
HAL Id: tel-01539354
https://theses.hal.science/tel-01539354

Submitted on 14 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing supervised learning with complex aggregate
features and context sensitivity

Clément Charnay

To cite this version:
Clément Charnay. Enhancing supervised learning with complex aggregate features and context sensi-
tivity. Artificial Intelligence [cs.AI]. Université de Strasbourg, 2016. English. �NNT : 2016STRAD025�.
�tel-01539354�

https://theses.hal.science/tel-01539354
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE Mathématiques, Sciences de l'Information et de l'Ingénieur

Laboratoire ICube – UMR 7357

THÈSE présentée par :

Clément CHARNAY
soutenue le : 30 juin 2016

pour obtenir le grade de : Docteur de l’université de Strasbourg

Discipline / Spécialité : Informatique

Enhancing Supervised Learning with
Complex Aggregate Features and

Context Sensitivity

THÈSE dirigée par :
M. LACHICHE Nicolas Directeur, Maître de Conférences HDR, Université de Strasbourg
Mme BRAUD Agnès Co-encadrante, Maître de Conférences, Université de Strasbourg

RAPPORTEURS :
M. BLOCKEEL Hendrik Professeur, Katholieke Universiteit Leuven
Mme VRAIN Christel Professeur, Université d’Orléans

AUTRES MEMBRES DU JURY :
M. FERRI Cèsar Professeur associé, Universitat Politècnica de València

This thesis has been prepared at

ICube: Engineering science, computer sci-
ence and imaging laboratory - UMR 7357
Télécom Physique Strasbourg
300 Boulevard Sébastien Brant
CS 10413
F-67412 Illkirch Cedex
T +33 (0)3 68 85 45 54
k contact@icube.unistra.fr
Web Site http://icube.unistra.fr

Abstract iii

Enhancing Supervised Learning with Complex Aggregate Features and Context Sen-
sitivity

Abstract
In this thesis, we study model adaptation in supervised learning. Firstly, we adapt existing learn-
ing algorithms to the relational representation of data. Secondly, we adapt learned prediction
models to context change.
In the relational setting, data is modeled by multiples entities linked with relationships. We
handle these relationships using complex aggregate features. We propose stochastic optimization
heuristics to include complex aggregates in relational decision trees and Random Forests, and
assess their predictive performance on real-world datasets.
We adapt prediction models to two kinds of context change. Firstly, we propose an algorithm
to tune thresholds on pairwise scoring models to adapt to a change of misclassification costs.
Secondly, we reframe numerical attributes with affine transformations to adapt to a change of
attribute distribution between a learning and a deployment context. Finally, we extend these
transformations to complex aggregates.

Keywords: relational data mining, reframing, complex aggregation, stochastic optimization,
cost-sensitive classification, model adaptation, machine learning, artificial intelligence

Amélioration de l’apprentissage supervisé par l’utilisation d’agrégats complexes et
la prise en compte du contexte

Résumé
Dans cette thèse, nous étudions l’adaptation de modèles en apprentissage supervisé. Nous adap-
tons des algorithmes d’apprentissage existants à une représentation relationnelle. Puis, nous
adaptons des modèles de prédiction aux changements de contexte.
En représentation relationnelle, les données sont modélisées par plusieurs entités liées par des
relations. Nous tirons parti de ces relations avec des agrégats complexes. Nous proposons des
heuristiques d’optimisation stochastique pour inclure des agrégats complexes dans des arbres de
décisions relationnels et des forêts, et les évaluons sur des jeux de données réelles.
Nous adaptons des modèles de prédiction à deux types de changements de contexte. Nous pro-
posons une optimisation de seuils sur des modèles à scores pour s’adapter à un changement de
coûts. Puis, nous utilisons des transformations affines pour adapter les attributs numériques à un
changement de distribution. Enfin, nous étendons ces transformations aux agrégats complexes.

Mots clés : fouille de données relationnelles, reframing, agrégation complexe, optimisation sto-
chastique, classification sensible au coût, adaptation de modèles, apprentissage automa-
tique, intelligence artificielle

ICube: Engineering science, computer science and imaging laboratory -
UMR 7357
Télécom Physique Strasbourg – 300 Boulevard Sébastien Brant – CS 10413 – F-67412
Illkirch Cedex

iv Abstract

Remerciements

Presque quatre années se sont écoulées depuis octobre 2012. Une page va se tourner et
il est grand temps de remercier les personnes qui ont contribué à mon équilibre au cours
de cette phase de ma vie qu’a constituée le doctorat.

Tout d’abord, je remercie Nicolas Lachiche pour avoir dirigé cette thèse. La confiance
qu’il m’a accordée dès le début, sa présence et son soutien continus tout au long de ces
quelques années, m’ont permis de mener à bien cette aventure. Plus particulièrement,
nos brainstorming réguliers m’ont été d’un grand secours pour organiser et développer
les idées de cette thèse, ainsi que sa relecture du présent « tapuscrit ».

Je remercie également Agnès Braud pour avoir co-encadré cette thèse, pour son appui
et son sens du détail, ainsi que pour ses relectures d’articles et commentaires précieux
lors de la rédaction de cette thèse.

Je remercie Hendrik Blockeel, Christel Vrain, Cèsar Ferri et Marc Boullé pour avoir
accepté de relire cette thèse et de faire partie du jury.

Je remercie encore Hendrik Blockeel ainsi que Jan Ramon, qui m’ont permis d’ef-
fectuer mon stage de Master dans leur laboratoire de Louvain, me mettant ainsi le pied
à l’étrier du merveilleux monde des données et de l’apprentissage automatique.

Je remercie tous les participants du projet Reframe : Peter Flach, José Hernandez-
Orallo, César Ferri encore, María José Ramírez-Quintana, Meelis Kull, Adolfo Martínez
Usó, Reem Al-Otaibi, Chowdhury Farhan Ahmed, Nicolas et Agnès encore, ainsi que les
autres, pour m’avoir permis de participer à un projet scientifique très intéressant, auquel
une partie conséquente de cette thèse est consacrée.

Je remercie le laboratoire ICube et les permanents de l’équipe BFO, devenue SDC,
pour leur accueil. Je remercie plus particulièrement les doctorants, post-doctorants, sta-
giaires et ingénieurs que j’ai eu l’occasion de côtoyer : Bruno, Andrés, Karim, Manuela,
Igor, Carlos, Cristina, Ali, Alain, Caroline, Alexandre, Djawad, et les autres, pour l’am-
biance au sein de l’équipe, et les discussions animées sur des sujets aussi divers que le
football ou la religion lors des repas, même si j’ai fini par décrocher du RU.

Je remercie spécialement Gaëlle pour son soutien lors de ces derniers mois de thèse.
J’espère pouvoir te procurer ce même soutien pour tes propres derniers mois.

Enfin, je remercie mes parents pour le soutien logistique et humain apporté durant ces
années de thèse, sans lequel cette thèse n’aurait pas été possible. Malgré les occurrences
répétées des deux questions qu’aucun doctorant n’a jamais envie d’entendre, je n’en
serais pas ici sans votre amour ces vingt-cinq dernières années !

v

vi Remerciements

Contents

Abstract iii

Remerciements v

Contents vii

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Scientific Context . 1

1.1.1 Artificial Intelligence . 1
1.1.2 Machine Learning . 2
1.1.3 Data Representation and Relational Setting 3
1.1.4 Adaptation to Context Change . 4

1.2 Motivation and Contributions . 5
1.3 Structure of the Manuscript . 6

2 Background 9
2.1 Supervised Learning and Prediction Models 9

2.1.1 Supervised Learning . 9
2.1.2 Decision Tree Induction . 12
2.1.3 Naive Bayesian Classifiers . 19

2.2 Relational Representation of Data and Learning Methods 21
2.2.1 Relational Database . 21
2.2.2 Learning Paradigms for the Relational Setting 22

2.3 Reframing . 29
2.3.1 Operating Context . 30
2.3.2 Retraining VS Reframing . 35

vii

viii Contents

I Stochastic Optimization Heuristics for Complex Aggregation in
Relational Learning 37

3 Relational Learning Paradigms and Complex Aggregation 39
3.1 Relational Decision Trees and Propositionalization by Aggregation 40

3.1.1 RELAGGS: Propositionalization by Aggregation 40
3.1.2 TILDE: Relational Decision Tree Learning Using Inductive Logic

Programming . 42
3.2 Complex Aggregation . 44

3.2.1 Formalization of Complex Aggregate Features 44
3.2.2 Combinatorial Explosion of the Complex Aggregate Search Space . 48
3.2.3 Related Work on Complex Aggregates 49

3.3 Incremental Construction of Complex Aggregates 52
3.3.1 Hill-Climbing of Complex Aggregates 53
3.3.2 Dealing with Empty Sets . 58
3.3.3 Addressing the Two-Table Schema Limitation 59

3.4 Conclusion . 61

4 Stochastic Heuristics for Complex Aggregates Learning 65
4.1 Random Restart Hill-Climbing of Complex Aggregate Selection Conditions 65

4.1.1 Details of the Algorithm . 66
4.1.2 Experiments and Results . 72

4.2 Complex Aggregates within Random Forests 79
4.2.1 Random Forests . 80
4.2.2 CARAF: An Implementation of Complex Aggregates within RAn-

dom Forests . 81
4.2.3 Experimental Results . 84

4.3 Further Extensions of Complex Aggregates with Random Forests 86
4.3.1 Aggregation Processes Selection with Random Forests 88
4.3.2 Fuzzification of Complex Aggregates 91

4.4 Conclusion . 95

II Adaptation to Context Change with Reframing 97

5 Pairwise Naive Bayes Classifiers and Output Reframing 99
5.1 Background on Multi-Class and Cost-Sensitive Classification Tasks 100

5.1.1 Binarization Approaches for Multi-Class Classification 100
5.1.2 Cost-Sensitive Learning: a ROC Analysis Point of View 103

5.2 Related Work . 109
5.3 Pairwise Classification with Threshold Optimization 112
5.4 Experimental Results . 119
5.5 Output Reframing with Threshold Adaptation 120
5.6 Conclusion . 123

Contents ix

6 Input and Output Reframing of Numerical Features 125
6.1 Related Work . 127
6.2 Reframing of Numerical Input Attributes 128

6.2.1 Affine Transformation of Numerical Input Features 129
6.2.2 Stochastic Algorithms for Reframing Numerical Input Attributes . 131

6.3 Experimental Results . 136
6.3.1 Performance of Reframing on Synthetic Data 136
6.3.2 Comparison to GP-RFD on Real-World Data 141

6.4 Output Reframing for Regression . 143
6.4.1 Extension of Affine Transformation Optimization to Output Re-

framing . 144
6.4.2 Application to the Bike Sharing Dataset 145

6.5 Reframing in the Relational Setting . 148
6.6 Conclusion . 154

7 Conclusions and Perspectives 157
7.1 Contributions and Results . 157

7.1.1 Relational Learning and Complex Aggregate Features 157
7.1.2 Adaptation to Context Change with Reframing 158

7.2 Future Work: Learning on Spatio-Temporal Data 159

Bibliography 163

Associated Publications 169

Amélioration de l’apprentissage supervisé par l’utilisation d’agrégats com-
plexes et la prise en compte du contexte 171
1 Introduction . 171
2 Apprentissage relationnel . 174

2.1 Méthodes d’apprentissage relationnel et agrégats complexes 176
2.2 Hill-climbing stochastique et forêts d’arbres décisionnels 178

3 Adaptation aux changements de contexte et reframing 183
3.1 Apprentissage multi-classes sensible au coût et reframing des sorties185
3.2 Reframing des propriétés numériques par transformation affine . . 189

4 Conclusion et travaux futurs . 193
Bibliographie . 193

x Contents

List of Figures

2.1 Upper part of the decision tree built on the Postop dataset. 13
2.2 Impurity score in a binary classification task with respect to the prior

probability, using the original formulas (left), and normalized (right). . . . 17
2.3 Illustration of the relational setting with the urban block dataset. 23
2.4 Schema of the reframing process. 30
2.5 Illustration of covariate shift. 32
2.6 Illustration of prior probability shift. 33
2.7 Illustration of concept shift. 34

3.1 Schema of the urban block dataset. 40
3.2 Set of rules for the urban block dataset, represented as a decision tree. . . 42
3.3 Schema of the complex aggregation process. 47
3.4 Refinement cube for complex aggregates, from (Vens, Ramon, and Bloc-

keel 2006). 52
3.5 Example of complex-aggregate-based decision tree. 53
3.6 Example of complex-aggregate-based decision tree, handling the empty

set case. 59
3.7 Schema of the urban block dataset, with nested people table. 60
3.8 Schema of the unnested urban block dataset with option 1. 62
3.9 Schema of the unnested urban block dataset with option 2. 63

4.1 Schema of the synthetic urban block dataset 73
4.2 Evolution of information gain with respect to the number of iterations

elapsed in the hill-climbing process for 4 different aggregation processes. . 74
4.3 Gain of addition/removal of conditions on area/perimeter with respect to

the number of iterations elapsed in the hill-climbing process. 75
4.4 Significance graph of the compared decision tree approaches. 79
4.5 Whole process, from training to classification, of a Random Forest. 82
4.6 Significance graph of the compared Random Forest approaches. 88
4.7 Degree membership of secondary object with feature value v for fuzzy

interval [v1; [v2; v3]; v4]. 92
4.8 Membership degree of an example with feature value v for fuzzy ”greater

than” operator > v1 > v2. 94

xi

xii List of Figures

5.1 ROC curve for the sample dataset. 107
5.2 Illustration of the pairwise binarization and of the threshold-based voting

process. 113
5.3 Total cost with respect to the threshold value in the threshold optimiza-

tion process for the classifier handling classes 1 and 2, for Pairwise ap-
proach (in blue) and PairwiseAll approach (in green). 118

5.4 Significance of the experimental comparison of the multi-class cost-sensitive
learners. 121

5.5 Average cost of different reframing approaches. 122

6.1 Target models, decision-tree shaped, for pullover sales in the two context
cities considered. 125

6.2 Observed distribution over a year of daily pullover sales in the context of
City 1 (in red) and City 2 (in green). 126

6.3 Illustration of the input reframing process. 129
6.4 Target models and input attribute distribution in three context cities. . . 130
6.5 Affine mapping of deployment context values(x-axis) to training context

values (y-axis) of an input attribute. 132
6.6 Test set accuracy of learners with respect to the number of examples

in the deployment dataset (average over 30 deployment datasets of the
corresponding size). 140

6.7 Significance graphs on the real benchmarks. 143
6.8 Illustration of the output reframing process. 144
6.9 Mean levels of input (on the left, temperature in red, feel-like temperature

in orange, humidity in blue, and wind speed in green) and output (on the
right) attributes in the three families of contexts. 147

6.10 Significance graph of the different methods for the three families of contexts.150
6.11 Schema of the simplified urban block dataset. 151
6.12 Target models for the four contexts. 153
6.13 Accuracy results of the four approaches with respect to the number of

reframing/retraining examples in the three possible deployment contexts. 155

F.1 Début de l’arbre de décision appris sur le jeu de données post-opératoires. 173
F.2 Schéma du jeu de données des ilots urbains. 175
F.3 Exemple d’arbre de décision utilisant des agrégats complexes. 178
F.4 Fonctionnement de l’algorithme de hill-climbing pour un processus d’agré-

gation donné au sein de RRHCCA. 179
F.5 Processus d’entraînement d’une forêt d’arbres décisionnels. 181
F.6 Schéma global du processus de reframing. 183
F.7 Modèles de prédiction de ventes de glaces, à Lille et à Marseille. 185
F.8 Illustration de la binarisation par paires et de la prédiction majoritaire à

l’aide de seuils. 186
F.9 Seuils optimaux pour les deux approches, avec utilisation des exemples de

classes 3 (en vert) et sans (en bleu). 188

List of Figures xiii

F.10 Modèle cible et distribution de la propriété d’entrée dans les trois villes
contextes. 190

xiv List of Figures

List of Tables

1.1 Data in the attribute-value setting. 3
1.2 Data in the relational setting. 4

2.1 Confusion matrix for C classes. 10
2.2 Sample of the Postop dataset. 12
2.3 Confusion matrix for 10-fold cross-validation in the Postop dataset. 13

3.1 Urban block dataset propositionalized with Relaggs. 41

4.1 Wheel selection of the Rrhcca algorithm 71
4.2 Accuracy in 10-fold cross-validation on the artificial dataset 73
4.3 Description of the datasets used in the experimental comparison. 77
4.4 Average accuracy over 10-fold cross-validation or test set accuracy of the

three different decision-tree-based methods on real-world datasets. 78
4.5 Subsampling of complex aggregates. 83
4.6 Accuracy difference between Rrhcca used with a decision tree model and

a Random Forest model. 87
4.7 Average accuracy over 10-fold cross-validation or test set accuracy of the

five different Random-Forest-based methods on real-world datasets. 87
4.8 Importance of main features and aggregation processes in urban blocks. . 90

5.1 Exhaustive binarization with ECOC for a 3-class task. 101
5.2 ECOC representation of the one-versus-all setting for a 4-class task. . . . 102
5.3 Ternary ECOC representation of the one-versus-one setting for a 4-class

task. 102
5.4 Cost matrix for C classes in the classic learning framework. 104
5.5 Possible cost matrix for the binary medical task. 104
5.6 Examples of the sample dataset and scores associated to them. 105
5.7 General confusion matrix for binary classification. 106
5.8 Confusion matrices on our sample dataset for different threshold values. . 107
5.9 Possible cost matrix for the binary medical task. 108
5.10 Confusion matrix for meta-classes. 111
5.11 3-class cost-sensitive example dataset. 117
5.12 Average cost per instance of algorithms for each dataset. 120

xv

xvi List of Tables

5.13 Average runtime of algorithms for each dataset. 120
5.14 Example of cost matrix context change between two hospitals. 121

6.1 Definition of levels of shift. 141
6.2 Accuracy results for different datasets and levels of shift. 142
6.3 Time performance (in milliseconds) for different datasets and levels of shift.142
6.4 Average root mean squared error of the different methods on tasks from

the the three families of contexts. 149
6.5 Description of the generation process of the artificial data in the four

contexts. 152

7.1 Hourly bike rental records per station. 160
7.2 Spatio-temporal association table for bike rentals. 161

F.1 Sous-ensemble du jeu de données post-opératoires. 172
F.2 Sous-échantillonnage des agrégats complexes. 182
F.3 Exemple de changement de contexte, matérialisé par un changement de

coûts de misclassification, entre deux hôpitaux. 184
F.4 Jeu de données à 3 classes sensible au coût. 187

List of Algorithms

2.1 BuildDecisionTree . 14
2.2 EvaluateCategoricalFeature . 16
2.3 EvaluateNumericalFeature . 17
3.1 EnumerateNeighborsExhaustive . 56
3.2 First Hill-Climbing Algorithm . 57
4.1 Process.Grow: Hill-Climbing Algorithm for One Aggregation Process . . . 67
4.2 Process.UpdateBestSplit . 67
4.3 EnumerateNeighbors . 69
4.4 Random Restart Hill-Climbing Algorithm (Rrhcca) 70
4.5 BuildRandomForest . 81
4.6 Random Hill-Climbing Algorithm . 84
4.7 Process.GrowRandom: Hill-Climbing Algorithm for One Aggregation Pro-

cess . 85
4.8 Global Hill-Climbing Algorithm . 86
5.1 Find optimal threshold for classifier handling classes yi and yj using only

examples from classes yi and yj . 116
5.2 Find optimal threshold for classifier handling classes yi and yj using ex-

amples from all classes. 117
6.1 Reframing with Stochastic Hill-Climbing Algorithm (RSHC) 135
6.2 Slope Hill-Climbing Function . 137
6.3 Intercept Hill-Climbing Function . 138
6.4 TestPerformance . 139
6.5 Reframing with Randomized Search (RRS) 139

xvii

xviii List of Algorithms

Chapter1
Introduction

In this chapter, we describe the scientific context of our work, from the general field of
artificial intelligence to our concrete field of interest: machine learning. We provide an
overview of these domains, motivate our work, and briefly list our contributions.

1.1 Scientific Context

This thesis is concerned with learning prediction models. These models are computer
programs, trained for the specific prediction task. Thus, our work relates to the field
of artificial intelligence, which aims at learning “intelligent” computer programs. More
specifically, the scientific area in which we place our work, called machine learning,
is concerned with computer programs able to “learn by themselves”. In other words,
these computer programs can learn to be efficient on a certain category of tasks without
being explicitly programmed for it. In our case, we are interested in supervised machine
learning, which aims at learning programs for predictive purposes.

1.1.1 Artificial Intelligence

Artificial intelligence received attention from the general public for some of its famous
achievements. Recently, the victory of Google DeepMind’s AlphaGo program over pro-
fessional Go player Lee Sedol, brought artificial intelligence into light. The Go board
game has always been considered a challenge for artificial intelligence, in the sense that
from a human point of view it requires strategy, intuition and creativity, abilities that
are considered difficult to program. Artificial intelligence was also popularized by fic-
tional works, for instance the HAL 9000 computer from Arthur C. Clarke’s novel and
Stanley Kubrick’s movie 2001: A Space Odyssey, which raises both the positive aspects
of Artificial Intelligence, assistance to human beings by discharging them of some tasks,
and the potential threat they represent when they combine intelligence and access to
sensitive controls. It also addresses the question of a possible consciousness of machines.
More recently, in the television series Person of Interest, the Machine is designed to

1

2 CHAPTER 1. Introduction

watch citizens in order to detect acts of terror in advance, but is actually able to detect
ordinary crimes and prevent threats to its own safety and the one of its human interfaces,
raising the ethical question of global surveillance. It also suggests the ability for an arti-
ficial intelligence program to evolve to adapt to situations endangering its integrity, and
depicts the possible consequences of a clash between two artificial intelligence programs.

Formally, artificial intelligence is the discipline which studies and creates computer
programs capable of intelligent behavior. John McCarthy, who introduced the term,
is one of the founders of the field and co-organized the seminal Dartmouth Summer
Research Project on Artificial Intelligence in 1956, gave the following definition in his
website:

“Artificial intelligence is the science and engineering of making intelligent machines,
especially intelligent computer programs.” (John McCarthy (November 12th, 2007),
What is Artificial Intelligence?)

Applications of artificial intelligence include robotics, fraud detection in banking,
clinical decision support for medical diagnosis. The two latter applications, based on
prediction models, either for defining and detecting a fraud or for finding a possible
disease in a patient, belong to a specific sub-field of artificial intelligence: machine
learning. This sub-field will be our main topic of interest.

1.1.2 Machine Learning

Machine learning studies the ability for a computer program to learn from data. More
formally, Tom Mitchell gives the following definition:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.” (Mitchell 1997)

For instance, let us imagine we want to design an algorithm to play chess. The
program learns to play chess (the task T) if its ability to win against other players (the
performance P) improves through playing practice games against itself (the training
experience E).

Machine learning covers a wide range of tasks, divided in two main families:

Supervised learning consists in building predictive models. For instance, let us con-
sider a diagnosis application: the aim is to predict the nature of the disease (or
an absence of disease) in a patient. This prediction will be based on predictive
characteristics such as the vital constants of the patient, e.g. blood pressure, inter-
nal temperature… The experience used to learn the model is a bank of diagnosis,
i.e. records of patients with the value of their vital constants and the actual dis-
ease he/she suffers (or not). Classification and regression tasks are the two main
categories of supervised learning tasks.

Unsupervised learning consists in discovering structures in unlabeled data. As op-
posed to prediction models, it builds descriptive models. The two main description
models are given by clustering, where groups of similar data are defined according

1.1. Scientific Context 3

to a given distance, and association rule learning, where the aim is to find rela-
tionships between variables, based on how frequently they occur together in data.
Community discovery for market analysis is an application: groups of similar cus-
tomers can be discovered according to characteristics such as their age, gender, or
the items they buy…

This thesis focuses on supervised learning, more specifically on building and adapting
predictive models.

1.1.3 Data Representation and Relational Setting

In a supervised learning context, data is commonly represented by a simple table struc-
ture. Columns represent the characteristics of data, i.e. the input characteristics and
the outcome. Generally, there is a single outcome to predict, a single target column
called the output, while the other columns represent the input characteristics to use for
prediction. Then, a training example is instantiated by a row of the table, i.e. a tuple of
values corresponding to the different columns. This setting, where data is represented
as a single table, is called the attribute-value setting. An example from the diagnosis
application described above is provided in Table 1.1.

Table 1.1 – Data in the attribute-value setting.

Temp BloodP Other vital constants State
36 mid · · · sick
39 high · · · sane
37 mid · · · sick
37.5 low · · · sane
· · · · · · · · · · · ·

Another possibility is to represent data through a multi-table scheme. In the attribute-
value setting, the table represents one type of objects, along with its associated charac-
teristics. This setting reaches its limit when the task at hand involves several kinds of
objects. As an example, let us consider a molecule classification task, where the aim is
to predict mutagenicity, i.e. if the molecule is likely or not to provoke genetic mutations
in living organisms. The molecule has its own chemical characteristics, that are mod-
eled in a table along with a boolean column indicating its mutagenicity. A molecule is
composed of atoms, which have their own characteristics, such as their charge, or the
chemical element they are. Classification of a molecule may depend not only on the
global, chemical, characteristics of the molecule, but also on properties of its atoms.
Thus, a two-table representation, with a table of molecules and a table of atoms, related
in such a way that molecules are associated to their respective atoms, is more relevant.
This representation, shown in Table 1.2, is called the relational setting, and is our first
domain of interest.

Such a representation is powerful because it keeps the “natural” structure of re-
lational data by not embedding the atoms at the molecule level. This representation

4 CHAPTER 1. Introduction

Table 1.2 – Data in the relational setting.

mol_id lumo logp mutagenic
m1 -1.246 4.23 yes
m2 -1.034 2.68 no
m3 -1.598 6.26 yes
… … … …

atom_id symb nucl charge mol_id
a11 c 22 -0.117 m1

a12 o 40 -0.388 m1

a13 h 3 0.142 m1

… … … … …
a21 c 22 -0.128 m2

a22 n 38 0.801 m2

… … … … …

0..N

1

Main table - Molecules

Secondary table - Atoms

allows for great expressivity, since characteristics of a molecule based on characteristics
of atoms can be constructed in many ways. This expressivity also induces a great com-
plexity: many characteristics could be constructed in this multi-table setting, possibly
billions. This order of magnitude implies that it is impossible to construct all atom-based
characteristics of the molecules, and add them as columns of the molecules table. Most
state-of-the-art relational supervised learning algorithms are based on a language bias
which allows to control the size of the characteristics vocabulary. In this work, we will
focus on a certain family of relational characteristics, complex aggregates, whose vo-
cabulary is very large, and design optimization algorithms to search for the best features
to use for prediction.

1.1.4 Adaptation to Context Change

Our second domain of interest is model reuse: in data-driven learning applications, a
common process is to train a model for prediction, use it in production with no evolution
over time, and finally discard it when it does not perform well anymore. A possible reason
is a change in data characteristics: training examples characteristics values were lying
in a certain range of values which is no longer valid in the production context. We refer
to such a change as a context change.

The most straightforward way to deal with context change is, as suggested above, to

1.2. Motivation and Contributions 5

discard the old model and to train a new one, adapted to current data. This approach
is called retraining. We propose another approach, based on reusing the old model and
adapting it so that it performs well on new data. This approach is called reframing.

As a concrete example, let us consider a very simple pullover sales prediction task
based on temperature as the single input. A prediction model is trained over daily data
from one city. Now let us consider the deployment of this model in a second city. Pullover
sales increase when the weather becomes cold, but the definition of cold in the second
city may not be the same as in the first city. For instance, if the first city is located in
southern Europe, a cold temperature may be defined as lying below 10°C. If the second
city is located in Northern Europe, the threshold for the cold temperature may be 0°C.
The pullover sales will increase when the temperature decreases in both cities, but the
range of temperatures for which the sales will increase will not be the same. In this case,
the model trained in Southern Europe will not be useful for a deployment in Northern
Europe. A possible reframing transformation would be, when deploying in this second
context, to add 10 to all input temperatures so that the temperatures from Northern
Europe “look like” temperatures from Southern Europe, the original model is then usable
on this transformed data. Our goal will be to design algorithms able to learn such a
reframing transformation.

1.2 Motivation and Contributions
The relational representation of data is relevant for many learning tasks. Indeed, if
the task involves several related entities, the relational representation becomes a useful
option. The great interest of the relational paradigm is that many domains can be
naturally modeled in this setting, a composition relationship in data is enough to consider
using this representation. A non-exhaustive list of application domains is:

• As mentioned above, chemistry data, with a prediction task on molecules based
on properties of their atoms.

• We will focus on a geographical application, where the aim is to predict the kind of
a urban block, i.e. a set of buildings, which can be blocks of individual houses, an
ensemble of tall buildings for collective housing, a mix of both, an industrial area…
This prediction will be made according to geometrical properties of the buildings,
such as their areas.

• Image content recognition, where the prediction task is to recognize what an image
represents, according to properties of segments the image was decomposed into.

• Handwritten character recognition, according to an image representing the charac-
ter decomposed in a matrix of filled or empty pixels, or according to the sampled
trajectory used to write the character.

The expressivity of the relational representation implies that the number of possible
relational characteristics is very high, often impossible to be fully considered. In partic-

6 CHAPTER 1. Introduction

ular, we will focus on the complex aggregates language bias, which is very expressive and
easy to interpret. Nevertheless, the number of possibilities to form a complex aggregate
in a given task is very high, intractable for an exhaustive exploration. Moreover, their
great expressivity means they are also very specific, which implies they are very sensitive
to data changes.

Thus, our contributions in the relational supervised learning domain are the follow-
ing:

• We develop heuristics to explore efficiently, yet not exhaustively, the complex ag-
gregate search space, for inclusion in a prediction model.

• We adapt these models so that the specificity of complex aggregates, i.e. its ten-
dency to overfit the training data, is not an issue.

We are interested in reframing because it promotes the key concept of model reuse:
with the increasing trend of big data, prediction models tend to be more complex to
adapt to the quantity and complexity of data. Thus, model training will become more
and more time-consuming, and adapting models rather than fully retrain new models
becomes a valid alternative. In this context, we propose several approaches to reframing,
based on adapting data from the current context to data from the previous context the
model was trained with in order to make the model useful for the current context. We
also propose an approach to adapt the structure of the model in order to deal with such
context changes.

Our contributions in the reframing, adaptation to context change, domain are the
following:

• We design an algorithm to adapt numerical input and output characteristics of
data through affine transformations, optimized thanks to stochastic hill-climbing
heuristics.

• We extend these affine transformations to the relational setting and complex ag-
gregates, which mostly involve numerical characteristics, binding the two axis of
the thesis.

• We introduce a structural reframing algorithm to adapt decision thresholds of
a set of binary, one-versus-one, prediction models for multi-class cost-sensitive
classification.

Finally, we present, as an application of relational supervised learning, a possible
way to deal with spatio-temporal data using complex aggregates.

1.3 Structure of the Manuscript
This manuscript is structured as follows. Chapter 2 develops background and useful
notions on the fields in which this thesis takes place: supervised learning, relational data
and reframing.

1.3. Structure of the Manuscript 7

Part I presents our works on the relational setting and complex aggregation. Chap-
ter 3 formalizes the notion of complex aggregate, and suggests a first hill-climbing al-
gorithm to generate them on-the-fly for inclusion in decision tree splitting conditions.
Chapter 4 introduces a stochastic optimization algorithm, based on random restart
hill-climbing, to search efficiently through the complex aggregate space, for inclusion
in a decision tree, and presents its extension to a Random Forest learner using less
exhaustive hill-climbing algorithms to perform the search for complex aggregates.

Part II exposes our works on reframing and context change. Chapter 5 introduces
a pairwise threshold optimization algorithm to tackle multi-class cost-sensitive classifi-
cation tasks, which can be used for structural reframing. Chapter 6 presents stochastic
hill-climbing algorithms to find appropriate affine transformations of numerical inputs
to deal with context change and binds together the two axis of this thesis by extending
these affine transformations of numerical inputs to complex aggregates and the relational
setting.

Finally, Chapter 7 summarizes our contributions, and suggests an application of
our works to prediction on spatio-temporal data.

8 CHAPTER 1. Introduction

Chapter2
Background

In this chapter, we give an introduction to key notions from the scientific fields relevant
for the thesis. Section 2.1 presents supervised learning concepts and two associated
families of prediction models we will focus on. Section 2.2 deals with the particular
sub-domain of supervised learning in the relational setting, positioning our approach
with respect to the two main families of approaches, Inductive Logic Programming-
based methods and propositionalization algorithms. Finally, Section 2.3 introduces the
notions of context change and reframing along with related fields.

2.1 Supervised Learning and Prediction Models

This section describes the field of supervised learning concepts, i.e. the kind of tasks
it covers and performance measures. Then, it describes in more detail two families of
models falling in this category: decision tree models and naive bayesian classifiers.

2.1.1 Supervised Learning

Supervised learning refers to a kind of machine learning tasks focusing on building pre-
dictive models. More formally, the aim is to learn a model, or function, that maps a
vector of inputs to a vector of outputs, given a set of training examples (or training
instances) which associate a vector of inputs to its desired outputs. This training set
constitutes the training experience. Finally, the performance is measured by a loss func-
tion, related to the error made by the model when predicting the output value of test
examples, different from the training examples.

In the attribute-value setting, data is usually represented by a table, that we denote
by T , where columns represent the inputs and outputs. Columns of the table are denoted
by T.A = (X1, X2, · · · , Xa(T), Y1, Y2, · · · , Yo(T)), where Xi, 1 6 i 6 a(T) is an input, and
Yj , 1 6 j 6 o(T) is an output. Thus, a(T) is the number of inputs in table T , while
o(T) is the number of outputs. The most common case in supervised learning is the
prediction of a single output, i.e. o(T) = 1 and the output is denoted by Y .

9

10 CHAPTER 2. Background

Columns of a table will be referred to as attributes. More generally we will refer to
characteristics of objects of table T with the term feature. An attribute is considered
a direct feature of objects of the table, i.e. a feature explicitly present in the database,
as opposed to constructed features. The domain of a feature F will be denoted by
domain(F). Features can be of different nature depending on the nature of their domain,
the two main families are:

categorical: if the feature takes a finite, unordered, number of values, i.e. its domain
is a set of values.

numerical: if the feature is a number, integer or real, semantically representing an
ordering.

A row represents an example, i.e. a tuple of values for inputs and outputs. We denote
an example by t = (vX1(t), vX2(t), · · · , vXa(T)

(t), vY1(t), vY2(t), · · · , vYo(T)
(t)), where vZ(t)

is the value of column Z for example t.
In our case, we will focus on the following supervised learning task: mapping a

vector of inputs to a single output. Formally, given a table T with columns T.A =
(X1, X2, · · · , Xa(T), Y), denoting by Z = domain(Z) the domain of column Z ∈ T.A,
and a training set Train = {t1, t2, · · · , tn} ⊂ T , with example ti = (vX1(ti), vX2(ti),
· · · , vXa(T)

(ti), vY (ti)), the aim is to find a function F : X1×X2× · · · ×Xa(T) 7−→ Y
approximating the relationship between the inputs and the output, based on
the observations from Train. The quality of the approximation is measured with a loss
function.

This task has different names depending on the nature of the output:

classification: if the output attribute is categorical. In this case, performance measures
on a test set containing n examples are derived from the confusion matrix. The
output attribute takes C distinct values, indexed from 1 to C and denoted by
domain(Y) = {y1, · · · , yC}. The confusion matrix has size C×C and element (i, j)
is the count of test examples that actually belong to class yi and are predicted by
the model as belonging to class yj . Its standard shape is given in Table 2.1.

Table 2.1 – Confusion matrix for C classes.

Actual
Predicted

y1 y2 · · · yC

y1 · · ·
y2 · · ·
...

...
...

yC · · ·

By construction, well-classified examples are counted in the diagonal elements of
the confusion matrix, while misclassified examples are counted out of the diago-
nal. The most common loss measure is the error rate, defined as the proportion

2.1. Supervised Learning and Prediction Models 11

of misclassified examples, i.e. the sum of non-diagonal elements over the sum of
all elements in the matrix (trivially n). Its complementary, the performance mea-
sure called accuracy, is the proportion of well-classified examples, i.e. the sum of
diagonal elements over n.

ErrorRate =
1

n

∑
16i 6=j6C

Confusion(i, j)

Accuracy =
1

n

∑
16i6C

Confusion(i, i) = 1− ErrorRate

regression: if the output feature is numerical. In this case, numerical distances between
predictions and actual values are used as loss measures. Two classic error measures
for regression are the mean absolute error (MAE) and the root mean squared error
(RMSE). For test example k, we define yk the actual output value of example k,
and pk the prediction made by the model for example k, the errors are then defined
as:

MAE =
1

n

∑
16k6n

|yk − pk|

RMSE =

√
1

n

∑
16k6n

(yk − pk)2

On most datasets, no test set is clearly defined. In this case, learners are evaluated
using a method called cross-validation. A k-fold cross-validation consists in partitioning
the examples set into k folds of approximately equal size. Then k models are built,
leaving aside one fold for testing purposes, and using the k − 1 remaining for training a
model. This gives k experiments, which can be considered separately, or as a single one.
For instance, in a classification task, the k confusion matrices can be used to compute
independent statistics, which is useful to estimate variance of a performance metric, or
be fused to compute global statistics for the k experiments. The most common value of
k is 10, we will refer to this evaluation process as 10-fold cross-validation.

Example 2.1. The Postop dataset.
The Post-Operative Patient dataset is publicly available on the UCI Machine Learn-

ing Repository (Lichman 2013). A sample of the dataset is given in Table 2.2. It is a
classification task, where the aim is to predict where patients recovering from surgery in
a post-operative recovery area of an hospital should be next sent to. The 3 possibilities
constitute the 3 classes of the task: they can be sent back home (home), to the general
hospital floor (GHF), or to the intensive care unit (ICU). It is the output attribute
Decision.

Eight attributes constitute the input vector: internal temperature “CORE”, surface
temperature “SURF”, blood pressure “BP”, stability associated with those three param-

12 CHAPTER 2. Background

Table 2.2 – Sample of the Postop dataset.

CORE SURF BP CORE-STBL SURF-STBL BP-STBL O2 COMF Decision
mid low mid stable stable stable excellent 15 GHF
mid high high stable stable stable excellent 10 home
mid low mid stable stable unstable good 10 ICU
mid mid mid mod-stable stable unstable excellent 15 GHF
mid mid mid unstable stable unstable good 10 home
low mid high unstable mod-stable mod-stable good 10 ICU
mid high low unstable stable stable good 10 GHF
mid low mid stable stable unstable excellent 10 home
… … … … … … … … …

eters “CORE-STBL”, “SURF-STBL” and “BP-STBL”, and oxygen saturation “O2” are
categorical attributes, since they take a finite number of values indicating their level.

Note that “CORE”, “SURF”, “BP” and “O2” could be numerical attributes, since
actual temperature values could be used for instance. In this dataset, they have been
transformed into categorical attributes through an operation called discretization: us-
ing thresholds on the numerical value of the attribute, we can define intervals with the
thresholds as cutpoints; these intervals define categories, and labeling these categories
finally gives values for a new, categorical attribute. For instance, the CORE attribute
has value high if the actual internal temperature is higher than 37°C, mid if it is between
36 and 37, and low if it is below 36. �

Several algorithms have been developed to learn prediction models in attribute-value
supervised learning. We will present two families of models that will be used in this
work: decision trees, and naive bayesian models.

2.1.2 Decision Tree Induction

A decision tree is a machine learning model which relies on partitioning the input feature
space to form homogeneous groups of data with respect to the output attribute. Popular
decision tree learning algorithms include Breiman’s Classification and Regression Trees
(CART) (Breiman et al. 1984) and Quinlan’s Iterative Dichotomiser 3 (ID3) (Quinlan
1986) and its extension C4.5 (Quinlan 1993). It uses a tree structure, where internal
nodes are splits on input attributes, categorical as well as numerical. The outcomes of a
split define children branches to the node, which are partitions of the input space based
on the attribute involved in the split. Leaves are labeled with decisions on the output
attribute: one of its possible values or a probability distribution in a classification task,
a real value in a regression task. Predictions on unseen data are made by descending
data down the tree: starting from the root, it will follow a path in the tree depending
on the outcomes of the tests at internal nodes, until it reaches a leaf which will give a
prediction.

Unlike most prediction models, the representation of decision trees makes it easy for
an external human user to read and understand. The graphical tree representation is

2.1. Supervised Learning and Prediction Models 13

nothing more than a flowchart, with test nodes indicating the path to follow and ending
up with a final outcome. Example 2.2 shows an example of decision tree built on the
Postop dataset presented above, along with the performance such a model achieves on
this dataset.

Example 2.2. Decision tree building on the Postop dataset.
Figure 2.1 shows a decision tree built using a training set of 90 examples, i.e. the

whole Postop dataset.

CORE-STBL

GHF

mod-s
tabl

e

BP

…

hig
h

GHF
low
…

mid

stable

BP-STBL

GHF
mo

d-s
tab

le

home

stable

GHF

unstable

unstable

Figure 2.1 – Upper part of the decision tree built on the Postop dataset.

Table 2.3 shows the confusion matrix of a 10-fold cross-validation performed on the
Postop dataset with Quinlan’s ID3 learner. 54 examples out of the 90 are well classified,
which corresponds to a classification accuracy of 60%.

Table 2.3 – Confusion matrix for 10-fold cross-validation in the Postop dataset.

Actual
Predicted GHF ICU home

GHF 52 0 12
ICU 1 0 1
home 21 1 2

�

Decision tree induction is usually achieved in a top-down way: it starts from the
root by partitioning the whole training set, and recursively splits the resulting partitions
until they are homogeneous or a stopping criterion is reached, for instance if the number
of examples to split is below a given minimum. In both cases, the set of instances is
used to create a leaf. This procedure is called top-down induction of decision trees, the
general algorithm is given in Algorithm 2.1.

14 CHAPTER 2. Background

Algorithm 2.1 BuildDecisionTree
1: Input: train: set of training examples, feats: set of possible split features, target:

the target attribute
2: Output: tree: a decision tree

3: if StopCriterion(train) then
4: tree ← Leaf(train)
5: else
6: bestScore ← WORST_SCORE_FOR_METRIC
7: bestSplits ← []
8: for all f ∈ feats do
9: if f is categorical then

10: spl ← EvaluateCategoricalFeature(train, f, target)
11: else
12: if f is numerical then
13: spl ← EvaluateNumericalFeature(train, f, target)
14: end if
15: end if
16: score ← spl.score
17: if score ≥ bestScore then
18: if score > bestScore then
19: bestScore ← score
20: bestSplits ← []
21: end if
22: bestSplits.Add(spl)
23: end if
24: end for
25: bestSpl ← bestSplits.OneRandomElement()
26: tree ← InternalNode(bestSpl.condition)
27: partitions ← bestSpl.partitions
28: for all part ∈ partitions do
29: childNode ← BuildDecisionTree(part, feats, target)
30: tree.AddChild(childNode)
31: end for
32: end if
33: return tree

An internal node is a test on one of the input attributes. Tests are different depending
on the nature, categorical or numerical, of the involved attribute. Let us denote by Attr
an input attribute the decision tree learner considers for a split.

If Attr is categorical, let us denote by Nvals the size of V als = domain(Attr), i.e. the
number of values Attr can take. Then, splits based on Attr have two possible shapes.

2.1. Supervised Learning and Prediction Models 15

It can be a binary test Attr ∈ V als where V als ⊂ domain(Attr): it is either true or
false so the node will have two children branches. Splits on categorical attributes can
also yield as many branches as possible values of the attribute, i.e. Nvals, unseen data
will then follow the branch corresponding to its value for the considered attribute.

In this work, we will consider the first shape, binary split based on subset belonging.
The number of possible splits is then 2Nvals − 2, which is the number of subsets of V als
excluding the empty set ∅ and the full set V als itself. Indeed, these two splits would
yield no gain, since one of the two branches would be empty: Attr ∈ ∅ always fails,
while Attr ∈ V als always succeeds. In order not to consider all splits, and achieve
linear complexity with respect to the number of possible values instead of exponential,
we proceed as explained in pseudo-code in Algorithm 2.2. First, only splits with the
form Attr == val, or Attr ∈ {val}, are evaluated, as shown in lines 6 to 9. This gives a
ranking r = [v1, v2, · · · , vNvals

] of the elements of V als, according to the score achieved
by split Attr == vk, from the best split to the worst. Then, the split chosen is of the
form Attr ∈ {vk|1 ≤ k ≤ kmax}. The right-hand side of the test is a set of size kmax with
0 < kmax < Nvals. It is built by adding elements to the subset one by one, according
to the ranking, as shown in the loop from line 12 to 26. The first split evaluated is
Split1 = Attr ∈ {v1}, which will be the reference. Then v2 is added to the set if it yields
an improvement of the split, i.e. if Split2 = Attr ∈ {v1, v2} is a better split than Split1,
otherwise the search stops and Split1 is chosen as the best split achievable from Attr. In
other words, we keep adding elements to the subset following the ranking until adding
one element does not improve the quality of the split. The number of splits tested in
this phase is at most Nvals−1, since all values cannot be added to the set. Including the
first, singleton evaluation, phase, the overall number of splits evaluations is lower than
2 ·Nvals − 1.

If Attr is numerical, splits based on Attr will be of the following form: Attr ≥
threshold where threshold is a constant. This split is binary, and yields two branches.
Numerical attributes can also be discretized into several intervals, which turns them
into categorical attributes, and yields one branch per interval of discretization. In this
work, as Quinlan’s C4.5, we will consider the first kind. Every possible value of Attr on
the current training instances will be tested as threshold. The number of splits tested
is then of the order of the number of training instances. Algorithm 2.3 details this in
pseudo-code.

To achieve decision tree induction, a metric is needed to evaluate and compare splits.
Such a metric should separate training examples to create homogeneous partitions with
respect to the output attribute. In a classification task, this is materialized by partitions
that contain training examples from only one class, i.e. training instances with the same
value for the output attribute.

Several metrics exist to evaluate the purity of a set of instances in a classification
setting. Let us denote by D the set of instances, C the number of classes, i.e. the
number of possible values of the target attribute, and pi, with 1 6 i 6 C, the proportion
of instances in D with the ith class. Here are three possibilities for impurity measure
Imp(D) of the set of instances D:

16 CHAPTER 2. Background

Algorithm 2.2 EvaluateCategoricalFeature
1: Input: feature: feature to evaluate splits, train: labeled training set, target: target

attribute
2: Output: bestSplit: best split found for feature

3: bestScore ← WORST_SCORE_FOR_METRIC
4: bestSplits ← []
5: map ← InitEmptyMap()
6: for all value ∈ feature.domain do
7: score ← EvaluateSplit(feature == value)
8: map.Put(value, score)
9: end for

10: keepGoing ← true
11: valueSet ← InitEmptySet()
12: for all value ∈ map keys ordered by decreasing score and keepGoing do
13: valueSet.Add(value)
14: spl ← CreateSplit(feature ∈ valueSet, train)
15: EvaluateSplit(spl, target)
16: if spl.score > bestScore then
17: if spl.score > bestScore then
18: bestScore ← score
19: bestSplits ← []
20: end if
21: bestSplits.Add(spl)
22: else
23: keepGoing ← false
24: valueSet.Remove(value)
25: end if
26: end for
27: bestSplit ← bestSplits.OneRandomElement()
28: return bestSplit

pi =
|{d ∈ D|vY (d) = i}|

|D|
MajorityClass : Imp(D) = 1− max

16i6C
pi

Gini : Imp(D) = 1−
C∑
i=1

p2i

Entropy : Imp(D) =

C∑
i=1

−pi · log2 pi

2.1. Supervised Learning and Prediction Models 17

Algorithm 2.3 EvaluateNumericalFeature
1: Input: feature: feature to evaluate splits, train: labeled training set, target: target

attribute
2: Output: bestSplit: best split found for feature

3: bestScore ← WORST_SCORE_FOR_METRIC
4: bestSplits ← []
5: for all threshold ∈ feature.PossibleValuesForInsts(train) do
6: spl ← CreateSplit(feature ≥ threshold, train)
7: score ← EvaluateSplit(spl, target)
8: if score > bestScore then
9: if score > bestScore then

10: bestScore ← score
11: bestSplits ← []
12: end if
13: bestSplits.Add(spl)
14: end if
15: end for
16: bestSplit ← bestSplits.OneRandomElement()
17: return bestSplit

For a binary (two-class) classification task, there is only one degree of freedom in
the class proportions. Indeed, the class proportions must add up to 1 over all classes, so
we have p2 = 1− p1, and all formulas can be written with respect to p1. The evolution
of the three measures is shown in Figure 2.2. We show evolution of the actual metrics
value on the left, i.e. according to the formulas given above, and normalized so that the
maximum values of each metric coincide on the right.

p1

Imp

0 0.5 1
0

0.5

1

p1

Imp

0 0.5 1
0

0.5

1

Majority
Gini
Entropy

Figure 2.2 – Impurity score in a binary classification task with respect to the prior
probability, using the original formulas (left), and normalized (right).

18 CHAPTER 2. Background

The majority class measure is the proportion of instances in the set that do not
belong to the majority class. The proportion of instances that belong to the majority
class is the maximum of all pi proportions. Thus, the proportion of instances that do
not belong to the majority class is the complementary to 1 of this maximum.

The Gini impurity, used by Breiman’s Classification and Regression Trees (CART)
(Breiman et al. 1984), measures the probability for an instance from the set to be clas-
sified wrong by a random classifier using the current class probabilities. In probabilistic
terms, it is the complementary of the probability for an instance to be classified ac-
curately by a random classifier. Let us consider an instance from the training set. It
belongs to class i with probability pi. Assuming that the instance is of class i, a random
classifier using class probabilities from the training set will classify it accurately with
probability pi. Summing up over all classes, a random instance from the training set
will be classified accurately with a probability equal to the sum of squares of class prob-
abilities. The impurity measure is the complementary, which gives the formula shown
above.

Finally, the Shannon entropy, derived from information theory, measures the number
of bits needed to encode the class information of an instance. If only one class is present
in the instance set, i.e. the set is pure, no encoding is needed since the class of an instance
is known for sure, and Shannon entropy reaches its minimum. The opposite case is when
all classes have the same probability, in this case the same encoding is needed for each
class, the encoding length is maximal and Shannon entropy reaches its maximum.

The three measures equal zero when the instance set is pure with respect to the
output attribute, and reach their maximum when the set is the most undecided, i.e.
when all classes have the same probability.

For a regression task, relying on the strict value for the output attribute may be
too drastic, since the value of the output attribute is numerical and may be unique for
every example. This would lead to an overly big decision tree, with nearly one leaf
per instance. A criteria for partition homogeneity is in this case a low variance of the
output attribute among examples in the same partition. The impurity Imp(D) is then
the variance of the output value vY (d) over D:

Imp(D) =

(
1

|D|
·
∑
d∈D

vY (d)
2

)
−

(
1

|D|
·
∑
d∈D

vY (d)

)2

For both tasks, the quality of a split is given by the impurity reduction induced by
the split. Let us denote by n the number of children branches induced by the split, and
Dk, 1 6 k 6 n, the partitions of D induced by the split, i.e. Dk is the subset of D which
goes down the kth child branch after the split. The gain is measured by the difference
between the original impurity Imp(D) and the after-split impurity which is the average
of the resulting Imp(Dk), weighted by the proportion of examples in the kth branch.
Formally:

2.1. Supervised Learning and Prediction Models 19

Gain(Split) = Imp(D)−
n∑

k=1

|Dk|
|D|
· Imp(Dk)

For a given node of the tree, the split chosen is the one maximizing the gain among
all possible splits.

When the impurity measure is entropy, the gain is called information gain. It is the
foundation of Quinlan’s Iterative Dichotomiser 3 (ID3) (Quinlan 1986). ID3 has then
been extended by Quinlan to C4.5 (Quinlan 1993), which introduces splits on numerical
attributes through comparison to a threshold.

Another split quality measure has been derived from information gain, called gain
ratio. The aim is to penalize splits that induce a lot of small children branches, by taking
the number and size of the branches into account. This split information is defined as:

SplitInfo(Split) =

n∑
k=1

− |Dk|
|D|
· log2

(
|Dk|
|D|

)
The information gain ratio is then defined as:

GainRatio(Split) =
Gain(Split)

SplitInfo(Split)

2.1.3 Naive Bayesian Classifiers

Naive Bayesian classifiers are probabilistic classifiers for classification tasks. Contrary
to decision trees, which usually return a “hard” prediction, i.e. only a label as class
prediction, a Naive Bayesian classifier returns a score for each class, i.e. for each possible
output value. First, we introduce useful probabilities notations:

• X: the vector of input attributes.

• Y : the output attribute.

• P (X) = P (X = x): the probability distribution of the inputs.

• P (Y) = P (Y = y): the probability distribution of the output, also called prior
probability distribution.

• P (Y |X) = P (Y = y|X = x): the conditional probability distribution, functional
relation between the inputs and the output.

• P (X|Y) = P (X = x|Y = y): the conditional probability distribution, functional
relation between the output and the inputs.

• P (X,Y) = P (Y |X) · P (X) = P (X|Y) · P (Y): the joint probability distribution,
actual distribution of the data.

20 CHAPTER 2. Background

We consider all features, both inputs and output, to be categorical. Therefore all
probability distributions are discrete. We use the following notations:

• {y1, y2, · · · , yC}: the C possible values of the output attribute Y .

• X = (X1, X2, · · · , Xa): the a input attributes.

• {xi1, xi2, · · · , xini}: the ni possible values of input attribute Xi, i.e. the domain of
attribute Xi.

The idea behind the Naive Bayes algorithm is to compute a score for each class to
make a prediction. This score of a given class is related to the probability of the example
to be of this class given the values of the input attribute. The greater the score, the more
likely the example is of the given class. This conditional probability can be rewritten
using Bayes’ theorem:

P (Y = yi|X1, X2, · · · , Xa) = P (Y = yi) ·
P (X1, X2, · · · , Xa|Y = yi)

P (X1, X2, · · · , Xa)

We observe that the probability at the denominator of the right-hand side simply
is the probability of the input combination of values. It is not related to the class for
which we want to compute the score. Therefore, we can drop it and define for class yi
the score si as:

si = P (Y = yi) · P (X1, X2, · · · , Xa|Y = yi)

The Naive Bayes classifier is called “naive” because of the strong independence as-
sumption it is based upon. It considers the individual input attributes distributions to
be independent. Therefore, we can rewrite the previous formula:

si = P (Y = yi) ·
a∏

j=1

P (Xj |Y = yi)

All elements of this formula are easy to compute from the training set:

• P (Y = yi) is the prior probability of class yi, it is estimated as the proportion of
examples in the training set of class yi.

• P (Xj |Y = yi) = P (Xj = xjl|Y = yi) is the conditional probability of the input at-
tribute value given the output attribute value, which is the proportion of examples
in the training set of class yi that have value xjl for attribute Xj .

Scores si are computed for each class and, for a usual classification task, the predicted
class is the one achieving maximum score, i.e.:

Prediction = yc

with c = argmax
16i6C

(si)

2.2. Relational Representation of Data and Learning Methods 21

These supervised learning models are designed for the attribute-value setting, i.e.
prediction on a single table. In relational data mining, data is represented by several
tables, thus there is more information than the sole attributes of the target table for pre-
diction that can be used to learn a model. Therefore, these models will need adaptation
to be used in a relational setting.

2.2 Relational Representation of Data and Learning Meth-
ods

This section introduces notations and the state of the art about relational data mining,
illustrated by the example of an urban block dataset.

Contrary to the attribute-value setting, data in the relational setting is represented
across several tables, corresponding to different kinds of objects linked by relationships.
The relationships can have the following cardinalities: one-to-one, one-to-many, or many-
to-many. In relational data mining, we are interested in making predictions on one kind
of object in particular, that we call the main object. The prediction is based upon
information on other kinds of objects linked to the main one, the secondary objects.
This leads to a rich representation, where many features can be expressed. It implies a
big feature space, which often cannot be searched exhaustively. However, several families
of methods have been developed to construct relevant features for relational data mining,
along with extensions of classic attribute-value learning algorithms.

2.2.1 Relational Database

The notations for relational databases are inspired by those introduced in (Getoor 2001).
A relational database, noted DB, is seen as a set of N tables DB = {T1, T2, . . . , TN}.

A table T , following the notations from Section 2.1, has:

• At least one primary key attribute, denoted by T.K.

• Descriptive attributes, their number in table T is denoted by a(T), their set is de-
noted by T.A = {T.A1, T.A2, . . . , T.Aa(T)}. The definition domain of a descriptive
attribute is denoted by domain(T.Ak). If the attribute is categorical, then it is a
set. If it is numerical, then it is an interval of R.

• Foreign keys, their number in table T is denoted by f(T), their set is denoted
by T.F = {T.F1, T.F2, . . . , T.Ff(T)}. Each foreign key references the primary key
of another table. The primary key referenced by the foreign key T.Fk is denoted by
key_referenced(T.Fk). The referenced table is denoted by table_referenced(T.Fk).

For an object t in table Ti, the value of attribute Ti.Aj is denoted by vTi.Aj (t). In
supervised learning, the value of one descriptive attribute of a specific table is to be
predicted. This table will be referred to as the main table.

22 CHAPTER 2. Background

Example 2.3. The Urban Block dataset.
We introduce an example with two tables: a table of urban blocks and a table of

buildings. Those two tables are linked through an aggregation relationship, i.e. a one-to-
many relationship: one urban block is linked to several buildings. The aim is to predict
the kind of block in presence: collective housing, individual housing, mixed housing,
specialized area, empty area, or urban tissue. The database is represented in Figure 2.3.

The table of urban blocks, i.e. the main table, has:

• A primary key: block_id.

• Five descriptive attributes: the class attribute class, and 4 numerical attributes
density, convexity, elongation and area.

• No foreign key.

The table of buildings, i.e. the secondary table, has:

• A primary key: building_id.

• Three descriptive attributes: convexity, elongation and area.

• One foreign key: block_id which references the table of urban blocks.

�

In terms of supervised learning, the introduction of secondary objects having their
own attributes causes a surge in the number of possible features for the main objects,
since the secondary objects along with their attributes can be used to create such fea-
tures. Contrary to attribute-value learning, where the number of features matches the
number of attributes, features of the main objects in the relational setting can be con-
structed in many different ways and thus their number is combinatorial, making a full
consideration of all features impossible. Approaches to relational data mining all have in
common the use of a language bias, in other words a vocabulary guiding the construction
of features, a control structure to avoid combinatorial explosion.

2.2.2 Learning Paradigms for the Relational Setting

Relational data mining is addressed by several paradigms. Multiple-instance learning is
a similar concept, although it is usually not classified as a relational paradigm. Usual
relational data mining algorithms can be divided into two main categories: Inductive
Logic Programming-based, and propositionalization methods. The three paradigms will
be presented in this subsection.

Multiple-Instance Learning

Multiple-instance learning, for which an overview is given in (Amores 2013), consists in
a classification task of bags of instances. Therefore, to relate to relational data mining

2.2. Relational Representation of Data and Learning Methods 23

block_id density convexity elongation area class
i1 0.151 0.986 0.221 22925 h_indiv
i2 0.192 0.832 0.155 15363 h_coll
i3 0.204 0.718 0.450 17329 h_mixed
… … … … … …

building_id convexity elongation area block_id
b11 1.000 0.538 165 i1
b12 0.798 0.736 323 i1
b13 1.000 0.668 84 i1
… … … … …
b21 0.947 0.925 202 i2
b22 1.000 0.676 147 i2
… … … … …

0..N

1

Main table - blocks

Secondary table - buildings

(a) Schema of the urban block dataset.

Block i1

Block i2

Building b11

Building b12

Building b13

. . .

Building b21

Building b22

. . .

(b) One-to-many relationship in the urban block dataset.

Figure 2.3 – Illustration of the relational setting with the urban block dataset.

concepts, the bags are main objects, while the instances are secondary objects. The
difference is that all predictive information is contained at the instance-level. Only the
label, the target for prediction, is originally at the bag-level. There is also no relationship

24 CHAPTER 2. Background

chaining, it considers only the bags and the instances. It can be seen as a relational data
mining task with two tables with a one-to-many relationship from bags to instances. The
associated classification task is also usually binary, i.e. with two classes usually labeled
as “positive” and “negative”. Formally, the aim is to classify as positive or negative a
bag B = {t1, t2, · · · , tk}, with ti, 1 6 i 6 k the k instances of bag B.

Three main categories of learning exist for the multiple-instance setting. First, the
Instance-Space paradigm considers learning a model at the instance-level. Since in-
stances do not have a class label, two possible assumptions can be made. One is that a
bag is positive if all its instances are positive, and negative bags contain only negative
instances, in other words the instances get the label of their associated bag. Then, a
scoring classifier is built to predict how likely an instance is to belong to a positive bag,
and how likely it is to belong to a negative bag. The bag-level score is then obtained by
averaging the instance-level scores, and a final prediction for the bag can be made based
on this bag-level score. Another possibility is to consider that a positive bag contains
at least one positive instance which makes it a positive bag, and that negative bags
are negative because they do not contain any positive instance, i.e. they contain only
negative instances. In this approach, a label has to be assigned to every instance based
on these assumptions, labels of instances from negative bags are straightforward, but
positive bags contain at least one positive instance, which means they may also contain
negative instances. A common approach to do so is the Axis-Parallel Rectangles (Diet-
terich, Lathrop, and Lozano-Pérez 1997). Given the instance space I = {A1, A2, . . . , An}
where Aj , 1 6 j 6 n the attributes of the instances, the aim is to find an axis-parallel
rectangle such that, if an instance belongs to the rectangle, it is predicted as positive,
and negative otherwise. Formally,

R = {t = (a1, a2, . . . , an) ∈ I|l1 6 a1 6 u1 ∧ l2 6 a2 6 u2 ∧ · · · ∧ ln 6 an 6 un}
with aj = vAj (t)

The instance-level score f(t) is defined as:

f(t) =

{
1 if t ∈ R,
0 otherwise.

Rectangle R is optimized so that a maximum of positive bags contain at least one
positive instance. Then, the bag-level score F (B) is defined using a maximum rule:

F (B) =
k

max
i=1

(f(ti))

This maximum rule complies with the definition of positive and negative bags: if
there is at least one positive instance in the bag, it has a score of 1, and since it is the
maximum score achievable by an instance, it will be the score of the bag which will
be predicted positive. On the other hand, if there are only negative instances in the
bag, scores of all instances will be 0, so will be the score of the bag and thus it will be

2.2. Relational Representation of Data and Learning Methods 25

predicted negative.
Secondly, the Bag-Space paradigm focuses on the bag-level, it is based on the def-

inition of a comparison measure between two bags, a distance function or a kernel-based
comparison. A distance-based model, such as the K-Nearest Neighbors or a Support
Vector Machine, can then be used.

Since an instance is a point in the instance space, and a bag is a set of instances,
any distance between two sets of points can be used. Let us consider two bags B1 =
{t11, t12, · · · , t1n1} and B2 = {t21, t22, · · · , t2n2}. A possible distance function which can
be used is the minimal Hausdorff distance defined by:

D(B1, B2) = min
16i6n1,16j6n2

(d(t1i − t2j))

where d(t1, t2) is a distance between two points in the instance space, e.g. euclidean
distance.

The distance can be converted into a kernel, e.g. a Gaussian kernel defined by:

K(B1, B2) = exp (−γ ·D(B1, B2))

with γ the scale parameter of the Gaussian kernel.
Finally, the Embedded-Space paradigm consists in a transformation of the bag-space

into an attribute-value representation of the bags. Then, any attribute-value learning
algorithm can be used. This approach follows the same idea as propositionalization
algorithms which we will present later and also consists in mapping the relational rep-
resentation into an attribute-value representation.

There are two main possible approaches to this transformation. The first one is based
on aggregating the set of instances corresponding to each bag. This can be achieved by
taking the average of all instances in the set, and use the attributes values as features
of the bag, in other words we summarize the bag to its average instance.

The other possible approach is to use a vocabulary-based method. It consists in
labeling the instances, i.e. assigning classes to instances. Since labels are originally
present only at the bag-level, this is done in an unsupervised way, by clustering the
instances. Let us consider the clustering algorithm discovered C clusters of instances,
the “vocabulary” contains description of each individual cluster, for instance its mean
vector and covariance matrix in terms of the attributes from the original instance space.

With this vocabulary, a cluster membership likelihood of instance t = (a1, a2, . . . , an),
denoted fj(t), 1 6 j 6 C, can be defined for each cluster. If cluster j is represented by
a mean vector µj of length n and a covariance matrix Σj with size n× n, we can define
this likelihood according to the multivariate normal law:

fj(t) =
1

(2π)C/2det(Σj)1/2
exp

(
−1

2
(t− µj)

TΣ−1
j (t− µj)

)
Then, the bag of instancesB = {t1, t2, · · · , tk} is represented asB = {v1, v2, · · · , vC , y}

with y its class label and one feature per cluster, which is the sum for the given cluster
of membership likelihoods for this cluster over all instances in the bag. If we denote by

26 CHAPTER 2. Background

vj this feature for cluster j:

vj =
k
Σ
i=1

fj(ti)

With this representation, a regular attribute-value learning algorithm can be used.
The idea behind the Embedded-Space paradigm is the same as behind propositionaliza-
tion in the relational setting. It is one of the two main families of algorithms used in
relational data mining, which we will now focus on.

Propositionalization

Propositionalization methods consist in transforming relational data into attribute-value
data, in other words going from several tables to a single one. After this transforma-
tion, regular attribute-value learners can be used to build a model. This is interesting,
since there are many more learners in the literature for attribute-value learning than
for relational data mining. Their second advantage is that the features generated for
attribute-value learning are either predefined by the language bias, or constructed in the
context of a language bias and kept to a small number, contrary to full-fledged relational
data mining approaches.

Recent propositionalization approaches include:

• RelF (Kuzelka and Zelezný 2009) finds a relevant feature set, and reduces it to
small conjunctions allowing to compose the original feature set, using relevancy
monotonicity as opposed to the frequency monotonicity generally used in rule
learning.

• LBP (Dinh, Vrain, and Exbrayat 2012) builds boolean features as chains of variable
literals.

• BCP (Ontañón and Plaza 2015) transforms examples into sets of properties. A
vocabulary of properties is a common set of boolean features obtained through a
desintegration operation on the relational examples.

• Wordification (Perovsek et al. 2015) transforms a relational example into a bag of
words, and applies text mining techniques such as document frequencies to obtain
numerical features from the set of words.

• Relaggs (Krogel and Wrobel 2003) and Polka (Knobbe, Haas, and Siebes 2001)
build numerical aggregates to achieve propositionalization.

Among these approaches, only Relaggs and Polka deal with numerical attributes
without discretizing them beforehand. They build simple aggregates: for a given main
object, they aggregate all secondary objects related to it. However, all the secondary
objects may not be relevant for prediction. For instance, the average area of buildings
with low elongation may be more relevant for prediction than the average area of all
buildings. The introduction of these relevant secondary objects is possible using the
Inductive Logic Programming-based approaches.

2.2. Relational Representation of Data and Learning Methods 27

Inductive Logic Programming and Existential Quantifier-based Methods

The other main family of methods to deal with relationships in relational data mining
is the use of the existential quantifier, popularized by Inductive Logic Programming
(ILP) (Lavrac and Dzeroski 1994). In the ILP formalism, data as well as models are
represented as logic programs, using first-order predicates. This is usually written using
Prolog formalism. First, let us introduce basic ILP terminology:

• The most basic elements of a logic program are constants and variables. In Prolog
formalism, they are distinguished by their first character: a constant starts with a
lowercase letter, while a variable starts with uppercase. For instance, a and blue
denote constants, while X and Elem denote variables.

• A functor is a constant immediately followed by a tuple delimited by round brack-
ets. The number of elements in the tuple is called the arity of the functor. For
instance, in f(X, g(Y,a), b, h(Z)), functor g has arity 2, functor h has arity 1, and
functor f has arity 4. A function name followed by a tuple is a predicate. The arity
of a predicate is the arity of its functor.

• A rule is denoted Head :- Body in Prolog, which is read as an implication from the
right-hand side to the left-hand side, in other words “Head is true if Body is true”.
For instance, animal(X) :- cat(X) means that if X is a cat, then X is an animal.
The body of a rule consists in conjunctions and disjunctions of predicates, the
conjunction operator, i.e. the logical AND, is denoted by “,”, while the disjunction
operator, i.e. the logical OR, is denoted by “;”.

• A rule with an empty body, i.e. whose head is considered as true, is called a
fact. For instance cat(tom) means that the constant tom is a cat. This notation is
equivalent to cat(tom) :- true. According to the previous rule, animal(tom) holds,
explicit statement of this fact is not needed.

• Facts and rules are referred to as clauses, and a set of clauses constitutes a logic
program.

Listing 2.1 shows the urban block dataset from Figure 2.3 written as a logic program
using the Prolog formalism.

1 block (i1 , 0 .151 , 0 .986 , 0 .221 , 22925 , h_indiv) .
2 block (i2 , 0 .192 , 0 .832 , 0 .155 , 15363 , h_coll) .
3 block (i3 , 0 .204 , 0 .718 , 0 .450 , 17329 , h_mixed) .
4
5 bu i ld ing (b11 , 1 .000 , 0 .538 , 165 , 1) .
6 bu i ld ing (b12 , 0 .798 , 0 .736 , 323 , 1) .
7 bu i ld ing (b13 , 1 .000 , 0 .668 , 84 , 1) .
8 bu i ld ing (b21 , 0 .947 , 0 .925 , 202 , 2) .
9 bu i ld ing (b22 , 1 .000 , 0 .676 , 147 , 2) .

10
11 block_is_not_empty (IdBlock) :− block (IdBlock , _, _, _, _, _) , bu i ld ing (_, _,

_, _, IdBlock) .

28 CHAPTER 2. Background

12 wide_area_building (IdBuild) :− bui ld ing (IdBuild , _, _, AreaBuild , _) ,
AreaBuild > 200.

Listing 2.1 – A logic program in Prolog for the urban block dataset.

Lines 1 to 3 are facts that define 3 blocks, through the predicate block of arity 6.
Arguments of the predicate correspond to the columns of the table of blocks in the
database: they respectively match with the id of the block, its density, its convexity, its
elongation, its area, and its class. Lines 5 to 9 are facts that define 5 buildings, through
the predicate building of arity 5. Its arguments respectively correspond to the id of the
building, its convexity, its elongation, its area, and the id of the block the building is a
part of.

Line 11 defines the predicate block_is_not_empty with a rule: id IdBlock is the id of
a non-empty block if there is at least one building contained in the block of id IdBlock. In
Prolog, the “_” symbol acts as wildcard, it usually replaces an argument whose value is
used nowhere else in the rule. Thus, we are only interested in the existence of a building
in the block; we are not interested in which building exactly is in the block, but only in the
fact building(_, _, _, _, IdBlock) being present at least once in the logic program. For
instance, block_is_not_empty(i1) holds because block(i1,_,_,_,_,_) holds according to
line 1, and building(_,_,_,_,i1) holds three times (once would be enough), for instance
in line 5. The same reasoning holds with block i2. However, block_is_not_empty(i3)
does not hold: no fact matching building(_,_,_,_,i3) is present in the logic program,
which means there is no building in block i3, thus it is empty.

Line 12 defines the predicate wide_area_building: IdBuild is the id of a building with
wide area if the area of the building IdBuild, denoted by variable AreaBuild, is greater
than 200. According to this rule and the facts available in the logic program, buildings
of id b12 and b21 are wide-area buildings.

Many approaches are based on the ILP formalism. Commonly used approaches
include:

• Foil (Quinlan 1990) is a rule learner. Given a set of positive and negative examples
and a set of background knowledge predicates, it learns the concept represented by
the positive examples, i.e. it looks for a rule that covers positive examples and no
negative examples. This is achieved through an incremental hill-climbing method:
starting from an empty clause, at each step of the algorithm it looks for the best
literal to add to the body of the rule according to an information-theory-based
metric. The positive examples covered by the rule are removed from the training
set until all positive examples are covered.

• Progol (Muggleton 1993) looks for a list of clauses covering the examples. Start-
ing from the most specific clause covering a given example, it reduces the clause to
minimize Occam compression, adds the result to the background knowledge, and
repeats this process until all examples are covered.

• Tilde (Blockeel and De Raedt 1998) is a decision tree learner, generalizing C4.5
(Quinlan 1993) to the relational setting. It builds decision trees using a top-

2.3. Reframing 29

down approach, having the possibility to introduce new variables, i.e. new objects,
through the existential quantifier using a language bias indicating which refine-
ments are allowed. The variables must be linked to already existing ones, and can
be reused in deeper levels of the tree.

Among these approaches, only Tilde naturally deals with numerical attributes.
Moreover, even though the ILP formalism is powerful and allows for advanced rea-
soning, it is limited by the use of the existential quantifier: secondary objects that are
introduced verify individual properties, i.e. there is at least one secondary object with
such properties. But relevant features can be built with the existence of at least two
objects with the same properties, more generally the existence of at least n objects with
the same properties where the value of n is to be determined by the learning algorithm.
One of our aims will be to go beyond the existential quantifier to handle such properties.
The idea of introducing the relevant secondary objects on-the-fly, when needed in the
model, will be kept, and associated to the more expressive framework of aggregation.
This combination is called complex aggregation, or aggregation of relevant subsets of
secondary objects. Our work on complex aggregation will be presented in Part I.

2.3 Reframing
Knowledge reuse is a machine learning trending issue. A common process, in data-driven
prediction applications, is the following:

1. Learn a prediction model, using training data.

2. Deploy it, for use in production, with no change over time.

3. When the model does not work anymore, go back to step 1, and retrain a model.

Typically, step 3 may occur when something has changed in the data, compared to the
data used originally to train the model. This something can be a change of distribution
of an attribute in the data. For instance, if a temperature-based model is used to predict
clothes sales, and was trained using data from shops in a first city, it is fair to assume it
will not be reliable when making predictions for a second city with a different climate.
One could then retrain another sales prediction model for this second city. As opposed
to this approach, based on retraining models for specific contexts (here: the different
cities), we propose an alternative, based on learning one general, versatile, model, that
can be used in different contexts, through a certain adaptation procedure, less expensive
than full retraining.

This idea is called reframing, and is illustrated in Figure 2.4. A versatile model is
trained in a first context, denoted by A, using training data from this context. We are
now in presence of data from a new context, denoted by B. We have few labeled data
available, not enough to retrain a model, so we want to reuse the model learned for
context A. Reframing is the procedure which uses the few labeled data from context
B, called deployment data, to adapt the model from context A so that it can be used

30 CHAPTER 2. Background

in context B. The versatile nature of the model does not limit it to just two contexts:
the full model from context A can be adapted not only to context B, but to any other
context for which deployment data is available, context C from the schema for instance.

Context A

Versatile
Model

Training
Data

Training

Context B

Deployment
Data

Deployment

Reframing Output

Context C

Deployment
Data

Deployment

Reframing Output

Figure 2.4 – Schema of the reframing1process.

In this section, we will characterize more precisely reframing and the associated
notion of context. We will also provide an illustrative example.

2.3.1 Operating Context

In reframing terminology, a context is an ensemble of characteristics associated to a
dataset. Two examples of this notion are:

Data distributions: the probability distribution of attributes of the dataset. For in-
stance, mean and standard deviation of a numerical attribute over the dataset
define a context, as they allow to model the attribute through a Gaussian distribu-
tion. This can concern both input and output attributes. A change of distribution
between two contexts may cause a drop of performance of a model trained in a
first context when deployed in a second context where attributes do not lie in the

1I am thankful to the REFRAME project, granted by CHIST-ERA, for this figure.

2.3. Reframing 31

same range. Similarly to the example given above about clothing sales, if we train
a model to predict ice-cream sales in Helsinki, Finland, and apply it in Barcelona,
Spain, where temperatures are higher, the original model will not perform well.

Loss functions: in some learning tasks, performance of learning may not be evaluated
the same way depending on the context. For instance, in a medical application,
classifying a patient as sane when he/she is actually sick does not have the same
impact as classifying as sick an actually sane patient. Classification errors do not
have the same impact and are assigned different costs, which gives birth to the field
of cost-sensitive learning. These costs, which bias the accuracy measure towards
penalizing the most costly errors, define a context. Costs can also be defined
attribute-wise, in case attribute evaluation is more difficult for some attributes, e.g.
in medical tests. This all relates more generally to the notion of loss introduced in
Section 2.1.

In both cases, the aim is to reuse the original model, and adapt it to overcome the
context change. Formally, this notion of context change between datasets A and B
corresponds to the change of a characteristic between the two datasets. A special case
is the notion of dataset shift, explained in (Moreno-Torres, Raeder, et al. 2012), which
covers changes in data distribution. We reuse probability notations from Section 2.1. The
main difference with the Naive Bayesian presentation is that probability distributions
may be continuous since attributes are possibly numerical, as in the illustrative example
we will provide.

Dataset shift is defined as a change in the joint probability distribution between A
and B. More formally, dataset shift happens when PA(X,Y) 6= PB(X,Y). This covers
several types of changes detailed in (Moreno-Torres, Raeder, et al. 2012):

Covariate shift: This denotes a change in the input probability distribution while the
functional relation, conditional distribution, remains the same. Formally, PA(X) 6=
PB(X) and PA(Y |X) = PB(Y |X). We illustrate this in Figure 2.5. We take the
example of one input X, related to one binary output Y , the two possible values
being ”R” and ”G”. The relation to the input is defined by the decision tree model
given in Figure 2.5c. Figure 2.5a and 2.5b show the density of probability of the
input X respectively in contexts A and B, along with the functional relation to
the output: value G in green areas (X ∈ [−1.5; 0[∪[1.5;+∞[), and value R in red
areas (X ∈ [−∞;−1.5[∪[0; 1.5[). This does not change with the context. The
change resides in the distribution of the input X: it is in both cases the union of
two Gaussian distributions with standard deviation 0.5, centered on -2 and 2 in
context A, and on -1 and 1 in context B. Graphically, the shape of the curves is
different, but the borders between colored areas are the same.

Prior probability shift: This denotes a change in the output probability distribution
while the functional relation, conditional distribution, remains the same. Formally,
PA(Y) 6= PB(Y) and PA(X|Y) = PB(X|Y). We illustrate it in Figure 2.6. In the

32 CHAPTER 2. Background

x

PA(X = x)

−3 −2 −1 0 1 2 3

(a) Input probability density in context A.

x

PB(X = x)

−3 −2 −1 0 1 2 3

(b) Input probability density in context B.
X < 0

X < -1.5

R

tru
e

G

false

tru
e

X < 1.5

R

tru
e

G

false

false

(c) Target model (conditional probability density) for both contexts.

Figure 2.5 – Illustration of covariate shift.

same binary classification task as before, we tackle the inverse problem: X is gen-
erated from Y , in other words a distribution is associated to each value of Y from
which we sample to get the value of X. For value R, it is a Gaussian distribu-
tion with mean -2 and standard deviation 0.5, while for G, it has mean 2. These
densities are shown in Figures 2.6a and 2.6b respectively. This does not change
between contexts. The prior probabilities associated to R and G change, they
are equal in context A, meaning both classes are present in the same proportions
(P (Y = R) = P (Y = G) = 0.5), while in context B, class G is more present than
class R, with priors P (Y = R) = 0.3 and P (Y = G) = 0.7. This change has
an influence on the X distribution: in context A, both Gaussians have the same
importance as shown on Figure 2.6c, while in context B, the Gaussian associated

2.3. Reframing 33

to class G has more importance in the final X distribution, as shown on Figure
2.6d.

x

P{A,B}(X = x|Y = R)

−3 −2 −1 0 1 2 3

(a) Conditional probability density for class R.

x

P{A,B}(X = x|Y = G)

−3 −2 −1 0 1 2 3

(b) Conditional probability density for class G.

x

PA(X = x)

−3 −2 −1 0 1 2 3

(c) Input probability density in context A
(P (Y = R) = 0.5 and P (Y = G) = 0.5).

x

PB(X = x)

−3 −2 −1 0 1 2 3

(d) Input probability density in context B
(P (Y = R) = 0.3 and P (Y = G) = 0.7).

Figure 2.6 – Illustration of prior probability shift.

Concept shift: This denotes a change in the functional relation, while the distribution
of input/output remains the same. In other words, we have either PA(X) = PB(X)
and PA(Y |X) 6= PB(Y |X), or we have PA(Y) = PB(Y) and PA(X|Y) 6= PB(X|Y).
We illustrate it in Figure 2.7. Contrary to covariate shift, the input distribution
of X does not change, it is the union of Gaussian distributions with standard
deviation 0.5, centered on -1 and 1, thus curves in Figures 2.7a and 2.7b have the
same shape. However, the relational function is different, as shown on decision trees

34 CHAPTER 2. Background

from Figures 2.7c and 2.7d. The borders between classes in context B have been
shifted by -0.5 with respect to the borders in context A, i.e. in context A, Y = R⇔
X ∈ [−∞;−1.5[∪[0; 1.5[and Y = G ⇔ X ∈ [−1.5; 0[∪[1.5;+∞[, while in context
B, Y = R⇔ X ∈ [−∞;−2[∪[−0.5; 1[and Y = G⇔ X ∈ [−2;−0.5[∪[1;+∞[.

x

PA(X = x)

−3 −2 −1 0 1 2 3

(a) Input probability density in context A.

x

PB(X = x)

−3 −2 −1 0 1 2 3

(b) Input probability density in context B,
same as context A.

X < 0

X < -1.5

R

tr
ue

G

false

tru
e

X < 1.5

R

tr
ue

G

false

false

(c) Target model (conditional probability den-
sity) for context A.

X < -0.5

X < -2

R

tr
ue

G

false

tru
e

X < 1

R

tr
ue

G

false

false

(d) Target model (conditional probability den-
sity) for context B.

Figure 2.7 – Illustration of concept shift.

In presence of dataset shift, and in reframing tasks in general, the original model
cannot be used as such. From this observation, there are two possible approaches:
discarding completely the original model, or considering it bears useful information which
can be reused.

2.3. Reframing 35

2.3.2 Retraining VS Reframing

Given a training dataset in a first context A, and a deployment dataset in a second
context B differing from A, we oppose two approaches that can be used to adapt to
context B.

The first one is retraining: each time we want to adapt to a new context B, we
collect enough data from that context to train a new model, suitable for the context.
Two possible variants arise from the use or not of the original training data from context
A. Its use is standard in transfer learning, which allows the use of the same training data
in different ways, depending on the context information. If the original training data
is not meant to be used, because it is not accessible anymore for instance, retraining
is performed only using deployment data from the new context, and there may not be
enough data to do so, or the data available may not be labeled.

To overcome these limitations, we introduce the reframing approach. The aim is to
reuse the model learned on training data from context A, and to apply a transformation,
the reframing procedure, that takes into account the deployment context, to make the
original model usable in the deployment context. The main idea is the training of a
versatile model, which captures at training additional reusable information. Then, the
reframing procedure combines this reusable knowledge and contextual information to
adapt the model.

We distinguish three kinds of reframing procedures, which are not mutually exclusive
and can be combined:

Input reframing: The input X of the deployment data are pre-processed, with a nu-
merical transformation for instance, and the model is used as such, using the
transformed input.

Output reframing: The model is used as such on the original input, but its prediction
for the output Y is altered to fit the deployment context.

Structural reframing: The structure of the model is modified, either through a sys-
tematic transformation or instantiation which takes the context into account, or
by the use of only part of the model depending on the context.

Part II of this work introduces methods for input and output reframing of numerical
features in attribute-value learning, and extends them to adapt complex aggregates for
reframing in the relational setting. We also present an output reframing approach to
multi-class cost-sensitive tasks.

36 CHAPTER 2. Background

Part I

Stochastic Optimization
Heuristics for Complex

Aggregation in Relational
Learning

Chapter3
Relational Learning Paradigms and
Complex Aggregation

As presented in Section 2.2, data in the relational setting is modeled by several tables,
representing different kinds of objects, linked by relationships. This setting opposes the
attribute-value setting, in which data are represented by a single table associated to
the object targeted for prediction. In relational learning, the target object has its own
set of properties, including the target property for prediction, but it is also related to
other kinds of objects, having their own sets of properties which may be used to perform
prediction on the target object. The purpose of relational learning is to take advantage
of these “secondary” properties to perform prediction on the main kind of object.

To achieve this goal, two main paradigms are used: Inductive Logic Programming,
and propositionalization. The former focuses on the introduction of relevant secondary
objects related to the main object on which prediction is to be performed, usually through
the existential quantifier, i.e. the existence of at least one secondary object related to
the main object verifying some desired properties. The latter flattens the relational,
multi-table, representation, into an attribute-value representation with a single table.
Aggregation is a sub-family of propositionalization methods, which summarizes the set
of secondary objects related to one main object into properties of this main object, e.g.
the number of secondary objects related to the main one.

In this context, complex aggregation mixes both ideas: it consists in aggregating
only a subset of relevant secondary objects related to the main object. This is done
by filtering the secondary objects with a conjunction of conditions. This selection part
induces an explosion of the size of the feature space. Thus, our objective is to elaborate
heuristics to explore this feature space in a non-exhaustive way, to introduce complex
aggregate features in a decision tree model.

The aim of this chapter is mostly to formalize complex aggregation and situate
it with respect to state of the art in relational data mining. We also make a first
algorithm proposal which will be improved in the next chapter. In Section 3.1, we detail
the relational learning algorithms we compare to. In Section 3.2, we define formally

39

40 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

complex aggregate features, and describe directly related work. In Section 3.3, we sketch
a first, novel, hill-climbing algorithm to explore the complex aggregate search space,
and consider ways to deal with some difficulties related to the introduction of complex
aggregates. Finally, in Section 3.4, we draw first conclusions about this algorithm.

3.1 Relational Decision Trees and Propositionalization by
Aggregation

In this section, we detail the two approaches we will compare to. The first is the
aggregation-based propositionalization approach Relaggs, and the second is the rela-
tional decision tree learner based on the Inductive Logic Programming formalism Tilde.

3.1.1 RELAGGS: Propositionalization by Aggregation

block_id density convexity elongation area class
i1 0.151 0.986 0.221 22925 h_indiv
i2 0.192 0.832 0.155 15363 h_coll
i3 0.204 0.718 0.450 17329 h_mixed
… … … … … …

building_id convexity elongation area block_id
b11 1.000 0.538 165 i1
b12 0.798 0.736 323 i1
b13 1.000 0.668 84 i1
… … … … …
b21 0.947 0.925 202 i2
b22 1.000 0.676 147 i2
… … … … …

0..N

1

Main table - blocks

Secondary table - buildings

Figure 3.1 – Schema of the urban block dataset.

Relaggs (Krogel and Wrobel 2003) and Polka (Knobbe, Haas, and Siebes 2001)
build numerical aggregates to achieve propositionalization. For each main object, they
aggregate the set of related secondary objects using standard aggregation functions:
count of the secondary objects, average, minimum, maximum, sum and standard devia-
tion of numerical attributes, proportion of objects with a particular value for categorical
attributes. Formally, given a set S of secondary objects related to a given main object, f

3.1. Relational Decision Trees and Propositionalization by Aggregation 41

an aggregation function among the ones enumerated above, and A a numerical attribute
of the secondary objects, and denoting by vA(t) the value of attribute A for a secondary
object t, the aggregation operator is defined as:

aggregation(f,A, S) = f({vA(t), t ∈ S})

The difference between Polka and Relaggs is the handling of nested relationships:
when the secondary table is linked in a one-to-many relationship to another table, which
can itself be linked to another table…, Polka applies aggregation operators to the deep-
est relationships first, up to the main table, while Relaggs joins the secondary table
to the lower level tables depending on it, and then applies aggregation operators to the
columns of the joined table.

For each attribute in the secondary table, every relevant aggregation function with
respect to the type of attribute (categorical or numerical) is applied, and this result in
an enriched main table, which contains the original columns of the main tables and the
ones resulting from the aggregation of secondary objects, as shown in Table 3.1.

block_id class density area elongation convexity

…
i1 h_indiv 0.160 34657 0.178 0.737
i2 h_coll 0.129 12860 0.280 0.911
i3 h_mixed 0.276 4088 0.148 0.990
… … … … … …

…

cnt min_area max_area sum_area avg_area stddev_area

…
43 45 242 5562 129 41.1
9 97 232 1659 184 49.3
7 105 340 1126 161 81.1
… … … … … …

…

avg_elong … sum_elong min_conv … max_conv
0.800 … 34.387 0.861 … 1.000
0.626 … 5.632 0.999 … 1.000
0.609 … 4.264 0.782 … 1.000
… … … … … …

Table 3.1 – Urban block dataset propositionalized with Relaggs.

For instance, the value of column avg_area for block of id i1 is the average of the
values of the area attribute over the set of buildings in block i1, i.e. buildings b11, b12,
b13…

Propositionalization algorithms themselves are not learning algorithms: they just
modify the representation of data. A model is learned using data in this new represen-
tation using a proper learning algorithm. For experimental comparison, we will consider
the use of J48 implementation of C4.5 decision tree learner (Quinlan 1993) in Weka
(Hall et al. 2009), after propositionalization with Relaggs.

42 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

1 block (IdBlock , Density , ConvBlock , ElongBlock , AreaBlock , h_indiv) :−
ElongBlock > 0 .2 , ! .

2 block (IdBlock , Density , ConvBlock , ElongBlock , AreaBlock , h_coll) :− bui ld ing
(IdBuild , ConvBuild , ElongBuild , AreaBuild , IdBlock) , ConvBuild > 0.95 ,
! .

3 block (IdBlock , Density , ConvBlock , ElongBlock , AreaBlock , h_mixed) .

Listing 3.1 – Decision tree for the urban block dataset, in Prolog formalism.

3.1.2 TILDE: Relational Decision Tree Learning Using Inductive Logic
Programming

Top-Down Induction of Logical Decision Trees (Tilde) (Blockeel and De Raedt 1998)
is an extension of C4.5 decision tree learner to relational learning using ILP. It is a
first-order, logical, decision tree learner, based on the ILP formalism. Indeed, data is
represented as a set of facts, as defined in logic programming, and background knowledge
can be provided as a set of rules. In particular, this background knowledge can extend
the information available in the set of facts, by allowing the inference of facts that
are not explicitly mentioned in the original set, thus reducing the size of the database.
The decision tree model is returned as a set of logical rules, according to the logic
programming formalism. An example of such a model on the urban blocks dataset is
given in Listing 3.1 as a set of rules in Prolog formalism, and in Figure 3.2 as a decision
tree.

block(IdBlock, Density, ConvBlock,
ElongBlock, AreaBlock, Cl)

ElongBlock > 0.2?

Cl = h_indiv

tru
e

building(IdBuild, ConvBuild,
ElongBuild, AreaBuild, Id-

Block), ConvBuild > 0.95?

Cl = h_coll

tru
e

Cl = h_mixed

false

false

Figure 3.2 – Set of rules for the urban block dataset, represented as a decision tree.

3.1. Relational Decision Trees and Propositionalization by Aggregation 43

Nodes in such relational decision trees contain conjunctions of first-order predicates.
The root element introduces the class predicate, with variables as arguments, as shown
in the upper node of Figure 3.2. Then, at each internal node, predicates involving an
already existing variable can be added to the conjunction of a node. These predicates
may themselves introduce new variables. The leaves of the tree instantiate, i.e. assign a
value to, the class variable introduced in the class predicate at the root of the tree.

Classification of an example by the tree is achieved as follows: the example is first
defined by the declaration of a fact using the class predicate. All attributes have a value
for the example. The corresponding variables in the class predicate at the root node of
the decision tree are bounded with these atomic values. Then, at each internal node,
an example will follow the left branch if it matches the conjunction of predicates, and
the right branch otherwise. To determine if the example matches the conjunction of
predicates, all variables in the conjunction are instantiated, i.e. they receive an atomic
value in agreement with the facts relative to the example. If at a given node, such an
instantiation exists, i.e. all variables can be replaced with a constant value matching the
facts, the example is considered to match the conjunction of predicates, and follows the
left child branch of the node. If such a substitution cannot be found, the example does
not match the conjunction of predicates and follows the right child branch. A leaf of the
tree instantiates the variable associated to the class attribute, thus giving a prediction
for the example.

For instance, let us consider the classification by the decision tree from Figure 3.2
of urban block i2 introduced in Figure 3.1. The arguments of the class predicate are
instantiated as follows:

block(IdBlock, Density, ConvBlock, ElongBlock, AreaBlock, Cl)
→ block(i2, 0.192, 0.832, 0.155, 15363, Cl)

The variable ElongBlock receives value 0.155. The condition to match at the root
node is ElongBlock > 0.2, thus the substitution according to the set of facts does not
allow to match the predicate, and the example i2 continues down the right child branch.
This second node introduces new variables, related to buildings. According to the upper
node, the variable IdBlock is already instantiated with value i2. Then, it is possible to
replace the other variables so that the instantiation matches the set of facts:

building(IdBuild, ConvBuild, ElongBuild, AreaBuild, IdBlock)
→ building(IdBuild, ConvBuild, ElongBuild, AreaBuild, i2)
→ building(b22, 1.0, 0.676, 147, i2)

Indeed, the condition to match is ConvBuild > 0.95, which is verified by building
b22. Thus, there is an instantiation matching the conjunction of predicates, and the
example continues down the left child branch. The corresponding leaf classifies block i2
as collective housing, i.e. class “h_coll”, which is a right prediction.

The strength of Tilde lies in the introduction of new variables through the existential
quantifier. These new variables represent secondary objects verifying specific conditions,

44 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

the existence or not of these objects being relevant to the classification process. As a
relational decision tree learner based on the introduction of relevant secondary objects,
Tilde will be our second baseline in experimental comparisons.

With respect to Relaggs propositionalization by aggregation and Tilde logical de-
cision tree learning algorithm, we consider a third approach mixing both ideas. This
third idea, complex aggregation, introduces aggregation over a subset of relevant sec-
ondary objects. This allows to not perform aggregation over the whole set of secondary
objects associated to a main object, taking into consideration more local tendencies in-
side the set of secondary objects than Relaggs aggregation over the whole set. On the
other hand, complex aggregation also allows to go beyond the existential quantification
used to deal with secondary objects in Tilde, to take into account global properties of
the set of secondary objects rather than individual secondary objects properties.

3.2 Complex Aggregation

As stated previously, complex aggregate features in the relational setting are aggregates
of a subset of the secondary objects associated to a main object, this subset being defined
by a conjunction of conditions selecting the secondary objects to aggregate. This section
formalizes complex aggregation, explains associated challenges and details related work
on the matter.

3.2.1 Formalization of Complex Aggregate Features

A complex aggregate feature of an object from table M can be seen as a pair (Aggrega-
tionProcess, Selection), where Selection is a list of relationships and associated conditions
defining which secondary objects related to a main object are selected for aggregation,
and AggregationProcess refers to the process used to map the set of selected secondary
objects to a single value.

AggregationProcess can be seen as a pair (Function[, Feature]), that is the association
of an aggregation function, denoted by Function and, depending on this function, a
feature of the aggregated objects, denoted by Feature. More precisely:

• Function is the aggregation function to apply to the set of feature values for the
selected objects. In this work we will consider the following aggregation functions:
count of secondary objects, minimum, maximum, sum, average, standard deviation,
median, first and third quartiles, first and ninth deciles, interquartile range for
functions operating on numerical features, and proportion of possible values for
functions operating on categorical features.

Median, first and third quartiles, first and ninth deciles and interquartile range
functions rely on quantiles. They are defined as follows: given a set V of numerical
values, the k-th n-quantile Qk/n(V) of set V , with k ∈ N, n ∈ N and 1 6 k < n, is
defined as:

3.2. Complex Aggregation 45

Qk/n(V) = argmax
v∈V

(
| {x ∈ V |x 6 v} |

|V |
6

k

n

)
In other words, the k-th n-quantile of V is the greatest element v ∈ V such that
the proportion of elements in V lower than v is lower than k/n. For instance, the
median is the first 2-quantile, i.e. it is the element of V that cuts V into two halves
of equal size, one with elements below the median, the other with elements above
the median. Similarly, the first quartile is the first 4-quantile, i.e. a quarter of
the elements in V are below it, and three quarters above. The effect of the third
quartile, i.e. the third 3-quantile, is the opposite: three quarters of the elements
in V are below, while one quarter is above. From these quantiles, we define the
interquartile range, which measures the dispersion of the values in the set similarly
to standard deviation, as the difference between the third and the first quartile.
Finally, first and ninth deciles correspond respectively to Q1/10 and Q9/10, i.e. the
first and the last 10-quantile.

For a categorical feature S.A of a secondary table S, related to table M by a
one-to-many relationship from M to S, let us denote by D = domain(S.A) the
set of possible values of A. Then, for a given main object m ∈ M , we denote by
Sec ⊆ S the set of secondary objects from S related to m. Finally, let us denote
by V als = {vS.A(s)|s ∈ Sec}, the set of values of feature S.A for all objects in Sec.
For every possible value v of feature S.A, we define the proportion of objects with
value v aggregation function, denoted by ratiov(V als), as:

ratiov(V als) =
| {x ∈ V als|x = v} |

|V als|

In other words, it is the frequency of value v in the set V als.

• Feature can be:

– either a feature of the aggregated objects. In this case, it is either a descriptive
attribute of the corresponding secondary table, or a complex aggregate feature
of these objects.

– or nothing, if the aggregation function aggregates the set of objects itself
rather than the set of values of a feature of the secondary objects. Among
the aggregation functions we consider, only the count function does not need
a feature to aggregate, since it returns the number of secondary elements in
the set.

The Selection element selects the objects to aggregate. It is a list of s pairs (Relk,
Condk). In each pair, Relk selects a table using an existing relationship with the table
from the previous pair (Relk−1, Condk−1), while Condk introduces a conjunction of
conditions on the objects of this table. Formally, they are defined as follows:

46 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

• Relk is a foreign key, referencing the table to which belonged the foreign key from
the previous couple, i.e. Relk−1. The list of the Relk elements defines a chain of re-
lationships, in which the first referenced table, the table referenced by Rel1, is the
table of the main object. On the other hand, the last introduced table, the table to
which the foreign key Rels belongs, corresponds to the secondary objects that will
be aggregated using the process defined by AggregationProcess. Formally, the fol-
lowing holds: ∀k ∈ J2; sK, table_referencing(Relk−1) = table_referenced(Relk),
and the table defined by table_referenced(Rel1) is called the main level of the
aggregate, since it corresponds to the main object, i.e. the object the complex
aggregate is a feature of. In other words, for two consecutive pairs, the table as-
sociated with the second pair references the table of the first pair. The first pair
of the list references the main table of the aggregate. The table associated to the
last couple of the list is the table whose objects will be aggregated.

• Condk is a conjunction of cknk
conditions, i.e. Condk =

∧
16i6nk

cki, where cki is a

condition on a single feature of table_referencing(Linkk). These basic conditions,
for a given feature A, are:

– A ∈ V als, with V als ⊂ domain(A) if A is categorical. We reuse the same set
belonging type of condition as in a decision tree internal node split condition.

– A ∈ [vl; vu[, with −∞ 6 vl < vu 6 +∞, if A is numerical. Instead of a single
inequality as in a decision tree internal node split condition, we introduce
interval belonging conditions in selection conditions of complex aggregate
features.

The complex aggregation process is illustrated in Figure 3.3. Starting from a main
object, the pairs (Relk, Condk) of the Selection element are considered sequentially.
Firstly, the objects related to the main object through the relationship Rel1 are con-
sidered. Then, these objects are filtered, and only the ones verifying the conjunction of
conditions Cond1 are kept. From these remaining objects, secondary objects related to
them through relationship Rel2 are considered, these objects are filtered to keep only
objects verifying the conjunction of conditions Cond2, and so on. This selection process
ends with the filtering of the final secondary objects by conjunction of conditions Conds:
remaining objects after this filtering are considered for aggregation. The aggregation pro-
cess defined by the aggregation function and a possible feature of these objects is then
applied to this set of remaining objects, to obtain the value of the complex aggregate
for the main object.

Let us consider the two-table setting, with a main table M containing the target
feature for prediction, and a secondary table S in a one-to-many relationship with M.
The Selection part of a complex aggregate feature of table M can only be a chain with
a single element, since there is only one foreign key in the schema of the database, i.e.
only one relationship between tables. Thus, the search for the best complex aggregate
feature boils down to optimize the pair (AggregationProcess, Cond1). Assuming there

3.2. Complex Aggregation 47

Relationship:
Rel1

Conditions:
Cond1

Relationship:
Rel2

Conditions:
Cond2

· · ·

Relationship:
Rels

Conditions:
Conds

Aggregation:
Function

(+ Feature)

Selection AggregationProcessMain
Object Result

Figure 3.3 – Schema of the complex aggregation process.

is no one-to-many relationship from S to any other table, no complex aggregate feature
of S can be built. Then

• The Feature element of the AggregationProcess part of the aggregate is either noth-
ing, or an element of S.A. In other words, if the aggregation function of the ag-
gregation process requires to be applied on a feature, this feature is a descriptive
attribute of table S.

• Similarly, every condition in conjunction Cond1 is a condition on a descriptive
attribute of table S. For Attr ∈ S.A, a simple condition is either Attr ∈ V als where
V als ⊂ domain(Attr) if Attr is categorical, or Attr ∈ [vl; vu[, with [val1; val2[an
interval of R.

In this two-table setting, we will denote a complex aggregate using the notation
Function([Feature,]S,Cond1).

Example 3.1. Complex aggregate features on the urban block dataset.
Let us give three examples of complex aggregate features that can be considered on

the urban block dataset. Since the dataset consists in two tables, with a one-to-many
relationship from the table of blocks to the table of buildings, we can build complex
aggregate features of blocks by aggregating buildings. As shown in Figure 3.1, the
buildings table from the urban block dataset has three numerical descriptive attributes:
area, elongation, and convexity. For each example, we explicitly separate the aggregation
process and the selection process which, in this two-table setting, consists in a single
conjunction of conditions. Implicitly, the relationship used to select secondary objects
is the relationship between the table of blocks and the table of buildings.

48 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

• count(buildings, area > 450) computes the number of buildings in the block with
area greater than or equal to 450.

Aggregation Process: count of secondary objects
Selection: buildings with area > 450

• average(elongation, buildings, area > 450) computes the average elongation of
buildings in the block with area greater than or equal to 450.

Aggregation Process: average of elongation of secondary objects
Selection: buildings with area > 450

• maximum(convexity, buildings, area > 450 ∧ elongation < 0.7) computes the
maximum of convexity of buildings in the block with area greater than or equal to
450 and elongation lower than 0.7.

Aggregation Process: maximum of convexity of secondary objects
Selection: buildings with area > 450 and elongation < 0.7

�

3.2.2 Combinatorial Explosion of the Complex Aggregate Search Space

Complex aggregation is a rich feature representation: many features can be expressed in
this setting. However, this huge expressive power induces a critical number of complex
aggregate features, in particular when dealing with numerical attributes. Indeed, a
basic selection condition on a numerical attribute is an interval belonging condition, the
bounds of the interval having to be optimized. If all combinations of possible values for
these bounds are considered, the number of complex aggregates with a given aggregation
process and a selection conjunction consisting of a single basic condition on this attribute
already surges quickly with the number of possible values for the numerical attribute,
reaching more than a thousand with only 50 possible values.

Moreover, the selection part of the aggregate is a conjunction of such basic conditions.
Thus, the number of possible selection conjunctions increases exponentially with the
number of numerical attributes, reaching a million with only 3 numerical attributes and
50 possible values for the attributes. Multiplying by the number of aggregation processes,
there are millions of complex aggregate features to consider for learning. In an attribute-
value setting, this would be represented as a single table with the corresponding millions
of columns, which cannot be handled by any learning algorithm in a reasonable duration.

We estimate in more detail the size of the complex aggregate search space in a two-
table setting. Reusing previous notations, we have:

• For each categorical attribute S.Acat of the secondary table S, if we denote by
Nvals the number of possible values of the categorical attribute, we have 2Nvals

possible conditions on this attribute. Indeed, the possible conditions are defined
by the possible subsets of values of the attribute, which gives the previous result.

3.2. Complex Aggregation 49

• For each numerical attribute S.Anum of the secondary table S, we approximate the
number of possible values of the attribute by the total number of secondary objects
in the dataset, i.e. Nvals = |S|. It is a worst-case scenario, but it is plausible if the
attribute is continuous. Then, the number of conditions is given by the number of
possible intervals, which is of the order of magnitude of N2

vals/2.

The number of possible values of a given categorical attribute is in most cases low,
under 10. Thus, the number of possible conditions on a categorical attribute rarely
exceeds 1000. This number of conditions for a numerical attribute is reached when the
attribute has 50 possible values. For a continuous attribute, this can only occur in small
datasets. Thus, we consider a worst-case scenario with only numerical attributes in the
secondary table, which happens in practice in many real-world datasets we encountered.
The number of possible conjunctions of conditions in this setting is the product over all
attributes in table S of the number of possible basic conditions on one attribute, i.e.
with a(S) attributes

|Conjunctions| =
(
|S|2

2

)a(S)

To obtain the number of possible complex aggregates, we multiply by the number
of aggregation processes, i.e. the number of pairs (Function, Feature) allowed by the
dataset. Since most aggregation functions we consider handle numerical attributes, it is
roughly numFunctions · a(S), and the number of possible complex aggregates is:

|ComplexAggregates| = |AggregationProcess| · |Conjunctions|

= |Functions| · a(S) ·
(
|S|2

2

)a(S)

The urban block dataset has 3 numerical attributes and 7694 lines in the buildings
table. We use the following 6 aggregation functions : count, min, max, sum, average and
standard deviation. The five last functions can be used with any of the three attributes,
while count alone defines one aggregation process. We then have 3 ∗ 5 + 1 = 16 possible
aggregation processes. This brings a total number of complex aggregates bounded by
16 ·

(
76922

2

)3
≈ 4.14 · 1023, while the urban block dataset does not have many secondary

attributes, nor many lines in the secondary table. This example shows how much the
size of the feature space explodes with the use of complex aggregates. This motivates
the need for heuristics able to explore this space in a non-exhaustive way.

3.2.3 Related Work on Complex Aggregates

Complex aggregates can be used as propositionalization features, in a similar way as
the simple aggregate features from Relaggs. For instance, the method introduced in
(Boullé 2014) builds complex aggregate features for use in a Bayesian classifier, guided

50 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

by minimum description length principle to avoid overfitting and a heuristic sampling
based on prior distribution of constructed features.

An alternative approach, potentially more powerful, is to generate relevant complex
aggregates for subsets of training data, rather than only aggregates relevant on the
whole training set. This can be achieved using decision trees: a complex aggregate
feature relevant to split the whole data will be generated for the root of the tree. Then,
aggregates relevant on more specific parts of the data can be learned on the partitions
of the original training set in the sub-branches.

Following this idea, complex aggregates have been integrated in the relational deci-
sion tree learner Tilde, along with an heuristic to prune the search space. Detailed de-
scription of the heuristic can be found in (Vens, Ramon, and Blockeel 2006). We describe
this work in this subsection. The heuristic is based on refining the aggregate-based splits
along monotonic paths in a refinement cube. The split to refine is Function(Feature,
SecondaryObjects) < operator > th. The feature to aggregate and the numerical com-
parison operator, either > or 6, are fixed. Thus, there are three degrees of freedom in
the split, which define the three dimensions of the refinement cube, as illustrated in Fig-
ure 3.4. In these three dimensions, an ordering can be defined according to the number
of main objects verifying the split condition. Let us consider the urban block example
dataset, with area as the feature of secondary objects buildings to aggregate, and > as
the operator. The monotonicity, according to the evolution of the set of main objects,
is defined along one dimension as follows.

• The aggregation function F: an ordering on the aggregation functions can be de-
fined: e.g. application of the minimum function on a given attribute for a given set
of objects is lower than the result of the average of the same attribute on the same
set. Thus, if the comparison threshold does not change, less main objects will ver-
ify the condition average(area, SecondaryObjects) > th than minimum(area, Sec-
ondaryObjects) > th, since average(area, SecondaryObjects) > minimum(area, Sec-
ondaryObjects). The same relationship exists with the maximum function, which
returns a higher value than the average function on a given set of values. Thus,
the ordering minimum 6 average 6 maximum can be defined on aggregation
functions.

• The set S of objects to aggregate: a set can be reduced or enlarged by specializing
or generalizing the selection condition. Let us consider two sets of buildings S1

and S2 with S1 ⊂ S2. Trivially, minimum(area, S1) > minimum(area, S2), since
the second takes the minimum of a super-set of the set considered in the first
expression. Thus, if minimum(area, S2) > th, then we have minimum(area, S1)
> th, and decreasing the set to aggregate, i.e. removing elements from it, increases
the value of the minimum function, such that more main objects verify the split
condition. Thus, on the plane of the cube defined by F = minimum, if the
set to aggregate is enlarged, then more main objects are likely to verify the split
condition. If the aggregation function is maximum, the opposite happens, since
maximum(area, S1) 6 maximum(area, S2). Thus, the specializing move in plane

3.2. Complex Aggregation 51

F = maximum will consist in reducing the set to aggregate. If the aggregation
function is average, then there is no monotonicity property, since the evolution of
the average value of the set depends on the relative position of the current average
value and the value of the element added or removed. The two bounds of the
cube along this dimension are the two extreme cases where all secondary objects
associated to a main object are selected for aggregation, or none.

• The constant part of the split: i.e. in case of a numerical aggregate, the threshold
th to compare to. Let us consider two threshold values th1 < th2. Indepen-
dently of the aggregation function we have Function(area, S) > th2, we also have
Function(area, S) > th1. Thus, decreasing the threshold value induces a general-
ization of a split condition, which is more likely to be verified by main objects. In
this dimension, decreasing the threshold leads to a more general split condition,
while increasing the threshold leads to a specialization split condition. The three
aggregation functions considered return a value in the same range as the values
from the set they aggregate, so we can defined a lower limit thmin and an upper
limit thmax for the comparison threshold, corresponding to the lower and upper
bounds of the aggregated feature. In our example, we would consider the lowest
and highest area of the available buildings.

Starting from the most general condition, the aim of the split optimization is to follow
paths in the cube that specialize the split condition, i.e. paths that lead to conditions
that are verified by fewer and fewer main objects. This is done until none verifies the
condition, in which case further exploration of the path is not needed. In our example,
the most general condition is maximum(area,Every) > thmin, i.e. the maximum of
area over all buildings in the block is greater than or equal to the lowest area possible for
a building, which all blocks verify. Then, the set of buildings selected for aggregation
can be reduced, for instance with a condition that selects only buildings with elongation
greater than 0.4, which will decrease the maximum area value, and the resulting split
condition will be verified by fewer blocks.

This effect is also achieved by increasing the comparison threshold, and modifying
the aggregation function from maximum to average, which returns a lower value. Once
the aggregation function is average, only the threshold can be modified, since there is
no monotonicity property along the object selection dimension, i.e. there is no rule on
the evolution of the value returned by the average function when we decrease or increase
the set to aggregate, thus no rule on if such a move will specialize of generalize the split
condition.

Finally, when the function becomes minimum, specializing the aggregate can be
achieved by enlarging the set to aggregate, contrary to the maximum function, while
increasing the threshold is still possible. The search stops at the most specific condition
possible, i.e. minimum(area,Every) > thmax, when the minimum of area over all
buildings in the block is greater than the highest area possible for a building, which is
achieved for a minimum of blocks.

Likewise, our aim is to avoid the extensive search of the complex aggregate space,

52 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

None Every

thmin

thmax

maximum(Every) > thmin

F

S

Th

minimum

average

maximum

Figure 3.4 – Refinement cube for complex aggregates, from (Vens, Ramon, and Blockeel
2006).

and to propose methods to perform the search in an efficient way. Unlike the refinement
cube method, which prunes the search space when possible but is exhaustive in a worst-
case scenario, the methods we propose will be hill-climbing-based, thus avoiding an
exhaustive search.

3.3 Incremental Construction of Complex Aggregates

As explained in the previous section, exhaustive consideration of complex aggregate
features is not feasible because of their number. An attribute-value decision tree learning
algorithm would consider split conditions on all available attributes, which is not possible
in the relational setting when considering complex aggregates. Thus, there is a need for
heuristics to explore the complex aggregates space in an efficient way. We intend to
generate complex aggregate features for use in a decision tree model. More precisely,
splits at internal nodes of a decision tree will be conditions on complex aggregate features.
Thus, at a given node, we have to generate a complex aggregate that will produce a
relevant split. An example of such a decision tree on the urban block dataset is given in
Figure 3.5.

The heuristics we propose are based on hill-climbing optimization. Considering a
space of candidate points and a metric to evaluate the quality of a candidate, hill-
climbing optimization consists in, starting from an arbitrary candidate point, to explore
candidates in a neighborhood of this point looking for a better candidate, in terms of
quality, than the starting point. If such a candidate can be found in the neighbor-
hood, the search continues in the neighborhood of this better candidate. Otherwise, the

3.3. Incremental Construction of Complex Aggregates 53

density > 0.15

count(buildings,
area > 180 ∧ elon-
gation < 0.5) > 3

h_mixed

tr
ue

h_indiv

false

tru
e

average(area, build-
ings, elongation
> 0.7) > 220

h_coll

tr
ue

h_mixed

false

false

Figure 3.5 – Example of complex-aggregate-based decision tree.

starting point is considered as the optimal solution and the search stops.
In this section, we first describe the implementation of a hill-climbing algorithm

for complex aggregate feature optimization, including technical details about handling
the empty sets to aggregate, which is an issue to consider with attention in complex
aggregation. Finally, we detail possible implementations of complex aggregate feature
generation in a multi-table setting, with several nested one-to-many relationships.

3.3.1 Hill-Climbing of Complex Aggregates

As observed above, the exhaustive consideration of complex aggregate features for learn-
ing in the relational setting is computationally impossible. Thus, there is a need for
optimization techniques to search for relevant complex aggregates. An optimization
technique such as hill-climbing relies on a quality metric, used to evaluate each candi-
date point. In our case, the quality of a complex aggregate corresponds to the quality of
the splits based on it in the decision tree. Formally, from every complex aggregate Com-
plAgg, a set Splits(ComplAgg) of split conditions based on ComplAgg can be formed.
In the decision tree learning process, when a split on the set of examples E is to be
found, the set of candidate splits using a numerical aggregate is the set of comparisons
of the aggregate value to a set of candidate thresholds defined by the possible values of
the aggregate on the examples in E, i.e.

Splits(ComplAgg) = {ComplAgg > th | th ∈ {vComplAgg(e) | e ∈ E}}

Then, the quality of a complex aggregate is defined by the maximum quality achieved
by a split based on it, on the set of examples E, i.e.

54 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

Quality(ComplAgg,E) = max (Gain(Split, E))
Split∈Splits(ComplAgg)

The second crucial element of a hill-climbing algorithm is the definition of the neigh-
borhood of a candidate point. In our case, a complex aggregate is defined by its aggre-
gation process, i.e. an aggregation function and optionally a feature to aggregate, and
the conjunction of conditions selecting secondary objects to aggregate, in a two-table
setting. In this search space with three dimensions, the neighborhood of a given com-
plex aggregate is defined by a set of allowed moves. A move in the space corresponds
to a change in one of the three dimensions, i.e. one parameter only of the aggregate,
among the function, the feature to aggregate, and the conjunction of conditions, changes
between the original aggregate and its neighbor. As an example, we consider the original
aggregate to be maximum(convexity, buildings, area > 450), in the context of the urban
block dataset. Valid moves families in the complex aggregate search space are:

Modification of the aggregation function: The aggregated feature and selection con-
junction of conditions do not change, while the aggregation function is modified.
From the original aggregate taken as example, possible neighbors with respect to
this family of moves include:

• average(convexity, buildings, area > 450)
• minimum(convexity, buildings, area > 450)
• count(buildings, area > 450)

Modification of the feature to aggregate (if present): If the aggregation function
is different from the count of secondary objects, the aggregated feature can be mod-
ified. On our example, possible moves are:

• maximum(area, buildings, area > 450)
• maximum(elongation, buildings, area > 450)

Addition of one basic condition to the selection conjunction: The selection con-
junction contains at most one condition on a given feature. Thus, in a two-table
setting with secondary table S, the conjunction contains at most a(S) basic condi-
tions, i.e. at most one per secondary attribute. If an attribute is not present in a
basic condition of the conjunction yet, a basic condition on it can be added. Only
one basic condition at a time can be added to the original aggregate to obtain a
neighbor aggregate. On our example, possible moves include:

• maximum(convexity, buildings, area > 450 ∧ elongation > 0.7)
• maximum(convexity, buildings, area > 450 ∧ elongation 6 0.9)
• maximum(convexity, buildings, area > 450 ∧ convexity > 0.88)
• maximum(convexity, buildings, area > 450 ∧ convexity 6 0.95)

3.3. Incremental Construction of Complex Aggregates 55

Deletion of one basic condition from the selection conjunction: One basic con-
dition can be removed from the selection conjunction. Similarly to the addition
move, only one basic condition at a time can be removed from the conjunction to
obtain a neighbor aggregate. Since there is only one basic condition in the selection
conjunction of our example, the only possible move is:

• maximum(convexity, buildings)

Modification of one basic condition from the selection conjunction: One of the
basic conditions in the selection conjunction can be modified. For instance, for a
condition on a numerical secondary attribute, the comparison threshold can be
increased or decreased to modify the set of selected secondary objects. Again,
modification of only one basic condition at a time is allowed to obtain a neighbor.
On our example, possible moves include:

• maximum(convexity, buildings, area > 500)
• maximum(convexity, buildings, area > 400)
• maximum(convexity, buildings, area 6 450)

These possible moves are detailed in pseudo-code in Algorithm 3.1.

Example 3.2. Convergence of the selection conjunction of conditions.
Let us illustrate the use of the three kinds of moves on the selection conjunction, i.e.

addition, removal and modification of a basic condition, to optimize a complex aggregate
feature as finely as possible. On the urban block dataset schema, let us consider an
artificial binary classification task where a block is of class:

• yes if and only if it verifies maximum(convexity, buildings, area > 450 ∧ elongation
< 0.7) > 0.5

• no otherwise, i.e. either maximum(convexity, buildings, area > 450 ∧ elongation
< 0.7) < 0.5, or there is no building in the block verifying both area > 450 and
elongation < 0.7.

Let us consider the starting aggregate of the hill-climbing is maximum(convexity,
buildings), i.e. the aggregation process is already the one used to generate data and
discriminate between both classes. Through the hill-climbing process, only the selection
conjunction of conditions needs optimization.

We observe that the condition introduced first uses a threshold close, but not exactly
equal, to the target. For instance, the best neighbor of the original aggregate may be
maximum(convexity, buildings, area > 400). Then, the best neighbor of this aggregate
introduces in the conjunction a basic condition on elongation, which corresponds to the
target aggregate. However, the best neighbor is maximum(convexity, buildings, area >
400 ∧ elongation < 0.6), which does not match exactly the target aggregate. This is
caused by the lone introduction of the condition on area: without the introduction of
the condition on elongation, the comparison threshold introduced does not match the

56 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

Algorithm 3.1 EnumerateNeighborsExhaustive
1: Input: aggregate: original complex aggregate feature, aggProcs: available aggrega-

tion processes (couples of function and feature)
2: Output: allNeighbors: array of complex aggregate features, neighbors of aggregate

3: allNeighbors ← []
4: for all aggProc ∈ aggProcs do
5: nextAggregate ← CreateAggregate(aggProc.function, aggProc.feature, aggre-

gate.selection)
6: allNeighbors.Add(nextAggregate)
7: end for
8: for all attr ∈ secondary attributes not present in aggregate.selection do
9: for all cond ∈ set of conditions achievable on attr do

10: nextAggregate ← CreateAggregate(aggregate.function, aggregate.feature, ag-
gregate.selection and cond)

11: allNeighbors.Add(nextAggregate)
12: end for
13: end for
14: for all secCond ∈ set of conditions present in aggregate.selection do
15: nextAggregate ← CreateAggregate(aggregate.function, aggregate.feature, aggre-

gate.selection - cond)
16: allNeighbors.Add(nextAggregate)
17: end for
18: for all secCond ∈ set of conditions present in aggregate.selection do
19: attr ← secCond.feature
20: for all cond ∈ set of conditions achievable on attr do
21: nextAggregate ← CreateAggregate(aggregate.function, aggregate.feature, (ag-

gregate.selection - secCond) and cond)
22: allNeighbors.Add(nextAggregate)
23: end for
24: end for
25: return allNeighbors

threshold of the target aggregate, corresponding to a use in conjunction with a threshold
on elongation.

This is the reason why we allow the algorithm to reconsider its choice of threshold on
the area, the best neighbor may then be: maximum(convexity, buildings, area > 430 ∧
elongation < 0.6). Then the choice of threshold on elongation can also be reconsidered
and the best neighbor is maximum(convexity, buildings, area > 430 ∧ elongation <
0.7). Again, the threshold on area can be modified and we obtain the target aggregate:
maximum(convexity, buildings, area > 450 ∧ elongation < 0.7).

�

3.3. Incremental Construction of Complex Aggregates 57

Finally, the starting point of the hill-climbing algorithm is the complex aggregate
feature defined by one of the available aggregation processes chosen randomly, and an
empty conjunction of conditions as selection, thus selecting all secondary objects for
aggregation. At each step of the hill-climbing algorithm, all possible neighbors, as de-
fined above, are considered. When adding a basic condition on a numerical secondary
attribute, all possible interval conditions are considered, i.e. all pairs of possible values
of the corresponding attribute. Pseudo-code for this hill-climbing algorithm is given in
Algorithm 3.2.

Algorithm 3.2 First Hill-Climbing Algorithm
1: Input: functions: list of aggregation functions, features: list of attributes of the

secondary table, train: labeled training set, target: attribute target for prediction
2: Output: split: best complex aggregate found through hill-climbing

3: aggProcs ← InitializeProcesses(functions, features)
4: aggregate ← CreateAggregate(count, NULL, TRUE)
5: firstSpl ← EvaluateFeature(aggregate, train, target)
6: bestSplits ← [firstSpl]
7: bestScore ← firstSpl.score
8: keepGoing ← true
9: while keepGoing do

10: allNeighbors ← EnumerateNeighborsExhaustive(aggregate, aggProcs)
11: hasImproved ← false
12: for all neighbor ∈ allNeighbors do
13: spl ← EvaluateFeature(neighbor, train, target)
14: if spl.score ≥ bestScore then
15: if spl.score > bestScore then
16: bestScore ← spl.score
17: bestSplits ← []
18: hasImproved ← TRUE
19: aggregate ← neighbor
20: end if
21: bestSplits.Add(spl)
22: end if
23: end for
24: keepGoing ← hasImproved
25: end while
26: split ← bestSplits.OneRandomElement()
27: return split

58 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

3.3.2 Dealing with Empty Sets

We discuss the general issue of aggregating the feature values when the set to aggregate is
empty. This is a common problem in aggregation, and even more in complex aggregation
since the set to aggregate is reduced. Indeed, for a given main object, there may be no
secondary object related to the main object verifying the conjunction of conditions.
In this case, the set to aggregate is empty, and the aggregation process may not be
applicable. For instance, on the urban block dataset, the average area of buildings in
a block with elongation greater than 0.7 cannot be computed when the block does not
contain at least one building with elongation greater than 0.7. Only the count function
can deal in a natural way with empty sets, while another solution has to be chosen for
numerical aggregation functions. Some possibilities to deal with that issue have been
discussed in (Vens 2007):

• Fixing an arbitrary value as the result.

• Using a value depending on the aggregation condition, as close as possible to the
values for examples for which the aggregation selection conjunction does not result
in an empty set, or as far as possible.

• Failing the aggregate when the aggregation function cannot be applied.

• Not considering the aggregate if the aggregation function cannot be applied for at
least one example.

In our opinion, the first two options are not easy to apply for every function. Indeed,
for functions minimum or maximum, one can choose threshold values as low or as high
as possible so that the condition on the aggregate always succeeds or fails if the function
cannot be applied directly, but for the average function, using a fixed value such as zero
is not relevant if the attribute can take both positive and negative values, nor is choosing
positive or negative infinity. Moreover, an empty set to aggregate is meaningful as such,
and by assigning a result to the aggregate function we lose that significance. The third
option also assigns the empty set a meaning we do not necessarily want it to have: the
failure of the aggregate would mean the inequality between the result of the aggregation
and the threshold is wrong. However, this is not the meaning of the empty set, which
indicates the failure of the existential quantifier to find secondary objects, i.e. there does
not exist any secondary object verifying the selection conjunction of conditions.

We propose two ways to address the issue of empty sets. Firstly, to consider them as
a third branch in the internal nodes of our decision trees, since they correspond neither
to a success nor to a failure of the inequality, they constitute a third possibility. The
second method we propose, preserving the binary structure of our trees, is to introduce
an internal node testing the existence of the secondary objects used by the complex ag-
gregate feature, as parent of the node with the split condition on the complex aggregate.
In other words, we create a three-branch split using two levels of a binary decision tree.
An example is shown in Figure 3.6, where the aggregate the average area of buildings

3.3. Incremental Construction of Complex Aggregates 59

with elongation greater than 0.7 is greater than 220 is “protected” by the existential
quantifier, which tests the presence of at least one building in the block with elongation
greater than 0.7. If the latter succeeds, then the former can be evaluated because it is
meaningful to compute the average value of a non-empty set. If the existential quantifier
fails, then the average area of the buildings with elongation greater than 0.7 cannot be
computed, thus defining the third branch.

density > 0.15

count(buildings,
area > 180 ∧ elon-
gation < 0.5) > 3

h_mixed

tru
e

h_indiv
false

tru
e

exists(build-
ings, elongation
> 0.7) = true

average(area,
buildings, elongation

> 0.7) > 220

h_coll

tru
e

h_mixed

false

tru
e

h_mixed

false

false

Figure 3.6 – Example of complex-aggregate-based decision tree, handling the empty set
case.

3.3.3 Addressing the Two-Table Schema Limitation

We limit ourselves to a table schema with two levels, i.e. one main table with secondary
tables directly related to it. This is motivated by the necessity to avoid introducing
nested complex aggregates, or complex aggregates inside complex aggregates. Indeed,
such an introduction would increase even more the already combinatorial size of the
complex aggregate search space. To illustrate this case, we consider a third table linked
through a one-to-many relationship to the secondary table. On the urban block dataset,
we take the example of a table of people living in the buildings, as shown in Figure 3.7.

60 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

block_id density convexity elongation area class
i1 0.151 0.986 0.221 22925 h_indiv
i2 0.192 0.832 0.155 15363 h_coll
i3 0.204 0.718 0.450 17329 h_mixed
… … … … … …

building_id convexity elongation area block_id
b11 1.000 0.538 165 i1
b12 0.798 0.736 323 i1
b13 1.000 0.668 84 i1
… … … … …
b21 0.947 0.925 202 i2
b22 1.000 0.676 147 i2
… … … … …

people_id age gender building_id
p111 40 m b11
p112 42 f b11
p113 10 f b11
… … … …

p121 25 m b12
p122 24 f b12
… … … …

0..N

1

0..N

1

Main table - blocks

Secondary table - buildings

Nested table - people

Figure 3.7 – Schema of the urban block dataset, with nested people table.

This second relationship between buildings and people also induces a third relation-
ship between blocks and people. Thus, complex aggregate features can be created using
any of these three relationships. A complex aggregate used in a split condition has to be
a feature of the block table, but it can now aggregate either the buildings or the people.
Moreover, complex aggregate features of the buildings can be obtained by aggregating
the people, and used like any secondary attribute of the buildings, e.g. in selection con-
junction of conditions to select the buildings. Thus, this new relationship induces three
new possibilities for complex aggregation:

3.4. Conclusion 61

• We can create complex aggregate features related to buildings by aggregating peo-
ple building-wise, and use this new feature in a complex aggregate related to blocks.
The aggregate on people can be used in two ways:

– In the aggregation condition of the higher-level aggregate (aggregating build-
ings at the block level): average(area, buildings, count(people, age > 18)
6 5) corresponds to the average area of buildings inhabited by fewer than 5
adults.

– As the aggregated feature of the higher-level aggregate (aggregating buildings
at the block level): average(count(people, age > 18), buildings, area 6 220)
corresponds to the average number of adults in buildings with area lower than
220.

• We can chain relationships and aggregate the objects from the deepest level at the
main level, e.g. aggregate people at the block level: average(age, people, build-
ings(area 6 220) ∧ gender = male) corresponds to the average age of male people
in the urban block living in buildings with area lower than 220.

The size of the complex aggregate search space surges exponentially with the intro-
duction of new relationships. Thus, we propose two methods to deal with this rising
complexity.

The first option is to turn nested tables into secondary tables, by relating them
directly to the main table. For instance, the table of people living in a building can
become a table of people living in the block, by joining the table of buildings and the
table of people on the key building_id, according to relational database terminology.
This does not allow nested complex aggregates, i.e. the two first kinds we presented,
but it does allow the use of the last kind of complex aggregate features, where people
are aggregated with conditions on them and the building they live in. The result of the
join operation can be visualized in Figure 3.8.

The second option is to propositionalize the sub-databases induced by choosing the
secondary tables as main tables. For instance, we can propositionalize the sub-database
induced by the buildings and the people. More specifically, if we use Relaggs, we would
create simple aggregates of the people at the building level. This allows the introduction
of simple aggregates at the secondary level, i.e. nested simple aggregates, either in the
selection condition of a main aggregate, or as the aggregated feature of a main aggregate,
which constitute the two first kinds of nested complex aggregates we presented above.
This resulting database is sketched in Figure 3.9.

3.4 Conclusion
The structure of the complex aggregate search space is a basis for an intuitive implemen-
tation of hill-climbing. However, the implementation described in this chapter considers
too many possibilities for the neighborhood of an aggregate. Indeed, when introduc-
ing or modifying a basic condition on a numerical attribute, the hill-climbing algorithm

62 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

block_id density convexity elongation area class
i1 0.151 0.986 0.221 22925 h_indiv
i2 0.192 0.832 0.155 15363 h_coll
i3 0.204 0.718 0.450 17329 h_mixed
… … … … … …

people_id b_convexity b_elongation b_area age gender block_id
p111 1.000 0.538 165 40 m i1
p112 1.000 0.538 165 42 f i1
p113 1.000 0.538 165 10 f i1
… … … … …

p121 0.798 0.736 323 25 m i1
p122 0.798 0.736 323 24 f i1
… … … … …

building_id convexity elongation area block_id
b11 1.000 0.538 165 i1
b12 0.798 0.736 323 i1
b13 1.000 0.668 84 i1
… … … … …
b21 0.947 0.925 202 i2
b22 1.000 0.676 147 i2
… … … … …

0..N

1

0..N

1 Main table - blocks

Secondary table - buildings

New Secondary table - people

Figure 3.8 – Schema of the unnested urban block dataset with option 1.

considers all possible conditions on this attribute, i.e. the number of possible intervals,
which can be approximated by |S|2/2 with |S| the number of secondary objects. Since
we consider all a(S) secondary attributes, and the aggregation process can be modified
to obtain a neighbor, the size of such a neighborhood is

|Neighbors| ≈ |AggregationProcesses|+ |S|
2

2
· a(S)

In practice, this remains computationally expensive. The main challenge will be to
reduce the size of the considered neighborhood. This will be achieved using stochastic
hill-climbing.

3.4. Conclusion 63

block_id density convexity elongation area class
i1 0.151 0.986 0.221 22925 h_indiv
i2 0.192 0.832 0.155 15363 h_coll
i3 0.204 0.718 0.450 17329 h_mixed
… … … … … …

building_id convexity elongation area …
b11 1.000 0.538 165 …
b12 0.798 0.736 323 …
b13 1.000 0.668 84 …
… … … … …
b21 0.947 0.925 202 …
b22 1.000 0.676 147 …
… … … … …

… avg_p_age … ratio_p_gender_m block_id
… 30.6 … 0.33 i1
… 24.5 … 0.5 i1
… … … … i1
… … … … …
… … … … i2
… … … … i2
… … … … …

0..N

1

Main table - blocks

Secondary table - buildings

Figure 3.9 – Schema of the unnested urban block dataset with option 2.

A second conclusion we draw is related to the possible moves. Indeed, the change of
aggregation process in a hill-climbing step with an unchanged selection conjunction of
conditions is too drastic. The appropriate selection conjunction of conditions seems to
be related to the aggregation process in use. Thus, the approaches we will propose in the
next chapter will consider searching for a suitable selection conjunction of conditions for
a given aggregation process, rather than trying to optimize both in a coupled fashion.

64 CHAPTER 3. Relational Learning Paradigms and Complex Aggregation

Chapter4
Stochastic Heuristics for Complex
Aggregates Learning

As observed in the previous chapter, the introduction of complex aggregate features
in the relational setting induces a large feature space to explore. In particular, in a
dataset composed of many numerical attributes, exhaustive consideration of complex
aggregates becomes impossible in terms of runtime. Thus, there is a need for non-
exhaustive optimization heuristics to explore the complex aggregate search space.

In this chapter, we adapt existing stochastic heuristics to the complex aggregates
search space. Randomization is introduced at two levels of the learning process: firstly,
the hill-climbing optimization of complex aggregates is made stochastic through the use
of randomized hill-climbing. Secondly, complex aggregate features are introduced in a
Random Forest model, which combines several decision trees built using different random
sub-samples of data and features.

In Section 4.1, we present and evaluate a random restart hill-climbing algorithm
for complex aggregate inclusion in a single decision tree model. In Section 4.2, we
introduce the Caraf system, which includes complex aggregate features in a Random
Forest model, using random hill-climbing optimization algorithms. We evaluate it over
several real-world relational datasets. In Section 4.3, we present extensions of our work
on complex aggregates within Random Forests. Finally, in Section 4.4, we conclude on
our work on complex aggregate features in relational data mining.

4.1 Random Restart Hill-Climbing of Complex Aggregate
Selection Conditions

Random restart hill-climbing is an optimization heuristic which consists in performing
several hill-climbing processes, each starting from a different, randomly chosen, candi-
date point. It differs from basic climbing in which only one process, starting from a
predefined point, would be performed. In this section, we present an implementation

65

66 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

of random restart hill-climbing to optimize the selection conjunction of conditions of
a complex aggregate feature, given its aggregation process, for inclusion of a complex
aggregate-based split in a decision tree model. We name this implementation “Random
Restart Hill-Climbing of Complex Aggregates”, or Rrhcca. We evaluate this approach
on artificial data, and compare it to the original, existential version, of the Tilde rela-
tional decision tree learner, and to the aggregation-based propositionalization algorithm
Relaggs, used in conjunction with a standard attribute-value decision tree learner.

4.1.1 Details of the Algorithm

As introduced in Chapter 3, a complex aggregate feature in a two-table setting is com-
posed of two parts: a selection part, which consists in a conjunction of basic conditions
to select the subset of secondary objects to aggregate, and an aggregation process, to
summarize the set of selected secondary objects into one single value. The aim of our
stochastic heuristics is to optimize the selection conjunction of conditions, given the ag-
gregation process. In other words, there will be one optimization process, in this context
a hill-climbing process, per aggregation process available.

For a given aggregation process, a random restart hill-climbing is performed. Firstly,
a complex aggregate feature with the given aggregation process and an empty conjunc-
tion of conditions, i.e. selecting all secondary objects, is used as the first starting point.
Similarly to the method introduced in Section 3.3, hill-climbing is performed, passing
from an aggregate to a better neighbor, until a local optimum is reached. However, the
search does not necessarily stop at this local optimum, and a new starting point can
be generated using the given aggregation process and a randomly generated selection
conjunction of conditions. With a(S) attributes in the secondary table S, a condition
on an attribute is introduced in the conjunction with a probability 1/a(S). If the at-
tribute A is selected to be part of the conjunction, a random condition on this attribute
is generated as follows:

• if A is categorical, the condition is A ∈ V als, and for each possible value v ∈
domain(A) of the attribute, there is a probability 0.5 that v ∈ V als.

• if A is numerical, the condition is A ∈ [vl; vu[, with probability 0.25 to be bounded
only on the left, 0.25 to be bounded only on the right, and 0.5 to be bounded on
both sides.

The search resumes from this new starting point, and continues until a local optimum
is reached. Then, the search resumes from a newly generated starting point, and so on,
until a stopping criterion, detailed below, is reached. Pseudo-code for one hill-climbing
step for an aggregation process is given in Algorithm 4.1, while Algorithm 4.2 shows a
useful procedure to update the best split found by the process.

The definition of the neighborhood of an aggregate has been narrowed from Section
3.3. The considered neighborhood of a given complex aggregate feature is defined as
shown in Algorithm 4.3, i.e.:

4.1. Random Restart Hill-Climbing of Complex Aggregate Selection Conditions 67

Algorithm 4.1 Process.Grow: Hill-Climbing Algorithm for One Aggregation Process
1: Input: train: labeled training set
2: Output: hasImproved: boolean indicating if the step of the hill-climbing has im-

proved the best split found in the current hill-climbing of the aggregation process

3: hasImproved ← false
4: allNeighbors ← EnumerateNeighbors(this.aggregate, this.range)
5: for all neighbor ∈ allNeighbors do
6: aggregateToTry ← CreateAggregate(this.aggregate.function, this.aggregate.fea-

ture, neighbor)
7: spl ← EvaluateAggregate(aggregateToTry, train)
8: hasImproved ← hasImproved or UpdateBestSplit(spl)
9: end for

10: if not hasImproved then
11: for i = 1 to this.range.size do
12: this.range[i] ← this.range[i]/2
13: end for
14: end if
15: return hasImproved

Algorithm 4.2 Process.UpdateBestSplit
1: Input: split: candidate split
2: Output: hasImproved: boolean indicating if the split is better in terms of split

metric than the best split found so far

3: hasImproved ← false
4: if spl.score > this.split.score then
5: this.split ← spl
6: this.aggregate ← nextAggregate
7: hasImproved ← true
8: end if
9: return hasImproved

Addition of one basic condition to the selection conjunction: For each secondary
attribute, if the conjunction does not contain a basic condition on the attribute, five
random conditions on this attribute are randomly generated as described above.
Each of the five basic conditions is tentatively added to the conjunction, defining
five neighbors of the current aggregate. We consider five neighbors to match the
number of attribute-wise neighbors defined by the modification and deletion op-
erations presented below. Indeed, the deletion of a basic conditions defines one
neighbor, while we define four possible modifications of conditions on secondary
attributes already present in the conjunction.

68 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

Deletion of one basic condition from the selection conjunction: As in the pre-
vious chapter, the deletion of one basic condition from the conjunction defines a
neighbor aggregate.

Modification of one basic condition from the selection conjunction: For each ba-
sic condition already present in the conjunction, modifications of this basic condi-
tion are considered to form four neighbor aggregates. These modifications depend
on the kind of attribute concerned by the condition:

• if the concerned attribute A is categorical, the condition has the form A ∈
V als with V als ⊂ domain(A). For each value v ∈ domain(A), if v ∈ V als, a
neighbor condition is defined by the replacement of A ∈ V als by A ∈ V als \
{v} in the conjunction; otherwise, the neighbor is defined by the replacement
by A ∈ V als ∪ {v}.

• if the concerned attribute A is numerical, the condition has the form A ∈
[vl; vu[. Then, four modifications of this basic conditions are tested, defined
by increasing/decreasing the upper/lower bound of the interval. Since these
modifications can be achieved in several ways, i.e. there are many possibilities
to modify the interval, we introduce a range parameter r(A). This parameter
controls how far the bounds of the interval will be modified. Initially, for
each numerical secondary attribute A, r(A) = 0.5. Let us denote by V als =
domain(A) the ordered set of possible values of attribute A. An increase of
interval bound v ∈ {vl, vu} is defined as follows: if v is at index i in Vals,
i.e. V als[i] = v, then the next candidate bound is V als[i+ n(A) · r(A)] with
n(A) the number of possible values of attribute A. If i+ n(A) · r(A) > n(A),
it is replaced by the maximum value of A, i.e. V als[n(A)]. Similarly, the
candidate decreased bound is V als[i − n(A) · r(A)], if i − n(A) · r(A) > 1,
and V als[1], the minimum value of A, otherwise. If no neighbor aggregate
improved over the current one, the range r(A) is divided by 2 for all numerical
attributes. The hill-climbing process stops when decreasing ranges becomes
useless, i.e. for every numerical attribute A, n(A) · r(A) < 1. In this case, the
restart of the hill-climbing process can be performed.

There are as many hill-climbing processes as aggregation processes available. Thus, a
global structure controls which hill-climbing process advances and when. It proceeds as
follows: a hill-climbing process advances of one step at a time, i.e. only one neighborhood
is explored at every turn, and the corresponding current aggregate is updated if one
neighbor leads to an improvement of the quality metric. The search will resume from
this aggregate when the hill-climbing process is allowed to advance again. At each
turn, the hill-climbing process to advance is determined randomly through biased wheel
selection. Each process is weighted by the best quality it achieved, i.e. the quality metric
value of the best split it found so far, so the most promising processes have a higher
probability of being selected. The pseudo-code of this main loop of the algorithm is
shown in Algorithm 4.4.

4.1. Random Restart Hill-Climbing of Complex Aggregate Selection Conditions 69

Algorithm 4.3 EnumerateNeighbors
1: Input: aggregate: original complex aggregate feature, range array of range param-

eters for numerical attributes
2: Output: allNeighbors: array of complex aggregate features, neighbors of aggregate

3: allNeighbors ← []
4: for all attr ∈ secondary attributes not present in aggregate.selection do
5: for i = 1 to 5 do
6: if attr is categorical then
7: vals ← random subset of domain(attr)
8: baseCondition ← (attr ∈ vals)
9: else if attr is numerical then

10: [v1; v2[← random interval of domain(attr)
11: baseCondition ← (attr ∈ [v1; v2[)
12: end if
13: allNeighbors.Add(CreateAggregate(aggregate.function, aggregate.feature, ag-

gregate.selection and baseCondition))
14: end for
15: end for
16: for all secCond ∈ set of conditions present in aggregate.selection do
17: allNeighbors.Add(CreateAggregate(aggregate.function, aggregate.feature, aggre-

gate.selection - secCond))
18: attr ← secCond.feature
19: if attr is categorical then
20: vals ← secCond.rhs
21: for all v ∈ domain(attr) do
22: nextCond ← (attr ∈ vals.Switch(v))
23: allNeighbors.Add(CreateAggregate(aggregate.function, aggregate.feature,

(aggregate.selection - secCond) and nextCond))
24: end for
25: else if attr is numerical then
26: [v1; v2[← secCond.rhs
27: for all [v3; v4[←∈ intervals from domain(attr) obtained by decreasing or in-

creasing v1 or v2 according to range[attr] do
28: nextCond ← (attr ∈ [v3; v4[)
29: allNeighbors.Add(CreateAggregate(aggregate.function, aggregate.feature,

(aggregate.selection - secCond) and nextCond))
30: end for
31: end if
32: end for
33: return allNeighbors

70 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

Algorithm 4.4 Random Restart Hill-Climbing Algorithm (Rrhcca)
1: Input: functions: list of aggregation functions, features: list of attributes of the

secondary table, train: labelled training set
2: Output: split: best complex aggregate found through hill-climbing

3: wheel ← InitializeProcesses(functions, features)
4: bestSplits ← []
5: bestScore ← WORST_SCORE_FOR_METRIC
6: for i = 1 to MAX_ITERATIONS and wheel contains at least one process do
7: proc ← ChooseProcessToGrow(wheel)
8: hasImproved ← proc.Grow(train)
9: if not hasImproved then

10: if proc.split.score > bestScore then
11: if proc.split.score > bestScore then
12: bestScore ← proc.split.score
13: bestSplits ← []
14: end if
15: bestSplits.Add(proc.split)
16: end if
17: proc.Reinitialize();
18: end if
19: end for
20: split ← bestSplits.OneRandomElement()
21: return split

We defined three stopping criteria for the random restart hill-climbing algorithm.
If at some point at least one of the following applies, all random restart hill-climbing
processes stop, and the best aggregate found over all processes is considered as the
optimal solution.

• A maximum number of steps over all processes has been defined. It depends on two
task-related parameters. Firstly, the algorithm considers the aggregation processes
globally, by changing the considered one for hill-climbing advancement at every
turn. The more aggregation processes we have, the longer the hill-climbing should
last to give every process a chance. Secondly, for each aggregation process, we
evaluate a certain number of neighbors by modifying conditions on all secondary
attributes. For each numerical attribute, the number of possible conditions is
related to the number of secondary objects available in the training dataset, so
this is our second parameter. Thus, we define the maximum number of global
turns of hill-climbing as the square root of the product of these two task-related
parameters, i.e.

4.1. Random Restart Hill-Climbing of Complex Aggregate Selection Conditions 71

MAX_ITERATIONS =
√
|AggregationProcess| · |S|

• When a hill-climbing process has been restarted 3 times without improving the
best aggregate it found, it is discarded and will not be advanced further. Thus, if
no hill-climbing process remains, the algorithm stops.

• Elaborating on this idea, if a certain amount of hill-climbing processes finish and
restart without improving the best aggregate found over all processes, the algo-
rithm may stop. We define this maximum number of restarts with no improvement
as

MAX_RESTARTS = 3 · |AggregationProcess|

On the urban block dataset, we consider the aggregation functions count, maximum,
minimum and average. With 3 numerical attributes in the secondary table, we have 10
possible aggregation processes, i.e. the count and the combinations of the three other
functions with the three numerical attributes. They are all used to create a complex
aggregate with empty selection conjunction. The splits obtained from these simple
aggregates are evaluated, and the best metric score achieved for each aggregate gives
a first weight for the associated hill-climbing process in the wheel selection. Table 4.1
shows possible weights of this wheel selection. We see that currently, the average area
is the most promising aggregation process, since the best split it found had a quality of
0.35. Thus, it has the highest probability of being chosen for further refinement, with
28.23%.

Table 4.1 – Wheel selection of the Rrhcca algorithm

Function Attribute Best Score Probability
Count 0.09 7.26%

Minimum Area 0.05 4.03%
Minimum Elongation 0.1 8.06%
Minimum Convexity 0.12 9.68%
Maximum Area 0.03 2.42%
Maximum Elongation 0.17 13.71%
Maximum Convexity 0.13 10.48%
Average Area 0.35 28.23%
Average Elongation 0.11 8.87%
Average Convexity 0.09 7.26%

Total 1.24 1

Let us consider the “average area” process is chosen for refinement, and the current
selection conjunction is elongation ∈ [0.7; 0.9[. Possible refinements of this conjunction
are:

72 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

• elongation ∈ [0.7; 0.9[∧ convexity ∈ [0.5;+∞[: Addition of a condition on convex-
ity, with a randomly chosen interval.

• elongation ∈ [0.7; 0.9[∧ area ∈ [−∞; 220[: Addition of a condition on area, with a
randomly chosen interval.

• true: Deletion of the condition on elongation.

• elongation ∈ [0.65; 0.9[: Decrease of the lower bound on elongation.

• elongation ∈ [0.75; 0.9[: Increase of the lower bound on elongation.

• elongation ∈ [0.7; 0.85[: Decrease of the upper bound on elongation.

• elongation ∈ [0.7; 0.95[: Increase of the upper bound on elongation.

If a split on complex aggregates built using one of these refinements improves on
the split built using the original selection conjunction, the search will continue from this
refinement, when the aggregation process will next be chosen by the wheel selection.

If none of the refinements results in an improvement, two kinds of refinement will
change at the next step: the addition of a condition on an attribute not already present
will be tried again, with other random intervals; the modification of the intervals in
existing conditions will also change, since the range parameter will be halved. Thus, the
modification of the interval belonging conditions on elongation may become:

• elongation ∈ [0.68; 0.9[

• elongation ∈ [0.72; 0.9[

• elongation ∈ [0.7; 0.88[

• elongation ∈ [0.7; 0.92[

If the range parameter is too small to induce a modification of the intervals, then
the search stops and will restart from a new conjunction when the aggregation process
is chosen again.

4.1.2 Experiments and Results

In this section, we first assess the reliability of our algorithm on an artificially generated
dataset. We also perform experimental comparison of our Rrhcca algorithm with
existential decision tree learner Tilde and propositionalization algorithm Relaggs in
combination with an attribute-value decision tree learner, on real-world datasets. Even
though Tilde has been extended to complex aggregation, the decision tree algorithm
needs to consider all complex aggregate features allowed by the language bias. Due to
memory problems, we were not able to run Tilde decision tree with complex aggregates.
Thus, in this section, we compare with the original version of Tilde, based on existential
quantification.

4.1. Random Restart Hill-Climbing of Complex Aggregate Selection Conditions 73

Experiments on Artificial Data

Our artificial dataset consists in a binary classification task, with a main table containing
a class attribute. This example is inspired by urban block classification: the main objects
are blocks and secondary objects are buildings that compose the blocks. The schema
is given in Figure 4.1. There are 200 instances of urban blocks in the dataset. The
buildings (secondary table) have 4 numerical attributes generated using a random draw
from an exponential distribution with means 10000 for area, 1000 for perimeter, 100 for
elongation and 10 for convexity. We use the exponential distribution because (Jelali,
Braud, and Lachiche 2012; Puissant et al. 2011) observed that the values of attributes of
buildings follow this distribution in real-world cases. The number of secondary objects
associated to a main object has been determined using a random draw from a geometric
distribution, i.e. a discrete exponential distribution, with mean 12.

block_id class
i1 yes
i2 no
i3 no
… …

building_id area perimeter elongation convexity block_id
b11 10000 900 80 4 i1
b12 4500 1000 150 6 i1
b13 5200 1300 100 12 i1
… … … … … …
b21 12000 850 90 10 i2
b22 9000 950 180 8 i2
… … … … … …

Urban blocks table Buildings table

Figure 4.1 – Schema of the synthetic urban block dataset

The class attribute of the main table is yes if avg(convexity, buildings, area > 8000
and elongation < 150) > 7, and no otherwise, i.e. if the inequality is not satisfied, or if
the aggregate is not defined because no such building exists in the block.

We first measure the accuracy in 10-fold cross-validation of the 3 algorithms on this
artificial dataset. The results shown in Table 4.2 are averaged over 5 runs. We observe
that our algorithm learns a model for the dataset very well, the accuracy being close to
100%, while the two other algorithms are less effective on this learning task. This is due
to the complexity of the aggregation condition, which neither Relaggs nor Tilde can
consider.

Table 4.2 – Accuracy in 10-fold cross-validation on the artificial dataset

Algorithm Accuracy
Relaggs + J48 66.3%

Tilde 71%
Rrhcca 97.4%

74 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

Then we observe, for every aggregation process, the behavior of the corresponding
hill-climbing processes in terms of evolution of the split quality. The results are shown on
Figure 4.2. Each curve represents the evolution of one hill-climbing process: it shows the
evolution of the metric score of the best split found with the corresponding aggregation
process during the process so far with respect to the number of iterations elapsed in the
hill-climbing process. We focus on two attributes and two aggregation functions only,
including the target aggregation process average convexity, which should produce the
final aggregate choice.

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sum − convexity

Iteration

S
co

re
 o

f b
es

t s
pl

it
fo

un
d

so
 fa

r

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average − convexity

Iteration

S
co

re
 o

f b
es

t s
pl

it
fo

un
d

so
 fa

r

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sum − area

Iteration

S
co

re
 o

f b
es

t s
pl

it
fo

un
d

so
 fa

r

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average − area

Iteration

S
co

re
 o

f b
es

t s
pl

it
fo

un
d

so
 fa

r

Figure 4.2 – Evolution of information gain with respect to the number of iterations
elapsed in the hill-climbing process for 4 different aggregation processes.

We observe that the target branch, i.e. average convexity, does outperform the others
in terms of score at the end of one hill-climbing process. We make the same observation
for the branches we do not show. This assesses the ability of our algorithm to find

4.1. Random Restart Hill-Climbing of Complex Aggregate Selection Conditions 75

the appropriate aggregation condition for one (Function, Feature) aggregation process.
Moreover, we observe that, in a given branch, a majority of hill-climbing processes reach
the same plateau at the end of the process.

Then, we look at the gain in terms of metric score that a modification operation on the
aggregation condition achieves, i.e. we want to observe the most useful kind of neighbors.
For this, we focus on hill-climbing processes for the target aggregation process. The plots
in Figure 4.3 show the evolution of the difference in split metric between the modified
aggregate and the original one for different hill-climbing processes. The operations shown
consist in adding and removing a relevant attribute for the aggregation condition (area)
and an irrelevant one (perimeter).

●

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

Add area

Iteration

G
ai

n

●

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

Remove area

Iteration

G
ai

n

●

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

Add perimeter

Iteration

G
ai

n

●

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

Remove perimeter

Iteration

G
ai

n

Figure 4.3 – Gain of addition/removal of conditions on area/perimeter with respect to
the number of iterations elapsed in the hill-climbing process.

For both addition and deletion, we observe clear differences of behavior. For addition,

76 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

we observe that once the gain of adding a condition on the area becomes positive, i.e. the
condition becomes useful, the modification is chosen by the hill-climbing process and the
change is not reverted later in the process since the curve stops. This means the addition
of a condition on the area is never considered again, because one is already present in the
aggregation condition. On the other hand, the addition of a condition on the perimeter,
which should not be present in the final choice of the algorithm, almost always yields
a negative gain, especially when the process is close to its end and converging to the
right conjunction of conditions. Curves do not stop because the addition of a condition
of perimeter is never retained as the best neighbor, thus this addition is tested at every
iteration.

For deletion, we observe that removing the condition on the area almost always
yields a negative gain, especially when the process is converging. This shows why the
addition of a condition on the area is never considered again, since the removal of the
area is considered a bad refinement choice. On the other hand, the removal of the
condition on the perimeter yields a positive gain at the beginning of the process, it is
then chosen by the hill-climbing and never considered again because we observed that
adding a condition on the perimeter is a bad choice. High variations in gain are due to
the difference between random conditions on the attribute when it is added.

To conclude, these experiments show that the addition and deletion operations are
useful and compensate for a faulty initialization of the aggregation condition, by adding
conditions on the relevant attributes and removing conditions on the irrelevant ones.
Although we do not show them here, the plots for elongation are similar to the plots for
area, since it is a relevant attribute for the aggregation condition. Likewise, the plots
for convexity are similar to the plots for perimeter.

Experiments on Real-World Data

We compare our Rrhcca algorithm to Relaggs in combination with J48 decision tree
learner, and Tilde on the following real-world datasets:

• Diterpenes (Dzeroski et al. 1998) is a molecule structure prediction task.

• Elephant, Fox, and Tiger (Andrews, Tsochantaridis, and Hofmann 2002) are multi-
instance image recognition tasks.

• Financial (Berka 2000) is a classification task aiming at distinguishing good bank
loans from bad ones.

• Urban blocks (Geo6) (Puissant et al. 2011) is a geographical classification task.

• Japanese vowels, available on the UCI repository (Lichman 2013), is related to
recognition of Japanese vowels utterances from cepstrum analysis.

• Musk1 and Musk2 (Dietterich, Lathrop, and Lozano-Pérez 1997) are molecule
classification tasks.

4.1. Random Restart Hill-Climbing of Complex Aggregate Selection Conditions 77

• Mutagenesis (Srinivasan et al. 1996) is a molecule classification task.

• Opt-digits, also available on the UCI repository, deals with optical recognition of
handwritten digits.

• Splice junction, also available on the UCI repository, is a DNA boundary recogni-
tion task.

• The five Stulong1 datasets are medical prediction tasks. The aim is to predict
presence of a risk factor for atherosclerosis in a patient. There are five risk factors,
including obesity, smoking habits, or high cholesterol, yielding five datasets.

A quantitative description of the datasets is given in Table 4.3. For each dataset,
we report the number of instances, i.e. main objects, in the dataset, the number of
associated secondary objects, and the number of values of the class attribute.

Table 4.3 – Description of the datasets used in the experimental comparison.

Dataset Instances Secondary Objects Classes
Diterpenes 1,503 30,060 23
Elephant 200 1,388 2
Financial 682 54,859 2

Fox 200 1,320 2
Geo6 591 7,692 6

Japanese vowels 270 + 370 4,274 + 5,687 9
Musk1 92 476 2
Musk2 102 6,598 2

Mutagenesis 188 4,893 2
Opt-digits 3,823 + 1,797 244,672 + 115,008 10

Splice Junction 3,178 191,400 3
Stulong-chol 1,263 11,611 2
Stulong-ht 1,247 11,540 2

Stulong-kour 1,274 11,687 2
Stulong-obiz 1,274 11,685 2
Stulong-rar 1,268 11,666 2

Tiger 200 1,234 2

1The study (STULONG) was realized at the 2nd Department of Medicine, 1st Faculty of Medicine
of Charles University and Charles University Hospital, U nemocnice 2, Prague 2 (head. Prof. M.
Aschermann, MD, SDr, FESC), under the supervision of Prof. F. Boudík, MD, ScD, with collaboration
of M. Tomečková, MD, PhD and Ass. Prof. J. Bultas, MD, PhD. The data were transferred to the
electronic form by the European Centre of Medical Informatics, Statistics and Epidemiology of Charles
University and Academy of Sciences (head. Prof. RNDr. J. Zvárová, DrSc). The data resource is on the
web pages http://euromise.vse.cz/challenge2004. At present time the data analysis is supported by
the grant of the Ministry of Education CR Nr LN 00B 107.

78 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

The accuracy results of the three approaches over each dataset are reported in Table
4.4. The “Japanese Vowels” and “Opt Digits” datasets come along with a test set,
thus test set accuracy is reported for these. For the other datasets, mean and standard
deviation of the accuracy over a 10-fold cross-validation are reported.

We performed statistical rank-based tests to search for significant differences between
the three approaches. A Friedman test with 95% confidence rejected the equality hy-
pothesis of the three approaches. Average ranks of the three methods are reported in the
final line of Table 4.4. This shows a dominance of Rrhcca over the two other methods,
with a lower average rank.

Table 4.4 – Average accuracy over 10-fold cross-validation or test set accuracy of the
three different decision-tree-based methods on real-world datasets.

Dataset Relaggs Rrhcca Tilde
diterpenes 85.7±4.77 91.35±2.57 39.45±3.65
elephant 86.5±6.26 88.5±7.47 89.5±7.62
financial 90.77±4.1 89.88±3.14 83.13±3.59

fox 86.5±9.44 84±6.15 86±4.59
geo6 76.82±4.11 74.45±3.81 59.9±8.36

jpvowels 80.27 79.19 83.51
musk1 81.89±13.7 80.33±8.86 78.33±14.58
musk2 68.64±18.62 80.55±8.84 70.82±22.99

mutagenesis 88.25±8.63 88.83±8.06 87.16±8.2
optdigits 19.53 84.36 33.33

stulong-chol 80.29±3.17 80.91±3.86 79.02±2.75
stulong-ht 77.78±2.58 76.5±3.47 77.14±2.3

stulong-kour 61.62±5.04 63.67±4.01 56.44±3.84
stulong-obiz 88.85±1.82 81.39±3.85 77.87±3.96
stulong-rar 72.32±2.84 70.35±3.31 71.22±3.35

tiger 90.5±4.97 92±4.83 93±7.89
Average rank 1.863 1.831 2.306

Then, we performed a Nemenyi post-hoc test to identify which pairs of algorithms
were significantly different. We show the resulting significance graph in Figure 4.4. The
graph is to be interpreted as follows: an edge from a first method to a second indicates
the first method outperforms significantly the second. This relationship is transitive: if a
method A outperforms a method B, and B outperforms C, then A outperforms C. Thus,
if no directed path relates two algorithms, then there is no significant difference between
them. We indicate in red the “best” methods, i.e. the algorithms that are never signif-
icantly outperformed in terms of predictive performance, while we indicate the “worst”
methods in blue, i.e. the methods that do not outperform significantly any other method.
The Figure shows that Relaggs and Rrhcca outperform significantly the existential
Tilde, while no significant differences exist between Rrhcca and Relaggs.

4.2. Complex Aggregates within Random Forests 79

relaggs

tilde

rrhcca

Figure 4.4 – Significance graph of the compared decision tree approaches.

We explain this lack of significant improvement by overfitting of our method. In-
deed, Relaggs considers simple aggregate features, i.e. without a selection conjunction
of conditions. Our algorithm also considers these features before introducing complex
conditions. Our models do introduce complex aggregates because they lead to an im-
provement on training data. However, our results show this improvement on training
data does not lead to a significant improvement on test data. Thus, our objective will
be to reduce this overfitting effect.

4.2 Complex Aggregates within Random Forests

The overfitting effect induced by the use of complex aggregate features is a drawback
of their great expressivity. On one hand, complex aggregate features can express very
specific and precise properties. On the other hand, introduced complex aggregates may
be too specific, especially in a decision tree model already prone to overfitting. Indeed,
the definition of a subset of secondary objects is very strict. For instance, we consider
the complex aggregate feature “average area of buildings with convexity between 0.65
and 0.85, and elongation between 0.3 and 0.5”, learned as optimal for a split on the
training set. For a new urban block to classify, a relevant building to calculate the
average area may have convexity 0.851 and elongation 0.4, and thus will not be selected
for aggregation, even though it is “close” to the definition of the subset to aggregate,
because its elongation fits but not its convexity.

80 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

In this section, we describe the implementation of Complex Aggregates within RAn-
dom Forests (Caraf). Compared to Rrhcca, the decision tree model is replaced by
a Random Forest model combining several decision trees, known to be less prone to
overfitting than a single decision tree. Since we also observed that the specificity of com-
plex aggregate features induces overfitting, we decide to relax the search for an optimal
aggregate, by replacing the random restart hill-climbing approach by a faster, but more
likely to miss the optimum, random hill-climbing algorithm.

4.2.1 Random Forests

Random Forests are an ensemble method for machine learning, which relies on an en-
semble of decision trees instead of a single one, to make up for the tendency of decision
trees to overfit training data.

The algorithm, introduced in (Breiman 2001), relies on two main ideas to create
diversity among decision trees:

• Bootstrapping: Each tree is trained using a subsample of the original training
data, drawn randomly with replacement. The classic implementation creates for
each tree a sample of examples with the same size as the original training set, but
where repetitions may occur.

• Feature sampling: For each internal node of each tree, the split is chosen using
a random subsample of the possible features. If there are F available features, a
random sample of features of size

√
F is commonly used.

The pseudo-code of the learning algorithm is given in Algorithm 4.5. The original
implementation is based on the CART decision tree learner and thus uses Gini index
as a metric for split evaluation. The bootstrapping of training examples corresponds to
lines 5 to 8 of the algorithm, while feature sampling corresponds to lines 9 to 15.

Once the model is learned, prediction on an unseen example is achieved as follows:

• For classification tasks, each tree classifies the example, and outputs a prediction.
The final prediction of the random forest for the example is the mode of the
predictions of the trees, i.e. the majority class through a voting process.

• For regression tasks, the average of individual numerical predictions of the trees is
the final prediction of the random forest.

This whole process, from classification to deployment, is sketched in Figure 4.5.
Random Forests have been previously used for relational purposes. Forf (Van Ass-

che et al. 2006) is an extension of the relational decision tree learner Tilde to random
forests with complex aggregates. However, the feature sampling is performed split-wise:
all possible splits for the internal node at hand are enumerated and sampled uniformly,
which may not create enough diversity in the samples of splits. In the next subsection,
we propose an alternative.

Another relational Random Forest algorithm is described in (Anderson and Pfahringer
2009). It uses random rules based on the existential quantifier.

4.2. Complex Aggregates within Random Forests 81

Algorithm 4.5 BuildRandomForest
1: Input: train: set of training examples, feats: set of possible split features, target:

the target attribute, n: number of trees in the forest
2: Output: forest: a random forest

3: forest ← InitEmptyForest()
4: for k = 1 to n do
5: trainForTree ← InitEmptyInstances()
6: for i = 1 to train.Size() do
7: trainForTree.Add(train.OneRandomElement())
8: end for
9: featsCopy ← feats.Copy()

10: featsForTree ← InitEmptyFeatures()
11: for j = 1 to

√
feats.Size() do

12: f ← featsCopy.OneRandomElement()
13: featsCopy.Remove(f)
14: featsForTree.Add(f)
15: end for
16: tree ← BuildDecisionTree(trainForTree, featsForTree, target)
17: forest.Add(tree)
18: end for
19: return forest

4.2.2 CARAF: An Implementation of Complex Aggregates within RAn-
dom Forests

The Caraf software implements our algorithms for learning complex-aggregate-based
relational decision trees and Random Forests, along with the stochastic hill-climbing
algorithms to search for complex aggregates. The Random Forest implementation follows
Breiman’s recommendations: the bootstrapping of training examples is performed in the
same way, by drawing with replacement n examples from the training set of size n.

The feature sampling part has been adapted to the structure of the complex aggregate
search space. In Forf, all possible splits over all complex aggregates allowed by the
language bias are enumerated, and a subsample is retained by a uniform draw from
the enumeration. However, our assumption is that two neighbor complex aggregate
features, i.e. with same aggregation process and close selection parts, will be close in
value for many examples, and thus can be considered the same feature. Therefore,
complex aggregate uniform random draws of Forf may be very similar, even though
the features drawn are not exactly equal from one draw to another.

As opposed to this approach, we decide to sample complex aggregates according to
the structure of the complex aggregate search space. In other words, in every draw,
we sample the aggregation processes first, and for each aggregation process the sec-
ondary attributes to use in basic conditions in the selection part. Let us remind a result

82 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

Training Instances

Bootstrap 1 Bootstrap 2 ... Bootstrap n

F11

F12 F13

Tree 1

F21

F22 F23

Tree 2

Fn1

Fn2 Fn3

Tree n

...

Prediction 1 Prediction 2 ... Prediction n

Majority Voting

Final Prediction

Figure 4.5 – Whole process, from training to classification, of a Random Forest.

from previous sections, with numerical attributes, the complex aggregate space size is
approximately:

|ComplexAggregates| = |AggregationProcess| ·
(
|S|2

2

)a(S)

A usual threshold for sampling features is to use approximately the square root of the
original number of features. To achieve that with complex aggregates, we can keep, each
time a split is to be found, a number of aggregation processes which is the square root of
the original number of the aggregation processes, and half of the secondary attributes for
use in the selection conjunction of conditions. According to our approximation, this gives
the desired subsampling. Indeed, the square root of the number of complex aggregates
can be written as:

√
|ComplexAggregates| =

√
|AggregationProcess| ·

(
|S|2

2

)a(S)
2

4.2. Complex Aggregates within Random Forests 83

More precisely, we round down the number of aggregation processes to keep, i.e.
we retain b

√
|AggregationProcess|c to search for a complex aggregate at each node of

a tree. We round up the number of secondary attributes we keep for conditions, i.e.
da(S)/2e.

Let us consider again the urban block dataset example, with the same aggregation
processes as in the previous section. Table 4.5 shows an example of complex aggregate
subsampling on this dataset. Out of the 10 aggregation processes available, the square
root will be considered at each node, i.e. 3, as shown in Table 4.5a. For each aggregation
process, half of the 3 secondary attributes will be kept for use in the selection conjunction
of conditions, i.e. 2 per aggregation process, as shown in Table 4.5b.

Table 4.5 – Subsampling of complex aggregates.

(a) Subsampling of aggregation processes.

Function Attribute Chosen
Count x

Minimum Area
Minimum Elongation
Minimum Convexity
Maximum Area
Maximum Elongation x
Maximum Convexity
Average Area
Average Elongation
Average Convexity x

(b) Subsampling of secondary attributes.

Attribute Chosen
Area x

Elongation
Convexity x

The Rrhcca algorithm presented in the previous section is quite time-consuming,
and thus difficult to apply on high-dimensional tasks. In this section, we present two
faster hill-climbing algorithms, more randomized than Rrhcca.

The first algorithm is a simpler version of the Rrhcca algorithm. Its pseudo-code is
shown in Algorithm 4.6. Like Rrhcca, the aim is to look for an appropriate conjunction
of basic conditions for a fixed aggregation process. Nevertheless, instead of considering
all neighbors of an aggregate at each step of hill-climbing, the Random algorithm will
consider only one, randomly chosen, neighbor, for split evaluation. If the chosen neighbor
improves over the original aggregate, the search resumes from this neighbor. The random
hill-climbing process has two possible stopping criteria: firstly, when a maximum number
of hill-climbing steps have been performed, the search stops and the current aggregate
is considered optimal. This maximum number of iterations allowed has been arbitrarily
fixed at MAX_ITERATIONS =

√
a(S) · |S|. Secondly, when a certain number of

neighbors of a given aggregate have been considered without improvement, the hill-
climbing process stops. This number has been arbitrarily fixed to 20% of the maximum
number of hill-climbing steps, i.e. 0.2 ·MAX_ITERATIONS. In other words, if 20%
of the maximum number of iterations have passed without finding an improving neighbor

84 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

for the current aggregate, the search stops and the current aggregate is considered as
optimal. The pseudo-code of this hill-climbing routine is given in Algorithm 4.7.

This hill-climbing search is then performed once for each aggregation process avail-
able, starting from an empty conjunction of conditions, without a restart.

Algorithm 4.6 Random Hill-Climbing Algorithm
1: Input: functions: list of aggregation functions, features: list of attributes of the

secondary table, train: labeled training set
2: Output: split: best complex aggregate found through hill-climbing

3: procs ← InitializeProcesses(functions, features)
4: bestSplits ← []
5: bestScore ← WORST_SCORE_FOR_METRIC
6: for all proc ∈ procs do
7: proc.GrowRandom(train)
8: if proc.split.score > bestScore then
9: if proc.split.score > bestScore then

10: bestScore ← proc.split.score
11: bestSplits ← []
12: end if
13: bestSplits.Add(proc.split)
14: end if
15: end for
16: split ← bestSplits.OneRandomElement()
17: return split

Following the idea of the Random hill-climbing algorithm, we propose to invert the
loops of hill-climbing and aggregation process, materialized in the Global hill-climbing
algorithm. Concretely, only one hill-climbing search is performed, which aims at finding
the best conjunction of conditions for all aggregation processes available. For a given
conjunction of conditions, all aggregation processes are used to form aggregates and
splitting conditions, and the conjunction is evaluated according to the best score achieved
over all aggregation processes. The maximum number of iterations allowed in the random
hill-climbing process is the same as for the Random algorithm introduced above. The
pseudo-code is given in Algorithm 4.8.

4.2.3 Experimental Results

In this section, we perform an experimental comparison of Caraf using the 3 different
hill-climbing approaches with Relaggs used in combination with the Random Forest
implementation in Weka (Hall et al. 2009), and with the relational Random Forest
learner Forf, also based on complex aggregates. Due to memory limitations, Forf is
limited to a single basic condition as the selection condition. All learned forest models
consist of 100 trees.

4.2. Complex Aggregates within Random Forests 85

Algorithm 4.7 Process.GrowRandom: Hill-Climbing Algorithm for One Aggregation
Process

1: Input: train: labeled training set

2: iterWithoutImprovement ← 0
3: for i = 1 to MAX_ITERATIONS and iterWithoutImprovement < 0.2*MAX_IT-

ERATIONS do
4: allNeighbors ← EnumerateNeighbors(this.aggregate.condition)
5: neighbor ← allNeighbors.OneRandomElement()
6: aggregateToTry ← CreateAggregate(this.aggregate.function, this.aggregate.fea-

ture, neighbor)
7: spl ← EvaluateAggregate(aggregateToTry, train)
8: hasImproved ← UpdateBestSplit(spl)
9: if hasImproved then

10: iterWithoutImprovement ← 0
11: else
12: iterWithoutImprovement++
13: end if
14: end for

Table 4.6 reports the accuracy results of our Rrhcca algorithm, used in combination
with a decision tree model and a Random Forest model respectively. The results show
that the Random Forest model leads to an improvement in predictive performance over
the decision tree model for all datasets. The last column shows the accuracy percent-
age won by the Random Forest over the decision tree. The difference is particularly
striking for the urban block dataset, the average accuracy over a 10-fold cross-validation
increasing by 13.2% from 74.45% to 87.65%.

The accuracy results for all methods are reported in Table 4.7. Like in Section 4.1,
it is test set accuracy when available, and mean and standard deviation of accuracy over
10-fold cross-validation when there is no defined test set. The average rank shows that
our algorithms outperform both Relaggs and Forf, with an average rank below 3 for
our methods and above for the two other competitors.

A Friedman test with 95% confidence rejected the hypothesis of equality of the five
methods. The significance graph induced by the Nemenyi post-hoc test, given in Figure
4.6, shows that our three methods outperform significantly Forf, while only the use of
the Random hill-climbing algorithm allows Caraf to outperform significantly Relaggs.
Thus, our recommendation is to use the Random hill-climbing algorithm rather than
Global or Rrhcca in combination with a Random Forest model.

86 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

Algorithm 4.8 Global Hill-Climbing Algorithm
1: Input: functions: list of aggregation functions, features: list of attributes of the

secondary table, train: labeled training set
2: Output: split: best complex aggregate found through hill-climbing

3: aggregationProcesses ← InitializeProcesses(functions, features)
4: bestSplits ← []
5: bestScore ← WORST_SCORE_FOR_METRIC
6: conjunction ← InitEmptyConjunction()
7: iterWithoutImprovement ← 0
8: for i = 1 to MAX_ITERATIONS and iterWithoutImprovement < 0.2*MAX_IT-

ERATIONS do
9: allNeighbors ← EnumerateNeighbors(conjunction)

10: neighbor ← allNeighbors.oneRandomElement()
11: hasImproved ← false
12: for all aggProc ∈ aggregationProcesses do
13: aggregateToTry ← CreateAggregate(aggProc.function, aggProc.feature, neigh-

bor)
14: spl ← EvaluateAggregate(aggregateToTry, train)
15: if spl.score > bestScore then
16: if spl.score > bestScore then
17: bestScore ← spl.score
18: bestSplits ← []
19: hasImproved ← true
20: end if
21: bestSplits.Add(spl)
22: end if
23: end for
24: if hasImproved then
25: iterWithoutImprovement ← 0
26: else
27: iterWithoutImprovement++
28: end if
29: end for
30: split ← bestSplits.OneRandomElement()
31: return split

4.3 Further Extensions of Complex Aggregates with Ran-
dom Forests

In this section, we describe extensions of the work on complex aggregates in relational
data mining presented in this part. Firstly, a use of complex-aggregate-based random

4.3. Further Extensions of Complex Aggregates with Random Forests 87

Table 4.6 – Accuracy difference between Rrhcca used with a decision tree model and
a Random Forest model.

Dataset Rrhcca-Tree Rrhcca-RF Difference
diterpenes 91.35±2.57 95.81±1.6 + 4.46
elephant 88.5±7.47 96±3.16 + 7.5
financial 89.88±3.14 92.96±2.76 + 3.08

fox 84±6.15 86.5±7.47 + 2.5
geo6 74.45±3.81 87.65±2.65 + 13.2

jpvowels 79.19 97.57 + 18.38
musk1 80.33±8.86 83.33±15.04 + 3
musk2 80.55±8.84 84.27±15.53 + 3.73

mutagenesis 88.83±8.06 92.54±5.69 + 3.71
optdigits 84.36 95.83 + 11.46

stulong-chol 80.91±3.86 84.72±3.26 + 3.8
stulong-ht 76.5±3.47 84.84±2.65 + 8.34

stulong-kour 63.67±4.01 70.96±1.73 + 7.3
stulong-obiz 81.39±3.85 87.36±2.58 + 5.97
stulong-rar 70.35±3.31 81.78±2.94 + 11.44

tiger 92±4.83 95.5±7.25 + 3.5

Table 4.7 – Average accuracy over 10-fold cross-validation or test set accuracy of the five
different Random-Forest-based methods on real-world datasets.

Dataset Forf Global Random Relaggs Rrhcca
diterpenes 92.95±1.82 95.54±1.54 95.48±1.62 90.29±2.98 95.81±1.6
elephant 94±6.99 95.5±4.38 95.5±4.97 94.5±3.69 96±3.16
financial 92.96±2.93 93.11±2.78 93.11±2.78 92.96±3.17 92.96±2.76

fox 88±7.89 86.5±7.09 89.5±3.69 86.5±7.47 86.5±7.47
geo6 79.03±4.32 87.48±2.54 88.83±2.56 84.1±4.35 87.65±2.65

jpvowels 96.22 97.3 97.03 95.41 97.57
musk1 86.67±11.48 84.44±11.94 85.67±11.81 85.67±11.81 83.33±15.04
musk2 74.64±15.86 81.45±16.21 82.45±15.73 76.55±15.8 84.27±15.53

mutagenesis 88.33±6.43 91.49±7.11 91.49±5.1 89.91±8.01 92.54±5.69
optdigits 77.52 95.88 96.16 20.76 95.83

stulong-chol 83.68±3.38 83.61±4.63 83.77±2.94 84.08±2.94 84.72±3.26
stulong-ht 84.2±2.52 85.48±2.88 85.16±3.2 85.32±3.16 84.84±2.65

stulong-kour 66.57±3.99 70.5±2.89 72.46±3.45 71.36±2.6 70.96±1.73
stulong-obiz 84.3±2.26 89.24±2.63 88.38±2.5 89.17±2.51 87.36±2.58
stulong-rar 81.78±2.94 81.78±2.94 81.78±2.94 81.47±3.08 81.78±2.94

tiger 94±8.1 95.5±6.43 93.5±6.69 95.5±6.85 95.5±7.25
Average rank 3.687 2.789 2.577 3.218 2.729

88 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

random global

relaggs forf

rrhcca

Figure 4.6 – Significance graph of the compared Random Forest approaches.

forests to perform feature selection is described. Finally, a generalization of complex
aggregates, inspired by fuzzy logic, is presented.

4.3.1 Aggregation Processes Selection with Random Forests

Random Forests can be used to perform feature selection, as introduced by Breiman in
(Breiman 2001). The aim would be to first check which families of complex aggregates
are the most promising, to learn a model afterwards using only these useful families.

First, we will define, for a given tree in a random forest, its out-of-bag error. Every
tree is trained using a subsample of the original training set, i.e. for each tree, there
is a fraction of the training set that has not been actually used to build the tree. The
out-of-bag error for the tree is the error made by the tree on this set of unseen examples,
called the out-of-bag examples. Any error metric can be used. For classification tasks,
error rate will be most likely used, while for regression tasks root mean squared error
could be used.

Our aim is to perform feature selection, i.e. to assess the importance of an input
feature for prediction of the output attribute. This is achieved using permutation tests.
For a given tree, we first measure the out-of-bag error. The second step is to permute
among the out-of-bag examples the value for the input feature we want to measure the

4.3. Further Extensions of Complex Aggregates with Random Forests 89

importance. This gives a new out-of-bag examples set, for which we compute an after-
permutation out-of-bag error. The importance of the feature at the tree-level is the
increase in error between the after-permutation out-of-bag set and the original out-of-
bag set. The final feature importance is then obtained by averaging tree-level feature
importances over the whole forest.

In a relational context where complex aggregates are being used, this method needs
adaptation. Indeed, the size of the complex aggregates search space implies that a given
complex aggregate is rarely used twice in the same model. However, the structure of the
complex aggregates allows us to define families of complex aggregates, and to measure
importance of the families rather than specific complex aggregates.

Families of complex aggregates can be defined according to two elements:

• Aggregation processes: Complex aggregates sharing a common aggregation process
will belong to the same family.

• Attributes in selection conjunctions: Complex aggregates whose selection conjunc-
tions of conditions have a condition on a common attribute will belong to the same
family.

These two elements can be combined to define more specific attributes, e.g. complex
aggregates with the same aggregation process whose conjunctions of conditions contain
a condition on the same given attribute.

For instance, on the urban block dataset, we can define families of complex aggregates
at the aggregation process level, obtaining as many families as aggregation processes, 10
in this example. Thus, the following aggregates will fall into the same family, since they
are all based on the same aggregation process, the average area of buildings:

• average(area, buildings, true)

• average(area, buildings, elongation > 0.7)

• average(area, buildings, convexity < 0.5)

If we define families based on one common attribute in the conjunction of conditions,
we have as many families as attributes in the secondary table, 3 in this example. Thus,
following aggregates will fall into the same family, since their conjunctions of conditions
all have a condition on elongation of buildings:

• average(area, buildings, elongation > 0.7)

• maximum(convexity, buildings, elongation < 0.6)

• count(buildings, elongation < 0.8 ∧ area > 100)

Both family definitions can be combined to create families based on the aggregation
process and a common attribute in conjunction of conditions, 30 in this example. For in-
stance, following aggregates will belong to the same family, sharing both the aggregation
process of average area of buildings and a condition on elongation of buildings:

90 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

• average(area, buildings, elongation > 0.7)

• average(area, buildings, elongation < 0.9 ∧ convexity > 0.7)

• average(area, buildings, elongation > 0.5 ∧ area < 100)

The permutation of values of complex aggregates has then to be performed. Since we
are not permuting the values of a single feature, but of a whole family, we have to keep
some coherence: each training example has one value for each aggregate in the family,
and they should not be separated by the permutation. An example that obtains the
value of a second example for a first aggregate, should not obtain the value of a third
example for a second aggregate, but rather the value of the second example. In other
words, for a given family of aggregates, only one permutation of examples has to be
found, since a set of aggregate values for a given example should be conserved through
permutation. We achieve this by permuting groups of secondary objects, i.e. the set of
secondary objects related to one example will be assigned to another example. By doing
this, all aggregate values are transferred from one example to another.

As we explained above, the family importance for each tree is computed by substract-
ing the out-of-bag error achieved after permuting groups of secondary objects among
out-of-bag examples, to the out-of-bag error obtained on the original out-of-bag set of
examples. These tree-level importance values can then be averaged over the forest to
obtain the final complex aggregate family importance value.

As an example, the importances of blocks main features and buildings aggregation
processes are reported in Table 4.8. Importances were obtained using a forest of 100 trees
built using the Random hill-climbing heuristic to search for optimal complex aggregate
features.

Table 4.8 – Importance of main features and aggregation processes in urban blocks.

Feature Score
Area 0.039

Elongation 0.003
Convexity 0.005
Density 0.157
Count 0.027

Minimum Area 0.062
Minimum Elongation 0.034
Minimum Convexity 0.028

Maximum Area 0.111
Maximum Elongation 0.054
Maximum Convexity 0.038

Average Area 0.177
Average Elongation 0.061
Average Convexity 0.039

4.3. Further Extensions of Complex Aggregates with Random Forests 91

We observe that the 3 most important features for urban blocks classification are the
average area of buildings, the density of blocks, and the maximum area of buildings.

4.3.2 Fuzzification of Complex Aggregates

As already noticed, the strength of complex aggregates is their expressivity, but this
comes with high specificity. In particular, the selection conjunction of conditions on
numeric attributes uses intervals, which limits the selection of secondary objects to an
hyperrectangle shape. To overcome this limitation, and ”despecialize” aggregates to
make them more general, we introduce a membership degree of a secondary object to
be selected for aggregation. This is inspired by works in fuzzy logic (Zadeh 1965). The
fuzzification can be performed at two steps. Firstly, it can be used in the selection
conditions, to assign a weight to secondary objects used for aggregation. To achieve
this, some aggregation functions have to be modified to take these weights into account.
Secondly, fuzzy conditions can be introduced at the level of the tree splits.

Fuzzification of Selection Conditions

To define a membership degree of secondary entities to the aggregated set, we need to
move from basic conditions, i.e. interval conditions for numeric features and values set
membership for categorical features, to fuzzy conditions. In other words, we want to
move from 0-1, boolean, membership, to a continuous one, defined as follows:

categorical values set fuzzy membership: Given Attr a categorical attribute of the
secondary table, this fuzzy condition has the shape Attr ∈ {(v1,m1), · · · , (vk,mk)}
where ∀1 6 i 6 k, vi ∈ domain(Attr) ∧mi ∈]0; 1]. Concretely, a secondary object
with value V for attribute Attr will have a membership degree to the aggregation
set equal to the membership of V to the right hand side of the condition: if
(V,m) belongs to {(v1,m1), · · · , (vk,mk)}, the secondary object will be selected
with degree m, 0 otherwise, i.e. it will not be selected for aggregation.

fuzzy interval membership: Given Attr a numerical attribute of the secondary table,
this fuzzy condition has the shape Attr ∈ [v1; [v2; v3]; v4] where v1 6 v2 6 v3 6 v4.
In the ”core” of the fuzzy interval, i.e. between v2 and v3, the membership degree
is 1. Out of the extreme bounds, i.e. below v1 and above v4, it is 0. In the ”fuzzy”
areas, i.e. the [v1; v2] and [v3; v4] intervals, it increases or decreases linearly to
join the core interval and the outside. The evolution of degree membership of the
secondary entity with respect to the feature value is shown in Figure 4.7.

fuzzy conjunction of conditions: The selection part of the aggregate becomes a con-
junction of the kinds of fuzzy conditions defined above. The membership degrees
of all basic fuzzy conditions are combined into a membership degree given by the
whole conjunction using a fuzzy conjunction operator. We choose to use the min-
imum function to do so. The degree membership given by the conjunction is the
minimum of the membership degrees given by the individual fuzzy conditions.

92 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

v

Membership

v1 v2 v3 v4
0

0.2

0.4

0.6

0.8

1

Figure 4.7 – Degree membership of secondary object with feature value v for fuzzy
interval [v1; [v2; v3]; v4].

Fuzzification of Aggregation Functions

We now have to aggregate secondary entities by taking into account the weights given by
the fuzzy selection step. The fuzzy set to aggregate is SecSet = {(s1,m1),· · · ,(sN ,mN)},
where mi is the membership degree of secondary entity si to SecSet. If the aggregation
process is based on an attribute Attr, we will denote by vAttr(si) the value of Attr for
object si.

Some functions do not change, i.e. minimum and maximum of Attr do not take
membership degrees into account.

The fuzzy version of the count function is the sum of membership degrees.

FuzzyCount(SecSet) =
N∑
i=1

mi

The fuzzy sum of Attr is a weighted sum, similarly the fuzzy average is a weighted
average, and the fuzzy standard deviation can be extended the same way:

4.3. Further Extensions of Complex Aggregates with Random Forests 93

FuzzySumAttr(SecSet) =

N∑
i=1

mi · vAttr(si)

FuzzyAvgAttr(SecSet) =
FuzzySumAttr(SecSet)

FuzzyCount(SecSet)
=

N∑
i=1

mi · vAttr(si)

N∑
i=1

mi

FuzzyStdDevAttr(SecSet) =

√√√√√ N∑
i=1

mi · (vAttr(si)− FuzzyAvgAttr(SecSet))
2

FuzzyCount(SecSet)

Finally, fuzzy quantiles can be expressed. The kth fuzzy n-quantile of Attr requires
ordering SecondarySet by ascending value of Attr, i.e. ascending vAttr(si). Once this is
done, we have:

FuzzyQuantilek,n,Attr(SecSet) = max
16i6N

vAttr(si)

∣∣∣∣∣∣∣∣∣
i∑

j=1
mj

N∑
j=1

mj

6
k

n

In other words, the kth fuzzy n-quantile of Attr is the value of Attr for the last

secondary entity in the ordered SecSet such that the fuzzy proportion of elements below
the entity in the ordered set, i.e. the fuzzy count of elements below the entity in the
ordered set divided by total fuzzy count of the set, is below k/n. For instance, the fuzzy
median corresponds to the greatest entity for which the sum of weights of the inferior
elements is below half of the total weights in the set.

Fuzzification of Splitting Conditions

Decision trees can be fuzzified using the same process as for selection conditions. Split-
ting conditions of internal nodes are used to assign to examples a degree of membership
to each of the child branches. This can be seen as a degree of confidence that the ex-
ample verifies the splitting condition, and therefore should descend in the left branch.
The complementary to 1 would then be the degree of confidence for the right branch.
An example with weight w which receives a membership degree of m from a splitting
condition will be included in the examples set to build the left branch with weight m ·w,
and in the examples set for the right branch with weight (1 −m) · w. Usually, at the
root of the tree, all examples have weight 1.

Fuzzy splitting conditions on feature Feat will have the following shapes:

• If Feat is categorical, splits will have the shape Feat ∈ {(v1,m1), · · · , (vk,mk)}
with ∀1 6 i 6 k, vi ∈ domain(Feat) ∧ mi ∈]0; 1], like in selection conditions of

94 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

complex aggregates.

• If Feat is numerical, splits will have the shape Feat > v1 > v2. This fuzzy “greater
than” operator is similar to the fuzzy interval used in selection conjunctions. If the
value of Feat for the example at hand is greater than v1, the degree of membership
to the left branch of the example will be 1, and therefore 0 to the right branch. If
the value of Feat is lower than v2, then the degree of membership to the left branch
is 0, and 1 to the right branch. Between v1 and v2, the degree of membership to
the left branch evolves linearly between 0 and 1; if it is p, then for the right branch
it is 1− p. This evolution is shown on Figure 4.8.

v

Membership

v1v2
0

0.2

0.4

0.6

0.8

1

Figure 4.8 – Membership degree of an example with feature value v for fuzzy ”greater
than” operator > v1 > v2.

Split comparison metrics introduced in Chapter 2 are modified to include example
weights. For classification tasks, this means that impurity measures such as Gini index
or Entropy are based on weight-wise class proportions, and not count-wise anymore.
Concretely, pi, which was the proportion of class i examples in the examples set, is now
the ratio of weights of examples of class i on the total weight of the set. Where an
example counted as 1 in the original proportions, it now counts as its weight. Similarly,
the gain uses sum of weights of the examples in the sets, instead of the cardinality of
the sets.

Finally, classifying an example using a fuzzy decision tree implies it may be duplicated
to descend through several children of the same internal node, in case the membership
degree for left and right branches are both above zero. This means the example will
end up in several leaves of the same tree, which may not have the same label. Then,
predictions are recombined using a majority vote: the example arrives at a given leaf
with a weight w, the score for the label of the leaf is then increased by w. Once this is

4.4. Conclusion 95

done for each leaf the example reached, we have scores for corresponding labels, and the
one with highest score is the final prediction of the tree for the example.

4.4 Conclusion
In this chapter, we presented two stochastic heuristics to include complex aggregate
features in prediction models. We addressed a twofold goal: on one hand, exploring
the complex aggregate search space in an efficient, non-exhaustive way; on the other
hand, avoiding the overfitting effect induced by the precision and expressivity of complex
aggregate features.

The Rrhcca algorithm, based on random restart hill-climbing, fulfills the first goal
by optimizing the selection part of the aggregate for a given aggregation process. Ac-
cording to experimental results, our method compares favorably with Relaggs simple
aggregation algorithm and relational decision tree learner Tilde. However, the lack of
statistical significance in the results compared to simple aggregation led us to reconsider
our approach with respect to overfitting.

This led to the Caraf system, based on Random Forest models, adapted to the
relational setting, rather than single decision trees, and simplified random hill-climbing
algorithms to explore the complex aggregate search space. Experimental results on real-
world datasets showed significant improvements over both Relaggs simple aggregates
in combination with attribute-value Random Forests, and the Forf extension of Tilde
to complex aggregation and Random Forests.

This extension to Random Forests can be used for feature selection processes, by
identifying the most relevant aggregation processes for the classification task at hand.
An extension to “fuzzy” aggregates can be considered, to palliate the excessive precision
of complex aggregate features. An extension to nested relationships, as described in
Section 3.3, will be necessary to handle more complex data. The inclusion of complex
aggregate features in other kinds of models, such as logistic or linear regression, may
be interesting. Indeed, complex aggregates are mostly numerical, which makes regres-
sion models obvious candidates for combination with complex aggregates. Finally, a
potential domain of application of the relational setting and complex aggregates: multi-
dimensional data and in particular spatio-temporal data, will be presented in Chapter
7.

96 CHAPTER 4. Stochastic Heuristics for Complex Aggregates Learning

Part II

Adaptation to Context Change
with Reframing

Chapter5
Pairwise Naive Bayes Classifiers and
Output Reframing

This chapter presents an algorithm for multi-class cost-sensitive classification purposes.
The resulting model relies on thresholds on the output of multiple binary models that
can be modified to adapt to different contexts, which constitutes an example of output
reframing.

As defined in Section 2.1, a multi-class classification task is a supervised learning task
where the output attribute Y is categorical, i.e. its domain is a finite, unordered, set
of values, and this set of values contains strictly more than two elements. This opposes
multi-class classification, where there are at least 3 classes, to binary classification, which
involves only two possible class values.

Cost-sensitive classification introduces in the learning process a new element, called
the cost matrix, which represents the penalty associated to every kind of classification
error, i.e. how serious is each type of error. Thus, cost-sensitive classification does not
rely on the usual error rate as a loss function, but on the total misclassification cost over
the test dataset. This setting is relevant for many classification tasks. For instance, in a
medical binary classification task, where we learn a model to classify a patient as sane
or sick, classifying a sick patient as sane is worse than classifying a sane patient as sick.

We propose to tackle these two combined tasks by addressing the multi-class aspect
with a binarization approach, i.e. reducing the original multi-class problem to several
binary classification tasks. We then deal with the cost-sensitive aspect in every binary
sub-problem. To achieve this, we rely on soft classifiers, which output a score for each
class value, rather than a “hard” class prediction. This scoring approach combines well
with binarization, since in a binary problem, a scorer outputs only one, probability-
related score. This scoring model is versatile, since its output has to be interpreted to
give a final “hard” prediction. The output score can be reframed. To do so, we rely
on a threshold for each binary scorer, to turn the score into a class prediction. These
thresholds, optimized according to the costs associated to the task, are embedded in the
reframed model and can be tuned to adapt to the context, without modifying binary

99

100 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

classifiers. In this way, our approach allows for output reframing.
This chapter is organized as follows: in Section 5.1, we detail background on multi-

class classification and associated binarization approaches, and on cost-sensitive learning
with a ROC analysis interpretation. In Section 5.2, we review related work and state-
of-the-art approaches we will compare to. In Section 5.3, we present our method to
perform multi-class cost-sensitive classification. In Section 5.4, we perform an experi-
mental comparison between our method and the state-of-the-art approaches. Finally, in
Section 5.5, we present the use of our method in a reframing context.

5.1 Background on Multi-Class and Cost-Sensitive Classi-
fication Tasks

The algorithm presented in this chapter tackles a double issue: on the one hand, multi-
class classification, on the other hand, cost-sensitive learning. Several approaches to
multi-class classification exist: most attribute-value learning algorithms for classifica-
tion, such as decision trees, were originally designed for the binary case, and were later
extended to handle more than two classes. One approach consists in splitting the multi-
class task into several binary tasks. This idea is called binarization and we will focus on
it.

Similarly, most learning algorithms are designed to optimize accuracy performance,
with no possibility to take costs into account. Nevertheless, classifiers that rely on scores
can achieve cost-sensitive learning. This can be achieved by reweighting the class-wise
scores according to costs.

In this section, we provide background elements on these two aspects.

5.1.1 Binarization Approaches for Multi-Class Classification

Multi-class classification is a particular family of classification tasks, i.e. supervised
learning where the domain of the output attribute is a finite, unordered, set of values.
Let us remind that we denote by Y the output attribute. In a classification task, we
denote by C the number of possible values for the output attribute. Since, we are in a
multi-class setting, we have C > 3 and we denote by {y1, y2, · · · , yC} the domain of the
output attribute Y , i.e. the set of its possible values.

The binarization approach consists in splitting the main multi-class task into several
binary tasks: instead of learning a single multi-class model, several binary models are
built for the sub-tasks. The multi-class model consists in the set of these binary models.
To achieve a global multi-class prediction, each model outputs a prediction, either a
“hard” prediction or a score for one predefined class among the two at hand, and these
predictions are recombined into a final prediction for the multi-class task.

A general framework for binarization techniques is Error-Correcting Output Codes
(ECOC), presented in (Dietterich and Bakiri 1995). The aim is to encode each class in
a binary string. Table 5.1 shows this binarization setting for a 3-class dataset, the class
encodings being given in rows. All strings, composed of zeros and ones, have the same

5.1. Background on Multi-Class and Cost-Sensitive Classification Tasks 101

length. The bits with the same index over all strings, i.e. columns of the Table, define
a binary classification task: classes that have a zero at a given index in their encoding
will constitute the negative class, while classes with a one in their encoding at this
index will constitute the positive class. A model is be trained for each binary sub-task.
Then, classification of a new example is achieved as follows: each binary model makes a
prediction, either a “0” or a “1”. The concatenation of these predictions gives a binary
string, a multi-class prediction, which is matched to the closest string representation of
a class to give the final prediction.

Table 5.1 – Exhaustive binarization with ECOC for a 3-class task.

Class
Task

p1 p2 p3 p4 p5 p6 p7 p8

y1 0 0 0 0 1 1 1 1
y2 0 0 1 1 0 0 1 1
y3 0 1 0 1 0 1 0 1

To find the encoding, the basic method is the exhaustive one: all possible binary
sub-tasks achievable from the original training set are generated. Each column defines
a binary sub-task. At first sight, there are 2C binary problems, each class having the
possibility to be either negative or positive. However, the first and last columns do not
define binary tasks, since all classes are either negative (first column) or positive (last
column). Moreover, the rest of the columns define complementary pairs: for instance,
p2 and p7 define the same task, since all classes that constitute the positive class in p2
define the negative class in p7 and vice versa. Thus, only half of the remaining columns
are useful, and each class can be encoded using a string of length 2C−1 − 1, highlighted
in yellow in Table 5.1.

The binary encoding of a class corresponds to the associated row, i.e. class y1 is
encoded by “000”, y2 by “011”, and y3 by “101”. The columns define three binary
sub-problems:

• p2: y3 (positive) VS y1 ∪ y2 (negative)

• p3: y2 (positive) VS y1 ∪ y3 (negative)

• p4: y2 ∪ y3 (positive) VS y1 (negative)

Each binary model outputs a hard prediction, either for the positive class or the
negative class. A correspondence is made with a one or a zero, and a binary string is built
based on the predictions. This predicted binary string is compared to the class encodings,
and the predicted class is the one whose encoding is the closest to the predicted binary
string. The distance between two binary strings is usually measured with Hamming
distance, which is the number of differing bits between the two strings. If we consider
two strings a and b of length n, where si corresponds to the ith bit in string s, Hamming
distance is defined as:

102 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

Hamming(a, b) =
n∑

i=1

ai ⊕ bi

with ⊕ the exclusive OR operator, which is 0 when the elements are the same, and
1 when they are different.

Given a prediction string p of length n = 2C−1 − 1, and denoting by enc(yk) the
encoding of class yk, the predicted class Ŷ is:

Ŷ = ym with m = argmin
16k6C

(Hamming(enc(yk), p))

A particular case of the ECOC setting is the one-versus-all binarization setting. This
consists in defining, for a C-class problem, C binary sub-problems in which one class is
the positive class, while all the others constitute the negative class. Table 5.2 shows the
ECOC representation of this setting for a 4-class task.

Table 5.2 – ECOC representation of the one-versus-all setting for a 4-class task.

Class
Task

p1 p2 p3 p4

y1 1 0 0 0
y2 0 1 0 0
y3 0 0 1 0
y4 0 0 0 1

The construction of the ECOC setting implies that every binary sub-task considers
all the classes, either on the positive side or on the negative side. An extension of ECOC
to ternary codes allows to leave classes aside. For each sub-task, classes belonging to the
positive class are denoted with “1”, classes belonging to the negative class are denoted
by “-1”, and classes left aside are denoted by “0”. A particular case of this setting is the
one-versus-one, or pairwise, binarization setting, discussed in (Fürnkranz 2002). For
a C-class problem, it defines one binary sub-problem per pair of classes, one being the
positive, the other being the negative. Table 5.3 shows the ternary ECOC representation
of the one-versus-one setting, still on a 4-class task.

Table 5.3 – Ternary ECOC representation of the one-versus-one setting for a 4-class task.

Class
Task

p1 p2 p3 p4 p5 p6

y1 1 1 1 0 0 0
y2 -1 0 0 1 1 0
y3 0 -1 0 -1 0 1
y4 0 0 -1 0 -1 -1

To obtain a final, multi-class, prediction, a classic recombination method is to con-

5.1. Background on Multi-Class and Cost-Sensitive Classification Tasks 103

sider each individual, binary prediction as a vote for the corresponding class, and to
use as final prediction the class which received a majority of votes. Let us denote by
Myi,yj the binary model learned with class yi as positive and class yj as negative, with
1 6 i < j 6 C. Let us consider a test example t in our 4-class example task. One binary
model predicts one of the two classes it is in charge of, and these predictions, or votes,
are as follows:

• My1,y2(t) = y1

• My1,y3(t) = y3

• My1,y4(t) = y1

• My2,y3(t) = y3

• My2,y4(t) = y2

• My3,y4(t) = y3

Class y1 is predicted twice, class y2 is predicted once, class y3 is predicted three
times, and class y4 is never predicted. Therefore, the majority vote process leads to the
final prediction of class y3 for example t.

The number of models learned in the pairwise setting is C · (C − 1)/2, which is
quadratic with respect to the number of classes, unlike the one-versus-all setting where
the number of models grows linearly with the number of classes. However, in the pairwise
setting, only subsets of the original training set are used to train the models, since the
examples that do not belong to one of the two involved classes are discarded, while in the
one-versus-all setting, all training examples are used in every sub-problem. This makes
up for the higher number of models to learn, and this higher number allows to introduce
more parameters, which will prove useful to adapt to the cost-sensitive setting.

5.1.2 Cost-Sensitive Learning: a ROC Analysis Point of View

In some learning tasks, classification errors are not equal, and the performance is not
measured by the error rate, which considers equally all types of errors. These tasks are
referred to as cost-sensitive learning, for which (Elkan 2001) gives an introduction. For
a C-class classification problem, we associate a C × C matrix, called the cost-matrix.
The element (i, j) of the cost matrix, denoted by Cost(i, j) is the cost of classifying in
class yj an example of actual class yi. Depending on the context, we may use the class
label instead of the index to refer to an element of the cost matrix, i.e. Cost(yi, yj) =
Cost(i, j). Usually, diagonal elements of the cost matrix are zeros, i.e. a good prediction
(classifying into class yi an example of actual class yi) is not penalized. In the classic
learning framework, where performance is based on accuracy, the cost matrix has ones
out of the diagonal, indicating that all errors have the same cost, as shown on Table 5.4.

We reuse the medical diagnosis task, where classifying a patient as sick when he is
actually sane is different from classifying a patient as sane when he is actually sick. This

104 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

Table 5.4 – Cost matrix for C classes in the classic learning framework.

Actual
Predicted

y1 y2 · · · yC

y1 0 1 · · · 1
y2 1 0 · · · 1
...

...
...

yC 1 1 · · · 0

difference can be modeled by a cost matrix, such as the one shown on table 5.5. If the
cost of misclassifying a sane patient as sick is 1, then the cost of misclassifying a sick
patient as sane has a bigger order of magnitude, 10 for instance.

Table 5.5 – Possible cost matrix for the binary medical task.

Actual
Predicted sane sick

sane 0 1
sick 10 0

To perform prediction in a cost-sensitive context, a way is to consider a scoring clas-
sifier M which outputs class probabilities. Usually, this is not the case, scoring classifiers
output class scores, which are not necessarily probabilities. The operation transforming
scores into probabilities is called calibration. Let us consider we can perform such an
operation and that we have access to posterior probabilities for each class, i.e. predicted
probabilities, we omit the calibration operation and consider the model M outputs a
vector of posterior probabilities. For an example t, the score given by model M for class
yi is denoted by M(t, yi), while the final “hard” class prediction of the model is denoted
by M(t). Probability for predicting class yi is then pi(t) = M(t, yi). These probabili-
ties do not take into account the cost-sensitive setting, but they allow to compute an
expected cost for each class, i.e. the average misclassification cost expected if a given
class is predicted. Formally:

ExpectedCost(t, yj) =
C∑
i=1

pi(t) · Cost(i, j)

The element pi(t) · Cost(i, j) of the sum is interpreted as the cost induced by the
prediction of yj when the example is of actual class yi, weighted by the probability that
the example is actually of class yi. Summing over all classes, we obtain the expected
cost, the risk induced by the prediction of class yj . The predicted class should then be
the one minimizing this risk, i.e.

5.1. Background on Multi-Class and Cost-Sensitive Classification Tasks 105

M(t) = yk such that k = argmin
16j6C

(ExpectedCost(t, yj))

Another way to achieve cost-sensitive prediction is to find a weight for each class,
denoted by wi for class yi, and to predict the class maximizing the weighted score, i.e.

M(t) = yk such that k = argmin
16j6C

(wj · pj(t))

In binary classification, this approach boils down to find an optimal threshold: if we
consider a binary model, outputting two probabilities, one for each class, p1 and p2. Let
us consider the associated weights w1 and w2. The prediction process works as follows:

M(t) =

{
y1 if w1 ·M(t, y1) > w2 ·M(t, y2)

y2 if w1 ·M(t, y1) < w2 ·M(t, y2)

Since we deal with probabilities, we have p2 = 1 − p1. Therefore, the prediction
function can be rewritten as:

M(t) =

{
y1 if M(t,y1)

1−M(t,y1)
> w2

w1

y2 otherwise

Denoting W = w2/w1, we only have one score to consider, the fraction of the two
original probabilities, and so only one threshold, the ratio W of the two original class
weights.

In this binary classification context, this decision process based on scores and the
choice of an optimal threshold can be graphically represented by the Receiver Operating
Characteristic, abbreviated in ROC curve. Let us consider a deployment dataset, with
18 examples, 10 positive and 8 negative. A scoring model gives, for each example, the
scores shown in Table 5.6, for instance according to the method presented above.

Table 5.6 – Examples of the sample dataset and scores associated to them.

Class n n n p n p n p n
Score 0.05 0.1 0.15 0.18 0.2 0.21 0.22 0.25 0.3
Class n p p p n p p p p
Score 0.33 0.35 0.4 0.5 0.65 0.7 0.75 0.8 0.9

ROC curve construction is based on the variation of the decision threshold, which
induces a variation of the hard predictions for the examples, illustrated by an evolution
in the confusion matrix, and of the performance metrics. In this binary problem, the
confusion matrix has size 2× 2 as shown in Table 5.7. The notations of the matrix are:

True Positives - TP: Actual positives well classified as positives.

False Negatives - FN: Actual positives misclassified as negatives.

106 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

False Positives - FP: Actual negatives misclassified as positives.

True Negatives - TN: Actual negatives well classified as negatives.

Table 5.7 – General confusion matrix for binary classification.

Actual
Predicted p n

p TP FN
n FP TN

From these notations, we define:

True Positive Rate - TPR: Ratio of well classified positives over all positives, i.e.
TPR = TP/(TP + FN)

False Positive Rate - FPR: Ratio of misclassified negatives over all negatives, i.e.
FPR = FP/(FP + TN)

The ROC curve is then the graphical representation of the evolution of the true
positive rate TPR with respect to the false positive rate FPR when the decision threshold
between negatives and positives varies, as shown in green on Figure 5.1. Concretely, we
first consider the threshold to be lower than the lowest score in our dataset. All examples
are then classified as positives, since all scores are above the threshold. This is illustrated
by the confusion matrix from Table 5.8a: all examples are counted in the first column,
counting examples predicted positive. True positive rate and false positive rate both
equal 1, so the first point of the ROC curve is (1, 1).

Then, we increase the threshold to 0.07, so that the prediction for the example with
the lowest score changes. It is now predicted as a negative and is counted in the second
column, as a true negative since it is an actually negative example. As shown in the
confusion matrix in Table 5.8b, TPR is still 1, but FPR has decreased to 7/8 = 0.875.
This gives the second point of the curve at (0.875, 1).

We keep increasing the threshold this way, shifting progressively all predictions from
positive to negative. For instance, threshold 0.34 corresponds to the point (0.125, 0.7),
as can be induced from Table 5.8c.

The final point is reached when all examples are classified as negative, i.e. when they
are all counted in the second column, as shown in Table 5.8d. True positive rate and
false positive rate are then both 0, and the curve ends at (0, 0).

In this example, the aim is to find the optimal decision threshold according to
accuracy. The ROC curve allows to achieve this graphically. We denote by π =
(TP +FN)/(TP +FN +FP +TN) the proportion of positive examples in the dataset,
also called prior positive probability. Then, the following holds:

5.1. Background on Multi-Class and Cost-Sensitive Classification Tasks 107

Table 5.8 – Confusion matrices on our sample dataset for different threshold values.

(a) Threshold = 0
TPR = 1
FPR = 1

A
P p n

p 10 0
n 8 0

(b) Threshold = 0.07
TPR = 1
FPR = 0.875

A
P p n

p 10 0
n 7 1

(c) Threshold = 0.34
TPR = 0.7
FPR = 0.125

A
P p n

p 7 3
n 1 7

(d) Threshold = 1
TPR = 0
FPR = 0

A
P p n

p 0 10
n 0 8

False positive rate

Tr
ue

po
sit

iv
e
ra
te

0 1
0

1

Figure 5.1 – ROC curve for the sample dataset.

Acc =
TP + TN

TP + FN + FP + TN

=
TP

TP + FN
· TP + FN

TP + FN + FP + TN
+

TN

FP + TN
· FP + TN

TP + FN + FP + TN

= π · TPR+ (1− π) · (1− FPR)

Accuracy is a linear combination of TPR and FPR, so in the ROC space, points with
same accuracy are a line. An iso-accuracy line is then defined by the equation:

TPR =
1− π

π
· FPR+

Acc

π
− 1− π

π

108 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

This implies all iso-accuracy lines are parallel, since they all have the same slope
(1−π)/π. The best threshold, accuracy-wise, is the one corresponding to the point placed
on the ”tangent” iso-accuracy line, i.e. the line crossing the ROC curve in only one point,
which corresponds to the highest accuracy achieved by the model on the examples set.
On Figure 5.1, it is shown in brown, corresponds to an accuracy 14/18 ≈ 0.78, and to the
point associated to the confusion matrix shown in Table 5.8c. The optimal accuracy-wise
threshold lies between 0.33 and 0.35.

The ROC curve also allows to find an optimal threshold with respect to cost mini-
mization. We introduce a 2× 2 cost matrix. This matrix has two non-zero elements out
of the diagonal, the cost of a false positive, and the cost of a false negative. We fix the
latter to 1, while the former is a variable c, as shown in Table 5.9.

Table 5.9 – Possible cost matrix for the binary medical task.

Actual
Predicted p n

p 0 1
n c 0

Three possible cases arise:

c = 1: Both types of error cost the same, this is the accuracy-based case discussed above.

c > 1: Misclassifying a negative as positive has a higher cost. The threshold may be set
to classify more negatives accurately.

c < 1: Misclassifying a positive has a higher cost. The threshold may be set to classify
more positives accurately.

Average cost of misclassification on the dataset can be expressed as follows:

AvgCost =
FN + c · FP

TP + FN + FP + TN

=
FN

TP + FN
· TP + FN

TP + FN + FP + TN
+ c · FP

FP + TN
· FP + TN

TP + FN + FP + TN

= π · (1− TPR) + c · (1− π) · FPR

Like in the accuracy-based task, iso-cost curves are lines in the ROC space, defined
by:

TPR = c · 1− π

π
· FPR− AvgCost

π
+ 1

For a given c, iso-cost lines are parallel, and the optimal threshold can be chosen
in the same way as for accuracy. On Figure 5.1, the red line corresponds to c = 0.2,
more positives are to be classified correctly, thus the optimal threshold is lower than
for accuracy and lies between 0.15 and 0.18. The blue line corresponds to c = 5, more

5.2. Related Work 109

negatives are to be classified correctly, thus the optimal threshold is higher than for
accuracy and lies between 0.65 and 0.7.

In this chapter, the aim will be to extend the idea of a cost-sensitive decision threshold
in binary classification to the multi-class setting, thanks to the pairwise binarization
method.

5.2 Related Work

Some existing approaches focus on modifying the balance between classes in the training
set by sampling the instances or assigning weights to the instances, e.g. (Brefeld, Geibel,
and Wysotzki 2003). Few approaches try to address multi-class cost-sensitive tasks by
binarization techniques and decision threshold setting. Here are state-of-the-art works
that deal with this topic.

(Lachiche and Flach 2003) presents a method, denoted by “LF” in the experimental
comparison, based on threshold optimization which is adapted to cost-sensitive problems.
This one-versus-all approach looks for one threshold per class, one class after another.
An ordering of the classes is defined, according to the decreasing order of their proportion
in the training set: the first class in the ordering will be the one most represented in the
set, while the last will be the least represented.

Then, the threshold for the first class is set to 1, and the threshold of a given class
will be optimized according to the ones, already found, of the previous classes in the
ordering. Formally, for a C-class problem, we denote by o : J1;CK −→ J1;CK the inverse
ordering function mapping the indexes of classes in the ordering to the original class
indexes, e.g. yo(1) corresponds to the first class in the ordering. The algorithm looks for
a set of weights {wi|1 6 i 6 C} with wo(1) = 1.

A multi-class scoring model is learned on the training set. For each example, it
outputs a vector of C scores, one for each class, we denote by si(t) the score associated
to class yi for example t. The aim is to find the weights so that the weighted scores
wi · si(t) lead to the best predictive performance for example t, given that the hard
prediction will be the class for which the weighted score is maximal, as defined in the
previous section.

Each weight is optimized in a binary context: for class of index j > 2 in the ordering,
the aim is to optimize the weight wo(j) associated to class yo(j), in a context where yo(j)
is the positive class, and the negative class is composed of all previous classes in the
ordering, i.e.

⋃
16i<j

yo(i). Possible weights are defined according to the training examples

from the involved classes, each weight is associated to an example, corresponding to the
modified scores which causes its predicted class to switch between positive and negative.
To optimize wo(j), the score for the positive class associated to example t is taken as
wo(j) · so(j)(t), the weighted score for class yo(j). For the negative class, the score is
taken as the maximum weighted score for the classes composing the negative class, their
associated weights having already been set. The switch point is reached when both
scores are equal, i.e.

110 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

wo(j) · so(j)(t) = max
16i<j

wo(i) · so(i)(t)

Candidate weight:
max
16i<j

wo(i) · so(i)(t)

so(j)(t)

A candidate weight is defined for each example t in the training set restricted to
examples of the involved classes, and evaluated on this subset according to the goal loss,
error rate or cost on the training set. The process finishes when weights have been set
for all classes.

(Bourke et al. 2008) presents an approach similar to the previous one, denoted by
“MC” in the experimental comparison, but resulting in a binary decision tree. There is
exactly one leaf per class, and each node of the decision tree makes a split between the
classes at hand. First, a multi-class scoring model is learned using the whole training
set, it outputs a vector of scores in the same way as in the previous approach. At the
root node, the set of all classes is split into two subsets, with approximately the same
size in terms of examples in the training set. These subsets define two “meta-classes”, a
binary context in which the aim is to find an optimal threshold to separate the examples
according to the meta-classes and a cost matrix, i.e. examples with a given class should
fall in the subset of examples associated with the meta-class their original class belongs
to. Formally, if we denote by S = {y1, y2, · · · , yC} the set of classes, the meta-classes
S1 and S2 are defined such that S1 ∩ S2 = ∅ and S1 ∪ S2 = S, i.e. all classes belong to
exactly one meta-class.

The score of an example for each meta-class is computed as the sum of the scores
obtained from the model for the classes associated to the meta-class. For an example t,
the scores for the meta-classes are defined as:

sS1(t) =
∑

i|yi∈S1

si(t)

sS2(t) =
∑

i|yi∈S2

si(t)

The score associated to an example is the ratio of these two scores, which defines the
switch point for this example, and thus the associated threshold. The optimal threshold
value is then optimized according to the binary classification task defined by the meta-
classes. In a cost-sensitive setting, a misclassification cost between the two meta-classes
has to be defined. It is taken as the average misclassification cost of all pairs of classes
that do not belong to the same meta-class, i.e.

5.2. Related Work 111

MetaCost(S1, S2) =
∑

i|yi∈S1

∑
j|yj∈S2

Cost(i, j)

MetaCost(S2, S1) =
∑

i|yi∈S1

∑
j|yj∈S2

Cost(j, i)

Training examples are classified according to the candidate decision threshold, which
defines a 2×2 confusion matrix with respect to the meta-classes as shown in Table 5.10.

Table 5.10 – Confusion matrix for meta-classes.

Actual
Predicted

S1 S2

S1 N11 N12

S2 N21 N22

The optimal threshold value is the one leading to the minimal meta-cost:

MetaCost = N12 ·MetaCost(S1, S2) +N21 ·MetaCost(S2, S1)

This process is repeated in the children branches, i.e. on the subset of classes which
defined the meta-classes in the parent node, until all classes have been separated, defining
the leaves of the tree. A new test example is classified by the tree according to the scores
predicted by the multi-class scorer, which defines the scores for the meta-classes that
will be used for comparison with the threshold. Depending on the outcome of this
comparison, the test example will be predicted as belonging to one meta-class or the
other, and will continue in one of the children branches, until it reaches a leaf giving its
final, hard, class prediction.

Finally, (Landgrebe and Duin 2007) presents a pairwise method for cost-sensitive
ROC optimization, denoted by “PG” in the experimental comparison. This pairwise
method relies on one weight per class. First, ROC curves are computed for all pairs of
classes. To reduce the dimensionality of the problem, some pairs of classes are discarded.
The discarded pairs of classes are the ones that present a low degree of interaction: in
terms of ROC analysis, this corresponds to classes that can be easily separated with
a decision threshold, i.e. the area under the associated ROC curve is high. For the
remaining pairs, an optimal decision threshold value is computed with respect to the
pairwise binary task defined by the pair, using the subset of examples belonging to one
of the two classes. This decision threshold is converted into two weights, one per class,
as sketched previously. One of the two weights is set to 1, which determines the other,
and they are then normalized so that their sum equals 1, so that weights for all pairs
are on the same scale.

As in the other approaches, a multi-class scoring model is built on the training
set. Then, all possible combinations of pairs covering all classes are generated. In each

112 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

combination, a set of class weights is defined from the pairwise weights. A combination is
then evaluated by computing the total misclassification cost it induces over the training
set. This is done by using as predicted class for each example the class for which the
weighted score, defined previously for each class as the product of the class weight and
the class score given by the scoring model, is maximal. The weights associated to the
best combination are considered the optimal weights and will the be used for prediction
on test examples.

These methods have in common the concept of using one weight per class, while we
want to introduce one threshold per pair of classes, which will result in a more expressive
model since it will rely on more parameters. Therefore, we expect it to perform better
on more complex problems such as cost-sensitive tasks.

5.3 Pairwise Classification with Threshold Optimization

In this section, we present our approach for multi-class cost-sensitive classification. It
is based on an association between pairwise binarization using a scoring classifier as the
base binary model, and threshold optimization to obtain predictions from these scores.
As a base model, we will consider the use of a Naive Bayes classifier, that we presented
in Section 2.1. Since we use a pairwise approach, our method will introduce one Naive
Bayes classifier per pair of classes, i.e. for a C-class problem, C·(C−1)

2 classifiers will be
learned.

For each pairwise binary Naive Bayes classifier, we will refer to the two classes by
the terms “positive” and “negative” class. There is a binary classifier for each pair of
classes, one class being the positive class, the other being the negative. In the context
of the classifier handling classes yi and yj , with 1 6 i < j 6 C, the former will be
the positive class and the latter will be the negative one. We denote the class scores
it returns for an example t by sij,p(t) and sij,n(t) for the positive and negative class
respectively. Moreover, we consider the scores sij,p(t) and sij,n(t) are normalized, i.e.
sij,p(t) + sij,n(t) = 1, which is the case in the Weka implementation of Naive Bayes we
use. Therefore, we will focus on only one of the two scores, since the value of one score
is determined by the value of the other. We keep the score for the positive class, i.e. for
class yi and simplify the score notation as sij(t) = sij,p(t). By construction, the higher
sij(t), the more likely the example is of class yi.

For each binary classifier, the aim is to find a threshold thij on score sij such that
each binary model achieves a hard class prediction. The classifier handling classes yi
and yj using decision threshold thij is denoted by Mij,thij

, and the binary prediction is
made as follows:

Mij,thij
(t) =

{
yi if sij(t) > thij

yj if sij(t) 6 thij

Under this assumption, since score sij lies between 0 and 1, a basic decision threshold
is thij = 0.5. This would be optimal if the scores were probabilities, which they are not

5.3. Pairwise Classification with Threshold Optimization 113

necessarily. Thus, an optimal decision threshold for each binary classifier has to be
found.

At the global level, i.e. the final multi-class prediction process based on the individual
predictions of all binary classifiers, a voting method is used. Each individual prediction
of the binary classifiers is considered as a vote for one of the two classes it handles, and
the predicted class is the one obtaining the majority of the votes. Formally:

M(t) = yk such that argmax
16k6C

C−1∑
i=1

C∑
j=i+1

I(Mij,thij
(t) == yk)

where I(true) = 1 and I(false) = 0

As an example, let us consider a 3-class classification task , with classes labeled “1”,
“2” and “3”, indexed by their natural ordering. According to our pairwise binarization
approach, three binary classifiers are introduced. For each classifier, the score returned
is the confidence score for the class with the lowest label. Figure 5.2 shows the prediction
process for a new test example. First, the classifier handling classes 1 and 2 returns a
score for the example of 0.5, while the decision threshold is 0.2. Since the score is above
the decision threshold, the classifier votes in favor of the example being predicted as
from class 1. The same process is applied for the classifier handling classes 1 and 3: the
example score 0.9 is above the decision threshold 0.7, thus this classifier votes in favor
of class 1. Finally, the classifier handling classes 2 and 3 returns a score of 0.2, below
the decision threshold 0.4, so the vote is in favor of class 3. The results of the voting
process indicate that class 1 received 2 votes, classes 3 received 1, and class 2 received
none. Thus, the final prediction for the test example is class 1.

Classifier (1,2) 2 1 ⇒ votes for 1
0.2 0.5

Classifier (1,3) 3 1 ⇒ votes for 1
0.7 0.9

Classifier (2,3) 3 2 ⇒ votes for 3
0.40.2

score ⇒ predicts 1
0 1Decision

Threshold
Example
Score

Figure 5.2 – Illustration of the pairwise binarization and of the threshold-based voting
process.

The threshold optimization problem can be written as follows. Let us denote by
Th = (th12, th13, · · · , th1C , th23, · · · , th2C , · · · , thC−1,C) the set of thresholds for all bi-
nary classifiers. The optimal set of thresholds Thopt minimizes the misclassification cost
over the examples set D, i.e. with vY (t) the actual class value of example t:

114 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

Thopt = argmin
Th

(∑
t∈D

Cost(vY (t),M(t))

)

For one binary classifier, the set of possible thresholds is the set of the scores of all
examples. Indeed, as explained previously, a change of cost over the set of examples
occurs when the predicted class of an example switches, i.e. when the threshold value
passes from below the score of the example to above. Thus, in a dataset with n exam-
ples, if we consider a threshold value increasingly sweeping over the threshold range, at
the beginning n examples are predicted positive, and 0 at the end of the sweep. Thus,
there can be up to n + 1 candidate thresholds, if we consider all examples for candi-
date thresholds in every binary classifier. Therefore, with n+ 1 possible thresholds per
classifier, for C·(C−1)

2 classifiers, the count of possible threshold sets |Th| is

|Th| = (n+ 1)
C·(C−1)

2

With a high number of classes or instances, the exhaustive exploration of all combi-
nations is impossible to achieve in an acceptable duration. This is the reason why we
will reduce the search space: instead of searching for an optimal set of thresholds, we will
look for an optimal threshold at the level of the binary classifier, i.e. set all thresholds
independently. In other words, we look for a set of optimal thresholds rather than an
optimal set of thresholds. With this approach, the size of the search space is no longer
exponential with respect to the number of classes, but quadratic:

|Threduced| = (n+ 1) · C · (C − 1)

2

To find an optimal threshold at the binary classifier level, we propose two approaches:
the first one only uses examples from the classes handled by the given binary classifier to
optimize the associated threshold. The second approach takes advantage of all examples
in order to optimize every individual threshold.

Our first approach, denoted by “Pairwise” in the experimental comparison, aims
at finding an optimal threshold for each binary classifier. Let us focus on one binary
classifier Mij,th, handling classes yi and yj . Let us consider an example set D used to
optimize the thresholds, it can be the original training set used to train all the binary
classifiers, or a different deployment dataset, if the goal is to adapt the thresholds to a
new context.

In this approach, the thresholds are optimized using the subset of examples Dij ⊆ D
containing the examples fromD with classes yi and yj , i.e. Dij = {d ∈ D|vY (d) ∈ {yi, yj}}.
The set of possible thresholds, denoted by Thij , is the set of scores returned by the scoring
model for the examples in Dij , and the optimal threshold is taken as the one minimizing
the misclassification cost over the dataset Dij :

5.3. Pairwise Classification with Threshold Optimization 115

Thij = {sij(d)|d ∈ Dij}

thij,opt = argmin
th∈Thij

 ∑
d∈Dij

Cost(vY (d),Mij,th(d))

If the minimum is not unique, i.e. several threshold values achieve the same minimal

cost, the median of the candidate values is taken as the optimal threshold. The pseudo-
code for this optimization procedure is shown in Algorithm 5.1. Rather than computing
the total cost over the whole examples set for each threshold value, which would result
in a quadratic complexity with respect to the number of examples, we first sort the
examples according to the associated score as returned by the scoring model, as stated
in line 6. Then, the loop over the examples, from line 10 to 20, sweeps over the candidate
thresholds in increasing order. The initial cost corresponds to the cost of all examples
being classified as yi. Indeed, for a threshold lower than all example scores, all examples
will be predicted as yj , therefore the initial cost can be computed as shown on line
7. Then, when considering the next candidate threshold, the associated example will
switch from being predicted as yi to being predicted as yj . Thus, the total cost is
modified according to the difference of cost for this example between being predicted
as yi and being predicted as yj , as shown in line 12. The most expensive operation,
computationally speaking, in this procedure, is the sorting operation, with complexity
O(n · log(n)) with respect to the number of examples, so there is a gain over the naive
approach, whose complexity is quadratic.

In an accuracy-driven task, this would be enough to set the threshold. Indeed, for
the binary classifier handling classes yi and yj , misclassifying an example of another
class yk into yi and yj is the same from an error-rate point of view. This is not true
in a cost-sensitive task, since the cost of misclassifying an example of class yk into class
yi, the element Cost(yk, yi) of the cost matrix, is not necessarily the same as the cost
of misclassifying an example of class yk into class yj , the element Cost(yk, yj) of the
cost matrix. Thus, we propose a second threshold optimization approach, denoted by
“PairwiseAll” in the experimental comparison, which uses all examples for each threshold
optimization instead of using only the examples from the two classes that are to be
separated by the threshold. In other words, instead of using subset Dij to find candidate
threshold values and minimize the total cost over a set of examples, we use the whole
examples set D. Formally, the set of possible thresholds and the cost minimization
problem are now expressed as follows:

Thij = {sij(d)|d ∈ D}

thij,opt = argmin
th∈Thij

(∑
d∈D

Cost(vY (d),Mij,th(d))

)

116 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

Algorithm 5.1 Find optimal threshold for classifier handling classes yi and yj using
only examples from classes yi and yj .

1: Input: D: examples set, Mij : scoring model - handling classes yi and yj , Cost: cost
matrix.

2: Output: thij : optimal decision threshold for model Mij .

3: Dij ← {d ∈ D|vY (d) ∈ {yi, yj}}
4: nij ← size(Dij)
5: exThresh =

(
(d1, sij(d1)), · · · , (dnij , sij(dnij))

)
← set of couples binding examples

from Dij to their associated score as returned by Mij

6: Sort exThresh by score, exThresh←
(
(do(1), sij(do(1))), · · · , (do(nij), sij(do(nij)))

)
7: cost ←

∑
d∈Dij

Cost(vY (d), yi)
8: minCost ← cost
9: bestThresholds ← [0]

10: for k=1 to nij do
11: threshold ← sij(do(k))
12: cost ← cost - Cost(vY (do(k)), yi) + Cost(vY (do(k)), yj)
13: if cost 6 minCost then
14: if cost < minCost then
15: bestThresholds ← []
16: minCost ← cost
17: end if
18: bestThresholds.Add(threshold)
19: end if
20: end for
21: return thij ← Median of bestThresholds

The pseudo-code for this approach is shown in Algorithm 5.2. It is very similar
to Algorithm 5.1, the only difference being in the examples set used to optimize the
threshold: the whole set D is used in the second approach.

The two approaches do not necessarily return the same optimal threshold. Let us
consider again our 3-class classification example, described in Table 5.11. We focus on
optimizing the threshold for the classifier handling classes “1” and “2”, in a cost-sensitive
context. The examples, with their actual class and score returned by the classifier, are
shown in Table 5.11a. The associated cost matrix is shown in Table 5.11b.

Figure 5.3 shows the evolution of the total misclassification cost with respect to
the threshold value. For the Pairwise approach, it is computed using only examples
from classes 1 and 2, while for the PairwiseAll approach, all examples are used. This
explains why the total cost is higher for this approach, since examples from class 3
cannot be well classified by the classifier handling classes 1 and 2. The Pairwise approach
gives an optimal threshold of 0.15, which is lower than 0.5 and could be expected since
misclassifying an example of class 1 into class 2 costs more than misclassifying an example

5.3. Pairwise Classification with Threshold Optimization 117

Algorithm 5.2 Find optimal threshold for classifier handling classes yi and yj using
examples from all classes.

1: Input: D: examples set, Mij : scoring model - handling classes yi and yj , Cost: cost
matrix.

2: Output: thij : optimal decision threshold for model Mij .

3: n← size(D)
4: exThresh = ((d1, sij(d1)), · · · , (dn, sij(dn)))← set of couples binding examples from

D to their associated score as returned by Mij

5: Sort exThresh by score, exThresh←
(
(do(1), sij(do(1))), · · · , (do(n), sij(do(n)))

)
6: cost ←

∑
d∈D Cost(vY (d), yi)

7: minCost ← cost
8: bestThresholds ← [0]
9: for k=1 to n do

10: threshold ← sij(do(k))
11: cost ← cost - Cost(vY (do(k)), yi) + Cost(vY (do(k)), yj)
12: if cost 6 minCost then
13: if cost < minCost then
14: bestThresholds ← []
15: minCost ← cost
16: end if
17: bestThresholds.Add(threshold)
18: end if
19: end for
20: return thij ← Median of bestThresholds

Table 5.11 – 3-class cost-sensitive example dataset.

Class 2 2 3 2 1 3 2
Score 0 0.05 0.1 0.15 0.2 0.35 0.4
Class 3 1 1 2 3 1 1
Score 0.5 0.65 0.7 0.8 0.9 0.95 1

(a) Examples from the 3-class cost-sensitive sample dataset and associated scores returned by
the scoring model handling classes 1 and 2.

Actual
Predicted 1 2 3

1 0 3 3
2 1 0 4
3 4 2 0

(b) Cost matrix associated to the 3-class classification task.

118 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

of class 2 into class 1. Thus the optimization will prefer a threshold classifying as well
as possible the examples from class 1. This can be observed in the figure: according
to the blue curve, all examples from class 1 are well-classified by the threshold, while
two examples from class 2 are misclassified. The PairwiseAll approach gives an optimal
threshold of 0.5, which is higher than the one obtained with the Pairwise approach.
This is explained by the influence of the examples from class 3, now taken into account.
Indeed, misclassifying an example from class 3 into class 1 costs more than misclassifying
it into class 2. Thus, this difference in cost will be considered by the optimization process,
and the optimal threshold value increases so that the examples from class 3 are classified
into class 2 rather than class 1.

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

Decision threshold

C
os

t

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

2 2 3 2 1 3 2 3 1 1 2 3 1 1

0.15 0.5

Figure 5.3 – Total cost with respect to the threshold value in the threshold optimization
process for the classifier handling classes 1 and 2, for Pairwise approach (in blue) and
PairwiseAll approach (in green).

5.4. Experimental Results 119

5.4 Experimental Results

To measure the efficiency of our method, we ran tests on several common multi-class UCI
datasets (Lichman 2013). For every dataset, we generated 30 random cost matrices, and
for each of them, we performed a 10-fold cross-validation. The costs in the cost matrices
are 0 on the diagonal, and a random power of 10 between 1 and 1000 elsewhere to create
unbalanced costs, with all symmetric costs being different, i.e. Cost(i, j) 6= Cost(j, i).
As the performance metric, we consider the average misclassification cost over the test
set of examples. We also used Weka (Hall et al. 2009) to discretize numerical attributes,
rather than relying on a kernel to handle them.

Our tests were made using Naive Bayes from Weka as the basic classifier for all state-
of-the-art methods. We compared out two approaches “Pairwise” and “PairwiseAll”, and
the “LF”, Meta-Cost (labeled “MC”), and PairsG (labeled “PG”) described in Section
5.2. We also included in our experimental comparison the cost-sensitive extensions of
Naive Bayes and decision tree learner REPTree, included in Weka. This cost-sensitive
extension involves the cost matrix in the prediction process, by computing the expected
cost for each class as defined in Section 5.1 using the multi-class scores returned by the
base model.

The predictive performance results as measured by the average cost are presented
in Table 5.12. For each dataset, we show the average cost achieved by every approach,
along with the standard deviation around this average. Finally, the last row of the table
indicates the average rank of each algorithm over all experiments. We observe that, on
this aspect, the PairwiseAll approach is the most performant, and that the difference
with the Pairwise approach including only examples of the two classes handled by the
classifier to optimize the threshold of this classifier is quite remarkable.

Similarly, Table 5.13 shows the runtime of all algorithms on every dataset, along with
the average rank. Our approaches have more parameters to learn so it is not surprising
that they are slower than cost-sensitive Naive Bayes, which learns only one model and
use costs only for prediction. The same goes for cost-sensitive decision trees, “LF” and
Meta-Cost which train only one model, the two latter having less parameters to optimize
than our approaches. On the other hand, the coverings of classes the “PG” algorithm
relies on makes it very time-consuming, even when reducing the number of considered
combinations, thus it is the slowest considered approach.

To assess the statistical significance of these results, we performed a Friedman test
with 95% confidence. This test rejected the null hypothesis for both predictive per-
formance and runtime experiments. Thus, we performed a Nemenyi posthoc test to
identify the pairwise differences between methods. These results are presented as signifi-
cance graphs in Figure 5.4. Significance for predictive performance according to average
cost is shown in Figure 5.4a, showing the PairwiseAll approach significantly outperforms
all the others, while the basic Pairwise approach was outperformed by three methods in-
cluding the PairwiseAll approach. This shows that considering all examples to optimize
every threshold is meaningful.

Figure 5.4b shows the significance graph for runtime performance. As suggested by

120 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

Table 5.12 – Average cost per instance of algorithms for each dataset.

Dataset Classes CSNB CSTree LF MC Pairwise PairwiseAll PG
audiology 24 80±59 76±58 56±47 84±57 93±63 42±36 137±117

bridges-material 3 31±53 36±63 29±52 46±67 54±74 32±53 49±70
bridges-rel-l 3 27±54 29±58 26±55 41±64 49±78 21±42 32±60
bridges-span 3 39±67 50±94 66±98 63±95 89±104 57±90 60±95
bridges-type 6 96±89 136±124 71±80 103±95 105±93 56±66 111±96
colic-outcome 3 69±58 45±63 14±20 17±22 35±51 15±23 68±65

colic-site 63 212±67 206±83 141±57 217±65 194±67 106±42 215±66
colic-type 8 41±35 8±14 9±15 9±15 18±29 6±11 29±31

ecoli 8 37±34 42±37 18±21 33±32 35±47 18±18 30±29
flags 8 104±77 130±127 42±48 105±78 86±65 33±37 115±85
glass 7 102±74 75±64 38±53 80±64 61±53 26±32 79±62
postop 3 43±73 40±77 38±71 47±69 55±80 35±61 63±100

segmentation 7 37±19 10±8 51±85 27±21 35±33 30±29 25±17
solar-flare-c 8 58±41 40±43 11±9 44±42 42±44 10±8 42±32
solar-flare-m 6 18±17 12±16 5±8 12±16 32±74 5±8 13±15
solar-flare-x 3 4±8 1±3 1±2 1±3 2±4 1±2 2±6

Average rank 4.75 3.95 3.31 4.08 4.27 3.14 4.51

Table 5.13 – Average runtime of algorithms for each dataset.

Dataset Classes CSNB CSTree LF MC Pairwise PairwiseAll PG
audiology 24 5±4 8±25 48±17 196±38 342±82 1196±167 548±370

bridges-material 3 0±0 1±1 1±1 1±0 1±0 1±2 3±6
bridges-rel-l 3 0±0 0±1 0±1 1±1 1±1 1±1 3±4
bridges-span 3 0±0 0±0 0±1 0±1 1±1 1±1 3±1
bridges-type 6 0±0 0±1 1±0 2±1 3±1 6±4 16±6
colic-outcome 3 2±1 60±16 12±4 21±8 22±8 28±12 83±33

colic-site 63 23±2 67±14 228±10 1125±31 4356±332 16769±419 7608±3848
colic-type 8 4±1 60±24 29±2 78±4 102±6 245±11 627±374

ecoli 8 3±1 7±2 27±2 71±5 85±6 210±11 861±159
flags 8 1±1 5±5 10±2 26±3 32±3 75±3 469±128
glass 7 2±1 6±2 19±2 50±4 55±3 127±6 1494±87
postop 3 0±0 0±0 0±0 1±0 1±0 1±0 3±1

segmentation 7 170±9 598±106 1396±69 3644±89 4219±216 9443±276 124853±7753
solar-flare-c 8 1±1 4±1 13±2 28±3 39±3 90±5 566±137
solar-flare-m 6 1±0 3±1 9±3 20±2 25±4 49±23 155±14
solar-flare-x 3 1±0 1±0 5±1 8±1 8±1 10±2 32±2

Average rank 1.41 2.5 2.89 3.86 4.76 5.76 6.81

the previous average rank results, our methods are outperformed on time consumption,
only doing better than PairsG.

5.5 Output Reframing with Threshold Adaptation

In this section, we present an extension of our pairwise multi-class cost-sensitive algo-
rithms for reframing. The context change we consider is a change of cost matrix between
two contexts. For instance, on the Postop dataset, where the aim is to predict if the

5.5. Output Reframing with Threshold Adaptation 121

CSTree

LF

MC

Pairwise

PairwiseAll

PG

CSNB

(a) Significance graph for costs.

CSTree

LF

MC

Pairwise

PairwiseAll

PG

CSNB

(b) Significance graph for runtime.

Figure 5.4 – Significance of the experimental comparison of the multi-class cost-sensitive
learners.

patient should be kept in the hospital or not, such a change can happen between two
different hospitals. If we consider a first hospital, with a certain cost of keeping the
patient in the hospital when he is actually sane and could be sent back home, this cost
could be higher in another hospital, for instance if the hospital has less beds to receive
patients and cannot afford to take patients when it is not necessary. This is illustrated
in Table 5.14, where the costs of keeping the patients in the hospital, i.e. predicting
classes GHF (keeping the patient in the General Hospital) and ICU (sending the patient
to the Intensive Care Unit), are higher in hospital 2.

Table 5.14 – Example of cost matrix context change between two hospitals.

A
P GHF ICU home

GHF 0 2 10
ICU 5 0 20
home 2 5 0

(a) Cost matrix associated to hospital 1.

A
P GHF ICU home

GHF 0 5 10
ICU 10 0 20
home 5 10 0

(b) Cost matrix associated to hospital 2.

Output reframing with our pairwise approach consists in learning the pairwise binary
models using a training example set in the original context, and then using a few labeled
examples and the cost matrix from the deployment context to optimize the thresholds
for this deployment context. We compare this approach with the base model learned
using the training set from the original context. Therefore, this base model uses the cost

122 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

matrix from the original context to make predictions in the deployment context. We also
compare with the retraining approach, where the scoring model is learned using the few
labeled data from the deployment context, and makes predictions using the cost matrix
from the deployment context. All models are Naive Bayes classifiers as implemented in
Weka.

We compare the approaches using the average test set cost with respect to the number
of labeled instances from the deployment context used for reframing. For each dataset,
two cost matrices were randomly generated as described in the previous section, denoted
by Costtrain for the original training context, and Costdeploy for the deployment context.
Corresponding elements between the two matrices are different, i.e. Costtrain(i, j) 6=
Costdeploy(i, j). We consider the same datasets as in the previous section. To create one
dataset per context, the original dataset is separated into two halves: one standing for
the original context, the other for the deployment context. The deployment part is again
separated into two halves: one fixed test set, and one for reframing purposes. For every
considered number of reframing examples, we make 30 random draws of the appropriate
number of examples from the reframing examples set.

Figure 5.5 shows comparison results on two datasets. We observe that performance
of both retraining and our pairwise threshold optimization approach improves with the
number of deployment examples available to retrain or reframe. However, our pairwise
approach, taking advantage of the knowledge learned in the original context, performs
better than retraining.

10 20 30 40

50
10

0
15

0

Deployment Dataset Size

A
ve

ra
ge

 C
os

t o
ve

r
Te

st
 S

et

Base
Retrain
Pairwise

(a) Colic-outcome dataset.

10 20 30 40 50 60

0
50

10
0

15
0

20
0

25
0

Deployment Dataset Size

A
ve

ra
ge

 C
os

t o
ve

r
Te

st
 S

et

Base
Retrain
Pairwise

(b) Solar Flare-c dataset.

Figure 5.5 – Average cost of different reframing approaches.

5.6. Conclusion 123

5.6 Conclusion
In this chapter, we presented a pairwise approach for multi-class cost-sensitive classifica-
tion, introducing more parameters than usual state-of-the-art models to deal with this
complex dual task. The pairwise thresholding approach becomes powerful with the use
of examples of all classes to optimize the cost-sensitive threshold relative to two classes,
and allows our method to outperform state-of-the-art algorithms.

Our method is able to tackle some kinds of context changes, such as a difference
of costs, by re-optimizing the thresholds according to the deployment context. This
constitutes an example of output reframing, where thresholds on the model output are
modified in a systematic way to adapt the new context.

For other kinds of context changes, such as distribution shifts, we will consider other
families of reframing methods, focusing on input data reframing and “hard” model out-
put reframing.

124 CHAPTER 5. Pairwise Naive Bayes Classifiers and Output Reframing

Chapter6
Input and Output Reframing of
Numerical Features

In this chapter, we propose methods to perform input and output reframing of numerical
features. This is joint work with C.F. Ahmed in the context of his postdoctoral work on
the Reframe project. As presented in Section 2.3, input reframing consists in, given a
model trained in a first context, to transform the input attributes of data from another
context so that the first model is relevant for prediction on this new data. On the other
hand, output reframing consists in modifying the final prediction of the model so that
it is consistent for the deployment context.

Our proposed methods focus on reframing numerical features. As a simple motivating
example, let us consider again a temperature-based model to predict high pullover sales.
It is a binary classification task (high sales or not, true or false), with respect to a single,
numerical, input attribute. In a first city, the sales are high when the temperature is
lower than 5°C, and they are not otherwise, as shown on the target model from Figure
6.1a. In a second city, in which ”cold” has a slightly different meaning, high sales of
pullovers occur when the temperature is below 10°C, as shown on Figure 6.1b.

Temp < 5

True

tr
ue

False

false

(a) Target model for city 1.

Temp < 10

True

tr
ue

False

false

(b) Target model for city 2.

Figure 6.1 – Target models, decision-tree shaped, for pullover sales in the two context
cities considered.

125

126 CHAPTER 6. Input and Output Reframing of Numerical Features

A model is trained to perform such prediction in the context of City 1. It fits the
given target model for City 1. If we use it to predict sales on data from City 2, it will not
be as accurate, since it will fail when temperature falls between 5 and 10°C. A possible
transformation would be to substract 5 to temperatures in data from City 2, and the
original model would be accurate again. This is the intuitive idea we propose: to learn
a transformation of numerical input attributes of the deployment context so that their
values ”look like” values of the input in the original training context.

At the other extremity of the supervised learning process, the prediction of the
model can also be reframed. Since we focus on reframing numerical features, we place
ourselves in the context of regression tasks. On the pullover example, let us consider
now the regression task which consists in predicting directly the quantity of pullover sold
over a day. In the first city, pullover sales are, on average, more important than in the
second city. Figure 6.2 shows the observed distribution over a year of these daily sales
values in City 1 (in red) and City 2 (in green). In City 1, there are, on average over a
year, 100 pullover sold per day, while in City 2, there are 50.

Frequency

Sales
0 50 100 150

Figure 6.2 – Observed distribution over a year of daily pullover sales in the context of
City 1 (in red) and City 2 (in green).

Most regression models are unable to output predictions deviating from the range
of the labels in the training set they were built with. Thus, if we train a model in City
1, in which pullover sales are higher than in City 2, it will be unable to make correct
predictions on data from City 2, in which less pullover are sold. In City 2, the model
will overestimate sales. Again, a possible transformation would be to substract 50 to the
original prediction of the model, so that the output, originally closer to values from City
1, looks like an output from City 2. This is the same intuitive idea as the one behind
input reframing, but applied to the output.

Such a transformation is useful when, for instance, few labeled examples from the
deployment context are available, i.e. there is not enough labeled data to train a new
model suitable for the deployment context. Our objective is twofold: firstly, we want to
learn a useful transformation, i.e. the performance of the model trained in the original
context on data from the deployment context has to be better after reframing the data. In

6.1. Related Work 127

other words, the transformation has to make an improvement in prediction performance.
Secondly, the transformation also has to result in a performance improvement over a
model trained on the few labeled examples from the deployment context. These two
simple approaches, the original base model and retraining on deployment data, will
constitute our two comparison baselines.

The rest of the chapter is organized as follows. In Section 6.1, we present work
related to input reframing and similar tasks. In Section 6.2, we present our approaches to
perform data reframing using affine transformation of numerical features. In Section 6.3,
we compare our reframing algorithms to the baselines and the state-of-the-art algorithm
GP-RFD. In Section 6.4, we provide a real-world example of dataset shift in a regression
task, in which both input and output shifts are present. In Section 6.5, we extend our
reframing algorithms to the relational setting through the use of complex aggregates.
Finally, in Section 6.6, we conclude on our work on reframing.

6.1 Related Work
Input reframing is one way to address covariate shift. As presented in 2.3, covariate shift
corresponds to the change of input distribution while the conditional distribution of the
output given the input remains the same. Some methods developed to deal with this
kind of tasks include:

• Importance Weighted Cross-Validation (IWCV) (Sugiyama, Krauledat, and Müller
2007) is a variant of cross-validation designed to overcome the bias problem that
occurs with classic cross-validation in presence of covariate shift. It proposes a new,
unbiased estimate of the empirical risk based on weighting the individual validation
errors with an importance factor measuring the distribution shift between train and
test set, materialized by a density ratio between the two sets.

• (Bickel, Brückner, and Scheffer 2009) presents a method to learn a discriminative
model under covariate shift without explictly modeling train and test distributions,
but rather by generating a model to estimate the likelihood for an example to
belong to train or test set, and use this likelihood as example weight to train the
discriminative model.

• Kernel Mean Matching (KMM) (Gretton et al. 2009), as the name may indicate,
reweights the training data so that means of weighted training and original test
input distributions coincide in a high dimensional feature space.

However, none of these approaches are reusing a model, since they can adapt to only
one testing context, and thus need retraining to fit other deployment contexts.

Other research areas proposed methods to deal with tasks where training and test
data follow different distributions:

• Theory revision (Ourston and Mooney 1994) consists in an explicit modification of
a given model to improve its performance. The associated so-called example setting

128 CHAPTER 6. Input and Output Reframing of Numerical Features

is a rule-based model, which is made more specific or more general depending on
the examples not-covered by the current theory. This family of methods is closer
to structural reframing than input reframing which does not aim at a modification
of the model, and thus does not depend on the nature of the model.

• Transfer learning (Pan and Yang 2010) is a reuse of knowledge acquired from
learning a model in a first context, to learn a new model for a second context. It
does not reuse the model from the first context itself, but rather trains a new one
for the second context, biasing the learning phase with knowledge acquired in the
first context. Thus, it cannot be considered reframing, since reframing does not
retrain a model for the second context.

• Domain adaptation (Daumé and Marcu 2006) adopts a statistical point of view
on transfer learning. It considers changes in distributions between two or more
contexts, assuming one context is the target, the one for which we want a prediction
model. The idea is to learn several models, capturing context-specific or general
information, and to combine them to obtain an accurate target-specific model. It
is actually the opposite of reframing, in which a model is trained in a single source
context and then adapted to fit other target contexts, while domain adaptation
consists in learning models from possibly more than one context, in order to deploy
in a single target context.

A structural reframing approach has been proposed to adapt decision tree models
(Al-Otaibi et al. 2015). These versatile decision trees, rather than using “hard” numerical
thresholds in node split conditions, retain how data was optimally split in the original
context, in terms of data distribution in children branches. Thresholds in the deployment
context are then chosen to keep the data distributions equal to those of the training
context.

The approach closest to ours is the Genetic Programming-based feature extraction
for the Repairing of Fractures between Data (GP-RFD) introduced in (Moreno-Torres,
Llorà, et al. 2013). The approach aims at tackling all dataset shift tasks. Considering
two datasets, a training one and a test one differing in data distributions, a model is built
on the training dataset. Then, the algorithm looks for an optimal transformation of the
test dataset through usual genetic operators (selection, mutation, crossover), giving a
transformed test dataset on which the model learned previously can be applied. However,
this approach is highly time-consuming and requires a lot of deployment data to find
the transformation. Our approaches will overcome these limitations.

6.2 Reframing of Numerical Input Attributes

In attribute-value supervised learning, the aim is to learn a model, a functionM mapping
the input features vector to the output feature value: Ŷ = M(X). In the reframing
paradigm, we consider the existence of a model M1, trained in a first context using a
training dataset D1. In an input reframing task from the first context to a second,

6.2. Reframing of Numerical Input Attributes 129

deployment context, we have a deployment dataset D2 that cannot be used to train a
model M2 suitable for the new context. This may happen because D2 is not enough,
or not at all, labeled, i.e. only the values of the input features are accessible. Another
possibility is that the size of D2 is small, too small to train a model. This may happen
when data has to be labeled by human experts. Depending on the classification task,
labeling the data may be time-consuming or expensive.

We denote by X = (X1, X2, · · · , Xa) the vector of input attributes, i.e. an element
Xi ∈ X is an attribute, and by Y the output attribute. The respective domains of
attributes are denoted by X = X1×X2×· · ·×Xa where Xi = domain(Xi), 1 6 i 6 a, and
Y = domain(Y). Input reframing is about reusing model M1 : X −→ Y for prediction
in context 2, by learning a transformation f : X −→ X of the input feature vector, so
that the model defined by M1 ◦ f is accurate in context 2. Formally:

Context 1: Ŷ = M1(X)

Context 2: Ŷ = M1(f(X))

Figure 6.3 summarizes this process: the model is built using the training set, and
used along with the deployment set with few labeled data from the second context to
find an input transformation. This input reframing transformation is applied to test
examples before the application of the model, which outputs predictions for the test set
examples.

Training
Set Model

Deployment
Set

Input
Transfor-mation

Test Set Predictions

Figure 6.3 – Illustration of the input reframing process.

Our aim is to find such transformations for numerical attributes. We will achieve
this through simple affine transformations and stochastic optimization.

6.2.1 Affine Transformation of Numerical Input Features

We will first focus on affine transformations of numerical features. Under this assump-
tion, f follows:

f(X) = (f1(X1), f2(X2), · · · , fa(Xa))

where ∀1 6 i 6 a,

{
fi(Xi) = Xi if Xi is categorical
fi(Xi) = αiXi + βi if Xi is numerical

130 CHAPTER 6. Input and Output Reframing of Numerical Features

In other words, each numerical input feature gives two transformation parameters,
the slope αi and the intercept βi of the corresponding affine function. The challenge is
then to find a set of such parameters that optimizes the performance of model M1 ◦ f
on dataset D2.

Example 6.1. Affine reframing in a one-dimensional setting.
We consider a fictive binary classification task, based on a single input attribute.

The target model involves two levels and three splits in a decision tree. The single input
attribute, Temperature as denoted by T, is normally distributed. We assume three dif-
ferent cities, standing for three different contexts, where City 1 is the training context.
Temperature distribution, as well as target models, are shown on Figure 6.4.

T < 15

T < 13

False

tr
ue

True

false

tru
e

T < 17

False

tr
ue

True
false

false

T

13 15 17

(a) City 1.
T ∼ N (15, 22)

T < 18

T < 14

False

tr
ue

True

false
tru

e
T < 22

False

tr
ue

True

false

false

T

14 18 22

(b) City 2.
T ∼ N (18, 42)

T < 16

T < 15

False

tr
ue

True

false

tru
e

T < 17

False

tr
ue

True

false

false

T

151617

(c) City 3.
T ∼ N (15, 22)

Figure 6.4 – Target models and input attribute distribution in three context cities.

In the three contexts, target models consist of a partition of the temperature space,
i.e. R, in four intervals. One of the two classes is assigned to each interval, and the same
schema is used in the three contexts: if we consider the natural ascending ordering of the

6.2. Reframing of Numerical Input Attributes 131

four intervals, the first one corresponds to class label False, the second to True, the third
to False, and the last one to True again. As mentioned previously, temperature follows
a normal distribution in the three contexts, denoted by N (µ, σ2) with µ the mean, or
center, of the distribution, and σ its standard deviation.

The first context, i.e. City 1, is characterized as on Figure 6.4a: the cutpoints for the
intervals are located at 13, 15 and 17, while temperature is normally distributed with
mean 15 and standard deviation 2.

In the second context, City 2, described on Figure 6.4b, the temperature distribution
differs from City 1. It is now centered on 18 with standard deviation 4. We observe
that, with respect to the temperature distribution, the target model has not changed.
Indeed, the cutpoints in City 1 were located at µ−σ, µ and µ+σ, using notations from
the temperature normal distribution, and this still holds in City 2. The difference is in
the values of mean and standard deviation of the distribution. The optimal reframing
affine function f , if we have a model trained on City 1 data that we want to reuse on
data from City 2, is f(T) = 0.5 · T + 6. Then, the cutpoints of the target models from
City 2 shift to the cutpoints of City 1, and the original model is usable.

In the third context, City 3, described on Figure 6.4c, the temperature distribution
is the same as in City 1. However, the target model cutpoints are different, being
located at 15, 16 and 17. A ”perfect” affine transformation is still achievable though:
f(T) = 2 · T − 17 shifts the cutpoints correctly and makes the original model usable.

These two possible context changes show the interest of the use of an affine reframing
function to deal with distribution shifts. All reframing tasks will not have a straightfor-
ward unique solution, but the use of affine transformation, quite simple and introducing
a limited amount of parameters, will be found to perform well on a lot of reframing
tasks. �

6.2.2 Stochastic Algorithms for Reframing Numerical Input Attributes

We introduce two hill-climbing algorithms to achieve reframing of numerical input at-
tributes through affine transformations. Both are based on stochastic optimization, this
choice being motivated by the absence of convexity properties of our problem. According
to (Bergstra and Bengio 2012), this family of techniques is well-suited for this kind of
tasks. First, we describe the search space of the affine parameters and how we sample it
in stochastic processes. Then, we detail the two stochastic hill-climbing algorithms we
introduce.

Sampling of Reframing Functions Parameters

Since we use stochastic algorithms, we need to randomly sample values for slopes and
intercepts. Since they are numerical parameters, they both lie in R. However, we can
limit this search space. First, for every attribute, we consider only increasing functions,
i.e. with a strictly positive slope. This is based on the assumption that, if the model
from the training context considers at some point low values of the attribute with respect
to the range of the attribute in the training context, it should also use low values in

132 CHAPTER 6. Input and Output Reframing of Numerical Features

the deployment context, with respect to the range in the deployment context. Let us
denote, for a given numerical attribute Z, [lZ1;uZ1] its range in the training context,
and [lZ2;uZ2] its range in the deployment context. An illustration is given in Figure 6.5,
for the temperature attribute of our synthetic reframing task from City 1 to City 2. We
consider that temperature T1 in City 1 lies between 11 and 19, while it lies between 10
and 26 in City 2.

T1

T2
10 14 18 22 26
lT2

uT2

lT1

uT1

7

9

11

13

15

17

19

21

αsample · T2 + βmax

αsample · T2 + βmin

αbase · T2 + βbase

Figure 6.5 – Affine mapping of deployment context values(x-axis) to training context
values (y-axis) of an input attribute.

A basic reframing function would be the one mapping the deployment context to
the training context, since we want the input values from the deployment context to
look like values from the training context. This function, denoted by fZ,id, also gives an
initial parameter set (αZ,base, βZ,base). Formally,

6.2. Reframing of Numerical Input Attributes 133

fZ,id(x) = αZ,base · x+ βZ,base

=
uZ1 − lZ1

uZ2 − lZ2
· (x− lZ2) + lZ1

αZ,base =
uZ1 − lZ1

uZ2 − lZ2

βZ,base = lZ1 − αZ,base · lZ2

For the temperature-based task, such a function maps the interval [10; 26] to the
interval [11; 19]. As mentioned above, it is T2 7−→ 0.5 · T2 + 6, represented in red on
Figure 6.5.

From now on, we will consider optimization of parameters for a given attribute, thus
we will drop the Z reference to the attribute in our notations. In further pseudo-code,
this initialization of parameters to their basic value is instantiated by the procedure
InitParams.

The slope of the basic function is used as a baseline to optimize the slope parameter
of the reframing function, which should be the “center” of the random sampling. We
want to sample equally functions that increase faster than the baseline and function that
increase slower. Thus, we perform a uniform sampling of the logarithm of the slope, i.e.
we draw a real number from a distribution centered on zero, from a procedure denoted
by SampleAroundZero. Then, we consider a factor obtained by taking 10 to the power
of the number drawn previously, and multiply this factor with our baseline to obtain a
candidate value for the slope parameter.

k = SampleAroundZero()

αsample = 10k · αbase

As a sampling distribution, we arbitrarily use a normal distribution with mean 0 and
standard deviation 0.5, this standard deviation actually controls the deviation of the
slope around the baseline.

From this candidate, denoted by αsample, we induce a range for the intercept param-
eter. The function output should at least partially lie in the range of the attribute in the
training context. From this, we define two bounds, the minimal intercept βmin is achieved
when the function reaches the minimum value of the training context at the maximum
value of the deployment context, i.e. the function output lies in the training range only
at the end of the deployment range, formally fZ(uZ2) = αsample · uZ2 + βmin = lZ1. On
the other hand, the maximal intercept is achieved when the function reaches the maxi-
mum value of the training context at the minimum value of the deployment context, i.e.
fZ(lZ2) = αsample · lZ2 + βmax = uZ1. The bounds are then:

134 CHAPTER 6. Input and Output Reframing of Numerical Features

βmin = lZ1 − αsample · uZ2

βmax = uZ1 − αsample · lZ2

An illustration is provided in Figure 6.5: considering αsample = 0.6 · αbase, the two
lines in magenta represent the functions obtained by using either βmin as intercept (lower
line), or βmax (upper line).

We sample the intercept from a distribution centered on the average of the bounds.
More precisely, we use the following normal distribution:

βsample ∼ N
(
βmax + βmin

2
,
βmax − βmin

4

)
This sampling of parameters is instantiated in pseudo-code by the procedure Sam-

pleParams.

Reframing with Stochastic Hill-Climbing

The first reframing algorithm we introduce, called Reframing with Stochastic Hill-
Climbing (RSHC), is detailed in Algorithm 6.1. It is a random restart hill-climbing
algorithm, similar to the one we developed for complex aggregates generation in Chap-
ter 4.

The initial set of parameters, as defined above, is used as a baseline and as the first
starting point for random restart, as shown in line 6. Then, the random restart loop, from
line 10 to line 28, is initiated. The number of random restarts is arbitrarily set to 50. The
hill-climbing loop, from line 13 to line 22, continues as long as at least one modification
of a parameter over all reframing functions leads to an improvement. From line 15 to
20, tests of modification of the parameters are performed for each numerical attribute,
as a hill-climbing on slope and intercept parameters, one after the other. When the
hill-climbing optimization over all parameters stops, a random restart is performed, i.e.
a new sample of parameters is drawn and the global hill-climbing process is performed
again, until 50 random restarts have been tested.

These hill-climbing algorithms are detailed in Algorithms 6.2 and 6.3. The algorithms
are very similar and follow the same scheme. The difference is how slopes and intercepts
evolve: slopes are modified geometrically, by multiplying them with a factor, while
intercepts are modified arithmetically, by adding a step proportional to the range of the
considered attribute. The performance baseline is obtained by evaluating the current
set of parameters, as shown on line 5.

Then, the algorithm looks for a hill-climbing direction, to which it will stick. First,
the parameter to optimize is decreased, and the set of parameters is evaluated, as shown
from line 8 to 12. The same evaluation is perfomed after increasing the parameter,
from line 13 to 17. The performance of the parameters, and the possible update of the
parameters, are performed using the TestPerformance function detailed in Algorithm
6.4. If at least one of the two moves has led to an improvement, the direction that led

6.2. Reframing of Numerical Input Attributes 135

Algorithm 6.1 Reframing with Stochastic Hill-Climbing Algorithm (RSHC)
1: Input: cls: base classifier, training: labeled training dataset from original con-

text, deploy: labeled little-size dataset from deployment context, attrs: set of input
attributes.

2: Output: bestAlphas (= (α1, · · · , αa)): slopes of the affine reframing function, best-
Betas (= (β1, · · · , βa)): intercepts of the affine reframing function.

3: model ← cls.Train(training, attrs)
4: numAttrs ← attrs.NumericalSubset()
5: alphas ← [], betas ← []
6: InitParams(alphas, betas, training, deploy)
7: bestAlphas ← alphas, bestBetas ← betas
8: adjustAlpha ← 0.05, adjustBeta ← 0.05
9: count ← 0

10: for count = 1 to 50 do
11: loopImprovement ← false
12: iterImprovement ← true
13: while iterImprovement do
14: iterImprovement ← false
15: for i=1 to numAttrs.Size do
16: localImprovement ← SlopeHillClimbing(model, training, deploy, alphas, be-

tas, i, adjustAlpha)
17: iterImprovement ← iterImprovement or localImprovement
18: localImprovement ← InterceptHillClimbing(model, training, deploy, alphas,

betas, i, adjustBeta, numAttrs[i].Max− numAttrs[i].Min)
19: iterImprovement ← iterImprovement or localImprovement
20: end for
21: loopImprovement ← loopImprovement or iterImprovement
22: end while
23: if loopImprovement then
24: count ← 0
25: bestAlphas ← alphas, bestBetas ← betas
26: end if
27: SampleParams(alphas, betas, training, deploy)
28: end for
29: return (bestAlphas, bestBetas)

to the best improvement is memorized, and the hill-climbing will be performed only in
this direction, i.e. either by only decreasing the parameter, or by only increasing it.

This hill-climbing loop, from line 19 to line 31, introduces a speed parameter, con-
trolling how fast the parameter moves. As long as an hill-climbing step leads to an
improvement, the speed parameter is doubled, so that the modification of the parameter

136 CHAPTER 6. Input and Output Reframing of Numerical Features

is stronger and stronger, this corresponds to line 21 to 29. When the improvement stops,
the speed is reinitialized, and the acceleration process starts over. If the acceleration
process fails to improve at first step, the speed parameter remains equal to 1 and the
hill-climbing stops, as shown in line 21.

Reframing with Randomized Search

The second algorithm we introduce, called Reframing with Randomized Search (RRS),
is detailed in Algorithm 6.5. It is a simple random search algorithm: it randomly tries a
fixed amount of sets of parameters, and considers the best it tested as the optimum. At
every iteration of the loop, it generates a random set of parameters in the way described
earlier for the RSHC algorithm. The first candidate parameter set is the basic one,
defined above and instantiated in the InitParams procedure, it gives the initial best
performance. Then, random samples are generated according to the method described
above and implemented in the SampleParams procedure, and evaluated against the best
parameter set found so far. We set the number of samples evaluated to 1000.

This algorithm has the advantage of being easy to use, as well as being faster than
RSHC. This will be highlighted in the upcoming experimental results.

6.3 Experimental Results

We performed experiments to assess the performance of our reframing algorithms. Our
approaches were implemented in Java using the Weka API (Hall et al. 2009). Firstly, we
compare our approaches to our baselines, i.e. direct reuse of base model and retraining,
on synthetic data. Secondly, we compare our approaches to the GP-RFD (Moreno-
Torres, Llorà, et al. 2013) algorithm on real-world classification tasks. Finally, we will
show an example of use of our reframing algorithms on a real-world regression task.

6.3.1 Performance of Reframing on Synthetic Data

We compare the performance of the RHSC and RRS algorithms to the performance
of their simplest baselines, i.e. direct application of the model learned in the original
training context (denoted by Base), and training of a new model using the few labeled
deployment data from the second context (denoted by Retrain). As shown in (Moreno-
Torres 2013), the base learner family giving best predictive performances when coupled
with GP-RFD is the decision tree family. Therefore, for these two first sets of experi-
ments, aiming at measuring performance on classification tasks, we use the J48 decision
tree learner from Weka, which is an implementation of C4.5 (Quinlan 1993).

We consider again the synthetic binary classification task example based on temper-
ature from Section 6.2 and the three contexts introduced in Figure 6.4. According to
the same data distributions and target models, we generated 5 datasets:

• For city 1: one training set containing 1000 examples.

6.3. Experimental Results 137

Algorithm 6.2 Slope Hill-Climbing Function
1: Input: model: model to reframe, training: labeled training dataset from original

context, deploy: labeled little-size dataset from deployment context, alphas: set of
slope parameters for affine reframing transformation, betas: set of intercept parame-
ters for affine reframing transformation, i: index of numerical attribute to optimize
slope for, adjust: evolution factor of the slope between two hill-climbing moves.

2: Output: localImprovement: boolean indicating if the hill-climbing process led to an
improvement of the model performance.

3: localImprovement ← false
4: deployTransOrig ← deploy, deployTransOrig.AffineReframe(alphas, betas)
5: bestPerf ← model.Test(deployTransOrig)
6: direction ← 0
7: alphasOrig ← alphas
8: alphasDown ← alphasOrig, alphasDown[i] ← alphasDown[i]·10−adjust)
9: perf ← TestPerformance(model, deploy, alphasDown, betas, alphas, betas)

10: if perf > bestPerf then
11: direction ← -1, bestPerf ← perf
12: end if
13: alphasUp ← alphasOrig, alphasUp[i] ← alphasUp[i]·10+adjust)
14: perf ← TestPerformance(model, deploy, alphasUp, betas, alphas, betas)
15: if perf > bestPerf then
16: direction ← 1, bestPerf ← perf
17: end if
18: localImprovement ← (direction 6= 0), localKeepGoing ← localImprovement
19: while localKeepGoing do
20: speed ← 1, accelerate ← true
21: while accelerate do
22: alphasNext ← alphas, alphasNext[i] ← alphasNext[i]·10direction·adjust·speed)
23: perf ← TestPerformance(model, deploy, alphasNext, betas, alphas, betas)
24: if perf > bestPerf then
25: speed ←2 · speed, bestPerf ← perf
26: else
27: accelerate ← false
28: end if
29: end while
30: localKeepGoing ← (speed > 1)
31: end while
32: return localImprovement

138 CHAPTER 6. Input and Output Reframing of Numerical Features

Algorithm 6.3 Intercept Hill-Climbing Function
1: Input: model: model to reframe, training: labeled training dataset from original

context, deploy: labeled little-size dataset from deployment context, alphas: set of
slope parameters for affine reframing transformation, betas: set of intercept parame-
ters for affine reframing transformation, i: index of numerical attribute to optimize
intercept for, adjust: evolution factor of the intercept between two hill-climbing
moves, range: range of the numerical attribute.

2: Output: localImprovement: boolean indicating if the hill-climbing process led to an
improvement of the model performance.

3: localImprovement ← false
4: deployTransOrig ← deploy, deployTransOrig.AffineReframe(alphas, betas)
5: bestPerf ← model.Test(deployTransOrig)
6: dir ← 0
7: betasOrig ← betas
8: betasDown ← betasOrig, betasDown[i] ← betasDown[i]−adjust · range
9: perf ← TestPerformance(model, deploy, alphas, betasDown, alphas, betas)

10: if perf > bestPerf then
11: dir ← -1, bestPerf ← perf
12: end if
13: betasUp ← betasOrig, betasUp[i] ← betasUp[i]+adjust · range
14: perf ← TestPerformance(model, deploy, alphas, betasUp, alphas, betas)
15: if perf > bestPerf then
16: dir ← 1, bestPerf ← perf
17: end if
18: localImprovement ← (dir 6= 0), localKeepGoing ← localImprovement
19: while localKeepGoing do
20: speed ← 1, accelerate ← true
21: while accelerate do
22: betasNext ← betas, betasNext[i] ← betasNext[i]+dir · adjust · speed · range
23: perf ← TestPerformance(model, deploy, alphas, betasNext, alphas, betas)
24: if perf > bestPerf then
25: speed ←2 · speed, bestPerf ← perf
26: else
27: accelerate ← false
28: end if
29: end while
30: localKeepGoing ← (speed > 1)
31: end while
32: return localImprovement

• For both city 2 and 3: one deployment dataset containing 200 examples, and one

6.3. Experimental Results 139

Algorithm 6.4 TestPerformance
1: Input: model: model to reframe, deploy: labeled little-size dataset from deployment

context, alphasCand: candidate set of slope parameters for affine reframing trans-
formation, betasCand: candidate set of intercept parameters for affine reframing
transformation, alphas: current set of slope parameters for affine reframing transfor-
mation, betas: current set of intercept parameters for affine reframing transforma-
tion, bestPerf : best performance achieved so far.

2: Output: localImprovement: whether the candidate parameters improved over the
current parameters.

3: deployTrans ← deploy
4: deployTrans.AffineReframe(alphasCand, betasCand)
5: perfCand ← model.Test(deployTrans)
6: localImprovement ← false
7: if perfCand.IsBetterThan(bestPerf) then
8: bestPerf ← perfCand
9: alphas ← alphasCand

10: betas ← betasCand
11: localImprovement ← true
12: end if
13: return localImprovement

Algorithm 6.5 Reframing with Randomized Search (RRS)
1: Input: cls: base classifier, training: labeled training dataset from original context,

deploy: labeled little-size dataset from deployment context.
2: Output: bestAlphas (= (α1, · · · , αa)): slopes of the affine reframing function, best-

Betas (= (β1, · · · , βa)): intercepts of the affine reframing function.

3: model ← cls.Train(training)
4: bestPerf ← model.Test(deploy)
5: alphas ← [], betas ← []
6: InitParams(alphas, betas, training, deploy)
7: bestAlphas ← alphas, bestBetas ← betas
8: for count = 1 to 1000 do
9: SampleParams(alphas, betas, training, deploy)

10: TestPerformance(model, deploy, alphas, betas, bestAlphas, bestBetas, bestPerf)
11: end for
12: return (bestAlphas, bestBetas)

test dataset containing 1000 examples.

We want to measure the difference in predictive performance when the number of

140 CHAPTER 6. Input and Output Reframing of Numerical Features

available deployment examples for either retraining or reframing varies. We consider a
number n of deployment examples, which varies between 4 and 50 by step of 2. For each
value of n, we draw 30 random samples of examples, each of size n, from the deployment
dataset of size 200 of the considered deployment city. Each random sample is used to
train a model (Retrain approach), or learn a reframing transformation associated to
the model learned on the dataset from city 1 (RSHC and RRS approaches). The Base
model is trained using only the dataset from city 1. Thus, its predictive performance
does not depend on the deployment dataset from the target context, and its performance
will be constant in all experiments. In the end, all models are evaluated by measuring
accuracy on the test dataset of size 1000 from the considered deployment city. For each
value of n, we report on Figure 6.6 the average test set accuracy of the 30 corresponding
retrained/reframed models.

0 10 20 30 40 50

30
40

50
60

70
80

90

Deployment Dataset Size

Te
st

 S
et

 A
cc

ur
ac

y

Base
Retrain

RSHC
RRS

(a) City 2.

0 10 20 30 40 50

30
40

50
60

70
80

90

Deployment Dataset Size

Te
st

 S
et

 A
cc

ur
ac

y
Base
Retrain

RSHC
RRS

(b) City 3.

Figure 6.6 – Test set accuracy of learners with respect to the number of examples in the
deployment dataset (average over 30 deployment datasets of the corresponding size).

The first observation is that, even with low amounts of labeled deployment data,
reframing approaches make a significant improvement over both the base model and
retraining a new model. Indeed, the test set accuracy in the context of city 2 of the base
model learned in the original city 1 context is 44.4%, while with a deployment dataset
containing only 4 examples, training a model using these 4 examples leads to a test set
accuracy of 50.11% when RSHC and RRS find an input transformation leading to test
set accuracy performances of 70.57% and 75.14% respectively. These results show that
our algorithms fulfill their first goal of finding a useful reframing transformation of data
improving over using no transformation at all.

The second observation is that the fewer labeled examples there are to retrain/re-
frame, the greater the difference in performance between retraining and reframing, to
the advantage of the latter. When there are few labeled examples, using these examples

6.3. Experimental Results 141

to learn a transformation proves to be more efficient in terms of accuracy performance
than using the examples to train a new model.

6.3.2 Comparison to GP-RFD on Real-World Data

We now evaluate our reframing algorithms with respect to GP-RFD, on both predic-
tion accuracy and runtime performance. To do so, we follow the same experimental
methodology as in (Moreno-Torres 2013). We take several binary classification tasks
available on the UCI Machine Learning Repository (Lichman 2013). For each dataset,
120 random partitionings are generated. Each partitioning divides the dataset in 3: a
deployment part with 8 examples, a testing part using half of the remaining instances,
and a training part using the other half.

Then, we perform domain shift on the deployment and testing datasets. Domain shift
consists in applying an affine transformation function to a numerical input attribute of
the data. In the original methodology, the shift was only applied to one, randomly
chosen, attribute. However, in a real-life setting, multiple attributes may be involved
in the shift. Moreover, the attribute to shift is randomly chosen, thus a non-influential
attribute may be shifted, in which case there is no need for adaptation. To overcome
these limitations, we determined three influential numerical attributes in each dataset
by learning a decision tree using the whole dataset. The three retained attributes are
the ones used in splits closest to the root of the tree. Then, we define 4 levels of shift,
labeled as Low, Medium, High and Extreme, depending on how they differ from the
identity function, i.e. no shift at all, as defined in Table 6.1. The values of the slope for
the shift function are taken between 0.1 and 10, by drawing from a uniform distribution
the decimal logarithm of the slope. For a shift in the Low category, the slope will
remain close to 1, while in the Extreme category it will be closer to 0.1 or 10. The value
for the intercept is then drawn from a uniform distribution in an interval bounded by
slope-related values.

Table 6.1 – Definition of levels of shift.

Level Range of log10(α) Range of β
Low]− 0.25; 0.25[

]− α · max−min
2 ;α · max−min

2 [
Medium]− 0.5;−0.25] ∪ [0.25; 0.5[
High]− 0.75;−0.5] ∪ [0.5; 0.75[

Extreme]− 1;−0.75] ∪ [0.75; 1[

For each task, 30 partitionings are assigned to each category of shift. For each
partitioning, an affine shift function is randomly determined in the associated category,
and applied to the deployment and testing parts. Then, as in the previous evaluation, we
compare the base model built using the training part, the retraining approach learning a
model using the deployment part, and reframing-based approaches, i.e. RSHC, RRS and
GP-RFD, which learn a model using the training part and look for a transformation using
the deployment part. We take the respective duration of these processes as measures of

142 CHAPTER 6. Input and Output Reframing of Numerical Features

runtime performance of the respective approaches. Prediction accuracy is measured on
the testing part of the partitionings.

Table 6.2 shows the average accuracy percentage of the different methods for each
dataset and shift category, along with the standard deviation of the accuracy over the 30
associated experiments. Table 6.3 shows the runtime of the algorithms. We observe that
in all experiments, our RSHC and RRS algorithms outperform GP-RFD, both in terms
of accuracy and runtime. The accuracy levels also show that our methods are more
robust than GP-RFD, since the standard deviations of the accuracy are lower than for
GP-RFD. The runtime performance is also a high advantage of our algorithms: when our
algorithms learn a transformation in a tenth of second, GP-RFD takes several minutes,
to achieve a lower prediction performance.

Table 6.2 – Accuracy results for different datasets and levels of shift.

Dataset Shift Base Retrain RSHC RRS GPRFD

appendicitis

Low 79.73±13.67 79.32±7.71 80.88±6.6 80.34±6.03 67.89±20.29
Medium 78.57±8.12 78.23±6.26 78.78±9.14 79.12±7.22 71.5±16.3
High 78.5±13.61 78.64±7.52 78.64±9.23 81.22±8.83 74.01±15.83

Extreme 73.88±20.75 76.87±10.66 80.34±10.08 79.59±7.84 74.69±14.25

breast-w

Low 81.07±21.09 82.43±8.85 91.07±5.78 90.63±7.03 84.62±11.64
Medium 75±25.15 84.2±9.31 90.41±7.58 90.25±5.17 76.67±17.65
High 78.96±16.33 79.99±14.99 92.14±4.15 88.79±10.73 83.25±15.88

Extreme 70.51±21.89 81.8±10.41 90.88±3.43 90.85±4.72 81.87±14.56

bupa

Low 54.27±6.16 53.75±6.36 57.6±6.66 56.96±5.62 53.87±6.35
Medium 54.76±5.54 50.67±6.57 56.35±6.38 58.35±6.05 52.6±6.36
High 52.72±7.11 53.04±6.95 56.21±5.17 55.69±5.63 53.73±6.67

Extreme 53.19±5.87 54.05±6.45 56.73±5.21 57.32±5.01 54.54±5.42

heart

Low 71.76±6.94 61.98±11.49 72.65±4.17 74.22±3.39 59.59±12.22
Medium 73±6.88 62.6±11.42 71.93±7.73 72.72±7.62 64.05±11.15
High 68.02±10.52 61.83±8.84 72.8±6.38 72.93±5.85 61.93±9.83

Extreme 69.06±10.05 63.16±8.85 70.87±7.48 71.6±6.46 57.02±10.01

pima

Low 59.11±13.5 63.48±5.27 67.66±6.38 67.18±5.66 60.24±7.69
Medium 58.62±14.43 60.12±9.16 68.01±5.76 68.22±4.9 60.89±7
High 55.08±13.56 61.32±6.51 65.04±9.55 67.14±7.89 61.39±6.37

Extreme 54.47±14.43 60.18±9.02 66.91±8 66±8.48 59.15±7.23

Table 6.3 – Time performance (in milliseconds) for different datasets and levels of shift.

Dataset Base Retrain RSHC RRS GPRFD
appendicitis 0.36±0.48 0.04±0.2 49.84±10.09 22.83±3.76 9,413.24±1,464.22
breast-w 1.82±0.51 0.03±0.18 81.09±19.95 28.34±3.48 17,469.21±1,783.36
bupa 1.35±0.48 0.04±0.2 64.1±18.41 24.32±5.62 16,369.69±2,289.93
heart 1.32±0.93 0.09±0.5 39.86±37.99 24.68±13.15 22,925.67±3,406.43
pima 4.52±0.95 0.06±0.24 99.36±22.77 30±2.89 30,328.04±3,337.01

We also performed statistical tests to assess the significance of the results. As advised
in (Demsar 2006), we performed pairwise comparisons of methods using a Friedman rank

6.4. Output Reframing for Regression 143

sum test with a level of confidence of 95%. The test always rejected the null hypothesis,
i.e. at least two methods were significantly different. Therefore, we performed the
Nemenyi posthoc test to determine the pairs of significantly different methods. The
results of this test are illustrated in Figure 6.7, which graphs are to be read as follows.
A first method is statistically significantly better than a second one if and only if there
is a directed path in the graph from the first to the second. Therefore, a method with
no edge going in is outperformed by no other method, and thus can be considered the
best, they are indicated in red on the graphs. On the other hand, a method with no
edge going out does not outperform any other method, they can be considered the worst
and are indicated in blue.

Figure 6.7a shows the significance graph for prediction accuracy, and indicates that
RSHC and RRS significantly outperform both the baselines and GP-RFD, while the two
of them do not differ. Figure 6.7b shows the significance graph for runtime performance.
As expected, the baselines which only train a model are faster than the reframing-based
methods that learn a transformation in addition to the model. Nevertheless, we observe
that both RRS and RSHC are significantly faster than GP-RFD, with an advantage to
RRS over RSHC.

Retrain

RSHC RRS

GPRFD

Base

(a) Prediction accuracy.

Retrain

RSHC

RRS

GPRFD

Base

(b) Runtime performance.

Figure 6.7 – Significance graphs on the real benchmarks.

6.4 Output Reframing for Regression

In this section, we apply our techniques for numerical attribute reframing to output
attributes. When the output attribute is numerical, the task at hand is called a regression
task. In this context, output reframing is useful when the distribution of the value to

144 CHAPTER 6. Input and Output Reframing of Numerical Features

predict varies from one context to another. Indeed, a regression model trained in a
first context can only output predictions that are consistent with the output values
it was trained with, in other words its predictions will be in the range of the output
values from training. If in a second context the output distribution differs from the first
context in a way that the output values are not in the same range anymore, then the
original model cannot be accurate. The idea behind “hard” output reframing is then to
modify the prediction of the classifier trained in the first context so that the transformed
predictions lie in the range of the output values from the second context.

6.4.1 Extension of Affine Transformation Optimization to Output Re-
framing

Formally, output reframing is about reusing model M1 : X 7→ Y trained in context 1 for
prediction in context 2, by learning a transformation g : Y −→ Y of the output attribute,
so that the model defined by g ◦M1 is accurate in context 2. Formally:

Context 1: Ŷ = M1(X)

Context 2: Ŷ = g(M1(X))

Figure 6.8 summarizes this process: the model is built using the training set, and used
along with the deployment set from the second context to find an output transformation.
This reframing transformation is applied to test examples after the application of the
model, whose prediction is modified by the transformation to give the actual prediction.

Training
Set Model Test Set

Deployment
Set

Output
Transfor-mation

Predictions

Figure 6.8 – Illustration of the output reframing process.

Our stochastic algorithms RSHC and RRS can be used to search for an affine tranfor-
mation of the numerical output Y. The difference with input reframing lies in the range
to consider to find the parameters. In input reframing, we were looking for a transfor-
mation such that values from context 2 looked like values from context 1, in order to
apply the model on values from its original training context. For output reframing, it
is exactly the opposite process: the model outputs values in the range of context 1, and
we want these values to look like values from context 2. Thus, the basic function has to
be reverted to map values from context 1 to context 2:

6.4. Output Reframing for Regression 145

fY,id(y) = αY,base · y + βY,base

=
uY 2 − lY 2

uY 1 − lY 1
· (y − lY 1) + lY 2

αY,base =
uY 2 − lY 2

uY 1 − lY 1

βY,base = lY 2 − αY,base · lY 1

The sampling of the slope parameter is then performed the same way as for inputs,
using this new base slope. The sampling of the intercept is then performed by inverting
the roles of contexts 1 and 2 with respect to input reframing.

βmin = lY 2 − αsample · uY 1

βmax = uY 2 − αsample · lY 1

Input and output reframing are not mutually exclusive: both types of shifts may
occur at the same time, in which case there is a need for both types of reframing. For-
mally, if we denote by f : X −→ X the input attribute vector reframing transformation,
and g : Y −→ Y the output attribute reframing transformation, we want the application
g ◦M1 ◦ f to be accurate in context 2, i.e.

Context 1: Ŷ = M1(X)

Context 2: Ŷ = g(M1(f(X)))

6.4.2 Application to the Bike Sharing Dataset

We will consider as an example a real dataset that presents such shifts. The Bike Sharing
dataset (Fanaee-T and Gama 2014) contains two years of daily records of bikes rented
in Washington, D.C. The aim is to predict the count of bikes rented during one day with
respect to weather conditions of the day and calendar information related to the day:
the day of the week, whether it is a working day, or a holiday.

Two families of contexts can be defined on this dataset, both presenting shifts. These
families are not mutually exclusive and can be combined to obtain a third family.

Firstly, contexts can be defined according to seasons. We refer to seasons as groups
of 3 months each, which roughly correspond to the actual definition of seasons: “Win-
ter” covers months of January, February and March, “Spring” covers April, May and
June, “Summer” covers July, August and September, and “Autumn” covers October,
November and December. Each season defines a context. The reframing task consists
in learning a model to predict daily bike rental with data from one season, and to reuse

146 CHAPTER 6. Input and Output Reframing of Numerical Features

this model on data from another season. Thus, we can imagine as many reframing tasks
as combinations of a training context and a deployment context. Since we want both
contexts to be different, there are 12 possibilities. Figure 6.9a shows histograms repre-
senting mean levels of the four input attributes (on the left), and of the output attribute
(on the right), for each season. Since data cover a two-year period, seasonal values
are averages over the two occurrences of each season. The distributions of the input
attributes vary depending on the season, especially the temperature attributes, which
seems trivial. Therefore, there is a need for input reframing in this family of contexts.
From the output distribution, i.e. the average daily counts of rented bikes per season,
it appears that these mean levels differ from a season to another, there are less bikes
rented on average during winter than in summer, which also seems trivial. Therefore,
there may also be a need for output reframing in this family of contexts.

The second family of contexts is defined according to the two years available in the
dataset. Figure 6.9b shows the mean levels of the distributions of input and output
attributes for the two years. We observe that the average count of bikes rented in the
second year is much greater than the average count of the first year, increasing from 3400
bikes per day to 5600. On the other hand, mean levels of weather-related input attributes
do not present much variation from one year to another. There are two possible tasks
in this family of contexts: from the first year to the second, and the opposite.

Finally, we can combine the contexts of the 4 seasons and the 2 years to obtain 8
contexts, one for each season of a given year. This family, based on seasons and years,
presents both types of distribution shift, an input shift because of season change, and
an output shift because of both season and year change, as shown on Figure 6.9c. The
contexts are ordered chronologically, from the autumn of the first year to the summer of
the second year. Reframing tasks can be defined according to pairs of contexts, which
gives 56 tasks in this family of contexts. However, we restrict ourselves to pairs of
contexts that correspond neither to the same season nor to the same year. Thus, a
context from a given season and a given year will be matched with all the other seasons
for the other year. We assume that pairs of contexts with same season or year are special
cases of the two previous families of contexts.

We perform an experimental comparison of our input and output reframing methods
on tasks from this family of contexts. The “Base” model and “Retraining” are still our
baselines. We include three variants of our RSHC and RRS algorithms: one using only
input reframing (with suffix “-I” in the results, one only using output reframing (suffix
“-O”), and one using both input and output reframing (suffix “-IO”). As a base model,
we use the REPTree regression tree implementation of the Weka software. For every
pair of contexts, the full dataset of the origin context was used to train the base model.
The reframing transformation to adapt to the target context was optimized over a tenth
of the full dataset associated to this context, while the rest was used for testing. For
instance, in the Seasons family of contexts, each season covers a period of three months
and occurs twice, once per year. Thus, the dataset associated to each context con-
tains approximately 180 examples, from which we keep roughly 18 to find the reframing
transformation. For each pair of contexts, 30 experiments were performed, each with a

6.4. Output Reframing for Regression 147

Winter Spring Summer Autumn0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Winter Spring Summer Autumn

0
10

00
30

00
50

00

(a) Mean levels of input and output attributes with respect to the season.

Year−1 Year−20.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Year−1 Year−2

0
10

00
30

00
50

00

(b) Mean levels of input and output attributes with respect to the year.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0
10

00
30

00
50

00
70

00

(c) Mean levels of input and output attributes with respect to the season and the year.

Figure 6.9 – Mean levels of input (on the left, temperature in red, feel-like temperature in
orange, humidity in blue, and wind speed in green) and output (on the right) attributes
in the three families of contexts.

148 CHAPTER 6. Input and Output Reframing of Numerical Features

different, randomly defined, reframing set of 18 instances. The loss function, used for
both evaluating the quality of a reframing transformation and to evaluate algorithms on
the test set, was root mean squared error.

Table 6.4 shows, for each pair of contexts in all families of contexts, the average
root mean squared error over the 30 experiments of the different methods, the last row
indicating the average over all pairs of contexts. Figure 6.10 shows the significance graph
of all compared methods. It appears that the best methods in all families of tasks are
our affine reframing algorithms, transforming only the output. They perform better
than the same algorithms using input reframing in addition to output reframing, which
themselves perform better than reframing only inputs, the base model, and retraining.
This suggests that, for this family of contexts, the need for output reframing is greater
than the need for input reframing.

As could be observed in Part I, complex aggregates in the relational setting often
involve numerical features, secondary attributes used in selection conditions and ag-
gregated feature as well as the output of the aggregation function itself, since most
aggregation functions are numerical. Thus, an extension of our reframing algorithms for
numerical features to the relational setting through complex aggregates is presented in
the next section.

6.5 Reframing in the Relational Setting

In this section, we extend the affine reframing of numerical input attributes to the
relational setting. As a motivating example, let us consider an artificial dataset inspired
by the urban block example, whose schema is shown in Figure 6.11.

The task is a binary classification task consisting in predicting the class of a block
between two values: “true” or “false”. There is no predictive attribute in the main table,
i.e. at the block level, and two numerical attributes in the secondary table: the area and
perimeter of the buildings.

In this relational context, two kinds of context changes may occur:

• As in the attribute-value setting, the distribution of the attributes may change
from one context to another. In this urban block example, the two contexts are
two cities, with the size of the buildings differing between the cities, which will
affect the distribution of the area and perimeter.

• A context change specific to the relational setting is the difference in cardinality,
e.g. if there are more buildings per block in the second city than in the first.

In Part I, we focused on the introduction of complex aggregate features to deal with
relational supervised learning. Numerical inputs occur at two levels in the complex
aggregates: most aggregation functions output a numerical value, e.g. the count or the
average of a numerical secondary attribute, and in the secondary objects selection part,
where conditions on secondary numerical attributes can be used. Thus, it is meaningful
to reframe at these two levels. Indeed, a change in the distribution of the secondary

6.5. Reframing in the Relational Setting 149

Table 6.4 – Average root mean squared error of the different methods on tasks from the
the three families of contexts.

Origin Target Base Retrain RSHC-I RRS-I RSHC-O RRS-O RSHC-IO RRS-IO
Winter Spring 1433 1577 1527 1511 1621 1462 1513 1534
Winter Summer 1634 1684 1692 1669 1571 1571 1667 1616
Winter Autumn 1766 1893 1823 1819 1666 1664 1771 1795
Spring Winter 2466 1564 2456 2436 1608 1601 1629 1618
Spring Summer 1595 1638 1661 1658 1540 1540 1561 1553
Spring Autumn 2094 1918 1992 1987 1817 1812 1842 1834
Summer Winter 3949 1659 2189 2215 1664 1662 1737 1729
Summer Spring 1748 1686 1548 1577 1548 1543 1548 1567
Summer Autumn 2620 1930 1852 1854 1817 1809 1910 1873
Autumn Winter 1368 1577 1315 1327 1255 1256 1359 1363
Autumn Spring 1418 1678 1553 1546 1524 1523 1536 1537
Autumn Summer 1533 1599 1658 1639 1572 1572 1673 1656

Average 1969 1700 1772 1770 1600 1585 1646 1640
(a) Seasons family.

Origin Target Base Retrain RSHC-I RRS-I RSHC-O RRS-O RSHC-IO RRS-IO
Year-1 Year-2 2294 1414 1953 1981 1182 1189 1249 1304
Year-2 Year-1 2171 1013 1077 1093 816 812 924 940

Average 2232 1214 1515 1537 999 1000 1086 1122
(b) Years family.

Origin Target Base Retrain RSHC-I RRS-I RSHC-O RRS-O RSHC-IO RRS-IO
Winter-1 Spring-2 3526 1235 3431 3430 1172 1165 1223 1147
Winter-1 Summer-2 3926 973 3963 3942 957 957 1120 975
Winter-1 Autumn-2 3361 2032 2840 2837 1503 1521 1766 1745
Spring-1 Winter-2 1661 1426 1126 1134 1497 1186 1183 1175
Spring-1 Summer-2 2386 976 2472 2463 1001 996 1140 1092
Spring-1 Autumn-2 2890 1995 1865 1873 1900 1841 1941 1829
Summer-1 Winter-2 1441 1433 1472 1464 1504 1492 1693 1594
Summer-1 Spring-2 1956 1242 1967 1985 973 980 1000 1031
Summer-1 Autumn-2 1938 2014 1992 2014 2042 2038 2138 2129
Autumn-1 Winter-2 1350 1395 1204 1206 1299 1278 1304 1321
Autumn-1 Spring-2 2166 1260 1954 1947 1111 1111 1092 1113
Autumn-1 Summer-2 2526 990 2602 2578 988 988 1051 1026
Winter-2 Spring-1 1675 1060 974 979 744 742 824 845
Winter-2 Summer-1 1701 885 1086 1088 881 881 973 943
Winter-2 Autumn-1 1608 1137 1091 1076 1106 1161 1098 1107
Spring-2 Winter-1 4477 627 4477 4477 644 640 643 638
Spring-2 Summer-1 1943 893 1943 1943 773 773 781 782
Spring-2 Autumn-1 2839 1132 2839 2839 1087 1089 1084 1074
Summer-2 Winter-1 5681 605 4537 4540 617 613 697 656
Summer-2 Spring-1 3066 1081 2268 2285 1082 1077 1183 1162
Summer-2 Autumn-1 3905 1149 2978 2963 1156 1150 1300 1244
Autumn-2 Winter-1 2265 587 1035 947 544 547 560 559
Autumn-2 Spring-1 2648 1085 1103 1154 1024 1008 913 883
Autumn-2 Summer-1 2518 865 1218 1210 860 859 938 927

Average 2644 1170 2185 2182 1103 1087 1152 1125
(c) Seasons and Years family.

150 CHAPTER 6. Input and Output Reframing of Numerical Features

Retrain RSHC−I RRS−I

RSHC−O RRS−O

RSHC−IO RRS−IO

Base

(a) Seasons family.

Retrain RSHC−I RRS−I

RSHC−O RRS−O

RSHC−IO RRS−IO

Base

(b) Year family.

Retrain

RSHC−I RRS−I

RSHC−O RRS−O

RSHC−IO RRS−IO

Base

(c) Seasons and Years family.

Figure 6.10 – Significance graph of the different methods for the three families of contexts.

6.5. Reframing in the Relational Setting 151

block_id class
i1 true
i2 false
i3 true
… …

building_id perimeter area block_id
b11 0.538 165 i1
b12 0.736 323 i1
b13 0.668 84 i1
… … … …
b21 0.925 202 i2
b22 0.676 147 i2
… … … …

0..N
1

Main table - blocks

Secondary table - buildings

Figure 6.11 – Schema of the simplified urban block dataset.

attributes will disturb the selection of secondary objects, since the values of the attribute
in the deployment context may not match the values involved in the selection condition.
Moreover, a change in cardinality will affect the output of the count function, e.g. if
there are more buildings in the deployment city than in the training one, the condition
learned on the count of buildings in the training context will not be accurate, since the
overall number of buildings in the block is higher.

From the urban block example, we define 4 artificial context cities. The distributions
of the secondary attributes, i.e. area and perimeter, and the cardinality, i.e. the average
number of buildings per block, are shown in Table 6.5.

For instance, in the context of the first city, a dataset of 500 blocks has been gener-
ated. For each block, the corresponding number of buildings is chosen randomly following
a geometric distribution of parameter 1/60, giving an average cardinality of 60 buildings
per urban block. For each building generated, the area has been drawn randomly from
a normal distribution with mean 200 and standard deviation 20. To obtain complex
aggregate features, i.e. aggregates with a condition having an impact on the output
value of the aggregate, we need a relationship between the two secondary attributes.
Indeed, if area and perimeter are independent, the average value of the area of buildings
does not depend on the buildings selected through a condition on the perimeter, thus
there is no need for complex aggregation. This is the reason why for each building the
perimeter is taken as the double of the area plus a random number drawn from a normal

152 CHAPTER 6. Input and Output Reframing of Numerical Features

distribution with mean 40 and standard deviation 4.
Data for the second city has been generated following the same cardinality for the

relationship between blocks and buildings, but the distributions of the secondary at-
tributes changed so that the buildings are smaller, with a normal distribution of mean
100 and standard deviation 10 for the area, the perimeter being still the double of the
area with the addition of a smaller normal random term of mean 20 and standard devi-
ation 2. The conditions on complex aggregates have been chosen to adapt this change
of distribution in area and perimeter: the thresholds on area and perimeter in selection
conditions, and on their average value have been halved with respect to context 1.

In the third city, distributions of the secondary attributes are the same as in the
first city, but the cardinality of the relationship between blocks and buildings changes,
following a geometric distribution of parameter 1/30 so that there are on average half
buildings per block compared to the first city.

Finally, the fourth city combines the changes of the second and third cities with
respect to the first: the cardinality is the same as in the third city, and the distributions
of the secondary attributes are the same as in the second city.

City 1 City 2 City 3 City 4
Area N (200, 20) N (100, 10) N (200, 20) N (100, 10)

Perimeter 2 · area
+N (40, 4)

2 · area
+N (20, 2)

2 · area
+N (40, 4)

2 · area
+N (20, 2)

Cardinality 60 60 30 30

Table 6.5 – Description of the generation process of the artificial data in the four contexts.

The target models for the four context cities are shown in Figure 6.12. They all
consist in two-level decision trees. The first split on a count-based aggregate is chosen
so that data are split in a balanced way, i.e. approximately half of the examples follow
each child branch. The second level splits have been chosen so that 90% of the examples
follow one child branch and 10% the other child branch. The resulting child nodes are
labeled with different classes. For instance, in Figure 6.12a, half of the examples will
follow the left branch. Among this half, 90% will be labeled as “True” and 10 % as
“False”. In the right branch, we do the opposite: 90% of the examples will be labeled as
“False”, and 10% as “True”.

The reframing task is to learn a classification model on a training set of 500 examples
from the first city, and to reframe it to be able to use it in the three other cities. To do
so, we adapt our stochastic reframing algorithms RSHC and RRS to reframe numerical
features at two levels: both the secondary numerical attributes and the output of the
aggregates will be reframed through affine transformations. For instance, if we consider
the base model learned in the first city as given in Figure 6.12a, the following features
will be reframed:

• The secondary numerical features: area and perimeter.

• At the root node: the output of the count aggregation function.

6.5. Reframing in the Relational Setting 153

count(buildings,
area < 206) < 26

average(area,
buildings,

perimeter <
400) < 162

False

tr
ue

True

false

tru
e

average(perime-
ter, build-
ings, area >
220) > 511

False

tr
ue

True

false

false

(a) City 1.

count(buildings,
area < 103) < 26

average(area,
buildings,

perimeter <
200) < 81

False

tr
ue

True

false

tru
e

average(perime-
ter, build-
ings, area >
110) > 255

False

tr
ue

True

false

false

(b) City 2.

count(buildings,
area < 206) < 13

average(area,
buildings,

perimeter <
400) < 162

False

tr
ue

True

false

tru
e

average(perime-
ter, build-
ings, area >
220) > 511

False

tr
ue

True

false

false

(c) City 3.

count(buildings,
area < 103) < 13

average(area,
buildings,

perimeter <
200) < 81

False

tr
ue

True

false

tru
e

average(perime-
ter, build-
ings, area >
110) > 255

False
tr
ue

True

false

false

(d) City 4.

Figure 6.12 – Target models for the four contexts.

• In the left child node of the root: the output of the average area aggregation
function.

• In the right child node of the root: the output of the average perimeter aggregation
function.

This gives a total of 5 affine functions to optimize with our stochastic reframing
algorithms, following the same procedures as described in Algorithms 6.1 and 6.5. How-
ever, since our reframing algorithms rely on the range of the numerical features to
optimize the slope and intercept parameters, a difficulty will occur when the complex
aggregate to be reframed is defined for too few examples, making impossible to evaluate
the range. In particular, this will occur in the deployment context, in which we use
few labeled examples to reframe. In this case, the range will be evaluated following a
different strategy. As an example, we consider the impossibility to evaluate the range
of the complex aggregate in the left branch of the model given in Figure 6.12a, i.e.

154 CHAPTER 6. Input and Output Reframing of Numerical Features

average(area, buildings, perimeter < 400).

• If the range of the complex aggregate cannot be evaluated, we evaluate the range of
the corresponding simple aggregate and consider it as the range of the complex ag-
gregate. In our example, if average(area, buildings, perimeter < 400) is undefined
for all examples in the reframing set, because no example block contains buildings
with perimeter < 400, we use the range of average(area, buildings), which is
the corresponding simple aggregate, i.e. the aggregate obtained by removing the
selection condition.

• If the range of the simple aggregate cannot be evaluated either, for instance because
all example blocks contain no building, we consider the complex aggregate feature
has the same range as in the training context.

In the experimental comparison, we compare our RSHC and RRS algorithms to
the base model learned in the original context, i.e. the first city, and the retraining
approach using the few labeled data from the deployment context, i.e. the second, third
or fourth city. For these three cities, two datasets have been generated: a test dataset
containing 500 examples, and a reframing dataset containing 100 examples. We compare
the accuracy performance of the different approaches on the test set with respect to
the number of examples used to reframe/retrain the models. We vary this number of
examples from 4 to 30. For each value, we perform 30 random draws of the appropriate
number of examples from the 100 possible examples in the reframing dataset.

The average accuracy results over the 30 random draws for each reframing dataset size
are shown in Figure 6.13. We observe that, for the three context changes, our stochastic
reframing algorithms outperforms the retraining approach, especially when few labeled
data is available, which supports the observations from Section 6.3. We notice that the
base model is less sensitive to the change of cardinality than to the change of attribute
distribution. Indeed, it still reaches a test set accuracy of 76.4% when trained in city 1
and deployed in city 3, when only the average number of buildings per block changes.
In this case, our reframing approaches need more examples to adapt and outperform
the base model. On the other hand, the performance of the base model when deployed
in city 2, when only the attribute distribution changes, is around 50.6%, and reframing
algorithms outperform it even with few examples to adapt.

6.6 Conclusion
In this chapter, we presented algorithms to perform input and output reframing of
numerical features to adapt models to context changes. Our input and output reframing
method consists in affine transformations of numerical features, whose parameters are
chosen through stochastic optimization methods.

Our reframing algorithms outperform the retraining method when few labeled data
is available to retrain/reframe a model. They also outperform the GP-RFD algorithms
on real-life classification tasks in presence of dataset shift.

6.6. Conclusion 155

5 10 15 20 25 30

40
50

60
70

80
90

10
0

Deployment Dataset Size

Te
st

 S
et

 A
cc

ur
ac

y

Base
Retrain

RSHC
RRS

(a) City 2.

5 10 15 20 25 30

40
50

60
70

80
90

10
0

Deployment Dataset Size

Te
st

 S
et

 A
cc

ur
ac

y

Base
Retrain

RSHC
RRS

(b) City 3.

5 10 15 20 25 30

40
50

60
70

80
90

10
0

Deployment Dataset Size

Te
st

 S
et

 A
cc

ur
ac

y

Base
Retrain

RSHC
RRS

(c) City 4.

Figure 6.13 – Accuracy results of the four approaches with respect to the number of
reframing/retraining examples in the three possible deployment contexts.

Numerical output reframing, i.e. in regression tasks, has been illustrated on the
real-life bike sharing dataset, where natural input and output shifts occur.

Finally, the extension of reframing to the relational setting through the use of complex
aggregates has been shown. This extension is natural since complex aggregate feature
are usually numerical and can easily be reframed with our methods. This approach has
been shown to be effective in presence of both distribution shift and cardinality change.

As a lead for future work, an objective is to propose similar algorithms to perform
reframing of categorical features. Indeed, only numerical features have been considered
in this Chapter. A large-scale application should also be considered to further assess the
potential of our approaches. An example of such a real-world task, of which the bike
sharing dataset is an example will be given in Chapter 7.

156 CHAPTER 6. Input and Output Reframing of Numerical Features

Chapter7
Conclusions and Perspectives

In this chapter, we summarize the contributions and results of this thesis. We also
present a potential domain of application for future work on both relational learning
and reframing.

7.1 Contributions and Results

This thesis has dealt with machine learning tasks, namely learning predictive models
from data. Specifically, we have tackled two aspects: firstly, we have focused on re-
lational learning, i.e. predicting on one main kind of object, which is itself related to
other secondary objects having their specific properties. This is opposed to attribute-
value learning, where prediction is made on one kind of object with its individual set of
properties. Thus, when attribute-value data are often represented in a single table with
properties as columns and records of data as rows, relational data are represented across
multiple tables linked by relationships. The second aspect we have tackled is reframing,
i.e. reusing and adapting models through multiple contexts. A model is learned in one
context, i.e. under specific conditions, and is adapted to perform well in a second con-
text, where conditions such as data distribution may differ from the original context.
This thesis has explored the difficulties related to these two aspects and has proposed
learning algorithms adapted to these paradigms.

7.1.1 Relational Learning and Complex Aggregate Features

To perform relational learning, we have combined two common ideas used in this field:
introduction of relevant secondary objects, as popularized by Inductive Logic Program-
ming, and secondary objects aggregation, often used in propositionalization. These two
ideas have been combined into complex aggregate features, i.e. aggregates of subsets of
relevant secondary objects, that we presented in Chapter 3. The secondary objects to be
aggregated are selected through conditions on their properties. The complex aggregates
search space is too wide to be considered exhaustively. Thus, we have focused on the

157

158 CHAPTER 7. Conclusions and Perspectives

use of complex aggregates in a decision tree model, which is easy to read and allows to
introduce a relevant complex aggregate for a given node of the tree, rather than gener-
ating the best complex aggregates for the whole set of examples. This introduction is
made using non-exhaustive hill-climbing optimization algorithms, avoiding consideration
of billions of features. However, the first algorithm we propose is still too slow for actual
use on real-world data.

This is the reason why, in Chapter 4, we have proposed a stochastic optimization
algorithm to explore the complex aggregates search space, based on random restart hill-
climbing. This algorithm takes advantage of the structure of complex aggregates: the
aggregation process on one hand, the selection condition on the other hand, to optimize
the selection condition given the aggregation process. Nevertheless, this algorithm is suf-
fering from overfitting, because of the introduction of too specific aggregates. Thus, it
does not improve significantly over a model based on simple aggregates, such as Relaggs
(Krogel and Wrobel 2003), with no selection condition. Moreover, the decision tree
structure was also known to be sensitive to overfitting.

To overcome this double limitation, we have focused on the introduction of complex
aggregates in a Random Forest model, i.e. a set of decision trees learned over different
subsets of examples and features. This approach presents the advantage of introducing
diversity in the model and thus to reduce overfitting. Based on its structure, we have
proposed a straightforward subsampling of the complex aggregates search space, subsam-
pling the number of aggregation processes on one hand, and the number of attributes to
use in the selection condition on the other hand. In this context, we have introduced two
simplified random hill-climbing algorithms, since the diversity induced by the Random
Forest removes the necessity for very specific and accurate aggregates. These two solu-
tions indeed have led to a performance increase, over both existential decision tree learner
Tilde (Blockeel and De Raedt 1998) and its Random Forest, complex-aggregate-based
extension Forf (Van Assche et al. 2006). These algorithms have been implemented
as a Java software, called CARAF (Complex Aggregates within RAndom Forests). We
have also presented the application of our Random Forest learner to complex aggregate
feature selection.

Future improvement of Caraf may consider other stochastic optimization algorithms
to perform the search for complex aggregates. In particular, genetic algorithms may be
a good candidate. The use of non-tree-based models is also a lead for future work.
Since most aggregates are numerical features, their inclusion in a regression model, such
as logistic regression for classification or linear regression, may be interesting. The
handling of nested relationships in data, introducing complex aggregates inside complex
aggregates, will be necessary to handle complex data.

7.1.2 Adaptation to Context Change with Reframing

We have focused on two families of reframing methods. First, we have tackled a first
kind of output reframing, which consists in modifying the interpretations of the “soft”
predictions of the model to achieve possibly different “hard” predictions depending on
the context. Then, we have dealt with input and “hard” output reframing, the former

7.2. Future Work: Learning on Spatio-Temporal Data 159

consists in transforming the inputs of the model, i.e. the predictive features, before
applying the model, while the latter consists in transforming the output value of the
model, i.e. the value it predicts, depending on the context.

In Chapter 5, we have introduced a multi-class cost-sensitive learning algorithm,
based on pairwise binarization, i.e. the original multi-class task is divided into several
binary classification tasks, one per pair of classes. To take into account misclassification
costs, we have applied a thresholding approach on the scores returned by the individual
binary models. These thresholds are optimized independently for each model, taking
into account examples from all classes for each binary classifier, which considers only two
classes. Experiments on real-world datasets have shown this gives a better predictive
power to the approach, which outperforms state-of-the-art algorithms. This pairwise
approach has been used to perform reframing and adapt to a change of misclassification
costs between two contexts. This adaptation is achieved by using a few sample of labeled
data from the target context to optimize the binary thresholds.

In Chapter 6, we have tackled input and output reframing of numeric features through
the use of affine transformations. Parameters of the affine functions are optimized using
stochastic optimization algorithms. For input reframing, the aim is to transform the
values of the input attributes in the target context so that the transformed values look
like values from the original training context, so that the original model is usable. These
methods outperform a retraining approach with few labeled data available to reframe or
retrain. They also perform better, in both accuracy performance and runtime, than the
genetic programming-based algorithm GP-RFD (Moreno-Torres, Llorà, et al. 2013). Our
algorithms are also able to deal with an output shift, i.e. a change of distribution in the
numeric output attribute of a regression task. In this case, called output reframing, the
role of the affine transformation is the opposite of its role in input reframing. The affine
transformation is applied to the value predicted by the model, which originally looks
like an output value from the training context, for it to look like a value from the target
context. We have proposed an extension of these algorithms to achieve reframing in the
relational setting, through the use of complex aggregates, where both numeric features
of the secondary objects and outputs of the mostly numeric aggregation functions can
be reframed.

Future work in reframing will consist in proposing similar methods to reframe cat-
egorical features, since we have only considered numerical inputs or outputs so far. A
large-scale, real-world application task should also be identified to further assess the
strength of our reframing approaches. This could be found in a spatio-temporal domain,
which is of interest to apply both our relational data mining techniques and reframing
algorithms.

7.2 Future Work: Learning on Spatio-Temporal Data

A potential application for both relational data mining and reframing is multi-dimensional
data. In particular, temporal and spatial data can be represented naturally in the rela-
tional setting. Inspired by the bike sharing example dataset (Fanaee-T and Gama 2014)

160 CHAPTER 7. Conclusions and Perspectives

described in Section 6.4, let us consider a regression task where the aim is to predict
hourly bike rental in a particular station. The schema of such a dataset and a few records
are given in Table 7.1. The “Id” column identifies the record. The notation iab of the
elements of this column reads as “record for station a at hour b”. The “Hour” column
represents a timestamp, the number of hours that passed since the origin of the records,
it is not the hour of the day. Columns “X” and “Y” correspond to spatial coordinates of
the station in an orthonormal basis, with one meter as unit. These two columns identify
a station, i.e. the first three rows are hourly counts for a first station located at coordi-
nates (100, 100), while rows 4 to 6 are records for a second station located at (500, 400),
and rows 7 to 9 correspond to a third station at (−300, 200). The “BikesRented” column
is the count of bikes rented during the given hour at the given station. It is the target
column, the one to be predicted. More input attributes could be used to predict this
count, i.e. there could be more columns in this database, we omit them to focus on the
transformation to the relational setting.

Table 7.1 – Hourly bike rental records per station.

Id Hour X Y BikesRented
i10 0 100 100 10
i11 1 100 100 9
i12 2 100 100 13
· · · · · · · · · · · · · · ·
i20 0 500 400 15
i21 1 500 400 8
i22 2 500 400 12
· · · · · · · · · · · · · · ·
i30 0 -300 200 20
i31 1 -300 200 15
i32 2 -300 200 25
· · · · · · · · · · · · · · ·

To predict the hourly count of bikes rented at a particular station, it is relevant to
consider the history of bikes rented at the station, e.g. the average count of bikes rented
on the previous hours, since it indicates the temporal dynamics of bike rentals. Similarly,
it is also relevant to consider the history of bikes rented in the nearby stations, e.g. the
average count of bikes rented during the previous hour in the stations in a 500-meter
radius, since it shows the spatial dynamics of bikes rented.

Both temporal and spatial dynamics can be represented in the relational setting.
Then, the main table is the one given in Table 7.1, and an association table defines a
one-to-many relationship between each record of the main table and the records prior to
it. The schema and part of the records of this association table are shown in Table 7.2.
For each row of the association column, the “IdMain” column represents the Id of the
record in the main table that stands for the main object, i.e. the one side of the one-to-
many relationship. The “IdSec” column is the Id of the record from the main table that

7.2. Future Work: Learning on Spatio-Temporal Data 161

stands for the secondary object, i.e. the record related to the main one through the many
side of the one-to-many relationship. This representation allows for the introduction of
dimensional distances between records, in this example temporal and spatial distances.
Indeed the “HourDist” column represents the temporal distance in hours between the
records IdMain and IdSec, i.e. the number of hours that passed between IdSec and
IdMain. Similarly, the “XDist” and “YDist” columns represent the spatial distance in
meters according to the corresponding coordinate between the two stations associated
to the records, i.e. the difference in the “X” and “Y” column respectively between the
two records.

Table 7.2 – Spatio-temporal association table for bike rentals.

IdMain IdSec HourDist XDist YDist
i11 i10 1 0 0
i11 i20 1 400 300
i11 i30 1 -400 100
· · · · · · · · · · · · · · ·
i12 i10 2 0 0
i12 i11 1 0 0
i12 i20 2 400 300
i12 i21 1 400 300
i12 i30 2 -400 100
i12 i31 1 -400 100
· · · · · · · · · · · · · · ·
i22 i10 2 -400 -300
i22 i11 1 -400 -300
i22 i20 2 0 0
i22 i21 1 0 0
i22 i30 2 -800 -200
i22 i31 1 -800 -200
· · · · · · · · · · · · · · ·

For instance, the three first rows in Table 7.2 indicate the relationship between the
record in the first station for hour 1 to the records in the first three stations at hour 0.
The temporal distance is 1, since the secondary records correspond to the hour directly
before the main record. The spatial distance with the record corresponding to the same
station one hour before is 0 for both “X” and “Y” coordinates. The first station is
located at coordinates (100, 100), while the second station is at (500, 400), the spatial
algebraic distance from station 1 to station 2 is then 400 in the “X” coordinate, and 300
in the “Y” coordinate, which corresponds to the second row. Similarly, station 3 is at
(−300, 200), so the algebraic distance from station 1 is (−400, 100), which corresponds
to the third row.

In the six next rows, the main object is the record for hour 2 in station 1. Hence,
there are twice more records related to this record, since it can be linked to the records of

162 CHAPTER 7. Conclusions and Perspectives

hour 1. The temporal distance with records from hour 0 is now 2, while the distance with
records from hour 1 is 1. In the last six rows, the main record is associated to station 2.
The algebraic distance from station 2 to station 1 is the opposite of the distance from
station 1 to station 2, it is (−400,−300) in these records, where it was (400, 300) in the
first records.

In this context, complex aggregates constitute interesting features, since, for a given
record associated to a station and timestamp, the role of the selection condition is to
select relevant records, i.e. records of relevant stations at relevant timestamps. For
instance, the following complex aggregate features can be constructed:

• average(BikesRented,XDist = 0 ∧ Y Dist = 0 ∧ HourDist 6 3): for a given
station and timestamp, the average number of bikes rented in the same station for
the past 3 hours.

• median(BikesRented,XDist ∈ [−300; 300] ∧ Y Dist ∈ [−200; 200] ∧HourDist 6
5): for a given station and timestamp, the median number of bikes rented for the
past 5 hours in the nearby stations, in a rectangle centered on the station and of
size 600 meters in the “X” direction, and 400 meters in the “Y” direction.

Finally, there is a potential application for reframing in this context. We consider
an history of records for stations in a given neighborhood of a city, on which we train
a first prediction model of the number of bikes rented. Then, the bike rental system
is extended to another neighborhood, where the spatial organization is different, for
instance the distance between stations is higher than in the first neighborhood. The
demand for bike rental may also be higher in this neighborhood. The stations in the
second neighborhood are new, thus there is few history of bikes rented, i.e. not enough
data to train a prediction model. The model trained in the first neighborhood can
be reframed to adapt to the second neighborhood, to obtain an accurate model. The
different spatial organization constitutes a shift in input attributes, since the distances
between stations are higher, so there is a need for input reframing. Moreover, if the
demand is higher, the number of bikes rented, i.e. the target for prediction, will be
higher than in the original neighborhood. This constitutes a shift in the output attribute
that can be solved with output reframing.

The need for predictive models in spatio-temporal tasks is increasing, with the
amount of such data that are collected through the localization function of the growing
number of smartphones, and intelligent sensors. In this context, the contributions of
this thesis, in both relational learning and reframing, are a suitable solution.

Bibliography

Al-Otaibi, Reem, Ricardo B. C. Prudêncio, Meelis Kull, and Peter A. Flach (2015).
“Versatile Decision Trees for Learning Over Multiple Contexts”. In: Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML PKDD 2015,
Porto, Portugal, September 7-11, 2015, Proceedings, Part I. Ed. by Annalisa Appice,
Pedro Pereira Rodrigues, Vı́tor Santos Costa, Carlos Soares, João Gama, and Alı́pio
Jorge. Vol. 9284. Lecture Notes in Computer Science. Springer, pp. 184–199. isbn:
978-3-319-23527-1. doi: 10.1007/978-3-319-23528-8_12.

Amores, Jaume (2013). “Multiple instance classification: Review, taxonomy and compar-
ative study”. In: Artif. Intell. 201, pp. 81–105. doi: 10.1016/j.artint.2013.06.003.

Anderson, Grant and Bernhard Pfahringer (2009). “Relational Random Forests Based
on Random Relational Rules”. In: IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,
2009. Ed. by Craig Boutilier, pp. 986–991. url: http://ijcai.org/papers09/
Papers/IJCAI09-167.pdf.

Andrews, Stuart, Ioannis Tsochantaridis, and Thomas Hofmann (2002). “Support vector
machines for multiple-instance learning”. In: Advances in neural information process-
ing systems 15, pp. 561–568.

Bergstra, James and Yoshua Bengio (2012). “Random Search for Hyper-Parameter Op-
timization”. In: Journal of Machine Learning Research 13, pp. 281–305. url: http:
//dl.acm.org/citation.cfm?id=2188395.

Berka, Petr (2000). “Guide to the financial data set”. In: PKDD2000 discovery challenge.
Bickel, Steffen, Michael Brückner, and Tobias Scheffer (2009). “Discriminative Learning

Under Covariate Shift”. In: Journal of Machine Learning Research 10, pp. 2137–2155.
doi: 10.1145/1577069.1755858.

Blockeel, Hendrik and Luc De Raedt (1998). “Top-Down Induction of First-Order Logical
Decision Trees”. In: Artif. Intell. 101.1-2, pp. 285–297.

Boullé, Marc (2014). “Towards Automatic Feature Construction for Supervised Classi-
fication”. In: Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceed-
ings, Part I. Ed. by Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa
Meo. Vol. 8724. Lecture Notes in Computer Science. Springer, pp. 181–196. isbn:
978-3-662-44847-2. doi: 10.1007/978-3-662-44848-9_12.

163

164 Bibliography

Bourke, Chris, Kun Deng, Stephen D. Scott, Robert E. Schapire, and N. V. Vinodchan-
dran (2008). “On reoptimizing multi-class classifiers”. In: Machine Learning 71.2-3,
pp. 219–242. doi: 10.1007/s10994-008-5056-8.

Brefeld, Ulf, Peter Geibel, and Fritz Wysotzki (2003). “Support Vector Machines with
Example Dependent Costs”. In: ECML. Ed. by Nada Lavrac, Dragan Gamberger,
Ljupco Todorovski, and Hendrik Blockeel. Vol. 2837. Lecture Notes in Computer
Science. Springer, pp. 23–34. isbn: 3-540-20121-1.

Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32. doi:
10.1023/A:1010933404324.

Breiman, Leo, J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification and
Regression Trees. Wadsworth. isbn: 0-534-98053-8.

Daumé, Hal, III and Daniel Marcu (2006). “Domain Adaptation for Statistical Classi-
fiers”. In: J. Artif. Intell. Res. (JAIR) 26, pp. 101–126. doi: 10.1613/jair.1872.

Demsar, Janez (2006). “Statistical Comparisons of Classifiers over Multiple Data Sets”.
In: Journal of Machine Learning Research 7, pp. 1–30. url: http://www.jmlr.org/
papers/v7/demsar06a.html.

Dietterich, Thomas G. and Ghulum Bakiri (1995). “Solving Multiclass Learning Prob-
lems via Error-Correcting Output Codes”. In: J. Artif. Intell. Res. (JAIR) 2, pp. 263–
286. doi: 10.1613/jair.105.

Dietterich, Thomas G., Richard H. Lathrop, and Tomás Lozano-Pérez (1997). “Solving
the Multiple Instance Problem with Axis-Parallel Rectangles”. In: Artif. Intell. 89.1-
2, pp. 31–71. doi: 10.1016/S0004-3702(96)00034-3.

Dinh, Quang-Thang, Christel Vrain, and Matthieu Exbrayat (2012). “A Link-Based
Method for Propositionalization”. In: Late Breaking Papers of the 22nd International
Conference on Inductive Logic Programming, Dubrovnik, Croatia, September 17-
19, 2012. Ed. by Fabrizio Riguzzi and Filip Zelezný. Vol. 975. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 10–25. url: http://ceur- ws.org/Vol- 975/
paper-01.pdf.

Dzeroski, Saso, Steffen Schulze-Kremer, Karsten R. Heidtke, Karsten Siems, Dietrich
Wettschereck, and Hendrik Blockeel (1998). “Diterpene Structure Elucidation from
13CNMR Spectra with Inductive Logic Programming”. In: Applied Artificial Intelli-
gence 12.5, pp. 363–383. doi: 10.1080/088395198117686.

Elkan, Charles (2001). “The Foundations of Cost-Sensitive Learning”. In: Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI
2001, Seattle, Washington, USA, August 4-10, 2001. Ed. by Bernhard Nebel. Morgan
Kaufmann, pp. 973–978. isbn: 1-55860-777-3.

Fanaee-T, Hadi and João Gama (2014). “Event labeling combining ensemble detectors
and background knowledge”. In: Progress in AI 2.2-3, pp. 113–127. doi: 10.1007/
s13748-013-0040-3.

Fürnkranz, Johannes (2002). “Round Robin Classification”. In: Journal of Machine
Learning Research 2, pp. 721–747. url: http : / / www . jmlr . org / papers / v2 /
fuernkranz02a.html.

Bibliography 165

Getoor, Lise (2001). “Multi-relational data mining using probabilistic relational models:
research summary”. In: Proceedings of the First Workshop in Multi-relational Data
Mining.

Gretton, Arthur, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt,
and Bernhard Schölkopf (2009). “Covariate Shift by Kernel Mean Matching”. In:
Quionero-Candela, Joaquin, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. Dataset Shift in Machine Learning. The MIT Press. isbn: 9780262170055.

Hall, Mark A., Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten (2009). “The WEKA data mining software: an update”. In:
SIGKDD Explorations 11.1, pp. 10–18. doi: 10.1145/1656274.1656278.

Jelali, Soufiane El, Agnès Braud, and Nicolas Lachiche (2012). “Propositionalisation of
Continuous Attributes beyond Simple Aggregation”. In: ILP. Ed. by Fabrizio Riguzzi
and Filip Zelezný. Vol. 7842. Lecture Notes in Computer Science. Springer, pp. 32–
44. isbn: 978-3-642-38811-8.

Knobbe, Arno J., Marc de Haas, and Arno Siebes (2001). “Propositionalisation and
Aggregates”. In: Principles of Data Mining and Knowledge Discovery, 5th European
Conference, PKDD 2001, Freiburg, Germany, September 3-5, 2001, Proceedings. Ed.
by Luc De Raedt and Arno Siebes. Vol. 2168. Lecture Notes in Computer Science.
Springer, pp. 277–288. isbn: 3-540-42534-9. doi: 10.1007/3-540-44794-6_23.

Krogel, M.-A. and S. Wrobel (2003). “Facets of Aggregation Approaches to Proposition-
alization”. In: Work-in-Progress Track at the Thirteenth International Conference on
Inductive Logic Programming (ILP). Ed. by T. Horvath and A. Yamamoto.

Kuzelka, Ondrej and Filip Zelezný (2009). “Block-wise construction of acyclic relational
features with monotone irreducibility and relevancy properties”. In: Proceedings of the
26th Annual International Conference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009. Ed. by Andrea Pohoreckyj Danyluk, Léon Bottou,
and Michael L. Littman. Vol. 382. ACM International Conference Proceeding Series.
ACM, pp. 569–576. isbn: 978-1-60558-516-1. doi: 10.1145/1553374.1553448.

Lachiche, Nicolas and Peter A. Flach (2003). “Improving Accuracy and Cost of Two-class
and Multi-class Probabilistic Classifiers Using ROC Curves”. In: Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), August 21-24,
2003, Washington, DC, USA. Ed. by Tom Fawcett and Nina Mishra. AAAI Press,
pp. 416–423. isbn: 1-57735-189-4. url: http://www.aaai.org/Library/ICML/
2003/icml03-056.php.

Landgrebe, Thomas and Robert P. W. Duin (2007). “Approximating the multiclass ROC
by pairwise analysis”. In: Pattern Recognition Letters 28.13, pp. 1747–1758. doi:
10.1016/j.patrec.2007.05.001.

Lavrac, Nada and Saso Dzeroski (1994). Inductive logic programming - techniques and
applications. Ellis Horwood series in artificial intelligence. Ellis Horwood. isbn: 978-
0-13-457870-5.

Lichman, M. (2013). UCI Machine Learning Repository. url: http://archive.ics.
uci.edu/ml.

166 Bibliography

Mitchell, Tom M. (1997). Machine learning. McGraw Hill series in computer science.
McGraw-Hill. isbn: 978-0-07-042807-2.

Moreno-Torres, José G. (2013). “Dataset shift in classification: Terminology, benchmarks
and methods”. PhD thesis. Editorial de la Universidad de Granada.

Moreno-Torres, José G., Xavier Llorà, David E. Goldberg, and Rohit Bhargava (2013).
“Repairing fractures between data using genetic programming-based feature extrac-
tion: A case study in cancer diagnosis”. In: Inf. Sci. 222, pp. 805–823. doi: 10.1016/
j.ins.2010.09.018.

Moreno-Torres, José G., Troy Raeder, Rocı́o Alaı́z-Rodrı́guez, Nitesh V. Chawla, and
Francisco Herrera (2012). “A unifying view on dataset shift in classification”. In:
Pattern Recognition 45.1, pp. 521–530. doi: 10.1016/j.patcog.2011.06.019.

Muggleton, Stephen (1993). “Inverting Entailment and Progol”. In: Machine Intelligence
14, Proceedings of the Fourteenth Machine Intelligence Workshop, held at Hitachi
Advanced Research Laboratories, Tokyo, Japan, November 1993. Ed. by Koichi Fu-
rukawa, Donald Michie, and Stephen Muggleton. Oxford University Press, pp. 135–
190.

Ontañón, Santiago and Enric Plaza (2015). “Refinement-based disintegration: An ap-
proach to re-representation in relational learning”. In: AI Commun. 28.1, pp. 35–46.
doi: 10.3233/AIC-140621.

Ourston, Dirk and Raymond J. Mooney (1994). “Theory Refinement Combining Analyt-
ical and Empirical Methods”. In: Artif. Intell. 66.2, pp. 273–309. doi: 10.1016/0004-
3702(94)90028-0.

Pan, Sinno Jialin and Qiang Yang (2010). “A Survey on Transfer Learning”. In: IEEE
Trans. Knowl. Data Eng. 22.10, pp. 1345–1359. doi: 10.1109/TKDE.2009.191.

Perovsek, Matic, Anze Vavpetic, Janez Kranjc, Bojan Cestnik, and Nada Lavrac (2015).
“Wordification: Propositionalization by unfolding relational data into bags of words”.
In: Expert Syst. Appl. 42.17-18, pp. 6442–6456. doi: 10.1016/j.eswa.2015.04.017.

Puissant, Anne, Nicolas Lachiche, Grzegorz Skupinski, Agnès Braud, Julien Perret, and
Annabelle Mas (2011). “Classification et évolution des tissus urbains à partir de
données vectorielles”. In: Revue Internationale de Géomatique 21.4, pp. 513–532.

Quinlan, J. Ross (1986). “Induction of Decision Trees”. In: Machine Learning 1.1, pp. 81–
106. doi: 10.1023/A:1022643204877.

— (1990). “Learning Logical Definitions from Relations”. In: Machine Learning 5, pp. 239–
266. doi: 10.1007/BF00117105.

— (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann. isbn: 1-55860-238-0.
Srinivasan, Ashwin, Stephen Muggleton, Michael J. E. Sternberg, and Ross D. King

(1996). “Theories for Mutagenicity: A Study in First-Order and Feature-Based In-
duction”. In: Artif. Intell. 85.1-2, pp. 277–299. doi: 10.1016/0004-3702(95)00122-
0.

Sugiyama, Masashi, Matthias Krauledat, and Klaus-Robert Müller (2007). “Covariate
Shift Adaptation by Importance Weighted Cross Validation”. In: Journal of Machine
Learning Research 8, pp. 985–1005. url: http://dl.acm.org/citation.cfm?id=
1390324.

Bibliography 167

Van Assche, Anneleen, Celine Vens, Hendrik Blockeel, and Saso Dzeroski (2006). “First
order random forests: Learning relational classifiers with complex aggregates”. In:
Machine Learning 64.1-3, pp. 149–182.

Vens, Celine (2007). “Complex aggregates in relational learning”. Blockeel, Hendrik (su-
pervisor). PhD thesis. Informatics Section, Department of Computer Science, Faculty
of Engineering Science. url: https://lirias.kuleuven.be/handle/1979/839.

Vens, Celine, Jan Ramon, and Hendrik Blockeel (2006). “Refining Aggregate Conditions
in Relational Learning”. In: PKDD. Ed. by Johannes Fürnkranz, Tobias Scheffer,
and Myra Spiliopoulou. Vol. 4213. Lecture Notes in Computer Science. Springer,
pp. 383–394. isbn: 3-540-45374-1.

Zadeh, Lotfi A. (1965). “Fuzzy Sets”. In: Information and Control 8.3, pp. 338–353. doi:
10.1016/S0019-9958(65)90241-X.

168 Bibliography

Associated Publications

This work has led to several publications in international conferences. They are listed
below.

• On relational supervised learning aspects:

– Preliminary considerations on complex aggregates:
Clément Charnay, Nicolas Lachiche, and Agnès Braud (2013a). “Incremental
Construction of Complex Aggregates: Counting over a Secondary Table”. In:
Late Breaking Papers of the 23rd International Conference on Inductive Logic
Programming, Rio de Janeiro, Brazil, August 28th - to - 30th, 2013. Ed. by
Gerson Zaverucha, Vı́tor Santos Costa, and Aline Marins Paes. Vol. 1187.
CEUR Workshop Proceedings. CEUR-WS.org, pp. 1–6. url: http://ceur-
ws.org/Vol-1187/paper-02.pdf

– Random restart hill-climbing algorithm to search for complex aggregates in a
decision tree model:
Clément Charnay, Nicolas Lachiche, and Agnès Braud (2014). “Construction
of Complex Aggregates with Random Restart Hill-Climbing”. In: Induc-
tive Logic Programming - 24th International Conference, ILP 2014, Nancy,
France, September 14-16, 2014, Revised Selected Papers. Ed. by Jesse Davis
and Jan Ramon. Vol. 9046. Lecture Notes in Computer Science. Springer,
pp. 49–61. isbn: 978-3-319-23707-7. doi: 10.1007/978-3-319-23708-4_4

– Random hill-climbing algorithms for complex aggregates introduction in a
Random Forest Model:
Clément Charnay, Nicolas Lachiche, and Agnès Braud. “CARAF: Complex
Aggregates within Random Forests”. In: 25th International Conference on
Inductive Logic Programming (ILP’15)

– Propositionalization approach using quantiles:
Chowdhury Farhan Ahmed, Nicolas Lachiche, Clément Charnay, Soufiane El
Jelali, and Agnès Braud (2015). “Flexible propositionalization of continuous
attributes in relational data mining”. In: Expert Systems with Applications
42.21, pp. 7698–7709

• On reframing aspects:

169

170 Associated Publications

– Input and output reframing of numeric features through affine transforma-
tions:
Chowdhury Farhan Ahmed, Clément Charnay, Nicolas Lachiche, and Agnès
Braud (2014a). “Reframing Continuous Input Attributes”. In: 26th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI 2014,
Limassol, Cyprus, November 10-12, 2014. IEEE Computer Society, pp. 31–
38. isbn: 978-1-4799-6572-4. doi: 10.1109/ICTAI.2014.16. url: http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6979774

– Multi-class cost-sensitive thresholds for Naive Bayesian scorers in one-versus-
one binarisation:
Clément Charnay, Nicolas Lachiche, and Agnès Braud (2013c). “Pairwise Op-
timization of Bayesian Classifiers for Multi-class Cost-Sensitive Learning”. In:
2013 IEEE 25th International Conference on Tools with Artificial Intelligence,
Herndon, VA, USA, November 4-6, 2013. IEEE Computer Society, pp. 499–
505. isbn: 978-1-4799-2971-9. doi: 10.1109/ICTAI.2013.80. url: http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6734837
Clément Charnay, Nicolas Lachiche, and Agnès Braud (2013b). “Optimi-
sation par paires des classifieurs bayésiens dans le cadre d’un apprentissage
sensible au coût”. In: Conférence francophone sur l’Apprentissage (CAp).
url: http://icube-publis.unistra.fr/papr/2013/7-CLB13

– Input reframing of numeric complex aggregates:
Chowdhury Farhan Ahmed, Clément Charnay, Nicolas Lachiche, and Ag-
nès Braud (2014b). “Reframing on Relational Data”. In: Inductive Logic
Programming - 24th International Conference, ILP 2014, Nancy, France,
September 14-16, 2014, Revised Selected Papers. Ed. by Jesse Davis and Jan
Ramon. Vol. 9046. Lecture Notes in Computer Science. Springer, pp. 1–15.
isbn: 978-3-319-23707-7. doi: 10.1007/978-3-319-23708-4_1

– Real-life example of dataset shift:
Chowdhury Farhan Ahmed, Nicolas Lachiche, Clément Charnay, and Agnès
Braud (2014). “Dataset Shift in a Real-Life Dataset”. In: 1st International
Workshop on Learning over Multiple Contexts @ ECML (LMCE’14)

• On relational representation of spatio-temporal data:
Clément Charnay, Nicolas Lachiche, and Agnès Braud (2015). “Approche relation-
nelle de l’apprentissage de séquences”. In: 15èmes Journées Francophones Extrac-
tion et Gestion des Connaissances, EGC 2015, 27-30 Janvier 2015, Luxembourg.
Ed. by Benoı̂t Otjacques, Jérôme Darmont, and Thomas Tamisier. Vol. E-28. Re-
vue des Nouvelles Technologies de l’Information. Hermann-Éditions, pp. 481–482.
url: http://editions-rnti.fr/?inprocid=1002118

Amélioration de l’apprentissage supervisé
par l’utilisation d’agrégats complexes et
la prise en compte du contexte

1 Introduction

Cette thèse se place dans le cadre général de l’intelligence artificielle, domaine qui vise à
créer des machines, ou programmes informatiques, « intelligents ». Les récentes avancées
du domaine lui ont permis de recevoir une attention croissante de la part du grand public.
Les applications sont vastes, de la robotique à la détection de fraude bancaire, ainsi que
les systèmes de recommandation analysant les goûts des utilisateurs pour proposer des
offres personnalisées. L’aide au diagnostic médical, visant à prédire une maladie chez
un patient en fonction de ses symptômes, est une application de l’intelligence artificielle
appartenant au sous-domaine qui nous intéresse plus précisément dans cette thèse :
l’apprentissage automatique.

L’apprentissage automatique consiste à apprendre à un programme à effectuer une
certaine tâche à partir de données, servant d’exemples pour l’apprentissage, dont la
qualité est évaluée à l’aide d’une mesure de performance. Formellement, Mitchell donne
la définition suivante (traduite de l’anglais) :

“Un programme apprend à partir d’une expérience E pour une certaine catégorie
de tâches T suivant une mesure de performance P, si sa performance sur les tâches T,
mesurée par P, augmente avec l’expérience E.” (Mitchell 1997)

Par exemple, un programme destiné à jouer aux échecs apprend lorsque sa capacité
à gagner des parties augmente au fur et à mesure qu’il dispute des parties. Les tâches
d’apprentissage automatique se divisent en deux grandes catégories :

L’apprentissage supervisé consiste à entraîner un modèle de prédiction : à partir de
données dites étiquetées, représentées par une caractéristique cible, que le modèle
doit apprendre à prédire, et des caractéristiques descriptives que le modèle va uti-
liser pour effectuer ses prédictions. Reprenant l’exemple d’aide au diagnostic, le
programme d’apprentissage dispose d’une base de patients, avec les valeurs des
caractéristiques vitales telles que la température interne ou la pression artérielle,
ainsi que l’éventuelle maladie dont ils souffrent. Cette dernière information sera la

171

172 Utilisation d’agrégats complexes et prise en compte du contexte

caractéristique cible de la prédiction, qui va elle-même se baser sur les caractéris-
tiques vitales.

L’apprentissage non-supervisé consiste à découvrir des catégories dans des données
non étiquetées, i.e. les données rassemblent des caractéristiques, sans cible à pré-
dire. La découverte de catégories se base alors sur les ressemblances, les proximités
qui peuvent exister entre les données.

Nous nous intéresserons à l’apprentissage supervisé, i.e. à l’apprentissage de modèles
de prédiction. Un modèle d’apprentissage est vu comme une fonction, reliant les carac-
téristiques descriptives servant à la prédiction en entrée, à la caractéristique cible de la
prédiction en sortie. La tâche d’apprentissage est une tâche de classification lorsque la
cible prend ses valeurs dans un ensemble fini et non-ordonné, i.e. des classes. On parle
de tâche de régression lorsque la cible est numérique et ordonnée.

L’apprentissage du modèle s’effectue à partir de données, i.e. d’exemples associant des
couples entrées/sortie. Nous prenons comme exemple le jeu de données post-opératoires,
dont un sous-ensemble est donné en Tableau F.1. La tâche consiste à prédire, pour un
patient sortant d’une opération chirurgicale, sa destination post-opératoire, en fonction
de ses constantes vitales. La caractéristique à prédire, i.e. sa destination, correspond à
la dernière colonne de la table, surlignée en jaune, qui peut prendre trois valeurs dif-
férentes : « h » s’il est gardé en observation à l’hôpital, « dom » s’il est renvoyé chez lui,
et « si » s’il est envoyé en soins intensifs. Il s’agit donc d’un problème de classification,
puisque la caractéristique cible prend ses valeurs dans un ensemble de 3 catégories.
Les huit premières colonnes constituent les caractéristiques descriptives utilisées pour la
prédiction, i.e. les constantes vitales. On y retrouve dans les trois premières colonnes les
températures interne et externe du patient et sa pression artérielle. Les trois colonnes
suivantes représentent la stabilité de ces trois facteurs. Enfin, on retrouve la saturation
en oxygène et la sensation de confort du patient.

Tableau F.1 – Sous-ensemble du jeu de données post-opératoires.

INT EXT PA INT-STBL EXT-STBL PA-STBL O2 CONF Dest
moyen bas moyen stable stable stable excellent 15 h
moyen élévé élévé stable stable stable excellent 10 dom
moyen bas moyen stable stable instable bon 10 si
moyen moyen moyen moy-stable stable instable excellent 15 h
moyen moyen moyen instable stable instable bon 10 dom
bas moyen élévé instable moy-stable moy-stable bon 10 si

moyen élévé bas instable stable stable bon 10 h
moyen bas moyen stable stable instable excellent 10 dom

… … … … … … … … …

Parmi les grandes familles de modèles de prédiction, nous utiliserons plus précisément
des arbres de décision. Ces modèles présentent l’avantage d’être faciles à interpréter pour
un utilisateur extérieur, grâce à leur représentation graphique. Un exemple d’arbre appris

1. Introduction 173

sur le jeu de données post-opératoires est donné en Figure F.1. L’apprentissage d’un
arbre de décision s’effectue de la façon suivante : à partir des exemples d’entraînement
à disposition, l’algorithme cherche une condition sur une caractéristique d’entrée qui
sépare les données de façon à créer des partitions pures en termes de caractéristique
cible. En d’autres termes, la séparation cherche à créer des partitions où les exemples
d’une seule classe sont très majoritaires voire seuls, créant ainsi une partition pure. Cet
algorithme d’apprentissage d’arbres de décision est le plus courant, popularisé par les
systèmes CART (Breiman et al. 1984) et C4.5 (Quinlan 1993).

L’arbre de décision donné en exemple utilise comme première condition, à la racine de
l’arbre, une séparation sur la valeur de la stabilité de la température interne du patient.
Les exemples sont donc séparés suivant les trois valeurs possibles de cette caractéristique,
et le processus de séparation recommence dans chaque branche, sur chacun des sous-
ensembles d’exemples, jusqu’à ce que des sous-ensembles purs soit créés. Ces nœuds
terminaux des arbres sont appelés des feuilles et sont étiquetés avec la classe représentée
dans la partition pure correspondante. Ainsi, les patients ayant une température interne
moyennement stable sont tous envoyés à l’hôpital, cela correspond à la branche gauche
de la racine de l’arbre donné en exemple, qui est donc une feuille étiquetée « h », puisque
tous les exemples d’entraînement correspondants sont de cette classe.

La prédiction de la destination d’un nouveau patient sortant d’opération s’effectue en
suivant le chemin correspondant dans l’arbre : la stabilité de la température interne du
patient est évaluée, et l’une des branches-filles est suivie en fonction du résultat. Si elle
est moyennement stable, la branche de gauche est suivie, le nœud suivant est une feuille
et l’arbre prédit que le patient doit rester en observation à l’hôpital. Si la température
interne est stable, la branche du milieu est suivie, et mène à une séparation sur la pression
artérielle. Suivant la valeur de cette caractéristique, la branche-fille correspondante est
suivie, jusqu’à ce que ce qu’une feuille de l’arbre soit atteinte, qui donnera la prédiction
de la destination du patient.

INT-STBL

h

moy-s
tabl

e

BP

…

éle
vé

h

bas

…

moyen

stable

BP-STBL

h

mo
y-s
tab

le

dom

stable

h

instable

instable

Figure F.1 – Début de l’arbre de décision appris sur le jeu de données post-opératoires.

Le jeu de données post-opératoires possède une représentation attribut-valeur : il

174 Utilisation d’agrégats complexes et prise en compte du contexte

n’est composé que d’une table, représentant une entité, un patient, avec ses caractéris-
tiques propres. Ce type de données est le plus courant, et les grandes familles de modèles
ont été développées pour apprendre à partir de cette représentation de données. Nous
nous intéressons à une représentation de données réparties sur plusieurs tables, dite rela-
tionnelle. Cette représentation intervient lorsque plusieurs entités, liées par des relations,
interviennent dans la tâche d’apprentissage. La tâche consiste à prédire la valeur d’une
caractéristique de l’une des entités, à partir de ses caractéristiques propres mais égale-
ment de celles des entités liées. Par exemple, considérons un problème de prédiction du
potentiel de mutation d’une molécule, elle-même composée d’atomes. L’apprentissage se
basera sur les propriétés physico-chimiques de la molécule, mais également sur celles des
atomes qui la composent. La tâche fait donc intervenir deux entités, les molécules et les
atomes, liées par une relation de composition.

Notre première tâche d’adaptation consistera donc à étudier une nouvelle extension
des arbres de décision à une représentation relationnelle, basée sur des propriétés appe-
lées agrégats complexes. Le nombre d’agrégats complexes constructibles pour une tâche
donnée, i.e. le nombre de caractéristiques utilisables pour la prédiction, est trop élevé
pour que tous soient considérés. Notre objectif est donc de mettre au point des heuris-
tiques pour identifier des agrégats complexes pertinents pour séparer les données, sans
les considérer exhaustivement.

Notre deuxième tâche d’adaptation concernera la réutilisation de modèles de prédic-
tion entre différents contextes. Par exemple, nous apprenons un modèle de prédiction des
ventes de glaces à Marseille, en se basant sur la température. Nous voulons maintenant
appliquer ce modèle pour prédire les ventes de glace à Lille, plutôt que d’apprendre un
nouveau modèle spécifique à Lille, par manque de données d’entraînement. Le climat de
Lille étant différent de celui de Marseille au niveau des températures, il est certain que le
modèle appris à Marseille ne sera pas fiable tel quel à Lille. Notre objectif sera donc de
proposer des méthodes d’adaptation pour prendre en compte le changement de contexte,
ici le changement de ville, et faire en sorte que le modèle d’origine soit utilisable dans le
nouveau contexte, soit en le modifiant légèrement suivant une procédure peu coûteuse,
soit en adaptant les données.

2 Apprentissage relationnel

L’apprentissage relationnel est un sous-domaine de l’apprentissage automatique où les
données ne sont pas représentées sous le format attribut-valeur classique. Dans ce der-
nier format, dont l’exemple du jeu de données post-opératoires a été donné en Tableau
F.1, chaque ligne d’une unique table représente un exemple d’apprentissage, et dont les
colonnes représentent les caractéristiques de ces exemples, dont la cible de la prédiction.
Dans le domaine relationnel, les données sont représentées par plusieurs tables représen-
tant les différentes entités intervenant dans la tâche de prédiction. Une table, appelée
table principale, correspond à l’entité principale, i.e. celle qui possède la caractéristique
cible de la prédiction. Les autres tables, appelées tables secondaires, correspondent aux
entités liées à l’entité principale par des relations.

2. Apprentissage relationnel 175

Nous donnons un exemple dans le domaine d’application de la géographie : le jeu
de données des ilots urbains représenté en Figure F.2. La tâche de prédiction porte ici
sur le rôle d’un ilot urbain, i.e. un ensemble de bâtiments. Le but est de prédire si un
ilot, l’objet principal, correspond à de l’habitat collectif, par exemple des immeubles, de
l’habitat individuel, avec des maisons en lotissement, un mélange de ces deux catégories,
une zone industrielle, … Six catégories ont été définies, il s’agit donc d’une tâche de
classification. La prédiction s’effectue à partir des caractéristiques géométriques de l’ilot,
mais également à partir de celles des bâtiments qui le composent. Ainsi la table des ilots
que nous montrons possède 6 colonnes : la première identifie un ilot et ne sert pas à la
prédiction, les quatre suivantes correspondent aux caractéristiques géométriques de l’ilot,
qui vont servir à la prédiction de la valeur de la dernière colonne, surlignée en jaune, qui
correspond à la catégorie de l’ilot. Le sous-ensemble que nous montrons contient trois
ilots, identifiés comme i1, i2 et i3.

La table des bâtiments, les objets secondaires, est composée de 5 colonnes : la pre-
mière identifie le bâtiment et n’est donc pas utile non plus à la prédiction, les trois
suivantes correspondent aux caractéristiques géométriques du bâtiment. Enfin, la der-
nière colonne relie le bâtiment à l’ilot dont il fait partie : ainsi les bâtiments b11, b12 et
b13 appartiennent à l’ilot i1, tandis que les bâtiments b21 et b22 appartiennent à l’ilot i2.

ilot_id densité convexité élongation aire classe
i1 0.151 0.986 0.221 22925 h_indiv
i2 0.192 0.832 0.155 15363 h_coll
i3 0.204 0.718 0.450 17329 h_mixte
… … … … … …

bâtiment_id convexité élongation aire ilot_id
b11 1.000 0.538 165 i1
b12 0.798 0.736 323 i1
b13 1.000 0.668 84 i1
… … … … …
b21 0.947 0.925 202 i2
b22 1.000 0.676 147 i2
… … … … …

0..N

1

Table principale - Ilots

Table secondaire - Bâtiments

Figure F.2 – Schéma du jeu de données des ilots urbains.

Il s’agit maintenant de tirer parti de cette relation de composition, et d’utiliser les
propriétés des bâtiments composant l’ilot pour effectuer la prédiction de la classe de l’ilot.

176 Utilisation d’agrégats complexes et prise en compte du contexte

La principale difficulté réside dans la manière de gérer cette relation de composition :
diverses méthodes de construction de propriétés de l’ilot à partir de celles des bâtiments
peuvent être utilisées. Nous nous focaliserons plus précisément sur l’utilisation d’agrégats
complexes.

2.1 Méthodes d’apprentissage relationnel et agrégats complexes

En apprentissage relationnel, il s’agit d’utiliser les propriétés des entités secondaires pour
l’apprentissage sur l’entité principale. Il existe dans l’état de l’art deux grandes familles
de méthodes.

La première famille est liée à la Programmation Logique Inductive (PLI) (Lavrac
et Dzeroski 1994). Dans cette catégorie, les méthodes d’apprentissage reposent essen-
tiellement sur l’introduction par le quantificateur existentiel d’objets secondaires liés
à l’objet principal vérifiant certaines conditions. Ceci permet l’introduction de règles
logiques telles que « Si l’ilot contient au moins un bâtiment d’aire supérieure à 500
m2, alors il s’agit d’un ilot d’habitat collectif ». L’algorithme auquel nous nous inté-
resserons plus particulièrement dans cette famille est Tilde (Blockeel et De Raedt
1998). Il s’agit d’une extension de l’algorithme d’apprentissage d’arbres de décision C4.5
aux données relationnelles, basé sur l’introduction d’objets secondaires pertinents par le
quantificateur existentiel, qui donne lieu à des propriétés telles que celle exposée plus
haut. La puissance du formalisme de la PLI permet un raisonnement avancé. Néanmoins,
la principale limite de ce type d’approches réside dans le fait qu’elles ne prennent pas
en compte la cardinalité des relations, i.e. elles ne peuvent pas introduire de règles telles
que « Si l’ilot contient au moins deux bâtiments d’aire supérieure à 500 m2, alors il
s’agit d’un ilot d’habitat collectif », ou plus généralement « Si l’ilot contient au moins
n bâtiments d’aire supérieure à 500 m2, alors il s’agit d’un ilot d’habitat collectif »,
avec n un nombre à déterminer. Notre premier objectif, par l’introduction d’agrégats
complexes, sera de dépasser cette limite.

La deuxième grande famille d’algorithmes d’apprentissage relationnel est la propo-
sitionalisation, les méthodes de cette famille transforment la représentation relation-
nelle des données en une représentation attribut-valeur. Autrement dit, elles ramènent
le schéma relationnel multi-tables à une seule table, correspondant à l’entité principale,
mais enrichie en propriétés construites à partir des entités secondaires. Cette trans-
formation présente l’avantage de permettre d’utiliser des algorithmes d’apprentissage
attribut-valeur classiques, qui sont bien plus nombreux que les algorithmes d’appren-
tissage purement relationnels. Dans cette famille, certaines méthodes sont basées sur
la construction de propriétés dites d’agrégation. L’agrégation consiste à appliquer une
fonction à un ensemble, pour le résumer à une seule valeur. Ceci permet de créer des
propriétés telles que « le nombre de bâtiments de l’ilot », ou « la moyenne de l’aire des
bâtiments de l’ilot ». L’algorithme RELAGGS (Krogel et Wrobel 2003) est basé sur
la construction de tels agrégats. Contrairement aux méthodes basées sur la PLI, les
algorithmes basés sur l’agrégation tiennent compte de la cardinalité et des propriétés
d’ensemble des objets secondaires liés à un objet principal. Néanmoins, elles perdent la
possibilité de se focaliser sur les objets secondaires pertinents, qui était une idée de base

2. Apprentissage relationnel 177

des méthodes basées sur la PLI.
Nous nous intéressons donc à la construction d’agrégats complexes, qui combinent les

idées des deux grandes familles de méthodes d’apprentissage relationnel : l’introduction
d’objets secondaires pertinents d’une part, et l’utilisation des dynamiques d’ensemble
permise par l’agrégation d’autre part. Les agrégats complexes consistent à agréger un
sous-ensemble des objets secondaires liés à un objet principal, défini par une condition.
Ceci permet de créer des propriétés telles que « le nombre de bâtiments de l’ilot ayant
une aire supérieure à 500 m2 », ou « la moyenne de l’aire des bâtiments de l’ilot ayant
une élongation inférieure à 0.7 ». On peut ainsi capturer les dynamiques d’ensemble
d’objets secondaires pertinents. Cependant, la sélection d’objets secondaires pertinents,
par des conditions sur leurs propriétés, donne un nombre extrêmement élevé d’agrégats
complexes à considérer pour une tâche donnée. Ainsi, le jeu de données des ilots urbains
contient environ 7 500 bâtiments. Si l’on considère que les valeurs numériques de chaque
propriété sont différentes pour chaque bâtiment, on peut créer au moins 15 000 condi-
tions possibles sur chacune des trois propriétés. La condition de sélection pouvant être
composée de conditions pour plusieurs attributs, on obtient environ 3 000 milliards de
conditions de sélection, qu’il faut multiplier par le nombre de processus d’agrégation,
i.e. d’associations d’une fonction et d’une éventuelle propriété à agréger, utilisables. Si
l’on considère la fonction de comptage, et les fonctions numériques usuelles que sont la
moyenne, le minimum et le maximum pour chacune des trois propriétés numériques des
bâtiments, on obtient 10 processus d’agrégation, et plus de 33 000 milliards d’agrégats
complexes possibles. Il paraît évident qu’il est impossible de tous les considérer. Notre
objectif sera donc de proposer des heuristiques d’exploration non exhaustive de l’espace
de recherche des agrégats complexes, afin d’identifier les plus pertinents sans tous les
tester.

Nous introduirons les agrégats complexes dans le cadre d’un modèle d’arbre de dé-
cision. À chaque nœud de l’arbre, l’heuristique cherchera une condition sur un agrégat
complexe pertinente pour séparer les données. Un exemple d’un tel arbre de décision est
donné en Figure F.3.

La première heuristique proposée pour générer les agrégats complexes est un algo-
rithme de hill-climbing. Dans ce cadre, partant d’un agrégat complexe, il s’agit de lui
appliquer une « légère modification » et d’observer si l’agrégat complexe ainsi créé per-
met de mieux séparer les données. À partir d’un agrégat, plusieurs modifications sont
essayées, qui forment le voisinage de l’agrégat. Si un ou plusieurs voisins permettent
de mieux séparer les données que l’agrégat d’origine, la recherche reprend à partir du
meilleur voisin, dont le voisinage est alors testé. Si aucun voisin ne sépare mieux les
données, l’agrégat d’origine est considéré comme le meilleur possible et est utilisé dans
l’arbre de décision.

La notion de voisinage est définie de la façon suivante, à partir d’un agrégat com-
plexe dont la condition de sélection est une conjonction de n conditions simples sur des
propriétés des objets secondaires, le voisinage rassemble :

• à processus d’agrégation constant, la conjonction peut devenir

178 Utilisation d’agrégats complexes et prise en compte du contexte

compte(bâtiments
tels que aire
< 150) < 10

moyenne(aire
des bâtiments
tels que élonga-

tion > 0.5) < 200

h_indiv

O
ui

h_mixte

N
on

Ou
i

minimum(aire
des bâtiments

tels que convexité
> 0.8) < 130

h_mixte

O
ui

h_coll

N
on

Non

Figure F.3 – Exemple d’arbre de décision utilisant des agrégats complexes.

– une conjonction de n+1 conditions qui rajoute une condition sur une propriété
non déjà présente dans la conjonction actuelle,

– une conjonction de n conditions qui modifie l’une des n conditions basiques :
sur une propriété numérique, cela prend la forme d’un changement de seuil
de comparaison.

– une conjonction de n − 1 conditions qui enlève une condition basique de la
conjonction.

• à conjonction de conditions constante, le processus d’agrégation peut être modifié
parmi toutes les possibilités.

Le point de départ de l’algorithme est un agrégat avec la fonction comptage comme
processus d’agrégation et une conjonction vide, qui sélectionne donc tous les objets
secondaires.

Néanmoins, cette méthode est encore trop exhaustive pour les problèmes à haute
dimension, i.e. avec beaucoup de propriétés à agréger et sur lesquelles mettre des condi-
tions. Le prochain objectif est donc de réduire l’espace de recherche tout en gardant une
bonne performance prédictive.

2.2 Hill-climbing stochastique et forêts d’arbres décisionnels

La deuxième heuristique que nous proposons est donc basée sur un hill-climbing stochas-
tique, i.e. incluant une part d’aléatoire. La notion de voisinage est toujours présente :

2. Apprentissage relationnel 179

à partir d’un agrégat de départ, l’algorithme recherche de meilleurs voisins et recom-
mence jusqu’à ne plus en trouver. Cependant, si aucun voisin ne permet d’améliorer
l’agrégat d’origine, la recherche recommence du début, à partir d’un nouvel agrégat gé-
néré aléatoirement. Ce processus de random restart hill-climbing ne s’effectue que sur
la conjonction de conditions, le processus d’agrégation étant fixé. Il y a donc autant de
processus de hill-climbing que de processus d’agrégation possibles. À chaque itération de
l’algorithme, la main est donnée à un processus tiré au hasard, les meilleurs processus
ayant une probabilité plus importante d’être sélectionnés. Le processus choisi avance
d’un pas de hill-climbing, i.e. il teste le voisinage de son agrégat courant, le met à jour
en cas d’amélioration, ou réinitialise aléatoirement la condition dans le cas contraire.

La notion de voisinage a également été réduite : comme seule la conjonction de condi-
tions peut être modifiée, l’ajout d’une condition sur un attribut est limité à une condition
choisie au hasard par attribut, alors que toutes les possibilités étaient testées aupara-
vant. De la même manière, la modification d’une condition existante est limitée à un
certain nombre de voisins. Dans le cas d’une condition sur une propriété numérique, qui
consiste en l’appartenance à un intervalle, seules de légères augmentation ou baisse des
deux bornes de l’intervalle sont testées, soit quatre modifications possibles. L’algorithme
de hill-climbing lié à un processus d’agrégation, i.e. ne faisant évoluer que la condition
de sélection, est illustré par la Figure F.4. L’ensemble de l’heuristique a été baptisée
RRHCCA, pour Random Restart Hill-Climbing of Complex Aggregates.

Initialiser
une

condition
d’agrégation

aléatoire

Tester
voisins de

la meilleure
condition

Un voisin
amé-
liore ?

Mettre
à jour la
meilleure
condition

Critère
d’arrêt
atteint ?

Renvoyer
la meilleure
condition

Oui

Non Oui

Non

Figure F.4 – Fonctionnement de l’algorithme de hill-climbing pour un processus d’agré-
gation donné au sein de RRHCCA.

La nouvelle approche a été validée sur des données artificielles, sur lesquelles les
arbres de décision relationnels appris avec Tilde ou ceux entraînés après application de
l’algorithme de propositionalisation RELAGGS n’apprennent pas aussi bien en terme
de performance prédictive. Néanmoins, les résultats n’étaient significativement meilleurs
que sur peu de jeux de données réels. En effet, le caractère précis, spécifique des agrégats
complexes, entraîne un problème de sur-apprentissage, ou incapacité à généraliser. Plus

180 Utilisation d’agrégats complexes et prise en compte du contexte

concrètement, les données d’entraînement qui servent à apprendre le modèle sont trop
bien apprises, au point que le modèle est moins efficace sur de nouvelles données non
vues à l’entraînement.

Pour résoudre ce problème, une autre famille de modèles, les Random forests, a été
adaptée aux agrégats complexes. Les Random forests (ou forêts d’arbres décisionnels)
(Breiman 2001) consistent en un ensemble d’arbres de décision. Chaque arbre est appris
différemment pour introduire de la diversité dans le modèle. L’idée principale, appelée
bagging en anglais, est que la combinaison de plusieurs modèles « faibles » est plus efficace
qu’un seul modèle « fort ». Le schéma en Figure F.5 résume le processus d’apprentissage
et d’utilisation d’une forêt de n arbres. La diversité entre les arbres est introduite à deux
niveaux :

• Chaque arbre est entraîné sur un jeu de données différent : la technique du boots-
trap consiste, à partir d’un jeu de données d’entraînement de E exemples, à tirer E
exemples au hasard de ce jeu avec remise, i.e. un même exemple peut être tiré plu-
sieurs fois. Chaque arbre est appris sur un jeu de données différent tiré au hasard
suivant cette technique.

• À chaque nœud d’un arbre, la meilleure séparation des données est choisie sur
un sous-ensemble des caractéristiques possibles : si l’on dispose de k caractéris-
tiques d’entrées pour la prédiction, l’apprentissage de chaque nœud n’en considè-
rera qu’une partie tirée au hasard. En général, on utilise

√
k caractéristiques à

chaque nœud.

La prédiction sur un nouvel exemple s’effectue en combinant les prédictions de chaque
arbre pour cet exemple. Dans une tâche de classification, la recombinaison est un vote
majoritaire : chaque arbre prédit pour l’exemple l’une des classes possibles, et la forêt
prédit la classe la plus souvent prédite par les arbres.

Dans le cadre d’une utilisation des forêts avec des agrégats complexes, le bootstrap
des exemples pour entraîner chaque arbre peut être réutilisé comme décrit dans la mé-
thode d’origine. Le tirage au sort des caractéristiques à utiliser à chaque nœud d’un
arbre nécessite une adaptation aux agrégats complexes, dont le nombre astronomique
empêche l’énumération, et rend difficile un sous-échantillonnage complètement aléatoire.
Une extension de Tilde aux agrégats complexes et aux forêts d’arbres décisionnels,
baptisée FORF (Van Assche et al. 2006), propose une méthode pour effectuer ce sous-
échantillonnage qui, sans énumérer l’espace des agrégats complexes, donne un tirage
uniformément réparti sur l’espace. Nous avons choisi d’adopter une démarche inverse,
en nous basant sur la structure de l’espace des agrégats complexes. En effet, un agrégat
complexe est décomposable en deux parties : le processus d’agrégation, et la condition
de sélection. Le premier peut être vu comme définissant une famille d’agrégats : modi-
fier le processus d’agrégation sans modifier la condition de sélection change de manière
drastique le potentiel prédictif de l’agrégat. À l’inverse, une modification de la condition
de sélection sans modifier le processus d’agrégation aura moins d’impact sur le potentiel
prédictif de l’agrégat. Respectant l’idée d’origine du sous-échantillonnage des caractéris-
tiques, à savoir introduire de la diversité entre les tirages, pour p processus d’agrégation

2. Apprentissage relationnel 181

Données d’entraînement

Bootstrap 1 Bootstrap 2 ... Bootstrap n

F11

F12 F13

Arbre 1

F21

F22 F23

Arbre 2

Fn1

Fn2 Fn3

Arbre n

...

Prédiction 1 Prédiction 2 ... Prédiction n

Vote majoritaire

Prédiction finale

Figure F.5 – Processus d’entraînement d’une forêt d’arbres décisionnels.

disponibles, et k propriétés des objets secondaires, nous gardons √p processus d’agréga-
tion et k/2 propriétés pour la condition de sélection à chaque nœud. Contrairement à un
sous-échantillonnage uniforme, qui garderait des agrégats de chaque processus d’agréga-
tion à chaque tirage et de fait peu de diversité entre les tirages, notre approche ne garde
à chaque tirage qu’un sous-ensemble des caractéristiques réellement différentes, tous les
processus d’agrégation n’étant pas représentés.

Nous illustrons ce processus de sous-échantillonnage sur l’exemple du jeu de don-
nées des ilots urbains en Tableau F.2. Le Tableau F.2a montre l’exemple du sous-
échantillonnage des processus d’agrégation : sur les 10 disponibles, on en garde donc
3 pour trouver la séparation optimale à un nœud donné d’un arbre donné. Le tirage des
propriétés secondaires à retenir pour la condition de sélection est différent pour chaque
processus d’agrégation retenu. Ainsi, la Table F.2b montre un sous-échantillonnage pos-
sible de ces propriétés secondaires, en conservant la moitié.

L’algorithme de hill-climbing a également été simplifié pour être plus rapide : pour
chaque processus d’agrégation, un hill-climbing est effectué pour optimiser la condition
de sélection, sans notion de réinitialisation aléatoire contrairement à RRHCCA. De plus,

182 Utilisation d’agrégats complexes et prise en compte du contexte

Tableau F.2 – Sous-échantillonnage des agrégats complexes.

(a) Sous-échantillonnage des processus d’agré-
gation

Fonction Propriété Choisi
Compte x
Minimum Aire
Minimum Élongation
Minimum Convexité
Maximum Aire
Maximum Élongation x
Maximum Convexité
Moyenne Aire
Moyenne Élongation
Moyenne Convexité x

(b) Sous-échantillonnage des propriétés secon-
daires.

Propriété Choisie
Aire x

Élongation
Convexité x

chaque pas de l’hill-climbing ne teste qu’un seul voisin de l’agrégat courant parmi ceux
définis dans RRHCCA, au lieu de tous les considérer. Si ce voisin est meilleur que
l’agrégat courant, la recherche reprend à partir de lui, sinon la recherche continue depuis
l’agrégat courant, qui est considéré comme optimal quand un certain nombre de voisins
ont été testés sans succès.

Une approche de sélection de propriétés à l’aide de forêts d’arbres décisionnels a été
envisagée. Elle reprend les idées introduites en ce sens par les forêts d’arbres décision-
nels originales, en les adaptant au cas des agrégats complexes. L’objectif est d’évaluer
l’importance de chaque propriété à l’aide de la forêt. Néanmoins, le nombre d’agrégats
complexes disponibles est très élevé, et il est donc improbable qu’un agrégat donné soit
présent plusieurs fois dans la forêt. Nous évaluons donc l’importance de familles d’agré-
gats complexes, une famille étant définie par un processus d’agrégation commun, une
condition sur une propriété commune dans la condition de sélection, ou une combinaison
des deux. L’approche classique évalue l’importance d’une propriété de la façon suivante :
chaque arbre de la forêt a été appris sur un sous-ensemble du jeu de données d’entraîne-
ment d’origine, il y a donc un autre sous-ensemble d’exemples d’entraînement que l’arbre
n’a pas considéré. Cet ensemble d’exemples est utilisé pour calculer la performance pré-
dictive de l’arbre. Ensuite, les valeurs de la propriété dont on veut évaluer l’importance
sont permutées aléatoirement entre les exemples de cet ensemble, et la performance pré-
dictive de l’arbre sur ce jeu de données modifiées est évaluée. Si la performance de l’arbre
sur le jeu permuté est plus faible que la performance sur le jeu original, la propriété est
importante. On quantifie cette importance au niveau d’un arbre par la différence entre les
deux performances. L’importance finale de la propriété est la moyenne des importances
au niveau des arbres de la forêt.

3. Adaptation aux changements de contexte et reframing 183

3 Adaptation aux changements de contexte et reframing

Le reframing consiste à créer des modèles de prédiction, dits versatiles, réutilisables dans
différents contextes, pour éviter d’entraîner un nouveau modèle dans chaque contexte. Ce
besoin est motivé par le coût qu’implique l’entraînement complet d’un nouveau modèle
par rapport à la réutilisation de connaissances apprises dans un autre contexte, avec une
étape d’adaptation au nouveau contexte. Ce processus est illustré en Figure F.6.

Context A

Versatile
Model

Training
Data

Training

Context B

Deployment
Data

Deployment

Reframing Output

Context C

Deployment
Data

Deployment

Reframing Output

Figure F.6 – Schéma global du processus de reframing1.

Un premier type de changement de contexte auquel nous nous intéressons est un
changement de coûts d’erreurs de classification, dans une tâche de classification sensible
au coût (Elkan 2001). En effet, dans certaines tâches de prédiction, il arrive que les
différents types d’erreur n’aient pas le même impact. Pour reprendre l’exemple du jeu
de données post-opératoires, envoyer un patient en soins intensifs n’a pas le même coût
pour l’hôpital que de le renvoyer chez lui. De plus, renvoyer un patient chez lui alors
qu’il aurait dû rester à l’hôpital constitue une erreur bien plus grave que de le garder à
l’hôpital alors qu’il aurait pu être renvoyé chez lui. Ces différences sont matérialisées par
une matrice de coûts, dont un exemple est donné en Tableau F.3a. Dans cette matrice,

1Je remercie le projet REFRAME, financé par CHIST-ERA, pour cette figure.

184 Utilisation d’agrégats complexes et prise en compte du contexte

l’élément en ligne i et colonne j, correspond au coût de prédire la classe en colonne j
alors que l’exemple aurait dû être prédit comme étant de la classe en ligne i. Les éléments
diagonaux, associés aux prédictions correctes, sont nuls. Comme expliqué plus haut, les
coûts en troisième colonne, correspondant aux coûts induits par le renvoi du patient à
son domicile alors qu’il aurait dû rester à l’hôpital voire en soins intensifs, sont plus
élevés que les coûts en troisième ligne, correspondant aux coûts associés au maintien du
patient à l’hôpital alors qu’il aurait pu rentrer chez lui.

On considère maintenant un deuxième hôpital, avec une moins grande capacité d’ac-
cueil, impliquant un coût plus élevé du maintien d’un patient à l’hôpital. Ceci entraîne
un changement de coûts par rapport au premier hôpital, matérialisé par la matrice en
Tableau F.3b, où les coûts de maintien à l’hôpital, en première et deuxième colonnes,
sont plus élevés que dans le premier hôpital. Nous avons développé un algorithme d’ap-
prentissage pour des tâches multi-classes, où la propriété cible peut prendre trois valeurs
ou plus, par opposition à une tâche de classification binaire où la propriété cible n’a que
deux valeurs possibles. Cet algorithme a été conçu pour répondre à la double probléma-
tique de la multiplicité des classes et de la sensibilité au coût, et sa structure permet une
adaptation à un changement de matrice de coûts.

Tableau F.3 – Exemple de changement de contexte, matérialisé par un changement de
coûts de misclassification, entre deux hôpitaux.

A
P h si dom

h 0 2 10
si 5 0 20

dom 2 5 0
(a) Matrice de coûts associée au premier hô-
pital.

A
P h si dom

h 0 5 10
si 10 0 20

dom 5 10 0
(b) Matrice de coûts associée au deuxième
hôpital.

Le deuxième type de changement de contexte auquel nous nous intéressons concerne
le changement de distribution de propriétés des données, en entrée et/ou en sortie. Nous
avons donné l’exemple d’un modèle de prédiction des ventes de glaces en fonction de
la température appris à Lille, que nous voulons adapter pour l’utiliser à Marseille. Le
climat marseillais étant différent du climat lillois, notamment en termes de température,
on a un exemple de changement de contexte où la distribution des propriétés en entrée,
i.e. la température, change du contexte lillois au contexte marseillais. Les Figures F.7a
et F.7b montrent les modèles de prédiction de la vente ou non de glaces en fonction de la
température, respectivement pour Lille et pour Marseille. Des glaces sont vendues à Lille
à partir de 18°C, tandis qu’à Marseille, où la température moyenne est plus élevée, elles
ne commencent qu’à 22°C. L’utilisation du premier modèle lillois à Marseille ne sera
pas efficace pour des températures entre 18°C et 22°C. L’idée est donc de « recaler »
les températures des données marseillaises pour qu’elles ressemblent aux températures
lilloises et que le modèle soit applicable, par exemple en enlevant systématiquement 4°C

3. Adaptation aux changements de contexte et reframing 185

à la température d’entrée du modèle lors de l’application à Marseille.
Ce recalage peut également intervenir en sortie, sur la propriété cible de la prédiction.

En effet, on observe que la quantité de glaces vendues à Marseille est en moyenne plus
élevée qu’à Lille. L’application du modèle lillois aura donc tendance à sous-évaluer les
ventes de glaces. On peut donc envisager de modifier la prédiction du modèle lillois
pour que les quantités de glaces prédites en ayant appris le modèle suivant les normes
lilloises soient proches des quantités vendues à Marseille, par exemple en multipliant
systématiquement par deux les prédictions du modèle.

Temp > 18

40

O
ui

10

N
on

(a) Modèle cible à Lille.

Temp > 22

80

O
ui

20

N
on

(b) Modèle cible à Marseille.

Figure F.7 – Modèles de prédiction de ventes de glaces, à Lille et à Marseille.

Nous avons conçu des algorithmes de reframing recalant les propriétés numériques
suivant ces idées, en utilisant des fonctions affines pour transformer les valeurs de ces
propriétés et ainsi s’adapter aux changements de distribution.

3.1 Apprentissage multi-classes sensible au coût et reframing des sor-
ties

Nous nous plaçons dans le cadre d’un apprentissage multi-classes sensible au coût, i.e.
sur des tâches de classification où la propriété cible prend 3 valeurs ou plus et possédant
une matrice de coûts définissant les importances des différentes erreurs de classification.
Nous proposons une méthode d’apprentissage basée sur la binarisation du problème
multi-classes, i.e. la tâche d’origine est décomposée en plusieurs tâches de classification
binaire, ne faisant intervenir que deux classes. Considérons un problème à C classes,
dénotées (1, 2, · · · , C), l’utilisation d’entiers ne définit ici aucun ordonnancement, la
notation entière des classes ne désigne donc que des catégories. Nous nous intéressons à
une décomposition par paires (Fürnkranz 2002) : du problème d’origine à C classes,
nous considérons C(C − 1)/2 problèmes binaires, chacun se focalisant sur deux des C
classes d’origine.

Pour chaque problème binaire défini par une paire de classes, on considère un modèle
de prédiction renvoyant, au lieu d’une pure prédiction de classe pour un exemple, un
score par classe indiquant la confiance que le modèle a en l’appartenance de l’exemple à la
classe. Dans le cas d’une tâche de classification binaire, deux scores sont donc renvoyés,
un pour chacune des deux classes considérées dans le problème. Considérant que les
scores sont normalisés, appartenant à l’intervalle [0; 1], et que leur somme vaut 1, ce

186 Utilisation d’agrégats complexes et prise en compte du contexte

qui est le cas dans les implémentations que nous utilisons, seul l’un des deux scores est
nécessaire. Dans le cas du modèle appris pour les classes i et j, avec 1 6 i < j 6 C, on
retient le score de la classe d’index le moins élevé, à savoir la classe i.

Pour chaque modèle de prédiction renvoyant un score, on veut maintenant définir un
seuil sur ce score, qui va permettre pour chaque exemple la prédiction par le modèle de
l’une des deux classes, i ou j, en fonction du score prédit par le modèle pour l’exemple.
Comme défini plus haut, le score considéré est la confiance du modèle en l’appartenance
de l’exemple à la classe i, la classe prédite sera donc i si le score est supérieur au seuil,
et j si le score est inférieur au seuil. L’objectif de nos algorithmes sera d’optimiser ces
seuils dans un contexte de sensibilité au coût.

Enfin, la prédiction multi-classes s’effectue par un processus de vote majoritaire :
chaque modèle binaire a prédit pour l’exemple l’une des deux classes dont il a la charge,
la classe prédite au final pour l’exemple sera la classe la plus prédite par les C(C − 1)/2
modèles binaires.

La Figure F.8 présente un exemple de ce processus pour un problème à 3 classes. La
binarisation par paires induit l’apprentissage de trois modèles binaires, un pour chaque
paire. On apprend ensuite les seuils sur les scores pour chaque modèle, ils sont indiqués
en rouge sur la Figure. Enfin, on veut classer un nouvel exemple, les scores renvoyés pour
l’exemple par chaque modèle sont indiqués en bleu. Le modèle en charge des classes 1
et 2 renvoie un score de 0.5 avec un seuil de décision de 0.2, le score étant au-dessus
du seuil, le modèle prédit la classe 1. De même, le modèle en charge des classes 1 et 3
renvoie un score de 0.9 pour un seuil de 0.7, il prédit donc la classe 1. Enfin, le modèle
en charge des classes 2 et 3 donne un score de 0.2 pour un seuil de 0.4, il prédit donc la
classe 3. Au total, la classe 1 est donc prédite deux fois, la classe 3 une fois, et la classe
2 jamais. La prédiction finale du modèle multi-classes pour l’exemple est donc la classe
1.

Classeur (1,2) 2 1 ⇒ vote pour 1
0.2 0.5

Classeur (1,3) 3 1 ⇒ vote pour 1
0.7 0.9

Classeur (2,3) 3 2 ⇒ vote pour 3
0.40.2

score ⇒ prédit 1
0 1Seuil de

décision
Score de
l’exemple

Figure F.8 – Illustration de la binarisation par paires et de la prédiction majoritaire à
l’aide de seuils.

L’algorithme que nous proposons pour l’optimisation des seuils s’effectue modèle par
modèle : il ne s’agit pas de trouver la combinaison de seuils optimale sur l’ensemble des
modèles, qui est impossible à mettre en œuvre en termes de complexité algorithmique.
Nous chercherons donc le meilleur seuil par modèle, l’un après l’autre, en tenant compte
de la matrice de coûts. Notre algorithme est exhaustif : à chaque exemple d’entraînement

3. Adaptation aux changements de contexte et reframing 187

correspond un score renvoyé par le modèle en charge des classes i et j, et tous sont testés
comme valeurs pour le seuil de ce modèle. La valeur retenue sera celle qui permet de
minimiser le coût total sur le jeu d’entraînement induit par les prédictions du modèle
avec cette valeur de seuil.

Nous avons considéré deux approches pour l’optimisation du seuil du modèle en
charge des classes i et j : l’une considère uniquement l’utilisation des exemples de classe
i ou j, tandis que l’autre utilise l’ensemble des données d’entraînement, i.e. les exemples
de toutes les classes. Prenons l’exemple du jeu de données à 3 classes donné en Tableau
F.4, il s’agit d’optimiser le seuil associé au modèle en charge des classes 1 et 2. Les scores
renvoyés par ce modèle pour les exemples du jeu d’entraînement, ainsi que la classe de
ces exemples, sont donnés en Tableau F.4a, tandis que la matrice de coûts associée à la
tâche de classification est donnée en Tableau F.4b.

Tableau F.4 – Jeu de données à 3 classes sensible au coût.

Classe 2 2 3 2 1 3 2
Score 0 0.05 0.1 0.15 0.2 0.35 0.4
Classe 3 1 1 2 3 1 1
Score 0.5 0.65 0.7 0.8 0.9 0.95 1

(a) Exemples d’entraînement du jeu de données, avec les scores
associés renvoyés par le modèle en charge des classes 1 et 2.

A
P 1 2 3

1 0 3 3
2 1 0 4
3 4 2 0

(b) Matrice de coûts associée
au problème à 3 classes.

La différence entre nos deux approches tient en l’utilisation ou non des exemples de
classe 3 pour l’optimisation de ce seuil. Cette utilisation a du sens, puisque la prédiction
d’un exemple de classe 3 en classe 1 ou en classe 2 n’a pas le même coût : 4 dans le premier
cas, 2 dans l’autre. De plus, le seuil optimal n’est pas le même suivant l’approche retenue,
comme le montre la Figure F.9. Le seuil retenu sans l’utilisation des exemples de classe 3
est de 0.15, ce qui reflète la tendance du modèle à prédire plus facilement la classe 1 que
la classe 2. En effet, le coût associé à la prédiction de la classe 2 quand la classe 1 aurait
dû être prédite est de 3, plus élevé que le coût lié à la prédiction de la classe 1 quand la
classe 2 aurait dû être prédite, qui est de 1. Il est donc moins risqué de prédire la classe
1. Dans l’approche utilisant les exemples de toutes les classes, le seuil retenu est 0.5,
plus élevé que celui donné par l’autre approche. Ceci s’explique par la prise en compte
des coûts de prédiction des exemples de la classe 3 en classe 1 ou en classe 2. Pour ces
exemples, il est plus risqué de prédire la classe 1, puisque le coût de misclassification
d’un exemple de classe 3 en classe 1 est de 4, quand le coût de misclassification d’un
exemple de classe 3 en classe 2 est de 2. Cela rend la prédiction de la classe 2 plutôt que
de la classe 1 moins risquée qu’avec la première approche, le seuil est donc plus élevé.

Nous utilisons comme modèle binaire renvoyant des scores un classeur bayésien naïf.
Les comparaisons expérimentales ont été effectuées sur des jeux de données réels dis-
ponibles sur les dépôts de l’UCI (Lichman 2013), en générant des matrices de coûts
aléatoires avec diagonale nulle, et un coût de 1, 10, 100 ou 1 000 en dehors. Nous com-

188 Utilisation d’agrégats complexes et prise en compte du contexte

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

Seuil de décision

C
oû

t

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

2 2 3 2 1 3 2 3 1 1 2 3 1 1

0.15 0.5

Figure F.9 – Seuils optimaux pour les deux approches, avec utilisation des exemples de
classes 3 (en vert) et sans (en bleu).

parons avec des méthodes de l’état de l’art basées plus spécifiquement sur des approches
de binarisation faisant intervenir des seuils, mais aucune ne considère un seuil par paire
de classes. Nous comparons également avec des versions sensibles au coût de classeurs
bayésiens naïfs et d’arbres de décision, qui sont naturellement applicables sur des tâches
multi-classes. Tous les modèles sont implémentés, ou ont été implémentés le cas échéant,
en Java dans le logiciel Weka (Hall et al. 2009).

Les résultats expérimentaux montrent une supériorité, en termes de performance
prédictive, de notre approche utilisant les exemples de toutes les classes pour optimiser
les seuils. Cette supériorité est statistiquement significative par rapport à toutes les
autres approches considérées dans la comparaison, la significativité ayant été obtenue
par un test de Friedman avec une confiance de 95% ayant rejeté l’égalité de performance

3. Adaptation aux changements de contexte et reframing 189

de toutes les approches, puis d’un test a posteriori de Nemenyi.
Enfin, nous avons étudié les possibilités de notre approche en termes de reframing

des sorties. Il s’agit ici tout d’abord d’entraîner les modèles binaires individuels ren-
voyant des scores dans un premier contexte, avec une certaine matrice de coûts associée.
Ensuite, les seuils de décision sur ces scores peuvent être appris dans le contexte de
déploiement où le modèle va être utilisé, avec une deuxième matrice de coûts liée à ce
contexte. Cette approche est très performante quand peu de données sont disponibles
pour le contexte de déploiement, et que l’entraînement complet de nouveaux modèles est
peu pertinent. Nous avons comparé cette approche, i.e. l’apprentissage des modèles bi-
naires individuels dans le premier contexte et l’apprentissage des seuils dans le contexte
de déploiement, avec une approche dite de « base », i.e. les deux apprentissages sont
effectués dans le premier contexte, et une approche dite de « réentraînement », i.e. les
deux apprentissages sont effectués dans le contexte de déploiement avec peu de données.
Les comparaisons ont été effectuées sur un jeu de test en utilisant les coûts associés
au contexte de déploiement. On évalue le coût moyen sur le jeu de test en fonction du
nombre d’exemples utilisés dans le contexte de déploiement pour apprendre les seuils,
dans le cas de notre approche, ou le modèle entier, dans le cadre d’un réentraînement.
Nous observons que notre approche de reframing des sorties est plus performante que
le réentraînement quand peu de données sont disponibles. Elle est également plus per-
formante que la méthode dite de « base », ou le devient avec l’augmentation du nombre
d’exemples utilisés dans le contexte de déploiement, ce paramètre n’intervenant pas dans
la performance de l’approche de « base », puisqu’elle n’utilise pas ces exemples.

3.2 Reframing des propriétés numériques par transformation affine

Nous nous sommes intéressés à une autre famille de changements de contexte, carac-
térisée par le changement de distribution d’une propriété numérique entre le contexte
d’entraînement et le contexte de déploiement. Nous proposons ainsi une solution au
problème du dataset shift, dont une description et une typologie sont données dans
(Moreno-Torres, Raeder et al. 2012).

Nous nous intéressons particulièrement à deux typologies : le covariate shift, qui
constitue un changement de distribution des propriétés d’entrée tandis que la relation
entre les entrées et la propriété de sortie, i.e. le modèle implicite, reste la même par
rapport au changement de distribution. La Figure F.10 donne un exemple de ce pro-
blème : nous considérons une tâche de classification binaire, les valeurs possibles de la
classe étant « Oui » et « Non », en fonction d’une propriété numérique, dénotée T . Nous
considérons 3 contextes, le modèle implicite pour chaque contexte est donné en haut,
tandis que la distribution de la propriété T , superposée avec la prédiction induite pour
la classe, en rouge pour « Non » et en vert pour « Oui », est donnée en bas. Dans le
premier contexte, décrit en Figure F.10a, T suit une distribution normale de moyenne
15 et d’écart-type 2, les seuils de séparation des classes du modèle implicite se situent à
13, 15 et 17, soit à la moyenne et à un écart-type de chaque côté de la moyenne. Dans le
deuxième contexte, décrit en Figure F.10b, la distribution de T change par rapport au
premier contexte, suivant maintenant une loi normale de moyenne 18 et d’écart-type 4.

190 Utilisation d’agrégats complexes et prise en compte du contexte

Les seuils du modèle cible ont également changé, passant à 14, 18 et 22. Néanmoins, ils
n’ont pas changé relativement à la distribution de T , étant toujours situés à la moyenne
et à un écart-type de chaque côté de la moyenne. La différence entre les premier et
deuxième contextes constitue donc un exemple de covariate shift.

La deuxième typologie à laquelle nous nous intéressons est le concept shift, qui consti-
tue un changement de relation entre les entrées et la propriété cible, tandis que la dis-
tribution des entrées reste la même. Par exemple, dans le troisième contexte, décrit en
Figure F.10c, la distribution de T est la même que dans le premier contexte. Par contre,
le modèle implicite a changé, les seuils étant maintenant 15, 16 et 17. La différence entre
les premier et troisième contextes constitue donc un exemple de concept shift.

T < 15

T < 13

Non

vr
ai

Oui

faux

vr
ai

T < 17

Non

vr
ai

Oui
faux

faux

T

13 15 17

(a) Contexte 1.
T ∼ N (15, 22)

T < 18

T < 14

Non

vr
ai

Oui

faux
vr
ai

T < 22

Non

vr
ai

Oui

faux

faux

T

14 18 22

(b) Contexte 2.
T ∼ N (18, 42)

T < 16

T < 15

Non

vr
ai

Oui

faux

vr
ai

T < 17

Non

vr
ai

Oui

faux

faux

T

151617

(c) Contexte 3.
T ∼ N (15, 22)

Figure F.10 – Modèle cible et distribution de la propriété d’entrée dans les trois villes
contextes.

Dans ce cadre, nous proposons une solution à ces problématiques reposant sur un
reframing des données plutôt que du modèle. Concrètement, il s’agit d’entraîner un

3. Adaptation aux changements de contexte et reframing 191

modèle sur des exemples d’entraînement d’un premier contexte, et lors du passage à un
autre contexte de déploiement, de transformer les valeurs des propriétés des exemples
de ce nouveau contexte, dans le but que le modèle appris dans le premier contexte soit
efficace en termes de performance prédictive.

Plus précisément, nous nous concentrons sur la transformation des propriétés numé-
riques par des transformations affines. Il s’agit d’apprendre une fonction de reframing
par propriété d’entrée, de la forme x 7−→ αx+ β, où x désigne la valeur de la propriété
numérique. Sur l’exemple de la Figure F.10, le modèle du premier contexte peut être uti-
lisé dans le deuxième contexte à condition que les valeurs de l’entrée T dans le deuxième
contexte soit transformées par la fonction x 7−→ 0.5x+ 6, ce qui aligne les seuils utilisés
dans le modèle cible du deuxième contexte avec ceux du premier contexte. De même, le
modèle du premier contexte peut être utilisé dans le troisième contexte, en utilisant la
fonction x 7−→ 2x−17 pour transformer l’attribut T des exemples du troisième contexte.

Le problème de reframing est d’optimiser les paramètres des fonctions affines pour
chaque propriété numérique, i.e. le coefficient directeur α et l’ordonnée à l’origine β, pour
obtenir une transformation utile du point de vue de la performance prédictive. Cette op-
timisation s’effectue sur un jeu de données du contexte de déploiement contenant peu
d’exemples. Nous proposons deux algorithmes basés sur l’optimisation stochastique pour
trouver les valeurs des paramètres. Chacun d’entre eux utilise des initialisations aléa-
toires de l’ensemble des paramètres des fonctions affines pour chaque propriété. Ces
initialisations aléatoires sont néanmoins guidées par les intervalles de valeurs que prend
la propriété correspondante. Ainsi, si une propriété prend ses valeurs dans l’intervalle
[l1;u1] dans le contexte d’entraînement et dans l’intervalle [l2;u2] dans le contexte de
déploiement, la fonction de transformation la plus « naturelle » est celle qui fait corres-
pondre le deuxième intervalle au premier, à savoir :

x 7−→ u1 − l1
u2 − l2

(x− l2) + l1

Les initialisations aléatoires d’un coefficient directeur s’effectuent donc « autour » de
la valeur du coefficient directeur de cette fonction. Il en va de même pour l’initialisation
aléatoire d’une ordonnée à l’origine, qui tient néanmoins compte du coefficient directeur
choisi.

Le premier algorithme que nous proposons utilise la même idée que l’algorithme
RRHCCA introduit dans le cadre des agrégats complexes, à savoir un hill-climbing avec
réinitialisations aléatoires. Concrètement, d’un tirage au sort de paramètres, l’algorithme
effectue un hill-climbing pour chaque paramètre. La qualité d’un ensemble de paramètres
correspond à la performance prédictive sur le petit jeu de données du contexte de dé-
ploiement, transformé à l’aide des fonctions définies par l’ensemble de paramètres. Les
paramètres sont optimisés un par un, recommençant le parcours de l’ensemble de para-
mètres tant qu’un cycle complet n’a pas permis d’améliorer la performance, i.e. tous les
paramètres ont fait l’objet d’une tentative d’optimisation infructueuse à la suite.

Le deuxième algorithme que nous proposons est plus simple, il n’est basé que sur des
initialisations aléatoires. Concrètement, un certain nombre d’ensembles de paramètres

192 Utilisation d’agrégats complexes et prise en compte du contexte

sont générés aléatoirement et évalués en termes de performance prédictive. Le meilleur
ensemble de paramètres testé est retenu comme optimum.

Ces algorithmes ont été évalués sur des données synthétiques générées comme pré-
senté en Figure F.10, par rapport à une approche de réentraînement sur le petit jeu de
données et la réutilisation directe du premier modèle, en fonction du nombre d’exemples
composant le « petit » jeu de données de déploiement. Nos algorithmes sont plus perfor-
mants que ces deux approches en termes de performance prédictive, et ce particulière-
ment avec un nombre d’exemples faible. Nous avons également effectué une comparaison
sur des jeux de données réels, sur lesquels des transformations artificielles ont été appli-
quées aux attributs numériques. Encore une fois, nos algorithmes sont plus efficaces que
les deux autres approches, ainsi que l’approche GP-RFD (Moreno-Torres, Llorà
et al. 2013) basée sur une optimisation de fonctions de transformation par programma-
tion génétique. Cette amélioration de la performance est statistiquement significative,
suivant les mêmes critères que précédemment.

Nous avons également étudié le comportement de nos algorithmes sur un jeu de don-
nées réel, consistant en une tâche de régression où l’objectif est de prédire le nombre de
bicyclettes louées sur une journée à Washington D.C., en fonction des conditions météo-
rologiques (Fanaee-T et Gama 2014). Le jeu de données contient les enregistrements
quotidiens sur deux années consécutives. Étant donné que nous sommes en présence
d’une tâche de régression, la propriété cible est numérique. Nous pouvons donc appli-
quer nos algorithmes de reframing pour transformer la sortie du modèle avec une fonction
affine. Cette idée trouve son utilité sur ce jeu de données, car le nombre de bicyclettes
louées en moyenne est plus élevé la deuxième année. Un modèle appris la première année
et déployé la seconde sous-estimerait donc le nombre de bicyclettes louées. On peut donc
transformer la prédiction du modèle, qui ressemblera à une valeur du contexte d’origine,
pour qu’elle soit proche d’une valeur du contexte de déploiement. Le jeu de données
présente également un exemple de changement de distribution en entrée suivant la sai-
son : en effet, les conditions météorologiques telles que la température varient suivant la
saison.

Enfin, nous avons appliqué ces travaux au reframing dans un cadre d’apprentissage
relationnel. Nous nous basons sur les agrégats complexes, qui sont des propriétés essen-
tiellement numériques, où la transformation peut intervenir à deux niveaux. La sortie
d’un agrégat complexe peut être transformée, ainsi que les propriétés numériques de la
table secondaire, qui interviennent dans les conditions de sélection de l’agrégat. On peut
donc modifier la définition des objets secondaires pertinents sélectionnés pour l’agré-
gation, ainsi que comme précédemment la propriété elle-même, ici l’agrégat complexe.
Avec peu de données du contexte de déploiement, on observe encore que nos algorithmes
adaptent le modèle initial de manière à ce qu’il soit plus efficace avec la transformation,
mais également que le modèle appris avec le peu de données du contexte de déploiement.

Utilisation d’agrégats complexes et prise en compte du contexte 193

4 Conclusion et travaux futurs
Cette thèse a étudié l’adaptation de modèles de prédiction dans les cadres de l’appren-
tissage relationnel et de la réutilisabilité des modèles entre différents contextes. Des
algorithmes d’apprentissage et d’adaptation ont été proposés pour répondre à ces pro-
blématiques.

Dans le cadre de l’apprentissage relationnel, nous avons proposé de nouvelles exten-
sions des arbres de décision et des forêts d’arbres décisionnels intégrant les propriétés
relationnelles appelées agrégats complexes. Nous avons développé des heuristiques ins-
pirées du domaine de l’optimisation stochastique pour construire les agrégats complexes
pertinents, parmi les milliards de possibilités. Les modèles d’apprentissage ainsi créés
ont été évalués expérimentalement avec succès.

Des algorithmes d’adaptation de modèles aux changements de contexte ont égale-
ment été mis au point. Dans le cadre de problèmes multi-classes sensibles au coût, notre
approche permet l’apprentissage d’un modèle dont la structure peut être adaptée. Dans
le cadre de problèmes faisant intervenir des propriétés numériques, nos algorithmes d’ap-
prentissage de transformations affines permettent l’adaptation des données pour rendre
un modèle interopérable entre plusieurs contextes avec des distributions différentes.

Un piste de travail est l’application de ces travaux à l’apprentissage sur des données
multi-dimensionnelles, en particulier spatio-temporelles. En effet, ces dernières peuvent
se représenter de manière relationnelle. Par exemple, sur le jeu de données de location de
bicyclettes, on peut mettre en relation l’enregistrement correspondant à un jour donné
avec les enregistrements des jours précédents. L’utilisation d’agrégats complexes permet
alors de créer des propriétés telles que « la moyenne du nombre de bicyclettes louées
sur les 5 jours précédents », qui peuvent se révéler pertinentes pour la prédiction du
nombre de bicyclettes louées le jour même. De même, si l’on considère la prédiction
du nombre de bicyclettes louées par station de location, on peut mettre en relation les
enregistrements d’un station avec ceux des autres stations, en considérant la distance
spatiale qui les sépare, on peut alors créer des propriétés telles que « la moyenne du
nombre de bicyclettes louées sur les 3 jours précédents dans les stations dans un rayon
de 200 m ».

De plus, ce type de problème peut présenter des changements de contexte : comme
mentionné précédemment, le nombre de bicyclettes louées évolue avec le temps et la
popularité du service. De même, les tendances de location de bicyclettes au sein d’une
ville peuvent varier d’un quartier à l’autre. Nos méthodes d’adaptation trouvent donc
leur utilité dans le cadre de changements de contexte liés au temps et/ou à l’espace.

Bibliographie
Blockeel, Hendrik et Luc De Raedt (1998). “Top-Down Induction of First-Order

Logical Decision Trees”. In : Artif. Intell. 101.1-2, p. 285–297.

194 Utilisation d’agrégats complexes et prise en compte du contexte

Breiman, Leo (2001). “Random Forests”. In : Machine Learning 45.1, p. 5–32. doi :
10.1023/A:1010933404324.

Breiman, Leo, J. H. Friedman, R. A. Olshen et C. J. Stone (1984). Classification
and Regression Trees. Wadsworth. isbn : 0-534-98053-8.

Elkan, Charles (2001). “The Foundations of Cost-Sensitive Learning”. In : Proceedings
of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI
2001, Seattle, Washington, USA, August 4-10, 2001. Sous la dir. de Bernhard Nebel.
Morgan Kaufmann, p. 973–978. isbn : 1-55860-777-3.

Fanaee-T, Hadi et João Gama (2014). “Event labeling combining ensemble detectors
and background knowledge”. In : Progress in AI 2.2-3, p. 113–127. doi : 10.1007/
s13748-013-0040-3.

Fürnkranz, Johannes (2002). “Round Robin Classification”. In : Journal of Machine
Learning Research 2, p. 721–747. url : http : / / www . jmlr . org / papers / v2 /
fuernkranz02a.html.

Hall, Mark A., Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann
et Ian H. Witten (2009). “The WEKA data mining software : an update”. In :
SIGKDD Explorations 11.1, p. 10–18. doi : 10.1145/1656274.1656278.

Krogel, M.-A. et S. Wrobel (2003). “Facets of Aggregation Approaches to Propo-
sitionalization”. In : Work-in-Progress Track at the Thirteenth International Confe-
rence on Inductive Logic Programming (ILP). Sous la dir. de T. Horvath et A.
Yamamoto.

Lavrac, Nada et Saso Dzeroski (1994). Inductive logic programming - techniques and
applications. Ellis Horwood series in artificial intelligence. Ellis Horwood. isbn : 978-
0-13-457870-5.

Lichman, M. (2013). UCI Machine Learning Repository. url : http://archive.ics.
uci.edu/ml.

Mitchell, Tom M. (1997). Machine learning. McGraw Hill series in computer science.
McGraw-Hill. isbn : 978-0-07-042807-2.

Moreno-Torres, José G., Xavier Llorà, David E. Goldberg et Rohit Bhargava
(2013). “Repairing fractures between data using genetic programming-based feature
extraction : A case study in cancer diagnosis”. In : Inf. Sci. 222, p. 805–823. doi :
10.1016/j.ins.2010.09.018.

Moreno-Torres, José G., Troy Raeder, Rocı́o Alaı́z-Rodrı́guez, Nitesh V. Chawla
et Francisco Herrera (2012). “A unifying view on dataset shift in classification”.
In : Pattern Recognition 45.1, p. 521–530. doi : 10.1016/j.patcog.2011.06.019.

Quinlan, J. Ross (1993). C4.5 : Programs for Machine Learning. Morgan Kaufmann.
isbn : 1-55860-238-0.

Van Assche, Anneleen, Celine Vens, Hendrik Blockeel et Saso Dzeroski (2006).
“First order random forests : Learning relational classifiers with complex aggregates”.
In : Machine Learning 64.1-3, p. 149–182.

Clément CHARNAY

Enhancing Supervised Learning
with Complex Aggregate

Features and Context Sensitivity

Résumé

Dans cette thèse, nous étudions l'adaptation de modèles en apprentissage supervisé. Nous
adaptons des algorithmes d'apprentissage existants à une représentation relationnelle. Puis, nous
adaptons des modèles de prédiction aux changements de contexte.

En représentation relationnelle, les données sont modélisées par plusieurs entités liées par des
relations. Nous tirons parti de ces relations avec des agrégats complexes. Nous proposons des
heuristiques d'optimisation stochastique pour inclure des agrégats complexes dans des arbres de
décisions relationnels et des forêts, et les évaluons sur des jeux de données réelles.

Nous adaptons des modèles de prédiction à deux types de changements de contexte. Nous
proposons une optimisation de seuils sur des modèles à scores pour s'adapter à un changement de
coûts. Puis, nous utilisons des transformations affines pour adapter les attributs numériques à un
changement de distribution. Enfin, nous étendons ces transformations aux agrégats complexes.

Mots-clés : Fouille de données relationnelles, Reframing, Agrégation complexe, Optimisation
stochastique, Classification sensible au coût, Adaptation de modèles, Apprentissage automatique,
Intelligence artificielle

Abstract

In this thesis, we study model adaptation in supervised learning. Firstly, we adapt existing learning
algorithms to the relational representation of data. Secondly, we adapt learned prediction models to
context change.

In the relational setting, data is modeled by multiples entities linked with relationships. We handle
these relationships using complex aggregate features. We propose stochastic optimization heuristics
to include complex aggregates in relational decision trees and Random Forests, and assess their
predictive performance on real-world datasets.

We adapt prediction models to two kinds of context change. Firstly, we propose an algorithm to tune
thresholds on pairwise scoring models to adapt to a change of misclassification costs. Secondly, we
reframe numerical attributes with affine transformations to adapt to a change of attribute distribution
between a learning and a deployment context. Finally, we extend these transformations to complex
aggregates.

Keywords : Relational Data Mining, Reframing, Complex Aggregation, Stochastic Optimization,
Cost-Sensitive Classification, Model Adaptation, Machine Learning, Artificial Intelligence

