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Abstract

The structure of the eye offers a unique opportunity to directly observe the
microcirculation, by means, for instance, of fundus camera, which are cheap devices
commonly used in the clinical practice. This can facilitate the screening of systemic
diseases such as diabetes and hypertension, or eye diseases such as glaucoma. A key
phenomenon in the microcirculation is the autoregulation, which is the ability of
certain vessels to adapt their diameter to regulate the blood flow rate in response to
changes in the systemic pressure or metabolic needs. Impairments in autoregulation
are strongly correlated with pathological states.

The hemodynamics in the eye is influenced by the intraocular pressure (IOP),
the pressure inside the eye globe, which is in turn influenced by the ocular blood
flow. The interest in the IOP stems from the fact that it plays a role in several
eye-diseases, such as glaucoma. Mathematical modelling can help in interpreting
the interplay between these phenomena and better exploit the available data.

In the first part of the thesis we present a simplified fluid-structure interaction
model that includes autoregulation. A layer of fibers in the vessel wall models the
smooth muscle cells that regulate the diameter of the vessel. The model is applied
to a 3D image-based network of retinal arterioles.

In the second part, we propose a multi-compartments model of the eye. We use
the equations of poroelasticity to model the blood flow in the choroid. The model
includes other compartments that transmit the pulsatility from the choroid to the
anterior chamber, where the measurements of the IOP are actually performed. We
present some preliminary results on the choroid, the aqueous humor and on the
choroid coupled with the vitreous.

Finally, we present a reduced order modelling technique to speed up multi-
physics simulations. We use high fidelity models for the compartments of particular
interest from the modelling point of view. The other compartments are instead re-
placed by a reduced representation of the corresponding Steklov-Poincaré operator.





Résumé

La structure de l’œil permet d’observer la microcirculation, grâce aux caméras de
fond d’oeil. Ces appareils sont bon marché et couramment utilisés dans la pratique
clinique, permettant le dépistage de maladies oculaires. La capacité des vaisseaux
à adapter leur diamètre (autorégulation) afin de réguler le débit sanguin est im-
portante dans la microcirculation. L’hémodynamique de l’œil est impactée par la
pression à l’intérieur du globe oculaire (IOP), qui est à son tour influencée par le
flux sanguin oculaire. Les altérations de l’autorégulation et l’IOP jouent un rôle
dans les maladies oculaires. La modélisation mathématique peut aider à inter-
préter l’interaction entre ces phénomènes et à mieux exploiter les données médicales
disponibles.

Dans la première partie, nous présentons un modèle simplifié d’interaction fluide-
structure qui inclut l’autorégulation, appliqué à un réseau 3D obtenu par imagerie
médicale. Les cellules musculaires lisses régulant le diamètre du vaisseau sont modé-
lisées dans la structure.

Ensuite, nous utilisons des équations de poroélasticité pour décrire le flux san-
guin dans la choroïde, dans un modèle multi-compartiments de l’œil. Cette approche
permet de rendre compte de la transmission de la pulsatilité de la choroïde à la cham-
bre antérieure, où l’IOP est mesurée. Nous présentons des résultats préliminaires
sur la choroïde, l’humeur aqueuse et sur la choroïde couplée avec la vitrée.

Enfin, nous présentons un modèle d’ordre réduit pour accélérer des simulations
multi-physiques. Des modèles de haute précision sont utilisés pour les comparti-
ments d’intérêt et une représentation réduite de l’opérateur de Steklov-Poincaré est
utilisée pour les autres compartiments.
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1.1 Motivation

Several ocular diseases, for example glaucoma, age related macula generation
or diabetic retinopathy, are still a challenge for the ophthalmologists. Fluid and
structure mechanics plays an important role in these and other pathologies of the eye.
The understanding of the mechanical factors behind their development is important
to find new treatments. Mathematical models provide access to hidden quantities,
clarify the physical mechanisms underlying the diseases and give the possibility
of studying the different risk factors independently. For these reasons, there is an
increasing need for mathematical tools. For instance, in the case of glaucoma, one of
the most common ocular diseases, the mathematical modelling of ocular mechanics
and hemodynamics has been used to study the progression of the disease [HGA+13].

The interest in the study of the hemodynamics in the eye and, in particular, in
the retina also stems from the fact that the eye is the only location of the human
body where the micro-circulation can be observed non-invasively. In fact, because of
the optical properties of the eyeball it is possible to acquire images or videos of the
retina in vivo. Besides providing information about micro-circulation in general,
retinal images are also used to perform measurements and to support diagnosis.
The most common images are the retinal fundus images (Figure 1.1) that are sim-
ple to take and require relatively cheap devices. These images are of lower quality

Figure 1.1: An example of retinal fundus image. The dark area in the center is
the macula that contains the fovea: the center of the vision. The light area in the
nasal zone (the left in this image) is the optic disk, a blind spot of the retina where
the central retinal artery enters the eye and the central retinal vein leaves it. Some
lesions are visible in the lower region of the image. Image number three of the
DRIVE dataset [SAN+04].

compared to other types of images, but they are used in everyday clinical prac-
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tice. Lots of imaging techniques have therefore been developed for the automatic
analysis of these images. State of the art algorithms perform, automatically or
semi-automatically, vessel segmentation [SAN+04, ADHS09] and measurements of
vessels widths and branching angles [LHS+04, PRMT+11]. Other techniques have
been developed for specific diseases. For example, automatic algorithms localize and
count retinal lesions in patients with diabetic retinopathy. This statistical informa-
tion supports early diagnosis and the planning of screening invervals [SBW+02],
[OEHB16].

Retinal fundus images are a source of geometrical information that can be used
for modelling the hemodynamics. Imaging tools provide data about the vessels net-
work such as lengths, widths, artery/vein classifications and connectivities at the
bifurcations. In this thesis we focused on three-dimensional geometries, but 0D mod-
els are also an option [CLC+17]. Image-based modelling contains patient specific
information. Therefore it brings more specific data with respect to hemodynamics
models based on idealized networks of vessels.

When studying the blood flow in the retina, we have to take into account that the
largest vessels have a diameter of less than 200µm [PRBR+08]. The hemodynamics
is in the microcirculation regime and the Fahraeus effect, the Fahraeus-Lindquist
effect and the plasma skimming may be relevant in determining the distribution
of hematocrit and the velocity profile [PNG92, PLCG89]. However, we did not
consider those effects. Instead, we addressed the modelling of autoregulation that
is another typical aspect of the microcirculation. Blood autoregulation is a process
common to several organs of the body [SM99] where arterioles adapt their diameter
in response to a change in the feeding pressure or in the metabolic demand of the
tissue. By changing their diameter, the arterioles adapt their hydraulic resistance
and therefore control the blood flow rate. This is possible because arterioles wall
contains a layer of smooth muscle cells that can contract or dilate in response to
chemical signals. Moreover, impaired autoregulation has been associated to various
diseases such as diabetic retinopathy and glaucoma [KPR95, RPK95, GRS+84].

Blood autoregulation in the retina has been recently modelled on 0D networks
[AHS+13] and on 1D networks [CM15]. In [ACS08, AHS+13], the authors inves-
tigated the biological factors that induce smooth muscle cells contraction. We did
not focus on this aspect and we considered the problem from the perspective of
the fluid-structure interaction. We investigated the mechanical part of the process,
how the smooth muscle cells contraction actually reduces the blood flow rate. In
particular, we proposed a simplified shell model for the vessel wall that contains a
layer of smooth cells. The smooth muscle cells in this layer contain a passive elastic
response, but also an active component that allows them to contract and dilate.
This model is applied to a large image-based 3D network of arterioles. For this rea-
son, the fluid-structure interaction approach that we used is a simplified approach in
which the model of the wall is embedded in the fluid problem considerably reducing
the computational costs. Similar simplified approaches were already present in the
literature [FVCJ+06, NV08, Pir14, CDQ14], but none of them was suitable for the
modelling of autoregulation.
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Another important factor that influences the hemodynamics of the retina is the
intraocular pressure (IOP), which is the pressure inside the eye globe. The level
of IOP has an impact on retinal blood flow (see for example [GHC+14a, CM16])
and it is an important risk factor in glaucoma. However, ocular blood flow has
an impact on the IOP as well. In fact, measurements of IOP exhibits oscillations
with the time scale of the heartbeat. These oscillations are clearly a fluid-structure
interaction phenomenon due to the pulsatility of the blood flow inside the choroid, a
tissue located behind the retina. In the second part of this thesis we described this
phenomenon. Its modelling is not straightforward since numerous compartments
of the eye are involved in this interaction. In the literature we find models for the
different compartments, especially for what concerns the mechanics of the external
shell. However, there is a lack of multiple compartments models where the different
parts of the eye are all considered.

Multi-physics and multi-domain simulations are computationally intensive. In
view of future clinical applications it is important to keep the computational costs
reasonably low. For this reason, in the last part of the thesis we focused on a
reduced order modelling technique to reduce the cost of these simulations. Our
idea was that all the domains included in the model are necessary for a complete
description of the phenomenon, but the solution on some of these domains may
not be interesting from the clinical point of view. The proposed technique aims at
replacing these domains with a reduced representation of the corresponding Steklov-
Poincaré operator computed offline.

1.2 Contents and manuscript organization

This manuscript is organized as follows. Chapters 2 and 3 deal with the mod-
elling of retinal hemodynamics. In particular, a new simplified fluid-structure in-
teraction model is proposed in Chapter 2 and it is used to describe the interaction
between the vessel wall of arterioles and the blood. A non-linear Koiter model de-
scribes the endothelium layer, while the smooth muscle cells, that are present on
the vessel wall, are described via a layer of elastic fibers. By introducing some
simplifying assumptions, the structure equation appears as a boundary condition
for the fluid problem strongly reducing the computational costs. Chapter 3 deals
with the modelling of autoregulation that has been added to the model introduced
in Chapter 2 by including an active component in the force exerted by the smooth
muscle cells. The approach is tested on a realistic geometry obtained from 2D fundus
images of the retina and the results are compared to experimental data.

Chapters 4 and 5 deal with a global view of the eye. In Chapter 4 the anatomy
of the eye is detailed with a focus on the state of the art of the modelling of the eye
fluid dynamics and mechanics. The available models for the different compartments
are briefly listed and summarized. In Chapter 5 we present a 3D model of the
eye with multiple compartments. The model focuses on describing the pulsatility
observed in the IOP that is generated from blood pulsatility in the choroid. In the
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chapter we explain the modelling choices concerning both geometry and physics, we
present a poro-elastic model for the circulation in the choroid and we show some
preliminary results.

In Chapter 6 we present a reduced order model for speeding up multi-physics
simulations. The method has been devised for modelling multi-physics systems
where one, or more, compartments can be replaced by a reduced representation of
the corresponding Steklov-Poincaré operator. High-fidelity models can be employed
only on the other, more interesting, compartments. The approach is based on the
low rank decomposition of the Steklov-Poincaré operator representing the action
of one of the compartments. The method exploits an offline-online decomposition
strategy. Several numerical testcases are presented on 3D examples of fluid-fluid
and fluid-structure interactions.

In Appendix A we annexed a proceeding on a retinal imaging tool that we have
developed for the reconstruction of the geometries used in the first two chapters.

1.3 My contributions

1.3.1 Publications

The study about retinal hemodynamics (Chapter 2) and autoregulation (Chap-
ter 3) leaded to the following papers

• Matteo Aletti, Jean-Frédéric Gerbeau, and Damiano Lombardi
A simplified fluid–structure model for arterial flow. Application to retinal
hemodynamics.
Computer Methods in Applied Mechanics and Engineering, 306:77–94, 2016;

• Matteo Aletti, Jean-Frédéric Gerbeau, and Damiano Lombardi
Modeling autoregulation in three-dimensional simulations of retinal hemody-
namics
Journal for Modeling in Ophthalmology, 1(1):88–115, 2016.

The reduced order method presented in Chapter 6 is published in

• Matteo Aletti and Damiano Lombardi
A reduced order representation of the Poincaré-Steklov operator: an applica-
tion to coupled multi-physics problems
International Journal for Numerical Methods in Engineering, 2017.

During my collaboration with the University of Lincoln on the extraction of
geometries from retinal fundus images I contributed to this proceeding (attached in
Appendix A)

• Francesco Caliva, Matteo Aletti, Bashir Al-Diri, and Andrew Hunter
A new tool to connect blood vessels in fundus retinal images
In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual
International Conference of the IEEE, pages 4343–4346. IEEE, 2015.
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1.3.2 Implementation

The simulations reported in this manuscript were done with FELiSCe (Finite
Elements for Life SCience and Engineering) an in-house finite-element code devel-
oped at Inria in the REO team. FELiSCe is a parallel C++ code based on the
linear algebra library PETSc. The models of Chapters 2 and 3 are based on the
Navier-Stokes solver which was already available in FELiSCe. However, they re-
quired the development of a differential geometry module for the computation of
surface integrals involving the variety of terms arising from the non-linear Koiter
shell model and from the fibers model.

The global model of the eye introduced in Chapter 5 required the addition of new
classes implementing solvers for the Navier-Stokes-Boussinesq equations, the linear
elasticity equation and the Biot’s equations. In order to exchange data between
domains with non-conform interface meshes, it was also necessary to implement
generic interpolation techniques for the evaluation of a finite-element function on a
different surface mesh.

The coupling between two or more compartments is handled via CVGraph. CV-
Graph is a C++ library developed at Inria in the REO team. The goal of this
library is to provide a flexible framework to run multi-physics simulations. The idea
is that each domain has its own solver and its own executable. CVGraph handles
the communications between the executables and also the coupling schemes, so that
minimal changes are required to the single domain software to be included in a larger
model with multiple domains. My contribution to this part was to further improve
the CVGraph library and his interface with FELiSCe. In particular, we worked on
the automatization of the interpolation between non-conform interfaces and on the
generalization of the library to the case of more than two domains.

The reduced order technique presented in Chapter 6 was implemented in FE-
LiSCe. We used SLEPc, an external library dedicated to sparse eigenvalue problems,
for the computation of Laplace-Beltrami eigenfunctions. We implemented a general
interface that enables the use of the reduction technique for different types of prob-
lems, such as the linear elasticity equation, the Stokes equations and the flow in
porous media.

We also worked on the generation of the geometries used in the simulations.
The meshes used in Chapters 2 and 3 have been obtained from the segmentation
of retinal fundus image using a software based on [ADHS09]. We developed a tool
for performing connectivity detection (see Appendix A) and in particular we also
developed a code to generate a 3D surface mesh starting from the 2D connected
segmentation based on Matlab and Gmsh [GR09].





Chapter 2

A simplified fluid-structure model for
arterial flow. Application to retinal

hemodynamics

This chapter is based on [AGL16b]

In this chapter a simplified fluid-structure interaction model for applications in hemo-
dynamics is proposed. This work focuses on simulating the blood flow in arteries, but it
could be useful in other situations where the wall displacement is small. As in other ap-
proaches presented in the literature, our simplified model mainly consists of a fluid problem
on a fixed domain, with Robin-like boundary conditions and a first order transpiration.
Its main novelty is the presence of fibers in the solid. As an interesting numerical side
effect, the presence of fibers makes the model less sensitive than others to strong variations
or inaccuracies in the curvatures of the wall. An application to retinal hemodynamics is
investigated.
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2.1 Introduction

Fluid-structure interaction plays an important role in the cardiovascular sys-
tem. In many situations, complex nonlinear models that include large displacements
and deformations have to be considered. This is, for example, the case for valve
simulation [LS13, vAdB04, vAv06, AGPT09] or in the aorta [BCZH06, CRD+11,
MXA+12]. It is well-known that these simulations are very demanding, and in spite
of the progress achieved in recent years ([FLV15, BČG+14, BF14] to name but a
few), they remain challenging and the subject of active research.

In this chapter, we consider those situations where it is assumed that the problem
under study can be addressed using simplified approaches. The idea is to radically
simplify the solid model in order to replace the full fluid-structure problem by a fluid
problem with non-standard boundary conditions at the fluid-structure interface.
Various approaches have been recently proposed in this direction [FVCJ+06, NV08,
CDQ14, Pir14].

In [NV08], F. Nobile and C. Vergara started from a Koiter linear shell model
and neglected the flexural terms. After discretization, the resulting fluid-structure
equations are reduced to a fluid problem with Robin boundary conditions. In this
approach, the fluid domain was moving. In [Pir14], O. Pironneau further simpli-
fied this approach by fixing the fluid domain, introducing a zero order transpiration
boundary condition, and by assuming that the curvature of the artery was con-
stant. More precisely, whatever the geometry of the vessel is, the stiffness term is
always computed as if the vessel were a cylinder. With these simplifications, the au-
thors were able to perform a comprehensive mathematical analysis of the problem
[CRGMP14]. In [FVCJ+06], A. Figueroa et al. also assumed that the computa-
tional domain was fixed and used a zero order transpiration boundary condition.
The structural model was derived assuming homogeneity throughout the thickness.
Compared to the two previous approaches, this one requires adding new degrees of
freedom to the fluid problem. This drawback is, however, counterbalanced by the
fact that the resulting model is more stable on real geometries featuring variations
of curvature, according to [CDQ14] where an extensive comparison was proposed.

The main focus of the present study is the simulation of the autoregulation of
blood flow in the retinal arteries. This phenomenon is very important since defective
autoregulation may play a role in many retinal diseases, including glaucoma which is
the second leading cause of blindness worldwide [AHS+13]. Autoregulation consists
of an active change of the artery diameter in response to a change in the mean
perfusion pressure. This is clearly a fluid-structure interaction problem, but it is
typically a case in which a full structural model does not seem necessary, at least to
render the basic phenomenon, which is a slight contraction of the vessel wall. The
application of the model proposed in this article to the autoregulation of blood flow
is presented in more detail in Chapter 3.

In our approach, we choose to keep the computational domain fixed, as in
[FVCJ+06], and we adopt transpiration boundary conditions. Nevertheless, the
phenomenon of autoregulation cannot be addressed with the zero order transpira-
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tion formula usually adopted in the literature. Our model will therefore be based on
first order transpiration. For the structure, we will start from a Koiter shell model
without flexural terms as in [NV08]. But, as noted in [CDQ14], this leads to a
simplified model that may be unstable in real geometries due to inaccuracies in the
curvature obtained from medical images. Even when the curvatures are computed
accurately, this model, called inertial-algebraic, may be inaccurate in geometries
with a locally flat fluid-structure interface. Note that the model proposed in [Pir14]
does not suffer from this problem since it assumes everywhere a cylinder-like ge-
ometry in the terms involving the curvature. In our model, we will show that the
introduction of fibers allows us to overcome this problem thanks to the presence of
a surface Laplace operator.

In summary, the main features of our simplified fluid-structure model are the
following: it mainly consists of a fluid problem on a fixed domain, with Robin-like
boundary conditions, which makes it insensitive to the added-mass effect; it takes
into account in a simplified manner the presence of fibers in the solid; it is less
sensitive than others to strong variations or inaccuracies in the curvatures and, as
a consequence, it remains robust in the presence of flat regions in the surface.

The structure of the article is as follows: in Section 2 the structure model is
proposed; in Section 3 the fluid model and the coupling are presented; Section 4 deals
with numerical discretization issues and Section 5 contains numerical illustrations,
including an initial simulation in a retinal arteries network.

2.2 Structure model

In this section, a simplified structure model is introduced to describe the dynam-
ics of the wall. Similarly to other studies presented in the literature, the starting
point is the Koiter thin shell model (see [NV08, Pir14]). The resulting model aims
to render the motion of a thin shell with one or several fiber layers. When the
kinematics of the fibers is considered, it is relevant to keep second order terms in
their deformation because they have an important role in the stability of the model
(the gradient terms in equation (2.5) below). As a consequence, to be consistent
with the approximation made for the fibers, second order terms will also be kept in
the shell model. This leads to the inclusion of non-linear terms in the shell model.

2.2.1 Notation

Let Γ be the reference position of the structure and a smooth mapping φ defining
its position: φ : ω ⊂ R2 → Γ ⊂ R3, φ = φ(ξ1, ξ2), ∀(ξ1, ξ2) ∈ ω. Let (a1,a2) be the
local covariant basis given by aα = ∂αφ = ∂φ

∂ξα
, α = 1, 2. In what follows, Greek

letters for the indices take values in {1, 2} and latin letters in {1, 2, 3}. Einstein
notation is used to denote summation over repeated indices. The normal unit vector
is defined as a3 = a1×a2

|a1×a2| . Let A and B be the matrix representations of the first
and second fundamental forms associated with the reference configuration Γ and let
S = A−1B be the representation of the shape operator. The entries of A and B are
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respectively given by aαβ = aβα = aα · aβ and bαβ = bβα = a3 · ∂αaβ . The entries
of A−1 are denoted by aαβ , thus aασaσβ = δαβ . Given a tensor M = (mσβ), the
entries of A−1M are denoted by mα

β = aασmσβ . The surface covariant derivative
of a vector field q : ω → R3 is denoted by

qα||β = ∂βqα − Γσαβqσ − bαβq3 and q3||β = ∂βq3 + bσβqσ, (2.1)

where Γσαβ are the Christoffel symbols. The covariant gradient of a scalar field
q : ω → R is denoted by ∇cq = (∂αq)α=1,2. In what follows, we denote by 〈u, v〉 the
standard L2(Ω) inner product and by 〈u, v〉ω the L2(Γ)-scalar product

∫
w uv

√
a dξ

where a = det(A).

2.2.2 Nonlinear Koiter shell model

The equations for the Koiter shell model are introduced following [Cia00]. The
hypotheses are the following:

• the displacement of the structure is parallel to the normal of the reference
configuration;

• the bending terms are negligible;

• the material is linear, isotropic and homogeneous.

As a consequence of these assumptions, only the membrane part of the Koiter model
is considered, the shell deformation is described by the change of metric tensor G
and the stress is linear in the deformation. The tensor G is a function of the
displacement field η and reads:

gαβ =
1

2
(ηα||β + ηβ||α) + aijηi||αηj||β,

with a3β = aα3 = 0, a33 = 1. The constitutive law for the stress-strain relationships
is expressed by means of the elastic tensor E , whose contravariant components read:

Eαβστ =
4λsµs

λs + 2µs
aαβaστ + 2µsaασaβτ + 2µsaατaβσ,

where λs, µs are the Lamé coefficients of the structure.
The equilibrium configuration for the shell (see [Cia00] for an extensive discus-

sion) is the stationary point of the energy functional:

ψκ(η) =
1

2

∫
ω
Eαβστgστ (η)gαβ(η) hκ

√
a dξ −

∫
ω
f · η hκ

√
a dξ,

where hκ is the Koiter shell thickness and f are the external forces.
Given a test field χ, defined in a suitable functional space (according to the

boundary conditions of the structure), the equilibrium equations in weak form are
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obtained by:
Ψκ(η,χ) := 〈δηψκ(η),χ〉ω = 0, (2.2)

where δη denotes the Fréchet derivative with respect to η.
The form Ψκ is specialised for the present case according to the assumptions.

By using the hypothesis of a pure normal displacement, i.e. η = ηn, and Eq.(2.1),
the covariant components of the change of metric tensor G reduce to:

gαβ = −bαβη +
1

2
aστ bσαbτβη

2 +
1

2
∂αη∂βη.

After some algebra (see the details of the computation in 2.7), the form reads:

Ψκ(η, χ) :=
2E

1− ν2

∫
ω

(
c1η − 3c2η

2 + 2c3η
3
)
χ− 2∇χT (C1η + C2η

2)∇η+

−∇T η [(C1 + 2C2η)χ]∇η +
1

2

(
∇ηTA−1∇η

)
∇TχA−1∇η hκ

√
a dξ−∫

ω
fn · χ hκ

√
a dξ, (2.3)

where E is the Young modulus of the material, ν the Poisson coefficient, the constant
tensors (Cj) and the coefficients (ck) are expressed as a function of the mean and
Gauss curvatures (respectively ρ1 and ρ2) and the Poisson ratio as follows:

c1 = 4ρ2
1 − 2(1− ν)ρ2, (2.4)

c2 = 4ρ3
1 + (ν − 3)ρ1ρ2,

c3 = 4ρ4
1 − 4ρ2

1ρ2 +
1

2
(1 + ν)ρ2

2,

C1 =

[
νρ1I +

1

2
(1− ν)S

]
A−1,

C2 =

[
νρ2

1I +
1

2
(1− ν)S2

]
A−1.

Several remarks are in order. First in the work presented in [NV08, Pir14]
only the linear term in (2.3) is kept (the one multiplied by c1). In this case, the
shell behaves like a linear spring, whose stiffness constant depends upon the local
curvatures. The non-linearities introduce two contributions: a non-linear spring and
a non-linear membrane part.

2.2.3 Fiber layer

In this section, the equations for a generic fiber layer are detailed. The main
hypotheses are the following:

• the energy of the shell and of the fiber layer sum up;

• from a kinematical point of view, the fibers are perfectly attached to the shell;
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• the fiber is characterized by an affine stress-strain constitutive law.

The second hypothesis implies that the deformation of the fibers equals the defor-
mation of the underlying shell structure in the direction of the fibers.

Let w ∈ Tx(Γ) be a unitary vector belonging to the tangent space of Γ defined
in the point x ∈ Γ. The deformation of the fiber in the w direction can thus be
written as:

ε1D = wTGw = −d1η +
d2

2
η2 +

1

2
∇ηTPw∇η, (2.5)

where the scalar coefficients dj and the projector Pw are defined as d1 = wTBw,
d2 = wTBSw, Pw = w ⊗w. Note that the dj may be negative , for instance on a
cylinder with outward normal. A constitutive stress-strain relationship for the fibers
is assumed of the form:

σ1D = k0 + k1ε1D,

so that k0 represents the pre-stress of the fiber and k1 is the linear elastic coefficient.
Let %w be the fraction of the total number of fibers aligned with the direction

w and hf the thickness of the fibers layer. The elastic energy of the fibers aligned
in the direction w is expressed in the form:

ψw(η) =
1

2

∫
ω
%w [k0 + k1ε1D(η)] ε1D(η) hf

√
a dξ +

∫
ω
rw hf

√
a dξ,

where rw represents the potential energy of a force acting on the fibers aligned with
the direction w.

The equilibrium equations are introduced in weak form, as the scalar product
of the Fréchet derivative of the energy with a test function:

Ψw(η, χ) =

∫
ω
%w∇χT

[
k0 + k1

(
−d1 +

d2

2
η2

)
+
k1

4
W

]
Pw∇η+

%w

[
k0 (−d1 + d2η) + k1

(
−d2

1η −
3d1d2

2
η2 +

d2
2

2
η3

)
+
k1

2
(−d1 + d2η)W

]
χ+

(δηrw)χ hf
√
a dξ, (2.6)

where W =
(
∇ηTPw∇η

)
. Remark that the contribution of the first line is of the

membrane type, whereas the second line contains algebraic terms in the test function
and hence it renders a non-linear spring-like behavior.

When η = 0, the reference configuration is the equilibrium configuration only if
the stress exerted by the fibers due to their pre-stress is balanced by the underlying
shell. This, in weak form, can be written as:∫

ω
(−%wk0d1 + δηrw)χ hf

√
a dξ = 0,

that holds for arbitrary test functions χ, hence

rw = %wk0d1η.
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To conclude this section, let us remark that, in general, the fibers are not parallel
to only one direction. Consider two linearly independent unitary vectors w,v ∈
Tx(Γ) and the associated fiber densities %w, %v defined in each point of Γ. In such
a case we can simply sum the two associated energies ψw and ψv.

2.2.4 Equations for the structure dynamics

The equations for the structure dynamics are obtained by adding the inertia
terms to the elastic contributions highlighted in the previous sections. In particular
the dynamics equations in weak form can be written as:∫

ω
ρshs(∂2

ttη)χ
√
a dξ + Ψκ(η, χ) + Ψw(η, χ) + Ψv(η, χ) = 0,

where Ψκ, defined in Eq.(2.3), represents the contribution of the shell and Ψw,Ψv,
defined in Eq.(2.6), represent the contribution of the fibers aligned in the directions
w and v respectively. The total thickness of the structure is denoted by hs and its
density is denoted by ρs.

In the following, for the sake of simplicity, the overall contribution of the struc-
ture will be denoted as:

Ψs = Ψκ + Ψw + Ψv. (2.7)

2.3 Fluid-structure coupling

The fluid is governed by the incompressible Navier-Stokes equations:

ρf (∂tu+ u · ∇u) = ∇ · σf in Ωt

∇ · u = 0 in Ωt

where u is the velocity, ρf is the fluid density and σf = µf (∇u + (∇u)T ) − pI is
the fluid stress tensor, where µf is the dynamic viscosity and p is the pressure. The
domain Ωt is, in general, time-dependent, since the wall is an elastic structure which
is moving because of the interactions with the fluid. We denote by Ω a fixed reference
domain. We normalize both the equations for the structure and the fluid by ρf and
we introduce the kinematic viscosity νf = µf

ρf
. The quantities E, k0, k1, f

s, ρs and p
are also divided by ρf , but for the sake of simplicity their notation is not changed.

The boundary ∂Ωt is subdivided into two subsets Γt, the interface between the
fluid and the structure, and Σt, representing the artificial boundaries of the domain
where inlet and outlet boundary conditions are enforced on the normal component
of the stress tensor.

Two conditions have to be satisfied on the fluid-structure interface Γt: the conti-
nuity of the velocity and the stress. Since the structure displacement is assumed to
be parallel to the normal direction, it holds, for x ∈ Γ, u(I −n⊗n)|x+η(x)n(x) = 0

and u · n|x+η(x)n(x) = ∂tη. The continuity of the normal component of the normal
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stress gives σfnn|x+η(x)n(x) = −f s − pref , where pref denotes a given external pres-
sure and f s denotes the contribution to the normal stress coming from the elastic
energy of the structure.

As stated in the introduction, in this chapter we set up a simplified fluid-structure
interaction model, that can provide solutions at a moderate computational cost. To
this end, the structure equations are treated as a boundary condition for the fluid
problem and the problem is discretized on a fixed mesh. In order to render the
motion of the wall, a transpiration approach is adopted. A zero-th order transpira-
tion was investigated in [Pir14, GP13, CRGMP14], and proves to be satisfactory to
study the propagation of pressure waves. However, in view of the application that
motivated this work (hemodynamics autoregulation, see Chapter 3), it is important
to compute the flow variation induced by the wall dynamics. Thus, a first order
transpiration condition is considered.

We denote by y ∈ Γt a point on the actual boundary and by x ∈ Γ the corre-
sponding point on the reference configuration. The mapping y = Φ(x) is written as
y = y(x) = η(x)+x. The displacement is assumed to be given by η(x) = η(x)n(x),
where n(x) is the outward normal to the reference domain at the point x. An ad-
ditional assumption is made: the normal is supposed to remain the same during
the evolution, that is n(x) = n(y). This assumption, which was also used in
[NV08, Pir14], can be obtained by assuming small deformations since the difference
|n(x) − n(y)| is of order one in ∇η. The first order transpiration conditions are
obtained through a first order Taylor expansion around the reference configuration
η = 0:

u(y) = u(x) +∇u(x)(y − x) +O(||y − x||2),

u(y) = u(x) + (η∇un)(x) +O(η2), (2.8)

where the gradient is taken with respect to the x coordinate. The tangential com-
ponent of the velocity is computed by multiplying Eq.(2.8) by (I − n⊗ n):

(I − n⊗ n)u(y) = (I − n⊗ n)(u(x) + η∇u(x)n(x)) +O(η2).

Using the no-slip boundary conditions and neglecting the high-order terms:

(I − n⊗ n)u(x) = −η(I − n⊗ n)(∇u(x)n(x)) on Γ.

From Eq.(2.8), the normal component of the velocity can be written as

n⊗ nu(y) = n⊗ n(u(x) + η∇u(x)n(x)) +O(η2).

Neglecting high order terms, the continuity of the normal velocity gives:

∂tη = u · n+ η∇un · n.

We make the additional simplifying assumption that the viscous part of
σfnn|x+η(x)n(x) is negligible compared to the pressure, i.e, σfnn|x+η(x)n(x) =
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−p|x+η(x)n(x). Then, the value of σfnn|x+η(x)n(x) is approximated by using a first
order Taylor expansion on p

σfnn|x+η(x)n(x) = −p− η∇p · n

The equations for the coupled system are written in weak form, on a fixed
reference frame. Let v, q, χ,w be test functions defined in suitable functional spaces
according to the boundary conditions of the problem. In particular let (u,v) ∈ V ⊂
H2(Ω), let (p, q) ∈M ⊂ H1(Ω) and (η, χ) ∈ H1(Γ), w ∈ H1(T(Γ)). Then:



〈∂tu,v〉+ c(u;u,v) + a(u,v) + b(p,v) = 0 in Ω, t > 0

〈∇ · u, q〉 = 0 in Ω, t > 0

ρshs〈∂2
ttη, χ〉ω + Ψs(η, χ) + 〈pref , χ〉ω = 〈p+ η∇p · n, χ〉ω on Γ

〈∂tη, χ〉ω = 〈u · n+ η∇un · n, χ〉ω on Γ

〈(I − n⊗ n)(u+ η∇un),w〉ω = 0 on Γ.

Plus suitable boundary conditions on ∂Ω \ Γ

(2.9)

The forms a, b, c read:

a : V × V → R, a(u,v) = νf (∇u+∇uT ,∇v)Ω ∀(u,v) ∈ V × V
b : M × V → R, b(p,v) = −(p,∇ · v)Ω ∀(p,v) ∈M × V
c(w) : V × V → R, c(w;u,v) = (w · ∇u,v)Ω ∀(u,v) ∈ V × V

2.4 Numerical discretization

2.4.1 Time discretization

The approximation of the generic quantity f at time tk = k∆t is denoted by fk.
The following notation is introduced: ∇nf = ∇f ·n, ∇nnf = ∇fn ·n, fn = f ·n.

An implicit-explicit time discretization is adopted in order to avoid the resolution
of non-linear problems. As regards the tangential velocity boundary condition, the
Taylor contribution accounting for the motion of the wall is taken at the current
time step:

〈(I − n⊗ n)uk+1,w〉ω = −〈ηk(I − n⊗ n)∇ukn,w〉ω on Γ. (2.10)

The normal component of the velocity, which is directly related to the wall displace-
ment η is discretized by adopting a similar strategy:

〈ηk+1, χ〉ω = 〈(1 + ∆t∇nnuk)ηk, χ〉ω + ∆t〈uk+1
n , χ〉ω. (2.11)
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The structure equation is discretized as follows:

ρshs〈
ηk+1 − 2ηk + ηk−1

∆t2
, χ〉ω + Ψs(ηk+1,k, χ) + 〈pref , χ〉ω = 〈pk+1 + ηk∇npk, χ〉ω,

(2.12)
where Ψs is the energy of the structure defined in Eq. (2.7). The non-linear terms in
Ψs are treated in a semi-implicit way detailed in Appendix 2.8 (from equations (2.19)
to (2.21)). After linearization Ψs is replaced by the sum of a bilinear form of ηk+1

and χ and a linear functional of χ. In order to eliminate the current displacement
from the bilinear form, every istance of ηk+1 is replaced by Eq.(2.11) to obtain:

Ψs(ηk+1,k, χ) = Φk+1(uk+1
n , χ) + φk(χ). (2.13)

The bilinear form Ψs(ηk+1,k, χ) is now divided into two contributions: the first one
Φk+1(uk+1

n , χ) is a bilinear form that depends on the current velocity and the second
one φk(χ) is a linear functional of χ where old quantities appear as parameters (see
Eq. (2.22) for detailed expressions). By injecting Eq.(2.13) into Eq.(2.12) and by
collecting all the force terms in one functional, the following is obtained:

ρshs

∆t
〈uk+1
n , χ〉ω + Φk+1(uk+1

n , χ)− 〈pk+1, χ〉ω = F(χ; ηk, pk, ukn). (2.14)

The details of the expression for F are reported in Eq. (2.23). Remark that the left-
hand side is now made up of the unknowns of the fluid problem, and the right-hand
side is computed by using the values of the variables at the previous time step. In
this way, the motion of the structure has been implicitly embedded as a boundary
condition for the fluid problem. In addition, as the acceleration of the structure
is treated implicitly, possible numerical instabilities due to the added-mass effect
[CGN05] are avoided.

The linear part of the Navier-Stokes equations is discretized by an implicit Euler
scheme, and the convective term in a semi-implicit way: c(uk;uk+1,v) = 〈uk ·
∇uk+1,v〉.

Some comments on the stability of the scheme are in order. In the work by
Nobile and Vergara [NV08], stability was proven for a similar model where the fluid
problem was solved on a moving domain and a linear Koiter model was embedded
into the fluid boundary conditions. In the work by Pironneau [Pir14] a complete
mathematical analysis of a similar method was done on a fixed domain where the
coupling was defined by a zero order transpiration. The proof of stability of the
formulation proposed in the present work seems to be more complicated because of
the first order transpiration that results in a non-linear mixed boundary condition
on the surface Γ for the continuous problem.

2.4.2 Application of the boundary conditions

Eq.(2.9) is discretized using P1-P1 finite elements with an SUPG stabilization.
In this section, several remarks on the imposition of the boundary conditions for
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the system are presented.

The boundary conditions are separated into a tangential boundary condition
of Dirichlet type for the velocity and a generalised Robin boundary condition in
the normal direction. In order to impose the conditions via penalization and to
avoid cancellation errors, a unique vector-type boundary condition is written. Let
z = w + χn be a test function , with w · n = 0. It holds:

−〈pk+1n, z〉ω + `(uk+1, z) = R(z),

where ` is a bilinear form and R is a linear functional, deduced from Eq.(2.14) and
Eq.(2.10) (see 2.8).

The implementation of this boundary condition has to be done carefully when
working with real geometries. In particular, we observed that with normals constant
per element, spurious contributions could appear on the tangential velocity (see
Remark below). It is therefore desirable to reinterpolate the normals on the P1
finite elements nodes.

Remark 1
Let us explain the trouble that may come from a piecewise-P0 approximation of the
normal when a penalization method on the weak form is adopted. Consider, for
instance, the case of a Dirichlet boundary condition u = (I − n ⊗ n)g, where g is
a generic vector defined on Γ. When this condition is imposed via penalization the
weak formulation reads: ∫

Γ
(u− Tg) ·w ≈ 0

where T = (I−n⊗n) is the projector in the tangent space, and “≈ 0” means “of the
order of the inverse of the penalization parameter”. If a piecewise-P0 approximation
to the normal field is used, the projector operator T el is defined element-wise and
is discontinuous. The k-th component of this equation is written by introducing the
basis functions used to discretize the problem, namely ϕ, providing:∫

Γ
(uk,iϕi − (T elkrgr)iϕi)wk,jϕj ≈ 0,

where (T elk,jgj)i =
∫

Γ T
el
k,rgrφi. This equation leads to uk,i ≈ (T elk,rgr)i, and hence it

does not guarantee that nels nelk uk,i ≈ 0, for s = 1, 2, 3. On the other hand, if the
piecewise-P1 normal and the corresponding operator T are used, the quantity Tg
is computed for each node and the following identity holds:∫

Γ
(uk,iϕi − Tkr,igr,iϕi)ϕj ≈ 0, l = 1...3

which leads to uk,i ≈ Tkr,igr,i. The velocity satisfies the condition nsnkuk,i = 0, for
s = 1, 2, 3. This is particularly relevant for the accuracy in the computation of the
normal component of the velocity and thus of the displacement field. ♦
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Koiter layer Fibers Layer
E[dyn/cm2] hκ[cm] k0[dyn/cm2] hf [cm]

Without fibers 7.5 · 105 0.1 0 0
With fibers 3.75 · 105 0.1 2.78 · 105 0.1

Table 2.1: Structure parameters for the two simulations.

2.5 Numerical testcases

In this section, three numerical experiments are presented where the different
features of the proposed method are tested.

In the first test case, a pressure wave in a circular cylinder is simulated, in a simi-
lar setting to that in [NV08]. In the second numerical experiment, a similar problem
is solved in a different geometry, characterized by the presence of a flat region. Fi-
nally, the proposed method is applied to an image-based geometry describing a part
of the retinal arteriolar network.

2.5.1 Pressure wave in a cylinder

In this test case, the Stokes equations are solved in a cylindrical domain (L =

6cm, R = 0.5cm). Two different configurations are compared, one with fibers and
one without. The parameters are reported in Tab.2.1. The values for the Young
modulus and for the fibers pre-stress are chosen such that, after linearization, the
spring coefficient ( hkE

(1−νs2)R2 +
hfk0%w
R2 ) coincides for the two configurations. The

remaining structure parameters are: ρs = 1 g/cm3, hs = hκ + hf and νs = 0.5.
For the sake of simplicity, we set k1 = 0. Fibers are assumed to be aligned with
the principal directions of curvature: w is the circumferential direction and v the
longitudinal direction. The fibers’ fraction is chosen such that fibers are mostly
aligned with the circumferential direction (%w = 0.9,%v = 0.1).

For such a simple geometry, the fibers’ directions and curvatures are known
analytically. However, in view of applying the method to realistic geometries, where
this information is in general not available, we assume that the directions and the
curvatures are unknown, and we estimate them numerically from the computational
mesh.

Fig.2.1 presents curvature estimations. On the left, the Gaussian curvature
(analytically equal to zero) and the mean curvature (analytically equal to one) are
plotted against the longitudinal coordinate of the cylinder. Notice the presence of
numerical oscillations in the computation of the curvature. This problem may have
negative effects on other simplified FSI models, as observed in [CDQ14]. In the
proposed model, it is partially overcome by the addition of the fiber layer as shown
below. In the right panel of Fig.2.1, the estimated principal curvature directions are
shown.

The fluid parameters are: ρf = 1 g/cm3 and µf = 0.035 cm 2/s. The boundary
conditions at the inlet and at the outlet are σ(u, p)n = −p̄n. A pressure equal to
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Figure 2.1: On the left panel the mean (brown) and the Gaussian (blue) curvature
estimated from the computational mesh are compared to the exact values: one
and zero, respectively. On the right panel the principal directions of curvature are
depicted: red arrows represent the local direction of maximum curvature, the blue
ones refer to the minimum. On the surface the mean curvature is displayed.

zero is assigned at the outlet (p̄ = 0) and at the inlet

p̄ =

{
5000 dyn/cm2 t ≤ 0.005s

0 t > 0.005s.

In Figures 2.2 and 2.3 the displacement is shown against the longitudinal co-
ordinate, for two different time instants: t = 0.004 and t = 0.012, respectively.
First, there is a difference between the non-linear model and its linear version, both
with and without the fiber layer. The pressure wave amplitude is lower for the
non-linear model, and the wave velocity is higher. This results from the fact that
the non-linear model is characterized by a greater stiffness (due to the non-linear
spring contribution).

By comparing the models with and without fibers, it is interesting to notice the
regularizing effect of the fibers. The difference in the peak amplitude and in the
wave velocity is due to the difference in inertia and stiffness.

2.5.2 Pressure wave in a flat cylinder

The effect of adding a fiber layer to the structure model is even more visible in
presence of flat regions in the surface. In realistic geometries, a locally flat region
may occur for several reasons including a lack of precision in the segmentation
process. This is why the fluid-structure interaction in a flattened cylinder (see
Figure 2.4) is investigated.

For this geometrical setting the inertial-algebraic model proposed in [NV08] can-
not be used. The main reason is that this model reduces to a structure that behaves
pointwise like a spring, whose stiffness constant depends on the curvatures. When
both the curvatures vanish, the spring coefficient is zero. Therefore, the displace-
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Figure 2.2: Displacement in the longitudinal direction for different structure param-
eters (see Table 2.1) for t = 0.004. Red lines refer to the case without fibers, while
black ones to the case with fibers. Solid lines refer to the full model and dashed
lines to the corresponding linear version.

Figure 2.3: Displacement in the longitudinal direction for different structure param-
eters (see Table 2.1) for t = 0.012. Red lines refer to the case without fibers, while
black ones to the case with fibers. Solid lines refer to the full model and dashed
lines to the corresponding linear version.
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Figure 2.4: The domain of the second test case. One side of the cylinder is flat, i.e.
all the curvatures vanish.

ment becomes very large, leading to unphysical solutions. Adding the non-linear
part of the Koiter shell model mitigates this behavior.

In Fig.2.5 the displacement is shown in the longitudinal direction in the center
of the flat region for t = 0.012. Notice that, in the flat region, the structure without
fibers is characterized by a significantly large displacement. This is due to the fact
that, in this region, the structure behaves like a membrane, whose stiffness is low.
In Fig.2.6 the same curves are reported for the displacement in the non-flat region.
In this portion, the behavior of the structure is similar to that found in the first test
case.
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2.6 Application

In the last test case the model is applied to a realistic geometry. The network
represents the inferior temporal arteriole network in the human retina. The original
image was taken in the Drive dataset [SAN+04]. The vasculature has been seg-
mented by applying the imaging methods presented in [ADHS09, CAADH15]. The
2D data have then been expanded into a 3D-network by assuming a circular section
and projecting the results onto a sphere representing the eye. The typical diameter
of this network varies between 70µm and 160µm.

Several physical parameters appear in the equations of the structure and in
that of the fluid. The parameters are chosen to be comparable to those found in
[AHS+13, GHC+14b, PRBR+08] and they are a realistic and representative set of
parameters for retinal arterioles. The parameters used for the arteriole wall are
ρs = 1g/cm3, E = 0.05MPa, ν = 0.5, hκ = 5µm, hf = 20µm, k0 = 0.4MPa,
k1 = 0,%w = %v = 0.5. For the sake of simplicity, the blood is assumed to be
Newtonian, even if for this kind of vessels a non-Newtonian model would be more
appropriate. We used ρf = 1g/cm3, µf = 0.03cPa. Autoregulation is not included
in this test since it will be addressed in Chapter 3.

Pressure conditions are applied at the inlet:

Pin(t)[mmHg] =

{
25.12 sin(πt/0.25) + 45 t ∈ [0, 0.25]

45 t ∈ [0.25, 0.8].

The mean value over time of the incoming pressure is 50mmHg. At the outlets
of the domain, the downstream circulation is connected to a venous pressure of
20mmHg via Windkessel compartments. More precisely, we use an RCR model
where the parameters are Rprox = 6. 108Pa s cm−3, Rdist = 6.109 Pa s cm−3 and the
capacitance is 1.67 10−8 cm3s−1 Pa−1. On the lateral surface an external pressure,
modelling the intra-ocular pressure, of 15mmHg is also imposed.

The displacement of the arterial wall is shown in Fig.2.7 at the systolic peak
and in Fig.2.8 at the end of the diastolic phase. The fact that the displacement is
smaller towards the end of the network is mainly due to two reasons: the pressure at
the end of the network is significantly lower (the pressure drop is between 5 and 10
mmHg) and the diameter of the vessels is smaller. Indeed, the spring contribution to
the structure is characterized by a coefficient that, at the first order approximation
in η, depends on the inverse of the vessel radius squared (as in the Laplace law).
This can be quantitavely observed in Fig. 2.9 by comparing Point 2 and Point 6
(orange and black curves) or by comparing Point 3 and Point 4. In these two cases,
we observe similar pressure curves (dashed lines) and different displacement (solid
lines).

In the same figure we also observe the propagation of the pressure wave through
the vessel network: by comparing Point 1 with Point 5 (red and green curves) we see
that the position of the pressure (and displacement) peak is delayed in Point 5 with
respect to Point 1. On the other hand the amplitude of the wave is reduced, which
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Figure 2.7: Displacement field on the retinal vasculature during the systolic peak.
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Figure 2.8: Displacement field on the retinal vasculature at the end of diastolic
phase.
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Point 3

Point 5

Figure 2.9: Left-hand side: the values of the displacement (solid lines, [cm], left
axis) and pressure (dashed lines, [Pa], right axis) over time for six different points
on the network. Right-hand side: the network of arterioles.

is compatible with the fact that no pulsation is observed at the capillary level.
From a practical viewpoint, it is interesting to note that these fluid-structure

results have been obtained at a computational cost similar to a fluid problem. It
would be interesting to compare the results with those provided by more complex
approaches, as was done in [CDQ14] for other simplified models. This will be the
object of future work.

2.7 Appendix: derivation of the nonlinear elastic energy

In this Appendix, the expression of the elastic energy for the non-linear Koiter
model is derived, when the simplifying hypotheses for the problem (see Section 2.2.2)
are taken into account.

We refer to Section 2.2.1 for the differential geometry notation.
The expression of the energy functional, when f = 0,

ψκ(η) =
1

2

∫
ω
Eαβστgστ (η)gαβ(η) hκ

√
a dξ,

is written in terms of the elasticity tensor defined on the surface and of the change
of metric tensor. The elasticity tensor, Eαβστ , depends on the Lamé coefficients λs

and µs and on inverse of the first fundamental form, A−1, of the surface. In order to
simplify the calculations the term Eαβστgστ (η)gαβ(η) hκ is split into two different
contributions:

Eαβστgστ (η)gαβ(η) =
4λsµs

λs + 2µs
aαβaστgστ (η)gαβ(η)︸ ︷︷ ︸

I

+ 2µsaασaβτgστ (η)gαβ(η) + 2µsaατaβσgστ (η)gαβ(η)︸ ︷︷ ︸
II

.

In the following the dependence of G on η is dropped for sake of compactness in
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the notation. Since A,B,G are symmetric, the two contributions can be further
simplified and written in a more compact form as functions of the tensor A−1G:

I =
4λsµs

λs + 2µs
(aαβgαβ)2 =

4λsµs

λs + 2µs
( tr(A−1G))2 (2.15)

II = 4µsaασgστa
τβgβα = 4µs tr((A−1G)2). (2.16)

By injecting Eq.(2.15) and (2.16) into the expression of the energy functional, the
following is obtained:

ψκ(η) =
1

4

∫
Γ
hκEαβστgστgαβ

√
a dξ

=
1

4

∫
Γ
hκ
[

4λsµs

λs + 2µs
tr(A−1G)2 + 4µs tr((A−1G)2)

]√
a dξ

=
1

4

∫
Γ
hκ
[

2Eν

1− ν2
tr(A−1G)2 +

2E

1 + ν
tr((A−1G)2)

]√
a dξ

=
1

2

∫
Γ

hκE

1− ν2

[
ν tr(A−1G)2 + (1− ν) tr((A−1G)2)

]√
a dξ,

(2.17)

where the relationships between the Lamé coefficients µs, λs and the Young modulus
and the Poisson ratio are used, namely:

λs =
Eν

(1 + ν)(1− 2ν)
, µs =

E

2(1 + ν)
.

The expression of the change of metric tensor is rewritten, by considering that the
displacement field is, by hypothesis, aligned with the outward normal:

gαβ = −bαβη +
1

2
sταbτβη

2 +
1

2
∂αη∂βη,

where sτα denotes the components of the matrix representation of S.

In order to expand the terms in Eq.(2.17) in terms of η, we write the components
of the tensor A−1G

gδβ = (A−1G)δβ = aδαgαβ = −aδαbαβη +
1

2
aδαaστ bσαbτβη

2 +
1

2
aδα∂αη∂βη.

By introducing the notation ∂α = aασ∂σ, gδβ it simplifies to

gδβ = −sδβη +
1

2
sδσsσβη

2 +
1

2
∂δη∂βη.

After some algebraic calculations the quantities tr(A−1G) and tr((A−1G)2)

can be written in terms of traces of powers of S, which are, in turn, directly related
to the curvatures of the surfaces.
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It holds:

tr(A−1G) = − tr(S)η +
1

2
tr(S2)η2 +

1

2
∇ηTA−1∇η

tr((A−1G)2) = tr(S2)η2 − tr(S3)η3 − η∇ηTSA−1∇η

+
1

4
η4 tr(S4) +

1

2
η2∇ηS2A−1∇η +

1

4
(∇ηTA−1∇η)2.

(2.18)

The traces of powers of S can be written in terms of the curvatures as:

tr(S) = λ1 + λ2 = 2ρ1

tr(S2) = λ2
1 + λ2

2 = 4ρ2
1 − 2ρ2

tr(S3) = λ3
1 + λ3

2 = 8ρ3
1 − 6ρ1ρ2

tr(S4) = λ4
1 + λ4

2 = 16ρ4
1 + 2ρ2

2 − 16ρ2
1ρ2,

where ρ1 is the mean curvature 1/2(λ1 +λ2) and ρ2 is the Gaussian curvature λ1λ2.
By using Eq.(2.18) we derive the final expression for the elastic energy functional

ψκ(η) =
1

4

∫
ω
hκEαβστgστgαβ

√
a dξ

=
1

2

∫
ω

hκE

(1− ν2)

[
ν tr(A−1G)2 + (1− ν) tr((A−1G)2)

]√
a dξ

=
1

2

∫
ω

hκE

(1− ν2)

[
c1η

2 − 2c2η
3 + c3η

4 +
1

4
((∇η)TA−1∇η)2+

− 2νρ1η(∇η)TA−1∇η + ν(2ρ2
1 − ρ2)η2(∇η)TA−1∇η+

− (1− ν)η(∇η)TSA−1∇η +
1

2
(1− ν)η2(∇η)TS2A−1∇η

]√
a dξ,

where the coefficients cj depend on the Poisson ratio and on the curvatures (they
are reported in Eq.(2.4)).

In order to compute the form Ψκ in Eq.(2.2), the first variation with respect to
η of the energy functional has to be computed and tested, to get the weak form,
against a function χ belonging to a suitable functional space. The procedure to
derive the first variation (Fréchet derivative) involves several integrations by parts
on the surface that produce extra terms involving the curvatures. These terms,
however, disappear when the first variation is tested against the function χ. The
final result is reported in Eq.(2.3).

2.8 Appendix: Details on the time discretization of the
boundary condition

The nonlinear form Ψs(η, χ) depends on the forms associated to the non-linear
Koiter shell and the fibers (see Eq.(2.7)). For the sake of simplicity, we consider
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only fibers in the w direction.

Ψs(η, χ) =
2E

1− ν2

∫
ω

(
c1η − 3c2η

2 + 2c3η
3
)
χ− 2∇χT (C1η + C2η

2)∇η+ (2.19)

−∇T η [(C1 + 2C2η)χ]∇η +
1

2

(
∇ηTA−1∇η

)
∇TχA−1∇η hκ

√
a dξ−∫

ω
fn · χ hκ

√
a dξ +

∫
ω
%w∇χT

[
k0 + k1

(
−d1 +

d2

2
η2

)
+
k1

4
W

]
Pw∇η+

%w

[
k0d2η + k1

(
−d2

1η −
3d1d2

2
η2 +

d2
2

2
η3

)
+
k1

2
(−d1 + d2η)W

]
χ hf

√
a dξ.

We use a semi-implicit approach to discretize this form in time. The scheme is the
following

Ψs(ηk+1, χ; ηk) =
2E

1− ν2

∫
ω

(
c1 − 3c2η

k + 2c3η
k2
)
ηk+1χ− 2∇χT (C1η

k + C2η
k2

)∇ηk+1+

−∇T ηk
[(
C1 + 2C2η

k+1
)
χ
]
∇ηk +

1

2

(
∇ηkTA−1∇ηk

)
∇TχA−1∇ηk+1 hκ

√
a dξ−

∫
ω
fk+1
n · χ hκ

√
a dξ +

∫
ω
%w∇χT

[
k0 + k1

(
−d1 +

d2

2
ηk

2
)

+
k1

4
W k

]
Pw∇ηk+1+

%w

[
k0d2η

k+1 + k1

(
−d2

1 −
3d1d2

2
ηk +

d2
2

2
ηk

2
)
ηk+1 +

k1

2
(−d1 + d2η

k+1)W k

]
χ hf

√
a dξ.

This form is linear with respect to χ and affine with respect to ηk+1. The coefficients
of the form depend on the current displacement ηk. It is useful to split the form
into two sub-contributions in order to highlight the bilinear part

Ψs(ηk+1, χ; ηk) = B(ηk+1, χ; ηk) + G(χ; ηk). (2.20)
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The bilinear form B(ηk+1, χ; ηk) has the following expression:

B(ηk+1, χ; ηk) =
2E

1− ν2

∫
ω

(
c1 − 3c2η

k + 2c3η
k2 − 2(∇T ηkC2∇ηk)

)
ηk+1χ

− 2∇χT (C1η
k + C2η

k2
)∇ηk+1 +

1

2

(
∇ηkTA−1∇ηk

)
∇TχA−1∇ηk+1 hκ

√
a dξ+

+

∫
ω
%w∇χT

[
k0 + k1

(
−d1 +

d2

2
ηk

2
)

+
k1

4
W k

]
Pw∇ηk+1+

%w

[
k0d2 + k1

(
−d2

1 −
3d1d2

2
ηk +

d2
2

2
ηk

2
)

+
k1

2
d2W

k

]
ηk+1χ hf

√
a dξ.

On the other hand, the functional G(χ; ηk) has the form

G(χ; ηk) = − 2E

1− ν2

∫
ω
(∇T ηkC1∇ηk)χ hκ

√
a dξ− (2.21)∫

ω
fk+1
n · χ hκ

√
a dξ −

∫
ω
%w

k1

2
d1W

kχ hf
√
a dξ.

We use the strong formulation of Eq.(2.11),

ηk+1 = (1 + ∆t∇nnu
k)ηk + ∆tuk+1

n ,

to replace ηk+1 in Eq.(2.20) obtaining:

Ψs(ηk+1, χ; ηk) = ∆tB(uk+1
n , χ; ηk) + B((1 + ∆t∇nnu

k)ηk, χ; ηk) + G(χ; ηk),

which is in the same form as Eq.(2.13). We, finally, define:

Φk+1(uk+1
n , χ) = ∆tB(uk+1

n , χ; ηk)

φk(χ) = B((1 + ∆t∇nnu
k)ηk, χ; ηk) + G(χ; ηk).

(2.22)

The expression for F in equation (2.14) is obtained by combining Eq.(2.22) and
Eq.(2.12).

F = 〈ηk∇np
k − pref − ρshs

∆t2
((∆t∇nnu

k − 1)ηk + ηk−1), χ〉ω − φk(χ). (2.23)

On the interface surface Γ those two boundary conditions (Eq.(2.10), Eq.(2.14))
hold: {

〈(I − n⊗ n)uk+1,w〉ω = −〈ηk(I − n⊗ n)∇ukn,w〉ω
ρshs

∆t 〈u
k+1
n , χ〉ω + Φk+1(uk+1

n , χ)− 〈pk+1, χ〉ω = F(χ; ηk, pk, ukn).
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Let z : Γ 7→ R3 be a vector-valued function of H1(Γ), such that z · n = χ and
(I − n ⊗ n)z = w. We also recall that w · n = 0. By introducing the notation
T = (I − n⊗ n) and by reorganizing the terms ρshs

∆t 〈u
k+1
n , χ〉ω + Φk+1(uk+1

n , χ) we
get {

〈Tuk+1,w〉ω = −〈ηkT∇ukn,w〉ω
〈αkuk+1

n , χ〉ω + Φ̃k+1(uk+1
n , χ)− 〈pk+1, χ〉ω = F(χ; ηk, pk, ukn),

where

αk =
ρshs

∆t
+

2E∆thκ
1− ν2

(c1 − 3c2η
k + 2c3η

k2 − 2(∇T ηkC2∇ηk)

+%whf

[
k0d2 + k1

(
−d2

1 −
3d1d2

2
ηk +

d2
2

2
ηk

2
)

+
k1

2
d2W

k

]
and

Φ̃k+1 =
2E∆t

1− ν2

∫
ω
−2∇χT (C1η

k + C2η
k2

)∇uk+1
n +

1

2

(
∇ηkTA−1∇ηk

)
∇TχA−1∇uk+1

n hκ
√
a dξ+

+

∫
ω
%w∆t∇χT

[
k0 + k1

(
−d1 +

d2

2
ηk

2
)

+
k1

4
W k

]
Pw∇uk+1

n hf
√
a dξ.

Finally, we replace w by Tz and χ by z · n, we multiply the equation for the
tangential component by αk and we sum the result

〈αkuk+1, z〉ω + Φ̃k+1(uk+1
n , z · n)︸ ︷︷ ︸

`(uk+1,z)

−〈pk+1, z·n〉ω = F(z · n; ηk, pk, ukn)− 〈ηkT∇ukn,Tz〉ω︸ ︷︷ ︸
R(z)

.





Chapter 3

Modelling autoregulation in
three-dimensional simulations of retinal

hemodynamics

This chapter is based on [AGL16a]

Autoregulation is a mechanism necessary to maintain an approximately constant blood
flow rate in the microcirculation when acute changes in systemic pressure occur. Failure of
autoregulation in the retina has been associated with various diseases, including glaucoma.

In this work, we propose an initial attempt to model autoregulation in a 3D network
of retinal arteries. The blood flow is modeled with the time-dependent Stokes equations.
The arterial wall model includes the endothelium and the smooth muscle fibers. Various
simplifying assumptions lead to a fluid-structure model where the structural part appears
as a boundary condition for the fluid.

The numerical simulations are performed on a patient-specific network of 25 segments
of retinal arteries located in the inferior temporal quadrant. The results are first com-
pared with experimental data for a given value of perfusion pressure. Then, to assess the
autoregulation mechanism, flow rate-pressure curves are simulated with various perfusion
pressures. The results obtained with the proposed 3D fluid-structure model are in good
agreement with experimental data and 0D models.
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3.1 Introduction

Retinal hemodynamics is strongly influenced by vascular autoregulation. This
mechanism is necessary to maintain an approximately constant flow rate in the
microcirculation when acute changes in the pressure occur, and it is present in
various tissues and organs [SM99]. Failure or impairment of autoregulation in the
retina has been associated with various diseases, for instance, diabetic retinopathy
and glaucoma [KPR95, RPK95, GRS+84].

In the retina, this phenomenon has been studied both in animals [JAB03] and in
humans [JSHB07, BBW+99, HAB+96, DEDK96, RRG+86, NMY02]. Retinal ves-
sels contract or relax in response to a change in the perfusion pressure or to a specific
metabolic need. However, the mechanisms underlying the metabolic pathways that
trigger vessel contraction or relaxation are still under investigation.

Autoregulation has been modeled on 0D networks of arterioles [ACS08] and also
specifically in the retina [AHS+13]. The present work is an initial attempt to address
this phenomenon with 3D patient-specific networks, focusing on the mechanical
aspects.

This work is not motivated by any specific clinical application. Its goal is to
propose a first step toward a 3D model of the hemodynamics of the eye. Even if
existing 0D models can provide valuable information, we believe that 3D models
can be useful to better understand the complex mechanical interactions which oc-
cur within the eye. With modern segmentation tools, patient-specific vasculature
can be automatically reconstructed from retinal fundus images. With 3D models, it
will be possible to use these rich data to address new issues where geometry plays
an important role. For instance, it could be interesting to investigate the blood flow
when a dysfunction occurs in a very localized part of the retina. Venular-arteriolar
communication [HH02] gives another example where a precise representation of the
geometry would also be useful. Nowadays, it is even possible to acquire video of
the retinal vasculature showing the pulsatility of the arterial wall. A data assimi-
lation procedure in a 3D fluid-structure model could allow us to estimate the local
mechanical properties of the vessel, as was done for the aorta [MBX+12, BBG+14].

The numerical simulation of autoregulation in 3D requires a system of equations
that model the mechanical interaction between the blood and the arterial wall. Var-
ious approaches have been proposed in the literature to address this problem in large
arteries. The most complete models are based on the nonlinear elastodynamics equa-
tion coupled with the Navier-Stokes equations set in a moving domain. We refer, for
example, to the monograph [FG09] or to [BCZH06, CRD+11, MXA+12, FLV15], to
name but a few. These models are very demanding from a computational viewpoint
and are valid for large displacements, which is not always necessary, especially in
small arteries. Less expensive approaches have been proposed, where the arterial
wall equation is drastically simplified [FVCJ+06, NV08, Pir14]. The model used in
the present work adopts this latter approach, but it introduces new features, such
as active fibers, which are useful when addressing the autoregulation problem. In
[CDQ14] the authors observed that using simplified models on image-based geom-
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etry might cause numerical instabilities, due to inaccurate approximations of the
normals and the principal curvatures of the surface. A side effect of including fibers
in this model is the improvement of the numerical stability, owing to a Laplace op-
erator added to the structure equation. This model has been introduced in Chapter
2, where a complete derivation and the numerical schemes can be found. In this
chapter we focus on modelling the autoregulation mechanism and the numerical
simulation of this phenomenon in patient-specific retinal arteries. The numerical
tests are carried out on a portion of the retinal vasculature consisting of twenty-five
arterial segments located in the inferior-temporal quadrant and reconstructed from
a retinal fundus image.

The structure of the chapter is as follows: in Section 2, the fluid-structure frame-
work is introduced; Section 3 addresses the structural model, with special emphasis
on the fibers. Section 4 deals with the autoregulation mechanism and Section 5
presents the numerical results. Section 6 presents some limitations of the study and
the conclusion.

3.2 Fluid-structure coupling: main modelling assump-
tions

The first modelling assumption is to neglect the convective terms in the fluid
momentum equation. This approximation is justified since, by considering a maxi-
mum vessel diameter D = 200 µm, a velocity v = 5 cm/s and a kinematic viscosity
ν = 0.04 cm2/s, we obtain a Reynolds number of 2.5. The second main assumption
is to suppose that the blood behaves as an homogeneous Newtonian fluid, which
is questionable since microvessels are considered [WKK+03, PRBR+08]. We make
this hypothesis for the sake of simplicity because it is assumed not to affect too
much the autoregulation, which is the mechanism this chapter focuses on.

The domain Ωt in which the fluid flows, is in general, time-dependent, since
the wall is an elastic structure in interaction with the fluid. The boundary ∂Ωt is
subdivided into two subsets: Γt, which is the interface between the fluid and the
structure, and Σt, representing the artificial boundaries of the domain where inlet
and outlet boundary conditions are enforced. Considering the small displacements
of the retinal arteries wall, the domain Ωt is considered to have a fixed reference
configuration denoted by Ω. A schematic representation of this setting is given in
Fig. 3.1. This approximation considerably reduces the computational cost. The
fluid equations are therefore:{

ρf∂tu = ∇ · σf in Ω,

∇ · u = 0 in Ω,

where u is the velocity, ρf is the fluid density and σf = µf (∇u + (∇u)T ) − pI is
the fluid stress tensor, where µf is the dynamic viscosity and p is the pressure.

The velocity on the fixed fluid-structure interface Γ is obtained by a Taylor ex-
pansion. This approach is known as a “transpiration condition”. In the literature,
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ΓΓtη(t)
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ΣΣ

Figure 3.1: The fluid domain Ωt is within the two curved lines, however the equations
are solved on the fixed computational domain Ω depicted in gray. The displacement
field η, which depends on time, maps Γ into Γt.

this is usually a zero-th order expansion. Here, a first order transpiration condition
is adopted in order to compute the variation of the flow induced by the wall dy-
namics, which is important in order to model autoregulation. The main geometrical
assumption is that the normal to the structure n is constant in time. Moreover, the
kinematics of the vessel wall is assumed to be, at each time, parallel to the normal.
With η denoting the displacement of the wall, the following holds:

η = ηn, ∀t. (3.1)

Two conditions have to be satisfied on the fluid-structure interface Γt: the con-
tinuity of the velocity and the continuity of the stress. Since the structure dis-
placement is assumed to be parallel to the normal direction, the equations for the
continuity of the velocity are, for all x ∈ Γ, u(I − n ⊗ n)|x+η(x)n(x) = 0 and
u · n|x+η(x)n(x) = ∂tη. The balance of the normal component of the normal stress
gives σfnn|x+η(x)n(x) = −fs − piop, where piop denotes the external pressure acting
on the structure, in this case the intra ocular pressure, and fs represents the stress
coming from the structure.

The simplifying assumptions on the structure dynamics, which will be detailed
in the following section, allow us to treat the structure equations as a boundary
condition for the fluid problem.

The equations for the coupled system are written in weak form, on a fixed do-
main. Let v, q, χ,w be test functions defined in suitable functional spaces according
to the boundary conditions of the problem. In particular let u(t) and v ∈ V, let
p(t) and q ∈M , where V = H2(Ω) and M = H1(Ω). Then:
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〈∂tu,v〉Ω + a(u,v) + b(p,v) = 0 in Ω, t > 0

〈∇ · u, q〉Ω = 0 in Ω, t > 0

ρshs〈∂2
ttη, χ〉Γ + Ψs(η, χ) + 〈piop, χ〉Γ = 〈p+ η∇p · n, χ〉Γ on Γ

〈∂tη, χ〉Γ = 〈u · n+ η∇un · n, χ〉Γ on Γ

〈(I − n⊗ n)(u+ η∇un),w〉Γ = 0 on Γ.

(3.2)

The forms a, b read:

a : V × V → R, a(u,v) = νf 〈∇u+∇uT ,∇v〉Ω ∀(u,v) ∈ V × V
b : M × V → R, b(p,v) = −〈p,∇ · v〉Ω ∀(p,v) ∈M × V .

where 〈·, ·〉Ω and 〈·, ·〉Γ denote the standard scalar product in L2(Ω) and in L2(Γ),
respectively and νf is the kinematic viscosity. It should be noted that in this
framework the structure dynamics is embedded as a boundary condition of the fluid
problem. The system in Eq.(3.2) is discretised by means of finite elements (P1-P1,
with a SUPG stabilisation) and by a mixed semi-implicit scheme in time. All the
details of the implementation of this approach are provided in the Chapter 2.

Remark 1
Numerically, the tangential velocity sometimes exhibits oscillations on the fluid-
structure interface, especially on complex geometries. The reason for these oscil-
lations is not completely understood. They might be due to the approximation of
the normals and the curvatures, as already noted in [CDQ14], or to the first order
transpiration terms adopted in our approach. We observed that this problem can
be alleviated by the following consistent stabilization term:

〈(I − n⊗ n)(u+ η∇un),w〉Γ = −β〈h∇(I − n⊗ n)u,∇w〉Γ on Γ,

where β ≥ 0 is the stabilization coefficient and h is the surface element size.

3.3 Modelling the vessel wall dynamics

Retinal arteriolar structure consists of a thin layer of endothelium layer and a
layer of smooth muscle cells which is more developed with respect to vessels of the
same size in other organs [PRBR+08]. From a modelling perspective, the wall is
considered as an elastic shell, so as to render the behavior of the endothelium, and
several fiber layers to model the smooth muscles.

This Section is organised as follows. After introducing the notation, the model
of the structure is presented in its general form, as it appears in system (3.2). The
model for the endothelium is described, followed by a presentation of the fiber layer.
First a derivation of a constitutive law for the smooth muscle fibers is presented. This
constitutive law is then used to close the kinematical and mechanical description of
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the fiber layer surrounding the endothelium.

3.3.1 Notation

Let Γ be the reference position of the vessel wall, i.e. the position at which it is in
a normal state of equilibrium, without external influences. The geometrical configu-
ration of Γ is described by a regular map Φ such that ξ ∈ ω ⊆ R2 7→ x = Φ(ξ) ∈ Γ.
Let A be the first fundamental form and B the second fundamental form associ-
ated with the reference configuration Γ. Let S = A−1B be the representation of the
shape operator. The eigenvalues of the shape operator are the principal curvatures of
the surface Γ, the mean curvature being the average of the principal curvatures and
the Gaussian curvature being their product. The surface parametrization is denoted
by Greek letters and the curvilinear coordinates domain is denoted by ω ⊆ R2.

3.3.2 Equations for the structure dynamics

The equations for the structure dynamics, appearing as a boundary condition of
the system (3.2), are obtained by adding the inertia terms to the elastic energy of
the structure. In particular, the dynamics equations in weak form can be written
as: ∫

ω
ρshs(∂2

ttη)χ
√
a dξ + Ψs(η, χ) = 0,

where the thickness of the structure is denoted by hs and its density by ρs. The form
Ψs describes the behavior of the structure. It is considered as the sum of several
contributions:

Ψs = Ψκ + Ψw + Ψv, (3.3)

where Ψκ, defined in Eq.(3.4), represents the contribution of the endothelium and
Ψw,Ψv, defined in Eq.(3.14), represent the contribution of the fibers aligned in the
directions w and v respectively.

Each of these terms is analyzed in detail in the following part of this section. In
general, all the weak forms are derived as follows: given an elastic model and the
corresponding energy, the equilibrium configuration for the structure can be seen as
the stationary point of the energy functional:

Ψ(η, χ) := 〈δηψ(η), χ〉Γ = 0,

where δη denotes the Frechet derivative with respect to η and ψ is the elastic energy.

3.3.3 The endothelium layer

A nonlinear Koiter shell model is adopted to describe the endothelium dynamics.
The equations and a detailed mathematical derivation are presented in [Cia00]. The
choice of this nonlinear model, rather than the simpler linear version, is motivated
by the consistency with the fiber layer description. In particular, when the fiber
kinematics (see Eq.(3.13)) is described, some nonlinear contributions arise. The
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terms appearing in the Koiter model that have the same order with respect to the
displacement field η have thus to be kept. The displacement field, as pointed out
in Eq.(3.1), is parallel to the normal to the reference configuration.

The simplifying hypotheses from a mechanical point of view are the following:

• the bending terms are negligible;

• the material is linear, isotropic and homogeneous.

The equilibrium configuration is the stationary point of the energy func-
tional [Cia00]:

ψκ(η) =
1

2

∫
ω
Eαβστgστ (η)gαβ(η) hκ

√
a dξ −

∫
ω
f · η hκ

√
a dξ,

where
√
a =

√
det(A), hκ is the shell thickness and f are the external forces, g(η)

is the change of metric tensor. The properties of the material are contained in the
elastic tensor E , whose contravariant components read:

Eαβστ =
4λsµs

λs + 2µs
AαβAστ + 2µsAασAβτ + 2µsAατAβσ,

where λs, µs are the Lamé coefficients of the structure.

By exploiting the hypothesis of normal displacement (see Eq.(3.1)), the expres-
sion for the change of metric tensor becomes:

gαβ = −Bαβη +
1

2
AστBσαBτβη

2 +
1

2
∂αη∂βη,

where the derivative with respect to the Greek letters denotes the derivation with
respect to the surface parametrization.

The form Ψκ describing the equilibrium of the nonlinear Koiter shell model under
the assumptions made reads:

Ψκ(η, χ) :=
2E

1− ν2

∫
ω

(
c1η − 3c2η

2 + 2c3η
3
)
χ− 2∇χT (C1η + C2η

2)∇η+

−∇T η [(C1 + 2C2η)χ]∇η +
1

2

(
∇ηTA−1∇η

)
∇TχA−1∇η hκ

√
a dξ−∫

ω
fn · χ hκ

√
a dξ, (3.4)

where E is the Young modulus of the material, ν the Poisson coefficient, the constant
tensors (Cj) and the coefficients (ck) are expressed as functions of the mean and
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Gaussian curvatures (respectively ρ1 and ρ2) and the Poisson ratio as follows:

c1 = 4ρ2
1 − 2(1− ν)ρ2,

c2 = 4ρ3
1 + (ν − 3)ρ1ρ2,

c3 = 4ρ4
1 − 4ρ2

1ρ2 +
1

2
(1 + ν)ρ2

2,

C1 =

[
νρ1I +

1

2
(1− ν)S

]
A−1,

C2 =

[
νρ2

1I +
1

2
(1− ν)S2

]
A−1.

Notice that, at the first order, the endothelium behaves pointwise as a spring with
constant c1. However the overall behavior can be roughly considered as the sum
of two contributions: a nonlinear spring and a nonlinear membrane. More details
about this derivation can be found in Chapter 2.

3.3.4 The smooth muscle cells model

In this section, a model describing the behavior of the smooth muscle cells (SMC)
is investigated. The resulting model is a 1D idealisation of the SMC muscle fibers.
The equations derived in the present section are used as a constitutive law to close
the model for the fiber layers.

The layer of SMCs, which in large vessels is also responsible for adaptive changes
in the stiffness, has the ability to contract or relax following electrochemical stimuli
in order to regulate the blood flow (see, e.g., [MKH10, Mil90]).

There is no autonomic innervation in the retinal vasculature [Lat67]. This im-
plies that the regulation is carried out by mechanisms that take place locally in
the eye [Bek13]. The contraction of the smooth muscle cells is controlled by the
concentration of calcium ions, which trigger the phosphorylation of myosin light
chains [SM99]. The different chemical pathways are not investigated in the present
work and we make the simplifying assumption that the concentration of calcium
ions depends only on changes of the pressure. However, if more sophisticated mod-
els are available they can be included to relate the concentration of calcium ions to
the other mechanisms.

A chemical state model of the smooth muscle cells has been proposed by Hai
and Murphy [HM88]. This model takes four chemical species into account: myosin
(M), phosphorilated myosin (Mp), phosphorilated actin myosin cross-bridge (AMp)
and unphosphorilated actin myosin cross-bridge (AM). It describes the evolution of
the concentrations (αM , αMp , αAM , αAMp) of those species with a linear system of
differential equations α̇ = Kα under the constraint αM +αMp +αAM +αAMp = 1,
where K depends on the concentration of calcium ions.

The chemical model by Hai and Murphy [HM88] was used by Yang et
al. [YCJBR03a, YCJBR03b] to describe the myogenic response. More recently,
the approach by Yang et al. has been extended to a continuum mechanics frame-
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work [SKH08, MKH10]. Such models have also been coupled with a membrane
model to compute the concentration of calcium ions as a response to external stim-
uli [SS14]. The overall mechanism is reproduced in the following way: an external
stimulus causes a change in calcium concentration which alters the chemical state
of the SMC. Once the chemical state is known, it is possible to compute the active
component of the forces in the cell and thus its mechanical behavior.

In what follows, we refer to the model of Yang et al. [YCJBR03a, YCJBR03b]
and propose a further simplification in order to derive a constitutive equation for a
1D fiber. In the model presented in [YCJBR03a], the mechanics of a single SMC
is described by two elements in parallel: a spring characterized by an exponential
force-length relationship (to describe the passive structural behavior of the overall
cell) and an active element for the cross-bridges. The total force is given by

F = Fcell + Fcb, (3.5)

where cb stands for cross-bridges. The active element is itself made of three ele-
ments in series which model the active force of the actin-myosin cross-bridges, their
passive elasticity properties and the viscous effects, respectively. The total length
of the active element Lcb can be expressed as the sum of the length of these three
components:

Lcb = Lcb,a + Lcb,el + Lcb,visc, (3.6)

where a, el, visc stand for active, elastic and viscous, respectively. The length of the
cell and of the active element representing the cross-bridges are the same and they
are equal to the total length L.

L = Lcell = Lcb. (3.7)

The system of equations is closed by observing that the elements in series have the
the same force:

Fcb,a = Fcb,el = Fcb,visc. (3.8)

Finally, considering the constitutive laws of the three components of the active
element, it is possible to solve the system and obtain the total force. Such force
depends on the total length of the cell, on its time derivative and also on the cell
chemical state described by the proportion of phosphorilated and dephosphorilated
actin-myosin:

F = F (L,
dL

dt
, αAM , αAMp).

This expression can be simplified if the visco-elastic effects are neglible compared
to the elastic effects. In such a case the total force is a function of only the total
length and the concentration of phosphorilated actin-myosin:

F = F (L,αAMp). (3.9)
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Figure 3.2: Scheme of the equivalent circuit describing the model by Yang et al.
(2003) when viscous effects are neglected.

Its expression can be obtained by solving the following system whose equivalent
circuit is depicted in Fig.3.2:

Fcell = kcell(e
αcell

(
L
L0
−1

)
− 1)

Fcb,a = fAMpαAMpe
−b

(
Lcb,a
Lopt

−1
)2

Fcb,el = kel

(
e
αel

(
Lcb,el
Lcb,el,0

−1

)
− 1

)
Fcb,a = Fcb,el

F = Fcell + Fcb,a

L = Lcb,a + Lcb,el,

(3.10)

where the first three equations represent the constitutive law of the cell, the
active part of the cross-bridges and their elastic part. Therefore, the parame-
ters kcell, αcell, L0, fAMp , b, Lopt, kel, αel and Lcb,el,0 describe the structural proper-
ties of the SMC. The last three equations are obtained by combining equations
(3.5),(3.6),(3.7) and (3.8).

Since it is not possible to obtain a closed-form solution for system (3.10), we
make an approximation to obtain an affine stress-strain relationship. Eq.(3.9) is
linearized with respect to the reference configuration Lref :

F ∼ F0(αAMp) + F1(αAMp)(L− Lref ), (3.11)

where the analytical expressions for F0 and F1 are known and are derived through
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Figure 3.3: Force-length relationship from system (3.10), coefficients taken from
Yang et al. (2003). Numerical approximation (black) compared with its approxi-
mation (dashed red) linearized with respect to the Lref .

a Taylor expansion. In order to corroborate the final result, the physiological model
in system (3.10) is compared with its linearized version for different values of αAMp .
The result is presented in Fig.3.3, which shows that a simple affine constitutive law
is indeed valid for an approximated description of the SMC fibers for the retina in
physiological regimes.

The constitutive law adopted, which is the simplest law that approximately
describes the behaviour of the SMCs is:

σ1D = k0 + k1ε1D,

where σ1D is the elastic stress, k0 is the pre-stress of the fiber, k1 is the elastic
modulus, ε1D is the fiber deformation.

Equation (3.11) can finally be used to identify the parameters k0, k1, after a
rescaling. The SMCs are assumed to have a cylindrical shape with a radius rsmc.
The force is divided by πr2

smc in order to obtain the stress. The result reads:

k0(αAMp) =
1

πr2
smc

F0(αAMp),

k1(αAMp) =
1

πr2
smc

F1(αAMp),

In practice, it is difficult to have access to the value of αAMp , which depends on
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many factors. This is why in the following section, the functions k0 and k1 will be
simply assumed to depend on an “activation parameter” ζ:

σ1D = k0(ζ) + k1(ζ)ε1D, (3.12)

3.3.5 The fiber layer

In this section, the equations describing the dynamics of an SMC fiber layer are
detailed. The main hypotheses are the following:

• the fibers are perfectly attached to the shell;

• the fibers are characterized by an affine stress-strain constitutive law.

The kinematic hypothesis implies that the deformation of the fibers equals the de-
formation of the underlying shell structure in the direction of the fibers.

Let w ∈ Tx(Γ) be a unitary vector belonging to the tangent space of Γ defined
at the point x ∈ Γ. The deformation of the fiber in the w direction can thus be
written as:

ε1D = wTGw = −d1η +
d2

2
η2 +

1

2
∇ηTPw∇η, (3.13)

where the scalar coefficients dj and the projector Pw are defined as d1 = wTBw,
d2 = wTBSw, Pw = w⊗w. The constitutive stress-strain relationship is given by
Eq.(3.12).

Let %w be the fraction of the total number of fibers aligned in the direction w.
The elastic energy of the fibers aligned in the direction w is of the form:

ψw(η) =
1

2

∫
ω
%w [k0 + k1ε1D(η)] ε1D(η) hf

√
a dξ +

∫
ω
rw hf

√
a dξ,

where hf is the thickness of the smooth muscle cell layer, rw represents the potential
energy of a force acting on the fibers aligned with the direction w.

The equilibrium equations are introduced in weak form as the scalar product
with a test function of the Frechet derivative of the energy with respect to the
displacement:

Ψw(η, χ) =

∫
ω
%w∇χT

[
k0 + k1

(
−d1 +

d2

2
η2

)
+
k1

4
W

]
Pw∇η+

%w

[
k0 (−d1 + d2η) + k1

(
−d2

1η −
3d1d2

2
η2 +

d2
2

2
η3

)
+
k1

2
(−d1 + d2η)W

]
χ+

(δηrw)χ hf
√
a dξ, (3.14)

where W =
(
∇ηTPw∇η

)
. We remark that the contribution of the first line is of

membrane type, whereas the second line contains algebraic terms in the test function
and hence it renders a nonlinear spring-like behavior.

When η = 0 and the SMCs are not activated, i.e. ζ = ζ̄, the reference configu-
ration is the equilibrium configuration only if the stress exerted by the fibers due to
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their pre-stress is balanced by the underlying shell. By injecting η = 0, ζ = ζ̄ into
Eq.(3.14), we obtain: ∫

ω
(−%wk̄0d1 + δηrw)χhf

√
a dξ = 0,

hence, for any arbitrary test function χ, the following holds

rw = %wk̄0d1η, (3.15)

where k̄0 = k0(ζ̄).

Remark 2
The consequence of Eq.(3.15) is the appearance, in the balance of the normal forces
on Γ, of a force term. This is the main result of the SMCs contraction. Indeed, by
combining Eq.(3.14) and Eq.(3.15) and, by setting k1 = 0 for the sake of simplicity,
we get:

Ψw(η, χ) =

∫
ω
%wk0(ζ)d2ηχ+ %wk0(ζ)∇χTPw∇η hf

√
a dξ+∫

ω
%w(k̄0 − k0(ζ))d1χ h

f√a dξ.

This weak formulation represents the contribution to the structure equation due
to the fibers in direction w. The effect of the activation on the wall mechanics
is twofold: first, there is a change in the constants that characterize the passive
behavior of the structure (namely in the spring- and membrane-like contributions),
and second, a force term of the following form appears:∫

ω
%w(k̄0 − k0(ζ))d1χ h

f√a dξ.

When ζ reaches its maximum value, this term is negative, representing a force in
the normal direction that induces a negative displacement. Remark that the sign of
d1 depends on the curvature along the fiber direction and it is, in general, negative
when the normal is pointing outward.

Remark 3
In order to get an intuitive insight in the normal equilibrium for the structure, an
example in an idealized setting is proposed. The structure is a cylinder of radius
R, a linear Koiter shell is considered, that is in equilibrium under a pressure load.
The displacement with respect to the reference configuration is constant and, hence,
space and time derivatives of the displacement field vanish. Under these conditions
the equilibrium displacement is the solution of an algebraic equation:(

Ehκ

1− ν2
c1 + %wh

f (k0(ζ)d2 − k1d
2
1)

)
η̄ = p− piop − %whfd1(k̄0 − k0(ζ)),
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the coefficient of η̄ depends on both the mechanical properties of the structure
(E, ν, %w, k0(ζ), k1) and on its geometrical properties (c1, d1, d2 which depend on the
curvature). The force term depends on both the mechanical properties (%w, k0(ζ))
and the geometry d1. Let us separate the shell contribution, the fiber contribution
and the transmural presssure:(

Ehκ

1− ν2
c1

)
η̄ = ∆p− σfiber,

where σfiber denotes the active and passive contributions of the fibers. When the
tangential stress in a cylinder is computed by using the Koiter shell model, the
following is obtained:

σθ =
E

1− ν2

η̄

R
.

Injecting this relationship into the equilibrium equation yields:

σθ
hκ

R
= ∆p− σfiber.

The shell (arteriolar endothelium) is in equilibrium under the load exerted by the
fibers and the transmural pressure. The tangential wall tension is simply the integral
of the stress across the thickness (by making the assumption of constant stress in
the section, the tension is given by σθhκ), so that the equilibrium equation reduces
to the Laplace law.

Remark 4
In general, the fibers are not parallel to only one direction. In what follows, two
linearly independent unitary vectors v,w ∈ Tx(Γ) and the associated fiber fractions
%v and %w defined in each point of Γ are considered. In such a case the two associated
energy fields ψw and ψv sum up. If medical imaging or histological examination
provide the fiber orientations, this information can be used to set v, %v, w and
%w. When this information is missing, these values can be based on a qualitative
knowledge of the fibers orientation. For example, it is indicated in [PRBR+08, p.
287] that the smooth muscle cells are oriented both circularly and longitudinally.
One possible choice is therefore to take the principal direction of curvature, and
%v = %w = 1

2 .

With this choice, the fiber layer behaves as an isotropic homogeneous membrane.
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3.3.6 Summary

For the sake of clarity, we now summarize the model derived in the previous
sections. The whole system is made of the Stokes equations

〈∂tu,v〉Ω + a(u,v) + b(p,v) = 0 in Ω, t > 0,

〈∇ · u, q〉Ω = 0 in Ω, t > 0,

〈(I − n⊗ n)(u+ η∇un),w〉Γ = 0 on Γ, t > 0,

σ(u, p)n = −pin(t)n on Γin, t > 0,

and by the continuity of the normal velocity and of the normal stresses at the vessel
wall:{

ρshs〈∂2
ttη, χ〉Γ + Ψs(η, χ) + 〈piop, χ〉Γ = 〈p+ η∇p · n, χ〉Γ on Γ, t > 0,

〈∂tη, χ〉Γ = 〈u · n+ η∇un · n, χ〉Γ on Γ, t > 0.

The behavior of the two-layer structure is modeled by Ψs(η, χ), defined in (3.3).

3.4 Autoregulation and pressure feedback

As indicated in Eq.(3.12), the pre-stress and the elastic modulus of the SMCs are
assumed to be a function of a parameter ζ describing the activation of the SMCs.
Inspired by [AHS+13], we use the following expression for k0:

k0(ζ) = k0,ref + kmax0,a S(ζ), S(ζ) =
1− e−s(ζ−pref )

1 + 1
ωe
−s(ζ−pref )

, (3.16)

where pref is a given reference pressure, k0,ref is the pre-stress in the absence of
activation, ω = −kmin0,a /k

max
0,a , where kmax0,a and kmin0,a are given parameters. The

parameter s affects the slope of the curve and can be estimated by using s =
1

pmax−pref ln(1+q/ω
1−q ), where ln is the natural logarithm, and pmax is the value for

which the active component of the pre-stress is equal to qkmax0,a . A similar behavior
could be assumed for the elastic modulus of the fibers k1, but in what follows, we
simply suppose that k1 = 0. A plot of the sigmoid function is presented in Fig.3.4
for typical values of the parameters.

We now present our strategy to compute the activation parameter ζ. As men-
tioned in Section 3.3.4, SMCs react to changes in the concentration of calcium ions.
The calcium ion concentration is in turn varied by several regulatory mechanisms
[JAB03, PRBR+08, Bek13]. Since the focus of this work is the mechanical aspect
of autoregulation, we make the simplifying assumption that the activation variable
ζ directly depends on the feeding pressure. The rationale behind this choice is that
an increase in the feeding pressure triggers the mechanims that will eventually af-
fect the activation state of the smooth muscle cells. If models describing regulatory
mechanisms and the concentration of calcium ions along the network were available,
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Figure 3.4: Sigmoid function for the parameters ω = 0.8,Pmax = 50,q = 0.75. S(ζ)
on the y-axis and ζ on the x-axis.

they could be used to provide a more physiological expression of ζ.

We estimate ζ by using the mean values of the incoming pressure over the dif-
ferent cardiac cycles. These values are used to reconstruct ζ as a piecewise linear
function in time, in the following way:

ζ(t) = 1
Ti+1−Ti ((Ti+1 − t)ζi + (t− Ti)ζi+1) ∀t ∈ (Ti, Ti+1) for i = 1, 2, . . .

ζi+1 = 1
(Ti+1−Ti)|Σin|

∫ T i+1

Ti

∫
Σin

p dΓ dt, for i = 1, 2, . . .

ζ0 = pref

where Σin denotes the inlet of the computational domain and Ti the starting time
of the i-th heart cycle.

As usual in computational hemodynamics, the 3D domain is truncated and the
downstream vessels is taken into account by using 0D Windkessel models. More
precisely, each terminal vessel in our 3D network is connected to the venous pressure
via an RCR compartment. For simplicity, all these compartments are assumed to
share the same values for the resistances (Rprox and Rdistal) and the capacitance
(C). The autoregulation in the Windkessel element is governed by the following
hypotheses: the proximal resistance Rprox remains constant over time; the distal
resistance is given by:

Rdistal(ζ) = Rdistal,ref + αS(ζ)Rdistal,ref , (3.17)
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with α = 1−Rdistal,max/Rdistal,ref ; the capacitance varies so that the characteristic
time τ = Rdistal(ζ)C(ζ) remains constant.

3.5 Numerical simulations

This section is structured as follows. First, we present a validation of the model
on a test case where the mean incoming pressure coincides with the reference pres-
sure. The values obtained for the velocity are compared with the experimental data
presented in the work by Riva et al. [RGSP85]. Second, we present a numerical ex-
periment where the mean incoming pressure is varied. Different flow rate-incoming
pressure curves are obtained for different values of the maximum pre-stress of the
fibers.

3.5.1 Reference case and validation

3.5.1.1 Data

The geometry was obtained using a retinal fundus image in the Drive
dataset [SAN+04]. The image was segmented and the vessels tree reconstructed by
using the algorithms presented in [ADHS09, CAADH15]. We considered only the
inferior temporal arteriole and its branches. Twenty-five segments were obtained via
the segmentation algorithm. The 3D tree was reconstructed from the 2D image by
first assuming a circular section for the vessels and then by projecting the results
over a sphere. The detailed bifurcations were not available from the segmentation
and they were reconstructed using B-splines. The mesh generation was carried out
using gmsh [GR09] and then refined using Feflo.a, an anisotropic local remeshing
sotware developed at Inria. Fig.3.5 shows two snapshots of the geometry used for
the computations. The computational mesh has 822,071 tetrahedra and 105,604
triangles on the surface, for a total number of vertices of 165,238.

In [GHC+14b], the authors suggest taking a pressure at the inlet of the central
retinal artery that is equal to two thirds of the mean brachial arterial pressure.
With typical values of systolic and diastolic brachial pressure (120/80mmHg), this
gives 62 mmHg. In addition, a pressure drop of about 20 mmHg is assumed to
take place from the upstream of the central retinal artery to the downstream of the
lamina cribrosa. Thus, we choose pref = 40mmHg, which is a reference value for
the pressure at the beginning of our 3D network. Regarding the outlet boundary
condition we set the venous pressure at 20 mmHg, which is compatible with the value
used as a reference in [GHC+14b] after the venules compartment. The reference
values for the Windkessel parameters are Rdistal = 6 · 108 P cm−3, Rprox = 6 ·
107 P cm−3, C = 1.67 · 10−10 s cm3 P−1. The blood viscosity is given by νf =

0.03 cm2 s−1, and its density by ρf = 1 g/cm3. The structure parameters are the
Young modulus of the endothelium E = 0.05 MPa and its Poisson ratio ν = 0.5,
the thickness of the endothelium hκ = 5µm and the total thickness of the vessel
hs = 25µm. The density of the structure is set equal to 1g/cm3. The fiber layer
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Figure 3.5: Computational mesh (left) and a broader view with the sphere used for
the reconstruction (right).

thickness is hf = 20µm The mechanical properties of the fibers are the pre-stress
k0 = 0.4MPa and the elastic modulus k1 = 0. The intra-ocular pressure piop is kept
constant at 15mmHg.

The duration of the cardiac cycle is 0.8s, and the duration of diastole is 0.25s.
The time-profile of the incoming pressure is the following:

Pin(t) =

{
(psys − pdia) sin(πt/0.25) + pdia t ∈ [0, 0.25]

pdia t ∈ [0.25, 0.8],

where pdia = 0.9P̄ and psys = pdia + 0.16πP̄ are the diastolic and systolic pressure
for a given value of mean pressure P̄ . A summary of these choices is presented in
Table 3.5.1.1.

3.5.1.2 Results

In order to have a reference solution where autoregulation does not play a role
and that can be used to assess the model, we set P̄ = 40mmHg. We use u = 0, η = 0

as initial conditions, and observe a quasi periodic behavior after two cardiac cycles.
In Fig.3.6 we report a snapshot from the simulation taken at the time instant t = 3s,
i.e. during the diastole. The figure also displays the surface of the computational
mesh. To compare the results of our simulation with the experimental data presented
in [RGSP85], we compute the mean value (in time, over a cardiac cycle) of the blood
velocity at the center of different sections of the artery along the network. The
value of the diameter is taken as the mean value of the diameters over the segment
(between two bifurcations) which contains the section. The chosen points of the
network are depicted in Fig.3.7, and a comparison of the data is given in Fig.3.8.
In order to have a fair comparison, the mean velocity over time has been computed
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Fluid parameters

νf 0.03 cm2 s−1

ρf 1 g cm−3

Boundary conditions
and Windkessel parameters

Pvenous 20 mmHg
Piop 15 mmHg
Rdistal 6 · 108 P cm−3

Rproximal 6 · 107 P cm−3

C 1.67 · 10−10 s cm3 P−1

Structure parameter

ρs 1 g cm−3

E 0.05 MPa
ν 0.5
k0 0.4 MPa
k1 0
hk 5 µm
hf 20 µm
hs 25 µm

Table 3.1: Summary of the model parameters. In the table P stands for Poise.

0.9 1.8 2.7 0.0  4.0

Velocity

Figure 3.6: Velocity profiles [cm/s] on some slices of the domain. Values are taken
during the diastolic phase of the fourth cardiac cycle (t = 3s).
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Figure 3.7: Points where the mean velocity has been measured for comparison with
experimental data presented in [RGSP85]

using the same formula as was used in [RGSP85] (one third of the systolic velocity
plus two thirds of the diastolic velocity). The results of the model are within
the same range of values as the experimental data. The two sets of points also
show a similar variability. However, there is a region for which either the velocity
has been underestimated or the diameter has been overestimated (around 100 µm,
1 cm/s). We can provide two explanations for this discrepancy. First, the errors
might come from the segmentation: the points with the lowest velocity are in the
terminal vessels, which are the smallest and therefore the most difficult to capture
with the segmentation algorithms. Second, it is possible that the assumption that
all terminal vessels experience the same downstream equivalent resistance is too
rough an approximation of reality.

3.5.2 Autoregulation

3.5.2.1 Data

For this test case we used the geometry and the data reported in Section 3.5.1.1.
The control mechanism has been detailed in Section 3.4. For the present simula-
tion, the parameters defining the sigmoid activation function (see Eq.(3.16)) are the
following: ω = 0.8 and Pmax = 50mmHg, q = 75%.

3.5.2.2 Results

In Fig. 3.9 the relationship between the flow rate and the pressure at the in-
let is depicted for a representative cardiac cyle in two distinct scenarios: without
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Figure 3.8: Comparison between the experimental data taken from [RGSP85]. Mean
velocity in time (y-axis) and diameter (x-axis, arteries on the left side and veins on
the right side). Experimental data are depicted by circles: red refers to arteries and
blue refers to veins. Data computed by the proposed model are depicted by green
triangles.
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Figure 3.9: Normalized flow rate (y-axis) with respect to incoming pressure (x-
axis). Each circle represents one cardiac cycle from a different simulation. The blue
circles correspond to the simulations without autoregulation: Kmax

0,a = 0 and α = 0,
for different values of P̄ . The red circles refer to the autoregulation parameters
Kmax

0,a = 0.1MPa and α = 0.15.
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Figure 3.10: Autoregulation curves. Mean incoming pressure on the fourth cardiac
cycles (x-axis) and normalized flow rate over the fourth cardiac cycle (y-axis). Dif-
ferent lines correspond to different values for the autoregulation parameters. Each
point on a curve refers to a different simulation with a given mean incoming pressure.
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autoregulation (in blue) and with autoregulation (in red). Each loop is a cardiac
cycle for a simulation performed by imposing a different mean incoming pressure.
The chosen values are P̄ = [30, 40, 50, 60, 70]mmHg. In the autoregulated case, the
parameters determining the control intensity are: kmax0,a = 0.1MPa and α = 0.15. It
should be noted that for a mean pressure of P̄ = 40mmHg there is only one loop
since it is the reference pressure, i.e. the pressure for which the smooth muscle cells
maintain their reference length. By observing these curves it can be inferred that
the control mechanism acts directly on the vessels resistance. In particular, when
the mean pressure is higher than the reference pressure, the flow rate is diminished,
whereas when the mean pressure is lower, the SMCs action tends to increase the
flow rate.

Each point of the curves represented in Fig. 3.10 is the value of the flow entering
the network for a given value of inlet pressure. The mean inlet pressure P̄ is varied
from 30mmHg to 70mmHg. The parameters governing autoregulation are chosen
as follows: kmax0,a takes three values: 0 (no autoregulation), 0.05MPa and 0.1Mpa.
The autoregulation parameter α, defined in equation (3.17), indicates how much
the downstream circulation is able to vary its overall resistance. Two different
cases were considered: α = 0 (no autoregulation) and α = 0.15 (for which the
maximum value of distal resistance is equal 1.15Rdistal,ref ). For each numerical
experiment four cardiac cycles are simulated. The values of the flow are taken
in the last cycle and the flow is normalized with respect to the value obtained
for P̄ = pref = 40mmHg. Fig.3.10 shows that using kmax0,a = 0.1MPa and using
autoregulation in the Windkessel model (circles, green), it is possible to replicate a
plateau in the flow rate-pressure relationship. This result is similar to that obtained
in [AHS+13] with a 0D approach. The impact of autoregulation in the Windkessel
for this choice of parameters can be observed by comparing the green curve (circles)
with the red one (down triangles), which was obtained with the same kmaxa,0 and by
turning the Windkessel autoregulation off (α = 0).

3.6 Limitations and conclusions

In this chapter, we have proposed a first attempt at modelling autoregulation
in a 3D network of retinal arteries. Our approach is based on a simplified fluid-
structure model whose computational cost is of the same order as the cost of a pure
fluid problem. The model used for the wall includes smooth muscle fibers, whose
active constitutive law has been derived by approximating physiological models pro-
posed in the literature. The simulations performed in a real network of 25 segments
of retinal arteries have provided velocities which are in good agreement with pub-
lished experimental data. By varying the parameters of the active component of the
constitutive law, we have been able to reproduce flow rate-pressure curves which are
comparable with experimental data or results obtained with 0D models. In partic-
ular, a characteristic plateau of the flow rate has been found for pressures ranging
from 40 to 60 mmHg.
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To the best of our knowledge, this study is the first to propose 3D simulations
of blood flow in a real network of retinal arteries, including an autoregulation mech-
anism. It can be viewed as a first step toward a more complete 3D model of the
hemodynamics of the eye. In spite of encouraging results, many limitations remain
and the model could be improved in various ways.

First, the diameter of the vessels considered in this work is below 200µm,
which means that the hemodynamics is in a microcirculation regime [WKK+03,
PRBR+08]. In such vessels, the Fahraeus effect, the Fahraeus-Lindqvist effect and
plasma skimming may be relevant in determining the distribution of hematocrit and
the velocity profile [PNG92, PLCG89].

Second, our autoregulation model describes how smooth muscle fibers control
the blood flow, but not the physiological mechanisms that trigger the contraction or
the relaxation. The feedback mechanism could be improved to include other aspects
than only the inlet pressure.

Besides these limitations, future works could also improve the models used for the
downstream vasculature, and should address other important phenomena like the
interaction with other compartments, such as the lamina cribrosa or the intraocular
pressure.



Chapter 4

Modelling the eye: state of the art

The eye is a complex organ where each compartment has a specific function and struc-
ture. In this chapter we focus on fluid and structure mechanics. We briefly introduce the
anatomy of the eye and then we review the state of the art in the modelling of the human
eye. This analysis of the literature was done in preparation of the work of Chapter 5.
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Figure 4.1: Scheme of the eyeball from above. Image taken from http://www.bpac.
org.nz/BPJ/2013/August/redeye.aspx

4.1 Introduction

In the eye there are several compartments (see Fig. 4.1). There are two separated
cavities: the vitreous and the anterior cavity. The anterior cavity is divided into
two chambers: the anterior and the posterior chambers. The two cavities are the
fluid compartments of the eye, but they are quite different: the anterior cavity is
filled with a fluid similar to water called aqueous humor, while the vitreous is filled
with a gel characterized by more complex mechanical properties. The sclera, the
white part of the eye, and the cornea, the transparent part in the front, form the
external shell of the eyeball. The uvea denotes the area of the eye that includes the
choroid, the iris and the ciliary body. The choroid is located between the retina and
the sclera and it is a vascular tissue responsible for delivering nutrients to the back
of the retina. The ciliary body is located at the end of the choroid and plays two
important roles: it contains the ciliary muscle that controls the shape of lens and
the ciliary processes that secrete the aqueous humor. The lens is attached to the
ciliary body through the suspensory legaments or zonules. The iris, the coloured
part of the eye, is the last component of the uvea and starts from the ciliary body
and enters into the anterior cavity. The iris separates the two chambers of the
anterior cavity and the aqueous humor can flow from the posterior to the anterior
chamber passing through the pupil which is the hole in the center of iris. The iris
also contains a muscle that is able to regulate the diameter of the pupil for optic
purposes. In this chapter we discuss the state of the art of the modelling of fluid
and structure mechanics, with a specific focus on the mechanisms that impact the

http://www.bpac.org.nz/BPJ/2013/August/redeye.aspx
http://www.bpac.org.nz/BPJ/2013/August/redeye.aspx
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Intraocular Pressure (IOP) and trying, when possible, to limit ourselves to studies
on the human eye.

4.2 Fluid dynamics modelling in the eye

Blood, aqueous humor and vitreous humor are the three different fluids present
in the eye. Eye circulation is divided mainly in two systems: the retinal circulation,
whose literature and further developments are discussed in Chapters 2 and 3, and the
choroidal circulation. The vitreous humor exhibits visco-elastic properties [LLB91],
but it is often referred to and modelled as a fluid even if it is mostly composed by a
mixture of a fluid and a gel [Bis00] and it would be natural to model it as a solid.
The aqueous humor is a fluid with a viscosity similar to water [BM56] and several
models for its production, drainage and flow have already been developed and are
the object of the next subsection. A detailed summary of fluid modelling in the eye
can be found in the review paper by Siggers and Ethier [SE12].

4.2.1 Modelling of the aqueous humor

The aqueous humor is the fluid inside the anterior cavity. Its role is to deliver
nutrients and remove wastes from the cornea and the lens, but also to keep the eye
inflated. It is produced at an approximately constant rate by the ciliary processes

Figure 4.2: An image of the limbus (left panel) and a zoom of the region of the
trabecular meshwork (right panel). Adapted from The anatomy of the limbus by
Van Buskirk [VB89].

that are folds of the ciliary body located in the posterior chamber. It passes through
the pupil, enters the anterior chamber and exits through a small region located
in the angle between the iris and the cornea. Before mixing with the blood of
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the episcleral vein, the aqueous humor passes through a porous region called the
trabecular meshwork and is collected into the Schlemm’s canal which works as a
rain gutter. The fluid leaves the canal passing through several extremely small
collector channels and finally reaches the episcleral vein (see Figure 4.2).

Several authors have pointed out how the temperature gradients inside the an-
terior cavity have a strong impact on the flow of the aqueous humor. In fact, the
temperature in the anterior cavity varies significantly from the cornea, which is di-
rectly exposed to the external temperature, to the inside of the eye. This gradient
induces a flow which is considered to be of a larger order of magnitude with respect
to the flow caused by the production/drainage mechanism [CGDF02].

Since the pressure inside the anterior chamber, the intraocular pressure (IOP),
is an important risk factor for several diseases such as the glaucoma, this flow has
been heavily studied and modelled. The main aspects that have been investigated
are: the production, the drainage, the fluid-structure interaction with the iris and
the thermal coupling.

Production and Drainage

The production of the aqueous humor (AH) happens in the ciliary processes. Two
mechanisms of production have been observed: ultrafiltration and active secretion
[Mos87, Kie98, GPLB10]. The flow rate due to the ultrafiltration process depends
on both the pressure gradient between the capillary pressure and the IOP and on the
osmotic pressure gradient. The active secretion instead provides an approximately
constant flow rate. In [MSA+16] a 3D model, at the cellular scale, for the active
secretion of AH is proposed.

An accurate modelling of the production rate of the aqueous humor is crucial
when studying the stationary value of the IOP. However, if the flow generated by the
thermal convection is the focus of the study, the flow induced by the production and
drainage mechanisms can be neglected. This is the reason why in most of the models
for AH flow the flow rate production is either considered constant or neglected.

Three outflow pathways have been observed in the literature. The main one,
through the trabecular meshwork, and two minor ones: the uveoscleral pathway and
the posterior pathway [Mos87, Kie98, GPLB10]. In the former one, the aqueous
humor diffuses through the iris towards the ciliary muscle and finally is drained in
the choroid or in the sclera. The posterior pathway is considered to be negligible with
respect to the other two and therefore rarely mentioned in the medical literature.
When the AH follows this pathway it does not enter the anterior chamber and, right
after the production, it goes into the vitreous (see Figure 4.3).

An important question debated in the literature is whether the flow rate through
the different pathways is dependent on the IOP or not. The importance of the ques-
tion arises from the fact that an accurate description of the mechanisms that regulate
the IOP is crucial for the understanding of the diseases. The outflow rate of the
trabecular pathway depends on the pressure drop between the IOP and the pres-
sure in the episcleral vein. The hydraulic resistance associated with the trabecular
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Figure 4.3: Simplified scheme of the production/drainage mechanisms of the aqueous
humor.

meshwork, the Schlemm’s canal and the collector channels is sometimes considered
as dependent on the pressure of the anterior chamber through the so-called Brubaker
correction [Mos87, Kie98] and it is probably due to a compression of the trabecular
meshwork. According to [AN09] the uveoscleral flow rate is only slightly dependent
on changes in the IOP and only for the small values [Kie98]. Measurements of the
drainage are difficult to perform and for the secondary pathways they are mainly
based on indirect measurements of the flow through the trabecular meshwork. The
impact of the uveoscleral pathway is however unclear and its percentage ranges from
4% to 40% depending on the study, however those measurements are reported with-
out the corresponding value for the IOP which could explain such a large difference.
A review of the different studies aimed at quantitatively estimating the flow can
be found in [McL09]. Some of the conclusions of the review indicate that AH flow
shows strong daily variations: during the sleep it is reduced by a factor two. It has
also been found that the flow decreases by 25% when aging from 20 to 80 years old.
Finally the study suggests that AH flow is independent of IOP. The mechanisms of
AH production and drainage are still not completely clear and this is reflected by
inconsistency and disagreement between different studies.

Flow

There is a consensus in the literature to model AH with incompressible Navier-
Stokes equations with water-like properties. When the thermal coupling is inves-
tigated the Boussinesq approximation is used to take this effect into account and
different positions of the patients are investigated by changing the orientation of the
gravity force. Buoyancy forces are the most important driving mechanism of the
flow (see for instance [CGDF02, FG06]). For this reason, in several models for AH
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flow the production mechanisms are treated in a simplified manner. Some authors
assume a constant flow rate and others neglect its presence. These assumptions are
consistent with the idea that thermal flow is the main phenomenon, however for
studying IOP variations an accurate production model should be used. For describ-
ing AH drainage a variety of models have been used and the trabecular meshwork is
usually described as porous medium (see for instance [KABP06, FdOdSM14, CE13]).
Few studies consider the flow in the trabecular meshwork and in the Schlemm’s canal
(see [VRH+12], where also collector channels are considered). Most of the simula-
tions are carried out on simplified two-dimensional geometries, but recently some
work has been done on realistic 3D domains [VRH+12]. According to these studies
the assumption that the intra-ocular pressure (IOP) is constant inside the ante-
rior chamber is confirmed. Although sometimes fluid-structure interaction with the
other compartments is considered (see [HBT01], where fluid-structure interaction
with the iris is analyzed) this aspect and the investigation of time evolution and
pulsatility are mostly neglected. In the following part of this section the different
studies are briefly presented and the main modelling point as well as the results are
summarised.

In the work by Canning et al. [CGDF02] incompressible unsteady Navier-Stokes
equations with thermal coupling are considered on a simplified three-dimensional
geometry of the anterior chamber. Several simplifications, including the Boussinesq
approximation, are done based on dimensional arguments and on the lubrification
assumption, i.e. that the distance between the cornea and the iris is much smaller
that the radius of the iris itself. The final system of equations is steady, linear,
axis-symmetric and can be solved analytically. The objective of the study is to
investigate the behavior of particulate matter such as red and white blood cells and
pigment particles in AH flow. They conclude that the thermal forces are the most-
important driving force and that even a small temperature difference can drive this
flow.

The work by Fitt and Gonzalez [FG06] follows the model presented above. In
addition it investigates the limitations of the lubrification assumption by making
a comparison with a numerical simulation which gives a good agreement. In this
work five different situations are investigated: the thermally driven flow, the flow
driven by the production and drainage of AH, the differences in the thermally driven
flow induced by patient position, the flow generated by the phacodenesis that is the
tremor of the lens (for which an unsteady model is needed) and flow caused by the
Rapid Eye Movements occurring during the sleep. According to the authors every-
thing is negligible compared to the thermally induced flow. However the analytical
argument used to prove that there is no flow occurring because of eye movement
seems questionable.

In a more recent study by Ferreira et Al. [FdOdSM14] the flow in the anterior
chamber is numerically investigated. For their simulations a two-dimensional ge-
ometry of the anterior chamber is used which is more realistic than the one used
for the two studies summarized above, however the posterior cavity is still absent.
Unsteady Navier-Stokes equations are considered for the flow in the anterior cavity
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and Darcy’s law is used to describe the trabecular meshwork. Since the goal of this
study is to investigate the delivery of a drug released at by a therapeutic lens, also
the cornea is included in the study, but it is considered as rigid. The boundary
conditions for the flow are the following: cornea, iris and lens are assumed rigid
hence no-slip conditions are enforced at those interfaces, the inlet flow is prescribed
at the boundary representing the space between the iris and lens and the pressure
is given at the outlet, after the trabecular meshwork, representing the pressure of
the Schlemm’s canal. Thermal forces are not considered in the study and stationary
simulations shows a constant pressure inside the anterior chamber, the IOP, and all
the pressure drop occurs at the level of the trabecular meshwork. They have also
studied the dependence of the IOP on different values of the inlet flow rate and of
the porosity parameter of the trabecular meshwork.

In the study by Crowder and Ervin [CE13] the dependence of the IOP on different
parameters (flow rate, AH viscosity and permeability of the trabecular meshwork)
is also investigated. Stokes equations for the AH are coupled with Darcy’s flow
for describing the trabecular meshwork and thermal effect are neglected. After
assuming the domain to be axisymmetric, the equations are solved in 2D on a
simplified, but realistic geometry that takes into account both the anterior and the
posterior chambers of the anterior cavity.

Other extensions of the model proposed by Canning [CGDF02] includes the
works by Avtar and Srivastava [AS06] and by El-Shahed et al. [ES+05] where
different boundary conditions at the level of cornea are investigated to model the
fact the the cornea could be considered as a porous interface. It is also worth to
mention the work by Ooi and Ng [ON08] where the AH flow is studied via the Navier-
Stokes equations with Boussinesq approximation on a two-dimensional geometry and
temperature distribution is computed in the whole eye-ball.

The literature on the modelling of aqueous humor flow is not limited to 2D
models and we found some studies also in 3D. One of the first papers to address
this problem is the work by Heys and Barocas [HB02], where they have studied the
formation of Krukenberg’s spindle, a pigment, by solving stationary Navier-Stokes
equations with the Boussinesq approximation on a simplified three-dimensional ge-
ometry that includes both posterior and anterior chambers.

Another interesting work was done by Kumar et Al. [KABP06] where the au-
thors have studied the thermally driven flow inside a simplified three-dimensional
geometry of a rabbit’s eye. Iris and cornea are described as fixed interfaces and
the inlet is imposed as a constant term at the level of the pupil (the model does
not include the posterior chamber). The drainage of the fluid is rendered by the
presence of the trabecular meshwork described by a two-layers porous medium. Dif-
ferent orientations of the eye were considered as well as different pupil opening size.
Some of the findings of this work include the fact that the temperature difference
across the anterior chamber is a parameter of great impact on the flow while the
pupil opening size did not affect much the flow. They have also observed that the
pressure drop occurs only in the trabecular meshwork compartment.

In a more recent study by Villamarin et Al. [VRH+12], as it is now the standard



4.2. Fluid dynamics modelling in the eye 71

approach, the flow of the aqueous humor is modelled by stationary Navier-Stokes
equations with the Boussinesq approximation. The peculiarity of this work is the use
of an image-based geometry extremely detailed which includes both chambers of the
anterior cavity, the trabecular meshwork, the Schlemm’s canal and the collector’s
channels. The three-dimensional geometry is obtained from an image-based two-
dimensional slice and by the addition of the collector channels. The boundary
conditions are imposed consistently with the other works in the literature: iris, lens
and cornea are fixed and the production rate of the AH is imposed at the inlet,
which is now located at the level of the ciliary body.

Interaction with the Iris

In none of the models considered above the iris was allowed to move. It was
indeed considered as a fix body located inside the anterior cavity where no-slip
boundary conditions were assumed for the fluid problem. However, the iris is kind
of floating inside the anterior cavity and it can also contract and dilate to vary
the size of the pupil opening according to the optical needs. An interesting study
addressing the interaction between the aqueous humor and the iris is the one by Heys
and Barocas [HBT01]. The work is done on an idealised two-dimensional geometry
including both chambers, the iris and the cornea. The fluid is modelled via unsteady
Navier-Stokes equations, without thermal coupling, while the iris is described as
an incompressible linear elastic material. The cornea is described via a spherical
elastic shell with only normal displacement. The reason why they decided to use
unsteady Navier-Stokes equations instead of steady Stokes equations is that they
are interested in modelling the blinking and their claim is that in such a transient
phenomenon the convective term is significant. This also motivated the inclusion of
an elastic cornea, even if they found displacements of the order of ten micro-meters,
because they have included the blinking as an external force term acting on the
cornea. The AH production is included by a constant inlet value of 2.5 micro-liters
per minute. The three drainage pathways, although in a simplified manner, are all
included in the model. In particular the trabecular meshwork is modelled as 0D
resistive element (main pathway) in parallel with a given constant flow going out
from the same portion of the boundary, which is supposed to mimic the presence
of the uveoscleral pathway. Although this looks anatomically inaccurate this is one
of the few models that somehow takes the uveoscleral pathway into account. The
posterior pathway is described again by a resistive element located at the interface
between the posterior chamber and the vitreous which is also supposed to include
the zonules resistance. The reason why they have decided to include it is that they
are interested in a disease called iris bombé where the distance between the iris and
the lens is almost reduced to zero causing an increase in the pressure of the posterior
chamber and making the presence of the posterior pathway extremely relevant.

In a recent work by Jouzdani et al. [JAB13] the authors started from the model
by Heys and Barocas presented above and they have added an active component
in the radial direction to the stress tensor of the iris with the idea of describing
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the contraction/dilation of the pupil. The other works on this topic done in the
group of Barocas are summarized in Table 2 of [JAB13] and the different modelling
choices are compared, e.g. whether the iris is nonlinear/linear or active and whether
Stokes/Navier-Stokes transient/steady have been used for describing the aqueous
humor.

4.2.2 Choroid, pulsation and ocular volume changes

The intraocular pressure (IOP) has a reference value for an healthy human eye of
15 mmHg and it exhibits oscillations synchronized with blood pulsatility. This phe-
nomenon, well-known in the medical literature (see [SFL+89] for further references),
is clearly an effect of the fluid-structure interactions occurring in the eye. The aque-
ous humor is obtained from the plasma flowing in the ciliary capillaries and it is later
drained in the venous blood. There are only two possible reasons that could cause
total volume variations of the eyeball. The first one is that the blood enter the eye
through the ophthalmic artery with a pulsation and leaves it at a constant flow rate.
The second one is the possible compressibility of the tissues, but we know that most
of them are nearly incompressible. The ophthalmologist have found an exponential
pressure-volume relationship where by pressure they mean the IOP: IOP = p0e

k∆V ,
where p0 is a reference value for the IOP, usually 15 mmHg, K is the so-called ocular
rigidity and ∆V denotes the ocular volume changes [DGDB+09]. This approach has
been widely used in the literature as a tool to perform indirect measurement of the
Ocular Blood Flow (OBF) [SFL+89, LFO+89]. The idea being that the only cause
of variation for the ocular volume is the difference between the flow rate coming in
and out of the eye. Therefore, by taking the time derivative of the IOP curve (see
for instance [DGDB+09]) and by knowing the ocular rigidity coefficient they are
able to compute the OBF. The ocular blood flow is mainly composed of choroidal
blood flow (approximately 85% see [DGDB+09]) and retinal blood flow. The choroid
is a highly vascularized tissue and its structure permits significant changes in the
volume. The main drawback of this description, by means of the pressure-volume
relationship, is that this relationship varies and it is in general impossible to de-
termine it in vivo. The different assumptions on which this reasoning is based are
discussed in [Kra92]. In the book chapter written by Kiel [Kie98] the approach
based on the pressure-volume relationship is extensively discussed and summarized.
Then another approach, called hydraulic model, is presented. The model consists of
a 0D description of AH production and drainage mechanisms to compute the IOP.
This model is of course very helpful in understanding the behavior of the station-
ary value of the IOP, but it cannot show its pulsatility since it does not take into
account the pulsatility of choroidal blood. What is missing is a bridge between the
two approaches, which can be done by investigating the choroidal circulation and
the fluid-structure interaction occurring at the eye-scale.
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4.2.3 Models for the Vitreous Humor

The vitreous humor, also simply referred to as the vitreous or the vitreous body,
is the largest chamber of the eye. Water occupies approximately 99% of the volume.
From the mechanical viewpoint it is worth mentioning the presence of a network of
collagen type II fibrils and of hyaluronic acid that give the vitreous humor a gel-like
consistency [Bis00]. Located between the lens and the retina, one of its functions
is to keep the eye inflated and to force the retina to stay attached to the choroid.
Despite being composed almost exclusively by water, its rheological properties are
not those of a Newtonian fluid. Although the subject is still under debate, the
vitreous is commonly referred to as a visco-elastic fluid. Several clinical studies, see
for instance [Zim80, LLB91, SKHSK11], measured the visco-elastic properties of the
vitreous using Maxwell-Voigt models.

The modelling of the vitreous has been also tackled from the mathematical
viewpoint mostly with a focus on the saccadic movements. These movements are
rotations of the eye of about 15-20 degrees necessary to use the fovea, the part of the
retina where there is the highest resolution, to see a part of the scene. In the study
by David et al. [DSDJ98] a visco-elastic model based on a series of the Maxwell and
Voigt model on a simplified spherical geometry is used to study the saccadic motions.
The visco-elastic model is solved analytically after some simplifying assumptions
and compared to a Newtonian model solved numerically after having supposed an
axisymmetric situation. The authors have found a good agreement between the
two models for the particular situation of the saccadic motion, suggesting that a
Newtonian model would be enough.

In the work by Repetto et al. [RSS10] the vitreous is described by a spherical
geometry where the lens appears as a small geometrical perturbation of magnitude
δ. They are also interested in the study of saccadic eye movement, which is included
in the model by a torsion imposed on the vertical axis of amplitude ε. Navier-Stokes
equations are used to describe the flow and, by means of a series expansion in both
δ and ε they are able to find a semi-analytical solution. The authors comment on
the Womersley number of the system that has to be small enough to perform the
mathematical analysis and to avoid boundary layers. They also consider the Peclet
number which is found be large suggesting that, when studying for instance drug
delivery, convection needs to be taken into account. Other papers have followed
this one, where a similar approach is used to investigate saccadic eye movements,
the main motivation being the study of retinal detachment. In [RSC05] the authors
have combined experiments and models after having assumed the vitreous to be
Newtonian. In [SRC07] we find an experimental study where, again under the
Newtonian assumption, the authors study the effect of the shape of the chambers
and the resulting wall shear stress. In [Rep06] they introduce the analytical tools
they we have briefly summarized above and they motivate the use of a Newtonian
model by two arguments: the first one is that vitreous naturally liquefies with aging
and the second one is that it is sometimes replaced by aqueous humor with surgery.
A deeper review of the work done by this group can be found in [SE12, Section 4].
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We conclude this section by mentioning the study carried out by Modarreszadeh
and Abouali [MA14], where a 3D numerical simulation of the vitreous is performed
by using a visco-elastic fluid, based on Giesekus model, on an idealized geometry.

4.3 Models of eye mechanics

As extensively discussed in the previous sections, the eye consists of two fluids
cavities, that keep the eye inflated, surrounded by an external shell. This shell is
divided in mainly two regions: the cornea and the sclera.

The cornea is the front part of the eye and it is completely transparent to allow
the light to reach the retina. It is composed of five different layers: (from the outside
to the inside) the corneal epithelium, the Bowman’s layer, the corneal stroma, the
Descemet’s membrane and the corneal endothelium. From the mechanical viewpoint,
the stroma is the most important layer that occupies approximately 90% of the
corneal thickness.

The point where the cornea touches the sclera is a complex region anatomically
and also mathematically because of the difficulties in prescribing realistic boundary
conditions. This region, called the limbus, is an annular region where we find other
important anatomical components. Two thin shell layers external to the sclera
called the Tenon’s capsule and the conjuntiva starts in this region as well as the
compartments of the main drainage pathway of the aqueous humor (see Section
4.2.1) the trabecular meshwork and the Schlemm’s canal. The uvea, the ensemble
of iris, choroid and ciliary body, also starts here. The reader interested in the
details of limbus’ anatomy can read the paper by Van Buskirk [VB89] where there
is a complete description of the limbus.

The sclera similarly to the cornea is divided into four different layers: the epis-
clera, the stroma, the lamina fusca and the endothelium. The sclera can be divided
in two different regions: the posterior sclera, which is the largest, and the peripapil-
lary sclera an annular region surrounding the optic nerve. The optic nerve, located
temporally with respect to the posterior pole of the eye is the only way to access
the retina both for the blood, in fact it contains the central retinal artery and the
central retinal vein and for the axons carrying the optical information.

Inside the optic nerve there is a mesh-like structure called lamina cribrosa. This
vascularized structure holds the pressure difference between inside and outside the
eye.

The mechanical modelling of these compartments is an older field of research
and an extensive review is beyond the scope of this work. However, we summarize
some interesting recent works on the subject.

In a recent work Simonini and Pandolfi [SP15] have modelled the mechani-
cal behavior of the cornea by means of a finite elements model both on idealized
and patient-specific geometries (geometrical raw data are also available for down-
load). Only the corneal stroma is taken into account in the modelling because
first, it is the stiffer layer and second, the other layers mechanical properties are
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unknown. A model based on the definition of an elastic energy is employed where
the presence of fibrils is also taken into account (following previous studies such as
[PH08, PV12, SMP14]). The authors have also considered the problem of retrieving
a stress-free configuration which is computed by solving an inverse problem where
the image-based geometry is considered as the result of a given intra-ocular pressure.
We have chosen to present this paper because it addresses several interesting aspects
of the mechanical modelling of the cornea (presence of fibrils, stress-free configura-
tion, limbus boundary conditions, patient-specific geometries) and also because the
references cited in the paper could be used as a starting point for a deeper review
of the topic.

In the study by Grytz and Meschke [GM10] the sclera and the cornea are de-
scribed by means of a shell model. Its energy function is composed of a Neo-Hookean
isotropic part and of an anisotropic one that models the presence of fibrils and the
material is assumed incompressible. The authors use the same elastic energy for the
two compartments, but the mechanical properties do change as well as the shell-
thickness. To obtain the anisotropic part of the energy, they start from a previous
study [GM09] where fibrils were described as helical shaped rods characterized by
two geometrical parameters: the crimp-angle and the ratio between the filament
cross-section and the radius of the helix. The only material parameter is the fibril
Young modulus. This micro-scale behavior is up-scaled to the macro-scale by using
a structure tensor, which encodes the information about the plane that contains the
fibers, and a dispersion parameter that regulates the distribution on two orthogonal
in-plane directions. Two families of fibers are included in the model. The focus
of this work is to describe the remodelling of such a complex fibrils network, since
it appears that fibrils tend to accommodate for stress changing their orientation.
Although the model is used on an idealised geometry the results are validated with
experimental data from [WKSL72]. An improvement of this work [GMJ11] con-
sists of a more detailed description of the region around the optic nerve where the
peripapillary sclera and the lamina cribrosa are taken into account.

The mechanics of the lamina cribrosa has also been investigated. If interested
in coupling between mechanics and hemodynamics this tissue is particularly inter-
esting. It is a vascular tissue and it surrounds the central retinal artery and the
central retinal vein. In [GHC+14a] the authors use a non-linear isotropic elastic
circular plate as a model for the lamina cribrosa. The IOP acts on the inner surface
of this plate and the retrolaminar tissue pressure acts on the outer surface. On the
lateral surface, where the lamina is attached to the sclera, the tension is imposed
assuming the Laplace law. The model is solved by exploiting the symmetries of
the geometry and the stress in the center of the lamina is used as an external force
acting on the vessel wall of the central retinal artery. The goal is to understand
the effects of changes in the IOP on the hydraulic resistance of the central retinal
artery. The effect of the presence of blood vessels in this compartment is investi-
gated in [CGH+14] where the authors use a poro-elastic model where blood vessels
are viewed as pore inside an elastic matrix.
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4.4 Models of the eye as a global system

To the best of our knowledge a few works have been done to build a global model
of the eye able to include both the fluid and the structure behavior. In the work by
Uchio et al. [UOK+99] a 3D model of the eye is proposed, which is still very simple.
Fluids are in practice neglected and the focus is on the mechanics of the sclera and
of the cornea for which they use a shell model calibrated on their own experiments.
Kiel and colleagues [KHR+11] proposed a complex compartmental model where the
choroid, the aqueous humor and the ciliary body are considered. In particular, IOP
is computed by means of an exponential pressure-volume relationship, while the
volume of the eye is given as an effect of the choroidal circulation (see also [KS92]).
In the study by Kotha and Murtomäki [KM14] a drug delivery model for which
they need a global description of the eye is developed. The drug enters from a patch
placed on the sclera. Diffusion equations are used in the Sclera, in the Retina and in
the Vitreous, while Navier-Stokes equations are used to model flow in the Choroid to
obtain the advection field for the advection-diffusion equation used in the Choroid.



Chapter 5

Modelling the eye as a multi-domain
system

In order to reproduce the mechanisms behind the oscillations of the intraocular pressure
we propose a model of the eye with multiple compartments. This is necessary because the
oscillations registered at the level of the anterior chambers originate from blood pulsatility
in the choroid.

The model includes mostly structure and fluid mechanics. The hemodynamics is in-
cluded in the model of the choroid. This tissue is described as a poro-elastic medium able
to inflate during an heart beat.

We explain the modelling choices in terms of geometries and equations. We show some
preliminary results on the poro-elastic model of the choroid, on the flow in the anterior
cavity and on a two-compartment model of the choroid and the vitreous.
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5.1 Introduction

In this chapter we introduce a multi-domain and multi-physics model of the eye.
The model reproduces the mechanics and the impact of the hemodynamics on the
different structures. We are mainly interested in reproducing the mechanisms that
build up the intraocular pressure, in particular we investigate the oscillation of the
intraocular pressure caused by blood pulsatility in the choroid.

This layer, located between the sclera and the retina, inflates during the heart
beat exerting a pressure on the vitreous that is finally transmitted to the anterior
chamber. These compartments are surrounded by the corneoscleral shell, an external
and more rigid structure.

For now, we work on a geometry of the eye that includes several compartments
such as the choroid, the vitreous and the sclera. The geometrical description of
the eye that we are using is idealized, but it allows us to test, on a reasonable and
realistic framework, models and algorithms that will later be used on more detailed
and accurate geometries of the eye.

As explained in Chapter 4, models for the corneoscleral shell and for the fluid
in the anterior cavity are already available in the literature. A hyper-elastic shell
seems a reasonable choice for the corneoscleral shell, while Navier-Stokes-Boussinesq
equations, or just Stokes equations depending on the phenomenon under investiga-
tion, are widely accepted for aqueous humor modelling. The most accurate choice
for modelling the vitreous seems to be based on a visco-elastic fluid. However, for
the sake of simplicity, we are going to use a simpler Newtonian fluid described by
the Stokes equations. Therefore, most of the modelling effort has been dedicated to
an accurate description of the choroid via a poro-elastic model and to the coupling
between all these compartments.

In Section 5.2 all the modelling choices in terms of geometry (Section 5.2.1) and
of equations (Section 5.2.2) are detailed. The flow in the anterior cavity, modelled
by the Navier-Stokes-Boussinesq equations, is presented in Section 5.3. In Section
5.4 a model of the choroidal tissue as a poroelastic medium is introduced (Section
5.4.1). A numerical experiment regarding the choroid is presented in Section 5.4.2.
In Section 5.4.3, the linear poro-elasticity equations are derived from a more gen-
eral setting. In Section 5.5 a system with two compartments, the vitreous and the
choroid, is analyzed. The coupling strategy based on fixed point iterations is pre-
sented in Section 5.5.1, then the approach used to interpolate the data exchanged
on non-conformal interfaces is detailed in Section 5.5.2 and a preliminary result is
presented in Section 5.5.3. The conclusions and the perspectives are summarized in
Section 5.6.
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Figure 5.1: Two-dimensional cut of the geometry (left panel) and a portion of the
surface of the corresponding three-dimensional mesh (right panel).

5.2 Multi-domain and multi-physics modelling of the eye

5.2.1 Geometry

The geometry used for the simulations of this chapter is an idealized represen-
tation of the eye. We have detailed the following compartments: the vitreous, the
choroid, the sclera, the cornea, the lens, the ciliary body, the zonules and the iris.
More details, such as the lamina cribrosa or the retinal layer should be added to
the geometrical description of the eye, but are for now omitted for simplicity. In
the left panel of Figure 5.1 we reported a two-dimensional slice of the eye. The
actual geometry is obtain by revolution (see the right panel of Figure 5.1) around
the central axis of the eye. As it can be observed from the figure, the geometry
is idealized and it contains few domains. In the two-dimensional slice, the sclera
is a portion of a ring with an inner radius of 1.15cm, an outer radius of 1.2cm for
a thickness of 0.5mm. The portion that has been removed to leave the space for
the cornea has a total angle of 70◦. The 2D section of the cornea is a ring whose
center is located 5mm closer to lens with respect to the center of the sclera and
has an internal radius of approximately 0.794mm. The thickness of the cornea has
been taken equal to that of the sclera. The uvea has been represented by its three
compartments: the choroid, a portion of a ring with internal radius of 1.135cm and
a thickness of 0.15mm, the ciliary body and the iris. A zoom of this region is in
Figure 5.2. The portion of the interface between the anterior chamber and cornea
of length 0.5mm represents the region where the aqueous humor exits the anterior
chamber. The pupil has an aperture of 4mm and the lens is an ellipse with the
major axis of 3mm and the minor one of 1.3mm. Here the zonules are represented
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Figure 5.2: Details of the region close to limbus.

as an annular region around the lens for the sake of simplicity, while anatomically
they are ligaments connecting the ciliary muscle with the lens. A few important
compartments are missing. The retina has been omitted so far as well as the optic
nerve and the lamina cribrosa. The trabecular meshwork as well as the Schlemm’s
canal and the collector’s channel have not been included in the geometrical model.
The reason for this choice is briefly explained in Section 5.2.2.

As far as the mesh generation is concerned, we originally planned to use tetrahe-
dra for all the different compartments (see Figure 5.3). However it is impossible to
use isotropic elements for the choroid and to have an acceptable number of degrees
of freedom to render a transversal dynamic. A possibility that was considered was
to use a kind of poro-elastic shell, i.e. reducing the 3D equations of poro-elasticity
to 2D equations defined on the surface. However, when using a shell model coupled
from both sides to different domains we need an adequate number of degrees of
freedom per node. For this reason the construction of a poro-elastic shell is not
straightforward for our application and it could be the object of a future work. We
have decided to use a prismatic mesh with different layers (see Figure 5.4) for de-
scribing the choroid because it was the simplest way to obtain an anisotropic mesh.
Another problem related to mesh generation is that when working with coupled
problems that we want to solve separately we have to either use conform meshes,
i.e. all the inner interface surfaces have to be discretized in the same way, or to be
able to interpolate functions defined on the same surface which has been discretized
in two different ways. We chose to work with non-conform meshes to have the pos-
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Figure 5.3: An example of a coarse tetrahedral 3D mesh of the eye.

Figure 5.4: An example of choroidal mesh, in this case we use four layers of prisms
across the thickness.
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sibility of refining/derefining the single compartment without having to remesh all
the eye.

5.2.2 Sub-domains and modelling choices

All the subdomains that could be included in the model are listed below. Despite
being a rough simplification of the reality it is already an extremely complex model
to handle. For this reason this decomposition is going to be further simplified to
obtain a simpler system.

• ΩC Cornea, thick elastic shell, nearly incompressible;

• ΩS Sclera (including the Lamina Cribrosa), thick elastic shell, nearly incom-
pressible;

• ΩT Trabecular meshwork, poro-elasticity;

• ΩA Aqueous Humor (anterior and posterior chambers), Navier-Stokes-
Boussinesq equations;

• ΩC,I,Z Ciliary Body and Iris and Zonules, 3D linear elasticity;

• ΩL Lens, rigid body;

• ΩV Vitreous Body, visco-elastic fluid;

• ΩCh Choroid, poro-elasticity.

The list includes several different subdomains and it is worth to notice that some
compartments have already been neglected or condensed in larger sub-domains (see
Figure 5.5). In some specific cases, think for instance of the lamina cribrosa included
in the scleral domain ΩS , the presence of different tissues in the same domain can
be modelled by setting appropriate material properties in the corresponding sub-
regions. The complexity of the system does not lie only in the number of subdomains,
but also in the nature of the equations which includes hyper-elasticity equations,
thick shells, poro-elasticity, Navier-Stokes-Boussinesq equations and visco-elastic flu-
ids. For certain domains, such as ΩC ,ΩS ,ΩA, the modelling was strongly developed
in the literature (see Chapter 4). For the other compartments we are going to use
simple models mainly for two reasons. The first reason is a practical one: keeping
an already complicated system as simple as possible. The second reason is that it
is difficult to find experimental data and/or previous modelling studies to compare
with and therefore it would be difficult to calibrate more complex models. The goal
of this study it is to start tackling the problem of giving a comprehensive model
of the eye. However, it is always possible to include more specific subdomains or
to refine the models and the geometry in future works depending on the specific
application at hand.

At this point we need to further simplify the system. It seems natural to neglect
the geometrical presence of the trabecular meshwork because of its small size and
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Figure 5.5: Decomposition in sub-domains.

to replace this complex poro-elastic region with a lumped 0D model at the outlet
of the anterior chamber. When choosing the law of this resistive component we can
include the Brubaker correction. This correction models the non-linear dependence
of the outflow rate on the IOP probably due to the compression of the trabecular
meshwork (see Section 4.2.1). Without resorting to a 3D poro-elastic model, we
cannot expect to reproduce this phenomenon without adding it.

Once that the complexity of the limbus has been somehow neglected it is possible
to use only one thick shell to describe the cornea and the sclera. The differences
between the two regions will be rendered by using different material parameters.

After these simplifications we get the final list of subdomains that will be in-
cluded in the model

• ΩCS Corneoscleral shell, thick elastic shell, nearly incompressible, material
properties changing in different portions of the domain;

• ΩA Aqueous Humor in the anterior cavity, Navier-Stokes-Boussinesq equa-
tions;

• ΩC,I,Z,L Ciliary Body, Iris, Zonules and Lens, 3D linear elasticity;

• ΩV Vitreous Body, viscous fluid;

• ΩCh Choroid, poro-elasticity,
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where more simplifications have been added. The lens is included in the same
domain as the ciliary body, iris and zonules. As in the corneo-scleral shell, the dif-
ferences between the sub-regions are rendered via discontinuous material properties.
Moreover, we have for now neglected the visco-elasticity of the vitreous (and of the
corneo-scleral shell). This important aspect will be the object of future works.

A few more comments on ΩC,I,Z,L. The components in this domain are quite
different from each other. A linear-elastic model seems appropriate for the ciliary
body and for the iris, but it neglects two aspects. First, these two tissues are
vascularized. Therefore a poro-elastic model could be more appropriate following the
ideas used in the choroid. Second, these two tissues contain two muscles responsible
for pulling the lens and changing the diameter of the pupil aperture: this active
component of the elastic energy is neglected for the sake of simplicity. We decided
to include the zonules in the model, but the way they are included, geometrically
and in terms of modelling, is questionable and it could be refined. Their role in
the model is to connect the lens to the ciliary body and to separate and isolate
the two cavities, still transmitting the pressure. As far as the lens is concerned, we
plan to use a large Young modulus to have an almost rigid lens that can transmit
pressures and displacement. However, we are neglecting the lens deformability that
is important when investigating its optical properties.

Rigid movements of the eye have to be removed by applying appropriate bound-
ary conditions at the external boundaries. In the reality the eye is attached to the
socket via four muscles that can rotate the eye. A possible option is to prescribe
the displacement of the Sclera in this four regions.

All the coupling conditions between the different subdomains are still to be
specified. They have to guarantee the balance of forces and the continuity of the
displacements.

A final simplification is that, for the fluid domains, we do not move the mesh
and we adopt a zero order transpiration.

5.3 Modelling aqueous humor

As anticipated previously, Navier-Stokes-Boussinesq equations can be used to
describe the flow of the aqueous humor in the anterior cavity. In view of the coupling
with the other compartments we have also implemented this model. The equations
read as follows:

∂tu− ν∆u+ u · ∇u+∇p+ gαT = g(1 + αT0) in Ω

∇ · u = 0 in Ω

∂tT −D∆T + u · ∇T = 0 in Ω,

where u is the fluid velocity, p its pressure divided by the density ρ = 1g/cm3,
ν = 0.009cm2/s the viscosity, g the gravity force, T the fluid temperature and
T0 = 30◦ the reference temperature and D = 0.00135cm2/s the diffusivity coefficient
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Figure 5.6: Flow of the aqueous humor in the anterior cavity. On the left the
patient is laying while on the left is standing. The arrows represent fluid velocity
and color the temperature (in Kelvin). The pressure, in dyne/cm2, is represented
on the transparent surface with a different color scale.

of the temperature and α = 3 · 10−4K−1 is the coefficient of thermal expansion.

As a first test, we imposed no-slip boundary conditions on all the boundaries, ex-
cept for the inlet where a flow rate of 10−4cm3/s is imposed (by assuming constant
normal velocity) and for the outlet, a small portion of the cornea-anterior cham-
ber interface, where an RCR windkessel (parameters: Rprox = 4 · 107dyne s/cm5,
Rdist = 1.6 · 108dyne s/cm5 and C = 6.25 · 109cm5/dyne) models the presence of
the trabecular meshwork, Schlemm’s canal and collector channels and connects the
aqueous humor with a venous pressure of 6mmHg. The temperature was assigned
at the interface with cornea with T = 35◦ and on the lowest interfaces with the lens,
the zonules and the ciliary body: T = 37◦. On the interface with the iris and the
part of ciliary body close to the cornea, homogenous Neumann boundary conditions
were imposed on the temperature.

The system was solved with a P1-P1 SUPG stabilized discretization for the fluid
part and a P1 discretization for the temperature with a monolithic approach. The
results are in Figure 5.6 where we observe two different configurations: the one where
the patient is laying and one where he is standing. Consistently with the literature
we retrieve two different configurations of aqueous humor recirculation depending
on the direction of the gravity.

In order to avoid artificial recirculations close to the outlet region we slightly
adapted the windkessel boundary condition. In the right hand of the weak formu-
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lation we usually have a term of the form

pw

∫
Γout

v · n, (5.1)

where pw is the pressure computed via the windkessel model, v is a test function of
the linear momentum equation, n is the normal unit vector and Γout is the outlet
portion of the domain boundary. In this case, a solution with zero velocity, u = 0,
constant temperature, T = T , and hydrostatic pressure, p = pw+(1+α(T−T0)g·x is
not compatible with the boundary term. We therefore replaced the term in Eq.(5.1)
by ∫

Γout

(pw + h)v · n,

where h is given by
h = (1− α(T − T0))(x− x0) · g,

and x0 is the barycenter of Γout. With this correction, the total force applied
to the outlet remains pw|Γout| as expected, solutions with an hydrostatic pressure
distribution are possible and the artificial recirculations disappear.

5.4 Poro-elastic model of the choroid

The choroid is the vascular tissue that delivers the nutrients to the outer layers
of the retina. Such nutrients cannot be delivered from the retinal circulation itself
because too many blood vessels on the inner retinal layers would block the light. This
tissue is a thin structure with a thickness ranging from 0.1 to 0.2 mm. Inside, the
blood vessels are organized in different layers: from the outermost to the innermost
layer we find the largest vessels then the smallest and the capillaries.

The blood enters the choroid and, more generally, the uvea through the posterior
ciliary arteries (PCAs) that originate from the ophtalmic artery. There are two
types of PCAs: short PCAs (SPCAs) and long PCAs (LPCAs). The SPCAs pierce
the sclera close to the optic nerve and supply approximately half of the choroid
(up to the equator). The LPCAs supply the iris, the ciliary body and the choroid.
They pierce the sclera close to the optic nerve, but they start branching next to the
ciliary body. It is worth to mention the presence of the anterior ciliary arteries that
supply the sclera, the conjunctiva and the extraocular muscle. The blood is drained
through the vortex veins.

In this section, a poro-elastic model for the choroid is presented. The elastic
solid matrix represents the tissue and the arterial circulation is modelled by the
fluid flowing through the pores of the solid matrix. Blood enters the system in two
regions representing the Short and Long PCAs and exits the system at the level of
the capillaries.

For the description of the choroid we use the Biot’s equations (see for instance
[Cou04] or [CHE14]). In [CGSMVC10], the authors proposed a poro-elastic model
in a more general framework that allows for large displacements. Their model was
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used to describe blood circulation in the coronaries. In Section 5.4.3, we briefly
present their derivation, that was helpful in the understanding of the role of the
different terms and parameters of the equations. We also present a linearization of
the equations presented therein. Under some specific assumptions, this leads to the
Biot’s system of equations which is used in the present work.

In the equations of linear poro-elasticity the balance of the linear momentum,
where the inertial term is assumed to be negligible, is

∇ · σ = ∇ · σel(u)− b∇p = f ,

where u is the displacement of the solid matrix, p is the pore-pressure, the pressure
of the fluid inside the pores, b is the Biot coefficient and f are the external body
forces. The expression of the elastic part of the stress tensor is that of the linear
elasticity equations: σel(u) = Ed

2(1+νd)
(∇u+∇uT )+ Edνd

(1+νd)(1−2νd)
(∇·u)I, where Ed

and νd are the drained Young modulus and the drained Poisson ratio, respectively.

The second equation of the Biot’s system is the balance of the fluid mass that
reads as follows

1

M
∂tp+ b∇∂tu+∇ ·w = s,

where M is the Biot’s modulus, s is a volumetric source/sink term and w is the
filtration velocity that can be related to the pressure by using Darcy’s law

w = −K∇p,

where the tensor K is the permeability tensor.

The final system of the Biot’s equations is{
∇ · σel(u)− b∇p = f in Ω
1
M ∂tp+ b∇∂tu−∇ ·K∇p = s in Ω.

The system could be solved in its mixed formulation by adding the filtration velocity
w as an unknown and the Darcy’s law as an equation, but for the sake of simplicity
we use the Laplacian formulation.

The system is closed by boundary conditions of different forms: for the first
equation we can assign the stress on a portion of the boundary or the displacement{

σeln− bpn = h on ΓN,u

u = g on ΓD,u,

and for the second equation we can either prescribe the normal component of the
filtration velocity or the pressure:{

w · n = −K∇p · n = d on ΓN,p

p = z on ΓD,p.
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Remark 1 (Balance of blood mass)
By integrating the second equation on the reference configuration Ω we have:

ρfb
d

dt

∫
Ω
∇ · u dΩ + ρf

1

M

d

dt

∫
Ω
p dΩ + ρf

∫
∂Ω
K∇pn dΓ = ρf

∫
Ω
s dΩ

that, assuming w · n = 0, reduces to:

ρfbV̇ (t) + ρf
|Ω|
M
Ṗ (t) = ρfS(t), (5.2)

where V (t) =
∫

Ω∇ · u dΩ is the current variation of the domain volume, P (t) =
1
|Ω|
∫

Ω p dΩ is the mean pressure over the domain and ρfS(t) = ρf
∫

Ω s dΩ is the
current total flow rate of mass. If we work in the incompressible limit, M → +∞,
we have

ρfbV̇ (t) = ρfS(t).

Remark 2 (Effect of the source/sink term on the linear mo-
mentum equation)
In the system under consideration, the inertial term in the linear momentum equa-
tion was neglected. If this term was included, it would depend on the total mass of
the system and the presence of a distributed source/sink of fluid mass would also
appear in the linear momentum equation and not only in the equation of fluid mass
conservation.

5.4.1 Modelling of the Choroid

Lots of parameters appear in the equations of the poro-elasticity. In this section
we explain how we plan to choose these parameters in order to mimic as accurately
as possible the anatomical structure of the choroid. As discussed at the beginning
of this section, the choroidal vessels are organized in layers with the largest vessels
being in the outermost layers and the capillaries being in the innermost. Our idea
for modelling this structure is to use a permeability tensor that varies across the
different layers. In fact, large arterioles are supposed to offer less resistance in the
longitudinal direction. On the other hand, in the capillaries there are no preferential
directions and the resistance to blood flow is supposed to be higher. Of course many
choices that follow this idea are possible, but since we lack of experimental data
and also we will not have many degrees of freedom in the thickness direction we
assumed to have only two layers: one with large arterioles, one with capillaries. The
permeability of such poro-elastic medium has the following expression

K(x) = kcapR
cap(x)I+Rarterioles(x)(karterioles,isoI+karterioleswarterioles⊗warterioles),

where warterioles is the preferred direction in the arterioles region, Rarterioles and
Rcap are the indicator functions of the arterioles and capillaries region respectively,
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kcap, karterioles,iso and karterioles are the permeability coefficients (with karterioles �
karterioles,iso). In the arterioles region two coefficients are present, but in the pre-
ferred direction karterioles,iso is negligible. For the sake of simplicity, we assume
karterioles,iso = kcap.

It is not straightforward to choose the coefficients kcap and karterioles. In order
to have an estimate of the difference in the orders of magnitude between the two
coefficients we consider the aspect ratio of the domain α = Laniso

h where Laniso is a
typical length in the anisotropic direction and h is the choroid thickness. By setting,
approximately, karterioles ∼ α2kcap we obtain similar characteristic diffusion times
for both regions. In our geometry, the thickness has a length scale of 10−2cm and, in
the longitudinal direction, the length scale is of the order of 1cm, meaning that we
have to keep approximately four orders of magnitude between the two parameters.

Now that the vessel structure has been described we have to include inlets and
outlets of the system through the source/sink function s = s(x, t). The blood
enters through two regions, RLPCAs and RSPCAs, whose indicator functions are
RLPCAs(x) and RSPCAs(x), respectively. The first one refers to the long posterior
ciliary arteries and it will be an annular region close to the ciliary body, the second
one refers to the short posterior ciliary arteries and it will be a region close to the
optic nerve. The flow rate of the blood entering the choroid is computed as follows

Qin(t) = ρf
∫

Ω
sSPCAs(t)RSPCAs + sLPCAs(t)RLPCAsdΩ,

where sSPCAs and sLPCAs are two scalar functions of time. For the sake of simplicity
we assume sSPCAs = sLPCAs = sinf(t). We denote by Rin(x) the indicator function
of the inlet region, Rin(x) = RSPCAs(x) +RLPCAs(x), obtaining

Qin(t) = ρf |Rin|sinf(t),

where |Rin| denotes the measure of the inlet region.
The blood leaves the choroid through the capillaries region Rcap. Another as-

sumption is that the blood exits the choroid at a constant flow rate Q, i.e. blood
has lost its pulsatility when it passes through the capillaries

Qout = −ρf
∫

Ω
scapRcapdΩ = −ρf |Rcap|scap,

where scap is a scalar parameter to be computed from the given flow rate

scap = − Qout

ρf |Rcap|
.

We assume that the total amount of blood coming in and out of the choroid
balances during an entire cardiac cycle

τQout +

∫ τ

0
Qin = 0
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we obtain
ρf

1

τ

∫ τ

0
f(t)dt︸ ︷︷ ︸

=1

|Rin|sin = Qout → sin = scap
|Rcap|
|Rin|

,

where we have required that the function f(t) that contains the information about
the pulsatility is normalized over a cardiac cycle of duration τ .

The source/sink function reads as follows

s(x, t) =
Q

ρf

(
f(t)

Rin(x)

|Rin|
− Rcap(x)

|Rcap|

)
where Q is the choroidal flow rate, assumed to be known.

A slightly different option is to prescribe the pressure at ophthalmic artery in-
stead of prescribing the flow rate: if we assume POA(t) to be known we can compute
the flow entering at the inlet region by

Qin(t) =
1

ROA

1

|Rin|

∫
Ω

(POA(t)− p(x, t))Rin(x)dΩ

and we choose s accordingly

s(x, t) =
1

ρfROA
(POA(t)− p(x, t))R

in(x)

|Rin|
− Q

ρf
Rcap(x)

|Rcap|
.

This choice of s adds a reaction term on the mass equation and a force term and by
integrating this equation on Ω we get:

ρfbV̇ (t) + ρf
|Ω|
M
Ṗ (t) + ρf p̄in = ρfPOA(t)− ρfROAQ,

where p̄in is the mean pressure on the inlet region. This second approach has the
benefit to provide a value of reference for the pressure.

These two parameters, s and K, are particularly important because their role
is to take into account all the anatomical complexity that has been neglected. The
other parameters of the system do not exhibit such a complex structure and they
will be listed below in the numerical section.

5.4.2 A numerical experiment

Here we test the proposed model on a simple case where we study the pore-
pressure distribution inside the choroid. The geometry is the one described in
Section 5.2.1, but we simulate the choroid alone. For this reason the bound-
ary conditions on the vitreous interface, on the sclera interface and on the ciliary
body interface are prescribed arbitrarily and are therefore a rough approximation
of the reality. In particular, we prescribed zero displacement on the sclera and
ciliary body interfaces, while normal stress was applied at the vitreous interface:
σn = −pextn and homogeneous Neumann boundary conditions for the pressure,
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i.e. normal component of the filtration velocity equal to zero. The other coeffi-
cients are chosen to be realistic, but the goal of this test is just to check whether
the model is able to reproduce certain expected behavior. The inlet region is de-
fined by Rin = RSPCAs ∪ RLPCAs, where both regions are located in outermost
half of choroid: {x ∈ ΩChoroid : 1.1425cm ≤ |x| ≤ 1.15cm} and, denoted by θ the
angle between a point, the center of the eye and the posterior pole, RSPCAs are
the points with θ < 10◦ and RLPCAs those with 142◦ ≤ θ ≤ 145◦. The arterioles
region, Rarterioles is the outer half of the choroid, while the capillaries region, Rcap,
is the inner one. The anisotropic direction is the longitudinal one. The ophthalmic
pressure is given as a function of time where one cardiac cycle has duration of 0.8s

POA(t) = poa(1t<0.25s
0.8π

5
sin

(
πt

0.25s

)
+ 0.9).

The remaining parameters are summarized in Table 5.1. As far as the discretiza-
tion is concerned, P1 finite elements were used both for the pore-pressure and the
displacement and an implicit Euler scheme with time step dt = 0.015 was used for
time discretization. The mesh is the one depicted in Figure 5.4.

drained Young modulus Ed 105 dyne/cm2

drained Poisson ratio νd 0.4 -
Biot’s coefficient b 1 -
Biot’s modulus M 106 dyne/cm2

capillaries’ permeability kcap 10−10 cm4/s/dyne
arterioles’ permeability karterioles 10−5 cm4/s/dyne
outlet flow |Q| 600 µl/min
mean ophtalmic artery pressure poa 45 mmHg
resistance ROA 4 · 104 dyne s /cm5

initial pressure pinit 30 mmHg
external pressure pext 10 mmHg

Table 5.1: Parameters used for the test of the isolated choroid.

In Figure 5.7 the pore pressure obtained a time t = 4.785, i.e. at the end of the
diastolic phase of the sixth cardiac cycle. The maximum of the pressure is located
in the inlet region because here is where the ophthalmic artery pressure is acting.
The minimum of the pressure is located in the innermost layer, especially in the
equatorial region, because it is the furthest area with respect to the feeding arteries.
A gradient is always visible across the thickness meaning that blood pressure is
higher in the arterioles than in the capillaries and that the fluid is going towards the
innermost layer. It would be interesting to visualize the filtration velocity, however
using a Laplacian formulation the filtration velocity has a really poor regularity and,
if one is interested in this quantity, it would be more effective to use a mixed finite
element formulation. In Figure 5.8 we observe the pore-pressure on the outer surface
of the choroid. There is a clear pressure gradient in the longitudinal direction, which
is the anisotropic direction, meaning that blood is moving towards the equator line
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Figure 5.7: Pressure layers at the end of the diastolic phase of the sixth cardiac
cycle. Cut with the plane x = 0.

Figure 5.8: View of the pressure [mmHg] on the external surface of the Choroid at
the end of the diastolic phase of the sixth cardiac cycle.
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trying to reach all the regions of the choroid. The inlet region representing the short
posterior ciliary arteries is bringing blood to the posterior part of the tissue while
the long posterior ciliary arteries to the anterior part. This behavior is in agreement
with what we expected.

5.4.3 Alternative derivation

In this section we derive the equations of the poro-elasticity, following the ap-
proach proposed in [CGSMVC10] and then linearizing the result to obtain the Biot’s
equations. This subsection is not necessary for reading the following sections, but
it is useful for the reader not familiar with poro-elasticity to have a better under-
standing of the role of the different terms and parameters in the Biot’s equations.
A complete introduction to poro-elasticity can be found, for instance, in [Cou04] or
in [CHE14].

5.4.3.1 Main assumptions and definitions

We consider two phases: the solid one representing the external matrix of the
tissue and the fluid one representing arterial blood up to the capillaries. We assume
that the fluid does not change its density:

ρf = ρf0 (fluid does not change its density).

The amount of fluid present in the system may change with time. Let m be
the increase in fluid mass per unit of volume [kg m−3]. Its expression is derived by
comparing the current and the reference state:

current mass of fluid = ρfJφ

initial mass of fluid = ρfφ0

m = ρf (Jφ− φ0),

where φ and φ0 are the actual and the reference porosity (i.e. the local fraction of
volume occupied by the fluid w.r.t to the total volume), u is the displacement field
of the homogenized system and J = detF , F = I + ∇̂u represents the change of
volume and the deformation gradient, respectively.

We recall here the expression for the time-derivative of the increase in fluid mass
as it will be useful in the following

ṁ = ρf ˙(Jφ) = ρf (Jφ̇+ J̇φ),

by further manipulations and by using J̇ = J∇ · u̇ we get:

ṁ

ρfJ
= φ̇+ φ∇ · u̇. (5.3)
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It is also important to define the perfusion velocity

w = φ(vf − u̇), (5.4)

where vf is the fluid velocity. This quantity represents the relative velocity of the
fluid with respect to the tissue, weighted by the porosity.

5.4.3.2 Mass conservation

We proceed in the derivation by writing the balance of mass for the two phases.
First, we assume that no mass is added or removed from the skeleton:

ρs(1− φ)J = ρs0(1− φ0).

Second, we write the conservation of the fluid mass in the following way

ρf
∂

∂t
φ+ ρf∇ · (φvf ) = ρfs,

where s is a volumetric source of mass.
Some manipulations are needed to obtain a more useful form. The fluid velocity

is replaced by using the definition of perfusion velocity (5.4) obtaining:

ρf
∂

∂t
φ+ ρf∇ · (φu̇) + ρf∇ ·w = ρfs,

after expanding the gradient of a product between a scalar and a vector we get:

ρf
∂

∂t
φ+ ρf∇φ · u̇+ ρfφ∇ · u̇+ ρf∇ ·w = ρfs.

The increase in fluid mass appears in the equation after using (5.3)

ρf
∂

∂t
φ+ ρf∇φ · u̇+

ṁ

J
− ρf φ̇+ ρf∇ ·w = ρfs.

After the simplification of the first, second and fourth term, we obtain the final
expression for the fluid mass conservation:

ṁ

J
+ ρf∇ ·w = ρfs. (5.5)

Remark 3 (On the balance of fluid mass)
It is interesting to integrate (5.5) over a certain reference domain V and to apply
the divergence theorem ∫

V

ṁ

J
+ ρf

∫
∂V
∇w · n = ρf

∫
V
s

The first term represents the increase in fluid mass, the second one represents the
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flow coming in (or out) through the boundary of V while the right hand side is a
source (or sink) of mass.

If, for example, there is a positive source (s > 0) and m is forced to be 0, there
will be a flow coming out of V . On the other hand, if the fluid cannot exit the
domain through its boundaries it has to accumulate inside and m will increase.

5.4.3.3 Second Piola-Kirchhoff tensor

In order to derive an equation for the balance of the linear momentum, we first
define a free energy function. By means of its derivative, we are able to compute
the second Piola-Kirchhoff.

For the definition of the free energy function ψ we again follow [CGSMVC10]

ψ = W el(e)−Mb
m

ρf
(J − 1)f(J) +

1

2
M

(
m

ρf

)2

f(J),

where e = C−I
2 = F TF−I

2 is the strain tensor, b is the Biot’s coefficient and f(J) is
a function of J still to be defined. The energy ψ is a sum of an elastic energy W el

and two other terms related to the increase in fluid mass m.
The second Piola-Kirchhoff tensor Σ is defined as the derivative of the free energy

w.r.t. e = C−I
2 , keeping in mind that ∂eJ = JC−1, we get

Σ = ∂eW
el(e)−Mb

m

ρf
(f(J) + (J − 1)f ′(J))JC−1 +

1

2
M

(
m

ρf

)2

f ′(J)JC−1.

In order to remove the increase of fluid mass from the expression of Σ and to
write it in terms of the pore-pressure, i.e. the pressure of the fluid inside the solid
structure, we give a constitutive relationship for the enthalpy

gm = 1/ρf (p− p0),

where p is the pore-pressure and p0 is a reference value. Since the free enthalpy is
defined as the derivative of the free energy with respect to the increase in fluid mass
we obtain the following result

∂mψ = −Mb
1

ρf
(J − 1)f(J) +mM

(
1

ρf

)2

f(J) = 1/ρf (p− p0)

that, after a simple manipulation, simplifies to

p− p0 = Mf(J)

(
b(1− J) +

m

ρf

)
. (5.6)

The increase in fluid mass is then rewritten as a function of p

m

ρf
=

1

Mf(J)
(p− p0)− b(1− J). (5.7)
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By using equation (5.7) we get the following expression for the second Piola
tensor

Σ = ∂eW
el(e)−Mb2(f(J)+

1

2
(J−1)f ′(J))(J−1)JC−1−b(p−p0)JC−1+

1

2
(p−p0)2 f ′

Mf2
JC−1

The only terms still to be specified in the second Piola-Kirchhoff tensor are the
elastic potential and the function f(J). Several choices of the elastic potential are
possible. We keep following [CGSMVC10] and we choose the Ciarlet-Geymonat
energy

W el = k1(J1 − 3) + k2(J2 − 3) +K(J − 1− ln(J))

where J1 = trCJ−2/3 and J2 = 1
2((tr(C))2 − tr(C2))J−4/3 are the first and the

second strain invariants. The role of the material parameters k1, k2 and K will be
clear after the linearization and, for the same reason, this choice of elastic potential
is not crucial.

We compute the derivative of the elastic energy with respect to e:

∂eW
el = k1∂eJ1 + k2∂eJ2 +K(J − 1)C−1

Derivative of the first invariant:

∂eJ1 = ∂etrCJ−2/3

= J−2/3∂etrC −
2

3
trCJ−2/3C−1

= J−2/3∂etr(2e− I)− 2

3
trCJ−2/3C−1

= 2J−2/3I − 2

3
trCJ−2/3C−1

Derivative of the second invariant:

∂eJ2 = ∂e
1

2
((tr(C))2 − tr(C2))J−4/3

=
1

2
J−4/3∂e((tr(C))2 − tr(C2))− 2

3
((tr(C))2 − tr(C2))J−4/3C−1

=
1

2
J−4/3(4tr(C)I − 4C)− 2

3
((tr(C))2 − tr(C2))J−4/3C−1.

We focus the attention on the function f(J). After inserting the derivative of
the elastic potential into the expression of Σ we get

Σ =k1∂eJ1 + k2∂eJ2 + (K −Mb2J(f(J) +
1

2
(J − 1)f ′(J)))(J − 1)C−1

+ (−b(p− p0)J +
1

2
(p− p0)2 f ′

Mf2
J)C−1.

In the incompressible limit, the bulk modulus K tends to infinity and therefore we
also need M to grow in order to balance K. For this reason we need that the term
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multiplying M remains greater than a given positive constant for all J . Following
[CGSMVC10], we assume that

J(f(J) + 1/2(J − 1)f ′(J)) = 1 ∀J, (5.8)

obtaining

Σ = k1∂eJ1+k2∂eJ2+(K−Mb2)(J−1)C−1−b(p−p0)JC−1+
1

2
(p−p0)2 f ′

Mf2
JC−1.

We take this final expression as a starting point for the linearization.

5.4.3.4 Linearization

The goal of this subsection is to linearize Σ in the assumption of small strain.
It is useful to recall some simple linearization:

C−1 = (I + 2e)−1 ∼ I − 2e

JC−1 ∼ (1 + tr(e))(I − 2e) ∼ I + tr(e)I − 2e.

The expression for f is obtained by integrating Eq.(5.8)

f = 2
J − 1− ln J

(J − 1)2
f ′ = 2

1− J2 + 2J ln J

J(J − 1)3

and also f ′/f2

f ′/f2 =
(1− J2 + 2J ln J)(J − 1)

2J(J − 1− ln J)2

It is useful to do a Taylor development of f ′/f2

f ′/f2 ∼ −7

9
+
J

9
− 4

45
(J − 1)2

Linearizing the result with respect to (J − 1), we get

f ′/f2 ∼ −2

3
+

(J − 1)

9
.

We replace all the terms in Σ except the first two:

Σ ∼k1∂eJ1 + k2∂eJ2 + (K −Mb2) tr(e)I

− b(p− p0)((1 + tr(e))I − 2e)

− 1

2M
(p− p0)2

(
2

3
I +

5

9
tr(e)I − 4

3
e

)
.



5.4. Poro-elastic model of the choroid 99

Since tr(e)� 1, the expression simplifies to

Σ ∼ k1∂eJ1 + k2∂eJ2 + (K −Mb2) tr(e)I − (b(p− p0) +
1

3M
(p− p0)2)(I − 2e)

By assuming that p−p0

3M � b, meaning that we are close to the incompressible limit
(M → +∞), we obtain:

Σ ∼ k1∂eJ1 + k2∂eJ2 + (K −Mb2) tr(e)I − b(p− p0)(I − 2e).

We conclude the linearization by considering the elastic terms:

∂eJ1 = 2J−2/3I − 2

3
trCJ−2/3C−1

∼ (2− 4

3
tr(e))I − 2

3
(3 + 2 tr(e))(1− 2

3
tr(e))(I − 2e)

∼ (2− 4

3
tr(e))I − 2(I − 2e)

∼ −4

3
tr(e)I + 4e,

∂eJ2 = J−4/3(2tr(C)I − 2C)− 2

3
((tr(C))2 − tr(C2))J−4/3C−1

∼ 2(1− 4

3
tr(e))(2I + 2 tr(e)I − 2e)− 2

3
((3 + 2 tr(e))2 − tr(I + 4e))(1− 4

3
tr(e))(I − 2e)

∼ 4(I + tr(e)I − e)− 16

3
tr(e)I − 2

3
(6 + 8 tr(e))(1− 4

3
tr(e))(I − 2e)

∼ 4I + 4 tr(e)I − 4e− 16

3
tr(e)I + 8e− 4I

∼ −4

3
tr(e)I + 4e.

We can finally sum up the Cauchy stress tensor

Σ ∼ σ = (4(k1 +k2) + 2b(p− p0))e+ (K−Mb2− 4

3
(k1 +k2)) tr(e)I− b(p− p0)I.

We make the final assumption b(p− p0)� 2(k1 + k2) and we conclude:

Σ ∼ σ = 4(k1 + k2)e+ (K −Mb2 − 4

3
(k1 + k2)) tr(e)I − b(p− p0)I. (5.9)

The first equation of linear poroelasticity can be obtained by considering the
balance of linear momentum, after having neglected the inertia, ∇ · σ = f , where f
are the external body forces and by setting the reference pressure p0 equal to zero.
The second one is obtained by linearizing and injecting Eq.(5.7) into Eq.(5.5) and
by using Darcy’s law to relate the filtration velocity to the pore-pressure.
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5.4.3.5 Drained and Undrained parameters

The Cauchy stress tensor in Eq.(5.9) has the following structure:

σ = σel(e)− b(p− p0)I.

In order to better understand the role of the different parameters we first consider
the case of the system evolutions where there is no change of fluid mass, i.e. m = 0.
This case is called the undrained test.

In such a case we have, from Eq.(5.6), that

p− p0 = −Mb tr(e) (undrained case).

The expression of the Cauchy stress tensor changes accordingly:

σundrained = 4(k1 + k2)e+ (K − 4

3
(k1 + k2)) tr(e)I.

In the undrained processes the structure of the stress tensor is the same as in
the case of the elastic materials. However, those coefficients (K, k1, k2) are not the
coefficients of the solid matrix. They are the coefficients describing the system made
of solid matrix and of the interstitial fluid in the particular situation where the fluid
is blocked into the pores and cannot exit. Think, for instance, about a sponge
wrapped with a film that blocks the water from coming in or out.

In some cases it is useful to work with Poisson ratio and Young modulus instead
of working with (K, k1, k2). By comparing the previous expression with

σundrained =
Eu

1 + νu
e+

Euνu

(1 + νu)(1− 2νu)
tr(e)I

we obtain the following relationships (G = 2(k1 + k2)){
νu = 3K−4(k1+k2)

2(3K+2(k1+k2) = 3K−2G
2(3K+G)

Eu = 2(k1 + k2) 9K
3K+2(k1+k2) = 9KG

3K+G .

The superscript u indicates that these parameters measure the elastic properties of
the entire system in the undrained state. We mention the fact that, at this level, it
is possible to consider the incompressible limit (K →∞) obtaining{

νu = 1
2 (incompressible limit)

Eu = 6(k1 + k2) = 3G (incompressible limit).

We can also consider the drained case. Which is the case of the processes where
the fluid is maintained at a given constant pressure p = p̄ + p0. In such a case
the fluid can enter/exit the domain freely from the boundaries to adjust for this
pressure. If we make this experiment using constant pressure equal to the reference
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pressure (p̄ = p− p0 = 0) we have

σdrained = 4(k1 + k2)e+ (K −Mb2 − 4

3
(k1 + k2)) tr(e)I.

We denote by Kd the drained bulk modulus:

Kd = K −Mb2.

At the incompressible limit bothK andM increases and we assume thatKd remains
finite.

As for the undrained case we define some coefficients (Ed, νd) based on Kd

instead of K νd = 3Kd−4(k1+k2)
2(3Kd+2(k1+k2)

= 3Kd−2G
2(3Kd+G)

Ed = 2(k1 + k2) 9Kd

3Kd+2(k1+k2)
= 9KdG

3Kd+G

In conclusion of this section we can state that: if the fluid is completely isolated
the solid incompressibility is inherited by the poro-elastic medium. The coefficients
(Eu, νu) that describe this system are not those of the skeleton because they are
the combination of the fluid and the solid responses. However, we can treat this
particular material as an incompressible elastic solid. In the case in which the
system is not isolated the material is no longer incompressible because the total
volume is the sum of the fluid volume (which can change) and that of the solid
matrix. This can be seen in the equations by considering the drained test where
the fluid is completely free to move in and out of the domain. In such particular
case we still obtain an elastic model (pore-pressure has again disappeared), but the
bulk modulus of the solid has been greatly reduced and now it is equal to Kd. For
all the other situations in which the fluid can change its pressure, but also vary its
total mass, the result is in between.

5.5 Choroid coupled with the vitreous

In this section a test case with two compartments, the vitreous and the choroid,
is presented. For the modelling of the choroid compartment we refer to the previous
section, while for the dynamics of the vitreous we use the Stokes equations{

∂tv −∇ · σV = 0 in ΩV

∇ · v = 0 in ΩV ,

where v and pV are the velocity and the pressure of the fluid inside the vitreous,
σV (v, pV ) = ν(∇v +∇vT ) − pV I is the stress tensor and ν is the viscosity of the
fluid.
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5.5.1 Coupling scheme

At the interface between the two domains, ΓV−Ch, the continuity of the velocity
and of the stresses is imposed

u̇ = v on ΓV−Ch

σel(u)n− bpn+ σ(v, pV )n = 0 on ΓV−Ch,

where n is the normal unit vector. The two problems are solved separately and
the coupling is enforced by means of fixed point iterations with Aitken acceleration.
In particular, at the (k + 1)-th iteration we use the following Dirichlet-Neumann
scheme. First, the Stokes problem in ΩV is solved using the choroid velocity of the
previous iteration as a Dirichlet datum

∂tvk+1 −∇ · σV (vk+1, p
V
k+1) = 0 in ΩV

∇ · vk+1 = 0 in ΩV ,

vk+1 = u̇k on ΓV−Ch,

then the stress σV (vk+1, p
V
k+1)n is used as a Neumann datum for the poro-elasticity

problem 
∇ · σel(uk+1)− b∇pk+1 = 0 in ΩCh

1
M ∂tpk+1 + b∇∂tuk+1 −∇ ·K∇pk+1 = s in ΩCh

σel(uk+1)n− bpk+1n = −σV (vk+1, p
V
k+1)n on ΓV−Ch.

With the Dirichlet-Neumann scheme we cannot impose a given Dirichlet datum on
ΓV = ∂ΩV \ ΓV−Ch without violating the incompressibility constraint. Assigning
the velocity on ΓV could be useful, especially in view of the coupling with the other
compartments, we therefore considered also other coupling schemes. Neumann-
Dirichlet scheme is not a feasible option because the fixed point scheme is not
convergent and even by using the Aitken acceleration the number of iterations is
greatly increased. For this reason, we are currently investigating the possibility of
using a Robin-Robin scheme for the coupling with also the option of using an explicit
coupling scheme as done in [FGS14].

5.5.2 Interpolation

As mentioned in the geometry section, we use non-conform meshes for differ-
ent compartments (see Figure 5.9 where the two surface meshes of the interface
ΓV−Ch are depicted). One reason for this is to retain the possibility of remeshing
independently the different compartments. A second reason is that, for example
at the choroid-ciliary body interface, there is a triangular surface mesh on one side
(the ciliary body side) and, since we use prisms, a quadrangular one on the other
side (the choroid side). In order to handle this case we could introduce a layer of
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Figure 5.9: Interface Vitreous-Choroid, coarser discretization for the vitreous side
(left panel) and a more refined mesh for the choroid side (right panel). An example
of non-conform discretizations of the interface between two domains.

pyramids in the ciliary body to connect prisms and tetrahedra, but this raises many
difficulties for the automatic mesh generator and the discretization. On the other
hand, the drawback is that we have to exchange data defined on different meshes.
We use an interpolator to evaluate finite-element functions on a different surface
mesh. Let Vhi(Γ), with i = 1, 2, be the finite element space of size Nhi associated
with the surface mesh τhi . Let f1 ∈ Vh1(Γ) be an approximation of a certain func-
tion f : Γ→ R. We construct a finite-element approximation in Vh2(Γ) of f starting
from f1 in the following way:

f2 ∈ Vh2(Γ) : f2(x) =

Nh2∑
i=1

f2,iφi(x) ∀x ∈ τh2 , f2,i = f2(xi) = f1(pi),

where φj are the basis functions of Vh2(Γ), xj are the points associated with the
degrees of freedom of Vh2 and pj are the projections of these points on the other
mesh τh1 . By introducing the expression of f1 we have

f2,i = f1(pi) =

Nh1∑
j=1

f1,jψj(pi),

where ψj are the basis functions of Vh1(Γ). By defining an interpolation matrix Π,
we finally obtain

f2,i = Πi,jf1,j , Πi,j = ψj(pi).

We remark that, even when using conformal meshes, the same interpolation ma-
trix can be used to handle non-conform discretizations. With this approach it
is now possible to assign the time-derivative of the choroid displacement as a
Dirichlet datum for the vitreous compartment. But to assign the vitreous stress
as a Neumann datum to the choroid we need a further step. The stress of the
fluid is computed directly from the weak formulation and is obtained in the form
rV = {ri} =

∫
ΓV−Ch

σV n · φVi dΓ, where φVi are the basis functions of the finite
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Figure 5.10: Velocity magnitude, cm/s of the fluid in the vitreous and pore-pressure,
mmHg, during the systolic peak at the beginning of the fourth cardiac cycle.

element space of the vitreous domain. If the same mesh and the same discretization
were used at the interface, this quantity could be directly added to the right hand
side of the poro-elasticity linear system, but in our case we have to correctly perform
the interpolation. We follow [DFGQ16] and we reconstruct the weak form of the
stress on the choroid mesh as rCh = MChΠV 2ChM

−1
V rV , where MCh and MV

are the interface finite-element mass matrices of the choroid and of the vitreous,
respectively and ΠV 2Ch is the interpolation matrix from the finite-element space
of the vitreous VV (ΓV−Ch) to the one of the choroid VCh(ΓV−Ch). In this way the
interpolation is done on the finite-element representation of the stress and not on its
weak representation. Another option, following [FLLT98], would be to compute rCh

as rCh = ΠT
Ch2V r

V , where ΠCh2V is the interpolation matrix from VCh(ΓV−Ch) to
VV (ΓV−Ch).

5.5.3 Numerical results

For the numerical experiment we assign Neumann boundary condition on ΓV :
σV (v,pV )n = −22000dyne/cm2 ≈ −16.5mmHg and we set the vitreous viscosity
to ν = 0.004 cm2/s. The boundary conditions and the parameters of the choroid are
the same as in the test case of Section 5.4.2. In Figure 5.10 a snapshot of the solution
during the systolic peak is displayed. The choroid is not very visible because it is
extremely thin, but we observe a maximum of the pressure in the regions where the
posterior ciliary arteries enter the choroid and a minimum in the equatorial region
and in the inner layer. In the vitreous we observe the maximum of the velocity
close to the boundary ΓV because the choroid is inflating (see Figure 5.11 where the
volume of the choroid is displayed with respect to time) and the fluid in the vitreous
is forced to exit from ΓV . Of course this behavior is not realistic, but this is the
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Figure 5.11: Volume of the choroid with respect to time. Blood gradually fills the
choroid during the cardiac cycles. A peak corresponding to the systolic phase is
present at the beginning of each cardiac cycle.

effect of the boundary conditions we have imposed. On one hand, the choroid cannot
inflate in the direction of the sclera or in that of the ciliary body because we have
imposed zero displacement. On the other hand, we cannot impose a velocity on ΓV

without violating the incompressibility constraint. If, as explained in the coupling
section above, we change the coupling scheme and we enforce no-slip condition on
ΓV then the choroid could not inflate anymore. In such a case, we set to zero the
derivative of the choroid volume in Eq.(5.2) obtaining

ρf
|Ω|
M
Ṗ (t) = S(t)

and we can see that this would cause a not realistic increase in the pore-pressure.
This suggests that boundary conditions of this two-compartments model play a
crucial role in the dynamics of the system and to obtain realistic results better
boundary conditions should be imposed. However, the data to be assigned on ΓV and
on ΓCh = ∂Ω \ ΓV−Ch are difficult to choose and it seems more natural to consider
the system with all the compartments where the missing boundary conditions will
be easier to assign.

5.6 Conclusions, on-going and future work

In this chapter we have introduced a global model for the description of fluid-
dynamics and mechanics in the eye. We built a simplified, but realistic geometry for
the simulations and we have introduced our modelling choices. Preliminary results
concerning the modelling of the flow in the anterior cavity are compatible with state
of the art models for this compartment and reproduce different recirculation cells
depending on the direction of the gravity force. A poro-elastic model for the choroid
flow able to take into account the layered structure and the presence of short and
long posterior ciliary arteries feeding the tissue has been presented and numerical
simulations show that the pore-pressure has a realistic structure exhibiting gradi-
ents both across the thickness, meaning that the pressure in the arterioles is higher
than in the capillaries and that blood is reaching the innermost layer, and in the
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longitudinal direction implying that blood in the arterioles is travelling towards the
equator of the eye to reach every region of the choroid. Finally, we have coupled
the choroid with a simple Newtonian model of the vitreous. Results show that the
choroid is inflating following the pulsatility, however more accurate boundary condi-
tion are needed. The use of non-compatible meshes for the different compartments
is handled via an interpolator and allows us for independent refinement of the differ-
ent meshes and to use different elements as it is the case for the ciliary body-choroid
interface where we are going to use a triangular mesh for the ciliary body side and
a quadrilateral mesh for the choroid.

Following the plan discussed in Section 5.2.2 we are currently working on adding
the lens, the ciliary body, the zonules and iris to the model as one linear elastic
compartment with different material properties depending on the region. Enforcing
the coupling between three different compartments is not trivial and an appropriate
domain decomposition scheme is the current object of our study. In a later stage we
will add the corneo-scleral shell and the anterior cavity and perform simulations of
the eye mechanics with five different compartments. Other interesting developments
would be to test visco-elastic models for the sclera and/or for the vitreous. Finally,
we plan to apply the reduced order modelling technique that we have devised and
that will be presented in the next chapter to the eye-simulations. The idea is that,
depending on the goal of the numerical experiment, we might not be interested in
a particular compartment, namely the vitreous when interested in simulating the
pressure in the anterior chamber. However, it is clear that such compartment play a
crucial role and cannot be completed excluded from the model. The idea developed
in the next chapter is to replace such a compartment by a reduced representation
of the corresponding Steklov-Poincaré operator.



Chapter 6

A Reduced Order representation of the
Poincaré-Steklov operator: an

application to coupled multi-physics
problems

This chaper is based on [AL17]

In this chaper a model reduction method applied to coupled multi-physics systems is
investigated. The case in which a system of interest interacts with an external system is
considered. An approximation of the Poincaré-Steklov operator is computed by simulating,
in an offline phase, the external problem when the inputs are the Laplace-Beltrami eigen-
functions defined at the interface. In the online phase, only the reduced representation of
the operator is needed to account for the influence of the external problem on the main sys-
tem. An online basis enrichment is proposed in order to guarantee a precise reduced-order
computation. Several test-cases are proposed on different fluid-structure couplings.
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6.1 Introduction

The present work deals with the study of a Reduced-Order Method to approx-
imate the solution of coupled multi-physics systems. In particular, we investigate
the case in which one system of interest, described by a possibly non-linear Partial
Differential Equation (PDE) interacts with one (or more) other systems through its
boundaries. Numerous applications in science and engineering are characterized by
different compartments in interaction, think for instance to thermal-fluid-structural
or electro-mechanical-fluid couplings. In several cases, one is not interested in the
solution to all the systems, but only in the solution of a "main" system, that will be
denoted by P1 . The objective is thus to be able to compute precisely the solution of
this system (by using a full-order classical method) but to reduce the computational
costs associated to the solution of the systems in interaction with it (denoted as
P2 ). This results in a significant speed up of the problem simulation, in the case
in which the size of P2 is larger than that of P1 . Indeed, classically, there are two
ways to deal with coupled systems: a monolithic approach in which all the systems
are simultaneously solved, or a Domain Decomposition method (see [QV99] for a
complete review of the method). In the latter a fixed point iteration is adopted, in
which all the systems are separately solved and share the interface data. In the case
in which the secondary systems need a large number of degrees of freedom to be
accurately solved, the computational cost associated to both the approaches may
be large.

In this first work, for sake of simplicity, we made the assumption that there is
only one system to be reduced and that it is described by linear PDEs. In this
case the interaction of the linear system with P1 may be described by the Poincaré-
Steklov operator. With a slight abuse of notation we call Poincaré-Steklov operator
the one associated to a generic linear PDE, even if historically this name refers to the
case in which the secondary system is described by a Laplace equation (see [AL85]
for a first analysis of the problem).

The need to set up efficient solvers and to decouple the solution of the problems
in interaction is related to the ability to solve the problem at the interface. The use
of the Poincaré-Steklov operator as a preconditioner in fluid-structure interaction
iterations was investigated in [DDFQ06]. An efficient non-linear coupling strategy
was devised in [CPW14] to set up an uncertainty quantification method applied
to networks of coupled systems. Unfortunately, the problem at the interface is in
general not sparse and ill-conditioned (see [QV99]). To tackle this issue several
strategies were proposed in the literature. They can be broadly divided into two
classes: "local" and spectral approximations. A local approximation of the Poincaré-
Steklov operator consists of solving one or more external problems (P2 in the present
work) in a strip localised around the interface. Such a method was proposed for
example in [PS05], for applications in hydrology. A similar procedure, based on a
two-scale method, was presented in [GAG11]: a local problem in a strip localised
around the interface is solved and then, thanks to the residual, a global correction
is computed. A different strategy consists of approximating the leading part of the
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action of the Poincaré-Steklov operator through a spectral decomposition. Such
an approach was proposed in [Nat95, Nat97] in the case of elliptic problems and
a multiscale version was proposed in [CZAL13] for applications in heterogeneous
media. An approximation of the Poincaré-Steklov operator via a Padé expansion
was detailed in [LP10] for the study of the vibrations in fluid-structure couplings.
In [FN14] the Poincaré-Steklov operator is computed in the context of the wave
propagation in elastodynamics by considering a family of smooth functions at the
interface and by solving the problem P2 by taking these functions as inputs. In
the recent work [BRD15] a compressed sensing approach is proposed to retrieve
the discretised Poincaré-Steklov operator for coupled Helmholtz problems. The
method consists of probing, randomly, the matrix associated to the Poincaré-Steklov
operator, by selecting inputs from a kernel space and performing a direct full-order
simulation for a small number of them.

In the present work, a low rank decomposition of the Poincaré-Steklov opera-
tor is computed by a Reduced-Order Modelling method. In the literature, similar
works were recently proposed, based on a Reduced-Basis framework [HKP13, EP14,
MRH15, IQR16]. In these, multi-domain systems are considered for coupled linear
steady problems. The framework proposed in these works deals with parametrized
systems whereas in the present work we focus on the acceleration of single-scenario
simulations. In the present case, a parametrization can be considered for the problem
P1 ; a remark on the possibility to extend the proposed approach to parametrized
problems P2 is proposed at the end of Section 6.3.

The proposed approach is not applied to a specific set of problems but it is
meant to be applied to a rather broad class of systems. As for most methods
proposed in Reduced-Order Modeling ([QR14]), the strategy can be divided into
two phases: an offline phase and an online one. In the offline phase, a deterministic
sampling of the functional space of the input for the P2 at the interface is considered
and the output is saved, at the interface. This is similar to what was proposed in
[HKP13], in which harmonic functions at the interface are used and the offline phase
is somewhat independent from the coupling. The output of P2 at the interface is
used to get a Low Rank Decomposition of the Poincaré-Steklov operator. In order
to make the method more robust in cases in which the inputs coming from P1 are
outside the space spanned by the sampled functions used to construct the database,
an online update of the reduced Steklov representation is performed, in the spirit
of the methods proposed in [PW15, AZW15].

The advantages of the proposed framework are the following: it is a straightfor-
ward method, allowing to speed up coupled multi-physics time dependent systems
in a domain decomposition approach. Moreover, the offline phase is completely in-
dependent of the nature of P1 and of the coupling. Its main limitations concern
the assumptions made on P2 : in the present work, P2 , once discretized, has to
be autonomous and linear. Although these assumptions are quite restrictive, they
are fulfilled by a wide range of applications, for which a system of interest interacts
with surrounding media or compartments whose dynamics is linear.

The structure of the chapter is as follows: in Section 6.2, the mathematical
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formulation of the problem is detailed and few properties of the Poincaré-Steklov
operator are recalled. In Section 6.3 the numerical method is described and then,
in Section 6.4, its numerical properties are investigated from a theoretical point of
view. In the last section, some numerical experiments are proposed to validate the
method.

6.2 Problem formulation

In this section, the mathematical formulation of the problem is detailed. The
aim is to deal with systems of partial differential equations defined on different
domains, in interaction. To simplify, in this work, we investigate the case in which
two problems are coupled, namely P1 and P2 . Let the coupled systems be defined
on a time interval [0, T ] and a space domain Ω ⊆ Rd, an open subset, such that
Ω = Ω1 ∪ Ω2 where Ω1 is the domain on which P1 is defined and Ω2 is the domain
on which P2 is defined. The interface between the two, where the coupling conditions
are enforced, is denoted by Γ := Ω1 ∩ Ω2. The problem of interest is P1 , on which
there are no hypotheses, it can be a generic non-linear PDE. The following working
hypotheses on the problem P2 as well as on the coupling conditions are considered:

1. P2 is described by a linear PDE of the form Lu2 = 0, where L is a linear
operator.

2. it has no volume non-autonomous forcing terms.

The problem P2 is considered as time independent, when presenting the method
hereafter. However, this restriction can be relaxed in several cases. Some examples
and numerical experiments will be proposed in section 6.5.

The system can be written in strong form as follows:

F(u1, ∂
(ω)
t u1,∇(β)

x u1) = 0, on Ω1

h(u1) = 0 on ∂Ω1/Γ,

Lu2 = 0, on Ω2

`2u2 = 0, on ∂Ω2/Γ,

f1(u1, u2) = 0, on Γ,

f2(u1, u2) = 0, on Γ,

where F stands for a generic PDE describing the problem P1 , depending upon
time and space derivatives of maximal orders ω and β, respectively. The generic
non-homogeneous boundary conditions for P1 are denoted by h(u1) = 0. The ho-
mogeneous linear boundary conditions for the problem P2 on the boundary ∂Ω2/Γ

are expressed by the condition `2u2 = 0. The boundary condition f2 expressing
the coupling conditions for P2 has to be affine in u2, while the condition f1 for the
problem P1 can be generic. The goal is to decouple the problems and to be able to
solve P2 efficiently. The main interest, though, is not to have the solution of P2 in
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the whole domain Ω2. Instead, only an accurate representation of the solution of
P2 at the interface Γ is needed in order to have a good approximation of the solution
of P1 . The action of the linear problem P2 on the problem P1 through the coupling
conditions can be described by means of the Poincaré-Steklov operator S defined as
follows:

Sv = T `(L−1v),

where the quite abstract notation T `(L−1v) stands for: solving the linear problem
P2 on Ω2 when the datum at the interface is v, compute the image of a linear
operator of the solution `u2 and take the trace T of it.

6.2.1 Classical domain decomposition iteration

The coupled problem described above can be solved by using the Domain De-
composition (DD) method. Since the proposed approach can be seen as a technique
to speed up the DD iteration, we recall the basics of this method. A complete re-
view and detailed treatment of the Domain Decomposition methods can be found
in [QV99, TW05, SBG04, MQ89].

The method relies on the presence of two (or more) subdomains. These can
be either physically related to two different physics, as it is the case in the present
work, or they can be artificially generated. These subdomains can be chosen with
or without overlapping. In the present work we consider non-overlapping subdo-
mains. The idea is to couple the dynamics in the two subdomains by enforcing
suitable transmission conditions at the interface. Then, the coupling is solved by
fixed point iterations. A typical scheme is the Dirichlet to Neumann iteration in its
multiplicative version, here applied, for instance, to the Laplace equation:

−∆uk1 = 0 Ω1

uk1 = uk−1
2 Γ

−∆uk2 = 0 Ω2

∂nu
k
2 = ∂nu

k
1 Γ

where k denotes the current domain decomposition iteration and where the boundary
conditions on ∂Ω have been omitted. Other coupling schemes can be considered,
such as the Neumann-Neumann and Robin-Robin scheme. Since convergence is not
always guaranteed, a relaxation of the Dirichlet condition can be introduced of the
form:

uk1 = θuk−1
2 + (1− θ)uk−1

1 .

With the notation introduced, the problem P1 is defined by F = −∆u1, P2 is also,
in this example, a Laplace equation, i.e. Lu2 = −∆u2. The condition for P1 at the
interface are given by f1 = u1 − u2 and the condition for the problem P2 are given
by f2 = ∂nu2−∂nu1. The Poincaré-Steklov operator associated to the problem P2 is
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defined as:

S : H−1/2(Γ)→ H1/2(Γ),

S∂nu1 = u2 on Γ,

so that ` is the identity operator on Γ and the operator is called the Neumann-to-
Dirichlet map (N2D).

The discretisation of this example is shown when a finite element basis is used.
This provides some insights into the algebraic nature of the discretised Poincaré-
Steklov operator, and a motivation for the present work.

Let b(h)
i ∈ B(Γ) be a generic finite element function defined on Γ, then, the ma-

trix S is the representation of the Poincaré-Steklov operator on the basis functions,
namely:

Sij := 〈Sb(h)
j , b

(h)
i 〉Γ,

where h stands for the characteristic mesh length. In such a case, the whole coupled
problem admits the following matrix representation:A11 0 A1Γ,

0 A22 A2Γ,

AΓ1 AΓ2 AΓΓ

 u1,

u2,

uΓ

 =

 f1,

f2,

fΓ


After some algebra (see [QV99] for a detailed derivation), a system for the solution
at the interface can be obtained of the form:

ΣhuΓ = qΓ,

where Σh is the Schur complement and it is the discrete representation of the
Poincaré-Steklov operator. The Schur complement is in general dense and ill-
conditioned for the problems of interest. As a consequence, computing directly the
Poincaré-Steklov operator would be very expensive from a computational stand-
point, even in the simple case in which both the problems are linear. Moreover,
due to the ill-conditioned nature of the matrix, the solution of the system could be
affected by large errors. This highlights an important reason to look for a reduced
representation of the Poincaré-Steklov operator.

6.3 Outline of the method

The method can be divided, as for the majority of reduced-order modeling meth-
ods (see [QR14] for an overview in the recent advances in this subject), in two phases:
an offline phase, and an online one.
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6.3.1 Offline phase

In the offline phase, a number of simulations is performed in order to construct
a database of meaningful solutions, to be exploited later on and speed up the online
phase. Contrary to most of the classical methods of model reduction presented in
the literature, we made the choice of simulating only P2 in the offline phase, and not
the whole system. This strategy has two main advantages: it allows to perform the
simulations in the offline phase without considering the coupling between the two
subdomains. The problem P2 is linear and basis functions can be computed in a
massive parallel way. Second, from the point of view of the memory usage, there is
no need to save the whole solution of P2 , but only a restriction of a linear operator
applied to its solution on the interface Γ.

We need to choose a set of basis functions to represent the input datum. Such
basis has to be defined on a generic Riemannian manifold, to be orthonormal and
complete. In view of these desired properties, a reasonable choice is to a priori take
the first N` eigenfunctions of the Laplace-Beltrami operator defined on the surface,
with N` � NΓ, the number of degrees of freedom at the interface. The advantages
of choosing the eigenfunctions of the Laplace-Beltrami operator are the following:

1. The basis is a complete basis of V := L2(Γ).

2. It is hierarchical.

3. It automatically accounts for symmetries in the geometry.

4. The extraction of the basis amounts to solve a sparse eigenvalue problem
defined on Γ.

5. On particular (but meaningful) geometrical settings, the basis coincides with
the eigenfunctions of the Poincaré-Steklov operator (see Appendix 6.7).

Let the eigenfunctions of the Laplace-Beltrami operator be denoted as follows: vi ∈
V, i = 1, . . . , N` is such that −∆Γvi = µivi.

The problem in weak form reads:

〈∇Γvi,∇Γω〉Γ = µi〈vi, ω〉Γ, ∀ ω ∈ H1(Γ),

where ∇Γ denotes the surface gradient and 〈u, v〉Γ =
∫

Γ uv dΓ is the inner product
on the interface Γ. The problem is then discretised by using P1 finite elements.

Once the basis has been extracted by solving a sparse eigenvalue problem, the
problem P2 is solved, for every input function vi. Only the image of a linear operator
applied to the solution is stored on the boundary, i.e.: yi = Svi = T `(u(i)

2 ), where
u

(i)
2 = L−1(vi).
In the case in which the boundary conditions on ∂Ω2/Γ are not homogeneous,

other problems can be solved in the offline phase to account for the contribution of
the terms on ∂Ω2/Γ at the interface.
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6.3.2 Online phase

The action of the Poincaré-Steklov operator on a generic input datum d can be
approximated as follows:

Sd ≈ S0 +

N∑̀
j

〈d, vj〉Γ yj +

N
(n)
o∑
k

〈d,wk〉Γ zk,

where S0 accounts for eventual non-homogeneous boundary conditions for P2 on
∂Ω2/Γ, the second term corresponds to the contribution of the projection of the
datum d in the space spanned by the Laplace-Beltrami eigenfunctions and the last
term is an online update of the basis, such that 〈wk, yj〉Γ = 0. The online update
of the basis is similar, in the spirit, to what is proposed in [PW15, AZW15]. In
particular, when an error criterion is not fulfilled, the basis is updated by adding
elements to it, coming, in the present approach, from a full-order problem simulation.
The main difference with respect to the cited works concerns the way the update
is performed. In the present approach we decided not to use a thin SVD update,
but simply to increase the basis size and perform an orthogonalisation through a
Modified Gram Schmidt (MGS). This proved to be sufficient for the purposes of this
work. The online update is performed as follows. Consider a generic time instant
t(n). The approximation space in use is V ∪W (n), that is, the union of the set of
the Laplace-Beltrami eigenfunctions and the set of the N (n)

o online basis functions
possibly added in the previous time iterations. Once the datum d(n) is available,
coming from P1 , its reconstruction error on the space in use is:

ε
(n)
d :=

∥∥∥∥∥∥d(n) −
N∑̀
i=1

〈d(n), vi〉Γvi −
N

(n)
o∑
j=1

〈d(n), wj〉Γwj

∥∥∥∥∥∥
Γ,2

.

Let εd be the tolerance chosen for the datum representation. If ε(n)
d > εd then an

online update is needed. Let the basis function to be added be:

w
N

(n)
o +1=N

(n+1)
o

= C

d(n) −
N∑̀
i=1

〈d(n), vi〉Γvi −
N

(n)
o∑
j=1

〈d(n), wj〉Γwj

 ,

where C is the normalisation constant, chosen such that: ‖w
N

(n+1)
o
‖Γ,2 = 1. This

step is performed through an MGS method. The corresponding output z
N

(n+1)
o

is
computed by actually solving the problem P2 . The main advantage of the online
enrichment is that a higher precision is guaranteed. Theoretically, the online update
could be required at all the evaluations of the secondary problem, but in practice,
see also the numerical section, only a few online solution of P2 are required. In fact,
the real drawback of using the online update is that the access to the high fidelity
model for P2 is required both in the online and in the offline phase. For this reason,
depending on the way in which the software is implemented and on the size of P2 ,
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one may decide to skip the online phase and to rely only on the offline set of basis
functions.

6.3.3 Retrieving the Poincaré-Steklov eigenfunctions

Once the output of P2 have been computed for all the basis functions on Γ, the
eigenfunctions of the Poincaré-Steklov operator, if needed, can be retrieved. This
allows to perform a Low Rank Decomposition of the operator that can be exploited
in parametric Domain Decomposition methods. In particular, let the eigenfunctions
of the Poincaré-Steklov operator be written as a linear combination of the Laplace-
Beltrami eigenfunctions as:

ϕ̂i =

N∑̀
j=1

Uijvj ,

where ϕ̂i is the approximation of the Poincaré-Steklov operator eigenfunction, U is
the representation of the Poincaré-Steklov eigenfunctions onto the Laplace-Beltrami
eigenfunctions. The equation Sϕi = λiϕi, when discretized on the first N` eigen-
functions vj , becomes:

N∑̀
j=1

UijSvj = λ̂i

N∑̀
j=1

Uijvj .

This is projected onto the space spanned by the eigenfunctions of the Laplace-
Beltrami operator leading to:

N∑̀
j=1

Uij〈Svj , vk〉Γ = λ̂i

N∑̀
j=1

Uijδjk.

This is a reduced eigenvalue problem for the representation of the Poincaré-Steklov
eigenfunctions on the Laplace-Beltrami ones (namely Uij). The problem can be
recasted as follows:

SU = UΛ,

where Sjk := 〈Svj , vk〉Γ = 〈yj , vk〉Γ is the representation of the Poincaré-Steklov
operator onto the Laplace-Beltrami eigenfunction basis.

Having an eigenbasis for the operator S (think for instance to the N2D map)
allows to easily recover the action of other maps on the data. Indeed, the eigenfunc-
tions of all the maps coincide and only the spectrum changes and it can be recovered
via a purely algebraic relation. This can be useful when dealing with DD iterations
in which a Robin condition has a possibly varying parameter (see [DH97]) or if the
scenario to be simulated changes on a given geometrical setting. In all these cases,
it is not necessary to re-compute the offline phase, so that no extra computational
cost is involved.

Remark 1
The proposed method can be applied straightforwardly to systems whose geometry
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is fixed (corresponding to a single scenario for P2). An interesting perspective we
briefly prospect on in this remark concerns the cases in which multiple scenarios are
involved. This is for instance the case in which the interface depends upon a set
of parameters µ. This leads to a parametric representation of the Poincaré-Steklov
operator. To compute a low-rank decomposition of the operator, the M-DEIM
method introduced in [NMA15] could be used. The authors introduced it to deal
with problems that, after discretization, are featured by matrices that depend on
parameters in a non-affine way. In the present context, given a sample of µ, the
corresponding Laplace-Beltrami eigenfunction can be computed and the outputs of
P2(µ) stored. These can be used to approximate, in the online phase, the action of
S(µ) on the input.

6.4 Numerical Analysis

In this section an analysis of the approximation properties of the method and
its computational costs is detailed.

6.4.1 Properties of Poincaré-Steklov operator

Here we recall some properties of the Poincaré-Steklov operator in the case in
which the problem P2 is linear elliptic and symmetric (see [KW12]). The numerical
analysis of the method will be performed by assuming the same hypotheses. The
numerical experiments, instead, will be presented in a more general setting.

In what follows, we denote the Neumann to Dirichlet map (N2D) by S. In this
case, f2 = ∂nu2−d(u1), where d(u1) is the datum coming from P1 . The operator S
is defined from H−1/2(Γ) to H1/2(Γ) and it is the trace of the solution of P2 . The
corresponding inverse map S−1 is the Dirichlet to Neumann map (D2N), it takes
elements from H1/2(Γ) and its result is in H−1/2(Γ). In this case f2 = u2 − d(u1)

and the application of the map provides the normal derivative of u2 on Γ.
The operator S is compact in L2(Γ), continuous and symmetric with respect to

the L2(Γ) duality between H−1/2(Γ) to H1/2(Γ) (see [KW12] for the proof of these
properties). Both S and S−1 are positive definite and they both induce a norm on
H−1/2(Γ) and H1/2(Γ), respectively.

In this case, the eigenfunctions of S are a complete orthonormal basis of L2(Γ).

6.4.2 Convergence

In this section, the convergence of the proposed method is investigated in the
case in which P2 is defined by a linear elliptic and symmetric operator, enjoying the
properties introduced in section 6.4.1. In what follows, for sake of compactness in
the notation, the standard Hs(Γ) norm will be denoted by ‖·‖s, where it is intended
that ‖·‖0 is the standard L2(Γ) norm. The result is summarised in the following
proposition.
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Proposition 1
Let ∂Ω2 be C2 and let S : H−1/2(Γ) → H1/2(Γ) be the N2D map, S−1 the D2N
map; let w be the datum and ŵ its projection onto the subset of the first N` Laplace-
Beltrami eigenfunctions. Then:

1. if w ∈ L2(Γ), then limN`→∞‖S(w − ŵ)‖0 = 0.

2. if w ∈ H2(Γ), then: ‖S(w − ŵ)‖0 ≤ C1N
−2/dΓ

` |w|2.

3. if w ∈ H2(Γ), then: ‖S−1(w − ŵ)‖0 ≤ C2N
−1/2dΓ

` |w|2.

Proof. In order to prove the first point, the following inequality is considered:

‖S(w − ŵ)‖0 ≤ λmax‖w − ŵ‖0,

where λmax is the largest eigenvalue of the N2D map. Since the Laplace-Beltrami
eigenfunctions are a complete basis of L2(Γ), the convergence follows. The second
point can be proved by considering the approximation properties of the Laplace-
Beltrami eigenfunctions (see for instance [CHQZ07, APV15]). Under the hypothesis
that w satisfies the same boundary conditions as the eigenfunctions basis on ∂Γ, it
holds:

‖w − ŵ‖0 ≤ cN−2/dΓ

` |w|2,

Thus: C1 = λmaxc, where c is a constant depending on the domain Γ .
The proof of the convergence for the inverse map is more delicate since the map

causes a loss of regularity. Let us assume that the datum w ∈ H2(Γ). In this case,
see [KW12]:

S−1(w − ŵ) ∈ H1/2(Γ).

Then, thanks to the trace inequality and the regularity of the Laplace problem (see
[Sal15] for a detailed derivation), the following chain of inequalities holds:

‖S−1(w− ŵ)‖0 ≤ B1‖S−1(w− ŵ)‖1/2 ≤ CTB1‖u‖H2(Ω2) ≤ CTB1B2‖(w− ŵ)‖3/2,

where u is the Dirichlet harmonic extension of w− ŵ, CT , B1, B2 are constants that
depend on Γ (B1) and on Ω2 (CT , B2). By the properties of interpolation of Sobolev
spaces, see [BL12], the last term satisfies:

‖(w − ŵ)‖3/2 ≤ B3‖(w − ŵ)‖3/42 ‖(w − ŵ)‖1/40 ,

where B3 is a constant depending on Γ. This is sufficient at once to prove the
convergence and to derive, thanks to the approximation properties of the Laplace
eigenfunctions, the theoretical rate, as done for the map S.

The result of the proposition shows that the method converges. When the N2D
map is approximated, in a 3D problem, a linear (in the number of eigenfunctions)
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convergence is expected. When the inverse map (D2N) is approximated, due to
the loss of regularity induced by the map, a potentially slower convergence rate
is obtained. In the very specific case of a solution w such that its higher order
derivatives satisfy the same boundary conditions as the eigenfunctions basis on ∂Γ

we have exponential convergence (see for instance [CHQZ07, APV15]).

6.4.2.1 A semi-analytical example.

In this subsection a computation is shown in order to compute the rate of con-
vergence of the method in a simple setting. Consider for instance the problem
P2 defined as −∆u = 0 on a unit square [0, 1]2 with Dirichlet boundary conditions
on three sides and a datum imposed on y = 0. Let the datum d be expanded in a
Fourier series and let d̂k be the k−th coefficient. Then, the N2D and the D2N maps
can be computed analytically:

Sd =
∞∑
k

√
2d̂k

tanh(πk)

πk
sin(πkx),

S−1d =
∞∑
k

√
2d̂k

πk

tanh(πk)
sin(πkx).

In the last two equations the regularising effect of S is evident: the Fourier coeffi-
cients of the image are going to zero faster with respect to those of the datum. On
the other hand, for S−1, the coefficients are multiplied by k and therefore they tend
to zero more slowly. When computing the truncation error committed by retaining
only k = N` space frequencies, the following expression is obtained:

εS = ||S(d− d̂)||2 =

∑
k>N`

d̂2
k tanh(kπ)2π−2k−2

1/2

,

εS−1 = ||S−1(d− d̂)||2 =

∑
k>N`

d̂2
kπ

2k2 tanh(kπ)−2

1/2

,

where d̂ is the projection of the datum on the first N` basis functions.

In Table 6.1 we reported the estimated rate of decay of the Fourier coefficients
d̂k and the L2-norm of the errors for the two maps, for two different functions,
characterized by a different regularity. The results show that the convergence, in
this case, is faster than expected. In particular, the result of the proof is pessimistic
since in this case the Poincaré-Steklov operator eigenfunctions coincide with the
Laplace-Beltrami eigenfunctions at the interface.
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d Regularity d̂k ||εS ||0 ||εS−1 ||0

0
x2

2
− x

5
+

1

50

−x
2

2
+

3x

5
− 7

50
x2

2
− x+

1

2

0 ≤ x < 1/5

1/5 ≤ x < 2/5

2/5 ≤ x < 4/5

4/5 ≤ x ≤ 1

H2(0, 1) k−3 k−3.5 k−1.5


3x+ 1

1

2− 2x

0 ≤ x < 1/3

1/3 ≤ x < 1/2

1/2 ≤ x ≤ 1

H1(0, 1) k−2 k−2.5 k−0.5

Table 6.1: Semi-analytical estimation of the rate of convergence of the method.

6.4.3 Theoretical analysis of the computational costs.

The computational cost of the procedure and the theoretical speed-up are pre-
sented. Let N1,N2 be the number of degrees of freedom of P1 and P2 respectively
when they are discretised by means of a standard Finite Element method. Then,
let Idd be the average number of iterations of Domain Decomposition. We assume
that the computational costs associated to the solution of an average iteration of
Domain Decomposition amounts to:

CI ≈ Idd (C1Nα1
1 + C2Nα2

2 ) ,

where the αi depend on the solvers chosen for the two problems. When the GMRES
method is used (without preconditioning) a quadratic behavior is expected (αi ∼ 2).
Other state of the art solvers, e.g. multigrid, shows approximately linear convergence
(αi ∼ 1, see for instance [GMSB16]). Let NΓ be the number of degrees of freedom
at the interface. Then, the method consists of approximating the result of P2 by
projecting the datum at the interface onto the basis and to reconstruct the output
of the Poincaré-Steklov operator, at the interface. Let N` be the number of modes.
This operation has a computational cost, denoted by Cr of:

Cr ≈ 3NΓN` +O(1).

When applying the method, the average Domain Decomposition iteration has a
reduced cost (CR) of:

CR ≈ Irdd (C1Nα1
1 + 3NΓN`) +O(1),

where the average number of Domain Decomposition iteration Irdd may vary by
virtue of a regularizing effect of the reduced-order model.

Few comments are in order. The speed up in the solution of the problem P2 is
expected to be very large. Indeed, it is the ratio between a term that scales as the
α2-power of the number of degrees of freedom in the domain Ω2 and a term which
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is linear in the number of degrees of freedom of the interface. The overall speed-up
of a single iteration is due to two contributions: the acceleration of the solution of
P2 and a possible regularizing effect:

CI
CR
≈ Idd (C1Nα1

1 + C2Nα2
2 )

Irdd (C1Nα1
1 + 3NΓN`)

, (6.14)

so that the method is very efficient when the number of degrees of freedom of P2 is
large. By observing Eq.(6.14) it is clear that the best conditions for expecting a
significant speed up are: N2 � NΓ and N2 � N1. In fact, the first condition
guarantees a speed up in the solution of P2 and the second condition guarantees
that P2 was the most costly part of the simulation. In other cases where the second
condition is not satisfied, but we have, for instance, N2 = N1 the total solution cost
will be reduced only by a factor two. Remark that in the case in which there are
several systems in interaction, the speed up of the method is expected to be larger
and larger.

The total cost of performing Nsim simulations each of which has NT time steps
can be roughly expressed, for the Full-order method (CDD) and for the Reduced-
Order one (CROM ) as:

CDD ≈ NsimNTCI ,
CROM ≈ NsimNTCR +N`C2Nα2

2 + 6N2
`NΓ,

where the last term accounts for the overheads of the offline phase, consisting in
solvingN` problems P2 and by computingN` eigenfunctions of the Laplace-Beltrami
operator defined at the interface.

When the online update of the basis is used to reduce the error in the compu-
tation, an extra cost has to be accounted for, consisting of solving one P2 problem,
whose cost is ∝ C2Nα2

2 and a Modified Gram-Schmidt orthonormalisation for the
input function at the interface.

6.5 Numerical Experiments

In this section three numerical experiments are shown, on systems characterised
by different interactions and geometrical settings. The first two testcases were
mainly motivated by the study of physiological flows, think for instance of blood
vessels surrounded by soft tissues, and are models of fluid-fluid interaction. The
last test is, instead, a paradigmatic example of fluid-structure interaction applica-
tions arising in an industrial context. Although the method is tested on fluid-fluid
or fluid-structure interaction problems, we would like to emphasize that it finds
application in a broad range of engineering problems.

In particular, the first test case is a simple example where the external problem
is described by a Laplacian operator and where Proposition 2 holds. The second
test case is used to quantitavely confirm the convergence properties derived in the
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previous section and to test the online enrichment strategy. The third and last
test case involves a more complex operator for the external problem, which is a
stationary Stokes problem, and it is used to measure the speed up.

6.5.1 Incompressible flow interacting with a porous medium

In this testcase, the first system P1 is governed by the Navier-Stokes equations
in interaction with a porous medium, P2 , described by the Darcy equation. A
full analysis of this coupling and of suitable domain-decomposition schemes can
be found in [DQ03]. The geometrical setting is the following: the domain Ω =

Ω1 ∪ Ω2 is a parallelepiped (0, 10) × (0, 5) × (0, 10) divided in two parallelepipeds
Ω1 = (0, 10) × (0, 5) × (9, 10) and Ω2 = (0, 10) × (0, 5) × (0, 9) (see Fig.6.1). The
two flows are separated by the planar interface Γ = (0, 10)× (0, 5)×{9}. In Ω1, the
fluid is described by the time-dependent Navier-Stokes equations: ∂tu + u · ∇u =

∇ · σ(u, p1),∇ · u = 0, where σ(u, p1) = ν(∇u+∇uT )− p1I is the Cauchy stress
tensor, ν = 0.04 the fluid viscosity and u and p1 the fluid velocity and pressure. We
denote by n1 the outward normal with respect to Ω1 and by n2 the normal oriented
outward with respect to Ω2.

For the boundary conditions at ∂Ω1 \Γ, we assigned a non-homogeneous natural
condition, σ(u, p)n1 = −10sin(0.5(x+y)−100t), on Γin = (0, 10)×(0, 5)×{z = 10},
the top surface of Ω1. On the lateral surface, Γlat,1 = ∂Ω1 \ (Γ ∪ Γin), mixed
homogeneous boundary conditions were imposed on the normal velocity and on the
tangential component of the normal stress. Moreover, the tangential velocity was
set to zero at the interface Γ.

In the second compartment, Ω2, the flow in the porous medium is described by
the Darcy’s equation: −div(K∇p2) = 0, where K = 0.2 is the permeability which
was assumed to be a scalar.

On ∂Ω2 \ Γ we imposed the following boundary conditions: zero pressure at
Γout = (0, 10) × (0, 5) × {z = 0} and homogenous Neumann conditions on Γlat,2 =

∂Ω2 \ (Γ ∪ Γlat,2).
The two systems are coupled by the following interface conditions on the normal

direction: {
σ(u, p)n1 · n1 = −p2 Γ

∇p2 · n2 = 1
Ku · n1 Γ.

To solve the problem with an iterative scheme the following domain decomposi-
tion scheme is adopted:{

σ(uk, pk)n1 · n1 + αuk = −pk−1
2 + αuk−1 Γ

∇pk2 · n2 = 1
Ku

k · n1 Γ,

where k denotes the current domain decomposition iteration and α = 0.1 is a relax-
ation parameter. A standard Aitken acceleration is used to reduce the number of
fixed point iterations (see [DDFQ06]). The Steklov operator is therefore a Neumann
to Dirichlet map in this case. We also remark that, in such a simple geometry, the
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Figure 6.1: A snapshot of the reference solution for t = 0.15 (left panel). Pressure
p at the interface Γ (first test case) along the line y = 2.5 for two different time
instants (center and right panel). Finite elements results are compared with the
reduced approach for different numbers of modal functions.

eigenfunctions of the Steklov and those of the Laplace-Beltrami operators coincide,
see Appendix 6.7.

To discretise the system in space, P1-P1 stabilized finite elements are used. The
computational mesh consists of 59268 tetrahedra for Ω1 and 439458 for Ω2, while
on Γ there are 2776 degrees of freedom and the time step ∆t is equal to 0.01.

The result of the reduction are shown in Figure 6.1, where the pressure p is
displayed at the interface and the reduced solutions are compared to the reference
one for two different time instants. We observe that, in this case, with one and
two modes the behavior of the system substantially differs from the reference one.
However, by adding few modes the convergence to the reference dynamics is quite
fast.

6.5.2 A tube embedded in an inviscid fluid flow

The second testcase models a more complex system: P1 is a non-steady Stokes
flow in a thin elastic tube, coupled with an external inviscid non-steady flow (P2 ).
The geometry of the test is shown in Figure 6.2. The goal is twofold: to provide an
example on how the hypothesis of time independence of P2 can be relaxed and to
test the method robustness when dealing with ill-posed decoupled problems.

The whole domain is, as in the first test, a parallelepiped Ω = (0, 10)× (0, 5)×
(0, 2). The first subdomain Ω1 is the cylinder (0, 10)×Γin with Γin being the circle
in the yz plane centered in (x = 0, y = 2, z = 1) and with radius r = 0.5, Γout
denotes the corresponding face in x = 10. The interface between the two domains
is denoted by Γ and it is the lateral surface of Ω1. The domain Ω2 = Ω \ Ω1 is the
remaining portion of Ω.

The problem P1 is the Stokes system and, at the interface Γ, we added an elastic
shell to model the tube elasticity. For the sake of simplicity, we present the system
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Figure 6.2: On the left panel, we have a snapshot of the reference solution for
t = 0.006. The tube is the domain Ω1 where we solve the Stokes equations. On
the right panel pressure p1 at the black line of the left panel has been displayed for
different choices of the offline basis’ dimension that are compared to the reference
solution.
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in its discretised form, at time tn = n∆t :

P1



1
∆tu

n − ν∆un +∇pn = 1
∆tu

n−1 Ω1

∇ · un = 0 Ω1

σ(un, pn1 )n1 = −pin,(out)(tn) Γin,(out)

σ(un, pn1 )n1 + L(un) = Fn−1,n−2 − pn2n1 Γ

ηn = ηn−1 + ∆tun · n1 Γ,

where pin(t) is a given function of time and pout = 0. The membrane is rendered by
two terms L(un) and F in the boundary condition, the first one being a symmetric
operator on Γ and the second being a function of the values of the solution at the
previous time steps. The structure equation is embedded in this two terms and
the displacement is then computed through an algebraic equation. The resulting
boundary condition is a generalized Robin condition. It is beyond the scope of this
work to get into the details of this simplified fluid-structure interaction model; a
detailed derivation can be found in [NV08].

The equation for P2 describes a time-dependent inviscid fluid flow of the form:
ρ2∂tu2 = −∇p2 Ω2

∇ · u2 = 0 Ω2

u2 = 0 ∂Ω2 \ Γ

u2 = u Γ.

Remark that this is an example in which the working hypothesis on P2 are not
fulfilled at continuous level. However, after time discretisation, this problem can
be solved by the proposed approach. Indeed, we use an implicit Euler scheme by
substituting ∂tu2 ∼

un2−u
n−1
2

∆t , then we apply the divergence operator to the resulting
momentum equation obtaining:

P2


−∆pn2 = 0 Ω2

∂n2p
n
2 = 0 ∂Ω2 \ Γ

∂n2p
n
2 = − ρ2

∆t(u
n · n2 − un−1 · n2) Γ.

The problem P2 , decoupled from P1 , is an ill-posed problem. Hence, a relaxed
interface condition is used:

∂n2p
n,k
2 + αpn,k2 = − ρ2

∆t
(un,k · n2 − un−1,∞ · n2) + αpn,k−1

2 ,

where the k refers to the current domain decomposition iteration.
The solution of this system is featured by counter-propagating elastic waves at

the interface Γ. When the wave has a short wavelength it is expected that its ap-
proximation requires a large number of Laplace-Beltrami eigenfunctions. Therefore,
this test is a good benchmark to investigate the performance of the method both in
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its purely offline version and with the online update correction. The results of this
comparison are reported in Figure 6.3. In the left and center panel, the error with
respect to the reference solution at the interface and in the whole domain are shown
in norm L2((0, T );L2(Γ)) and L2((0, T );L2(Ω1)) , as a function of the number of
modes, both without (purely offline) and with the online update of the basis. The
trends are similar, and it can be seen that the rate of convergence of the method
without online update is almost linear, as predicted by the theoretical analysis. The
online update guarantees that the error on the datum is always below a given thresh-
old and allows a significant improvement in terms of accuracy (almost one order of
magnitude in certain cases). On the right panel the computational costs are shown:
the number of Laplace-Beltrami basis functions (on the x axis) is plotted against
the number of online added basis functions (on the y axis), for different tolerances,
namely {0.01, 0.005, 0.001} in L2(Γ) representation of the datum. The total cost in
terms of number of problems P2 solved is the sum of the two.

6.5.3 Two elastic cylinders in a Stokes flow

In the last testcase, a linear elasticity problem (P1 ) on two cylinders is coupled
with a steady Stokes flow (P2 ). This is an example of a system in which P1 is
defined on a domain which is the union of non-connected sets. Moreover, both the
main and the external problems have vector unknowns, and the external problem
is a saddle point problem. This test is used to assess the speed-up performances of
the method.

The geometry is depicted in Fig. 6.4. The domain Ω1 is composed of two cylin-
ders attached to a basement and their displacement η is given by the linear elasticity
equations:

P1



ρs
∂2η

∂t2
− div(σs) = 0 on Ω1

σs =
Eν

(1 + ν)(1− 2ν)
div(η)I +

E

2(1 + ν)
(∇η +∇ηT )

η = 0 on ΓB

σsns = −σfnf on Γ,

where ΓB, the boundary of the basement, and Γ, the union of the surfaces of the
two cylinders, are such that ΓB ∪ Γ = ∂Ω1. The two tensors σs and σf are the
stress tensors of the structure and of the fluid, respectively. We also assume that
the coupling conditions between the fluid and the structure are assigned only at
the cylinders boundary Γ which, unlike the previous test cases, is not a connected
set. The outward normal, with respect to Ω1, is denoted by ns while nf = −ns
is outward with respect to the fluid domain Ω2. The physical parameters, ρs, E
and ν represent the density of the solid, the young modulus and the poisson ratio,
respectively. For this test we have used ρs = 1, E = 1e4, ν = 0.48. The fluid is
described by the steady Stokes equations:
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Figure 6.3: In the first two panels (left and center) the error of the reduced approach
with respect to the corresponding finite element simulation is computed. In the left
panel the relative error is computed with respect to p2|Γ and it is measured with
the L2((0, T );L2(Γ))-norm, while in the center panel the relative error on quantity
p1 is measured with an L2((0, T );L2(Ω1))-norm . The errors obtained with different
approaches are compared for the offline method and for three different values of the
tolerance parameter ε̄d: {0.01, 0.005, 0.001}. On the x-axis the number of offline
basis function is reported, while on the third panel the number of basis functions
that were added during the online phase is reported as a function of the offline basis
dimension
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Figure 6.4: Solution of the complete problem at time t = 0.00325102. The color
scale on the cylinders and on the basement represent the displacement, while the
fluid domain is colored by the value of the pressure and transparent.

P2



div(σf ) = 0 Ω2

divu = 0 Ω2

σfnf = 0 Γout

σfnf = −pin(t)nf Γin

σf = νf (∇u+∇uT )− pI
u = 0 ΓD

u = η̇ Γ,

where u is the fluid velocity and p the pressure. The surface Γin = ∂Ω2 ∩ {x = 0}
represents the inlet of the system. On the other side, Γout = ∂Ω2 ∩ {x = 1} is the
outlet of the domain. On ΓD = ∂Ω2 \ (Γin ∪ Γout ∪ Γ) no slip boundary conditions
are enforced. The parameter νf represents the kinematic viscosity and it was set to
0.035.

The inlet pressure is prescribed by

pin(t) =


10 t < 0.05

10(1− t−0.05
0.075−0.05) 0.05 < t < 0.075

0 t > 0.075

An implicit Euler scheme has been used for the time discretization of the struc-
tural problem, with a time step δt = 1.806125 · 10−4 and P1 finite elements are
used for space discretization. For the Stokes problem, we use P1-P1 stabilized finite
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Figure 6.5: First three eigen-functions of the Poincaré-Steklov operator for the
Stokes problem. The reconstruction is based on 50 Laplace-Beltrami eigenfunctions.

elements. A snapshot of the reference solution obtained through this discretization
is reported in Fig. 6.4. For what concerns space discretization we have used 20920

tetrahedra for Ω1 and 47735 for Ω2. The number of nodes at the interface is 663,
which means 1989 degrees of freedom for the displacement. The final time of the
simulation was T = 0.2 for a total number of time steps equal to: 1108.

The coupling is imposed through a Dirichlet to Neumann map, that, as investi-
gated in section 6.4, is featured by a slower convergence rate. The Laplace-Beltrami
eigenfunctions used to sample the input space are, in this case, the solution of a
vector eigenvalue problem on the cylinders surface. As a post-processing, following
Section 6.3.3, we can approximate the Steklov eigenfunctions and the result is shown
in Figure 6.5. In this case, the Poincaré-Steklov eigenfunctions are non-zero on the
whole interface, even though it is the union of non-connected sets. The action of the
Poincaré-Steklov operator couples the movement of the two cylinders. Moreover, for
the present case, the physical dissipation of the elastic cylinders is purely induced
by the coupling with the external Stokes flow and hence the dissipation is related
to the Steklov eigenvalues.

In order to verify the quality of the reduced solution, we have reported the
displacement of the center of the cylinders in Figure 6.6. We can see that few modal
functions are enough to reproduce the correct displacement, even without online
update. Observe that one basis function is, however, not sufficient to represent the
system dissipation, and the oscillation of the cylinders tend to be largely under-
damped.

In order to analyse in detail the computational costs of the method, different
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Figure 6.6: The displacement of the center point on the top of the first cylinder:
x-component on the left and y-component on the right. The reduced approach is
compared with the reference, finite-element solution by varying the number of modes
in {1, 5, 10, 20}.
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τP2 [s] τ∗P2
[s] ζS τP1 [s] Ndd [−] ζdd τit [s] ζ

Reference 1.06204 1.06425 1.0 0.640 6.06 1.00 10.309 1.00

N` = 1 0.00105 0.01181 1011.5 0.609 2.96 2.05 1.805 5.71
N` = 10 0.00136 0.01527 780.9 0.625 3.43 1.77 2.145 4.81
N` = 20 0.00173 0.02764 613.9 0.617 3.52 1.72 2.176 4.74
N` = 40 0.00233 0.03872 455.8 0.629 3.53 1.72 2.231 4.62

Table 6.2: Perfomance of the method for different number of basis functions.

parameters are measured:

• τP2 is the averaged time needed for one fixed point iteration for the Stokes
problem;

• τ∗P2
takes into account also the offline costs, i.e. τ∗P2

= τP2 + δ where δ is the
amortised cost of the offline phase computed as the ratio between the total
cost of the offline phase and the number of online evaluations of the reduced
representation of the operator;

• ζS is the ratio between τP2 of the reference method and τP2 of the reduced
method;

• τP1 is the averaged time needed for one fixed point iteration for the structure
problem;

• Ndd is the averaged number of domain decomposition iterations per time step;

• ζdd is the ratio between the Ndd of the reference and the reduced method;

• τit is the average time needed for an entire time step;

• ζ is the average speed-up per time step, i.e. the ratio of the τit between
reference and reduced methods.

The results for this test case have been obtained using GMRES preconditioned by a
Restricted Additive Schwarz method, implemented in the PETSc library (PCASM),
both for P1 and P2 . The performances are summarized in Table 6.2. Observe that
the reduction of the Stokes problem has been quite effective and it is between two
and three orders of magnitude: the time required for the Stokes problem is negligible
compared to the time needed for P1. By comparing the first two columns we also
observe that, in this example, the offline costs are well amortised during the offline
phase and that their impact is negligible compared to the reference cost. It is
remarkable that, for this problem, the Reduced Order Model has also a regularising
effect on the Domain Decomposition, so that the average number of iterations to
achieve convergence is decreased with respect to the full-order method. This element
contributed to the overall speed up, that, on one single simulation, results of about
4.5 (see the last two columns of the table), offline costs included.
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6.6 Conclusions and perspectives

A Reduced-Order Modeling method has been presented to approximate the ac-
tion of the Poincaré-Steklov operator for systems in which a non-linear complex
model of interest (P1 ) is coupled to an external problem (P2 ). The approach
aims at reducing the problem P2 whose solution is not necessarily of interest. It
relies on an offline stage in which a sampling of possible inputs at the interface is
done by means of the eigenfunctions of the Laplace-Beltrami operator. The main
advantage of this choice is twofold: first, the eigenfunctions are obtained by a sparse
eigenvalue problem defined at the interface only and enjoy desirable properties of
approximation; second, this allows to make the offline phase independent of P1 and
the coupling. The problem P2 is solved and the images of the Poincaré-Steklov op-
erator are stored. An online update has been presented to make the method more
robust to off-database cases. The numerical tests proposed, in 3D, confirmed that
the method is simple and effective in a large variety of cases, being able to make the
costs associated to the solution of P2 negligible compared to the costs associated
to the solution of P1 . Several perspectives arise, concerning the reduction of mul-
tiple external problems and networks of systems in interaction, the ability to deal
with parametrized problems and the set-up of a more general approach to reduce
non-linear external problems.

6.7 Appendix

In this part, a sufficient condition for the eigenfunctions of the Poincaré-Steklov
operator to coincide with the eigenfunctions of the Laplace-Beltrami operator on
the interface is given.

Proposition 2
Let Ω2 =M1⊗. . .⊗Md ⊆ Rd be the domain for P2 . It is expressed as the cartesian
product of 1D manifolds, and it admits a generalised orthonormal set of coordinates
such that the Laplace equation is separable. Moreover Γ is a codimension-1 sub-
manifold, which is defined by x1 = 0. Let P2 be the Laplace equation defined on
Ω2. Then the eigenfunctions of the Poincaré-Steklov operator coincide with the
eigenfunctions of the Laplace-Beltrami operator defined on Γ. Proof. The Laplace
equation written for a generic orthonormal curvilinear system reads:

∆u2 =
d∑
j=1

1

hj
∂xj
(
gj∂xju2

)
= 0,

where hj , gj contains the metric factors and are functions of the coordinates. The
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Steklov eigenvalue problem reads:

−∆u2 = 0, on Ω2

∂nu2 + αu2 = λu2, on Γ

u2 = 0, on ∂Ω2/Γ.

By hypothesis u2 admits a separable representation, i.e.

u2 =
d∏
j=1

ûj(xj).

This expression is plugged into the eigenvalue equation leading to:

−
d∑
j=1

 d∏
k 6=j

ûk

 1

hj
∂xj
(
gj∂xj ûj

)
= 0, on Ω2

1

h1
∂x1 û1

 d∏
k 6=1

ûk

+ (α− λ)

(
d∏

k=1

ûk

)
= 0, on Γ

(
d∏

k=1

ûk

)
= 0, on ∂Ω2/Γ.

The system is equivalent to the following:

−
d∑
j=1

1

ûj

1

hj
∂xj
(
gj∂xj ûj

)
= 0, on Ω2

1

h1
∂x1 û1 + (α− λ)û1 = 0, on Γ(

d∏
k=1

ûk

)
= 0, on ∂Ω2/Γ.

The first equation can be decoupled into a system of d independent equations of the
form:

1

hj
∂xj
(
gj∂xj ûj

)
= cj ûj .

with the closure condition:

−
d∑
j

cj = 0.

On all the boundary except for Γ there are homogeneous boundary conditions. The
solution of the d − 1 equation for the coordinates x2,...,d is thus obtained by using
cj < 0 and it is a set of harmonic oscillations in the direction xj . As consequence



134

c1 > 0 and it holds:

c1 = −
d∑
j=2

cj .

Moreover, when considering the conditions on Γ, the equation along x1 reads:

1

h1
∂x1 (gj∂x1 û1) = c1û1,

1

h1
∂x1 û1 + (α− λ)û1 = 0, on Γ

û1 = 0, x1 = 1.

When solved, this equation provides a relationship between λ and cj . When re-
stricted to Γ the solution of the problem reads:

u2|Γ = û1(0)

 d∏
j=2

ûj(xj)

 ,

which is the set of the Laplace-Beltrami eigenfunctions on Γ up to normalisation.

Although the hypothesis for this condition to hold true are quite restrictive, they
are common to a broad class of different problems and geometrical settings (think
for instance to boxes, concentrical cylinders).



Chapter 7

Conclusions

This thesis dealt with the mathematical modelling of the eye with a particular
focus on hemodynamics. The study of the interactions between different compart-
ments characterized by different physics has been a common topic throughout the
entire manuscript.

In Chapters 2 and 3 we proposed a simplified fluid-structure interaction model
for the description of arterioles. The application we had in mind was the study of
retinal autoregulation, but the model can be applied to arterioles in general. The
use of a non-linear Koiter model combined with a layer of oriented fibers allowed us
to model the arteriole vessel wall and to include a layer of smooth muscle cells. The
use of a fixed mesh supported by a first-order transpiration made possible to keep
the computational costs low enough to run simulations over a quite large image-
based network of retinal arterioles. The approach leaded to numerical results in
good agreement with published experimental data and it represents, to the best of
our knowledge, the first attempt to model blood flow in a 3D network of retinal
arteries, including autoregulation. However, some limitations remain and there is
room for improvement in the model. First, despite working with small vessels we
used a Newtonian model for the fluid ignoring the Fahraeus and the Fahraeus-
Lindqvist effects. Second, the layer of smooth muscle cells contracts and dilates in
response to an external stimulus, but the mechanisms behind the generation of such
stimulus based on the physiological state of the tissue have not been included in
this work. Third, the network of arterioles considered in the numerical experiments
is completely isolated from the rest of the eye. The description of the downstream
circulation, capillaries and venules, and of the surrounding tissues could be refined.

A step forward in this direction was done in the following chapters where we
started working on a global model of the eye, where the retinal arterioles network
could be included as well. In Chapter 4 we reviewed the medical and modelling
literature on the fluid and structure mechanics of the eye. This review is not meant
to be complete, but it was necessary for devising the models used in Chapter 5
and it represents a good introduction to the modelling of the eye. In Chapter 5 we
worked on a global model of the eye. We explained our approach and the simplifying
assumptions that were necessary for modelling such a complex organ. We presented
a poro-elastic model for choroid hemodynamics and the Navier-Stokes-Boussinesq
system for the flow in the anterior cavity. The model of the global is not complete
yet, but we reported promising preliminary results on the flow in the anterior cavity,
on the pore-pressure distribution in the choroid and on the coupling of the choroid
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with the vitreous compartment. We are currently working on the extension of the
model to a larger number of compartments to include the sclera, the cornea and the
anterior cavity.

Finally, in Chapter 6 we presented a reduced order modelling technique to speed
up multi-physics simulations. The technique has been tested on different applica-
tions where the nature of the coupled systems varied (two examples of fluid-fluid
interaction and one of fluid-structure interaction). The results were good in terms
of accuracy and speed-up. We also proved the convergence to the exact solution as
the number of modal functions increases. However, the approach is now limited,
for the secondary problem, to linear stationary equations and it would be worth to
extend this approach to a wider class of problems and to consider its application as
a preconditioner in domain decomposition loops.



Appendix A

A new tool to connect blood vessels in
fundus retinal images

We annexed a proceeding of the conference EMBC 2015 (the 37th annual in-
ternational conference of the IEEE Engineering in Medicine and Biology Society).
In this work a semi-automic tool for the connection of vessels segments in retinal
fundus images is presented.

A number of algorithms perform vessels segmentation in fundus images. Most
of them provide a binary image to indicate whether a certain pixel is a vessel or it is
the background. Others are able to recognise vessels segments and to provide useful
features such as the shape and the width. However, these tools are not perfect and
vessels networks result in a set of disconnected segments. In order to reconstruct
the original network, we need to compute the connectivity. The approach we have
followed is to use machine learning to join the segments. The tool presented in
this work represents a step forward towards the automatization of the extraction of
vessels network from retinal fundus images.

My role in this work was mostly in the implementation phase. I worked on the
design and on the implementation of the data-structures for storing the segments
and the networks. Moreover, I contributed to the extraction of the local features and
to data visualization. The algorithm for the automatic detection of the connectivity
was mainly developed by the other authors.



A New Tool to Connect Blood Vessels in Fundus Retinal Images*

Francesco Calivá1, Matteo Aletti2, Bashir Al-Diri1, Andrew Hunter1

Abstract— This paper presents a novel tool that allows
a user to reconstruct the retinal vascular network from
fundus images. The retinal vasculature consists of trees of
arteries and veins. Common segmentation algorithms are not
able to completely segment out the blood vessels in fundus
images. This failure results in a set of disconnected or broken
up vascular segments. Reconstructing the whole network
has crucial importance because it can offer insight into
global features not considered so far, including retinal fluid
dynamics. This tool uses implicit neural cost functions to join
vessel segments. Results have shown that the quality of the
segmentation affects the outcome of connectivity algorithms
and by enhancing the segmentation the connectivity can be
improved.

Keywords: vessels connectivity, junction resolution, connectivity
tool, retinal trees.

I. INTRODUCTION

Several studies have proven that systemic diseases affect
blood vessels’ geometry [1]. The estimation of changes in
the vascular geometry can help to diagnose or predict such
diseases [2]. These include local pathologies that affect the
heart, including stroke [3] or systemic diseases (e.g. diabetic
retinopathy [4], hypertension [5]). The retina provides a
noninvasive view of the vascular system. In this paper a
new user-friendly tool that is able to recreate the retinal
vascular network from segmented retinal vessels is presented.
The segmentation of whole trees provides an opportunity
to extract features that were not considered before, which
can help studying the fluid dynamics within the retinal
network. The platform is completely written in Matlab
(The MathWorks Inc., Natick, MA, United States). It may
be employed with the potential to detect changes which
reflect the presence of disease. Despite the importance of
this topic, few works are available in the literature [6] [7]
[8] [9]. Usually the studies focus on the segmentation of
blood vessel with few attempts to solve the connectivity
problem. Many segmentation algorithms are accessible in the
literature [2] [10] [11] [12]. They are often more accurate
in detecting the vascular segments than the junctions. Some
portions of blood vessels inside the junctions may be missed
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Fig. 1. Vascular graph obtained employing our tool on the first image of
the DRIVE database [11].

during the segmentation and the final result is an image
partially segmented with a set of disconnected or broken up
segments available; this makes difficult to carry out a full
analysis of blood vessels’ condition from standard imaging
methodologies.

In the following section an overview of the literature is
presented. In section III we describe the method used in our
study. Finally, the results are presented in section IV and
discussed in section V.

II. RELATED WORK

Can et al. [7] carried out the first study with an attempt
to automatically extract features from vessels after segmen-
tation. In [7] the blood vessels were represented using the
centre line. The point where two or more segments intersect
was considered the junction’s centre. The intersection angles
were calculated. This algorithm performed very well in
solving small and easy junctions (e.g. bifurcations, crossings)
with 3-4 segments, whereas it tended to fail in the presence of
larger or more complex junctions. Later [6] presented a novel
and sophisticated algorithm that was able to resolve complex
junctions even in the presence of broken-up or overlapping
vessels; segments were joined using a combination of a
search area algorithm and neural cost functions, based on
trained self organizing feature maps (SOFM). SOFMs belong
to unsupervised artificial neural network models which can
be employed for classification. During training, the SOFMs
create prototype vectors. When applied, SOFMs produce
a signal that expresses the Euclidean distance of the new
data from the nearest prototype. In [6], segments were
grouped in small local sets using projective intersection
algorithm. Starting from both the end points, this algo-
rithm projected centre lines and detected if any intersection

4343978-1-4244-9270-1/15/$31.00 ©2015 EU



Fig. 2. The bifurcation features: diameters (di) and vessels direction
described in terms of angles θi

occurred. Furthermore, [6] evaluated and quantified if the
three lines, which respectively started from the centre point
and the two edges of a segment end, intersected with the
line that connected the two edges of another segment. The
total number of collisions defined the collision score. To
recognise the proper joining form, [6] created the datasets
for the detection of bifurcations and bridges based on the
extraction of features from observed instances (Fig. 2). This
algorithm performed very well in the presence of large
and complex junctions. Tsai et al. [9] developed a vessel
tracing algorithm which solved the connectivity only for
vessels branching or crossings. Recently [8] implemented
a Bayesian framework to connect segments. This algorithm
first separated the individual segments into a noncomplex
network by grouping them into junctions and then joined
them based on a Maximum a Posteriori (MAP) estimation.
[8] showed poor results for large junctions.

We started our study by first evaluating which common
artifacts led previous researches to a poor solution of the
connectivity. In most of the cases, false and missing segments
were the main cause. They both interfere with the generation
of correct junctions. A direct consequence is the evaluation
of possible connection between segments which shouldn’t
be considered together. Our tool, presented in this paper,
addresses the connectivity problem, first by grouping subsets
of segment ends into cliques, then an algorithm based on
SOFM [6] allows to identify how likely the segments are to
be connected. Our novel tool allows a user to identify the
presence of false and missing segments, improving the final
outcome of the connectivity.

III. METHOD

The DRIVE Segment-Junction Set (DSJS) [13] has been
used to develop and test the tool. In this version of the DRIVE
database (Digital Retinal Images for Vessel Extraction) [11]
all the junction points, including bifurcations and crossings,
have been removed thus all segments are isolated. Our task
is to join the segments in order to reconstruct the whole
retinal vascular network. The retinal vasculature consist of
a forest of arterial and venous trees. Due to segmentation
artifacts, the blood vessels appear broken in small segments.
Each segment has two ends (e.g. for the ith-segment they are

s1
i and s2

i ). The tool includes an algorithm which first groups
segments ends in small subsets forming cliques; then solves
these local configurations. Within a clique, segments can be
terminal, otherwise their ends can be connected in two ways:
• three ends can be joined to recreate a bifurcation;
• two ends can be connected to form a bridge;

Trifurcations have been treated as two consecutive bifurca-
tions, where the second one’s parent has length zero.

A. Calculating local segment profiles

The local segment profile gathers all the information used
to study each segment within the network. Given the ith-
segment, first step is the centre line extraction. With this
aim, using the vessel’s edges coordinates, we applied the
mathematical mean to obtain the centre line.

xi,c =
∑

2
j=1 xi, j

2
;yi,c =

∑
2
j=1 yi, j

2
(1)

In (1), the index j refers to the ith-vessel’s edge. For each
segment, we considered the information regarding the centre
points located at the two extreme ends. To reduce errors
(e.g. in case of segmentation artifacts), these particular centre
points were calculated by averaging the x and y coordinates
of the three last centre points at each of the two ends. We
considered the following features: local segment direction,
local vessel diameter and local segment pixel intensity.
• segment directions (di, j, i = 1,2..N; j = 1,2): edges and

centre line were used to extract the features related to
the segment’s direction. First, we calculated for each
segment, the edges’ directions (di,e) along three points
at each end. We considered the same number of points
to calculate the centre line’s direction (di,c). Also the
vectors perpendicular to the cross section were taken
into account (di,p). Finally we obtained the segment’s
direction as average of (di,e), (di,c) and (di,p);

• vessel diameter (Di): at both the segment’s ends, the
distances between the two edges along three centre line
points were averaged to calculate the vessel diameter;

• segment pixel intensity (SPIi): we considered the green
channel of the fundus image (I). Points inside the vessel
were selected and we calculated the pixel intensity pro-
files using a bilinear interpolation tuning properly some
weight parameters (wk,p,k = (1,2), p = 1, ..P number of
points considered) along x and y axis.

SPIi =
P

∑
p=1

2

∏
k=1

wk,p ∗ I (2)

B. Generating cliques

A clique represents a group of segment ends which might
be connected together. Each segment end belongs to only
one clique. The clique generation started, growing a search
area from each segments ends. The size of these regions
directly affected the outcome of the connectivity algorithm,
thus an optimal value was obtained empirically (Fig. 3). We
found that the dimension of the search areas (rsearchArea)
could be related to the image resolution or to the length
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li of the ith-segment under study. In particular, given wI and
hI , respectively image’s width and height:

rsearchArea =

{ max(wI ,hI)
20 li ≥ max(width,height)

10
li
2 otherwise

(3)

All the segments ends located within the search area, became
members of the clique. Also, if two segments had both a
third segment within their search area, the three search areas
would be merged creating a big clique. At the end of this
stage, the largest cliques could have nine segment ends.

C. Cost Function

The requirement to evaluate if two (or more) segments
could be joined was the presence of intersections among
them. First, the centre line of both the segments were
grown. Three possible intersections could occur. The first
was between the two centre lines. The others among each
grown centre line and the line which connected the end
points of the other segments’ edges. The big challenge was
to recognise the most appropriate way to join segments.
Both bifurcation (Bi fcost ) and bridge (Brcost ) costs were a
combination of the intersection credit (Ci, j = ni, j/3, where
ni, j = [1,2,3] are the n collisions between the segments i
and j) and the optimal cost given by the SOFMs’ output
described in section II. Bi fcost = Bi fSOFM(1−C1,2C2,3C3,1)
Brcost = BrSOFM(1−C1,2). Once calculated all the possible
joining combination for each segment end, the cost of being
a terminal was defined as: Termcost = 1−min(Bi fcost ,Brcost).

D. Removing false segments

We observed that errors in solving the cliques occurred
in the presence of false vessels, missing or overlapping seg-
ments. A false vessel consists of a set of pixels which during
the segmentation was wrongly considered as belonging to
a blood vessels. Typically, this error can be due to image
blurry, sudden change of intensity within the background, or
presence of lesions. Our tool allows the user to remove false
segments from the segmentation results just with a mouse
click at the location of one of the pixels which contain that
particular segment (Fig. 4).

Fig. 3. A relation between the search area’s size and the image reso-
lution has been found. Large search areas reflect into cliques too popular
(nmembers > 9), which are difficult to solve. The optimal search area has been
chosen so that the largest cliques discovered in our training sets have nine
segment ends.

Fig. 4. False Segments Removal.

Fig. 5. Missing Segments Segmentation.

E. Segmenting missing segments

Missing segments are the result of the segmentation in
areas where the blood vessels’ edges are not clearly visible.
Low contrast between background and the vessel lumen
is the most common cause. Overlapping segments were
found between two vessels running parallel to each other
or at vessels’ crossing. In both cases they were detected
as a singular, wider vessel. With our tool these problems
can be addressed (Fig. 5). We implemented a supervised
segmentation algorithm for missing segments. This consists
of the following steps:
• missing segment identification (Fig.5a);
• vessel centre lines definition;
• segmentation starting points seeding. The user should

select these points, clicking with the mouse above the
image’s pixel which represent a non-segmented blood
vessel (Fig.5b);

• smoothing centre lines using the Lagrange polynomials:

p(x) =
n

∑
i=0

 ∏
0≤ j≤n

j 6=i

x− x j

xi− x j

 ji (4)

• automated blood vessels segmentation, defining the
edges’ location using the Gregson’s algorithm [14] to
estimate the segment’s width (Fig.5c-d).

F. Repairing connectivity errors

In presence of errors, the user can act following a Con-
nectivity Error Repair approach. Our interactive algorithm
requires a mouse click above one of the segments which
belong to the junction to be repaired. Then, the user is
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Fig. 6. Connectivity Error Repair. Two bridges have been broken (a) and
replaced with two bifurcations (b).

Fig. 7. The vascular network of the first retinal image in the DRIVE
database [11]: (left) using the DSJS (left); (right) after the application of
our Connectivity Error Repair tool.

guided along the process of adjusting the connectivity errors.
This can be achieved by breaking bridges and bifurcations
or creating new joints (Fig. 6).

Our tool gathers together all the functions previously
described. The design of a Graphic User Interface (GUI)
allows the user to easily access all functionality.

IV. RESULTS
In order to evaluate the performance of the proposed

tool, we used the DRIVE database [11], which contains
8157 segment ends. Fig. 7-left shows the outcome of the
connectivity algorithm applied to the first image of the
aforementioned database. From the experiments, our tool was
able to correctly connect 72.1% of the segments. 6.1% of the
cliques were in part solved correctly whereas 21.8% were not
solved at all. 8.4% of the failures were due to segmentation
while 2.5% to the cliques’ generation. Fig. 7-right shows
how the results improve by increasing the segmentation
accuracy. Our segmentation-repairing tool allowed us to
isolate the errors attributable to segmentation and thereby
to increase the performance of the connectivity algorithm to
77.3%. Additionally, we tested our tool on images of chicken
chorioallantoic membrane vessel network, which evidenced
the adaptability and robustness of our tool to research field
not strictly related to the retinal imaging.

V. CONCLUSIONS
So far, the physiological principles behind the formation

of vascular junctions have not been completely understood.

In this work, we observed real bifurcations and bridges
and we extracted their geometrical information in order
to automatically recognise how vessel segments should be
connected. The tool proposed in this work allows to solve
the connectivity problem and repair possible errors. It was
observed that false and missing segments directly affect the
accuracy of the final result, and thus by using our segmen-
tation enhancement tool the performance of the algorithm
improved both the location and the solution of the cliques.
Experiments using the DRIVE database were performed in
order to test this tool. However, we intend to extend the
experimental validation process to other public retinal image
databases. To sum up, this work provides a friendly tool
that can be extended to other research fields than the retinal
imaging such as the analysis of the abnormalities in vessel
branching in cerebral vascular patterns derived from MR
Angiography, making this tool of further interest for clinical
and research applications.
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