
HAL Id: tel-01538516
https://theses.hal.science/tel-01538516

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling of Dense Linear Algebra Kernels on
Heterogeneous Resources

Suraj Kumar

To cite this version:
Suraj Kumar. Scheduling of Dense Linear Algebra Kernels on Heterogeneous Resources. Other
[cs.OH]. Université de Bordeaux, 2017. English. �NNT : 2017BORD0572�. �tel-01538516�

https://theses.hal.science/tel-01538516
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

par Suraj Kumar

POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

Scheduling of Dense Linear Algebra Kernels on
Heterogeneous Resources

Date de soutenance : 12 April 2017

Devant la commission d’examen composée de :
Mme Padma RAGHAVAN Professeur, Vanderbilt University Rapporteur
M. Julien LANGOU Professeur, University of Colorado Denver Rapporteur
M. Denis TRYSTRAM Professeur, Grenoble Institute of Technology Président
Mme Veronika SONIGO Maître de conférences, FEMTO-ST institute Examinateur
M. Olivier BEAUMONT DR1, Inria Bordeaux Directeur de Thèse
M. Lionel EYRAUD-DUBOIS CR, Inria Bordeaux Directeur de Thèse
M. Samuel THIBAULT MCF, University of Bordeaux Directeur de Thèse
M. Emmanuel Agullo CR1, Inria Bordeaux Directeur de Thèse
M. Abdou Germouche MCF, University of Bordeaux Invité Membre

2017

This page is intentionally left blank.

Résumé Du fait des énormes capacités de calculs des accélérateurs tels que
les GPUs et les Xeon Phi, l’utilisation de machines multicoques pourvues
d’accélérateurs est devenue commune dans le domaine du calcul haute per-
formance (HPC). La complexité induite par ces accélérateurs a suscité le
développement de systèmes d’exécution à base de tâches, dans lesquels les
dépendances entre les applications sont exprimées sous la forme de graphe de
tâches et où les tâches sont ordonnancées dynamiquement sur les ressources de
calcul. La difficulté est alors de concevoir des stratégies d’ordonnancement qui
font une utilisation efficace des ressources de calculs et le développement de
telles stratégies, même pour un unique noeud hybride, est un enjeu essentiel
de la performance des systèmes HPC.

Nous considérons dans cette thèse l’ordonnancement de noyaux d’algèbre
linéaire dense sur des noeuds complètement hétérogènes et constitués de CPUs
et de GPUs. Les performances relatives des accélérateurs par rapport aux
coeurs classique dépend très fortement du noyau considéré. Par exemple, les
accélérateurs sont beaucoup plus efficaces pour les produits de matrices, par ex-
emple, que pour les factorisations. Dans cette thèse, nous analysons les perfor-
mances de stratégies statiques et dynamiques d’ordonnancement et nous pro-
posons un ensemble de stratégies intermédiaires, en ajoutant des composantes
statiques (respectivement dynamiques) à des stratégies d’ordonnancements dy-
namique (respectivement statiques). Récemment, une stratégie appelée Het-
eroPrio a été proposée, qui s’appuie sur les affinités entre les tâches et les
ressources pour un petit ensemble de tâches différentes s’exécutant sur deux
types de ressources. Nous avons étendu cette stratégie d’ordonnancement pour
des graphes de tâches généraux pour deux types de ressources puis pour plus
de deux types. De manière complémentaire, nous avons également démontré
des facteurs d’approximation et des pires cas pour HeteroPrio dans le cas d’un
ensemble de tâches indépendantes sur différents types de plates-formes.

Mots-clés Algèbre linéaire dense, systèmes d’ordonnancement dynamiques,
plates-formes hétérogènes, ordonnancement à base de graphe de tâches, ordon-
nancement dynamique

Laboratoire d’accueil Laboratoire Bordelais de Recherche en Informatique,
Bordeaux, France

Task based scheduling on heterogeneous resources iii

This page is intentionally left blank.

iv Suraj Kumar

Title Scheduling of Dense Linear Algebra Kernels on Heterogeneous Re-
sources

Abstract Due to massive computation power of accelerators such as GPU,
Xeon phi, multicore machines equipped with accelerators are becoming pop-
ular in High Performance Computing (HPC). The added complexity led to
the development of different task-based runtime systems, which allow com-
putations to be expressed as graphs of tasks and rely on runtime systems to
schedule those tasks among all resources of the platform. The real challenge is
to design efficient schedulers for such runtimes to make effective utilization of
all resources. Developing good schedulers, even for a single hybrid node, and
analyzing them can thus have a strong impact on the performance of current
HPC systems.

We consider the problem of scheduling dense linear algebra applications on
fully hybrid platforms made of CPUs and GPUs. The relative performance
of CPU and GPU highly depends on the sub-routine. For instance, GPUs
are much more efficient to process matrix-matrix multiplications than matrix
factorizations. In this thesis, we analyze the performance of static and dy-
namic scheduling strategies and we propose a set of intermediate strategies,
by adding static (resp. dynamic) features into dynamic (resp. static) strate-
gies. A resource centric dynamic scheduler, HeteroPrio, which is based on
affinity between tasks and resources, has been proposed recently for a set of
small independent tasks on two types of resources. We extend and analyze
this scheduler for general task graphs first on two types of resources and then
on more than two types of resources. Additionally, we provide approximation
ratios and worst case examples of HeteroPrio for a set of independent tasks on
different platform sizes.

Keywords Dense Linear Algebra; Runtime Systems; Heterogeneous Plat-
forms; Task-based Scheduling; Dynamic Schedulers;

Task based scheduling on heterogeneous resources v

This page is intentionally left blank.

Acknowledgements

I would like to express my sincere gratitude to Olivier Beaumont for his ex-
cellent supervision and constant support throughout the course of this thesis.
I feel extremely privileged to get so much of his time and to work with him
throughout these years. I also thank my co-advisors Lionel Eyraud-Dubois,
Samuel Thibault and Emmanuel Agullo for their fruitful collaborations and
very interesting discussions. I also wish to thank Abdou Guermouche for his
support during this thesis.

I would like to thank all the members of the thesis committee, especially
reporters Padma Raghavan and Julien Langou for reviewing my dissertation
and providing me very useful remarks, questions and suggestions for future
directions of this work. I also thank examiners Denis Trystram and Veronika
Sonigo for providing detailed feedback on the dissertation.

I convey my sincere thanks to the team leader Denis Barthou and all the
researchers of the team for emphasizing the importance of research and creating
a wonderful research environment in STORM team, Inria, Bordeaux.

I am grateful to my family members for their constant motivation, love and
support. I would like to thank my colleagues and former colleagues especially
Stojce Nakov, Marc Sergent, Luka Stanisic, Florent Pruvost and Terry Cojean
for their support during my course at Inria. I would also like to thank all
my friends for making my stay at Inria memorable and accompanying me in
difficult times.

I express my gratitude to Inria, its founders and the people who helped
shape Inria over the years, for providing me a platform to pursue great en-
deavors in my life.

vii

This page is intentionally left blank.

Contents

Contents ix

Introduction 1

1 Background 9
1.1 Task-based Runtime Systems 9

1.1.1 StarPU . 9
1.1.2 QUARK . 14
1.1.3 PaRSEC . 14
1.1.4 OpenMP . 15
1.1.5 StarSs . 16
1.1.6 XKaapi . 17
1.1.7 SuperMatrix . 18
1.1.8 Legion . 19

1.2 Simulation Framework . 19
1.2.1 Simgrid Simulation Engine 19

1.3 Dense Linear Algebra Libraries 21
1.3.1 LINPACK (LINear algebra PACKage) 21
1.3.2 LAPACK (Linear Algebra PACKage) 21
1.3.3 PLASMA (Parallel Linear Algebra Software for Multi-

core Architectures) . 22
1.3.4 MAGMA (Matrix Algebra for GPU and Multicore Ar-

chitectures) . 22
1.3.5 MORSE (Matrices Over Runtime Systems at Exascale) . 23
1.3.6 CHAMELEON . 23

1.4 Dense Matrix Factorizations . 24
1.4.1 Cholesky Factorization 24
1.4.2 QR Factorization . 28
1.4.3 LU Factorization . 29

2 Performance and Bounds of Cholesky Factorization 31
2.1 Introduction . 31
2.2 Context . 32

ix

CONTENTS

2.2.1 Cholesky Factorization 32
2.2.2 Multiprocessor Scheduling 33

2.3 Makespan Lower Bounds . 34
2.3.1 Linear Programming Formulation 35
2.3.2 Constraint Programming formulation 36
2.3.3 Upper bounds on performance 37

2.4 Experiments and Results . 38
2.4.1 Schedulers . 39
2.4.2 Experimental Setup . 40
2.4.3 Results . 40

2.5 Discussion . 50
2.5.1 dmda vs dmdas Scheduler 50
2.5.2 Mapping from Constraint Programming Solution 51
2.5.3 Constraint Programming Schedule in Actual Execution . 51

2.6 Conclusion . 52

3 Static vs Dynamic Scheduling Strategies 53
3.1 Introduction . 53
3.2 Context . 54

3.2.1 Tile Cholesky Factorization 54
3.2.2 Experimental Framework 55
3.2.3 Comparing Static and Dynamic Schedulers 56

3.3 Related Work . 57
3.4 Iterative Bound . 57
3.5 Static Strategies . 59

3.5.1 Some Dynamic Strategies with Static Schedule 60
3.6 Heft-like Solutions (Dynamic, Task-centric) 62

3.6.1 Improvement of heftp Scheduler 64
3.6.2 Analysis of Different Improved heftp Schedulers 65

3.7 HeteroPrio-like Solutions (Dynamic, Resource-centric) 66
3.7.1 Baseline HeteroPrio Scheduler 66
3.7.2 Improved HeteroPrio Algorithms 67
3.7.3 Performance Comparison of Heteroprio Variants 68
3.7.4 Feasibility of the Implementation of HP Corrections . . . 69

3.8 Comparison of All Three Approaches 70
3.8.1 Original Timings . 70
3.8.2 Perturbed Timings . 71
3.8.3 Perturbed Timings within an Execution 73

3.9 Static Schedule in Actual Execution 73
3.10 Conclusion and Perspectives . 75

x Suraj Kumar

CONTENTS

4 Scheduling of Linear Algebra Kernels on Multiple Heteroge-
neous Resources 77
4.1 Introduction . 77
4.2 Background and Related Work 79
4.3 Affinity Based Scheduling . 80

4.3.1 Affinity Based Scheduling for Two Classes of Resources . 80
4.3.2 Generalization to more than Two Classes of Resources . 81
4.3.3 An Example with Both Scoring Systems 82

4.4 Experiments and Results . 83
4.4.1 Tuning of Tile Size Parameter 84
4.4.2 Experimental Framework 85
4.4.3 Simulation Results & Analysis 87
4.4.4 Analysis of Actual Execution Traces 90
4.4.5 Actual Execution Performance Comparison 92

4.5 Conclusion . 94

5 HeteroPrio Approximation Ratios on Two Types of Resources 95
5.1 Introduction . 95
5.2 HeteroPrio Principle . 97

5.2.1 Affinity Based Scheduling 97
5.2.2 HeteroPrio Algorithm for a set of Independent Tasks . . 98

5.3 Related Works . 99
5.4 Notations and First Results . 100

5.4.1 General Notations . 100
5.4.2 Area Bound . 101
5.4.3 Summary of Approximation Results 102

5.5 Proof of HeteroPrio Approximation Results 102
5.5.1 General Lemmas . 102
5.5.2 Approximation Ratio with 1 GPU and 1 CPU 104
5.5.3 Approximation Ratio with 1 GPU and m CPUs 106
5.5.4 Approximation Ratio with n GPUs and m CPUs 108

5.6 Experimental evaluation . 115
5.6.1 Independent Tasks . 116
5.6.2 Task Graphs . 117

5.7 Conclusion . 121

Conclusion 123

Bibliography 127

Task based scheduling on heterogeneous resources xi

This page is intentionally left blank.

Introduction

The increasing need to process large amount of computations and to analyze
large data in real life with quality and accuracy encouraged the use of High
Performance Computing (HPC) systems significantly in recent years. HPC
refers to the use of aggregated computing power in a way which delivers much
higher performance than one can get on a typical desktop for large problems.
HPC provides the ability to analyze and to understand the complexity of
a huge amount of information, coming from different sources, and helps us
to solve some challenges of our society. In recent years, Cloud computing
is becoming increasingly popular in HPC area. It provides a cost effective
model of utilization of computing infrastructures. Compute resources, storage
resources, even applications can be procured on pay-per-use basis.

HPC is widely used to provide public safety in emergency scenarios. For
instance, it allows us to predict the size and patch of storms and flood more
precisely and further in advance, which helps us to take preventing measures
and to reduce damage. HPC also provides substantial benefits in health-
care [89, 55]. It allows us to design and simulate the effect of new drugs,
to provide faster diagnosis and better treatment. It helps to detect genetic
changes responsible for the onset and mutation of tumors in a simple, quick
and precise way. Consider for instance the new born babies with genetic dis-
orders – the main cause of infant death, time is essential as they do not clearly
show all of the classical symptoms that make diagnosis possible. HPC allows us
to analyze a large set of nucleotides (building blocks of nucleic acids) sequences
in a few hours and enables us to provide effective treatment.

HPC is also used in finance market to manage assets and risks. Several com-
panies use supercomputers to measure risks in their fixed income operations
by assessing tens of thousand of possible market scenarios [55]. Entertainment
field also relies heavily on HPC in order to make animated movies. For in-
stance, to make the movie Avatar [3], 40,000 processors were handling around
8 gigabytes of data per second, running 24 hours a day [76].

In last few decades, we collected a large amount of data, which increases
the need to analyze the data. HPC can be an useful tool in this area as well.
Researchers from different fields such as social media, geology, archeology,
materials, graphics, genomics, brain imaging, economics, oil and gas, space,
nuclear, even music use HPC platforms to conduct their research [101].

1

Most applications running on supercomputers such as weather prediction,
seismic imaging, nuclear simulation use different linear algebra subroutines.
Therefore, improving performance of these linear algebra subroutines has be-
come important since 1970. A specification for these linear algebra subroutines
using scalars and vectors, Basic Linear Algebra Subroutines (BLAS) level-1
was published in 1979. To take advantage of vector processors, BLAS was
augmented with level 2 operations that perform matrix-vector operations. To
take advantage of cached memory, in 1987, level 3 BLAS operations were intro-
duced that perform matrix-matrix computations. Many linear algebra libraries
use BLAS libraries to perform linear algebra computations. LINPACK [1] li-
brary developed in late 1970s uses BLAS level 1 subroutines. LAPACK [19],
released in 1992, is the successor of LINPACK and uses BLAS level 3 operations
to exploit caches of modern architectures. LINPACK Benchmark [56] which
is initially designed to estimate the performance of a system using LINPACK
library, is still used to measure the performance of modern supercomputers.
The benchmark used in LINPACK Benchmark is to solve a dense system of
linear equations with LU factorization using partial pivoting. The TOP500
list ranks the supercomputers twice a year since June 1993 based on their
performance on the LINPACK Benchmark [11].

1 GFlop/s

10GFlop/s

100 GFlop/s

1 TFlop/s

10 TFlop/s

100 TFlop/s

1 PFlop/s

10 PFlop/s

100 PFlop/s

1 EFlop/s

10 EFlop/s

1995 2000 2005 2010 2015 2020

P
e

rf
o

rm
a

n
c
e

Year

Performance #1 Expected Performance

Figure 1: Expected performance of the fastest supercomputer.

Presently the fastest supercomputer in the world is Sunway TaihuLight,

2 Suraj Kumar

Introduction

developed at National Supercomputing Center in Wuxi, China. It achieve 93
PFlop/s performance on LINPACK Benchmark, while its theoretical peak is
125 PFlop/s [10]. Figure 1 shows the projected performance of fastest super-
computer for next few years [9]. It exhibits that the fastest supercomputer is
expected to achieve exascale performance by 2020. Many countries, such as
China, US, Japan, France have plans to deploy their exascale supercomputers
in next few years. China is scheduled to deploy a prototype of an exacale com-
puter this year and expected to field it in 2020 [78]. Japan has also plans to
bring its first exascale computer by 2020/2021. France is also scheduled to get
its first exacale machine deployed at CEA, the French Atomic Energy Agency,
by 2020. Paul Messina, head of the US Department of Energy’s Exascale Com-
puting Project, recently announced that US will deploy initial exascale system
sometime in 2021 [77].

 0

 20

 40

 60

 80

 100

2006 2008 2010 2012 2014 2016

P
e

rf
o

rm
a

n
c
e

 S
h

a
re

Year

IBM Cell
Hybrid

ATI Radeon
Nvidia Fermi

None
Clearspeed

Nvidia Pascal
Intel Xeon Phi

PEZY-SC
Nvidia Kepler

Figure 2: Performance share of different accelerators in TOP500 list.

Massive computation power of accelerator makes them to consider for su-
percomputers. Figure 2 shows the performance share of accelerators in the
TOP500 list. The idea of using accelerators is not new (FPGAs were used in
past as coprocessors), it is refurbished in recent years due to huge processing
capabilities of the different accelerators. For example, Roadrunner supercom-
puter built by IBM, which had AMD Opteron processors and cell accelerators,
ranked #1 in TOP500 list of June 2008 [2]. The use of accelerators for HPC

Task based scheduling on heterogeneous resources 3

community however gained popularity with the advent of GPUs. Initially
GPUs were used in rendering, which involves a large amount of computations.
This led researchers to think that these devices could be used to accelerate
scientific computing applications as well, especially where computation domi-
nates latency, such as for dense linear algebra.

Figure 2 exhibits that presently 21 % performance share of TOP500 list is
produced by accelerators. It also indicates that significant amount of comput-
ers in TOP500 list is based on hybrid architecture. Most of these systems are
using Nvidia GPUs or Intel Xeon Phi coprocessors. The faster US supercom-
puter, Titan (3rd rank in TOP500 list) is also a hybrid supercomputer, which
has AMD Opteron CPUs and Nvidia GPUs [7]. Optimizing performance of a
complex computation on such hybrid architectures is very complex. Develop-
ing good scheduling algorithms, even on a single hybrid node, and analyzing
them can thus have a very high impact on the performance of current HPC
systems. This is the goal of this thesis.

Accelerators such as GPUs are employed in processing nodes usually beside
multicores. When trying to exploit both CPUs and GPUs, users face several
issues. Indeed, several phenomena are added to the inherent complexity of the
underlying NP-hard optimization problem.

First, multicores and GPUs are unrelated resources, in the sense that de-
pending on the targeted computation, the performance of the GPUs may be
much higher, close or even worse than the performance of a CPU. In the lit-
erature, unrelated resources are known to make scheduling problems harder
(see [41] for a survey on the complexity of scheduling problems, [73] for the
specific simpler case of independent tasks scheduling and [31] for a recent sur-
vey in the case of CPU and GPU nodes). Second, the number of available
architectures has increased dramatically with the combination of available re-
sources (both in terms of multicores and accelerators). Therefore, it is almost
impossible to develop optimized hand tuned kernels for all these architectures.
Third, nodes have many shared resources (caches, buses) and exhibit complex
memory access patterns (NUMA effects), that render the precise estimation of
the duration of tasks and data transfers extremely difficult.

All these characteristics make it hard to design scheduling and resource
allocation policies even on very regular kernels such as linear algebra. On the
other hand, this situation favors dynamic strategies where decisions are made
at runtime based on the state of the machine and on the knowledge of the appli-
cation (to favor tasks that are close to the critical path for instance). In recent
years, several task-based systems have been developed such as StarPU [22],
StarSs [82], SuperMatrix [46], QUARK [104], XKaapi [67] or PaRSEC [36].
All these runtime systems model the application as a Direct Acyclic Graph
(DAG), where vertices correspond to tasks and edges to dependencies between
these tasks. Figure 3 shows an example of a DAG, where vertices a, b, c, d, e
and f represent tasks, and edges ac, ad, bc, bd, be, df and ef represent depen-

4 Suraj Kumar

Introduction

dencies. At runtime, the scheduler knows (i) the state of the different resources
(ii) the set of tasks that are currently processed by all non idle resources (iii)
the set of (independent) tasks whose all dependencies have been solved (iv) the
location of all input data of all tasks (v) possibly an estimation of the duration
of each task on each resource and of each communication between each pair
of resources and (vi) possibly priorities associated to tasks and that have been
computed offline. Based on this information, scheduler takes scheduling and
allocation decisions. HEFT heuristic [99] is certainly the most popular of this
class of algorithms.

a b

d ec

f

Figure 3: A DAG.

In this thesis, we consider the scheduling problems of task based dense lin-
ear algebra kernels on a single hybrid node composed of CPUs and GPUs. The
contributions of this thesis therefore cover the different aspects of scheduling
which must be addressed at the level of the runtime system. More particularly
we identify the following contributions.

• Performance comparison between static strategies with dynamic
corrections and dynamic strategies with static information. We
provide a fair performance comparison between static and dynamic strate-
gies and we propose a set of intermediate strategies by adding more
static (resp. dynamic) features into dynamic (resp. static) strategies.
We also exhibit that adding simple static information about applications
improves performance of dynamic schedulers significantly.

• Theoretical performance upper bounds of task graphs. It is well
known that system peak is hard to achieve. Performance of any task
based application is limited by its task types and dependencies among
tasks. We provide some theoretical performance bounds by considering

Task based scheduling on heterogeneous resources 5

heterogenity of tasks and resources as well as some dependencies. Per-
formance bounds on task graphs help us to assess the quality of different
schedulers.

• Resource centric schedulers for task graphs. A resource centric
scheduler, HeteroPrio was proposed recently for a set of small indepen-
dent tasks on two types of resources, which is based on affinity between
tasks and resources [16]. We extend this scheduler for general task
graphs. On two types of resources, affinity can be expressed as task
acceleration factor but acceleration factor does not make sense when we
have more than two types of resources. We consider different heuristics
to define affinity and then generalize HeteroPrio to multiresource case.
This scheduler is very effective for applications where scheduling deci-
sions are very important, such as Cholesky factorization of medium size
matrices.

• Approximation ratios of HeteroPrio. We provide approximation
bounds of HeteroPrio compared to the optimal schedule in the case where
all tasks are independent and for different platform size. We also provide
worst case examples for different platform sizes and prove that almost
all our bounds are tight.

The outline of the thesis is the following. Chapter 1 describes different
state-of-the-art task based runtime systems, linear algebra libraries and simu-
lators. In Chapters 2 and 3, we analyze different static and dynamic strategies
and provide different performance bounds of task graphs. We extend Hetero-
Prio to multiple resources in Chapter 4. In Chapter 5, we provide approxima-
tion ratios of HeteroPrio on two types of resources.

The main contributions of different chapters are presented in the following
paragraphs.

In Chapter 2, we concentrate on the analysis of the behavior of Cholesky
factorization on a heterogeneous node consists of CPUs and GPUs. We show
how adding simple static rules based on an offline analysis of the problem
(such as processing of tasks which are far from critical path on slow resources)
into dynamic schedulers improves the overall performance of the application.
We also provide theoretical bounds on the performance of task graphs for a
given platform. This work has been conducted in collaboration with Julien
Herrmann and Loris Marchal from ENS Lyon, France.

In Chapter 3 we propose different scheduling strategies by adding more
static (resp. dynamic) features into dynamic (resp. static) strategies. We pro-
pose a dynamic strategy, HeteroPrio, which is based on the acceleration ratio
on GPU to establish affinity between the resources and the different types of
tasks, for general task graphs. In order to fully exploit the heterogeneous re-
sources, GPUs should preferably execute tasks with higher acceleration factors,

6 Suraj Kumar

Introduction

and CPUs should execute tasks with lower acceleration factors. HeteroPrio
must be associated to a spoliation mechanism. Indeed, in above description,
nothing prevents the slow resource to execute a task for which it can be arbi-
trarily badly suited, thus leading to arbitrarily bad results. Therefore, when
a fast resource is idle and would be able to restart a task already started on a
slow resource and to finish it earlier than on the slow resource, then the task
is spoliated and restarted (not preempted) on the fast resource. We propose
several corrections to HeteroPrio, such as fast (resp. slow) workers select the
highest (resp. lowest) priority ready tasks and tasks whose acceleration fac-
tors are in a relatively thin range of values are treated equally, to find the best
trade-off between acceleration of tasks and progress.

In Chapter 4, we extend HeteroPrio algorithm for more than two types
of resources. Since HeteroPrio is based on the notion of heterogeneity, we
proposed two heuristics to determine the heterogeneity score of a task on a
resource. First heuristic is based on the area solution of the task graph for a
given platform. It provides a generic way of detecting which tasks are more
suited to which resources. Second heuristic is based on idea of how “good” this
resource is compared to the worst one, and how “bad” it is compared to the
best one. We exhibited that these heuristics are efficient even in highly het-
erogeneous configurations and outperform HEFT-based strategy significantly.
This work has been conducted in collaboration with Terry Cojean, another
PhD student of my research team, and Abdou Guermouche from HiePACS
team, Inria Bordeaux, France.

In Chapter 5, we provide approximation ratios and worst case examples
for HeteroPrio in the case where all tasks are independent. Interestingly, we
show that spoliation allows to prove approximation ratios for a list scheduling
algorithm on two unrelated resources, which is not possible otherwise. We also
establish that almost all our approximation ratios are tight.

Task based scheduling on heterogeneous resources 7

This page is intentionally left blank.

Chapter 1

Background

In this chapter, we describe different tasks based runtime systems which allow
programmers to express applications at high level with simple APIs and relieve
them from the burden of dealing with low-level details such as prefetching, data
transfers, scheduling of tasks, or synchronizations. Runtime systems employ a
very modular approach. Applications are expressed as directed acyclic graphs
(DAG) of tasks, where vertices represent tasks to be executed and edges rep-
resent dependencies between those tasks. We also describe a framework to
perform simulations, especially Simgrid and StarPU version of Simgrid.

In last, we present various dense linear algebra libraries and matrix fac-
torization algorithms. Most modern linear algebra libraries implement tile
versions of different matrix factorizations using a runtime system, where the
runtime system takes care of effective scheduling of tasks. In the past few years,
while GPUs have gained in popularity, tile algorithms have heavily been em-
ployed to handle heterogeneous architectures. In that case, the runtime system
may assign some tasks to the GPUs to accelerate them.

1.1 Task-based Runtime Systems

Complexity and scale of platform is increasing continuously to satisfy HPC
computational needs. To cope with the increasing complexity and scale of
hardware architectures and exploit the full capacity of platform with existing
code, most of the computational applications are expressed at high level in the
form of a DAG of tasks. Then a task scheduler or runtime system is used to
schedule those tasks on the given hardware platform. In this section we provide
a brief overview of different runtime systems and their important features.

1.1.1 StarPU

StarPU [22] is a runtime system developed at Inria Bordeaux, France, specif-
ically designed for heterogeneous multicore architectures. It allows program-

9

1.1. Task-based Runtime Systems

mers to exploit the computing power of the available CPUs and GPUs, while
relieving them from the need to specifically adapt their programs to the target
machine and processing units. The StarPU runtime supports a task-based pro-
gramming model. Applications submit computational tasks, forming a DAG,
with CPU and/or GPU implementations. The code for each type of task
implementation is provided separately. This separation of concerns not only
allows for ensuring a modular design but it is also very convenient for writing
portable codes. Indeed if one provides both CPU and GPU implementations
of a task, this task can be executed on either of these units. StarPU schedules
tasks and associated data transfers on available CPUs and GPUs. The data
that a task manipulates is automatically transferred to the computational unit
where the task has been decided to execute, so that application programmers
are freed from scheduling issues and technical details associated with these
transfers. In particular, StarPU takes care of scheduling tasks efficiently, us-
ing well-known generic dynamic and task graph scheduling policies from the
literature, and optimizing data transfers using prefetching and overlapping,
in particular. In addition, it allows scheduling experts, such as compiler or
computational library developers, to implement custom scheduling policies in
a portable fashion. Complete description of StarPU can be found in the work
by Augonnet [20].

StarPU Execution Model

In StarPU, the execution is initiated by the main thread, running on a CPU,
which submits all the tasks asynchronously and the execution of tasks is per-
formed in parallel by different worker threads (or, simply, workers). A CPU
worker is bound to a CPU core while a GPU worker is bound to a GPU core
and a CPU core to exploit GPU efficiently. StarPU also allows a worker to
submit other tasks at runtime although it is not in the interest of sequential
submission. StarPU requires registration of all data associated with a task
before submitting the task. Each StarPU task contains a codelet which de-
scribes a computational kernel and its possible implementations on different
architectures, such as CPU, GPU. Figure 1.1 shows an example of a StarPU
codelet. It indicates on what computational units (where field) the corre-
sponding task can be executed and function pointers to different implemen-
tations (cpu_funcs and gpu_funcs fields). It also indicates the number of
data/handles (nbuffers field) manipulated by its task. A task also describes
what data are accessed and how they are accessed (read and/or write mode)
during computation. Executing a task can be viewed simply as a function ap-
plying a codelet on a data set associated with the task. Task dependencies are
inferred from data dependencies. However programmers are allowed to express
dependencies explicitly for some data.

10 Suraj Kumar

1. Background

/∗ Code le t d e f i n i t i o n f o r k e rne l f ∗/
struct s tarpu_code let f_c l =
{
. where = STARPU_CPU | STARPU_CUDA,
. cpu_funcs = { f_cpu_func } ,
. cuda_funcs = { f_cuda_func } ,
. nbu f f e r s = 2
} ;

Figure 1.1: A StarPU codelet.

StarPU Scheduling Model

StarPU scheduler schedules tasks when they become ready to be executed,
i.e., all dependencies are satisfied. Each worker pulls tasks one by one from
the scheduler. This is up to programmers how to implement a scheduler.
However, StarPU provides a few schedulers based on well known dynamic task
graph scheduling heuristics. All schedulers usually contain at least one queue
to store tasks between the time when they become available and the time when
a worker picks them. Here is the description of few StarPU schedulers which
are relevant to this thesis.

• random: This scheduler assigns tasks randomly over all the computa-
tional resources. It uses an estimation of the relative performance of
the resources to balance the randomness. This is thus representative of
classical partition heuristics, which take heterogeneity of resources into
account but not heterogeneity of tasks.

• ws (work stealing): This scheduler uses a queue of tasks per worker. All
tasks released by a worker are added to its own queue. An idle worker
steals a task from the most loaded worker.

• eager: This scheduler uses a central task queue to store ready tasks. An
idle worker selects a task from the central queue. It does not give time to
scheduler to prefetch data since the scheduling decisions are made very
late.

• dmda (dequeue model data aware): This scheduler takes task execution
performance models and communication models into account to make
scheduling decisions. It is based on the Minimum Completion Time
(MCT) heuristic [103] to assign tasks to computational resources. Each
task is assigned to the worker which is expected to complete it first,
taking both the estimated computation time on the estimated target

Task based scheduling on heterogeneous resources 11

1.1. Task-based Runtime Systems

resource and the data transfers time into account, thus making it repre-
sentative of the state-of-the-art HEFT heuristics [99]. Figure 1.2 exhibits
working principle of dmda scheduler, where scheduler takes a task from
global queue, a queue with set of ready tasks, and pushes it to one of the
worker queues based on minimum completion time heuristic. In practice,
dmda does not use any global queue and a ready task is directly pushed
to one of the worker queues. However, for better understanding we can
think that ready tasks are stored in a global queue.

• dmdar (dequeue model data aware ready): This scheduler is a refine-
ment of dmda, where each worker picks from its queue the task whose
most data is available on its associated memory.

• dmdas (dequeue model data aware sorted): This scheduler is another
refinement of dmda, where tasks are sorted by priority order in each
worker queue, which makes it even closer to HEFT.

Worker1
Queue

Worker0
Queue Queue Queue

Worker2 Worker3 Worker4
Queue

Global Queue

dmda scheduler

Figure 1.2: Working principle of dmda scheduler.

12 Suraj Kumar

1. Background

The work presented in this thesis relies on the StarPU runtime system and
StarPU scheduling model. This is mostly due to its large set of features which
include full control over the scheduling policy, support for hybrid platforms
and efficient handling of data transfers. Here are some features of StarPU
which we used extensively in this thesis.

• StarPU can generate execution traces containing execution timings of all
executed tasks, data transfers information, runtime overhead and mem-
ory loads. The execution trace allows programmers to analyze the ap-
plication execution in details and help to find what went wrong with the
execution. This feature also helps one to develop new scheduling policies
and perform different theoretical analysis such as lower bound on per-
formance, distribution of tasks of the execution. StarPU generated trace
can be visualized with different visualizer tools, such as ViTE (visual
trace explorer) [4].

• Different applications exhibit different types of characteristics and there-
fore sometimes it is required to implement custom scheduling policies to
exploit the platform in an effective way. StarPU allows programmers to
implement their own scheduling policies.

• StarPU automatically calibrates and stores the execution timings of dif-
ferent kernels and data transfer time between two memory nodes which
have not been calibrated yet. Estimation based schedulers such as dmda
require this information in order to make scheduling decisions. We
have used calibrated timings extensively to perform different simulations
throughout this thesis.

• In some scenarios, one may want to force scheduling, for example force a
given a set of tasks to a particular resource. StarPU provides this feature
by allowing programmer to specify the worker identity while inserting the
task. StarPU also allows one to specify the order in which tasks must
be executed . This feature provides a total control to implement a static
schedule in StarPU. In this case, at runtime it simply follows the order of
execution as prescribed by the programmer. We have used this feature
extensively in Chapter 2

• StarPU can use Simgrid to provide simulation support on any arbitrary
platform [96]. In this case StarPU runs the application normally, ex-
cept that data transfers and computation kernel calls are replaced by a
simple procedure accounting for the time they are expected to take, and
gathered coherently by Simgrid.

Task based scheduling on heterogeneous resources 13

1.1. Task-based Runtime Systems

1.1.2 QUARK

QUeueing And Runtime for Kernels (QUARK) [104] is a runtime environ-
ment for the dynamic scheduling and execution of tasks based applications
on multicore and multi-socket shared memory system, which is developed at
the Innovative Computing Laboratory (ICL), University of Tennessee. It is
similar to StarPU and based on the dataflow model where dependencies are
inferred through a runtime analysis of data usage by the different kernels.
It dynamically schedules tasks whose all incoming dependencies are satisfied.
QUARK was originally designed to support dynamic linear algebra algorithms
for the PLASMA linear algebra project [42]. The QUARK runtime contains
several optimizations inspired by algorithms in Plasma. It is capable to sup-
port other applications which can be decomposed into tasks with data depen-
dencies. The goal of QUARK project is to provide an easy-to-use interface
for application programmers that scales efficiently to large number of cores.
QUARK does not support hybrid platforms, mainly because it does not deal
with data movements.

1.1.3 PaRSEC

Parallel Runtime Scheduling and Execution Control (PaRSEC) [36] is a generic
framework for dynamic scheduling of tasks on distributed many-core hetero-
geneous architectures, which is developed at the ICL laboratory, University of
Tennessee. The high level difference between StarPU and PaRSEC is the way
tasks and their dependencies are represented. In StarPU, a thread submits all
tasks asynchronously and then runtime detects dependencies among different
tasks. While PaRSEC uses a symbolic Parameterized Task Graph (PTG) [52]
to represent tasks and their data dependencies to other tasks. PaRSEC does
not build a DAG in memory and does not analyze the way tasks depend on
one another by analyzing input and output data. Rather, this information is
expressed by programmers in the PTG format. As a consequence, it is harder
to write programs in PTG format. In PTG format, programmers have to
mention all possible input and output dependencies in a compact form. The
size of PTG representation for an application does not depend on the size of
the problem, but only on the number of different types of tasks used by the
application. As dependencies are explicitly provided by programmer, it also
supports irregular applications. The PTG model is extremely scalable, the
runtime can determine successors and predecessors information for any local
task quickly. The DPLASMA library [35] is a dense linear algebra library
implemented on top of PaRSEC runtime system.

PaRSEC has limited support for heterogeneous systems, in the case of
Cholesky for instance, it only runs GEMM kernels on the GPUs, and thus
uses very simple heuristics to determine which kernels to run on the GPUs.

14 Suraj Kumar

1. Background

Figure 1.3 shows PTG representation of DPOTRF kernel of Cholesky Fac-
torization. It indicates that we have SIZE instances of DPOTRF, numbered
from k = 0 to k = SIZE − 1, where instance k = 0 of DPOTRF is immedi-
ately available, while others have to wait for the previous DSYRK tasks, and
instance k of DPOTRF releases the corresponding SIZE − k DTRSM tasks.
Details about PTG representation and how to write program in PTG can be
found in [36].

DPOTRF(k)
// Execution space
k = 0 . . SIZE−1
//Flows and dependencies
T <− (k == 0) ? A(k, k) : T DSYRK(k−1, k)
−> T DTRSM(k, k + 1 . . SIZE−1)
−> A(k, k)

Figure 1.3: PTG representation of POTRF kernel.

PaRSEC provides a language called Job Data Flow (JDF) to express PTG
parallel codes. Then a specific compiler, known as daguepp, converts JDF code
to C-code.

1.1.4 OpenMP

Due to the wide popularity of task based runtime systems, tasking feature was
included in OpenMP version 3.0 [80]. Tasking facilitates the parallelization
of applications where tasks are created in a recursive way or through a while
loop. An explicit task is specified using the task directive. The task directive
defines the code associated with the task and its data environment. A thread
creates a new task after encountering a task construct. The task construct
can be placed anywhere in the program. Note that OpenMP is not really a
runtime system, but an interface standard, implemented by various systems,
notably compilers. It however guides a lot how the underlying runtime works.

When a thread creates a task, it may defer the execution of the task for
later. If task execution is deferred, then the task is placed in a pool of tasks.
The threads in the current team will take tasks from the pool and execute them
until the pool is empty. The thread that executes a task may be different from
the thread that originally submitted it.

By default, tasks are tied to the thread that first executes them, it may
not be the creator thread. Programmers can use “untied” clause to remove all
restrictions. “untied” tasks provide more freedom to implementation and can
be scheduled based on different heuristics, such as load balancing.

Task based scheduling on heterogeneous resources 15

1.1. Task-based Runtime Systems

The task construct was extended with a depend clause in OpenMP version
4.0 [81], which enables OpenMP runtime to automatically detect dependencies
among tasks and schedule them appropriately. The same OpenMP version
also provides support for accelerators with a target construct. The execution
model of OpenMP for accelerators is host centric and it assumes that each
accelerator device is attached to a host device. A target region begins as a
single thread execution and when a target construct is encountered, the implicit
device thread executes the target region and the encountering thread waits at
the construct until the execution of region completes.

OpenMP does not provide any freedom to the runtime to decide on which
CPU or GPU to run tasks. However, with a few extensions to OpenMP such
as OpenMP interface of StarPU [14] (which does not support hybrid platforms
yet), we could relax it and improve performance of OpenMP applications.

1.1.5 StarSs

StarSs [82] is a sequential task-based programming model, developed at Barcelona
Supercomputing Center (BSC), where programmer writes sequential code in a
traditional programming language (i.e., C, C++ or Fortran) which is executed
in parallel and runtime manages the data dependencies and data movements
between tasks. Many instantiations of StarSs have been developed to target
different architectures: CellSs for Cell processors, SMPSs for shared mem-
ory machine and homogeneous multicore processors, GridSs for computational
grids, GPUSs for heterogeneous multi-accelerator platforms. In StarSs, user
annotates the applications to target a particular architecture. It uses a few
OpenMP like pragmas to identify tasks in the user code. It implements data
renaming to eliminate false dependencies. StarSs implements a task hierarchy
which allows instantiation of subtasks within a task in the following way. Each
task creates a private context for its subtasks. Synchronization and data de-
pendencies are considered in the same context. A given task waits for the end
of its children tasks before finishing.

Planas et al. have exhibited some experiments that combine a first task
level with SMPSs and a second task level with CellSs to take advantage of both
architectures [82]. Tasks are scheduled in a hierarchical fashion, however CellSs
tasks are only scheduled once the corresponding SMPSs task has been assigned
to a Cell processor. Therefore, having separate runtime systems does not allow
to actually schedule tasks between heterogeneous types of processing units
unless the programmer explicitly selects the target platform, and therefore
which runtime system should process the task.

The main difference between StarPU and the different instantiations of
StarSs is that StarPU really provides a unified abstraction of driver that makes
it possible to deal with different types of platforms. In the StarSs programming
model, execution timings are not known in advance which prevents it from

16 Suraj Kumar

1. Background

implementing estimation based strategies, such as heft.
OmpSs is an attempt to integrate features from the StarSs programming

model in to a single programming model [57]. It extends OpenMP with new
directives to support asynchronous parallelism and hybrid architectures. Sim-
ilar to StarPU, in OmpSs user writes code for a single address space which
may execute in several non coherent address spaces. OmpSs implements data
packing to minimize the number of transfers among different memories. It
uses locality aware work stealing strategies to achieve load balancing among
different processing units. The OmpSs programming model presently supports
the following architectures: 1) Intel 32- and 64-bit platforms including support
for CUDA on NVidia GPUs, 2) Intel MIC in native and offload modes, 3) IBM
Power8 platforms including support for CUDA on Nvidia GPUs, and 4) ARM
32- and 64-bit platforms, including support for OpenCL MALI GPUs (32 bits
version only).

1.1.6 XKaapi

XKaapi [67] is a runtime system for data flow programming on multi-CPU
and multi-GPU architectures developed at Inria Grenoble, France. It provides
different APIs to program heterogeneous parallel architectures in C, C++ and
Fortran. It relies on different work stealing heuristics to ensure load balancing
among different processing units. It uses fully asynchronous task execution
strategy on GPUs to overlap computations with data transfers. It creates a
system thread and a work queue for each computational resource. The unique
feature of XKaapi is that it minimizes the overhead of critical paths by post-
poning the data dependencies computations to idle threads. Therefore, it
moves the cost of computing ready tasks from task’s creations to the steal
operations performed by idle threads. It works on the following work stealing
mechanism: an idle thread submits a steal request to a randomly chosen vic-
tim. On reply, the requesting thread gets a copy of one ready task and original
task is marked stolen in victim’s queue. To find a ready task, the requesting
thread iterates through the victim’s queue from the least recent pushed task to
the most recent one and computes true data dependencies for each task. The
iteration stops when requesting thread finds a ready task in the victim’s queue.
XKaapi also uses two different locality aware heuristics with work stealing to
improve the performance. The first one is based on minimization of data trans-
fers among resources during steal operation. A task is assigned to the resource
which owns the largest sum of input bytes. The second heuristic is based on
an owner compute rule, a task is assigned to the resource which minimizes the
number of invalidation of data replicas. Ties are broken by selecting a resource
randomly among the set of eligible resources. Both heuristics actually do not
correspond to steal mechanism and push tasks to remote workers. XKaapi also
implements different queues for each worker to accelerate the search operation

Task based scheduling on heterogeneous resources 17

1.1. Task-based Runtime Systems

for a ready task while stealing.
Similar to Cilk [32] and OmpSs, in XKaapi, a task can create children

tasks which is not the case with other data flow programming libraries, such
as StarPU, QUARK. False dependencies can be eliminated in XKaapi through
variable renaming by using extra memory and write back policy is used to
maintain the data coherency. Similar to StarPU, XKaapi uses codelet based
low overhead task representations that allow to handle a high degree of paral-
lelism efficiently. A task may have multiple implementations, such as a CPU
implementation and a GPU implementation. At least one implementation is
required for each task. The implementation may be recursive, which allows
XKaapi to decompose some tasks further to subtasks operating on smaller
data.

Most recent GPUs, such as Fermi have one execution engine and two copy
engines, which enable to perform a kernel execution and two way memory
transfers simultaneously. Similar to other runtimes, XKaapi also takes advan-
tage of this by using a new data structure, called kstream, which combines
together three types of CUDA streams: a stream for host to device transfer, a
stream for kernel execution and a stream for device to host transfer.

1.1.7 SuperMatrix

SuperMatrix is a multithreaded runtime system that parallelizes matrix oper-
ations for SMPs and multi-core architectures [46]. It views matrices hierarchi-
cally, matrices of matrices. The unit of computation is operations on a single
submatrix. It enqueues the required operations, tracks dependencies, and then
executes the operations utilizing out-of-order execution techniques inspired by
superscalar processors.

The Formal Linear Algebra Methods Environment (FLAME) project uses
SuperMatrix runtime system to parallelize dense and carefully structured sparse
linear algebra computations [69]. Detecting dependencies across different iter-
ations is very difficult in FLAME, as different submatix views may reference
to the same block. It requires complete knowledge of matrix partitioning to
determine what regions of matrix are being referenced. However, FLASH (For-
mal Linear Algebra Scalable Hierarchical), extension of FLAME API, delimits
the block referenced by each submatrix view.

API for defining tasks on OmpSs and SuperMatrix is quite different. OmpSs
uses annotations, similar to OpenMP, which are placed around function calls
to denote different tasks. Then, a source to source compiler converts these
annotations to code that performs dependency analysis and out of order ex-
ecution. The load balancing of tasks can vary based on the computational
runtime of each function. While in SuperMatrix, computation runtime of each
task depends on the size of each submatrix created using the FLASH API.

18 Suraj Kumar

1. Background

1.1.8 Legion

Legion is a data centric programming model and runtime system for achiev-
ing high performance on distributed heterogeneous architectures developed at
Stanford University [25]. It provides an interface such that programmers can
explicitly declare different properties of program data, such as data organiza-
tion, partitioning. It also allows programmers to control the mapping of tasks
on to different architectures. It uses logical regions to describe the locality and
independence of data. Each Legion program executes as a tree of tasks with
a top level task generating sub-tasks which can recursively generate further
subtasks. It provides the ability to partition data in multiple ways and to
migrate data dynamically between these views as application moves between
different phases of computation.

The Legion programming model uses a software out-of-order processor, or
SOOP, for scheduling tasks. The SOOP takes locality and independence prop-
erties captured by logical regions into account while making scheduling deci-
sions.

1.2 Simulation Framework

In recent years, advances in hardware and software technologies made it pos-
sible to execute different HPC applications over increasingly large sets of re-
sources. The study of scheduling problems for such applications and platforms
has been quite significant in recent times. Simulation is a popular and effective
way to evaluate and compare different scheduling algorithms over a wide range
of scenarios.

Many fine grained simulators such as GPGPU-Sim [23] have been developed
for GPUs in past years which simulate at cycle level. There are also a few GPU-
specific simulators such as Barra [51] for the Nvidia G80, Multi2Sim [100]
for the AMD Evergreen GPU. Simulation time of these simulators is very
long because every detail of the specific GPU is simulated. There are a few
simulators such as SST [90], TaskSim [88] which are based on multiple levels of
abstraction to provide good prediction. However these address only multicore
machines with no GPUs so far. We use Simgird [45] simulator in this thesis
which is accurate enough for our need while being very fast.

1.2.1 Simgrid Simulation Engine

Simgrid is a versatile simulation toolkit initially designed to study the behavior
of different scheduling algorithms on large-scale distributed systems like grids,
clouds, or peer-to-peer systems. It builds on fluid network models that have
been proven as a reasonable alternative to both simple analytic models and
expensive, difficult-to-instantiate packet-level simulations.

Task based scheduling on heterogeneous resources 19

1.2. Simulation Framework

The Simgrid version of StarPU [96] uses Simgrid to simulate the execution
of an application within a single machine. The idea is to run the application
normally, except that data transfers and computation kernel calls are replaced
by a simple procedure accounting for the time they are expected to take, and
gathered coherently by Simgrid. StarPU models each execution unit (CPUs
and GPUs) by defining the time taken by each execution unit on each possible
task/kernel [21]. It also models the PCI buses between them, using offline bus
bandwidth measurements, and relies on Simgrid to compute the interferences
on PCI buses between the different transfers.

The resulting simulated times are very close to actual measurements on
the real platforms [96], and properly reproduce the various behaviors that
can be observed for the different schedulers. This allows one to confidently
run experiments with the Simgrid version of StarPU, which provides several
advantages:

• The time to simulate execution is reduced, since no actual computation
or data transfer is performed. The Simgrid simulator itself is not parallel,
so the whole execution gets serialized, but several simulations can be run
in parallel for e.g. various matrix sizes or schedulers, and one then gets
all the results in parallel.

• The experiments do not depend on the availability of the platform, both
in terms of quotas, and in terms of versions of the installed software, thus
allowing reproducible experiments. This proved useful while performing
the experiments for this thesis, since the platform became unavailable for
a couple of times due to different issues such as air conditioning, software
upgradation, transition from PBS to SLURM job scheduler.

• The platform can be modified, for instance to change the available PCI
bandwidth, the execution times of the kernels, etc. In Chapter 2, we use
this feature in order to build a virtual "related" heterogeneous platform.

Simgrid version of StarPU allows to perform simulations on any machine
by using the configuration files of target platform and expected execution time
of kernels on each resource of the target platform. We use this to evaluate the
effectiveness of the different scheduling algorithms on a single heterogeneous
node in Chapter 2.

Simgrid does not provide a framework to support simulation within a sim-
ulation (two levels of simulations) and to handle spoliation of tasks. These two
features were required to evaluate some of our scheduling algorithms. There-
fore, we have written our own simulator to support both of these features and
used it in Chapters 3, 4 and 5.

20 Suraj Kumar

1. Background

1.3 Dense Linear Algebra Libraries

Linear systems of equations, Least squares problems, Eigen value problems
and Singular value decomposition problems are the basic problems of linear
algebra. In this section, we briefly describe some old and some state-of-the-art
numerical linear algebra libraries designed for dense matrices.

1.3.1 LINPACK (LINear algebra PACKage)

LINPACK is a software library written in FORTRAN66 by Jack Dongarra,
Jim Bunch, Cleve Moler, and Gilbert Stewart [1]. This project had started
in 1974 and it was intended for use on supercomputers in the 1970s and early
1980s. During that period, supercomputers with vector processors were very
popular, therefore LINPACK was basically designed to exploit vector proces-
sors. This library provides routines to solve systems of linear equations for
general, banded, symmetric indefinite, symmetric positive definite, triangular,
and tridiagonal square matrices. It also provides routines to compute QR and
singular value decompositions of rectangular matrices. It makes use of BLAS
libraries for performing vector operations (BLAS level 1 operations). LIN-
PACK has been largely superseded by LAPACK [19], which has been designed
to run efficiently on machines with hierarchical memory design.

1.3.2 LAPACK (Linear Algebra PACKage)

LAPACK [19] is a standard software library for numerical linear algebra. It was
originally written in FORTRAN77, but moved to FORTRAN90 in version 3.2
(2008). It provides routines for solving systems of linear equations, least square
solutions of systems of linear equations, eigen value problems and singular value
problems. It also provides routines to implement different matrix factorizations
such as LU, Cholesky, QR, SVD and Schur. It provides routines for both real
and complex matrices in both single and double precision. It handles dense
and banded matrices, but not general sparse matrices. LAPACK library was
first released in 1992.

The original goal of LAPACK project was to make LINPACK and EIS-
PACK [59] libraries to run efficiently on shared memory vector and parallel
processors. On these machines LINPACK and EISPACK are inefficient be-
cause memory access patterns do not take multi layer memory hierarchies into
account, therefore spending too much time moving data instead of doing useful
floating-point computations. LAPACK solves this problem by reorganizing the
algorithms to use block matrix operations such as matrix multiplication in the
innermost loop. These block operations can be optimized for each architecture
to account for memory hierarchy and so provide a portable way to achieve high
efficiency on different modern machines.

Task based scheduling on heterogeneous resources 21

1.3. Dense Linear Algebra Libraries

Maximum efficacy of LAPACK routines are performed by calls to different
Basic Linear Algebra Subprograms (BLAS). LAPACK is designed to exploit
BLAS level 3 operations. Coarse granularity of BLAS level 3 operations assists
to obtain high efficiency on many high performance computers.

LAPACK uses multi threaded implementation of BLAS libraries to effi-
ciently exploit SMP processors. LAPACK has also been extended to run on
distributed memory system in later packages such as ScaLAPACK [28] and
PLAPACK [18].

1.3.3 PLASMA (Parallel Linear Algebra Software for Mul-
ticore Architectures)

The main goal of the PLASMA project is to address performance shortcomings
of LAPACK and ScaLAPACK libraries on multicore processors and multi-
socket systems of multicore processors [42]. PLASMA uses tile based data
layout and provides implementation of state-of-the-art algorithms using task
based scheduling techniques. It assigns work to cores based on the availability
of data for processing at any given point during execution. It is based on data
driven scheduling, which is close to the idea of Section 1.1, where computations
are expressed through a DAG, and DAG is explored at runtime. PLASMA uses
QUARK runtime system to perform dynamic scheduling of tasks.

PLASMA has been designed to supersede LAPACK and ScaLAPACK by
restructuring the software to expose more parallelism and achieve much greater
efficiency, where possible, on modern computers based on multicore architec-
tures. It also relies on new or improved algorithms. PLASMA does not replace
ScaLAPACK as software for distributed memory computers, since it only sup-
ports shared memory machines.

PLASMA has also been extended to run on distributed memory system in
later package DPLASMA [35].

1.3.4 MAGMA (Matrix Algebra for GPU and Multicore
Architectures)

MAGMA library is an extension of LAPACK library for GPU and multicore
architectures [98]. It uses static scheduler for distribution of work on differ-
ent computational units. It schedules embarrassingly parallel tasks such as
GEMM on GPU and small tasks which are very less parallelizable and often
on critical path such as POTRF on CPU. In MAGMA, algorithms are split
of varying granularity to utilize different hybrid component efficiently. It also
supports out-of-device memory algorithms by dividing the matrix into different
sub-matrices and transferring a submatrix to GPU to perform computations
and then remaining matrix is updated accordingly. It uses 1-D block cyclic

22 Suraj Kumar

1. Background

data distribution [97] to support multiple GPUs. It handles real and complex
matrices in both single and double precisions.

The goal of MAGMA is to design linear algebra algorithms and frameworks
for hybrid multicore and multiGPU systems that can enable applications to
fully exploit the power of each hybrid component. We performed performance
comparison of some of our approaches with MAGMA in Chapter 4.

1.3.5 MORSE (Matrices Over Runtime Systems at Ex-
ascale)

To cope with the increased degree of parallelism, a new class of linear algebra
algorithms has been proposed, often referred as tile algorithms in the litera-
ture [44, 85]. These algorithms led to the design of new libraries in the past
five years such as PLASMA, FLAME and DPLASMA. Although both static
and dynamic versions of the algorithms have been initially implemented, the
dynamic codes are now predominant since they proved to provide more flexi-
bility. These dynamic codes rely on runtime systems (QUARK, Supermatrix,
PaRSEC) that have been specifically designed for the purpose of the numerical
software (in the case of PLASMA, FLAME and DPLASMA, respectively).

The advantage of relying on specialized runtime systems is that they can
be optimized for both the numerical algorithm and the target architecture. On
the other hand, designing and maintaining a runtime system is a highly time
consuming task, which makes it difficult to design a fully-featured specialized
runtime system.

The main goal of MORSE [5, 6] project is to enable different numerical
algorithms to execute on a scalable unified runtime system which exploits
the full potential of future exascale machines. To develop numerical linear
algebra softwares that will perform well on petascale and exascale systems
with thousands of nodes and millions of cores, several challenges have to be
overcome, both by numerical linear algebra and runtime system communities.
MORSE project aims at describing linear algebra algorithms at a high level of
abstraction, which will enable the strong collaboration between linear algebra,
runtime system, and scheduling communities to fully benefit from the potential
of future large scale machines. This project aims at bridging the immense
software gap that has opened up in front of the HPC community.

1.3.6 CHAMELEON

Chameleon is a sub-project of MORSE specifically dedicated to dense linear
algebra [8]. It relies on sequential task-based algorithms where tasks of the
algorithms are submitted to a runtime system. Such a system is a bridge be-
tween the application and the hardware which handles the scheduling, data
transfers and the effective execution of tasks on to the processing units. A

Task based scheduling on heterogeneous resources 23

1.4. Dense Matrix Factorizations

runtime system such as StarPU is able to manage automatically data trans-
fers between non-shared memory areas (CPUs-GPUs, distributed nodes). This
kind of implementation paradigm allows to design high performing linear al-
gebra algorithms on very different types of architectures.

The Chameleon library is based on the PLASMA tile algorithms (and code)
but relies on the StarPU generic runtime system instead of the specialized
QUARK runtime system. One advantage is that it allows for handling hetero-
geneous architectures (whereas PLASMA and QUARK were initially designed
for multicore chips). Another advantage is that, when aiming at analyzing
different scheduling strategies, it allows to run in simulation mode with the
field-proven combination [96] of StarPU and Simgrid. Chameleon also supports
PaRSEC, QUARK and OmpSs runtime systems.

1.4 Dense Matrix Factorizations

Dense matrix factorizations are the basis of many scientific applications. In this
thesis we consider one of them, namely the Cholesky factorization, extensively
for our experiments. We also consider the QR and LU factorizations for some
of our experiments. In this section, we briefly describe the Cholesky, QR and
LU factorizations.

1.4.1 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition) decomposes a positive
definite matrix A into a unique lower triangular matrix L such that A = LL>.
This type of factorization is very useful for efficient numerical solutions and
different types of simulations such as weather predictions [47], Monte carlo
simulations [66] and optics simulations [74]. It involves around N3

3
floating

point operations for N ×N matrix. Where applicable, it is almost twice more
efficient than the LU factorization for solving systems of linear equations. The
Cholesky factorization also decomposes a positive semi definite matrix into a
lower triangular L such that A = LL>, but such decomposition may not be
unique.

Here is an example of the Cholesky factorization for a positive definite
matrix.1 2 3

2 20 26
3 26 70

 =

1 0 0
2 4 0
3 5 6

1 2 3
0 4 5
0 0 6


The Cholesky factorization is mainly used to solve a system of linear equa-

tions Ax = b, where A is a N × N symmetric positive-definite matrix, b is a
vector, and x is the unknown solution vector to be computed. Ax = b can

24 Suraj Kumar

1. Background

be solved by first computing a lower triangular matrix L such that A = LL>,
then solving Ly = b for y by forward substitution and finally solving L>x = y
for x by backward substitution.

Linear systems of equations Ax = b often arise in physics applications,
especially when looking for numerical solutions of partial differential equations
or solving least square problems, where A is positive-definite due to the nature
of the modeled physical phenomenon [62]. There is abundant literature on the
implementation of dense as well as sparse Cholesky factorization on different
platforms [86, 87, 79, 92, 91, 49].

Tile Cholesky Factorization

To take advantage of modern highly parallel architectures, state-of-the-art nu-
merical algebra libraries implement tile Cholesky factorizations. The matrix
A = (Aij)0≤i,j≤N is divided into N ×N tiles (or blocks) of Nb ×Nb elements,
and the tile Cholesky algorithm can then be seen as a sequence of tasks that
operate on small portions of the matrix. This approach greatly improves the
parallelism of the algorithm and mostly involves BLAS3 kernels whose library
implementations are really fast on modern architectures. The benefits of such
an approach on parallel multicore systems have already been discussed in the
past [65, 44, 85]. Following the BLAS and LAPACK terminology, the tile al-
gorithm for Cholesky factorization is based on POTRF, TRSM, SYRK, and
GEMM kernel subroutines.

Algorithm 2 shows the pseudo-code of the tile version of the Cholesky
factorization implemented in the Chameleon library. In each instance of the
outer loop, a Cholesky factorization (POTRF kernel) on the ith diagonal tile
is performed and the trailing panel is updated with triangular solve (TRSM
kernel). Then, the remaining trailing submatrix is updated by applying sym-
metric rank-k updates (SYRK kernel) on the diagonal tiles and general matrix
multiplications (GEMM kernel) on non-diagonal tiles.

Algorithm 1: Tile Cholesky Factorization.
for i = 0 . . . N − 1 do

A[i][i] ← POTRF(A[i][i]);
for j = i+ 1 . . . N − 1 do

A[j][i] ← TRSM(A[j][i], A[i][i]) ;

for k = i+ 1 . . . N − 1 do
A[k][k] ← SYRK(A[k][k], A[k][i]) ;
for j = k + 1 . . . N − 1 do

A[j][k] ← GEMM(A[j][k], A[j][i], A[k][i]);

Task based scheduling on heterogeneous resources 25

1.4. Dense Matrix Factorizations

The sequence of computations for tile Cholesky factorization can be repre-
sented with a DAG of tasks as depicted in Figure 1.4 in the case of 5×5 tile
matrix.

GEMM_4_2_1

TRSM_4_2

GEMM_4_2_0

GEMM_4_3_2

TRSM_4_3

GEMM_4_3_0

GEMM_4_3_1

SYRK_3_3_2

POTRF_3

SYRK_3_3_0

SYRK_3_3_1

SYRK_1_1_0

POTRF_1GEMM_4_1_0

TRSM_4_1

TRSM_1_0

GEMM_2_1_0 GEMM_3_1_0

TRSM_2_1

SYRK_4_4_1

SYRK_4_4_2

SYRK_4_4_3

TRSM_4_0

SYRK_4_4_0 TRSM_3_1

POTRF_2

TRSM_3_2

POTRF_0

TRSM_3_0TRSM_2_0

GEMM_3_2_1

GEMM_3_2_0

POTRF_4

SYRK_2_2_0

SYRK_2_2_1

Figure 1.4: DAG of the tile Cholesky factorization - 5×5 tile matrix.

The Cholesky factorization task graph has N(N+1)(N+2)
6

vertices and (N−1)N(N+1)
2

edges for N ×N tile matrix, more precisely, it has N POTRF, N(N−1)
2

TRSM,
N(N−1)

2
SYRK and N(N−1)(N−2)

6
GEMM tasks.

Figure 1.5 depicts performance of tile Cholesky factorization in actual ex-
ecution and simulation on a heterogeneous node with 9 CPU computing cores
of X5650 processor and 3 Nvidia Tesla M2070 GPUs. We use StarPU runtime
system for the actual execution and Simgrid version of StarPU for the sim-
ulation. In all cases we use HEFT based StarPU scheduler for scheduling of
tasks. In “Simulation with no communication” mode, we modify the platform
files of the machine and set all transfer associated costs to zero. Figure 1.5
shows that the simulated performance is slightly better than the actual execu-
tion performance, which can be explained with the fact that actual execution
suffers from scheduling overhead. Simulated performance in both cases, with
and without communication costs, is comparable. Therefore we can say that

26 Suraj Kumar

1. Background

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

Actual performance vs Simulated performance

Actual Execution
Simulation

Simulation with no communication

Figure 1.5: Impact of communication on performance of Cholesky factoriza-
tion.

kernel PORTF TRSM SYRK GEMM
CPU time/GPU time '2.3 '11 '26 '29

Table 1.1: GPU acceleration ratio over CPU core for Cholesky tasks (size 960).

communication costs do not impact the performance of Cholesky much and
Cholesky is a compute intensive application.

Table 3.1 depicts the acceleration ratios of different Cholesky tasks on a
GPU (Nvidia Tesla M2070) over a CPU core (one core of Intel Xeon X5650
processor) for a tile size of Nb = 960. Different Cholesky tasks exhibit strongly
heterogeneous and unrelated acceleration ratios: GPUs are for instance much
more efficient to process regular kernels such as matrix-matrix multiply (GEMM)
rather than more irregular kernels such as matrix factorization (POTRF).
Cholesky factorization is also showing a complex pattern of data dependencies,
where parallelism increases and then decreases as execution progresses. It is
crucial for the scheduler to make efficient utilization of all resources when the
number of ready tasks is large and make better choice of resources when few
tasks are ready. Due to the above reasons, Cholesky factorization is an ideal
candidate for the study of task based scheduling on heterogeneous architec-
tures.

Task based scheduling on heterogeneous resources 27

1.4. Dense Matrix Factorizations

We use the Cholesky factorization extensively for our experiments in this
thesis. We consider Chameleon implementation of the tile Cholesky factoriza-
tion on top of StarPU runtime system for the actual execution and Cholesky
task graphs generated by Chameleon with StarPU runtime system for the the-
oretical analysis.

1.4.2 QR Factorization

The QR factorization (or QR decomposition) decomposes a matrix A into a
product A = QR of an orthogonal matrix Q and an upper triangular matrix R.
It is mainly used to solve systems of linear equations and linear least squares
problems.

There are several ways to compute a QR factorization such as Gram-
Schmidt process, Householder transformations. In the case of Gram-Schmidt
process, column vectors of matrix A are converted to the set of orthogonal
vectors Q and transformations applied on the column vectors to obtain Q are
represented with an upper triangular matrix R such that A = QR. In the pres-
ence of rounding errors on a computer, this process, also known as Classical
Gram-Schmidt, is numerically unstable and Q quickly losses its orthogonal-
ity. A more stable variant of this process, known as Modified Gram-Schmidt,
ensures that impact of rounding errors on orthogonality of Q is minimal. How-
ever, the computed Q is guaranteed to be nearly orthogonal only for well con-
ditioned matrices [68]. On the other hand, in Householder transformation, a
plane or hyperplane is used to reflect a vector such that all coordinates ex-
cept one disappear. This method is more stable than Gram-Schmidt process.
Different dense linear algebra libraries such as LINPACK [1], LAPACK [19],
PLASMA [42], Chameleon [8] implement the QR factorization based on House-
holder transformations.

Here is an example of the QR factorization.

6 −3
8 −4
0 2

 =

3
5

0
4
5

0
0 1

(10 −5
0 2

)

To take full advantage of modern architectures, recent linear algebra li-
braries implement the tile version of the QR factorization [43]. We use Chameleon
implementation of tile QR factorization running on top of StarPU runtime
system for our experiments. Chameleon implements tile QR factorization
with four different types of kernels, namely GEQRT, ORMQR, TSQRT and
TSMQR. These kernels are explained in details in [43, 12]. Figure 1.6 depicts
the task graph for the tile QR factorization of a 4× 4 tile matrix.

28 Suraj Kumar

1. Background

GEQRT_2

TSQRT_3_2 ORMQR_2_3

TSMQR_3_1_0

TSQRT_3_1

TSQRT_3_0

TSMQR_3_2_0 TSMQR_3_3_0

TSMQR_3_2_1 TSMQR_3_3_1

TSMQR_3_3_2

TSQRT_2_1

TSMQR_2_3_1TSMQR_2_2_1

TSQRT_2_0

TSMQR_2_1_0 TSMQR_2_3_0TSMQR_2_2_0

ORMQR_0_1

TSMQR_1_1_0

ORMQR_0_2

TSMQR_1_2_0

ORMQR_0_3

TSMQR_1_3_0

ORMQR_1_3ORMQR_1_2

GEQRT_1

GEQRT_0

TSQRT_1_0

GEQRT_3

Figure 1.6: DAG of the tile QR factorization - 4×4 tile matrix.

1.4.3 LU Factorization

The LU factorization (or LU decomposition) decomposes a matrix A into a
product A = LU of a lower triangular matrix L and an upper triangular matrix
U . A permutation matrix is sometimes used in the product as well. It can be
viewed as the matrix form of Gaussian elimination. It is mainly used to solve
systems of linear equations (similar to Cholesky, first solve for lower triangular
matrix by forward substitution and then solve for upper triangular matrix by
backward substitution). It is also used to compute inverse and determinant of
a matrix. Alan Turing first introduced the LU factorization in 1948.

Here is an example of the LU factorization.1 1 −2
2 14 4
3 18 9

 =

1 0 0
2 4 0
3 5 1

1 1 −2
0 3 2
0 0 5


Most linear algebra libraries implement the tile version of the LU factoriza-

tion to fully exploit the potential of modern architectures. We consider task
graphs of tile LU factorization produced by Chameleon library running on top
of StarPU runtime system for our simulations in Chapter 5.

Task based scheduling on heterogeneous resources 29

1.4. Dense Matrix Factorizations

We have used different state-of-the-art software libraries to perform our
experiments. In Chapters 2, 3, and 4, we conducted actual executions with
Chameleon library running on top of StarPU. In Chapter 2, we also used
Simgrid version of StarPU to perform simulations with Chameleon library.
We used different task graphs, obtained by running Chameleon library with
StarPU runtime system, to perform simulations in Chapters 3, 4 and 5.

30 Suraj Kumar

Chapter 2

Performance and Bounds of
Cholesky Factorization

We consider the problem of allocating and scheduling Cholesky factorization
on fully heterogeneous platforms made of CPUs and GPUs. The relative per-
formance of CPU and GPU highly depends on the sub-routine: GPUs are for
instance much more efficient to process regular kernels such as matrix-matrix
multiplications rather than more irregular kernels such as matrix factorization.
In this context, one solution consists in relying on dynamic scheduling and re-
source allocation mechanisms such as the ones provided by PaRSEC or StarPU.
In this chapter we analyze the performance of dynamic schedulers based on
both actual executions and simulations, and we investigate how adding static
rules based on an offline analysis of the problem to their decision process can
indeed improve their performance, up to reaching some improved theoretical
performance bounds which we introduce.

2.1 Introduction
Our objective is to optimize the performance of Cholesky factorization on a
hybrid computing platform. As mentioned in Chapter 1, to take full advantage
of modern hybrid architectures, most linear algebra applications are expressed
as task graphs at high level and then a runtime system is used to perform
scheduling of tasks onto computing resources and data movements between
memories when needed.

There is an abundant literature on the problem of scheduling task graphs
on parallel processors. This problem is known to be NP-complete even on
homogeneous platforms [60]. Lower-bounds based either on the length of the
critical path (the longest path from an entry vertex to an output vertex) or on
the overall workload (assuming ideal parallelism) have been proposed, and sim-
ple list-scheduling algorithms are known to provide 2−1/m-approximation on
homogeneous platforms, at least when communication times are negligible [63].

31

2.2. Context

Several scheduling heuristics have also been proposed for heterogeneous plat-
forms, and among them the best-known certainly is heterogeneous early finish
time (HEFT) [99], which inspired some dynamic scheduling strategies used in
state-of-the-art runtimes. However, a large gap remains between the theoret-
ical lower-bounds and the actual performance of dynamic HEFT-like heuris-
tics. Another way to assess the quality of a scheduling strategy is to compare
the actual performance to the machine peak performance of the computing
platform computed as the sum of the performance of its individual computa-
tional units. Rather than this machine peak performance which is known to
be unreachable, one usually considers the GEMM peak obtained by running
matrix multiplication kernels (GEMMs). For large matrices, the task-graph
of a Cholesky factorization exhibits a sufficient amount of parallelism, and a
sufficient number of GEMM calls for this bound to be reasonable. However, on
small and medium size matrices, there are not so many GEMMs compared to
other less efficient tasks, that is why there is still a large gap between GEMM
peak performance and the best-achievable Cholesky performance.

In this chapter, we optimize the dynamic scheduling of the Cholesky fac-
torization of a dense, symmetric, and positive-definite double-precision matrix,
using one runtime system, StarPU, and provide better makespan bounds to
prove the quality of our schedules. The contributions of this chapter are:

• Better lower bounds on the makespan of a Cholesky factorization on a
parallel hybrid platform;

• Better dynamic schedules, based not only on HEFT but also on an hy-
bridization of static and dynamic task assignments;

• A very efficient schedule for a simple hybrid platform model, achieved
by constraint programming.

• Numerous experiments to assess the performance of our schedules using
the StarPU runtime.

Note that what is done here using StarPU could have been done with other
runtimes, provided that we are able to control their mapping and scheduling
policies. Similarly, we could have chosen another dense linear algebra factor-
ization such as the QR or LU factorizations.

2.2 Context

2.2.1 Cholesky Factorization

Figure 2.1 depicts the task graph for the tile Cholesky factorization of a 5× 5
tile matrix. We refer the interested reader to Chapter 1.4.1 for more details
on the tile version of the Cholesky factorization.

32 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

GEMM_4_2_1

TRSM_4_2

GEMM_4_2_0

GEMM_4_3_2

TRSM_4_3

GEMM_4_3_0

GEMM_4_3_1

SYRK_3_3_2

POTRF_3

SYRK_3_3_0

SYRK_3_3_1

SYRK_1_1_0

POTRF_1GEMM_4_1_0

TRSM_4_1

TRSM_1_0

GEMM_2_1_0 GEMM_3_1_0

TRSM_2_1

SYRK_4_4_1

SYRK_4_4_2

SYRK_4_4_3

TRSM_4_0

SYRK_4_4_0 TRSM_3_1

POTRF_2

TRSM_3_2

POTRF_0

TRSM_3_0TRSM_2_0

GEMM_3_2_1

GEMM_3_2_0

POTRF_4

SYRK_2_2_0

SYRK_2_2_1

Figure 2.1: Task graph of the Cholesky factorization – 5× 5 tile matrix.

2.2.2 Multiprocessor Scheduling

Static Task Allocation

It is well known that the allocation of the tasks to the computing cores affect
the performance and scalability, because of data locality and task heterogene-
ity. This problem has been adressed in the distributed memory context. For
example, the ScaLAPACK library [54] first distributes the matrix tiles to the
processors, using a standard 2D block-cyclic distribution of tiles along a virtual
p-by-q homogeneous grid. In this layout the p-by-q top-left tiles of the matrix
are topologically mapped onto the processor grid and the rest of the tiles are
distributed onto the processors in a round-robin manner. It then implements
an owner-compute strategy for task allocation: a task overwriting a tile is
executed on the processor hosting this tile. This layout is also incorporated
in the High Performance Fortran standard [72]. It ensures a good load and
memory usage balancing for homogeneous computing resources [54]. However,
for heterogeneous resources, this layout is no longer an option, and dynamic
scheduling is a widespread practice.

Task based scheduling on heterogeneous resources 33

2.3. Makespan Lower Bounds

These ideas also make sense in a shared-memory environment in order
to take advantage of data locality. For instance, the PLASMA [42] library
provides an option for relying on such static schedules on multicore chips.

Dynamic Task Graph Scheduling

Dynamic strategies have been developed in order to design methods that are
flexible enough to cope with unpredictable performance of resources, especially
in the context of real time systems, where on-line and adaptive scheduling
strategies are required [48, 75]. More recently, the design of dynamic schedulers
received a lot of attention, since on modern heterogeneous and possibly shared
systems, the actual prediction of either execution and communication time can
be very hard, thus justifying the design of ad-hoc tools such as StarPU.

As presented earlier, many heuristics have been proposed for scheduling
DAGs since this problem is NP-complete. Most of these heuristics are list-
scheduling heuristics: they sort tasks according to some criterion and then
schedule them greedily. This makes them good candidates to be turned into
dynamic scheduling heuristics. The best-known list-scheduling heuristic for
DAGs on heterogeneous platforms is certainly HEFT [99]. It consists in sort-
ing tasks by decreasing bottom-level, which is the weight of the longest path
from a task to an exit task (a task without successors). In a heterogeneous
environment, the weight of a task (or communication) is computed as the av-
erage computation (or communication) time over the whole platform. Then,
each task is considered and scheduled on the resource on which it will finish
the earliest. HEFT turns out to be an efficient heuristic for heterogeneous
processors. Other approaches have been proposed to avoid data movement
when taking communications into account, such as clustering tasks into larger
granularity tasks before scheduling them [93].

2.3 Makespan Lower Bounds

Performance results for linear algebra computations are often accompanied
with an upper bound in terms of Flop/s (Floating-point operations per sec-
ond), in order to assess the achieved efficiency. Since the theoretical peak per-
formance is usually unreachable, particularly with GPUs, the common bound
being used is the performance of a simple matrix multiplication (GEMM). In-
deed this is the most efficient dense linear algebra operation, and thus provides
a good hint of some achievable performance. This bound takes into account
the heterogeneity of the platform by summing up the obtained GFlop/s (Gi-
gaFlop/s) on the various processing elements. It however does not take into
account the heterogeneity of the application, which is particularly important
for small and medium matrices, for which a fair amount of the tasks are not

34 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

GEMM tasks but much less efficient tasks such as POTRF, especially on ac-
celerators.

We here propose much more accurate bounds that take into account both
heterogeneity of the computation resources and of the application kernels, by
taking as input the execution time of any kernel on any type of resource. They
also to a certain extent take into account the task graph itself, in terms of task
dependencies.

2.3.1 Linear Programming Formulation

The makespan lower bound computation is based on a relaxation of the schedul-
ing problem, in which almost all precedence constraints are ignored. This for-
mulation focuses on the number of tasks nrt of each type t (GEMM, SYRK,
TRSM, POTRF) which are executed on each resource type r (CPU, GPU, ...).
From the Cholesky task graph, we know the number Nt of tasks of each type
t that need to be performed on the whole platform, and from the platform
we know the number Mr of processing elements of each type r available to
schedule the tasks. For each task type t and resource type r, the calibration
mechanisms inside StarPU (described in Chapter 1.1.1) provide the execution
time Trt of these tasks on this resource type. The basic area bound is obtained
by solving the following linear problem:

minimize the makespan l such that
∀t, all Nt tasks of type t get executed over the various

processing element types r:∑
r

nrt = Nt

∀r, the Mr resources of type r complete all their tasks
of various types t within the makespan l:∑
t

nrtTrt ≤ l ×Mr

∀r, t nrt ∈ N+

It is clear that the optimal value l∗ of this linear program is a lower bound
on the total execution time of the task graph, since any execution needs to
execute all tasks. Ignoring the task graph precedences in this bound allows
one to handle tasks of the same type with a couple of variables (one per resource
type), instead of having one variable for each task in the graph, thus limiting
the number of variables and reducing symmetries in the solution space. While
being very naive, this formulation allows StarPU, without any input from the
application beyond the normal task submission, to automatically generate it
and solve it on the fly very quickly, right after the application execution, which

Task based scheduling on heterogeneous resources 35

2.3. Makespan Lower Bounds

thus allows one to print this theoretical bound along the measured performance
in the application output.

Due to the actual timings of the different task types, this linear program
always decides that all POTRF tasks should be executed on CPUs, since all
other task types make much more efficient use of the GPU resources. However,
in practice all POTRF tasks are on the critical path of the Cholesky graph,
and hence this implies that the resulting lower bound is too optimistic for small
matrix sizes, since it does not take dependencies into account. This interesting
feature of the Cholesky task graph to contain a path with all n POTRF tasks
can be used to strengthen the bound, without adding other variables in the
linear program. In addition to the n POTRF tasks, this path contains n−1 of
the n(n−1)

2
TRSM tasks, and n− 1 of the n(n−1)

2
SYRK tasks. We can thus add

the following constraint, which states that the execution time is necessarily
larger than the time to execute all these tasks in sequence:

∑
r

nrPTrP + (n− 1)× T ∗T + (n− 1)× T ∗S ≤ l

In this constraint, TrP denotes the execution time of POTRF tasks on re-
source type r, and T ∗T and T ∗S denote the fastest execution time of TRSM and
SYRK tasks: we do not model exactly on which resources these TRSM and
SYRK tasks are executed, and thus underestimate their completion times, ig-
noring which resource they actually run on. The resulting lower bound is called
the mixed bound in the rest of this chapter. This linear program has a very
small number of variables and constraints (in particular, they are independent
of the matrix size), and it can thus be solved very quickly.

It is possible to include additional variables to the linear program to have
more precise values, but this does not provide a better bound unless we take
more dependencies into account.

2.3.2 Constraint Programming formulation

In addition to this lower bound computation, we have used a Constraint Pro-
gramming formulation of the scheduling problem, in order to obtain good fea-
sible solutions. These solutions provide both a comparison point for StarPU
schedules and a limit for possible improvements of the lower bound. The for-
mulation contains one boolean variable bir for each task i and each resource
type r (only one can be true for a given task), and one integer variable si for
each task i which represents the starting time of the task. The constraints are
the following:

36 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

minimize l such that
∀i, only one type of resource executes task i:

OnlyOne(bi1, . . . , biR)

∀i, task i completes:

si +
∑
r

birTir ≤ l

∀r,∀t, at time θ the Mr resources of type r are
executing at most Mr tasks:

|{i st si ≤ θ < si +
∑
r

birTir}| ≤Mr

∀i→ j, dependency i→ j is respected:

si +
∑
r

birTir ≤ sj

We have implemented this constraint programming formulation using CP
Optimizer v12.4. The first constraint is expressed using the alternative
constraint, and the third constraint uses the concept of cumulative functions
to express the number of tasks which use resources of type r at time t. The
other constraints are simple linear constraints and are easily expressed. The
solver explores the solution space with an exhaustive search and backtracking,
using constraint propagation to reduce the search space as much as possible.

Furthermore, providing the result of a HEFT heuristic as an initial solution
allows the solver to explore good solutions more rapidly. We let the solver
optimize for 23 hours and keep the best solution found in this duration. The
obtained solutions are quite good compared to what is obtained with other
heuristics, but the solver is unable to prove optimality.

Because it would otherwise be extremely costly to solve, this formulation
does not take into account data transfers. With the usual platforms and the
dense linear algebra operation being studied (the Cholesky factorization), data
transfers are indeed not a concern: computation is dense enough for transfers
to be largely overlapped with kernel computation. We also have written a
version of the constraint programming formulation which takes data transfer
times into account but we could not obtain results at the scale of our interest.

2.3.3 Upper bounds on performance

Lower bounds on execution time also provide upper bounds on the perfor-
mance. Therefore, we have plotted different theoretical performance upper

Task based scheduling on heterogeneous resources 37

2.4. Experiments and Results

bounds of the Cholesky factorization in Figure 2.2, based on real execution
timings of different tasks on the Mirage machine (described in Section 2.4.2).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

Critical Path
Area Bound

Mixed Bound
Gemm Peak

Figure 2.2: Heterogeneous theoretical performance upper bounds.

The critical path bound is calculated based on the critical path of the
Cholesky task graph. While calculating the critical path, we considered the
fastest execution time of each task among the different resources. The area
bound and mixed bound calculations are based on the description given in
Section 2.3.1. Since GEMM is the fastest kernel of the Cholesky factorization
algorithm, we have also plotted the GEMM Peak. This plot shows that the
mixed bound is the tightest upper bound among all upper bounds, and we will
therefore compare the performance of our experiments only with the mixed
bound in the experiment section.

The performance of the constraint programming solution (best solution
found in 23 hours, but not a bound because CP is unable to prove its optimality
in 23 hours for matrices larger than 5× 5 tiles) described in Section 2.3.2 will
be discussed in Section 2.4.3.

2.4 Experiments and Results
For this study, we used the Chameleon [8] implementation of the Cholesky
factorization, running on top of the StarPU runtime system. We performed

38 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

actual executions on the target platform, and we additionally used the Sim-
grid [45, 96] simulator, in order to reduce the experimentation time, improve
reproducibility of the experiments, and also be able to modify the execution
platform. We specialize the StarPU scheduling algorithms to include a mix-
ture of static and dynamic task assignments, based on the knowledge of the
Cholesky task graph, to improve performance on small and medium size ma-
trices. In the following, we call “small” a matrix with less than 10 × 10 tiles,
“medium” a matrix with tile size between 10 and 20, and “large” a matrix with
more than 20× 20 tiles.

In “actual execution mode”, we perform the real execution on Mirage ma-
chine (described in Section 2.4.2) with StarPU runtime system. While in “sim-
ulation mode”, we perform simulation on any machine with Simgrid version
of StarPU runtime system by using the configuration files of the target plat-
form and expected execution times of kernels on each resource of the target
platform.

2.4.1 Schedulers

We have experimented with a few schedulers of StarPU, namely random, dmda
and dmdas, which are representative of state-of-the-art dynamic heuristics.
The random scheduler assigns tasks randomly over all the computation re-
sources. The dmda (deque model data aware) and dmdas (deque model data
aware sorted) schedulers use the minimum completion time heuristic to assign
tasks to computational resources. The difference between dmda and dmdas is
that dmdas schedules tasks in order of their priorities, thus making it repre-
sentative of the state-of-the-art HEFT heuristic [99, 22]. More details about
these schedulers are present in Chapter 1.1.1.

We are computing the priorities of different tasks in dmdas by estimating
the longest path (in terms of execution time) from a task to an exit task (a
task without successors) in Cholesky task graph. For longest path calculation,
we have taken the fastest execution time of each task among the different
resources into consideration.

The Cholesky factorization is a structured application, so we can estimate
some extra information in advance by analyzing the task graph with the help of
different tools. This information could be an exact schedule, priorities for some
specific tasks, scheduling of some tasks on a particular worker/resource type,
etc. In the following section, we inject more or less of this extra information
as static knowledge, to influence the scheduling decisions and achieve better
performance.

Task based scheduling on heterogeneous resources 39

2.4. Experiments and Results

2.4.2 Experimental Setup

We have used a machine called Mirage to run and simulate our experiments.
It has 2 Hexa-core Westmere Intel R© Xeon R© X5650 processors and 3 Nvidia
Tesla M2070 GPUs. In the actual execution, we used only 9 CPU cores of
the Mirage machine so that the remaining 3 CPU cores can be used to fully
exploit the critical resource (GPUs) of the system. To make the performance
comparable we stick to 9 CPU cores in all of our experiments.

We have used Chameleon v1.0, StarPU v1.2.0 and Simgrid v3.10 for our
experiments. We used Intel R© Math Kernel Library 11.1, MAGMA 1.4.1 and
CUBLAS 6.0 to perform actual executions.

2.4.3 Results

We have divided our experiments into two categories based on the types of
configurations used. The first one is Homogeneous category where we have
run and simulated the performance behavior with 9 homogeneous CPU cores
and the second one is Heterogeneous category, where we used 9 CPU cores and
3 GPUs to run the tasks.

From previous work we know that good performance in heterogeneous case
is achieved on our platform with a tile size of 960 [13, 12], that is why we also
kept the same tile size value throughout all our experiments.

For actual executions, we provide the average and standard deviation of
10 runs in the plots. In simulation mode, results are deterministic for all
schedulers except for the random scheduler which relies on random allocation
choices. The simulated plots therefore provide average and standard deviation
values of 10 simulations with various seeds for the random scheduler.

Homogeneous Case

For the homogeneous case, we provide the results of real execution runs of
Cholesky factorization with the three different StarPU schedulers: random,
dmda and dmdas.

From Figure 2.3, it is clear that the random scheduler does not perform
well. This happens because it does not take already assigned workload of the
workers into account while making scheduling decisions and selects a worker
among all workers with equal probability. This shows that the scheduler needs
to take scheduling decisions in some smart way. The other two schedulers
which are based on data aware and early finish time strategies perform much
better than the random scheduler. Figure 2.3 also shows that dmdas slightly
under-performs compared to dmda for small matrices. This is due to the fact
that dmdas is biased towards the longest path (path with more work) and
chooses some tasks in the beginning which do not generate enough level of

40 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

random
dmda

dmdas
standard deviation

Figure 2.3: Homogeneous actual execution performance.

parallelism. But as time progresses, dmdas selects tasks which release a higher
number of tasks, because these tasks would be the critical ones.

We are also interested to know the gap between performance of considered
schedulers and upper bound. Since actual executions add some runtime over-
head and affect the performance, to mitigate this overhead we have compared
the bound with simulated performance.

Figure 2.4 shows that the behavior is very similar to the original execution,
with a slight increase in performance, since we have removed the runtime
overhead from the simulation. It also shows that the gap between mixed bound
and achieved performance is significant for small matrices.

Heterogeneous Case

In this section, we consider all the processing units of the Mirage machine. 9
CPUs and 3 GPUs are used for the execution of tasks while the remaining 3
CPUs are used as drivers for the 3 GPUs.

Table 2.1 shows the GPUs performance for each kernel with respect to
CPUs performance, e.g.: GEMM is 29 times faster on GPU compared to CPU.

We divide our work into two parts. In the first part, we consider the
impact of heterogeneity of resources by considering a heterogeneous platform
with related performance. More specifically, we designed a fictitious hardware

Task based scheduling on heterogeneous resources 41

2.4. Experiments and Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

random
dmda

dmdas

mixed bound
standard deviation

Figure 2.4: Homogeneous simulated performance.

POTRF TRSM SYRK GEMM
'2× '11× '26× '29×

Table 2.1: GPUs relative performance.

configuration, where execution time of each kernel on GPU is made to be
exactly K times faster than the CPU execution time, and we call this case the
heterogeneous related. The common acceleration factor K is an average over
the actual measured acceleration factors, computed as follows :

K =

(
NP ∗ aP +NT ∗ aT +NS ∗ aS +NG ∗ aG

Total Number of Tasks

)
where,
NP : total number of POTRF tasks
aP : acceleration factor of POTRF on GPU
NT : total number of TRSM tasks
aT : acceleration factor of TRSM on GPU
NS: total number of SYRK tasks
aS: acceleration factor of SYRK on GPU

42 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

NG: total number of GEMM tasks
aG: acceleration factor of GEMM on GPU

Here, the acceleration factor depends on the number of tasks and the number
of tasks depends on the number of tiles. Therefore, we get different acceler-
ation factors with different number of tiles. Acceleration factors for 4, 8, 12,
16, 20, 24, 28 and 32 tiles matrices are 17.30, 22.30, 24.30, 25.38, 26.06, 26.52,
26.86 and 27.11 respectively.

In the second part of our work, we show the achieved performance with the
actual hardware with the help of both actual and simulated executions, and
we call this case the heterogeneous unrelated case.

We are using the mixed bound (as explained in Section 2.3.1) to compare
the performance. The bounds do not take into account the communication
constraints. Therefore, to be fair in the comparison we have used the simulated
performance where communication costs have been removed by modifying the
platform file of our machine (one of the interesting features of the Simgrid
version of the StarPU runtime system).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

random
dmda

dmdas

mixed bound
standard deviation

Figure 2.5: Heterogeneous related simulated performance.

Heterogeneous Related Case Figure 2.5 shows the simulated performance
with different schedulers on the fictitious heterogeneous platform. Here, we can

Task based scheduling on heterogeneous resources 43

2.4. Experiments and Results

observe that the random scheduler performs very poorly because it assigns
tasks randomly to the worker without knowing the already assigned workload
of workers, which limits the number of ready tasks in the system, and in-
troduces significant idle time on our critical resource (GPUs). We have also
computed the mixed bound for this fictitious platform. The difference between
simulated performance and mixed bound is once again significant for small and
medium size matrices.

Heterogeneous Unrelated Case First we compare the performance of dif-
ferent schedulers in actual execution and then between simulated performance
and mixed bound.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

random
dmda

dmdas
standard deviation

Figure 2.6: Heterogeneous unrelated actual execution performance.

As shown in Figure 2.6, in actual executions, the random scheduler does not
perform well because it is not taking data movement into account while mak-
ing scheduling decisions: it assigns worker randomly for each task, which may
select different resource types for data dependent tasks and results in a lot of
data movements from CPU memory to GPU memory and vice-versa. In addi-
tion, it is also not taking the affinity of tasks to resource (e.g.: GEMM/SYRK
is more suitable to be executed on GPU) into account, which degrades the
overall performance of the system. The other two schedulers perform com-
paratively better than the random scheduler because they take into account

44 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

data transfers when assessing completion time in the HEFT-like scheduling
strategies. Here we can also see that dmda outperforms dmdas performance
for some matrices, for the same reason as for the homogeneous case (selecting
critical tasks versus tasks which generate high level of parallelism).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

random
dmda

dmdas

mixed bound
standard deviation

Figure 2.7: Heterogeneous unrelated simulated performance.

We are now again interested in determining how far we are from the peak
performance of the application. Thus, we performed the simulation with dif-
ferent numbers of tiles. Figure 2.7 illustrates the comparison between bounds
and achieved performance in simulation. Here we can also see that the perfor-
mance difference between the best scheduler and the mixed bound is significant
for small and medium size matrices.

Comparison between Heterogeneous related and unrelated case In
order to determine the impact of heterogeneity of speed-up of tasks on perfor-
mance, we present a comparison between related and unrelated heterogeneous
simulations. To this end, we scaled the mixed bound of the related case such
that it perfectly matches with the mixed bound of the unrelated case, and also
scaled all the performance values of the related case with the same factor. The
obtained results are given in Figure 2.8, which can now be compared with the
unrelated case of Figure 2.7.

Here we can see that unrelated speed-ups make the problem harder. That is

Task based scheduling on heterogeneous resources 45

2.4. Experiments and Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

random
dmda

dmdas
mixed bound

Figure 2.8: Heterogeneous related simulated scaled performance.

why the gap between state-of-the-art schedulers performance and mixed bound
is large in Figure 2.7 compared to Figure 2.8. Here, it is also clear that there
is room for improvement in the case of small and medium size matrices in the
heterogeneous case.

Scheduling with static knowledge

The significant gap between the performance of StarPU schedulers and the the-
oretical bound (mixed bound) for small and medium size matrices in Figure 2.7
highlights the following things:

• either the dynamic schedulers of StarPU return schedules that can be
improved for small and medium size matrices;

• or the theoretical bound is not tight enough;

• or both.

Indeed, the dmda and dmdas schedulers take only dynamic decisions to map
the ready tasks onto the processors depending on the state of resources and
estimation of execution and communication times (also priorities among ready
tasks in dmdas), without taking into account the overall task graph. These

46 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

local choices may lead to bad decisions when the parallelism in the task graph
is limited. We thus conducted some experiments to improve the overall per-
formance with static information in the heterogeneous unrelated case.

Since GEMM and SYRK kernels are well suited to execute on GPUs, we
enforced these kernels to be executed on GPUs as static information to the
StarPU runtime system. This strategy improves the performance slightly for
some matrices in simulation but the performance improvement was not signif-
icant and the reason for this is that the StarPU schedulers (dmda and dmdas)
already choose GPUs to execute most of the GEMM and SYRK kernels.

We also analyzed the solution of the mixed bound and noticed that a signif-
icant portion of the TRSM kernels were mapped onto CPUs. Analyzing traces
generated by dmda and dmdas schedulers reveals that both policies allocate
very few TRSMs on CPUs. Since the mixed bound does not take all dependen-
cies into account, it is not clear which TRSM kernels should be executed on
CPUs in order to improve the performance. On the Mirage machine, with real
timings of tasks, we found that the critical path of the Cholesky factorization
passes through the diagonal and second diagonal tiles (sequence of POTRF
→ TRSM → SYRK → POTRF → SYRK → POTRF). Therefore, we
have evaluated the performance in simulation with dmdas scheduler where all
the TRSM kernels which are at least k (1 ≤ k < Number of Tiles) tiles away
from the diagonal are forced to execute on the CPUs (see Figure 2.9) and
plotted the best obtained performance in Figure 2.10. We obtained best per-
formance when all the TRSM kernels which are more than 6-8 tiles away from
the diagonal are forced on CPUs.

Figure 2.10 exhibits that providing information about the TRSMs triangu-
lar structure statically allows one to achieve better performance than present
state-of-the-art schedulers for small and medium size matrices.

We eventually used the constraint programming (CP) described in Sec-
tion 2.3.2 to find an optimal solution and ran it for 23 hours, but unfortunately
we did not manage to get an optimal solution, particularly for large matrix
sizes, which produce a very large constraint program (and thus this is not
a performance bound). Nevertheless, for reasonable matrix sizes, it provides
good and feasible solutions in that span of time. Theoretical performance value
with CP solution (CP solution(23 hrs) in Figure 2.10) was better than the val-
ues what we are getting with state-of-the-art schedulers in simulation for small
and medium size matrices. We thus injected the exact schedule obtained from
CP solution in the simulation and obtained almost equal (difference is less
than 1%) performance (CP solution in simulation in Figure 2.10) compared
to theoretical performance, which also shows the robustness of the Simgrid
version of StarPU with simulation.

Performance improvement obtained in simulation by injecting static infor-
mation to scheduler motivated us to conduct some actual execution with static
information. Therefore, we conducted some actual execution by injecting the

Task based scheduling on heterogeneous resources 47

2.4. Experiments and Results

Figure 2.9: TRSMs forced on CPUs.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

dmdas
mixed bound

CP solution(23 hrs)

CP solution in simulation
triangle trsms on cpu

Figure 2.10: Heterogeneous unrelated simulated performance with static
knowledge.

48 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

triangular information, force all TRSMs on CPUs which are at least k (1 ≤ k
< Number of Tiles) tiles away from diagonal as static knowledge. Figure 2.11
shows the best performance in actual execution among obtained performance
with all possible values of k.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

dmdas
triangle trsms on cpu

standard deviation

Figure 2.11: Heterogeneous actual execution performance with static knowl-
edge.

We also conducted some experiments by injecting the CP schedule in ac-
tual execution for small matrices, however we did not achieve good perfor-
mance improvement compared to what we are achieving in simulation. The
CP formulation indeed does not account data transfers, since as described in
Section 2.3.2, solving a CP with data transfers has shown intractable for the
purpose at stake. Actual execution with CP schedule thus adds a lot of idle
time on resources during data transfer, and consequently does not reproduce
the same performance in actual execution. The simulated execution has how-
ever allowed us to show, at least in the case without data transfers, that some
heuristics get relatively close to an achievable CP solution. We are currently
extending the CP formulation to partially take data transfers into account, so
that it can be used for real executions, but this is beyond the scope of this
thesis.

Task based scheduling on heterogeneous resources 49

2.5. Discussion

2.5 Discussion

Potrf Trsm Syrk Gemm Idle

(a) GPU trace with dmda scheduler.

Potrf Trsm Syrk Gemm Idle

(b) GPU trace with dmdas scheduler.

Figure 2.12: GPU Traces for 8 × 8 tiles.

2.5.1 dmda vs dmdas Scheduler

We were expecting that dmdas would always perform better than dmda sched-
uler because it is also taking the HEFT priorities into account while making
scheduling decision. Nevertheless, we found a few cases where dmda outper-
forms dmdas. We investigated the generated trace files with dmda and dmdas

50 Suraj Kumar

2. Performance and Bounds of Cholesky Factorization

schedulers in order to determine the reasons of this behavior and we found that
dmdas puts emphasis on critical path rather than parallelism, since it selects
some tasks in the beginning which are critical but not generating enough level
of parallelism. That introduces some idle time on the critical resource (GPUs)
and degrades the overall performance of the system, which is a known defect
of the HEFT scheduler in general. Figure 2.12 shows traces with dmda and
dmdas schedulers.

2.5.2 Mapping from Constraint Programming Solution

We conducted some experiments in simulation by injecting only the mapping
information (i.e. only the CPU/GPU information, not the exact task order)
of the feasible solution statically obtained by constraint programming, and
let the scheduler decide the precise ordering and worker dynamically. This
extra information about resource allocation did not improve the performance
of the system compared to the performance obtained by dmda and dmdas
schedulers, which indicates that the feasible solution is highly dependent of the
precise ordering chosen by constraint programming. This shows that heuristics
required to achieve this performance are probably very complex, probably even
beyond only backfilling.

2.5.3 Constraint Programming Schedule in Actual Exe-
cution

We did some experiments by injecting the schedule obtained by Constraint
Programming in actual execution for smaller matrices, but the performance
improvement was not significant compared to the state-of-the art schedulers.
After looking into traces we found that resources are idle for significant portion
of time during data transfers. One of the prominent ways to minimize the idle
time on resources due to data transfers is to use prefetching in computational
order, but using the prefetching very early also adds significant idle time on
resources. Consider two data dependent tasks (second task is dependent on the
data of first task) scheduled on two different workers with different memories.
After execution of the first task, the second task becomes ready and will initiate
the data transfer request. Due to serialization of transfers imposed by the GPU
driver, it can be served only when all already initiated data transfers by second
worker are completed (some of these data transfers may correspond to tasks
which will be executed very late), which may keep the second worker idle for
significant time. One of the heuristics to minimize idle time on resources is
to use limited prefetching but even this strategy will not solve the problem
completely. Since performance with CP schedule is highly dependent on task
order of whole schedule, therefore adding idle time on one of the resources may

Task based scheduling on heterogeneous resources 51

2.6. Conclusion

create idle time on other resources as well and degrades the overall performance
dramatically.

2.6 Conclusion
In this chapter, we have bridged the gap between theoretical performance
bounds and actually achieved performance on the dense Cholesky factoriza-
tion. On the former side, we have proposed improved bounds which take into
account both resource and task heterogeneity, as well as critical paths. On the
latter side, we have introduced some static information into the dynamic task
scheduler of StarPU, which brought the performance closer to the theoretical
bounds, and very close to what a statically-optimized schedule can achieve. We
have also shown that the performance achieved by such statically-optimized
schedule depends on precise non-intuitive task ordering, which thus can not
be reached by simple list-scheduling heuristics, even with backfilling.

More generally, this work opens a bridge to close interaction between ap-
plications and tasks schedulers. We have shown that while generic heuristics
such as HEFT achieve very good performance, application-specific scheduling
hints can noticeably improve performance. We aim at generalizing and formal-
izing this type of information, so that scheduling experts can easily analyze
achieved performance, optimize the schedule statically, and try to inject more
or less application-specific scheduling hints into the scheduler, such as "this
proportion of TRSM tasks should be run on CPUs", or "these TRSM tasks
should be run on CPUs", etc. We also plan to study different static strategies
with dynamic corrections, so that we can provide a fair comparison between
static and dynamic scheduling strategies.

52 Suraj Kumar

Chapter 3

Static vs Dynamic Scheduling
Strategies

In previous chapter, we proposed different performance bounds for the schedul-
ing of task graphs and analyzed the performance of dynamic schedulers based
on actual executions and simulations. We also exhibited that adding static
information of the application to the dynamic task schedulers improves the
performance of the application significantly. In this chapter, we provide a
deep analysis of Cholesky factorization on platforms consisting of GPUs and
CPUs. Recall that this application encompasses many important character-
istics in our context. It involves 4 different kernels (POTRF, TRSM, SYRK
and GEMM) whose acceleration ratios on GPUs are strongly different (from
2.3 for POTRF to 29 for GEMM) and it consists in a phase where the number
of available tasks is large, where the careful use of resources is critical, and in
a phase with few tasks available, where the choice of the task to be executed is
crucial. We analyze the performance of static and dynamic strategies and we
propose a set of intermediate strategies, by adding more static (resp. dynamic)
features into dynamic (resp. static) strategies. Our conclusions are somehow
unexpected in the sense that we prove that static-based strategies are very
efficient, even in a context where performance estimations are not very good.

3.1 Introduction
Our goal is to precisely assess the advantages and limitations of static (executed
with possibly wrong estimations of execution times) and dynamic (computed
online with basic greedy heuristics) strategies. We also design and evaluate a
large set of intermediate solutions, by providing more static information to dy-
namic schedulers and by incorporating dynamic features into static schedules.
Our study is rather deep than broad. In order to compare both approaches,
we concentrate on a single dense linear algebra kernel, namely the Cholesky
factorization (see description in Algorithm 2) on a single computing node con-

53

3.2. Context

sisting of CPUs and GPUs, and we compare and analyze the results under a
variety of problem sizes for a large set of sophisticated schedulers. To sim-
plify the comparison of the different approaches, we assume that it is possible
to overlap communications with computations, and we do not explicitly take
communication costs into account.

The outline of the chapter is the following. Section 3.2 describes the tile
Cholesky factorization algorithm and our experimental framework. In Sec-
tion 3.3, we briefly describe works related to known static and dynamic sched-
ulers for dense linear algebra kernels. We discuss different theoretical perfor-
mance bounds and propose an improved bound, namely iterative bound, in
Section 3.4. In Section 3.5, we discuss static strategies. In order to obtain the
best possible schedule, we propose to use a constraint program (CP) whose use
is limited to small and medium size problems due to its high cost. Then, we
study the stability of optimal schedules under perturbations in kernel execu-
tion times. Using a large set of simulations, we prove that the optimal or close
to optimal static schedule is in fact robust to realistic perturbations, and we
furthermore add a dynamic work stealing strategy to better cope with those
perturbations. In Section 3.6, we study the behavior of the dynamic schedulers
that can be found typically in runtime systems such as StarPU. We prove that
these runtime systems make poor use of slow (CPU) resources, restricting their
use to POTRF kernels for which they are best suited. This is due to very con-
servative allocation strategies, that we alleviate using sophisticated prediction
schemes in order to improve their efficiency. In Section 3.7, we introduce a
new class of dynamic schedulers, that are easy to implement. We prove that it
is possible to improve their efficiency when injecting simple qualitative knowl-
edge about the application. Then, we compare the best variants of all three
approaches in Section 3.8 and we prove that static based scheduling strategies
are better than dynamic ones, even in presence of bad performance estimates,
what is an unexpected result. In Section 3.9, we perform some experiments in
actual execution based on information obtained from static schedules and we
finally propose conclusions and perspectives in Section 3.10.

3.2 Context

3.2.1 Tile Cholesky Factorization

We recall the tile Cholesky factorization described in Chapter 1.4.1. Algo-
rithm 2 for instance shows the pseudo-code of the tile version of the Cholesky
factorization. This sequence of computation can be represented with a DAG
(Directed Acyclic Graph) of tasks as depicted in Figure 3.1 in the case of 5×5
tile matrix. Throughout this chapter, the color code for the different kernels
presented in Algorithm 2 and in Figure 3.1 will be used.

54 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

Algorithm 2: Tile Cholesky Factorization.
for i = 0 . . . N − 1 do

A[i][i] ← POTRF(A[i][i]);
for j = i+ 1 . . . N − 1 do

A[j][i] ← TRSM(A[j][i], A[i][i]) ;

for k = i+ 1 . . . N − 1 do
A[k][k] ← SYRK(A[k][k], A[k][i]) ;
for j = k + 1 . . . N − 1 do

A[j][k] ← GEMM(A[j][k], A[j][i], A[k][i]);

GEMM_4_2_1

TRSM_4_2

GEMM_4_2_0

GEMM_4_3_2

TRSM_4_3

GEMM_4_3_0

GEMM_4_3_1

SYRK_3_3_2

POTRF_3

SYRK_3_3_0

SYRK_3_3_1

SYRK_1_1_0

POTRF_1GEMM_4_1_0

TRSM_4_1

TRSM_1_0

GEMM_2_1_0 GEMM_3_1_0

TRSM_2_1

SYRK_4_4_1

SYRK_4_4_2

SYRK_4_4_3

TRSM_4_0

SYRK_4_4_0 TRSM_3_1

POTRF_2

TRSM_3_2

POTRF_0

TRSM_3_0TRSM_2_0

GEMM_3_2_1

GEMM_3_2_0

POTRF_4

SYRK_2_2_0

SYRK_2_2_1

Figure 3.1: DAG of the tile Cholesky factorization - 5×5 tile matrix.

3.2.2 Experimental Framework

The heterogeneous platform and the library used to obtain the different Cholesky
task timings in this chapter are the same as what we used in Chapter 2.

We consider a platform composed of nodes of two hexa-core Westmere Intel
Xeon X5650 processors (12 CPU cores per node) and three Nvidia Tesla M2070

Task based scheduling on heterogeneous resources 55

3.2. Context

kernel PORTF TRSM SYRK GEMM
CPU time/GPU time '2.3 '11 '26 '29

Table 3.1: GPU acceleration ratio over CPU core for all four kernels.

GPUs (3 GPUs per node). As most runtime systems, StarPU dedicates one
CPU core to efficiently exploit each GPU. As a consequence, we can view a
node as being composed of 9 CPU workers and 3 GPU workers.

Task timings of different Cholesky tasks have been obtained with the
Chameleon [8] library running on top of the StarPU runtime system to as-
sign tasks onto CPU cores or GPUs. Chameleon processes CPU tasks with
the (sequential) Intel Mkl library and GPU tasks with the Magma (POTRF
kernel) or cuBLAS (other kernels) libraries. Consistently with [13], a tile size
of 960 is being used. We observe that, for a given kernel and a given resource
type, execution timings have relatively low variance: within the ±5 % of mean
execution timing.

3.2.3 Comparing Static and Dynamic Schedulers

As stated in the introduction, our goal is to compare static and dynamic ap-
proaches when scheduling a DAG on a node consisting of both GPUs and
CPUs. We recall that the Cholesky factorization is an excellent candidate to
perform such a study. First, it is based (see Algorithm 2) on four different
kernels that exhibit strongly heterogeneous performance and unrelated accel-
eration ratios on CPU cores and GPUs, as depicted in Table 3.1.

Second, despite its regular nature, the Cholesky factorization induces com-
plex dependencies and leaves a lot of freedom for scheduling. Indeed, the
i-th POTRF releases N − i − 1 TRSMs and these TRSMs release N − i −
1 independent SYRKs and (N−i−2)(N−i−1)

2
independent GEMMs (see Algo-

rithm 2). Moreover, dependencies between the different kernels are not trivial
and there is no need to synchronize all kernels involving i, the outer loop
index. For instance, the execution of most of the GEMMs induced by i-th
POTRF can be delayed and/or delegated to slow resources (GEMM_4_3_0
or SYRK_4_4_0 of Figure 3.1 can be delayed or delegated to slow resource).

Third, depending on the problem size, the underlying scheduling problems
are of very different natures. Throughout this chapter, all problem sizes will
be expressed in terms of number of blocks, the tile size being maintained
constantly equal to 960 as mentioned earlier. Given the size of our platform,
in the 8 × 8 case, it is crucial to perform tasks on the critical path as fast as
possible, and it is not efficient to make use of all available resources. On the
other hand, in the 32 × 32 case, the scheduling problem is almost amenable
(except at the very beginning and at the end) to an independent tasks problem,
and the crucial issue is to make use of all available resources in a proportion

56 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

that depends on the acceleration ratios given in Table 3.1. Intermediate cases,
such as the 12 × 12 case, are typically hard, since both conflicting objectives
(making an efficient use of resources and focus on the critical path) have to be
simultaneously taken into account.

3.3 Related Work

The problem of scheduling tasks with dependencies has been highly studied
in the literature, starting from complexity and approximation analysis from
Graham et al. [64]. Many dynamic algorithms have been proposed to solve
this problem, in particular for the homogeneous case. In the specific setting
of Cholesky factorization, reversing the task graph allows to identify provably
optimal schedules for the homogeneous case, and the problem is now well
understood [38, 39, 83].

For the heterogeneous unrelated case, the literature is not as large. Most
dynamic strategies are variants of the well-known heuristic HEFT [99] which
combines a prioritization of tasks by their distance to the exit node with a
greedy strategy which places tasks so as to finish as early as possible. Other
noteworthy approaches are based on work stealing [33], where idle resources
steal available tasks from other resources, or on successively applying an al-
gorithm for independent tasks scheduling on the set of ready tasks [31]. More
static approaches have also been proposed to obtain more efficient schedules
at the cost of longer running times. For instance, Constraint Programming
is a paradigm which is widely used to solve many scheduling problems [24].
Branch-and-bound algorithms can also be designed for scheduling problems,
with a wide range of search strategies [94], but the weakness of bounds in the
heterogeneous case makes them less efficient than in the homogeneous case.

3.4 Iterative Bound

In this chapter, we also use upper bounds on performance (lower bounds on ex-
ecution time) to assess the quality of the obtained schedules. Classical bounds
in the homogeneous case are the area bound, defined as the total work divided
by the number of processors, and the critical path, which is the maximum
execution time over all paths in the graph. For the heterogeneous case, the
area bound needs to be adapted, and can be defined as the solution of a linear
program which expresses how many tasks of each type are scheduled on each
resource. The critical path can also be expressed, however better results can
be achieved when computing both bounds simultaneously, since this allows to
express the tradeoff for critical tasks: if they are executed on faster resources
but with poor acceleration, they improve the critical path but degrade the

Task based scheduling on heterogeneous resources 57

3.4. Iterative Bound

area bound. Such a mixed bound has been described in Chapter 2, and in this
chapter we use an improved version, namely iterative bound.

We know that each task i has to be executed on the whole platform, which
has Mr number of processing elements of type r. We focus on ir, which de-
notes the fraction of task i processed on resource type r. For each task i and
resource type r, we also know the execution time Tri (obtained by the calibra-
tion mechanisms of StarPU). The iterative bound is obtained by solving the
following linear program.

minimize the makespan l such that
∀i, each task i get executed:∑

r

ir = 1

∀r, the Mr resources of type r complete all their tasks
of various types t within the makespan l:∑
r

irTri ≤ l ×Mr

length of each path a→ b→ · · · → c is within makespan:∑
r

arTra +
∑
r

brTrb + · · ·+
∑
r

crTrc ≤ l

∀r, ir ∈ [0, 1]

While implementing the above linear program, we formulate the path con-
straint in a different way. We first obtain the solution of linear program with
the first two constraints and look for a path in the task graph that is longer
than computed makespan. If such a path is found we also add length of this
path as a constraint and iterate the whole procedure again. This formulation
guarantees that all path lengths of a task graph are within computed makespan
l. We use this formulation in this chapter to compute iterative bounds for dif-
ferent task graphs.

Another way to express path constraint is to add constraints for each depen-
dency and end time of each task. Since we take all dependencies into account,
therefore this formulation ensures that each path length is within makespan l.
But in this case we have to consider one extra variable to represent start time
si for each task i. This formulation requires to solve linear program only once
while the previous formulation solves linear program in each iteration. We use
this formulation in later chapters to compute iterative bounds for task graphs.
The complete linear program to compute iterative bound with this formulation
is the following:

58 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

minimize the makespan l such that
∀i, each task i get executed:∑

r

ir = 1

∀r, the Mr resources of type r complete all their tasks
of various types i within the makespan l:∑
r

irTri ≤ l ×Mr

∀i, task i completes within makespan l:

si +
∑
r

irTri ≤ l

∀i→ j, dependency i→ j is respected:

si +
∑
r

irTri ≤ sj

∀r, ir ∈ [0, 1]

3.5 Static Strategies

In this section, we describe schedules obtained with a Constraint Programming
formulation for the scheduling problem proposed in Chapter 2, and we analyze
their robustness to errors in computation times. The computing time needed
to obtain a good schedule depends on the size of the task graph (number of
tasks and dependencies) and of the platform description (number of choices for
each task). In our case, the number of choices is limited to deciding whether
a task is allocated to CPU or GPU; however the number of tasks grows as
a cubic function of the matrix size. For this reason, it is possible to obtain
nearly optimal solution for small matrices and good solution for intermediate
matrices in a few hours. But the solutions obtained for large matrices are far
from optimal, and most of the dynamic strategies achieve better timings than
those solutions (see dynamic strategies). Figure 3.2 provides a comparison
of the solution obtained from this formulation with the bounds discussed in
the previous section. This graph also shows how the iterative bound is able to
improve over previous bounds, and how the CP formulation is able to compute
almost optimal solutions for small cases.
In order to determine the stability of CP schedules, we use 30 different sets
of execution timings by introducing some randomness (±10%) in the original
execution timings of tasks on each resource. We normalized the execution tim-
ings with respect to the area bound of the corresponding task graph, so that

Task based scheduling on heterogeneous resources 59

3.5. Static Strategies

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

CP Optimal Solution
Gemm Peak Bound

Area Bound
Critical Path Bound

Mixed Bound
Iterative Bound

CP Achievable Solution (23 hrs)

Figure 3.2: Upper bounds and CP feasible solution performance.

the area bound of all sets of execution timings for a given matrix size corre-
sponds to the same value. For each of these generated execution timings, we
use the same static schedule (obtained with CP formulation using the original
timings) by keeping on each resource the same allotted tasks in the same order
(of course start times may be different because of the changes in execution
times of tasks). Figure 3.3 shows the performance ratio of each of the ob-
tained schedules compare to the iterative bound for the 12×12 tile matrix, in
which experiment number 0 corresponds to the original execution timings. On
other experiments, the performance degradation is below 10 % compared to
the performance ratio with the static schedule on the original timings. Using
this static schedule can therefore be a reasonable option for intermediate size
matrices – but obtaining a good solution is the hard part. In all the rest of
the chapter, the static strategy will be denoted as SS.

3.5.1 Some Dynamic Strategies with Static Schedule

Though performance degradation is limited in presence of perturbations, we
observed in the obtained schedules that some GPU resource remain signifi-
cantly idle in some experiments. Figure 3.4a shows the trace of one of the
experiments with perturbed execution timings. Here one of our critical re-
source (GPU1) is idle for a significant amount of time in the middle of the

60 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 5 10 15 20 25 30

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

 W
R

T
 I

te
ra

ti
v
e

 B
o

u
n

d

Experiment Number

SS
reference (IterativeBound)

Figure 3.3: Performance ratio of static schedules with respect to iterative bound
- 12 × 12 tile matrix.

execution, because the next task that should be executed on this resource is
not ready yet (remember that we keep the order as given by the CP solution).
This observation is a motivation to improve the performance by injecting dy-
namic corrections to the static schedules.

The acceleration factor of GEMM tasks is highest on GPU among all
Cholesky tasks. Therefore we allowed an idle GPU worker to help other work-
ers by executing the GEMM tasks of other workers. When a GPU worker is
idle and waiting for some task to become ready, it searches for the highest
priority ready GEMM in its own list and then in the list of other workers, and
executes it if one is found. We name SS+G such a correction to the original SS.
This strategy improves the performance of SS slightly but does not eliminate
all idle time from GPUs in the middle of execution. Therefore we also con-
sider stealing SYRK tasks, whose acceleration factor on GPU is second highest
(after GEMM acceleration factor). We name SS+GS such a correction to the
original SS. Figure 3.4 shows the comparison of trace with SS (Figure 3.4a)
and SS+GS (Figure 3.4b).

Figure 3.5 shows that allowing some dynamic strategies with SS improves
the scheduler performance in most of the experiments. while its adverse effect
on a few experiments is very negligible (performance degradation is less than
1 %). This allows to obtain good and stable solutions when compared to the

Task based scheduling on heterogeneous resources 61

3.6. Heft-like Solutions (Dynamic, Task-centric)

3 0 0 3 3 3 8 3 1 11 9 5 11 11

7 0 0 9 6 2 8 8 8 5 5 10 10 9

9 0 5 1 7 2 0 11 6 7 8

11 0 2 4 2 0 11 11 9 3 4 11 11

0 5 5 9 1 1 9 9 5 10 5 10 6

0 6 6 0 9 9 9 2 7 4 6 11 5

0 6 5 10 2 0 7 7 0 11 10

1 10 1 6 2 11 3 2 9 9 3 9 9

0 10 10 8 2 4 6 4 4 10 8

0 1 0 0 1 1 2 0 0 4 1 0 6 1 0 5 4 0 6 4 0 2 2 2 1 0 10 4 0 10 2 1 8 4 1 2 2 0 10 5 0 10 6 0 3 1 3 1 11 1 1 3 2 0 7 4 0 4 3 0 8 3 1 10 4 0 9 4 0 11 5 1 8 3 0 9 2 1 4 3 1 10 2 1 6 6 1 6 5 5 2 1 9 3 1 9 4 1 7 6 2 8 3 2 4 3 2 6 6 5 3 2 6 5 1 7 5 6 3 2 8 5 1 9 5 2 7 3 2 7 6 2 10 3 2 10 4 4 5 5 3 6 5 2 8 7 3 10 5 2 7 5 4 10 5 8 4 11 4 3 11 5 4 11 5 3 6 6 2 9 6 4 6 5 6 5 5 6 6 4 7 6 0 11 8 4 8 7 3 9 5 3 9 4 3 9 7 7 6 4 9 6 4 9 7 3 9 8 5 9 7 5 8 6 5 9 8 0 10 9 3 11 7 8 7 2 11 8 3 11 8 4 11 8 3 10 9 4 10 9 5 11 8 5 10 9 9 8 10 7 1 11 10 2 11 10 3 11 10 7 10 8 11 7 7 11 8 5 11 10 10 9 9 10 1010 11 10 11

5 0 10 0 8 0 0 8 1 0 8 4 0 4 4 0 8 6 6 1 0 8 8 0 8 2 1 6 4 0 5 1 1 4 4 1 6 2 0 10 8 0 11 1 0 7 1 0 3 2 0 7 3 0 10 3 0 6 3 11 2 1 7 3 0 7 2 0 9 3 1 10 6 0 11 4 1 10 3 0 5 3 1 5 3 1 5 4 1 10 5 1 9 2 0 8 7 0 7 5 2 5 3 1 10 100 9 7 4 3 3 4 4 2 6 3 3 5 5 0 11 7 2 11 5 1 9 6 2 7 4 2 10 8 5 4 2 10 5 3 7 6 2 9 5 10 4 3 11 4 1 10 7 3 8 5 3 8 6 2 10 6 2 11 111 9 7 1 9 8 2 9 4 4 6 6 1 7 7 4 8 6 4 7 5 3 7 7 2 10 103 8 8 4 8 8 4 7 7 3 9 6 4 10 6 5 7 7 5 10 6 6 7 7 4 10 7 1 11 7 5 10 7 5 8 7 5 8 8 9 6 6 8 7 6 8 8 1 10 9 2 10 9 6 9 8 2 11 9 3 11 6 3 11 9 5 11 6 4 9 9 5 11 7 5 9 9 6 9 9 7 9 9 4 11 9 6 10 8 6 10 9 6 10 106 11 8 10 8 8 10 9 11 8 8 11 9 11 9 6 11 117 11 11 10 11 11

6 0 4 0 0 10 1 0 2 1 0 8 5 0 5 2 0 4 2 4 1 8 1 0 6 2 1 8 6 1 4 2 1 8 2 1 8 8 0 9 1 0 11 2 0 11 3 7 1 1 11 2 3 2 1 11 3 1 7 4 1 6 3 0 11 9 1 7 2 1 10 8 2 11 3 0 10 7 1 5 2 1 3 3 2 3 3 0 7 6 1 5 5 2 5 5 1 11 5 2 4 4 2 5 4 2 8 4 2 6 4 0 9 5 3 5 4 1 8 5 1 11 4 3 6 4 1 8 7 2 11 4 7 3 3 7 4 10 3 3 10 4 2 9 3 0 9 8 3 8 4 2 8 6 3 10 8 3 8 7 1 11 112 10 7 4 8 5 3 10 6 2 9 7 3 10 7 3 7 5 2 7 7 3 11 117 5 3 10 105 7 6 4 10 102 9 8 9 4 4 9 5 9 5 5 9 6 2 11 7 4 9 8 8 6 1 11 6 1 11 8 6 9 7 7 8 8 2 11 6 9 7 7 9 8 4 11 6 4 11 7 6 10 7 11 6 6 11 7 5 10 8 8 9 9 5 11 9 6 11 9 4 11 10 7 10 9 7 10 107 11 9 8 10 106 11 10 7 11 10 8 11 10 9 11 10 8 11 119 11 11

POTRF TRSM SYRK GEMM

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

GPU0

GPU1

GPU2

(a) Static trace.
3 0 0 3 3 3 8 3 1 11 9 5 11 11

7 0 0 9 6 2 8 8 8 5 5 10 10 9

9 0 5 1 7 2 0 11 6 7 8

11 0 2 4 2 0 11 11 9 3 4 11 11

0 5 5 9 1 1 9 9 5 10 5 10 6

0 6 6 0 9 9 9 2 7 4 6 11 5

0 6 5 10 2 0 7 7 0 11 10

1 10 1 6 2 11 3 2 9 9 3 9 9

0 10 10 8 2 4 6 4 4 10 8

0 1 0 0 1 1 2 0 0 4 1 0 6 1 0 5 4 0 6 4 0 2 2 2 1 0 10 4 0 10 2 1 8 4 1 2 2 0 10 5 0 10 6 0 3 1 3 1 11 1 1 3 2 0 7 4 0 4 3 0 8 3 1 10 4 0 9 4 0 11 5 1 8 3 0 9 2 1 4 3 1 10 2 1 6 6 1 9 3 1 6 5 5 2 1 9 4 1 7 6 2 8 3 2 4 3 2 6 6 5 3 2 6 5 1 7 5 6 3 2 8 5 1 9 5 2 7 3 2 7 6 2 10 3 2 10 4 4 5 5 3 6 5 2 8 7 3 10 5 2 7 5 4 10 5 8 4 11 4 3 11 5 4 11 5 3 6 6 2 9 6 4 6 5 6 5 5 6 6 4 7 6 0 11 8 4 8 7 3 9 5 3 9 8 0 10 9 7 6 4 9 6 4 9 7 5 9 7 5 8 6 5 9 8 3 11 7 2 11 8 8 7 3 10 9 4 11 8 4 10 9 5 11 8 5 10 9 5 11 9 6 11 9 9 8 10 7 7 10 9 11 7 7 11 8 6 11 10 7 11 10 10 9 9 10 1010 11 10 10 11 1111

5 0 10 0 8 0 0 8 1 0 8 4 0 4 4 0 8 6 0 8 2 6 1 0 8 8 1 6 4 1 4 4 0 10 8 1 6 2 1 8 2 0 11 1 0 7 1 0 3 2 0 7 3 0 10 3 0 6 3 1 7 3 11 2 0 7 2 0 9 3 1 10 6 0 11 4 1 10 3 0 5 3 1 5 3 1 5 4 1 10 5 1 9 2 0 8 7 0 7 5 0 9 7 0 11 7 2 5 3 1 10 102 6 3 2 11 5 1 10 7 4 3 3 4 4 3 5 5 2 7 4 1 9 7 1 9 6 2 10 8 2 10 5 2 9 5 5 4 2 10 6 3 7 6 1 9 8 3 11 4 3 8 5 10 4 3 8 6 2 9 4 1 11 7 2 11 114 8 5 2 9 7 3 7 5 4 8 6 4 6 6 1 7 7 3 9 6 4 7 5 3 7 7 2 10 103 8 8 4 8 8 4 7 7 5 7 7 1 11 8 3 9 4 5 10 6 5 10 7 1 10 9 5 8 7 6 7 7 5 8 8 2 10 9 9 6 6 9 7 3 11 6 4 11 6 6 8 8 6 9 8 3 11 8 3 11 9 4 11 9 4 9 9 5 11 6 5 11 7 5 9 9 6 9 9 7 9 9 6 11 8 6 10 10 8 9 9 2 11 10 3 11 10 4 11 10 10 8 8 10 9 11 8 8 11 9 11 9 9 11 10 8 11 119 11 11

6 0 4 0 0 5 1 0 10 1 0 2 1 0 8 5 0 5 2 0 4 2 4 1 8 1 0 6 2 1 8 6 1 4 2 1 8 8 0 9 1 0 11 2 0 11 3 7 1 1 11 2 1 11 3 3 2 1 7 4 1 6 3 0 11 9 1 7 2 1 10 8 2 11 3 0 10 7 1 5 2 1 3 3 2 3 3 0 7 6 1 5 5 1 11 5 2 5 5 2 4 4 2 5 4 2 8 4 2 6 4 0 9 5 1 8 5 3 5 4 1 11 4 1 8 7 2 11 4 3 6 4 2 9 3 0 9 8 7 3 3 7 4 10 3 3 10 4 3 8 4 2 8 6 3 10 8 3 8 7 1 11 112 10 7 3 10 6 3 10 7 2 9 8 2 11 7 4 10 6 2 7 7 3 11 114 10 7 7 5 3 10 105 7 6 4 10 103 9 7 9 4 4 9 5 9 5 4 9 8 5 9 6 1 11 6 2 11 6 8 6 6 8 7 4 11 7 2 11 9 7 8 8 9 7 7 9 8 6 10 7 11 6 6 11 7 6 10 9 1 11 10 5 10 8 6 10 8 7 10 8 7 10 105 11 10 7 11 9 8 10 10 8 11 10 6 11 117 11 11

POTRF TRSM SYRK GEMM

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

GPU0

GPU1

GPU2

(b) SS+GS trace.

Figure 3.4: Trace with perturbed timings for 12 × 12.

iterative bound, even in presence of noisy execution timings.

3.6 Heft-like Solutions (Dynamic, Task-centric)

We use heft (heterogeneous early finish time) and heftp (heterogeneous early
finish time with priority) schedulers, which are based on a very well know state-
of-the-art task centric HEFT heuristic. When a tasks is ready, both algorithms
put it in the queue of the resource that is expected to complete it first, given
the expected available time of the resource and the expected running time of
the task on this resource. The only difference between heft and heftp is the use
of priorities. In heftp, task priorities are computed offline based on the longest
path from the task to last task in the DAG, using minimum expected execution
timing of each task in presence of heterogeneous resources, as proposed in [99].
Then, heftp schedules ready tasks ordered by their priorities to worker queues
and in turn, each worker selects and schedules the task from its own queue
with the highest priority.

Note that these schedulers are similar to dmda and dmdas scheduler of
StarPU. We are using our own simulator, which is why we have not used
StarPU specific scheduler names.

62 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 5 10 15 20 25 30

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o

 W
R

T
 C

P
 S

c
h

e
d

u
le

Experiment Number

SS+GS
reference (SS)

Figure 3.5: Performance improvement of SS+GS over original SS obtained
with CP - 12 × 12 tile matrix.

In Figure 3.6, we can observe that heftp outperforms heft for all matrix
sizes, thanks to its capability of executing tasks close to the critical path.

Although heftp outperforms heft, we can observe on Figure 3.7 that the
allocation dynamically computed by heftp is far from optimal since it wastes
most of CPU resources. Indeed, only CPU0 is used to process tasks, and its
use is restricted to the execution of POTRFs, that are the most efficient kernel
on CPUs (see Table 3.1). Therefore, in practice, heftp is too conservative
and the running times on CPUs and GPUs are so different that for all tasks
(excepts a few POTRFs), the expected completion time is always smaller on
one of the GPUs. On the other hand, we have observed that there are tasks
(typically GEMMs and SYRKs) that are released early in the execution but
whose results are needed late. Such tasks are typically good candidates to be
executed on CPUs. In practice, they are released early and at the time when
they are allocated by heftp on a GPU, their expected completion time is small.
On the other hand, since their priorities are low, they will be consistently
passed over by other tasks in the GPU queue and their actual completion time
on the GPU is in fact larger than their expected completion time on a CPU.

Task based scheduling on heterogeneous resources 63

3.6. Heft-like Solutions (Dynamic, Task-centric)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

heft
heftp

heftp+LET
heftp+GB

heftp+MMS

Figure 3.6: Performance with different heft schedulers.

3.6.1 Improvement of heftp Scheduler

Following this observation and in order to improve heftp performance by mak-
ing good use of all CPU resources , we modify heftp scheduler such that schedul-
ing decision is not only based on the minimum completion time heuristic but
also based on certain look-ahead information.

heftp+LET (Local Execution time)

In this strategy, before making a scheduling decision for a ready task t, the
scheduler first computes the minimum expected completion time on a CPU

1 2 3 4 5 6 7 8

0 1 0 4 0 0 2 2 0 4 2 0 3 3 0 5 1 7 0 0 5 4 2 1 1 2 2 1 3 2 5 1 0 6 3 1 5 4 0 7 2 0 8 1 5 2 1 7 2 2 4 3 2 6 3 1 6 4 2 6 4 10 0 1 5 5 6 3 1 7 4 3 4 4 2 7 3 3 5 5 0 9 2 0 7 5 7 3 0 8 4 5 4 4 5 5 3 6 5 2 8 3 0 6 6 1 8 4 4 6 5 7 4 1 10 2 0 10 3 2 9 3 11 1 4 6 6 0 9 5 4 7 5 9 3 1 8 6 2 9 4 0 8 7 3 8 5 0 11 3 4 7 6 1 7 7 11 2 1 9 6 2 10 4 2 8 7 3 9 5 0 10 6 2 9 6 3 10 4 1 9 7 3 8 7 4 9 5 0 9 8 5 7 7 10 4 4 8 7 0 11 6 2 10 6 4 9 6 3 9 7 5 8 7 2 9 8 5 9 6 3 8 8 4 9 7 1 10 8 0 10 9 3 10 7 8 7 5 8 8 4 11 5 4 9 8 6 8 8 1 11 8 1 9 9 4 11 6 0 11 9 2 10 9 3 11 7 2 9 9 5 11 6 1 11 9 3 9 9 3 11 8 4 10 9 5 11 7 1 11 10 4 11 8 6 9 9 6 11 7 7 9 9 5 11 8 11 7 9 7 11 8 6 11 9 5 11 10 6 10 102 11 118 11 9 4 11 119 10 105 11 116 11 117 11 118 11 119 11 11 11

2 0 5 0 0 3 1 0 4 1 0 5 3 0 6 1 0 4 4 0 7 1 4 1 1 4 4 1 3 3 8 0 7 1 1 5 3 1 6 3 0 6 4 4 2 2 3 3 2 5 3 0 8 2 7 2 0 9 1 0 7 4 9 1 4 3 3 5 4 2 5 5 0 10 1 2 6 5 1 8 3 2 7 4 1 7 5 11 0 0 9 3 9 2 0 8 5 2 7 5 1 9 3 8 3 2 6 6 3 7 5 6 5 3 8 4 0 11 2 10 2 5 6 6 0 10 4 8 4 1 9 5 0 7 7 2 10 3 0 9 6 1 10 4 1 8 7 2 9 5 4 8 5 1 11 3 5 7 6 3 7 7 1 10 5 2 11 3 7 6 0 11 5 2 10 5 11 3 2 11 4 0 10 7 2 9 7 6 7 7 0 8 8 1 11 5 8 6 1 8 8 3 11 4 2 11 5 2 10 7 6 8 7 10 5 3 9 8 4 8 8 9 6 0 11 8 2 10 8 3 11 6 1 10 9 0 9 9 11 5 3 10 8 5 9 8 7 8 8 5 10 7 9 7 3 10 9 4 11 7 7 9 8 4 9 9 10 7 9 8 0 10 105 10 9 2 11 10 6 10 9 8 9 9 3 11 10 10 8 3 10 105 11 9 8 10 9 0 11 1110 9 1 11 116 11 10 3 11 118 10 108 11 10 10 11 10 10 11 11

3 0 0 1 1 0 2 1 0 3 2 6 0 0 4 3 0 5 2 0 6 2 3 1 1 4 2 1 4 3 6 1 1 5 2 1 6 2 9 0 3 2 6 2 2 4 4 2 5 4 0 7 3 8 1 0 5 5 0 6 5 5 3 1 7 3 1 8 2 1 6 5 0 8 3 3 6 4 8 2 1 9 2 6 4 0 7 6 10 1 3 7 4 0 10 2 1 6 6 1 7 6 0 11 1 0 9 4 2 8 4 1 8 5 3 6 6 0 8 6 2 7 6 1 9 4 2 8 5 1 10 3 3 7 6 1 11 2 7 5 2 8 6 3 9 4 0 10 5 10 3 2 7 7 3 8 6 0 11 4 9 4 0 9 7 8 5 4 8 6 4 7 7 1 11 4 1 10 6 3 9 6 5 8 6 3 10 5 9 5 1 9 8 1 10 7 4 10 5 0 10 8 2 8 8 1 11 6 3 10 6 11 4 0 11 7 3 11 5 2 11 6 4 10 6 1 11 7 5 9 7 5 10 6 2 11 7 4 10 7 6 9 7 10 6 2 11 8 4 10 8 6 9 8 6 10 7 0 11 10 5 10 8 11 6 2 11 9 5 9 9 6 10 8 3 11 9 1 10 107 10 8 4 11 9 2 10 106 11 8 7 10 9 4 10 104 11 10 5 10 1011 8 7 11 9 7 10 107 11 10 11 9 9 11 10

POTRF TRSM SYRK GEMM

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

GPU0

GPU1

GPU2

Figure 3.7: heftp trace for 12 × 12.

64 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

(ecpu) and then simulates the execution of heftp until task t completes execu-
tion (eheftp) on some (GPU) worker. If ecpu ≤ eheftp, that typically corresponds
to the situation described above where t has been passed over by many higher
priority tasks in the GPU queue, then heftp+LET schedules task t on a CPU.

heftp+GB (GPU Busy)

In this strategy, heftp+GB always tries to assign task t on a CPU and then
simulates the execution of heftp until the completion time of task t on a CPU
(ecpu). Then, it checks whether all GPUs have been busy between the current
time and ecpu. If it is the case, then heftp+GB assumes that it is safe to
schedule t on a CPU; otherwise, t is scheduled on a GPU.

heftp+MMS (Min Makespan)

In this (higher cost) strategy, scheduler selects for task t a CPU worker if and
only if it improves the overall makespan. To determine whether it is the case,
heftp+MMS simulates the execution of heftp until the end, with t forced on
a CPU and t allocated according to heftp. If the simulation time is smaller
with t forced on a CPU, then heftp+MMS allocates t on this CPU.

3.6.2 Analysis of Different Improved heftp Schedulers

Figure 3.6 describes the performance of the different heftp heuristics. heftp+LET
and heftp+GB strategies use simulation upto a certain lookahead (until task
completes its execution in heftp+LET and until task completes its execution
on CPU in heftp+GB). Therefore, this adds an acceptable overhead to the
scheduler and it results in a larger use of CPU resources. This induces a pos-
itive effect on the overall makespan for small to medium size cases, as shown
in Figure 3.6.

But making the good utilisation of CPUs does not guarantee to improve
the performance! Indeed, heftp+LET and heftp+GB strategies schedule a
significant amount of GEMMs and SYRKs on CPUs, i.e. tasks that are not
well suited to CPUs (see Table 3.1). On the other hand, when the size of the
problem becomes large, the problem is of different nature, since all heuristics
keep all resources (CPU and GPU) busy most of the time. Then, the critical
path bound becomes less important than the area bound and what becomes
crucial is to allocate tasks on the best suited resources, what is better achieved
by heftp. heftp+MMS strategy is based on the estimation of the overall com-
pletion time, and therefore does not suffer from these limitations for large
sizes (see Figure 3.6). On the other hand, it induces a (too) large scheduling
overhead to be used in practice, due to the simulation cost.

Task based scheduling on heterogeneous resources 65

3.7. HeteroPrio-like Solutions (Dynamic, Resource-centric)

3.7 HeteroPrio-like Solutions (Dynamic, Resource-
centric)

3.7.1 Baseline HeteroPrio Scheduler

HEFT-like heuristics are task-centric as they first select a particular task before
attributing it to a particular resource. One drawback of this class of greedy
heuristics is that they may attribute a considered task (say a POTRF) to a
given resource (say a GPU) because at decision time it is the best suited with
respect to the expected completion time, conducting not to schedule another
available task (say a GEMM) to be executed on that resource whereas it would
have been a better fit with respect to the acceleration factor. One option to
overcome this limit consists of injecting static knowledge to the heuristic as
discussed above. A more drastic alternative consists of designing another class
of heuristics, resource-centric, that aim at selecting the task that achieves the
best acceleration factor for a given resource. Such an approach is relatively
natural in the case of independent tasks and was first introduced in [16] under
the name of HeteroPrio (HP) to enhance task-based fast multipole methods
(FMM) whose computation is dominated by independent tasks. We investigate
such an alternative approach that we implement with the following design.
Multiple scheduling queues are instantiated, each queue aiming at collecting
tasks of acceleration factors of same magnitude. In the baseline version that we
propose we consider one queue per type of task (hence four in total). Whenever
a worker is idle it polls for a task within the set of ready queues and selects
the one which best suits to this worker. In our case, CPU cores hence poll
POTRF, TRSM, SYRK and GEMM queues whereas GPUs poll the queues in
reverse order. To favor progress, within a queue, a GPU (resp. CPU) selects
the highest (resp. lowest) priority task.

0 2 2 6 1 1 6 6 1 11 10 2 11 10 9 5 6 9 7

4 0 0 4 4 11 1 1 11 11 3 6 3 9 3 3 9 9 5 11 9

5 0 0 5 5 10 1 1 10 10 10 2 2 10 10 4 11 11 4 10 9 6 11 8

6 0 0 6 6 9 1 1 9 9 9 2 2 9 9 4 6 6 5 6 6 6 7 7

7 0 0 7 7 8 1 1 8 8 8 2 2 8 8 4 11 7 5 11 7

8 0 0 8 8 7 1 1 7 7 7 2 2 7 7 3 7 7 4 7 7 10 6 6 11 10

9 0 0 9 9 5 1 1 5 5 2 5 5 10 3 3 10 10 4 11 10 6 10 10 7 10 9

10 0 0 10 10 4 1 1 4 4 2 4 4 3 5 5 10 4 4 10 10 11 6 6 11 11 7 11 9

11 0 0 11 11 1 2 2 2 11 2 2 11 11 8 3 11 5 4 9 9 5 9 9 7 9 9

0 3 0 0 3 3 0 3 1 0 4 3 0 5 1 0 5 3 0 5 4 0 8 1 0 8 2 0 7 4 0 7 5 0 9 3 0 8 5 0 10 3 0 9 5 0 11 3 0 11 4 0 11 5 0 11 6 0 10 9 0 11 10 1 11 6 1 4 2 1 5 3 1 6 4 1 6 5 1 9 2 1 9 3 1 8 5 1 8 6 1 8 7 1 11 4 1 11 5 1 10 8 1 11 8 4 2 2 4 3 2 5 4 2 6 5 2 11 5 2 11 6 11 3 3 11 5 2 10 5 2 7 3 2 7 5 2 7 6 2 8 6 2 9 6 3 6 4 2 10 7 2 11 7 2 11 9 4 5 4 11 4 4 7 6 3 10 4 3 10 7 3 9 5 3 9 7 3 8 4 3 8 7 3 11 8 7 5 5 7 6 4 8 7 4 9 8 3 11 10 5 8 8 4 10 5 4 10 8 5 10 8 5 11 11 5 9 8 5 10 10 9 6 6 8 8 6 10 9 6 11 9 7 11 11 10 9 9 10 1010 11 10 11

2 0 0 3 2 0 1 1 3 1 1 3 3 0 4 2 0 5 2 0 6 2 0 6 3 0 6 4 0 6 5 0 8 3 0 10 1 0 7 6 0 11 1 0 8 6 0 10 4 0 9 6 0 9 7 0 9 8 0 10 8 0 11 8 1 6 3 1 11 3 1 4 3 1 5 4 1 7 3 1 7 4 1 7 5 1 7 6 1 9 4 1 9 5 1 9 6 1 9 7 1 9 8 1 11 7 1 11 9 5 2 2 5 3 2 6 4 2 6 6 2 11 4 4 3 3 11 4 2 10 4 2 7 4 2 8 4 2 8 5 2 9 5 2 9 7 3 6 5 2 10 8 2 10 9 3 4 4 3 11 11 3 7 5 3 7 6 6 4 4 6 5 4 11 5 3 10 5 4 5 5 3 9 4 3 10 9 3 8 5 3 9 8 3 8 8 8 4 4 8 5 4 9 5 4 9 7 4 11 9 8 5 5 8 7 4 10 6 10 5 5 10 7 5 11 8 5 9 7 5 7 7 8 6 6 9 8 5 11 10 6 10 8 6 9 9 10 7 7 8 8 8 10 8 7 10 108 10 10 7 11 10 8 11 11 8 11 9 11 9 9 11 10 10 11 11

1 0 0 2 1 1 2 1 1 3 2 0 4 1 0 6 1 0 7 1 0 7 2 0 7 3 0 9 1 0 9 2 0 8 4 0 10 2 0 9 4 0 11 2 0 8 7 0 10 5 0 10 6 0 10 7 0 11 7 0 11 9 1 6 2 1 11 2 1 5 2 1 7 2 1 8 2 1 8 3 1 8 4 1 10 2 1 10 3 1 10 4 1 10 5 1 10 6 1 10 7 1 10 9 3 2 2 3 3 6 2 2 6 3 2 11 3 5 3 3 5 4 2 10 3 2 8 3 2 9 3 2 9 4 2 8 7 2 10 6 2 9 8 3 11 6 2 11 8 3 6 6 7 3 3 7 4 3 11 7 7 4 4 7 5 4 11 6 3 10 6 5 3 9 6 3 11 9 3 8 6 3 10 8 6 5 9 4 4 8 6 4 9 6 4 11 8 4 8 8 5 8 6 4 10 7 5 10 6 5 11 6 5 9 6 6 7 6 6 8 7 5 10 9 6 10 7 7 8 7 7 10 8 6 11 7 11 7 9 7 7 9 8 9 8 7 11 8 11 8 8 11 10 8 9 9 9 8 10 9 9 11 11

POTRF TRSM SYRK GEMM

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

GPU0

GPU1

GPU2

Figure 3.8: 12 × 12 trace with heteroprio scheduler.

Figure 3.8 presents a 12 × 12 HP execution trace. Because nothing pre-
vents CPUs to process tasks when idle in the baseline version of HP, CPUs get
attributed tasks that induce starvation on some GPUs while being executed,
which may potentially lead to significant performance degradations. Further-
more, in this baseline version, progress is only ensured with the ordering of
tasks within a queue. This strategy, which aggressively favors the acceleration
of tasks, may be insufficient to ensure a global progress along the critical path,

66 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

eventually leading to starvation. This is why GPUs are periodically starving
in the trace.

3.7.2 Improved HeteroPrio Algorithms

We now propose successive corrections (each correction contains previous ones)
to the baseline version of HP in order to find a better trade-off between accel-
eration of tasks and progress.

HP+Sp

The first correction we introduce consists of preventing immediate GPU star-
vation thanks to the following spoliation (Sp) rule. When a GPU is starving
while at least one CPU is executing a task, the execution of the highest priority
task being executed on CPU is aborted and attributed to the GPU, provided
it finishes the task earlier.

HP+CGV

Defining multiple queues for tasks whose acceleration factors are of roughly the
same magnitude may provide only a limited advantage in terms of acceleration
but a severe penalty in terms of progress. For this reason, in addition to
HP+Sp correction, we propose that GPUs get a combined view (CGV) of
GEMM, SYRK and TRSM ready queues whose acceleration factors are in a
relatively thin range of values ([11; 29]) with respect to the distance to POTRF
acceleration factor (2.3).

HP+PP

POTRF tasks have a very low acceleration factor with respect to other kernels,
we propose to favor its execution on CPU with the following preemption rule
in addition to HP+CGV correction. If all workers are busy when a POTRF
becomes ready, the lowest priority task being executed on CPUs is aborted
and set back to the ready queue so that the considered POTRF task can be
immediately attributed to that CPU. In this case, preemption is only applied
to POTRF, so we call it POTRF preemption (PP).

HP+PC

When a CPU is selecting a task, that task may have a relatively low priority
with respect to other ready tasks in that queue. However other tasks with
lower priority may become ready while that task is being processed. If a GPU
becomes free at that time, it may thus have to pick up one of those new low
priority ready tasks and potentially prevent fast progress on the critical path.

Task based scheduling on heterogeneous resources 67

3.7. HeteroPrio-like Solutions (Dynamic, Resource-centric)

To overcome this issue due to the greedy nature of HP, we propose to forbid a
GPU to pick up a ready task with a lower priority than a task being executed
on CPUs. For that, we introduce the following additional spoliation rule. If
no ready task has priority higher than all tasks being executed on CPUs, then
the GPU spoliates the highest priority task being executed on CPUs. This
additional spoliation enhances progress thanks to a Priority Constraint (PC).
This strategy is quite restrictive and allows only few tasks to run on CPUs.

HP+PCEP

We therefore propose a variant where the previous PC spoliation rule does
not apply to POTRF, which we name Priority Constraint Except POTRF
(PCEP).

HP+PCEPT

If PC spoliation is excepted for both POTRF and TRSM, the rule is then
called Priority Constraint Except POTRF and TRSM (PCEPT).

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

2 5 2 5 6 5 11 3 8

0 8 8 0 11 11 6 9 5 11 5

11 0 9 1 1 9 9 2 9 9 2 11 11

4 0 10 10 1 10 10 7 6

0 7 7 10 3 2 10 10 3 10 10

8 0 7 1 11 1 8 4

9 0 0 9 9 1 8 8 2 8 8 10 5

10 0 3 6 3 7 4 0 11 10

10 1 9 3 1 11 11 7

0 3 0 0 3 3 0 2 1 1 2 1 1 2 2 1 3 3 5 1 0 5 3 1 5 3 0 5 4 0 6 2 4 2 2 4 3 0 6 3 6 2 2 6 3 1 6 4 0 6 5 4 3 3 4 4 0 9 2 1 8 3 0 9 3 0 7 6 1 6 6 8 3 2 5 5 2 6 5 1 7 3 3 5 5 1 7 4 2 7 4 1 7 6 2 6 6 3 6 4 6 4 4 6 5 3 6 6 0 10 3 1 10 2 3 8 4 0 9 5 1 10 3 0 10 4 1 11 2 0 11 3 2 8 6 11 2 2 7 7 4 7 6 3 8 6 2 10 4 3 7 7 5 6 6 2 9 6 1 9 7 3 9 5 2 10 5 5 7 7 4 8 6 3 9 6 0 10 7 4 8 7 3 10 5 0 11 6 8 6 5 8 7 0 10 8 3 10 6 4 9 7 3 11 5 4 8 8 4 10 6 3 10 7 0 11 8 6 7 7 6 8 7 3 11 6 6 8 8 6 9 7 5 9 8 2 10 9 4 10 8 1 11 9 3 10 9 5 10 7 5 10 8 4 10 9 1 11 10 6 10 8 3 11 9 7 9 8 9 8 5 11 8 6 10 9 6 11 8 11 7 4 10 107 11 8 8 10 9 7 11 9 11 8 8 11 9 11 9 9 11 10 11 10 11

2 0 0 2 2 0 3 1 4 0 0 4 1 3 1 1 3 2 1 4 2 0 5 2 1 5 2 6 0 0 6 1 3 2 2 3 3 2 4 4 1 5 4 1 6 3 0 6 4 8 1 1 5 5 0 7 4 1 8 2 0 8 3 0 7 5 0 10 1 2 8 3 0 10 2 0 11 1 2 5 4 1 7 2 7 2 2 7 3 7 3 3 7 4 0 9 4 2 8 4 1 9 2 9 2 2 9 3 1 9 4 0 11 2 2 8 5 3 7 6 0 8 7 3 8 5 0 9 6 1 7 7 1 8 7 2 9 5 4 7 5 7 5 2 8 7 2 11 3 0 10 6 1 11 4 3 9 4 9 4 4 9 5 1 10 6 2 11 4 2 9 7 1 11 5 1 9 8 4 9 6 3 9 7 4 10 5 1 11 6 3 8 8 2 10 7 3 11 4 11 4 1 11 7 5 8 8 2 10 8 5 9 6 9 6 2 11 7 1 11 8 4 11 6 3 11 7 8 7 7 8 8 5 10 6 10 6 6 10 7 10 7 9 7 5 11 6 11 6 6 11 7 4 11 9 3 11 10 5 11 9 7 10 9 4 11 10 5 10 105 11 10 6 11 10 7 11 10 3 11 114 11 118 11 10 5 11 116 11 117 11 118 11 119 11 1110 11 11

1 0 0 1 1 0 3 2 5 0 0 4 2 4 1 0 5 1 0 4 3 1 4 3 0 4 4 1 4 4 7 0 0 7 1 6 1 1 6 2 0 7 2 0 8 1 0 7 3 0 5 5 0 8 2 0 9 1 2 6 4 1 6 5 8 2 0 8 4 0 6 6 1 8 4 0 8 5 2 5 3 5 3 3 5 4 5 4 4 5 5 1 7 5 2 7 5 3 6 5 1 8 5 1 9 3 3 7 5 0 8 6 2 7 6 4 6 6 10 2 1 8 6 2 9 4 1 9 5 2 10 3 1 10 4 0 10 5 1 11 3 1 9 6 0 11 4 0 9 7 1 10 5 5 7 6 4 7 7 3 8 7 0 11 5 0 9 8 4 8 5 8 5 5 8 6 3 10 4 10 4 2 10 6 1 10 7 2 11 5 2 9 8 0 11 7 1 10 8 3 9 8 2 11 6 0 10 9 4 11 5 4 9 8 5 9 7 1 10 9 4 10 7 3 10 8 0 11 9 2 11 8 6 9 8 3 9 9 4 11 7 4 9 9 3 11 8 2 11 9 5 9 9 4 11 8 6 9 9 5 10 9 5 11 7 2 11 10 7 9 9 7 10 8 8 9 9 9 10 8 6 11 9 6 10 107 10 108 10 1010 9 9 10 1010

POTRF TRSM SYRK GEMM

11 0

0 3 2

1

4 0

5 0

0 4 2

11 0

0 4 3

0 4 4

6 0

7 0

0 5 4

0 10 10

0 6 4

0 5 5

0 6 5

0 10 10

0 6 6

0 11 11

2 6 6

4 6 6

1 7 7

5 6 6

1 11 11

4 7 7

3 8 8

4 8 8 2 10 8

6 7 7

2 11 11

6 8 8

1 11 8

0 11 9

3 11 7

4 10 8

6 9 8

3 9 9

3 10 9

4 11 7

2 11 11

4 9 9

3 11 8

5 10 8

2 11 9

4 10 9

5 9 9

1 11 10

4 11 8

6 10 8

9 7

6 9 9

3 11 9

5 10 9

5 11 6

7 9 8

5 11 7

2 11 10

7 9 9

5 11 8

7 10 8

4 11 9

6 10 9

8 9 9

3 11 10

6 11 8

5 11 9

11 7

7 10 9

4 10 10

10 8

4 11 10

7 11 8

5 10 10

6 11 9 8 10 9

5 11 106 10 107 11 9

11 8

10 9

3 11 11

8 11 10 5 11 11

CPU0

CPU1

CPU2

CPU3

CPU4

CPU5

CPU6

CPU7

CPU8

GPU0

GPU1

GPU2

Figure 3.9: 12 × 12 trace obtained with HP+PCEPT. Aborted tasks on CPUs
due to spoliation or preemption are represented in non solid boxes.

Figure 3.9 shows the resulting HP+PCEPT 12 ×12 execution trace, which
achieves the best performance among all HP proposed variants for that matrix
order. The proposed heuristic managed to schedule most POTRF tasks on
CPU, while achieving a very high occupancy with well suited tasks on both
GPUs and CPUs.

3.7.3 Performance Comparison of Heteroprio Variants

Figure 3.10 shows the performance of most relevant HP variants proposed
above. Large matrices have relatively more number of independent tasks at
different execution points, which is well suited to HP variants. That is why
even baseline HP starts performing better as matrix size increases. HP+Sp
performance indicates that spoliation rule is very useful when there are not

68 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

HP
HP+Sp

HP+CGV
HP+PCEPT

IterativeBound

Figure 3.10: Performance with different HP schedulers.

enough independent tasks. Considering priority constraints with some relax-
ation (HP+PCEPT) improves performance for intermediate matrices and its
performance is very close to the iterative bound for large matrices, which
indicates that HP+PCEPT manages priorities (critical tasks) and tasks het-
erogeneity in well manner.

3.7.4 Feasibility of the Implementation of HP Correc-
tions

The first implementation of HP proposed in [16] was implemented on top of
StarPU following a twofold approach. The baseline version of HP was ap-
plied when enough ready tasks were available (HP was said to be in a steady
state). When fewer tasks got in the system (HP was said to be in a critical
state), CPUs were prevented to execute long tasks in order to ensure a fine
termination. The corrections proposed in the present study are much more
advanced and we discuss here the feasibility of the implementation. These
corrections rely on three ingredients: combining queues, performing spoliation
and preemption. Modern runtime systems such as StarPU provide infrastruc-
ture for designing user-level scheduling algorithms. In particular, dealing with
user-level queues is natural and combining their GPU view immediate. On the

Task based scheduling on heterogeneous resources 69

3.8. Comparison of All Three Approaches

other hand, spoliation and preemption require to abort tasks and recover data
of aborted tasks, which are not supported in most state-of-the art runtime
systems. Most thread libraries provide functions to cancel or restart a thread
execution, this can be used to abort a task. Data recovery of an aborted task
might be technically difficult. However recent contributions have been pro-
posed by runtime community to perform forward recovery in the context of
resilience [71]. This mechanism could be applied to recover data of an aborted
task and thus implement spoliation or preemption. Alternatively, speculative
scheduling using simulation at runtime could be employed [96].

3.8 Comparison of All Three Approaches

In this Section, we propose to compare these three approaches (static, heftp,
and HeteroPrio) in different cases: first with original execution timings as
measured on the actual platform, then with perturbed timings which are con-
stant throughout the execution (like in Section 3.5), and finally with perturbed
timings within an execution.

3.8.1 Original Timings

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 4 8 12 16 20 24 28 32

G
F

lo
p

/s

Matrix Size(multiple of 960)

SS+GS
SS

heftp+MMS
heftp

HP+PCEPT
HP+Sp

HP
IterativeBound

Figure 3.11: Performance with different types of schedulers.

70 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

Figure 3.11 shows a comparison between the best variants of different sched-
ulers. The static schedule is obtained with these exact timings, which is why
allowing movement of GEMM and SYRK tasks (SS+GS strategy) reduces the
performance slightly in this case. On large matrices, computing a quality static
schedule is very costly, and the CP formulation is only able to provide a low
performance solution. For dynamic strategies, HP+PCEPT obtains consis-
tently better performance than the best heftp variant (which is heftp+MMS),
and both outperform the static schedule and obtain performance very close
to the upper bound for large matrix sizes. On intermediate matrix sizes (12
or 16), all solutions are relatively farther from the bound, which may indicate
that it would be possible to design stronger bounds.

3.8.2 Perturbed Timings

As indicated in Section 3.5, we consider 30 different sets of execution timings
for each type of task on each resource, obtained by changing the original exe-
cution timings by ±10%. For consistency, these timings are then normalized
to obtain the same area of the task graph as with original timings: all sets of
execution timings for a particular matrix size will yield the same area bound.
Unlike the previous case we provide here results about all variants discussed in
this chapter. Figure 3.12 shows the distribution of the performance of each al-
gorithm for all matrix sizes, where plots are grouped by matrix sizes. For each
matrix size and each algorithm, the box on the plot displays the median, first
and last quartile, and the whiskers indicate minimum and maximum values,
with outliers being shown as black dots.

Figure 3.12 shows that the performance of all HP variants increases with
matrix size. It follows from the fact that HP variants are very good with a large
number of independent heterogeneous tasks. The performance of heftp+LET
and heftp+GB degrades for large matrices due to their tendency to use the
CPU resource greedily and thus allocate too many tasks which are well suited
on GPU resource, as mentioned in Section 3.6.2. As previously, the static
solution is not very good for large matrices and most of the dynamic schedulers
have better performance in these cases. However, we can also observe the
benefits of dynamic modifications of this static solution, which allow to cope
with perturbation of timings. As discussed in Section 3.7.2, the restrictive
nature of the HP+PC scheduler yields a poor performance compared to other
HP+Sp variants. On the other hand, its relaxed version HP+PCEPT achieves
the best performance among all dynamic schedulers for intermediate and large
matrices.

Task based scheduling on heterogeneous resources 71

3.8. Comparison of All Three Approaches

● ● ● ●
●

●

● ●

●

●

●

●

●

●

●

●

●●●●

●

●

● ●

●
● ●

●

●

●

●

●
●

●
●●

●●

●

4 8 12

16 24 32

100

150

200

200

300

400

500

600

400

500

600

700

800

600

700

800

900

800

850

900

950

850

900

950

he
ftp

he
ftp

+L
ET

he
ftp

+G
B

he
ftp

+M
M

S HP

HP+S
p

HP+C
GV

HP+P
P

HP+P
C

HP+P
CEP

HP+P
CEPT SS

SS+G

SS+G
S

Ite
ra

tiv
eB

ou
nd

he
ftp

he
ftp

+L
ET

he
ftp

+G
B

he
ftp

+M
M

S HP

HP+S
p

HP+C
GV

HP+P
P

HP+P
C

HP+P
CEP

HP+P
CEPT SS

SS+G

SS+G
S

Ite
ra

tiv
eB

ou
nd

he
ftp

he
ftp

+L
ET

he
ftp

+G
B

he
ftp

+M
M

S HP

HP+S
p

HP+C
GV

HP+P
P

HP+P
C

HP+P
CEP

HP+P
CEPT SS

SS+G

SS+G
S

Ite
ra

tiv
eB

ou
nd

G
F

lo
p/

s

Scheduler

heftp

heftp+LET

heftp+GB

heftp+MMS

HP

HP+Sp

HP+CGV

HP+PP

HP+PC

HP+PCEP

HP+PCEPT

SS

SS+G

SS+GS

IterativeBound

Figure 3.12: Comparison of different schedulers with perturbed execution tim-
ings. Title field of each subplot indicates corresponding matrix size.

12

740

750

760

770

780

SS SS+G SS+GS HP+PCEPT

G
F

lo
p/

s

Scheduler

SS

SS+G

SS+GS

HP+PCEPT

Figure 3.13: Comparison of all SS-based strategies with best HP variant - 12
× 12 tile matrix.

72 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

3.8.3 Perturbed Timings within an Execution

We now present the set of experiments, in which execution timings for a partic-
ular task on a particular resource is not constant. Each time a task is executed,
its execution timing is randomly drawn between ±10% of the original execu-
tion time. We ran our experiments with 30 different random seeds and show
in Figure 3.13 the performance of the best dynamic strategy and dynamic
variants of static solutions for 12 × 12 matrix. This plot shows a behavior
similar to other experiments for 12 × 12. It shows that even in this context,
schedules based on the static solution always perform better than our best dy-
namic HeteroPrio scheduler (HP+PCEPT). It also shows that adding dynamic
corrections to the static schedule tends to improve the overall performance in
presence of perturbed timings.

3.9 Static Schedule in Actual Execution

In this section, we show how schedules obtained with previously explained
scheduling strategies can be used in actual execution. We focus on 12× 12 tile
matrix and perform actual executions in different settings.

We did not consider communication costs while obtaining schedules with
Constraint Program (in Section 3.5) or with dynamic strategies (in Sections
3.6 and 3.7). Therefore, we provide only partition information (CPU or GPU)
of tasks from the schedule to the StarPU and let StarPU select exact worker
based on MCT heuristic [103].

Figure 3.14 shows actual execution trace for 12×12 tile matrix, where parti-
tion information is provided based on the schedule obtained with HP+PCEPT
strategy. It exhibits that most GPUs are significantly idle and data transfers
among different memory units are not completely overlapped. To minimize
idle time on GPUs due to non-overlapping of data transfers, we propose to
calculate schedule where execution timings of all tasks on CPU are increased
by some percentage. This strategy compensates for communication delays and
allows GPUs to process other tasks in that time.

We experimented with 2, 5, 8, 10, 12 and 15 percent increase in CPU execu-
tion timings of tasks. We found that schedule obtained with 5 percent achieves
the best performance for 12 × 12 tile matrix in actual execution. Figure 3.15
shows actual execution trace, where we provide partition information based
on this schedule. In this trace, we can see that communication is almost over-
lapped with computation, except at the end which is intrinsic to the Cholesky
kernel, and all resources are utilized properly.

Task based scheduling on heterogeneous resources 73

3.9. Static Schedule in Actual Execution

POTRF SYRKTRSM GEMM Idle

C
P
U
s

G
P
U
s

Figure 3.14: Actual execution trace based on HP+PCEPT schedule informa-
tion - 12 × 12 tile matrix.

POTRF SYRKTRSM GEMM Idle

C
P
U
s

G
P
U
s

Figure 3.15: Actual execution trace based on modified HP+PCEPT schedule
information - 12 × 12 tile matrix. Execution timings of all tasks on CPU are
increased by 5 percent to calculate modified HP+PCEPT schedule.

74 Suraj Kumar

3. Static vs Dynamic Scheduling Strategies

3.10 Conclusion and Perspectives
This chapter aims at providing a fair comparison between static and dynamic
scheduling strategies on heterogeneous platforms consisting of CPU and GPU
nodes. Runtime dynamic schedulers make their decisions based on the state of
machine, on the set of available tasks and possibly on task priorities computed
online. The success of these dynamic strategies are motivated by expected
weaknesses and limitations of static schedulers. First, it is well known that
scheduling problems are hard (NP-Complete) and even hard to approximate
with unrelated resources (what is the case in CPU-GPU platforms). Second,
it has been observed that execution times of kernels in nodes where many
resources (cache, memory, buses) are shared suffer high variance and it is
generally assumed that the difficulty to predict execution times makes static
schedulers useless. An original contribution of this chapter is to prove that
this last assertion is in general not true and that static schedules (for Cholesky
factorization) are in fact robust to variations in execution times. On the other
hand, the consequence of the greedy nature of basic dynamic strategies is
that they make a poor use of ”slow“ resources like CPUs. Since the overall
processing power of CPUs is in general small, this does not hurt too much the
GFlop/s performance of kernels. Nevertheless, we have proved that combining
dynamic strategies with simulation in order to build less myopic algorithms
can significantly improve their performance.

We have also considered a family of dynamic schedulers (HeteroPrio) that
performs poorly on general graphs but greatly benefits from basic qualitative
information about the task graph on platforms composed of CPUs and GPUs.
We plan to generalize this class of schedulers for platforms consisting of several
types of resources. We are also interested to study the theoretical performance
of this class of schedulers.

In the longer term, this chapter opens many interesting perspectives. In
particular, it advocates the design of efficient static schedules on heteroge-
neous unrelated machines and also advocates the introduction of as much static
knowledge about the application as possible into dynamic schedulers in order
to achieve good performance.

Task based scheduling on heterogeneous resources 75

This page is intentionally left blank.

Chapter 4

Scheduling of Linear Algebra
Kernels on Multiple
Heterogeneous Resources

In previous chapters, we proposed and analyzed a set of strategies by adding
more static (resp. dynamic) features into dynamic (resp. static) strategies
on platforms consisting of GPUs and CPUs. We exhibited that static-based
strategies with dynamic corrections are very efficient, even in a context where
performance estimations are not very good. We proposed different perfor-
mance bounds of tasks graphs. We also proposed and evaluated a resource
centric dynamic scheduling strategy, HeteroPrio, for task graphs on exactly
two types of resources. However, this restriction can be limiting, for exam-
ple on nodes with several types of accelerators, but not only this. Indeed,
an interesting approach to increase resource usage is to group several CPU
cores together, which allows to use intra-task parallelism. In this chapter,
we propose a generalization of HeteroPrio to the case with several classes
of heterogeneous workers. We provide extensive evaluation of this algorithm
with Cholesky factorization, both through simulation and actual execution,
compared with HEFT-based scheduling strategy, the state of the art dynamic
scheduling strategy for heterogeneous systems. Experimental evaluation shows
that our approach is efficient even for highly heterogeneous configurations and
significantly outperforms HEFT-based strategy.

4.1 Introduction
Most runtime systems rely on a greedy heft-based scheduling strategy, where
typically the highest priority ready task is allocated to the resource that is
expected to complete it first, based on the estimation of the transfer time
of input data and on the estimation of the execution time on the different
resources [22, 104]. However, in presence of strongly heterogeneous resources,

77

4.1. Introduction

it has been observed in Chapter 3 that such a scheduling policy tends to
make poor use of slow resources. Indeed, when the acceleration ratio on the
accelerators is high, all ready tasks tend to be allocated to accelerators, even
though they are far from the critical path and could have been processed on
a slow resource without hurting the overall execution time. Another dynamic
strategy named HeteroPrio has been proposed [16] to cope with this problem,
that relies on the affinities between tasks and resources. When properly tuned,
this strategy has been proven to be more efficient than greedy strategies in
presence of GPUs and CPUs for Cholesky factorization, in Chapter 3. Its
main drawback is that it is limited to two types of resources, i.e. one sort of
CPU and one sort of GPU. The main goal of this chapter is to extend such
affinity based scheduling algorithms to any number of heterogeneous resources.

Such a generalization is obviously desirable to be able to handle platforms
with more than one type of accelerator (with both GPU and Xeon Phi, for
example). But it can also be very useful for more regular platforms, for the
following reason. Many applications are parallelized using a uniform granu-
larity: homogeneous block or tile decomposition where the choice of the tile
size is a crucial parameter for performance. Indeed, a small granularity leads
to poor performance on the GPU side, whereas large tiles decrease the paral-
lelism available in the task graph, and dramatically increase the cost of bad
load balancing decisions. Thus, the solution adopted by dense linear algebra
libraries [17, 37, 84] is to compute a unique common size that represents the
best trade-off. A more recent proposition is to relax this constraint either by
splitting at runtime coarse grain tasks [102] or to aggregate CPU cores to pro-
cess larger tasks [50]. Both approaches are equivalent to cluster CPUs together
so as to build more powerful resources and to use parallel kernels on such CPU
groups. This helps the scheduling algorithm since the composite platform is
less heterogeneous: for instance, in the context of Cholesky factorization, the
maximal heterogeneity ratio between a GPU and a large CPU group is less
than 4 (and some kernels even execute faster on clustered CPU groups, see
Table 4.1), what makes greedy scheduling algorithms more efficient, as advo-
cated in [50]. For now, the clustering is determined statically for the duration
of the whole execution, and there is a trade-off between lowering the critical
path using groups of cores and increasing parallel efficiency by using many
individual cores. In any case, the resulting platform appears to the runtime
system as containing many different types of resources: individual CPUs, CPU
groups of different sizes, and (possibly heterogeneous) GPUs.

In this chapter, we propose extensions of the affinity based scheduler that
are suited to more than one type of resource and we demonstrate their efficiency
on platforms consisting simultaneously of accelerators, several types of CPU
groups and individual CPUs. However, the question of how to optimally build
the groups, given the kernel, the size of the problem and the performance of
individual resources, is out of the scope of this thesis. More specifically, this

78 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

chapter is organized as follows. Additional context and Related Works are
presented in Section 4.2, the presentation of HeteroPrio and its adaptation
to more than two types of resources is presented in Section 4.3. At last,
the comparison between affinity based schedulers and heft based scheduler
on both Cholesky and QR factorizations is presented in Section 4.4, before
concluding remarks in Section 4.5.

4.2 Background and Related Work

When considering a task based application running on a heterogeneous sys-
tem, a major challenge is related to the affinity between tasks and resources.
This issue is particularly critical when designing dynamic schedulers for such
systems. To illustrate this claim, we consider two dense factorization appli-
cations, namely Cholesky and QR. We report in Table 4.1a (resp. 4.1b) the
performance for the different types of tasks composing the Cholesky (resp.
QR) factorization. We can see that the GPU device is more suited for cer-
tain types of kernels (e.g. dgemm, dtsmqr, etc.) than others. We can see
also that for these kernels, the acceleration factors are large, what makes the
platform strongly heterogeneous from the point of view of the scheduling al-
gorithm. However, as mentioned in the Section 4.1, it is possible to reduce
the heterogeneity of the platform by assigning a single task to a group of re-
sources; this was introduced in [102] and [50]. We can observe in Table 4.1
that some kernels are very scalable (e.g. dgemm, dsyrk, dtsmqr, etc.),
some others have moderate scalability (e.g. dpotrf, dormqr) and finally
some kernels exhibit poor scalability (e.g. dgeqrt and dtsqrt). We can also
notice that when relying on medium to large CPU groups, the heterogeneity
of the platform is strongly reduced: some kernels are even faster on the CPU
group than on a GPU. Finally, since the scalability of the kernels is sublinear,
it is better to rely on small groups of CPUs when the number of ready tasks is
large enough. On the other hand, when the parallelism arising from the DAG
is small, one may want to rely on large CPU groups. From the scheduling
point of view, an adaptation of the heft algorithm to tackle the problem of
dynamically scheduling parallel tasks was presented in [50].

On a more theoretical side, the work presented in this chapter is related
to the theory of parallel tasks scheduling [58], in which each task can be as-
signed to a group of processors. There has been no study of parallel tasks
for heterogeneous platforms, except very recently for independent tasks [30];
furthermore we are interested here in the case where the partition of processors
into groups does not change during the execution of the application.

Task based scheduling on heterogeneous resources 79

4.3. Affinity Based Scheduling

dpotrf dtrsm dsyrk dgemm

1 core (Gflop/s) 27.78 34.42 31.52 36.46
GPU / 1 core 1.72 8.72 26.96 28.80

10 cores / 1 core 5.55 6.75 6.90 7.77
5 cores / 1 core 4.20 4.50 4.66 4.49
2 cores / 1 core 1.88 1.95 1.93 1.94

(a) Cholesky factorization.

dgeqrt dormqr dtsqrt dtsmqr

1 core (Gflop/s) 22.08 33.78 17.63 32.93
GPU / 1 core 1.91 15.90 1.87 14.64

10 cores / 1 core 1.65 4.10 0.73 6.94
5 cores / 1 core 1.67 3.30 1.25 4.05
2 cores / 1 core 1.33 1.77 1.16 1.91

(b) QR factorization (IB=128).

Table 4.1: Acceleration factors of Cholesky and QR factorization kernels nor-
malized to the performance of one core with a tile of size 960.

4.3 Affinity Based Scheduling

As mentioned in the Section 4.1, a dynamic scheduling strategy named Het-
eroPrio, based on the affinities between tasks and resources, has been proposed
in [16] for a set of independent tasks and extended for general task graphs in
Chapter 3 in the case of GPUs and CPUs. In this section, after a brief presen-
tation of the underlying principle of HeteroPrio, we propose a generalization
to platforms with more than two types of resources.

4.3.1 Affinity Based Scheduling for Two Classes of Re-
sources

We present the main ideas of HeteroPrio, and we refer the interested reader
to Chapter 3 for a complete description of the algorithm. HeteroPrio relies
on the acceleration ratios of tasks on GPUs to establish an affinity between
the resources and the different types of tasks. In order to make the most out
of the heterogeneous resources, GPUs should preferably execute tasks with
higher acceleration factors, and CPUs should execute tasks with lower accel-
eration factors. To this end, HeteroPrio creates several queues, one for each
type of tasks, which are ordered by acceleration factor and contain the list of
ready tasks. When a CPU (resp. a GPU) becomes idle, it receives a task from
the non empty queue with the lowest (resp. highest) acceleration factor. This
algorithm was improved in several ways in Chapter 3. First, in order to avoid
delaying tasks on (or close to) the critical path of the task graph, it is impor-
tant to ensure that more critical tasks are executed on the GPUs. This is done

80 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

by sorting each ready queue by priority, computed as the distance to the exit
node of the graph. GPUs are given the highest priority task from their queue,
and CPUs are given the lowest priority task to ensure that urgent tasks are
not delayed. This trade-off between affinity and priority is strengthened by an-
other improvement: GPU queues with similar acceleration factors are merged,
so that the algorithm focuses more on high priority tasks. As an example,
let us consider the case of Cholesky factorization, with the task performance
described in Table 4.1. In that case, HeteroPrio creates three queues for the
GPUs, the first one regrouping dsyrk and dgemm ready tasks, the second
one containing dtrsm ready tasks, and the last one containing dpotrf ready
tasks. For the CPUs, HeteroPrio creates 4 ready queues containing ready
dpotrf, dtrsm, dsyrk and dgemm tasks respectively, in that order.

Finally, a spoliation mechanism was added: whenever a GPU is idle while
a dsyrk or dgemm task is being executed on a CPU (for which it is badly
suited), then the GPU restarts the execution of this task if it allows to finish
that task earlier. In practice, stopping the execution of the kernels might
be technically difficult, especially to enforce data coherency. However, the
same behavior can be obtained by speculatively simulating the behavior of the
algorithm before deciding to execute a task on a CPU, and if the task needs to
be spoliated later, HeteroPrio decides to delay the execution of this task until
a GPU becomes available. Alternatively, it is also possible to pre-compute
(using simulation) a complete schedule with spoliation and to apply it on the
real platform afterward.

4.3.2 Generalization to more than Two Classes of Re-
sources

Generalizing Acceleration Factor Adapting this algorithm to the case of
more than two types of resources is not straightforward, in particular because
the central notion of acceleration factor does not make sense anymore in that
case. It is thus necessary to identify a new way of deciding which tasks should
be favored for execution on each of the given resources. In this section, we
present two possible ways of computing scores which generalize the acceleration
factor, and thus provide two different ways for the resources to favor different
task types. The main principle of HeteroPrio remains unchanged, though:
whenever a resource is free, it picks a ready task among the task types with
the highest score.

The first scoring system is called Area because it relies on a generalization
of the so-called area bound in the homogeneous case. The idea is to compute
the allocation of tasks that minimizes the overall execution time when ignoring
dependencies and assuming that all processors work without idle time. This
allocation can be obtained by solving a small scale linear program (described
in Chapter 2), and it provides a generic way of detecting which tasks are more

Task based scheduling on heterogeneous resources 81

4.3. Affinity Based Scheduling

suited to which resources. In the Area system, the score of task type t for
resource r is simply the proportion of tasks t that resource r would perform
in this idealized setting. In the case of two resources, the optimal proportions
are assigned following the ordering by acceleration factors. Hence this scoring
system generalizes the behavior of the original HeteroPrio.

The second scoring system is called the Heterogeneity Index (Het.Index),
and is computed in the following way. Let us denote by T the set of task types,
by R the set of resources, and by E(t, r) the execution time of task t on resource
r. Let us consider for every task type t the maximum execution time Emax =
maxi∈RE(t, i) and the minimum execution time Emin = mini∈RE(t, i). We
define Het.Index(t, r) = Emax×Emin

E(t,r)2
= Emax

E(t,r)
× Emin

E(t,r)
, and we use Het.Index(t, r)

as a score to decide which task type to favor for resource r. The idea behind
this definition is that the first term Emax

E(t,r)
represents how “good” this resource

is compared to the worst possible one, and the second term represents how
“bad” it is compared to the best one. This score is also a generalization of
the acceleration factor: with GPUs and CPUs only, the heterogeneity index
of GPUs is equal to the acceleration factor, and for CPUs, it is equal to the
inverse of the acceleration factor.

Other considerations As mentioned above, it is important to take task
priorities into account, by making sure that “fast” resources are given high
priority tasks. Characterizing “fast” resources is straightforward in the case
with only two resources, because GPUs are always faster than a single core. To
generalize this to the multi-resource case, we propose the following approach.

For each resource r, we compute the geometric mean µr of the execution
timings of all tasks on that resource (µr =

(∏
t∈T E(t, r)

) 1
|T |). This geometric

mean measures the overall aggregated speed of resource r. We then compute
the average (arithmetic mean) of these µr, and we classify a resource as “fast”
if its value µr is below the average, and as a “slow” resource otherwise. “Fast”
resources are given high priority tasks, and are allowed to perform spoliation on
“slow” resources. Furthermore, as mentioned above, in HeteroPrio an emphasis
is made on high priority tasks by merging queues with similar acceleration
factors on GPUs. We generalize this on fast resources, by merging queues
with similar scores. In practice, we have found that the best trade-off value
for this parameter is to merge queues when the difference in score is below 25
%.

4.3.3 An Example with Both Scoring Systems

To understand the working principle of both scoring systems (Area and Het.Index),
and to exhibit their difference, let us consider multiple instances of two types
of tasks (T1 and T2) on three types of resources (R1, R2 and R3). Table 4.2
shows execution timings of both types of tasks on all resources. It also shows

82 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

T1 T2
R1 100 200
R2 120 60
R3 200 75

(a) Execution Timings

T1 T2
R1 60 0
R2 40 20
R3 0 80
(b) Area score

T1 T2
R1 2.0 0.3
R2 1.4 3.3
R3 0.5 2.1

(c) Het.Index score

Table 4.2: Execution timings, Area and Het.Index scores on different resources
for different types of tasks.

Area (Table 4.2b) and Het.Index (Table 4.2c) scores for both tasks on all
resources.

On resource R1, for both scoring systems, the score of task T1 is higher
than the score of task T2, therefore R1 will prefer tasks of type T1 in both
scoring systems. Similarly, task T2 has higher score than T1 on resource R3,
and therefore resource R3 will prefer tasks of type T2 in both scoring systems.
On the other hand, in the Area scoring system, resource R2 will prefer task
type T1 but Het.Index will pick in reverse order (prefer task type T2) due to
higher Het.Index value for task type T2.

4.4 Experiments and Results

To evaluate the behavior of proposed scheduling heuristics, we present a set of
experiments to assess the interest of our approach. First of all, we consider a
platform composed of two Haswell Intel R© Xeon R© E5-2680 processors having
12 cores each and four Nvidia K40-M GPUs (this platform is different from
what we considered in previous chapters). As mentioned in previous chapters,
most runtime systems dedicate 1 CPU core to efficiently exploit each GPU. As
a consequence, we can view our node as being composed of 20 CPU workers
and 4 GPU workers. Throughout this chapter, all results are obtained with
Intel icc and MKL version 2015.5.223 in addition with CUDA 7.0.28. We also
ensure MKL_DYNAMIC flag is turned off to strictly control the number of
used threads. Moreover, we consider a task-based implementation of two very
common linear algebra operations (namely Cholesky and QR factorizations),
which are decomposed in a number of basic kernels (see Figures 4.2a and 4.2b).
These operations are implemented in the Chameleon [8] library running on top
of the StarPU runtime system to assign tasks onto CPU cores or GPU devices.
The experimental study is done in two steps: we first evaluate the different
scheduling heuristics using simulation, and then we assess the performance of
the best configurations in real-life executions. Note that we will consider both
Cholesky and QR factorizations for the simulation case while we will only focus
on the Cholesky kernel for the real-life case for the sake of simplicity.

Task based scheduling on heterogeneous resources 83

4.4. Experiments and Results

4.4.1 Tuning of Tile Size Parameter

A crucial issue encountered when trying to exploit both CPUs and accelera-
tors lies in the fact that these devices have very different characteristics and
requirements. Compared to regular CPUs, a GPU for instance is composed of
many lightweight cores and requires massive parallelism to hide memory la-
tencies and thus to fully exploit its potential performance. As a result, GPUs
typically exhibit better performance when executing kernels featuring numer-
ous threads, which we call coarse grain kernels in the remainder of this chapter.
On the other hand, regular CPU cores typically reach their peak performance
with fine grain tasks working on a reduced memory footprint. To illustrate this
claim, we provide in Figure 4.1 a performance profile of the matrix product
kernel (DGEMM) on the two devices composing our experimental platform.
We can observe that the sequential MKL implementation of the DGEMM ker-
nel (for a regular CPU core) reaches its peak performance for matrix sizes
greater than 200 while in the case of the cuBLAS kernel (for the GPU device),
the GPU reaches its peak performance for sizes above 2000.

● ● ● ● ● ● ● ● ● ● ●●● ●● ●● ●● ●
●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●
● ● ● ● ● ● ● ●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
● ● ●

●
●

●

●

●
●

●

●

●

●
●

●

●0
100
200
300
400
500
600
700
800
900

1000
1100
1200

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750
Matrix Size (N)

G
F

lo
p/

s

Type ●●●● ●●●● ●●●● ●●●●CPU 1x10 CPU 1x5 CPU seq GPU (cuBLAS)

Figure 4.1: GEMM performance.

Unfortunately, runtime systems often consider accelerators as single de-
vices, and treat individual cores equally. Because many applications are paral-
lelized using homogeneous block or tile decomposition, runtime system sched-
ulers have to cope with very different durations when executing tasks over
single cores or over accelerators, resulting in situations where only a few tasks
are assigned to CPUs because of bad scores computed by the performance

84 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

prediction-based heuristics. As a consequence, task-based applications run-
ning on such heterogeneous platforms typically adopt an intermediate granu-
larity, chosen as a trade-off between coarse-grain and fine-grain tasks. A small
granularity would indeed lead to poor performance on the GPU side, whereas
large kernel sizes would dramatically increase the cost of wrong load-balancing
decisions. This basic solution is used by state-of-the-art dense linear algebra
libraries [17, 37, 85]. In the remainder of this chapter, we will use the same
approach and consider a tile size of 960 that represents a good compromise in
our context. Throughout this chapter, all matrix sizes are thus expressed in
terms of number of tiles per row (or column).

4.4.2 Experimental Framework

In this section, we present an analysis of the greedy heft-based strategy and
of the two proposed variants of HeteroPrio (namely Area and Het.Index). Let
us first describe the analysis and experimental methodology.

We rely on an adaptation of Chameleon which is able to process parallel
tasks. This implementation does not change algorithms and subsequent DAGs.
When a parallel kernel needs to be called (relying on Intel Parallel Mkl),
we invoke a specific prologue function to ensure that it will use the right set
of resources [50]. Thanks to the hwloc framework [40], we take into account
the machine topology to cluster resources together so as to ensure a proximity
between resources of the same group. We measured the execution time of each
of the underlying kernels on the GPUs as well as on various number of CPUs
(part of these measurements are depicted in Table 4.1).

We use these timings to perform simulations of the behavior of each con-
sidered scheduling algorithm on each task graph. To simplify the simulations,
we assume that it is possible to overlap communications with computations,
and we thus neglect communication costs. In order to explore a wide range of
cases, we analyze all possible ways to group the 20 CPU cores in clusters of
size at most 10 (on our platform, it is not efficient to use groups larger than 10
cores due to NUMA effects). This yields to 530 different configurations, and for
each configuration, we compare the performance of each considered scheduling
algorithm. The heft algorithm is implemented as described in Section 4.1,
combining a prioritization of tasks by their distance to the exit node with a
greedy strategy which allocates tasks so as to finish them as early as possible.
For each configuration, we also compute an upper bound on the achievable
performance (the Iterative Bound of Chapter 3.4), which is obtained by solv-
ing a preemptive relaxation of the problem, expressed as a (rational) linear
program. This upper bound is stronger than the commonly used GEMM peak
bound, and provides a good hint on how well the task graph is suited to each
particular platform.

In addition, we also compare the Cholesky factorization performance in

Task based scheduling on heterogeneous resources 85

4.4. Experiments and Results

SYRK

POTRF

POTRF

GEMM

TRSM

GEMM

TRSM

GEMM

GEMM

TRSM

TRSM

SYRK

TRSM

SYRK

POTRF

SYRK

TRSM

SYRK

SYRK

POTRF

(a) Cholesky Factorization DAG

GEQRT

TSQRT ORMQR

TSMQR

TSQRT

TSQRT

TSMQR TSMQR

TSMQR TSMQR

TSMQR

TSQRT

TSMQRTSMQR

TSQRT

TSMQR TSMQRTSMQR

ORMQR

TSMQR

ORMQR

TSMQR

ORMQR

TSMQR

ORMQRORMQR

GEQRT

GEQRT

TSQRT

GEQRT

(b) QR Factorization DAG

Figure 4.2: Application task graphs for 4 ×4 tile matrix.

actual executions. For the heft based algorithm, we use the implementation
available in StarPU which is based on the minimum completion time heuristic
to schedule tasks on computational unit – thus a representative of state of the
art heft heuristic. For HeteroPrio, in order to ease the implementation of the
spoliation feature, we compute an offline HeteroPrio schedule in simulation

86 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

mode and run this schedule with StarPU runtime system in real execution,
with dynamic adaptations discussed in Section 4.4.4.

4.4.3 Simulation Results & Analysis

The obtained results are shown in Figure 4.3 for Cholesky factorization, and
in Figure 4.4 for QR factorization. Each column represents a given scheduling
algorithm, and each row corresponds to a matrix size, expressed as the number
N of tiles of size 960 in each row or column. Each dot corresponds to one given
configuration, with the y axis showing the obtained performance, expressed in
GFlop/s. The x axis represents the number of clusters in each configuration:
this goes from 2 for the configuration with 2 groups of 10 cores, to 20 for the
configuration with 20 single-core clusters. Configurations with small number
of clusters thus have larger clusters, and correspond to the instances where
the heterogeneity of the whole platform is lower (since CPU clusters achieve
performance close to the one of a GPU). On the other hand, configurations
with a larger number of clusters are more heterogeneous. For each scheduling
algorithm, a horizontal line shows the performance with individual CPUs and
GPUs (without CPUs clustering, i.e. 20 clusters) and acts as a reference line
for performance comparison.

heft HP with Area HP with Het.Index Upper bound

● ●●
●●● ●
●
●

● ●●●●

●●
●

●●●
●
● ●●●
●

● ●
●●
●
●

●●
●●

●●

●
●●

●●
●●

●●

●

●

●
●
●●

● ●
● ●●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●
●●

●
●●

●
● ●●

●●
● ●●

●

●● ●●
●●

●

●
●●●

●
●

●
●●

●
●

●

● ●●●

●

●
●
● ●●●

●

●● ●

●

●● ●
●●

●

●

●
●

●
●

●●
●

●
●
●
●
●

●●●●
●

●
●●●
● ●

●●
●

● ●●

●

●
●

●
●●
●●

●

●

●
● ●
● ●

●●

●

●

●
●

●
●

● ●●

●
●

●
●

●

●●
●●●●
●

●

●

●●

●●●
●

●
●●●
● ●●

●●

●
●

●●
●
●●●

●
●
●●

●●
●
●

●
●

●
●
●
● ●

●

●

●●
●
●

●●●
●●
●●

●

● ●●●
●●
●●●

●●

●

●

●

●

●●●●
●

●
●●
● ●●

●
●
● ●●●

●● ●
●●
●●●

●● ●
●

●

●

●
● ●●

●

●

●
●

●
●
● ●●
●

●●

●

● ●
●

●

●●
● ●●●

● ●

●
●●

●
●

●
●
●

●

●●●●
●●●

●
● ●●

●●
●

●

●
●●

●

● ●

●
●

●● ●
●
●

●●

●

●
●
● ●●

●

●

●●
●

●
●●

●

●
●●

●
●

●
●
● ●

●
●

● ●
●

●

●
●

●
●

●●

●

●●●
●

●
●

●

●

●
●●

●

●●
●

● ●●

●

●
●
●
● ●

●
●
●●

●
●

●

●
●●

●
●

●●
● ●

●
●

● ●

●

● ●

●

●

● ●●

●

●
●
●

●●

●
●

●

● ●

●

●
●

● ●
●
●

●●

●

●
●● ●●●

●
●

●

● ●●

●

● ●●
●

●● ●
●
●

●●

●

●
●●

●

●
●
●

●

●
●
●●

●
●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●●●
● ●

●
●

●
●●

●●

●

●●●●

●
●●
●

●

●

●

●
●

●
●●●
●
●
●

●

●

●

●●

●
●●
●
●●

●

●

●●

●

●

●
●

●
●
●

●

●
●
●●

●

●

●●●
●

●●●●

●●

●
●
●

●●
●

●
●

●

●

●●
●

●

●
●

●

●●

●

●

● ●

●

●

●

●●●●
●

●

●

●●

●

●

●
●

●●

●
●

●
●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●●
●
●●
●●

●
●

●
●
●

●●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●●● ●
●●

●

●
●

●
●
● ●

●

●

●

●

●
●

●

●●●
●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●●

●
●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●● ●

●
●

●
●

●

●
●●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●
●●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●●
● ●

●●

●

●

●

●
●
●
●

●
●

●●●

●

●

●

● ●
●

●
●
●

●

●

●●
●

●

●
●

●

●
●

●

●
●●●

●

●

●

●● ●

●●
●

●

●

●

●
●

●●

●●
●●

●

●
● ●
●

●

● ●

●
●●●

●
●
●
●●

●
●

●●

●

●

●

●

● ●

●

●●● ●

●

●
●●

●
●

●
●
●
●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●

●

●●

●

●

●

●
●● ●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●●
● ●

●

●
●

●
● ●●

●

●
●

●

●
●
● ●

●
●

● ●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●
●

●

●
●●●

●
●●
●

●

●●

●●

●
●●

●●
●

●

●●

●

●
●

●
●●
●
●

●

●

●

●● ●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●

●

●●●●

●●●

●
●

●

●●

●●

●

●

●
●

●

●

●●

● ●

●

●

●●
●●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●
●
●

●

●●●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●
●

●

●

●●

●
●●

●●

●

●

●

●
● ●
●

●●
●

●
●

●●●●●
●
●

●
●

●
●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●●
● ●

●
●●
●

●●●
●●

●●

●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●● ●●

●

●

●

●●

●
●●

●

●
●
●

●

●

●●

●●

●●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●
●
●

●
●

● ●

●
●

●

●

●

●
●

●

●
●●

●

●●●
●

●

●

●

●

●

●
●
●
●

●

●

●
●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●
●

●●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●

●

●●
●

●

●

●
●

●

●
●
●

●
●

●

● ●●

●

●
●●

●

●

●

●

●●
● ●

●
●
●
●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

● ●●●

●
● ●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●● ●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

● ●

●

●●
●

●
●

●

●
●

●●
●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●
●● ●●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●● ●
●

●● ●

●

●●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●

●●

●

●

●

●

●

● ●
●●●●

●

●●
●

●

●

●

●

●

●●
●
●●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●●
● ●

●

●
●
●

●
●●●

●
●

●

●
●

●
● ●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●
●
●

●

●
●●

●●
●●

●

● ●●●

●

● ●●

● ●●

●

●●

● ●
●●

●

●

●
●

●

●
●

●
●
●●

●

●

●●
●

●
●

●

●
●
●

●

●

●●
●

● ●
●●

●

●

●

● ●
●

●

● ●●

●

●
●●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●●

●●
●

●
●

●

●

●

●
●

●
●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●
●●

●

●

● ●

●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●
● ●

●●

●●

●●

●

●

●
●●

●
●●

●

●●
●
●

●
●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●

●

●

●
●
●●

●
●

●
●
●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●
●
●

●

●
●

●

●

●

●●● ●

●

●●
●

●●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●●

●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●●

●●●

●
●

●

●

●

●
●●
●
●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●

●●

●
●

●
●

●

●
●
●

●

●

●●●
●

●
●●

●

●
●

●
●●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●
●
●●

●●

●

●

●● ●

●

●

●

●

●

●●● ●
●

●●

●●

● ●
● ●
● ●

● ●

●●
●

●

●
●

●
●
●

●●●

●
●

●

●

●

●
●

●

●
●● ●

●

●
●●

●

●

●●●

●

●

●

●●
●

●

●

●
●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

● ●
●● ●

●

●

●

●● ●

●
●●

●

●
●●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●●

●●
●

●

●●

●
●
●

●
●

●●
●

●
●●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●

●

●

●

●● ●

●

●●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●●
●●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●
●
●

●

●
●

●●●

●
●●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●
●

●

●

●●
●

●

●
●
●

●

●
●●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●●

●

●●●

●
●

●●

●●

●

●●●●
●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●
●

●
●

●

●●

●
●
●●

●

●
●●

●

●

●
●

●

●

●

●●

●

●●
●
●●

●
●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●
●

●●

●

●

●●
●

●
●●

●

●

●●
●

●

●
●
●

●
●

●

●● ●

●

●
●

●

●
●●

●

●
●
●
●●

●
●

●●
●

●

● ●

●
●

●

●
●
●

●

●

●●●
●●

●

●

●
●

●

●

●●

●

●

●
●
●

●
●

●

●● ●

●

●● ●

●
●
●

●

●

●● ●

●

●
●
●

●

●
●
●
●

●
●

●

●

●
●

●●

●

●● ●

●
●● ●

●

●●
●

●

●

●●● ●●

●

●

●●
●

●
●
●

●

●

●

●
●

●●

●

●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●●
●

●●●●

●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●

●

●

●
●

●

●
●
●
●

●●●●

●

●
●
●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●
●

●
●●

●
●

●

●
●
●●
●

●

●

●

●●
●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●
●●
●

●

●
●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●● ●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●●●

●

●
●●

●

● ●
●
●

●●

●●

●

●

●

●

●●●
●
●
●

●
●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●

●
●

●

●
● ●

●
●●

●
●●
●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●● ●
●

●
●
●

●

●

●
● ●

●

●
●

●

●

● ●
●
●

●

●

●

● ●●

●

●
●● ●

●
●
●●

●●

●

●
●●

●

●

●
●

●

●

●
●

●
●

● ●

●

●●●
●
●

●

●
●

●

●
●
●

●

●●●

●●●●
●

●

●
●
●●

●
●●

●
●

●●

●
●

●
●●
●
●●●

●●

●
●●

●●●
●

●●
●

●

●●
●

●

●●

●●
●●

●

●●●

●

●

●

●●
●

●

●●
●

●
●
●
●
●

●●●

●
●

●

●

●● ●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●

●
●●

●
●
●

●
●
●●

●
●
●●

●

●

●●

●

●

●
●

●●
●

●
●

●

●

●
●
●

●●●●

●

●●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●
●

●●
●

●
●

●●
●

●

●●●

●
●

●

●
●

●●

●

●

●●

●

●

●
●

●

●
●
●

●
●

●●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●
●
●
●
●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●●
● ●

●
●

●
●

●●
●●

●

●

●

●●●

●●●

●

●

●
●

●
●

●

●
●
●●
●●

●

●

●●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●
●

●● ●

●
●

●

●

●
●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●
●●

●●

●

●

●●

●

●

●●

●

●

●

●●● ●
●

●

●

●●

●●

●●●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●
●

●●

●

●●

●
●

●
● ●

●
●

●●

●
●
●

●
●

●●●

●●

●

●

●
●

●

●

●●

●
●

●

●
●●

●

●

●●
●●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●●
●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●●
●

●
●

●

●
●

●

●●

●
●

●●
●

●

●●

●

●

●

●●●

●
●

●

●

●●

●●
●●

●
●

●●
●

●●

●●

●●
●

●

●
●

●

●

●●
●
●

●

●

●

●●
●
●●

●

●

●

●

●●

●●

●

●

●

●
●
●●●

●

●●
●
●

●●●

●

●

●
●

●●

●

●
●

●

●●
●

●●

●

●

●

●●
●

●
●

●

●

●

●
● ●

●●

●

●●

●
●

●

●
●
●

●

●

●
●

●

●

●

●
●
●

●●●

●

●

●●

●●●

●

●

●
● ●

●

●

●
●

●

●

●●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●●●

●

●

●
●

●

●

●
●

●●●
●●

●

●

●
●●

●●●

●

●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●●

●

●

●●

●

●●
●

●

●●
●

●
●

●

●
●

●

●●●

●
●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●
●

●

●

●●

●

●

●●

●
●

●●●

●

●

●●
●
●●

●

●

●●

●

●

●
●

●

●

●

●●

●
●
●

●

●●

●
●●●
●

●

●

●●
●

●●●

●

●

●

●

●

●
●

●●
●●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●
●

●

●
●

●

●●
●

●

●●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●
● ●

●

●

●

●●

●●
●●

●●

●

●

●

● ●
●
●
●

●

●

●
●

●

●●

●

●

●
●

●

●●

●
●

●
●

●

●

●●

●

●●●

●

●

●●

●
●●

●

●

●
●

●

●

●●

●

●

●

●●●
●
●

●

●●
●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●●
●●

●

●

●

●

●● ●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●● ●

●

●
● ●

●

●●

●

●

●

●●
●

●
●

●

●

●
● ●

●

●
●

●

●

●●● ●●
●

●

●● ●● ●●
●

●
●
●

●● ●
●

●

●●
●
●
●

●

●
●

●

●●●● ●

●

●

●●●●●
●

●●●●
●●●●● ●

●

●
●

●●●●●●●
●●

●
●●

●●●●●● ●●
●●

●
●

●

●
●●●● ●●●●

●
●

●●●
●●●●●

●●●●● ●
●●●● ●●
●●

●

● ●
●
●

●● ●
●●

●
●

●

●

●●●●
●
●●

●●●

●
●

●
●●●● ●●●●

●
●

●●●
●

●

●

●●●●●
●

●●●●
●●●●● ●

●

●
●●

●●●●●● ●●
●●

●

●●●
●

●
●●●

●
●●
● ●

●
●

●●

●

●
●●

●●
●

●●●●●●●
●●

●
●●

●●●●●● ●●
●●

●
●
●

●
●●●● ●●●●

●
●

●●●
●●●●●

●●●●
● ●

●●●● ●●
●●

●

●
●
●

●
●● ●
●●

●
●

●

●

●

●●●●●
●

●●●●
●●●●
● ●

●

●
●●

●●●●●● ●●
●●

●

●●●
●

●
●●●

●
●
●
● ●

●
●

●●

●

●
●●

●
●
●

●
●●●● ●●●●

●
●

●●● ●
●●●
●

●●●●
● ●

●●
●
● ●
●

●●

●

●
●
●
● ●
●

●
●●

●
●

●

●
●
●

●●●
●
●
● ●
●

●●

●

●
●●

●
●

●
●
● ●
●
●
●

●
●

●

●●

●

● ●●

●

●●●
●

●
●●
●
●

●
●●

●
●

●
●

●●

●
●

●●
● ●
●

●●
●

●
●

●

●
●●

●
●

●●
● ●

●
●
●

●●

●

●●

●

● ●●

●

●
●
●

●
●

●●

●
●

●●
● ●
●

●●
●

●
●

●

●
●
●

●●

●

●●

●

● ●●

●

●

●●
● ●
●

●●
●

●
●

●

●

●●

●
● ●●

●
●

●●
●

●
●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●●

●●●●

●

●
●

●●●●●

●

●●
●

●

●●●
●
●

●●

●
●

●●●
●●
●

●

●●

●
●
●

●●●●●●

●

●

●● ●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●●
●

●

●●●
●
●

●●●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●

●
●●
●
●
●
●

●●●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●
●

●●●●●

●

●●
●

●

●●●
●
●

●●

●
●
●

●●●●●●

●

●

●● ●
●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●

●
●

●●●
●●
●

●

●●

●
●
●

●●●●●●

●

●

●● ●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●●
●

●

●●●
●
●

●●
●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●

●●●●●

●

●●
●

●

●●●
●
●

●●

●
●
●

●●●●●●

●

●

●● ●
●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●

●

●●

●●●●

●
●●●

●

●

●●
●

●

●●
●

●

●●●
●
●

●●
●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●
●

●●●●●●

●

●

●● ●
●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●

●●
●

●

●●●
●
●

●●
●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●●●●

●

●

●●
●

●●
●
●

●●

●

●● ●●
●● ●●●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●
●

●●

●

●● ●●
●● ●

●

●●
●

●

●

●●● ●●
●

●

●● ●●
●● ●

●

●●● ●●
●●

●● ●● ●●
●

● ●●
●
●

● ●

●

●
●
●

●

●

●

●

●●

●●
●●

●

●
●

●
●●●●

●

●
●●

●

●●●
●●

●●

●
●

●●●
●

●●

●

●●

●
●

●

●●
●●●●

●

●

●● ●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●

●
●
●●

●
●

●

●●
●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●

●
●●●●

●

●
●●

●

●●●
●●

●●

●
●

●

●●
●●●●

●

●

●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●●

●●●
●
●●

●

●●

●
●

●

●●
●●●●

●

●

●● ●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●

●
●●●●

●

●
●●

●

●●●
●●

●●

●
●

●

●●
●●●●

●

●

●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●

●●

●●
●●

●

●●●

●

●

●●
●

●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●●
●

●
●

●

●●
●●●●

●

●

●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●
●●

●

●●●
●●

●●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●● ●

●●●

●

●

●●
●

●
●
●●

●●

●

●● ●

●

●● ●

●
●●

●

●

●● ●

●

●●
●

●

●

●●● ●● ●
●
●●

●●

●

●● ●

●

●● ●

●

●●
●

●

●

●●● ●● ●

●

●● ●

●

●● ●

●

●●● ●● ●
●

●● ●● ●● ●
● ●● ●

● ● ●

3000

3500

4000

4200

4400

4600

4800

4500

4600

4700

4800

N
: 12

N
: 24

N
: 32

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Number of clusters in configuration

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

All configurations for Cholesky

Figure 4.3: Performance results for all configurations for Cholesky factoriza-
tion.

For Cholesky factorization (Figure 4.3), we can make the following obser-
vations. HeteroPrio variants performance is better than heft performance for

Task based scheduling on heterogeneous resources 87

4.4. Experiments and Results

heft HP with Area HP with Het.Index Upper bound

●

●
●●●
● ●
●
●

●
●

●
●● ●●

● ●●●
●
●

●●
●●●

●
●●●

●

●
●

●

●
●
●

●●●●
●

●

●

●

●
● ●

●●
●

●

●
●

●

●

● ●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●●

●
●

●

●

●

●●
●●

●

●

●
● ●●

● ●
●

●

●

●

●● ●

● ●
●●●

●
●● ●

●

●
●
●
● ●

●
●

●
●●

●

●

●
●

●●

● ●

●● ●
●

●

●

●

●

●●
●

● ●

●

●●
●

●
●

●

●

●

●●

●
●

●●
●

●

●
●

●
●
●●

●

●

●
●●

●
●

●
●

●●
●

●
●

●

●

●

●

●●

●

●
●●●
●●
● ●

●

●

●

● ●●

●●●●
●

●
●

● ●

●

●
● ●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●●

●

● ●

●

●

●

●

● ●
●
● ●

●

●

●
●

●● ●

●● ●
●
●
●
● ●
●

●

●●
●

●

●

●●
●
●

●

●
●

●

●
●●●●

●

●
●●

●

●

●●
●

●

●●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●
●

●
● ●

●
●●

●
●●●

●●

●●●
●

●

●
●
● ●●

●
●● ●

●

●

●

●
●

●
●

● ●●

●

●

● ●●
●

●

●

●

●

●●●●

●

●●

●

●●
●

●
●●

●

●

●●

●● ●

●
● ●

●
●● ●

●
● ●● ●

●

●

●

●

●

●
●

●
●●

●

●

●

●●
●
●●

●●
●●

●●
●

●
●

●

●

●

●●

●

●

●●

●
● ●
●

●
●
● ●●

●●
●

●

●
●

●

●
●

●

●

●

●
●
●

●●
●

●

●

●
●
●

●
●

●

●●●
●

●

●
●
●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

● ●●

●
●

●
●

●

●

●●

● ●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●
●●●

●●●●
●

●●
●●●●●

●
●●●●

●●
●●
●

●
●

●●
●●●
●●●●

●●●●●

●
●●
●
●
●

●●
●●

●

●
●●

●●●
● ●●●●

●

●

●
●● ●

●●●● ●

●●
●
●

●
●

●●● ●●
●●

●

● ●●

●
●

●
●●
●

●
● ●

●

●●
●
●●●
●

●●
●●●●

●●●
●

●●●●

●●

●●●
●

●●
●●●
●●

●
●
●●●

●●●●
● ●

●

●●●

●●●
●●●

●●
●●

●
●●●

●
●

●●●
●●●●
●●

●

●
●

●●
●●

●

●●

●●●
●●
●●

●●
●●
●

●●
●

●●●

●

●

●●
●

●●
●

●
●●
● ●
●
●
● ●
●

●●● ●●
●
●
●

●●●●
● ●

●
●●●

●
●

●●
●

●

●●●
●●

●
●
● ●●

●

●
●

●●
●●

●

●
●

●

●
●

●

●

●
●
●

●●●●● ●●●
●●●

●●
●
●

●
●●● ●●

●
●
●

●
●
●●

●
●●
●●

●
●

●
● ●

●●
●

●
●

●

●

●●

●

●

●
●

●

●●
●●●●●

●●●
●● ●●●
●

● ●● ●
●

●
●

●
●
●

●
●

●●●
●● ●

●●

●
●●

●

●●

● ●●

●

●

●●
●●

●
●

●
●●

●

●
●
●

●●●
●● ●

●

●●

●

●
●

●
●

●

●

●

●● ●

●
●
●

●
●●

●
●

●

●
●●
●

●
● ●●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●
●●● ●

●
●●

●

●

●

●

●

●
●●

●
●

●
●

●
●
● ●●

●
●●

●● ●
●

●●
●

●
●

●● ●
●

●
●

●

●

●

●
● ●

●

●
●● ●

●

●

●

●

● ●

●

●● ●

●

●

●●
●

●
●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●●●

●●●●

●

●●

●●●●●
●●●●●
●●
●●●

●

●

●
●

●●●●●●●
●●●●●

●●●
●
●●

●●

●

●

●

●●●

●●●●
●●

●●

●
●

●●
●

●

●●
●
●

●●
●●●

●●

●
●

●

●
●

●●

●

●

●●
●

●

●
●
●●

●●

●

●

●●●●●●●
●
●●●

●●

●●●●

●
●●●

●
●

●●●

●

●
●

●
●●●●

●●●●●
●●
●
●●

●
●

●●●

●●●

●
●●

●
●

●
●

●

●●●

●

●

●
●●

●

●●●

●●

●
●

●

●

●

●●

●

●
●

●
●●●●●●

●
●

●●●

●
●●
●●●

●●
●
●

●

●●
● ●●●●

●
●
●●

●
●

●●●

●

●●●●
●
●
●●●

●●
●●●

●
●

●●

●

●
●●

●
●●
●●●

●●

●

●●
●●●●●

●
●

●
●●

●●
●
●
●

●●

●●●

●
●●
●●●

●

●

●
●

●

●
●●

●
●

●●●
●●●●
●
●

●
●●

●

●

●●
●

●
●●

●●●●
●

●●●
●

●

●
●●

●

●●●●

●●●●
● ●

●

●●●

●

●

●
●

●

●

●
●
●

●
●

●●●
●●

●

●●●

●●●●●
●

●
●

●●
●

●●●

●
●

●
●●

●
●●●

●●
●

●
● ●●

●●
●

●●●●

●●●●●
●●

●●
●

●
●

●●
●

●

●●●
●

●
●●● ●

●
●

●
●●

●
●

●●●

●
●●●

●●

●

●●
●

●
●●

●

●●●

●
●

●
●

●

●

●●●
●

●
●●●

●
●

●

●●●

●●

●

●●
●

●

●● ●

●

●●
●

●● ●●
●

●●
●

● ●●

●

●

●
●

●

●
●●●

●● ●

●
●●

●

●
●● ●

● ●
● ●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●

●
●

●
●●

●

●
●● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●●● ●
●

●

●
●

●●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

● ●
●

●

●
●

●
●

●

●
●
● ●

●●
●

●●

● ●

● ●
● ●●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●●

●●

●

●
●●

●

●●

●

●●

●

●
●●

●

●

●
●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●●

●
●
●●

●

●

●
●●

●
●

●
●

●

●
●

●
●

●
●●●●

●

●

●

●
●

●

●
●
● ●

●
●
●● ●
●

●●
●

●
● ●

●

●●
●

●
●

●

●

●
●●●

●●

●
●

●
●

● ●●

●

●
●●

●

● ●
●

●

●

●

●
●

●

●
●●
● ●● ●

●

●

●
●
●

●

●● ●

●

●

● ●

●

●
●●

●

●

●
●
●

●
● ●

● ●

●
●● ●
●

●
●

●
●

●

●●
●● ●●
●●
●●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●
●
●

●

●
●
●

●

●●

●

●
●

●
●

●

●●

●● ●

●●●●
●●

●

●

●

●●
●●
●●

●

●

●

●

●

●
●●

●

●●

●

●
●● ●

●●
●

●

●

●●
●

●

●●
●

●

●●●
●

●

●

●●
●●
●
●●

●●

●
●●

●● ●
●

●

●
●
●●

●
●

●●● ●
● ●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●● ●

●

●●
●

●
●
●●

●

●
●

●

●

●

●●
●

●●

●
●

●
●

●●

●
●●

●
●

●

●●

●
●●●

●
●

●● ●

●

●●
●

● ●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●●●
●

●
●● ●

●
●

●

●●●
●

●

●
●●

●

●

●●
● ●

●

●●

●

●●
●

●

●
●●

●●●
●

●

●

● ●
●

●●● ●

●
●●●

●● ●

●

●

●●●●
● ●

●
●●
●

●
●

●●●
●●

●●● ●
●
●●●●

●

●

●●
●

●
●

●

●

●

●
●●

●●
●●

●
●

●

●● ●
●

●● ●

●

●
●

●

●●
●

●

●●● ●●

●

●

●

●

●●
●●

●

●

●

●
●

●
●

●●●
●

●

●● ●

●

●
●●

●

●

●
●● ●● ●

●●●
●●●●
●●

●● ●●
●

●●●
●

●
●

●
●

●
●●
●

●●● ●● ●● ●
● ●●●●●

●
●●●●

●●
●

●●
●

● ●●
●

●
●●●

●●
●●
●

●
● ●

●●● ●
●

●●●

●
●●●

●
●

●
●● ●● ●●

●

●●
● ●

●

●● ●
● ●

●
●

●
● ●

●● ●● ●
●●● ●●

● ●
● ●
●

●● ●

●
●●
● ●

●
●●
●

●● ●
● ●● ●

●
●● ●● ●●
●

●
●

●● ●● ●
● ●● ●

●
●●

●
●

● ●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●
●●●

●●

●●

●

●

●

●

●

●
●

●
●

●
●

● ●

●
●

●●●
●

●

●●
●

●

●

●

●

●●
● ●

●●●
●

●

●●●
●

●●●●
●●
●●●

●●
●●●

●

●

●●
●

●

●●●

●

●
●●●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●
● ●

●●●

●

●

●●●
●

●

●

●

●

●●
●

●
●●●●

●●
●●●

●●

●●
●

●●
●
●
●
● ●
●

●
●

●
●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●

●

●

●
●
●
●●
●

●
●●●●

●
●●

●●●
●

●

●● ●

●●●
●●●●

●
●●●

●

●
●●●

●
●●●●

●●●●●

●●

●●●
●

●

●●
●

●

●●●
●

●

●●●
●● ●

●
●

●
●

●●
●

●

●●●●

●●
●●

●
●●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●● ●

●●●

●●●●
●

●●●

●

●

●●●

●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●

●●●
●●

●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●● ●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●

●

●●●
●

●●●

●●

●

●● ●
●

●●
●

●●●
●

●

●●
●

●

●●●
●

●
●●● ●●

●

●
●●

●●

●

●●
●

●

●●
●

●
●●●

●

●
●●●

●● ●

●

●●
●

●
●●

●

●
●●●

●●
●

●
●●

●
●

●●
●

● ●●
●●

● ●

●

●

●

●●
●

●

●●
●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●
●
●
●

●
●

●
●●

●
●

●
●

●●●

●

●

●

●

● ●

●●●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●
●● ●

●

●
●

●
●●

●

●

●

●

●●●

●●
●

●
●

●

●
●

● ●

●
●
●

●●●

●●

●●

●

●
●●
●

●

●
●
●

●

●● ●

●

●

●

●●
●●

●

●●

●

●
●
●
●

●

●

●●●

●●

●

●

● ●

●

●
●

●
● ●

●
●●

●

●
●● ●
●

●

●

●
●●

●
●

●
●● ●●

●

●

●
● ●

●●

●
●●
●

●
●●

●

●

●●

● ●
●
●●
●●

●

●

●●
●

●
●●

●

●

●

● ●

●
●

●
●

●
●
●●

●

●
●●

●
●
●●●
●

●

●
●
●
● ●

●

●
●

●

●
●

●

● ●

●
●
●
●

●●

●

●

●

●

●

●●
●

●

●

●●●

●●
●●●

●

●
●

●
● ●

●

●
●●●

●● ●● ●

●●●
●●
●

●

● ●

●
●●

●●

● ●
●

●

● ●
● ●

●

●
●

●●●

● ●

●

●●
●●
●
●●

●

●

●

●
● ●

●

●●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●●

● ●
●●●
●
●

●

●
●

●

●

●●●
●

●

●●

●

●

●●
●

●●

●
●
●

●

●
●

●

●

●

●

●
● ●

●●●
●

●
●

●●
●

●●
●●

●

● ●●●
●

●

●
●● ●

● ●

●●
● ●● ●

●
●

●

●●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●● ●

●

●●●
●

● ●
●●

●
●

●

●●
●

●
●

●

●

●

●
● ●●

●

●

●

●
●

●

●

●●●

●●
●

●

●

●
●

●

●● ●
●

●●●
●
● ●●
●
●

●
● ●

● ●
●

●●
●● ●

●

●

●

●●●

●

●

●●
●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●●

●
●●●●

●●

●●

●

●

●

●●

●●

●
●

●●

●

●
●●

●

●●
●● ●
●

●

●●●

●

●

●
● ●

●

●● ●
●

●

●●
●

●●

●
●

●
●●●● ●●●●● ●●

●
● ●● ●

●
●

●● ●●● ●● ●

●

●
●●●

●●

●

●

●

●

●
●●

●

●●

● ●

●
●

●
●

●
●●●

●

●
●

●
●

●●

●
●

●●
●

●
●
●●●● ●

●

●
●

●

●

●●

●

●● ●●
●● ●

●
●● ●●

●
●● ●●●● ●

●
●

●●
●● ●
●

●

●●

●

●

●

●
●

●
●

●●

●
●

●

●

●●

●

●● ●● ●●
●

●●●

●●●
● ●

●

●●
●●

●
●● ●

●●

●
●

●●●●● ●
●●

●● ●● ●●
●●

●●
●

●● ●●
● ●●

●

●●

●●●

●● ●

●●

●●

●
●●●●

●●

●
●

●

●

●
●●●
● ●
● ●●

●

●
●● ●●

●
●
●

●●
●● ●●●

●● ●●
●
● ●

●
●●

●

●
●● ●

●
●● ●●

●
●
● ●

●
●
●●

●

●
●●● ●●
●
●
● ●
● ●

●
●●

●
●●

●
● ●●

●
●
● ●

●
●

●
●

●●
●●
●

●●
●●

●
●
●
● ●● ●●●

●
●●● ●●●

●● ●● ●
●

●
●
●

●
●

●
●●
●● ●

●●
●● ●
● ●● ●

●
●
●● ●●

●
●● ●●

●
●●●

●

●

●●●
●

●●●
●●

●
●

●
●

●

●
●

●
●●● ●●

●
● ●● ●●● ●
●

●●
●

●
●

●
●

●
● ●●● ●

●

●

● ●●
●

● ●●● ●● ●●
● ●● ●●
●
● ●● ●

● ●

● ●
●● ●●

●●
●● ●●

●

● ●
●

●●
●● ● ●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●
● ●

●●●
●

●●

●●

●

●

●

●●

●
● ●

●

●
●

● ●
●●

●

●
● ●● ●

●
●

●●●

●

●

●
● ●
●

●● ●
●

●

●●
●

●●

●
●

●
●●●
● ●

●
●

●
● ●● ●

● ●
● ●●●

●● ●
●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●●
●

●

●●
● ●

●●
●

●●

●
●●

●

●●

●●

●
●

●
●

●●
●

●

●
●●●
● ●

●

●
●●

●●●

●
●● ●● ●

●
●●

●●
●●
●
●●

●●●● ●●
●

●● ●● ●
● ●

●●

●

●
●●●●

●
●
●

●
●
● ●●●

●

●●
●

●
●●

●

●●
●

●

●
●
●

●●
●●

●
●

●
●●

●●●

●●

●
●●●● ●●
●
●●

●
●

●●
●

●

●
●● ●● ●●● ●

● ●

●●

●
●

●

●●

●●●

●●

●●●●●
●●●●

●

●

●●
●

●●
●

●
●● ●

●
●
●

●
●

●
●● ●●●● ●●●

●● ●● ●
● ●

●
●●

●
●
●
●

●●
●
●

●
●

●
●● ●●●

●●

●
●●●●

●●
●

●●
●

●
●● ●●

●
●
● ●● ●●

● ●
● ●

●●
●

●

●●
●
●●

●
●

●● ●
●
●
●

●
●

●
●● ●
●●● ●●●

●● ●● ●
● ●

●●
●●

●
●●●● ●●
●

●●
●

●
●● ●●

●
●● ●● ●●● ●

● ●

●
●
●

●
●

●●
● ●●●● ●●●

●● ●● ●
● ●●

●
●

●
●

●●
●●

●●
● ●
● ●●● ●

●
●

●●● ●
●

●
●●

●
● ●● ●

●
●●
● ●
●

●●
●

●●
●

●

●● ●● ●
●

●●
●●● ●●

●
● ●

● ●● ●● ●●
●
● ●●

●
●

●

●
●

●
●

●
●

●●
●

●●●●
●

●
●

●●●●●
●

●●●●
●●●●● ●●

●
●

●
●●●●●●

●●
●●●

●●●●●● ●
●

●● ●

●●●
●●●●

●●●●
●

●
●●● ●

●●●●
●●●●● ●●
●●●

●
●

●● ●
●

●●● ●
●

●●● ●● ●

●

●

●●●●●●
●●●

●●●
●●●●

●●●●
●

●
●●● ●

●●
●●●●●

●
●●●●

●●●●● ●●
●●●

●●●●●●
●

●
●● ●

●●●
●

●
●●● ●
●●●

●●
●

●● ●
●

●● ●

●●
●●
●●●●●

●●
●●●

●●●●●●
●

●
●● ●

●●●
●●●●

●●●●
●

●
●●● ●

●●●●
●●●●●

●●
●●●

●
●

●● ●
●

●●● ●
●

●●● ●● ●

●●

●●●●●
●

●●●●
●●●●● ●●

●●●
●●●●●●

●
●

●● ●
●●●

●
●

●●● ●
●●●

●●
●

●● ●
●

●● ●

●●●

●●●●
●●●●
●

●
●●● ●

●●●●
●●●●●

●●
●●●

●
●

●● ●
●

●●● ●
●

●●● ●● ●

●●
●

●●●●●●
●

●
●● ●

●●●
●

●
●●● ●
●●●

●●
●

●● ●
●

●● ●

●●●
●

●●●●●
●●

●●●
●

●
●● ●

●
●●● ●
●

●●● ●● ●

●
●●

●
●

●●● ●
●●●

●●
●

●● ●
●

●● ●

●●
●

●
●

●● ●

●
●●● ●

●
●●● ●● ●

●●●
●●

●
●● ●

●
●● ●

●

●●●
●

●
●●● ●● ●

●

●●
●

●
●● ●

●

●●● ●● ●

●

●● ●

●

●● ●
●

●● ●● ●
●

●

●●

●
●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●●

●●
●●●

●●

●
●

●

●

●

●
●

●●

●●

●
●

●

●
●●●
●●

●
●

●●
●

●
●
●

●●
●●

●

●
●●

●
●

●●●
●

●
●
●●

●●●●●
●●●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●

●

●●

●

●
●

●

●
●●

●
●
●

●
●
●●

●

●

●●

●
●

●●●
●

●
●

●
●
●

●●

●

●
●
●
●

●●
●●●

●●

●
●

●

●●●
●●●

●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●
●●
●●●

●

●

●●
●

●
●
●

●
●●●

●●●●

●

●

●●●
●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●
●

●●
●●●

●
●●●●

●●●●●
●●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●●●

●●●●
●

●●●

●

●

●●●
●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●●●

●

●

●●●
●

●●●
●●

●

●●
●

●
●●

●

●●●
●

●

●●
●

●

●●●
●

●
●●●

●●
●

●●●
●●

●

●●
●

●
●●

●

●

●●●
●

●
●●●

●●
●

●

●●
●

●
●●

●

●
●●●

●●
●

●
●●

●
●

●●
●

●
●●

●● ● ●

●

●●

●
●

●

●

●
●

●

●
●
●●

●

●

●

●
●
●

●●

●

●
●
●
●

●●
●●●

●●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●●●
●●●

●

●

●●
●

●
●

●

●
●●●

●
●●●

●

●

●●●
●

●●●●

●●●●●

●●

●●●

●

●

●●
●

●

●●●
●

●

●●●
●●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●
●●●

●
●●●

●

●

●●●
●

●

●

●●
●●●

●
●●●●

●●●●●
●●

●●●

●●●●●●
●

●

●●
●

●●●

●

●

●●●
●

●●●

●●

●

●●
●

●
●●

●

●
●

●

●●
●●●●

●●
●●●

●●●●●●
●

●

●●
●

●●●

●●●●
●

●●●

●

●

●●●
●

●●●●

●●●●●

●●

●●●

●

●

●●
●

●

●●●
●

●

●●●
●●

●

●●

●●●●●

●
●●●●

●●●●●
●●

●●●

●●●●●●

●

●

●●
●

●●●

●

●

●●●
●

●●●

●●

●

●●
●

●
●●

●

●●●

●●●●

●

●●●

●

●

●●●

●

●●●●

●●●●●

●●

●●●

●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●●●●●●

●

●

●●
●

●●●

●

●

●●●

●

●●●

●●

●

●●
●

●

●●
●

●●●●

●●●●●

●●

●●●

●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●

●

●●●

●

●●●

●●

●

●●
●

●

●●
●

●●●

●

●

●●
●

●

●●●

●

●

●●●
●●

●

●●●

●●

●

●●
●

●

●●
●

●

●●●

●

●

●●●
●●

●

●

●●
●

●

●●
●

●

●●●
●●

●

●

●●
●

●
●●

●
●

●●
●● ● ●

1000

1100

1200

1300

1400

1750

2000

2250

1700

1900

2100

2300

N
: 12

N
: 24

N
: 32

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Number of clusters in configuration

P
er

fo
rm

an
ce

 (
G

F
lo

p/
s)

All configurations for QR

Figure 4.4: Performance results for all configurations for QR factorization.

all considered matrix sizes as expected. The heft algorithm requires a rel-
atively small number of clusters to achieve good performance, showing that
this algorithm does not cope well with strong platform heterogeneity, even for
large matrix sizes. On the other hand, the HeteroPrio variants are able to
make good use of heterogeneous configurations, except for very small matrix
sizes. In the case of very small matrix sizes, it is however worth noting that
the upper bound on performance does also drop for a large number of clus-
ters, which hints that this performance drop is intrinsic to the task graph:
the performance in that case is limited by the critical path of the graph, and
clustering CPUs is necessary to obtain good performance. In general however,
the upper bound is not enough to predict which configuration will provide the
best performance for the algorithms. We can also notice that the performance
of the Het.Index is more stable than Area for all matrix sizes, and there is
a large number of configurations for which Area achieves significantly lower
performance than Het.Index; however, their best-case performance is compa-
rable. We can explain this better performance for the Het.Index variant by
the following reason. The Area score is based on a global view of the task
graph without dependencies and provides an overall repartition of the tasks.
This repartition would be perfect if all tasks were independent, but the ideal
repartition actually changes over time as dependencies unfold. Additionally,
for each resource, the optimal repartition often involves ties between types of
tasks. For example, two types of tasks which are not well suited to a resource
would be assigned a score 0 since 0% of these types of tasks should be executed

88 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

on this resource. The scheduler thus treats both types of tasks indifferently,
whereas one may be much more inefficient than the other, and this results in
slightly lower performance than Het.Index variant in some cases. It can also
be observed that clustering CPU cores is not always beneficial and some con-
figurations achieve lower performance than the reference performance, which
indicates that performance is dependent on critical tasks as well as on task
efficiency.

Similar observations can be made for QR factorization (Figure 4.4). A
notable difference is the behavior of all scheduling algorithms (even the upper
bound) when the number of groups is too low, where the performance drops
strongly. This is due to the fact that the basic kernels used in QR factorization
cannot be parallelized as efficiently as those used in Cholesky. Obtaining good
performance in heft thus requires precise tuning on the group size to obtain
configurations which have both low heterogeneity and small enough clusters.
On the other hand, the good behavior of both variants of HeteroPrio with a
large number of clusters enables to achieve good performance even in this case.

Figure 4.5: Performance of the 10% best configurations for both kernels.

In Figure 4.5, we present another view of the same results: this graph has
been obtained by identifying the 10% best configurations for each matrix size
and each algorithm. The graph shows the performance obtained on these con-
figurations with a ribbon for each algorithm, where the highest point represents
the best configuration, and the lowest point represents the worst among the
10% best configurations. This graph is meant to highlight the performance
that can be obtained by each algorithm if the configuration can be adapted
to the algorithm. This shows clearly that, for Cholesky, the gap between heft
and HeteroPrio is wider for medium-size matrices, whereas for QR, the gap

Task based scheduling on heterogeneous resources 89

4.4. Experiments and Results

is still present even for larger matrices. The Area and Het.Index variants
have very similar best-case performance, except for Cholesky factorization of
medium-size matrices, where Het.Index achieves best performance. Finally,
the results obtained by HeteroPrio are reasonably close to the upper bound,
in all considered cases.

In summary, HeteroPrio variants significantly outperform standard heft in
all cases, and Het.Index variant is preferable due to a better overall stability.
These results also highlight the benefits of CPU clustering: except for QR
factorization of very large matrices, where the kernels have lower scalability
and the best performance is always achieved with configurations that contain
large number of CPU clusters.

4.4.4 Analysis of Actual Execution Traces

We now present results obtained in actual execution with the StarPU runtime,
for the Cholesky factorization. As candidates for actual executions, we con-
sider the configurations for which HeteroPrio achieves the best performance
in simulation. For a given configuration, we build clusters based on locality
information, thanks to hwloc [40], making sure that clusters do not cross the
NUMA boundaries of the physical machine. From the HeteroPrio schedule, we
obtain an allocation of tasks on resources, and an ordering of tasks for each
resource, that we use for actual execution. Figure 4.6 shows the actual execu-
tion trace for a 24×24 matrix with the configuration and schedule for which
HeteroPrio achieves the best performance in simulation. It exhibits a lot of
small idle times on GPUs due to significant non-overlapping of data transfers
with computations.

Since the communication costs are neglected in simulation, we propose the
following two features to dynamically adapt the resulting static schedule to a
different environment. First, whenever a CPU cluster lacks work (because no
task assigned to it is ready yet), it can steal a task from another CPU cluster,
preferably of similar size. Second, all tasks allocated to GPU are considered in
a merged queue, from which tasks are assigned, in order, to the GPU which can
finish it first. This allows to mitigate the number of data transfer operations
among GPUs.

Figure 4.7 shows the actual execution trace for a 24 × 24 matrix with
both above features implemented. It shows that most of the GEMM tasks are
running on GPUs (last 4 resources in the trace) and communication is almost
overlapped with computation for these tasks. However, before the tasks that
run on CPU clusters (especially POTRF and TRSM tasks), a small idle time
is introduced, due to data transfers, which cumulatively become significant
and keep GPUs significantly idle in the end. To cope with this behavior, we
propose to inflate the execution times considered in simulation for the CPUs, so
as to take into account this communication overhead (similar to what we did in

90 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

POTRF SYRKTRSM GEMM Idle

C
P
U
s

G
P
U
s

Figure 4.6: Execution trace for 24 × 24 with HeteroPrio schedule. Time is
on the horizontal axis, resources are on the vertical axis, with GPUs at the
bottom.

POTRF SYRKTRSM GEMM Idle

C
P
U
s

G
P
U
s

Figure 4.7: Execution trace with corrections for 24 × 24 with HeteroPrio
schedule.

Task based scheduling on heterogeneous resources 91

4.4. Experiments and Results

Chapter 3.9). We have tried different values, and observed that a 15 % increase
in task execution times on CPU achieves the best load balancing among all
workers in actual executions, for all matrix sizes. Figure 4.8 shows a real
execution trace obtained with the HeteroPrio schedule with 15 % increment in
CPU execution time of tasks. We can see that the load balancing is strongly
improved: GPU devices and CPU cores are used until the very end of the
execution. In the remainder of this section, we will use schedules obtained
with 15 % increment in task execution times on CPUs.

POTRF SYRKTRSM GEMM Idle

C
P
U
s

G
P
U
s

Figure 4.8: Load balanced execution trace for 24 × 24 with HeteroPrio sched-
ule.

4.4.5 Actual Execution Performance Comparison

We compare the performance on Cholesky factorization, in actual execution
and for different matrix sizes, of the different strategies considered in this chap-
ter, together with MAGMA [17], a state of the art dense linear algebra library.
We remind that HeteroPrio real execution (hp-best in Figure 4.9) comes from
the execution of the best schedules obtained in simulation mode, with the two
relaxations and the 15% correction as described in 4.4.4. For heft (heft-best
in Figure 4.9), we use the cluster configuration that achieves the best per-
formance in simulation with this strategy. We also run the heft scheduler
with the configuration obtained for best HeteroPrio schedule, denoted with
heft (hp-best config.) in Figure 4.9. In addition, we also provide the baseline

92 Suraj Kumar

4. Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources

12 24 32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Matrix Size

G
F

lo
p/

s

Case MAGMA heft−wc heft−best hp−best heft (hp−best config.)

Figure 4.9: Performance results for the heft and HeteroPrio policies with
selected configurations.

performance achieved by heft when not considering clusters of CPUs (hence
each CPU core is used as a single worker), denoted as heft-wc, and the per-
formance achieved by the Magma library. For each performance bar, we plot
mean values and performance variation obtained from 10 runs.

For 12 × 12 matrix size, we observe that heft-wc and MAGMA achieve
similar performance. When using clusters, with heft-best, the performance
increases by 58% compared to heft-wc. This is expected since the amount of
parallelism with such a matrix size is not enough to fill all 20 CPUs in heft-wc
and results in bad performance. hp-best obtains 6% performance improvement
over heft (hp-best config.), with the same cluster configuration. heft-best is
showing slightly lower performance compared to heft (hp-best config.), which
can be explained by the communications. For a low amount of tasks such as
in this case, there are not enough tasks to fully overlap communications with
computations and therefore the best cluster configuration identified through
simulations may experience significant overhead due to non overlapped data
transfers.

For large matrix sizes, we can observe that the gap between heft-wc and
hp-best is reduced from 31% (for 24 × 24) to 8% (for 32 × 32). In addition,
heft-best is more accurate and outperforms the other heft schedulers such as
heft (hp-best config.). hp-best achieves a performance improvement of 4.5%
over heft-best for 24×24. But hp-best does not achieve significant performance
improvement over heft-best for 32×32, which is due to how the task allocation

Task based scheduling on heterogeneous resources 93

4.5. Conclusion

evolves with increasing matrix size. Indeed, for larger matrices, the execution
is mainly dominated by (almost independent) GEMM tasks, which makes the
scheduling problem relatively easy and both hp-best and heft-best achieve
almost the same performance. These results are consistent with Figure 4.5,
which shows that the difference between HeteroPrio and heft is much smaller
for 32 × 32 compared to the lower matrix sizes (and both are actually very
close to the upper bound).

4.5 Conclusion
In this chapter, we present several extensions of the HeteroPrio scheduling
strategy to the case with more than two types of resources. Besides the obvious
case of platforms with different accelerator types, this capability is also crucial
when CPU cores are clustered together to make use of intra-task parallelism,
as it has been recently advocated in order to make a better use of all available
resources and to build a more homogeneous platform. In order to assess the
efficiency of our approach, we concentrate on Cholesky and QR factorizations
although proposed techniques can easily adapt to other kernels or applications,
provided that they are expressed as DAGs.

We perform extensive simulations and actual experiments on a heteroge-
neous platform composed of two Haswell Intel R© Xeon R© E5-2680 processors
having 12 cores each and four Nvidia K40-M GPUs, using StarPU, a mod-
ern task-based runtime system. We show that HeteroPrio variants are able to
make a very efficient use of almost all possible configurations of heterogeneous
platforms. Together with the capability of clustering CPU cores, the heuristics
that we propose allow to significantly improve the performance of task based
applications.

In future works, we are planning to provide a complete dynamic implemen-
tation of HeteroPrio, so that such good performance can be obtained without
relying on static schedules. In the longer term, this work opens many interest-
ing perspectives, in particular about how to select the optimal configuration
of CPU clusters, when the platform is too large for exhaustive search. It
would also be interesting to study whether the performance can be improved
by changing the clustering of CPUs during the execution instead of using the
same configuration from the beginning to the end.

94 Suraj Kumar

Chapter 5

HeteroPrio Approximation Ratios
on Two Types of Resources

In previous chapters, we proposed different performance bounds for task graphs.
We proposed and analyzed a set of strategies by adding more static (resp. dy-
namic) features into dynamic (resp. static) strategies on platforms consisting
of GPUs and CPUs. We also extended and evaluated a new class of scheduling
algorithm, HeteroPrio, which is based on affinity between tasks and resources,
on exactly two types of resources, for general task graphs with very interesting
results. We generalized it later to the case with several classes of hetero-
geneous resources. In this chapter, we provide a theoretical insight on the
performance of HeteroPrio on two types of unrelated resources, by proving
approximation bounds compared to the optimal schedules in the case where
all tasks are independent and for different platform sizes. Interestingly, this
shows that spoliation allows to prove bounded approximation ratios for a list
scheduling algorithm on two unrelated resources, which is impossible other-
wise. We also establish that almost all our bounds are tight. Additionally,
we provide an experimental evaluation of HeteroPrio on real task graphs from
dense linear algebra computations, which highlights the reasons explaining its
good practical performance.

5.1 Introduction
As mentioned in Chapter 1, Most runtime systems such as StarPU [22], StarSs [82],
SuperMatrix [46], QUARK [104], XKaapi [67] or PaRSEC [36] model the appli-
cation as a DAG, where nodes correspond to tasks and edges to dependencies
between these tasks. At runtime, the scheduler knows (i) the state of the dif-
ferent resources (ii) the set of tasks that are currently processed by all non-idle
resources (iii) the set of (independent) tasks whose all dependencies have been
solved (iv) the location of all input data of all tasks (v) possibly an estima-
tion of the duration of each task on each resource and of each communication

95

5.1. Introduction

between each pair of resources and (vi) possibly priorities associated to tasks
that have been computed offline. Therefore, the scheduling problem consists
in deciding, for an independent set of tasks, given the characteristics of these
tasks on the different resources, where to place and to execute them. This
chapter is devoted to this specific problem.

On the theoretical side, several solutions have been proposed for this prob-
lem, including PTAS (see for instance [61] for a recent contribution with ac-
celerators). Nevertheless, in the target application, dynamic schedulers must
take their decisions at runtime and are themselves on the critical path of the
application. This reduces the spectrum of possible algorithms to very fast ones,
whose complexity to decide which task to execute next should be very small
(constant, linear or linearithmic in the number of ready tasks). Otherwise,
scheduling overhead would be too high, and that would inhibit the application
progress and may result in very poor performance.

Several scheduling algorithms have been proposed in this context and can
be classified in several classes. The first class of algorithms is based on (vari-
ants of) HEFT [99], where the priority of tasks is computed based on their
expected distance to the last node, with several possible metrics to define the
expected durations of tasks (given that tasks can be processed on heteroge-
neous resources) and data transfers (given that input data may be located on
different resources). To the best of our knowledge there is not any approx-
imation ratio for this class of algorithms on unrelated resources and Bleuse
et al. [31] have exhibited an example on m CPUs and 1 GPU where HEFT
algorithm achieves a makespan Ω(m) times worse the optimal. The second
class of scheduling algorithms is based on more sophisticated ideas that aim
at minimizing the makespan of the set of ready tasks (see for instance [31]).
In this class of algorithms, the main difference lies in the compromise between
the quality of the scheduling algorithm (expressed as its approximation ratio
when scheduling independent tasks) and its cost (expressed as the complexity
of the scheduling algorithm). At last, a third class of algorithms has recently
been proposed (see for instance Chapter 3), in which scheduling decisions are
based on the affinity between tasks and resources, i.e. try to process a task on
the best suited resource for it.

In this chapter, we concentrate on HeteroPrio that belongs to the third class
and that is briefly described in Section 5.2. More specifically, we prove that
HeteroPrio combines the best of all worlds. Indeed, after discussing the related
work in Section 5.3 and introducing notations and general results in Section 5.4,
we first prove that contrarily to HEFT variants, HeteroPrio achieves a bounded
approximation ratio in Section 5.5 and we provide a set of proved and tight
approximation results, depending on the number of CPUs and GPUs in the
node. At last, we provide in Section 5.6 a set of experimental results proving
that, besides its very low complexity, HeteroPrio achieves a better performance
than the other schedulers based either on HEFT or on a more sophisticated ap-

96 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

dpotrf dtrsm dsyrk dgemm
CPU time / GPU time 1.72 8.72 26.96 28.80

Table 5.1: Acceleration factors for Cholesky kernels (size 960)

proximation algorithm for independent tasks scheduling. Concluding remarks
are given in Section 5.7.

5.2 HeteroPrio Principle

5.2.1 Affinity Based Scheduling

HeteroPrio has been proposed in the context of task-based runtime systems
responsible for allocating tasks onto heterogeneous nodes typically consisting
of a few CPUs and GPUs [16].

As mentioned in previous chapters, in most runtime systems, tasks are
ordered by priorities (computed offline) and the highest priority ready task
is allocated on the resource that is expected to complete it first, given the
estimation of the transfer times of its input data and the expected processing
time of this task on this resource. These systems have shown some limits
in strongly heterogeneous and unrelated systems, what is typically the case of
nodes consisting of both CPUs and GPUs (see for instance Chapter 3). Indeed,
the relative efficiency of accelerators, that we call the affinity in what follows,
strongly differs from one task to another. Let us for instance recall the case
of Cholesky factorization, where 4 types of tasks (kernels dpotrf, dtrsm,
dsyrk and dgemm) are involved. The acceleration factors of the different
Cholesky tasks have been presented in Chapter 4 and also depicted here in
Table 5.1. In all what follows, acceleration factor is always defined as the ratio
between the processing time on a CPU and on a GPU, so that the acceleration
factor may be smaller than 1. From this table, we can extract the main features
that will influence our model. The acceleration factor strongly depends on
the kernel. Table 5.1 exhibits that some kernels, like dsyrk and dgemm are
almost 30 times faster on GPUs, dpotrf is only slightly accelerated. Based on
this observation, a different class of runtime schedulers for task based systems
has been developed, in which the affinity between tasks and resources plays
the central role. HeteroPrio belongs to this class. In these systems, when a
resource becomes idle, it selects among the ready tasks the one for which it has
a maximal affinity. For instance, in the case of Cholesky factorization, among
the ready tasks, CPUs will prefer dpotrf to dtrsm to dsyrk to dgemm
and GPUs will prefer dgemm to dsyrk to dtrsm to dpotrf.

HeteroPrio allocation strategy has been studied in the context of StarPU
for several linear algebra kernels and it has been proved experimentally that

Task based scheduling on heterogeneous resources 97

5.2. HeteroPrio Principle

it enables to achieve a better utilization of slow resources than other strate-
gies based on the minimization of the completion time (see Chapters 3 and
4). Nevertheless, in order to be efficient, HeteroPrio must be associated to a
spoliation mechanism. Indeed, in the above description, nothing prevents the
slow resource to execute a task for which it can be arbitrarily badly suited,
thus leading to arbitrarily bad results. Therefore, when a fast resource is idle
and would be able to restart a task already started on a slow resource and
to finish it earlier than on the slow resource, then the task is spoliated and
restarted on the fast resource. Note that this mechanism does not correspond
to preemption since all the progress made on the slow resource is lost. It is
therefore less efficient than preemption but it can be implemented in prac-
tice (see Chapter 3.7.4), what is not the case of preemption on heterogeneous
resources like CPUs and GPUs.

In what follows, since task based runtime systems see a set of independent
tasks, we will concentrate on this problem and we will prove approximation
ratios for HeteroPrio under several scenarios for the composition of the het-
erogeneous node (namely 1 GPU and 1 CPU, 1 GPU and several CPUs and
several GPUs and several CPUs).

5.2.2 HeteroPrio Algorithm for a set of Independent Tasks

Algorithm 3: The HeteroPrio Algorithm for a set of independent tasks.
1: Sort Ready tasks in queue Q by non-increasing acceleration factors
2: while all tasks did not complete do
3: if all workers are busy then
4: continue
5: end if
6: Select an idle worker W
7: if Q 6= ∅ then
8: Remove a task T from beginning of Q if W is a GPU worker

otherwise from end of Q
9: W starts processing T
10: else
11: Consider tasks running on the other type of resource in decreasing

order of their expected completion time. If the expected completion
time of T running on a worker W ′ can be improved on W , T is
spoliated and W starts processing T .

12: end if
13: end while

Algorithm 3 describes the precise version of HeteroPrio which we consider
in this chapter. Note that in Chapter 3, we were considering tasks in decreasing

98 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

order of their priorities to perform spoliation. But here we consider tasks in
decreasing order of their expected completion time (Line 11 of Algorithm 3),
which allows us to prove bounded approximation ratios for HeteroPrio. Also
in previous chapters, for HeteroPrio, we proposed to create one ready queue
per type of task but the same behavior can be achieved by a single ready queue
as shown in Line 1 of Algorithm 3.

When priorities are associated with tasks then Line 1 of Algorithm 3 takes
them into account for breaking ties among tasks with the same acceleration
factor and put highest (resp. lowest) priority task first in the scheduling queue
for acceleration factor≥ 1 (resp. < 1). Approximation factors proved in this
chapter do not depend on how ties are broken and thus not on task prior-
ities. However, considering task priorities allows schedulers to achieve good
performance for task graphs (see previous chapters).

Queue of ready tasks in Algorithm 3 can be implemented as a heap. There-
fore, time complexity of Algorithm 3 on m CPUs and n GPUs would be
O(Nlog(N)), where N is the number of ready tasks.

5.3 Related Works

The problem considered in this chapter is a special case of the standard un-
related scheduling problem R||Cmax. Lenstra et al [73] proposed a PTAS for
the general problem with a fixed number of machines, and a 2-approximation
algorithm, based on the rounding of the optimal solution of the linear program
which describes the preemptive version of the problem. This result has recently
been improved [95] to a 2− 1

m
approximation. However, the time complexity

of these general algorithms is too high to allow using them in the context of
runtime systems.

The more specialized case with a small number of types of resources has
been studied in [34] and a PTAS has been proposed, which also contains a
rounding phase whose complexity makes it impractical, even for 2 different
types of resources. Greedy approximation algorithms for the online case have
been proposed by Imreh on two different types of resources [70]. These algo-
rithms have linear complexity, however most of their decisions are based on
comparing task execution times on both types of resources and not on trying
to balance the load. The result is that in the practical test cases of interest
to us, almost all tasks are scheduled on the GPUs and the performance is sig-
nificantly worse. Finally, Bleuse et al [31, 29] have proposed algorithms with
varying approximation factors (4

3
, 3

2
and 2) based on dynamic programming

and dual approximation techniques. These algorithms have better approxima-
tion ratios than the ones proved in this chapter. But their time complexity is
high which restricts their implementations in most state-of-the-art runtime sys-
tems. Furthermore, as we show in Section 5.6, their actual performance is not

Task based scheduling on heterogeneous resources 99

5.4. Notations and First Results

as good when used iteratively on the set of ready tasks in the context of task
graph scheduling. We also show that HeteroPrio performs better on average
than above mentioned algorithms, despite its higher worst case approximation
ratio.

In homogeneous scheduling, list algorithms (i.e. algorithms that never leave
a resource idle if there exists a ready task) are known to have good practical
performance. In the context of heterogeneous scheduling, it is well known that
list scheduling algorithms cannot achieve an approximation guarantee. Indeed,
even with two resources and two tasks, if one resource is much slower than the
other, it can be arbitrarily better to leave it idle and to execute both tasks
on the fast resource. The HeteroPrio algorithm considered in this chapter is
based on a list algorithm, but the use of spoliation (see Section 5.2.2) avoids
this problem.

5.4 Notations and First Results

5.4.1 General Notations

In this chapter, we study the theoretical guarantees of HeteroPrio for a set of
independent tasks. In the scheduling problem that we consider, the input is
thus a platform of n GPUs and m CPUs and a set I of independent tasks,
where task Ti has processing time pi on CPU and qi on GPU, and the goal is
to schedule those tasks on the resources so as to minimize the makespan. We
define the acceleration factor of task Ti as ρi = pi

qi
. COpt

max(I) is used throughout
this chapter to denote the optimal makespan of set I.

0 TFirstIdle
t

C
P
U
s

G
P
U
s

(a) Schedule SNS
HP

aborted

0 CHP
max

t

(b) Schedule SHP, with one spoliated task

Figure 5.1: Example of a HeteroPrio schedule.

To analyze the behavior of HeteroPrio, it is useful to consider the list
schedule obtained before any spoliation attempt. We will denote this schedule
by SNS

HP, and the final HeteroPrio schedule is denoted by SHP. Figure 5.8 shows
SNS

HP and SHP for a set of independent tasks I. We define TFirstIdle as the first
time any worker is idle in SNS

HP, this is also the first time any spoliation can

100 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

occur. Therefore after time TFirstIdle, each worker executes at most one task
in SNS

HP. Finally, we define CHP
max(I) as the makespan of SHP on instance I.

5.4.2 Area Bound

In this section, we recall AreaBound, a lower bound on the optimal makespan
from Chapter 2, and characterize its different features. This lower bound is
obtained by assuming that tasks are divisible, i.e. can be processed in parallel
on any number of resources. More specifically, any fraction xi of task Ti is
allowed to be processed on CPUs, and this fraction overall consumes CPU
resources for xipi time units. Then, the lower bound AreaBound(I) for a set
of tasks I on m CPUs and n GPUs is the solution (in rational numbers) of
the following linear program.

Minimize AreaBound(I) such that∑
i∈I

xipi ≤ m · AreaBound(I) (5.1)∑
i∈I

(1− xi)qi ≤ n · AreaBound(I) (5.2)

0 ≤ xi ≤ 1

Since any valid solution to the scheduling problem can be converted into a
solution of this linear program, it is clear that AreaBound(I) ≤ COpt

max(I). An-
other immediate bound on the optimal is ∀T ∈ I,min(pT , qT) ≤ COpt

max(I). By
contradiction and with simple exchange arguments, one can prove the following
two lemmas.

Lemma 5.1. In the area bound solution, the completion time on each class of
resources is the same, i.e. constraints (5.1) and (5.2) are both equalities.

Proof. Let us assume that one of the inequality constraints of area solution is
not tight. Without loss of generality, let us assume that Constraint 5.1 is not
tight. Then some load from the GPUs can be transferred to the CPUs which
in turn decreases the value of AreaBound(I). This achieves the proof of the
Lemma 5.1.

Lemma 5.2. In AreaBound(I), the assignment of tasks is based on the accel-
eration factor, i.e. ∃k > 0 such that ∀i, xi < 1⇒ ρi ≥ k and xi > 0⇒ ρi ≤ k.

Proof. Let us assume ∃(T1,T2) such that (i) T1 is partially processed on GPUs
(i.e. , x1 < 1), (ii) T2 is partially processed on CPUs (i.e. , x2 > 0) and (iii)
ρ1 < ρ2.

Let WC and WG denote respectively the overall work on CPUs and GPUs
in AreaBound(I). If we transfer a fraction 0 < ε2 < min(x2,

(1−x1)p1
p2

) of T2

Task based scheduling on heterogeneous resources 101

5.5. Proof of HeteroPrio Approximation Results

work from CPU to GPU and a fraction ε2q2
q1

< ε1 <
ε2p2
p1

of T1 work from GPU
to CPU, the overall loads WC ′ and WG′ become the following.

WC ′ = WC + ε1p1 − ε2p2
WG′ = WG− ε1q1 + ε2q2

Since p1
p2
< ε2

ε1
< q1

q2
, then both WC ′ < WC and WG′ < WG hold true, and

hence the AreaBound(I) is not optimal. Therefore, ∃ a positive constant k
such that ∀i on GPU, ρi ≥ k and ∀i on CPU, ρi ≤ k.

5.4.3 Summary of Approximation Results

This chapter presents several approximation results depending on the number
of CPUs and GPUs. Table 5.2 presents a quick overview of the main results
proven in Section 5.5.

(#CPUs,# GPUs) Approximation ratio Worst case ex.
(1,1) 1+

√
5

2
1+
√
5

2

(m,1) 3+
√
5

2
3+
√
5

2

(m,n) 2 +
√

2 ≈ 3.41 2 + 2√
3
≈ 3.15

Table 5.2: Approximation ratios and worst case examples.

5.5 Proof of HeteroPrio Approximation Results

5.5.1 General Lemmas

The following lemma gives a characterization of the work performed by Het-
eroPrio at the beginning of the execution, and shows that HeteroPrio performs
as much work as possible when all resources are busy. At any instant t, let us
define I ′(t) as the sub-instance of I composed of the fractions of tasks that
have not been entirely processed at time t by HeteroPrio. Then, a schedule
beginning like HeteroPrio (until time t) and ending like AreaBound(I ′(t))
completes in AreaBound(I).

Lemma 5.3. At any time t ≤ TFirstIdle in SNS
HP,

t+ AreaBound(I ′(t)) = AreaBound(I)

Proof. HeteroPrio assigns tasks based on their acceleration factors. Therefore,
at instant t, ∃k1 ≤ k2 such that (i) all tasks (at least partially) processed
on GPUs have an acceleration factor larger than k2, (ii) all tasks (at least

102 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

partially) allocated on CPUs have an acceleration factor smaller than k1 and
(iii) all tasks not assigned yet have an acceleration factor between k1 and k2.

After t, AreaBound(I ′) satisfies Lemma 5.2, and thus ∃k with k1 ≤ k ≤ k2
such that all tasks of I ′ with acceleration factor larger than k are allocated on
GPUs and all tasks of I ′ with acceleration factor smaller than k are allocated
on CPUs.

Therefore, combining above results before and after t, the assignment S
beginning like HeteroPrio (until time t) and ending like AreaBound(I ′(t))
satisfies the following property: ∃k > 0 such that all tasks of I with accel-
eration factor larger than k are allocated on GPUs and all tasks of I with
acceleration factor smaller than k are allocated on CPUs. This assignment S,
whose completion time on both CPUs and GPUs (thanks to Lemma 5.1) is
t + AreaBound(I ′) clearly defines a solution of the fractional linear program
defining the area bound solution, so that t+AreaBound(I ′) ≥ AreaBound(I).

Similarly, AreaBound(I) satisfies both Lemma 5.2 with some value k′

and Lemma 5.1 so that in AreaBound(I), both CPUs and GPUs complete
their work simultaneously. If k′ < k, more work is assigned to GPUs in
AreaBound(I) than in S, so that, by considering the completion time on
GPUs, we get AreaBound(I) ≥ t + AreaBound(I ′). Similarly, if k′ > k,
by considering the completion time on CPUs, we get AreaBound(I) ≥ t +
AreaBound(I ′). This achieves the proof of Lemma 5.3.

Since AreaBound(I) is a lower bound on COpt
max(I), the above lemma implies

that

1. at any time t ≤ TFirstIdle in SNS
HP, t+ AreaBound(I ′(t)) ≤ COpt

max(I),

2. TFirstIdle ≤ COpt
max(I), and thus all tasks start before COpt

max(I) in SNS
HP,

3. if ∀i ∈ I,max(pi, qi) ≤ COpt
max(I), then CHP

max(I) ≤ 2COpt
max(I).

Another interesting characteristic of HeteroPrio is that spoliation can only
take place from one type of resource to the other. Indeed, since assignment
in SNS

HP is based on the acceleration factors of the tasks, and since a task can
only be spoliated if it can be processed faster on the other resource, we get the
following lemmas.

Lemma 5.4. If, in SNS
HP, a resource r processes a task whose execution time is

not larger on the other resource r′, then no task is spoliated from resource r′.

Proof. Without loss of generality let us assume that there exists a task T
executed on a CPU in SNS

HP, such that pT ≥ qT . We prove that in that case,
there is no spoliated task on CPUs, which is the same thing as there being no
aborted task on GPUs.

Task based scheduling on heterogeneous resources 103

5.5. Proof of HeteroPrio Approximation Results

T is executed on a CPU in SNS
HP, and

pT
qT
≥ 1, therefore from HeteroPrio

principle, all tasks on GPUs in SNS
HP have an acceleration factor at least pT ′

qT ′
≥ 1.

Non spoliated tasks running on GPUs after TFirstIdle are candidates to be
spoliated by the CPUs. But for each of these tasks, the execution time on
CPU is at least as large as the execution time on GPU. It is thus not possible
for an idle CPU to spoliate any task running on GPUs, because this task would
not complete earlier on the CPU.

Lemma 5.5. In HeteroPrio, if a resource executes a spoliated task then no
task is spoliated from this resource.

Proof. Without loss of generality let us assume that T is a spoliated task
executed on a CPU. From the HeteroPrio definition, pT < qT . It also indicates
that T was executed on a GPU in SNS

HP with qT ≥ pT . By Lemma 5.4, CPUs
do not have any aborted task due to spoliation.

Finally, we will also rely on the following lemma, that gives the worst case
performance of a list schedule when all tasks lengths are large (i.e. ≥ COpt

max)
on one type of resource.

Lemma 5.6. Let B denote a subset of instance I such that the execution time
of each task of B on one resource is larger than COpt

max(I), then any list schedule
of B on k ≥ 1 resources of the other type has length at most (2− 1

k
)COpt

max(I).

Proof. Without loss of generality, let us assume that the processing time of
each task of set B on CPU is larger than COpt

max(I). All these tasks must
therefore be processed on the GPUs in an optimal solution. If scheduling this
set B on k GPUs can be done in time C, then C ≤ COpt

max(I). The standard list
scheduling result from Graham implies that the length of any list schedule of
the tasks of B on GPUs is at most (2− 1

k
)C ≤ (2− 1

k
)COpt

max(I).

5.5.2 Approximation Ratio with 1 GPU and 1 CPU

Thanks to the above lemmas, we are able to prove an approximation ratio of
φ = 1+

√
5

2
for HeteroPrio when the node is composed of 1 CPU and 1 GPU.

We will also prove that this result is the best achievable by providing a task
set I for which the approximation ratio of HeteroPrio is φ.

Theorem 5.7. For any instance I with 1 CPU and 1 GPU, CHP
max(I) ≤

φCOpt
max(I).

Proof. Without loss of generality, let us assume that the first idle time (at
instant TFirstIdle) occurs on the GPU and the CPU is processing the last re-
maining task T . We will consider two main cases, depending on the relative
values of TFirstIdle and (φ− 1)COpt

max.

104 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

1. TFirstIdle ≤ (φ− 1)COpt
max.

In SNS
HP, the finish time of task T is at most TFirstIdle + pT . If task T

is spoliated by the GPU, its execution time is TFirstIdle + qT . In both
cases, the finish time of task T is at most TFirstIdle + min(pT , qT) ≤
(φ− 1)COpt

max + COpt
max = φCOpt

max.

2. TFirstIdle > (φ− 1)COpt
max.

If T ends before φCOpt
max on the CPU in SNS

HP, since spoliation can only
improve the completion time, this ends the proof of the theorem. In
what follows, we assume that the completion time of T on the CPU in
SNS

HP is larger than φCOpt
max(I), as depicted in Figure 5.2.

CPU

GPU

T

AreaBound(I)
COpt

max(I) φCOpt
max(I)

(φ− 1)COpt
max(I)

Figure 5.2: Situation where T ends on CPU after φCOpt
max(I).

CPU

GPU

T

T

AreaBound(I)
COpt

max(I) φCOpt
max(I)

(φ− 1)COpt
max(I)

Figure 5.3: Area bound consideration to bound the acceleration factor of T .

It is clear that T is the only unfinished task after COpt
max. Let us denote by

α the fraction of T processed after COpt
max on the CPU. Then αpT > (φ−

1)COpt
max since T ends after φCOpt

max by assumption. Lemma 5.3 applied at
instant t = TFirstIdle implies that the GPU is able to process the fraction
α of T by COpt

max (see Figure 5.3) while starting this fraction at TFirstIdle ≥
(φ− 1)COpt

max so that αqT ≤ (1− (φ− 1))COpt
max = (2− φ)COpt

max. Therefore,
the acceleration factor of T is at least φ−1

2−φ = φ. Since HeteroPrio assigns
tasks on the GPU based on their acceleration factors, all tasks in S
assigned to the GPU also have an acceleration factor at least φ.

Task based scheduling on heterogeneous resources 105

5.5. Proof of HeteroPrio Approximation Results

Let us now prove that the GPU is able to process S
⋃
{T} in time φCOpt

max.
Let us split S

⋃
{T} into two sets S1 and S2 depending on whether the

tasks of S
⋃
{T} are processed on the GPU (S1) or on the CPU (S2) in

the optimal solution. By construction, the processing time of S1 on the
GPU is at most COpt

max and the processing of S2 on the CPU takes at most
COpt

max. Since the acceleration factor of tasks of S2 is larger than φ, then
the processing time of tasks of S2 on the GPU is at most COpt

max/φ and
the overall execution of S

⋃
{T} takes at most COpt

max + COpt
max/φ = φCOpt

max,
what ends the proof of the theorem.

Theorem 5.8. The bound of Theorem 5.7 is tight, i.e. there exists an instance
I with 1 CPU and 1 GPU for which HeteroPrio achieves a ratio of φ with
respect to the optimal solution.

X

Y

GPU

CPU

0 1
t

(a) Optimal schedule

Y

X

0 1
φ

φ
t

(b) HeteroPrio schedule

Figure 5.4: Optimal and HeteroPrio schedules on 1 CPU and 1 GPU.

Proof. Let us consider the instance I consisting of 2 tasks X and Y , with
pX = φ, qX = 1, pY = 1 and qY = 1

φ
, such that ρX = ρY = φ.

The minimum length of task X is 1, so that COpt
max ≥ 1. Moreover, allocating

X on the GPU and Y on the CPU leads to a makespan of 1, so that COpt
max ≤ 1

and finally COpt
max = 1.

On the other hand, consider the following valid HeteroPrio schedule. The
CPU first selects task X and the GPU first selects task Y . The GPU becomes
available at instant 1

φ
= φ− 1 but does not spoliate task X because it cannot

complete X earlier than its expected completion time on the CPU. Therefore,
the completion time of HeteroPrio is φ = φCOpt

max.

5.5.3 Approximation Ratio with 1 GPU and m CPUs

In the case of a single GPU andm CPUs, the approximation ratio of HeteroPrio
becomes 1 + φ = 3+

√
5

2
, as proved in Theorem 5.9 and this bound is tight

(asymptotically when m becomes large) as proved in Theorem 5.11.

106 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

Theorem 5.9. HeteroPrio achieves an approximation ratio of (1 +φ) = 3+
√
5

2

for any instance I on m CPUs and 1 GPU.

Proof. Let us assume by contradiction that there exists a task T whose com-
pletion time is larger than (1 + φ)COpt

max. We know that all tasks start before
COpt

max in SNS
HP. If T is executed on the GPU in SNS

HP, then qT > COpt
max and thus

pT ≤ COpt
max. Since at least one CPU is idle at time TFirstIdle, T should have

been spoliated and processed by 2COpt
max.

We know that T is processed on a CPU in SNS
HP, and finishes later than

(1 + φ)COpt
max in SHP. Let us denote by S the set of all tasks spoliated by the

GPU (from a CPU to the GPU) before considering T for spoliation in the
execution of HeteroPrio and let us denote by S ′ = S

⋃
{T}. The following

lemma will be used to complete the proof.

Lemma 5.10. The following holds true

1. pi > COpt
max for all tasks i of S ′,

2. the acceleration factor of T is at least φ,

3. the acceleration factor of tasks running on the GPU in SNS
HP is at least φ.

Proof. of Lemma 5.10. Since all tasks start before TFirstIdle ≤ COpt
max in SNS

HP, and
since T finishes after (1 + φ)COpt

max in SNS
HP, then pT > φCOpt

max. Since HeteroPrio
performs spoliation of tasks in decreasing order of their completion time, the
same applies to all tasks of S ′: ∀i ∈ S ′, pi > φCOpt

max, and thus qi ≤ COpt
max.

Since pT > φCOpt
max and qT ≤ COpt

max, then ρT > φ. Since T is executed on a CPU
in SNS

HP, all tasks executed on GPU in SNS
HP have an acceleration factor at least

φ.

Since T is processed on the CPU in SNS
HP and pT > qT , Lemma 5.4 applies

and no task is spoliated from the GPU. Let A be the set of tasks running
on GPU right after TFirstIdle in SNS

HP. We consider only one GPU, therefore
|A| ≤ 1.

1. If A = {a} with qa ≤ (φ − 1)COpt
max, then Lemma 5.6 applies to S ′ (with

n = 1) and the overall completion time is bounded by TFirstIdle + qA +
COpt

max ≤ (φ+ 1)COpt
max.

2. If A = {a} with qa > (φ − 1)COpt
max, since ρa > φ by Lemma 5.10, pa >

φ(φ− 1)COpt
max = COpt

max. Lemma 5.6 applies to S ′
⋃
A, so that the overall

completion time is bounded by TFirstIdle + COpt
max ≤ 2COpt

max.

3. If A = ∅, Lemma 5.6 applies to S ′ and get CHP
max(I) ≤ TFirstIdle +COpt

max ≤
2COpt

max.

Therefore, in all cases, the completion time of task T is at most (φ+1)COpt
max,

what achieves the proof of Theorem 5.9.

Task based scheduling on heterogeneous resources 107

5.5. Proof of HeteroPrio Approximation Results

Theorem 5.11. Theorem 5.9 is tight, i.e. for any δ > 0, there exists an
instance I such that CHP

max(I) ≥ (φ+ 1− δ)COpt
max(I).

Proof. For some ε > 0, let I denote the following set of tasks:

Task CPU Time GPU Time # of tasks accel ratio
T1 1 1/φ 1 φ
T2 φ 1 1 φ
T3 ε ε (mx)/ε 1
T4 εφ ε x/ε φ

where x = m−1
m+φ

.
The minimum length of task T2 is 1, so that COpt

max ≥ 1. Moreover, if T1,
T3 and T4 are scheduled on CPUs and T2 on the GPU (this is possible if ε is
small enough), then the completion time is 1, so that COpt

max = 1.

T2

T3 T4

T1

G
P
U

C
P
U
s

0 1
t

(a) Optimal schedule

T4

T3

T1

T2

0 x x+ 1
φ

x+ φ
t

(b) HeteroPrio schedule

Figure 5.5: Optimal and HeteroPrio schedules on m CPUs and 1 GPU.

Consider the following valid HeteroPrio schedule. The GPU first selects
tasks from T4 and the CPUs first select tasks from T3. All resources become
available at time x. Now, the GPU selects task T1 and one of the CPUs selects
task T2, with a completion time of x+φ. The GPU becomes available at x+1/φ
but does not spoliate T2 since it would not finish before x+ 1/φ+ 1 = x+ φ.
The makespan of HeteroPrio is thus x+ φ, and since x tends towards 1 when
m becomes large, the approximation ratio of HeteroPrio on this instance tends
towards 1 + φ.

5.5.4 Approximation Ratio with n GPUs and m CPUs

In the most general case of n GPUs and m CPUs, the approximation ratio
of HeteroPrio is at most 2 +

√
2, as proved in Theorem 5.12. To establish

this result, we rely on the same techniques as in the case of a single GPU,

108 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

but the result of Lemma 5.6 is weaker for n > 1, what explains that the
approximation ratio is larger than for Theorem 5.9. We have not been able to
prove, as previously, that this bound is tight, but we provide in Theorem 5.17
a family of instances for which the approximation ratio is arbitrarily close to
2 + 2√

3
.

Theorem 5.12. For any instance I, CHP
max(I) ≤ (2 +

√
2)COpt

max(I).

Proof. We prove this by contradiction. Let us assume that there exists a task
T whose completion time in SHP is larger than (2 +

√
2)COpt

max. Without loss of
generality, we assume that T is executed on a CPU in SNS

HP. In the rest of the
proof, we denote by S the set of all tasks spoliated by GPUs in the HeteroPrio
solution, and S ′ = S ∪{T}. The following lemma will be used to complete the
proof.

Lemma 5.13. The following holds true.

1. ∀i ∈ S ′, pi > COpt
max

2. All tasks T ′ executed on a GPU in SNS
HP have ρT ′ ≥ 1 +

√
2.

Proof. of Lemma 5.13. In SNS
HP, all tasks start before TFirstIdle ≤ COpt

max. Since
T ends after (2 +

√
2)COpt

max in SNS
HP (since spoliation can only improve the

completion time), then pT > (1 +
√

2)COpt
max. The same applies to all spoliated

tasks that complete after T in SNS
HP. If T is not considered for spoliation, no

task that complete before T in SNS
HP is spoliated, and the first result holds.

Otherwise, let sT denote the instant at which T is considered for spoliation.
The completion time of T in SHP is at most sT + qT , and since qT ≤ COpt

max,
sT ≥ (1+

√
2)COpt

max. Since HeteroPrio handles tasks for spoliation in decreasing
order of their completion time in SNS

HP, tasks T ′ is spoliated after T has been
considered and not finished at time sT , and thus pT ′ >

√
2COpt

max.
Since pT > (1 +

√
2)COpt

max and qT ≤ COpt
max, then ρT ≥ (1 +

√
2). Since T is

executed on a CPU in SNS
HP, all tasks executed on GPU in SNS

HP have acceleration
factor at least 1 +

√
2.

Let A be the set of tasks executed on GPUs after time TFirstIdle in SNS
HP.

We partition A into two sets A1 and A2 such that ∀i ∈ A1, qi ≤ COpt
max√
2+1

and

∀i ∈ A2, qi >
COpt

max√
2+1

.
Since there are n GPUs, |A1| ≤ |A| ≤ n. We consider the schedule induced

by HeteroPrio on the GPUs with the tasks A
⋃
S ′ (if T is spoliated, this

schedule is actually returned by HeteroPrio, otherwise this is what HeteroPrio
builds when attempt to spoliate task T). This schedule is not worse than a
schedule that processes all tasks from A1 starting at time TFirstIdle, and then
performs any list schedule of all tasks from A2

⋃
S ′. Since |A1| ≤ n, the first

part takes time at most COpt
max√
2+1

. For all Ti in A2, ρi ≥ 1 +
√

2 and qi > COpt
max(I)√
2+1

Task based scheduling on heterogeneous resources 109

5.5. Proof of HeteroPrio Approximation Results

imply pi > COpt
max. We can thus apply Lemma 5.6 toA2

⋃
S ′ and the second part

takes time at most 2COpt
max. Overall, the completion time on GPUs is bounded

by TFirstIdle+
COpt

max√
2+1

+(2− 1
n
)COpt

max < COpt
max+(

√
2−1)COpt

max+2COpt
max = (

√
2+2)COpt

max,
which is a contradiction.

Now we provide different instances to show the worst case behavior of
HeteroPrio.

Theorem 5.14. On a system consisting of m CPUs and 2 GPUs, HeteroPrio
can achieve a ratio as large as ' 2.78 with respect to optimal completion time.

Proof. Let I denote the following set of tasks:

Task CPU Time GPU Time # of tasks accel ratio
T1 2 2

r
2 r

T a2 r 1 2 r
T b2 r 2 1 r

2

T3 ε ε
a

mx
ε

a
T4 εr ε 2x

ε
r

where, 1 ≤ a ≤ r
2
, x = m−2

m+2r
2, m >> 2 and r = 3+

√
17

2
is the solution of the

equation 2
r

+ 3 = r.
Minimum length of task T b2 is 2, so that COpt

max ≥ 2. Moreover, if tasks T1, T3
and T4 are scheduled on the CPUs (the overall work is 4 + mx + 2xr = 2m
and we assume ε is chosen such that tasks can be packed together) and if T ∗2
are processed on the GPUs (1 with the 2 T a2 tasks and 1 with T b2 task), the
overall completion time is 2, so that COpt

max ≤ 2. Then, overall COpt
max = 2.

T a2 T a2

T b2

T3 T4

T1

T1

G
P
U
s

C
P
U
s

0 1 2
t

(a) Optimal schedule

T4
T1

T1

T a2

T a2

T3

T b2

T a2

T a2

0 x x+ 2
r

x+ r − 2 x+ r
t

(b) HeteroPrio schedule

Figure 5.6: Optimal and HeteroPrio schedules on m CPUs and 2 GPUs.
Aborted tasks in HeteroPrio are shown in pattern boxes.

Let us now consider the following valid HeteroPrio schedule. GPUs first
select T4 tasks (with maximal acceleration factor r) and CPUs first select T3

110 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

tasks (with minimal acceleration factor a ≤ r
2
). Both CPUs and GPUs become

available at time x.
Now GPUs select T1 tasks (with maximal acceleration factor r) and 3 CPUs
(since there are only 3 available tasks) select T ∗2 tasks (with acceleration factor
≤ r). GPUs end up first and complete their work at instant x+2/r = r−3+x.
Since the completion time of T ∗2 tasks on the CPUs is r + x, then 2 tasks are
spoliated by GPUs (both T a2 tasks) and complete on the GPUs at instant
r − 2 + x.
Then, at instant r− 2 +x the spoliation of the last T b2 task would not improve
its completion time and the overall completion time is r + x.

Therefore, the overall completion time of HeteroPrio is r+x = m−2
m+2r

COpt
max+r

that becomes arbitrarily close to 7+
√
17

2
' 2.78COpt

max when m becomes large.

Remark 1. We can easily extend above example to 3 GPUs using the following
set of tasks I, where HeteroPrio can achieve a ratio as large as ' 2.84 with
respect to optimal completion time.

TaskName CPU Time GPU Time # of tasks accel ratios
T1 3 3

r
3 r

T a2 r 1 2 r
T b2 r 2 2 r

2

T c2 r 3 1 r
3

T3 ε ε
a

mx
ε

a
T4 εr ε 3x

ε
r

where, 1 ≤ a ≤ r
3
, x = m−3

m+3r
3, m >> 3 and r = 5+

√
37

2
is the solution of the

equation 3
r

+ 5 = r.

Remark 2. It is even possible to extend above example to n GPUs and to
achieve a ratio of 3n−1

n
+ 2

2n−1+
√

(2n−1)2+4n
with respect to optimal completion

time (above cases correspond to n = 2 and n = 3 respectively). When n
becomes large, 3n−1

n
+ 2

2n−1+
√

(2n−1)2+4n
= 3− 1

n
+ o(1

n
), so that HeteroPrio can

achieve an approximation ratio as bad as 3 when n (and m) becomes large.

In all previous instances the smallest task of set T2 (tasks processed on
GPUs in optimal solution) is of unit length. Now we provide a family of
instances where the smallest task of set T2 is one third of optimal makespan.
It allows tasks of set T2 to have a large execution time on CPU without having
large acceleration factor.

Theorem 5.15. On 6 homogeneous processors, it is possible to construct a
2− 1

6
times worse list schedule for an instance I, whose all tasks are atleast of

length COpt
max(I)
3

.

Task based scheduling on heterogeneous resources 111

5.5. Proof of HeteroPrio Approximation Results

Proof. Makespan of worst list schedule is almost twice the optimal makespan
is a well known result. But here we exhibit that length of the smallest task
is as large as one third of the optimal makespan. Let us consider I be the
following set of tasks which we want to schedule on 6 homogeneous processors.

TaskName length # of tasks
A 6 1
B 3 6
C 2 6

Since the length of task A is 6, therefore COpt
max ≥ 6. Figure 5.7a exhibits a

schedule whose overall makespan is 6, therefore COpt
max = 6.

Figure 5.7b exhibits a schedule of length 11, which is 2− 1
6
times of COpt

max.
The smallest task of the considered set, C, is of length COpt

max

3
= 2.

C C C

CCC

B B

BB

B B

A

us
es

6
pr
oc
es
so
rs

COPT = 6

(a) Optimal schedule

B

B

B

B

B

B

C

C

C

C

C

C

A

Completion time=11

(b) A worst list schedule

Figure 5.7: Schedules on 6 homogeneous processors.

Theorem 5.16. On a system consisting of m CPUs and 6 GPUs, HeteroPrio
can achieve a ratio as large as 3 with respect to optimal completion time.

Proof. Let I denote the following set of tasks:

Task CPU Time GPU Time # of tasks accel ratio
T1 6 6

r
6 r

T a2 2r 2 6 r
T b2 2r 3 6 2r

3

T c2 2r 6 1 r
3

T3 ε ε
a

mx
ε

a
T4 εr ε 6x

ε
r

where, 1 ≤ a ≤ rmin{2,3,6}
max{2,3,6} = r

3
, x = m−6

m+6r
6, m >> 6 and r = 6 is the solution

of the equation 6
r

+ 11 = 2r.
Minimum length of task T c2 is 6, so that COpt

max ≥ 6. Moreover, if tasks T1, T3
and T4 are scheduled on the CPUs (the overall work is 36 + mx + 6xr = 6m
and we assume ε is chosen such that tasks can be packed together) and if T ∗2

112 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

are processed on the GPUs (similar to as shown in Figure 5.7a), the overall
completion time is 6, so that COpt

max ≤ 6. Then, overall COpt
max = 6.

T ∗2

T3

T4

T1

G
P
U
s

C
P
U
s

0 6
t

(a) Optimal schedule

T4 T1 T a2 T b2

T3

T c2

T b2

T a2

0 x x+ 6
r

x+ 2r − 9 x+ 2r − 6 x+ 2r
t

(b) HeteroPrio schedule

Figure 5.8: Optimal and HeteroPrio schedules on m CPUs and 6 GPUs.
Aborted tasks in HeteroPrio are shown in pattern boxes.

Let us now consider the following valid HeteroPrio schedule. GPUs first
select T4 tasks (with maximal acceleration factor r) and CPUs first select T3
tasks (with minimal acceleration factor a ≤ r

3
). Then, all CPUs and GPUs

become available at time x.
Then, each GPU first selects a T1 task (with maximal acceleration factor r)
and 13 CPUs (since there are only 13 available tasks) select T ∗2 tasks (with
acceleration factor ≤ r). Then, GPUs end up first and complete their work at
instant x+ 6/r = 2r − 11 + x.
Since the completion time of T ∗2 tasks on the CPUs is 2r + x, then 6 tasks
are spoliated by GPUs (all T a2 tasks) and complete on the GPUs at instant
2r− 9 + x. Also all T b2 tasks are spoliated by GPUs at instant 2r− 9 + x and
complete on GPUs at 2r − 6 + x
Then, at instant 2r−6+x the spoliation of the last T c2 task would not improve
its completion time and the overall completion time is 2r + x.

Therefore, the overall completion time is 2r + x = (m−6)
m+6r

COpt
max + 2r that

becomes arbitrarily close to 18 = 3COpt
max when m becomes large.

We extend above example to n GPUs and provide the lower bound for
HeteroPrio in Theorem 5.17.

Theorem 5.17. The approximation ratio of HeteroPrio is at least 2 + 2√
3
'

3.15.

Proof. We consider an instance I, with n = 6k GPUs and m = n2 CPUs,
containing the following tasks.

Task based scheduling on heterogeneous resources 113

5.5. Proof of HeteroPrio Approximation Results

2k + 1 4k − 1

2k + 2 4k − 2

2k + 3 4k − 3

· · ·

3k − 1 3k + 1us
es
k
−

1
pr
oc
s

re
pe

at
ed

6
ti
m
es

3k 3k

3k 3k

3k 3k

2k 2k 2k

2k 2k 2k

6k

us
es

6
pr
oc
s

t

2k 4k − 1

2k + 1 4k − 2

2k + 2 4k − 3

· · ·

3k − 1 3k

us
es
k
pr
oc
s

re
pe

at
ed

5
ti
m
es

2k 4k − 1

2k + 1 4k − 2

2k + 2 4k − 3

· · ·

3k − 1 3k 6k
us
es
k
pr
oc
s

t

Figure 5.9: Two schedules for task set T2 on n = 6k homogeneous processors.
Tasks are labeled with their processing times. Left one is an optimal schedule
and right one is a possible list schedule.

Task CPU Time GPU Time # of tasks accel ratio
T1 n n

r
n r

T2
rn
3

see below see below r
3
≤ ρ ≤ r

T3 1 1 mx 1
T4 r 1 nx r

,

where x = m−n
m+nr

n and r is the solution of the equation n
r

+ 2n − 1 = nr
3
.

Note that the highest acceleration factor is r and the lowest is 1 since r > 3.
The set T2 contains tasks with the following execution time on GPU,
(i) one task of length n = 6k, (ii) for all 0 ≤ i ≤ 2k − 1, six tasks of length
2k + i. This set T2 is a generalization of tasks considered in Theorem 5.15.

Tasks of set T2 can be scheduled on n GPUs in time n (see Figure 5.9).
∀1 ≤ i < k, each of the six tasks of length 2k+ i can be combined with one of
the six tasks of length 2k + (2k − i), occupying 6(k − 1) processors; the tasks
of length 3k can be combined together on 3 processors, and there remains 3
processors for the six tasks of length 2k and the task of length 6k. On the
other hand, a worst list schedule may achieve makespan 2n−1 on the n GPUs.
∀0 ≤ i ≤ k − 1, each of the six tasks of length 2k + i is combined with one of
the six tasks of length 4k − i− 1, which occupies all 6k processors until time
6k− 1, then the task of length 6k is executed. The fact that there exists a set
of tasks for which the makespan of a worst case list schedule is almost twice
the optimal makespan is a well known result. However, the interest of set T2
is that the smallest execution time is COpt

max(T2)/3, what allows these tasks to
have a large execution time on CPU in instance I (without having a too large

114 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

Optimal
schedule for T2

Set T3 T4

T1

C
P
U
s

G
P
U
s

0 n
t

(a) Optimal schedule

Set T4

Set T3

T2 (aborted)

rn
3

T1
Bad T2
schedule

0 x x+ n
r

x+ n
r

+ n− 1 x+ n
r

+ 2n− 1
t

(b) HeteroPrio schedule when trying to spoliate the last task

Figure 5.10: Optimal and HeteroPrio schedules for the instance of Theo-
rem 5.17.

acceleration factor).
Figure 5.10a shows an optimal schedule of length n for this instance: the

tasks from set T2 are scheduled optimally on the n GPUs, and the sets T1, T3
and T4 are scheduled on the CPUs. Tasks T3 and T4 fit on the m − n CPUs
because the total work is mx+ nxr = x(m+ nr) = (m− n)n by definition of
x.

On the other hand, Figure 5.10b shows a possible HeteroPrio schedule for
I. The tasks from set T3 have the lowest acceleration factor and are scheduled
on the CPUs, while tasks from T4 are scheduled on the GPUs. All resources
become available at time x. Tasks from set T1 are scheduled on the n GPUs,
and tasks from set T2 are scheduled on m CPUs. At time x + n

r
, the GPUs

become available and start spoliating the tasks from set T2. Since they all
complete at the same time, the order in which they get spoliated can be ar-
bitrary, and it can lead to the worst case behavior of Figure 5.9, where the
task of length n is executed last. In this case, spoliating this task does not
improve its completion time, and the resulting makespan for HeteroPrio on
this instance is CHP

max(I) = x+ n
r

+ 2n− 1 = x+ nr
3

by definition of r.
The approximation ratio on this instance is thus CHP

max(I)

COpt
max(I)

= x
n

+ r
3
. When n

becomes large, x
n
tends towards 1, and r tends towards 3 + 2

√
3. Hence, the

ratio CHP
max(I)

COpt
max(I)

tends towards 2 + 2√
3
, what ends the proof.

5.6 Experimental evaluation

In this section, we propose another experimental evaluation of HeteroPrio on
instances coming from the dense linear algebra library Chameleon [8]. We

Task based scheduling on heterogeneous resources 115

5.6. Experimental evaluation

evaluate our algorithms in two contexts, (i) with independent tasks and (ii)
with dependencies, which is closer to real-life settings and is ultimately the
goal of the HeteroPrio algorithm. In this section, we use task graphs from
Cholesky, QR and LU factorizations, which provide interesting insights on
the behavior of the algorithms. As mentioned in Chapter 1, The Chameleon
library is built on top of the StarPU runtime, and implements tiled versions of
many linear algebra kernels expressed as graphs of tasks. Before the execution,
the processing times of the tasks are measured on both types of resources,
which then allows StarPU schedulers to have a reliable prediction of each task’s
processing time. In this section, we use this data to build input instances for
our algorithms, obtained on a machine with 20 CPU cores of two Haswell
Intel R© Xeon R© E5-2680 processors and 4 Nvidia K40-M GPUs. It is the same
machine what we used in Chapter 4. We consider Cholesky, QR and LU
factorizations with a tile size of 960, and a number of tiles N varying between
4 and 64.

We compare 3 algorithms from the literature : HeteroPrio, the well-known
HEFT algorithm (designed for the general R|prec|Cmax problem), and DualHP
from [29] (specifically designed for CPU and GPU, with an approximation
ratio of 2 for independent tasks). The DualHP algorithm works as follows :
for a given guess λ on the makespan, it either returns a schedule of length
2λ, or ensures that λ < COpt

max. To achieve this, any task with processing time
more than λ on any resource is assigned to the other resource, and then all
remaining tasks are assigned to the GPU by decreasing acceleration factor
while the overall load is lower than nλ. If the remaining load on CPU is not
more than mλ, the resulting schedule has makespan below 2λ. The best value
of λ is then found by binary search.

5.6.1 Independent Tasks

To obtain realistic instances with independent tasks, we have taken the actual
measurements from tasks of each kernel (Cholesky, QR and LU) and considered
these as independent tasks. For each instance, the performance of all three
algorithms is compared to the area bound. Results are depicted in Figure 5.11,
where the ratio to the area bound is given for different values of the number
of tiles N .

The results show that both HeteroPrio and DualHP achieve close to optimal
performance when N is large, but HeteroPrio achieves better results for small
values of N (below 20). This may be surprising, since the approximation ratio
of DualHP is actually better than the one of HeteroPrio. On the other hand,
HeteroPrio is primarily a list scheduling algorithm, that usually achieve good
average case performance. In this case, it comes from the fact that DualHP
tends to balance the load between the set of CPUs and the set of GPUs, but
for such small values of N , the task processing times on CPU are not negligible

116 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

1.0

1.1

1.2

1.3

1.4

8 16 24 32 40 48
Number of tiles

R
at

io
 o

f m
ak

es
pa

n
to

 lo
w

er
 b

ou
nd

Algorithm

DualHP

HetPrio

HEFT

Figure 5.11: Results for independent tasks.

compared to the makespan. Thus, it happens that average loads are similar
for both kinds of resources, but one CPU actually has significantly higher load
than the others, what results in a larger makespan. HEFT, on the other hand,
has rather poor performance because it does not take acceleration factor into
account, and thus assigns tasks to GPUs that would be better suited to CPUs,
and vice-versa.

5.6.2 Task Graphs

Both HeteroPrio and DualHP can be easily adapted to take dependencies
into account, by applying at any instant the algorithm on the current set of
ready tasks. For DualHP, this implies recomputing the assignment of tasks
to resources each time a task becomes ready, and also slightly modifying the
algorithm to take into account the load of currently executing tasks. Since
HeteroPrio is a list algorithm, HeteroPrio rule can be used to assign a ready
task to any idle resource. If no ready task is available for an idle resource, a
spoliation attempt is made on currently running tasks.

When scheduling task graphs, a standard approach is to compute task
priorities based on the dependencies. For homogeneous platforms, the most
common priority scheme is to compute the bottom-level of each task, i.e. the
maximum length of a path from this task to the exit task, where nodes of
the graph are weighted with the execution time of the corresponding task.
In the heterogeneous case, the priority scheme used in the standard HEFT
algorithm is to set the weight of each node as the average execution time of
the corresponding task on all resources. We will denote this scheme by avg. A
more optimistic view could be to set the weight of each node as the smallest

Task based scheduling on heterogeneous resources 117

5.6. Experimental evaluation

execution time on all resources, hoping that tasks will get executed on their
favorite resources. We will denote this scheme min.

In both HeteroPrio and DualHP, these ranking schemes are used to break
ties. In HeteroPrio, whenever two tasks have the same acceleration factor,
the highest priority task is assigned first; furthermore, when several tasks can
be spoliated for some resource, the highest priority candidate is selected. In
DualHP, once the assignment of tasks to CPUs and GPUs is computed, tasks
are sorted by highest priority first and processed in this order. For DualHP, we
also consider another ranking scheme, fifo, in which no priority is computed
and tasks are assigned in the order in which they became ready.

We thus consider a total of 7 algorithms: HeteroPrio, DualHP and HEFT
with min and avg ranking schemes, and DualHP with fifo ranking scheme. We
again consider three types of task graphs: Cholesky, QR and LU factorizations,
with the number of tiles N varying from 4 to 64. For each task graph, the
makespan with each algorithm is computed, and we consider the ratio to the
lower bound obtained by adding dependency constraints to the area bound [15].
Results are depicted in Figure 5.12.

The first conclusion from these results is that scheduling DAGs correspond-
ing to small or large values of N is relatively easy, and all algorithms achieve
performance close to the lower bound: with small values of N , the makespan
is constrained by the critical path of the graph, and executing all tasks on
GPU is the best option; when N is large, the available parallelism is large
enough, and the runtime is dominated by the available work. The interesting
part of the results is thus for the intermediate values of N , between 10 and
30 or 40 depending on the task graph. In these cases, the best results are
always achieved by HeteroPrio, especially with the min ranking scheme, which
is always within 30% of the (optimistic) lower bound. On the other hand, all
other algorithms get significantly worse performance for at least one case.

To obtain a better insight on these results, let us further analyze the sched-
ules produced by each algorithm by focusing on the following metrics: the
amount of idle time on each type of resources (CPU and GPU)1, and the ade-
quacy of task allocation (whether the tasks allocated to each resource is a good
fit or not). To measure the adequacy of task allocation on a resource r, we
define the acceleration factor Ar of the “equivalent task” made of all the tasks
assigned to that resource: let J be the set of tasks assigned to r, Ar =

∑
i∈J pi∑
i∈J qi

.
A schedule has a good adequacy of task allocation if AGPU is high and ACPU is
low. The values of equivalent acceleration factors for both resources are shown
on Figure 5.13. On Figure 5.14, the normalized idle time on each resource is
depicted, which is the ratio of the idle time on a resource to the amount of
that resource used in the lower bound solution.

1For fairness, any work made on an “aborted” task by HeteroPrio is also counted as idle
time, so that all algorithms have the same amount of work to execute.

118 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

1.0

1.1

1.2

1.3

1.4

1.0

1.2

1.4

1.6

1.00

1.25

1.50

1.75

2.00

C
holesky

LU
Q

R

8 16 24 32 40 48 56 64
Number of tiles

R
at

io
 o

f m
ak

es
pa

n
to

 lo
w

er
 b

ou
nd

Ranking avg min fifo Algorithm DualHP HetPrio HEFT

Figure 5.12: Results for different DAGs.

Task based scheduling on heterogeneous resources 119

5.6. Experimental evaluation

GPU CPU

10

20

10

20

5

10

15

C
holesky

LU
Q

R

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
Number of tiles

A
vg

 a
cc

el
er

at
io

n
fa

ct
or

Ranking avg min fifo Algorithm DualHP HetPrio HEFT

Figure 5.13: Equivalent acceleration factors.

Cholesky LU QR

0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

2.0

G
P

U
C

P
U

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
Number of tiles

R
at

io
 o

f w
as

te
 to

 a
re

a
bo

un
d

Ranking avg min fifo Algorithm DualHP HetPrio HEFT

Figure 5.14: Normalized idle time.

120 Suraj Kumar

5. HeteroPrio Approximation Ratios on Two Types of Resources

On Figure 5.13, one can observe that there are significant differences in
the acceleration factor of tasks assigned to the CPU between the different
algorithms. In particular, HeteroPrio usually assigns to the CPU tasks with
low acceleration factor (which is good), whereas HEFT usually has a higher
acceleration factor on CPU. DualHP is somewhat in the middle, with a few
exceptions in the case of LU when N is large. On the other hand, Figure 5.14
shows that HEFT and HeteroPrio are able to keep relatively low idle times in all
cases, whereas DualHP induces very large idle time on the CPU. The reason
for this is that optimizing locally the makespan for the currently available
tasks makes the algorithm too conservative, especially at the beginning of the
schedule where there are not many ready tasks, DualHP assigns all tasks on
the GPU because assigning one on the CPU would induce a larger completion
time. HeteroPrio however is able to find a good compromise by keeping the
CPU busy with the tasks that are not well suited for the GPU, and relies
on the spoliation mechanism to ensure that bad decisions do not penalize the
makespan.

5.7 Conclusion
In this chapter, we analyze the theoretical and practical performance of Het-
eroPrio for scheduling independent tasks on two types of unrelated resources.
HeteroPrio has been proposed in a practical context, and we provide theo-
retical worst-case approximation proofs in several cases, including the most
general, and we prove that our bounds are tight.

Furthermore, we show experimentally that with DAGs coming from Linear
Algebra, HeteroPrio produces very efficient schedules, whose makespans are
better than the state-of-the-art algorithms from the literature, and very close
to the theoretical lower bounds. In future, we plan to work on approxima-
tion bounds of HeteroPrio and other state-of-the-art scheduling algorithms for
general task graphs.

Task based scheduling on heterogeneous resources 121

This page is intentionally left blank.

Conclusion

In this thesis, we have developed different scheduling techniques to efficiently
exploit the capabilities of modern heterogeneous platforms for task based dense
linear algebra applications. We have shown special interest in improving the
performance of dense Cholesky factorization on different heterogeneous plat-
forms composed of CPUs and GPUs. We proposed and evaluated different
static and dynamic strategies. We have shown that introducing some static in-
formation into the dynamic task scheduler improves the performance of an ap-
plication significantly. We have also shown that static schedules (for Cholesky
factorization) are robust to variations in execution timings. We proposed dif-
ferent upper bounds on the performance of task graphs and used them to assess
the quality of different schedules.

A resource centric dynamic scheduler, HeteroPrio, has been proposed re-
cently for a set of small independent tasks on two types of resources, which
is based on the affinity between tasks and resources. We extended this sched-
uler and proposed a family of HeteroPrio on two types of resource, for general
task graphs, that greatly benefits from basic qualitative information about the
task graph. Later, we provided several extensions of the HeteroPrio schedul-
ing strategy to the case with more than two types of resources and evaluated
these extensions on a platform composed of a single CPU, cluster of CPUs and
GPUs. HeteroPrio is based on affinity between tasks and resources and we do
not formulate communication costs explicitly, still in all scenarios (on two types
of resources as well as on more than two types of resources), we observe that
most of the HeteroPrio variants are better than sate-of-the-art heft heuristic
for Cholesky factorization of medium size matrices. It indicates that Hetero-
Prio scheduler is very effective for cases where scheduling decisions are crucial
in order to achieve good performance. Lastly, we also provided a theoretical
insight on the performance of HeteroPrio by proving several approximation
bounds for a set of independent tasks on two types of resources.

We present the detailed contributions of different chapters in the following
paragraphs.

In Chapter 2, we proposed improved performance bounds, which take into
account both resource and task heterogeneity, as well as critical paths. We
have introduced some static information into the dynamic task scheduler of
StarPU, which brought the performance closer to the theoretical bounds, and

123

very close to what a statically-optimized schedule can achieve. We have also
shown that the performance achieved by such statically-optimized schedule
depends on precise non-intuitive task ordering, which thus can not be reached
by simple list-scheduling heuristics, even with backfilling.

In Chapter 3, we provided a fair comparison between static and dynamic
scheduling strategies on heterogeneous platforms consisting of CPU and GPU
nodes. The development of dynamic schedulers on runtime systems is moti-
vated by expected weaknesses and limitations of static schedulers. It has been
observed that execution times of kernels in nodes where many resources (cache,
memories, buses) are shared suffer high variance and it is generally assumed
that the difficulty to predict execution times makes static schedulers useless.
We proved that this assertion is in general not true and that static schedules
(for Cholesky factorization) are in fact robust to variations in execution times.
We have also proved that combining dynamic strategies with simulation in
order to build less myopic algorithms can significantly improve their perfor-
mance. We also considered a family of dynamic schedulers (HeteroPrio) that
performs poorly on general graphs but greatly benefits from basic qualitative
information about the task graph.

In Chapter 4, we presented several extensions of the HeteroPrio scheduling
strategy to the case with more than two types of resources. Besides the obvious
case of platforms with different accelerator types, this capability is also crucial
when CPU cores are clustered together to make use of intra-task parallelism,
as it has been recently advocated in order to make a better use of all avail-
able resources and to build a more homogeneous platform. We exhibited that
HeteroPrio variants are able to make a very efficient use of almost all possible
configurations of heterogeneous platforms for Cholesky and QR factorizations.
Together with the capability of clustering CPU cores, the heuristics that we
propose allow to significantly improve the performance of task based applica-
tions.

In Chapter 5, we provided theoretical worst-case approximation proofs of
HeteroPrio in several cases, including the most general, and we prove that our
bounds are tight. Additionally, we have shown experimentally that HeteroPrio
produces very efficient schedules for different task graphs, whose makespans
are better than the state-of-the-art algorithms from the literature, and very
close to the theoretical lower bounds.

Future Work

Our work opens a bridge to close interaction between applications and tasks
schedulers. We have shown that providing application specific hints to dy-
namic schedulers and dynamic corrections to the static schedulers can notice-
ably improve the performance. We aim at generalizing and formalizing this
type of information, so that scheduling experts can easily analyze achieved

124 Suraj Kumar

Conclusion

performance, optimize the schedule statically, and try to inject more or less
application-specific scheduling hints into the scheduler, such as "this propor-
tion of TRSM tasks should run on CPUs", or "these TRSM tasks should run
on CPUs", or these tasks should be considered for dynamic corrections etc.

In this thesis we consider static schedules without data transfer costs in dif-
ferent chapters obtained from a constraint program. Formulating data trans-
fer costs adds a lot of constraints to the linear program and CP Optimizer is
unable to provide good solutions in limited time. In longer term, we are in-
terested to obtain good static schedules which also take communication costs
in to account. It will help us to analyze the behavior of different schedulers in
details.

Presently, in HeteroPrio strategy, we do not take communication costs into
account while making scheduling decisions. We have evaluated this strategy
on a set of dense linear algebra applications, which are compute intensive ap-
plications. We want to evaluate the performance of HeteroPrio in less compute
applications, where we may have to model the communication costs as well.
It would be interesting to study how to combine two completely independent
dimensions, i.e. , affinity and communication costs in HeteroPrio strategy.

HeteroPrio relies on spoliation mechanism, which requires to abort a run-
ning task and restart it on another worker, which is not straightforward to
implement and not supported in most state-of-the-art runtime systems. It is
possible that aborting a task may take more time than the execution time of
that task on current worker. We plan to implement limited lookahead mech-
anism which removes the need of spoliation from HeteroPrio. A practical
implementation of HeteroPrio with lookahead mechanism is currently under
way in the StarPU runtime system. We are also interested in an implemen-
tation of HeteroPrio where we can use Simgrid with StarPU. The idea is to
use precise simulation capability of Simgrid to perform lookahead simulation
while making scheduling decisions for ready tasks in StarPU.

In Chapter 4, we use exhaustive search to find the optimal configuration of
CPU clusters. How to select the optimal configuration of CPU clusters, when
the platform is too large for exhaustive search, would be an interesting area
to explore. It would also be interesting to study whether the performance can
be improved by changing the clustering of CPUs during the execution instead
of using the same configuration from the beginning to the end.

In this thesis, we provide approximation bound of HeteroPrio for a set of
independent tasks on two types of resources. We are also interested in the
approximation bound of HeteroPrio for general task graphs.

Task based scheduling on heterogeneous resources 125

This page is intentionally left blank.

Bibliography

[1] 1979. LINPACK: LINear algebra PACKage.
URL http://www.netlib.org/linpack

[2] 2008. Roadrunner Supercomputer.
URL https://www.top500.org/system/176026

[3] 2009. Avatar.
URL http://www.imdb.com/title/tt0499549/

[4] 2009. ViTE : Visual Trace Explorer.
URL http://vite.gforge.inria.fr

[5] 2011. MORSE: Matrices Over Runtime Systems @ Exascale.
URL https://www.inria.fr/en/associate-team/morse

[6] 2011. MORSE: Matrices Over Runtime Systems @ Exascale.
URL http://icl.cs.utk.edu/morse

[7] 2012. INTRODUCING TITAN: advancing the era of accelerated com-
puting.
URL https://www.olcf.ornl.gov/titan

[8] 2014. Chameleon, A dense linear algebra software for heterogeneous
architectures.
URL https://project.inria.fr/chameleon

[9] 2016. Projected Performance Development.
URL https://www.top500.org/statistics/perfdevel

[10] 2016. Sunway TaihuLight.
URL https://www.top500.org/system/178764

[11] 2016. TOP 500 List.
URL https://www.top500.org

[12] Agullo, Emmanuel, Augonnet, Cédric, Dongarra, Jack, Faverge,
Mathieu, Ltaief, Hatem, Thibault, Samuel et Tomov, Stanimire,

127

http://www.netlib.org/linpack
https://www.top500.org/system/176026
http://www.imdb.com/title/tt0499549/
http://vite.gforge.inria.fr
https://www.inria.fr/en/associate-team/morse
http://icl.cs.utk.edu/morse
https://www.olcf.ornl.gov/titan
https://project.inria.fr/chameleon
https://www.top500.org/statistics/perfdevel
https://www.top500.org/system/178764
https://www.top500.org

BIBLIOGRAPHY

2011. QR Factorization on a Multicore Node Enhanced with Multiple
GPU Accelerators. Dans 25th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2011). Anchorage, Alaska, USA.
doi:10.1109/IPDPS.2011.90.
URL http://hal.inria.fr/inria-00547614

[13] Agullo, Emmanuel, Augonnet, Cédric, Dongarra, Jack, Ltaief,
Hatem, Namyst, Raymond, Thibault, Samuel et Tomov, Stanimire,
2010. Faster, Cheaper, Better – a Hybridization Methodology to Develop
Linear Algebra Software for GPUs. Dans Wen mei W. Hwu, rédacteur,
GPU Computing Gems, tome 2. Morgan Kaufmann.
URL http://hal.inria.fr/inria-00547847/en/

[14] Agullo, Emmanuel, Aumage, Olivier, Bramas, Berenger, Coulaud,
Olivier et Pitoiset, Samuel, 2016. Bridging the gap between OpenMP
4.0 and native runtime systems for the fast multipole method. Research
Report RR-8953, Inria.
URL https://hal.inria.fr/hal-01372022

[15] Agullo, Emmanuel, Beaumont, Olivier, Eyraud-Dubois, Lionel et
Kumar, Suraj, 2016. Are Static Schedules so Bad? A Case Study
on Cholesky Factorization. Dans 2016 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, May
23-27, 2016, pages 1021–1030. doi:10.1109/IPDPS.2016.90.
URL http://dx.doi.org/10.1109/IPDPS.2016.90

[16] Agullo, Emmanuel, Bramas, Berenger, Coulaud, Olivier, Darve,
Eric, Messner, Matthias et Takahashi, Toru, 2016. Task-based FMM
for heterogeneous architectures. Concurrency and Computation: Prac-
tice and Experience, 28(9). doi:10.1002/cpe.3723.
URL https://hal.inria.fr/hal-01359458

[17] Agullo, Emmanuel, Demmel, Jim, Dongarra, Jack, Hadri, Bilel,
Kurzak, Jakub, Langou, Julien, Ltaief, Hatem, Luszczek, Piotr et
Tomov, Stanimire, 2009. Numerical linear algebra on emerging architec-
tures: The PLASMA and MAGMA projects. Journal of Physics: Con-
ference Series, 180(1):012037+. doi:10.1088/1742-6596/180/1/012037.
URL http://dx.doi.org/10.1088/1742-6596/180/1/012037

[18] Alpatov, Philip, Baker, Greg, Edwards, Carter, Gunnels, John,
Morrow, Greg, Overfelt, James, van de Geijn, Robert et Wu,
Yuan-Jye J., 1997. PLAPACK: Parallel Linear Algebra Package Design
Overview. Dans Proceedings of the 1997 ACM/IEEE Conference on
Supercomputing, SC ’97, pages 1–16. ACM, New York, NY, USA. ISBN

128 Suraj Kumar

http://hal.inria.fr/inria-00547614
http://hal.inria.fr/inria-00547847/en/
https://hal.inria.fr/hal-01372022
http://dx.doi.org/10.1109/IPDPS.2016.90
https://hal.inria.fr/hal-01359458
http://dx.doi.org/10.1088/1742-6596/180/1/012037

BIBLIOGRAPHY

0-89791-985-8. doi:10.1145/509593.509622.
URL http://doi.acm.org/10.1145/509593.509622

[19] Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKen-
ney, A., Du Croz, J., Hammarling, S., Demmel, J., Bischof, C. et
Sorensen, D., 1990. LAPACK: A Portable Linear Algebra Library for
High-performance Computers. Dans Proceedings of the 1990 ACM/IEEE
Conference on Supercomputing, Supercomputing ’90, pages 2–11. IEEE
Computer Society Press, Los Alamitos, CA, USA. ISBN 0-89791-412-0.
URL http://dl.acm.org/citation.cfm?id=110382.110385

[20] Augonnet, Cédric, 2011. Scheduling Tasks over Multicore machines
enhanced with acelerators: a Runtime System’s Perspective. Theses, Uni-
versité Bordeaux 1.
URL https://tel.archives-ouvertes.fr/tel-00777154

[21] Augonnet, Cédric, Thibault, Samuel et Namyst, Raymond, 2009.
Automatic Calibration of Performance Models on Heterogeneous Mul-
ticore Architectures. Dans International Euro-Par Workshops 2009,
HPPC’09, tome 6043 de Lecture Notes in Computer Science, pages 56–
65. Springer, Delft, The Netherlands. doi:10.1007/978-3-642-14122-5_9.
URL http://dx.doi.org/10.1007/978-3-642-14122-5_9

[22] Augonnet, Cédric, Thibault, Samuel, Namyst, Raymond et
Wacrenier, Pierre-André, 2011. StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures. Concurrency and
Computation: Practice and Experience, Special Issue: Euro-Par 2009,
23:187–198. doi:10.1002/cpe.1631.
URL http://hal.inria.fr/inria-00550877

[23] Bakhoda, Ali, Yuan, George L., Fung, Wilson W. L., Wong, Henry
et Aamodt, Tor M., 2009. Analyzing CUDA workloads using a de-
tailed GPU simulator. Dans IEEE International Symposium on Per-
formance Analysis of Systems and Software, ISPASS 2009, April 26-28,
2009, Boston, Massachusetts, USA, Proceedings, pages 163–174. doi:
10.1109/ISPASS.2009.4919648.
URL http://dx.doi.org/10.1109/ISPASS.2009.4919648

[24] Baptiste, Philippe, Le Pape, Claude et Nuijten, Wim, 2012.
Constraint-based scheduling: applying constraint programming to
scheduling problems, tome 39. Springer Science & Business Media.
URL https://hal.inria.fr/inria-00123562

[25] Bauer, Michael, Treichler, Sean, Slaughter, Elliott et Aiken,
Alex, 2012. Legion: Expressing locality and independence with logical

Task based scheduling on heterogeneous resources 129

http://doi.acm.org/10.1145/509593.509622
http://dl.acm.org/citation.cfm?id=110382.110385
https://tel.archives-ouvertes.fr/tel-00777154
http://dx.doi.org/10.1007/978-3-642-14122-5_9
http://hal.inria.fr/inria-00550877
http://dx.doi.org/10.1109/ISPASS.2009.4919648
https://hal.inria.fr/inria-00123562

BIBLIOGRAPHY

regions. Dans Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, SC ’12, pages
66:1–66:11. IEEE Computer Society Press, Los Alamitos, CA, USA.
ISBN 978-1-4673-0804-5.
URL http://dl.acm.org/citation.cfm?id=2388996.2389086

[26] Beaumont, Olivier, Cojean, Terry, Eyraud-Dubois, Lionel, Guer-
mouche, Abdou et Kumar, Suraj, 2016. Scheduling of Linear Algebra
Kernels on Multiple Heterogeneous Resources. Dans International Con-
ference on High Performance Computing, Data, and Analytics (HiPC
2016). Hyderabad, India.
URL https://hal.inria.fr/hal-01361992

[27] Beaumont, Olivier, Eyraud-Dubois, Lionel et Kumar, Suraj, 2016.
Approximation Proofs of a Fast and Efficient List Scheduling Algorithm
for Task-Based Runtime Systems on Multicores and GPUs. Working
paper or preprint.
URL https://hal.inria.fr/hal-01386174

[28] Blackford, L. S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel,
J., Dhillon, I., Hammarling, S., Henry, G., Petitet, A., Stanley,
K., Walker, D. et Whaley, R. C., 1997. ScaLAPACK User’s Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
ISBN 0-89871-397-8.

[29] Bleuse, Raphaël, Gautier, Thierry, Lima, João V. F., Mounié, Gré-
gory et Trystram, Denis, 2014. Scheduling Data Flow Program in
XKaapi: A New Affinity Based Algorithm for Heterogeneous Architec-
tures, pages 560–571. Springer International Publishing, Cham. ISBN
978-3-319-09873-9. doi:10.1007/978-3-319-09873-9_47.
URL http://dx.doi.org/10.1007/978-3-319-09873-9_47

[30] Bleuse, Raphaël, Hunold, Sascha, Kedad-Sidhoum, Safia, Monna,
Florence, Mounié, Grégory et Trystram, Denis, 2016. Scheduling In-
dependent Moldable Tasks on Multi-Cores with GPUs. Research Report
RR-8850, Inria Grenoble Rhône-Alpes, Université de Grenoble.
URL https://hal.archives-ouvertes.fr/hal-01263100

[31] Bleuse, Raphael, Kedad-Sidhoum, Safia, Monna, Florence,
Mounié, Grégory et Trystram, Denis, 2015. Scheduling Independent
Tasks on Multi-cores with GPU Accelerators. Concurr. Comput. : Pract.
Exper., 27(6):1625–1638. doi:10.1002/cpe.3359.
URL http://dx.doi.org/10.1002/cpe.3359

[32] Blumofe, Robert D., Joerg, Christopher F., Kuszmaul, Bradley C.,
Leiserson, Charles E., Randall, Keith H. et Zhou, Yuli, 1995. Cilk:

130 Suraj Kumar

http://dl.acm.org/citation.cfm?id=2388996.2389086
https://hal.inria.fr/hal-01361992
https://hal.inria.fr/hal-01386174
http://dx.doi.org/10.1007/978-3-319-09873-9_47
https://hal.archives-ouvertes.fr/hal-01263100
http://dx.doi.org/10.1002/cpe.3359

BIBLIOGRAPHY

An Efficient Multithreaded Runtime System. SIGPLAN Not., 30(8):207–
216. doi:10.1145/209937.209958.
URL http://doi.acm.org/10.1145/209937.209958

[33] Blumofe, Robert D et Leiserson, Charles E, 1999. Scheduling multi-
threaded computations by work stealing. Journal of the ACM (JACM),
46(5):720–748.

[34] Bonifaci, Vincenzo et Wiese, Andreas, 2012. Scheduling unrelated
machines of few different types. CoRR, abs/1205.0974.
URL http://arxiv.org/abs/1205.0974

[35] Bosilca, George, Bouteiller, Aurelien, Danalis, Anthony,
Faverge, Mathieu, Haidar, Azzam, Herault, Thomas, Kurzak,
Jakub, Langou, Julien, Lemariner, Pierre, Ltaeif, Hatem,
Luszczek, Piotr, YarKhan, Asim et Dongarra, Jack, 2011. Flexible
Development of Dense Linear Algebra Algorithms on Massively Paral-
lel Architectures with DPLASMA. pages 1432–1441. IEEE, Anchorage,
Alaska, USA.

[36] Bosilca, George, Bouteiller, Aurélien, Danalis, Anthony,
Faverge, Mathieu, Hérault, Thomas et Dongarra, Jack, 2013.
PaRSEC: A programming paradigm exploiting heterogeneity for en-
hancing scalability. Computing in Science and Engineering. doi:
10.1109/MCSE.2013.98.

[37] Bosilca, George, Bouteiller, Aurelien, Danalis, Anthony, Her-
ault, Thomas, Luszczek, Piotr et Dongarra, Jack, 2013. Dense
Linear Algebra on Distributed Heterogeneous Hardware with a Symbolic
DAG Approach. Scalable Computing and Communications: Theory and
Practice.

[38] Bouwmeester, Henricus et Langou, Julien, 2010. A critical path
approach to analyzing parallelism of algorithmic variants. application to
cholesky inversion. CoRR, abs/1010.2000.
URL http://arxiv.org/abs/1010.2000

[39] Bouwmeester, Henricus M, 2012. Tiled algorithms for matrix com-
putations on multicore architectures. Thèse de doctorat, University of
Colorado, Denver.

[40] Broquedis, François, Clet-Ortega, Jérôme, Moreaud, Stéphanie,
Furmento, Nathalie, Goglin, Brice, Mercier, Guillaume,
Thibault, Samuel et Namyst, Raymond, 2010. hwloc: a Generic
Framework for Managing Hardware Affinities in HPC Applications. Dans

Task based scheduling on heterogeneous resources 131

http://doi.acm.org/10.1145/209937.209958
http://arxiv.org/abs/1205.0974
http://arxiv.org/abs/1010.2000

BIBLIOGRAPHY

IEEE, rédacteur, PDP 2010 - The 18th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Computing. Pisa, Italy.
doi:10.1109/PDP.2010.67.
URL https://hal.inria.fr/inria-00429889

[41] Brucker, Peter et Knust, Sigrid, 2009. Complexity results for schedul-
ing problems. Web document, URL: http://www2.informatik.uni-
osnabrueck.de/knust/class/.

[42] Buttari, Alfredo, Langou, Julien, Kurzak, Jakub et Dongarra,
Jack, 2007. Lapack working note 191: A class of parallel tiled linear
algebra algorithms for multicore architectures.

[43] Buttari, Alfredo, Langou, Julien, Kurzak, Jakub et Dongarra,
Jack, 2008. Parallel tiled QR factorization for multicore architectures.
Concurrency and Computation: Practice and Experience, 20(13):1573–
1590. doi:10.1002/cpe.1301.
URL http://dx.doi.org/10.1002/cpe.1301

[44] Buttari, Alfredo, Langou, Julien, Kurzak, Jakub et Dongarra,
Jack, 2009. A class of parallel tiled linear algebra algorithms for multicore
architectures. Parallel Computing, 35(1):38–53.

[45] Casanova, Henri, Legrand, Arnaud et Quinson, Martin, 2008. Sim-
Grid: a Generic Framework for Large-Scale Distributed Experiments.
Dans 10th IEEE International Conference on Computer Modeling and
Simulation (UKSim).

[46] Chan, Ernie, Van Zee, Field G., Bientinesi, Paolo, Quintana-
Orti, Enrique S., Quintana-Orti, Gregorio et Van de Geijn, Robert,
2008. SuperMatrix: A multithreaded runtime scheduling system for
algorithms-by-blocks. Dans 13th ACM SIGPLAN Symposium on Prin-
ciples and practice of parallel programming, page 123–132.

[47] Chandrasekar, J., Kim, I. S., Bernstein, D. S. et Ridley, A. J.,
2008. Cholesky-based reduced-rank square-root kalman filtering. Dans
2008 American Control Conference, pages 3987–3992. doi:10.1109/ACC.
2008.4587116.

[48] Chetto, Houssine, Silly, Maryline et Bouchentouf, T, 1990. Dy-
namic scheduling of real-time tasks under precedence constraints. Real-
Time Systems, 2(3):181–194.

[49] Choi, Jaeyoung, Dongarra, Jack, Ostrouchov, Susan, Petitet,
Antoine, Walker, David W. et Whaley, R. Clinton, 1996. Design
and implementation of the scalapack lu, qr, and cholesky factorization

132 Suraj Kumar

https://hal.inria.fr/inria-00429889
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://dx.doi.org/10.1002/cpe.1301

BIBLIOGRAPHY

routines. Scientific Programming, 5(3):173–184.
URL http://content.iospress.com/articles/scientific-
programming/spr5-3-01

[50] Cojean, Terry, Guermouche, Abdou, Hugo, Andra, Namyst, Ray-
mond et Wacrenier, Pierre-André, 2015. Exploiting two-level par-
allelism by aggregating computing resources in task-based applications
over accelerator-based machines. Inria technical report, Inria.
URL https://hal.inria.fr/hal-01181135

[51] Collange, S., Daumas, M., Defour, D. et Parello, D., 2010. Barra:
A parallel functional simulator for gpgpu. Dans 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 351–360. doi:10.1109/MASCOTS.
2010.43.

[52] Cosnard, M., Jeannot, E. et Yang, T., 1999. Slc: Symbolic schedul-
ing for executing parameterized task graphs on multiprocessors. Dans
Proceedings of the 1999 International Conference on Parallel Processing,
pages 413–421. doi:10.1109/ICPP.1999.797429.

[53] D’Ambra, Pasqua, Guarracino, Mario Rosario et Talia, Domenico,
rédacteurs, 2010. Euro-Par 2010 - Parallel Processing, 16th Interna-
tional Euro-Par Conference, Ischia, Italy, August 31 - September 3,
2010, Proceedings, Part II, tome 6272 de Lecture Notes in Computer
Science. Springer. ISBN 978-3-642-15290-0.

[54] Dhillon, Choi Demmel, Choi, J., Demmel, J., Dhillon, I., Don-
garra, J., Ostrouchov, S., Petitet, A., Stanley, K., Walker, D.
et Whaley, R. C., 1995. Lapack working note 95 scalapack: A portable
linear algebra library for distributed memory computers - design issues
and performance.

[55] Don Johnston, 2014. HPC Matters to our Quality of Life and Pros-
perity.
URL http://www.scientificcomputing.com/article/2014/11/hpc-
matters-our-quality-life-and-prosperity

[56] Dongarra, Jack, 1988. The linpack benchmark: An explanation.
Dans Proceedings of the 1st International Conference on Supercomputing,
pages 456–474. Springer-Verlag, London, UK, UK. ISBN 3-540-18991-2.
URL http://dl.acm.org/citation.cfm?id=647970.742568

[57] DURAN, ALEJANDRO, AYGUADÉ, EDUARD, BADIA, ROSA M.,
LABARTA, JESÚS, MARTINELL, LUIS, MARTORELL, XAVIER
et PLANAS, JUDIT, 2011. Ompss: A proposal for programming

Task based scheduling on heterogeneous resources 133

http://content.iospress.com/articles/scientific-programming/spr5-3-01
http://content.iospress.com/articles/scientific-programming/spr5-3-01
https://hal.inria.fr/hal-01181135
http://www.scientificcomputing.com/article/2014/11/hpc-matters-our-quality-life-and-prosperity
http://www.scientificcomputing.com/article/2014/11/hpc-matters-our-quality-life-and-prosperity
http://dl.acm.org/citation.cfm?id=647970.742568

BIBLIOGRAPHY

heterogeneous multi-core architectures. Parallel Processing Letters,
21(02):173–193. doi:10.1142/S0129626411000151.
URL http://www.worldscientific.com/doi/abs/10.1142/
S0129626411000151

[58] Dutot, Pierre-Francois, Mounié, Grégory et Trystram, Denis, 2004.
Scheduling Parallel Tasks: Approximation Algorithms. Dans Joseph T.
Leung, rédacteur, Handbook of Scheduling: Algorithms, Models, and Per-
formance Analysis, chapter 26, pages 26–1 – 26–24. CRC Press.
URL https://hal.archives-ouvertes.fr/hal-00003126

[59] Garbow, Burton S., 1974. EISPACK — A package of matrix eigen-
system routines. Computer Physics Communications, 7(4):179 – 184.
doi:http://dx.doi.org/10.1016/0010-4655(74)90086-1.
URL http://www.sciencedirect.com/science/article/pii/
0010465574900861

[60] Garey, M. R. et Johnson, D. S., 1979. Computers and Intractability, a
Guide to the Theory of NP-Completeness. W.H. Freeman and Company.

[61] Gehrke, Jan Clemens, Jansen, Klaus, Kraft, Stefan E. J. et
Schikowski, Jakob, 2016. A PTAS for Scheduling Unrelated Machines
of Few Different Types, pages 290–301. Springer Berlin Heidelberg,
Berlin, Heidelberg. ISBN 978-3-662-49192-8. doi:10.1007/978-3-662-
49192-8_24.
URL http://dx.doi.org/10.1007/978-3-662-49192-8_24

[62] Gillman, A., 2011. Fast direct solvers for elliptic partial differential
equations. Theses, University of Colorado.
URL https://amath.colorado.edu/faculty/martinss/Pubs/

[63] Graham, Ronald L, 1966. Bounds for certain multiprocessing anoma-
lies. Bell System Technical Journal, 45(9):1563–1581.

[64] Graham, Ronald L., 1969. Bounds on multiprocessing timing anoma-
lies. SIAM journal on Applied Mathematics, 17(2):416–429.

[65] Gustavson, F.G., 2003. High-performance linear algebra algorithms
using new generalized data structures for matrices. IBM Journal of
Research and Development, 47(1):31–55. doi:10.1147/rd.471.0031.

[66] Haugh, M., 2004. The Monte Carlo Framework, Examples from
Finance and Generating Correlated Random Variables. Course Notes.
URL http://www.columbia.edu/~mh2078/MCS04/MCS_framework_
FEegs.pdf

134 Suraj Kumar

http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151
https://hal.archives-ouvertes.fr/hal-00003126
http://www.sciencedirect.com/science/article/pii/0010465574900861
http://www.sciencedirect.com/science/article/pii/0010465574900861
http://dx.doi.org/10.1007/978-3-662-49192-8_24
https://amath.colorado.edu/faculty/martinss/Pubs/
http://www.columbia.edu/~mh2078/MCS04/MCS_framework_FEegs.pdf
http://www.columbia.edu/~mh2078/MCS04/MCS_framework_FEegs.pdf

BIBLIOGRAPHY

[67] Hermann, Everton, Raffin, Bruno, Faure, François, Gautier,
Thierry et Allard, Jérémie, 2010. Multi-GPU and Multi-CPU Paral-
lelization for Interactive Physics Simulations. Dans Euro-Par (2), pages
235–246.

[68] Higham, Nicholas J., 2002. Accuracy and Stability of Numerical Algo-
rithms. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2nd édition. ISBN 0898715210.

[69] Igual, Francisco D., Chan, Ernie, Quintana-Ortí, Enrique S.,
Quintana-Ortí, Gregorio, van de Geijn, Robert A. et Zee, Field
G. Van, 2012. The FLAME approach: From dense linear algebra algo-
rithms to high-performance multi-accelerator implementations. J. Par-
allel Distrib. Comput., 72(9):1134–1143. doi:10.1016/j.jpdc.2011.10.014.

[70] Imreh, Csanád, 2003. Scheduling problems on two sets of identical
machines. Computing, 70(4):277–294. doi:10.1007/s00607-003-0011-9.
URL http://dx.doi.org/10.1007/s00607-003-0011-9

[71] Jaulmes, Luc, Ayguadé, Eduard, Casas, Marc, Labarta, Jesús,
Moretó, Miquel et Valero, Mateo, 2015. Exploiting asynchrony from
exact forward recovery for due in iterative solvers. Dans SC ’15, pages
53:1–53:12. ACM, New York, NY, USA. ISBN 978-1-4503-3723-6.

[72] Koelbel, Charles H., 1994. The High performance Fortran handbook.
Scientific and engineering computation. Cambridge, Mass. MIT Press.
ISBN 0-262-11185-3.

[73] Lenstra, Jan Karel, Shmoys, David B et Tardos, Éva, 1990. Approx-
imation algorithms for scheduling unrelated parallel machines. Mathe-
matical programming.

[74] Ltaief, Hatem, Gratadour, Damien, Charara, Ali et Gendron,
Eric, 2016. Adaptive optics simulation for the world’s largest telescope on
multicore architectures with multiple gpus. Dans Proceedings of the Plat-
form for Advanced Scientific Computing Conference, PASC ’16, pages
9:1–9:12. ACM, New York, NY, USA. ISBN 978-1-4503-4126-4. doi:
10.1145/2929908.2929920.
URL http://doi.acm.org/10.1145/2929908.2929920

[75] Manimaran, G et Murthy, C. Siva Ram, 1998. An efficient dynamic
scheduling algorithm for multiprocessor real-time systems. Parallel and
Distributed Systems, IEEE Transactions on, 9(3):312–319.

[76] Meike Chabowski, 2016. How HPC Impacts Our Lives II: HPC (and
Linux) in the Movies.
URL https://www.suse.com/communities/blog/author/chabowski/

Task based scheduling on heterogeneous resources 135

http://dx.doi.org/10.1007/s00607-003-0011-9
http://doi.acm.org/10.1145/2929908.2929920
https://www.suse.com/communities/blog/author/chabowski/

BIBLIOGRAPHY

[77] Michael Feldman, 2016. First US Exascale Supercomputer Now On
Track for 2021.
URL https://www.top500.org/news/first-us-exascale-
supercomputer-now-on-track-for-2021

[78] Michael Feldman, 2017. China will deploy exascale prototype this
year.
URL https://www.top500.org/news/china-will-deploy-
exascale-prototype-this-year

[79] Ng, Esmond G. et Raghavan, Padma, 1999. Performance of greedy
ordering heuristics for sparse cholesky factorization. SIAM Journal
on Matrix Analysis and Applications, 20(4):902–914. doi:10.1137/
S0895479897319313.
URL http://dx.doi.org/10.1137/S0895479897319313

[80] OpenMP Architecture Review Board, 2008. OpenMP applica-
tion program interface version 3.0.
URL http://www.openmp.org

[81] OpenMP Architecture Review Board, 2013. OpenMP applica-
tion program interface version 4.0.
URL http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.
pdf

[82] Planas, Judit, Badia, Rosa M, Ayguadé, Eduard et Labarta, Jesus,
2009. Hierarchical task-based programming with StarSs. International
Journal of High Performance Computing Applications, 23(3):284–299.

[83] Quach, Willy et Langou, Julien, 2015. A makespan lower bound for
the scheduling of the tiled cholesky factorization based on ALAP schedul-
ing. CoRR, abs/1510.05107.
URL http://arxiv.org/abs/1510.05107

[84] Quintana-Ortí, G., Igual, F. D., Quintana-Ortí, E. S. et van de
Geijn, R. A., 2009. Solving dense linear systems on platforms with
multiple hardware accelerators. Dans PPOPP’09, pages 121–130.

[85] Quintana-Ortí, Gregorio, Quintana-Ortí, Enrique S, Geijn,
Robert A, Zee, Field G Van et Chan, Ernie, 2009. Programming matrix
algorithms-by-blocks for thread-level parallelism. ACM Transactions on
Mathematical Software (TOMS), 36(3):14.

[86] Raghavan, Padma, 1992. Distributed Sparse Matrix Factorization: QR
and Cholesky Decompositions. Thèse de doctorat, University Park, PA,
USA. UMI Order No. GAX92-14255.

136 Suraj Kumar

https://www.top500.org/news/first-us-exascale-supercomputer-now-on-track-for-2021
https://www.top500.org/news/first-us-exascale-supercomputer-now-on-track-for-2021
https://www.top500.org/news/china-will-deploy-exascale-prototype-this-year
https://www.top500.org/news/china-will-deploy-exascale-prototype-this-year
http://dx.doi.org/10.1137/S0895479897319313
http://www.openmp.org
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://arxiv.org/abs/1510.05107

BIBLIOGRAPHY

[87] Raghavan, Padma, Teranishi, Keita et Ng, Esmond G., 2003. A
latency tolerant hybrid sparse solver using incomplete cholesky factor-
ization. Numerical Linear Algebra with Applications, 10(5-6):541–560.
doi:10.1002/nla.327.
URL http://dx.doi.org/10.1002/nla.327

[88] Rico, Alejandro, Cabarcas, Felipe, Villavieja, Carlos, Pavlovic,
Milan, Vega, Augusto, Etsion, Yoav, Ramirez, Alex et Valero,
Mateo, 2012. On the simulation of large-scale architectures using mul-
tiple application abstraction levels. ACM Trans. Archit. Code Optim.,
8(4):36:1–36:20. doi:10.1145/2086696.2086715.
URL http://doi.acm.org/10.1145/2086696.2086715

[89] Roberto Viola , 2015. Why do supercomputers matter for your
everyday life?
URL https://ec.europa.eu/digital-single-market/en/blog/
why-do-supercomputers-matter-your-everyday-life

[90] Rodrigues, A. F., Hemmert, K. S., Barrett, B. W., Kersey,
C., Oldfield, R., Weston, M., Risen, R., Cook, J., Rosenfeld,
P., CooperBalls, E. et Jacob, B., 2011. The structural simula-
tion toolkit. SIGMETRICS Perform. Eval. Rev., 38(4):37–42. doi:
10.1145/1964218.1964225.
URL http://doi.acm.org/10.1145/1964218.1964225

[91] Rothberg, Edward et Gupta, Anoop, 1994. An efficient block-oriented
approach to parallel sparse cholesky factorization. SIAM Journal on
Scientific Computing, 15(6):1413–1439. doi:10.1137/0915085.
URL http://dx.doi.org/10.1137/0915085

[92] Rotkin, Vladimir et Toledo, Sivan, 2004. The design and implemen-
tation of a new out-of-core sparse cholesky factorization method. ACM
Trans. Math. Softw., 30(1):19–46. doi:10.1145/974781.974783.
URL http://doi.acm.org/10.1145/974781.974783

[93] Sarkar, Vivek, 1989. Partitioning and scheduling parallel programs
for multiprocessing. Research monographs in parallel and distributed
computing. Pitman, London. ISBN 0-273-08802-5.

[94] Shahul, Ahmed Zaki Semar et Sinnen, Oliver, 2010. Scheduling task
graphs optimally with a*. The Journal of Supercomputing, 51(3):310–
332.

[95] Shchepin, Evgeny V. et Vakhania, Nodari, 2005. An optimal rounding
gives a better approximation for scheduling unrelated machines. Opera-
tions Research Letters. doi:http://dx.doi.org/10.1016/j.orl.2004.05.004.

Task based scheduling on heterogeneous resources 137

http://dx.doi.org/10.1002/nla.327
http://doi.acm.org/10.1145/2086696.2086715
https://ec.europa.eu/digital-single-market/en/blog/why-do-supercomputers-matter-your-everyday-life
https://ec.europa.eu/digital-single-market/en/blog/why-do-supercomputers-matter-your-everyday-life
http://doi.acm.org/10.1145/1964218.1964225
http://dx.doi.org/10.1137/0915085
http://doi.acm.org/10.1145/974781.974783

BIBLIOGRAPHY

[96] Stanisic, Luka, Thibault, Samuel, Legrand, Arnaud, Videau, Brice
et Méhaut, Jean-François, 2014. Modeling and Simulation of a Dy-
namic Task-Based Runtime System for Heterogeneous Multi-Core Ar-
chitectures. Dans Euro-par - 20th International Conference on Parallel
Processing.

[97] Susan Blackford, 1997. The Two-dimensional Block-Cyclic Distri-
bution.
URL http://www.netlib.org/scalapack/slug/node75.html

[98] Tomov, Stanimire, Dongarra, Jack et Baboulin, Marc, 2010. To-
wards dense linear algebra for hybrid GPU accelerated manycore sys-
tems. Parallel Computing, 36(5-6):232–240. doi:10.1016/j.parco.2009.
12.005.

[99] Topcuouglu, Haluk, Hariri, Salim et Wu, Min-you, 2002.
Performance-Effective and Low-Complexity Task Scheduling for Hetero-
geneous Computing. IEEE Trans. Parallel Distrib. Syst., 13(3):260–274.
doi:10.1109/71.993206.
URL http://dx.doi.org/10.1109/71.993206

[100] Ubal, Rafael, Jang, Byunghyun, Mistry, Perhaad, Schaa, Dana et
Kaeli, David, 2012. Multi2sim: A simulation framework for cpu-gpu
computing. Dans Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques, PACT ’12, pages
335–344. ACM, New York, NY, USA. ISBN 978-1-4503-1182-3. doi:
10.1145/2370816.2370865.
URL http://doi.acm.org/10.1145/2370816.2370865

[101] Vida Glanville, 2015. HPC Short Courses for the UK.
URL http://www2.warwick.ac.uk/fac/cross_fac/hpc-sc/
importance

[102] Wu, W., Bouteiller, A., Bosilca, G., Faverge, M. et Dongarra,
J., 2015. Hierarchical DAG scheduling for Hybrid Distributed Systems.
Dans 29th IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS). Hyderabad, India.

[103] Xhafa, F., Barolli, L. et Durresi, A., 2007. Immediate mode
scheduling of independent jobs in computational grids. Dans 21st In-
ternational Conference on Advanced Information Networking and Appli-
cations (AINA ’07), pages 970–977. doi:10.1109/AINA.2007.78.

[104] YarKhan, A., Kurzak, J. et Dongarra, J., 2011. QUARK Users’
Guide: QUeueing And Runtime for Kernels. UTK ICL.

138 Suraj Kumar

http://www.netlib.org/scalapack/slug/node75.html
http://dx.doi.org/10.1109/71.993206
http://doi.acm.org/10.1145/2370816.2370865
http://www2.warwick.ac.uk/fac/cross_fac/hpc-sc/importance
http://www2.warwick.ac.uk/fac/cross_fac/hpc-sc/importance

	Contents
	Introduction
	Background
	Task-based Runtime Systems
	StarPU
	QUARK
	PaRSEC
	OpenMP
	StarSs
	XKaapi
	SuperMatrix
	Legion

	Simulation Framework
	Simgrid Simulation Engine

	Dense Linear Algebra Libraries
	LINPACK (LINear algebra PACKage)
	LAPACK (Linear Algebra PACKage)
	PLASMA (Parallel Linear Algebra Software for Multicore Architectures)
	MAGMA (Matrix Algebra for GPU and Multicore Architectures)
	MORSE (Matrices Over Runtime Systems at Exascale)
	CHAMELEON

	Dense Matrix Factorizations
	Cholesky Factorization
	QR Factorization
	LU Factorization

	Performance and Bounds of Cholesky Factorization
	Introduction
	Context
	Cholesky Factorization
	Multiprocessor Scheduling

	Makespan Lower Bounds
	Linear Programming Formulation
	Constraint Programming formulation
	Upper bounds on performance

	Experiments and Results
	Schedulers
	Experimental Setup
	Results

	Discussion
	dmda vs dmdas Scheduler
	Mapping from Constraint Programming Solution
	Constraint Programming Schedule in Actual Execution

	Conclusion

	Static vs Dynamic Scheduling Strategies
	Introduction
	Context
	Tile Cholesky Factorization
	Experimental Framework
	Comparing Static and Dynamic Schedulers

	Related Work
	Iterative Bound
	Static Strategies
	Some Dynamic Strategies with Static Schedule

	Heft-like Solutions (Dynamic, Task-centric)
	Improvement of heftp Scheduler
	Analysis of Different Improved heftp Schedulers

	HeteroPrio-like Solutions (Dynamic, Resource-centric)
	Baseline HeteroPrio Scheduler
	Improved HeteroPrio Algorithms
	Performance Comparison of Heteroprio Variants
	Feasibility of the Implementation of HP Corrections

	Comparison of All Three Approaches
	Original Timings
	Perturbed Timings
	Perturbed Timings within an Execution

	Static Schedule in Actual Execution
	Conclusion and Perspectives

	Scheduling of Linear Algebra Kernels on Multiple Heterogeneous Resources
	Introduction
	Background and Related Work
	Affinity Based Scheduling
	Affinity Based Scheduling for Two Classes of Resources
	Generalization to more than Two Classes of Resources
	An Example with Both Scoring Systems

	Experiments and Results
	Tuning of Tile Size Parameter
	Experimental Framework
	Simulation Results & Analysis
	Analysis of Actual Execution Traces
	Actual Execution Performance Comparison

	Conclusion

	HeteroPrio Approximation Ratios on Two Types of Resources
	Introduction
	HeteroPrio Principle
	Affinity Based Scheduling
	HeteroPrio Algorithm for a set of Independent Tasks

	Related Works
	Notations and First Results
	General Notations
	Area Bound
	Summary of Approximation Results

	Proof of HeteroPrio Approximation Results
	General Lemmas
	Approximation Ratio with 1 GPU and 1 CPU
	Approximation Ratio with 1 GPU and m CPUs
	Approximation Ratio with n GPUs and m CPUs

	Experimental evaluation
	Independent Tasks
	Task Graphs

	Conclusion

	Conclusion
	Bibliography

