and has 82,783 training images and

40,504 validating images in the 2014 release (COCO 2014). We split the validation

set equally into val1 and val2, where val1 is used as a validation set and val2 is

used as a test set. In spite of this, this subset of MS COCO is much larger and more

difficult than PASCAL VOC. We evaluate the PASCAL VOC metric (mAP @IoU =

0.5) on val2.

We set the parameter Q to 25 regions, since there are significantly more object

instances per image on MS COCO than on PASCAL VOC. The influence of Q on MS

COCO is shown in Figure 3.7, while the rescoring weight κ is set to 0.8 by choosing

from [0.5, 1.0] on val1. The increase of κ on MS COCO probably means that there

is a larger number of smaller objects in this dataset and that the detector has more

influence than the classifier on the final detection score. The other training and

testing settings of M-WDPMs remain as the same as on PASCAL VOC. We compare

our method with the WDPM-random baseline method [Pandey & Lazebnik 2011],

which sets a large random window as initialization. For both of these two methods,

we adopt deep con5 feature pyramids.

Fig. 3.11 shows the detection results of our M-WDPMs and the WDPMs-

random baseline. Overall, our M-WDPMs results in 17.0% mAP on this MS COCO

val2 set, boosting the mAP by 4.3 points over the WDPMs-random. The results on

20 common categories in MS COCO are significantly lower than on PASCAL. This

is because there are far more small objects on COCO, making it a fairly challeng-

ing dataset for detection. We observed that our M-WDPMs exhibits a relatively

good performance on similar categories both in COCO and in PASCAL, such as

aeroplane, bus, horse, motorbike and train, and has favorable performances on truck,

bear and oven, etc. classes in COCO. This confirms that our M-WDPMs is capable of

detecting object categories that are salient visually and/or deformable structurally.
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3.4 Summary

In this chapter, we proposed a model enhancing weakly supervised learning

by emphasizing the importance of location and size of the initial class specific

root filter of deformable part-based models. We follow the general setup of

[Pandey & Lazebnik 2011] and introduce several substantial improvements to the

weakly supervised deformable part-based model (DPMs). The main contributions

included a new selection model based on generic “objectness” (region proposals)

and visual saliency to adaptively select a reliable set of candidate windows which

tend to represent the object instances in the image, and a latent class learning pro-

cess by coarsely classifying a candidate window into either a target object or a non-

target class. Furthermore, we incorporate the contextual information from image

classification, by combining the image-level classification score with object-level

DPM detection score, to obtain a final score for detection. We also designed a

flexible enlarging-and-shrinking post-processing procedure to modify the output

bounding boxes of DPMs, both of which can effectively further improve the final

accuracy. Experimental results on the PASCAL VOC 2007 database according to

various criteria demonstrate that our proposed framework is efficient and com-

petitive with the state-of-the-art, especially for the object categories which are rela-

tively salient and deformable. We also report some preliminary weakly supervised

detection results on the very challenging MS COCO 2014 dataset.

The weakly supervised deformable part-based models have decent perfor-

mance on mid-level scale datasets such as PASCAL VOC, since DPMs benefit from

the relaxed template relation by splitting a single rigid model into smaller part

models, and each part model learns more shape details of the object on a finer res-

olution. However, each fine part template can only handle a specific kind of object

deformation or view change since it is sensitive to position, scale, viewpoint, etc..

Hence the complexity becomes intractable for very large scale datasets such as MS

COCO and ImageNet, where the object deformation is often very large. In next

chapter, we will study the convolutional neural network (CNN) based approach

which is more capable in handling unconstrained deformation problems of very
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large scale datasets.
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Chapter 4. Large Scale Semi-supervised Object Detection Using Visual and
Semantic Knowledge Transfer

Deep CNN-based object detection systems have achieved remarkable success

on several large-scale object detection benchmarks. However, training such de-

tectors requires a large number of labeled bounding boxes, which are more diffi-

cult to obtain than image-level annotations. Previous work addresses this issue by

transforming image-level classifiers into object detectors. This is done by modeling

the differences between the two on categories with both image-level and bounding

box annotations, and transferring this information to convert classifiers to detec-

tors for categories without bounding box annotations. We improve this previous

work by incorporating knowledge about object similarities from visual and seman-

tic domains during the transfer process. The intuition behind our proposed method

is that visually and semantically similar categories should exhibit more common

transferable properties than dissimilar categories, e.g. , a better detector would re-

sult by transforming the differences between a dog classifier and a dog detector

onto the cat class, than would by transforming from the violin class. Experimental

results on the challenging ILSVRC2013 detection dataset demonstrate that each of

our proposed object similarity based knowledge transfer methods outperforms the

baseline methods. We found strong evidence that visual similarity and semantic

relatedness are complementary for the task, and when combined notably improve

detection, achieving state-of-the-art detection performance in a semi-supervised

setting.

4.1 Introduction

The recent success of deep convolutional neural networks (CNN)

[Krizhevsky et al. 2012] for object detection, such as DetectorNet

[Szegedy et al. 2013], OverFeat [Sermanet et al. 2014], R-CNN [Girshick et al. 2014],

SPP-net [He et al. 2015], Fast R-CNN [Girshick 2015], Faster R-CNN

[Ren et al. 2015a], YOLO [Redmon et al. 2016] and SSD [Liu et al. 2016], is heavily

dependent on a large amount of training data manually labeled with object

82



Chapter 4. Large Scale Semi-supervised Object Detection Using Visual and
Semantic Knowledge Transfer

dog 

cat 

…
 

bicycle 

classifiers 

𝑾𝑏𝑖𝑐𝑦𝑐𝑙𝑒
𝑐𝑙𝑠  

𝑾𝑑𝑜𝑔
𝑐𝑙𝑠  

𝑾𝑐𝑎𝑡
𝑐𝑙𝑠  

detectors 

𝑾𝑏𝑖𝑐𝑦𝑐𝑙𝑒
𝑑𝑒𝑡  

𝑾𝑑𝑜𝑔
𝑑𝑒𝑡  

𝑾𝑐𝑎𝑡
𝑑𝑒𝑡 

…
 

…
 

…
 

…
 

…
 

dog 

cat 

…
 

bicycle 
…

 

Figure 4.1: In this work, we consider a dataset containing image-level labels for all
the categories, while object-level bounding box annotations are only available for
some of the categories (i.e. weakly labeled categories). How can we transform a
CNN classification network into a detection network to detect the weakly labeled
categories (e.g. , cat class)?

localizations (e.g. , PASCAL VOC [Everingham et al. 2010], ILSVRC (subset

of ImageNet) [Russakovsky et al. 2015], and Microsoft COCO [Lin et al. 2014b]

datasets).

Although localized object annotations are extremely valuable, the process of

manually annotating object bounding boxes is extremely laborious and unreliable,

especially for large-scale databases. On the other hand, it is usually much eas-

ier to obtain annotations at image level (e.g. , from user-generated tags on Flickr

or Web queries). For example, ILSVRC contains image-level annotations for 1,000

categories, while object-level annotations are currently restricted to only 200 cate-

gories. One could apply image-level classifiers directly to detect object categories,

but this will result in a poor performance as there are differences in the statistical

distribution between the training data (whole images) and the test data (localized

object instances). Previous work by Hoffman et al. [Hoffman et al. 2014] addresses

this issue, by learning a transformation between classifiers and detectors of object

categories with both image-level and object-level annotations (“strong” categories),

and applying the transformation to adapt image-level classifiers to object detectors

for categories with only image-level labels (“weak” categories). Part of this work

involves transferring category-specific classifier and detector differences of visually
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Figure 4.2: An illustration of our similarity-based knowledge transfer model. The
question we investigate is whether knowledge about object similarities – visual and
semantic – can be exploited to improve detectors trained in a semi-supervised man-
ner. More specifically, to adapt the image-level classifier (up-left) of a “weakly
labeled” category (no bounding boxes) into a detector (up-right), we transfer in-
formation about the classifier and detector differences of “strong” categories (with
image-level and bounding box annotations, bottom of the figure) by favoring cate-
gories that are more similar to the target category (e.g. , transfer information from
dog and tiger rather than basketball or bookshelf to produce a cat detector).

similar “strong” categories equally to a classifier of a “weak” category to form a

detector for that category (Figure 4.1). We argue that more can potentially be ex-

ploited from such similarities in an informed manner to improve detection beyond

using the measures solely for nearest neighbor selection (see Section 4.3.1). More-

over, since there exists evidence that deep CNNs trained for image classification

also learn proxies to objects and object parts [Zhou et al. 2015], the transformation

from CNN classifiers to detectors is reasonable and practicable.

Our main contribution in this chapter is therefore to incorporate external

knowledge about object similarities from visual and semantic domains in mod-

eling the aforementioned category-specific differences, and subsequently trans-

ferring this knowledge for adapting an image classifier to an object detector for

a “weak” category. Our proposed method is motivated by the following obser-

vations: (i) category specific difference exists between a classifier and a detec-

tor [Girshick et al. 2014, Hoffman et al. 2014]; (ii) visually and semantically similar
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categories may exhibit more common transferable properties than visually or se-

mantically dissimilar categories; (iii) visual similarity and semantic relatedness are

shown to be correlated, especially when measured against object instances cropped

out from images (thus discarding background clutter) [Deselaers & Ferrari 2011].

Intuitively, we would prefer to adapt a cat classifier to a cat detector by using the

category-specific differences between the classifier and the detector of a dog rather

than of a violin or a strawberry (Figure 4.2). The main advantage of our proposed

method is that knowledge about object similarities can be obtained without requir-

ing further object-level annotations, for example from existing image databases,

text corpora and external knowledge bases.

Our work aims to answer the question: can knowledge about visual and seman-

tic similarities of object categories (and the combination of both) help improve the

performance of detectors trained in a weakly supervised setting (i.e. by converting

an image classifier into an object detector for categories with only image-level an-

notations)? Our claim is that by exploiting knowledge about objects that are visu-

ally and semantically similar, we can better model the category-specific differences

between an image classifier and an object detector and hence improve detection

performance, without requiring bounding box annotations. We also hypothesize

that the combination of both visual and semantic similarities can help further im-

prove the detector performance. Experimental results on the challenging ILSVRC

2013 dataset [Russakovsky et al. 2015] validate these claims, showing the effective-

ness of our approach of transferring knowledge about object similarities from both

visual and semantic domains to adapt image classifiers into object detectors in a

semi-supervised manner.

The rest of this chapter is organized as follows. We define the semi-supervised

object detection problem in Section 4.2. In Section 4.3, we first review the LSDA

framework, then we introduce our two knowledge transferring methods (i.e. visual

similarity based method and semantic similarity based method) which improve

upon LSDA. We present our experimental results and comparisons in Section 4.4.

In Section 4.5, we conclude and describe future direction.
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4.2 Task Definition

In our semi-supervised learning case, we assume that we have a set of “fully la-

beled” categories and “weakly labeled” categories. For the “fully labeled” cate-

gories, a large number of training images with both image-level labels and bound-

ing box annotations are available for learning the object detectors. For each of

the “weakly labeled” categories, we have many training images containing the

target object, but we do not have access to the exact locations of the objects.

This is different from the semi-supervised learning proposed in previous work

[Misra et al. 2015, Rosenberg et al. 2005, Yang et al. 2013], where typically a small

amount of fully labeled data with a large amount of weakly labeled (or unlabeled)

data are provided for each category. In our semi-supervised object detection sce-

nario, the objective is to transfer the trained image classifiers into object detectors

on the “weakly labeled” categories.

4.3 Similarity-based Knowledge Transfer

We first describe the Large Scale Detection through Adaptation (LSDA) frame-

work [Hoffman et al. 2014], upon which our proposed approach is based (Section

4.3.1). We then describe our proposed knowledge transfer models with the aim of

improving LSDA. Two knowledge domains are explored: (i) visual similarity (Sec-

tion 4.3.2); (ii) semantic relatedness (Section 4.3.3). Next, we combine both models

to obtain our mixture transfer model, as presented in Section 4.3.4. Finally, we

propose to transfer the knowledge to bounding-box regression from fully labeled

categories to weakly labeled categories in Section 4.3.5.

4.3.1 Background on LSDA

Let D be the dataset of K categories to be detected. One has access to both image-

level and bounding box annotations only for a set of m (m ≪ K) “fully labeled”

categories, denoted as B, but only image-level annotations for the rest of the cate-

gories, namely “weakly labeled” categories, denoted asA. Hence, a set of K image
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classifiers can be trained on the whole dataset D (D = A ∪ B), but only m object

detectors (from B) can be learned according to the availability of bounding box an-

notations. The LSDA algorithm learns to convert (K −m) image classifiers (from

A) into their corresponding object detectors through the following steps:

Pre-training: First, an 8-layer (5 convolutional layers and 3 fully-connected (fc)

layers) Alex-Net [Krizhevsky et al. 2012] CNN is pre-trained on the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) 2012 classification dataset

[Russakovsky et al. 2015], which contains 1.2 million images of 1,000 categories.

Fine-tuning for classification: The final weight layer (1,000 linear classifiers) of

the pre-trained CNN is then replaced with K linear classifiers. This weight layer

is randomly initialized and the whole CNN is then fine-tuned on the dataset D.

This produces a classification network that can classify K categories (i.e., K-way

softmax classifier), given an image or an image region as input.

Category-invariant adaptation: Next, the classification network is fine-tuned into a

detector with bounding boxes of B as input, using the R-CNN [Girshick et al. 2014]

framework. As in R-CNN, a background class (fc8BG) is added to the output layer

and fine-tuned using bounding boxes from a region proposal algorithm, e.g. , Se-

lective Search [Uijlings et al. 2013]. The fc8 layer parameters are category specific,

with 4,097 weights (fc7 output: 4,096, plus a bias term) in each category, while the

parameters of layers 1-7 are category invariant. Note that object detectors are not

able to be directly trained onA, since the fine-tuning and training process requires

bounding box annotations. Therefore, at this point, the category specific output

layer fc8A stays unchanged. The variation matrix of fc8B after fine-tuning is de-

noted as ∆B.

Category-specific adaptation: Finally, each classifier of categories j ∈ A is adapted

into a corresponding detector by learning a category-specific transformation of the

model parameters. This is based on the assumption that the difference between

classification and detection of a target object category has a positive correlation

with those of similar (close) categories. The transformation is computed by adding

a bias vector to the weights of fc8A. This bias vector for category j is measured

by the average weight change of its k nearest neighbor categories in set B, from
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Figure 4.3: The pipeline of the LSDA [Hoffman et al. 2014] framework.

classification to detection.

∀j ∈ A :
−→
wd
j =
−→
wc
j +

1

k

k∑
i=1

∆Bj
i

(4.1)

where ∆Bj
i

is the fc8 weight variation of the ith nearest neighbor category in set B

for category j ∈ A. −→wc and
−→
wd are, respectively, fc8 layer weights for the fine-tuned

classification and the adapted detection network. The nearest neighbor categories

are defined as those with nearest L2-norm (Euclidean distance) of fc8 weights in

set B.

The pipeline of the LSDA framework is shown in Figure 4.3. The fully adapted

network is able to detect all K categories in test images. In contrast to R-CNN,

which trains SVM classifiers on the output of the fc7 layer followed by bounding

box regression on the extracted features from the pool5 layer of all region propos-

als, LSDA directly outputs the score of the softmax “detector”, and subtracts the

background score from this as the final score. This results in a small drop in perfor-

mance, but enables direct adaptation from a classification network into a detection

network on the “weakly labeled” categories, and significantly reduces the training

time.
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Hoffman et al. [Hoffman et al. 2014] demonstrated that the adapted model

yielded a 50% relative mAP (mean average precision) boost for detection over

the classification-only framework on the “weakly labeled” categories of the

ILSVRC2013 detection dataset (from 10.31% to 16.15%). They also showed that

category-specific adaptation (final LSDA step) contributes least to the performance

improvement (16.15% with vs. 15.85% without this step), with the other features

(adapted layers 1-7 and background class) being more important. However, we

found that by properly adapting this layer, a significant boost in performance can

be achieved: an mAP of 22.03% can be obtained by replacing the semi-supervised

fc8A weights with their corresponding supervised network weights and leaving

the other parameters fixed. Thus, we believe that adapting this layer in an informed

manner, such as making better use of knowledge about object similarities, will help

improve detection.

In the next subsections, we will introduce our knowledge transfer methods us-

ing two different kinds of similarity measurements to select the nearest categories

and weight them accordingly to better adapt the fc8 layer, which can efficiently

convert an image classifier into an object detector for a “weakly labeled” category.

4.3.2 Knowledge Transfer via Visual Similarity

Intuitively, the object detector of an object category may be more similar to those of

visually similar categories than of visually distinct categories. For example, a cat

detector may approximate a dog detector better than a strawberry detector, since cat

and dog are both mammals sharing common attributes in terms of shape (both have

four legs, two ears, two eyes, one tail) and texture (both have fur). Therefore, given a

“fully labeled” datasetB and a “weakly labeled” datasetA, our objective is to model

the visual similarity between each category j ∈ A and all the other categories in B,

and to transfer this knowledge for transforming classifiers into detectors for A.

Visual similarity measure: Visual similarity measurements are often obtained

by computing the distance between feature distributions such as the fc6 or fc7

output of a CNN, or in the case of LSDA the fc8 layer parameters. In our
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work, we instead forward propagate an image through the whole fine-tuned clas-

sification network (created by the second step in Section 4.3.1) to obtain a K-

dimensional classification score vector. This score vector encodes the probabil-

ities of an image being each of the K object categories. Consequently, for all

the positive images of an object category j ∈ A, we can directly accumulate the

scores of each dimension, on a balanced validation dataset. We assume that the

normalized accumulated scores (range [0,1]) imply the similarities between cat-

egory j and other categories: the larger the score, the more it visually resem-

bles category j. This assumption is supported by the analysis of deep CNNs

[Agrawal et al. 2014, Jia et al. 2014, Zeiler & Fergus 2014]: CNNs are apt to confuse

visually similar categories, on which they might have higher prediction scores. The

visual similarity (denoted sv) between a “weakly labeled” category j ∈ A and a

“fully labeled” category i ∈ B is defined as:

sv(j, i) ∝
1

N

N∑
n=1

CNN(In)i (4.2)

where In is a positive image from category j of the validation set of A, N is the

number of positive images for this category, and CNN(In)i is the ith CNN output

of the softmax layer on In, namely, the probability of In being category i ∈ B as

predicted by the fine-tuned classification network. sv(j, i) ∈ [0, 1] is the degree of

similarity after normalization on all the categories in B.

Note that we adopt the fc8 outputs since most of the computation is integrated

into the end-to-end Alex-Net framework except for the accumulation of classifica-

tion scores in the end, saving the extra effort otherwise required for distance com-

putation if fc6 or fc7 were to be used (two methods produce similar range of re-

sults).

Weighted nearest neighbor scheme: Using Eq. (4.1), we can transfer the model

parameters based on a category’s k nearest neighbor categories selected by Eq. (4.2).

This allows us to directly compare our visual similarity measure to that of LSDA

which uses the Euclidean distance between the fc8 parameters. An alternative to

Eq. (4.1) is to consider a weighted nearest neighbor scheme, where weights can be
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assigned to different categories based on how visually similar they are to the target

object category. This is intuitive, as different categories will have varied degrees of

similarity to a particular class, and some categories may have only a few (or many)

visually similar classes. Thus, we modify Eq. (4.1) and define the transformation

via visual similarity based on the proposed weighted nearest neighbor scheme as:

∀j ∈ A :
−→
wd
j v

=
−→
wc
j +

m∑
i=1

sv(j, i)∆Bj
i

(4.3)

It is worth noting that Eq. (4.1) is a special case of Eq. (4.3), where m = k and

sv(j, i) = 1/k.

4.3.3 Knowledge Transfer via Semantic Relatedness

Following prior work [Deselaers & Ferrari 2011, Rochan & Wang 2015,

Rohrbach et al. 2010], we observe that visual similarity is correlated with se-

mantic relatedness. According to [Deselaers & Ferrari 2011], this relationship is

particularly strong when measurements are focused on the category instances

themselves, ignoring image backgrounds. This observation is quite intriguing

for object detection, where the main focus is on the target objects themselves.

Hence, we draw on this fact and propose transferring knowledge from the natural

language domain to help improve semi-supervised object detection.

Semantic similarity measure: Semantic similarity is a well-explored area

within the Natural Language Processing community. Recent advances in

word embeddings trained on large-scale text corpora [Mikolov et al. 2013a,

Pennington et al. 2014] have helped progress research in this area, as it has

been observed that semantically related word vectors tend to be close in

the embedding space, and that the embeddings capture various linguistic

regularities [Mikolov et al. 2013b]. Thus, we encode each of the K cate-

gories as a word vector, more specifically a 300-dimensional word2vec embed-

ding [Mikolov et al. 2013a]. As each category is a WordNet [Fellbaum 1998] synset,

we represent each category as the sum of the word vectors for each term in its

synset, normalized to unit vector by its L2-norm. Out-of-vocabulary words are ad-
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dressed by attempting to match case variants of the words (lowercase, Capitalized),

e.g. , “aeroplane” is not in the vocabulary, but “Aeroplane” is. Failing that, we rep-

resent multiword phrases by the sum of the word vectors of each in-vocabulary

word of the phrase, normalized to unit vector (“baby”+“bed” for baby bed). In

several cases, we also augment synset terms with any category label defined in

ILSVRC2013 that is not among the synset terms defined in WordNet (e.g. “book-

shelf” for the WordNet synset bookcase, and “tv” and “monitor” for display).

Word embeddings often conflate multiple senses of a word into a single vec-

tor, leading to an issue with polysemous words. We observed this with many cate-

gories, for example seal (animal) is close to nail and tie (which, to further complicate

matters, is actually meant to refer to its clothing sense); or the stationery ruler being

related to lion. Since ILSVRC2013 categories are actually WordNet synsets, it makes

perfect sense to exploit WordNet to help disambiguate the word senses. Thus, we

integrate corpus-based representations with semantic knowledge from WordNet,

by using AutoExtend [Rothe & Schütze 2015] to encode the categories as synset em-

beddings in the original word2vec embedding space. AutoExtend exploits the in-

terrelations between synsets, words and lexemes to learn an auto-encoder based

on these constraints, as well as constraints on WordNet relations such as hyper-

nyms (encouraging poodle and dog to have similar embeddings). We observed that

AutoExtend has indeed helped form better semantic relations between the desired

categories: seal is now clustered with other animal categories like whale and turtle,

and the nearest neighbors for ruler are now rubber eraser, power drill and pencil box.

In our detection experiments (Section 4.4), we found that while the ‘naive’ word

embeddings performed better than the baselines, the synset embeddings yielded

even better results. Thus, we only report the results for the latter.

We represent each category j ∈ A and i ∈ Bwith their synset embeddings, and

compute the L2-norm of each pair ds(j, i) as their semantic distance. The semantic

similarity ss(j, i) is inversely proportional to ds(j, i). We can then transfer the se-

mantic knowledge to the appearance model using Eq. (4.3) or its special case Eq.

(4.1) as before.

As our semantic representations are in the form of vectors, we explore an alter-
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native similarity measure as used in [Rochan & Wang 2015]. We assume that each

vector of a “weakly labeled” category j ∈ A (denoted as vj) can be approximately

represented by a linear combination of all themword vectors inB: vj ≈ ΓjV , where

V = [v1; v2; . . . ; vi; . . . ; vm], and Γj = [γ1j , γ
2
j , . . . , γ

i
j , . . . , γ

m
j ] is a set of coefficients

of the linear combination. We are motivated to find the solution Γ⋆
j which contains

as few non-zero components as possible, since we tend to reconstruct category j

with fewer categories from B (sparse representation). This optimal solution Γ⋆
j can

be formulated as the following optimization:

Γ⋆
j = arg min

Γj>0

(∥vj − ΓjV ∥2 + λ∥Γj∥0) (4.4)

Note that Γj > 0 is a positive constraint on the coefficients, since negative com-

ponents of sparse solutions for semantic transferring are meaningless: we only

care about the most similar categories and not dissimilar categories. We solve

Eq. (4.4) by using the positive constraint matching pursuit (PCMP) algorithm

[Gao et al. 2012]. Therefore, the final transformation via semantic transferring is

formulated as:

∀j ∈ A :
−→
wd
j s

=
−→
wc
j +

m∑
i=1

ss(j, i)∆Bj
i

(4.5)

where ss(j, i) = γij in the sparse representation case.

4.3.4 Mixture Transfer Model

We have proposed two different knowledge transfer models. Each of them can be

integrated into the LSDA framework independently. In addition, since we con-

sider the visual similarity at the whole image level and the semantic relatedness

at object level, they can be combined simultaneously to provide complementary

information. We use a simple but very effective combination of the two knowledge

transfer models as our final mixture transfer model. Our mixture model is a linear

combination of the visual similarity and the semantic similarity:

s = intersect[αsv + (1− α)ss] (4.6)
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where intersect[·] is a function that takes the intersection of cooccurring categories

between visual and sparse semantic related categories. α ∈ [0, 1] is a parameter

used to control the relative influence of the two similarity measurements. α is set to

1 when only considering visual similarity transfer, and 0 for the semantic similarity

transfer. We will analyze this parameter in Section 4.4.3.

4.3.5 Transfer on Bounding-box Regression

The detection windows generated by the region based detection models are the

highest scoring proposals (e.g. , Selective Search). In order to improve localization

performance, a bounding-box regression stage [Girshick et al. 2014] is commonly

adopted to post-process the detection windows. This process needs bounding box

annotations in training the regressors, which is an obstacle for “weakly labeled”

categories in our case. Hence, we propose to transfer the class-specific regressors

from “fully labeled” categories to “weakly labeled” categories based on the afore-

mentioned similarity measures.

To train a regressor for each “fully labeled” category, we select a set of N training

pairs {(P⃗ i, G⃗i)}i=1,...,N , where P⃗ i = (P i
x, P

i
y, P

i
w, P

i
h) is a vector indicating the center

coordinates (P i
x, P

i
y) of proposal P i together with P i’s width and height (P i

w, P
i
h).

G⃗i = (Gi
x, G

i
y, G

i
w, G

i
h) is the corresponding ground-truth bounding box. We omit

the superscript i except as hereinafter provided. The goal is to learn a mapping

function f(P ) = (fx(P ), fy(P ), fw(P ), fh(P )) which maps a region proposal P to

a ground-truth window G. Each function within f(P ) is modeled as a linear func-

tion of the pool5 features: f(P ) = wT
∗ F5(P ), where w∗ is a vector of learnable

parameters, F5(P ) is the pool5 feature of region proposal P . w∗ can be learned by

optimizing the following least squares objective function:

w∗ = arg min
ŵ∗

N∑
i=1

(ŵT
∗ F5(P

i)− ti∗)
2 + λ0∥ŵ∗∥2 (4.7)

where t∗ = (tx, ty, tw, th) is the regression target for the training pair (P,G) which

94



Chapter 4. Large Scale Semi-supervised Object Detection Using Visual and
Semantic Knowledge Transfer

is defined as:
tx = (Gx − Px)/Pw,

ty = (Gy − Py)/Ph,

tw = log(Gw/Pw),

th = log(Gh/Ph).

(4.8)

The first two specify a scale-invariant translation of the center of the bounding

box, while the second two specify log-space translation of the width and height

of the bounding box. After learning the parameters of the transformation function,

a detection window (region proposal) P can be transformed into a new prediction

P̂ = (P̂x, P̂y, P̂w, P̂h) by applying:

P̂x = Px + Pwfx(P ),

P̂y = Py + Phfh(P ),

P̂w = Pw exp(fw(P )),

P̂h = Ph exp(fh(P )).

(4.9)

The training pair (P,G) is selected when the proposalP has maximum IoU over-

lap with ground-truth bounding box G. The pair (P,G) is discarded if the maxi-

mum IoU overlap is less than a threshold (which is set to be 0.6 using a validation

set).

For a “weakly labeled” category j, the transformation function can not been

explicitly learned due to the absence of ground-truth bounding boxes. However,

we can still transfer this knowledge from similar categories in “fully labeled” subset

B:

∀j ∈ A : wj =

m∑
i=1

s∗wi (4.10)

where s∗ indicates any one of the aforementioned similarity measures.
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4.4 Experiments

4.4.1 Dataset Overview

We investigate the proposed knowledge transfer models for large scale semi-

supervised object detection on the ILSVRC2013 detection dataset covering 200 ob-

ject categories. The training set is not exhaustively annotated because of its sheer

size. There are also fewer annotated objects per training image than the valida-

tion and testing image (on average 1.53 objects for training vs. 2.5 objects for

validation set). We follow all the experiment settings as in [Hoffman et al. 2014],

and simulate having access to image-level annotations for all 200 categories and

bounding box annotations only for the first 100 categories (alphabetical order).

We separate the dataset into classification and detection sets. For the classifica-

tion data, we use 200,000 images in total from all 200 categories of the training

subset (around 1,000 images per category) and their image-level labels. The val-

idation set is roughly split in half: val1 and val2 as in [Girshick et al. 2014]. For

the detection training set, we take the images with their bounding boxes from

only the first 100 categories (B) in val1 (around 5,000 images in total). Since the

validation dataset is relatively small, we then augment val1 with 1,000 bounding

box annotated images per class from the training set (following the same protocol

of [Girshick et al. 2014, Hoffman et al. 2014]). Finally, we evaluate our knowledge

transfer framework on the val2 dataset (9,917 images in total).

4.4.2 Implementation Details

In all the experiments, we consider LSDA [Hoffman et al. 2014] as our baseline

model and follow their main settings. Following [Hoffman et al. 2014], we first

use the Caffe [Jia et al. 2014] implementation of the “AlexNet” CNN. A pre-trained

CNN on ILSVRC 2012 dataset is then fine-tuned on the classification training

dataset (see Section. 4.4.1). This CNN is then fine-tuned again for detection on

the labeled region proposals of the first 100 categories (subset B) of val1. Selective

Search [Uijlings et al. 2013] with “fast” mode is adopted to generate the region pro-

posals from all the images in val1 and val2. We also report results using two deeper
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models of “VGG-Nets” [Simonyan & Zisserman 2015], namely, the 16-layer model

(VGG-16) and the 19-layer model (VGG-19), with the Caffe toolbox. For the se-

mantic representation, we use word2vec CBoW embeddings pre-trained on part of

the Google News dataset comprising about 100 billion words [Mikolov et al. 2013a].

We train AutoExtend [Rothe & Schütze 2015] using WordNet 3.0 to obtain synset

embeddings, and using equal weights for the synset, lexeme and WordNet relation

constraints (α = β = 0.33). As all categories are nouns, we use only hypernyms

as the WordNet relation constraint. For the sparse representation of a target word

vector in Eq. (4.4), we limit the maximum number of non-zero components to 20,

since a target category has strong correlation with a small number of source cate-

gories. We set λ = 100 in Eq. (4.4) and λ0 = 1000 in Eq. (4.7) based on a validation

set. The other detailed information regarding training and detection can be found

in Section 4.3.1.

4.4.3 Quantitative Evaluation on the “Weakly Labeled” Categories with

“Alex-Net”

Setting LSDA as the baseline, we compare the detection performance of our pro-

posed knowledge transfer methods against LSDA. The results are summarized in

Table 4.1. As we are concerned with the detection of the “weakly labeled” cate-

gories, we focus mainly on the second column of the table (mean average precision

(mAP) on A). Rows 1-5 in Table 4.1 are the baseline results for LSDA. The first

row shows the detection results by applying a classification network (i.e., weakly

supervised learning, and without adaptation) trained with only classification data,

achieving only an mAP of 10.31% on the “weakly labeled” 100 categories. The last

row shows the results of an oracle detection network which assumes that bounding

boxes for all 200 categories are available (i.e., supervised learning). This is treated

as the upper bound (26.25%) of the fully supervised framework. We observed that

the best result obtained by LSDA is to adapt both category independent and cate-

gory specific layers, and transforming with the weighted fc8 layer weight change

of its 100 nearest neighbor categories (weighted-100 with 16.33% in Table 4.1). Our
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lion
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wine bottle

rugby ball

lion
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rugby ball
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wine bottle

(a) 

Visual similarity 

(b) 

Semantic similarity 

(c) 

Mixed combination 
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motorcycle

rugby ball

saxophone

wine bottle

Figure 4.4: Some example visualizations of (a) visual similarity (first row in the
figure), (b) semantic similarity (middle row) and (c) mixture similarity (last row)
between a target “weakly labeled” category and its source categories from which to
transfer knowledge. For each target category, the top-10 weighted nearest neighbor
categories are shown. The magnitude of each column bar shows the relative weight
(degree of similarity sv, ss, s in Eq. (4.6), where α is set to 0.6).
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“weighted” scheme works steadily better than its “average” counterpart.

For our visual knowledge transfer model, we show steady improvement over

the baseline LSDA methods when considering the average weight change of both 5

and 10 visually similar categories, with 1.45% and 1.47% increase in mAP, respec-

tively. This proves that our proposed visual similarity measure is superior to that of

LSDA, showing that category-specific adaptation can indeed be improved based on

knowledge about the visual similarities between categories. Further improvement

is achieved by modeling individual weights of all 100 source categories according to

their degree of visual similarities to the target category (weighted-100 with 19.02%

in the table). This verifies our supposition that the transformation from a classifier

to a detector of a certain category is more related to visually similar categories, and

is proportional to their degrees of similarity. For example, motorcycle is most sim-

ilar to bicycle. Thus the weight change from a bicycle classifier to detector has the

largest influence on the transformation of motorcycle. The influence of less visually

relevant categories, such as cart and chain saw, is much smaller. For visually dissim-

ilar categories (apple, fig, hotdog, etc.), the influence is extremely insignificant. We

show some examples of visual similarities between a target category and its source

categories in the left column of Figure 4.4. For each target category, the top-10

weighted nearest neighbor categories with their similarity degrees are visualized.

Our semantic knowledge transfer model also showed marked improvement

over the LSDA baseline (Table 4.1, Rows 9-12), and is comparable to the results of

the visual transfer model. This suggests that the cross-domain knowledge trans-

fer from semantic relatedness to visual similarity is very effective. The best per-

formance for the semantic transfer model (19.04%) is obtained by sparsely recon-

structing the target category with the source categories using the synset embed-

dings. The results of using synset embeddings (18.32%, using weighted-100, the

same below) are superior to using ‘naive’ word2vec embeddings (17.83%) and

WordNet based measures such as path-based similarity (17.08%) and Lin similar-

ity [Lin 1998] (17.31%). Several examples visualizing the related categories of the

10 largest semantic reconstruction coefficients are shown in the middle column of

Figure 4.4. We observe that semantic relatedness indeed correlates with visual sim-
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Figure 4.5: Sensitivity of parameter α vs. mAP. for detection of “weakly labeled”
categories on the validation (val1) dataset. α ∈ [0, 1] is a parameter used to control
the relative influence of the two similarity measurements. α is set to 1 when only
considering visual similarity transfer, and 0 for the semantic similarity transfer.

ilarity.

Table 4.2: Comparison of mean average precision (mAP) for semantic similarity
measures/representations, using Weighted - 100.

Method
Path

Similarity

Lin

Similarity

Naive

Embeddings

AutoExtend

(this paper)

mAP 17.08 17.31 17.83 18.32

The state-of-the-art result using the 8-layer “Alex-Net” for semi-supervised de-

tection on this dataset is achieved by our mixture transfer model which combines

visual similarity and semantic relatedness. A boost in performance of 3.88% on

original split (3.82%±0.12%, based on 6 different splits of the dataset) is achieved

over the best result reported by LSDA on the “weakly labeled” categories. We

show examples of transferred categories with their corresponding weights for

several target categories in the right column of Figure 4.4. The parameter α in
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tv or monitor washer tiger 

motorcycle 

watercraft 

trumpet snowmobile 

wine bottle pencil 
sharpener 

person toaster microphone 

rabbit laptop 

violin turtle lemon 

monkey 

soccer ball racket 

pineapple sunglasses sofa 

table 

Figure 4.6: Examples of correct detections (true positives) of our mixture knowl-
edge transfer model on ILSVRC2013 images. For each image, only detections for
the “weakly labeled” target category (text below image) are listed.
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motorcycle 
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racket maraca 

vacuum tv or monitor 

snake racket toaster 

tiger 

pomegranate squirrel 

lipstick 

orange 

perfume 

Figure 4.7: Examples of incorrect detections (confusion with other objects) of our
mixture knowledge transfer model on ILSVRC2013 images. The detected object
label is shown in the top-left of its bounding box.
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Eq. (4.6) for the mixture model weights is set to 0.6 for final detection, where

α ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1} is chosen via cross-validation on the val1 detection

set (Figure 4.5). This suggests that the transferring of visual similarities is slightly

more important than semantic relatedness, although both are indeed complemen-

tary. We do not tune α for each category separately, though this can be expected to

further improve our detection performance. Figures 4.6 and 4.7 show some exam-

ples of correct and incorrect detections respectively. Although our proposed mix-

ture transfer model achieves the state-of-the-art in detecting the “weakly labeled”

categories, it is still occasionally confused by visually similar categories.

4.4.4 Experimental Results with “VGG-Nets”

Previous work [Simonyan & Zisserman 2015, Girshick et al. 2016, He et al. 2016]

found that region based CNN detection performance is significantly influenced

by the choice of CNN architecture. In Table 4.3, we show some detection results

using the 16-layer and 19-layer deep “VGG-Nets” proposed by Simonyan and Zis-

serman [Simonyan & Zisserman 2015]. The VGG-16 network is consisted of 13 con-

volutional layers of very small (3×3) convolution filters, with 5 max pooling layers

interspersed, and topped with 3 fully co nnected layers (namely, fc6, fc7 and fc8).

The VGG-19 network extends VGG-16 by inserting 3 more convolutional layers,

while keeping other layer configurations unchanged.

As can be seen from Table 4.3, the very deep ConvNets VGG-16 and VGG-19

significantly outperform the Alex-Net for all the adaptation methods. Our knowl-

edge transfer models using the very deep VGG-nets with different similarity mea-

sures show consistent improvement over the LSDA basedline methods. The over-

all improvement over performance using the VGG-Net is similar with that of the

Alex-Net. In principle, We would expect further improvement by using the Res-Net

[He et al. 2016] which has more than 150 layers. However, testing various deeper

networks is out of scope for this paper.
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Table 4.3: Comparison of detection mean average precision (mAP) on the “weakly
labeled” categories of ILSVRC2013 val2, using the “VGG-Nets”. For LSDA, our
visual similarity and semantic relatedness transfer models, Weighted - 100 scheme
is adopted.

Method
Only

classification

LSDA

class inv.

LSDA

class inv. & spec.

Alex-Net 10.31 15.85 16.33

VGG-16 14.89 18.24 18.86

VGG-19 16.22 20.38 21.02

Method
Ours

visual

Ours

semantic

Ours

mixed

Ours

mixed + BB reg.

Alex-Net 19.02 18.32 20.03 21.88

VGG-16 21.75 21.07 23.21 24.91

VGG-19 23.89 23.10 25.07 27.32

4.4.5 Experimental Results with Bounding-box Regression

Results in Table 4.1 and Table 4.3 show that the transferred bounding-box regres-

sion from “fully labeled” categories fixes a large number of detections resulted by

mis-localization, boosting mAP by about 2 points for the “weakly labeled” cate-

gories. The bounding-box regression process could boost mAP by 3 to 4 points

if the bounding box annotations for all the categories were provided. We show

some example detections before and after bounding box regression on the “weakly

labeled” categories in Fig. 4.8, using VGG-16.

4.4.6 Detection Error Analysis

We present an analysis of the types of errors that our models make. We use the de-

tection diagnosis tool of [Hoiem et al. 2012] and consider three types of false pos-

itive (FP) errors: Loc (poor localizations), Oth (confusion with other objects, e.g.,

correctly localizing an object but classifying it to a wrong class) and BG (confusion

with background or unlabeled objects). We discard the Sim (confusion with sim-

ilar objects) errors, since the ground-truth similarities between objects categories

105



Chapter 4. Large Scale Semi-supervised Object Detection Using Visual and
Semantic Knowledge Transfer

person sunglasses 

tv or monitor motorcycle 

Figure 4.8: Some example detections before and after bounding box regression on
the “weakly labeled” categories. Boxes before (resp. after) bounding-box regres-
sion are shown in dashed blue (resp. green).

are not explicitly defined in ILSVRC dataset.

We show the distribution of top-ranked (top scoring 25 to 3200) false positive

(FP) types for our mixture knowledge transfer model with VGG-16 on the weakly

labeled categories in Figure. 4.9. s can be seen from Figure. 4.9 (a) and (b), a major-

ity of our errors result from confusion with other object categories, indicating that

the knowledge transfer model might be influenced by other categories. We noticed
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(a) No Bounding-box Regression 

(b) Bounding-box Regression 

(c) BB Reg. vs. No BB Reg. 

Figure 4.9: Analysis of detection errors of our model. Error trend and fractions
before and after bounding-box regression are compared. Best viewed in color.
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that many of Oth errors were from the categories similar to the target category (See

Figure. 4.7). We can see the blue curves from Figure. 4.9 (c) that the bounding-box

regression transfer method is very effective at fixing localization errors.

4.5 Summary

In this chapter, we investigated how knowledge about object similarities from both

visual and semantic domains can be transferred to adapt an image classifier to an

object detector in a semi-supervised setting. We experimented with different CNN

architectures on the challenging ILSVRC2013 detection dataset, found clear evi-

dence that both visual and semantic similarities play an essential role in improving

the adaptation process, and that the combination of the two modalities yielded

state-of-the-art performance, suggesting that knowledge inherent in visual and se-

mantic domains is complementary.
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While fully supervised learning methods achieve best detection performance

in general, they rely too heavily on large-scale datasets with careful object-level an-

notations. Although object-level annotations are extremely valuable, the process

of manually annotating object bounding boxes on large-scale dataset is often time

consuming, expensive, and not-trivial to setup. In this dissertation we have focused

on the problem of weakly supervised object detection, where the object-level an-

notations are incomplete in the training stage. We proposed two approaches for

addressing such cases: (i) We presented a region proposal-selection framework,

building on the Deformable Part-based Models (DPMs) for weakly supervised ob-

ject detection, given only image-level labels in training. (ii) We investigated how

knowledge about object similarities from both visual and semantic domains can be

transferred to adapt an image classifier to an object detector in a semi-supervised

setting, where only a subset of object categories are annotated with bounding

boxes. The following concludes the thesis with a summary of contributions in Sec-

tion 5.1, and potential directions for future research in Section 5.2.

5.1 Summary of Contributions

In Chapter 3, we proposed a model enhancing weakly supervised learning by

emphasizing the importance of location and size of the initial class specific root
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filter of deformable part-based models (DPMs). We follow the general setup of

[Pandey & Lazebnik 2011] and introduce several substantial improvements to the

weakly supervised deformable part-based model (DPMs). The main contributions

included a new selection model based on generic “objectness” (region proposals)

and visual saliency to adaptively select a reliable set of candidate windows which

tend to represent the object instances in the image, and a latent class learning pro-

cess by coarsely classifying a candidate window into either a target object or a

non-target class using image-level CNN classifiers which was pre-trained on the

large-scale ImageNet dataset and fine-tuned for on PASCAL VOC for classification.

Furthermore, we designed a flexible enlarging-and-shrinking post-processing pro-

cedure to modify the output bounding boxes of DPMs, which can effectively gener-

ate more accurate bounding boxes by better conserving foreground and cropping

out plain background regions, which aims to approximatively match the object as-

pect ratios, to further improve the final accuracy. Moreover, we incorporate the

contextual information from image classification, by combining the image-level

classification score with object-level DPM detection score, to obtain a final score

for detection. The proposed multiple region initialization method can detect mul-

tiple co-existing objects in the image. Experimental results on multiple datasets

demonstrate that our proposed framework is efficient and competitive with the

state-of-the-art, especially for the object categories which are relatively salient and

deformable. The proposed initialization method for selecting candidate windows

can be also utilized by other kinds of detectors for weakly supervised object detec-

tion.

In Chapter 4, we investigated how knowledge about object similarities from

both visual and semantic domains can be transferred to adapt an image classifier

to an object detector in a semi-supervised setting, where only a subset of object cate-

gories are annotated with bounding boxes. We defined a visual similarity measure-

ment based on visual appearance and a semantic similarity measurement based

on Word2vec embeddings. We modeled the category-specific differences between

CNN classifiers and CNN detectors on “fully labeled” categories, by considering

the degree of similarities between (visual or semantic) feature vectors, and subse-

110



Chapter 5. Conclusion and Future Work

quently transferring this knowledge for adapting an image classifier to an object

detector for a “weakly labeled” category. We experimented with different CNN

architectures, found clear evidence that both visual and semantic similarities play

an essential role in improving the adaptation process, and that the combination

of the two modalities yielded state-of-the-art performance, suggesting that knowl-

edge inherent in visual and semantic domains is complementary. We also found

these knowledge can be transferred to the bounding box regression process for

weakly labeled categories to achieve better performance. The main advantage of

our proposed method is that knowledge about object similarities can be obtained

without requiring further object-level annotations, for example from existing im-

age databases, text corpora and external knowledge bases.

In general, these contributions of this dissertation bring us significantly closer to

the goal of scalable learning of strong models from weakly annotated non-purpose

collected data on the Internet.

5.2 Perspective for Future Directions

Based on the work presented in this dissertation, we present several possible re-

search directions.

1. Effective and efficient detection of small objects in a weakly supervised manner. Small

objects can be appeared in the real-world images and they are very hard to detect

even when object level annotations are given in the training process. The proposed

multiple-region initialization DPMs model has the ability to detect multiple objects

in the images, however, its performance on small objects is not desirable. Similar

for our CNN-based approach, effective and efficient detection of small objects is

one of the most interesting bit of (weakly supervised) object detection. A possible

method is to obtain a more powerful feature map representation of an image or

an image region by using smaller convolutional filters or smaller stride, however,

this may probably raise the problem of inefficiency in training such an expensive

network. Therefore further research is needed in order to solve this problem in an

efficient way.
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2. End-to-end learning of Convolutional Neural Networks for weakly super-

vised object detection. A number of methods [Ren et al. 2015a, Redmon et al. 2016,

Liu et al. 2016] have been proposed to learn a CNN detector in an end-to-end

structure to accelerate the detection speed in a fully supervised manner. How-

ever, this remains challenging for weakly supervised training from image-level la-

bels. For the existed weakly supervised CNN-based methods [Wang et al. 2015,

Bilen & Vedaldi 2016], external computation of region proposals (e.g. , Selective

Search [Uijlings et al. 2013]) are needed. Yet when compared to efficient detection

networks, Selective Search is an order of magnitude slower, at 2 seconds per im-

age in a CPU implementation. EdgeBoxes [Zitnick & Dollar 2014] region proposal

currently provides the best tradeoff between proposal quality and speed, at 0.2 sec-

onds per image. However, the region proposal step still consumes as much running

time as the detection network. Therefore, an end-to-end learning framework is de-

sired for weakly supervised object detection, which can generate accurate region

proposals based on the feature maps automatically, to accelerate the training and

detection speed, along with improved performance.

3. Learning from noisy data. It is desirable that weakly supervised object detectors

could deal with noisy images or annotations. This dissertation did not provide a

thorough analysis on learning from noisy data. However, in the real-world, the

collected image-level labels can be even noisy due to annotator bias (e.g. , missing

objects, confusion with other categories). It is desirable to investigate the robust

capacity of the proposed model or related extended models.

4. Exploration of transferable knowledge from different contents or domains. More

domains or contents (e.g. , video, sound, text description of the visual content,

attribute) using better representations can be investigated to help weakly super-

vised learning for detection. We believe that the combination of knowledge from

different domains is key to improving weakly supervised or semi-supervised ob-

ject detection. In addition, object detectors should be able to extend to previously

unseen categories based on the transferable knowledge. It is also very important

to investigate contextual information from various domains to help object detec-

tion. Moreover, one of the future research directions is to investigate the possibil-
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ity of using category-invariant properties, for example, by modeling the difference

between feature distributions of whole images and target objects, to transform a

classification network to a detection network using back propagation.

We can only see a short distance ahead, but we can see plenty there that needs
to be done.

-Alan Turing, Computing Machinery and Intelligence (1950)
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