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Preface

Theoretical foundations of the mechanical properties of crystalline solids are nowadays
well established. The ordered structure of these materials allowed for the development
of dislocation theories that are by now confirmed by both simulations and experimental
methods [32]. A considerable part of the materials, however, does not exhibit such a
structural order. Examples include amorphous materials as glasses, but also larger scale
amorphous systems such as pastes, foams, colloids or granular material. The mechanical
response of amorphous materials, in particular, glasses is less understood, mainly because
of the lack of suitable experimental devices: their intrinsic brittleness makes standard
macroscopic mechanical tests extremely difficult. Another source of experimental diffi-
culty is that in some of these materials, for instance, structural glasses, plasticity usually
manifests at very small scales [147].

Mechanical properties of amorphous materials are more complex on the microscopic
scale than their crystalline counterparts due to the lack of long range order. Indeed, in
contrast to crystalline solids, disorder eliminates by nature the notion of isolated defects.

In the case of amorphous materials disorder excludes dislocations as an elementary
plastic mechanism, moreover, makes extremely difficult to capture the statistics behind
these microscopic processes, a difficulty that delayed the proposal on such an elementary
mechanism 40 years after the idea of dislocations was introduced [32]. It was not until
the late ’70s that A. S. Argon came up with the concept of local, slip-like rearrangements
of atoms as the elementary process of plasticity in amorphous materials called shear
transformations [8].

Over the past two decades it has gradually become clearer that many amorphous sys-
tems share similar phenomenology at very different scales: model glassy systems [115],
metallic glasses [7], bubble rafts [9] and colloids [153, 6]. First, they all flow above
a threshold stress. Unlike in fluids however, this flow is not smooth, but is governed
by sudden, avalanche-like stress drops and features scaling properties. This complex
rheology is believed to be governed by the collective effect of the interacting local re-
arrangements that have been observed in all these materials. The identification of the
elementary processes of plasticity at lower scales has therefore tremendously benefited
from larger scale experiments [153, 6, 97, 98, 9].

This common, apparently universal phenomenology as well as the puzzling scaling
behavior around yield naturally led to the conjecture that the yielding of amorphous
systems is potentially a dynamic phase transition [16, 106].
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As such, it shows striking similarities with other dynamic transitions including earth
quake phenomena [11] and line depinning [90]. In each of these systems the individual
elements follow a stick-slip dynamics and below a critical forcing the system stops, while
above the critical forcing it moves indefinitely. A dynamic phase transition then occurs
at the critical forcing accompanied by scaling and cascade events. In the introductory
chapter 1 we discuss the critical nature of the yielding transition and its similarities with
depinning [90], another system exhibiting dynamic transition.

Dynamic phase transitions thus show universal behavior, a phenomenology that is
independent of the details of the particular system. Systems at very different scales rang-
ing from charge density waves through dewetting fronts up to earthquakes can manifest
in the very same behavior [14, 11]. This universality allows for the construction of sim-
ple, almost toy models that reproduce the universal properties, simply because they are
insensitive to the very details of the system and thus the model.

Now, if yielding of amorphous materials is indeed a dynamic transition, can simple
models reflect its universality? In particular, do the details of these models matter? Many
such models have been developed [9, 59, 73, 161, 47] based on the shear transformation
picture, considering a mean field interaction between the shear transformations, argu-
ing that as long as we deal with universal properties, the actual form of the interaction
is an irrelevant detail. Recently introduced mesomodels based on realistic interactions
between the shear transformations started to elucidate that the actual form of the in-
teraction affects the critical behavior [171, 172, 106, 108, 16, 138]. These mesomodels
are oversimplified models of amorphous media and most of them are scalar, nevertheless,
they are able to reproduce a series of generic properties of amorphous plasticity. We
discuss the main idea behind these models in chapter 2.

The elastic interactions associated to the particle rearrangements are highly anisotropic.
This anisotropy favors the accumulation of the plastic activity along certain direction
leading to shear banding. Persistent shear banding, in turn, leads to fracture nucleation
hence the failure of the material. As localization is the main obstacle of improving the
strength of amorphous materials [147], its effects cannot be simply neglected by a mean
field approach. We address this issue in chapter 3, where we show that the anisotropy
of the interaction indeed leads to the localization of the plastic activity which has a
dramatic impact on the fluctuations. We show in particular, that the peculiar interac-
tion between the shear transformations allows for deformation modes at no energy costs.
These modes can then develop indefinitely and their diffusion governs the dynamics of
amorphous systems. In chapter 4 we further explore the way localization affects scaling
properties including finite size fluctuations in amorphous systems and relate the scal-
ing to molecular dynamics simulations. Localization and diffusion are features that are
completely absent from the standard depinning phenomenology.

In amorphous systems, localization of plastic activity along shear bands is associated
to the brittleness and failure of the material [97] and this failure is a serious limitation of
the usability of amorphous materials, in particular, the newly developed metallic glasses
as structural materials [109, 39, 110]. Recently it has been shown that the nucleation
and propagation of shear bands can be controlled by introducing inclusions of a different
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composition into the amorphous bulk [4, 82, 72], the potential applications of these
composites are thus countless. While several homogenization techniques are available to
predict the effective mechanical properties of such composite materials [37, 184, 180], they
all focus on the averages properties. Due to the underlying dynamic transition however,
close to criticality, the importance of fluctuations is crucial. These fluctuations lead
to considerable finite size effects that cannot be captured by standard homogenization
methods. On the other hand, the newly developed family of mesomodels [171, 172,
106, 108] has been inherently designed to account for fluctuations, hence they are good
candidates in investigating such finite size effects. In chapter 5 we use a mesoscopic
model to investigate finite size scaling in an amorphous composite and we show that
reinforcement is related to the percolation of shear bands through the inclusions, as
well as that hard inclusions may block the propagation of shear bands, reinforcing the
material.

From the material science point of view, there is a constant need for newer techniques
in tailoring structural materials with imposed mechanical qualities. Understanding local-
ization and the intrinsic universal properties is thus the first step towards the development
of structural materials with enhanced mechanical characteristics.

The present thesis has been carried out within the framework of a joint program
between ESPCI Paris and UBB Cluj and extensive collaboration with NEU Boston.
Accordingly, it consists of two parts. In the first part, we investigate the universal prop-
erties of amorphous materials at the yielding transition from the depinning perspective,
a phenomenology arising from the competition between elasticity and disorder.

The second part of the thesis introduces a new disordered system. In chapter 6 we
investigate the dynamics and roughening of a receding dewetting line on inhomogeneous
surfaces. The phenomenology of dewetting on a disordered surface is often related to
depinning since the roughening of the contact line is a result of the competition between
the pinning of inhomogeneities and the long range elastic forces acting on the line. These
elastic forces originate from the surface tension and are usually accounted for in a pertur-
bative treatment [68, 27, 89, 88, 25, 70] under the approximation that the deformations
of the contact line are small. While such a framework has been successful in reproducing
some features of the contact line morphology, for instance, roughness exponent [26], it
does not aim to address the phenomenology associated to large deformations.

Unlike in the standard depinning approach of dewetting [68] where long range elastic
interactions are considered along the contact line, here we consider a soft line that allows
for large deformations and even the tearing up of the layer. We develop a novel, simplified
model of dewetting to investigate the contact line dynamics and morphology when the line
can undergo large deformations. Although the method is not a standard depinning model,
we find that the system exhibits critical-like properties around a threshold concentration
of inhomogeneities.

The work behind this thesis lead to the following publications in peer-reviewed jour-
nals: [187, 186, 188].
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Introduction

Contents
1.1 Phenomenology of amorphous plasticity . . . . . . . . . . . . . 8

Shear banding . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Serrated flow: avalanches and criticality . . . . . . . . . . . . . 10

Localized rearrangements: shear transformations . . . . . . . . 12

1.2 Modeling strategies . . . . . . . . . . . . . . . . . . . . . . . . . 13

Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . 14

Mesoscopic models . . . . . . . . . . . . . . . . . . . . . . . . . 16

Constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Scaling properties and the yielding transition . . . . . . . . . 18

1.4 Analogy between depinning and plasticity mesomodels . . . . 20

The depinning problem . . . . . . . . . . . . . . . . . . . . . . 20

Connection to amorphous plasticity . . . . . . . . . . . . . . . 23

1.5 Overview of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

This introductory chapter aims to present the phenomenon of plastic deformation of
amorphous materials through the review of previous scientific results. First, we exam-
ine the most relevant phenomenology to our subsequent work regarding the plasticity
of amorphous materials, in particular, glasses. We then introduce the main ideas and
methodologies behind the multiscale modeling strategy of amorphous plasticity starting
from molecular dynamics methods, through coarse grained models up to constitutive
models. Finally, we review the scaling properties of amorphous systems underlining in
particular the links between the phenomenology of amorphous plasticity and the depin-
ning transition. Emphasizing at every stage of this literature review the questions that
are still open, we justify our approach and the methods that will be implemented in this
thesis.
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8 CHAPTER 1. INTRODUCTION

1.1 Phenomenology of amorphous plasticity

Glasses have been around for thousands of years and although they are of great industrial
importance, their mechanical properties are not well understood to the day. While gener-
ally brittle and not meant to deform, especially plastically, at short scales glasses exhibit
permanent deformation, which has been evidenced in indentation experiments [177] or
under uniaxial load of micropillars (Figure 1.1). Note immediately an original character
of glass plasticity: in addition to shear, permanent deformation can involve a volume
change. The amount of this densification depends on the structure, more precisely on
the available free volume [162]. In amorphous silica (SiO2) for example a densification
of about 20% was reported [91], metallic glasses however are less prone to densify.

Glasses are the textbook example of amorphous materials, meaning that, in contrast
to crystalline materials, they do not exhibit long range order in the structure. The
constituent particles may show short range organization up to several atomic length scale,
but at long range they are disordered and statistically isotropic. The disordered structure
can be understood via the glass formation process, wherein the glass is cooled down from
its liquid state. From an energetic point of view, the most favorable structure would
be a crystalline arrangement, but the dramatic increase in viscosity makes the optimal
configuration extremely long to reach. Particles are thus trapped into a metastable
configuration. Consequently, the final structure highly depends on the quench rate and
slower quench results in a more relaxed configuration. Furthermore, since the glass is a
supercooled liquid, it mostly resembles a snapshot of the liquid glass just above the glass
transition temperature.

Figure 1.1 – Silica pillars under compressive load, Figure from [96]. While some well
defined crack patterns are present, permanent deformation is observed. Initially, the
pillars had the shape of a conical frustum. Load was applied from the top. Upon load,
the pillars suffered a permanent deformation that is more pronounced on the top of the
pillars, where the load was applied.

In mechanical terms, glasses have high hardness and low ductility [147], thus low
toughness, meaning that although they are relatively difficult to permanently deform,
they are brittle [75]. On the other hand, crystalline materials show exactly opposite
mechanical properties: low hardness and high ductility. This striking contrast arises
from the structural difference, it is therefore crucial to relate the mechanical properties
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to the underlying structure. The aim of present thesis is to take a step towards this
direction.

Shear banding

A typical failure scenario of glasses is the nucleation of shear bands. The material then
slips along the band where local heating leads to decohesion and hence catastrophic failure
[147, 102]. Shear bands are the place where cracks can nucleate, therefore suppressing
shear banding and the resulting crack nucleation is of particular technical interest. Due to
the reduced amount of free volume in metallic glasses, the excess energy cannot dissipate
through permanent volumetric deformations. Excluding densification, the only possible
plastic mechanism is the permanent shear deformation which ultimately leads to the
formation of thin shear bands (Figure 1.2) [165].

Figure 1.2 – Scanning electron microscopy images of shear bands in a
Zr64.13Cu15.75Ni10.12Al10 metallic glass at a plastic strain of 40%. (b) is the zoom of
the region marked in (a). The patterns were found to have a fractal structure. Figure
from [165].

Whether there is one single or multiple shear bands depends on the composition: for
instance, in a Zr60+xCu25−xFe5Al10 metallic glass it was found that although a larger
Zr content (larger x) decreases the hardness of the material, it enhances shear band
localization, while at low x shear bands are distributed throughout the whole sample
[199]. Controlling shear band formation and the entailing decrease of ductility has been
so far the main limitation in the use of glasses as structural materials [147]. As plasticity
takes place right before crack nucleation, a deeper understanding of shear banding is the
first step in understanding and controlling crack nucleation and propagation.

Interestingly, strain localization, in particular, shear banding before failure does not
seem to be a particularity of metallic glasses: on a much larger scale, similar accumulation
of deformation along shear bands has been observed in granular materials with glass beads
of diameter in the range of a hundred micrometers [97, 98, 6] as shown on Figure 1.3.
These bands were found to appear well before failure, and upon failure the deformation
is restricted along persistent bands.
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Figure 1.3 – Strain heterogeneities in a sheared granular material captured via image
correlation. The image on the right is the zoom of the region marked on the left image.
Note the self organization of deformation in shear bands. Figure from [97]

Serrated flow: avalanches and criticality

Although structurally glasses resemble to a supercooled liquid, it has been found that
they do not yield smoothly upon load. Instead, beyond their elastic limit and before
failure, their flow curve is serrated by sudden stress drops (Figure 1.4). In metallic
glasses, this serrated flow has been associated to the accumulation of plasticity along
nano-shear bands [166] and the alternating arrest and motion dynamics of the material
along these bands.

It was found experimentally that the serrated stress drops resulting from the stick-slip
sliding of shear bands show a power-law distribution [7, 94, 166]. The implications of
the observed heavy tail distribution are astonishing. Most importantly, in contrast to a
light tail distribution (Gaussian, for instance), heavy tail distributions allow for extreme
events. Although the probability of extreme events is low, it is still finite and as their
consequences are catastrophic, their importance cannot be neglected. As an intuitive
comparison between long tail and light tail distributions, let us consider the following
example [15, 11]: fluctuations in an ideal gas in thermal equilibrium are Gaussian, thus
light tailed, while earthquake distributions are power-law distributed, thus heavy tailed.
Although large earthquakes are extremely rare, they do happen and as they have dev-
astating consequences, they cannot be neglected. On the other hand, one would never
encounter explosion of a reservoir due to thermal fluctuations: the exponential cutoff tail
of the Gaussian excludes such extreme events. Since the stress drops show a power-law
distribution, we know that glasses allow for extreme events.

Fluctuations generally only become important when considering small sample sizes.
At large sample sizes fluctuations tend to average out according to the central limit
theorem, when the physical size of the samples is reduced however, sample-to-sample
variability is so large that simply using averages for characterization becomes meaning-
less. With the drive towards the miniaturization of micro electro-mechanical systems
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Figure 1.4 – (a) Experimental setup of the avalanche size distribution in a bulk metallic
glass under uniaxial load. (b) The measured stress-strain curve is serrated with sudden
drops, the material thus exhibits a jerky flow. The power-law distribution of these drops
is the footprint of an underlying dynamic transition. Figure from [7]

.

this issue raises practical fabrication problems: a certain quality imposed and reached at
larger sizes does not hold at smaller sizes. Fluctuations are so large that averages are no
longer representative. As the sample size increases however, equilibrium samples show
decreasing relative fluctuations [69]. This is however not the case in systems close to a
critical point. In these systems, due to long range correlations, fluctuations do not average
out at larger scales. Relative fluctuations are considerable even at the macroscopic scale,
allowing for extreme events leading to catastrophic failure. Understanding fluctuations
is therefore of crucial interest in detecting and controlling large events responsible for the
final failure. Furthermore, fluctuations may serve as an important source of information
about the internal state of the material. In particular, studying fluctuation statistics
could possibly reveal valuable information about the remaining life of the structure, i.e.
the closeness of the system to failure.

Ever since P. Bak introduced the the amazing concept of self organized criticality
[14, 12], we know that out of equilibrium systems featuring such intermittent dynamics
can show critical behavior over a wide time and length scale, from charge density waves
up to earthquakes. In the context of SOC, the observation that the serrated stress drops
resulting from the stick-slip sliding of shear bands show a power-law distribution [7]
may not be particularly surprising, albeit far from obvious. The implications of this
heavy tail distributions are, however, important. In particular, power law crackling is
the footprint of criticality [156], thus, in analogy to critical systems, the stress drops are
called avalanches. Sometimes avalanches consist of the arrest and motion of a single shear
band [110, 200] of width of ∼ 10 nm, which is the first hint that the phenomenology of
amorphous plasticity may not be that far from the propagation of interfaces in random
media, known as depinning [191, 189]. The extent to which these amorphous systems
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upon quasistatic load exhibit a dynamic phase transition (critical behavior) is, however, a
matter of debate. In the case of the accumulation of multiple shear bands, the avalanche
behavior is a result of the cooperative effect of these shear bands. A simple spring-
block like model with nearest shear band interactions has successfully supported this
observation [166]. Moreover, recent experiments in metallic glasses show a crossover
from an uncorrelated nano shear band regime to a regime dominated by the collective
activity of nano shear bands [94].

Localized rearrangements: shear transformations

The microscopic mechanism causing the nucleation and propagation of these shear bands
is yet to be related to the atomistic structure. In case of crystalline materials, the
elementary plastic mechanism is relatively well understood and explained by the motion
of dislocations. While crackling may be observed in some cases [51] this can be understood
in terms of the stick-slip motion of interacting dislocations pinned on lattice defects [46].
The intermittent dynamics here is given by the alternating pinning (stick) and sudden
jump (slip) motion of the dislocations.

Figure 1.5 – Proposed elementary mechanism of plasticity in amorphous solids: localized
rearrangement of a few tens of atoms (Figure from [155]).

In amorphous materials the lack of an underlying lattice structure excludes disloca-
tions as the elementary mechanism of plasticity. Instead, in amorphous materials, one
encounters localized atomic rearrangements of a few dozens of atoms as shown on Figure
1.5. These rearrangements are called shear transformations and there is accumulating ev-
idence that this process constitutes the elementary mechanism of plasticity in amorphous
solids [8, 52, 155, 59]. The identification of these rearrangements however is extremely
difficult both in experiments and simulations, since, in general, the internal structure
is statistically unchanged before and after a shear transformation [170, 52]. Clearly, an
ongoing shear transformation brings the solid into a more relaxed state (otherwise the
shear transformation would not take place), but there is a barrier to cross in the in-
termediate state, which can be facilitated either by temperature or by external load [8].
Rearrangements follow a stick-slip dynamics at the timescale of the picoseconds [147]. As
shear transformations build up, they tend to form shear bands [147, 154]. Shear bands
thus can be viewed as the cooperative result of interacting shear transformations.
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Figure 1.6 – The same localized rearrangement in a colloidal glass under shear viewed
from two different planes (Figure from [153, 86]). Color indicates the local shear strain.
Note the quadrupolar symmetry in the zy plane and the dipolar symmetry in the zx
plane.

Intriguingly, similar rearrangements to shear transformations have been observed at
much larger scales in systems composed of bubbles of the size of the millimeters [9], as
well as in colloidal glasses, in which the particles are of the size of the micrometers [153,
86, 97, 98, 6] (Figure 1.6) showing that they are a universal characteristic of amorphous
systems.

Although shear transformations are localized rearrangements involving a small group
of particles only, they are by no means independent [174]. One rearrangement induces
a long range elastic stress within the material and may trigger further rearrangements
(see, for example the displacement field on Figure 1.7 a). Shear transformations thus
interact through the surrounding material and this interaction is at the base of the com-
plexity captured in the behavior of amorphous solids. The elastic interaction between
shear transformations is often modeled via the interaction between continuous material
inclusions, known as Eshelby inclusions [57]. The macroscopic behavior of the system
then can be regarded as the collective effect of interacting Eshelby inclusions. In par-
ticular, in an amorphous granular material it has been nicely captured how individual
rearrangements collectively build up to form intermittent shear bands which, in turn, self
organize into persistent bands leading to failure [98].

1.2 Modeling strategies

In this section we give a brief insight into the methods developed in the past decades
intended to investigate the complex plastic behavior that amorphous systems exhibit.

In crystal plasticity experimental methods are available to identify single dislocations.
A device that could capture single shear transformations however has not been devel-
oped to the day, therefore simulation methods are extensively used in the investigation of
amorphous plasticity. Furthermore, their brittleness does not allow for standard mechan-
ical tests [147]. Depending on the scale of interest, there are various methods available to
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model the plasticity of amorphous materials [147] (Figure 1.7). On the atomistic scale,
the relevant simulation methods are the molecular dynamics methods. On the macro-
scopic scale one would utilize finite element methods fed with constitutive laws. These
are however less common given that at such a large scale glasses fail before experiencing
any considerable amount of plasticity. Nevertheless, plasticity can be reached in confined
geometries, such as indentation experiments [147, 36, 164]. As an intermediate scale, a
coarse grained approach is suitable which should connect microscopic and macroscopic
methods.

In what follows, let us briefly review the key concepts behind each of the three
approaches.

Figure 1.7 – Multiscale modeling of amorphous materials, figure from Ref. [147]
At the nanometric scale, atomistic simulations (a), at the micrometric scale mesoscopic

models (b) and at the macroscopic scale micromechanical constitutive laws (c) are
relevant. The ultimate goal is to connect the three scales.

Molecular dynamics

When it comes to reproducing the properties of amorphous materials with a specific com-
position on the microscopic scale, one would use advanced molecular dynamics methods
involving effective potentials resulting from ab initio calculations. There is significant
difference between the mechanical properties of different glasses which is important in
real world applications. When interested in obtaining numbers (value of the yield stress,
toughness, hardness, etc.) the modeling strategy has to precisely take into account the
interatomic potentials. Our purpose here is however to understand generic properties of
amorphous plasticity, that is, properties that many different amorphous systems share,
regardless to the very details of their composition.

In this spirit, on the atomistic scale, one of the possibilities for a model amorphous
system is a bi-disperse mixture of Lennard-Jones particles. The two components are
needed in order to inhibit crystallization. The sample is prepared by a quench of the liquid
glass mixture and different quench methods are available leading to different structures



1.2. MODELING STRATEGIES 15

in the quenched sample. Usually however measurements are carried out after an initial
transient, after which the structural memory resulting from the initial quench protocol
is considered erased [114, 101]. Note that a growing interest in the recent years has
concerned the encoding of a mechanical memory in the amorphous structure [62].

Figure 1.8 – Left: Stress-strain curve from MD simulation of an athermal, bi-disperse
Lennard-Jones glass under quasistatic load. After an initial elastic branch yield sets in.
Plastic flow is governed by alternating smooth elastic increases and sudden stress drops
associated to cascades of plastic events. Right: non-affine displacement field from the
same simulation, corresponding to a single avalanche. Note the localization of the slips.
Figure from [114]

Although the time limitation due to the computational effort in MD simulations
implies extremely large strain rates (∼ 108s−1) compared to experiments, a reasonable
separation between the internal vibrational time scale and the time scale of the deforma-
tion is reached [17]. This separation allows for the sampling of the behavior of deformed
amorphous systems. If one is interested in the athermal, quasistatic limit (i.e. T → 0
and γ̇ → 0), one can impose a dissipative dynamics with frequent energy minimization to
compensate for the too high strain rate [112, 111, 114, 115, 183, 174, 100, 52, 59, 60]. Indi-
vidual plastic rearrangements have been found in these athermal, quasistatic simulations
strengthening the idea of the shear transformations [101, 114, 183] (see, for example, Fig-
ure 1.7 a). The various tools developed within the molecular dynamics framework have
been successful in reproducing a great part of the phenomenology observed in amor-
phous systems. In particular, one observes the serrated flow curve associated to the
plastic events [114], the scaling of the stress drop distributions implying crackling and
avalanche behavior [111, 150], as well as anisotropic long-range strain correlation due
to localization [116] of plastic events along narrow slip lines (shear bands) [115] (Figure
1.8).
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Mesoscopic models

The time limitation of the molecular dynamics simulation methods, as well as the strik-
ingly similar behavior shared by amorphous systems at very different scales (glasses,
colloids, granular media, bubble rafts or foams) led to the question whether it is pos-
sible to smear out the very details behind the molecular dynamics methods and use a
semi-continuous approach.

Figure 1.9 – Coarse graining in mesomodels: the material is divided into elastoplastic
blocks that account for the elastic consequences of localized plastic events. The mechan-
ical noise associated to plastic events is computed in the continuum limit. Figure from
[24]

Starting from the early work of Argon and Bulatov [30, 31], several coarse grained,
mesoscopic models have been developed [16, 137, 171, 172, 106, 108, 105, 128, 127, 187,
78, 72] that were proven successful in reproducing various universal properties of the
mechanical response of glasses observed in experiments or molecular dynamics simula-
tions. These are minimal ingredient elastoplastic models and the idea behind them is to
constitute a bridge between atomistic and finite element simulations. In these models,
the material is divided into blocks with an intermediate size. The size of a block has to
be large enough for continuum elasticity to hold, but at the same time small enough to
isolate plastic events and to account for disorder. As the definition of the size of a shear
transformation is unclear, there is no precise definition of this intermediate size either,
but ideally it should be larger than the size of a shear transformation (Figure 1.9). A
major question then remains: how to transfer microscopic information from molecular
dynamics to feed the mesoscale models?

While in MD simulations the simulation units are the particles, in mesomodels the
simulation units are the elastoplastic blocks. These models treat the material as con-
tinuum, they preserve however the interaction between the shear transformations that
enter into the model as continuous material inclusions known as Eshelby inclusions [57].
Local disorder is accounted for either via random thresholds or is introduced into the
dynamics. These models have been successful in reproducing the critical-like behavior
observed in molecular dynamics and experiments, in particular, avalanche behavior [171],
strain localization and shear banding [172] as well as a Herschel-Bulkley type of strain
rate dependence [126].

Despite their recent success, the methodology behind these models remains surpris-
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ingly fragmented, which makes a systematic comparison of various results extremely
difficult. A major question is thus how the different details of the various mesomodels
impact the resulting phenomenology? More importantly, how do the results of these
models quantitatively compare to experiments or molecular dynamics simulations?

Constitutive laws

The ultimate goal of plasticity would be to provide macroscopic constitutive laws anal-
ogous to the Navier-Stokes equations of Newtonian fluids [17] connecting the internal
state of the material to macroscopic quantities. Several constitutive models have been
attempting to provide such a rheology, but most of them handle the shear transformations
as either independent or as interacting via a mean elastic field.

Figure 1.10 – (a) At zero stress, backward and forward energy barriers are symmetric.
(b) External stress tilts the potential landscape, hence forward flips produce at a higher
rate resulting in a net strain rate.

For instance, Eyring considers single particle flips activated by temperature. The
energy barrier to cross for a flip is decreased by the loading stress and the strain rate is
given by the difference between forward and backward flip rates [17, 58]. In this picture,
only single particles can move into the holes left in their neighborhood. The probability
per unit time (rate) for such a move to happen is given by an Arrhenius activation law:

R =
1

τ
exp

[
−∆E

kT

]
(1.1)

where τ is the characteristic lifetime of the given configuration, T is the temperature and
∆E is the energy barrier that has to be crossed to reach the hole. Forward and backward
jumps are possible and the associated rates are R+ and R−. If the characteristic strain
associated to a single flip is ǫ0, according to Eyring [17, 58] the strain rate is given by
the rate difference between forward and backward flips:

γ̇ = ǫ0(R+ −R−) (1.2)
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At equilibrium, the back and forth flip rates are equal since the energy barriers of the
backward and forward flips are the same. An external stress σ however tilts the energy
landscape and induces an asymmetry between the barriers: ∆E± = E0∓σV (see Figure
1.10). Here V is a typical volume of the flip zone. The forward and backward rates are
then no longer equal and their difference gives rise to a nonzero strain rate:

γ̇ =
1

τ
ǫ0 exp

[
−E0

kT

](
exp

[
σV

kT

]
− exp

[
−σV
kT

])
(1.3)

At small stresses the exponentials can be expanded up to the linear term and we recover
the rheology of a Newtonian fluid:

σ =
kTτ

2V ǫ0
exp

[
E0

kT

]
γ̇ (1.4)

At large stresses only the first exponential is kept and we have:

σ =
kT

V

[
E0

kT
+ ln

γ̇τ

ǫ0

]
(1.5)

meaning a slow (logarithmic) dependence on the strain rate. Also, the expression in the
brackets is only positive above a threshold strain rate, we recover thus a yield stress fluid
behavior.

Argon [9] takes the method one step further considering collective flips of particles,
but the subsequent flips are still considered as independent. In STZ theories [59] the het-
erogeneous density of shear transformation zones is taken into account, and the forward
and backward rates weighted accordingly. Dynamical heterogeneities are introduced by
Hébraud and Lequeux [73] by considering a probabilistic evolution equation of elastoplas-
tic blocks coupled via mean field. Similarly, in Soft Glass Rheology models elements are
considered to interact via a mechanical noise and they can escape their traps by thermal
activation [161].

Whereas these models have been proven successful in reproducing some rheology
of amorphous systems, in particular, predict jamming and a Herschel-Bulkley rheology
above, due to the mean field/mechanical noise type interactions, with a few exceptions
[117], they do not allow for localization. While successful in predicting the macroscopic
shear band formation when combined with finite element methods [147, 36, 164], they do
not seek to connect the underlying structure to the localization behavior on the mesoscale,
which, as we will see in the subsequent sections, does have important consequences
regarding the plastic response of amorphous systems.

1.3 Scaling properties and the yielding transition

Upon stress, materials exhibit deformation. Up to a stress value they show linear elastic
properties. Passed that value, their deformation is still reversible, but nonlinear. Further
load leads to irreversible deformation, and, eventually a plastic flow. When driven slowly,
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one may encounter sudden stress drops discussed previously. Finally, the material is
likely to break (Figure 1.11). While the phenomenon presented here is not particular
to amorphous solids as similar behavior is observed for crystalline materials as well,
the processes behind the macroscopic behavior are different. While in crystals the stress
drops in the flow curve are caused by the pinning of dislocations on defects, in amorphous
materials they are related to the particle rearrangements.
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Figure 1.11 – Typical yielding of solids. At small strains the material deforms reversibly,
at further load however it yields and eventually fails.

We have already mentioned some evidence that during yield, amorphous systems (in
particular, metallic glasses) show critical-like behavior due to the underlying collective
stick-slip mechanism that governs their deformation. Upon loading, one observes sudden
stress drops obeying a power law distribution, P (∆Σ) ∝ ∆Σ−τ , signaling the cascade-
like processes called avalanches. It has been shown experimentally [7, 165] that within
these slip avalanches, plastic activity tends to follow a narrowly localized structure.

In addition to the power law distribution, avalanche rates were shown to exhibit
finite size scaling in a model Lennard-Jones glass under shear [150]. In particular, the
size of the largest event was found to scale as Sc ∝ Lα with the system size [150]. Both
the power law and the finite size scaling seem to hold regardless of whether inertia of
the particles is taken into account, however different scaling exponents were obtained
depending on the damping showing that although inertia does not destroy criticality, it
can place the system into different universality classes [150]. In particular, low damping
seems to drive the system into the mean field universality class. As one would not expect
considerable localization at low damping, this finding implies that localization plays an
important role in the universal behavior.

Displacements in amorphous materials are strongly correlated due to the localized
slips along shear bands. Nevertheless, it was found that the mean square displacement
increases linearly in time [115]. While this is not a single-particle diffusive process,
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an effective diffusion coefficient D can be defined. For this diffusion coefficient finite
size scaling was observed [115]: D ∝ Lδs . This scaling could be understood via an
independent localized slip line argument. Indeed, as we will see later on, assuming that
subsequent avalanches consist of uncorrelated, narrow, percolating slip lines directly leads
to the observed finite size scaling.

The dynamics of the plastic yielding is governed by the presence of weak zones that
are prone to yield. These zones are characterized by their stress barrier x, i.e. the
extra stress necessary for them to deform plastically. The larger their stress barriers, the
more stable the zones are. The ones that yield are the weakest ones, that is, the ones
that have the smallest barriers. The actual distribution of barriers close to zero thus
plays an important role in the yielding process. It was shown [106, 107, 105] that the
distribution of these barriers follows scaling with a positive exponent, thus vanishes at
zero barrier values: P (x) ∝ xθ. Somewhat misleadingly, P (x) is called the density of
shear transformations [106, 107, 105], although it represents a probability density and
not a spatial density.

Finally, close to the yielding transition, the flow stress shows power law dependence
on the strain rate: |Σ−ΣF | ∝ γ̇1/β . The associated exponent is known as the Herschel-
Bulkley exponent [106].

We can thus see that there is accumulating evidence that the yielding process of
amorphous solids is indeed a dynamic phase transition. As such, it can be characterized
by a set of critical exponents and the associated scaling relations [106]. Moreover, the
scenario of the arrest-motion dynamics involving the scaling of avalanches, the Herschel-
Bulkley scaling of the flow stress and the underlying critical behavior is strikingly similar
to the one observed at the depinning transition that characterizes the advance of an
elastic manifold in a random landscape. It is therefore appealing to investigate the
yielding transition in the depinning context [106]. As we will see however, key differences
arise from the anisotropy of the interactions leading to localization, a phenomenon that
is completely absent in classical depinning.

1.4 Analogy between depinning and plasticity mesomodels

We have mentioned that the critical-like behavior of amorphous materials at yield re-
minds us to the depinning transition. In this section we further develop the similarities
amorphous yielding and the depinning transition share.

The depinning problem

The classical depinning problem deals with the motion of an elastic manifold in a dis-
ordered landscape [63, 124, 90] under an external forcing and has been used as a model
system for wetting front propagation or crack propagation, for instance [134, 89]. In these
cases the manifold is a one dimensional line propagating in a two or three dimensional
space. Figure 1.12 depicts such a receding dewetting line. As the line advances, the
random landscape tends to pin it due to the local energy minima.
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Figure 1.12 – Receding contact line on a disordered surface. Disorders tend to roughen
the line, while surface tension tends to smoothen it. Figure from [25].

At large forcing the line does not feel much about the disordered media. As forc-
ing decreases however, the effects of the disordered landscape become more and more
prominent and the line becomes rougher. Eventually, below a critical forcing f extc the
line would stop after a finite distance. There is thus a critical force which separates the
moving and the pinned phases. At the boundary of these two phases one encounters a
dynamic phase transition with critical properties such as scaling and the divergence of
correlation lengths. Since the transition separates the pinned and depinned phases, it is
called depinning transition (Figure 1.13). Around the transition, the velocity of the line
exhibits a scaling strikingly similar to the Herschel-Bulkley law we see in the yielding
transition: v ∝ |f ext − f extc |β .
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Figure 1.13 – Schematic representation of the depinning transition. Below a critical
forcing f extc the line stops within a finite distance. Above the critical force it advances
indefinitely. Between the two phases one encounters a dynamic transition. Around the
transition we have |f ext − f extc | ∝ v1/β .

Since in usual applications the inertia of these lines is irrelevant, the motion of a
manifold in a random landscape is often described by an overdamped equation of motion.
Let us consider a d dimensional elastic manifold propagating in a d+1 dimensional space.
As an example, a two dimensional (d = 2) manifold propagating in a three dimensional
space is sketched on Figure 1.15 (c). The overdamped equation of motion of the position
h(~r, t) of such an elastic manifold (described by z = h(x, y, t) on Figure 1.15 (c)) in a
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random landscape is given by [63, 90]:

∂h

∂t
(~r, t) = f ext(t) +G ∗ h(~r, t)− ∂U [~r, h(~r, t)]

∂h
(1.6)

On the RHS (see Figure 1.14), the first term represents the external forcing which is
homogeneous throughout the manifold. The second term describes the elasticity of the
line: since we consider linear interactions only, this is given by the convolution of an
elastic kernel G and the position of the line. The actual form of the kernel is specific
to the system and G(r, r′) gives the force response at r due to a localized perturbation
at r′. The total force at a given point is then given by the superposition of all the
perturbations along the line, hence the convolution. In depinning, this term tends to
flatten the manifold since variations of the manifold result in excess elastic energy. The
last term describes the effect of the disordered landscape. U is the potential of the
landscape and in the depinning picture it generally exhibits many local minima that
would pin the interface. The deeper the potential wells in U , the stronger the pinning
effect on the line. In particular, if the pinning is strong enough, instead of a smooth
propagation, the line will exhibit a motion governed by stick and slip jumps between
subsequent minima.

disordered forces

elastic forces

external forcing

pinning traps

Figure 1.14 – Elastic line advancing in a random potential. Deep local minima pin
the line, while the elastic forces tend to flatten it. The dynamics is the result of the
competition between the roughening effects of the pinning points and the elastic restoring
forces.

Such a system has been known to exhibit a dynamic transition at a critical value f extc

of the driving force.
In particular, at the critical forcing, the manifold propagates in terms of avalanches,

correlations reach the system size and the mean velocity shows a Herschel-Bulkley-like
power law dependence on the departure from the critical forcing.
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Connection to amorphous plasticity

The stick-slip dynamics associated to the strong pinning of the manifold leads to striking
similarities of depinning when compared to plastic yielding. As the phenomenology of
depinning has a more solid foundation [63, 90, 124], it is tempting to investigate yielding
in the depinning framework.

Figure 1.15 – Sketch of a 2d amorphous material upon bi-axial loading. (a) The mesh
is deformed according to the displacement. The associated strain has a reversible elastic
contribution and an irreversible plastic contribution. The latter is represented by the
color scale. (b) The same plastic strain field represented on the undeformed reference
frame. (c) The plastic strain field represented as a d-dimensional manifold advancing in
a d+ 1 dimensional space.

We have seen that the slip mechanism in amorphous solids is related to the onset of
irreversible, localized deformations. One can thus represent the plastic strain field asso-
ciated to these irreversible deformations as a manifold. In the case of a two dimensional
material for example, the local plastic strain can be represented as an extra dimension, as
shown on Figure 1.15. One thus obtains a two dimensional manifold propagating in three
dimensions, in the direction of the axis given by the plastic strain. The motion of this
manifold follows a stick-slip dynamics resulting from the quick atomistic rearrangements,
the shear transformations. External loading enforces the onset of such slip events, the
loading stress thus can be viewed as an external forcing on the manifold. Between config-
urations, rearranging particles have to cross a potential barrier to reach a new equilibrium
configurations, and this barrier is disordered due to the disordered structure. Finally, the
elastic bulk around the shear transformations ensures linear interactions between them,
we thus recover all the three elements of the depinning context: external driving, elastic
interactions and random landscape. These elements (driving, elastic kernel and disorder)
are the key ingredients of mesomodels developed to investigate the yielding transition,
the idea is thus to compare the depinning transition to the yielding transition by the
means of mesomodels.
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While formulating the yielding transition in the depinning framework is appealing,
one encounters additional features in the yielding phenomenology. In particular, local-
ization of the plastic activity into shear bands, anisotropic correlations and diffusion
[170, 169, 171, 172, 113, 114, 116], as well as the vanishing probability of barriers at zero
[106] are all extra features that are not present in classical depinning. As we will show,
these phenomena are related to the peculiar form of the interaction between the shear
transformations, more precisely, to the anisotropy of this interaction. While in depinning
the elastic interactions G(r, r′) are isotropic, this is not the case in plasticity which raises
several questions. First, how does the anisotropy of the interaction affect localization?
Second, how does localization affect the associated critical behavior? To what extent can
the depinning framework capture the yielding transition and what other tools do we need
beyond? To what extent do mesomodels account for this additional phenomenology?

1.5 Overview of Part I

In order to answer these questions, throughout this thesis:

• We show that the details of the construction of the elastic kernel G(r, r′) are crucial
to the phenomenology of amorphous plasticity. Therefore, we discuss the very
technical details regarding the construction of this interaction kernel.

• We show how the kernel’s specificities lead to localization. Specifically, we show
that shear bands are soft deformation modes of the kernel and the presence of such
modes has a dramatic impact on the resulting phenomenology. Such localization is
not present in depinning and cannot be captured by simple mean field approaches
and it results in qualitatively different behavior, in particular, divergence of strain
fluctuations.

• Due to the long range nature of the elastic interactions, the yielding transition
if often handled in the mean field spirit. While mean field interactions allow for
avalanches and depinning-like scalings, we show that they are not enough for a
proper and complete description of the yielding transition. To that end, we test
the modifications of various details of the kernel to see what is crucial and what is
not to the physics, focusing in particular to diffusion, scaling properties and stress
barriers.

• Equipped with the proper tools, we finally apply the model to amorphous com-
posites and we show that the reinforcement effect of amorphous materials by hard
inclusions is closely related to the geometrical percolation of shear bands.

1.6 Conclusions

In this chapter, we introduced the general phenomenology of amorphous plasticity. We
have seen that plasticity in amorphous materials takes place under the form of localized
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rearrangements of several particles. The large scale dynamics is governed by the collective
behavior of the rearrangements. The phenomenology is then the result of the competi-
tion between elasticity and disorder. In this context, yielding of amorphous materials is
very similar to the depinning transition. In addition to depinning however, amorphous
materials show striking localization which ultimately leads to fracture nucleation. Con-
stitutive laws focus on effective properties, disregarding the importance of localization.
Molecular dynamics methods on the other hand do not allow for fine-tuning between the
nature of disorder and the elastic interactions. The newly developed family of mesomod-
els was designed to address this issue, by coarse graining the material, yet keeping the
elastic interactions. These models thus allow for fluctuations and localization, they are
therefore promising in modeling the shear banding behavior and the associated brittle-
ness of amorphous materials. The next chapter is dedicated to presenting the idea and
methodology behind these mesomodels.
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In the previous chapter we have discussed the phenomenology of amorphous plastic-
ity and we concluded that the yielding transition shows critical behavior, similar to the
depinning transition. Nevertheless, localization is a key feature in amorphous plastic-
ity that is completely absent in depinning. In the following chapters we investigate the
localization of the plastic activity in amorphous systems and the effect of this localiza-
tion on the universal properties. Since we are interested in generic properties that are
independent of the very details of the system, we are going to use mesoscopic models
that are expected to reflect such a universal behavior. Nevertheless, as we show, some of
the details of these models, in particular the form of the elastic interaction does have a
considerable impact on the generic properties. In this chapter thus we review the main
ingredients of mesomodels with emphasis on what of these ingredients impacts universal
properties.

27



28 CHAPTER 2. MESOSCOPIC MODELS

2.1 A tour of mesomodels

Mesoscale models represent a coarse grained description of amorphous plasticity. In this
context, they follow a semi-continuous approach: the material is divided into elastoplastic
blocks, and the interaction between these blocks is considered. These blocks may contain
several shear transformations, however, since the precise boundaries of shear transforma-
tions are still unclear, there is no exact definition of the proper discretization scale. The
size of the block has to be large enough for continuum elasticity to hold, but at the same
time small enough to account for the local heterogeneities of the plastic behavior related
to the structure.

As sketched on Figure 2.1, mesomodels developed so far are built up of several main
ingredients, and the combination of these ingredients gives the cooking details of the
model. Some of the models involve thermal activation [30, 78], but in the mechanical
response we are mainly concerned with athermal models. It can be readily seen, that the
zoo of mesomodels has many dimensions and the complexity of this “model space” just
keeps increasing over time. The extent to which the particular details of the individual
models affect the outcome is a matter of debate and establishing a common framework
would be crucial to properly carry out an organized, apples-to-apples comparison.

To give an impression about the various models, here we briefly review some of
them. In the subsequent sections of this chapter, we discuss the main ingredients of this
models clarifying what aspects are relevant to the generic phenomenology of amorphous
plasticity.

It all started with the work of Bulatov and Argon [30, 29, 31] where the plane was tes-
sellated into hexagonal elements forming a hexagonal lattice. One element corresponded
to one inclusion prone to undergo an eigenstrain (plastic deformation) and hence induc-
ing a residual stress in the rest of the material. An exact calculation was carried out
to account for the stress field due to an eigenstrain and an Arrhenius-like activation
mechanism was proposed to overcome the barrier between the two configurations.

To study the inhomogeneous flow in yield stress fluids, Picard et al. [137, 138, 139]
developed a model based on the far field interactions of the elastoplastic blocks. Disorder
was considered through the rates at which the blocks switched between an elastic and a
plastic regime. It was found that at low shear rate, the flow is governed by the cooperative
bursts of plastic events.

Similarly to Picard, Nicolas et al. [128, 127, 126] proposed a viscoplastic evolution
to model the inhomogeneous flow of soft amorphous solids. The discretization here
was performed on a square lattice, but stresses were resolved on a finer mesh. The
building tiles could alter between an elastic and a plastic state and the states could be
interchanged with predefined rates. The model successfully recovered the rheology of
silicon oil droplets in a water-glycerin mixture in a microchannel flow, as well as the
Herschel-Bulkley exponent of the flow.

Along the line of Picard et al. and Nicolas et al., Martens et al. [118, 119] showed
that diffusion is related to the dynamical heterogeneities. Furthermore, they investigated
the shear band formation process for a long range and a short range interaction, both
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with quadrupolar anisotropy.
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Figure 2.1 – A series of athermal mesomodels. The axis represent orthogonal ingredients,
thus, theoretically any combination of these ingredients is possible. The diversity of the
models and the lack of a common terminology makes comparison cumbersome. In the
upcoming section we discuss which details are relevant to the phenomenology.

In another model, Homer et al. [78, 79] proposed an off-lattice discretization. In this
model, the solid was discretized on an irregular triangular mesh and clusters composed
of several triangles would correspond to a single shear transformation. A kinetic Monte
Carlo method was used to drive the system and the spatial correlation between the
activated zones was studied.

Lin et. al proposed a time-delayed activation mechanism in their mesoscopic model
[107]. They worked on a square grid, and inclusions could suffer a plastic deformation
with a given probability per unit time, thus fixed rate. Unstable zones could be restabi-
lized in case the stress on the unstable site dropped before it yielded. With this model,
the Herschel-Bulkley flow was recovered and the density of shear transformation was
investigated.

In all the models discussed so far, the disorder from the amorphous structure is
represented by disorder in the dynamics. Along another line of mesomodels however,
quench disorder is considered, i.e. plasticity is related to threshold instead of rates.
Baret et al. [16] proposed a finite difference discretization and, taken from depinning
studies, an extremal dynamics for the onset of a plastic event was considered. This
method was later on refined [171, 190] where an analytic expression of the kernel was
used, for plane loading conditions. A similar approach was used by Budrikis and Zapperi
[28], but with strain controlled quasistatic load. In what follows, our methods resemble
the most to these latter approaches.

The main idea behind mesomodels is to capture the essential phenomenology of amor-
phous plasticity. In this view, they are similar to the Ising model used as a model system
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for magnetic materials. As of today however, the consensus behind mesomodels are more
fragmented: many different methods and implementations are available. In order that
they can indeed serve as the Ising model of amorphous plasticity, it has to be clarified first
which details of these models are important and which are not to the phenomenology.

2.2 Ingredients

There have been many different attempts to build coarse grained models based on inter-
acting shear transformations. There are however several common concepts these models
share. The key ingredients behind any mesomodel are the elastic interactions between
individual rearrangements and the disorder associated to the amorphous structure. The
dynamics of the amorphous systems is then led by the competition between elasticity
and disorder [147]: in the depinning analogy, elasticity tries to smoothen the manifold,
while disorder roughens it by repeated pinning. The resulting stationary statistics is thus
defined by the interplay between elasticity and disorder [147].

In the mesomodels developed so far, disorder can be of two flavors: it can either
enter into the dynamics [130, 83, 84, 126, 107], or into the landscape [171, 16, 28, 105].
Examples of stochastic dynamics include time-delayed models [130, 107] where the yield
of unstable zones does not happen instantaneously, but with a given probability per unit
time. This time delay is intended to model the coupling between neighboring zones during
the rearrangements. The impact of the particular choice of the stochastic dynamics on
the universal properties, in particular, avalanche scaling is currently a matter of debate
[130, 83] and is beyond the scope of present work. In what follows, in the models we use
we are going to introduce disorder through the landscape which would correspond to a
quenched disorder.

From now on, we will be only focusing on models with a disorder in the landscape.
Across this chapter we therefore review the origins of this static disorder. As the effect
of the particular form of the disorder on the phenomenology is not clarified, in later
chapters we are testing various forms.

For completeness of the model presentation, we discuss several driving protocols,
which are strongly related to the quenched disorder nature of the model. As it was
revealed within separate works [171, 28, 105] and confirmed in subsequent chapters how-
ever, the use of a particular driving protocol is irrelevant to the universal properties.

On the other hand, the use of the particular elastic interaction can have a dramatic
impact on the phenomenology. This issue is going to be addressed in the next chapter,
here however we provide a brief overview on the origin of the elastic kernel used in lattice
models to capture the elastic interactions.

2.2.1 Threshold dynamics

The onset of plastic events can be understood via a deformation in the potential energy
landscape of the amorphous solid [114], as shown schematically on Figure 2.2. Initially,
the system is in a stable equilibrium position, i.e. in an energy minimum. External
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loading stress however remodels the potential energy landscape. If the loading is small,
the solid experiences reversible, elastic deformations. At this stage the depth of the
energy minimum changes, but during the process, the minimum remains a minimum. As
the loading increases however, the minimum eventually transforms into a saddle. At this
point the system is no longer in a stable position, thus irreversible deformations take
place in order to reach a new stable configuration. Plastic deformations thus happen at
a threshold value of the loading.

Figure 2.2 – Schematics of an irreversible deformation in amorphous solids. The increas-
ing loading transforms the energy minimum into a saddle. The system is then destabilized
and explores a new energy minimum. Figure from [114]

All of the mesomodels use some sort of threshold criterion for the onset of a plastic
event. If the stress in a region exceeds a certain threshold value, the zone yields. Here
we show that such a criterion is in fact the direct consequence of the multistability of the
rearranging zones, that is the possibility of multiple stable equilibrium configurations sub-
ject to the same macroscopic conditions. We separate the effects of elasticity and disorder
and we argue here that the threshold dynamics is a direct outcome of the competition
between elasticity and disorder upon coarse-graining in the direction of propagation.

Disorder leads to multistability

In this section we show the natural emergence of a threshold dynamics and the related
stick-slip events from the multistability of the rearranging zones [148, 171]. In order to
simplify the picture, let us consider a simple one dimensional problem as an example,
early developed in the close context of solid friction [175, 34, 18] and rate independent
plasticity [142, 141], namely the motion of a single point in a random potential. The
point is connected to an elastic spring and we control the position of the loading end of
the spring. Let us denote by x the position of the point and by y the position of the
loading end of the spring. Let us further denote by V (x) the random potential, defined
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by its correlation, 〈V ′(x)V ′(x′)〉 ∝ f [(x−x′)/b] where f(u) → 0 if |u| ≫ 1, meaning that
the potential is correlated up to a distance b.

The total potential energy of the point reads:

W (x, y) =
1

2
k(x− y)2 + V (x) (2.1)

where k is the spring constant. For the point, we consider an overdamped equation of
motion:

∂x

∂t
= − ∂

∂x

[
1

2
k(x− y)2

]
− V ′(x) = − ∂

∂x
W (x, y) (2.2)

Figure 2.3 – Movement of a point in a random potential. Dots indicate the stable
positions. (a) If the driving spring is stiff enough compared to the potential landscape’s
wells, the dynamics is smooth. This is weak pinning. (b) If the potential traps are
deep and narrow enough compared to the spring stiffness, the dynamics is governed by
slips between stable positions. As the loading end of the spring y increases, the point
eventually reaches instability and jumps to the next stable configuration. This is strong
pinning.

Such a system exhibits multistability when disorder overcomes elasticity. Figure 2.3
presents the graphical solution of the equilibrium equation ∂tx = 0. Equilibrium positions
for a fixed position yi of the loading end of the spring are given by the intersections
V ′(x) = −k(y − yi). Among these equilibrium positions the ones with V ′′(x) > −k
are stable. It is clear that if the spring is stiff enough, the intersection points follow
continuously the shape of V ′(x) meaning that for each y∗ corresponds one and only one
x∗ at which the point is in stable equilibrium. The dynamics is thus smooth and this is
what we call weak pinning conditions [134] (Figure 2.3 (a)).

On the other hand, if the spring constant k is small with respect to the gradient of
the force landscape, there are multiple stable x∗ positions for a fixed y∗ position of the
loading, so the system exhibits multistability (Figure 2.3 (b)). The actual x∗ positions
that are visited depend on the history of the loading, i.e. the previous positions that have
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been visited. This situation is called strong pinning [134]. In this case, as the loading
increases, the motion of the point is governed by sudden jumps between subsequent stable
positions.

We can thus see that the nature of the dynamics is given by the interplay between
the disordered potential and elasticity. If the potential traps are deep and narrow enough
compared to the spring stiffness, the system exhibits a stick-slip dynamics. Note that the
very same potential could result in a smooth dynamics when loading with a stiffer spring.
In strain controlled experiments the stiffness is set by the material’s elastic properties,
while the random landscape by its inherent disordered structure. The type of dynamics
is thus entirely defined by the material properties.
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Figure 2.4 – The effective potential and elastic force in the spring for the potential
represented on Figure 2.3 (b). The threshold dynamics is a direct consequence of the
multistability of the point and the actual path to be followed is history dependent.
Blue curves indicate the stable equilibrium positions. The red curves correspond to the
positions that are actually visited. The visited positions are history dependent: another
starting point would lead to different red curves.

Multistability leads to slips

Although in the strong pinning case multiple stable positions are available, one can define
an effective potential Weff (y) = W [x∗i , y] associated to each stable position (x∗i , y) for
fixed y. As shown on Figure 2.4, the effective potential is composed of a set of truncated
parabola-like curves. Upon driving, the system jumps from one local minimum to another
one as soon as the elastic force exceeds the threshold value V ′(x) of the local maxima of
the random force. We recover thus here the phenomenology of the instability inducing
local rearrangements at the atomic scale in amorphous materials [114].

We represented on Figure 2.4 such a history-dependent sample trajectory and we see
that a threshold dynamics in this simple case of an isolated point is a direct consequence
of the multistability of the system. In particular, when coarse-graining at scale b, the
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dynamics of jumps between basins of V ′(x) is entirely controlled by a series of threshold
forces (Figure 2.4).

The phenomenology remains unchanged when dealing with higher dimensional man-
ifolds. In this case however, the disorder has to be compared to the internal elasticity
of the manifold (rather than the stiffness of a loading spring)[134]. We see thus in this
simple model system that thresholds can be thought of as the effect of the strong pinning
potential. When coarse graining in the propagation direction at a scale superior to b, the
depinning equation 1.6 can be rewritten as

∂h

∂t
(~r, t) = P

(
f ext(t) +G ∗ h(~r, t)− f c[~r, h(~r, t)]

)
(2.3)

where the P () function accounts for the positive part of its argument, that is P (x) = x if
x > 0 and P (x) = 0 if x ≤ 0. f c is the threshold force resulting from the coarse graining.
In these depinning-like models thus the disorder of the landscape enters into the model
through the threshold forces.

Analogously to depinning, a similar equation of motion can be written for the evolu-
tion of the plastic strain in amorphous systems:

∂ǫp
∂t

(~r, t) = P (Σload +G ∗ ǫp(~r, t)− σc[(~r, ǫp(~r, t))]) (2.4)

Recall that the internal stress induced by all the former plastic slips is given by the
convolution G ∗ ǫp(~r, t) [57]. The heterogeneity of the yield stress at mesoscopic scale is
represented by the quenched random variable σc defined by its average 〈σc〉 and correla-
tion 〈σc(~r, ǫp)σc(~r + δ~r, ǫp + δǫp)〉 ∝ f(δ~r)g(δǫp). Above the mesoscopic scale l at which
the coarse graining is performed, we consider short range correlations, that is f(δ~r) → 0 if
|δ~r| ≫ l. Moreover, thresholds are uncorrelated in between successive events: g(δǫp) → 0
if δǫp ≫ e0 where e0 is the typical plastic strain associated to one elementary event.

Disordered landscape in mesomodels

One way to represent structural disorder in mesomodels is thus through thresholds. As
they reflect the underlying disorder, thresholds should be considered random. As any
random variable, thresholds are sensitive to their distribution and correlation. While
distributed thresholds lead to the statistical hardening of the material [172] by the sys-
tematic elimination of the weak zones, constant thresholds do not allow for such a phe-
nomenology. Transient nevertheless is an important aspect of amorphous plasticity, be-
cause in many cases materials fail before reaching a stationary plastic flow. An important
question to address therefore is: how sensitive mesomodels are to the particular choice
of the threshold distribution?

Another aspect of the disordered potential is its correlation along the direction of
propagation, or, in the plasticity picture, the correlation over accumulating plastic strain.
We have chosen to coarse grain at larger strain amplitudes, i.e. for each of our rearrange-
ments δǫp ≫ e0. Still, the strain amplitude of each rearrangement could be random as
it comes from a random landscape. The slip amplitude would then correspond to the
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Figure 2.5 – Two extreme possibilities of disorder: (a) spatially correlated potential
with distributed height, and (b) spatially uncorrelated potential with constant height.
In chapter 4, these two cases are referred to as (a) Y 1 and (b) Y 0.

distance between the minima of the asperities on Figure 2.4 and is related to the corre-
lation of thresholds upon plastic deformation. A priori, the actual distribution of these
slip amplitudes may be of importance.

Figure 2.5 shows two possible archetypes of the random landscape. In the first one,
the potential barriers fluctuate resulting in distributed σc thresholds, but at the same
time they are highly correlated in space, resulting in a narrow distribution of the slip
amplitudes δǫp. In the second one, the barriers have a narrow distribution, but they do
not show spatial correlation meaning that the slip amplitude distribution is wide. To
investigate the impact of the threshold and slip amplitude distribution on the scaling
properties, in chapter 4 we test these two extreme cases: one with distributed thresholds
and constant slip amplitudes and the other one with constant thresholds and distributed
slip amplitudes, but, theoretically, any combination of the two distributions is possible.
While there is still debate whether the thresholds and the slip increments are independent
or correlated, in the view of a quenched underlying potential the former sets the height
of the barrier and the latter the distance between barriers, which, theoretically are two
independent features of the potential.

2.2.2 Loading

Similarly to experiments, there are various protocols that come into account when driv-
ing the system, but we expect universal properties to be invariant as long as quasistatic
loading conditions are fulfilled. Nevertheless, different protocols are appropriate for sam-
pling different properties. For example, avalanches are better defined in strain controlled
load [28], while finite size effects may be easier to investigate with extremal dynamics
[171]. In the upcoming sections we review some of the possible loading protocols, all
of which are quasistatic loading applied to an athermal system. Finite strain rate [28],
constant stress [106] and kinetic Monte Carlo methods [78] are available, but we are not
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going to use them. Most of the mesomodels consider homogeneous elasticity, loading is
then considered homogeneous throughout the system.

Note that all of the methods presented here are intended to integrate eq. 2.4.

Slip criterion

We have seen that the multistability of the rearranging zones in the disordered landscape
leads to a threshold dynamics. Let us better define the conditions for a slip to take place.
All the strains are measured with respect to the initial configuration. The total strain
then has two parts: an elastic part ǫel(~r) due to the homogeneous loading and all the
previous slips, and a plastic part ǫp(~r) due to the slips:

ǫtot(~r) = ǫel(~r) + ǫp(~r) (2.5)

The (total) stress results from the elastic strains:

σtot(~r) = 2µǫel(~r) = 2µ[ǫtot(~r)− ǫp(~r)] (2.6)

The loading stress is then defined as:

Σload = 〈σtot〉 = 2µ〈ǫtot〉 − 2µ〈ǫp〉 (2.7)

In the simplified picture we are going to use, a site only can bear a pre-defined
threshold stress σc: if the stress on the site exceeds this value, it yields. The yield
criterion reads as:

σtot(~r) > σc(~r) (2.8)

The inhomogeneous part of the stress only comes from the inhomogeneous part of
the residual stresses:

σtot(~r) = 〈σtot〉+ σ0res(~r) (2.9)

with 〈σ0res〉 = 0, so the local yield criterion becomes:

Σload = 〈σtot〉 > σc(~r)− σ0res(~r) (2.10)

The point here is that the local thresholds have to be compared to the total stress
experienced by a zone. In eq. 2.4 this criterion is ensured by the P () function.

Extremal dynamics: weakest pruning

Having a long history in the depinning framework [160, 13, 159, 149, 189], the extremal
loading protocol assumes that only one site yields at a time and the loading stress is
always tuned to the value at which the weakest site just yields, i.e. at any time,

Σload = min
~r

[
σc(~r)− σ0res

]
(2.11)

This would correspond to a driving with a very floppy spring with vanishing velocity
and results in large fluctuations of Σload. The advantage of such a dynamics is that
it produces a series of events from which various other drivings can be reconstructed.
Although time is irrelevant, the order of the events matters. Due to the simplicity in the
implementation, this is the kind of dynamics that we will be using the most.
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Strain driven load: synchronous pruning

A more physical loading assumes that, at any time, all the sites that are unstable yield,
that is if

Σload > σY (~r)− σ0res(~r) (2.12)

then the site at ~r yields. The loading imposes a fixed total strain that is increased in
small steps until one or more events occur. Then the total strain is kept fixed until there
are no more events. Slips take place simultaneously, in each round all the unstable sites
are pruned up until there are no more unstable sites at that fixed strain. Then the strain
is increased again by a small amount, up until the next avalanche is triggered. This
driving scheme is more physical in the sense that it captures the possible simultaneity
of the events. Moreover, we have a control on the driving since the strain is (externally)
imposed, consequently this corresponds to a driving with an infinitely stiff spring, or, in
other words, strain controlled experiment.

Figure 2.6 – Discharge of an avalanche. During the elastic branches, the strain is
increased in small steps until one or more flips are triggered. The strain is kept fixed
until the avalanche ends.

The total strain has an elastic part and a plastic part: ǫtot = ǫel + ǫp, and the
macroscopic stress is given by the average elastic strain: Σ = 2µ〈ǫel〉. Recall that here
we have a strain controlled driving. Avalanches are assumed to relax at a much faster
rate than the typical strain rate, during avalanches therefore we have: ∆〈ǫtot〉 = 0. No
net change in the loading strain implies ∆〈ǫel〉+∆〈ǫp〉 = 0.

For the “discharge” of an avalanche, ∆〈ǫtot〉 = 0 because 〈ǫtot〉 is fixed (imposed), so
the stress drop due to an avalanche is given by:

∆Σ = 2µ∆〈ǫel〉 = −2µ∆〈ǫp〉 (2.13)

Similarly, for an elastic loading branch, there are no plastic events so ∆〈ǫp〉 = 0 implying
∆〈ǫel〉 = ∆〈ǫtot〉 so the stress increase due to loading (straining) is:

∆Σ = 2µ∆〈ǫel〉 = 2µ∆〈ǫtot〉 (2.14)
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In the stationary state, when the plastic flow has set in, on average, the stress increases
and stress drops have to be the same. On average therefore the total strain, plastic
strain and elastic strain are equal. On the loading branches both the total and elastic
strains increase, while during avalanches the elastic strain decreases and the plastic strain
increases while the total strain is constant.

Quasistatic constant load

By decreasing the loading strain step, one may get arbitrarily close to quasistatic loading
conditions. This strategy is however highly ineffective from the numerical point of view.
With a finite strain step, each mesoscopic element has to be checked at each time step
whether the stress on the given element reached its threshold. If it did, the loading strain
is no longer increased until the current avalanche is over. Quasistatic loading would
involve a very small strain step to avoid considerable stress overshoot when triggering an
avalanche. In the meantime, on the rising elastic loading branches nothing happens, it
is therefore a waste of effort to check each block’s stability at each time step.

It is rather straightforward to improve the finite strain step protocol in order to get
a slow, quasistatic but nevertheless computationally efficient driving. Since there are no
flips along the elastic branches, they can be jumped over: instead of increasing the strain
in small, predefined steps, the strain increase along each elastic branch is adjusted so
that at the end of the branch only the weakest site is triggered. Then, just as previously,
the strain is held constant up until the avalanche finishes. Except for the first round
(when only the weakest site yields), sites flip synchronously. This loading scheme is then
a mixture of extremal dynamics and constant strain load: while synchronous flips are
allowed, each avalanche is triggered by the weakest site’s flip. This method then allows
for true quasistatic, strain controlled loading since it resolves the elastic loading branches
with numerical precision, at practically zero computational cost.

The algorithm can be summarized in the following steps:

1. initialize the residual stresses σi and thresholds σci

2. find the weakest site, i.e. the one with the smallest barrier mini[σ
c
i − σi]

3. increase the total strain up until the weakest site yields

4. yield the weakest site and update the induced elastic stresses

5. check if other sites are unstable.

6. if there are no unstable sites, go to step 2.

7. if there are stable sites yield them all and go to step 5

8. repeat steps 2-7



2.2. INGREDIENTS 39

2.2.3 Stress redistribution: shear transformations as inclusions

We have not told much yet about the way stress is redistributed upon rearrangements in
mesomodels. Upon coarse graining, in mesomodels particle rearrangements are handled
as material inclusions embedded into the continuous elastic bulk. These inclusions may
undergo plastic deformation, but are squeezed by the surrounding elastic material, thus
will wind up in a stressed state while inducing stress in the rest of the bulk as well. These
inclusions are known as Eshelby inclusions and the stress field induced by them is known
for various inclusion shapes [57, 20, 40, 71, 85, 178, 193, 194]. Mesomodels use such
inclusions as a continuum counterpart of the shear transformations. When undergoing a
plastic deformation, the stress-free reference frame of the Eshelby inclusions changes: a
new shape corresponds to the zero stress state. The strain between the initial and new
stress-free configurations is called the eigenstrain. Inclusions undergoing an eigenstrain
induce a long-range displacement and stress field in the material, which in the far-field
limit are strikingly similar to those of a shear transformation [48, 10, 174, 183] (Figure
2.7).

In particular, as shown on Figure 2.7, the elastic fields induced by such an inclusion
are highly anisotropic. For instance, for an ellipsoidal inclusion at the origin, undergoing
a pure plastic shear deformation with the principal axis oriented along ±π/4, the shear
stress in the far-field approximation has the form

G(r, θ) ∝ −cos 4θ

r2
(2.15)

Mesomodels then have at their basis a set of interacting Eshelby inclusions via 2.15
(Figure 2.8). Most of these models use a lattice arrangement for the inclusions [30, 29,
31, 128, 127, 126, 171, 190, 16, 28] but there have been several off-lattice attempts put
into practice as well [79, 77, 78].

When working on a lattice, similarly to depinning (as we deal with elastic interactions
after all), the elastic Eshelby interactions can be defined by an elastic kernel Gij =
G(ri, rj) which gives the stress on site j when a plastic event happened on site i. The
Eshelby kernel in two dimensions decays as 1/r2 which makes it a long range interaction.
While working with long range interactions has its pitfalls, similar 1/x2 interactions
occur in crack front propagation or triple contact line propagation (1 + 1 depinning, i.e.
line in a plane) and there are available methods to deal with them. In 2 + 1 depinning
(2d manifold in a 3d space) it was found that the 1/r2 kernel falls in the mean field
universality class. This observation led to the conclusion that, since the Eshelby kernel
is long-ranged, it should exhibit mean field universality [47, 73].

The Eshelby kernel however is peculiar in its form. While it indeed decays as 1/r2,
it is highly anisotropic. In the kernel, there are directions with positive and others
with negative stress contributions. Further plastic events are likely to be triggered along
the positive stress directions, sites along the negative directions are however stabilized.
This anisotropy leads to the preferential localization of the plastic activity along the
positive directions of the kernel. This localization, as we will see, does make a major
difference. In contrast, in standard depinning with isotropic kernels, whenever a plastic
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Figure 2.7 – Coarse graining. Left: a shear transformation captured in an atomistic
simulation (data provided by S. Patinet). The colored region indicates the scale of coarse
graining at which elastic properties are considered homogeneous. Displacements are
magnified. As the sharp delimitation of a shear transformation is ambiguous, the coarse
grained region may contain one or more plastic events. Note the dipolar symmetry of the
displacement field. Right: an inclusion undergoing plastic deformation in a continuous,
elastic bulk.

event takes place, all the sites in the system receive a positive excess stress, thus get
closer to instability.

We argue thus that the anisotropic nature of the kernel does make it very different
from the isotropic long range or the mean field depinning case. In the next chapter we
spell out in more details the construction of this kernel, as well as its impact to the
universal properties of plasticity.

2.3 Our models

With the concepts of the mesomodels here we summarize the model we are going to use
in the upcoming chapters.

The models we use are scalar models, i.e. the tensorial nature of stresses and strains is
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Figure 2.8 – Interacting ellipsoidal Eshelby inclusions. On the figure, the main direction
of the eigenstrain is the same for each inclusion. Colors indicate the shear stress. Note
the quadrupolar symmetry in this particular arrangement: the induced stress is positive
along the 0 and π/2 directions, but is negative along the ±π/4 directions. Moreover,
the stress induced by an ellipsoidal inclusion undergoing a homogeneous deformation is
homogeneous within the inclusion.

simplified to a scalar description. No densification is considered, the inclusions therefore
experience a pure shear eigenstrain. Only the deviatoric part of both the stresses and
the strains is considered. The eigenstrain of inclusions is assumed to follow the external
symmetry of loading, that is, the principal direction of the inclusion eigenstrain is fixed
and is the same as the principal direction of the external loading. Unless stated otherwise,
plane strain conditions are considered. The external loading stress is homogeneous.

Disorder enters into the model through the landscape, as such, it is related to thresh-
olds. If the stress on a site is larger than σc, it yields some amount δǫp. Both σc and δǫp
are drawn from a uniform distribution or one of them is fixed. Slips and the corresponding
stress redistribution are considered instantaneous.

Inclusions live on the sites of a square lattice with periodic boundary conditions and
the system is driven under quasistatic loading conditions, either by extremal dynamics
or synchronous pruning. To comply with the lattice symmetry, two possible loading
geometries are considered, both of them pure shear: the principal directions of the loading
stress are either oriented along the 0 and π/2 directions of the lattice or along the ±π/4
directions.

2.4 Conclusions

Throughout this chapter we have seen that an increasing number of mesoscopic ap-
proaches have been implemented. These mesomodels intend to model the universal be-
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havior of amorphous systems. While some of the implementation details are irrelevant
to the phenomenology (loading type, lattice type) other details do matter.

In particular, the key concept behind any of these models is the elastic interaction
between the elastoplastic blocks and disorder resulting from the amorphous structure.
In the subsequent two chapters we focus on the effect of these two ingredients. The
topic of the next chapter is the impact of the elastic kernel on the universal properties
of amorphous systems, focusing on fluctuations. We have shown that disorder is related
to the distribution and spatial correlations of the underlying potential landscape. The
effect of disorder on scaling properties will be investigated in chapter 4.
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In the previous chapter we discussed the two key concepts associated to the mesoscale
description of amorphous plasticity: elastic interactions and disorder. The aim of this
chapter is to study the first one: we show that the usage of a particular kernel has a
dramatic impact on the universal properties. Consequently, the yielding transition does
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not fall into the mean field universality class. The reason for this difference lies in the in-
ner properties of the elastic kernel that allows for localization. These properties, namely
the possibility of soft deformation modes are particularly sensitive to the construction
of the kernel. In this chapter thus we first review the various strategies used to build
such a kernel and then test the impact of the actual kernels to the fluctuations. Fluctu-
ations are traditionally downplayed in engineering studies and only effective properties
as considered. Recall however that the yielding transition shows critical properties, in-
cluding correlated, large-scale fluctuations. The importance of these fluctuations cannot
be disregarded as these are the ones leading to material failure.

3.1 Building elastic kernels

3.1.1 The Eshelby inclusion

To accomplish coarse graining, shear transformations are considered as material inclu-
sions undergoing an irreversible (plastic) deformation. In mesomodels, the shear transfor-
mations are substituted by material inclusions, thus, although the material is regarded
as continuous, the interaction between the shear transformations is preserved. These
inclusions are known as Eshelby inclusions [57, 20, 40, 71, 85, 178, 193, 194].

Most of the elastoplastic models developed so far use an equivalent coarse graining. In
the coarse grained picture thus we end up with a number of Eshelby inclusions embedded
into an elastic matrix that interact through the surrounding material (Figure 2.8). This
coarse graining allows for a continuum description of elasticity, but it comes at the price
that local anisotropies and inhomogeneities in the elastic constants [183] are smeared
out.

Figure 3.1 – A circular inclusion undergoing a pure shear plastic deformation. The
principal axis of the plastic deformation are oriented along 0 and π/2. The color scale
indicates the total strain on the right plot.

Details regarding the computation of the elastic fields induced by an Eshelby inclusion
are provided in Appendix A. The most important result for us is that of the far-field shear
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stress induced by the plastic deformation of a circular inclusion in two dimensions that
is given by [169]:

σxy = − µǫ0a
2

(1− ν)

cos 4θ

r2
(3.1)

where a is the radius of the inclusion, ǫ0 is its plastic strain, µ is the shear modulus, ν is
the Poisson ratio and (r, θ) are the polar coordinates. The plastic strain is considered to
have only a deviatoric component and its principal directions along 0 and π/2, as shown
on Figure 3.1. Note that the stress has positive and negative directions, thus it can either
stabilize or trigger further plastic events. The long range character of the stress gives rise
to a series of issues when it comes to discretization in periodic geometries. In molecular
dynamics, these issues are addressed by the use of Lees Edwards boundary conditions
[99] and Ewald summation [181], similar techniques in the continuum approach however
are less developed.

3.1.2 Discretization of the Eshelby fields

We have discussed that in the coarse grained model, blocks of the material are substituted
with Eshelby inclusions containing several shear transformations. The details regarding
the calculation of the Eshelby elastic fields are given in the Appendix A. In this rather
technical section let us discuss two delicate, but important issues, as follows:

1. How to impose periodic boundary conditions on a finite system?

2. How to discretize the solution so that it can be used as a translation invariant
elastic propagator?

In order to perform numerical simulations, the elastic fields have to be discretized
somehow. Moreover, in order to avoid unwanted boundary effects, periodic boundary
conditions have to be imposed. Since we intend to work on a lattice, our model is
particularly sensitive to discretization as various schemes may increase unphysical lattice
effects. The main question of this section is thus: how to obtain a stable and physical
elastic propagator on a finite, but periodic square lattice? The answer is not obvious given
that what we have so far is the continuous solution of the Eshelby problem in an infinite
system. Note that the (discretized) elastic propagator is the operator that translates the
(discretized) plastic strain field into the internal stress field:

|σel〉 = Ĝ |ǫp〉 (3.2)

In a system with periodic boundary conditions, in the coordinate representation the stress
and the plastic strain are related by a simple convolution: σel = G ∗ ǫp.

There are various approaches to construct a kernel that satisfies the above conditions
(i.e. periodic, discrete and stable).
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Image sum

The most straightforward method to construct a periodic and continuous kernel is to
sum up the contribution to the stress field of an infinite number of periodic images [169].
Then the discretization can be performed by simply evaluating the values at regularly
spaced lattice points.

Such a sum however cannot be computed analytically, therefore one may try to eval-
uate it numerically by imposing a cutoff beyond which the contributions are neglected.
It was shown [169] that a simple truncation of the sum leads to an unstable kernel.

At first it may seem that the problem with this approach is that the stress field decays
as ∝ 1/r2 in two dimensions. Consequently, approximating the absolute value of the sum
with the integral

R∫

r0

1

r2
2πrdr ∝ log

(
R

r0

)
(3.3)

does not converge as R→ ∞ due to the long range nature of the stress.
The reason why the sum itself nevertheless converges is that there are both positive

and negative terms that in turn cancel out, and this is what we call conditional con-
vergence. Conditionally convergent sums however cannot be arbitrary truncated since
the final result heavily depends on the actual terms considered up until the truncation.
One of the mathematically questionable methods to evaluate the sum was to compute a
closed form expression for the sum along the x direction and then only truncate the one
fold sum along the y direction [28]. Whereas this seems to give a stable periodic kernel
with the proper symmetry and decay, it raises questions about the short-range behavior
of the kernel.

An elegant fix to a similar issue in the case of the stress field generated by dislocations
in crystals is given in [33, 95]. The dislocation stress field however decreases as ∝ 1/r,
thus have linear spurious field [33, 95]. For our ∝ 1/r2 decrease the sum of the first
derivatives is already convergent, hence the spurious field is a simple constant which, as
we shall see later on is not expected to introduce major differences in the stability. We
could therefore conclude that it is not the truncation of the infinite sum that causes the
instability of the kernel, but the discretization scheme.

Consequently, we need a method that takes care about the periodic images and the
discretization at the same time.

3.1.3 Fourier discretization

The method comes from Picard et al. [138] and consists of building a periodic elastic
propagator which is the stress response due to a localized shear transformation.

As discussed in the Appendix B, we ultimately want to solve an elastic equation of
the form

L̂σ(~r) = ǫp(~r) (3.4)
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where L̂ is a local, linear differential operator, thus it is possible to derive a Green’s
function for it such that

L̂G(~r) = δ(~r) (3.5)

and then get the solution for any ǫp(~r):

σ(~r) =

∫
G(~r − ~r′)ǫp(~r′)d~r′ (3.6)

This is true for any linear L̂. Since we consider homogeneous elasticity and periodic
boundary conditions, in this particular case of an Eshelby inclusion, L̂ happens to be
translation invariant, which makes it solvable by Fourier methods. We show in Appendix
B that its eigenvectors are the Fourier modes, thus it becomes diagonal in that eigenbasis.
Whether these Fourier modes are the Fourier transform or the Fourier series, depends
on the boundary conditions. With free boundaries, i.e. in the case of a system with
infinite size, one has access to the Fourier transform of G (denoted by G̃∞(~k)), while in
case of a finite system with size L and periodic boundary conditions, one has access to
the Fourier series coefficients of G (denoted by G̃L

pq). This is because if L̂ is defined with

free boundaries, its eigenmodes are the continuous Fourier modes, while if L̂ is defined
with periodic boundaries, its eigenmodes are the discrete Fourier series. The important
remark here is that these two actually have the very same functional form in terms of ~k
meaning that:

G̃∞(kx, ky) = G̃L
pq ≡ G̃(kx, ky) (3.7)

with kx = 2πp/L and ky = 2πq/L. We can then reconstruct both the infinite and the
periodic solutions:

G∞(x, y) =

∞∫

−∞

G̃(kx, ky) exp[i(kxx+ kyy)]dkxdky (3.8)

GL(x, y) =

∞∑

p,q=−∞
G̃(2πp/L, 2πq/L) exp

[
2πi

L
(xp+ yq)

]
(3.9)

When working on a lattice, i.e. we are interested in the values of GL(x, y) on the discrete
set of lattice positions {xij , yij}, the Fourier series can be approximated by the Discrete
Fourier Transform which we perform numerically. Note however, that this induces a
truncation at large wave number, i.e. short distances.

Note that GL(x, y) gives the stress generated by an infinitely small inclusion, conse-
quently it contains only the far-field component of an inclusion of finite size. For a finite
size inclusion with constant plastic strain e0 within a region Ω, and 0 outside of Ω, the
stress is given by:

σL(~r) = e0

∫

Ω

GL(~r − ~r′)d~r′ (3.10)
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but with this method we will only be dealing with localized events, thus σL = GL. The
computation of G̃ is spelled out in the Appendix A.

In order to give an idea about the quality of the Fourier method, we recall the one
dimensional case of a 1/x2 decaying kernel. For such a kernel, we know the exact result
of the infinite image summation [173]:

∞∑

n=−∞

1

(x− nL)2
=

π2/L2

sin2(πx/L)
(3.11)

We have then for the periodic kernel: GL
exact(x) ∝ 1/ sin2(πx/L). Similarly, we have

for the Fourier transform of 1/x2: G̃L
FT (kx) ∝ |kx|. Figure 3.2 shows a comparison

between the two kernels both in the real and the Fourier space. The Fourier discretized
kernel shows the proper 1/x2 decay at short distances, as well as the roundoff at the
box size. The truncation of the high frequency terms in the inverse transform (spectral
leakage) however does not allow to resolve the break in the function at the box size in
the Fourier space. In the real space, the Fourier kernel thus encounters some unphysical,
high frequency oscillations. These oscillations however do not affect the 1/x2 decay of
the kernel.
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Figure 3.2 – Comparison of the one dimensional exact image sum and Fourier kernels
in the real space (left) and the Fourier space (right).

In summary, the main recipe given by this method is: compute the infinite prop-
agator, discretize it in the Fourier space and compute the finite propagator by an in-
verse discrete Fourier transform. We thus accomplished both discretization and periodic
boundary conditions in one step. While this method works in the discretization of the
far field component of the Eshelby stress field, it fails to produce a reasonably discretized
displacement field because of the sign jump of the components of the displacement field at
the edges of the system. In what follows, the kernel discretized with the Fourier method
is referred to as the “Fourier quadrupolar” kernel or simply as the “quadrupolar” kernel.
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3.1.4 A finite element method

The kernel construction can be refined using finite element methods. This way we gain
an easy access to the displacement field, moreover we fully satisfy force balance and
compatibility due to the realistic near field. Probably the most intuitive method to
discretize the Eshelby inclusions on a square lattice is to discretize the material first
and solve the elasticity equations in this discretized picture right away with periodic
boundary conditions. A similar approach was used by Nicolas [125] and Homer et al.[77].
In the latter, the two dimensional material was discretized on a triangular mesh with a
mesh size smaller than the typical size of an Eshelby inclusion, thus the elastic fields of
inclusions of any shape and eigenstrain could be computed. The drawback of such an
approach is that the elastic equations have to be solved numerically on the mesh each time
a plastic deformation happens. Here we introduce a simpler method that involves the

Figure 3.3 – Finite element discretization scheme. Displacements are resolved on the
rectangular grid (green nodes), an auxiliary (red) node however has to be added for the
stresses in order to avoid floppy checkerboard-like deformation patterns. Stresses are
then resolved on each sub-triangle and the average is taken for the plaquette.

computation of the elastic kernel once and for all. In this view, the plane is tiled up with
square tiles (“plaquettes”) and each tile represents an Eshelby inclusion. Displacements
are defined on the corners of the plaquettes (“nodes”), whereas stresses and strains are
defined on the plaquettes (Figure 3.3). In order to avoid trivial floppy modes (also termed
as “checkerboard instability” in [125]), each plaquette is further divided into 4 triangles,
as shown on the figure. These modes result from the linearization of elasticity. Linear
elasticity does not penalize deformation modes in which two opposite nodes of the tiles
have equal displacements, and the other two opposite nodes have the same magnitude,
but reverse displacements. Such modes in linear elasticity can develop at no energy cost
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and result in a “checkerboard”-like pattern in the displacement field components. The
division of tiles into subtriangles is intended to solve this anomaly.

(a) “m2”
(b) “m3”

Figure 3.4 – Finite element kernels corresponding to two different loading geometries.
“Mode 2” corresponds to a loading direction for which the stress is positive along the ±π/4
directions, while “Mode 3” has positive stresses along 0 and π/2. Both kernels describe
plane shear. Colors indicate the stresses on the plaquettes and nodes are represented in
the deformed reference frame. Arrows indicate the direction of the external load. The
two finite element kernels will be referred to as “m2” and “m3”.

The displacement of the middle node H is computed as the average displacement of
the 4 nodes. Each triangle has thus a different strain that is defined by the displacements
on the corners of the triangles. The stress and strain on a plaquette is then defined as
the average strain over the 4 triangles. Such a subdivision allows for the elimination of
the unphysical floppy modes. The elasticity equations can be written for the discretized
displacement field and be solved analytically, imposing periodic boundary conditions.
Detailed calculations are presented in the Appendix D where exact expressions of dis-
placements, stresses and strains are obtained in the discrete Fourier space.

An important result is the average stress drop due to a plastic deformation which,
independently of the loading direction is ∆Σ = σ̃00 = −2µ〈ǫp〉. While in the Fourier
discretization method the σ̃00 term is imposed to satisfy boundary conditions, in the
finite element method this comes naturally.

The expressions of the stresses depend non trivially on the Poisson ratio which is
not surprising: since the tiles touch each other, near field effects become important, in
contrast to a far-field approximation. Note that an unexplored question so far is whether
considering realistic near field interactions in contrast to the far-field approximation
changes the scaling properties or other phenomenology of amorphous plasticity. Figure
3.4 shows two kernels obtained for different loading geometries. Loading geometries are
often referred to as “modes”, therefore, for the two loading geometries we denote the
kernels by “mode 2” and “mode 3”. In order to avoid confusion with the soft deformation
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modes discussed later on, we abbreviate the two finite element kernels as “m2” and “m3”.
While this method produces stable kernels for both loading directions, we will see

how this near field amplifies lattice effects: due to the geometrical frustration, one of
the loading directions will unrealistically accumulate stress upon deformation. The main
advantage of the finite element method is that it gives direct access to the displacement
fields in the periodic geometry.

3.2 Are fluctuations kernel-dependent?

When talking about universality, one would expect properties called “universal” to be in-
dependent of the details of the particular model used. In this spirit, instead of the Eshelby
kernel, mean field approaches were used to model amorphous systems [73, 47]. Mean field
approaches very well reproduce properties as avalanche-like behavior or hardening, but
it only recently started to become clear that a mean field approach is unable to capture
all the generic properties, in particular those related to localization [107, 106, 172]. Here
we show that the nature of the kernel and even the details of its building has important
effects on the scaling of the fluctuations.

To that end, we focus on the fluctuation of the strain field and compare these fluctu-
ations between the mean field and quadrupolar kernels.

3.2.1 Mean field depinning vs plasticity

10-2 10-1 100 101 102 103〈
ǫp
〉10-3

10-2

10-1

100

101

102

103

δǫ
2 p

or
δσ

2

δǫ 2p quadrupolar

δǫ 2p MF

δσ2 quadrupolar

δσ2 MF〈
ǫp
〉

Figure 3.5 – Strain and stress variances for the mean field and the Fourier quadrupolar
kernel. Straight dashed black line indicates diffusion. Stress fluctuations saturate for
both the mean field and the Fourier quadrupolar kernels, as well as strain fluctuations
for the mean field kernel. On the other hand, strain fluctuations converge towards a
diffusive regime for the quadrupolar kernel.

Let us first follow the variance of the plastic strain W = (δǫp)
2 which would corre-

spond to the interface width in the propagating manifold picture. In the framework of



52 CHAPTER 3. BUILDING ELASTIC KERNELS: ALL ABOUT ESHELBY

10-2 10-1 100 101 102 103〈
ǫp
〉0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(δ
ǫ p
)2
/
〈 ǫ p

〉

N=32

N=64

N=128

Figure 3.6 – Strain diffusivity for various system sizes for the Fourier quadrupolar kernel.
A number of 1000 realizations was used for N = 32 and N = 64 and 128 realizations for
N = 128. Fluctuations saturate for the mean field kernel but diffuse for the quadrupolar
kernel showing a strong system size dependence: the larger the system, the longer the
anomalous subdiffusive behavior.

extremal dynamics used here, the mean plastic strain 〈ǫp〉 plays the role of a fictive time
associated to the total number of iterations (plastic events), therefore it makes sense to
put our results in the light of the classical Family-Vicsek scaling for interface growth
[124, 173, 123]. The Family-Vicsek model predicts a power law growth of the interface
width W ∝ tα up to a time scale τ ∝ Lz, at which the correlation length ξ has reached the
system size: ξ(τ) ≈ L. Beyond this timescale, a saturation of the interface fluctuations
is observed.

It is not surprising thus that the same Family-Vicsek scaling behavior is observed for
the plastic strain fluctuations in the case of the mean field kernel (Figure 3.5).

On the other hand, for the Fourier quadrupolar kernel, although the first power
law growth regime is recovered until ξ ≈ L, the interface width shows no saturation
afterwards but a diffusive trend emerges [172](Figure 3.5). Note that the term “diffusion”
here simply refers to the (δǫp)

2 ∝ 〈ǫp〉 behavior and not to the actual diffusive behavior
of the mean square displacements that will be discussed in a subsequent chapter. Recall
that diffusion has been observed in molecular dynamics simulations as well [115, 101],
it can be therefore considered as a generic property of amorphous media. On the other
hand, such phenomenology is absent in depinning.

While for the quadrupolar kernel the plastic strain fluctuations do not saturate, the
stress fluctuations do for both the mean field and the quadrupolar case as they should,
otherwise the system would become unstable (Figure 3.5). Recalling that the elastic
stress is given by the convolution σel = G ∗ ǫp, the fact that (δσel)

2 reaches a plateau
while (δǫp)

2 does not is a first sign of the presence of soft deformation modes in the
kernel, i.e. modes that result in no additional stress.

The diffusivity Dp = (δǫp)
2/〈ǫp〉 is expected to be constant for standard diffusion.
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On Figure 3.6 we see that the convergence of Dp to a constant value shows a long sub-
diffusive transient that increases with the system size. Moreover, Dp shows a strong
system size dependence that will be investigated more thoroughly later on.

3.2.2 Strain and displacement fluctuations in the finite element kernels

We saw the emergence of a diffusive regime for the quadrupolar Fourier kernel and we
would expect the same diffusive long-time behavior for the finite element kernels. After
all, they originate from the similar Eshelby inclusion problem. For the finite element ker-
nels we have access to the displacement fields, therefore we can measure the displacement
fluctuations as well. As we can see on Figure 3.7, there is no much difference between
the fluctuations at low strains: both strain and displacement start out diffusively, for
both of the kernels. On the other hand, the long time behavior is very different: while
after an intermediate superdiffusive regime fluctuations for the m3 kernel converge to a
second diffusive behavior, fluctuations in the m2 kernel saturate. Despite the fact that
both kernels were meant to solve the same problem of the Eshelby inclusion (but in dif-
ferent geometries) and both of them have very similar symmetries, one of them reflects
the same diffusive behavior as the Fourier quadrupolar kernel, while fluctuations in the
other one saturate just as a mean field kernel would.

Note that although strain fluctuations in the m2 kernel indeed saturate, they do so
at a much longer time than the mean field kernel. This observation reflects the extreme
sensitivity on the particular discretization, and, at the same time raises the question
whether the mean field kernel is sufficient to capture the physics behind amorphous
plasticity? If the m2 kernel that exhibits a very similar quadrupolar symmetry to the
Fourier kernel or the m3 kernel shows saturation at long times just as the mean field
kernel, why would not a mean field approach work? To answer these questions, in the next
section we investigate the effect of mean field on the strain fluctuations and correlations
by fine-tuning between a mean field kernel and the Fourier quadrupolar kernel.
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Figure 3.7 – Strain variance (left) and mean square displacement (right) for the finite
element kernels. In the long term, both strain and displacement fluctuations saturate for
the m2 kernel, but they converge towards a diffusive trend for m3.
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3.2.3 Fluctuations of the strain field

Mean field models can reflect some of the behaviors of amorphous systems, for exam-
ple, avalanche scaling or hardening. They are, however, unable to reproduce features
associated to the localization. Here we explore to what extent the particular form of
the Eshelby kernel affects localization and the resulting strain fluctuations by fine-tuning
between a mean field and the quadrupolar Eshelby kernel. We show that for the Fourier
quadrupolar kernel strain tends to accumulate along shear bands and activity is trapped
in the bands for long times, but this long time localization is destroyed by the tiniest
mean field contribution.

The elastic stress field induced by an Eshelby inclusion is very particular in its form.
Since it decays as 1/r2 in two dimensions and 1/r3 in three dimensions and thus can
be considered as long-range, it is often approximated by a simple mean-field interaction
[47] disregarding its anisotropic nature. The presence of positive and negative directions
in the kernel leads to a considerably different localization mechanism compared to the
mean field approximation: new events favor the directions where the kernel is positive,
while sites on the negative directions are restabilized.

It is therefore of interest to compare the effects of the mean field approximation on
some specific properties of amorphous plasticity, in particular, strain diffusion and the
localization of events. In the following, we introduce a weighted kernel which is a hybrid
between the quadrupolar Fourier kernel GQ and the mean field kernel GMF defined as

Ga = (1− a)GQ + aGMF (3.12)

Here a gives the weight of the mean field kernel in the weighted kernel Ga. For small
a values the quadrupolar symmetry is mainly preserved in the sense that Ga remains
negative in the 0 and π/2 directions. As a→ 1, the weighted kernel Ga tends towards a
pure mean field kernel. Recall from the previous section that for a = 0 we had diffusive
strain fluctuations and for a = 1 strain fluctuations saturated.

Shear-banding and mechanical history

We have seen that the structure of the elastic interaction strongly affects the evolution
of the spatial fluctuations of the plastic strain field and, in particular, the existence of
a diffusive regime. In order to get a better grasp on the effects of the mean field and
the quadrupolar interactions, we now discuss results obtained for the weighted kernel
Ga = (1 − a)GQ + aGMF , including other values than a = 0 (Fourier quadrupolar) or
a = 1 (mean field).

In Figure 3.8 we show the evolution of the strain fluctuations (or, interface width in
the depinning vocabulary) for different values of the mean field weight a. It is clear that
even the smallest mean field contribution breaks down diffusion at long enough times.
A transient diffusive regime appears when a → 0+ and the level of the final plateau
increases accordingly. The smaller a, the longer it takes to break down diffusion, but
when the interface gets too distorted, the mean field restoring force will eventually stop
the divergence of the strain fluctuations.
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Figure 3.8 – Strain variance for various weights of the weighted kernel. For negative
weights the kernel features positive eigenmodes and the dynamics becomes unstable:
activity is restricted along a narrow band and strain fluctuations become ballistic. At
the same time, even the smallest positive weight leads to the saturation of plastic strain
fluctuations. The only situation when a diffusive trend is recovered, is for the pure
quadrupolar kernel, i.e. a = 0.

The effect of a negative mean field contribution is exactly the opposite: even for
the smallest a → 0−, after the transient, the system results in a fast diverging strain
and stress variance. The divergence of the stress (as shown on Figure 3.9) indicates
an unstable system. The diffusive regime thus seems to be a specific feature of the
quadrupolar kernel which lives at the edge of stability and any mean field contribution
tips the system either towards saturation or ballistic evolution (δǫp)

2 ∝ 〈ǫp〉2 depending
on the sign of a.

The dramatic effect of the mean field contribution can be observed in the spatial
distribution of the strain field as well (Figure 3.10). For the pure plastic case (a = 0) one
observes patterns localized along the ±45◦ directions which are the positive directions of
the quadrupolar kernel. The patterns are similar for a positive mean field contribution
(a = 0.01) in that they follow the same orientations, they are however strongly atten-
uated compared to the pure quadrupolar case; this observation is consistent with the
previously introduced results on the saturation of the interface width. A negative mean
field contribution (a = −0.01) however introduces an extremely strong and persistent
localization behavior: as we see, the plastic activity is restrained along a single thin
band.

This localization explains the ballistic behavior of the strain variance observed for
a > 0 as follows. If we assume that the plastic activity is restrained along a single band,
and the mean plastic strain experienced by each site on the band is ǫ0, then the mean
squared strain is given by

〈ǫ2p〉 =
N × ǫ20 + 0× (N2 −N)

N2
=

1

N
ǫ20 (3.13)
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Figure 3.9 – Stress variance for various weights of the mean field kernel. Stress fluctua-
tions saturate even for mean field, however they quickly diverge for any a > 0, showing
instability.

On the other hand, the mean plastic strain is computed as

〈ǫp〉 =
N × ǫ0 + (N2 −N)× 0

N2
=

1

N
ǫ0 (3.14)

The plastic strain variance can thus be computed as

(δǫp)
2 = 〈ǫ2p〉 − 〈ǫp〉2 = ǫ20

(
1− 1

N2

)
≈ ǫ20 = N2〈ǫp〉2 (3.15)

thus we can conclude that the ballistic scaling is a direct consequence of localization.

0 10 20 30 40 50 60

0

10

20

30

40

50

60
0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 10 20 30 40 50 60

0

10

20

30

40

50

60
0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 10 20 30 40 50 60

0

10

20

30

40

50

60
0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

Figure 3.10 – Strain maps for various weights of the mean field kernel at 〈ǫp〉 = 4. From
left to right: a = 0.0, a = 0.01, a = −0.01. A positive mean field contribution tends to
smear out shear bands, while even the slightest negative contribution leads to persistent
localization.

Localization of the strain along bands is called shear banding and it can be regarded
as an ergodicity breakdown [179]: plastic deformation only visits a small part of the
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Figure 3.11 – Two point correlations of the plastic strain for various weights of the
mean field kernel. The decorrelation time increases with the waiting time for a = 0, but
eventually converges for any a > 0, the larger the weight, the faster.

available phase space. The phase space here is N2 dimensional and each dimension
represents the plastic strain on a given site. If the strain is localized along one band, only
an N -dimensional subspace embedded into the N2 dimensional phase space is visited.

For the bare plastic kernel (a = 0) the plastic activity is spread along the whole
system, however it is preferentially oriented along the positive directions of the kernel
suggesting that activity is trapped within these bands for a considerable amount of time.
In fact, one can observe a striking mechanical history effect: the larger the waiting time,
the more time the system spends trapped within the restricted subspace defined by a
number of shear bands. In Figure 3.11 we plotted the time autocorrelation function of
the plastic strain field for increasing waiting times ǫw, in the stationary regime. In steady
state, one would expect statistical properties to be time independent. In particular, the
time necessary to “forget” a given state should be independent of the waiting time in
the steady state. In depinning for example, one observes an increase of the decorrelation
time, but only in the roughness growing Family-Vicsek scaling regime [80]. As the inter-
face width saturates and the system reaches the steady state, the decorrelation time is
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independent of the system’s history.
For the quadrupolar kernel however (a = 0), we observe a striking mechanical history

effect: the decorrelation time increases with the waiting time, although the system is in
the steady state. The effect disappears as a positive mean field contribution is added
to the kernel (a > 0). We have seen that a small mean field contribution leads to the
eventual saturation of the interface width. For the quadrupolar kernel, saturation is
postponed at infinity, allowing to the above discussed mechanical history effect.

3.3 Soft modes control fluctuations

We have seen that the Fourier quadrupolar kernel leads to a qualitatively different be-
havior than the mean field kernel. Furthermore, the m2 finite element kernel shows mean
field-like saturation of the fluctuations at long times while the m3 kernel reproduces dif-
fusion, in agreement with the Fourier quadrupolar kernel. Moreover, we have seen that
the slightest mean field contribution into the kernel leads to the saturation of strain
fluctuations. We could therefore conclude, that the inner structure of the kernel has a
considerable impact on the properties the system exhibits. Let us therefore take a closer
look to the details of the kernel.

In the following, we conduct an analysis based on the eigenvalues and eigenvectors
of the elastic kernel showing how these properties affect the localization, in particular,
the formation of shear bands. Moreover, we show that shear bands are soft modes of the
kernel.

3.3.1 Eigenvalues and eigenmodes of the elastic kernel

Significance of the eigenvalues

The elastic energy of the system corresponding to a particular distribution of plastic
strain |ǫp〉 can be written as

E =
1

4µ
〈σ|σ〉 (3.16)

where |σ〉 = Ĝ |ǫp〉 is the elastic stress induced by the plastic strain field. The strain field
can be written in the eigenbasis |ei〉 of Ĝ as

|ǫp〉 =
∑

i

〈ei|ǫp〉 |ei〉 (3.17)

Denoting by λi the eigenvalue of Ĝ associated to the eigenvector |ei〉 we obtain for the
energy:

E =
1

4µ

∑

i

|〈ei|ǫp〉|2 λ2i (3.18)

meaning that the energy of the ith eigenstate is given by the square of its eigenvalue:
Ei = λ2i /4µ. We see thus that the eigenvalues are related to the elastic energy: for the
same configuration, a larger eigenvalue means larger energy.
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Since Ĝ is translation invariant, its eigenvalues are given by its Fourier representation
(see Appendix B):

λpq = G̃pq (3.19)

and its eigenmodes corresponding to the eigenvalue λpq are plane waves:

epq = exp

[
−2πi

mp + nq

N

]
(3.20)

meaning that
G ∗ epq = λpqepq (3.21)

This observation immediately enlightens the usefulness of the Fourier discretization
scheme since this method gives access to the eigenvalues of the Green’s function right
away.

Soft modes

In the previous section we have shown that the eigenvalues of the elastic kernel are given
by its Fourier representation. For the Fourier quadrupolar kernel, we have access to these
eigenvalues right from construction [169]:

λpq = G̃pq
Q = −A(cos 4θpq + 1) = −2A

[
p2 − q2

p2 + q2

]2
(3.22)

where θpq is the polar angle of the (p, q) wavevector in the Fourier space. A is a constant
chosen such that the Green’s function is normalized, that is G00 = −1.

Similarly, for the mean field propagator

Gmn
MF = −δmδn + (1− δmδn)

1

N2 − 1
(3.23)

we have

λpq = G̃pq
MF = − N2

N2 − 1
(1− δpδq) (3.24)

In both cases, we recognize the translation mode e00 = 1 of zero eigenvalue λ00 = 0.
In the usual depinning case with mean field, laplacian or isotropic kernels this is the only
mode characterized by a zero eigenvalue and it reflects the fact that the energy of the
interface is a result of the distortion (i.e. variation) of the interface; a constant shift of
the interface along the propagation direction should not result in any excess energy.

For the quadrupolar kernel however, we encounter a set of non-trivial eigenmodes
that are also characterized by zero eigenvalues. Namely, all the eigenmodes of the form
ep,p(m,n) = exp[−2πip(m+ n)/N ] and ep,−p(m,n) = exp[−2πip(m− n)/N ] for p ∈
[−N/2, N/2) are associated to the null eigenvalue. Out of them 2N − 2 are independent
(ep,p = ep,−p for p = 0 and ep,p = −ep,−p for p = −N/2), the eigenvectors of λ = 0
thus span a 2N − 2 dimensional space. We call the modes belonging to the eigenspace
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Figure 3.12 – Eigenspectra of kernels with various weights. A nonzero mean field weight
opens a gap in the eigenspectrum. a > 0 leads to strictly negative eigenvalues, whereas
a < 0 introduces positive eigenvalues that lead to an unstable propagator. The figure on
the right is a zoom-in of the left plot around λ = 0

spanned by λ = 0 soft modes as the development of these modes happens at no energy
cost.

Let us rewrite the plastic strain field in the Fourier basis:

|ǫp〉 =
∑

pq

cpq |epq〉 (3.25)

where

cpq = 〈epq|ǫp〉 =
1

N2
ǫ̃p pq (3.26)

Recall that the evolution equation of the plastic strain field can be written as

∂ǫp(~r, t)

∂t
= P (Σload +G ∗ ǫp(~r, t)− σc[(~r, ǫp(~r, t))]) (3.27)

where the function P (·) accounts for the positive part of its argument. Ignoring for
the moment the effect of the function P (·), we can project the above equation onto the
Fourier basis. For the RHS we have:

Σload δpδq + G̃pq ǫ̃p pq − σ̃c[(~r, ǫp(~r, t))])pq (3.28)

Since the loading stress is homogeneous in the direct space, it becomes local in the Fourier
space. The second term translates the direct space convolution into multiplication in the
Fourier space. Using that G̃pq = λpq and ǫ̃p pq = cpq, the evolution equation for the
different modes becomes:

∂cpq
∂t

= Σload δpδq + λpqcpq − σ̃c[(~r, ǫp(~r, t))])pq (3.29)

This rewriting thus enables us a better understanding of the diffusive-like behavior ob-
served at long times for the plastic strain. In real space, the spatial coupling is induced
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by the non-local elastic interaction kernel, G, while the noise term is local. In the space
of eigenmodes, the opposite character is observed, namely the restoring force is local, but
noise is not. Since all eigenvalues are null or negative (otherwise the dynamics would be
unstable) a competition emerges between the relaxation of the eigenmodes induced by
the elastic contribution and a random forcing due to the quenched noise contribution.
In particular, at long times, the contribution of the soft modes becomes dominant since
they are not submitted to relaxation. The diffusive-like behavior thus directly emerges
from a competition between the different soft modes controlled by the quenched disorder.

The strong effect of a small mean field contribution to the Fourier-discretized quadrupo-
lar propagator can now be re-read as the consequence of the opening of a gap in the
spectrum of eigenvalues, in other words to the vanishing of the soft modes. In Figure
3.12, the spectra of eigenvalues of the stress redistribution kernel show the gradual gap
opening due to the introduction of a mean field contribution to the elastic quadrupolar
interaction. The associated restoring elastic force brings back the model to the standard
depinning phenomenology.
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Figure 3.13 – Eigenspectra of the two finite element kernels. While m3 features soft
modes, m2 does not. The right plot is a zoom-in of the left eigenspectrum around the
null eigenvalue.

The situation is similar for the finite element kernels. Figure 3.13 shows the eigen-
spectrum of the two finite element kernels, i.e. the eigenvalues in decreasing order. For
low eigenvalues the eigenspectra have a very similar form, around λ = 0 however they
are considerably different. While m3 has a zero slope at λ = 0, thus features soft modes,
m2 has a strictly negative slope. The difference at λ = 0 explains the striking difference
in the long time behavior we observe. In this context, the negative slope in the eigen-
spectrum at the zero eigenvalue has the same effect as an extra mean field component:
the finite restoring forces will eventually break down the increase of fluctuations.

Note that this interpretation only holds if we ignore the P (·) function that intervenes
in eq. 3.27. When a long integration time in considered, the loading contributes to a
positive average that allows for such an interpretation. However, at short time scales,
the positive part function unfortunately cannot be simply expressed in Fourier space. A
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similar situation appears in classical depinning models. The point is that for the latter
ones, a long time integration gives a finite restoring force to any wavelength of manifold
fluctuations.

From soft modes to shear bands

We have seen that soft modes control the long term diffusive fluctuations, but we have
not said much about their spatial structure.

A more suitable basis can be defined for the eigenspace of λ = 0 given by the unit
shear bands oriented along the ±45◦ directions. Let us define dk(m,n) = δm−n−k and
d′k(m,n) = δm+n−k with k ∈ [−N/2, N/2) the unit shear bands. Since

|dk〉 =
∑

p

〈ep,p|dk〉 |ep,p〉 (3.30)

and
∣∣d′k
〉
=
∑

p

〈ep,−p|dk〉 |ep,−p〉 (3.31)

the shear bands dk and d′k belong to the eigenspace spanned by the eigenvectors of
λ = 0. We can thus conclude that pure shear bands appear as soft modes of the Fourier
quadrupolar elastic interaction, and, because of the null eigenvalue they do not induce
any internal stress. As a counter example, dv(m,n) = δm−v and d′v(m,n) = δn−v, i.e.
bands oriented along 0◦ and 90◦ are not part of the λ = 0 subspace, thus they are not
soft modes of the Fourier quadrupolar kernel.

The expressions of the Fourier transforms of the finite element kernels is spelled out
in the Appendix D and shows that “m3” features non-trivial null eigenvalues while “m2”
does not. Since for these two kernels we have the displacement fields, we can visualize
their displacements when subject to deformation. Figure 3.14 shows the displacements
and the residual stresses for such deformations. We can see that partial shear bands
result in nonzero residual stresses for both kernels, but stresses disappear for “m3” when
the shear band percolates. On the other hand, a percolating shear band for “m2” still
results in a considerable amount of residual stress due to the geometric frustration of
the neighboring cells. The major difference observed between the long time behavior of
“m2” and “m3” thus can be understood in terms of soft modes. The fact that “m2” does
not feature soft modes is the consequence of the discretization, we see therefore that the
discretization may have a serious impact on the long time behavior.

Soft modes thus belong to the eigenspace spanned by the eigenvectors belonging to
the null eigenvalue and, as we have shown, these modes can be naturally interpreted as
shear bands.
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Figure 3.14 – Shear bands for the m2 and m3 finite element kernels. Tiles represent one
discretization unit are represented in the deformed reference frame. Color scale indicates
the stress in the respective tile. Top row: for the m2 kernel a large residual stress
resulting from the geometrical frustration of neighboring tiles is observed even when the
band percolates. Bottom row: shear bands are soft modes of the m3 kernel, stresses thus
vanish for a homogeneous, percolating shear band.

Evolution of soft modes

To better understand the role of soft modes in the dynamics, we can use the basis of the
shear bands and the remaining modes as basis:

|epq〉with |p| = |q| (3.32)

|dk〉with k ∈ [−N/2, N/2 − 1] (3.33)∣∣d′l
〉
with l ∈ [−N/2, N/2 − 1] (3.34)

The plastic strain can be written in this basis as

|ǫp〉 =
∑

|p|6=|q|
cpq |epq〉+

∑

k

ck |dk〉+
∑

k

c′k
∣∣d′k
〉

(3.35)

and, ignoring for the moment the effect of the P () function (which would describe the
long-term behavior), projecting the evolution equation 3.27 of the plastic strain field onto
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the shear bands and the remaining Fourier modes gives (see Appendix C for details):

∂tclm = λlmclm − [σ̃c]lm for |l| 6= |m| (3.36)

∂tcl + 2
1

N

∑

k

∂tc
′
kfkl = σext − 1

N

∑

~r∈dk

σc(~r) (3.37)

∂tc
′
l + 2

1

N

∑

k

∂tckfkl = σext − 1

N

∑

~r∈d′
k

σc(~r) (3.38)

with fkl = |k − l| (mod 2). The first equation captures the evolution of the non-soft
modes. Since λ ≤ 0, these are the modes associated to λ < 0, thus we see that all the
non-soft modes get attenuated. This is what happens in classical depinning and these
strictly negative eigenvalues are responsible for the saturation of the interface width, in
this case the plastic strain fluctuations. We observe moreover that, while in the real
space the spatial coupling is induced by the non-local elastic kernel and the noise term is
local, the exact opposite happens in the Fourier space: the restoring force is local, but the
noise is not. We thus observe a competition between the attenuation of the eigenmodes
induced by the elastic contribution and a random forcing due to the quenched noise
contribution.

The second two equations describe the evolution of soft modes. Although there is
a coupling between perpendicular shear bands, these bands do not get attenuated and
may survive for long times at no energy costs. The diffusion of these bands thus governs
the long term dynamics of the system and leads to a continuously increasing interface
width, a phenomenon that is completely absent in classical depinning.

Plane vs antiplane shear

So far our results were restricted to plane shear. Keeping the same two dimensional
approach however, it is possible to change the shearing geometry to reproduce anti-plane
shearing conditions as shown in Figure 3.15. The latter has been studied in Ref [16] and,
from finite difference calculations it has been found that a dipolar kernel with the same
1/r2 decay corresponds to rearrangements associated to such a loading:

GD(r, θ) ∝
cos(2θ)

r2
(3.39)

The same kernel in the Fourier space reads as:

G̃Dpq = −2A
q2

p2 + q2
(3.40)

hence encounters soft modes for q = 0 which are shear bands oriented along θ = 0 (Figure
3.16). Analogously to the quadrupolar case, we can decompose the plastic strain field as

|ǫp〉 =
∑

q 6=0

cpq |epq〉+
∑

k

ck |dk〉 (3.41)
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Figure 3.15 – (a) Plane and (b) anti-plane loading. Colors indicate the plastic strain. The
kernel associated to plane shear has a quadrupolar symmetry, and the kernel associated
to anti-plane loading has a dipolar symmetry which is reflected in the accumulated the
shear bands.
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Figure 3.16 – Fourier Transform of the quadrupolar (left) and dipolar (right) kernels.
The former exhibits soft modes along the ±π/4 direction, while the latter along the 0
direction.

where dk are the shear bands oriented along the 0◦ direction.
The depinning like evolution equation for the soft modes and the remaining modes

associated to this dipolar kernel read as

∂tclm = λlmclm − [σ̃c]lm for m = 0 (3.42)

∂tcl = σext − 1

N

∑

~r∈dk

σc(~r) (3.43)

(3.44)

We thus recover the attenuation of the negative modes, and a quasi independent, diffusive
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propagation of the soft modes with no elastic coupling among the bands. Some non-
trivial coupling is still present through the noise term, this observation may nevertheless
constitute the basis of a new approach in which, instead of the interaction between the
pointlike shear transformations one considers the set of loosely coupled shear bands as
elementary building blocks of an amorphous material.

Fluctuations and age statistics along shear bands

We have shown how the plastic shear bands can be regarded as soft deformation modes
of the elastic interaction kernel and how the long time diffusion of the plastic strain
fluctuations originates from the competition between these weakly interacting bands.
The strength of the coupling defines the intra and inter shear band strain fluctuations,
it is therefore straightforward to investigate the contribution of these two quantities to
the overall strain fluctuations.
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Figure 3.17 – Strain fluctuations along shear bands (W+) and anti-shear bands (W−) for
plane shear loading. Although fluctuation within shear bands is smaller, it still shows a
diffusive increase.

The mean variance of the plastic strain within a shear band is defined as

W+ = 〈Wk〉{k} (3.45)

where
Wk = 〈ǫ2p(~r)〉~r∈dk − 〈ǫp(~r)〉2~r∈dk (3.46)

that is, Wk is the strain variance along the shear band dk, and W+ is the mean strain
variance along all the shear bands. Recall that for the quadrupolar kernel, shear bands
are oriented along the ±45◦ directions. In a similar manner, we can define the strain
fluctuations along the 0◦ and 90◦ directions. We have seen that these dv and d′v bands are
not soft modes of the kernel, moreover, these are the directions which receive a negative
stress kick upon a plastic slip, it is therefore of interest to track the W− mean strain
variance along these “anti-shear bands”.
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In a similar manner, for anti-plane loading, shear bands are oriented along the 0◦

directions, thus W+ in this case measures the strain fluctuations along 0◦ and W−

measures the strain fluctuations along 90◦.
Figure 3.17 shows that for the plane shear, the strain fluctuations along the shear

bands and anti-shear bands both reach a diffusive regime, the effective diffusivity D =
(δǫp)

2/〈ǫp〉 is about twice as small within the shear band than the global diffusivity.
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Figure 3.18 – Strain fluctuations along shear bands and anti-shear bands for anti-plane
shear loading. Due to the quasi independence of the shear bands in this case, strain
fluctuations saturate within the bands, thus the overall diffusive trend can be viewed as
the competition between independently diffusing bands.

On the other hand, for the anti-plane loading geometry we observe saturation of the
plastic strain variance W− measured along the shear bands (Figure 3.18). Although
the strain fluctuations within the anti-shear bands are almost identical to the overall
strain fluctuations, similarly to depinning, the strain variance within the individual shear
bands saturates. This result is compatible with our previous reasoning of the soft modes
coupling: while for the quadrupolar kernel the intersecting shear bands are coupled, for
the dipolar kernel we only have soft modes along a single direction making them quasi
independent. This independence allows for the diffusive competition between individual
shear bands while still keeping fluctuations along the individual bands low.

In order to get a better grasp on the strain activity localization mechanism, we
attempt to characterize the temporal fluctuations as well. To that end, we introduce the
age of a site ǫA(~r) which is the average plastic strain 〈ǫp〉 since the site last yielded. The
yielding site’s age is then 0 and ǫA(~r) = 〈ǫp〉 if the site has never yielded. In the same
spirit, we can define ǫ+A(k) the age of shear band k and ǫ−A(v) the age of the anti-shear
band v.

We can then follow the distribution P (ǫA) of these age measures. Since the distri-
bution is wide, it is more convenient to track P (ǫ∗A) where ǫ∗A = log(ǫA) (Figure 3.19).
For both kernels we observe that the age distribution is shifted towards larger values
when measured within the shear bands, but this effect is much more pronounced for the
dipolar kernel. The upper cutoff in the distributions corresponds to the duration of the
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Figure 3.19 – Age distributions along shear bands and anti-shear bands. Left: quadrupo-
lar kernel, right: dipolar kernel. Ages of anti-shear bands have a dramatic increase for
the dipolar kernel showing that activity is trapped for long within shear bands. Due
to the intersecting perpendicular bands in the quadrupolar kernel, activity can switch
bands faster.

subdiffusive regime, indicating that the plastic activity is trapped for long times within a
shear band. A potential reason for escaping aging along a shear band for the quadrupolar
system stems from the coupling between perpendicular shear bands, thus an event within
a shear band may trigger another one along the perpendicular direction. As the dipolar
kernel lacks such a coupling, activity is trapped for much longer within the bands, hence
the larger shift of the distribution in this case.

3.4 Conclusions

We have shown that the peculiar form of the Eshelby kernel associated to the atomic
rearrangements in the mesomodels gives rise to the localization of the plastic activity.
At short time scales, localized plastic events rule the dynamics, at longer scales however
shear bands develop. The localization along shear bands takes place because these bands
can form at no excess energy cost. Deformation can thus be trapped for long times
along the bands giving rise to constantly increasing fluctuations. The dynamics is then
governed by the loose coupling between the individual bands. It is therefore likely that,
one step further from the Eshelby inclusions, amorphous plasticity can be regarded in the
new framework of the interplay between disorder and the loose elastic coupling between
individual shear bands.

Such a localization is not possible in classical depinning problems with mean field or
isotropic interactions. While shear bands are soft modes of the Eshelby kernel, we have
seen that their presence may be erroneously suppressed in the kernel by the particular
discretization. Soft modes of the elastic kernel allow for strain localization and constantly
increasing strain fluctuations which ultimately leads to crack nucleation and material
failure. Controlling shear band formation is therefore the first step in suppressing crack
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nucleation and reinforcing fragile amorphous materials.



70 CHAPTER 3. BUILDING ELASTIC KERNELS: ALL ABOUT ESHELBY



Chapter 4

Scaling properties and finite size

effects

Contents
4.1 Review of MD results . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Avalanches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 Localization and diffusion . . . . . . . . . . . . . . . . . . . . . 74

4.1.3 Density of shear transformation zones . . . . . . . . . . . . . . 75

4.2 Scaling properties in the lattice model . . . . . . . . . . . . . . 76

4.2.1 Distributed thresholds vs distributed slip amplitudes . . . . . . 77

4.2.2 Avalanches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.3 Density of shear transformation zones . . . . . . . . . . . . . . 80

4.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Fluctuations of the plastic strain field . . . . . . . . . . . . . . 82

4.3.2 Fluctuations of the displacement field . . . . . . . . . . . . . . 83

Early diffusion and crossover to superdiffusive scaling . . . . . 84

Slip line formation . . . . . . . . . . . . . . . . . . . . . . . . . 87

Long term diffusion . . . . . . . . . . . . . . . . . . . . . . . . 87

Evolution of the displacement distribution . . . . . . . . . . . . 93

4.3.3 Trajectories and soft modes . . . . . . . . . . . . . . . . . . . . 96

4.4 Scaling properties of a minimal kernel . . . . . . . . . . . . . . 98

4.5 Summary of scaling relations . . . . . . . . . . . . . . . . . . . 100

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

The mesoscale description of amorphous plasticity results from the interplay of elas-
ticity and disorder. In the previous chapter we have played with the elastic interaction
and put in evidence the importance of soft modes and we concluded that they have a
dramatic effect on strain localization, plastic strain fluctuation and their presence may
even affect the universality class in the depinning picture. Here, besides the kernel, we
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explore the impact of the disorder on the scaling properties. We focus on the avalanche
rate distribution and displacement fluctuations and relate the results to former athermal
quasistatic molecular dynamics studies, with special attention to finite size effects.

As the ultimate goal of mesomodels would be to provide a quantitative upscaling,
quantitative connection to molecular dynamics is indispensable in the long run. The
extent to which the details of the various mesomodels matter is yet unclear and the
first step towards the elucidation of the question is to test the way the model details
affect universal properties. If the universal properties seen in experiments or molecular
dynamics simulations are not reflected in the mesomodels, there is no way they could give
quantitative results on non-universal properties, hence mesomodels cannot serve as the
Ising model of amorphous plasticity until the effect of various details is well understood.

In this chapter thus we emphasize the impact of disorder on fluctuations and scaling
properties. We consider two extreme cases of the disordered landscape: distributed height
but fixed width or distributed width but fixed height of the potential barriers. Moreover,
we focus on relating critical exponents describing the finite size scaling of avalanche
statistics and diffusion coefficient in these mesomodels to their MD counterpart.

4.1 Review of MD results

In this section, we review the most relevant results to our discussion that were obtained
from molecular dynamics simulations [150, 115, 111]. The usual molecular dynamics
model of a two dimensional model amorphous solid is a packing of two species of par-
ticles interacting via a Lennard-Jones potential. The two species are needed to avoid
crystallization. There are several protocols to prepare the initial state. The the me-
chanical behavior depends on the specific protocol, and, in particular the quench rate:
slower annealing allows the system to explore lower energy minima in the potential en-
ergy landscape and thus results in a more relaxed material [158]. Since so far we have
been working with an athermal, quasistatic (AQS) mesoscopic model, we focus on its
counterpart in MD as well. In order to ensure AQS, MD models usually use overdamped
dynamics and a small, fixed strain step.

4.1.1 Avalanches

We have already mentioned that at vanishing loading rate we encounter a depinning-like
transition. Plastic slips thus occur in power-law distributed cascades. The normalized
distribution of the avalanches however loses an important information when it comes
to size dependence, namely the cumulative number of avalanches over a given strain
window. It is therefore of interest to define the avalanche rate R(S,N) as the number of
events of size S per unit loading strain [150]:

R(S,N) =
n(S, S + dS,∆ǫ)

dS∆ǫ
(4.1)

where n(S, S + dS,∆ǫ) is the number of avalanches of size in between S and S + dS
within a strain window ∆ǫ. To comply with the notations used so far, we denoted by N
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the linear size of the system, thus there are N2 sites in the mesomodel. In MD the linear
size of the system is usually denoted by L, so in the mesomodel we would have N = L/a
if a denotes the length of one tile. Normalizing R would give the distribution function of
the avalanches.

Figure 4.1 – Definition of the avalanche size. The actual flow curve is a result of
a mesoscale simulation. Grey dots indicate plastic events. If the slip amplitude δǫp is
fixed, the average stress released by one event is δσ = 2µδǫp/N

2. The total stress released
in the avalanche is ∆Σ, S = ∆Σ/δσ therefore counts the number of events within the
avalanche.

Here S is the avalanche size that is defined as

S =
∆Σ

2µ
N2 (4.2)

where N is the linear size of the system and ∆Σ is the stress drop during an avalanche.
As shown in Figure 4.1, in a corresponding mesomodel, if the slip amplitudes are uniform,
this definition of the avalanche size would simply give the number of events within the
avalanche.

It has been found that R(S,N) collapses when scaled with Nγ for the small and
intermediate S range, with γ = 1.2 > 1 [150].

As expected for a critical system, R(S,N) ∝ S−τ above a lower and below an upper
cutoff, moreover, the avalanche rate obeys the scaling

R(S,N) = Nβg(S/Nα) (4.3)

Note that the notation of the exponent β is taken from MD studies and is by no means
the Herschel-Bulkley exponent. For an overdamped system, the value β = −0.2±0.1 was
found [150].The scaling function g(y) is such that it recovers the power law g(y) ∝ y−τ

for y ≪ 1, thus R(S,N) ∝ NβS−τ/N−ατ = NγS−τ with γ = β + ατ . Another scaling
relation can be derived using the fact that in steady state the average stress increase and
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stress drop have to cancel out, giving β+2α = 2 in two dimensions. For an overdamped
dynamics, τ = 1.25 was found [115] which is considerably smaller than the τ = 1.5 mean
field value. In similar conditions, α = 0.9 ± 0.05 has been reported meaning that the
largest event size increases somewhat slower than the linear size of the system [115].

4.1.2 Localization and diffusion

Figure 4.2 – Slip lines in an AQS MD simulation, figure from [115]. Top: projection of
the non-affine displacement field onto ∆x and ∆y. Bottom: projection of the non-affine
displacement field onto ∆x+∆y and ∆x−∆y.

The localization of plastic events [112] and distribution of displacements [115, 114,
101] have been investigated in similar AQS MD setups. Similarly to mesoscopic models,
a preferential orientation of the event clusterization was observed within a narrow line
oriented along the Bravais axis of the simulation cell. These so-called slip lines are
however not persistent in MD either and upon further shearing the plastic activity moves
towards other, apparently uncorrelated slip lines. The typical width of such slip-lines is
of the order of the particle diameter, a (Figure 4.2). These slip lines induce long range
anisotropic spatial correlations in the system [116, 113]. Nevertheless, it was found that
the mean square displacement scales linearly with the applied strain [115], therefore an
effective diffusion coefficient can be defined. In order to suppress the effect of convection
due to the affine loading, either the non-affine displacement field [115] or the cartesian
component perpendicular to the loading direction [183, 101] is considered.

The finite size scaling of the diffusion coefficient supports the idea of the jump of
the plastic activity between independent slip lines. It was found [115] that the diffusion
coefficient D = 〈∆u2〉/∆ǫ scales linearly with the system size: D ∝ L. This scaling can
be understood via a simple independent slip-line argument [115], as shown on Figure
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Figure 4.3 – Schematic representation of a slip line. The line has the width of a few
particle diameters ∼ a, and the displacement amplitudes at the edges of the line are also
∼ a. This gives a strain of the order of unity within the line [115].

4.3. Let us thus assume that plasticity accumulated on a line spanning the system. The
width of such a line was found to have one or two particle diameters, a. The displacement
amplitudes at the edge of the line are of the order of a as well, meaning that the typical
plastic strain within the band is the order of unity. The typical non-affine mean square
displacement induced by one slip line is then 〈∆u2〉 = a2. Once a slip line has formed,
plasticity is assumed to move to another slip line that is uncorrelated with the previous
one. The dynamics is then governed by the formation of successive, uncorrelated slip
lines. The average plastic strain induced by one line is the weighted average of the
plastic strain field throughout the system. The plastic strain within a band is 1 and
outside the band is 0, which gives 〈ǫp〉 = a/L. In the steady state, on average, stress
cannot increase, nor decrease. Stress increases are given by the loading strain ∆ǫ and
stress drops by the average plastic strain 〈ǫp〉. On average, these two have to cancel out,
thus 〈∆ǫ〉 = 〈ǫp〉 = a/L. The diffusion coefficient is then given by D ∝ a2/(a/L) ∝ L
thus scales linearly with the system size.

While a linear increase of the mean square displacement with the strain was observed
starting from rather small strains (∆ǫ ≥ 10−3), strong spatial correlations are present
in the system and displacement distributions have an exponential distribution. As the
strain increases, they will eventually converge to a Gaussian [115, 183].

4.1.3 Density of shear transformation zones

Within the material there are zones that yield easier than others, it is therefore of interest
to follow the distribution of local stresses close to their thresholds. The measurement of
the distance to threshold originates from lattice models [106]. Dividing the material into
blocks, each block has a local stress σi and a local threshold value at which it yields, σci ,
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thus its distance to threshold is defined as xi = σci −σi, and we are interested in the P (x)
distribution. P (x) at low x gives the density of the shear transformation zones, i.e. the
zones that are potentially going to yield in the nearest future upon load [106]. Note that
P (x) is a probability density function and is not to be confused with the spatial density of
shear transformations. P (x) thus contains information about the number of sites that are
about to become unstable, it is therefore the low x shape of the P (x) distribution which
governs the stability and, in turn the dynamics of the solid. In particular, the shape of
P (x) has been related to the Herschel-Bulkley exponent [107]. While in depinning, at
low values P (x) goes to a constant, for amorphous plasticity it has been shown that due
to the anisotropy of the elastic kernel balance can only hold if P (0) → 0, the distribution
thus vanishes at x → 0. Moreover, for small x (close to the threshold) it has been
found that P (x) ∝ xθ with θ ≈ 0.57 in two dimensions, thus the value of θ governs the
stability of the system and is connected to the avalanche distribution exponent τ and the
avalanche size cutoff exponent (fractal dimension) α by [106]:

τ = 2− θ

θ + 1

2

α
(4.4)

While the measurement of P (x) in a lattice model is straightforward, the value of θ
seems to depend on the applied stress [108]. The measurement of P (x) in MD is more
cumbersome due to the inhomogeneous elasticity. Nevertheless, there has been indirect
evidence on a similar scaling in MD [74, 133] and the estimates 0.4 < θ < 0.6 were
provided for fast quenched glasses, but a strong variation depending on the quench rate
and the stationary state have been reported.

4.2 Scaling properties in the lattice model

In order to better comply with the MD conditions, here we will be using the quasistatic
dynamics with synchronous flips introduced in chapter 2. While extremal dynamics was
suitable to extract universal properties, it cannot be applied to MD, where a constant
strain or stress dynamics is the most common. We therefore chose a constant strain
load dynamics with vanishing strain rate. This dynamics involves synchronous pruning
of all the unstable sites, until no more unstable sites are present, and only then is the
loading increased. To ensure quasistatic loading, in between avalanches the strain is
always adjusted such that only the weakest site yields. The strain is then held constant
until the avalanche triggered by the first event is over. It was found in particular that
this dynamics gives more accurate avalanche statistics [106], but it is not expected to
affect the universal properties in any way.

Moreover, we will be using the two finite element kernels m2 and m3 depending on the
loading geometry. Their Fourier-discretized counterparts will be referred to as m2F and
m3F. In the previous chapters m3F was referred to as the Fourier quadrupolar kernel. As
discussed previously, we have displacements available only for m2 and m3. Please refer
to chapter 3 for details regarding the kernels. Recall that m3, m2F and m3F feature soft
modes, however m2 does not.
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4.2.1 Distributed thresholds vs distributed slip amplitudes

In chapter 3 we analyzed the way different kernels influence fluctuations in amorphous
systems. Here, in addition, we examine the effect of disorder to both fluctuations and
scaling properties. To that end, for each kernel, we consider two different protocols that
we call Y 0 and Y 1. In the Y 1 protocol the local yield thresholds are drawn from a
random distribution, while the slip amplitudes are constant. In the Y 0 protocol, the
yield thresholds are constant whereas the slip amplitudes are drawn from a random dis-
tribution. Note that fixing the thresholds results in a first avalanche where all the sites
yield a random amount synchronously which corresponds to a random plastic strain field
initialization. In other words, we “bake” the Eshelby stresses into the initial configura-
tion. A similar scenario was described in MD by Lemaître [100] thus this is a physical
initialization.

The two protocols are meant to account for two different types of disorder associated
to the underlying disordered potential landscape. Recalling the depinning analogy, Y 1
introduces disorder as the fluctuations of the depths of the potential wells, while Y 0
accounts for disorder as the fluctuations in the widths of the wells, as shown on Figure
2.5.

We have been experimenting with the combination of the two protocols (random
initial stresses with constant thresholds and constant slip amplitudes or baked initial
stresses with constant thresholds and constant amplitudes), these however resulted in
a single narrow and persistent shear band, consistent with [147]. While this persistent
behavior deserves a more systematic investigation, here we restrict ourselves to either
random thresholds or random slip amplitudes.

This leaves us with the combination of two protocols (random thresholds vs random
slips) and four kernels (two Fourier and two finite element), all of which obey a similar
quadrupolar symmetry. Simulations for the combination of all the protocols and all the
kernels were carried out for four different system sizes (N = 64, 128, 256, 512) up to a
strain of 2× 103 and each run has been repeated for 10 different realizations.

4.2.2 Avalanches

We first investigate the distribution of avalanche sizes and the size dependent scaling of
the distribution. We compare results obtained for combinations of the two protocols and
the four kernels to MD results. Recall that the quasistatic load here keeps the system
right at the yielding transition. We therefore expect critical properties, in particular, a
power law scaling of the avalanche distributions.

As illustrated in Figures 4.4 and 4.5, we obtain a power-law decay for the avalanche
rates R(S,N) for all the kernels and protocols. Note the slight difference on the extension
of the power-law regime: the power law regime is longer for the random threshold protocol
Y 1. As expected, the main difference stems from small avalanche sizes S where the
avalanches involve a few number of events only. There is no major difference at larger
avalanche sizes where the cumulative contribution of a larger number of individual events
counts.



78 CHAPTER 4. SCALING PROPERTIES AND FINITE SIZE EFFECTS

10-4 10-3 10-2 10-1 100 101

S/N1.1

10-1
100
101
102
103
104
105
106
107
108
109
1010

R
(S
)/
N
−0

.2
N=512

N=256

N=128

N=64

S−1.35

(a) Y 0m2

10-4 10-3 10-2 10-1 100 101

S/N1.1

10-1
100
101
102
103
104
105
106
107
108
109

R
(S
)/
N
−0

.2

N=512

N=256

N=128

N=64

S−1.3

(b) Y 0m3

10-4 10-3 10-2 10-1 100 101

S/N1.1

10-1
100
101
102
103
104
105
106
107
108
109

R
(S
)/
N
−0

.2

N=512

N=256

N=128

N=64

S−1.3

(c) Y 0m2F

10-4 10-3 10-2 10-1 100 101

S/N1.1

10-1
100
101
102
103
104
105
106
107
108
109

R
(S
)/
N
−0

.2

N=512

N=256

N=128

N=64

S−1.3

(d) Y 0m3F

Figure 4.4 – Avalanche rate R(S,N) finite size scaling for the random slip increment
protocol Y 0.

More importantly, beyond the details of the models, universal features are recovered.
Not only the scaling ansatz 4.3 seems to hold, but the same α and β scaling exponents
apply for all the protocols and kernels, namely, α = 1.1 and β = −0.2 (Figure 4.4, 4.5).
Uncertainty in α and β is approximately 0.05, meaning, for instance, that α = 1.05
clearly gives a worse collapse than α = 1.1. Since α > 1, the size of the largest events
increases faster than the system size. Recall that in MD α = 0.9 < 1. While α = 1.1
is clearly inconsistent with MD, it is consistent with some of the previous lattice model
results [106]. On the other hand, in the same lattice model with extremal dynamics
protocol, the value α = 1.0 was reported [171]. For all the protocols and kernels we find
γ = 1.25 ± 0.05 which again is close to the γ = 1.3 ± 0.05 obtained in MD [115, 151].
Since in previous lattice models the avalanche distribution was measured instead of the
avalanche rate, we have no comparison for the exponents β and γ. The scaling relation
2α+β = 2 is valid (2×1.1−0.2 = 2) thus the considerable difference in β can be viewed
as a consequence of the too large α value.

Accurate measurement of scaling exponents is far from being obvious. Fitting either
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Figure 4.5 – Avalanche rate R(S,N) finite size scaling for the random threshold protocol
Y 1. Although apparently the same set of finite size scaling exponents (α, β, γ) applies
for all the kernels and protocols, the power-law regime is clearer for Y 1.

on the equally spaced or log-binned histogram is never recommended as the power law
nature of the histogram is in contradiction with the assumptions of gaussian distribution
in least mean square fitting [41]. For avalanche distributions, for instance, one should
use a maximum likelihood estimator with the avalanche exponent as a parameter [41]. In
this case however we encounter with a lower and upper cutoff as additional parameters,
furthermore, the shape of these cutoffs is unknown. The maximum likelihood method
we tried therefore did not seem to perform better than a simple flattening analysis.
Avalanche exponents were thus determined by testing several values at a given step (0.05
in this case) and selecting the best one, as shown on Figure 4.6.

For the avalanche rate exponent τ we find τ = 1.35 ± 0.05 for the m2 kernel and
τ = 1.3 ± 0.05 for all the other protocols and kernels. This latter is consistent with the
MD τ = 1.25 ± 0.05 result, as well as with other lattice model results [106, 171], and is
clearly different from the τ = 1.5 value obtained for the mean field kernel [47]. Moreover,
the scaling relation γ = β + ατ holds: −0.2 + 1.1 × 1.3 = 1.23 ≈ 1.25.
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Figure 4.6 – Determination of the avalanche scaling exponent τ . The most horizontal
value describes the power law the best. In this case, τ = 1.3

Although in some features (α, β) are considerably different from overdamped MD, in
others (τ , γ) the lattice model gives strikingly close results to MD. Moreover, avalanches
do not seem to be particularly sensitive to the protocol or the kernel. Based on the
avalanche statistics only, one may conclude that they all belong to the same universality
class, which, however, is different from the overdamped MD universality class defined by
α = 0.9, β = 0.2, γ = 1.3, τ = 1.25 [115]. The robustness of the avalanche scaling, and,
in particular, the avalanche exponent τ is an important result, especially in the light of
recent observations that τ may be sensitive to the details of the loading protocol [83].

4.2.3 Density of shear transformation zones

In addition to the two exponents used for describing the depinning transition, Lin et
al. proposed a third, additional exponent for the complete description of the yielding
transition [106, 107, 108]. The exponent is related to the distribution of stress barriers
in the material close to yielding, in other terms, the stress barrier distribution of the
weakest spots. These spots are the ones that are the most likely to yield, their P (x)
distribution thus governs the dynamics of the yielding transition. In depinning, it was
found that for small x, P (x) ∝ x0, for the yielding transition however P (x) ∝ xθ with
θ > 0[106, 107, 108]. In this section we examine the P (x) distribution for the two
protocols and four kernels.

As shown on Figure 4.7, we observe a power law regime in the P (x) distributions.
The scaling however breaks down as x→ 0 below a lower cutoff x∗ and the distribution
plateaus. The appearance of the plateau is inconsistent with [106, 107, 108] where P (x)
was found to vanish at x = 0, but its cutoff x∗ is size dependent, and scales as x∗ ∝ N−b

with b = 0.9 thus disappears for an infinite system. Similarly, the level of the plateau
diminishes with the system size according to P (x = 0) ∝ N−a with a = 0.6. The collapse
in the power-law regime indicates that θ = b/a = 2/3, thus slightly larger than the 0.57
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Figure 4.7 – Density of shear transformations. The power law scaling is not clear for
m2. The lower plateau seems to reflect finite size scaling and should disappear for an
infinitely large system.

value reported for the lattice model [107]. The same (a, b, θ) exponents work for all the
kernels (including the two Fourier kernels that are not present on Figure 4.7), but the
power-law range is clearer for m3.

The fact that P (x) is not sensitive to the protocol is rather surprising. Distributed
thresholds involve a statistical hardening of the material. Due to the systematic yielding
of the weakest sites, the actual threshold distribution in the system is different from the
uniform distribution we draw the thresholds from. During the transient, the thresholds
are shifted towards larger values until they reach a stationary distribution. For the dis-
tributed slip increments protocol this is not the case, since there the thresholds are fixed.
No statistical hardening is then present for Y 0. Nevertheless, the P (x) distributions
governing the dynamics are robust.

Using these exponents we can infer the value of the avalanche exponent τ using the
scaling relation 4.4, which yields τ ≈ 1.27 for all the modes and kernels, thus seems to
be valid for all the kernels with soft modes (where, recall, we had τ ≈ 1.3), but it fails
for m2 (for which we obtained τ ≈ 1.35).
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Figure 4.8 – Plastic strain variance for the finite element kernels (left) and for the
Fourier kernels (right). Fluctuations saturate for m2 on the long run, but there is no
major difference in the short time scaling.

4.3 Diffusion

4.3.1 Fluctuations of the plastic strain field

In chapter 3 we found that the presence of soft modes in the kernel affects the long time
strain fluctuations. Indeed, as shown on Figure 4.8, long time plastic strain fluctuations
increase for m3, m2F and m3F but saturate for m2 as the latter does not feature any soft
modes. All the kernels have a similar quadrupolar symmetry and show diffusive behavior
at short times. Short time behavior thus seems unaffected by the lack of soft modes.
In the depnning sense, at short times, the deformation of the interface is small enough
for the effect of restoring forces to be negligible. For the soft mode kernels, we observe
three regimes: a short time diffusive regime, a superdiffusive regime corresponding to
the growth regime in the Family-Vicsek picture and a long time diffusive regime. The
presence of the three regimes is independent of the protocol. For the m2 kernel, at long
times, saturation is observed.

The three regimes can be better identified when looking at the diffusivity δǫ2p/∆ǫ
associated to the plastic strain diffusion. Figure 4.9 shows the evolution of the diffusivity
for increasing strain windows for various system sizes. As the temporal plastic strain
field correlations have not built up, we observe a first plateau that appears for small up
to intermediate strain windows. The range of the initial diffusive behavior as well as the
value of the diffusivity seem to be independent of the system size, they depend however
on the protocol: while for the random slip protocol Y 0 we observe a persistence of this
plateau up to strain values of the order of unity ∆ǫ ≈ 1, in the case of the random
threshold protocol Y 1 we have an earlier departure at ∆ǫ ≈ 10−2 for all the kernels.

After the initial, size independent, constant diffusivity we observe a departure from
constant diffusivity. Interestingly, this departure happens almost instantaneously for Y 0,
and the strain variance shows a subdiffusive scaling. For Y 1 we have a longer regime
between 10−2 ≤ ∆ǫ ≤ 1 associated to the “bump” in the diffusivity after which a long
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Figure 4.9 – Plastic strain diffusivity for the m2 and m3 (top) and m2F and m3F
(bottom) kernels. Three regimes can be identified: an early diffusive regime, a long
superdiffusive growth and a late diffusive regime or saturation depending on the kernel.
Regardless of the protocol, on the long run, diffusion is observed for m3, m2F and m3F,
but saturation of the strain fluctuations for m2 due to the lack of soft modes. Short term
diffusion is similar for all the protocols and kernels. The late diffusive regime here is only
visible for the smallest system sizes.

subdiffusive scaling sets in. This is valid for all the soft modes kernels, and this is the
time where the fluctuations for the m2 kernel saturate. The range of the subdiffusive
scaling is size dependent and is smaller for smaller system sizes.

Eventually, at large enough strains, the plastic strain fluctuations reconverge to an-
other diffusive regime, which, however shows considerable size dependence as the diffu-
sivity decreases with the system size. Moreover, the time necessary to reach diffusion
increases with the system size. On Figure 4.9 we can observe the second diffusive regime
for the two smallest system sizes. The largest ones are still in the subdiffusive scaling as
it takes longer for those to reach the second diffusive regime.

4.3.2 Fluctuations of the displacement field

In this section we study the diffusive behavior of the displacement field. The three regimes
discussed above can be identified for the displacement fluctuations as well. Figure 4.10
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shows the evolution of the mean square displacement for the finite element kernels (recall
that we do not have access to the displacements for the Fourier kernels). Initially, both m2
and m3 show a similar diffusive behavior. At large strains the mean square displacement
in m2 saturates and in m3 converges to the new diffusive scaling. The crossover in this
case however is superdiffusive. Moreover, long term diffusion is reached faster that for
the plastic strain fluctuations. The Family-Vicsek growth regime for the displacement
fluctuations is thus shorter, but the trend is the same: the Y 0 protocol reaches diffusion
faster than Y 1.
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Figure 4.10 – Mean square displacement for the finite element kernels. Left: Y 0, right:
Y 1.

In what follows, we examine these three regimes (early diffusion, superdiffusive be-
havior, long term diffusion) from the perspective of the displacements.

Early diffusion and crossover to superdiffusive scaling

Let us first examine the origins of the short term, size and protocol independent diffusive
scaling. On Figure 4.11 we show the evolution of the displacement diffusivities for m2 and
m3 . We observe an initial diffusive trend for both modes and protocols after which the
mean square displacement becomes superdiffusive. The associated diffusion coefficient
D = δu2/∆ǫ shows size dependence, and, as shown on Figure 4.11, D scales as D ∝ N δs

with δs ≈ 1.05.
The initial diffusion can be understood via a simple balance argument. Assuming

that all the avalanches follow the same pattern, the stress-strain curve is a periodic saw-
tooth function with period ∆ǫ0 which is the loading strain between successive avalanches
(Figure 4.12). The plastic strain during an avalanche is ∆ǫp = ∆ǫ0 since, on average,
the stress cannot increase, nor decrease and the stress released during an avalanche is
precisely ∆Σ = −2µ∆ǫp, while the stress increase in between avalanches is ∆Σ = 2µ∆ǫ0.
Let us now divide each loading branch into small windows of strain ∆ǫ. The number
of windows within one period is Nw = ∆ǫ0/∆ǫ and, given the loading is homogeneous,
there is no increase in the non-affine displacement in the first Nw − 1 windows. An
avalanche occurs within the Nwth window resulting in a plastic strain field increment
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Figure 4.11 – Displacement diffusivities for m2 and m3. Note the scaling of the initial
plateau. The associated diffusion coefficient increases slightly faster with the system size
than in MD, D ∝ N1.05

and an associated non-affine displacement field ~u0(~r). Let us further assume that all the
avalanches follow the same pattern. The mean square displacement within one period is
thus given by the weighted average of all the zero non-affine displacements on the elastic
loading branch and the mean square displacement induced by the avalanche in window
number Nw:

〈δu2〉 = 0× (Nw − 1) + 〈δu20〉 × 1

Nw
(4.5)

Inserting Nw = ∆ǫ0/∆ǫ we readily get the diffusive behavior for small windows:

〈δu2〉 = 〈δu20〉
∆ǫ0

∆ǫ ∝ ∆ǫ (4.6)

This approximation clearly only works until the window size ∆ǫ reaches the size above
which the collective occurrence of avalanches starts to impact the localization of plastic
activity and, in turn, the cumulated displacement field. The initial diffusive behavior
thus can be viewed as the result of independent avalanche shot noise. Note that a similar
reasoning can be carried out for the plastic strain field, explaining the initial linear scaling
of the plastic strain variance.
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Figure 4.12 – Simplified avalanche dynamics. Stress-strain curve is assumed to follow a
sawtooth shape with period ∆ǫ0. On the elastic loading branches only affine displace-
ments change.

At this initial stage the mean square displacement and the diffusion coefficient D =
〈δu2〉/∆ǫ show a strong system size dependence. Figure 4.11 shows that a rescaling
by N1.05 gives an excellent collapse for the initial plateau and parts of the crossover to
superdiffusive behavior. This D ∝ N1.05 scaling is very close to the D ∝ N1.0 observed
in MD simulations [115] and can be understood via the independent slip-line argument
discussed previously. We assume that individual avalanches are percolating slip lines of
the width of a lattice constant a. The plastic strain in the slip lines is d (which is the
typical elementary slip increment). The mean square displacement induced by such a line
is 〈δu20〉 = d2a2 and the average strain drop caused by the line-avalanche is ∆ǫp = d/N .
Recall that ∆ǫp = ∆ǫ0, therefore we have ∆ǫ0 = d/N . This gives the diffusion coefficient:

D =
〈δu2〉
∆ǫ

=
〈δu20〉
∆ǫ0

= da2N ∝ N (4.7)

The same slip-line reasoning explains the size-independence of the plastic strain diffusiv-
ity. For a localized shear band, we have a plastic strain fluctuation

δǫ2p =
d2

N
− d2

N2
≈ d2

N
(4.8)

giving for the strain diffusivity
δǫ2p
∆ǫ0

= d, (4.9)

a size independent value.
To further support the idea of the slip-line structure of the individual avalanches, let

us examine the crossover strain ǫ∗ at which departure from the initial diffusive behavior
happens. The crossover strain ǫ∗ to superdiffusion seems to obey the same scaling as the
diffusion coefficient, ǫ∗ ∝ N−1.05. As shown on Figure 4.11, a nice collapse for the initial
plateau and part of the departure is obtained when rescaling both the diffusion coefficient
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and the loading strain by N1.05. Since the strain required to form a homogeneous shear
band is ∝ 1/N , we may conclude that departure from the initial diffusive regime occurs
after multiple shear bands start forming. In other words, the collective behavior of the
developed shear bands causes the subsequent supperdiffusive behavior.

Slip line formation

The departure from the initial diffusive regime is not observed in MD simulations and
we can think of two reasons: they are either not carried out to large enough strains
to observe the strong localization and the associated collective effect of slip lines or
the lattice models are not suitable to capture the collective effect properly. The latter
is more probable since at the time displacement distributions already converged to a
Gaussian, departure from the linear increase of the mean square displacement was not
reported [115]. To get a qualitative idea about the underlying mechanism, on Figures
4.13-4.16 we show the stress field in the stationary state for successive windows of size
∆ǫ = d/N = ǫ∗, for the two modes and protocols. On average, this is the window size
at which a slip line can form and up to this window we observe diffusion and above it
superdiffusion. The individual maps for the two kernels and protocols are similar and
we observe that the plastic activity is localized along quasi independent shear bands
as predicted. These slip lines tend to percolate throughout the system and they are
somewhat more localized for m3 than for m2. The localization of avalanches along slip
lines of width in the order of the tens of nanometers in metallic glasses has been observed
in many experiments [94, 165, 200, 166, 7].

So far the localization mechanism is similar to MD: individual slip lines form within a
window of size ǫ∗. Let us now consider the successive windows. The qualitative difference
arises when taking a look at the successive windows: we observe that the plastic activity
tends to revisit the same bands multiple times. The bands in successive windows are thus
not independent which leads to a superdiffusive mean square displacement above ǫ∗. The
strong correlation between successive bands thus leads to a collective behavior that is not
observed in MD. As we have shown before, at this stage the collective effect of the bands
is rather independent on the kernel, it depends however on the protocol. Examining the
stress maps we observe that the bands in the Y 1 protocol are more persistent than in
the Y 0 protocol which is consistent with the mean square displacement plots, where we
see that after ǫ∗ the slope is larger for Y 1. Moreover, it takes about 10 times longer for
Y 1 to reach the second diffusive regime reflecting that persistence is more pronounced
and the decorrelation time of the plastic activity in this case is larger.

Long term diffusion

The initial diffusive regime associated to the “kicks” of single shear bands only holds
up to a crossover strain ǫ∗ ∝ N1.05, as shown on Figure 4.11. After ǫ∗ a superdiffusive
behavior is observed due to the persistence of successive shear bands.

The initial constant diffusivity regime is considerably longer for the plastic strains
(Figure 4.9) than for the displacements (Figure 4.17) showing that displacements corre-
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Figure 4.13 – Incremental stress maps for Y 0m2 over consecutive (non-overlapping)
strain windows of size ∆ǫ = d/N such that on average, in each window there are N
plastic events.

late faster. This is a consequence of the local nature of the plastic strain and the long
range of the displacements. The departure to a superdiffusive regime here is peculiar and
should not be confused with the initial superdiffusive behavior observed in MD [115, 183].
In the latter, when investigating the mean square displacement, one observes an early
quadratic increase with a transition to a linear rise. This quadratic increase is however
caused by inhomogeneous elasticity due to the inhomogeneities in the local structure of
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Figure 4.14 – Incremental stress maps for Y 0m3 over consecutive (non-overlapping)
strain windows of size ∆ǫ = d/N such that on average, in each window there are N
plastic events.

the material it can thus not appear in our coarse grained picture. Based on the mean
square displacement and the diffusion coefficient scaling, as well as on the displacement
distributions, our initial diffusive behavior would therefore correspond to the long time
behavior seen in MD.

Figure 4.17 shows that the crossover strain to the second diffusive regime for m3
is size independent and happens much earlier for Y 0 (∆ǫ ≈ 1) than for Y 1 (∆ǫ ≈
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Figure 4.15 – Incremental stress maps for Y 1m2 over consecutive (non-overlapping)
strain windows of size ∆ǫ = d/N such that on average, in each window there are N
plastic events.

10). The displacement distributions (Figures 4.18, 4.19, 4.20) show that at these strains
the cartesian components distribution converged to a normal distribution, whereas the
displacement magnitude to a two dimensional Maxwell-Boltzmann.

While at this stage (∆ǫ ≈ 1 for Y 0 and ∆ǫ ≈ 10 for Y 1) the plastic strain fluctuations
are still in their long subdiffusive crossover regime (Figure 4.9), the “particle” displace-
ment is already governed by a second diffusive process: the mean square displacement
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Figure 4.16 – Incremental stress maps for Y 1m3 over consecutive (non-overlapping)
strain windows of size ∆ǫ = d/N such that on average, in each window there are N
plastic events.

scales linearly with the strain while the displacements have a normal distribution. As
shown on Figure 4.17, the diffusion coefficient is system size dependent in this case as
well, however this time it scales considerably faster: D ∝ N δl with δl ≈ 1.6. This result
is consistent with the D ∝ N1.5 scaling reported in a similar lattice model [118].
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Figure 4.17 – Diffusion coefficients scaled by N1.6 for the finite element kernels. Although
both kernels show diffusion at very low strains, this is merely a consequence of the Eshelby
shot noise. Long term diffusion is the result of the collective effect of slip lines.
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Figure 4.18 – Distribution of the ux (or, equivalently, uy) displacements for increasing
time windows for a system size of N = 512. Top left: Y 0m2, top right: Y 0m3, bottom
left: Y 1m2, bottom right: Y 1m3. Displacement values are rescaled with the standard
deviation so that all gaussians collapse into one curve.
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Figure 4.19 – Distribution of the displacements along the 45◦ (or, equivalently, 135◦)
direction, for increasing time windows for a system size of N = 512. Top left: Y 0m2,
top right: Y 0m3, bottom left: Y 1m2, bottom right: Y 1m3. Displacement values are
rescaled with the standard deviation so that all gaussians collapse into one curve.

Evolution of the displacement distribution

Let us now examine the evolution of displacement distributions. At early times the
tail of the displacement distributions rather gives information about the distribution of
the individual slip amplitudes caused by single slip lines. On Figure 4.18 and 4.19 we
represented the evolution of the displacement distribution along the x or y and x ± y
axis, respectively. At early times, the distribution has an exponential tail which is in line
with MD results [115, 183] and it has been argued that the exponential tail is associated
to the development of shear bands [182]. Indeed, the shape of this early distribution (in
particular, the central peak and the exponential tail) is very close to what we get when
placing a random number of events at random positions along a single band and compute
the corresponding displacement distribution. Similarly, as we show on Figure 4.20, the
distribution of the displacement magnitudes at small strain windows has an exponential
tail.

Considering the distributions only, it may be tempting to model the evolution of dis-
placements in the system as a random walk with exponentially distributed steps. While
such an approach indeed predicts diffusion and complies to the observed distributions
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Figure 4.20 – Distribution of the magnitude of displacements u, for increasing time
windows for a system size of N = 512. Top left: Y 0m2, top right: Y 0m3, bottom left:
Y 1m2, bottom right: Y 1m3. Displacement values are rescaled with the average so that
all the two dimensional Maxwell-Boltzmann distributions collapse into one curve.

(exponential tail at short time and normal distribution at long times), it does not account
for size effects that are caused by localization. Note that, due to the shear bands, large
parts of the system move in a correlated way. As it was stated in [115], therefore, we do
not have a one-particle diffusive process.

In a standard diffusive process, at long times the distribution of displacements con-
verges to a normal distribution, according to the central limit theorem. In present case
we have a more complex diffusive process than a simple random walk due to the long
range anisotropic correlations in the system. Nevertheless, we find that at large times
displacement distributions converge to a Gaussian distribution.

Convergence to a Gaussian distribution can be evidenced by following the evolution
of the displacement distribution kurtosis K(∆ǫ) which equals 3 for a Gaussian (Figure
4.21). At small strains the kurtosis decreases as K(∆ǫ) ∝ ∆ǫ−1. We have seen that at
small strains the mean square displacement is diffusive, 〈δu2〉 ∝ ∆ǫ. Similarly, following
the independent avalanche argument, we have the same dependence for the 4th moment,
〈δu4〉 ∝ ∆ǫ which leads to K(∆ǫ) = 〈δu4〉/〈δu2〉2 ∝ ∆ǫ−1. In agreement with the
mean square displacements, we observe a size dependent transition that corresponds
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Figure 4.21 – Kurtosis of the P (ux) distribution. The crossover from the initial scaling
is size dependent, but to the second diffusive plateau is size independent. Curves for
different modes and protocols are vertically shifted to avoid overlap and red lines indicate
the kurtosis value of a corresponding Gaussian. Gaussian distribution is reached at
∆ǫ ≈ 1 for Y 0 and ∆ǫ ≈ 10 for Y 1.
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Figure 4.22 – Kurtosis of the P (ux) distribution. The crossover from the initial diffusive
plateau scales as ǫ∗ ∝ N0.8

to the superdiffusive crossover. For the curtosis however, we have a different scaling
for the crossover strain, namely ǫ∗ ∝ N−0.8 (Figure 4.22). The difference may arise
from the similar scaling of the second and the fourth moments which both may contain
higher order terms that become important when the first order terms cancel out in the
ratio. The crossover to the second diffusive regime is, as expected from the mean square
displacements, size independent and happens at the same strain, ∆ǫ = 1 for the random
slip protocol Y 0 and ∆ǫ = 10 for the random threshold protocol Y 1.
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We have thus seen that the cartesian components of the displacements reach a nor-
mal distribution and the diplacement magnitudes a two dimensional Maxwell-Boltzmann
distribution as the mean square displacement reaches the second diffusive regime. At the
same time, the diffusion coefficient shows size dependence, therefore this regime is not
a one particle diffusive process either. Following the analysis developed in chapter 3,
the long time behavior of the system is governed by the presence of soft modes of the
elastic interaction, that is, the diffusion of loosely coupled shear bands. Such a shear
band diffusion explains the random kicks the sites receive which, as we see, lead to the
normal distribution of displacements. These kicks however are correlated since activity
tends to accumulate along the bands. We believe therefore that the size dependence of
the diffusion coefficient originates from the mean square displacement corresponding to
diffusing bands. Note however that the coupling between these bands matters. We tried
a simple toy model in which we considered N slip lines. In the model, at each time
step, a slip occurs along a randomly selected line. The plastic strain along such a line is
homogeneous. Such a model does not predict any size dependence for the strain fluctu-
ations. One step further, we considered a two dimensional system in which strain bands
can nucleate in both directions. This model predicts size independent strain diffusivity
as well. For the moment therefore it seems that the size dependent diffusivity at long
times is the result of the collective behavior of diffusing shear bands.

4.3.3 Trajectories and soft modes

Figure 4.23 depicts sample trajectories of three randomly selected tracers for the two
modes and kernels, within a strain window of ∆ǫ = 10. As we would expect from the
localization observed previously, at short times the motion of the particles is strongly
correlated in time. The individual increments at short times follow a quasi exponential
distribution and, similarly to the trajectory observed in [183], they correspond to the
correlated “kicks” of the slip lines. Although the motion is clearly not a single-particle
Brownian as strong, anisotropic correlations can be revealed, the mean square displace-
ment nevertheless is diffusive as we have shown, due to the localization mechanism. Once
multiple shear bands can form, their collective behavior produces correlated kicks which
cause the superdiffusive transition, but at long enough strains they eventually decorrelate
and a diffusive trajectory is observed. The direction of the loading can be distinguished
between m2 and m3 as the former favors displacements along the ±π/4 directions whereas
the latter along the 0 and π/2 axis.

The long term saturation of the displacement fluctuations for m2 is evidenced in the
trajectory plots. Recall that for this kernel both the strain and displacement fluctuations
saturate, and they did so earlier for Y 0 therefore the particle positions for this protocol
are bounded within a smaller region of the space. For Y 1 the saturation is observed at
the strain of ∆ǫ = 10 for the depicted N = 128 system size meaning that the effect on
the trajectories is not as pronounced yet.

We have seen in the soft modes study that the saturation in the plastic strain variance
is a result of the lack of null eigenmodes in the elastic propagator. The eigenspace of
the zero eigenvalues is spanned by the shear bands and one would intuitively expect that
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Figure 4.23 – Sample path of randomly selected tracers for a maximum strain window of
10. The starting positions of all the tracers was shifted to (0, 0). Note the saturation of
the fluctuations for m2. At this stage the Y 1 protocol is just about to reach the second
diffusive regime, hence the confinement effects for Y 1 are less pronounced.

a homogeneous shear band percolating the entire system does not induce any internal
stress. These modes thus could develop at no energy cost, therefore they are favored by
the system. Figure 4.24 shows the eigenspectra of the two kernels which show a striking
difference at the eigenvalues close to 0. While at low eigenvalues the spectra are alike,
at the eigenvalues close to 0 they differ. The m3 kernel’s eigenspectra is similar to the
Fourier kernel’s [171], and soft modes are present in the kernel. On the other hand, there
are no soft modes in the m2 kernel since its spectra has a negative slope at p = 0. The
lack of these modes does not affect the short time behavior as we have shown, it has a
dramatic impact however on the long time behavior since enforces the plastic strain, and,
accordingly, the displacement fluctuations to saturation. Long term diffusion is therefore
excluded for a kernel with no soft deformation modes. Although both kernels were ought
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to model the same phenomenon the only difference being in the loading direction, m2 fails
to do so reflecting how sensitive these lattice models are to the details of the particular
discretization.
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Figure 4.24 – Eigenspectra of the two finite element kernels for various system sizes.
While m3 features soft modes, m2 does not.

In this particular case, the discrepancy in the eigenspectra for the m2 kernel is the
result of the geometrical frustration in the near field stress. Recall that soft modes are
shear bands, and to give an intuitive idea about the reason they induce no stress, we
showed the stress generated by a partial and a percolating shear band, respectively, for
both kernels on Figure 3.14, in chapter 3. For both kernels, a partial shear band induces
an elastic stress within the material and this stress is the largest at the edges of the band,
which makes sense since those are the sites which will yield to propagate the band. For
m2 however there is a large residual stress along the two sides of the length of the band.
While all the residual stresses vanish at the closeup of the band for m3, strong residual
stress spots remain at the two sides of the band for m2 due to the geometrical frustration
in the neighboring tiles. Our square tile discretization scheme thus does not allow for
the healing of the shear bands for m2, in other words, for the development of soft modes
which, as we have shown, leads to a pathological long term behavior and breaks down
long term diffusion.

4.4 Scaling properties of a minimal kernel

We have seen that soft modes are necessary to recover genuine properties of amorphous
plasticity including diffusion and scaling. The question thus naturally arises: are soft
modes enough to recover these properties? Is a kernel with reasonable symmetries and
soft modes enough? If so, why bother with the rather involved process of building
and discretizing long range Eshelby kernels, as well as with the large computation time
associated to long range interactions?

Attempts have been made to use a simplified, short range kernel with nearest-neighbor
interactions which nevertheless reflects the symmetry of the quadrupolar kernel [119].
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The kernel involves nearest neighbor interactions and is defined as shown in Table 4.1.
This kernel preserves the quadrupolar symmetry, i.e. it is negative along the ±π/4

-1/4 1/2 -1/4
1/2 -1 1/2
-1/4 1/2 -1/4

Table 4.1 – Short ranged quadrupolar kernel.

directions and positive on the vertical and horizontal directions.
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Figure 4.25 – Eigenspectrum and Fourier transform of the short range quadrupolar
kernel.
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Figure 4.26 – Strain maps belonging to different kernels: quadrupolar, dipolar and short
range quadrupolar.

Most importantly, as shown on Figure 4.25, the short range quadrupolar kernel ex-
hibits soft modes along the vertical and horizontal directions. Indeed, the Fourier trans-
form of the kernel is given by −k2xk2y , therefore we have a series of nontrivial null eigen-
values along the kx = 0 and ky = 0 directions. Alternatively, one can notice that the
kernel sums up to zero along any vertical or horizontal profiles. Consequently, a shear
band along the 0 or π/2 direction induces no residual stress.
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The kernel shows localization and diffusion, similar to the quadrupolar and the dipolar
kernels. On the other hand, avalanche scaling is very different: we obtain τ = 1.05 for
the avalanche exponent and θ ≈ 0.1 for the stress barrier distribution exponent. Other,
finite size related exponents not discussed here are different as well for the short range
kernel, hence it definitely falls in another universality class than the long range dipolar
or quadrupolar kernels.

As it was revealed in [119] and is shown on Figure 4.26, the short quadrupolar kernel
features localization, the emerging shear bands are however short, and by no means
they percolate through the system. On the other hand, for the long range kernels shear
bands are long. While percolating shear bands are soft modes of the short quadrupolar
kernel, the short range nature of the interaction just does not allow for them to develop
entirely. This observation helps clarifying the mystery between the similarities of scaling
properties, in particular, avalanche distributions between line depinning (τ = 1.25) and
plasticity (τ = 1.3): both for the long range quadrupolar and dipolar kernels most of
the activity happens along narrow bands. In the depinning pictures this scenario indeed
corresponds to the propagation of a one dimensional line in a random landscape. Of
course, eventually the activity moves to other bands, thus the collective effect of these
loosely coupled bands may be at the origin of the discrepancies. With that in mind, the
considerable difference in the scaling properties of the short range quadrupolar kernel
arises from the different localization it exhibits. Soft modes are thus necessary, but not
enough to reproduce scaling properties of amorphous plasticity: a long range kernel is
indeed necessary.

4.5 Summary of scaling relations

kernel τ α β γ a b θ δs δl
m2 1.35 (1.27) 1.1 -0.2 (-0.2) 1.25 (1.285) 0.6 0.9 2/3 1.05 x
m3 1.3 (1.27) 1.1 -0.2 (-0.2) 1.25 (1.23) 0.6 0.9 2/3 1.05 1.6
m2F 1.3 (1.27) 1.1 -0.2 (-0.2) 1.25 (1.23) 0.6 0.9 2/3 - -
m3F 1.3 (1.27) 1.1 -0.2 (-0.2) 1.25 (1.23) 0.6 0.9 2/3 - -
MD 1.25 0.9 0.2 1.3 - - [0.4..0.6] 1 -
short
quad

1.05 - - - - - 0.1 - -

Table 4.2 – Summary of scaling exponents for the four kernels and molecular dynamics
[150, 74]. Protocol does not have an impact on scaling. Values in the parentheses are
obtained from scaling relations. Values have an accuracy of 0.05.

The scaling exponents of all the quantities we tested are independent on the protocol,
we can thus conclude that introducing disorder either through thresholds or slip ampli-
tudes does not affect universality. The choice of the kernel however leads to qualitatively
different phenomenology. Our results are summarized in table 4.2. The short term and
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long term diffusion coefficient finite size scaling exponents appear in the table as δs and
δl, respectively.

4.6 Conclusions

We found that the hypothesis that avalanches in amorphous media follow slip line (narrow
shear band) like patterns is consistent with the observed finite size scaling. Short term
diffusive behavior is governed by the rare kicks of individual slip lines, which is confirmed
by the finite size scaling of the diffusion coefficient. At long times, diffusion is governed
by the collective effect of diffusing shear bands which leads to non-trivial scaling of the
diffusion coefficient. The next step would be to carry out a systematic spatial correlation
analysis on the strain or displacement patterns in individual avalanches.

Long time behavior is sensitive to the kernel (no soft modes - no diffusion), however
the proper symmetry of the kernel and soft modes alone are not enough to reproduce
the right universality class. On the other hand, all the universal properties are robust
with respect to the protocol. While a realistic disordered landscape (threshold and slip
amplitude distribution) has yet to be gathered from MD, we do not expect that it would
have considerable impact on the universal properties.
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5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

In the previous chapters we showed that the elastic interaction kernel associated
to rearrangements in amorphous materials features soft modes that lead to localization
and anomalous strain fluctuations. This shear banding and the associated increased
fluctuations are at the origin of the brittleness of amorphous materials, for instance,
glasses. Recent experiments have shown that shear banding can be controlled by the
introduction of a second phase into the amorphous bulk [82]. The role of this second
component is to block the development of shear bands. Such composite materials then
become reinforced. In this chapter we use the mesomodel with extremal dynamics and the
Fourier stress redistribution kernel to model the reinforcement of amorphous materials
by hard inclusions. Hard inclusions are modeled as any other lattice site, but with higher
yield thresholds. With this simple modification we investigate the flow stress increase
with the hard inclusion concentration and explain the observed finite size effects by a
simple analytical model based on strain localization, more precisely the percolation of
shear bands in between hard inclusions.

5.1 Inclusions in an amorphous bulk

Introducing harder particles into an amorphous material has been used to increase the
yield strength of these materials [180]. For example, adding rigid particles or fibers
improves the elastic properties of the final composite. From the theoretical point of view,
the determination of the effective elastic properties of such a material is a homogenization
problem extensively investigated for the case of linear elastic properties [180]. On the
other hand, results concerning nonlinear behaviors like fracture [149, 134] or plasticity
[35, 50, 185, 167] are less complete. Moreover, standard homogenization techniques fail to
capture size effects [35]. Strain-gradient theories [64] have succeeded in reproducing size
dependence, however they rely on the introduction of an artificial internal length scale,
furthermore, they only predict the average behavior and cannot reflect sample-to-sample
fluctuations.

The introduction of hard inclusions into a ductile matrix tends to increase the ef-
fective yield stress, the application of composite materials thus are numberless. A good
illustration of the practical usage of this reinforcement effect can be found in the de-
velopment of road pavement materials [38, 198]. The mastic asphalt is composed by
relatively large (centimeter scale) stones and a filler material. The filler material consists
of smaller (micrometer scale) rigid filler particles and the viscous bitumen. The filler
particles make the bitumen viscoplastic and the centimetric scale stones reinforce the
mastic asphalt (Figure 5.1).

Mastic asphalt is a soft material, the reinforcement effect of inclusions however applies
for hard materials as well. Another illustration of reinforcement is the introduction of soft
particles (a second, more ductile phase) in metallic glasses [61, 75] where the ductility
of the second phase gives control over the development of shear bands, and, in order
over the nucleation of cracks. Interestingly, a reinforcement effect is obtained despite the
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Figure 5.1 – Asphalt is composed of stones and a filler. The filler consists of bitumen
and micrometric filler particles in order to increase the filler composites viscosity. The
bitumen with filler particles is thus confined between the rougher (a) or finer (b) grained
stones [196].

fact that the effective yield stress of the material is decreased due to the soft inclusions
(Figure 5.2 ). In particular, the insertion of crystalline inclusions has been shown to
concentrate shear bands in between the inclusions [4] (Figure 5.3).

The understanding of the plastic behavior of amorphous composites is thus crucial
in tailoring the mechanical properties of modern materials. Theoretical and numerical
modeling methods have been recently deployed to study the effects of microalloying in
metallic glasses [49, 67, 4] and of the addition of aggregates in mastic asphalt [1, 3,
2]. These methods however focus on effective properties rather than fluctuations. In
chapter 3 however we have shown that due to the presence of soft modes in the elastic
kernel fluctuations keep increasing over time, and this fluctuation, as discussed in chapter
4, leads to finite size effects. The critical nature of the yielding transition as well as
the localization make simple homogenization descriptions insufficient. Unlike standard
analytical calculations or finite element methods, mesomodels were designed to account
for fluctuations, in this section therefore we propose an alternative approach to model
the plastic behavior of an amorphous matrix reinforced by hard particles.

We use the depinning-like elasto-plastic model introduced previously [172, 171, 190],
under the assumption that the elastic properties of the material are homogeneous. This
is clearly a strong assumption to make, it allows however for the use of the translation
invariant Green’s function introduced in chapter 3. In the following, we thus probe the
effects of the plastic heterogeneities only. Only the plastic disorder is then considered
and local yield thresholds are drawn from a bimodal distribution.

Numerical results show a complex size dependence of the flow stress on the introduc-
tion of hard particles. We explain the localization mechanism of the plastic strain and, in
turn the flow stress size-dependence by developing a simple analytical, model. Denoting
by N the linear size of the system, this model nicely captures the reinforcement size
effects in (logN/N)1/2 observed numerically and we show that reinforcement is related
to the percolation of shear bands throughout the system in between the hard inclusions.
This work has been published in [187].
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Figure 5.2 – Porous glass alloy. Pores prevent the nucleation of percolating shear bands,
thus reinforce the material. Figure from [82].

5.2 Introducing inhomogeneities

The simple depinning like model used so far can be easily extended to model amorphous
composite materials. Recall that the stress caused by the plastic slips could be regarded
as the superposition of the stress induced by each individual inclusion. So far we have
assumed that the elastic properties of the material are homogeneous, thus the stress
contribution of the individual inclusions could be computed as the properly centered
stress Green’s function. In order to use the same method, here we keep this assumption
and only the effect of plastic disorder will be considered. For a more accurate method
on how to compute the stress field induced by an inclusion in a material with inho-
mogeneous elastic properties, see [195]. Note however, that taking into account elastic
inhomogeneities would involve the use of as many Green’s functions as the number of
sites in the system. Moreover, the loss of translation invariance causes further problems
in imposing periodic boundary conditions. The issue of elastic heterogeneities could be
addressed via finite element Green’s functions, by building an effective Green’s function
associated to the inhomogeneous elastic constants. Our purpose here is however to keep
the model as simple as possible, therefore we assume homogeneous elasticity within the
system.

The amorphous composite is represented by a number of hard inclusions Ninc dis-
tributed randomly over the system. The linear size of the system is N , hence in our two
dimensional model there are a total number of N2 sites in the system. The fraction of
the hard inclusions is defined as Φ = Ninc/N

2 and for a fixed concentration Φ always
the same number of hard inclusions is inserted into the system. Their position is uncor-
related (except that there can be only one hard inclusion at a given position). Their size
is considered the same as the mesh size which is our mesoscopic length scale at which
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Figure 5.3 – Atomistic simulation of metallic glasses with crystalline inclusions from
[4]. Note the persistent shear localization along long, percolating bands in between the
inclusions.

we discretize. In metallic glasses [61] or filler particles in bitumen [38] the size of the
hard inclusions can be significantly larger than this mesoscopic length scale. This could,
in principle, be accomplished in our model by either considering a size distribution of
hard inclusions in which a hard inclusion can be of size of several sites or a correlation
length of their position causing clusters of hard inclusions. For now however we restrict
ourselves to the simpler case of small hard inclusions uniformly distributed along the
system as most of the following analysis is generic enough to hold in more complex cases
as well.

The plastic thresholds of the amorphous matrix and the hard inclusions are drawn
from a bimodal distribution. For the matrix, thresholds are uniformly distributed from
σc ∈ [σc + δσc;σc − δσc] with σc = 1 and δσc = 1/2. The inclusions can be either
harder or softer (more ductile or less ductile) then the matrix, but as their nature is
often crystalline, we expect a narrow distribution of their plastic properties, therefore
we consider a constant plastic threshold σc = ΣH in this case meaning that all the hard
inclusions have the same yield stress and, in contrast to the matrix, this does not change
after they experience plastic deformation. In the following, we restrict ourselves to the
study of hard (less ductile) inclusions (ΣH > σc). Moreover, we consider that the typical
plastic strain associated to a plastic deformation is the same for the matrix and the hard
inclusions which, for a fixed system size leaves us with two parameters only: the hard
site concentration Φ and their yield stress ΣH .

Simulations were performed with sizes ranging from N = 16 up to N = 256 and
a number of 40 independent realizations of the disorder and hard sites positions. The
fraction of hard sites varied between Φ ∈ [2.5 × 10−4, 0.99]. Different values of yield
strengths were used for the hard inclusions, ΣH = 4, 10, 40, 108 , the latter in order
to mimic virtually infinitely hard inclusions. Except for the largest value there is no
qualitative difference for the actual value of ΣH and most of the results will be presented
for ΣH = 10. Whenever the value of ΣH plays a role, it will be discussed separately.
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5.3 Size dependent flow stress

5.3.1 Amorphous matrix

We first review size effects for an amorphous matrix, in the absence of hard particles.
The flow stress ΣF of the material is defined as the maximum stress experienced by
the material along the simulation. It has been shown [171] that the flow stress has a
considerable size dependence.
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Figure 5.4 – Variation of the average flow stress 〈ΣF 〉 with the linear system size N for
an amorphous matrix (Φ = 0) with local thresholds from σc ∈ [0.5; 1.5]. The dashed line
corresponds to 〈ΣF 〉 = Σ∗ +A/N .

Figure 5.4 shows the system size dependence of the flow stress and we see that it
obeys a simple power-law:

ΣF = Σ∗ +
A

N
(5.1)

where A is a constant and
Σ∗ = lim

N→∞
ΣF (5.2)

is the flow stress in an infinitely large system. Note that this relationship is not a mere
consequence of the central limit theorem as the stresses within the system are strongly
correlated: for instance, the values of the effective flow stress are significantly larger than
the simple average of the local thresholds σc = 1.

Such a power-law dependence is consistent with the critical nature of the model
[16, 171, 172]: the flow stress can be considered as the critical driving threshold between
a static phase (no plasticity) and a dynamic phase (plastic flow). In the depinning
framework, the flow stress would correspond to the critical force, thus its size dependence
reflects a divergence of the correlation length: ξ = N ∝ |ΣF − Σ∗|−ν . With present
results, we recover ν ≈ 1 [171, 172].

Figure 5.5 shows the same critical behavior: the variation of the standard deviation of
the flow stress with the average flow stress shows a linear relationship: δΣF ∝ (ΣF −Σ∗)
and this is consistent with the expected critical behavior [191] (ΣF − Σ∗) ∝ δΣF ∝
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Figure 5.5 – Variation of the standard deviation δΣF of the flow stress with the average
flow stress 〈ΣF 〉 for an amorphous matrix with local thresholds from σc ∈ [0.5; 1.5] and
system sizes N = 16, 32, 64, 128, 256. Data is obtained for 40 independent realizations.
As expected for a critical transition, a linear dependence is observed. Extrapolating
towards zero fluctuations one can estimate the flow stress Σ∗ of an infinite system. For
the fluctuations then we have δΣF ∝ (ΣF − Σ∗)

N−1/ν = N−1. As expected, as the system size approaches infininty, the flow stress
fluctuations vanish and one can use the extrapolated intercept value to estimate the
infinite size flow stress Σ∗.

5.3.2 Amorphous composites

In this section, we discuss the dependence of the flow stress on the concentration of the
hard sites and its system size dependence, in other words: how does the introduction of
hard sites alter the critical finite-size scaling?

Size dependence

As shown on Figure 5.6, for low concentration of hard inclusions there is no much change
compared to the pure elastic matrix: a similar decrease and convergence to a well defined
value with the system size is observed. The behavior is remarkably different for large
concentrations of hard inclusions: a reverse trend is observed and the flow stress actually
increases with the system size. For intermediate concentrations there is no clear trend
and the flow stress may even be nonmonotonic.

Reinforcement: sub linear size dependent mixing law

Figure 5.7 shows the increase of the flow stress with the concentration of the hard sites
Φ, for an inclusion strength ΣH = 10 and various system sizes. Error bars show the
standard deviation computed for different realizations of the disorder.
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Figure 5.6 – Variation of the average flow stress 〈ΣF 〉 with the linear system size N
for an amorphous matrix and for different concentrations of hard sites (Φ). The local
thresholds in the matrix are uniformly distributed from σc ∈ [0.5; 1.5] and the thresholds
of the inclusions is ΣH = 10. Depending on the concentration, the yield strength shows
either an increasing or a decreasing system size dependence.

The size effects are clear: the larger the system, the larger the reinforcement effect
(the associated flow stress) induced by hard inclusions and as the system size increases,
the flow stress concentration-dependence converges towards a simple linear mixing law:

ΣM (Φ, N) = (1− Φ)ΣA(N) + ΦΣH (5.3)

where ΣA(N) is the flow stress of a pure amorphous matrix (as plotted on Figure 5.4).
ΣM obtained from the linear mixing law is known as the Voigt average and usually

represents an upper bound [180] for the homogenization of linear properties such as
conductivity or elasticity, however it does not necessarily hold for nonlinear properties
such as fracture or plasticity, where out-of-equilibrium mechanisms may allow values
above the Voigt bound [149, 134]. Despite the lack of precision to model experimental
data quantitatively, the Voigt average is widely used to capture the effects of plastic
reinforcement [38, 184, 37]

5.4 Hardening and localization

Upon loading, passed a yield stress value, materials yield. If, at some point the material is
unloaded, a new, increased elastic limit is obtained: the yield stress thus increases. This
behavior is called hardening. The largest possible yield stress that can be achieved is the
flow stress. Figure 5.8 shows hardening curves for different values of the hard inclusion
yield strength and for different concentrations Φ. Before reaching the stationary state
(i.e. before the stress reaches a plateau), two successive hardening behaviors can be
observed: the first one is related to the hardening of the pure matrix, whereas the second
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Figure 5.7 – Variation of the average flow stress 〈ΣF 〉 with the concentration of hard
sites (Φ) for different system sizes: N = 16, 32, 64, 128, 256 for an inclusion yield stress
ΣH = 10 and matrix thresholds uniformly distributed from σc ∈ [0.5; 1.5]. For better
visualization of low concentration values, the same data is shown on a semi-logarithmic
scale.

one appears due to the hard inclusions. Again, if the concentration is low, the hardening
curves remain unchanged compared to a pure matrix.

5.4.1 Statistical hardening of the amorphous matrix

In order to better understand the hardening of the composite, we again first review the
hardening of a pure matrix, which has been discussed in [171, 172]. In the extremal
dynamics used here, always the site that has an elastic stress closest to its threshold
yields, and, upon yield, the residual stresses are renewed in the whole system. The
hardening in this case is a direct consequence of the systematic pruning of the weak
sites, the ones that have the lowest stress barrier, and, consequently, require the least
external stress to prune. The systematic exhaustion of the sites with low thresholds leads
to a skewed threshold distribution in the stationary state: although the thresholds are
always drawn from a uniform distribution, higher threshold values are overrepresented
in the system due to the repeated removal of lower threshold values. This is a typical
feature of self organized criticality models. For example, the Bak-Sneppen evolutionary
model of fitnesses shows a similar convergence to a skewed distribution, predicting that
below a critical fitness a site cannot survive [13]. Figure 5.9 shows the evolution of the
threshold distribution P (σc) over increasing plastic strain. Initially, thresholds show a
uniform distribution. As the system approaches the stationary state, the distribution
becomes more and more skewed towards the larger values until a stationary threshold
distribution is reached. This gradual exhaustion clearly leads to statistical hardening:
as the external stress is always adjusted to flip the weakest site, a skewed distribution of
thresholds means that statistically larger external stress values are more likely to occur.

The same behavior is captured when investigating the stress barrier (effective thresh-
old) distribution P (σeff ), i.e. the extra stress necessary for the sites to yield (Figure



112 CHAPTER 5. APPLICATION TO AMORPHOUS COMPOSITES

Figure 5.8 – Stress-strain curves for different concentrations of hard sites 0 ≤ Φ ≤ 0.25
and different inclusion strength: ΣH = 4, ΣH = 10, ΣH = 40, ΣH = 108 for a system
size N = 64. Concentrations below Φ = 0.04 are not shown in the caption, however they
are plotted. For these low concentrations the hardening effect is not visible.

5.10). For each site, the effective threshold is defined as the additional stress required
for that site to yield: σeff = σc − σel. An unstable site is characterized by σeff < 0,
whereas a stable site has σeff > 0. In the extremal dynamics used, the global yield stress
is given by the lower end of this P (σeff ) distribution (recall that the external stress is
tuned to always prune the weakest site, i.e. the one with the smallest σeff ). The ap-
pearance of a sharp front at the lower end of the distribution indicates the emergence of
a macroscopic yield stress. Interestingly, the sharp front develops long before reaching
the stationary distribution indicating that a macroscopic yield stress can be defined even
in the hardening regime.

5.4.2 Inclusion hardening

As seen from the hardening curves and the threshold distributions, for an amorphous ma-
trix a single hardening regime can be observed. However, when hard inclusion are present
in a sufficient concentration, an additional hardening regime is captured, characterized
by a linear behavior (Figure 5.11). Interestingly, the hardening modulus (the slope of
the stress-plastic strain curves) is independent of the hard inclusion yield strength ΣH
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Figure 5.9 – Evolution of the distribution of local plastic thresholds of the amorphous
matrix (Φ = 0) upon plastic deformation. A gradual exhaustion of thresholds is observed
until a skewed stationary distribution is reached. This is a direct consequence of the
threshold dynamics, namely the systematic pruning of the weakest sites.

and it solely depends on the hard sites concentration Φ. Note however, that the harder
the inclusions, the longer (larger deformation) it takes to reach the stationary plateau.
At small concentrations, the hardening modulus vanishes, indicating that there is no
reinforcement of the material, but for larger concentrations, it increases monotonically
with the concentration.

Active sites

It is clear that the hardening behavior of the composites is different from that of the
amorphous matrix. It would be therefore of interest to capture at which stage of the
hardening process the hard sites actually start to deform. To better understand the hard-
ening mechanism, more precisely, the fraction of actively deforming sites until reaching
the stationary plateau, we define the normalized average distance between undeformed
sites as:

Q(ǫp) =
Φ1/2

Φ
1/2
u (ǫp)

(5.4)

where Φu(ǫp) is the concentration of sites with zero plastic strain when the average plastic

strain is ǫp. Φ1/2 gives the characteristic distance between the hard sites, and Φ
1/2
u (ǫp)

gives the characteristic length between sites with zero strain, i.e. the ones that have
not deformed yet. Q is then the ratio between the characteristic distance between hard
sites and the characteristic distance between undeformed sites. As sites deform, this
latter distance will decrease. Initially, none of the sites have deformed, thus Φu(0) = 1
leading to Q(0) = Φ1/2. For large strains, when all the sites have deformed at least
once, Φu(0) = 0. When Q(ǫp) = 1, it is likely that all the matrix sites have deformed at
least once, but none of the hard sites deformed yet. Q(ǫp) is a monotonically increasing
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Figure 5.10 – Evolution of the distribution of the effective local thresholds of the amor-
phous matrix (Φ = 0) upon plastic deformation. The effective thresholds are defined as
the stress necessary for a site to yield: σeffc = σc − σel. The convergence of the sharp
lower front is associated to the emergence of a global yield stress since always the sites
lying at the lower end of this distribution will yield and the loading stress is adjusted
to this lower end value. The yield stress gradually increases upon plastic deformation in
the transient hardening regime until it reaches the plateau stress.

function, thus we can conclude that whenever Q = 1, that is the point where hard
inclusions start to deform. In order to avoid the divergence in Q when all the sites have
deformed, we arbitrarily set Q = N when Φu = 0, thus

Q(ǫp) = min[(Φ/Φu)
1/2, N ] (5.5)

In Figure 5.12 we show the evolution of Q alongside with the corresponding stress-
strain curve for a small and for a relatively large concentration. At low concentrations,
Q reaches a plateau at precisely Q = 1 at about the same strain ǫp where the stress-
strain curve reaches its plateau, we therefore conclude that the stationary state is reached
before any of the hard sites deformed. This is compatible with the observation that at
low concentrations there is no reinforcement of the composite. Eventually, each hard
site will deform (Q = N , after the sudden jump), but long after the system reached the
stationary state, therefore they do not contribute to the hardening or reinforcement in any
way. The situation is very different for larger concentrations: the first hardening regime
ends roughly where Q = 1, but, as discussed before, there is a second one associated
to the hard sites. Indeed, in order to reach the stationary state, some of the hard sites
(but not all of them) have to deform. In this case, the hard sites that deform actually
contribute to the reinforcement of the material. This mechanism is very different from
the low concentration case: while for low concentrations hard sites are deformed by the
accumulated internal stresses, here they are deformed by the external loading stress.
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Figure 5.11 – Left: Hardening slopes for various inclusion strengths ΣH = 4, ΣH = 10,
ΣH = 40, ΣH = 108 for a system size of N = 64 and a fixed concentration Φ =
0.12. Clearly, the harder the inclusions, the longer the hardening regime, however in the
hardening regime, the slope is independent of the inclusion strength ΣH . Right: Stress-
strain curves for (virtually) infinitely hard particles for various inclusion concentrations.
The hardening slope increases with the concentration.

An internal skeleton of hard sites

In the initial stage of deformation, only sites of the amorphous matrix can deform. As
they experience plastic deformation, an internal stress is accumulated in the system, but
hard sites can sustain a much higher level of internal stress then the amorphous matrix,
thus they act here as a kind of internal skeleton bearing most of the stress experienced
by the structure. This hardening mechanism can be visualized again following the dis-
tribution of effective thresholds P (σeff ) (Figure 5.13). The accumulation of the internal
stress on hard inclusions progressively smears out the peak slightly below ΣH = 10.
Meanwhile, the position of the sharp front corresponding to the macroscopic yield stress
keeps increasing. The shift of the lower end of the distribution is thus associated to the
first hardening regime (where only the matrix sites deform), while the shrink and disap-
pearance of the peak to the second hardening regime (where hard sites start to deform).
Stationarity is reached when the peak has completely disappeared and the lower front
settles. For low concentrations, the lower front settles much before the peak disappears,
meaning that stationarity is reached long before hard sites start to deform.

A mean field approach of hardening

The reinforcement mechanism can be understood via a simple mean field argument. In
the mean field picture, one event of plastic strain ǫ0 induces an internal elastic stress

σel =

{
−µǫ0 on the deforming site

µǫ0/(N
2 − 1) ≈ µǫ0/N

2 everywhere else
(5.6)
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Figure 5.12 – Evolution of the normalized average distance Q for Φ = 10−3(left), Φ =
0.25(right) and ΣH = 10, N = 64. At low concentration, stationary flow is reached
without having to break any hard inclusion, but eventually all the hard sites deform.
On the other hand, for large concentrations a second hardening regime is observed and
stationary flow is only reached after breaking some of the hard inclusions.

where µ is the shear modulus. We assume that only the (soft) matrix sites deform at this
stage, and that their typical deformation is ǫs. The plastic deformation ǫs of the matrix
sites induces an elastic stress in the system. The stress in the soft matrix is given by
the local stress drop due to the deformation of the current site plus the stress increase
generated by all the other soft sites:

σs = −µǫs + µǫs
1

N2
× (1−Φ)N2 = −µǫsΦ (5.7)

where the first term represents the relaxation due to the local deformation, and the
second term is the sum of the long-range contributions of all the other sites. The plastic
strain in the soft matrix is related to the average plastic strain in the system via

ǫs(1− Φ)N2 = 〈ǫp〉N2 ⇒ ǫs = 〈ǫp〉/(1 − Φ) (5.8)

since the total number of events is conserved. This leads to

σs = −µ Φ

1− Φ
〈ǫp〉 (5.9)

The global yield stress is given by the minimum stress necessary to prune one site:
ΣF = min[σc − σel]. Since at this stage we assumed that only the matrix sites deform,
this minimum will always come from the matrix sites: ΣF = min[σc − σs]. Furthermore,
assuming σc = const,

ΣF = σc − σs = σc + µ
Φ

1− Φ
〈ǫp〉 (5.10)

which immediately leads to the hardening slope:

M(Φ) =
dΣF

d〈ǫp〉
= µ

Φ

1− Φ
(5.11)
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Figure 5.13 – Evolution of the effective threshold σeff = σc − σel distribution for a
composite with Φ = 0.16 and ΣH = 10. The accumulation of internal stresses gradually
wipes out the peak associated with hard particles. Meanwhile, the sharp front corre-
sponding to the lower end of the distribution increases longer and settles at a higher
value than in the case of an amorphous matrix.

We will learn later on that this expression gives only a qualitative dependence of the
hardening modulus on the plastic strain, however it readily reflects our observation that
the hardening modulus depends only on the shear modulus and the hard inclusion con-
centration, but not on the system size.

5.4.3 Localization and shear band percolation

The spatial organization of the plastic strain field gives a deeper insight into the hardening
process. Figure 5.14 shows the relative plastic strain ǫpij/〈ǫp〉 well in the stationary
state for three different concentrations: low (Φ = 10−3), medium (Φ = 10−2) and large
(Φ = 10−1), as well as the associated maps of local thresholds σc at the end of the
simulation, indicating the position of hard inclusions.

Recall that for low concentrations there is no reinforcement. Nevertheless, a tiny
number of hard sites (3 in this case) is enough to dramatically retaylor the plastic strain
landscape. As expected, the hard inclusions are barely deformed, however they do more
than that: they reduce the deformation along the ±45◦ directions that go through them.
The ±45◦ directions reflect the symmetry of the elastic kernel and are the natural di-
rections for the plastic activity for a pure amorphous matrix. In the presence of yet a
small number of hard inclusions however, plasticity is inhibited along a set of “no-slip”
bands that are defined by the positions of the hard inclusions. The hard inclusions lie
at the tip of these “no-slip” bands where stress keeps accumulating. This internal stress
will eventually prune the hard sites, but is not felt from the outside, hence results in no
reinforcement whatsoever.

For medium concentrations, the plastic strain field is more heterogeneous and it is
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Figure 5.14 – Top row: Maps of the relative plastic strain ǫpl(~r)/〈ǫpl〉 for a sys-
tem size N = 64, inclusion strength ΣH = 10, and hard inclusion concentrations
Φ = 10−3, 10−2, 10−1. Bottom row: Maps of the associated local plastic thresholds
σc. The dark dots indicate the position of hard inclusions. At low concentration, no-slip
bands form through the hard sites and the accumulated strain is considerably reduced
along these no-slip bands. At higher concentrations, no-slip bands cover the whole plane
and strain accumulates along a narrow band.

easier to distinguish two kinds of bands, both oriented along the ±45◦ directions: the
bands intercepting the hard sites are much less deformed than those with no hard sites.

In the high concentration case, the relative plastic strain field is highly heterogeneous
and localized. The vast majority of the plastic deformation is concentrated along a small
number of bands. The formation of such a band is represented on Figure 5.15 where the
incremental plastic strain over a window of size ∆〈ǫp〉 = 2 is represented for increasing
starting times. Upon deformation, the plastic activity becomes more and more localized.
At this concentration, reinforcing is already visible. The reason of the reinforcement is
that the concentration of hard sites is so large, that no shear band can form along the
natural slip directions. While at low concentrations shear bands accumulating most of
the plastic deformation can form in between the hard sites, at high concentrations this is
no longer the case: in order to form even a single shear band, some of the hard sites have
to yield. Since the stationary state is reached once at least one shear band is formed, and
for high concentrations the formation of any shear bands involve pruning some hard sites,
one will experience reinforcement, in contrast to the low concentration situation, where
shear bands can form (hence stationarity can be reached) without having to break any
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Figure 5.15 – Maps of the incremental plastic strain ∆ǫpl for an inclusion concentration
Φ = 10−1, ΣH = 10 and N = 64, for increasing values of the average plastic strain
〈ǫpl〉. The hard inclusion concentration is relatively high, thus strain accumulates along
a single, narrow band over time.

of the hard sites. We can thus conclude, that for low concentrations, hard inclusions are
broken by the accumulated internal stress, while at large concentrations by the external
stress during the transient period.

5.4.4 The weakest band

To connect the spatial distribution of the plastic activity to the underlying arrangement
of the hard inclusions, we consider as elementary units the bands oriented along the ±45◦

directions. We have seen that plastic deformation tends to localize along these bands
which reflect the symmetry of the Eshelby quadrupolar stress redistributions. Since hard
inclusions are spread in the system randomly, due to statistical fluctuations, each band
may contain a different number of hard inclusions. Let us define Bmin as the weakest
band, and Bmax as the strongest band, having the smallest and respectively the largest
average threshold of the sites that lay on the band. If the threshold contrast between the
hard sites and the matrix is sufficient, Bmin and Bmax are simply the bands containing
the smallest and largest number of hard inclusions of all the available 2N bands (N
bands for each of the 2 possible orientations). Recall that we use periodic boundary
conditions, thus all the bands are equivalent. It is then possible to compute the fraction
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min

max

Figure 5.16 – Fractions fmin and fmax of the incremental plastic strain ∆ǫpl borne by
the weakest and strongest slip systems containing the smallest and largest number of
hard inclusions. N = 64 and ΣH = 10. Above a threshold concentration, a dramatic
localization is observed along the weakest band.

of the plastic strain accumulated along Bmin and Bmax within some strain window (for
simplicity, let us take ∆〈ǫp〉 = 2, as before):

fmin, max =

∑
ij∈Bmin,max

∆ǫpij∑
ij ∆ǫ

p
ij

(5.12)

If the strain is uniformly spread, we expect fmin = fmax = 1/N , while if all the strain is
localized along Bmin, for instance, we have fmin = 1 and fmax = 0.

For a pure amorphous matrix (Φ = 0 on Figure 5.16), we find fmin ≈ 2fmax meaning
that the weakest band deforms about twice as much as the strongest one. For the
composites, this effect is somewhat stronger for Φ = 10−2 (which, however still lies below
the concentration necessary to block all the bands by hard sites): fmin ≈ 4fmax and no
reinforcement is observed at this concentration.

Above a threshold concentration however (Φ > 0.01 on Figure 5.16), all the bands
are blocked by one or more hard particles, and this has a dramatic effect on localization:
the weakest band bears a larger and larger part of the total strain spread out in the
system. Eventually, most of the plastic strain concentrates along the weakest band. We
see thus how the underlying structure characterized by the local yield thresholds molds
the plastic strain landscape.

5.5 An analytical model

In the previous section we have shown that the plastic strain tends to concentrate along
the slip system (band) with the smallest number of hard sites. At low concentrations,
there are many bands with no hard sites, above a threhold however all the shear bands



5.5. AN ANALYTICAL MODEL 121

are blocked which leads to the reinforcement of the material. Here we propose a simple
analytical model to find the value of this threshold Φc and then estimate the value of the
flow stress above this threshold.

5.5.1 Percolation

The key idea is that as long as shear bands can percolate through the system, there
is no reinforcement, thus the critical threshold Φc appears when no shear bands can
percolate. In principle, all of the 2N bands along the ±45◦ direction have to be blocked,
however for the sake of simplicity we only consider one of these directions (since one hard
site can block two diagonals, this is not a terribly wrong simplification). Moreover, we
assume that the spatial distribution of hard particles is uncorrelated so if we pick a site
at random, the probability that the site is a hard inclusion is Φ. We are then interested
in the probability that all the diagonals are blocked by hard sites, i.e. the probability
that each diagonal contains at least one hard inclusion.

The probability to have precisely n hard inclusions on a given diagonal follows a
binomial distribution:

P (Nd = n) =

(
N

n

)
Φn(1− Φ)N−n (5.13)

where Nd is the random variable counting the number of hard sites on the given diagonal
and Nd = n is the event of having precisely n hard sites on that given diagonal.

The probability of having at least one hard inclusion on a given diagonal is

P (Nd ≥ 1) = 1− P (Nd = 0) = 1− (1− Φ)N (5.14)

There are N independent diagonals in the system, thus the probability to have at least
one hard inclusion on each diagonal is

P (B) = [1− (1− Φ)N ]N (5.15)

where B stands for “blocked”. In other words, P (B) is nothing but the probability that
a shear band cannot percolate through the system without hitting a hard site.

The probability P (B) of blocking all the shear bands is shown on Figure 5.17 for
various system sizes. Clearly, it increases with the concentration, however it has a con-
siderable system size dependence, and approaches to a vertical jump at Φ = 0 as N → ∞.

We define the percolation threshold as the concentration where P (B) is the steepest,
meaning that the threshold is the concentration where the second drivative of P (B)
vanishes. Solving

d2P (B)

dΦ2

∣∣∣
Φ=Φc

= 0 (5.16)

for Φc leads to

Φc(N) = 1− 1

(N + 1)1/N
(5.17)

Figure 5.17 shows the size-dependence of this critical concentration. As N → ∞, Φc → 0.
The reinforcement curves on Figure 5.7 show a trend which is consistent with our newly
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derived Φc(N) dependence: the larger the system, the smaller the critical concentration
Φc above which reinforcement is observed.
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Figure 5.18 – Increase of the rescaled flow stress. The existence of a threshold concen-
tration is put into evidence by the collapse of the reinforcement curves when scaled with
the threshold concentration.

We can define the rescaled flow stress σR(Φ, N) as the reinforcement factor with
respect to the flow stress of the pure amorphous matrix:

σR(Φ, N) =
ΣF (Φ, N)− ΣA(N)

ΣH − ΣA(N)
(5.18)

where ΣA(N) = ΣF (Φ = 0, N). Figure 5.18 shows that by rescaling both σR and Φ with
the critical concentration, the curves corresponding to different system sizes collapse into
a single master curve.
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5.5.2 Effective plastic behavior is defined by the weakest band

The weakest band follows weak elastic line depinning

Equipped with the idea that most of the plastic strain is concentrated along the weakest
band, we can take one step further and estimate the size and concentration dependence
of the flow stress ΣF (Φ, N). Under the assumption thus that all the plasticity happens
along one single (the weakest) band, our two dimensional problem has reduced to a
one dimensional problem. This problem is well known from elastic line or crack front
depinning studies [65] with an elastic kernel that decays as 1/x2 with the distance. Such
a kernel is simply a slice of the Eshelby kernel along a diagonal. The homogenization
procedure in this context has been studied in [134] and it was found that depending on
the disordered landscape one may either recover an effective toughness that is simply the
average of the thresholds along the line, or a significantly larger effective toughness. If the
threshold landscape in the direction of propagation is smooth enough, the fracture line
can follow it smoothly and the effective toughness is indeed the average of the thresholds
along the line. This condition is referred to as “weak pinning”. On the other hand, if
the landscape is rough, the line will jump between subsequent potential minima and the
effective toughness in this case is given by the positions actually visited. This situation
is called “strong pinning”.

For the weakest diagonal, weak pinning conditions hold since the threshold of the
hard sites is fixed (does not change upon deformation) and is sufficiently larger than the
thresholds in the matrix. For a pure line with no hard sites “weak pinning” conditions
would not hold because the threshold landscape fluctuations are too sharp. If the line
however contains some hard sites, its flow stress can be computed simply as the weighted
average of the flow stress of the pure line and the yield stress of hard sites. The linear
mixing law on Figure 5.19 shows that this is a good approximation.
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Figure 5.19 – Exact analytical predictions of the flow stress concentration dependence
based on the weakest band model (eq. 5.26). The linear mixing law describes the
reinforcement of a one dimensional depinning line.
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Weakest band yield stress

We have thus seen that although a linear mixing law does not work for the composite, it
works very well for a one dimensional elastic line. We have seen as well that most of the
plastic strain is borne by the weakest diagonal, thus the flow stress of the system is close
to the flow stress of that one diagonal. We can therefore approximate the flow stress of
the composite as the weighted average of the flow stress of the amorphous material ΣA

and the hard inclusion yield stress ΣH on the weakest band. Denoting by m the number
of hard inclusions on the weakest band, this reads as:

ΣF =
N − 〈m〉

N
ΣA +

〈m〉
N

ΣH (5.19)

where 〈m〉 is the average number of hard sites on the weakest band which remains to be
computed.

An exact formula for 〈m〉 can be obtained starting from the definition of the average:

〈m〉 =
N∑

n=0

nP (m = n) =
N∑

n=1

nP (m = n) (5.20)

where P (m = n) is the probability of having precisely n hard inclusions on the weakest
diagonal. The variable n can be trivially rewritten as

n =
n−1∑

k=0

1 (5.21)

so

〈m〉 =
N∑

n=1

n−1∑

k=0

P (m = n) =
N−1∑

k=0

N∑

n=k+1

P (m = n) (5.22)

where the second equality is a result of an equivalent reindexing of terms. The sum over
n gives the complementary cumulative distribution function, therefore

〈m〉 =
N−1∑

k=0

P (m ≥ k + 1) =

N∑

n=1

P (m ≥ n) (5.23)

where we recover the classical result: the expected value of a random variable is given
by the sum of 1 minus the cumulative distribution function.

Obviously we still have to find P (m ≥ n), the probability that the weakest band
contains at least n hard sites. Let us denote by P (Nd ≥ n) that a randomly selected
diagonal contains at least n hard sites. The event that the weakest band contains at least
n hard sites is then the same as the event that all the bands contain at least n hard sites.
Since we assumed the position of the hard sites is independent:

P (m ≥ n) = P (Nd ≥ n)N (5.24)
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We have also seen that the distribution of the number hard sites on a diagonal P (Nd = n)
is a binomial distribution, thus P (Nd ≥ n) is the complementary cummulative distribu-
tion of that binomial distribution and it can be expressed with the aid of the regularized
incomplete β function IΦ as

P (Nd ≥ n) = IΦ(n,N − n+ 1) (5.25)

which gives a closed form expression of the average number of hard inclusions on the
diagonal with the minimum number of hard inclusions:

〈m〉 =
N∑

n=1

[IΦ(n,N − n+ 1)]N (5.26)

The flow stress computed using the above formula for various concentrations and system
sizes is plotted on Figure 5.19 along with the simulation data and they show a good
agreement.

Weakest band yield stress fluctuations
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Figure 5.20 – Analytical predictions of the flow stress fluctuations. Since our approach
assumes that the positions of the inclusions are independent, it tends to overestimate fluc-
tuations. As the system size (and thus, at constant concentrations, the number of hard
sites) increases, the hypergeometric distribution of dependent draws converges towards
our assumed binomial distribution of independent draws, consequently the estimation
works better for larger systems.

One may try to push the method presented above even further and estimate the
fluctuations in the flow stress (i.e. its standard deviation δΣF ) which is related to the
fluctuations of m via

δΣF = [〈ΣF2〉 − 〈ΣF 〉2]1/2 =
ΣH − ΣA

N
[〈m2〉 − 〈m〉2]1/2 (5.27)
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The mean square of m is defined as

〈m2〉 =
N∑

n=1

n2P (m = n) (5.28)

Again, n2 can be replaced by

n2 =
n∑

k=1

(2k − 1) (5.29)

and reindexing gives

〈m2〉 =
N∑

n=1

n∑

k=1

(2k − 1)P (m = n) =

N∑

k=1

(2k − 1)

N∑

n=k

P (m = n) (5.30)

where the inner sum can be evaluated finally giving

〈m2〉 =
N∑

n=1

(2n − 1)P (m ≥ n) =

N∑

n=1

(2n − 1)[IΦ(n,N − n+ 1)]N (5.31)

Flow stress fluctuations estimated with the above formula are shown on Figure 5.20 and
we see that the prediction follows the right trend. In contrast to the average flow stress
estimation however, the prediction of fluctuations is less accurate and systematically
tends to overestimate fluctuations. As the system size increases however, the predicted
values are closer and closer to the simulation values. We conclude therefore, that this
bias is a side effect of our assumption that the position of hard sites is independent.
However, at a fixed concentration, always a fixed number of hard sites is spread out in
the system, so the number of the hard sites within the different realizations does not
fluctuate. This leads to a reduced fluctuation compared to our assumption of placing
a hard inclusion on a lattice site with probability Φ where the actual number of hard
inclusions in the system could differ in each realization. More precisely, the number of
hard sites on a diagonal rather follows a hypergeometric distribution which, however, at
large N converges to our assumed binomial, and this is why our prediction works the
best for large N .

A manageable approximation

Although we obtained an analytical expression both for ΣF (Φ, N) and δΣF (Φ, N), the
computation of 〈m〉 involves a large sum of the regularized incomplete β function evalu-
ated at various points, which, in turn, involves the computation of factorials and that is
computationally expensive. In what follows, we derive an approximate but much simpler
to handle expression for 〈m〉.

To that end, we use a result from extreme value theory on the minimum of N inde-
pendent, identically distributed random variables for the probability to have an outcome
Nd less or equal to the average minimum over a block of N draws:

P (Nd ≤ 〈m〉) = 1

N
as N → ∞ (5.32)
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Denoting by

f(Φ, N) =
〈m〉
N

(5.33)

the average fraction of hard inclusions on the weakest band:

P (Nd ≤ fN) =
1

N
as N → ∞ (5.34)

It turns out that for random variables coming from a binomial distribution (and in our
case, we saw that Nd is binomially distributed), we can utilize a result from cryptography
studies [22, 23]:

P (Nd ≤ fN) =
Φ(1− f)1/2

(Φ − f)(2πNf)1/2
exp[−ND(f ||Φ)] as N → ∞ (5.35)

where D(f ||Φ) denotes the Kullback-Leibler divergence given by

D(f ||Φ) = f ln
f

Φ
+ (1− f) ln

1− f

1− Φ
(5.36)

Denoting by ǫ = Φ − f , ǫ → 0 as N → ∞ and we can use of another property of the
Kullback-Liebler divergence [22, 23]:

D(f ||Φ) = ǫ2

2Φ(1− Φ)
+O(ǫ3) (5.37)

so we have
1

N
=

Φ

ǫ

[
1−Φ+ ǫ

2πN(Φ − ǫ)

]1/2
exp

[
− Nǫ2

2Φ(1− Φ)

]
(5.38)

which, to the first order in ǫ becomes

1

N
=

1√
2π

√
Φ(1− Φ)/N

ǫ
exp

[
− Nǫ2

2Φ(1− Φ)

]
(5.39)

Let us define ǫ′ = ǫ/
√

Φ(1− Φ)/N so the above equation can be rewritten as

ǫ′2 = 2 ln
N√
2πǫ′

(5.40)

This is a transcendental equation in ǫ′ and only an approximate solution can be obtained.
To obtain an approximate solution, we define the variable r such that:

ǫ′ =
√
2hN (1 + r) , (5.41)

where hN = ln N√
2π

. The variable r tends to 0 in the limit of large N . We also have:

ǫ′2 = 2hN (1 + r)2 = 2hN (1 + 2r) +O(r2) , (5.42)
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to first order in r. Using the transcendental equation 5.40 and iterating once in ǫ, we
get:

ǫ′2 = 2 ln
N√

2π
√
2hN (1 + r)

. (5.43)

Equating the right hand sides of equations 5.42 and 5.43 leads to:

2hN (1 + 2r) = 2 ln
N√

2π
√
2hN (1 + r)

, (5.44)

= ln
N√

2π
√
2hN

− 2 ln (1 + r) , (5.45)

= ln
N√

2π
√
2hN

− 2r . (5.46)

to first order in r. Eq. 5.46 is a linear equation in r, its solution reads:

r =
ln N√

2π
√
2hN

− hN

2hN + 1
. (5.47)

Finally, we obtain for the average fraction of hard sites on the weakest diagonal:

f(Φ, N) = Φ−
[
2Φ(1− Φ)

N
hN

]1/2
(1 + rN ) (5.48)

where

rN = −1

2

ln(2hN )

2hN + 1
(5.49)

hN = ln
N√
2π

(5.50)

Size scaling of the flow stress

The rescaled flow stress σR(Φ, N) in this approximation is equal to f(Φ, N):

σR(Φ, N) =
ΣF (Φ, N)− ΣA(N)

ΣH − ΣA(N)
= f(Φ, N) (5.51)

meaning that Φ − σR(Φ, N) ∝ (lnN/N)1/2. As shown on Figure 5.21, the scaling is
obeyed for low Φ and large N because that is where the analytical approximation holds.

Figure 5.22 shows the estimates of the rescaled flow stress σR(Φ, N) based on the
analytical computation of f(Φ, N). Again, the approximation works the best for low
concentrations and large system sizes. The bias is considerable at low N compared to
Figure 5.19, which gave a better approximation with an exact expression. We can there-
fore conclude that the bias is due to the approximations made during the computation of
f(Φ, N). Finally, the distance of the flow stress to the linear mixing law can be computed
as

δ = ΣL − ΣF = (Φ− f)(ΣH − ΣA) ∝ (lnN/N)1/2 (5.52)

and we see that it obeys the same (lnN/N)1/2 scaling.
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Figure 5.21 – Size scaling of the rescaled flow stress σR(Φ, N). Dots indicate simulation
data and lines the analytical (logN/N)1/2 prediction. Interception on the vertical axis
indicates the N → ∞ limit, i.e. the stress value obtained from the linear mixing law.

Scaling behavior of the hardening regime

Finally, we show how the above analysis along with a modified mean field argument
can elucidate the hardening behavior. Figure 5.23 shows that the expression obtained
from the simple mean field reasoning for the hardening modulus M(Φ, N) = µΦ/(1−Φ)
strongly overshoots the simulation data. In order to derive a better approximation, we
use our previous knowledge on the localization of the plastic activity along the weakest
band. We propose therefore a simplified elastic kernel that obeys the same quadrupolar
symmetry as the Fourier kernel used so far, it is however mean field in the sense that we
do not account for any decay with the distance from the plastic event. The kernel we
used for a system of size N is defined as

Gij =





−1 i = j = 0
1

N−1 ≈ 1
N i = j or i = −j

− 1
N−1 ≈ − 1

N i = 0 or j = 0
1

N2−4(N−1) ≈
1
N2 elsewhere

(5.53)

As usual, we have stress relaxation at the center, and along the bands oriented towards
the 0◦ (x) and the 90◦ (y) directions, a positive “kick” along the bands at ±45◦ and a
mean-field stress in the rest of the system. Note that the sum along any band in the
±45◦ directions is approximately zero:

1

N2
×N +

1

N
× 1− 1

N
× 2 = 0 (5.54)

meaning that a homogeneous deformation along such a band results in a vanishing inter-
nal stress, hence deformations along these directions are soft modes of the kernel. This
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Figure 5.22 – Analytical predictions of the rescaled flow stress concentration dependence.
Clearly, our approximation is based on the large N assumption, hence it works the best
for large system sizes.

property allows us to consider these bands non-interacting if we neglect the inhomogene-
ity of the plastic strain along the individual bands. Moreover, along the central band
we recover a one dimensional mean field interaction: unit stress drop on the deforming
site and a constant stress increase 1/N2 everywhere else on the band. We consider thus
a set of N non-interacting bands, each of them having a mean plastic strain ǫi, so that
the mean plastic strain in the system 〈ǫp〉 = 〈ǫi〉. During the hardening stage, all the
plastic strain is borne by the soft matrix sites since the hard inclusions do not deform.
Note that we fixed the average value of the plastic strain in each band, meaning that the
typical strain ǫsi borne by each soft site may differ from band to band and is given by

ǫsi =
ǫi

1− fi
(5.55)

where fi is the fraction of hard inclusions on band i.
Since the bands are independent, the internal stress on the soft matrix sites induced

by the plastic strain field can be separately written for each band as

σsi = −µǫsi + µǫsi
1

N
× (1− fi)N (5.56)

which can be further written as

σsi = − 1

1− fi
µǫi + µǫi = − fi

1− fi
µǫi (5.57)

Here the first term comes from the local relaxation on the deforming site, while the
second one is the stress increase due to the deformation of all the other sites on the same
band. The effect of deformations along other bands is not counted since the bands are
considered independent due to the soft modes.
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Figure 5.23 – Mean field estimate of the hardening modulus. Although the estimate
recovers the right trend, it shows system size dependence which was not observed in
simulations.

Again, the external stress is given by ΣF = 〈min(σc−σsi)〉 which can be approximated
as

ΣF ≈ σc +min

[
fi

1− fi

]
µ〈ǫi〉 = σc +

f

1− f
µ〈ǫp〉 (5.58)

where the second equality holds since fi/(1−fi) is monotonically increasing. Recall that
f denotes the fraction of hard inclusions on the weakest band. We then finally reached
to an expression of the hardening modulus:

M(Φ, N) =
dΣF

d〈ǫp〉
= µ

f(Φ, N)

1− f(Φ, N)
(5.59)

The hardening modulus in the linear regime is solely controlled by the fraction of the
hard sites on the weakest band. Figure 5.23 shows that the estimate performs much
better than the simple mean field approximation µΦ/(1 − Φ), interestingly however we
encounter size effects that are not reflected by the simulation data.

We can give an estimate to the strain accumulated during the second hardening
(reinforcement) regime ǫH :

ΣF − ΣH ≈M(Φ, N)ǫH (5.60)

On the other hand, by definition ΣF − ΣH = σR[Σ
H − ΣA] and we saw that σR = f .

Putting it all together:
ǫH = (1− f)[ΣH − ΣA]/µ (5.61)

leading to the scaling
µǫH

ΣH − ΣA
− (1− Φ) ∝ (lnN/N)1/2 (5.62)

in the limit of large N where rN → 0.
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5.6 Conclusions

The plastic behavior in amorphous composites shows two types of system size depen-
dence: one associated to the amorphous matrix as described in [172] and another one
associated to the hard inclusions. While the former results in an 1/N dependence of the
flow stress with the system size, the latter predicts a size dependent threshold concentra-
tion below which no reinforcement is observed. The threshold concentrations corresponds
to the percolation of shear bands through the system within the hard inclusions. Above
the threshold concentration, the distance of the flow stress to a linear mixing law scales
as (logN/N)1/2 and the flow stress increases with the system size. The linear mixing law
then gives an upper bound to the flow stress. We have shown that the increase in the
flow stress is associated to the breakthrough of the weakest shear band over hard sites
and the flow stress value is governed by the accumulation of plastic activity along the
weakest band. Finally, we developed a simple model based on the weakest shear band
hypothesis that turned out to predict well the flow stress value, its size dependence and
even the flow stress fluctuations.
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There are various methods available to compute the elastic fields associated to plastic
inclusions and they deliver the solution in various forms [57, 20, 40, 71, 85, 178, 193, 194].
Depending on the quantity of interest, the shape of the inclusion and the boundary
conditions, one or the other may be more convenient. Although, theoretically it is possible
to connect the results of different methods since, at the end of the day they solve the
same problem, in practice this can be cumbersome. For instance, when interested in
the closed form solution of the displacement field induced by an ellipsoidal inclusion in
an infinite bulk, one may consider Eshelby’s solution [10, 57, 193]. For an approximate
far-field solution of a two dimensional circular inclusion embedded in an infinite matrix,
the complex potential method is more appropriate because it readily delivers the solution
grouped by expansion terms. When a circular inclusion is enclosed in a periodic matrix,
Picard’s method is the most convenient one since the solution in this case comes in the
Fourier space [138].

To get an idea about how to attack the inclusion problem, in this section we briefly
review the basic idea behind some of the available methods and also present their results
for future reference. Let us thus consider a two-dimensional, infinite, linear, isotropic
elastic material with a circular inclusion with the very same elastic properties as the bulk.
Let us denote by a the radius of the inclusion, by µ and ν the shear modulus and Poisson
ratio of the material. Let us further assume that the inclusion suffers a homogeneous pure
shear plastic deformation, such that ǫincp xy ≡ ǫ0 and ǫincp xx = ǫincp yy = 0. In other words, the
stress-free reference frame of the inclusion has changed: it is now in a stress-free state
when his strain compared to the initial reference frame of the undeformed inclusion is
ǫ0. The inclusion is however sorrounded by the elastic bulk, hence it is squeezed into the
material. Consequently, the inclusion is unable to reach its stress-free configuration, but
at the same time, it “pushes” on the bulk inducing a stress into the whole material.

The problem to solve therefore is: given the size of the inclusion a and its eigenstrain
(plastic deformation) ǫ0, what is the displacement field ~u(~r), and the associated stress
σαβ(~r) within the inclusion and outside the inclusion?

Note that nothing has been stated about why the inclusion suffers a plastic defor-
mation. There are various reasons this could happen including thermal activation or
mechanical load, but the activation mechanism is irrelevant in the computation of the
above mentioned quantities.

Eshelby’s method

Ehelby’s original method consists of a 4-step thought experiment [10, 57, 193] (Figure
A.1):

1. The inclusion that undergoes a plastic deformation is removed from the matrix.
Since they do not interact, the stress is zero both within the inclusion and the
matrix.

2. A traction force ~T is applied to the surface of the inclusion to deform it back to its
original shape. The stress in the matrix is still zero, but the stress in the inclusion is
not. Assuming the deformation is homogeneous (as it will be later on proven), the
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stress in the inclusion is proportional to its eigenstrain since that is the necessary
elastic strain that deforms it back to its original shape.

3. The inclusion is placed back into the matrix. There is no change in any of the
elastic fields compared to the previous step.

4. A force with equal magnitude with the previously applied surface traction, but
opposite direction ~F = −~T is applied along the surface of the inclusion. This force
thus cancels the traction and leads us back to the original problem. What is to be
noted is that an inclusion undergoing an eigenstrain has the same effect as applying
a body force ~F on the boundaries of the inclusion with no eigenstrain.

Figure A.1 – Eshelby’s thought experiment. Since it is always easier to think in 1D, I
included the analogous 1D inclusion as well.

The elastic problem thus has reduced to:

1. finding the surface force ~T (~r) and the corresponding ~F (~r) = −~T (~r) that deforms
the distorted inclusion back to its original shape and

2. solve the elastic problem of applying that force along the boundaries of the imagi-
nary inclusion in a matrix with no inclusions.

The solution first involves the computation of the Eshelby tensor that relates the
strain within the inclusion to its eigenstrain. Then the Lamé-Navier equations are solved
for the displacements in the matrix. Details regarding the solution are spelled out in
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[10, 57, 193] and here I only provide the final result. Note that plain strain conditions
were considered and zero displacement at infinity was imposed. It turns out that, within
a circular inclusion with a homogeneous eigenstrain, the Eshelby tensor is constant all
along the inclusion, consequently the stress and strain are homogeneous as well. Within
the inclusion, one finds that σIxx = σIyy = 0, similarly ǫIxx = ǫIyy = 0 and:

uIx =
3− 4ν

4(1 − ν)
y ǫ0

uIy =
3− 4ν

4(1 − ν)
x ǫ0

ǫIxy =
3− 4ν

4(1 − ν)
ǫ0

σIxy = − 2µ

4(1− ν)
ǫ0 (A.1)

whereas outside the inclusion:

ux(x, y) =
ǫ0

2(1 − ν)

a2

r2
y

(
1− 2ν +

a2 + 4x2

2r2
− 2a2x2

r4

)

uy(x, y) =
ǫ0

2(1 − ν)

a2

r2
x

(
1− 2ν +

a2 + 4y2

2r2
− 2a2y2

r4

)
(A.2)

with r = (x2 + y2)1/2.
From the displacement fields it is easy to compute the strain fields:

ǫxx + ǫyy =
∂ux
∂x

+
∂uy
∂y

= −a2ǫ0
1− 2ν

1− ν

sin 2θ

r2
(A.3)

ǫxx − ǫyy =
∂ux
∂x

− ∂uy
∂y

= −a2ǫ0
1

2(1− ν)
sin 4θ

(
2

r2
− 3a2

r4

)
(A.4)

ǫxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
= a2ǫ0

1

4(1 − ν)
cos 4θ

(
2

r2
− 3a2

r4

)
(A.5)

and, using Hooke’s law, the stress fields:

σxx + σyy = (λ+ 2µ)(ǫxx + ǫyy) = −a2ǫ0
2µ

1− ν

sin 2θ

r2
(A.6)

σxx − σyy = 2µ(ǫxx − ǫyy) = −a
2ǫ0µ

1− ν
sin 4θ

(
2

r2
− 3a2

r4

)
(A.7)

σxy = 2µǫxy = a2ǫ0
µ

2(1 − ν)
cos 4θ

(
2

r2
− 3a2

r4

)
(A.8)

Note the quadrupolar symmetries of the shear components. Moreover, interestingly,
although there is no volumetric deformation of the inclusion, there is a pressure compo-
nent in the induced elastic field which obeys a dipolar symmetry.
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Complex potentials

In two dimensions, it is possible to solve the inclusion problem with a complex potential
formalism [169, 122]. First, the spatial coordinates are represented by the complex num-
ber z = x+ iy = r exp(iθ). We further introduce the following complex functions for the
displacements, stresses and body forces:

U = Ux + iUy

S0 = σxx + σyy

S = σyy − σxx + 2iσxy

F = Fx + iFy (A.9)

In terms of these complex functions, the balance equations and compatibility equations
in terms of stresses (also known as Beltrami-Michell equations):

∇ · σ + ~F = 0 (A.10)

(1− ν)

[
∂2σxx
∂y2

+
∂2σyy
∂x2

]
− ν

[
∂2σxx
∂x2

+
∂2σyy
∂x2

]
− 2

∂2σxy
∂x∂y

= 0 (A.11)

can be rewritten as:

∂S0
∂z

− ∂S

∂z̄
+ F̄ = 0 (A.12)

∂2S0
∂z∂z̄

+
1

4(1 − ν)

(
∂F

∂z
+
∂F

∂z̄

)
= 0 (A.13)

This can be easily verified by noting that for a function f(z):

∂f

∂z
=

1

2

[
∂f

∂x
− i

∂f

∂y

]
(A.14)

∂f

∂z̄
=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
(A.15)

Note that for the second equation both the compatibility and the balance equations were
used, that is the reason why it contains no σxy, it involves, however the force F.

The reason for rewriting the elasticity equations in the complex plane is that the gen-
eral solution of these equations is known and can be written in terms of two holomorphic
functions ϕ and ψ called the Kolossov - Muskhelishvili potentials. Assuming zero body
force (F = 0), the general solution has the form [cite again]:

2µU = (3− 4ν)ϕ(z) − zϕ′(z)− ψ(z) (A.16)

S0 = 2
[
ϕ′(z) + ϕ′(z)

]
(A.17)

S = 2
[
z̄ϕ′′(z) + ψ′(z)

]
(A.18)

We introduce one more auxiliary function:

K = 2
[
ϕ(z) + zϕ′(z) + ψ(z)

]
(A.19)



138 APPENDIX A. ESHELBY INCLUSIONS

which is useful for computing the force per unit area acting on an arbitrary surface (in
2D actually curve) in the material. Let us assume that such a curve is described by
z = z(s) and has a normal vector ~n = ~n(s). The force per unit area (length in 2D) acting
on the curve is then given by ~f = σ · ~n and its complex counterpart can be computed as

fx + ify = − i

2

∂K

∂s
(A.20)

Note that so far nothing has been assumed about the specific elasticity problem other
that is two dimensional and there are no body forces therefore the equations and functions
introduced up to now are very general.

Now we have to apply the general method to the inclusion problem. Solving the
elasticity problem is practically equivalent to determining the functions ϕ(z) and ψ(z)
inside and outside the inclusion. The inclusion undergoes a homogeneous plastic defor-
mation. The complex displacement field that describes the unconstrained deformation is
Up = iǫ0z̄.

The potentials within the inclusion can be written in form of Laurent series. Since
the functions are supposed to go to a finite value as z → 0, no negative powers can
appear:

ϕin(z) =

∞∑

n=1

αin
n z

n (A.21)

ψin(z) =
∞∑

n=1

βinn z
n (A.22)

Similarly, the potentials should vanish as |z| → ∞, therefore no positive powers can
appear in the expansion of the potentials outside the inclusion:

ϕout(z) =
∞∑

n=1

αout
n z−n (A.23)

ψout(z) =

∞∑

n=1

βoutn z−n (A.24)

The continuity of displacements at the boundary of the inclusion implies:

Uin
el (z = aeiθ) + Up(ae

iθ) = Uout(aeiθ) (A.25)

whereas the continuity of forces on the boundary (ie. the equilibrium of the boundary)
implies:

∂Kin

∂s
(aeiθ) =

∂Kout

∂s
(aeiθ) (A.26)

with s = aθ.
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Plugging in the potential expansions into the continuity conditions, and matching the
coefficients one obtains:

αin
n = 0, βin1 = −i µǫ0

2(1 − ν)
, βinn 6=1 = 0 (A.27)

αout
1 =

µǫ0
2(1− ν)

ia2, αout
n 6=1 = 0, βout3 = a2αout

1 , βoutn 6=3 = 0 (A.28)

Within the inclusion thus we have:

ϕin(z) = 0, ψin(z) = −i µǫ0
2(1− ν)

z (A.29)

which leads to:

Uin = Uin
el + Uin

p = iǫ0
3− 4ν

4(1 − ν)
z̄ (A.30)

Sin
0 = 0 (A.31)

Sin = −i µ

1− ν
ǫ0 (A.32)

Similarly, outside the inclusion:

ϕout(z) =
µǫ0ia

2

2(1 − ν)

1

z
, ψout(z) =

µǫ0ia
4

2(1− ν)

1

z3
(A.33)

which leads to:

Uout =
iǫ0a

2

4(1− ν)

[
(3− 4ν)

1

z
− z

z̄2
+
a2

z̄3

]
(A.34)

Sout
0 = − µǫ0

1− ν
i

[
1

z2
− 1

z̄2

]
(A.35)

Sout =
µǫ0ia

2

1− ν

1

z3

[
2z̄ + 3

a2

z

]
(A.36)

Extracting then the displacements and stresses from the complex displacements and
complex stresses gives back the same results as in the previous section (plugging in
z = r exp(iθ) gives the result right away in polar coordinates).

The advantage of this method is that it elegantly simplifies the solution of tenso-
rial differential equations. Its main disadvantage however is that it only works in two
dimensions.

Picard’s method

This solution uses the linearity of the elastic equations and assumes the material is
incompressible [138]. Therefore, first we compute the displacement field caused by a
point-force at the origin in a two-dimensional, isotropic, incompressible, translation-
invariant elastic medium. Translation invariance essentially means that the medium is
either infinitely large or finite, but its edges are periodically folded up.
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Incompressibility and equilibrium equations read as:

∇ · ~u(~r) = 0 (A.37)

∇ · σ(~r) + ~fδ(~r) = 0 (A.38)

The stress tensor can be decomposed into an isotropic and a deviatoric part. Since we
assume incompressibility, we can only apply Hooke’s law on the deviatoric part and leave
the pressure in the isotropic part:

σ(~r) = −p(~r)I2 + 2µǫ(~r) (A.39)

with ǫ = (∇~u + ∇~uT )/2. Substituting into the stress, and then the stress into the
balance equation, we end up solving for ~u(~r):

∇ · ~u = 0 (A.40)

µ∇ ·
(
∇~u+∇~uT

)
−∇ · (pI2) + ~fδ(~r) = 0 (A.41)

Since the system is translation invariant, we use Fourier methods to solve the above
equations. Whether we Fourier transform the equations or expand them in Fourier series,
is a matter of boundary conditions: the former is appropriate for an infinite system, while
the latter for a finite but periodic system. Note that the closed form expression of the
displacements is the same regardless whether we Fourier transform or expand in Fourier
series.

Transforming the first equation and the second one (by cartesian components) and
eliminating the pressure one arrives to:

kyũx − kxũy =
1

µk2
(fxky − fykx) (A.42)

kxũx + kyũy = 0 (A.43)

The solution can be written as:

~̃u = Õ · ~̃f (A.44)

where

Õ =
1

µk4

[
k2y −kxky

−kxky k2x

]
(A.45)

is known as (the Fourier transform of) the “Oseen”-tensor.
Now that we have the displacement field due to a point-force, let us compute the

displacement field due to an arbitrary shear eigenstrain (plastic strain) distribution ǫ
p

such that ǫ
p
xx = ǫ

p
yy = 0. The total strain then is composed by an elastic and a plastic

part: ǫ = (∇~u + ∇~uT )/2 = ǫ
p + ǫ

el but is only the elastic part that results in stress,
Hooke’s law thus changes to:

σ = −pI2 + 2µ(ǫ− ǫ
p) (A.46)
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thus the equilibrium equation modifies to:

µ∇ ·
(
∇~u+∇~uT

)
−∇ · (pI2)− 2µ∇ · ǫ

p = 0 (A.47)

Due to linearity, the solution to the above equation can be written as [138]:

~u(~r) =

∫
O(~r − ~r′)[−2µ∇ · ǫ

p(~r′)] (A.48)

or, in the Fourier space:

~̃u(~k) = Õ · (2µi~k · ǫ̃p) (A.49)

Remembering that ǫ
p
xx = ǫ

p
yy = 0, this reduces to

ũx = 2µiǫ̃pxy(Õxxky + Õxykx) (A.50)

ũy = 2µiǫ̃pxy(Õxyky + Õyykx) (A.51)

For a localized, point-like inclusion ǫpxy = αδ(~r) where α is a constant related to the
inclusion. In order to connect it to physical parameters, we impose that the average
plastic strain around the inclusion within an (imaginary) volume πa2 be ǫ0, thus:

ǫ0 =
1

πa2

∫
ǫpxyd~r =

α

πa2
(A.52)

thus α = πa2ǫ0 = ǫ̃pxy which leaves us with

ũx = 2µiπa2ǫ0(Õxxky + Õxykx) (A.53)

ũy = 2µiπa2ǫ0(Õxyky + Õyykx) (A.54)

It is possible to show that the above displacement field is equivalent to that of a force
quadrupole as a→ 0, but a2ǫ0 kept constant. The quadrupolar force field can be written
as:

~f

f0
=

[
0
1

]
δ(x − a, y) +

[
0
−1

]
δ(x+ a, y) +

[
1
0

]
δ(x, y − a) +

[
−1
0

]
δ(x, y + a) (A.55)

while its Fourier transform (using the shift property):

~̃f = 2if0

[
sin aky
sin akx

]
≈ 2if0a

[
ky
kx

]
(A.56)

Comparing the displacement field generated by this force quadrupole gives f0 = µǫ0πa.
The shear stress can then be computed using:

σ̃xy = 2µ(ǫ̃xy − ǫ̃pxy) (A.57)

ǫ̃xy = − i

2
(kyũx + kxũy) (A.58)

which gives

σ̃xy = −8µπa2ǫ0
k2xk

2
y

k4
(A.59)
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Here we show that that the eigenvectors of a translation invariant linear operator are
the Fourier modes, and its eigenvalues are the Fourier transform. This result is known
under various forms, and the most common form is the Block theorem [176, 81]. Here
we spell out the main idea behind it, in a light that meets our needs.

First, let us consider the translation operator T̂ defined as

T̂~a |ϕ(~r)〉 = |ϕ(~r + ~a)〉 (B.1)

for a field |ϕ(~r)〉.
Let us say that an operator L̂ acts on |ϕ〉 such that

L̂ |ϕ〉 = |ψ〉 (B.2)

Then the operator L̂ is translation invariant if

L̂(T̂ |ϕ〉) = T̂ |ψ〉 (B.3)

The right hand side of the above equation can be written as T̂ |ψ〉 = T̂ L̂ |ϕ〉, thus we
can conclude that if an operator is translation invariant, it commutes with the translation
operator, that is

[L̂, T̂ ] = 0 (B.4)

An important consequence of the above commuting relation is that since T̂ and L̂ com-
mute, they have a common eigenbasis. It is therefore enough to find the eigenvectors of
T̂ and construct the eigenbasis of L̂ starting from there.

The task is therefore to find the |u〉 eigenvectors and λ(~a) of the operator T̂~a:

T̂~a |u〉 = λ(~a) |u〉 (B.5)

Applying a translation of ~a and then a translation of ~b to any vector is equivalent to
applying one translation ~a+~b. Also, translation operators commute among themselves,
therefore they have a common set of eigenfunctions. Moreover, all the translation op-
erators commute with L̂, thus this is precisely the set of eigenvectors we are interested
in.

T̂~aT̂~b |u〉 = λ(~a)λ(~b) |u〉 (B.6)

T̂
~a+~b

|u〉 = λ(~a+~b) |u〉 (B.7)

and since T̂~aT̂~b |u〉 = T̂
~a+~b

|u〉 we have

λ(~a)λ(~b) = λ(~a+~b) (B.8)

which directly leads to the eigenvalues of the translation operator:

λ(~a) ≡ λ~k(~a) = exp
(
i~k~a
)

(B.9)
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Note that the base of the exponential function is irrelevant and is simply pinned by the
definition of ~k. Furthermore, the argument of the exponential has to be purely imaginary
as we expect bounded eigenvalues in the infinite space.

Projecting the eigenvalue equation to the coordinate basis, we get:

〈~r| T̂~a |u〉 = exp
(
i~k~a
)
〈~r|u〉 (B.10)

or
〈~r − ~a|u〉 = exp

(
i~k~a
)
〈~r|u〉 (B.11)

Recall that we are looking for the common eigenvector system of all the translation
operators, so we expect the above expression to be valid for any ~a which leads to the
eigenvectors

〈~r|u〉 ≡
〈
~r
∣∣u~k
〉
= exp

(
i~k~r
)

(B.12)

We have thus found the common eigenfunctions of all the translation operators and this
will be the eigensystem of the L̂ operator as well and we see that they are precisely the
Fourier modes.

This is the basis in which L̂ is diagonal, and the eigenvalues of L̂ are given by

λ =
〈
u~k
∣∣ L̂
∣∣u~k
〉

(B.13)

=

∫∫
〈u|~r〉 〈~r| L̂

∣∣~r′
〉 〈
~r′
∣∣u
〉
d~rd~r′ (B.14)

Since L̂ is translation invariant, 〈~r| L̂ |~r′〉 = L(~r− ~r′) and the eigenvector projections are
given by

〈u|~r〉 = 〈~r|u〉∗ = exp
(
−i~k~r

)
(B.15)

〈
~r′
∣∣u
〉

= exp
(
i~k~r′

)
(B.16)

which leads to

λ =

∫∫
L(~r − ~r′) exp

[
−i~k(~r − ~r′)

]
d~rd~r′ (B.17)

∝
∫
L(~r) exp

[
−i~k~r

]
d~r (B.18)

showing that the eigenvalues of L̂ are given by its Fourier transform. The very same
reasoning applies in a discretized space, however in that case the eigenvalues are given
by the discrete Fourier transform, whereas in a continuous, but finite space by the Fourier
series.
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Quadrupolar kernel

With the notations in the main script, the following projections are valid for the Fourier
quadrupolar kernel (with positive directions along the ±45◦ directions):

〈dk|epq〉 = N exp

[
−2πi

N
pk

]
δp+q (C.1)

〈
d′k
∣∣epq

〉
= N exp

[
−2πi

N
pk

]
δq−p (C.2)

〈dk|dl〉 =
〈
d′k
∣∣d′l
〉
= Nδkl (C.3)〈

dk
∣∣d′l
〉

= 2(1 − δ|k−l|%2) (C.4)

Here % denotes the modulo (remainder) operation. The last projection results form
the fact that the dk and d′l bands intersect in two points due to the periodic boundary
conditions, but each dk band intersects only every other d′l band. This is a discretization
issue and, for a quadrupolar kernel with positive directions along 0◦ and 90◦ this scalar
product would always be 1.

Recall that we use the basis

|epq〉with |p| = |q| (C.5)

|dk〉with k ∈ [−N/2, N/2 − 1] (C.6)∣∣d′l
〉
with l ∈ [−N/2, N/2 − 1] (C.7)

Note however, that not all of the above are independent and orthogonal, nor normalized.
The plastic strain can be written in this basis as

|ǫp〉 =
∑

|p|6=|q|
cpq |epq〉+

∑

k

ck |dk〉+
∑

k

c′k
∣∣d′k
〉

(C.8)

and the following projections hold:

〈elm|ǫp〉 = clm for |l| 6= |m| (C.9)

〈elm|ǫp〉 = Nδl+m

∑

k

ck exp

[
−2πi

N
lk

]
(C.10)

+ Nδl−m

∑

k

c′k exp

[
−2πi

N
lk

]
for |l| = |m| (C.11)

(C.12)

but we do not care about the latter. Projecting onto the shear bands gives:

〈dl|ǫp〉 = Ncl + 2
∑

k

c′k[1− δ|k−l|%2] (C.13)

〈
d′l
∣∣ǫp
〉

= Nc′l + 2
∑

k

ck[1− δ|k−l|%2] (C.14)
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Again, this expression would be simpler for the rotated quadrupolar kernel where each
perpendicular shear band cross.

Since we are interested in the evolution of the various modes, let us then take the
evolution equation

∂t |ǫp〉 =
∣∣σext

〉
+ Ĝ |ǫp〉 − |σc〉 (C.15)

and project it to our basis. First, onto the basis associated to the zero eigenvalues:

∂t 〈elm|ǫp〉 =
〈
elm
∣∣σext

〉
+ 〈elm| Ĝ |ǫp〉 − 〈elm|σc〉 , |l| 6= |m| (C.16)

In the above equation, we use:

〈
elm
∣∣σext

〉
= [σ̃ext]lm = σextδlδm = 0 for |l| 6= |m| (C.17)

〈elm| Ĝ |ǫp〉 = λlm 〈elm|ǫp〉 = λlmclm (C.18)

〈elm|σc〉 = [σ̃c]lm (C.19)

so we get an attenuation of the non-soft modes:

∂tclm = λlmclm − [σ̃c]lm (C.20)

We may now project to the shear bands:

∂t 〈dk|ǫp〉 =
〈
dk
∣∣σext

〉
+ 〈dk| Ĝ |ǫp〉 − 〈dk|σc〉 (C.21)

Here the following hold:

〈
dk
∣∣σext

〉
= Nσext (C.22)

〈dk| Ĝ |ǫp〉 = 0 since 〈dk| Ĝ = 〈0| (C.23)

〈dk|σc〉 =
∑

~r∈dk

σc(~r) (C.24)

which gives the evolution equation of the shear bands:

∂tcl + 2
1

N

∑

k

∂tc
′
k[1− δ|k−l|%2] = σext − 1

N

∑

~r∈dk

σc(~r) (C.25)

∂tc
′
l + 2

1

N

∑

k

∂tck[1− δ|k−l|%2] = σext − 1

N

∑

~r∈d′
k

σc(~r) (C.26)

Rotated quadrupolar kernel

Let us consider the rotated Fourier quadrupolar kernel. Here we have positive stress
directions along the 0 and 90 directions, thus λpq = 0 for p = 0 or q = 0. This would
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correspond for the “m3” loading in the finite element kernels. This will give 〈dk|d′l〉 = 1
and simplify the evolution equations to:

∂tclm = λlmclm − [σ̃c]lm (C.27)

∂tcl +
1

N

∑

k

∂tc
′
k = σext − 1

N

∑

~r∈dk

σc(~r) (C.28)

∂tc
′
l +

1

N

∑

k

∂tck = σext − 1

N

∑

~r∈d′
k

σc(~r) (C.29)

Dipolar kernel

For the dipolar kernel, λpq = 0 for q = 0 leaving us with a single direction of soft modes,
dk. These modes however are decoupled since 〈dk|dl〉 = Nδkl:

∂tclm = λlmclm − [σ̃c]lm (C.30)

∂tcl = σext − 1

N

∑

~r∈dk
σc(~r) (C.31)

(C.32)

It is then clear that the soft modes receive random, uncorrelated (for large N , gaussian
distributed) kicks hence we encounter diffusion.
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One possible overcome of the discretization issues is to solve the inclusion problem
readily in a discretized and periodic geometry. The exact calculations are not particularly
difficult, they are however prone to error due to the many indices involved, therefore we
spell out these calculations for easier reusability in the future. The calculation details
may be skipped by the reader without any setback regarding the understanding of the
manuscript.

D.1 Discretization of the displacement field and strains

As shown on Figure 3.3, displacements are discretized on a square lattice. In order
to avoid unphysical floppy modes that result from inhomogeneous deformations of the
plaquettes, each plaquette is further divided into 4 triangles labeled by: N,W,S,E. The
strain within a plaquette is defined then as the average of the strains of the 4 triangles.
The strain within one triangle is considered homogeneous. For theW triangle of plaquette
(i, j), for instance:

uαHij − uαij =
∂uαij
∂x

a

2
+
∂uαij
∂y

a

2
= ǫαxWij

a

2
+ ǫαyWij

a

2
(D.1)

For the other edge of the same triangle:

uαHij − uαij+1 =
∂uαij
∂x

a

2
−
∂uαij
∂y

a

2
= ǫαxWij

a

2
− ǫαyWij

a

2
(D.2)

Solving for the strains:

ǫαxWij =
1

a
[2uαHij − uαij − uαij+1] (D.3)

ǫαyWij =
1

a
[uαij+1 − uαij ] (D.4)

Here H labels the center of the plaquette, such that:

uαHij =
1

4
[uαij + uαi+1j + uαi+1j+1 + uαij+1] (D.5)

The same reasoning applies for the other three triangles:

ǫαxNij =
1

a
[uαi+1j+1 − uαij+1] (D.6)

ǫαyNij =
1

a
[−2uαHij + uαij+1 + uαi+1j+1] (D.7)

ǫαxEij =
1

a
[−2uαHij + uαi+1j+1 + uαi+1j ] (D.8)

ǫαyEij =
1

a
[−uαi+1j + uαi+1j+1] (D.9)

ǫαxSij =
1

a
[−uαij + uαi+1j] (D.10)

ǫαySij =
1

a
[2uαHij − uαi+1j − uαij ] (D.11)
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The strain within plaquette (i, j) is then given by the average over the 4 triangles:

ǫαβij =
1

4
[ǫαβNij + ǫαβEij + ǫαβSij + ǫαβWij ] (D.12)

D.2 Solving the equilibrium equations

The energy of one plaquette is quadratic in the strains:

Φij =
K

2
e21ij +

G

2
e22ij +

G

2
e23ij (D.13)

where

e1ij = ǫxxij + ǫyyij (D.14)

e2ij = ǫxxij − ǫyyij (D.15)

e3ij = ǫxyij + ǫyxij , (D.16)

while the total energy of the system is:

Φ =
∑

ij

Φij (D.17)

The elastic force acting on node (i, j) is given by the first derivative of the energy:

Fα
ij = − ∂Φ

∂uαij
= −

(
∂Φi−1j−1

∂uαij
+
∂Φij−1

∂uαij
+
∂Φi−1j

∂uαij
+
∂Φij

∂uαij

)
(D.18)

All the other derivatives are zero since the energy of a plaquette only depends on the
displacements on its nodes. In the presence on external forces, the equilibrium equations
are:

Fα
ij + Fα

ext ij = 0 (D.19)

which are the discrete form of the Lame-Navier equation. Since the elastic forces are
linear in displacements:

Fα
ij =

∑

pqβ

∂Fα
ij

∂uβpq
uβpq = −

∑

pqβ

∂2Φ

∂uαij∂u
β
pq

uβpq = −
∑

pqβ

Hαβ
ijpqu

β
pq (D.20)

and the equilibrium equations can be rewritten as:
∑

pqβ

Hαβ
ijpqu

β
pq = Fα

ext ij (D.21)

When imposing periodic boundary conditions, the Hessian H is translation invariant and
it is possible to define h such that:

hαβ∆i ∆j = hαβp−i q−j = Hαβ
ijpq (D.22)
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and rewrite the equilibrium eq:

∑

β∆i∆j

hαβ∆i ∆ju
β
i+∆i j+∆j = Fα

ext ij (D.23)

Evaluating the energy derivatives, one obtains:

hxx−1,−1 = hxx−1,1 = hxx1,−1 = hxx1,1 =
1

a2
(−G−K/2) (D.24)

hxx−1,0 = hxx1,0 =
1

a2
(−2G− 3K) (D.25)

hxx0,−1 = hxx0,1 =
1

a2
(−2G+K) (D.26)

hxx0,0 =
1

a2
(12G + 6K) (D.27)

hxy−1,−1 = hxy1,1 =
1

a2
(−K) (D.28)

hxy−1,1 = hxy1,−1 =
1

a2
(K) (D.29)

hyy−1,−1 = hyy−1,1 = hyy1,−1 = hyy1,1 =
1

a2
(−G−K/2) (D.30)

hyy−1,0 = hyy1,0 =
1

a2
(−2G+K) (D.31)

hyy0,−1 = hyy0,1 =
1

a2
(−2G− 3K) (D.32)

hyy0,0 =
1

a2
(12G + 6K) (D.33)

Note that hxyij = hyxij and hαβij = 0 everywhere else.

Ĥ is a linear operator that, when feeded with the displacement field, returns the
elastic force field:

Ĥ |u〉 = |Fext〉 (D.34)

We are, however, interested in its inverse in order to compute the displacement field
for a given force field. Denoting by λi the i-th eigenvalue and

∣∣vi
〉
= {viαmn} the i-th

eigenvector of Ĥ:

Ĥ |vi〉 = λi |vi〉 (D.35)

〈vi| Ĥ |u〉 = |Fext〉 (D.36)

λi 〈vi|u〉 = 〈vi|Fext〉 ⇒ 〈vi|u〉 =
1

λi
〈vi|Fext〉 (D.37)

The problem thus reduces to finding the eigenvalues and eigenvectors of Ĥ.
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Introducing the coordinate basis
∣∣nlmα

〉
= {δliδmjδαβ}, for any vector |u〉 we have:

〈
nlmα

∣∣∣u
〉
= uαlm (D.38)

and the Ĥ matrix elements are simply:
〈
nrsβ

∣∣∣ Ĥ
∣∣∣nlmα

〉
=
∑

ijpqδγ

Hγδ
ijpqδplδqmδαγδirδjsδδβ = Hαβ

rslm = hαβr−l,s−m (D.39)

Projecting eq. D.35 to
〈
nlmα

∣∣:
〈
nlmα

∣∣∣ Ĥ
∣∣vi
〉

=
〈
nlmα

∣∣∣ Ĥ
∑

rsβ

∣∣∣nrsβ
〉〈

nrsβ
∣∣∣vi
〉

(D.40)

=
∑

rsβ

〈
nlmα

∣∣∣ Ĥ
∣∣∣nrsβ

〉〈
nrsβ

∣∣∣vi
〉

(D.41)

=
∑

rsβ

Hαβ
lmrs

〈
nrsβ

∣∣∣vi
〉
=
∑

rsβ

hαβr−l,s−m

〈
nrsβ

∣∣∣vi
〉

(D.42)

= λi

〈
nlmα

∣∣∣vi
〉

(D.43)

Since Ĥ is translation invariant, it commutes with the translation operator T̂ which
means they must have a common eigenvector system. In 2D, the eigenvectors of T̂ have
the form: 〈

nlmα
∣∣∣vi
〉
=

1

NM
P pq
α exp

[
2πi

(
lp

N
+
mq

M

)]
(D.44)

therefore it is reasonable to check the same form for the eigenvectors of Ĥ. Plugging in
D.44 in the last equation of D.43:

∑

rsβ

hαβr−l,s−mP
pq
β exp

[
2πi

(rp
N

+
sq

M

)]
= λiP

pq
α exp

[
2πi

(
lp

N
+
mq

M

)]
(D.45)

which leads to: ∑

β

h̃αβpq P
pq
β = λiP

pq
α (D.46)

with α, β ∈ {x, y}. Since hαβlm is sparse, its Fourier transform is easily computable:

h̃xxpq =
2

a2
[−(2G+ 3K)Cp + (−2G +K)Cq − (2G+K)(CpCq − 3)] (D.47)

h̃xypq =
4

a2
KSpSq (D.48)

h̃yypq =
2

a2
[(−2G+K)Cp + (2G+ 3K)Cq − (2G+K)(CpCq − 3)] (D.49)

(D.50)
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with Cp = cos(2πp/N), Cq = cos(2πq/M), Sp = sin(2πp/N), Sq = sin(2πq/M). At this
stage thus our problem has been reduced to finding the eigenvalues and eigenvectors of
the 2 × 2 matrix h̃αβpq . The resulting eigenvalues can be labeled as λi ≡ λδpq and their
expression is:

λxpq =
2

a2
[(6G + 5K)− (2G+K)(Cp + Cq)− (2G+ 3K)CpCq] (D.51)

λypq =
2

a2
[(6G +K)− (2G +K)(Cp + Cq)− (2G −K)CpCq] (D.52)

while the corresponding eigenvectors P pq
α ≡ P pqδ

α :

(P pqx
x , P pqx

y ) =
1√

1 + tan2 πp
N cot2 πq

M

(
tan

πp

N
cot

πq

M
, 1
)

(D.53)

(P pqy
x , P pqy

y ) =
1√

1 + cot2 πp
N tan2 πq

M

(
− cot

πp

N
tan

πq

M
, 1
)

(D.54)

The eigenvectors of Ĥ are then labeled as
∣∣vi
〉
≡
∣∣vpqδ

〉
and given by eq. D.44.

D.3 Point force

In the coordinate basis, a point force acting on node (i, j) along direction β has the
coordinates: 〈

nlmα
∣∣∣F
〉
= f0 δliδmjδαβ (D.55)

The same force in the eigenbasis has the form:

〈
vpqδ

∣∣∣F
〉

=
∑

lmα

〈
vpqδ

∣∣∣nlmα
〉〈

nlmα
∣∣∣F
〉

(D.56)

= f0
∑

lmα

〈
vpqδ

∣∣∣nlmα
〉
δliδmjδαβ (D.57)

= f0

〈
vpqδ

∣∣∣nijβ
〉
= f0

〈
nijβ

∣∣∣vpqδ
〉∗

(D.58)

= f0P
pqδ
β exp

[
−2πi

(
ip

N
+
jq

M

)]
(D.59)

which immediately gives the solution for the displacement in the eigenbasis:

〈
vpqδ

∣∣∣u
〉
=

1

λδpq

〈
vpqδ

∣∣∣F
〉
=

1

λδpq
f0P

pqδ
β exp

[
−2πi

(
ip

N
+
jq

M

)]
(D.60)
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Switching back to the coordinate basis:

uαlm =
〈
nlmα

∣∣∣u
〉
=
∑

pqδ

〈
nlmα

∣∣∣vpqδ
〉〈

vpqδ
∣∣∣u
〉

(D.61)

= f0
∑

pqδ

P pqδ
α P pqδ

β

λδpq
exp

[
2πi

(
(l − i)p

N
+

(m− j)q

M

)]
(D.62)

= f0
∑

pq

Bαβ
pq exp

[
2πi

(
(l − i)p

N
+

(m− j)q

M

)]
(D.63)

where

Bαβ
pq =

∑

δ

P pqδ
α P pqδ

β

λδpq
(D.64)

For a point force at the origin (i, j) = (0, 0) the displacement is given by a simple inverse
discrete Fourier transform of the respective Bαβ

pq components:

uαlm = f0
∑

pq

Bαβ
pq exp

[
2πi

(
(lp

N
+
mq

M

)]
(D.65)

ũαpq = f0B
αβ
pq (D.66)

D.4 Stresses

Stresses are defined on the sub-triangles of each plaquette as:

σαβNij =
∂Φ

∂ǫαβNij

(D.67)

and similarly for the other three E,W,S triangles. The stress on a plaquette is then the
average over the triangles:

σxxij =
1

4
K(eN1ij + eE1ij + eW1ij + eS1ij) +

1

4
G(eN2ij + eE2ij + eW2ij + eS2ij) (D.68)

σyyij =
1

4
K(eN1ij + eE1ij + eW1ij + eS1ij)−

1

4
G(eN2ij + eE2ij + eW2ij + eS2ij) (D.69)

σxyij = σyxij =
1

4
G(eN3ij + eE2ij + eW3ij + eS3ij) (D.70)
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Along with equations D.6 and D.14 thus the stresses are defined in terms of displacements:

σxxij =
1

2a
[(G+K)(−uxij − uxi,j+1 + uxi+1,j + uxi+1,j+1) (D.71)

+ (G−K)(uyij − uyi,j+1 + uyi+1,j − uyi+1,j+1)] (D.72)

σyyij =
1

2a
[(G−K)(uxij + uxi,j+1 − uxi+1,j − uxi+1,j+1) (D.73)

+ (G+K)(−uyij + uyi,j+1 − uyi+1,j + uyi+1,j+1)] (D.74)

σxyij =
1

2a
G(−uxij + uxi,j+1 − uxi+1,j + uxi+1,j+1 (D.75)

− uyij − uyi,j+1 + uyi+1,j + uyi+1,j+1) (D.76)

and:

σ
(1)
ij = σyyij + σxxij =

1

a
K(−uxij − uxi,j+1 + uxi+1,j + uxi+1,j+1 (D.77)

− uyij + uyi,j+1 − uyi+1,j + uyi+1,j+1) (D.78)

σ
(2)
ij = σyyij − σxxij =

1

a
G(uxij + uxi,j+1 − uxi+1,j − uxi+1,j+1 (D.79)

− uyij + uyi,j+1 − uyi+1,j + uyi+1,j+1) (D.80)

σ
(3)
ij = σxyij (D.81)

D.5 Eigenstrain on a plaquette - mode 2

Here we show that applying an eigenstrain to one of the plaquettes is equivalent to
applying a quadrupole of forces at the vertices of that plaquette. Let us suppose that
plaquette (l,m) undergoes an eigenstrain along mode e2, so its energy becomes:

Φij =
K

2
e21ij +

G

2
(e2ij + e0δilδlm)2 +

G

2
e23ij (D.82)

The energy of all the other plaquettes is the same as before. In this case, eq. D.20 is not
valid any more since there will be inhomogeneous terms in the first derivative that are
linear in e0, and the second derivative makes them vanish. Instead, it modifies to:

Fα
ij =

∑

pqβ

∂Fα
ij

∂uβpq
uβpq +

∑

pq

∂Fα
ij

∂e0pq
e0pq (D.83)

= −
∑

pqβ

∂2Φ

∂uαij∂u
β
pq

uβpq −
∑

pq

∂2Φ

∂uαij∂e0pq
e0pq (D.84)

= −
∑

pqβ

Hαβ
ijpqu

β
pq − Fα

0ij (D.85)

so the equilibrium equations modify to:
∑

pqβ

Hαβ
ijpqu

β
pq = Fα

ext ij − Fα
0ij (D.86)
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meaning that eigenstrains have the same effect as an extra external force field. With an
eigenstrain of the form e0pq = e0δlpδmq:

Fα
0ij =

∂2Φ

∂uαij∂e0
e0 = e0

∂

∂e0

[
∂Φi−1j−1

∂uαij
+
∂Φij−1

∂uαij
+
∂Φi−1j

∂uαij
+
∂Φij

∂uαij

]
(D.87)

From the brackets, only the derivative of one term can be non-zero at a time, when
(l,m) = (i− 1, j − 1), (i− 1, j), (i, j − 1), (i, j), or, which is the same, (i, j) = (l+1,m+
1), (l + 1,m), (l,m + 1), (l,m). Those are 4 force terms with 2 components each:

Fα
0 l+1,m+1 = e0

∂

∂e0

∂Φlm

∂uαl+1,m+1

(D.88)

Fα
0 l+1,m = e0

∂

∂e0

∂Φlm

∂uαl+1,m

(D.89)

Fα
0 l,m+1 = e0

∂

∂e0

∂Φlm

∂uαl,m+1

(D.90)

Fα
0 l,m = e0

∂

∂e0

∂Φlm

∂uαl,m
(D.91)

(D.92)

Evaluating the derivatives:

F x
0 l+1,m+1 = F x

0 l+1,m = F y
0 l+1,m = F y

0 l,m =
2G

a
e0 (D.93)

F x
0 l,m+1 = F x

0 l,m = F y
0 l+1,m+1 = F y

0 l,m+1 = −2G

a
e0 (D.94)

which proves that as far as the displacements are concerned, if plaquette (l,m) undergoes
an eigenstrain of magnitude e0 along the e2 mode, this is equivalent to applying a suitable
quadrupole of forces to the vertices of that plaquette. Without any loss of generality,
to simplify notation, further on we consider (l,m) = (0, 0). Also, there are no external
forces. The equation to be solved thus can be reduced to solving the initial, eigenstrain-
free system subject to 8 point forces with magnitude f0 = 2G/a each. Adding up the
displacements for all the point forces, one obtains:

uαlm = f0
∑

pq

(Bxα
pq A

x
pq +Byα

pq A
y
pq) exp

[
2πi

(
lp

N
+
mq

M

)]
(D.95)

or
ũαpq = f0(B

xα
pq A

x
pq +Byα

pq A
y
pq) (D.96)

with

Ax
pq = 1− exp

[
−2πi

p

N

]
− exp

[
−2πi

( p
N

+
q

M

)]
+ exp

[
−2πi

q

M

]
(D.97)

Ay
pq = −1− exp

[
−2πi

p

N

]
+ exp

[
−2πi

( p
N

+
q

M

)]
+ exp

[
−2πi

q

M

]
(D.98)
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For the stresses, equations D.71 are valid if the respective plaquettes have no eigen-
strains, however one has to take into account the eigenstrain on plaquette (0, 0). Once
computing all the stresses like if there was no eigenstrain on any plaquettes, the following
adjustment has to be made (according to eq. D.67):

σxx00 → σxx00 + e0G (D.99)

σyy00 → σyy00 − e0G (D.100)

Fourier-transforming equations D.71, the mode-2 stress σ(2) = σyy−σxx can be obtained
from:

σ̃(2)pq =
G

a
ũ+pq

(
exp

[
2πiq

M

]
− exp

[
2πip

N

])
(D.101)

+
G

a
ũ−pq
(
1− exp

[
2πi

( q

M
+

p

N

)])
− 2Ge0 (D.102)

where:

ũ+pq = ũxpq + ũypq (D.103)

ũ−pq = ũxpq − ũypq (D.104)

The last term comes from the stress drop at plaquette (0, 0) which appears as a constant
in the Fourier space. Putting it all together and after ages of calculations one obtains:

σ̃(2)pq = 2Ge0[
4G

1− CpCq
(D.105)

(
(Cp − Cq)

2

(6G + 5K)− (2G+K)(Cp + Cq)− (2G+ 3K)CpCq

+
S2
pS

2
q

(6G +K)− (2G+K)(Cp +Cq)− (2G−K)CpCq
)− 1]

where Cp = cos(2πp/N), Cq = cos(2πq/M), Sp = sin(2πp/N), Sq = sin(2πq/M). Far
from the inclusion, i.e. p≪ N and q ≪M the sines and cosines can be developed up to
the second order and one recovers the classical far-field result:

σ̃(2)pq ≈ − 2GK

G+K

(
P 2 −Q2

P 2 +Q2

)2

e0 (D.106)

lim
p→0

lim
q→0

σ̃(2)pq = lim
q→0

lim
p→0

σ̃(2)pq = − 2GK

G+K
e0 (D.107)

where P = 2πp/N and Q = 2πq/M .
With the same approach, for the mode-1 stress:

σ̃(1)pq =
K

a
ũ+pq (−1 + exp[i(P +Q)]) (D.108)

+
K

a
ũ−pq (exp[iP ]− exp[iQ]) (D.109)
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which, after the math gives:

σ̃(1)pq = −8KGe0
Cq − Cp

(6G+ 5K)− (2G+K)(Cp + Cq)− (2G+ 3K)CpCq
(D.110)

which in the limit p≪ N and q ≪M gives:

σ̃(1)pq ≈ − 2GK

G+K

(
P 2 −Q2

P 2 +Q2

)
e0 (D.111)

lim
p→0

lim
q→0

σ̃(1)pq = − 2GK

G+K
e0 (D.112)

lim
q→0

lim
p→0

σ̃(1)pq =
2GK

G+K
e0 (D.113)

For mode-3 stress we have:

σ̃(3)pq = σ̃xypq =
G

2a
ũ+pq (−1 + exp[i(P +Q)]) (D.114)

− G

2a
ũ−pq (exp[iP ]− exp[iQ]) (D.115)

which leads to:

σ̃(3)pq =
8G2

a2
e0
SpSq(Cp − Cq)

1− CpCq

(
1

λxpq
− 1

λypq

)
(D.116)

Plugging in the eigenvalues gives the final expression:

σ̃(3)pq = 4G2e0
SpSq(Cp − Cq)

1− CpCq
[

1

(6G+ 5K)− (2G+K)(Cp + Cq)− (2G+ 3K)CpCq

− 1

(6G+K)− (2G +K)(Cp + Cq)− (2G −K)CpCq
] (D.117)

In the far-field limit, mode-3 stress has the form:

σ̃(3)pq ≈ 2G
G−K

G+K
e0
PQ(Q2 − P 2)

(P 2 +Q2)2
(D.118)

lim
p→0

lim
q→0

σ̃(3)pq = lim
q→0

lim
p→0

σ̃(3)pq = 0 (D.119)

D.6 Eigenstrain on a plaquette - mode 3

This time the energy of the plaquette with the eigenstrain is given by:

Φ00 =
K

2
e21 00 +

G

2
e22 00 +

G

2
(e3 00 − e0)

2 (D.120)
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With the same reasoning as above, this is equivalent to a quadrupole of forces acting on
the corners of plaquette (0, 0):

F x
0 11 = F x

0 01 = F y
0 11 = F y

0 10 = −2G

a
e0 (D.121)

F x
0 10 = F x

0 00 = F y
0 01 = F y

0 00 =
2G

a
e0 (D.122)

(D.123)

For this configuration, we have:

Ax
pq = −1− exp

[
−2πi

p

N

]
+ exp

[
−2πi

( p
N

+
q

M

)]
+ exp

[
−2πi

q

M

]
(D.124)

Ay
pq = −1 + exp

[
−2πi

p

N

]
+ exp

[
−2πi

( p
N

+
q

M

)]
− exp

[
−2πi

q

M

]
(D.125)

whereas, for the stresses:

σxy00 → σxy00 − e0G (D.126)

σyx00 → σyx00 − e0G (D.127)

The mode-3 stress σ(3) = σxy can be obtained from:

σ̃(3)pq =
G

2a
ũ+pq

(
−1 + exp

[
2πi

( q

M
+

p

N

)])
(D.128)

+
G

2a
ũ−pq

(
exp

[
2πiq

M

]
− exp

[
2πip

N

])
−Ge0 (D.129)

which leads to:

σ̃(3)pq = Ge0[
4G

1− CpCq
(D.130)

(
S2
pS

2
q

(6G + 5K)− (2G+K)(Cp + Cq)− (2G+ 3K)CpCq

+
(Cp − Cq)

2

(6G +K)− (2G+K)(Cp +Cq)− (2G−K)CpCq
)− 1]

The mode-2 stress in this case has exactly the same expression as the mode-3 in the
previous case (checked independently):

σ̃(2)pq = 4G2e0
SpSq(Cp − Cq)

1− CpCq
[

1

(6G + 5K)− (2G +K)(Cp + Cq)− (2G+ 3K)CpCq

− 1

(6G +K)− (2G +K)(Cp + Cq)− (2G −K)CpCq
] (D.131)

Finally, for the mode-1 stress we obtain the following expression:

σ̃(1)pq = 8KGe0
SpSq

(6G+ 5K)− (2G+K)(Cp +Cq)− (2G+ 3K)CpCq
(D.132)
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Chapter 6

Soft line in quenched disorder
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In the first part in the thesis we have shown that the yielding transition of amor-
phous materials has many features in common with the depinning transition of elastic
lines. Both phenomena are a result of the competition between disorder and long range
elastic interactions. In that sense, many systems can be modeled in the depinning frame-
work. For example, the roughening of a moving dewetting contact line on inhomogeneous
surfaces is governed by the competition of the surface tension forces and the pinning-like
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interactions with the inhomogeneities of the surface. This roughening process has been
intensively studied in the depinning framework. As we have seen however, the depin-
ning framework is limited to linear interactions, thus small deformations only. Moreover,
standard depinning methods do not allow for the eventual tearing up of the layer due to
large deformations.

In this chapter, we precisely address these two issues. We develop a depinning-like
model which aims to capture large deformations and eventual tearing up of the liquid
layer. We show that there exist a critical concentration of inhomogeneities below which
the line stops within a finite distance, and above this concentration it moves indefinitely.
Right at the critical concentration however large deformations of the line occur with long
correlations which may be the footprint of a peculiar depinning-like transition.

6.1 Introduction and motivation

Contraction of thin liquid layers on solid surfaces due to dewetting or drying is a common
phenomenon. It is observable for instance, on plants’ leafs as the water breaks up into
small droplets, in non-sticking pans as the oil layer shrinks or on an outdoor oil-polluted
surface after rain. Another well-know example is the contraction of the liquid layer
covering the eyeball, the characteristic time scale of a complete contraction being the
time elapsed between two successive blinks [76, 157]. Dewetting plays an important
role in the tire industry as well: when the contraction of the wetting layer on the tire’s
groove is too slow, aquaplaning is more likely to occur [120, 135, 136]. Dewetting is
also important in the lubricant manufacturing, however in this case exactly the opposite
effect is desired: the more a lubrifient remains on the surface of sliding pieces, i. e. the
larger its contraction time, the better.

Figure 6.1 – Roughening of a moving fluid interface in a Hele-Shaw cell in presence of
inhomogeneities following a (a) strongly disordered pattern and (b) weakly disordered
pattern. Figure from [131]
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t = 2.9s t = 3.7s t = 5.1s

t = 5.9s t = 6.6s t = 7.0s

Figure 6.2 – Progressive roughening of a receding contact line on a regular array of
defects. Experiments performed and images kindly provided by E. S. Bogya and Á.
Kukovecz. In the experiment, a square array of defects was placed on a flat surface. The
size of a defect is 1 mm and the distance between defects is 5 mm. The surface was
tilted by 30◦ compared to horizontal and lifted out of water at a constant velocity of
10 cm/min. Images were taken by a thermal camera for better contrast. Upon lifting, a
thin layer of liquid is left behind. During contraction, the contact line is pinned on the
defects resulting in roughening and eventual tearing up of the layer.

Along with the development of the polymer industry, contraction of polymer films
started to gain interest [145, 192, 197]. Dewetting turned out to be a useful investigative
tool for determining various rheological and interfacial properties of thin polymer films
due to the fact that molecular properties are reflected in the macroscopic shape of the
solid-liquid-gas triple interface [146].

In other cases, liquids are used as carriers for certain substances (nanoparticles, for
example), thus dewetting eventually accompanied by drying on rough surfaces of such
solutions, results in deposition of the dissolved substance on the substrate. In fact, this
deposition process can only be controlled through controlling the dynamics of the carrier
liquid film, and, in particular, the evolution of the morphology of the triple line. In a
recent study, DNA molecules were deposited in a highly ordered array by dissolving them
in a solvent and letting the solvent dewet a micropillar-structured surface [104].

The dynamics of wetting on flat solid and liquid surfaces is quite well understood
[197, 66], however, despite its applicability, only a few experiments were performed on
inhomogeneous, either patterned or disordered surfaces [43, 132, 42, 56, 44, 45] (see, for
example, Figure 6.1 ), while the dynamics of a receeding contact line remains almost
unexplored. Figure 6.2 shows snapshots of such an experiment, where the roughening
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of a receding contact line on a surface with an array of defects is observable. In spite
of the apparent simplicity of the phenomenon, there are no simple, easily manageable
models for describing it. Although in the lubrication approximation the Navier-Stokes
(or, in the highly viscous regime the Stokes) equation reduces to two dimensions [129],
the numerical modeling of layers with large planar extent is still computationally time
consuming and cumbersome due to the discontinuities on the liquid-solid and liquid-gas
interfaces. These discontinuities are tackled within the framework of phase-field models
[87], it remains unclear however, how substrate inhomogeneities would be introduced in
such models. It is also also unsettled how the actual dynamics of the layer is influenced
by the chosen particular form of the phase interface.

The continuous emergence of newer and newer schemes in the topic suggests that
the demand for a convenient approach for modeling thin liquid layers’ dynamics is still
unsatisfied [87, 163, 152, 55, 19, 103]. Based on the revolutionary paper of J. F. Joanny
and P. G. de Gennes on the perturbed contact line shape [88, 68], a series of depinning
type models were constructed which aimed to describe interface dynamics in presence of
disorder [134, 191, 159, 189]. These models are not restricted to dewetting phenomena,
as they apply to fracture front propagation or even magnetic domain wall motion. In
the framework of these models, small deformations of the interface and a linear restoring
force acting on the contact line resulting from a perturbative approach are considered.
They are thus inherently linear, and the only source of nonlinearity is the disorder of the
landscape they propagate in. Although they have had a great success in the sampling of
the depinning transition and determination of various critical exponents [173, 92, 93], they
have the drawback that they neither allow for large deformations, nor for local backward
movement of the line. Consequently, they are unable to account for the tearing up of the
dewetting film, which, in fact, is a common phenomenon.

Our purpose here is precisely to address the question of large deformations and the
eventual tearing of the film with an efficient and easily manageable model for the contact
line motion. Our method works best for viscous, flat and extended droplets with small
wetting angle. It is shown that in this regime, in contrast to the perturbative treatment
[88], the line is soft and ductile, meaning that a localized perturbation of the line induces
only short range forces. Considering a viscous regime, the line’s equation of evolution
becomes an overdamped one. In the following sections, we will describe this method
in detail. We will show how to handle substrate inhomogeneities, and an application is
presented. Our results have been published in [186].

6.2 Basic concepts

Energy of the contact line

Let the upper surface of the contracting fluid layer be described by z = z(x, y, t). Our ap-
proach is restricted to the description of large, flat layers in the highly viscous regime, the
same assumption that is made when deriving the lubricant equations [129], i.e. |∇z| ≪ 1.
One further assumption we make is that the relative change in the height of the droplet is
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small, therefore its height is almost constant in time, ∂z/∂t → 0. Under these considera-
tions, the layer’s free energy has two terms. The first component is the joint contribution
of the well-known liquid-solid and liquid-gas (air) surface tensions. If the layer is flat,
its upper and lower surface areas are approximately equal, S. Denoting by γXY the
appropriate surface tension coefficients, the surface energy writes as:

Usurface = γSLS + γLGS = γS (6.1)

The second contribution to the total free energy of the layer is the line energy which
occurs due to the unbalanced forces acting on the layer boundaries on the molecules
from the liquid-substrate-air triple interface. This is a curve with finite thickness, thus
this energy is comparable to the surface energy and it is proportional to the length of
the triple interface, l

Uline = αl, (6.2)

where α is the line tension coefficient. Neither the interpretation of α, nor its measure-
ment is straightforward. In fact, there is still less consensus regarding its magnitude:
values ranging from 10−11N to 10−6N were measured or computed in various experi-
ments and simulations [140, 21, 53, 54, 168, 5]. The major difficulty arises from the fact
that dewetting is often accompanied by a precursor layer with a much smaller thickness
than the rest of the layer. In our case, in term (6.2) a contribution resulting from the
layer’s side surface has to be also considered. This yields an extra surface energy that
is also proportional with l, consequently, we believe that an effective α has to be used
instead. Therefore in calculations larger values than the presented range should be used.
In the case of a real two dimensional flow (for instance, flow in a Hele-Shaw cell [42, 132]),
the line tension is well defined and it is clearly a result from the finite side surface of the
layer between the plates. For complete wetting, i.e. zero wetting angle, α = πγLGh/2,
where h is the distance between the plates of the Hele-Shaw cell [132]. Alternatively,
if a quantitative upscaling of the elastic type of energy introduced in [88] was possible
(properly removing the third dimension from the model), it could provide the correct
expression for the line tension for sufficiently flat droplets, bounded by one solid surface
only. Such an expression however is not available, hence it remains an open question.

The total free energy of the system is the sum of these two contributions: U =
Usurface + Uline.

Our approach is based on the fact that both the surface and the line energies are
functionals of the shape of the triple interface, which is a one-dimensional curve. When
inertial effects do not play an important role (the highly viscous, low Reynolds number
regime), the total energy of the system is uniquely defined by the shape of the contact
line, it is therefore enough to track solely its dynamics.

Dynamics of a circular hole

In order to illustrate that the dynamics is defined by the motion of the contact line, we
consider a simple example: the dynamics of a circular hole. Due to the symmetry of the
problem, an analytically study is possible. From energy terms (6.1) and (6.2) the forces
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acting on the edge of the hole can be derived, which, due to symmetry considerations
act in the radial direction

Fsurface = −∂Usurface

∂R
= − ∂

∂R
(−γπR2) = 2πγR, (6.3)

where R is the radius of the hole. Similarly, the force resulting from the line tension:

Fline = −∂Uline

∂R
= − ∂

∂R
(α2πR) = −2πα (6.4)

Assuming an overdamped motion of the edge of the hole (the triple interface), the fol-
lowing equation of motion yields for its radius:

(Fline + Fsurface)m =
dR

dt
(6.5)

In the above expression, m is the mobility of the three-phase line and is inversely pro-
portional to its length, i.e. the longer the line, the more sluggish it is: m = m0l0/(2πR),
where m0 is the mobility of a line segment of length l0. The equation of motion for the
contact line is thus: (

γ − α

R

)
m0 l0 =

dR

dt
(6.6)

It can be seen that the equilibrium radius of the hole is R0 = α/γ which is an intrinsic
length scale of the system. For large radii (R/R0 ≫ 1) the line energy can be neglected
and the velocity of the contact line is constant:

dR

dt
= γm0 l0 (6.7)

Note that when R is large, R(t) ∝ t, which is in complete agreement with previous
results, for instance [197].

Mobility of the contact line

So far the mobility of the triple interface has been introduced as a phenomenological
parameter which, in turn, defines the time-scale of the problem. Considering the case
when no slippage of the interface occurs (the flow of the interface is a Poiseuille flow), in
previous studies similar results to eq. (6.7) have been derived for the radial velocity of
the triple interface for a drying patch nucleated into a liquid film [197, 143, 27, 144]:

dR

dt
=

θ3e
12
√
2 ln(θel/b)µ

γ (6.8)

where θe is the equilibrium contact angle, l is the rim width, b is the extrapolation
length (the distance from the rim at which the velocity extrapolates to zero) and µ is
the viscosity. Comparing eq. (6.7) to eq. (6.8) one can identify the mobility given now
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in terms of independently measurable quantities that are now properties of the contact
line:

m0 l0 =
θ3e

12
√
2 ln(θel/b)µ

(6.9)

In case of a curve-like interface with parametric equation ~r = ~r(u) (where u is some
arbitrary parameter), the equation of motion writes as

~̇r(u) = m[~r(u)] · ~F [~r(u)], (6.10)

hence the mobility and the force in this case are both functionals of the shape of the
interface.

6.3 The simulation method

Discretization of the contact line: characteristic points

In order to model the dynamics of contact lines of arbitrary shape, numerical methods
are necessary. As a first step, the contact line is discretized into representative points.
After the contour is discretized, the points are connected through directed line segments
(vectors). Each of the points “tracks” its previous and upcoming neighbors and, by
convention, the vectors are directed so that the liquid always lies on their left hand
side. Following the direction of the vectors connecting the points, a directed chain is
established. We denote by Si the index of the ensuing point corresponding to point i and
by Wi the point preceding i (Fig.6.3). In terms of the representative points’ coordinates,

Figure 6.3 – Discretization of the contact line. The contact line is considered as a chain
of representative points with directional connections and nearest neighbor interactions.

the line and surface tension energies write as:

Uline = α
∑

i

√
(xi − xSi

)2 + (yi − ySi
)2 (6.11)

Usurface = γ
1

2

∑

i

xiySi
− xSi

yi (6.12)
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Nearest neighbor interactions

Once the energies are obtained, the forces acting on the representative points are com-
puted as ~Fi = −∇iU . In our two-dimensional approximation, the two components of
this force are

Fix = −∂U
∂xi

= (6.13)

= −α
[
xi − xWi

di,Wi

+
xi − xSi

di,Si

]
+ γ(ySi

− yWi
)

Fiy = −∂U
∂yi

= (6.14)

= −α
[
yi − yWi

di,Wi

+
yi − ySi

di,Si

]
− γ(xSi

− xWi
),

where dk,l is the distance between points k and l. It can be readily seen that each point
interacts with its nearest neighbors only. We emphasize that the localized nature of
the forces is a direct consequence of our primary hypothesis, i.e. the droplet is flat and
its height profile does not change significantly during the movement of the contact line.
Either at lower scales, where the fine structure of the contact line becomes relevant or
in the case of non-flat droplets the Green function of the contact line (its response to
a localized perturbation) is of long-range nature. As mentioned in the introduction, a
perturbative treatment for small deformations of the contact line is described in Ref. [88],
while the propagation of such lines in random media resulting in depinning transition and
a consequent advancing accompanied by avalanches are extensively studied in Ref. [191]
and [189]. For the present case, we stick to the lubricant approximation, thus proceed
with eq. (6.13).

Dynamics of the interface

The system composed of interacting representative points is very similar to an inter-
acting particle system, therefore a simulation method resembling the classical molecular
dynamics method is suitable for investigating their dynamics. The overdamped equation
of motion for the points is:

~̇ ir = mi
~Fi (6.15)

The mobility mi associated to point i is inversely proportional to the length element of
the respective point on the triple interface:

mi = m0
2dmax

di,Si
+ di,Wi

, (6.16)

where we remind that di,Si
is the distance between point i and its upcoming neighbor,

while di,Wi
is the distance between point i and its previous neighbor. During their

dynamics, the representative points will approach or move away from each other. In
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order to preserve numerical accuracy, their density on the triple line should be kept
constant. Imposing a constant density however, is incompatible with the movement
of the individual points, therefore, an optimal fluctuation around an average value is
necessary. This issue is solved by inserting a new point between two neighboring points
whenever they move farther than a predefined distance dmax. In case they come closer
than another predefined distance dmin, one of the points is removed. As a rule of thumb,
we consider dmin = 0.8 dmax/2, which ensures that no insertion is necessary right after
a removal. With this choice, m0 is then the mobility of one line segment. Note that
continuous indexing of neighboring points is not possible due to the repeated insertions
and removals.

Whenever two segments intersect, the points are reconnected such that the line breaks
up, hence allowing for tearing the layer. The used reconnection mechanism is sketched
on Figure 6.4.

Figure 6.4 – The reconnection mechanism for the tearing of the layer. The label values
in parenthesis indicates the succeeding order in the oriented chain. Please note that step
1 and step 2 are made in the same time moment.

Pressure

The model introduced so far applies for extended, flat layers. Due to the surface tension,
a circular droplet shrinks up until it disappears because there is no force that would even-
tually stop it. We propose therefore an extremely simplified way to introduce pressure in
the system, with the consideration that the height of the layer is the same everywhere, h.
A new force is thus introduced which is always perpendicular to the rim, points towards
outside and has the same magnitude for each of the points. Since this force correspond
to the hydrostatic pressure, its value is proportional to the actual height of the liquid
film:

Fpressure = Ch (6.17)

where C is a positive constant and is related to the density of the liquid.
The height of the layer is derived from the mass of the droplet, from now on therefore
each droplet’s mass has to be conserved. Besides, we have to keep track of the individual
loops, the points belonging to certain loops and when droplets are split, the mass is
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distributed among them proportionally to their actual area. The height of droplet k is
obtained by:

hk = C1
Mk

Ak(xp, yp, ...)
(6.18)

where Ak is the (time dependent) area and Mk the mass of loop k. The area is obtained
as:

Ak =
1

2

∑

i

xiySi
− xSi

yi (6.19)

where the summation refers to all points belonging to loop k.
Through the height thus a global coupling of the points is established. The force resulting
from the pressure is weighted in a similar manner as the mobility with the curve element
the given point represents:

Fi pressure = C2
Mk

Ak
(di,Si

+ di,Wi
) (6.20)

It is assured that this force always points towards outside by checking the concavity of
the rim at the given point and changing the direction of the force if necessary. The
direction of the previous forces was automatically assured by their x and y components,
but in the case of the hydrostatic pressure this has to be adjusted manually.
An immediate consequence of the pressure is that there will be an equilibrium position
in the case of the droplets as well. A circular droplet does not shrink and disappear any
more, but approaches its stable equilibrium state assimptotically. Since we have no real
comparison related to the accuracy of such a rough approximation, the force resulting
from pressure will only be used for qualitative purposes.

6.4 Inhomogeneities

The substrate the liquid droplets or thin films move on is usually inhomogeneous: both
the roughness and chemical heterogeneities of the underlying surface modify the contact
line dynamics and lead to the ripped-edged shapes. Similarly to previous descriptions,
one may introduce inhomogeneities of the substrate in terms of pinning points. Here we
provide two possibilities to introduce such pinning dots: in the first method, dots are
extended patches and the surface and line tension coefficients modify when the contact
line arrives above the dot. This method along with the pressure described in the previous
section gives qualitative results regarding the roughened shape of the contact line. In the
second method we are interested in the statistical quantities describing the roughening.
In this case, pinning dots are considered point-like and are generated on the run. We do
not consider any pressure force in this second case.

6.4.1 Extended inhomogeneities

Inhomogeneities (defects) of the substrate can be relatively easily built into our model
using some pinning dots spread over the substrate. If any of the representative points
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arrives above such a pinning surface, both the surface and the line tension coefficients
change since the layer’s interaction with the surface on these dots is different. The main
advantage of this treatment is that the defects are introduced in a simple, yet motivated
manner into the model.
For the sake of simplicity, the shape of these pinning dots is taken to be circular, because
this way it is easier to check whether any of the representative points is above a given
dot or not. The size and place of the dots as well as the line and surface tension on them
might be chosen randomly, according to a given distribution that is specific to a given
substrate. Usually both the line and surface tension coefficients are smaller on the dots
than on the bare surface otherwise an acceleration of the receding rim occurs instead of
its blocking.
In order to keep the transition of α and γ from the pinning dots to the surface continuous,
a (possibly) linear increase of these coefficients can be considered from the center of the
pinning dot to their edge, where they reach their bare surface value. As a first convention,
when more pinning dots are superimposed, the lowest value for α and γ are chosen.
The equilibrium position on such a surface is presented on Figure 6.5. For illustrative
purposes, Figure 6.6 shows the equilibrium positions on a surface with a regular array of
inhomogeneities.

Figure 6.5 – Equilibrium position of the liquid film on an inhomogeneous surface. Pinning
dots are marked as red dots. Splitted drops are also observable. Equilibrium in this case
can be reached due to the forces resulting from pressure.

6.4.2 Point-like inhomogeneities

While the above method of handling the surface inhomogeneities is appealing, it has two
major drawbacks. First, inhomogeneities have to be pre-generated and at each time step
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Figure 6.6 – Equilibrium position of the liquid film on a surfaces with a regular array
of inhomogeneities. Left: large pinning dots, right: small pinning dots. Note again the
tearing up of the layer on some of the dots.

each point has to be checked whether it reached a pinning surface. This is computation-
ally expensive. Second, it involves many additional parameters: size distribution of dots,
distribution of α and γ on the dots, density of dots, etc. Adjusting these parameters is
useful in particular applications, but they may hide the generic behavior behind the con-
tact line roughening. In this section, we introduce an alternative method which handles
the pinning dots as point-like. A threshold force is associated to each dot that has to be
crossed by the contact line. With the method developed here, pinning dots are generated
on the run, yet they represent quenched disorder. We do not consider pressure here and
this is the method we are going to use to investigate the contact line roughening.

Whenever the contact line hits a pinning point, it is blocked as long as the force
acting on it does not reach a given threshold. Eq. 6.10 then modifies to:

~̇r(θ) = m[~r(θ)] ·
(
~F [~r(θ)] + ~Fpin[~r(θ)]

)
(6.21)

where ~Fpin is the pinning force resulting from inhomogeneities:

~Fpin(~r) =




−η(~r) ~F (~r)

|~F (~r)| if | ~F (~r) |> η(~r)

−~F (~r) if | ~F (~r) |≤ η(~r)
(6.22)

Note that the above formulation simply tells that the characteristic point trapped on a
pinning dot only can pass if the force acting on the point from its neighbors is strong
enough to exceed a threshold value η. Here η(~r) characterizes the pinning strength at site
with position at ~r. In case of point-like inhomogeneities, localized at spatial coordinates
~rk

η(~r) =

{
ηk if ~r = ~rk

0 ~r 6= ~rk,
(6.23)
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where ηk are the thresholds of the pinning points. In the followings, spatially uni-
formly distributed and uncorrelated inhomogeneities are considered. For simplicity rea-
sons, the ηk threshold values are considered also uniformly and uncorrelatedly distributed
on the [0, η0) interval.

The concentration of the point-like inhomogeneities is

c = lim
S→∞

1

S

∫

S

∑

k

δ(~r − ~rk)d~r, (6.24)

while their average distance is given by L0 = 1/
√
c.

Note that the disorder is quenched, which means that in principle their positions
would have to be generated and fixed right from the beginning of the simulation. The
line segments have to be tested at any instant of the simulation, whether they cross any
of the pinning points, a procedure which is extremely time consuming. In order to avoid
this, a simplified procedure is used to generate pinning points on the run, yet preserving
their statistical properties.

Figure 6.7 – Handling the substrate inhomogeneities. In this example, the line segment
corresponding to point i crosses 4 pinning centers, each with its own threshold. The
effective threshold experienced by point i is the largest one out of those 4. The pinning
points are considered point-like, with no planar extension.

If the line segment belonging to point i sweeps a small area ∆S within a time interval
∆t (Fig. 6.7), the probability of finding exactly n pinning points within that area has a
Poisson distribution:

P (n) =
1

n!
(c∆S)n exp(−c∆S) (6.25)

Since the pinning is related to thresholds, whenever the line segment crosses n pinning
points, with thresholds {η1, η2, ..., ηn}, it will experience an effective threshold which is
the maximum of all the thresholds of the points within ∆S:

ηeff = max{η1, η2, ..., ηn} (6.26)
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Bearing in mind that ηk is uniformly distributed on the [0, η0) interval, the probability
distribution of the maximum is given by:

P (ηeff |n) = n ηn−1
eff ηn−2

0 where ηeff < η0 (6.27)

At every time step, for each site, the number of pinning points is drawn according
to the (6.25) distribution, while the thresholds are generated according to the (6.27)
distribution.

6.5 Soft line in quenched disorder

Overview of the system

As application to the previously discussed method, we will study the dynamics and
topology of a moving dewetting line on a substrate with uniformly distributed quenched
disorders. Disorders act as pinning centers, and we consider them point-like with the
statistical properties described in the previous section. The initial state of the interface
is a straight line along the x axis (y(t = 0) = 0), and the liquid is considered to be
under this line in the y < 0 semiplane. Periodic boundary conditions are imposed along
the x axis, hence while the liquid contracts, the contact line moves towards the negative
y direction. After a transient period, the line reaches a dynamic equilibrium state, in
which its statistical properties are stationary.

R0 = α/γ is chosen as the unit length of the simulation. All the lengths are then
expressed in terms of dimensionless coordinates ~̃r = ~r/R0. Let us introduce R1 = η0/γ,
which would correspond to a flat line element subjected to a capillary force that would
move it over a pinning dot with threshold η0. Its dimensionless form is R̃1 = R1/R0. The
dimensionless time is t̃ = γm0t. The equation of motion (6.21) can then be rewritten in
terms of these dimensionless quantities which leaves us with two parameters only: the
length scale R̃1 defined by the amplitude of the inhomogeneity thresholds and the length
scale L̃0 = L0/R0 defined by their concentration. Consequently, the dynamics of the line
is a result of the competition between these two length scales.

Simulations were carried out for a system length along the x direction L̃x = 160,
representative points distance d̃max = 0.2 and a time step ∆t̃ = 10−3. As mentioned
previously, tearing up of the layer is possible, however, the resulting droplets (droplets
left behind as a result of tearing) are disregarded as they have no more influence on the
dynamics of the main line. Wherever it was meaningful, an ensemble average over 10
ensembles (independent runs) was considered.

A depinning-like transition

We present now the results obtained for the dynamics of the model system described
in the previous section. First, we study qualitatively the dynamics of the interface.
Fig. 6.8 shows the time evolution of the contact line for various parameters R̃1 and L̃0.
As the line’s average velocity decreases, i.e. as it approaches the depinning transition,
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its length and roughness increases. One will observe that the contact line reaches a
statistically stable conformation, and its shapes are in good qualitative agreement with
the experiments carried out by Clotet et al.[42] and Paterson et al. [131, 132] in a
Hele-Shaw cell, although both experiments were carried out for wetting on disordered
substrates, i.e. the opposite dynamics of the contact line.
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Figure 6.8 – Contact line morphology for equally spaced time moments (plots in the
x − y plane). Evolution of the interface is from top to bottom (from the blue line to
the black one). The inset graphs from left to right correspond to increasing R̃1 values
(indicated in the horizontal direction), while from bottom to top we consider increasing
L̃0 values (indicated in the vertical direction). The roughness and velocity fluctuations
increase, long range correlation and large deformation develops as the system approaches
the depinning transition. In the two bottom-right cases, after sweeping a finite distance,
the line is pinned. In order to better visualize every position of the line within the desired
interval, different scales on the y axis have been used. The scale in the x direction is
always 200 units
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In the dynamic equilibrium (stationary regime of the moving interface), the mean
velocity of the interface along the y direction presents a nontrivial, phase-transition like
behavior as a function of L̃0. There is a critical concentration, below which the line is
depinned (Fig. 6.9) which is similar to the depinning transition.
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Figure 6.9 – Left: mean velocity of the interface along the y axis, in the stationary
regime, as a function of L̃0 for different R̃1 parameters. Right: the mean velocity as a
function of L̃0/L̃

c
0. A reasonable collapse is obtained.

This critical concentration (or, the associated length L̃c
0) depends on the pinning

strength. From Fig. 6.9 we also learn that L̃c
0 increases with R̃1 and converges to

L̃c
0 = 1/2 ± 0.1 as R̃1 → ∞. This value is significantly lower than L̃c

0 = 2, which would
be the critical length for a regular array of defects with infinite strength that would
prevent tearing. Collective trapping of parts of the contact line thus is possible if the
distance between the neighboring defects is less than 2. The existence of such a threshold,
lower than L̃c

0 = 2 has been shown experimentally [131], however, since the experiment
was carried out in gravity, its value is related to the capillary length. In our case, the
obtained lower limit is merely a consequence of the competition between the line and
surface tensions and the value L̃c

0 = 1/2 is thus a consequence of the underlying disorder.
It is related to the percolation of the contact line between the localized defects. As it is
expected for a critical behavior, the mean velocity curves have a reasonable collapse if
they are plotted as a function of L̃0/L̃

c
0. Figure 6.9 shows the results in such sense.

Phase diagram of the transition

Although the number of the simulated data points was rather limited for this purpose,
we made an attempt to find the L̃c

0 = L̃c
0(R̃1) dependence. We considered the mesh

illustrated on Fig. 6.10 in the R̃1 − L̃0 plane to detect the occurrence of the depinning
transition. Figure 6.10 shows that L̃c

0 = 1/2 − R̃−1
1 is a reasonable fit for describing the

boundary between the two phases in the mapped region. Interestingly, this fit suggests
that for R̃1 < 2 a total pinning is not possible.

For the high inhomogeneity and low threshold regime (L̃0 ≪ 1, R̃1 ≪ 1), one would
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Figure 6.10 – Left: phase diagram of the contact line in the (R̃1, L̃0) parameter space.
Symbols indicate parameter values at which simulations were performed. Blue squares
indicate the obtained pinning phase, green dots the depinning phase. Right: derived
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expect the possibility of a classical depinning transition, with small deformations of the
contact line. Interestingly however, we could not observe such a transition, even for
extremely low values of L̃0 and R̃1. In their experiments, Duprat et al. [56] investi-
gated the depinning of a wetting contact line from an individual defect. They reported
that depending on the pinning strength the contact line either jumped off the defect or
completely wetted it, and advanced by tearing up and leaving an air hole behind. For
individual or localized group of inhomogeneities we observed the same behavior, however,
it turned out to be impossible to recover a collective depinning transition without the
tearing up of the film. This is probably the result of the high ductility of the contact
line. The classical depinning transition occurs due to the competition between disorder
and long range elastic restoring forces [90], while in our case, we lack the long range part,
therefore, we encounter a new transition, which is mainly governed by large deforma-
tions and tearing up of the layer. In the experiments of Paterson and Fermigier [131],
the authors distinguish between strong and weak pinning as a function of the spatial
distribution of the inhomogeneities. In the strong pinning case, defects were spread ran-
domly and uniformly over the whole surface, while in the weak pinning case, they were
spread by positioning randomly only one defect in each unit cell of a larger square lattice,
hence obtaining a more homogeneous pattern. For the same defect concentration, the
second case results in smaller average distance L̃0 between the defects. The observation
that in the strong pinning case (small L̃0) the contact line breaks up, and in the weak
pinning case (large L̃0) it advances with a rather smooth shape, is compatible with our
simulation results, even though we tuned L̃0 by changing the defect concentration rather
than changing their distribution or correlation.
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Large deformations and backward movement

Figure 6.11 – An example from computer simulations where local backward movement of
the interface occur. The liquid layer sketched in gray contracts by moving in the bottom
direction (negative direction of the y axis). Due to the highly deformed shape of the
interface, there will be parts of the interface where the velocity vector of the interface
will have a positively oriented y component.

Another major difference compared to classical depinning models is that in our system
local backward movements of the interface may appear, and, indeed, approaching the
transition, positive velocities of the representative points occur, which plays an important
role in the roughening mechanism (see the scenario presented in Figure 6.11). This
backward motion does not imply however, that the interface will sweep over the same
substrate area twice. This scenario will never happen, and in such sense our method
for generating the pinning points is consistent. The local backward motion has to be
understood in the context that the withdrawing liquid layer has a complex shape, and
the contraction is realized in a complicated manner, as it is sketched on Figure 6.11. The
contraction of some peninsula-like formations can lead to such backward oriented motion
of the interface.

Figure 6.12 shows how the distribution of the velocity components in the y direction
changes as we approach the transition point. Far from the transition point we experience
an almost bimodal distribution (one peak corresponding to the unpinned part, while the
other one, at zero, to the pinned part), while close to it we obtain an almost zero-averaged
symmetric distribution. Clearly, it is due to the slight asymmetry that the contact line
moves forward on average.

Morphology at the transition

In order to quantify the morphology of the contact line around the transition, we per-
formed a classical rasterization analysis. The length of the contact line L was measured
by taking into account only every ∆th representative point, and the scaling of L with
respect to ∆ was investigated. This means that for ∆ = 1, L is computed by adding up
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the distance between each nearest neighboring point, for ∆ = 2 by summing the distance
between each second neighbor points and so on, hence the length of the curve is ap-
proximated at different precisions. Figure 6.13 shows that as the system approaches the
depinning transition, the scaling converges to a power law, L(∆) ∝ ∆−1/4. This suggests
a fractal-like structure and a scale-free morphology with a diverging total length as ∆
decreases. This is again a direct consequence of the undergoing phase transition.
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Figure 6.13 – Development of the scale-free morphology as the system approaches the
critical state. The normalized length L(∆) of the contact line as a function of ∆ (see the
text for the definitions). Results for R̃1 = 102 and different values of L̃0. The dashed
line is a guide for the eye, and has a slope −0.25. A natural upper cutoff arises due to
the finite system size, and a lower cutoff from the discretization.
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Since ∆ can be used to parametrize the contact line (x(∆), y(∆)), further information
concerning its shape can be extracted by investigating the structure factor Sy(k∆) defined
as the power spectrum of y(∆): Sy(k∆) = |ŷ(∆)|2 where ŷ(∆) is the Fourier transform
of y(∆). Figure 6.14 shows the convergence of Sy(k∆) to a power law in the vicinity of
the transition point: Sy(k∆) ∝ k−2

∆ . This suggests again the scale-free, fractal-like shape
for the interface. As expected, the main difference between the various curves Sy(k∆)
arises from the low frequency, hence large wavelength values, showing that long range
correlation develops close to the transition point.
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Figure 6.14 – Development of the scale-free morphology as the system approaches the
critical state. The structure factor Sy(k∆) as a function of ∆ (see the text for definitions).
Results for R̃1 = 5.0 and different values of L̃0. The dashed line has a slope −2.0 and
the range 1 ≤ ∆ < 2048 was used for the Fourier transform.

The average position of the contact line was also followed as a function of time.
Results for a fixed R̃1 = 102 value and a wide range of L̃0 values are plotted on Figure
6.15. When approaching the critical point, fluctuations increase and the sudden jumps
in the average position become more and more dominating. These jumps are the result
of either the slip of the contact line over individual defects or the tearing up of the layer.
Analogously to jumps in the magnetization (Barkhausen noise), these jumps are termed
avalanches, since the average position of the line is governed by fast slips. Close to the
transition, the sizes of the jumps exhibit a power-law distribution with an exponent −2
(Figure 6.15). Our results along this line are however modest (the scaling is on an interval
less than two orders of magnitude), due to the lack of statistics for the large avalanche
sizes. It is important to note however that experimental data presented in Ref [121]
clearly shows values around -2, giving thus some confidence to the results of our model.
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6.6 Conclusions

A novel and efficient off-lattice simulation method, resembling the classical molecular
dynamics, has been introduced for investigating the dynamics of thin and viscous liq-
uid layers, dewetting on inhomogeneous surfaces. By using this simulation method the
existence of an unusual depinning-like transition was revealed. This transition is gov-
erned by large deformations of the interface and the breaking up of the layer. The
two-dimensional parameter space of the investigated system was explored, and the ob-
tained results were discussed in view of available experimental observations. We learned
that the contact line’s dynamics is a result of an interplay between the capillary forces
and the substrate disorder, however, with the appropriately introduced adimensional
form, both relevant parameters are related to the inhomogeneities. In such an approach,
the universal properties of the contact line can be viewed as a result of the competition
between the inhomogeneities strength and their density. The difference between the dy-
namics of a receding and an advancing contact line (dewetting vs. wetting), other than
the contact angle hysteresis, remains an open question and could be investigated in the
future by rigorously introducing pressure in our model.
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Conclusions and perspectives

Throughout this thesis, we studied two disordered systems from the depinning point of
view. The complex phenomenology in these systems stems from the competition between
disorder and the elastic interactions between regions in the system.

In the first part, we examined the generic plastic properties of amorphous systems
via a simple mesoscopic model. We showed that the threshold dynamics is a natural
consequence of the multistability arising from the competition between elasticity and the
underlying disorder and local thresholds are related to the heights, whereas plastic slip
amplitudes are related to the widths of the disordered potential wells. Accordingly, we
considered two extreme cases of the disorder (distributed barriers or distributed positions
of wells), and we found that generic properties are unaffected by the particular form of
the disorder. This has yet to be confirmed by intermediate cases, namely by gathering
the precise distributions of thresholds and slip amplitudes from molecular dynamics,
however, based on our results, we do not expect considerable change in the universal
properties.

While the yielding of amorphous materials is, in many aspects, similar to the depin-
ning transition, we found that plastic yielding is not depinning. Consequently, mean field
approaches are insufficient to fully describe the yielding transition. Amorphous plasticity
shows additional phenomenology compared to depinning such as localization and diffusive
fluctuations. We have shown that the existence of soft modes in the anisotropic elastic
interactions at play in amorphous plasticity are at the origin of these extra features. Soft
modes allow for the constant increase of fluctuations and thus the ultimate failure of the
material. We found that, in amorphous plasticity, the soft modes of the elastic interac-
tion kernel are nothing but percolating shear bands. In this context, soft modes explain
not only the diffusing fluctuations but the localization behavior as well. Moreover, we
provided a new framework to describe amorphous plasticity as the interaction between
loosely coupled shear bands. The weak interaction between shear bands results from the
inhomogeneity of the plastic strain along the band.

However weak this coupling may be, it still matters on the long run. A simple in-
dependently diffusing shear band model for instance is unable to predict the finite size
scaling of the diffusion coefficient on the long run. A detailed investigation of the statisti-
cal properties of the mechanical noise induced by the inhomogeneous plastic deformation
along the shear bands could help to elucidate the role of this coupling in the long term
dynamics. In the meantime, localization on short times follows slip lines as predicted by
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scaling and observed in molecular dynamics. However, a more thorough analysis of the
spatial correlation of the plastic activity induced by the individual avalanches is necessary
to firmly confirm that avalanches indeed follow slip line patterns.

Diverging fluctuations and the associated shear banding in amorphous materials ulti-
mately lead to failure. Understanding the shear band formation mechanism is therefore
the first step in developing materials with enhanced mechanical characteristics. The
next step in the process is to control the nucleation of shear bands. We found that shear
band nucleation is affected by adding hard inclusions to the amorphous matrix. We have
shown that the reinforcement of amorphous materials by hard inclusions shows finite size
effects and a linear mixing law gives an upper bound to the flow stress. Furthermore,
we found that reinforcement is related to the percolation of shear bands in between the
hard inclusions. Although we carried out simulations with soft inclusions as well, the
reinforcing mechanism there is less clear. This is a work under progress and not discussed
here, however, we expect soft sites to contribute in suppressing permanent shear band
formation.

The mesomodels we used are meant to capture the generic phenomenology of amor-
phous plasticity. In this spirit, they are oversimplified caricatures of real world amorphous
systems and the effect of these simplifications has yet to be clarified. For instance, we
were using scalar models with the strong hypothesis that the plastic slips follow the sym-
metry of the external loading. Stresses and strains however are tensorial quantities, and
a tensorial model is necessary to support this hypothesis. Another, related simplification
is that we did not account for densification. This assumption probably applies to dense
amorphous systems such as metallic glasses. On the other hand, even a pure shear plastic
deformation of an Eshelby inclusion induces a pressure component in the stress field, and
the consequences may be nontrivial.

In the second part of the thesis we considered another depinning-like system. We
developed a novel approach to model the dynamics of thin liquid layers on inhomoge-
neous surfaces. In our simplified picture we considered the layer as flat, and followed
the motion of the contact line only. We found that in this approximation, interactions
are short ranged, hence the line is soft. The roughening of the line is governed by the
competition of these short range interactions and the disorder of the surface. We revealed
the existence of a critical concentration of inhomogeneities below which the line stops
within finite time, and above this concentration it moves indefinitely. Around the thresh-
old concentration the line shows critical-like properties such as fractal-like structure and
long spatial correlations. This is a peculiar transition: although depinning-like in the
sense that it results from the competition of short range interactions and the pinning
forces of the disorder, it is associated to the large deformations and tearing up of the
layer. Large deformations and tearing up are not accounted for in standard depinning
models, we therefore hope that our method may open a new perspective in the study of
jerky interface motion.
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