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General Introduction 

 

Carbon nanotubes (CNTs) have attracted since 1991 a lot of attention from the scientific 

community mainly due to their remarkable physical properties. Most of the current interest is 

focused on the practical applications of CNTs. To actually use them in various applications, it is 

often necessary to modify the CNTs in various ways. One of these ways may be to fill them with 

foreign materials, so that the properties of the host CNTs would be modified due to the interaction 

with the filling material. Moreover, the templating effect provided by the inner elongated cavity of - 

CNTs can enforce the inserted materials to adopt a 1D morphology, thus making filling CNTs an 

alternative route to synthesize 1D nanocrystals/nanowires. Meanwhile, when foreign materials are 

confined within a limited space, chances are high that deformation of the lattice structure, or even 

formation of new structures may occur for the encapsulated materials. These possibilities to induce 

new behaviours or new properties are more likely to occur if the inner cavity of the nanotube is 

smaller. Therefore, filling single-wall CNTs (SWCNTs) or double-wall (DWCNTs) – which may 

have an even smaller inner diameter – should be preferably considered as their inner cavity is 

typically below ~2 nm.  

Filling CNTs to prepare X@CNTs hybrids can be achieved by various means and among them 

the molten phase method is widely employed due to the possibility for high filling rates, simplicity 

and versatility. Filling CNTs with a liquid is driven by the capillary force generally described by the 

Young-Laplace equation, but the detailed mechanisms involved in the capillarity filling of CNTs are 

not clear yet because they depend on different parameters such as the requirement of opening of the 

nanotubes, the inner diameter and the fact that the wetting properties of CNTs should depend on the 

texture of the inner tube (concentric tubes, or the so-called herringbone organization).  

Even if very simple on the principle, not all compounds can be introduced by the molten phase 

method due to intrinsic incompatibility (chemical, physical) between the material and the CNTs, or 

technical limitations of the experimental procedure. To overcome this problem, the strategy of 

applying post-treatments to CNTs filled with a precursor of the target material can be used. In this 

way, the synthesis of, for example, metals or sulphides (otherwise generally presenting drawbacks 

fatal to filling such as poor wetting of CNTs, possible chemical reaction with the host tube, too high 
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melting point… if tentatively directly inserted) nanowires, may be prepared. This work thus aimed 

to better understand the basics of filling nanotubes with molten materials as well as the mechanisms 

of chemical reactions performed in situ in the inner cavity of the nanotubes. With such a goal, metal 

iodides have been selected as model compounds because they combine well-matching 

physico-chemical properties with the high electronic density of iodine, making this element 

particularly easy to image by high-resolution transmission electron microscopy (HRTEM), a central 

tool in this work. 

Investigations on the properties of individual X@CNT hybrids are quite appealing since the 

properties of the inserted nanocrystals are expected to differ from that of the bulk material because 

of their likely different structure, high anisotropy, and surface atoms/core atoms ratio far different 

from ~0. These potential new properties may also be transferred to the CNTs. Unfortunately, 

examples of characterisation of such nanostructures is still relatively scarce in the literature, 

possibly because the facilities and devices for measuring properties of filled CNTs at the 

microscopic level are not so accessible, or more likely because it is difficult to ensure that the 

measured nanotube is indeed filled. 

This PhD manuscript thus consists of 3 chapters. Chapter 1 is a general introduction to the 

filling of carbon nanotubes, describing the state of the art of filling strategies, as well as reporting 

some examples of properties and applications of filled CNTs. Chapter 2 reports our investigations 

(i) of the filling mechanisms when using the molten phase method by considering a variety of filling 

halide materials (with a focus on iodides and iodine) as well as a variety of host nanotubes (with a 

focus on DWCNTs) with molten compounds and (ii) of the resulting peculiar X@CNT hybrid 

nanostructures, with the help of HRTEM, and scanning transmission electron microscopy (STEM) 

techniques, as well as local probe electron energy loss spectroscopy (EELS). Chapter 3 deals with 

three different attempts of in situ transformations of selected X@DWCNTs: (i) the in situ 

sulfurization of PbI2@DWCNTs, (ii) the in situ H2-reduction of FeI2@DWCNTs and 

NiI2@DWCNTs, and (iii) the in situ fluorination of FeI2@DWCNTs. Finally, a general conclusion 

summarises our results and present our perspectives, in particular the work in progress related to the 

characterisation of X@DWCNTs hybrids, which could unfortunately not be included in this 

manuscript.  
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Chapter 1 General Introduction to Filled Carbon Nanotubes 

 

In 1991, a paper published by Iijima in Nature [1] presenting unambiguous proof of 

multi-walled carbon nanotubes (MWCNTs) which was discovered in the hard deposit growing at 

the cathode during electric arc experiments to produce fullerenes had a huge impact on the scientific 

community back then. Before that, most scientists did not give a second thought to ‘nano’. 

Ironically, MWCNTs had already been known as early as 1950s [2, 3], and for decades they were 

merely regarded as hollow carbon filaments - the undesirable byproducts to remove from the 

processing in the coal and steel industry and also in the nuclear industry. Subsequently in 1993, 

another work by Iijima with Ichihashi as the co-author reporting the synthesis of single-walled 

carbon nanotubes (SWCNTs) was published [4]. It is interesting to point out that another team, from 

IBM, California [5] also reported the formation of SWCNTs at the very same time as the Japanese 

team. Since then, scientists have devoted their attention to the research on the unique properties of 

CNTs and the exploration of their applications.  

Up to now, many aspects concerning CNTs have been developed maturely. For instance, the 

synthesis routes for large-scale and diameter-controlled production are well established and 

supplied commercially, theories to predict various properties of CNTs are well supported by 

experimental results. Therefore, more and more attention are paid to the actual integration of CNTs 

in devices and their incorporation in advanced materials and crafts of practical interest. 

Unfortunately, many challenges with respect to the poor dispersibility, solubility, etc. of CNTs are 

needed to overcome. One alternative is to modify the CNTs in various ways including adding 

groups to the surfaces or inserting materials into the cavity and so on. Through the modification, 

more versatile CNTs are obtained and exhibit more fascinating properties, which can be considered 

as a third-generation of carbon nanotubes. This new generation of CNTs is named “meta-nanotubes” 

which is classified into five main categories [6]: functionalized nanotubes (denoted as X-CNTs), 

decorated nanotubes (denoted as X/CNTs), doped nanotubes (denoted as X:CNTs), filled nanotubes 

(X@CNTs) and heterogeneous nanotubes (X*CNTs), where X refers to the foreign components 

associated with nanotubes and which can be chemical functions, phases, atoms or molecules. 

Compared with the other four kinds, filled nanotubes can be seen as a complement to the full 

exploitation of the spaces in nanotubes as it only deals with inner cavities. In this manuscript, the 
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subject is focused on the synthesis of X@CNTs, the mechanism of filling CNTs and some related 

properties of X@CNTs.   

 

1.1   Carbon Nanotubes 

 

To understand the structure of carbon nanotubes, it is better to begin with the simplest one – 

single-walled carbon nanotubes (SWCNTs). Let us image rolling a graphene sheet, a 

single-atom-thick hexagonal lattice of sp2-hybridized carbon atoms, into a cylinder and then adding 

two hemifullerenes to the two ends of the cylinder to close it. Of course, there are many ways to roll 

up the graphene into a cylinder thus the indices proposed by Hamada et al. [7] to describe the 

various kinds of SWCNTs are quite useful. As illustrated in Fig 1.1, if the cylinder is formed by 

overlapping the O atom with the A atom in another ring in the graphene, the helicity vector ܥ௛ሬሬሬሬԦ 

which  is equal to OA can be decomposed into two vectors parallel to the graphene lattice vectors 

ܽଵሬሬሬሬԦ and ܽଶሬሬሬሬԦ described in Eq. 1.1:  

  ௛ሬሬሬሬԦ= nܽଵሬሬሬሬԦ + mܽଶሬሬሬሬԦ                                     (1.1)ܥ                    

where n and m are Hamada’s indices counting the number of hexagons crossed by each vector and 

|ܽଵሬሬሬሬԦ|= |ܽଶሬሬሬሬԦ|= 2.46 Հ = a (the graphene basis [8]). Hence a (5, 2) SWCNTs is formed in Fig 1.1.  

 

 

Fig 1.1 - Illustration of how to define a SWCNT by rolling up a graphene sheet with Hamada’s indices. 

 

When n is equal to m or n is nil or m is nil, in which case ܥ௛ሬሬሬሬԦ is parallel to one of the symmetry 

planes of the graphene, two specific nanotubes can be generated: armchair (n=m) and zigzag (n or 
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m=0). Both types of nanotubes possess mirror symmetry and thus are achiral while those tubes with 

nm0 are called chiral (Fig. 1.2). 

 

  

Fig. 1.2 - Examples of three types of SWCNTs, from left to right are armchair, zigzag and chiral, respectively [9]. 

 

If we roll several stacked graphene sheets into a cylinder, then a multi-walled carbon nanotube 

(MWCNT) with concentric texture is obtained. In the case of two rolled graphene sheets, a 

double-walled carbon nanotube (DWCNT) is formed which can be seen as the intermediate 

between SWCNTs and MWCNTs that possesses the advantages of both CNTs (Fig. 1.3). 

 

 
Fig. 1.3 - TEM images of three types of CNTs, from left to right are SWCNTs, DWCNTs and concentric-type MWCNTs, 

respectively [4, 9, 10]. 
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1.2   Filled Carbon Nanotubes 

 

1.2.1 A Glimpse at the History of Filling CNTs 

 

When MWCNTs became the research focus for physicists, chemists, material scientists and 

even mathematicians, some attention was paid to the possibility of filling the inner cavity of 

MWCNTs with various foreign elements or compounds–mainly metals aiming at the synthesis of 

nanowires. Theoretically, driven by the capillary force the filling can be achieved considering the 

MWCNTs as nanostraws with diameter in the range of 10-50 nm and the calculations based on 

Young-Laplace equations predicted the threshold of surface tension for the inserted materials [11, 

12] although the validity of this approach in this case can be discussed. In this context, several 

examples of filling arc-produced MWCNTs were reported in 1993 [13-17]. However, the filling 

scarcely occurred over length higher than 100 nm for most filled tubes, possibly related to the fact 

that once the inner hydrostatic pressure equilibrates the outer pressure the  filling event stops. 

Meanwhile, a two-step method including a pre-opening process using oxidizing gas phases [13, 15] 

or oxidizing acids [18] and then a filling process was proposed. However, studies involving the 

two-step method came with some problems, such as low filling rates, limited number of species as 

filling materials, or irreversible damages to the nanotubes. To overcome these drawbacks, in situ 

filling attempts were made which were approached by mixing metal-containing compound like 

metal oxide [17] or metal carbide [14] with the graphite anode within the arc reactor. In this way, 

the compounds were encapsulated inside MWCNTs during their growth process. When pure 

transition metals (Ni, Co, etc.) were selected, SWCNTs were unexpectedly produced [4, 5], making 

a breakthrough for the scientific community.  

Compared to MWCNTs, the diameters of SWCNTs are more than one order of magnitude 

smaller (typically 1.4 nm) which can be seen as truly nano-world objects. Consequently, the interest 

in filling SWCNTs is much greater than that previously shown for filling MWCNTs. In spite of the 

efforts made by researchers from different laboratories, it took five years after the first filling of 

MWCNTs for the first successful encapsulation of Ru by SWCNTs to be published by University of 

Oxford [19] (Fig.1.4a), immediately followed by the discovery of SWCNTs filled with fullerenes 
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(‘peapods’) resulting from the collaboration between University of Pennsylvania and CEMES in 

France [20] (Fig.1.4b). In the former case, a mild process with concentrated HCl solution was used 

to open the SWCNTs first and then RuCl3 compound was deliberately introduced into SWCNTs via 

a wet chemistry method; a subsequent reduction in a H2 stream was carried out in order to get Ru 

metal. However, the displayed transmission electron microscope (TEM) images (Fig. 1.4a) were 

confusing as isolated filled SWCNTs instead of ropes of SWCNTs are hardly seen thus making it 

difficult to tell whether the filling occurred in the cavity of SWCNTs or in the interstitial space in 

the ropes, as well as to tell whether the ends of tubes were open. Later, the Oxford team modified 

the filling conditions by soaking the pristine SWCNTs into molten mixtures of KCl-UCl4 or 

AgCl-AgBr [21]. Surprisingly, continuous crystals filling the tubes were found in abundance for 

both mixtures as evidenced by high resolution TEM (HRTEM) images. Subsequently, various 

halides including lanthanide halides LnCl3 [22], alkali iodides [23-27], ZrCl4 [28], AgClxI1-x [29] etc. 

were attempted to fill SWCNTs or DWCNTs by this team. In 2001, Mittal et al. [30] performed the 

filling of SWCNTs with chromium oxide at room temperature, which is the first example of filling 

SWCNTs with oxides. Another example of Sb2O3-filled SWCNTs [31, 32] was reported by Oxford 

in the same year. Following the two studies, other oxides and hydroxides (KOH and CsOH [33]) 

were also introduced into SWCNTs, sometimes with a quite high filling rate (e.g. 80-90% for PbO). 

However, as most oxides have low solubility in harmless solvents or high melting point, they are 

not as favorable as halides for filling. Nitrates, on the other hand, were also popular compounds for 

filling SWCNTs. One interesting example reporting SWCNTs filled with double-helix chains of 

iodine by Fan et al. [34] should be noted here, which was the pioneering work on filling CNTs with 

atoms. Intriguingly, in their previous study [35], the authors only investigated the effect of 

iodine-doping on SWCNTs materials, not realizing that the molten iodine can help opening the ends 

of SWCNTs thereby entering the SWCNT cavities. Based on this research, a similar structure was 

assumed for encapsulated Cs chains prepared later [36]. However, due to the limited resolution of 

TEM achieved at that time, iodine chains were not so unambiguously observed and the following 

studies using similar methods as in [34] more or less focused on the charge transfer between iodine 

and CNTs through other characterizations rather than imaging iodine chains directly [37-40]. It is 

only in 2007 that Guan et al. demonstrated single, double or even triple chains of iodine confined in 

SWCNTs by means of HRTEM technique [41]. Recently, the formation of other atom chains (sulfur 
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chains [42] and selenium chains [43]) encapsulated within SWCNTs or DWCNTs was also 

reported.  

The story for peapods (C60@SWCNTs) is different. Though reported in the same year as 

RuCl3/Ru@SWCNTs, they were not deliberately synthesized but were actually by-products from 

the purification and annealing treatments on raw SWCNTs materials produced from the pulsed laser 

vaporization method (PLV) [20, 44-46]. These spontaneously formed peapods during the post 

synthesis process were questioned for a while, as the spontaneous formation could also be achieved 

during the synthesis of SWCNTs within plasma when arc discharge method was used [47, 48]. As a 

result, attempts to prepare C60@SWCNTs with a controlled synthesis were made by annealing the 

mixture of acid-treated SWCNTs and fullerenes in vacuum which led to much higher filling yield of 

50-100% [49-53] than that for peapods produced during regular SWCNTs synthesis (less than 10%) 

[46, 48].  

 

 
Fig. 1.4 - TEM images of the two firstly reported examples regarding to filling SWCNTs in 1998 (a) Ru@SWCNTs, the 

metal Ru was reduced from the initially introduced RuCl3 [19]; (b) C60@SWCNTs (peapods) [20]. 

 

Beyond these experimental fillings, some ‘virtual’ filling examples are simulated on the basis 

of theoretical calculations. For instance, by modeling the confinement of water in SWCNTs, new 

ice phases not seen in bulk ice and a solid-liquid critical point are suggested [54]. Likewise, the 

insertion of Na and K atoms [55] or DNA molecules [56], the formation of metals nanowires or 

semiconductor nanowires within SWCNTs [57-62] and related properties are predicted using ab 

initio molecular dynamics simulations or other simulations. It should be pointed out that the fillings 

of these materials are actually performed either with MWCNTs without exhibiting intriguing 

behaviors or with SWCNTs/DWCNTs but nanowires are not obtained in that case.  

Apart from introducing solid and liquid into CNTs, filling CNT with gases is also reported but 

considered as a controversial issue. Those works dealing with the filling of hydrogen are inspired by 
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the potential applications of CNTs as H2 containers [63, 64], while other gases are rarely attempted 

for filling but Xe [65], O2 and N2 [66]. However, several possible sites including inner cavities in 

CNTs contribute to the absorption of gas molecules and the exact location of the absorbed 

molecules is unable to be demonstrated so far. Therefore, details about the filling with gases will not 

be introduced in following sections. 

 

1.2.2 The Motivations with Filling CNTs 

 

What makes filling CNTs so special? Firstly, the inner cavity of nanotubes can act as a 

template or ‘nanomould’, and/or as a ‘nanoreactor’ (i.e. for the chemical transformation of an 

inserted material) for the synthesis of nanomaterials. Due to the confinement situation in CNT 

cavity, inserted materials are enforced to adopt the one-dimensional (1D) morphology. Especially, 

the templating of SWCNTs or DWCNTs can promote the formation of 1D materials with very small 

diameter and high aspect ratio. Furthermore, the encapsulation of CNTs is found to be a shelter for 

the contained materials from reactions with the surrounding medium, typically oxidation by contact 

with air, as well as dissolution of the confined material in aqueous or non-aqueous solvents. In this 

regard, filling CNTs is considered as a possible approach to obtain nanowire-like materials that 

could never exist if not encapsulated. Indeed, it has been demonstrated that metallic nanowires of 1 

nm in diameter would rapidly turn into oxide nanowires or would even possibly collapse when 

attempting to remove the carbon sheath from filled SWCNTs [67]. In both cases, the possibility of 

losing any peculiar property is high. In general, phase growth within a very confined space offers a 

chance to enforce and stabilize new combinations of chemical elements, novel crystal structures for 

regular chemical phases and to deform and stress lattices within regular structures. 

Once new 1D nanomaterials are formed, new, alter or enhanced physical properties are 

anticipated for them. The latter expectation arises from the stabilization of otherwise impossible 

new chemical compositions, structures or morphologies. Typical examples includes (i) the ballistic 

transport behavior from the one-dimensional structures, which prevents electron scattering; (ii) the 

immense surface-atom to core-atom ratios, which may even reach an infinite value, (e.g. all the 

atoms of the structure can effectively be ‘surface atoms’), and (iii) the protection by the carbon shell 

from the disturbance of absorbed molecules on the surface. Representative expectations and 
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achievements benefit from nanowires prepared from magnetic elements or compounds and 

charge-transfer electronic interactions with the encapsulating graphene lattice and the guest 

materials.   

In an opposite manner, in case the encapsulated phases do not exhibit any peculiar property, 

filling can then be utilized as a special approach for external reactants to access the filling materials, 

thus controlling the behavior of the latter by controlling the interaction kinetics with the 

surrounding medium. However, there is a risk that the chemical reactivity of the filling material 

may be more or less inhibited despite of the nanosize as a result of the presence of the carbon sheath. 

On the other hand, this modified behavior relating to chemical reactivity may occur in a positive 

manner for some applications, for example, slowing down diffusion kinetic and/or chemical 

reactivity may be very valuable in fields such as chemical catalysis, drugs or pesticide delivery, and 

so on. 

Overall, new phases, new structures, new properties, and/or new behaviors are very likely to be 

induced by confining foreign materials in CNTs. More specifically, any of these features will be 

more likely if the size of the tube cavity is smaller. Hence, filling SWCNTs and DWCNTs whose 

inner cavity is generally below 2 nm is preferably considered for scientists and the examples given 

below are mainly related to filling SWCNTs/DWCNTs. 

 

1.2.3 Filling Strategy 

 

Generally speaking, there are two possible routes for filling CNTs at present, in-situ filling and 

ex-situ filling. For ex-situ filling route, guest materials can be introduced into CNT cavities as a 

liquid or vapour depending on their physical properties including solubility, melting point, boiling 

point and of course, decomposition temperature, which should not be reached. Thus, two popular 

methods employed during the ex-situ filling process are the gas phase method and the liquid phase 

method. Details about the filling strategy are described in the following sections. 

 

1.2.3.1 In Situ Filling Route 

 

Filling nanotubes in situ is interesting because the filling and growth of CNTs is integrated into 
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a one-step synthesis procedure. In this way, the nanotube sheath remains intact and, depending on 

the synthesis process, closed (for arc-prepared CNTs) or opened at one end only (for 

CCVD-prepared CNTs) are formed, consequently isolating as much as possible the encapsulated 

material from the surrounding post-synthesis environment. Meanwhile, elements with high melting 

point or high surface tension which are unfavorable for filling by wetting methods (see next) are 

sometimes allowed to fill CNTs through in-situ routes. 

In fact, in-situ filling mainly occurs spontaneously during the synthesis of MWCNTs, either 

during the electric arc process [68] or the CCVD process [69]. For the latter, specific conditions are 

required to trap and encapsulate the excess metal catalyst which is critical for growing nanotubes, 

thereby making it limited. Because catalysts for carbon formation are typically transition metals 

such as Co, Fe and Ni, metal-filled MWCNTs can be synthesized this way (Figs. 1.5 a and b). 

Examples involving encapsulation of other materials such as Mg3N2 [70], Sn [71], Ge [72], Cu [73] 

and Fe3C [74] by the CCVD method can also be found in the literature. However, since most 

catalysts used for CNTs are ferromagnetic metals, in this sense this method can be taken as an 

efficient way to produce ferromagnetic nanowires encapsulated in nanotubes [69, 75-78] otherwise 

difficult to obtain (see next). 

In an electric arc process, first the powder of the desired element or the mixture of it with 

graphite is compacted into a coaxial hole drilled within the graphite anode, then the electric arc is 

run under conditions similar to that used to produce fullerenes and finally partially filled MWCNTs 

are usually collected as a cathode deposit. However, the efficiency and control of the filling process 

is lower than for the CCVD-related method, possibly arising from the huge temperature gradients in 

arc-related processes. In addition, early works dealing with in situ filling by electric arc method 

reported that the presence of sulfur played a key role in the formation of filled nanotubes [68, 79]. 

In contrast to the CCVD-based method, electric arc method is hardly able to achieve the 

encapsulation of transition metals within MWCNTs though some rare examples may be found [79]. 

On the other hand, many other elements such as Yb, Dy or Ge, and so on, can be successfully 

introduced into MWCNTs during the electric arc process (Fig. 1.5 c and d). Therefore, the CCVD 

method and the electric method conveniently complement each other.  

Regardless that many materials can be confined in MWCNTs via in situ filling by considering 

either methods, multi-element compounds involving oxide, salts, etc. are not permitted to be 
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inserted into nanotubes because of the restricted number of species able to play the role of a catalyst 

for the CCVD process or because of the high temperature involved for the electric arc process, 

which is a major disadvantage. Another disadvantage is that filling SWCNTs by this route is 

scarcely possible and when it is, a small amount of filled nanotubes are obtained. Only a few 

examples involving the electric arc process are found in the literature. One is the incidental 

discovery of peapods [20] described above and the other one is the encapsulation of Bi in SWCNTs 

by mixing a few percent of both Co (as catalyst) and Bi with the graphite anode, as previously 

described [80]. To overcome these drawbacks exhibited by in situ filling, specifically the challenge 

for filling SWCNTs, ex situ processes have thus emerged, as we will see in the next section. 

 

 

Fig. 1.5 - (a) HRTEM image of a α-Fe filled MWCNTs prepared by CCVD process [81]; (b) TEM image of Co 

nanowires encapsulated inside nanotubes prepared by CCVD process. The inset displays an encapsulated nanowire and 

the corresponding SAED pattern showing the presence of f.c.c.-Co structure. [75]; HRTEM images of filled CNTs 

produced by arc-discharge when a 99.4% graphite anode is doped with: (c) Ge and (d) Yb. In the case of Ge (c), the 

filling material is polycrystalline and encapsulated in only 2 or 3 graphitic layers. Pure Ge microcrystals in a <110> 

projection can be seen on the left and right parts of the nanowire and typical microtwins and stacking faults of the <111> 

dense atomic layers are frequently observed [79]. 
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1.2.3.2 Ex situ Filling Route 

 

Ex situ filling is a very versatile route as it possibly allows nearly any kind of material to be 

inserted into nearly any kind of nanotubes. During this process, the capillary property of nanotubes 

is fully exploited. Various ex situ filling means employed in the literature will be described in detail 

subsequently. As illustrated, one-step or multi-step procedures are carried out to realize the ex situ 

filling, not mentioning the final cleaning step by means of washing or heating in dynamic vacuum 

which is necessary for all ex situ methods to remove the non-encapsulated material. 

 

1.2.3.2.1 Previous Opening of the Tubes 

Unless the initial CNTs prepared under certain specific conditions are thus naturally opened or 

single-step filling procedures are performed, the first requirement for ex situ filling of nanotubes is 

to open them. To achieve this, two ways are widely employed including (i) thermal treatments in 

oxidizing gas atmosphere (air, O2, O3 or CO2) [13, 82, 83] or (ii) reaction with liquid reactants that 

are oxidizing for polyaromatic carbon materials, typically, acids such as HNO3, H2SO4, or a mixture 

of both [18]. Other oxidizing agents like supercritical water [82], KMnO4, H2O2 [84], Br2 [85], 

HF/BF3 mixture, aqueous OsO4, OsO4-NaIO4 [86], or activation with alkali hydroxide [87] are also 

reported in literature. Beyond the two main ways, mechanical ball milling or electrochemical 

treatment can also open the CNTs. However, liquid phase oxidation intends to generate residuals 

that may more or less cover the nanotubes, hence impeding the subsequent filling or 

characterization. In this regard, gas phase oxidation is generally preferred. Meanwhile, these 

oxidizing treatments can also be used to purify, functionalize or shorten CNTs.  

Given that the graphene lattice possesses comparatively high inertness toward chemical 

oxidation, opening normally occurs at the location of structural defects or high strain. For 

MWCNTs, pentagons are obviously found at their tips which enables the opening, while the wall 

structure is almost impossible to be opened because the possibility that the defects from each 

graphene wall are located at the same site where the opening takes place are extremely low. On the 

contrary, the tips and the side walls of SWCNTs are both potential sites for opening which are 

proved by TEM investigation or other ways in some early studies [88].  
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1.2.3.2.2 Filling by Gas Phase Methods 

Filling nanotubes via gaseous phase is carried out by heating an evacuated and sealed Pyrex or 

quartz vessel that contains the previously opened nanotubes together with the desired filling 

material up to the vaporization or sublimation temperature of the filling material, or slightly above. 

Materials with low vaporization or sublimation temperature (C60, S, Se, etc.) are normally inserted 

into nanotubes in this way [42, 45, 89]. For filling materials exhibiting high electronic affinity with 

the graphene lattice such as fullerenes, insertion into the interior of SWCNTs are proved to be 

driven by surface diffusion [53] and it depends largely on temperature and time instead of the 

partial pressure of filling material vapor. However, there is a limitation of the maximum 

temperature for the formation of peapods because the open ends or sidewall defects of the 

nanotubes may be closed again and the residence time of C60 on the nanotube surface will decrease 

at high temperature thus hindering the entering of C60 into the cavity of SWCNTs. On the other 

hand, a long processing time, in the range of several hours to two days, will promote the 

achievement of high filling rates (sometimes close to 100%) if an excess of fullerenes is supplied. 

For other insertions of materials with low electronic affinity to the graphene lattice such as ZrCl4 

[90], Se [89], RexOy [91], the filling mechanism is related to capillary condensation. Therefore, the 

partial pressure of the inserted material can influence the filling rate, as illustrated in [89]. Examples 

of filling by this method are displayed in Fig. 1.6. 

 

 

Fig. 1.6 - HRTEM images of (a) C60@SWCNTs prepared by annealing SWCNTs and C60 at 1100°C for 14h [46]; (b) 

C60@DWCNTs prepared by annealing DWCNTs and C60 altogether in a closed vessel at various temperatures in the 

range of 200-520°C for 48h [92]; (c) Se@MWCNTs prepared by heating MWCNTs and Se at 500°C for 1h [89].   
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The gas phase route has several advantages including its relatively simple operation (opening 

by air oxidation), its ability for a high filling rate and high homogeneity of the filling material, as 

well as the absence of any requirement for a surface tension threshold (as opposed to the liquid 

phase method, see the next section). It can be applied to SWCNTs and MWCNTs, although 

examples of MWCNTs filled by the gas phase route are rarely reported in the literature [89, 92, 93]. 

On the contrary, this method is not applicable to the guest material with vaporization or sublimation 

temperature higher than ca. 1000°C-1200°C, otherwise healing of the nanotubes openings and/or 

reaction with carbon will possibly occur. Additionally, inserting compound such as salts which 

typically will decompose once vaporized or sublimed are not favored this way. 

 

1.2.3.2.3 Filling by Liquid Phase Methods 

Filling via the liquid phase process is induced by capillary wetting as illustrated by the 

Young-Laplace law depicting the physical interaction between the filling liquid and the 

encapsulating hollow solid. In this process, the suspension or solution of the filling material or 

molten material are widely employed. In the case of the suspension and solution method (see next), 

a solvent is involved hence wettability is not considered as a key factor as surface tensions of the 

usual solvents are less than 80 mN m-1. However, herein the effect of viscosity should be taken into 

account, yet relevant research works are scarcely found. 

The suspension method is dedicated to filling nanotubes with nanoparticles. The loading of 

particles are achieved by immersing the opened CNTs in the suspension containing guest 

nanoparticles at room temperature and subsequently evaporating the liquid in the suspension. The 

second step is assumed to drive a continuous flow of fresh suspension from the outside to the inside 

of the tubes. Therefore, the combination of capillary force and evaporation is possibly responsible 

for the high filling efficiency by this method. However, related examples (Fig. 1.7) only involve 

MWCNTs and are quite limited so far [94, 95]. One possible reason is that nanoparticles less than 

1 nm large in diameter are barely able to be produced for filling pre-opened SWCNTs and 

preparations of large nanoparticles are not well-established yet though some species are now 

commercially available (e.g. Sigma-Aldrich). Anyhow, this field is attractive because of the high 

filling efficiency and it is still at the primary stage, thus interesting developments are anticipated. 
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Fig. 1.7 - TEM images of MWCNTs filled with (a) polystyrene nanobeads via bringing MWCNTs into contact with the 

related suspension in ethylene glycol and deionized water [94]; (b) Fe3O4 nanoparticles via bringing MWCNTs into 

contact with organic- or water-based ferrofluids [95].  

  

The solution method is quite similar to the former and it is carried out by soaking the opened 

CNTs into a concentrated solution of the desired material instead of the suspension. Hence, the 

solubility of the desired material in the corresponding solvent should be considered before the 

filling. Although a wide variety of materials are permitted to be introduced into the nanotubes via 

this method, it is actually seen as a candidate when the gas phase route and molten phase route (see 

next) are not suitable due to the inappropriate physical properties of the desired filling material, or 

when filling at room temperature is needed for some reasons (e.g., thermal fragility of the substrate, 

or surrounding device). Compared with the other two methods, a lower filling efficiency is achieved 

[96] and more steps are required. For instance, filling CNTs with inorganic compounds by the 

solution method requires subsequent post-treatments (most often calcination as in [97] or reduction 

as in [19, 80, 98] but also other treatments such as photolysis or electron irradiation, as in [90, 91]) 

to obtain the hybrid nanotubes with the desired chemical composition. However, encapsulating 

organic molecules like dye [99], dipoles [100], carotenoids [101], biomolecules [102, 103] inside 

CNTs is recently a hot topic and it is mainly achieved by the solution method which is an efficient 

approach and only consists of two steps (opening and filling).  

Generally speaking, a prior opening of CNTs is needed for filling by the solution method, 

while in some specific cases the opening and filling of nanotubes can be merged into a single step. 

In other words, opening and filling process can occur simultaneously. For instance, a one-step 

filling process consisting of heating a mixed solution containing closed nanotubes, metal (e.g. Ni, 

Sm) nitrates and nitric acid is reported by Chen et al. [104]. Another example is related to the 
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synthesis of CrOx@SWCNTs by soaking raw SWCNTs from arc within a super-saturated solution 

of CrO3 in concentrated HCl, in which case the CrO2Cl2, as a product from the reaction between 

CrO3 and HCl, accounts for the opening of SWCNTs. 

Overall, the solution method is useful for confining molecules, various nanoparticles, nanorods 

or nanocrystals within nanotubes (Fig. 1.8) and has been widely employed since its first utilization 

for filling SWCNTs with RuCl3 as mentioned in [19]. However, very long nanowires are hardly 

obtained via this method, which can be a drawback. Moreover, the concomitant filling with the 

solvent molecules cannot be avoided which prevents the achievement of high filling rate. 

 

 

Fig. 1.8 - TEM images of (a) MWCNTs filled with carboplatin prepared by placing a suspension of opened MWCNTs 

into carboplatin solution [103]; (b) MWCNTs filled with Pd nanoparticles prepared by immersing opened MWCNTs 

into Pd salt solution followed by a calcination and reduction process [105]; (c) MWCNTs filled with a single Sm2O3 

crystal prepared by heating a mixed solution containing closed nanotubes, Sm(NO3)3 and nitric acid [104]. 

 

     The molten phase method is performed in an identical way to the gas phase method, that is 

putting the previously opened (or not, see next) nanotubes together with the desired filling material 

in a quartz vessel sealed under vacuum, and then heating up the whole. Differing from the gas phase 

method, the target temperature in this method is above (~30–100°C higher) the melting point of the 

filling material. The duration of the heating can last as long as 1–3 days (see [106-108] ) though this 

maybe shorter for some low viscosity materials. Such long duration are necessary to account for the 

slow filling kinetics (specifically within SWCNTs) arising from the high viscosity that the molten 

material may exhibit. Similar to the gas phase method, materials with high melting point such as 

metals and lanthanides are not suitable for filling nanotubes by the molten phase method, therefore 



18 
 

chemical derivatives of the targeted elements to be encapsulated exhibiting lower melting points are 

the preferred materials for the filling steps. Subsequently, post-treatments for transforming the 

intermediate compounds into the targeted filling materials are carried out. However, interesting 

behaviors of one-dimensional crystals were able to be observed for such intermediate hybrid 

materials (see next). 

When halides are attempted to be introduced into nanotubes, it is surprisingly found that filling 

succeeds even when starting from closed nanotubes, as reported by the Oxford group as early as in 

1999 [109]. Hence they proposed that the chemical activity of the halides toward polyaromatic 

carbon can be used to open the nanotubes during the filling process, thus making the preliminary 

opening step needless, which is demonstrated in most of their subsequent filling experiments [25-27, 

110] (Fig. 1.9). However, this is mainly valid for SWCNTs (and DWCNTs in a few occasions), for 

the reasons related to the number of walls already discussed above. It is worth noting that molten 

iodine is also demonstrated to help to open SWCNTs [34].  

In summary, the molten phase method was among the first methods used to fill MWCNTs (with 

PbO [15]) and has been very popular for filling various types of nanotubes due to the possibility for 

high filling rates (e.g. a filling rate as high as 70% was reported for filling SWCNTs with KI [25]), 

simplicity (one to three steps, depending on the goal and the material to fill) and versatility. As 

opposed to the solution method, continuous nanowires up to several micrometers (if starting 

nanotubes exhibit lengths more than several micrometers) can be synthesized via this process. On 

the other hand, the application of the molten phase method is limited when the surface tension of 

the desired filling material at its melting point is too high (i.e. > 170 mN.m-1 [12]). 

Finally, the assisted filling methods are also reported for filling nanotubes in the literature. For 

instance, Mittal et al. [111] proposed that, when using UV irradiation on the solution of halides 

(FeCl3, MoCl3, and I) in chloroform, the induced chlorine moieties can promote the attack of the 

SWCNTs, allowing the filling to proceed from the dissolved material. Another example proposed 

by Jeong et al. [36, 112] illustrated the combined encapsulation of fullerenes and Cs atoms within 

SWCNTs by irradiating with Cs or C60 plasmas the stainless steel substrate connected to a 

bias-voltage on which SWCNTs were previously deposited. Though not many assisted filling 

methods have been developed so far, more original and/or simpler and/or efficient ways to 

synthesized filled nanotubes should be encouraged in the future. 
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Fig. 1.9 - Examples of CNTs filled with halides via a one-step molten phase method (without prior opening). (a) A 

DWCNT filled with crystalline CsI (diameter of the inner tube, 3.9 nm; diameter of the outer tube, 4.7 nm). The inset 

image shows the rocksalt structure of the encapsulated CsI. Scale bar is 2 nm [26]; (b) and (c) HRTEM image of a 

triple-walled carbon nanotube filled with a helically twisting 2 × 1 × ∞ HgI2 crystal and the simulated structure model 

of the crystal [24]; (d) to (i) a 1D BaI2 chain encapsulated in a SWCNT: (d) and (e) HRTEM images, (f) side-on and 

end-on views of the atom positions derived from the lattice image, (g) Scherzer focus simulation of derived composite, 

(h) side-on and end-on views of the composite, (i) coordination model derived for a 1D BaI2 chain [113].          

 

1.2.4 Species Encapsulated within CNTs 

 

In principle, every type of material including atoms, molecules and phases can be inserted into the 

CNT cavity and experimentally, successful insertions of atoms, molecules, elements, and 

compounds have been achieved up to now. In this manuscript, representative papers in which direct 

proof of filling such as TEM imaging are provided will be introduced, while other related references 

in which the fillings are merely confirmed by spectroscopic investigations will not be mentioned 

here. 
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1.2.4.1 Atoms (Isolated, or as Chains) 

 

When atoms are introduced into nanotubes, it is nearly impossible for them to remain isolated due 

to their relative instability. Meanwhile, demonstrating the presence of isolated atoms in SWCNTs or 

DWCNTs is experimentally challenging. Hence, the encapsulated atoms tend to form elongated 

crystals as nanowires (see next) or single atom wide chains, although only a few examples related to 

the latter can be found in the literature. The first example was iodine, which was observed to adopt 

a double-helix structure [34]. In the following works involving iodine filling [36, 114], besides 

double chain, single and triple iodine chains were demonstrated as well (Figs. 1.10 a and b).  

 

 
Fig. 1.10 - First column (a), from top to bottom: the first example of SWCNTs filled with a double-helix chain of iodine 

atoms, as evidenced by means of high-resolution Z contrast TEM, then HRTEM image of a SWCNT filled with a single 

iodine chain, then HRTEM image of a SWCNT filled with a triple-helix iodine chain. The corresponding structure 

models (side view) are provided for each case below the related images. Scale bar is ~1.5 nm [34, 41]; Second column 

(b): HRTEM images of sulfur chains with linear (first and third images) or zigzag (second image) conformation inside a 

SWCNT or a DWCNTs, scale bar is ~2 nm [42]; (c) HRTEM image of a DWCNT filled with a double-helix Se chain 

displaying a pitch length of ~ 2 nm [43].  

 

One thing to point out is that iodine crystal is observed – instead of single-atom chain -when the 

host SWCNT has a large diameter as shown in [36, 114], yet such a configuration is very rare. 

Interestingly, when attempt to dope the C60@SWCNTs with iodine was made, a bent I2 chain 

intercalated into the fullerenes inside a SWCNT was observed in addition to the embedded iodine 

atoms among two adjacent fullerene molecules [115]. The formation of these structures could be 
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attributed to the obstruction of fullerenes on the filling pathway and the bonding of the inserted 

atoms, which also resulted in the observation of isolated Cs atoms and K atoms in peapods [116, 

117]. A chain structure was also proposed for the encapsulated Cs within SWCNTs prepared by 

Jeong et al. [36], inspired by the pioneering work of iodine filling [34]. Recently, a Japanese group 

reported the synthesis of linear sulfur chains [42] and double helices of selenium [43] inside CNTs 

(Fig. 1.10 b and c), both of which were totally different from the atomic arrangement in bulk 

elements. These progresses may indicate the potential development of a new branch of chemistry 

for the above elements. 

 

1.2.4.2 Molecules (Isolated, or as Chains) 

 

When molecules are intended to be inserted into nanotubes, the cavity size of the host 

nanotubes should be taken into account if the diameter of guest molecule is large (e.g. more than 2 

nm) which may not be accommodated by a SWCNT or DWCNT. So far, filling nanotubes with 

molecules principally involves SWCNTs except for some scarce examples concerning the loading 

of drugs into MWCNTs. The first molecules ever introduced into SWCNTs were fullerenes, thereby 

forming the so-called nanopeapods as mentioned above. Later on, many fullerene derivative fillings 

have been performed including higher fullerenes (C70 [118], C78 and C90 [119]), fullerene epoxide 

(C60O [120]), endohedral fullerenes (Gd@C82 and Dy@C82 [119], N@C60 [121], Sc3N@C80 and 

ErxSc3-xN@C80 [122], Dy3N@C80 [123], La@C82 and La2@C82 [124], Sm@C82 [125], Sc2@C84 

[126], Gd2@C92 [127], Ce@C82 [128], D5d-C80 and Ih-Er3N@C80 [129], Sc3C2@C80 [130]), 

fullerenes functionalized with ester C61(COOH)2 or carboxylic groups C61(COOEt)2 [131], 

heterofullerenes (C59N azafullerene [132]), as well as 13C isotope enriched fullerene peapods [133]. 

Besides the linear fullerene chain, a ‘silo’ configuration can also form when fullerenes are 

encapsulated inside large diameter nanotubes [92]. 

Although CNT is considered as a 1D material, the synthesis of linear carbon chains (also called 

carbyne) only one atom wide and the presence of sp hybridization has always been another goal for 

scientists to achieve [134]. It has been accomplished by initially filling CNTs with polyyne [135] or 

adamantane [136] molecules and then subsequently annealing the filled nanotubes in vacuum to 

promote the fusion of the encapsulated molecules, somehow in a similar fashion to the coalescence 
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behavior of peapods (see section 1.2.6). The carbyne is theoretically predicted to possess higher 

strength, elastic modulus and stiffness than other members in the carbon family including diamond, 

carbon nanotubes and graphene, which will motivate more efforts on its synthesis at bulk scale. 

Apart from fullerenoids as the most popular filling molecules, other organic molecules have 

also been successfully inserted into nanotubes (Fig. 1.11 a and b), such as metallocenes [122, 

137-143], octasiloxane [120], ortho-carborane and related molecules [144, 145], fulvalenes [146], 

Zn-diphenylporphyrin [118, 147], Pt-porphyrin, rhodamin-6G, and chlorophyll [147], β-carotene 

[101], squarylium (SQ) dye [99], and α–sexithiophene [148]. 

A peculiar example with regard to the insertion of discrete molecular anion into DWCNTs was 

reported by Sloan et al. [149]. The inserted [W6O19]
2- "Lindqvist ion" which belongs to the family 

of inorganic polyoxometalate (POM) ions exhibits a nonspheroidal shape and thus can lock into 

position within sterically matched nanotube capillaries. Owing to these advantages, the constituent 

W6 cation framework in the ion can be directly imaged by means of HRTEM (Fig. 1.11 c and d).  

 

Fig. 1.11 - (a) HRTEM image of a SWCNT filled with α–sexithiophene molecule by gas phase method, two parallel 

chains formed by the molecules are shown [148]; (b) HRTEM image of a short chain of ortho-carborane molecules 

formed within a ~ 1.6 nm diameter SWCNT [150]; (c) shows structure models of the [W6O19]
2- anion with oxygen 

included (left) and excluded (right);(d) a sequence of HRTEM images (left) obtained from a single [W6O19]
2- anion 

locked into position within the capillary of a DWCNT shown with Fourier-filtered images (right) [149]. 
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Furthermore, a possible electronic interaction between the nanotube and the encapsulated 

anion can be verified on the condition that expansion between the two atom columns each 

containing just a pair of W atoms was observed. 

 

1.2.4.3 Pure Elements (as Nanowires or Nanoparticles) 

 

Except for the formation of chains when elements such as iodine, sulfur, or selenium are 

inserted into SWCNTs or DWCNTs, nanocrystals are obtained when other elements (mostly when 

metals are involved) are encapsulated within SWCNTs or DWCNTs. For instance, the synthesis of 

confined Ru nanowires [19], Bi nanowires [80], Ag nanowires [19, 97, 98, 151, 152], Au nanowires 

[98], Pt nanowires [98], Pd nanowires [98], La nanowires [153], Eu nanowires [154, 155], Co 

nanoparticles [156], Fe nanoparticles/nanowires [137, 157, 158], Ni nanocluster [159, 160] have 

been reported in the literature (Fig. 1.12).  

Among these, only Bi and Eu nanowires are directly prepared by filling SWCNTs with pure 

metals, others are prepared via in situ transformations on the hybrid nanotubes filled with 

intermediate compounds (e.g. salts). Nanowires of transition metals (e.g. Co, Fe, Ni) may exhibit 

remarkable magnetic properties while they are barely produced yet, thus more explorations are 

required. It should be pointed out that in [157, 158], no clear evidence demonstrating the presence 

 

 

 

 

 

 

Fig. 1.12 - HRTEM images of (a) Ni clusters filled 

SWCNTs obtained by annealing initial NiCp2-filled 

SWCNTs at 500 °C for 2 hours [159]; (b) SWCNTs 

filled with Eu nanowires (left) and magnified image 

(right). In the magnified image, red lines correspond 

to the side wall of the SWCNT, and purple circles 

correspond to the Eu atoms [154]; (c) a 

Co-nanoparticle-filled SWCNT [156]. 
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of iron nanowires was given, at least from the TEM and HAADF images. However, lanthanum 

nanowires with typical length of ~10 nm are claimed to be obtained by heating the La2@C80 

peapods to trigger the coalescence of metallofullerene molecules. This may give some hints for 

generating other one-dimensional metallic wires. 

 

1.2.4.4 Compounds (as Chains, Nanowires, or Nanoparticles) 

 

When the desired filling elements possess high melting points and/or high surface tension at 

the molten state, filling SWCNTs or DWCNTs with compounds can be taken as an efficient 

alternative. Additionally, filling compounds in solutions may also be the option when a 

low-temperature filling process is needed or when the elements considered are poorly soluble. The 

favorite compounds for filling SWCNTs (or DWCNTs) are halides because of their versatility 

(including fluorides, chlorides, bromides, and iodides), moderate melting points (usually less than 

1000 °C), good solubility in many usual solvents (chloroform, water, etc.) and the distinctive ability 

(compared with other desired filling compounds) to open the nanotube and then fill the nanotube 

simultaneously. Up to now, halides of a wide range of elements (alkali metals [24, 26, 27], alkaline 

earth metals [25, 99], transition metals [24, 25, 98, 113, 157, 158, 161-163], lanthanides [22, 113], 

post-transition metals [164, 165] and their mixtures [21, 25, 29]) have been successfully inserted 

into SWCNTs (or DWCNTs) mainly by the Oxford Group (see Fig. 1.9), which is one of the most 

active groups involved principally in filling SWCNTs with inorganic compounds since 1998 [19], 

as well as other groups around the world.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.13 - (a) HRTEM image of SWCNTs 

filled with PbO. White arrows point to 

nanotubes filled with lead oxide, a high 

filling rate≥70% was reported [108]; (b) 

HRTEM image and detail of UO2 clusters 

inside SWCNTs [33]; (c)-(e) TEM image 

and detail of CsOH crystals inside 

SWCNTs (scale bar = 1.0 nm), and 

corresponding Scherzer defocus simulated 

TEM image [33]. 
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Besides halides, filling SWCNTs (or DWCNTs) with nitrates such as AgNO3 [151, 152, 166], 

Bi(NO3)3 [80], UO2(NO3)2 [33], oxides including CrO3 [30], Sb2O3 [31, 32], PbO [108], RexOy [91], 

UO2 [33], hydroxides (KOH and CsOH [33]), HgTe [167], MnTe2[168], GeTe [169] have also been 

reported in the literature (Fig. 1.13).  

 

1.2.5 Filling Mechanisms 

 

Although many filling examples have been reported so far, the filling mechanisms are not 

clearly understood yet, especially in respect to filling via liquid phase method which is frequently 

used in this manuscript. It is initially assumed that the nanocapillary wetting for filling of nanotubes 

can also be described by the equation of Young and Laplace, as shown below: 

∆P ൌγ ቀ ଵ
ோభ
൅ ଵ

ோమ
ቁ                         (1.2)     

where ∆ܲ refers to the pressure difference, ߛ refers to the surface tension, ܴଵand ܴଶ refer 

to the two radii of curvature for a curved surface. When the phenomenon of capillary rise occurs in 

a nanotube, the liquid wets the wall of the nanotube and a meniscus will be formed at the end of the 

capillary rise, as illustrated in Fig. 1.14.  

  

Fig. 1.14 - Illustration of a capillary rise 

 

If the meniscus is taken to be spherical in shape and the liquid meets the circularly cylindrical 

capillary wall at some angle	ߠ, Eq. 1.2 then becomes 

	∆P ൌ ଶఊ௖௢௦ఏ

௥
                             (1.3)  
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where r refers to the radius of the capillary. Meanwhile, the pressure difference also equals the 

hydrostatic pressure drop in the column of liquid in the capillary. Thus ∆P ൌ ∆ρgh, where ∆ߩ 

denotes the difference in density between the liquid and gas phase, g is the acceleration due to 

gravity and h denotes the height of the meniscus above the liquid surface. Eq. 1.3 may write 

h ൌ ଶఊ௖௢௦ఏ

௥∆஡୥
                                  (1.4)    

…which is also known as the Jurin's law since the XVIIIth Century. It can be seen that if ߠ 

(also called as contact angle) is larger than 90° ݄	will be negative, which indicates that an external 

pressure is required to drive the capillary. Hence, only if the contact angle is below 90° can a 

spontaneous capillarity action occur (however, a recent study demonstrates the possibility of 

capillary adsorption of metal nanodroplets with θ>90° by SWCNTs stemming from the calculation). 

On the other hand, the contact angle can be derived from Eq. 1.5: 

     cosθ ൌ ఊೄೇିఊೄಽ
ఊ

                                    (1.5)               

where ߛௌ௏ and ߛௌ௅ refer to the tensions at the solid-vapor and solid-liquid interfaces, respectively. 

However, relevant data on the two tensions are not easy to obtain thus making the calculation of 

contact angle difficult.  

In the early days, Dujardin et al. [12] investigated the wetting and capillarity of MWCNTs 

regarding various elements. Their results implied that only materials with low surface tension at 

melting point could wet the nanotubes then be drawn inside the nanotubes and a cut-off point for 

surface tension was between 100~200 mN/m. The latter could then provide an upper limit to the 

effect of Jurin's law (see eq. 1.4 above) which indicates in principle that the filled length h increases 

as surface tension  increases. Likewise, if we go back to Eq. 1.4, it is found that h is inversely 

proportional to r, thereby, for a given liquid, a longer capillary rise should be observed for narrow 

tubes than for large tubes, meaning higher filling efficiency. However, this is not in accordance with 

the conclusions from early works dealing with filling with liquids, while comparing MWCNTs with 

a narrow and wide inner cavity, respectively. Ugarte et al. [170] claimed that only nanotubes with 

inner diameter ≥4 nm were filled while nanotubes with inner diameter of ~1-2 nm were not filled 

when filling MWCNTs with molten silver nitrate was carried out. Furthermore, following the 

discovery of SWCNTs several early attempts to fill SWCNTs with molten materials did not succeed 

[171]. Hence, it is suggested that the equation of Young and Laplace established for sub-millimeter 
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capillaries may not be valid for the sub-nanometer capillaries (‘nanocapillarity’). Until 1999, higher 

filling yield was observed for regular SWCNTs (inner diameter ~1.4 nm on average) than for 

MWCNTs when molten materials were used for filling. Likewise, narrow nanotubes were found to 

be firstly filled during the filling process of Se vapor [89] and the filling efficiency of Bi via the gas 

and liquid routes was found to be higher for SWCNTs than for MWCNTs [80]. Overall, very high 

filling rates were achieved when materials involving PbI2 [164], KI [25] and PbO [108] were 

inserted into SWCNTs and the existence of nanocapillarity can thus be confirmed.  

Despite the success in filling SWCNTs, factors involved in the filling process and how they 

affect the final filling efficiency are not clearly defined. Since the capillarity of nanotubes is directly 

related to the surface energies of interaction between the liquid and the solid surface of nanotubes, 

wetting issue should be taken into consideration firstly. Nevertheless, there are high chances that 

discrepancies between nanowetting and regular macrowetting may occur. For instance, though 

surface tension of the filling material is suggested as a determining factor for successful filling by 

Dujardin et al. [12], several studies reported that the introduction of molten material with high 

surface tension results in higher filling efficiency compared with the introduction of material with 

low surface tension [25]. In addition, it was recently proposed [6] that viscosity which is considered 

to only affect the wetting dynamics in macrowetting is likely to play an important role in 

nanowetting, while the effect of gravity which is considered in macrowetting will not be taken into 

account in nanowetting because the related weights of the tiny amount of liquid involved is 

negligible with respect to capillary forces. The proposed factor, viscosity, which may influence the 

nanowetting, is deduced from the fact that whatever the tube diameter, friction forces increasingly 

oppose the wetting forces because the tube/liquid contact surface where the friction forces take 

place increases as the liquid proceeds in the tube, while the gas/liquid/solid contact line where the 

capillary forces take place remain constant. Finally the cease of the liquid progression is induced 

once the capillary forces equilibrate the friction forces.   

It is likely that viscosity and/or nanowetting are not the only criteria to consider for controlling 

the filling of nanotubes. The configuration of the filling materials when entering into the cavity of 

nanotubes should be understood, as a complex may form for certain molten salts or solvated 

molecules which may not be accommodated by nanotubes with inner diameter below ~1nm due to 

their large size. Moreover, the intrinsic saturating vapour pressure value of the guest materials is 
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suggested to be important when the molten phase method is used [172]. Though the filling 

temperature is maintained below the boiling point of the filling material, partial vapour pressure 

actually develops in the sealed vessel which is likely to push the molten material into the cavity of 

nanotubes. In this sense, materials with high saturating vapour pressure should provide high filling 

efficiency (assuming that other parameters are equal). Such an aspect has not been investigated yet. 

Aside from above, local conditions may play an important role as well, as probably the only reason 

why, within the same filling experiments, some nanotubes are found extensively filled, whereas 

adjacent ones with open ends are found empty (frequently observed in our work).  

 

1.2.6 Behaviors, Properties and Applications 

 

As stated above, a large variety of filling experiments has been performed during the short 

period of development of filling CNTs, especially regarding to filling SWCNTs, while experimental 

proofs indicating the peculiar properties of X@SWCNTs are relatively rare. Meanwhile, most 

theoretical work has been focused on the anticipated possibility to tune the SWCNT band gap 

owing to the inserted material, or to modulate the band gap of the inserted material owing to the 

enforced structural deformations, while few efforts have been devoted to theoretically predict the 

electronic properties of filled CNTs (except peapods). So far, simulations of the formation of KI 

crystals [173], spontaneous filling process of DNA [56], encapsulation of acetylene molecules and 

their polymerization within SWCNTs [174], modeling of SWCNTs filled water [54], simulations of 

structural transition of Cu nanowires [175] and electrical transport property of Ge nanowires [62] 

encapsulated in SWCNTs, quantum chemical simulation of the electronic properties and chemical 

bonding of the hybrid (Sc, Ti, V)8C12@(12, 0)SWCNTs [174], calculations on the modified 

electronic properties of SWCNTs inserted by Ag or CrO3 [176], and many predictions concerning 

the magnetic properties of transition metal filled SWCNTs, specifically Fe [57, 59-61, 177], have 

been carried out. With more and more attention attracted to this research field, we can expect 

discoveries of new properties of filled SWCNTs and progress of theories on these hybrid SWCNTs 

in the future. 
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1.2.6.1 Peculiar in-Tube Behavior (diffusion, coalescence, crystallization) 

 

Thanks to the unidirectional confinement given by the inner cavity of carbon nanotubes, 

especially SWCNTs and DWCNTs, many peculiar in-tube behaviours of the filling material are 

induced either spontaneously upon filling or by imposing an external stress after filling (annealing, 

irradiation). As one of the first two synthesized X@SWCNTs, the intriguing behaviours of peapods 

have been extensively investigated. In the first report on peapods [20], it was found that the 

encapsulated fullerene molecules coalesce into smaller tubular structures with a capped end when 

exposed to a 100 kV electron beam in a TEM (Fig.1.15).  

 

 

 

 

 

 

 

 

 

Fig. 1.15 - Sequence of HRTEM images (100 kV, ~300 

seconds between images) illustrating the progressive 

coalescence of a chain of C60 molecules within a 1.4 

nm diameter SWCNT under the irradiation. (a) 

starting situation, showing a well periodic display of 

the fullerenes; (b) pairs of C60 are seen indicating the 

initiation of dimerization; (c)coalescence starts, yet 

not uniformly; (c) coalescence proceeds and longer 

capsules are formed. Scale bar 2 nm [178]. 

Subsequently, more electron beam-induced behaviors were discovered. In a partially filled 

SWCNTs, diffusion of the fullerene molecules were observed inside the cavity [45] (Fig.1.16), 

while in a SWCNT filled with densely packed fullerenes two adjacent molecules tended to dimerize 

[45, 178], as illustrated in Figs. 1.15. Further, with prolonged irradiation, the dimers coalesced into 

higher, elongated fullerenes and ultimately ‘two-wall, coaxial tubes’ (CAT) were obtained [45, 178], 

which were close to double-walled carbon nanotubes (DWCNTs), whose structure had been 

described prior to the discovery of peapods [179]. The irradiation-induced coalescence is 

understood as the overcome of activation barrier thanks to the energy brought by the electron beam. 
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Fig. 1.16 - Sequence of HRTEM images (100 kV, 

~30 seconds between images) displaying the 

diffusion of the encapsulated C60 molecules within a 

1.4 nm diameter SWCNT under the irradiation. (a) 

Starting situation, showing a chain consisting of 

five fullerenes. (b) The five fullerenes suddenly split 

into two ensembles, one consisting of three 

fullerenes moves to the right, leaving behind the 

other one consisting of two fullerenes. (c) One 

fullerene from the right ensemble jumps back to the 

left ensemble thus leaving the right ensemble 

consisting of two fullerenes. Meanwhile, both 

ensembles have slightly moved to the right. Scale 

bar 2 nm [45]. 

 

It is noticeable that such behaviours were not observed for fullerenes in bulk fullerite when 

electron irradiated. Other kinds of treatments including thermal annealing [126, 180], combinations 

of thermal annealing and electron irradiation [181, 182] and photon (laser) irradiation [183-188] can 

also supply the needed energy and thus cause the coalescence. Among these, annealing the 

as-synthesized peapods at high temperature in dynamic vacuum may be thought of as a potential 

way to produce DWCNTs in macroscopic amounts. However, destruction of the tubular 

morphology and subsequent transformation of the whole peapod material into a graphite-like 

material may also occur during the thermal annealing as a thermodynamics requirement. Similarly, 

depending on the amount of energy supplied and the way it is supplied during the combining 

process of irradiation and thermal annealing, coalescence of confined C60 into an inner SWCNT or 

damage to the peapods will also occur.  

Unlike peapods, others nanocrystals confined within CNTs seldom exhibit such dynamic 

behaviours under the irradiation by an electron beam, except the clusterization of ZrCl4 crystals [90] 

and the steady rotation of RexOy clusters [91] which were observed inside SWCNTs. As opposed to 

the fusion of fullerenes, ZrCl4 nanocrystals undergo a progressive dissociation from chains into 

clusters resulting from the exposure to electron beam. It is speculated that the irradiation can induce 

the elimination of halide ions in small volume crystals, thus promoting the rearrangement and 

shrinkage of the crystal remnants. This may also explain the rotation of RexOy cluster arising from 

the loss of oxygen instead of halide ions. Regarding the structural transformation occurring inside 
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the nanotubes, the encapsulated crystals behave differently from fullerenes. Recently, by taking 

advantage of a double-aberration-corrected (scanning) transmission electron microscope (S/TEM), 

Giusca et al. [169] recorded the evolution of a SWCNT filled with GeTe crystals under the 

irradiation of a 80 kV electron beam and a back-and-forth motion as well as phase transformation 

from amorphous to crystalline for the confined crystals without damaging the host nanotube were 

observed. In addition, a transformation from a double-helix structure to a single-helix structure for 

encapsulated Se within a DWCNT resulted from electron beam irradiation [43].  

On the other hand, when attempts to remove the carbon sheath from X@SWCNTs are made, 

several kinds of halide crystals lose the nanowire morphology [67] which demonstrates that the 

formation of nanowire morphology enforced by confining crystals inside SWCNTs can be also 

considered as a specific behavior of such hybrid SWCNTs. In addition, pronounced structural 

modifications for the materials encapsulated within SWCNTs with respect to their bulk state 

without encapsulation can be generated, which is another specific, peculiar behavior. For instance, 

preferred orientation with respect to the nanowire elongation axis, systematically reduced 

coordination, lattice expansion and/or contraction are commonly observed, and new crystal 

structures are occasionally found. Preferred orientation exhibited by the crystals of binary or higher 

order compounds [24] is believed to be driven by stoichiometry and reduced coordination is 

apparently a consequence of the sterically confined space in which the encapsulated crystals have to 

grow, which may also account for the lattice expansion in the radial direction as observed for KI [27] 

and CrOx [30]. Lattice distortions along the wire axis are less likely to occur because the 

confinement is relatively nil in this specific direction while discrepancy is found in numerous filling 

examples including KI@SWCNTs [23] and Sb2O3@SWCNTs [31, 32]. Such lattice contractions are 

supposed to correspond to the Poisson effect, which is well known in bulk material mechanics. In 

all, the observed lattice distortions are prominent and may reach 14% or more. Even in 

C60@SWCNTs, the C60-C60 distance is decreased from 1 nm in fullerite to 0.97 nm for encapsulated 

C60 chains [189]. Contrary to the fact that the inserted compounds can adopt low dimensional 

configurations within the cavity of nanotubes, it should be impossible for the compounds to form 

three-dimensional or layered (depending on the radius of atoms involved) structures as in bulk state 

in the limited space available in SWCNTs and DWCNTs (for those with small inner diameters). 

However, when wide space is provided as in MWCNTs, single-layered PbI2 nanotubes is 
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successfully obtained starting from molten PbI2 as demonstrated in [190]. This work is inspired by a 

previous study [191] showing that in wide inorganic WS2 nanotubes, not only does the layered PbI2 

(introduced from the liquid phase) revert to its bulk structure type but the latter distorts in order to 

allow the encapsulated iodide crystallizing onto the inner wall of the WS2 capillary, forming a 

core-shell nanotubular structure.  

Additionally, even in the same batch of filling experiment the structure type for a given 

compound may vary with the size of the inner cavity in the nanotube capillaries [113, 164, 192, 

193]. Ultimately, structural constraints can be such that new structures are created, for instance, 

peculiar features such as unusual symmetry are exhibited by HoCl3 [172], CrO3 [30], NdCl3 [110], 

CoI2 [161] and BaI2 [193] (Figs. 1.17(a) and 1.17(b)). Despite the previous work reporting the 

formation of 2×2×∞ and 3×3×∞ CsI crystal in 1.4 nm and 1.6 nm diameter SWCNTs 

respectively [24], truly 1D CsI chains of one-atom thickness encapsulated within DWCNTs with 

inner cavity less than 1 nm have been reported recently [194] and are clearly imaged by microscope 

showing the alternate arrangements of Cs and I atoms (Fig. 1.17(d-f)).  

 

Fig. 1.17 - (a) and (b) HRTEM image of a SWCNT filled with NdCl3 crystals showing the unusual structure and the 

simulated structure model [22]; (c) HRTEM image of a cross-section of a SWCNT filled with HoCl3 exhibiting a 

somewhat five-fold symmetry, yet deformed. Based on the observed structural similarities with NdCl3 as described in (a), 

each dark spot is assumed to a projection of a single 1D chain of HoClx polyhedra [172]; (d) ADF image of a CsI chain 

encapsulated within a DWCNT and related EELS chemical maps of Cs (e) and I (f), respectively, constructed from the 

image in (d) [194];  (g) and (h) HRTEM images of a tip of a SWCNT hosting PbI2 focused at two different values of the 

objective lens; (i) enlarged image of the boxed area in (h); (j) the simulated image corresponding to (i) based on the 

suggested structural model of PbI2 crystals in (k); (l) and (m) ball and stick models of the structure modelled in (k), as a 

side and end views respectively [164].   

 



33 
 

Other atomic chains such as CsCl, CsF, NaI and AuBr3 can also be duplicated by the same 

method for producing CsI chains. Such 1D ionic crystals are predicted to show remarkable optical 

properties and may be used as a component of quantum devices. Finally, it was found that the 

ability of the inserted material to crystallize may not only relate to the available inner space, but 

also relate to the deformability of the tube wall. Indeed, small diameter SWCNTs were observed to 

show oval cross-sections in order to accommodate the confined crystal structure (CoI2 [161] or PbI2 

[164]). Accordingly, PbI2 was found to be amorphous when the inner diameter of the host DWCNTs 

is as small as those SWCNTs, probably associated with the greater structural rigidity of these 

DWCNTs with respect to SWCNTs, thereby unable to distort and permit the crystal structure to 

develop.  

 

1.2.6.2 Electronic Properties (Transport, Magnetism and others) 

 

It is natural to anticipate that the structural features stated above exhibited by the filling 

materials arising from encapsulation will give rise to spectacular physical properties, such as 

electronic properties, optical properties, etc.. Meanwhile, the interaction between the host nanotubes 

and filling materials may also result in peculiar properties. In few cases, the intrinsic properties 

from the filling materials may transfer to the nanotubes making the whole hybrid nanotubes exhibit 

interesting properties, for example, by filling with ferromagnetic materials the hybrid nanotubes 

become ferromagnetic as well. However, studies on the properties of filled SWCNTs or DWCNTs 

are relatively limited despite the achievements of high filling rates which are suitable for structural 

investigations, possibly as a result of the impurity content (e.g. catalysts, which are often 

ferromagnetic as well) in the carbon materials that may interfere with the investigation. On the other 

hand, necessary nanolithography facilities and specifically-designed measurement devices for 

investigating an individual filled-nanotube are not so common and easily accessible. Besides above 

difficulties, in order to explain and understand the observed phenomena, the structural 

characterization of the very same X@CNTs before and/or after property measurements is requested 

to ascertain the extent of filling and the structural features of the encapsulating nanotubes, which is 

not routine yet. 

So far, a majority of the published work is focused on the various properties of peapods and 
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related materials such as transport properties [49, 188, 195-197], optical properties [198], 

vibrational properties [51, 199] and magnetic properties [200]. The first transport studies were 

performed on the buckypaper of Gd@C82-filled SWCNTs. The temperature-dependent resistance 

for the metallofullerene and C60 peapods, and for the pristine SWCNTs were compared (Fig. 1.18a) 

and it was found that the peapod films have a higher resistance than the pristine SWCNTs sample 

which was attributed to electrostatic scattering or the presence of disorder induced by the fullerenes. 

Later on, transport measurements on isolated SWCNT peapods were carried out and the similar 

power-law-like nature of the low temperature conductivity as found in the bucky-paper 

measurements was confirmed for an individual C60@SWCNT [195]. In addition, the peapods were 

found to behave as a regular array of individual quantum dots below 30 K, which was assigned to 

the local changes arising from the presence of encapsulated fullerenes [201]. The optical properties 

related to the peapods were studied by the Pichler group employing optical absorption spectroscopy 

and EELS and a small downshift of 14 meV in the peapods with respect to the empty SWCNTs was 

observed, which may be related to the presence of fullerenes [198]. The downshift is suggested as a 

consequence of a small increase of the SWCNT diameter or a change in the inter-tube interaction. 

C60 vibrations in the peapods were proved by means of Raman spectroscopy [200] and transport 

measurements [197, 202] and the magnetic resonance of peapods was investigated by electron spin 

resonance (ESR) and nuclear magnetic resonance (NMR). For the latter, the magnetism of the 

peapods originates from encapsulated magnetic fullerenes including N@C60 [203] and C59N [204]. 

Compared with peapods, reports on the intriguing properties shown by the SWCNTs or 

DWCNTs filled with other materials are less abundant in the literature. The first study on the 

electrical conductivity measurement of filled SWCNTs can be dated back to 1998 when attempts to 

immerse the SWCNT mats in molten iodine were made [35]. It was found that the resistance of the 

filled SWCNTs decreased sharply compared to the pristine SWCNTs and charge transfer between 

iodine and SWCNTs was evidenced by Raman scattering. However, intercalation of iodine in the 

interstitial spaces within SWCNT bundles is induced as well during the iodine treatment, which can 

also contribute to - or, more likely, can be mostly responsible for - the enhancement of electron 

transport. Same conclusions can be drawn from a recent study dealing with the iodination of 

SWCNT films by iodine gases [114]. For other X@SWCNT hybrids in which cases the filling 

positions are ascertained, interactions between the encapsulated materials and the host SWCNTs are 
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demonstrated, resulting in charge transfer (e.g. Ag@SWCNTs [176], CrOx@SWCNTs [176], 

AgCl@SWCNTs [205], CuCl/Br/I@SWCNTs [206-208], CdCl2/Br2/I2@SWCNTs [209]), increase 

of transmittance (e.g. CuCl@SWCNTs [163]), reduction of band gap (e.g. MnTe2@SWCNTs [168]), 

energy transfer-induced modification of optical adsorption range (e.g. SQ@SWCNTs [99])  

To better understand the mechanism of interaction in a X@SWCNT, theoretical works 

involving first-principles ab initio density functional theory (DFT) is necessary to be developed. In 

this regard, the nature of interactions between SWCNTs and inserted transition-metal metallocene 

molecules (i.e. Fe/CoCpn) has been investigated by using first-principles density functional 

pseudo-potential calculations [210]. The obtained results demonstrate that the composites were 

stabilized via weak π-stacking and CH↔ π interactions and the binding energy is inversely 

dependent on the diameter of the encapsulating SWCNT. In the case of CoCp2@SWCNTs, an 

additional electrostatic contribution due to the charge transfer from cobaltocene to SWCNT controls 

the interaction. Experimentally, Raman spectroscopic analysis has been conducted on SWCNTs 

filled with CoCp2 [141], as well as FeCp2 [211, 212] or CeCp3 [213] while charge transfer was 

found for all three samples.  

Regarding the occurrence of new properties induced by the encapsulated materials instead of 

the mere enhancement of the nanotube properties, which is one of the motivations for filling CNTs, 

relevant discoveries except peapods are few so far but explorations are ongoing. One remarkable 

work by Carter et al. [167] reported a semiconducting property for the HgTe nanowires confined 

inside SWCNTs, which is different from the bulk semi-metallic HgTe. This modified electronic 

structure for HgTe is considered to be induced from the formation of new coordination geometry for 

encapsulated HgTe nanocrystals, as a consequence of space constraints imposed by SWCNTs. 

According to the HRTEM images and the corresponding simulated structure models, the Hg atoms 

are suggested to be trigonally coordinated and Te atoms are half-octahedrally coordinated, in 

contrast to the tetrahedral coordination for both atomic species in bulk HgTe. The semiconducting 

character of HgTe is verified on the basis of DFT calculations and no significant interaction 

between confined HgTe nanocrystal and SWCNT is demonstrated. Another breakthrough work is 

related to the synthesis of conducting linear sulfur chains inside SWCNTs and DWCNTs, which 

opposes to the fact that bulk sulfur is insulating at ambient conditions and only becomes metallic at 

ultrahigh pressures exceeding ~90 GPa [42]. The presence of sulfur chains was verified by HRTEM 
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images and it is found that the size of cavity within nanotubes can affect the geometries of confined 

chains, which are further proved by XRD analysis. Meanwhile, the display of sulfur as two parallel 

single-atom-wide linear chains inside a SWCNT is very stable even at 800K while the zigzag chain 

or single linear chain inside a DWCNT undergoes a phase transition at 650K. Both thermodynamic 

behaviours are totally different from that displayed by bulk sulfur. The conducting character of 

those 1D sulfur chains is directly revealed from the measurements of resistivity on the empty and 

S-filled CNT films. As shown in Fig. 1. 18b, all the tested samples including empty metallic 

SWCNTs (M-SWCNTs in the figure) exhibit an inverse dependence of resistivity on temperature 

and a significant resistance decrease as a result of sulfur encapsulation is observed for both 

SWCNTs and DWCNTs.  

 
Fig. 1.18  (a) Temperature dependence of the resistance for buckypapers of (Gd@C82)@SWCNT, C60@SWCNT, and 

empty SWCNTs. Inset is a semi-logarithmic plot against T-1/4 [49]; (b) and (c) Relationship between temperature and 

resistivity as well as relative resistivity (normalized by the T=300 K value) for films prepared with empty SWCNTs, 

S@SWCNTs, empty DWCNTs and S@DWCNTs, in comparison with pristine M-SWCNTs. In (c), hopping model is used 

to fit the curves of the above samples (black solid line) except M-SWCNTs whose curve could not be reproduced by the 

model and D refers to the dimensionality of electron hopping in these systems. The enlarged relative resistivity curves 

for temperature between 10 and 300 K are shown in the inset of (c) [42]; (d) X-ray diffraction profiles for nickel 

clusters confined in SWCNTs with diameter of 3 nm, 7 nm and 10 nm respectively. The diffraction profile of empty 

SWCNTs is also shown; (e) magnetization curves for the same materials as measured by SQUID at 5 K. The 

magnetization curve of bulk Ni is also show; (f) and (g) Variation of conductance as a function of cycling magnetic field 

measured on isolated Co@SWCNT bundles contacted (with Pd) following the transistor-type device, for an angle of 25° 

between the direction of the outer magnetic field and the elongation axis of the contacted bundle, and at a temperature 
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of 40 mK. (f) as seen, 90% of the devices do not show a hysteretic behaviour, whatever the gate voltage. (g) as seen, 10% 

of the devices show a hysteretic behavior with two conductance jumps in the curve at the same absolute magnetic field 

value. 

 

From a theoretical standpoint, ab initio density functional theory is used to calculate the 

stability and electronic properties of the hybrid S@SWCNTs and the results indicate that the 

encapsulated S chain and host SWCNT are both metallic and the total conductance of S@SWCNTs 

is approximately equal to the sum of the quantum conductances of the isolated S chain and the 

isolated nanotube, which can support the experimental observations. These calculations also imply 

that no significant bonding or charge transfer occurs between the sulfur chain and the SWCNT, 

which is different from the observations in other hybrid systems described above.  

 

The magnetic behavior of filled SWCNTs is another fascinating aspect which has also attracted 

huge attention in spite of the experimental work is smaller [137, 157, 158, 214] than the theoretical 

one [59, 60, 175, 177]. For instance, iron nanowires encapsulated within SWCNTs are predicted to 

still maintain the intrinsic ferromagnetic property regardless of the reduced coordination number of 

Fe atoms in the nanowires and the magnetism is subsequently transferred to the whole hybrid 

material. Recently, nickel clusters encapsulated in SWCNTs has been synthesized and their 

magnetic behaviours have been investigated [160]. It is found that these clusters exhibit 

superparamagnetism and larger coercivity than bulk Ni, indicating the formation of single domain 

magnets (Fig. 1.18c). Another example regarding to the interaction between the encapsulated Co 

nanoparticle and the host SWCNT was also reported, in which case the Co nanoparticles were 

unambiguously evidenced to be confined in the interior of SWCNTs [156]. A transistor-type device 

was fabricated based on the hybrid Co@SWCNTs and the occurrence of magneto-resistance effects 

when operated at temperatures close to absolute zero in cycling magnetic field conditions was 

observed (Figs. 1.18(f) and 1.18(g)). As the radial dimension of the Co nanoparticles within the 

narrow SWCNTs is minimized while their proportion of surface atoms is multiplied, a 

perpendicular or oblique main direction of magnetization with respect to the elongation axis is 

induced, which counters what was found for large Co wires filling MWCNTs [75].  

  



38 
 

 

1.2.6.3 Applications 

 

So far, the reported practical applications of filled CNTs mainly deal with employing CNTs as 

vehicles for molecular delivery in biomedicine. For instance, targeted drugs are loaded inside CNTs 

firstly and then the nanocomposites are delivered to certain tissue or somewhere else [103, 215, 

216], in which case, nanotubes are merely considered as nanocontainers. In addition, CNTs filled 

with contrast agents can be used for biomedical imaging such as in vivo observations by magnetic 

resonance imaging (MRI). For example, SWCNTs attached with Gd3+ complex [217] and iron oxide 

nanoparticles [218] are both investigated by MRI and they are demonstrated to show a dramatically 

enhanced imaging contrast as a result of the absence of any organic component and the enrichment 

of the magnetic atom (or compound) concentration.  

Besides the biomedical applications, filled CNTs are also used for other fields including as 

catalyst supports, components in energy storage devices, field electron emitters, magnetic force 

microscopy (MFM) probes, etc. For example, Rh particles confined inside MWCNTs are reported 

to exhibit significantly enhanced catalytic activity for converting CO and H2 into ethanol [219]. 

Meanwhile, much higher (more than one order of magnitude) formation rate of ethanol inside the 

cavity of nanotubes is observed with respect to that on the outside of nanotubes. Such a synergetic 

confinement effect has subsequently been reported for other catalysts such as iron [220], and 

titanium [221]. The first demonstrated application of filled SWCNTs for energy storage device was 

related to the utilization of CrOx@SWCNTs as electrode material for symmetric supercapacitor 

device, in which case, unprecedented charging rates up to 1 V/s were observed, attributed to 

Faradaic reactions between the confined CrOx nanocrystals and the acidic electrolyte [222]. 

However, other demonstrations of X@CNT-based energy storage devices mostly relate to filled 

MWCNTs, such as the use of SnO2@MWCNTs for lithium-ion battery [222, 223] while other 

X@SWCNT-based energy devices could be barely found in the literature. One of the practical 

applications of CNTs has been their use as field emitters, which is associated to their intrinsic 

properties and the relatively convenient growth of 2D CNT arrays on a flat or curved substrate. 

Therefore, once nanotubes are filled with materials which can also serve as emission source, 

enhanced field-emission performances are expected for the hybrid X@CNTs when the work 
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function of hybrid X@CNTs decreases. For instance, GaN-filled nanotubes synthesized by the 

in-situ CVD method enhanced by microwave plasma were investigated as field emitters, and they 

were found to produce high as well as stable currents [224]. In addition, field emission properties of 

CNTs filled with germanium [225], iron oxide [226] and ferromagnetic nanowires (FeNi) [227] 

were reported as well, and these hybrid systems are suggested as promising candidates for field 

emission displays. All the above studies are concentrated on filled MWCNTs rather than SWCNTs, 

probably arising from the simpler preparation and higher mechanical stability of MWCNTs 

compared to SWCNTs during the electron emission event. On the other hand, magnetic CNTs 

stemming from encapsulations of magnetic materials are found to be suitable for probes of magnetic 

force microscopy (MFM) and exhibit longer lifetime with respect to conventional magnetically 

coated probes thanks to the protection from oxidation by carbon shells. As a result of the challenge 

in preparing SWCNTs filled with magnetic nanowires, only Fe@MWCNTs has been tested as probe 

for magnetic imaging thus far [69, 228-230].   

Regarding the electronic properties of filled SWCNTs as described in section 1.2.6.2, 

especially concerning peapods, promising applications in single spin devices are expected though 

progress in this area is slow. Meanwhile, the ability of SWCNTs or DWCNTs to change or alter the 

crystallographic state of the filling material because of their narrow cavities, as observed for various 

hybrid X@SWCNT/DWCNT systems involving BaI2@SWCNTs [193], CoI2@SWCNTs [161], 

HgTe@SWCNTs [167] and PbI2@DWCNTs [164], thereby inducing the possibility to tune the band 

gap of the filling material, may lead to the potential development in sensors applications.  

 

1.3   Conclusion 

 

Filling CNTs is a promising field due to the feasibility of inserting molecules and synthesizing 1D 

nanomaterials including nanowires, nanoparticles, atomic chains, and the discovery of peculiar 

properties leading to potential new applications. The progress made in this field as described above 

also promotes the development of nanoscience and nanotechnology. In spite of the achievements to 

date, many issues are needed to overcome. For example, although more and more materials have 

been introduced into the CNTs successfully, very few studies have been devoted to the investigation 

of the parameters which may control the filling process described in section 1.2.5. Data on the 
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physical properties of filling materials including surface tension, viscosity and vapour pressure are 

not easy to find in the literature (especially at the melting point) and most of the related literature 

was published in the early days. Thus, comprehensive studies on the physical properties of the 

filling materials are needed in order to understand the filling mechanism. In addition, chemical 

properties though not discussed in the literature yet may also play a role in the filling process and 

should be taken into account as well. Few attention is focused on the physical properties of 

SWCNTs or DWCNTs filled with compounds or elements although peculiar crystalline structures of 

the encapsulated materials or atomic chains have already been observed, possibly due to the fact 

that there are often different kinds of structures present simultaneously in a given sample, so it is 

rather difficult to clearly propose a structure/properties relationship. In the case of hybrid DWCNTs, 

it is also possible that the modification on the properties of the inner nanotube(s) arising from the 

filling is not so significant and may be screened by the outer tube, thus not being observed at 

macroscopic level. However, the measurement at microscopic level on the physical properties of the 

encapsulated crystal within an individual nanotube is not easy to carry out because of the 

requirement of advanced facilities such as nanolithography for fabricating electrodes on a SiO2 

substrate, superior TEM to locate the individual filled-tube on the substrate (100% filling rate was 

hardly achieved so far!) and specifically-designed devices for measuring. Meanwhile, microscopic 

investigation on the interaction between an individual host nanotube and its internal guest material 

or the modification on the energy band gap of the encapsulated crystals is scarce at the current stage, 

which somehow limits the practical applications of X@CNTs. Moreover, nanowires of transition 

metals are expected to exhibit interesting magnetic properties differing from the bulk metals while 

successful synthesis of such nanowires encapsulated within SWCNTs or DWCNTs is few. Hence, 

further work on the preparation of SWCNTs or DWCNTs filled with metals was the motivation for 

this work.  
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Chapter 2 Investigation on the filling mechanisms of DWCNTs with 

foreign phases and of the resulting peculiar structures of the latter  

 

2.1  Introduction 

 

Although various examples of fillings of CNTs have been reported already, filling mechanisms are 

not well understood yet, especially when considering the molten phase method. As described in 

chapter 1, though early works proposed that the filling of CNTs can be described by a nanocapillary 

wetting effect driven by Laplace equation [1,2], factors which may play a role in the filling process 

are many (e.g., morphology of CNTs, surface tension, viscosity, vapour pressure, etc. [3]) and 

which ones are the most relevant is not clear yet. Therefore, two goals were targeted. One was to 

tentatively understand better the filling mechanisms, what previous works have more or less failed 

to do so far. This will be treated in this Chapter. Another was to investigate the ability of the 

encapsulated phases to be transformed in situ by chemical routes, and this will be treated in Chapter 

3. 

In this chapter, filling CNTs with various metal halides as well as iodine via the molten phase 

method was performed and the filling rate achieved in each case was estimated from high-resolution 

transmission electron microscopy (HRTEM) data. Halides were selected as filling materials because 

early studies demonstrated that raw SWCNTs with closed ends could be directly filled with molten 

halides or iodine, thereby skipping the preliminary opening process, and revealing the chemical 

reactivity of halides or iodine towards aromatic carbon [4,5]. This makes the molten phase method 

favourable for synthesizing CNTs filled with halide or iodine crystals due to the simplicity of the 

related filling procedure. Hence, the molten phase method was employed in our work for filling 

CNTs.  

First, based on previous results from the literature showing that filling CNTs with molten PbI2 

was able to achieve high filling rates, we have attempted to assess the importance in the filling 

process of CNT-related parameters such as the number of walls, CNT inner diameter, and inner 

CNT surface energetics. To do so, various types of CNTs including DWCNTs, few-walled CNTs 

(FWCNTs) with concentric texture, MWCNTs with herringbone texture, and boron nitride 
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nanotubes (BNNTs) were filled with PbI2. Second, to evaluate the influence of possibly relevant 

physical and chemical properties of filling materials on the filling mechanisms and rate, DWCNTs 

were chosen as host tubes because they are more robust than SWCNTs due to the protection of 

outer walls while the inner cavity of DWCNTs can be as small as or even smaller than that of 

SWCNTs, which is more likely to promote peculiar structures, hence peculiar properties. Then, 

filling DWCNTs with a series of metal halides (mostly iodides, but also PbCl2, PbF2, etc.) as well as 

iodine was performed while data on the filling material properties were gathered from the literature.  

 

2.2  Preparing/gathering host CNTs and BNNTs 

 

2.2.1 CCVD synthesis of DWCNTs/FWCNTS 

 

The DWCNTs were prepared by a well-established CCVD method in our group [6-8]. The catalyst 

used for the growth of DWCNTs is a mixed oxide of Mg, Co and Mo, whose formula can be written 

as Mg0.99Co0.0075Mo0.0025O. This catalyst was prepared by a combustion route using citric acid as the 

fuel. First, three precursors, ammonium heptamolybdate, cobalt nitrate and magnesium nitrate were 

added into an aqueous citric acid solution. After full dissolution of the precursors, the solution was 

transferred into a crystallising dish and placed into an oven (with open door) preheated at 550°C for 

15 min. The combustion occurred and a solid product was obtained. Due to the incomplete 

decomposition of citric acid, a calcination step is required to eliminate the residual carbon 

contamination in the solid product. Thereby, the obtained product was ground into a homogeneous 

powder and then heated in a furnace under air flow at 450°C for 1h. 

An alumina boat filled with the as-prepared catalyst powder was placed in the middle of a 

horizontal tubular furnace, in H2/CH4 atmosphere (18 mol.% CH4, 15 L/h). H2 is used to selectively 

reduce the oxide in the catalyst and CH4 acts as the carbon source. H2 is also needed to moderate the 

decomposition of CH4 at 1000°C. The furnace was heated to 1000°C from RT at a heating rate of 

300°C/h and then immediately cooled down to RT with a rate of 300°C/h, without dwell at 1000°C. 

FWCNTs were prepared by the same CCVD method as described above except for some 

experimental parameters which were modified. For instance, the composition of the catalyst used 

for growing FWCNTs can be described as Mg0.9Co0.033Mo0.067O, and the content of CH4 in the 
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H2/CH4 mixture was increased to 36 mol.% (twice as much than what was used for growing 

DWCNTs). 

 

2.2.2 Extraction of DWCNTs/FWCNTs 

 

In order to separate the carbon nanotubes from the catalyst after the CCVD process, an extraction 

process is required. The MgO in the obtained composite powder can be easily removed by 

dissolution in concentrated hydrochloric acid (HCl 37%). Meanwhile, the unreacted metal 

nanoparticles (Co, Mo) during the CCVD process which are not surrounded by carbon shells or 

present into the CNTs can also be eliminated by HCl. Because the reaction between Co particles 

and acid can produce CoCl4
2- during the extraction process, a blue colour was observed. HCl is 

known to be a non-oxidizing acid thus no damage to the CNTs or carbon shells occurred in this 

step. 

After leaving the composite powder in acid solution for the night, the suspension was filtered 

by a Millipore vacuum system using a cellulose nitrate membrane with a pore size of 0.45 µm. Then 

the solid was washed with deionized water for several times until neutral pH was obtained. The 

powder was recovered on the membrane and transferred into a glass vial. A small amount of 

deionized water was added into the vial and the vial was sonicated for several seconds to disperse 

the powder. Subsequently, the suspension was frozen, and then the sample was finally freeze-dried. 

 

Fig. 2.1 shows typical TEM images of raw DWCNTs before filling. Although Fig. 2.1 

illustrates the variety of phases and morphologies present in the material, the large majority of the 

tubes are DWCNTs indeed. They exhibit the concentric texture, consistently with the limited 

number of walls. The inner and outer diameters of the DWCNTs ranged from 0.5 to 2.5 nm (most 

frequently 1-2 nm) and from 1.2 to 3.2 nm, respectively [8]. A few CNTs with more than 2 walls 

are also present as illustrated in Fig. 2.1c. 
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Fig. 2.1 - TEM images of raw DWCNTs showing (a) "diaphanous" carbon (arrows, see text); (b) metal nanoparticles 

(arrows); (c) a 3-wall nanotube with closed tip and a 4-wall tube; (d) a double-walled nanotube with closed tip and 

residual cobalt catalyst nanoparticles encapsulated in carbon shells (white arrow). 

 

 Then, Fig. 2.2 shows typical TEM images and histograms representing the distribution of 

number of walls and inner and outer diameters for raw FWCNTs before filling. It can be seen that 

among 93 individual CNTs, most of the tubes have 2~6 walls with inner diameters ranging from 0.5 

to 6 nm with the most represented diameters in the range 1.5-3.5 nm. 
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Fig. 2.2 - (a) and (b) are HRTEM images of FWCNTs showing the presence of tubes with 2~6 walls; (c) and (d) are 

distributions of the numbers of walls and inner (di) and outer (do) diameters for the whole population (established from 

93 individual CNTs).   

 

2.2.3 Nanotubes from external suppliers 

 

Purified SWCNTs prepared by the arc process (Nanocarblab, Russia) were used. They exhibit a 

large majority of tubes with the regular 1.3-1.4 nm diameter, and the oxidative purification process 

has induced openings large enough for allowing sublimated C60 (0.7 nm diameter) to enter the 
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SWCNT cavity. Also, two other kinds of MWCNTs were used for filling in this chapter. One of 

them exhibited the concentric texture and was produced by the arc discharge method (Nanoledge, 

France), denoted as c-MWCNTs-a. They mostly exhibit inner diameters in the range 2-10 nm and a 

large number of walls, typically higher than 10. The other one exhibited the herringbone texture and 

was produced by the floating catalyst CCVD method (Pyrograf-III grade from Applied Sciences 

Inc.), denoted as h-MWCNTs. The average outer diameter of the h-MWCNTs ranges from 125 to 

150 nm and the average inner diameter ranges from 50 nm to 70 nm. Those were selected because, 

as opposed to many other h-MWCNT batches from other sources, the bamboo texture, which 

usually comes along with the herringbone texture, is rare here (and the bamboo texture is obviously 

unwanted because the presence of compartments delimiting the inner cavity is detrimental to the 

filling)  

HRTEM images of c-MWCNTs-a are shown in Fig. 2.3 and it can be seen that most CNTs have 

more than 10 graphene walls showing a ‘concentric’ texture.   

  

  

Fig. 2.3 - HRTEM images of c-MWCNTs-a showing (a) a 13-wall CNT with closed tip and (b) a 12-wall CNT with 

closed tip. 

 

TEM images of h-MWCNTs are illustrated in Fig. 2.4. As seen, tubes with open tips or closed 

tips are both present in the sample (see Fig, 2.4a) and the inner graphene walls of the tube are 

oblique to the tube axis forming the ‘herringbone’ texture (see Fig. 2.4b). It is worth noting that the 
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original h-MWCNT tube, in which the graphene nanotexture is perfect, was subsequently coated by 

a pyrolytic carbon layer in which graphenes are more or less concentrically displayed while their 

nanotexture is much lower than for the inner part. This double texture is typical for the ASI 

Pyrograf-III product. 

 

  

Fig. 2.4 - (a) TEM images of h-MWCNTs showing that the tubes are often opened at one end; (b) HRTEM image of one 

of the CNTs exhibiting the ‘herringbone’ texture in the inner part of the wall (see text), the dashed red lines indicate the 

orientation of the graphitic planes making the tube wall and the blue line is parallel to the tube axis.  

 

BNNTs were produced (and given for free by the BNNT, LLC, USA) by the high 

temperature/high pressure method with 50 wt% of BNNTs and 50 wt% of hexagonal boron nitride 

in the product. The BN nanotubes in the product typically have 1~5 walls, yet most frequently 2-4. 

The inner diameters of most BN nanotubes range from 1 to 7.5 nm with the most represented 

diameters in the range 1.2-3 nm, while the outer diameters range from 1.6 to 10 nm with the most 

represented diameters in the range 2.2-4.5 nm. A BNNT is a structural analogue to a CNT, while B 

and N atoms entirely substitute C atoms alternatively in a graphene with almost no change in atomic 

spacing [9]. Alike the DWCNTs described above, the BNNTs used in this work correspond to an 

inhomogeneous mixture of nanotubes and nanoparticles entangled as a spider-web-like network 

(Fig. 2.5a-b). The nanotubes are either isolated or organized in small bundles (2-10 tubes), with 

lengths ranging from several hundreds of nanometers up to several microns among the entangled 

network. Most nanotubes are close-ended while a few tubes have opened tips (Fig. 2.5c and d). It is 

possible that the opening occurred while the sample was ground (mortar and pestle) in order to be 
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used: as provided, the sample is looking like large “raw cotton” balls which cannot be proceeded. 

Gentle grinding allows obtaining a powder which can be used for further experiments. In addition, 

some tubes are filled with amorphous material which is supposed to also be boron nitride (Fig. 2.5c 

and d). 

  

  

Fig. 2.5 - TEM images of BNNTs showing (a) a spider web network formed by the entangled tubes; (b) the presence of 

nanoparticles (red arrowed); (c) a 3-wall BNNT with closed tip (red arrowed) and tubes filled with what is likely to be 

amorphous boron nitride (yellow arrowed); (d) a double-walled nanotube with open tip (red arrowed), tubes filled with 

amorphous boron nitride (yellow arrowed) and a boron nanoparticle encapsulated by BN shells (white arrowed). 
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2.3 Synthesis of X@CNTs or X@BNNTs (X = halide or iodine) 

 

First, dry, raw CNTs or BNNTs along with the desired filling material, with a molar ratio of 1/1.3 

(DWCNTs/halides or iodine), were ground in a mortar together to obtain a homogeneous mixture. 

Then the mixture was transferred into a quartz ampoule (6 mm diameter) using a glass funnel. As 

many of the filling materials are hygroscopic or sensitive to air, the above steps were performed in a 

tent under N2 atmosphere. Subsequently, the ampoule was evacuated down to a reduced pressure of 

20 Pa and kept subjected to this dynamic vacuum for 2 h. Finally, the ampoule was sealed with a 

flame and placed into a furnace. The heating program of the furnace was set as followings: from 

room temperature (RT) to 30°C above the melting point (Mp, see Table 2.1) of the filling material at 

5°C/min, then 24h dwell time, then down to 20°C below Mp at 0.1°C/min, then down to 120°C 

below Mp at 1°C/min, then down to RT at 5°C/min.  

For FWCNTs, c-MWCNTs-a and h-MWCNTs, only filling with PbI2 was performed. For 

BNNTs, fillings with PbI2 and NiI2 were performed and for the latter, the dwell time was 6h. For 

DWCNTs, the halides used for filling are listed in Table 2.1.  

 

Table 2.1: Filling temperature for the various halides (and iodine) used as filling materials 

Filling 
material 

AgI CdI2 CoI2 FeI2 KI LiI NiI2 PbI2 PbCl2 PbF2 SnI2 iodine 

Filling 
T° (°C) 

588 417 550 617 711 499 827 432 531 854 350 140/827

 

For iodine, two filling temperatures were used: 140°C and 827°C (same temperature as for NiI2) 

and the as-prepared samples were denoted as I@DWCNTs_140 and I@DWCNTs_827, respectively. 

At 827°C, iodine is no longer a liquid but a vapour. When the heating process was completed, the 

ampoule was taken out of the furnace and opened. The composite powder taken out from the 

ampoule was ground into fine powder and then dispersed in a suitable solvent which can dissolve 

the filling material (see Table 2.2).  
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Table 2.2: Solvents used for washing in various filling experiments 

Filling  

material 
AgI CdI2 CoI2 FeI2 KI LiI NiI2 PbI2 PbCl2 PbF2 SnI2 iodine 

Solvent Na2S2O3
a H2O H2O 

HCl 

(37%) 
H2O H2O H2O 

Na2S2O3
a 

CH3COOH 

HNO3 

(6M) 

HNO3 

(6M) 

CH3CH2OH 

(absolute) 

CH3CH2OH 

(absolute) 

ain solution, in proportions 1:20 for [filling material]:[Na2S2O3] 

 

With the molar ratio we used, the filling material was in a large excess and washing was necessary 

to remove the non-encapsulated material. To facilitate the dissolution, an ultrasonication bath was 

used. The suspension was filtered and washed with the corresponding solvent repeatedly for several 

times to make sure that the filling material outside the nanotubes was removed. The washed solid 

was finally freeze-dried. If an organic solvent was used for washing, the product was dried in an 

oven at 80°C instead of by lyophilisation. 

The halides used to fill CNTs or BNNTs are listed in Table 2.2 along with the corresponding 

solvents used for washing in each experiment. For FeI2 which can easily be oxidized in air, 

concentrated hydrochloric acid solution (37%) was used for washing. For AgI and PbI2, sodium 

thiosulfate solution was chosen for washing because the reaction between S2O3
2- ion and the metal 

iodide can give the soluble thiosulfate complex of Ag or Pb [10,11]. In the case of PbI2, after 

washing twice with Na2S2O3 solution, acetic acid solution (pH=2) was used subsequently to wash 

the PbI2@DWCNT film left on the membrane with a controlled slow filtration rate. Due to the 

solubility product constant Ksp of lead acetate which is higher than that of lead iodide, lead iodide 

can dissolve in acetic acid under dynamic equilibrium state with the help of filtration. It should be 

noted that lead iodide does not dissolve in the acetic acid solution under static equilibrium state.    

A synoptics summarizing all the filling experiments carried out during this work can be found on 

the page hereafter.  
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2.4 Electron microscopy characterization on the X@CNTs and X@BNNTs  

 

All the filled CNTs/BNNTs (as well as the starting materials, as already shown in Figures 2.1 to 2.5) 

were imaged by HRTEM with a FEI Tecnai-F20 microscope (100 kV) equipped with a Cs corrector 

for the objective lens and occasionally with a Philips CM30 microscope (150 kV) with a LaB6 gun 

source. A JEOL JEM-ARM200F microscope (80 kV, occasionally 200kV as indicated on the related 

image captions) equipped with a STEM and Cs corrector for the condenser lens was used for ADF 

images and EELS analysis. To prepare the TEM specimen, samples were dispersed in ethanol using 

sonication bath firstly. Then one or two drops were deposited onto a copper grid (200 mesh) coated 

with a lacey-type carbon film on the surface using a glass pipette. After the evaporation of the 

ethanol on the grid, the specimen is ready for observation by TEM. To estimate the filling rate of 

each hybrid-CNT/BNNT sample, more than 30 HRTEM images randomly selected from area 

showing isolated tubes (filled or not) were acquired per sample, from which the filling rate was 

defined as the ratio of the total length of filled tubes over the total length of (filled + unfilled) tubes 

measurable on each image, which is more accurate (even if not perfect) than the usual simple, visual 

global estimation from a series of images which is usually performed. However, due to the inherent 

limitations of the method used, we estimate that the filling rates are accurate within a ± 5% range 

(absolute %). It should be noted that in the case of PbI2@h-MWCNTs, the filling rate was estimated 
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from TEM images of the unwashed sample while it was found that the encapsulated PbI2 was partly 

washed out during the TEM specimen preparation. Indeed, the penetration of the solvent (either 

ethanol from TEM grid preparation or Na2S2O3 in water) creates bubbles and menisci (see Fig. 

2.9b), which is assumed to come with partial removal of the filling material. As a matter of fact, the 

amount of bubbles observed in the washed sample was higher than in the unwashed sample. The 

estimated filling rates achieved with DWCNTs are shown in Table 2.3. For filling with iodine, only 

the filling rate of I@DWCNTs_140 was estimated.  

 

Table 2.3: Estimated filling rates of DWCNTs reached with a variety of iodides (and iodine) 

Filling material AgI CdI2 CoI2 FeI2 KI LiI NiI2 PbI2 PbCl2 PbF2 SnI2 iodine 

Estimated filling 

rate (%) 
38±5 22±5 14±5 27±5 <1 <1 51±5 32±5 1~5 <1 34±5 27±5 

(140°C) 

 

The estimated filling rates achieved for PbI2@DWCNTs, PbI2@FWCNTs, PbI2@c-MWCNTs-a, 

PbI2@h-MWCNTs, PbI2@BNNTs and NiI2@BNNTs are shown in Table 2.4 along with data on the 

average inner diameters of the host tubes. 

 

Table 2.4: Estimated filling rates achieved for PbI2@CNTs, PbI2@BNNTs and NiI2@BNNTs, and some characteristics 

of host tubes 

sample PbI2@ 

SWCNTs 

PbI2@ 

DWCNTs 

PbI2@ 

FWCNTs 

PbI2@ 

c-MWNTs-a 

PbI2@ 

h-MWCNTs 

PbI2@ 

BNNTs 

NiI2@ 

BNNTs 

Estimated filling 

rate (%) 
32±5 32±5 25±5 <1 20±5 <1 0 

Most frequent nb 

of walls 
1 2 2-6 > 10 

Not 

appropriate 
2-4 2-4 

Most frequent 

inner diameters 
1.35 nm 1-2 nm 1.5-3.5 nm 2-10 nm 50-70 nm 1.2-3 nm 1.2-3 nm 

 

Fig. 2.6 displays low-magnification TEM images of AgI@DWCNTs and PbI2@DWCNTs, before 

washing and after washing. By comparison, it is found that the material embedding the CNTs in the 

sample before washing is absent after washing, indicating that the washing step is efficient to 

remove the excess (non-encapsulated) metal iodide. It is also the case for each of the other filling 

experiments with the other filling materials (yet the related TEM images are not shown).  
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Fig. 2.6 - low-magnification TEM images of AgI@DWCNTs (a) before washing, (b) after washing, and PbI2@DWCNTs 

(c) before washing, (d) after washing. 

 

Fig. 2.7 shows typical HRTEM images for all the filled DWCNTs. It can be seen that the 

desired filling material was successfully inserted within the nanotubes and well crystallized inside 

the nanotubes in each case except for PbF2 which did enter the CNT cavity but failed crystallising, 

confirming the ability of metal halides and iodine to open CNTs, at least those with a limited 

number of walls such as DWCNTs. DWCNTs are filled continuously with the halides even up to 

micrometres sometimes. Results obtained with SWCNTs were similar for all the filling materials 

attempted (see the synoptics of filling experiments in section 2.3) hence they will not illustrated. 
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Fig. 2.7 - HRTEM images of single or bundled 

DWCNTs filled with (a) AgI crystals, (b) CdI2 

crystals, (c) CoI2 crystals, (d) FeI2 crystals, (e) KI 

crystals, (f) LiI crystals, (g) NiI2 crystals, (h) PbI2 

crystals, (i) PbCl2 crystals, (j) amorphous PbF2, (k) 

SnI2 crystals and (l) iodine crystals in 

I@DWCNTs_140 and (m) iodine crystals in 

I@DWCNTs_827. 

 

 

Typical HRTEM images of PbI2@FWCNTs and PbI2@c-MWCNTs-a are shown in Fig. 2.8. In 

the case of PbI2@FWCNTs, besides the commonly observed encapsulated PbI2 nanowires, a 

continuous coating by PbI2 of the inner CNT surface of CNTs with large inner cavity is occasionally 

observed, thereby forming an inner encapsulated PbI2 nanotube (Fig. 2.8b). Such PbI2 nanotubes 

can be synthesized in large amounts by filling open-ended MWCNTs with molten PbI2 as reported 

by Cabana et al. [12]. In the case of PbI2@c-MWCNTs-a, it is an overall statement that CNTs with 

less than 6 walls were filled while tubes with a higher number of walls were not (Figs. 2.8c-d). 
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Fig. 2.8 - HRTEM images of PbI2@FWCNTs illustrating (a) a PbI2 nanowire encapsulated within a 4-walled CNT and 

(b) a PbI2 nanotube encapsulated within a 4-walled CNT; TEM images of PbI2@c-MWCNTs-a showing (c) a 5-wall 

CNT filled with a PbI2 nanowire and (d) unfilled CNTs with more than 6 walls. 

 

Regarding PbI2@h-MWCNTs, the unwashed sample and washed sample were both investigated 

by electron microscope. Before washing, many tubes are filled with continuous PbI2 nanorods over 

long distances, in particular when they do not exhibit the bamboo texture (Fig. 2.9a), while some 

tubes are filled with PbI2 ‘bubbles’ after washing (Fig. 2.9b) (the PbI2 nature was ascertained by 

X-EDS).  

  

Fig. 2.9 - (a) TEM image of unwashed PbI2@ h-MWCNTs showing a continuously filled large tube and (b) TEM image 

of washed PbI2@h-MWCNTs showing four tubes filled with PbI2 ‘bubbles’.  
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In addition, the amount of filled tubes in the washed sample is decreased compared to unwashed 

sample. Apparently, the washing step can partly empty the filled tubes due to the dissolution of 

encapsulated PbI2 in the washing solvent. The washing out of PbI2 for PbI2@h-MWCNTs is 

ascribed to the open ends and large inner cavity of the host tubes, which allows the solvent to freely 

enter the tubes and then form solvation spheres within the tubes. This is consistent with the 

observation that such a washing-out behavior was not observed for CNTs exhibiting smaller 

diameters such as DWCNTs and FWCNTs filled with halides. 

In the case of PbI2@BNNTs, some rare tubes are filled with elongated nanocrystals (Fig. 2.10a) 

while some are filled with small clusters (Fig. 2.10b). The formation of PbI2 clusters inside the 

BNNT arises from the presence of boron nitride ‘plugs’ which hinders the capillary rise of PbI2 

inside the tube.  

  

Fig.2.10 - HRTEM images of PbI2@BNNTs showing (a) a BN tube filled with long crystals (red arrowed) and (b) 

encapsulation of a cluster stopped by amorphous boron nitride at one end (red arrowed) within a BN tube. 

 

Although high resolution bright field imaging is able to reveal the presence of filling materials 

sometimes with atomic resolution, ADF imaging was much more efficient in this by providing 

much higher contrast. Hence, in the following, many of the images will be ADF type, despite this 

imaging mode is not favourable to imaging the DWCNT walls because of the low contrast (low 

scattering) generated by carbon atoms.  

In the case of filling attempts with NiI2, NiI2@DWCNTs are duly observed along with a minor 

occurrence of I@DWCNTs as revealed by EELS analysis (see Figure 2.11). The reason of this dual 

chemical nature – I and NI2 – of the filling materials will be addressed in section 2.7.  
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Fig. 2.11 - NiI2 filling experiments. All images are from the same sample batch: (a) Annular Dark Field (ADF) image of 

NiI2@DWCNTs showing the crystal structure of the encapsulated NiI2. The split aspect with two crystallized bodies 

separated by a large gap was found typical of NiI2 crystals; (b) EEL spectrum obtained by summing the spectra 

collected along the red line indicated in (a) confirming that the crystal is NiI2; (c) ADF image of a DWCNT filled with a 

crystal whose structure is different from that in (a) and is consistent with encapsulated iodine, as proposed in [13]; (d) 

EEL spectrum obtained by summing the spectra collected along the red line indicated in (c) confirming that the 

encapsulated crystal is pure iodine. 

 

Regarding NiI2@BNNTs, it was surprisingly found that the web-like network of BNNTs was 

destroyed after filling (Fig. 2.12a and b). In addition, a filling experiment involving heating the 

mixture of NiI2 and BNNTs at 827°C for 24h was also performed resulting in almost no BNNTs 

remaining in the final product. As this did not happen when filling BNNTs with PbI2, this is a 

peculiar behavior which, again, appears to be related to NiI2. This heavy alteration of the BNNTs of 

course prevented the encapsulation of NiI2 to occur, and remaining BNNTs appear to be unfilled, 

yet opened (Fig. 2.12c-d). However, as described earlier, it is not possible to tell if this opening is an 

additional process due to the interaction with NiI2 or if these open BNNTs were already present in 

the starting (ground) material used for filling.  
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Fig. 2.12 - (a) and (b) TEM images of NiI2@BNNTs showing the destroyed network of BNNTs after filling; (c) and (d) 

HRTEM images of some remaining BNNTS from the NiI2@BNNTs experiment showing that they are unfilled, even if 

opened. 

 

2.5 Structures of NiI2 and iodine confined within CNTs  

 

2.5.1 Encapsulated NiI2   

 

Both the HRTEM and ADF images show that NiI2 is well crystallized within the cavity of CNTs 

and elongates along the axis of CNTs continuously, up to several micrometres. Nominally, NiI2 

conforms to the layered CdCl2 structural archetype and only forms R-3mH structure (Fig. 2.13).  
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Fig. 2.13 - Crystal structure and common projections observed for NiI2 [14]. In this figure, iodine is depicted by purple 

spheres and nickel is depicted by white spheres. 

 

The type of crystal observed for encapsulated NiI2 is broadly similar to that previously reported 

for PbI2 encapsulated within SWCNTs or DWCNTs [15] which also forms the CdCl2 (3R) R-3mH 

structure but much more commonly forms the CdI2 (2H) P-3m1 structure although both consist of 

2D layers of MI2 (M= Pb, Ni) separated by Van der Waals gaps (i.e. similar to MoS2, WS2, NiCl2 

etc.). However, the crystallization of NiI2 in CNTs behaves more regularly than that of PbI2 as the 

latter forms different polytypes depending on the diameter of the host CNT [15]. Nearly all the 

encapsulated NiI2 crystals can be related to the R-3mH structure with 4-5 atoms thick or more 

depending on the inner diameter of the host CNT. Meanwhile, many NiI2 crystals are observed to be 

twisted within the same nanotube. For instance, the fragments in region I and II in Fig. 2.14 (see 

insets) show different projections of the same structure. Both fragments do not exhibit the same 

width, suggesting that the tube cross-section should correspondingly exhibit an oval instead of 

circular profile, and that the oval profile is twisted along the tube axis, as previously observed in the 

literature for other encapsulated crystals [16,17]. The corresponding simulated ADF images and 

models derived from both regions (Fig. 2.15) reveal that fragment II is imaged parallel to a fairly 

unusual projection ([21-0.5]) with respect to the bulk R-3mH structure in Fig. 2.13, and the 

orientation of fragment I is perpendicular to that of fragment II (see end-on view). In addition, NiI2 

crystals in region I is 5-atom-thick, thereby differing from the 4-atom-thick fragment II, which 
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possibly arises from the expansion of inner cavity of the host DWCNT or, alternatively, makes the 

tube cross-section adopt an oval shape to accommodate the crystal dimension variation, as 

previously suggested. Another example of twisted NiI2 crystals is illustrated in Fig. 2.16. 

 

 

 

 

Fig. 2.15 - ADF = Details of the 

inset images in Fig. 2.14, SIM = 

corresponding simulations of the 

ADF images; MODEL = 

corresponding structure models 

(side views), for both regions I and 

II in Fig. 2.13. END-ON = 

corresponding cross-section views 

of the NiI2 fragments inside 

DWCNTs. In this figure, iodine is 

depicted by purple spheres and 

nickel is depicted by blue spheres. 

 

 

 

Fig. 2.14 - ADF image of an 

encapsulated NiI2 nanocrystal. 

The insets are two 'Wien' filtered 

images of boxed regions I and II, 

which are produced using the 

'HRTEM Filter' program 

developed by D. R. G. Mitchell 

(see 

http://www.dmscripting.com/hrte

m_filter.html). 
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Fig. 2.16 - ADF (left) and HRTEM (right) images of the 

same encapsulated NiI2 nanocrystals showing different 

projected structures in regions I, II and III.  

 

For the confined NiI2 nanowires at the top of the ADF image in Fig. 2.16, a three-strip 

microstructure is unambiguously seen in region I, whereas at region II, the microstructure splits 

into two but is also rotated (see Fig. 2.16). Apparently, fragment I corresponds to the combination 

of three 2D NiI2 crystal layers viewed along [1-10] projection (see Fig. 2.17, far right) as suggested 

by the corresponding simulation and model (Fig. 2.17). When it comes to region II, the fragment is 

slightly rotated with respect to fragment I (by ca. 15°), as indicated by the structure model (Fig. 

2.17). Meanwhile, the splitting of fragment II should be due to the ‘opening up’ of the host CNT, as 

observed in the bright field image (Fig.2.16b). Beside the twisted structure, another intriguing 

feature is also observed for NiI2 crystals, as shown in region III in Fig. 2.17. According to the 

simulated ADF image (Fig. 2.17, bottom), Fragment III is suggested to be viewed along [001] 

direction, which should induce that some atoms at the periphery of the fragment appear dimmer 

than others (white arrows) due to a smaller atom column thickness which lowers the level of 

scattered intensity. However, this does not show up in the related real ADF image.  
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Fig. 2.17 - ADF = Details of the inset images in Fig. 2.16; SIM = corresponding simulation of the ADF images; 

MODEL = corresponding structure models (side views) for regions I, II and III in Fig. 2.17; END-ON = 

corresponding space-filling cross-section views of the NiI2 fragments inside DWCNTs. On the right side of the 

experimental image of region II (arrowed area), we see that the structure has indeed peeled apart. Arrows in the 

simulated ADF image for fragment III point out the presence of some Ni atom pairs which appear dimmers than 

neighbouring ones. In this figure, iodine is depicted by purple spheres and nickel is depicted by blue spheres. 

 

2.5.2 Encapsulated iodine 

 

Besides the NiI2-filled tubes, a significant amount of CNTs in the NiI2@DWCNT sample are 

observed to be filled with beautiful atomic chains whose atoms were identified to be iodine by 

EELS analysis. Chains can be single, double, or triple, in good agreement with previous 

observations [5,13]. They are induced by the entering of iodine vapours produced from the 

spontaneous decomposition of NiI2 into the CNT cavity. It is worth mentioning that those tubes 

containing iodine chains have a much smaller inner diameter compared to the NiI2-filled tubes, 

possibly indicating a preference of iodine for narrow space. The selectivity towards the size of 

CNTs during the filling process with iodine vapour may be explained by the capillary condensation 
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phenomena, as previously suggested in the case of filling with selenium vapour, which behaves 

similarly [18].  

Fig. 2.18 presents typical ADF images, corresponding simulated ADF images, and a structural 

model of 1D-iodine chains. It can be seen (Figs. 2.18a-b and 2.18e-f) that straight iodine chains are 

commonly observed and the spacing between the iodine atoms are measured to be ~0.29 nm on the 

average, similar to the I-I distance reported in [19].  

 

 
Fig. 2.18 - (a) ADF image of a bundle of CNTs from NiI2@DWCNT sample with at least four 1D iodine-chains 

(arrowed) visible. (b) Detail from (a) indicating measured distances between I atoms in a chain. (c) and (d) are a 

simulated ADF image and the corresponding structural model of a 1D iodine-chain inside a (7,7)@(12,12) DWCNT. 

The wall helicities of the model for the DWCNT are derived from (e) and (f) where the DWCNT walls are visible. Indeed, 

(e) and (f) show an ADF image and a detail of it respectively, showing a DWCNT which contains a 1D iodine chain 

(large white arrow) in-between the two walls of the DWCNT (small white arrows). Note that in order to accommodate 

the 1D iodine chain, the inner SWCNT must fit perfectly around the chain in order to retain a linear structure.  

 

Complementary experiments were carried-out as reference, consisting in attempting to fill 

DWCNTs with molten iodine and iodine vapour. Those experiments have generated samples 

I@DWCNTs_140 and I@DWCNTs_827 respectively. The filling behaviour of iodine was found 

similar, as illustrated by Figure 2.19.  
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Fig. 2.19 - ADF images (STEM operated at 200 kV) of I@DWCNTs_140 showing: (a) several single iodine chains, (b) 

two single iodine chains as wells as other structures in the background, and I@DWCNTs_827 showing: (c) two single 

iodine chains, (d) several single iodine as well as other structures in the background . 

 

The atomic arrangement of iodine chains was better resolved in the ADF images of 

I@DWCNTs_140 and I@DWCNTs_827 (Fig. 2.19) by increasing the accelerating voltage from 80 

kV (for sample NiI2@DWCNTs, as in Figs. 2.11, 2.14, 2.16 and 2.18) to 200 kV. These ADF 

images clearly confirm that the encapsulated single iodine-chains adopt a linear and straight 

configuration instead of the helical configuration suggested by Guan et al. [13]. Meanwhile, other 

polymorphic structures of iodine confined within CNTs demonstrated by Guan et al. [13] are also 
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observed in samples I@DWCNTs_140 and I@DWCNTs_827. For instance, helical double-chains 

of iodine encapsulated within a DWCNT are unambiguously presented in Fig. 2.20.  

 

Fig. 2.20 - Examples of encapsulated twin helical chains of iodine. (a) and (c) in sample I@DWCNTs_140 (white 

arrows); (b) in sample I@DWCNTs_827 (white arrowed). In (c) three nodes along the helical double iodine chain are 

arrowed. (d) Structural model (top) and simulated ADF image (bottom) of the double chain in (c) with the three nodes 

indicated by small arrows. (e) End-on (cross-section) structural model and enlargement of a region between two nodes.  

 

The maximum separation of the two chains in Fig. 2.20c is measured at ~0.26 nm, which is 

smaller than that reported for double helix of iodine encapsulated within SWCNTs (0.65 nm in [5] 

and 0.49 nm in [13]) which is likely to be due to the smaller inner cavity of our DWCNTs (below 

~1 nm) with respect to the SWCNTs used in [5, 13]. Hence, the pitch of the double helix may 

depend on the inner diameter of the host CNT. In addition, the distance between two adjacent nodes 

in the helix shown in Fig. 2.20c is not the same, i.e. 8 nm for the first two nodes at top left and   
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13 nm for the two nodes at top right. Such a helix in a DWCNT with different periodicities is often 

found in our sample and for helixes confined in different tubes, they show different periodicities 

(see Fig. 2.20a). Compared to I@DWCNTs_140, less helical chains are observed in 

I@DWCNTs_827, which may be related to the fact that iodine molecules in iodine vapour tend to 

dissociate into iodine radicals at high temperature [20] instead of I+ and In
- species in the case of 

molten iodine [5]. Monoatomic iodine may prefer to adopt a straight line configuration once 

confined within CNTs. However, the mechanism of the preferred formation of single chains or 

helical double-chains of iodine atoms instead of nanocrystals is not clear yet. Intercalation of iodine 

chains into the interstitial channels in DWCNTs ropes is also observed and clearly evidenced by 

comparing the ADF image and BF STEM image, as shown in Fig. 2.21.  

 

  
Fig. 2.21 - ADF image and the corresponding BF STEM image show the presence of intercalated iodine chains 

(arrowed) between in the interstitial channel of two CNTs in a small bundle. The tube structure appears highly defective, 

as a result from using TEM conditions with high energy electron beam (200 keV) which is able to damage the tubes. 

 

When the inner diameter of the host CNT is in the range of 1 nm or more, both amorphous-like 

phase (Fig. 2.22) and ordered phases of iodine other than linear chains (Fig. 2.23 and 2.24) are 

observed in sample I@DWCNTs_140 and I@DWCNTs_827.  
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Fig. 2.22 - ADF images (acquired at 200 kV) of amorphous-like iodine present in (a) I@DWCNTs_140 and (b)-(d) 

I@DWCNTs_827 (white arrows), respectively;  

 

The iodine ordered phase observed in Fig. 2.23a-c exhibit similar features as the Phase III 

structure proposed by Guan et al. [13]. This phase was supposed by Guan et al. to be a transition 

phase generated from the transformation of triple-helix iodine chains under the electron beam 

irradiation, as described in [13]. As we have most often used the STEM mode which required a 

convergent beam with higher dose of electrons (in addition often operated at 200 kV) than the 

parallel beam used for HRTEM (in addition operated at 120 kV only) in [13], it is possible that 

triple-helix iodine chains were present in the materials but did not survive under the irradiation and 
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quickly evolve into this "Phase III" structure. This phase was also observed to be not stable under 

the electron beam and this could be the reason why we also observed amorphous-like iodine filling 

in ADF (STEM) images operated at 200 kV (Fig. 2.22). Therefore, the phase transformation of 

triple-helix iodine chains is ongoing during the TEM observation, which may account for the 

commonly observed blurred iodine crystals and scarcely observed triple-helix iodine chains in our 

samples (one ADF image illustrating a possible triple iodine helical-chain is shown in Fig. 2.23d). 

 

  

  

Fig. 2.23 - (a) ADF image (acquired at 80 kV) of an ordered phase of iodine present in Ni@DWCNTs_500_7 (see 

Chapter 3), the inset in (a) is the EEL spectrum obtained by summing the spectra collected along the red line across the 



89 
 

filled tube, identifying the filling as pure iodine; (b) and (c) HRTEM images (acquired at 100 and 200 kV respectively) 

showing an ordered phase of iodine in sample NiI2@DWCNTs. This phase resembles the iodine Phase III structure 

proposed by Guan et al [11] which is shown in both images as an inset (see text); (d) ADF image (acquired at 200 kV) 

of a triple iodine helical-chains (the two nodes of the chains are indicated by red arrows, the configuration of the 

triple-chains can be seen clearly in white-arrowed region).  

 

When the inner diameter of the host CNT is larger than 1.5 nm, encapsulated iodine chains are no 

longer observed but crystalline iodine with identical structure to the bulk orthorhombic iodine 

crystals may fully develop, as found in the case of I@DWCNTs_140 and I@DWCNTs_827, which 

is in agreement with the work by Guan et al. [13]. An example is provided in Fig. 2.24a as an ADF 

image of a crystalline iodine filling in a triple-walled CNT with an inner cavity of around 1.71 nm 

(measured in BF mode, Fig. 2.24b). The filling material exhibits four parallel lines inside the CNT 

whose average spacing is about 0.368 nm, close to the 0.359 nm {200} d-spacing of orthorhombic 

iodine [20]. Only one example of such an encapsulated iodine crystal with the orthorhombic 

structure was reported in the literature [13], and our observations are fully consistent with it (Figure 

2.25). In addition, crystalline iodine containing up to 6 parallel lines were also observed inside large 

CNTs (Fig. 2.24c and d). The average spacing of the parallel lines is also measured to be around 

0.368 nm for the thicker iodine crystals. 
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Fig. 2.24 - Iodine crystals with the orthorhombic structure of different thickness present in sample I@DWCNTs_140 

(see text): (a) ADF image and (b) BF image (both acquired at 200 kV) of an iodine crystal consisting of four parallel 

lines; ADF images (acquired at 200 kV) of an iodine crystal consisting of five parallel lines (c) and six parallel lines (d), 

in (c), a double-helix of iodine is indicated by a white arrow in the background.  

 

 
Fig. 2.25 - Crystalline iodine confined in a 1.55 ± 0.05 nm SWCNT as reported in [13]: (a) HR-TEM image (120 kV); 

(b) Schematic model based on the orthorhombic iodine (bulk crystal) encapsulated in a SWCNT with the <010> 

direction parallel to the tube axis and the <001> direction parallel to the electron beam. (c) The corresponding 

simulated image. 

 

Finally, a new configuration for iodine filling confined within CNTs which has not been reported 

in the literature was occasionally observed in I@DWCNTs_140 and I@DWCNTs_827, and even in 

sample NiI2@DWCNTs (Figures 2.26a-d).  
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Fig. 2.26 - ADF images of inner iodine nanotubes (white arrows) found: (a) and (b) in I@DWCNTs_827; (c) in 

NiI2@DWCNTs; (d) in I@DWCNTs_140. 

 

It generally occurred when host CNTs exhibit rather large diameters, and can be described in two 

ways: (i) either as a coating of the host CNT inner surface by iodine, thereby resulting in making an 

inner iodine nanotube whose wall is probably amorphous, somehow resembling the inner PbI2 

nanotube illustrated in Fig.2.8b; (ii) or as a large yet flattened tube whose flattening event has 

created SWCNT-like channels at both edges, subsequently filled by iodine (Figure 2.27a-b).  
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Fig. 2.27 – (a) Model of a large SWCNT once 

flattened, thereby exhibiting edge channels. (b) 

Cross-section and top views of a flattened tube as in 

(a), with the edge channels filled with a foreign 

material. Models provided by C. Ewels (IMN, Nantes). 

 

Such large and flattened tubes have already been reported in the literature [21] for both SWCNTs 

and DWCNTs, and fullerene molecules have been already demonstrated to be able to fill their edge 

channels [22, 23]. Because of the observed irregular shapes (see Fig. 2.26d) which is quite 

consistent with the aspect of ribbon-like objects once folded and bent, and because of the dark 

contrast exhibited by the center of each of the tubes involved, which is barely consistent with the 

existence of an inner iodine tube (which would cause the contrast to look brighter than it is, we 

believe), we presume that the cases imaged in figure 2.26 do correspond to the sketch depicted in 

Figure 2.27b.  

 

2.5.3 Summary regarding the various structural states of encapsulated iodine  

 

In summary, peculiar structures can be obtained when materials are encapsulated within CNTs, such 

as atomic iodine chains either single and straight or twins (or triple) and helical, iodine crystals with 

structure differing from that of bulk iodine, iodine crystals with orthorhombic structure as in bulk, 

and iodine nanotubes which may not exist without the protection of the carbon sheath. Table 2.5 

summarizes the possible configurations of iodine when encapsulated and their conditions of 

occurrence. 

Hence, when filling DWCNTs with iodine, the configuration of iodine may vary dramatically as 

the inner diameter of the host CNT varies. As opposed to filling experiments starting from pure 

iodine, either molten or vapour, it is possible that the amount of iodine available at once is not 

enough for generating the double and triple helical chain configurations, thereby explaining why we 
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rarely observed them in sample NiI2@DWCNTs, as well the transitory Phase III structure 

presumably derived from them. 

 

Table 2.5: Summary of the various morphologies, structure, and occurrence of iodine when encapsulated in CNTs. 

 

However, alternatively, the absence of orthorhombic structure in the NiI2@DWCNTs sample 

could be explained because large inner cavities are necessary for the structure to develop, which 

could not occur since the large tubes were preferentially filled with NiI2.  

On the other hand, it would be of great interest to perform measurements on the physical 

properties of DWCNTs filled with iodine chains, iodine crystals or iodine nanotubes and further 

Filling materials 
and sample name 

 
Molten iodine 

(140°C) 
(I@DWCNTs_140) 

Molten NiI2 

(827°C) 
(NiI2@DWCNTs) 

Iodine vapour 
(827°C) 

(I@DWCNTs_827) 
Comments 

 Structural state 
 

Single chain Abundant Abundant Abundant 

Straight morphology, 
inside smallest tubes (< 
~1nm) or in grooves 
between (outside) tubes 
of any diameter 

Double chain Present No Rare Always helical 

Triple chain Rare Rare Rare Always helical 

Phase III 
structure [13] Present  Rare Present 

For CNTs with inner 
diameters larger than 1 
nm. Presumably 
resulting from the 
electron irradiation 
effect on triple iodine 
chains in TEM 

Orthorhombic Frequent No Present 
For CNTs with inner 

diameters larger than 1.5 
nm. Similar to bulk. 

Amorphous Rare Present 

Present 
Systematic for 
largest tubes (> 

~2nm) 

In tubes with intermediate 
inner diameters (~1.5 to 
~2.5nm). Filling is 
sometimes segmented. 
Presumably resulting from 
the electron irradiation 
effect on Phase III 
structure in TEM 

Iodine inner 
nanotube 

(amorphous) 
Rare Rare Rare In largest tubes only 

(inner diameter > ~2nm) 

Comments ADF STEM 
operated at 200kV 

ADF STEM 
operated at 

80kV 
BF TEM 

operated at 
100kV 

ADF STEM 
operated at 200kV 
BF TEM operated 

at 100kV 
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make a comparison among them, if only these different structures could be prepared separately, or 

located and recognized within the CNTs before studying them individually. 

 

2.6  Filling mechanisms 

 

The influence of the filling materials characteristics will be discussed first, then that of the host 

nanotubes characteristics. 

 

2.6.1 Physical and chemical properties of the filling materials  

 

Physical parameters such as surface tension, viscosity, melting point, boiling point, and vapour 

pressure of the filling materials were gathered from the literature when available. Data on the 

surface tension of these metal iodides are scarcely reported in the literature because the 

experimental measurement of surface tension is rather difficult, specifically at molten state. A 

theoretical model proposed by Aqra [24] is thus employed in our study to calculate the surface 

tension of the inserted metal iodides, as shown in Eq. 2.1: 

γ ൌ ߮ିଵሺ ௦ܸ

ܸ
ሻଶ݇ܶሾ

௦ܧ0.0481
ܴܶ

ሿ 

                where	ܸ	or	 ௦ܸ ൌ
ெ

ఘ
 and φ ൌ √ଷ

ଶ
ሺ√ଶ௏ೞ

ே
ሻଶ/ଷ              (2.1) 

where γ is the surface tension (mJ/m2), ߮ is the area occupied (cm2/atom), M is molar mass, ρ 

is the density, ܸ	and	 ௦ܸ are the molar volumes at a given temperature and at the melting point, N is 

the Avogadro’s number (6.02ൈ 10ଶଷatoms/mol), ݇ is the Boltzmann constant (1.38ൈ 10ିଶଷJ/K), T 

is the absolute temperature (K), R is the universal gas constant (8.31 J/(K∙ mol)) and ܧ௦ is the heat 

of sublimation. The calculated values of surface tension for CdI2, CoI2, FeI2, NiI2 and PbF2 at their 

melting points are presented in ref. [24] and for AgI, KI, LiI, SnI2 and PbCl2, values of surface 

tension at melting point are reported in ref. [25] and [26]. For PbI2, value of ES is reported in the 

literature [27] and its surface tension is calculated using Eq. 2.1.                 

The relationship between viscosity	η	(mN ∙ s/m2) and temperature T (K) for AgI, CdI2, KI, LiI 

and PbCl2 are reported in ref. [28], as described in Eqs. 2.2 to 2.6: 

AgI: η=0.1481exp(22004.02413/RT)                           (2.2) 
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CdI2: η=0.082084exp(29472.58908/RT)                         (2.3) 

KI:  η=0.1023exp(20521.2734/RT)                            (2.4) 

LiI:  η=0.1265exp(17386.23343/RT)                           (2.5) 

PbCl2: 	η=0.05619exp(28292.68134/RT)                           (2.6) 

where R is the universal gas constant.  

 

In Section 2.5, we have observed that attempting to fill DWCNT material with NiI2 has actually 

resulted in filling with NiI2 but also in filling with pure iodine. This indicates that NiI2 certainly 

experienced early decomposition during the filling step before the melting temperature is reached 

[29] thereby releasing gaseous iodine. Therefore, the Gibbs free energies ∆ܩଵ
଴	of the decomposition 

reaction for all the halide materials MXy (X= F, Cl and I) used for the filling attempts into their 

elements M and halogen are reported in Table 2.6. ∆ܩଵ
଴ values were obtained from the software 

HSC Chemistry 6. It should be noted that the filling temperature used for PbF2 was 854°C, at which 

temperature the corresponding ∆ܩଵ
଴ of its decomposition reaction is similar to what it is at 827°C. 

Therefore, only the ∆ܩଵ
଴ value at 827°C is shown in Table 2.6 in order to make a comparison 

among all the filling materials.  

 

Table 2.6: ∆ܩଵ
଴ at 827°C for reaction MXy=M+ 

௬

ଶ
X2 (MXy is the filling material, X= F, Cl and I). 

Filling 
material 

KI PbF2 LiI PbCl2 CdI2 AgI PbI2 SnI2 FeI2 CoI2 NiI2 

∆Gଵ
଴(kJ/mol) 530.5 510.5 465.9 210.6 123.2 101.6 94.4 69.0 57.5 26.9 1.5 

 

It appears clearly that NiI2 exhibit a significantly smaller Gibbs free energy of this reaction 

(~1.5 kJ/mol) compared to the other metal halides (ranging from ~27 to 530 kJ/mol).  

Regarding the vapour pressure, data for various compounds at different temperature can be 

found both in the SGPS database and in Factsage software. Vapour pressure values for all the halide 

materials are reported in Table 2.7 below (see Section 2.7.2) along with all the gathered or 

calculated property values we have obtained. It is worth noting that NiI2 exhibits a significantly 

higher vapour pressure value at the melting temperature compared to all the other metal halides, and 

one may wonder which effect this could have with respect to the filling mechanism. This is in full 
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agreement with the fact that NiI2 exhibits by far the smallest Gibbs free energy over all the filling 

material. This is also consistent with the fact that a slight decomposition of FeI2 occurred during the 

filling process since a few iodine-filled nanotubes were also observed in the sample 

FeI2@DWCNTs, which can also be explained by the small Gibbs free energy (the third smallest 

among all the filling materials, see Table 2.6) for the decomposition reaction of FeI2. On the other 

hand, iodine-filled nanotubes were not observed in sample CoI2@DWCNTs though the Gibbs free 

energy for the decomposition reaction of CoI2 is the second smallest among all the filling materials 

(see Table 2.6). This could be due to the fact that higher free energy was required for the 

equilibrium between CoI2 and its elements (Co, I2) during the filling process than the value 

displayed in Table 2.6 since the actual filling temperature used for CoI2 (see Table 2.1) was much 

lower than 827°C, at which the Gibbs free energy was calculated.  

Redox potentials of the filling materials at melting point were also investigated and we will see 

why in next section. Since the redox potentials vary with temperature, in order to make relevant the 

comparison between all the metal iodides, the redox potential of each corresponding [metal iodide / 

metal] couple was calculated at 827°C, which is the highest temperature used among all the filling 

conditions. From now on, the "redox potential" will always refer to the potential of the couple 

[metal iodide / metal]. The calculation of each couple [metal iodide / metal] is derived from the 

following equations: 

2MI = M + I2  (for monoiodide)  or  MI2 = M + I2  (for diiodide)            (2.7) 

I2 + 2e- = 2I-                                                       (2.8) 

MI + e- = M +I-  (for monoiodide)  or  MI2 + 2e- = M + 2I-
  (for diiodide)   (2.9) 

As seen, equation (2.9) = 
ଵ

ଶ
equation (2.8) + 

ଵ

ଶ
equation (2.7) in the case of monoiodide or equation 

(2.9) = equation (2.8) + equation (2.7) in the case of diiodide. Thus, the Gibbs free energy for 

equation (2.9), ∆ܩଷ
଴	equals to 

ଵ

ଶ
ଵܩ∆)

଴ ൅ ଶܩ∆
଴	) in the case of monoiodide or equals to (∆ܩଵ

଴ ൅ ଶܩ∆
଴	) 

in the case of diiodide. ∆ܩଵ
଴  are reported in Table 2.6 and ∆ܩଶ

଴  is considered equal to 0. 

Meanwhile, the relationship between ∆ܩଷ
଴ and the redox potential of the molten salts (ܧெூ/ெ

଴  or 

ெூమ/ெܧ
଴ ) can be described as ∆ܩଷ

଴= -Fܧெூ/ெ
଴  or ∆ܩଷ

଴= -2Fܧெூమ/ெ
଴ . Therefore, the redox potential of 

molten salt can be derived to be -
∆ீభ

బ

ଶி
, where F is the Faraday constant (96500 C/mol). Taking AgI 
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for example, its corresponding ∆ܩଵ
଴ at 827°C is 101.595 kJ/mol (see Table 2.6), thus the redox 

potential at 827°C is calculated to be (-
ଵ଴ଵ.ହଽହ	௞௃/௠௢௟

ଶൈଽ଺ହ଴଴	஼/௠௢௟
ൌ െ0.526	ܸ) as reported in Table 2.7.  

 

2.6.2 Discussion  

 

First of all, the various metal iodides were ranked according to their filling rates estimated from 

TEM observations (see section 2.5), as reported in Table 2.7. It appears that they dispatch into 4 

main groups whose filling rates do not overlap taking into account the measurement accuracy: NiI2 

enables the highest filling rate (~50%), then AgI, SnI2, PbI2 and FeI2 belong to a group with filling 

rates ranging from ~27 to ~38%, then CdI2 and CoI2 come next with filling rates in the range 

~14-22%, and finally LiI and KI belong to the last group with filling rates lower than 1%. 

Meanwhile, in order to provide the TEM-based filling rate estimate with some support, as it is an 

important parameter on which the discussion will be based on, the weight percent of metal in the 

MIx@DWCNT was investigated by elemental analysis for some hybrid-DWCNT samples, and the 

results are as follows: 13.31 wt% of Ni in NiI2@DWCNTs, 3.69 wt% of Pb in PbI2@DWCNTs, 1.1 

wt% of Fe in FeI2@DWCNTs, 0.97 wt% of Co in CoI2@DWCNTs and 0.33 wt% of K in 

KI@DWCNTs. Then the volume ratio of each metal iodides based on these weight% values was 

calculated in order to compare with what the TEM images actually show, giving a ranking as 

follows:    

KI@DWCNTs < CoI2@DWCNTs < CdI2@DWCNTs < FeI2@DWCNTs < PbI2@DWCNTs < 

NiI2@DWCNTs. 

It can be seen that, though the estimation of filling rates based on the HRTEM data is not 

accurate, the ranking of filling rates achieved by various metal iodides based on this method is valid 

as supported by the elemental analysis results. 

Then, data on surface tension, viscosity, and vapour pressure of the filling materials as discussed 

in section 2.7.1 are also listed in Table 2.7, as well as melting point and boiling point temperatures 

of the filling materials. None of them are able to correlate with the filling-rate-based ranking, which 

is surprising at least for viscosity and surface tension which are presumably important when 

considering capillarity- and wetting-driven events, as CNT filling mechanisms were supposed to be.  
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Table 2.7: Some properties of the filling materials. Iodine-based filling materials are listed according to their filling 

rate as already reported in Table 2.3, and reported again in second left column. The far right column reports the 

ranking number according to the redox potential value. 

Filling 

material 

Estimated 

filling rate 

(%) 

Melting 

point 

(°C) 

Boiling 

point 

(°C) 

Surface 

tensiona 

(mJ/m2) 

Viscositya 

(mN.s/m2) 

Vapour 

pressurea 

(Pa) 

Redox potentialb 

(V) and related 

ranking 

NiI2 51±5 797 n.a. 54 n.a. 26400 -0.002 1 

AgI 38±5 558 1506 171 3.58 0.2 -0.526 6 
SnI2 34±5 320 714 43 n.a. 31.8 -0.358 4 

PbI2 32±5 402 953 50 n.a. 22.7 -0.489 5 

FeI2 27±5 587 827 71 n.a. 320 -0.298 3 

CdI2 22±5 387 742 47 17.7 91.5 -0.638 7 

CoI2 14±5 520 570 53 n.a. 8.8 -0.139 2 

LiI <1 469 1171 94 2.12 0.1 -2.414 8 

KI <1 681 1330 70 1.6 35.4 -2.749 9 

PbCl2 1~5 501 950 138 4.57 34.9  

PbF2 <1 824 1293 125 n.a. 192  

I2 27±5 113.7 184.3 37 n.a. 1094 0.000 
aAll the data are obtained at the melting point of the filling material. 
bFor the couple [metal iodide / metal], when relevant (ܧூమ/ூషis set to 0V as it is used as a reference couple for the 

calculations). 

n.a. = not available 

   

Hence, chemical reactivity was also considered as a possible relevant factor, and redox potential 

of the couple [metal iodide / metal] was chosen as the parameter to account for it. Calculated redox 

potentials of the filling materials as discussed in section 2.7.1 are reported in Table 2.7, and provide 

another ranking whose values are listed in decreasing order in the far right column for easier 

comparison with the filling rate-based ranking. From this comparison, it appears that both rankings 

compare fairly well (yet with a few anomalies):  

 The highest filling rate, achieved for NiI2 (51%), corresponds to the highest redox potential 

value;  

 The large group gathering AgI, SnI2, PbI2, and FeI2 (27-38%) corresponds to ranking from #3 

to 6 for both the filling rate and the redox potential (while the position of AgI in the list 

represents a first anomaly); 

 The small group including CdI2 and CoI2 with low filling rates in the range 14-22% shows 

the second anomaly: while CdI2 is ranked #6 and 7 according to the filling rate and redox 
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potential respectively, CoI2 is ranked #7 according to the filling rate, but is ranked #2 

according to the redox potential; 

 The lowest filling rates (for KI and LiI: less than 1%) correspond to the lowest redox 

potentials. 

This result shows a good correlation between filling rate and redox potential. This correlation can 

relate to the need for the tubes to be opened, as the prerequisite for the nanocapillarity-driven 

filling to occur. Hence, the ability of the filling material in opening the nanotubes is of an utmost 

importance giving that our starting DWCNTs are initially closed. In a sense, considering that 

molten halides are supposed to be ionic liquids, redox potential can be considered as an indicator 

of the reactivity of the halides towards polyaromatic carbon. 

 

The first anomaly regarding the ranking of AgI, which is at the top of its group regarding the 

filling rate (~38%) but at the bottom of it regarding the redox potential (-0.526 V), could be 

explained by considering the surface tension values. Indeed, all the metal iodides investigated 

exhibit surface tension values in the range 43-94 mJ.m-2 except AgI which exhibits a very high 

value of 171 mJ.m-2. It is then reasonable to consider that such a difference significantly favors the 

capillary filling event for AgI with respect to the others: according to Jurin's law (see Section 1.2.5 

in Chapter 1), the height reached by a liquid in a capillary increases with the surface tension of the 

liquid, for a given capillary diameter [2]. 

A second anomaly was pointed out above for CoI2, since it is ranked #7 according to the filling 

rate but ranked #2 according to the redox potential. This could be explained by the high propensity 

of CoI2 to dimerize even before the melting point is reached [30] assuming that the dimerization is 

detrimental to the opening and then the filling event (for example by increasing the viscosity as this 

is the case for polymers when the chain length increases, and also possibly decreasing the 

reactivity). It is worth noting that a similar behaviour was also observed for FeI2 [31] but its ability 

to dimerize is lower compared to CoI2 [32], which is consistent with the observation that the filling 

rate for this compound is not affected.  

Finally, it is also worth noting that in case of filling DWCNTs with NiI2, it is likely that the 

opening of the tubes starts first with gaseous I2 resulting from the decomposition of NiI2 which is 

was evidenced in section 2.5 and explained in section 2.7.2, and then compete with the opening 
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effect due to molten NiI2. Gaseous I2 may indeed react with the tube to open them and then fill them, 

as ascertained from the literature [5,13,33] and the current study (see Table 2.7, confirmed by the 

results shown in section 2.5 on the reference experiments consisting in filling DWCNTs while 

starting from pure iodine as filling material). As a result, the material found to fill the DWCNTs was 

both iodine and NiI2 (in proportions ~35/65) as ascertained by EELS. Therefore, this competition 

has hindered the actual filling rate that could have been achieved with NiI2 only, which could have 

been higher than observed, based on the highest redox potential of this compound within the whole 

metal iodide series.  

In this work, the reactivity of the metal iodides with the DWCNTs resulting in giving access to 

the tube inner cavity was chosen to be represented by the redox potential values (calculated at the 

same temperature for all the compounds). One may wonder why not representing it in a more 

straightforward way by the Gibbs free energy of the reactions involving graphitic carbon and the 

different metal halides, resulting in the formation of carbon tetraiodide CI4 at the corresponding 

melting temperature (4MI + C = 4M + CI4 (for monoiodide) or 2MI2 + C = 2M + CI4 (for diiodide)). 

Alternatively, the formation of metal carbide and iodine (vapour) could be considered. However, 

due to the absence of such carbide phases in all the filled CNT products, we have discarded this 

possibility. The problem is that, once calculated (see Table 2.8), the related ΔG values for this 

reaction are all positive, suggesting that the related reactions are all thermodynamically infeasible. 

However, it is clear from our experiments and previous ones from the literature [5,6,25] that iodine, 

either gaseous or molten, is able to open and then fill DWCNTs (and SWCNTs). The reason for this 

apparent contradiction probably comes from the fact that in available thermodynamics databases, 

data related to sp2-hybridized carbon is represented by genuine graphite, which is far from being 

valid for CNTs, and specifically for DWCNTs and SWCNTs. First, sp² carbon networks in 

DWCNTs and SWCNTs are bent following a nanometre-range radius of curvature, and second, 

according to Euler's rule, carbon nanotubes include 6 pentagons at each tip in order to close the 

nanostructure. For both configurations (i.e., "bent graphene", and pentagons), C-C bonds are 

heavily strained (specifically in pentagons), which is known to significantly enhance their reactivity 

[34], and then is likely to turn the free Gibbs energy of the reaction with metal iodides down to 

negative values.  
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Table 2.8: ∆ܩ for reaction  
ସ

௫
MIx + C =  

ସ

௫
M + CI4  (MIx is the filling material) at the melting point of the filling 

material. 

 

 

 

 

 

 

 

 

 

 

In summary, filling DWCNTs with various iodides was performed and the relationships between 

presumably relevant physical and chemical properties of the iodides and the filling rate were 

investigated. It is found that the filling rate is mostly driven by the redox potential of the [metal 

iodide / metal] couple of the filling material at the molten state, which relates to the reactivity of 

metal iodides towards carbon, thanks to the enhanced reactivity of carbon with respect to graphite 

when involved in DWCNTs (and SWCNTs). Therefore, the ranking based on the filling rate and 

that based on the redox potential are fairly well related. Few anomalies in the correlation exist, 

though, which can be explained by considering other parameters such as surface tension, vapour 

pressure, or ability to dimerize.  

 

2.6.3 Influence of the properties of host CNTs on the filling rate  

 

Thanks to our selection of host tubes, the parameters that can be discussed are: 

 the number of walls (from 1 to more than 10) 

 the inner diameter (from 0.5 to 70 nm) 

 the chemical nature of the inner tube wall (carbon or BN) 

 The surface energetics of the inner surface of host tubes 

Regarding the latter parameter, yet no values are provided since no attempt of measuring it was 

Iodide  
name 

ΔG 
kJ/mol 

NiI2 361 

AgI 545 

SnI2 537 

PbI2 580 

FeI2 467 

CdI2 639 

CoI2 418 

KI 1434 

LiI 1314 



102 
 

made, a large variation is expected by comparing CNTs with concentric texture (whose inner 

surface energetics is driven by that of graphene surface, in the range of 60 mJ/m2 [35], even if the 

curvature may induce some modification), CNTs with herringbone texture (whose inner surface 

energetics is driven by that of graphene edges), and that of BNNT (whose inner surface energetics is 

driven by that of hexagonal boron nitride layer surface, which is depleted in  electrons with respect 

to graphene surface, providing a surface energy of ~47 mJ/m2 [36]). 

By comparing the estimated filling rates with PbI2 for various types of host CNTs as shown in 

Table 2.4 (reminded below), the following ranking is obtained:  

PbI2@SWCNTs = PbI2@DWCNTs > PbI2@FWCNTs > PbI2@h-MWCNTs > PbI2@c-MWCNTs-a. 

 

Reminder of Table 2.4 

sample PbI2@ 

SWCNTs 

PbI2@ 

DWCNTs 

PbI2@ 

FWCNTs 

PbI2@ 

c-MWNTs-a 

PbI2@ 

h-MWCNTs 

PbI2@ 

BNNTs 

NiI2@ 

BNNTs 

Estimated filling 

rate (%) 
32±5 32±5 25±5 <1 20±5 <1 0 

Most frequent nb 

of walls 
1 2 2-6 > 10 

Not 

appropriate 
2-4 2-4 

Most frequent 

inner diameters 
1.35 nm 1-2 nm 1.5-3.5 nm 2-10 nm 50-70 nm 1.2-3 nm 1.2-3 nm 

 

Thanks to the discussion made in section 2.6.2, it is reasonable to explain the higher filling rates 

exhibited by PbI2@SWCNTs, PbI2@DWCNTs and PbI2@FWCNTs compared to the c-MWCNTs-a 

by the limited number of walls, hence making the opening of the tubes by the molten halide 

possible (easier), whereas c-MWCNTs-a obviously remained closed.  

On the other hand, as most h-MWCNTs were naturally opened at one end, the reactivity of the 

molten halide towards the thick carbon wall was not an issue, and significant filling could occur. 

More in the detail, we could discuss regarding the filling rate achieved. Indeed, h-MWCNTs were 

opened, hence filling could occur. Why filling rates higher than 20% were then not achieved could 

be questioned. This could relate to the Jurin's law (1.4) ݄ ൌ ଶఊ௖௢௦ఏ

௥௚ఘ
 introduced in chapter 1 which 

describes that the capillary rise of a liquid in a hollow cylinder is inversely proportional to the 

radius of the capillary r for a given liquid. Thereby, it is deduced that large-inner-diameter CNTs 

should fill over a shorter length range than small-inner-diameter CNTs, meaning lower filling 
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efficiency. However, since h could not be calculated due to the lack of needed data, there is a 

possibility that the filling rate should have been lower than 20% with respect to the specific inner 

diameter values of h-MWCNTs. In such a case, the relatively high filling rate could be due to the 

surface energetics, which is higher for h-MWCNTs than for DWCNTs and FWCNTs since the inner 

surface of the former is mostly made of graphene edges (with respect to graphene faces for 

FWCNTs and DWCNTs), thereby leading to different ߛௌ௏  and ߛௌ௅  for the nanowetting (see 

chapter 1). This uncertainty regarding which parameter prevails on the filling rate among the 

surface energetics or the inner tube diameter could have been ruled out by considering 

c-MWCNTs-a, provided the latter would have been opened. However, naturally opened large 

c-MWCNTs are not easy to obtain, and subjecting large c-MWCNTs to some chemical procedure 

(e.g., HNO3 treatment) to open them comes along with modifications (e.g., the occurrence of 

amorphous carbon resulting from the oxidation that may clog the opening created, or the 

functionalization of the opening mouth that might prevent the filling material from entering the 

cavity) which are likely to make the experiments barely comparable. 

A similar uncertainty is stated for the filling mechanisms of BNNTs. Indeed, despite their 

limited number of walls, BNNTs could not be filled either with NiI2 or PbI2 (see section 2.5). This 

may relate to what was discussed in section 2.7.2: The fact that PbI2 did not fill BNNTs might be 

due to the poor reactivity of PbI2 with boron nitride hence leaving BNNTs unopened, whereas the 

fact that the BNNT material was heavily destroyed when replacing PbI2 by NiI2 could be due to the 

high reactivity of BN with the iodine species released from NiI2 decomposition, possibly generating 

boron triiodide. Alternatively, should the reactivity of PbI2 towards boron nitride be enough for 

opening the tube ends, as could be suggested from Figure 2.12c, the reason why the filling rate of 

PbI2@BNNTs was still almost nil may also be attributed to the low surface energy of BN relatively 

to graphene [9].  

 

2.7 Conclusions  

 

In this chapter, various metal halides (metals, alkali metals and transition metals) and iodine have 

been successfully introduced into DWCNTs mostly via the molten phase method or occasionally by 

the gas phase method (in the case of iodine). Peculiar structures were observed for the confined NiI2 
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and iodine with respect to the bulk filling materials. Especially in the case of the latter, atomic 

chains with different configurations depending on the size of the inner cavity of the host nanotube 

were clearly evidenced by ADF images. Furthermore, the influence of various characteristics of the 

host CNTs and of possibly relevant chemical and physical properties of the filling materials on the 

filling rate was investigated. It was found that: i) for various types of CNTs filled with PbI2, the 

CNT with smaller inner diameter was filled more efficiently; ii) for DWCNTs filled with various 

halides, the filling rates of the hybrid DWCNTs is mainly related to the reactivity of the halides 

towards carbon which can be represented by the Gibbs free energies of the decomposition reactions 

of halides. Within the metal iodides series, the reactivity of the filling material towards carbon was 

further indicated by the redox potential (E MIx/M) of the filling material and a relationship between 

the redox potential and the filling rate was demonstrated. Meanwhile, other parameters such as 

surface tension, viscosity, the possible formation of dimers, or the early release of iodine - among 

which some were presumably important for nanowetting phenomena - may also play an additional 

role in the filling process to explain subsidiary effects. Further work on similar investigations 

involving other halides, other compounds, as well as other host nanotubes with characteristics 

suitable for allowing more accurate comparisons should now be carried out in order to ascertain the 

role of some parameters such as the surface energy of the host tube inner surface, but the fact that 

not all the data (e.g., viscosity at melting temperature) are available in the literature and that 

thermodynamics databases only consider carbon in the regular graphitic form slows down 

significantly the progress in the field.   
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Chapter 3  In situ chemistry in X@DWCNTs 

 

 

3.1  Introduction 

 

One of the limitations of the molten phase method is that it is hard to directly insert material with 

high melting point (>1000°C), e.g. oxides, fluorides, sulfides, metals, etc. into DWCNTs, while the 

synthesis of these materials with one-dimensional nanostructures is of great interest due to their 

peculiar properties. For instance, nanosized FeF3 provides the possibility for achieving fast 

reversible conversion reaction when used as cathode material for lithium ion batteries [1]. 

Semiconducting PbS nanocrystals with narrow band gap energy are widely used in IR detector [2], 

photovoltaic devices [3], etc. and monoatomic Co chains exhibit larger local orbital and spin 

magnetic moments compared to bulk Co and Co nanoclusters due to the reduced atomic 

coordination [4]. To overcome the high-temperature issue, we also took advantage of the inner 

cavity of DWCNTs which not only templates the growth but also acts as a nanoreactor in order to 

perform chemical reactions. The insertion of materials with high melting point is typically achieved 

by first filling CNTs with a precursor, and then transforming the precursor into the desired 1D 

nanostructure by post-treatments. In this chapter, in situ sulfurization of PbI2@DWCNTs, in situ 

reduction of FeI2@DWCNTs and NiI2@DWCNTs aiming to obtain encapsulated metal nanocrystals, 

and in situ fluorination of FeI2@DWCNTs aiming to obtain encapsulated iron fluoride crystals were 

performed. Various characterizations of these transformed hybrid DWCNTs including HRTEM, 

EELS, X-EDS, XRD, XPS and Raman Spectroscopy were carried out in order to investigate if the 

transformations were successful, and the results are reported in this chapter.  

 

3.2  In situ sulfurization of PbI2@DWCNTs 

 

3.2.1 Methods     

 

According to the reaction 3.1 described below, reaction of PbI2 with sulphur is used in order to 

synthesize PbS nanocrystals: 
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         PbI2 + S → PbS + I2                                       (3.1) 

To explore a suitable method for preparing PbS@DWCNTs, sulfurization tests were performed 

under three different experimental conditions: 

1. Two separate alumina boats containing successively 1) sulphur powder and 2) the as-prepared 

PbI2@DWCNTs were placed into the middle of a horizontal furnace and heated at 400°C for 

10h in Ar atmosphere. Then the furnace was naturally cooled down to room temperature under 

the same Ar atmosphere. The synthesized sample is denoted as sample 1. 

2. The sulphur powder and as-prepared PbI2@DWCNTs were mixed together and transferred into 

a quartz ampoule. Then the ampoule was evacuated and sealed following the same procedure 

used for preparing X@DWCNTs as described in chapter 2. Afterwards, the ampoule was placed 

in a horizontal furnace and heated at 400°C for 10h. Finally, the furnace was naturally cooled 

down to room temperature. The synthesized sample is denoted as sample 2. 

3. The sulphur powder and as-prepared PbI2@DWCNTs were mixed together and transferred into 

a quartz ampoule. Then the ampoule was evacuated and sealed following the same procedure 

used for sample 2. Afterwards, the ampoule was placed in a furnace with a 10° tilt and heated at 

only 250°C for 72h. Finally, the furnace was naturally cooled down to room temperature. 

To remove the unreacted sulphur after the sulfurization, materials were washed in toluene and 

heated at 60°C for 10 min under stirring. Then the materials were filtered and dried in an oven at 

80°C for 24h. The obtained three sulphurized samples starting from PbI2@DWCNTs synthesized 

under condition 1, 2 and 3 were denoted as PbS@DWCNTs_1, PbS@DWCNTs_2 and 

PbS@DWCNTs_3, respectively. 

  The samples were characterized by the same TEM and EELS facilities as described in Chapter 2. 

Additionally, a Philips CM20FEG microscope operated at 200 kV was used for X-EDS analysis. 

XPS spectra of samples were collected on a SpecsLab PHOIBOS 150 spectrometer at the BESSY 

(German synchroton radiation facility) using monochromatized Al Kα-radiation (hν = 1486.6 eV) 

and a ‘‘VG Escalab HP” spectrometer using monochromatized Al Kα-radiation (hν = 1486.6 eV). 

The former has better energy resolution than the latter. 
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3.2.2 Results and Discussion 

 

Fig. 3.1 shows the HRTEM images of PbS@DWCNTs_1, PbS@DWCNTs_2 and 

PbS@DWCNTs_3, respectively. It is found that nearly all the nanotubes observed under the 

microscope are empty in PbS@DWCNTs_1, while nanotubes encapsulating nanocrystals are 

observed in PbS@DWCNTs_2 and PbS@DWCNTs_3. The absence of encapsulation in 

PbS@DWCNTs_1 should be due to the fact that the previously encapsulated PbI2 nanocrystals 

evaporated under the Ar flow at 400°C for 10h (due to the nanosize, the melting point of PbI2 

nanocrystals may be decreased). Compared to PbS@DWCNTs_3, less filled-tubes are observed in 

PbS@DWCNTs_2 based on the visual inspection of HRTEM images.  
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Fig. 3.1 - HRTEM images of (a) and (b) PbS@DWCNTs_1, (c) and (d) PbS@DWCNTs_2, (e) and (f) PbS@DWCNTs_3. 

 

PbS@DWCNTs_3 being the most promising sample, it was further investigated by EELS 

analysis. The carbon (C) K edge is located around 284 eV, the sulphur (S) L edge is located around 

165 eV, the iodine (I) M edge is located around 619 eV and the lead (Pb) M edge is located around 

2484 eV. The EELS spectra (Fig. 3.2b and d) collected from CNT bundles encapsulating crystals 

(Fig. 3.2a and c) in PbS@DWCNTs_3 identify the presence of both sulphur and iodine in the 

encapsulated nanocrystals. The presence of carbon originates from the carbon nanotubes. However, 

the presence of Pb is hard to be detected by EELS because of its high ionization energy. Therefore, 

X-EDS analysis was used to investigate the elemental composition of the filled CNTs. 
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Fig. 3.2 - (a) and (c) High angle ADF (HAADF) images (FEI Tecnai-F20 equipped with a HAADF detector) of CNT 

bundles accommodating nanocrystals in PbS@DWCNTs_3; (b) and (d) EEL spectra obtained by summing the spectra 

collected along the red line shown in (a) and (c), respectively.  

 

Typical STEM images and X-EDS spectra of PbS@DWCNTs_2 and PbS@DWCNTs_3 are 

shown in Fig. 3.3 and Fig. 3.4, respectively.  

  

  

Fig. 3.3 - (a) and (c) STEM images of PbS@DWCNTs_2; (b) and (d) X-EDS spectra collected from the DWCNT 

bundles boxed in (a) and (c). 
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Fig. 3.4 - (a) and (c) STEM images of PbS@DWCNTs_3; (b) and (d) X-EDS spectra collected from the DWCNT 

bundles boxed in (a) and (c). 

 

It should be noted that the Pb M peak (2.342 keV) is quite close to the S Kߙ peak (2.307 keV), 

so Pb is identified by its Lߙ peak (10.55 keV). As seen, strong S Kߙ peak, weak I Lߙ peak and 

weak Pb Lߙ peak are present in the spectra collected from CNT bundles in the two samples. The 

presence of other peaks in the spectra including C Kߙ peak, O Kߙ peak, Si Kߙ	peak, Fe Kߙ	peak, 

Co Kߙ	peak and three peaks of Cu originate from the carbon nanotubes themselves, the X-EDS 

detector, the specimen holder and the copper grid, respectively. Around 10 spectra were collected 

from different CNT bundles for each sample and the average atomic ratio among elements C, S, I 

and Pb was 97.0: 2.9: 0.2: <0.1 (PbS@DWCNTs_2) and 98.2: 1.7: 0.2: <0.1 (PbS@DWCNTs_3), 

respectively. Combining the EELS and X-EDS analysis, it is deduced that the encapsulated crystals 

in the sulphurized samples are likely to still be PbI2, but the CNTs in the sulphurized samples were 

slightly doped with sulphur – although this could not be evidenced by HRTEM images due to the 
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low contrast difference between sulphur and carbon atoms.  

Furthermore, the sample PbS@DWCNTs_3 was investigated by X-ray Photoelectron 

Spectroscopy (XPS). The raw DWCNTs and starting PbI2@DWCNTs were also investigated by 

XPS for comparison (Fig.3.5).  

 

 
    

  

 
 
 

 

 

 

 

 

Fig. 3.5 - XPS overall spectra of (a) raw 

DWCNTs, (b) PbI2@DWCNTs and (c) 

PbS@DWCNTs_3; (d) XPS S 2p spectra of 

PbS@DWCNTs_3; (e) XPS S 2p spectra of bulk 

sulphur measured in [5]. 
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Compared with the overall spectrum of raw DWCNTs (Fig. 3.5a), signals of lead and iodine are 

present in the spectrum of PbI2@DWCNT (Fig. 3.5b) confirming the encapsulation of PbI2 and 

signals of sulphur, lead and iodine are present in the spectrum of PbS@DWCNT_3 (Fig. 3.5c), 

which is in agreement with the X-EDS results. The signal of oxygen is attributed to air or possibly 

SO3 adsorbed by CNTs. In addition, the atomic concentration of sulphur in sample 

PbS@DWCNTs_3 is much higher than that of lead and iodine, indicating again that the CNTs were 

slightly doped with sulphur due to the sulfurization step, while the synthesis of PbS nanocrystals 

was not successful. The S 2p spectrum of PbS@DWCNTs_3 is shown in Fig. 3.5d and it can be 

seen that the binding energies of the S 2p core-level are split into two components (S 2p1/2 and S 

2p3/2) arising from spin-orbit coupling. The S 2p spectrum of bulk sulphur (ߙ-S8; the most stable, 

ring-shaped sulphur allotrope) as reported in [5] is shown in the inset of Fig. 3.5d for comparison. 

The S 2p core-level binding energies for PbS@DWCNTs_3 are 163.9 eV (S 2p3/2) and 165 eV (S 

2p1/2) respectively, which are lower than those of the bulk sulphur (165 eV, S 2p3/2; 166.5 eV, S 2p1/2) 

[5], suggesting that the sulphur atoms are bonded to CNTs rather than existing as sulphur molecules. 

It should also be noted that the S 2p core-level binding energies of PbS nanocrystals were reported 

to be 160.3 eV (S 2p3/2) and 161.5 eV (S 2p1/2), respectively. Therefore, we can assess that 

encapsulated PbS crystals are not present in our samples. The failure in obtaining PbS crystals is 

attributed to the slow diffusion of sulphur and slow kinetics of reaction between lead iodide and 

sulphur within the protection of carbon sheath (a control experiment performed with bulk PbI2 and S 

in experimental conditions (1) was successful to prepare PbS). The XPS C 1s core-level spectra of 

raw DWCNTs, PbI2@DWCNTs and PbS@DWCNTs_3 are compared in Fig. 3.6 while a shift of 

binding energy is not observed, possibly because the low atomic percent of sulphur in 

PbS@DWCNTs_3 is not able to modify the electronic property of DWCNTs.  

 

 
 
 
 
 
 
 
Fig. 3.6 – XPS C 1s spectra of raw DWCNTs 

(red), PbI2@DWCNTs (black) and 

PbS@DWCNTs_3 (blue). 
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  To conclude, it seems that the in situ transformation of PbI2 into PbS was not successful in the 

different experimental conditions investigated here. Other experiments initially planned (use of H2S 

instead of S) could unfortunately not be performed to investigate further this question. 

 

3.3  In situ H2-reduction 

 

3.3.1 Methods 

 

According to reactions 3.2 and 3.3 described below, hydrogen as a common reducing agent is used 

to reduce the encapsulated FeI2/NiI2 into Fe/Ni: 

         FeI2@DWCNTs + H2 → Fe@DWCNTs + 2HI                            (3.2) 

         NiI2@DWCNTs + H2 → Ni@DWCNTs + 2HI                                      (3.3) 

To perform the reduction, an alumina boat containing the as-prepared FeI2@DWCNTs or 

NiI2@DWCNTs was placed at the middle of a horizontal furnace which was under H2 atmosphere 

all along the heating program (flow rate: 5L/h). To explore the suitable experimental condition for 

reduction of the metal iodide to form metal nanocrystals, the furnace was heated at different 

temperatures for different durations. For the reduction of FeI2 @DWCNTs, the sample was heated at 

400°C for 7 or 24 hours respectively, or at 500°C for 24 hours. The obtained reduced samples were 

denoted as Fe@DWCNTs_400_7, Fe@DWCNTs_400_24, and Fe@DWCNTs_500_24, 

respectively. For reduction of NiI2@DWCNTs, the sample was heated at 300°C for 8 hours, at 

400°C for 7 hours or 24 hours respectively, at 500°C for 7 hours or 24 hours respectively. The 

obtained reduced samples were denoted as Ni@DWCNTs_300, Ni@DWCNTs_400_7, 

Ni@DWCNTs_400_24, Ni@DWCNTs_500_7, and Ni@DWCNTs_500_24, respectively. 

  In addition, the electrochemical reduction of FeI2@DWCNTs was also investigated. Briefly, the 

powder of FeI2@DWCNTs was pressed onto a Pt substrate, which served as the working electrode. 

Another Pt substrate was used as counter electrode. A Pt wire was used as quasi-reference electrode. 

1M KCl solution was used as the electrolyte. A potential of -1.5 V vs the reference electrode 

supplied by a VMP3 potentiostat (Biologic, USA) was imposed on the working electrode for 30 min. 

Finally, the sample was peeled off the substrate and filtered with water to remove the residual KCl 
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and dried at 80 °C for 24h. The obtained reduced sample was denoted as Fe@DWCNTs_EC. 

Characterisations were carried-out using the same TEM and EELS facilities described in Chapter 2.  

 

3.3.2 Results and Discussion 

 

3.3.2.1 In situ reduction of FeI2@DWCNTs 

 

Some examples of ADF images and a related EEL spectrum of starting FeI2@DWCNTs are 

presented in Fig. 3.7 for comparison with the reduced materials which will follow. 

 

 
 
 

Fig. 3.7 - (a) and (b) ADF images of encapsulated FeI2 

nanocrystals in starting FeI2@DWCNTs; (c) EEL spectrum 

collected from the FeI2 nanocrystal in (a) (indicated by the red 

line in the ADF image). 

 

 

Fig. 3.8 illustrates the HRTEM image, HAADF image and EEL spectrum of 

Fe@DWCNTs_400_7. A small cluster encapsulated within a MWCNT which is boxed in Fig. 3.8a 
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was identified to be pure Fe by EELS (Fig. 3.8c). Typically, the oxygen (O) K edge is located 

around 532 eV, the iodine (I) M45 edge is located around 619 eV, the iron (Fe) L23 edge is located 

around 708 eV. In contrast with the nanocrystals on the left (red arrow in Fig. 3.8a) which was 

identified as FeI2 by EELS analysis, the Fe cluster appears amorphous, which may be because the 

removal of iodine atoms by H2 leads to the collapse of the crystalline FeI2, and then the 

recrystallization of the remaining iron atoms did not occur. However, most of the encapsulations in 

Fe@DWCNTs_400_7 still remain as FeI2, as verified by EELS analysis. One point to be mentioned 

is that for all reduced samples obtained in our work, more than 20 filled-tubes were investigated by 

EELS analysis in order to identify if the reduction was successful, which can be considered as a 

coarse statistical analysis.  

 

 

  
Fig. 3.8 - (a) HRTEM image of an encapsulated Fe cluster in Fe@DWCNTs_400_7; (b) HAADF image of the Fe 

cluster; (c) EEL spectrum collected from the Fe cluster. 
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In the case of Fe@DWCNTs_400_24, Fe nanocrystals encapsulated within DWCNTs are 

observed and confirmed by EEL spectra, as demonstrated in Fig. 3.9. The obtained Fe nanocrystals 

are not as continuous as the pristine FeI2 nanocrystals, with a length not exceeding 10 nm. The 

reason for the occurrence of such short Fe nanocrystals is that the diffusion of H2 into the cavity of 

CNTs and the kinetics of the reaction between FeI2 and H2 are slowed down due to the presence of 

the carbon sheath (i.e., it occurs only through the CNT tip, which is presumably opened by the 

contact with the metal iodide, presumably thanks to the higher reactivity of the CNT tip with 

respect to the CNT wall – see Chapter 2), hence only the tip of the encapsulated crystal facing the 

opening of the CNT tip is subjected to H2, and then H2 can only diffuse through the solid crystal and 

in-between the crystal/CNT wall interspace. This causes only a segment in a continuous FeI2 

nanowire to be reduced by H2 even after a 24-h reaction.  

  

    
Fig. 3.9 - (a) and (d) are HRTEM images of Fe nanocrystals encapsulated within DWCNTs in Fe@DWCNTs_400_24, 

in (d) the crystals encapsulated within the left tube are identified as FeI2 by EELS; (b) and (e) are HAADF images of Fe 

nanocrystals showed in (a) and (d); (c) and (f) are EEL spectra collected from the Fe nanocrystals (indicated by the red 

line in HAADF images). 
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  Through the coarse statistical analysis, it is found that more Fe nanocrystals are present in 

Fe@DWCNTs_400_24 compared to Fe@DWCNTs_400_7, owing to the longer reduction time 

while abundant FeI2 nanocrystals still exist in the sample. In the case of Fe@DWCNTs_500_24, Fe 

nanocrystals encapsulated within DWCNTs are also observed (see Fig. 3.10), exhibiting similar 

structure as the Fe crystals present in Fe@DWCNTs_400_24.  

 

  

    
Fig. 3.10 - (a) and (d) are HRTEM images of Fe nanocrystals encapsulated within DWCNTs in Fe@DWCNTs_500_24, 

in (d) the crystals on the right-hand side are identified as FeI2 by EELS; (b) and (e) are HAADF images of Fe 

nanocrystals showed in (a) and (d); (c) and (f) are EEL spectra collected from the Fe nanocrystals (indicated by the red 

line in HAADF images). 

 

In addition, the amount of Fe nanocrystals in Fe@DWCNTs_500_24 increased only slightly with 

respect to Fe@DWCNTs_400_24 according to the EELS analysis, which can also be explained by 

the reason that confinement by DWCNTs slows down the interaction kinetic between FeI2 and H2. 

To verify this, a control experiment of reduction of bulk FeI2 in the same conditions used for 
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Fe@DWCNTs_500_24 was performed, and the obtained product was found to be Fe(0) by XRD 

analysis. It is worth noting that no Fe nanoparticles were found outside the CNTs in the reduced 

Fe@DWCNTs materials. Only few large Fe oxide particles were found, which are believed to 

originate from the oxidation in air of the residual (non-encapsulated) FeI2 which may have survived 

in spite of the washing step. 

 

  The idea of reducing FeI2@DWCNTs electrochemically was inspired by the work of Holloway et 

al. [6]. In their study, encapsulated CuI within SWCNTs was found to undergo both reduction and 

oxidation in NaClO4 solution when a potential window from -1.5V to 1.5V vs SCE (Saturated 

Calomel reference Electrode) was applied to the working electrode containing CuI@SWCNTs. 

Such chemical transformation of CuI was attributed to the electron transfer occurring between the 

SWCNTs which are electrochemically opened at the ends by the applied potential and the confined 

CuI. It should be noted that the electrochemical opening of the SWCNTs can only occur when the 

applied potential is beyond the window from -1.2V to 1.2V vs the SCE1. In our work, a constant 

voltage of -1.5V vs our reference electrode2 was used aiming to open the DWCNTs firstly then to 

induce the electron transfer between the DWCNTs and confined FeI2 given that the standard redox 

potential of Fe2+/Fe is -0.244V vs SCE. However, iron oxides instead of iron were obtained in the 

electrochemically reduced sample, as shown in Fig. 3.5. Amorphous encapsulations within the 

cavity of nanotubes are observed in ADF image of Fe@DWCNTs_EC and the EEL spectrum 

collected from the amorphous encapsulations identify the presence of Fe and O. The reason for the 

presence of encapsulated Fe oxides could be that iron produced from the reduction of encapsulated 

FeI2 is oxidized by the oxygen dissolved in the electrolyte which originates from the breakdown of 

water. The metallic iron formed may also have oxidized later in air, prior to EELS analysis. 

To obtain Fe nanocrystals, post-reduction and annealing treatment are required. A drawback of 

this experiment is that the use of Pt quasi-reference electrode makes the calculation of potential 

                                                              
1. "Intuitively, the application of a sufficiently oxidizing potential to the SWCNTs is thought to induce the opening of 
the fullerene-like caps at the tube ends by removing electrons from the bonding HOMO. Perhaps less immediately 
obvious is the opening of the tubes by the application of a sufficiently reducing potential, which may involve the 
addition of electrons into the antibonding LUMO again resulting in the opening of the endcaps." (From reference [6]). 

2. The disadvantage of the utilization of a Pt wire as quasi-reference electrode is that we cannot calculate the potential 
unless a reference redox system is used in situ, or measuring the potential after the experiment by using a reference 
redox system or a conventional reference electrode. 
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difficult. Therefore, this experiment is just a preliminary test for confirming the feasibility of 

electrochemical reduction of FeI2@DWCNTs. To understand the mechanism involved in the 

electrochemical reduction process, further work is required using a proper 3-electrode 

electrochemical setup. 

 

 

Fig. 3.11 - (a) ADF image of Fe@DWCNTs_EC showing 

amorphous Fe oxide encapsulated within nanotubes; (b) 

EEL spectrum collected from the Fe oxide (indicated by 

the red line in ADF images). 

 

3.3.2.2 In situ reduction of NiI2@DWCNTs 

Fig. 3.12 displays TEM images, HAADF images and EEL spectra of Ni@DWCNTs_300, 

Ni@DWCNTs_400_7 and Ni@DWCNTs_500_7, respectively.  
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Fig. 3.12 - (a) HRTEM image of Ni@DWCNTs_300_7 

showing the absence of Ni particles; (b) HRTEM image of 

Ni@DWCNTs_400_7 showing the presence of Ni particles 

associated with a DWCNT bundle; (c) HAADF image of 

Ni@DWCNTs_400_7 showing DWCNT bundles coated 

with Ni particles; (d) EEL spectrum collected from Ni 

particles indicated by the red line in (c); (e) HRTEM 

image of Ni@DWCNTs_500_7 showing the presence of a 

Ni particle associated with a DWCNT bundle; (f) ADF 

image of a Ni particle present in Ni@DWCNTs_500_7; 

(g) EEL spectrum collected from Ni particles indicated by 

the red line in (c). 

   

It can be seen that particles attached to the surface of CNTs are present in Ni@DWCNTs_400_7 

and Ni@DWCNTs_500_7, while they are absent in pristine NiI2@DWCNTs and 

Ni@DWCNTs_300. These particles are identified as Ni particles by EEL spectra. Typically, the 

nickel (Ni) L23 edge is located around 855 eV. This can be explained if we assume that a minimum 

temperature is required to make possible the reduction of NiI2 inside DWCNTs. However, we think 

that another mechanism is also possible. It should be reminded that the spontaneous decomposition 

of NiI2 was observed during the filling step (see Chapter 2). Hence, it is possible that the 

decomposition of NiI2 which was able to form encapsulated nanocrystals from the molten phase at 

827°C or lower occurred at 400°C because of the nanosize of the crystals which makes their 
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thermal stability even lower with respect to bulk NiI2 whereas decomposition did not occur at 

300°C. Once the encapsulated NiI2 is decomposed into Ni and I2, there is a chance that Ni will be 

pushed out from the nanotubes by the iodine gas, leading to the formation of Ni particles coating the 

surface of nanotubes. Moreover, the decomposition of encapsulated NiI2 in Ni@DWCNTs_400_7 

material is also supposed to induce the formation of Ni crystals confined within nanotubes. In order 

to confirm our hypothesis of a mechanism based on the decomposition of encapsulated NiI2, the 

as-prepared NiI2@DWCNTs was heated at 500°C under dynamic vacuum (non-reducing 

atmosphere) for two hours, and the obtained product was investigated by TEM. It can be seen from 

Fig. 3.13 that both particles and nanocrystals of pure Ni (i.e., O was not detected in EELS) which 

are identified by EEL spectra are present in the sample. 

 

  

  
Fig. 3.13 - HRTEM images of (a) Ni particle and (c) Ni nanocrystals (arrowed region) present in the sample obtained 

by decomposing NiI2@DWCNTs at 500°C under dynamic vacuum for two hours; (b) and (d) are corresponding EEL 

spectra collected from Ni particle (a) and Ni nanocrystals (c).  
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  Some tubes are segmentally filled in Ni@DWCNTs_500_7 while showing peculiar contrast 

variations as demonstrated by ADF images such as Figs. 3.14a-b. The elemental composition of the 

segments along the axis of the nanocrystals following the axis of the nanotube was investigated by 

EELS analysis. Four typical EEL spectra collected from different segments encapsulated in the 

same tube as shown in Fig. 3.14b are displayed as Fig. 3.14c-f. It can be seen that the elemental 

composition of the encapsulated segments varies along the axis direction. The encapsulation of 

iodine in position 1 (Fig. 3.14c) may result from the decomposition of previously existing NiI2 

nanocrystals, in which case resulting Ni was pushed out from the tube while iodine has remained 

within the cavity of the tube. Segment in position 2 (Fig. 3.14d) still corresponds to NiI2 having not 

been subjected to reduction yet. Since the position 3 is void, neither Ni edge nor I edge is present in 

the spectrum (Fig. 3.14e). When it comes to position 4 (Fig. 3.14f), the segment is supposed to be 

an intermediate (NiIx, x<2) between NiI2 and Ni since the I M45/Ni L23 intensity ratio is much 

lower than for genuine NiI2. Such an intermediate may originate from the uncomplete reduction of 

NiI2 by H2 or decomposition of NiI2. Thus, the transition from NiI2 to I2 or to NiIx (x<2) within the 

same tube indicates the anisotropic reactivity of encapsulated NiI2 along the axis direction of 

nanotubes. 

 

 
Fig. 3.14 - (a) and (b) ADF images of encapsulated crystals showing contrast variations in Ni@DWCNTs_500_7; (c) to 

(f) are the corresponding EEL spectra collected from positions 1 to 4 indicated by arrows in (b), respectively. 

Meanwhile, the absence of any signal in spectrum (e) demonstrates the spatial resolution of the electron probe.  
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  Apart from the Ni particles outside bundles, Ni crystals are also observed in 

Ni@DWCNTs_400_7 and Ni@DWCNTs_500_7 while they are not in Ni@DWCNTs_300_7. Such 

crystals exhibit significant contrast difference compared to the confined NiI2 nanocrystals, as shown 

in TEM images (Figs. 3.15a and d).  
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Fig. 3.15 - (a) and (d) are HRTEM images of Ni/NiI2 

nanocrystals encapsulated within DWCNTs in 

Ni@DWCNTs_400_7 and Ni@DWCNTs_500_7, 

respectively; (b) HAADF image of Ni nanocrystals present 

in Ni@DWCNTs_400_7; (e) ADF image displaying the 

crystal structure of Ni crystals present in 

Ni@DWCNTs_500_7; (c) and (f) are EEL spectra 

collected from the Ni nanocrystals shown in (b) and (e) 

respectively; (g) Projected atomistic model derived from 

the Ni crystal imaged in (e) based on the structure of bulk 

Ni. However, in order to accommodate the structure, the 

distances between the Ni atom columns in the projection 

have to be stretched by 25-29%. 

 

Typical HAADF image or ADF image and EEL spectra of the encapsulated Ni nanocrystals are 

illustrated by Figs. 3.15b and 3.15e, and Figs. 3.9c and 3.9f, respectively. According to the coarse 

statistical analysis, more Ni nanocrystals are present in Ni@DWCNTs_500_7 than in 

Ni@DWCNTs_400_7, which should be ascribed to both the higher chemical reactivity of H2 

towards NiI2 and lower thermal stability of NiI2 at higher temperature. It is worth noting that the 

projected structure of the encapsulated Ni crystal imaged in Fig.3.15e was tentatively modelled 

based on the regular structure of bulk Ni crystal. Quite interestingly, the projection fits well the 

experimental image provided the distances between the Ni atom columns are stretched by 25-29%. 

This a huge strain, and it is likely that the actual structure is actually an unprecedented one, yet to 

determine. 

When the reduction time is increased to 24 h, the amount of both Ni particles and Ni 

nanocrystals in the reduced samples increased as well, which is indicated by the EELS analysis. 
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This suggests that increasing the reduction time is beneficial to improve the yield of Ni nanocrystals. 

In addition, compared to Ni@DWCNTs_400_24, more Ni crystals are present in 

Ni@DWCNTs_500_24, which is consistent with the observations for Ni@DWCNTs_400_7 and 

Ni@DWCNTs_500_7. 

Typical TEM images and EEL spectra of encapsulated Ni nanocrystals in Ni@DWCNTs_400_24 

and Ni@DWCNTs_500_24 are illustrated in Fig. 3.16.  

 

  

    
Fig. 3.16 - (a) and (d) are HRTEM images of Ni nanocrystals encapsulated within DWCNTs in Ni@DWCNTs_400_24 

and Ni@DWCNTs_500_24, respectively; (b) and (e) are HAADF images of the Ni nanocrystals shown in (a) and (d); (c) 

and (f) are EEL spectra collected from the Ni nanocrystals shown in (b) and (e). 

 

The contrast difference between NiI2 and Ni is also visible in TEM images such as Fig. 3.15d, 

which is in agreement with observation for samples reduced for 7h. It must be noted that in Fig. 

3.15d however, only local EELS analysis can assess the presence of Ni(0) because twists of the 
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crystal or any other modification of orientation may also lead to contrast differences. However, NiI2 

is still present in all the reduced samples, which can be explained by the same reason as described 

for reduced FeI2@DWCNTs samples, i.e. the diffusion of H2 and kinetics between NiI2 and H2 are 

slowed down due to the presence of the carbon sheath. To verify this, a control experiment of 

reduction of bulk NiI2 in the same condition used for Ni@DWCNTs_500_24 was performed and 

the obtained product was clearly identified as Ni(0) by XRD analysis. 

The EEL spectrum of bulk NiI2 is presented in Fig. 3.17 as a reference. It should be pointed out 

that the accuracy of EELS quantification in our work is not good enough to determine the exact 

elemental composition of the analyzed compound. That is why the atomic ratio between I and Ni in 

the bulk NiI2 is not indicated to be 2:1 by EELS quantification. 

 

Fig. 3.17 - (a) HAADF image of bulk NiI2; (b) EEL 

spectrum collected from bulk NiI2 as shown in (a). 

 

  NiIx (x<2) intermediate is also observed in Ni@DWCNTs_400_24 and Ni@DWCNTs_500_24. A 

meaningful example is provided in Fig. 3.18. An encapsulated crystal showing different contrasts is 

displayed in Fig. 3.18a and the elemental compositions of the two positions arrowed (red arrows) 

obtained by EELS quantification are 10 at% of iodine and 90 at% of nickel (dark crystal, 1), 60 at% 

of iodine and 40% of nickel (light crystal, 2), respectively.  
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Fig. 3.18 - (a) and (b) HRTEM and HAADF images of a NiIx crystal with various compositions; (c) and (d) EEL spectra 

collected from fragment (1) and (2) labelled in (a) and (b); (e) HRTEM image of another intermediate NiIx (x<2) 

crystal encapsulated within a DWCNT; (f) EEL spectrum collected from the crystals shown in (e). 

 

The results suggest that the diffusion of hydrogen into the cavity of CNTs starts from the tip of the 
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tube where chemically weaker structural defects such as pentagons are located, as already stated in 

Section 3.3.2.1. However, the diffusion of H2 is very slow as it has to proceed through the NiI2 

crystal (and/or in the crystal/inner tube interspace, as suggested by the peculiar contrast at this very 

location – black arrows in Fig. 3.18a) thus resulting in incomplete removal of iodine atoms for the 

short segment (1) near the tip while leaving the rest of the crystal with the unchanged NiI2 

composition (2). Another example of intermediate NiIx (x<2) is shown in Fig. 3.18e and it is 

indicated to be composed of 4 at% of iodine and 96 at% of nickel by EELS quantification (Fig. 

3.18f).   

 

3.4  In situ fluorination  

 

Filling CNTs directly with FeF3 by the molten phase route is impossible due to the too high melting 

temperature required (1327°C). To obtain FeF3 nanocrystals, in situ fluorination of FeI2 nanocrystals 

encapsulated within CNTs provides a possible solution. In this way, the inner cavity of CNTs is 

used as a reactor permitting the transformation from FeI2 to FeF3 to occur. However, such in situ 

fluorination has been rarely reported before since CNTs may be damaged during the fluorination 

process, which makes it a challenge. Thanks to the long-date collaboration with the Institut de 

Chimie de Clermont-Ferrand (ICCF, UMR 6296) [K. Guerin, M. Dubois] and the PhD work of Lea 

Doubtsof, a possible way to transform FeI2 into FeF3 without damaging the CNTs was investigated. 

It is worth noting that DWCNTs are good candidates for such in situ fluorination because their 

fluorination temperature relatively high (200~300°C) [7], thereby preventing the concomitant 

fluorination of the CNTs with respect to the fluorination temperature to be used (see Section 3.4.1 

below).  

 

3.4.1 Methods 

 

Various sources of fluorine can be used to transform FeI2 into FeF3, such as fluorine gas, gaseous or 

liquid HF, solid TbF4 and XeF2, etc., all of which are available from the ‘Fluorination and 

Fluorinated materials’ Group from ICCF. In this work, fluorine gas was chosen to perform the 

fluorination due to its easy diffusion within the inner cavity of CNTs and its purity preventing the 
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hydration of the formed fluoride. In addition, the gas-solid reaction has the advantage of avoiding 

the filtration and washing step when liquid or solid fluorinating agents are used. Meanwhile, the 

molecular fluorine involved in a fluorination reaction provides the highest degree of stable 

oxidation for a given compound, while hydrofluoric acid leads to the production of the element with 

the same oxidation state as that of its precursor.  

  Differing from the sample used for in situ reduction which was prepared by filling raw DWCNTs 

with FeI2, the sample used for fluorination was prepared by filling purified DWCNTs with FeI2 

(denoted as FeI2@DWCNTs-p). The purified DWCNTs were obtained by the following steps: first, 

an alumina boat containing a very thin layer of dry, raw DWCNT powders was placed into a tubular 

furnace with good air convection which was preheated at 550°C. After heating at 550°C for 30 min, 

the boat was removed from the furnace and the powder was transferred into HCl solution to 

eliminate residual metal oxide nanoparticles generated during the previous step. The above 

procedure was repeated a few times in order to prepare a large enough amount of purified DWCNTs 

in order to perform the filling experiment. Then all collected fractions of DWCNT suspension in 

HCl were filtered and washed together with deionized water until neutral pH was reached. Finally, 

the wet product was freeze-dried. Sample FeI2@DWCNTs-p was synthesized following the same 

procedures described according to Lea Doubtsof’s thesis (unpublished data), the related fluorination 

reaction involved in Chapter 2.  

in this work can be described as follows: 

   FeI2@DWCNTs-p + 13/2 F2 → FeF3@DWCNTs-p + 2IF5                        (3.4) 

To perform the fluorination, sample FeI2@DWCNTs-p was heated at 50°C in a stream of fluorine 

gas for 24h. A weight loss of 22% with respect to the starting FeI2@DWCNTs-p for the product 

after fluorination was measured, which was expected for the reaction (3.4). 

   Room-temperature Raman spectra were measured using the Ar/Kr laser lines at 514.5 nm (2.41 

eV) on a Jobin-Yvon T64000 spectrometer equipped with a charge coupled device (CCD) 

multichannel detector. 

 

3.4.2 Results and Discussion 

 

TEM images of purified DWCNTs, FeI2@DWCNTs-p and FeF3@DWCNTs-p are shown in Fig. 
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3.19. It can be seen that the tubes form large bundles and amorphous/disorganized carbon which is 

present in raw DWCNTs is rarely observed in purified DWCNTs, indicating that oxidation in air is 

efficient to clean-up the CNTs [8].  

 

  

  
Fig. 3.19 – (a) and (b) TEM images of purified DWCNTs; (c) FeI2@DWCNTs-p and (d) FeF3@DWCNTs-p (d). 

Filled-tubes are pointed by red arrows in (c) and (d).  

 

Amorphous coatings on the CNTs were observed in purified DWCNTs and such potential coating 

problem was also reported by Tran et al. [9] when attempt to purify MWCNTs in air was made. 

Compared to starting FeI2@DWCNTs-p, the one-dimensional morphology of CNTs in 

FeF3@DWCNTs-p still remains, and no deterioration of the outer wall of CNT which would 
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indicate a significant fluorination is observed, suggesting that the fluorination condition used in our 

work is mild enough. Filled nanotubes are observed in both samples (arrowed regions in Fig. 3.19 c 

and d) but unambiguous imaging of materials encapsulated within DWCNTs in TEM mode is quite 

hard for both samples due to the presence of amorphous coatings. This is especially true in the case 

of FeF3@DWCNTs-p, because the contribution to the contrast brought by F atoms is low because of 

its small atomic number (Z=9). Therefore, it is necessary to switch to STEM mode for better 

imaging of the encapsulations. Typical ADF images of samples FeI2@DWCNTs-p and 

FeF3@DWCNTs-p are shown in Fig. 3.20. As it can be seen, tubes are clearly observed to be filled 

with nanocrystals in both samples. 

 

  
Fig. 3.20 - ADF images of (a) FeI2@DWCNTs-p and (b) FeF3@DWCNTs-p showing the encapsulated (here 

amorphous-like) material in both samples.   

 

  To verify whether the encapsulated FeI2 is successfully or not transformed into FeF3 after the 

fluorination, X-EDS analysis is performed on samples FeI2@DWCNTs-p and FeF3@DWCNTs-p. 

Fe Kߙ peak and I Lߙ peak are present in the X-EDS spectra collected from DWCNT bundles in 

FeI2@DWCNTs-p (Fig. 3.21), confirming the encapsulation of FeI2 in CNTs. The presence of other 

peaks in the spectra including C Kߙ peak, O Kߙ peak, Si Kߙ	peak and three peaks of Cu in the 

spectra originate from the carbon nanotubes themselves, air adsorbed in the CNTs or in the column 

of the TEM, the EDS detector and the copper grid, respectively. 
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Fig. 3.21 - (a) and (c) are STEM images of FeI2@DWCNTs-p and (b) and (d) are X-EDS spectra collected from the 

DWCNT bundles boxed in (a) and (c). The insets in (b) and (d) are enlarged spectra of the region from 3 to 8.5 kV 

showing the peaks of I and Fe.  

 

Meanwhile, Fe Kߙ peak and F Kߙ peak are present in the EDS spectra collected from large 

DWCNT bundles in FeF3@DWCNTs-p (Fig. 3.22), suggesting the possible presence of confined 

FeF3 crystals after fluorination. However, I Lߙ peak is present in the spectra of FeF3@DWCNTs-p 

as well indicating that some encapsulated FeI2 crystals are not fluorinated, which can be explained 

by the same reason as for the in situ reduction reaction, i.e., the diffusion of F2 and reaction kinetics 

between FeI2 and F2 are slowed down due to the presence of the carbon sheath and difficult access 

to the whole crystal at once.  
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Fig. 3.22 - (a) and (c) are STEM images of FeF3@DWCNTs-p and (b) and (d) are X-EDS spectra collected from the 

DWCNT bundles boxed in (a) and (c).  

 

  To further confirm the existence of a FeF3 phase in FeF3@DWCNTs and ascertain its structural 

state (amorphous or crystallized), X-ray diffraction (XRD) was performed by ICCF under the large 

energy flow of the CRYSTAL line at synchrotron SOLEIL. Pair Distribution Function (PDF, in 

which peaks are related to the distances between two types of atoms in the material structure) data 

were obtained, which are currently still being analysed at ICCF.  

Raman Spectroscopy is known as a powerful tool to investigate the electronic properties of filled 

CNTs. Many studies have reported that a charge transfer between SWCNTs or DWCNTs and the 

encapsulated halides [10], iodine [11], oxides [12], organometallic compounds [13], etc. resulted in 

a shift of the Raman G band. Fig. 3.23 illustrates the Raman spectra of the starting purified 

DWCNTs, FeI2@DWCNTs-p and FeF3@DWCNTs-p, respectively. As known, the Raman spectrum 

in the radial breathing mode (RBM) range gives information about the diameter distribution of 

SWCNTs or DWCNTs (inner and outer tubes), and the main peaks in the blue region of the RBM 
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bands shown in Fig. 3.23a correspond to the inner tubes of DWCNTs, while the lower frequency 

peaks in the purple region are related to the outer tubes of DWCNTs. Regarding the pink region, a 

peak centred at ~110 cm-1 appears in the spectra of FeI2@DWCNTs-p and FeF3@DWCNTs-p while 

absent in the spectrum of purified DWCNTs, which can be assigned to the In
- species contained in 

the encapsulated FeI2 crystals [11, 14]. Comparing the RBM peaks of the three samples, no 

noticeable change in the position or the number of the main peaks is observed, which can be 

considered as an indication of an undetectable amount of charge transfer occurring between the 

CNTs and encapsulated materials [15]. A similar result is observed for the G bands of the three 

samples, as shown in Fig. 3.23b.  

 

 
Fig. 3.23 - Raman spectra of purified DWCNTs, FeI2@DWCNTs-p and FeF3@DWCNTs-p recorded at 514.5 nm: (a) 

RBM region and (b) tangential mode region.  

 

The positions of G- bands in the spectra are 1590 cm-1 (purified DWCNTs), 1591 cm-1 

(FeI2@DWCNTs-p) and 1589 cm-1 (FeF3@DWCNTs-p), respectively, indicating that almost no 

charge transfer or weak charge transfer occurs between the CNTs and encapsulated materials. In 

case of weak charge transfer, it means that encapsulated FeI2 is able to induce weak p-doping (input 

of holes) whereas encapsulated FeF3 is able to induce weak n-doping (input of electrons). More 

Raman spectra excited at other wavelengths are necessary for further understanding of the 

interactions between CNTs and encapsulated materials. However, Raman spectra should be 

interpreted with caution because the RBM bands are acquired from different areas hence could be 

naturally different since the samples are often not homogeneous and Raman is resonant for CNTs 
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meaning that a single nanotube could give a rather intense signal. Therefore, only analysis on the 

very same CNT bundles before and after transformation could help drawing strong conclusions, 

which is in fact impossible due to the experimental procedures used here. 

 

3.5  Conclusion 

 

In summary, various in situ transformations including in situ sulfurization, in situ reduction and in 

situ fluorination on metal iodide-based hybrid DWCNTs were performed. In the case of in situ 

sulfurization of PbI2@DWCNTs, the synthesis of PbS nanocrystals was not successful in the 

different experimental conditions investigated but slight doping of the DWCNTs with sulphur was 

evidenced. Further work on optimizing the experimental conditions is required in order to 

successfully obtain PbS nanocrystals. In the case of in situ reduction, Fe and Ni nanocrystals 

encapsulated within DWCNTs were synthesized by reducing DWCNTs filled with the 

corresponding iodides in H2 atmosphere. In the case of in situ fluorination, FeF3 nanocrystals 

encapsulated within DWCNTs have been possibly synthesized by reacting the FeI2@DWCNTs with 

F2 gas but this needs to be confirmed by structure analysis (XRD). Regarding the in situ reduction, 

higher temperature and longer reduction time could improve the yield of metal nanocrystals, while 

the experimental conditions need to be optimized since metal iodides were still present in the 

reduced samples even in the strongest conditions investigated. Compared to FeI2, NiI2 could be 

reduced by H2 more easily since more Ni nanocrystals were found in the reduced samples. The 

reason could be the propensity of NiI2 to spontaneously decompose (see Chapter 2) which leaves 

iodine available and facilitates its removal as HI while leaving Ni behind. Meanwhile, interesting 

intermediate NiIx (x<2) with different elemental compositions encapsulated within CNTs were 

observed in the reduced NiI2@DWCNTs samples. Regarding in situ fluorination, it is also necessary 

to optimize the experimental conditions since iron iodide crystals were still present in the DWCNTs 

after fluorination. This is however challenging because increasing the temperature, in particular, is 

difficult because this would also lead to the fluorination of the CNTs themselves – which was to be 

avoided in this work. For both unsuccessful (sulfurization) and successful (H2 reduction and 

fluorination) in situ chemical transformations investigated it is a common conclusion that the 

difficult access of the encapsulated crystals by the reactant (only through the tube tip once opened 
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by the contact with the metal halide – see Chapter 2) and then the difficult progression of the 

reactant in the tube cavity in order to access the whole encapsulated materials (which only can 

occur by diffusion through the crystal or the crystal/inner tube interspace) are responsible for 

slowing down the reaction kinetics, resulting in the concomitant occurrence of both transformed, 

partially transformed and untransformed filling materials. This is consistent with the fact that the 

most successful in situ transformation was achieved with NiI2, in relation with its propensity to 

partially decompose even before the melting temperature is reached, giving the reactant an easier 

access to the whole filling material by creating some porosity. This work also highlights that some 

of the conclusions of earlier works published in the literature may have to be revisited, as the 

increasing availability of modern tools (and especially very localised EELS analysis) make possible 

a more thorough analysis of filled CNTs, clearly showing that the global picture is more complex 

than the simplified description sometimes given. 
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General Conclusions and Perspectives 

 

In this thesis, we proved that the filling of DWCNTs with metal iodides and iodine is an easy 

approach to synthesize various 1D nanowires of metal iodides as well as iodine phases with 

different structures and configurations, owing to the templating effect of the elongated inner cavity 

of DWCNTs. In addition, we also proved that the hollow core of DWCNTs can act as a nanoreactor 

allowing chemical reactions to occur.  

 

In order to find out which factors prevail in controlling the filling process and understand the 

filling mechanisms better, a series of filling experiments using the molten phase method was 

performed and the filling rate achieved in each filling experiment was estimated from the HRTEM 

data while investigating various parameters among the possibly most relevant ones.  

 

Firstly, parameters related to the characteristics of the host nanotubes were considered (number 

of walls, inner diameter, surface energy of the tube inner surface, chemical nature of the tube 

material) by taking various carbon nanotube types (DWCNTs, FWCNTs, concentric-type 

MWCNTs, hexagonal-type MWCNTs) and boron nitride nanotubes as potential host tubes, for 

filling them systematically with a single material, PbI2 (and NiI2, in a lesser extent, since only 

DWCNTs and BNNTs were tentatively filled with it). Secondly, parameters related to the 

characteristics of the filling materials were also considered by filling a single type of carbon 

nanotubes (DWCNTs) only, with a variety of halides providing a range of values in several 

properties (viscosity, vapour pressure, surface tension, redox potential). 

A general finding was that the key parameter driving the filling event is the chemical reactivity of 

the filling halides towards the material making the tube wall, due to the need to give access to the 

inner cavity of the host tubes by opening their tips. For carbon nanotubes, it was demonstrated that 

such a characteristic is conveniently represented by considering the redox potential of the couple 

metal iodide / metal, calculated at the highest temperature used among all the filling conditions (in 

order to make the comparison possible). One limitation of our approach which is using redox 

potentials to compare the reactivity of different metal halides is that either the cation or the anion 

has to be in common (and at the same oxidation state as well) because the corresponding redox 
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couple is used as a reference. This thus makes possible to compare for example “metal iodide” 

between each others (the iodide anion being in common), or “iron compounds” between each others 

– with some limitations (FeCl2 and FeI2 for example, where Fe(II) is involved, but not FeCl2 and 

FeI3). As far as opening the tubes is concerned, the number of walls was therefore found to be 

another key parameter, as a too large number of walls could not allow the opening to occur. In this 

regard, the thermal stability (revealed by the Gibbs free energy) of the filling material appears to 

be important, as high stability is rather detrimental to filling. This is (i) either because the species 

resulting from the decomposition is not as chemically reactive as the original halide towards 

polyaromatic carbon (this is presumably the case for CoI2, which was found to dimerise before the 

melting point is reached, assuming that the resulting dimers are not reactive enough towards carbon, 

hence explaining an unexpectedly low filling rate with respect to the high redox potential value of 

CoI2), (ii) or because the resulting species are too much aggressive towards the host tubes (as it is 

the case towards boron nitride for iodine species resulting from the decomposition of NiI2), (iii) or, 

finally, because the resulting species compete with the original halide in the filling event (as it is the 

case for NiI2, whose early decomposition results in filling DWCNTs with iodine in addition to 

NiI2). 

Hence, those three parameters (redox potential, thermal stability of the filling material, and 

number of walls of the host CNT) prevail, meaning that the other parameters only have a subsidiary 

importance – if any - in the filling mechanisms. In this regard, our results provided some hints, yet 

no certainties: 

 High values of surface tension could be favourable to capillary filling, in accordance with 

the Jurin's law. This is how the high filling rate with AgI could be explained whereas its 

redox potential value was not favourable. 

 Low values of surface energy of the host tube inner surface could be detrimental to capillary 

filling. This is how the almost nil filling rate of BNNTs with PbI2 could be explained 

(whereas the reactivity of PbI2 with boron nitride is not an issue, since BNNTs were found to 

be opened, either because of the mechanical grinding required before use, or due to the 

reaction with PbI2). A counterpart is that high values of surface energy of the host tube inner 

surface should then be favourable to capillary filling, which could be the reason why the 
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filling rate of opened herringbone-MWCNTs is high in spite of its large inner diameter 

(which is a supposedly an unfavourable feature, again considering the Jurin's law). 

For the other parameters (the host nanotube inner diameter value, which is supposed to be more 

favourable when the diameter is lower according to Jurin's law, and the molten filling material 

viscosity) our set of experiments has not succeeded in determining whether they could play a role or 

not, either because the adequate comparable experiments were not possible to perform due to the 

lack of the suitable host nanotube variety (e.g., MWCNTs naturally opened with a large range of 

inner diameters), or because of the lack of physical parameter data (e.g., the viscosity values were 

not available in the literature for 7 over 12 of our filling material series gathered in Table 2.7).  

 

Peculiar structures were observed for the confined NiI2 and iodine with respect to the bulk filling 

materials when characterizing the hybrid DWCNT samples with TEM. Particularly when iodine 

was introduced into CNTs starting from either molten iodine, gaseous iodine or as by-product from 

the decomposition of molten NiI2, various structures including atomic iodine chains either single 

and straight or twins (or triple) and helical, iodine crystals with structure differing from that of bulk 

iodine, iodine crystals with orthorhombic structure as in bulk, and finally iodine nanotubes - which 

may not exist without the protection of the carbon sheath were observed.  

Among the iodine structures, the single straight chain was the most abundant whatever the way 

iodine was introduced in the system, while the helical double- and triple-chains were less frequent, 

and only observed when iodine was initially introduced as a phase (i.e., not as a decomposition 

by-product of NiI2). Instead of invoking a possible role of the iodine starting state, this 

discrimination is more likely to result from the competition between iodine and molten NiI2 in the 

filling event. The type of iodine structure appeared to be closely dependent on the host tube inner 

diameter:  

 single chains were only found to exist in CNTs within inner diameters less than ~1nm; 

 helical double- and triple-chains were no longer found when tube inner diameters were larger 

than ~1.5 nm;  

 A so-called "Phase III" (according to Guan et al[11]) may occur for inner tube diameters 

larger than 1nm, partly presumably resulting from the electron irradiation (in the TEM) of the 

multiple-chains 
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 The orthorhombic structure (the only one similar to that of bulk iodine) needs inner tube 

diameters larger than 1.5 nm to develop;  

 A new hybrid CNT made of a large nanotube (SWCNT or DWCNT) subsequently collapsed 

and flattened for energetics reasons, hence exhibiting longitudinal edge channels on both 

sides of the ribbon, and then with these channels filled with iodine.  

As already stated with the occurrence of Phase III, iodine structures other than the single straight 

chain seem to be more or less electron sensitive and may degrade until full amorphisation 

depending on the energy of the TEM electron probe used.  

In order to investigate the possibility of in situ transformations of encapsulated nanocrystals, 

three different chemical treatments were applied: in situ sulfurization (on encapsulated PbI2, aiming 

at obtaining the semi-conducting phase PbS), in situ reduction (on encapsulated FeI2 and NiI2, 

aiming at obtaining metallic Fe and Ni nanomagnets respectively), and in situ fluorination (on FeI2, 

aiming at obtaining nanosized FeF3 as an efficient electrode component for Li-ion batteries). None 

of the target materials could have been inserted into the CNTs directly due to their high melting 

points (>1000°C).  

Our in situ sulfurization procedure (by means of molten sulphur), failed at obtaining encapsulated 

PbS but resulted in introducing a small amount of sulphur in the tube cavities and probably in the 

groove channels between tubes in bundles as well.  

Our in situ reduction procedure (by means of gaseous H2) was more successful in obtaining 

significant amounts of Fe and – even more abundantly - Ni encapsulated nanocrystals. After 

optimisation of the procedure, NiI2 could be reduced more easily than FeI2. This was possibly 

related to the propensity of NiI2 to spontaneously decompose which leaves iodine available for 

easier removal as HI, while leaving Ni behind. Interesting encapsulated intermediate NiIx crystals 

with various under-stoichiometry levels (0<x<2) demonstrated that the reduction reaction is 

directional and progressive, first occurring at the nanocrystal tip facing the nanotube end by which 

H2 enters the cavity, and then progressing through the crystal structure. Resulting encapsulated Ni 

crystals exhibited peculiar crystalline structure, either similar to bulk Ni crystal but with up to 20% 

stretched atom distances, or unprecedented and yet to determine.  

Finally, in situ fluorination (by mean of gaseous F2) was not clearly demonstrated to be efficient 

with producing FeF3 crystal yet, since all data are still under analysis at ICCF. However, evidences 
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for chemical changes (addition of F) and slight electronic structure modification (slight downshift 

of the Raman G band) brought by the fluorination procedure to the encapsulated material have been 

evidenced, and further analysis should be performed soon to investigate this.  

For all in situ chemical transformation attempts investigated, it is a common conclusion that the 

access to the encapsulated crystals by the reactant is the main issue, along with the progression of 

the reactant through the crystal structure to be transformed. The progression of the reactant in the 

tube cavity in order to access the whole encapsulated materials is difficult as it can only occur by 

diffusion through the crystal, or the crystal/inner tube interspace (which is usually tiny). This is 

certainly the main reason why in situ sulfurization has failed since operated by means of liquid 

(molten) sulphur for which access and diffusion are much more critical issues than for gaseous 

reactants. Also, this is responsible for slowing down the reaction kinetics, resulting in the 

concomitant occurrence of both transformed and untransformed filling materials. This is consistent 

with the fact that the most successful in situ transformation was achieved with NiI2, in relationship 

with its propensity to partially decompose even before the melting temperature is reached, giving 

the reactant an easier access to the whole filling material by creating some porosity (in addition to 

leaving iodine readily available for easier removal as HI). 

Our work during the past three years gave a new insight into the mechanisms involved when 

filling CNTs via the molten method and provided some routes to synthesize 1D metal nanocrystals 

while demonstrating the inefficiency of others. Among the possible factors investigated, some were 

demonstrated to be important in the course of successful filling, but uncertainty remains for others. 

One main reason is the lack of availability of the related physical parameters data in the literature. 

Carrying-out a systematic work for measuring basic parameters such as viscosity, surface tension 

and vapour pressure at melting temperature for a large variety of potential filling materials would be 

very useful. Meanwhile, in order to further understand the filling mechanisms, carrying out similar 

investigations involving other halides and other compounds would be helpful with bringing more 

data and more observations so that to possibly obtain statistical evidences likely to overcome the 

lack of parametric data. This additional work should include considering a more extended range of 

host carbon nanotube grades allowing more accurate and more reliable comparisons.  

In the close future, some of the materials we have been able to prepare would be quite interesting 

to study for their collective and individual properties: For instance, as encapsulated iodine was 
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demonstrated to be electron acceptor and able of charge transfer in the literature since 1998 and 

until today where it is used for high conductivity CNT-based fibres3, checking whether our 

iodine-filled CNTs also exhibit evidences for charge transfer as a bulk would be a compulsory start. 

This could be done by investigating (Raman, electrical measurements) the same CNT buckypaper 

before and after filling with iodine. Then, it would be quite interesting to systematically study the 

ability of each of the various iodine structures evidenced in our work regarding the extent in charge 

transfer. This would be possible by contacting individual bundles of filled CNTs first, then 

individual filled CNTs, after depositing them onto a silicon nitride membrane thin enough for 

allowing TEM investigation yet strong enough for withstanding the contacting procedure. Such 

membranes are available nowadays. The same could apply to sulphur-filled CNTs. Another 

interesting material worth investigating we have produced are the encapsulated Ni nanocrystals. 

Obviously, their magnetic properties and magneto-transport should be measured. First, thanks to a 

specific TEM mode (electron holography), evidencing whether the encapsulated Ni crystals actually 

behave like ferromagnetic nanomagnets could be possible even without needing to contact them. 

Then the material could be investigated following a similar operating procedure as for the iodine 

filled CNTs: "blind" investigation of the bulk materials (Raman, SQUID) and then investigation of 

individual Ni-filled CNTs (Raman, magneto-transport), while lying onto electron-transparent 

membranes in order to be able to check how filled (number and length of the encapsulated 

nanocrystals) the contacted CNTs are. These 1D nanocrystals are expected to exhibit peculiar 

properties with respect to bulk materials and once they can be synthesized in relatively large 

quantities, practical applications of filled CNTs in various fields could be tested in demonstrators 

such as photovoltaic devices, energy storage devices, magnetic storage devices, and so on. Most of 

the characterisations described in the last paragraph are currently in progress with different 

collaborators but the results, not know at the time of writing this conclusion, could unfortunately 

not be included in the manuscript. 

 

                                                              
3 Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan, E. V. Barrera, Iodine doped carbon nanotube cables exceeding specific 
electrical conductivity of metals, Scientific Reports 1, 83 (2011). 
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Appendix  METHODOLOGY 

 

 

A.1 Principles of TEM Imaging and Related Techniques 

 

Transmission electron microscope is undoubtedly an invaluable tool for determining the location of 

the filling and revealing the structure and chemistry of the encapsulated materials. Compared to the 

conventional visible-light microscope, the smallest distance that can be resolved (i.e., resolution) 

endowed by an electron microscope is much smaller, even smaller than the diameter of certain 

atoms, due to the extremely short wavelength of the electron beam with respect to visible light. 

Therefore, an electron microscope enables scientists to “see” details well below the atomic level. Of 

course, it is impossible to really see the electrons with eyes but a fluorescent screen, a CCD camera 

or other image devices can help. Then how to form a TEM image? First of all, an electron source is 

required to produce the electron beam. At present, either thermionic sources using a LaB6 crystal as 

electron emitter, or field-emission sources for which the electron emitter is a fine tungsten needle 

are the most suitable and commonly used sources for obtaining good images and other signals in an 

electron microscope. Compared to the thermionic sources, field-emission sources emit more 

monochromatic electrons (i.e., more coherent beam), hence inducing better high-resolution imaging 

and analytical performance. It is essential to integrate the electron source into a gun assembly to 

control the beam and direct it into the condenser lenses whose role is to take the electrons from the 

source and transfer them to the observed sample (specimen). All lenses in the TEM behave 

similarly to a convex or converging glass lens in a light microscope and the paths of electron beam 

controlled by them obey the laws of classic optic. Differing from a light microscope, the lenses in 

the TEM are electromagnetic and their strength can be changed by changing the current. The 

electron gun and the condenser lenses constitute the illumination system of an electron microscope 

and this system can be operated in two principle modes: parallel beam and convergent beam. The 

first mode is used primarily for TEM imaging and selected-area diffraction (SAD), while the second 
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is used mainly for scanning TEM (STEM) imaging, analysis via X-ray and electron spectrometry, 

and convergent-beam electron diffraction (CBED). 

After the illumination system, the electron beam arrives at the heart of the TEM, that is the 

objective lens and the stage where the holder containing the specimen is inserted. In this part, the 

electrons as negatively charged particles with high energy, and the beam interacts with the 

specimen and various signals are thus produced (as described in Fig. A.1), which contains all the 

structural, chemical and other information from the specimen. Among these signals, elastically 

scattered electrons (with same energy as the electrons in incident beam) are the major source of 

contrast in TEM images and inelastically scattered electrons (with lower energy than the electrons 

in incident beam) can provide spectroscopic information about the chemistry and electronic 

structure of the specimen. On the other hand, owing to the wave-particle duality of electrons, the 

beam can be diffracted by the atoms in the specimen demonstrating the wave nature. The 

well-known Bragg equation (Eq. A.1) describing the relationship for the wavelength ߣ of the 

incident beam (depending on the operating voltage), the lattice spacing of (hkl) atomic planes, and 

the angle ߠ between the incident beam and the (hkl) atomic planes are mainly involed in the 

diffraction in the TEM:  

                              2 . dhkl . sinθ = λ                                (A.1) 

When the beams diffracted in a single direction by a particular plane of atoms travel through the 

objective lens, they are focused to a single point (diffraction spot) in the back focal plane of the lens. 

Since the atomic planes in the specimen are variously oriented, groups of spots are obtained, 

forming the diffraction pattern (DP) in the back focal plane of the objective lens. Therefore, 

crystallographic information such as crystal structure, lattice distance, and specimen shape can be 

deduced from the DP. In addition, if an aperture is put in the back focal plane, then only specific 

diffraction spots which correspond to specific (hkl) atomic planes are permitted to pass through the 

aperture and imaged by the following parts of TEM. Following this principle, a dark-field image 

can be obtained by selecting desired spots with an aperture and the obtained image shows the 

specific orientations of a single-phase specimen. 

The third component of the TEM is the imaging system, in which the image or the DP 

produced by the objective lens is magnified and then projected onto the viewing screen. To 

magnifying the image or DP, the intermediate lenses or diffraction lenses are employed, 
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respectively. Finally, the projector lens is used for projection. The above three systems are often 

called the ‘column’, for obvious reasons. Fig. A.2 depicts the major components consisting of a 

TEM, arranged vertically from top to bottom and Fig. A.3 illustrated the simplified ray diagrams in 

the TEM for obtaining a DP and an image on the viewing screen. 

 

 

Fig. A.1 - Signals generated when a high-energy beam of electrons interacts with a thin specimen. 

 

 

Fig. A.2 - Sketch of the structure of TEM 
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Fig. A.3 - The simplified ray paths in the TEM illustrating how to obtain (a) the DP and (b) the image on the viewing 

screen. In each case the intermediate lens selects either the back focal plane (BFP) (a) or the image plane (b) of the 

objective lens as its object. The vertical grey line in each diagram is the imaginary ‘optic axis’ in the column of TEM. 

The imaging systems shown here are highly simplified. Most TEMs have many more imaging lenses, which give greater 

flexibility in terms of magnification and focusing range for both images and DPs. The SAD and objective diaphragms 

are also shown appropriately inserted or retracted.  

 

The electron travelling paths under the control of lenses in the TEM described above lie in the 

assumption that all the lenses in the TEM behave as ideal lenses without any defect. In practice, the 

lenses suffer various defects, such as spherical aberration, chromatic aberration, and astigmatism 

and among these, spherical aberration (Cs) has a major influence on the limitation of resolution that 



155 
 

the microscope can reach. The occurrence of spherical aberration results from the fact that the lens 

magnetic field is higher for off-axis rays. For electrons further off the axis, they are more strongly 

bent back toward the axis. Consequently, a point object is imaged as a disk of finite size, which 

limits our ability to magnify detail because the detail is degraded by the imaging process. In other 

word, the resolution of TEM becomes worse. Spherical aberration is most important in the objective 

lens because it degrades the detail that we can resolve in TEM images: all the other lenses magnify 

any error it generates. During the STEM imaging process, the spherical aberration of the condenser 

lenses are not in favor of the formation of smallest probes with the highest current thus hindering 

the microscope performance largely. Fortunately, this aberration can be corrected now thanks to the 

incorporation of a Cs corrector. With this development, the resolution limit for some modern ‘Cs 

corrected’ TEM or STEM can be as low as 0.1 nm or < 0.1 nm.    

When the microscope is operated in a conventional TEM mode, with the help of 

high-resolution transmission electron microscopy (HRTEM) images revealing the detail of the 

specimen at atomic level can be obtained. If the microscope is operated in a STEM mode, not only 

atomic resolution images can be obtained, but also information on elemental composition and 

electronic structure of the specimen can be acquired with the help of analytical techniques such as 

mapping by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), 

etc.. The working principle of STEM is similar as that of normal scanning electron microscope 

(SEM), which is using a focused beam to scan over the sample in a raster while some desired signal 

is collected to form an image. As in the SEM, backscattered or secondary electrons can be used for 

imaging; but higher signal levels and better spatial resolution can be obtained by detecting 

transmitted electrons. In contrast to producing a TEM image by lenses, an electron detector which 

acts as the interface between the electrons coming from the specimen and the image viewed on the 

display screen is used to create a STEM image. There are three types of detectors available for 

STEM, bright field (BF) detector, annular dark field (ADF) detector and high-angle ADF (HAADF) 

detector. The former intercepts the direct-beam electrons which help build the STEM-BF image, 

while the ADF detector picks up most of the scattered electrons to form an ADF image. For 

electrons scattered out to so high angles that beyond the gathering range of ADF detector, the 

HAADF detector is required and the formed image is called HAADF image or Z-contrast image. 

Each detector provides a different and complementary view of the specimen and having multiple 
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detectors operating simultaneously is allowed in STEM, which makes the collection of the 

maximum information from each scan possible. 

In order to identify the elemental compositions of the specimen, the characteristic X-rays as 

shown in Fig. A.1 are important signals. How are these rays generated? First of all, since the energy 

of the electron in the beam is much higher than the critical ionization energy of most atoms, the 

electron in the beam will transfer partial energy to the inner-shell electron of atom in the specimen, 

leaving the atom in an excited state, i.e., ionized. Then the ionized atom can return almost to its 

ground state by filling-in the hole with an electron from an outer shell. This transition is 

accompanied by the emission of either an X-ray or an Auger electron. In both the X-ray and Auger 

cases, the energy of the emission is characteristic of the difference in energy between the 

two-electron shells involved and this energy difference is unique to the atom. To accomplish the 

element analytical goal, a X-ray energy-dispersive spectrometer is integrated with the STEM, which 

uses a Si semiconductor detector or a Ge detector. The detector can generate voltage pulses that are 

proportional to the X-ray energy and the pulses are subsequently processed by electronics to 

translate the X-ray energy into a signal in a specific channel in a computer-controlled storage 

system. The counts in the energy channels are then displayed as a spectrum. With the EDS system, 

we can acquire a single spectrum or spectrum-line profiles on a selected area in a STEM image, or 

even carrying out mapping, or compositional imaging on the selected area. These spectra and 

images can be processed firstly with qualitative analysis by identifying the characteristic peaks in 

the spectra and then quantitative analysis for obtaining further elemental information of the 

specimen. 

However, it is challenging to analyze light elements by EDS, which is the major drawback. Thus 

techniques that are sensitive for light-element analysis are required. To this end, EELS is a 

preferable technique. In fact, it can detect and quantify all the elements in the periodic table in 

addition to light elements and offers better spatial resolution and analytical sensitivity (both at the 

single-atom level). Furthermore, not only the elemental composition, but also details about 

electronic structure, bonding and atomic distribution of the specimen, as well as the specimen 

thickness can be provided by EELS. Despite of these advantages, very thin specimens are required 

in EELS and more complicated operation is involved for this technique with respect to EDS, which 

are disadvantages of EELS. Therefore, EELS and EDS are highly complementary techniques.  
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The EELS system is based on the magnetic prism which acts as a spectrometer and a lens. When 

the forward transmitted electrons travel through the prism, they are deflected and the deflection 

angle for electrons which lose energy is different from that for electrons not suffering any loss. This 

process resembles the dispersion of white light by a glass prism. Then the dispersed electrons are 

focused in the dispersion plane, forming a spectrum consisting of a distribution of electron density 

(I) versus energy loss (E). A typical EEL spectrum can be divided into two regions at the arbitrary 

break point of ~ 50 eV, low-loss region and high-loss region. In the former, a very intense zero-loss 

peak is present, which corresponds to the elastic, forward scattered electrons, but also electrons 

losing a few energy. Apart from the zero-loss peak, plasmon peak is also a strong feature in the 

low-loss region, which arises from the interaction between beam electrons and outer-shell electrons 

of atoms in the specimen.  

In the high-loss region of the spectrum, signals constituted by the electrons going through the 

interaction with the inner-shell atomic electrons, as described in the process for how to generate 

characteristic X-rays are termed as ionization or core-loss edges, which are the predominant feature 

in this region. The edges are identified as the energy loss at which there is a discrete increase in the 

slope of the spectrum, and the onset energy of an edge corresponds to the critical ionization energy 

of an atom, which is unique to the atom. Hence, determination of elemental composition in the 

specimen using ionization edges is quite straightforward. Then, beyond the ionization edge are 

found strong oscillations within 50 eV of the onset of the edge due to bonding effect which are 

called energy-loss near-edge structure (ELNES). Finally, small intensity oscillations may also be 

observed after 50 eV of the edge onset, as a result of the diffraction effects from the atoms 

surrounding the ionized atom. These oscillations extend out for several hundred eV as the edge 

intensity diminishes thus called extended energy-loss fine structure (EXELFS). 

 

A.2  Methodology for the Image Simulation and Structure Modelling of Confined Foreign 

Phases 

 

The fragments of the filling material are generated from published crystal structures obtained from 

the Inorganic Crystal Structure Database (available at cds.rsc.org). The CNTs are generated using 

Nanotube Modeller software. The inner diameters of the CNTs are measured from the experimental 
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image but typically "expand" the modelled CNT relative to the experimentally measured one by ca. 

8% to allow for curvature of the CNT walls. The models are assembled in CrystalMaker software 

and then simulated using either an optimized code for parallelisation via GPU acceleration written 

by Adam Dyson (a PhD student of Dr. Jeremy Sloan in Warwick University, UK) which is 

published in https://github.com/ADyson/clTEM or SimulaTEM for phase-contrast images 

(sometimes also JEMS) using representative values for accelerating voltage, Cs and defocus where 

appropriate. Nearly all simulation programs are some variation of the multi-slice approximation 

approach described in Earl J. Kirkland’s textbook “Advanced Computing in Electron Microscopy”. 
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Introduction générale 

Les nanotubes de carbone (CNTs) attirent depuis 1991 l'attention de la communauté scientifique, 

principalement en raison de leurs propriétés physiques remarquables. En pratique, pour pouvoir 

réellement les utiliser dans diverses applications, il est souvent nécessaire de les modifier de diverses 

manières. L'une d'entre elles consiste à les remplir avec des matériaux, avec l'idée que les propriétés 

du CNT hôte peuvent être modifiées du fait de l’interaction avec le matériau de remplissage. En outre, 

l’utilisation du canal interne comme moule permet une stratégie alternative pour la synthèse de 

nanocristaux 1D originaux et de diamètre contrôlé. 

Le remplissage des CNTs pour préparer des hybrides X@CNTs peut se faire par différents 

moyens, parmi lesquels la mise en œuvre d'une phase fondue (sels fondus) est très souvent employée 

en raison de sa simplicité, de sa polyvalence et de la possibilité d'obtenir des taux de remplissage 

élevés. Le remplissage des CNTs par un liquide est induit par la force capillaire, et donc souvent 

décrit par l’équation de Laplace-Young, mais les mécanismes détaillés du remplissage des CNTs par 

capillarité ne sont pas encore clairs. L’encapsulation de matériaux à haut point de fusion (> 950°C) 

nécessite de travailler avec un précurseur et de procéder à des traitements de transformation 

ultérieurs. L'objectif de ce travail vise ainsi à mieux comprendre les phénomènes à la base du 

remplissage des nanotubes par des composés liquides (fondus) ainsi que les mécanismes des réactions 

chimiques effectuées in situ dans la cavité intérieure des nanotubes. Avec un tel objectif, les iodures 

métalliques ont été choisis comme composés modèles car ils combinent des propriétés 

physico-chimiques bien adaptées avec une forte densité électronique de l’iode, rendant cet élément 

particulièrement facile à mettre en évidence par microscopie électronique en transmission à haute 

résolution (HRTEM), un outil central dans ces travaux. 

Ce manuscrit de thèse se compose donc de 3 chapitres. Le Chapitre 1 est une introduction 

générale au remplissage des nanotubes de carbone, qui décrit l’état de l'art des stratégies de 

remplissage, ainsi que quelques exemples de propriétés et applications des CNTs remplis. Le 

Chapitre 2 s'intéresse (1) aux mécanismes de remplissage par la méthode des sels fondus en 

comparant une série d'halogénures métalliques, mais aussi une variété de nanotubes hôtes et (2) aux 

structures particulières des nanostructures hybrides X@CNTs ainsi préparées. Le Chapitre 3 traite de 

trois différentes tentatives de transformations in situ d'hybrides X@DWCNTs sélectionnés (où 
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DWCNTs désigne des nanotubes de carbone biparois). Enfin, une conclusion générale résume nos 

résultats et présente nos perspectives, en particulier les travaux en cours liés à la caractérisation des 

hybrides X@DWCNTs, qui n'ont malheureusement pas pu figurer dans ce manuscrit.  

  



163 
 

Chapitre 1  Introduction générale au remplissage des nanotubes 

de carbone  

 

Les premiers exemples de remplissage ont été signalés en 1993 [1-3] lorsque plusieurs 

tentatives pour introduire des métaux ou des composés dans des NTC multi-parois (MWCNT) ont été 

rapportées. En 1998, deux exemples de CNTs monoparoi (SWCNTs) remplis ont été signalés (voir 

Fig. 1.1). L'un d'entre eux était la découverte inattendue de la capacité des fullerènes à diffuser et 

s'arranger dans les SWCNTs, formant ainsi les fameux "peapods" [4]. L’autre, portant sur la réduction 

par l’hydrogène de SWCNTs préalablement remplis par RuCl3 (en solution) a été publié la même 

année [5]. Par la suite, de nombreux autres exemples de remplissage de CNTs ont été décrits.  

 

Fig. 1.1 - images MET des deux premiers signalements de remplissage de SWCNT en 1998 (a) Ru@SWCNT, le métal Ru 

a été introduit initialement sous forme de RuCl3 [9] ; (b) C60@SWCNT ("peapods") [8]. 

En règle générale, il existe deux voies possibles pour remplir les CNTs, soit in situ pendant leur 

synthèse, soit ex situ a posteriori. Par rapport à la méthode in situ, l'approche ex situ est beaucoup plus 

souple car elle permet dans l'idéal d'insérer presque tous types de composés dans presque n’importe 

quel genre de nanotubes. Au cours du processus de remplissage ex situ, la capacité des CNTs d'agir 

comme des capillaires est pleinement exploitée. Plusieurs méthodes de remplissage ex situ ont été 

employées jusqu'à présent y compris par exemple la méthode en phase gaz, la méthode mettant en 

œuvre une solution ou une suspension, et finalement la méthode en sels fondus. Expérimentalement, 

l'insertion d’atomes, de molécules ou encore de composés a été obtenue, et la figure 1.2 en montre 

quelques exemples. 
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Fig. 1.2 - (a) et (b) image HRTEM et modèle structural d'un SWCNT rempli de cristaux de NdCl3 et le modèle de structure 

simulée [7] ; (c) image HRTEM d’un SWCNT rempli de HoCl3 présentant une symétrie d'ordre 5 déformée. Chaque tache 

sombre est supposé être la projection d’une seule chaîne 1D de polyèdres HoClx [6]; (d) image en mode "Annular Dark  

Field" (ADF) d’une chaîne de CsI encapsulée au sein d’un DWCNT et cartographies chimiques EELS associées du Cs (e) 
et I (f), respectivement, obtenues à partir de l’image (d) [8]; (g) et (h) images HRTEM d’une extrémité d’un SWCNT 

contenant PbI2 (h) obtenues à deux focalisations différentes ; (i) image agrandie de la zone encadrée (h) ; (j) image 

simulée correspondant à (i) basée sur le modèle structural suggéré pour PbI2 en (k) ; (k, l, m) modèles structuraux 

représentés sous différentes formes [9 ]. 

Des propriétés et comportements particuliers des hybrides X@SWCNTs/DWCNTs ont été 

découverts. Par exemple, la diffusion et la coalescence de fullerènes à l'intérieur du tube suite à 

l’irradiation par un faisceau au cours de l'observation en MET [10, 11] ont été observées. Le 

remplissage de tapis ou couches minces de SWCNTs par de l’iode fondu ou gazeux conduit à une 

augmentation très nette de la conductivité électrique [12, 13]. Plus intéressant encore, un 

comportement conducteur de chaînes de soufre encapsulées à l'intérieur de SWCNTs ou DWCNTs a 

été démontré, alors que le soufre "macroscopique" est isolant à l'ambiante [14], et des clusters de 

nickel encapsulés dans des SWCNTs ont un comportement superparamagnétique et une coercivité 

supérieure au Ni "massif" [15]. En raison des comportements particuliers et des propriétés des CNTs 

remplis, ils peuvent être utilisés dans de nombreux domaines tels que pour la biomédecine, pour des 

supports de catalyseurs, pour le stockage de l’énergie, l'émission d’électrons par effet de champ, la 

réalisation des sondes de microscopie en champ proche, pour des dispositifs électroniques ou encore 

des capteurs [6]. 

Malgré les résultats obtenus à ce jour dans le domaine du remplissage des CNTs, beaucoup de 
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questions demeurent sans réponse. Par exemple, peu de travaux ont été consacrés à l'identification des 

propriétés physiques et chimiques pertinentes des composés à insérer sur le taux de remplissage. La 

mesure à l’échelle microscopique des propriétés physiques du cristal encapsulé dans un nanotube 

individuel n’est pas facile à réaliser en raison de la nécessité de faire appel à des équipements très 

sophistiqués tels que la nanolithographie, et des dispositifs spécifiquement conçus pour ce type de 

mesures. En outre, des nanofils de métaux de transition sont censés présenter des propriétés 

magnétiques intéressantes car différentes de celles de leurs homologues macroscopiques, mais la 

synthèse (réussie) de ce type de nanofils encapsulés dans des SWCNTs ou DWCNTs n'est que très 

peu rapportée. Ceci a donc constitué la motivation pour mener ces travaux sur le remplissage de CNTs 

mono et biparois par des métaux, en particulier magnétiques.  
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Chapitre 2  Etude des mécanismes de remplissage des DWCNTs par 

différents composés et des structures particulières résultantes  

 

2.1  Introduction  

Bien que divers exemples de remplissage de CNTs ont déjà été publiés, les mécanismes de 

remplissage ne sont pas encore bien compris, surtout lorsqu’on considère la méthode mettant en 

œuvre des liquides (solutions, sels fondus). Les travaux pionniers dans ce domaine ont proposé que le 

remplissage de la cavité interne d'un CNT peut être décrit par un effet de mouillage nanocapillaire, 

effet décrit par l’équation de Laplace [1, 2], et d'où il découle que les facteurs qui peuvent jouer un 

rôle dans le processus de remplissage sont nombreux (par exemple, morphologie du CNT, tension 

superficielle, viscosité, pression de vapeur, etc. [3]). Parmi ces paramètres, la question de savoir 

le(s)quel(s) est(sont) le(s) plus pertinent(s) n'est pas encore réglée. Dans ce chapitre, le remplissage 

de CNTs par divers halogénures métalliques ainsi que par l'iode a été effectué via la méthode en sel 

fondu, et le taux de remplissage atteint dans chaque cas a été estimé à partir de données de MET haute 

résolution (HRTEM).  

Tout d’abord, afin d’évaluer l’importance dans le processus de remplissage des paramètres liés 

aux CNTs comme le nombre de parois, le diamètre intérieur, ou encore l'énergie de la surface interne 

des CNTs, nous avons comparé le remplissage de divers types de nanotubes par un seul composé, 

PbI2 : DWCNTs, nanotubes de carbone à "peu de parois" de texture concentrique (FWCNTs), 

MWCNTs de texture concentrique (c-MWCNTs-a) ou "en arêtes de poisson" (h-MWCNTs), et enfin 

des nanotubes de nitrure de bore (BNNTs). En second lieu, afin d’évaluer l’influence des propriétés 

physiques et chimiques les plus pertinentes des composés sur les mécanismes de remplissage et les 

taux de remplissage, les DWCNTs ont été choisis comme tubes hôtes parce qu’ils sont plus robustes 

que les SWCNTs grâce à la protection par la paroi externe, tandis que la cavité interne des DWCNTs 

peut avoir un diamètre aussi petit – ou même plus petit – que dans le cas des SWCNTs, ce qui est plus 

favorable pour promouvoir des structures particulières, et donc des propriétés originales. Enfin, le 

remplissage de DWCNTs avec une série d’halogénures métalliques (pour la plupart des iodures, mais 
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également PbCl2, PbF2, etc.) ainsi que par de l’iode a été réalisé, les données relatives aux propriétés 

des matériaux de remplissage étant recueillies dans la littérature et les bases de données 

thermodynamiques. 

2.2   Synthèse de X@CNTs ou X@BNNTs (X = halogénure ou iode)  

Une ampoule de quartz contenant un mélange de CNTs ou BNNTs bruts et le matériau de remplissage 

désiré, avec un rapport molaire de 1/1,3 (DWCNTs/halogénures ou iode) a été scellée sous vide avec 

un chalumeau. L’ampoule a ensuite été soumise à un traitement thermique selon le programme 

suivant : chauffage à 5° C/min depuis la température ambiante (RT) jusqu'à 30 °C au-dessus du point 

de fusion (Mp) du composé de remplissage, palier de 24h, refroidissement jusqu'à 20 °C au-dessous 

de Mp à 0,1 °C/min, puis jusqu'à 120 °C au-dessous de Mp à 1 °C/min, puis finalement à 5 °C/min 

jusqu'à la température ambiante. Pour l’iode, deux températures de remplissage ont été utilisées : 140 

°C et 827 °C (température identique à celle utilisée pour NiI2) et les échantillons préparés ont été 

notés comme suit : I@DWCNT_140 et I@DWCNT_827, respectivement. Avec le rapport molaire 

utilisé, le composé de remplissage était en large excès et une étape de lavage a été nécessaire en fin 

d'opération afin d’enlever le produit en excès (non encapsulé).  

Un synoptique résumant toutes les expériences de remplissage effectuées au cours de ce travail de 

thèse est représenté sur la Fig. 2.1. 

 
Fig. 2.1 - Synoptique résumant toutes les expériences de remplissage effectuées au cours de cette thèse. 
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2.3   Caractérisation par microscopie électronique des hybrides X@CNTs et X@BNNTs  

Pour estimer le taux de remplissage de chaque échantillon, un minimum de 30 images HRTEM ont 

été acquises (par échantillon), et le taux de remplissage a été défini comme le rapport de la longueur 

cumulée de tubes remplis sur la longueur cumulée des tubes présents (remplis + vides) mesurables sur 

chaque image. Cependant, en raison des limitations inhérentes à la méthode utilisée, nous estimons 

que le taux de remplissage est obtenu à ± 5 % (% absolu). 

Les images HRTEM des DWCNTs remplis montrent que le matériau de remplissage a été 

correctement inséré dans les nanotubes, confirmant la capacité des iodures métalliques et de l'iode à 

ouvrir les CNTs, du moins ceux qui ont un nombre limité de parois tels que les DWCNTs. Dans le cas 

de tentatives de remplissage de DWCNTs avec NiI2, deux types d'hybrides sont mis en évidence : 

NiI2@DWCNT mais aussi un peu de I@DWCNT - résultant de la décomposition spontanée de NiI2 

pendant le processus de remplissage, telle que révélée par l’analyse EELS.  

2.4  Structures de NiI2 et de l'iode confinés à l’intérieur de CNTs  

2.4.1   NiI2 encapsulé 

La structure cristallographique de NiI2 est lamellaire, de type CdCl2, et uniquement du groupe 

d'espace R-3mH. Presque tous les cristaux de NiI2 encapsulés peuvent être reliés à ce groupe d'espace 

R-3mH avec 4-5 atomes d'épaisseur, ou plus selon le diamètre intérieur du CNT hôte. De nombreux 

cristaux de NiI2 sont observés déformés (twistés) à l'intérieur des CNTs. Par exemple, les fragments 

dans les zones I et II (Fig. 2.2, voir encarts) montrent différentes projections de la même structure. Les 

images ADF simulées et les modèles structuraux dérivés de ces deux régions (Fig. 2.3) révèlent que le 

fragment II est imagé parallèlement à une projection inhabituelle ([2 1 -0,5]) pour la structure 

"massive" R-3mH, alors que le fragment I est orienté perpendiculairement au II (voir vue 

perpendiculaire à l'axe du CNT). De plus, le nanocristal de NiI2 dans la zone I a 5 atomes d'épaisseur, 

et diffère ainsi du fragment dans la zone II qui n'a que 4 atomes d'épaisseur. Ceci peut découler de 

différentes orientations possibles des nanocristaux, tel que proposé sur la figure 2.3. 



170 
 

 

2.4.2 Encapsulation de l'iode 

Des structures particulières ont été observées lorsque de l'iode a été encapsulé dans les CNTs,  que ce  

soit à  partir de la  décomposition de NiI2 ou d'iode pur, fondu ou en phase vapeur. La figure 2.4 

rassemble des images typiques en champ sombre ou clair illustrant (i) des chaînes d'iode atomique 

soit simples et droites, soit jumelles (ou triplées) et hélicoïdales, (ii) des cristaux d’iode avec une 

structure différente de celle de l’iode "massif", (iii) des cristaux d'iode avec une structure 

orthorhombique identique à celle de l'iode "massif". Un cas intéressant illustré par la fig.2.4f est la 

présence probable de tubes large mais aplatis, dont le processus d'aplatissement a créé deux canaux 

longitudinaux latéraux qui se sont remplis d'iode. Ces images montrent aussi que la configuration de 

l'iode peut varier considérablement avec le diamètre intérieur du CNT hôte. 

 

 

Fig. 2.2 - image ADF d’un nanocristal encapsulé de 

NiI2 nanocristallins. Les encarts correspondent à 

l'application d'un filtre de Wien dans les zones I et II 

(programme "HRTEM Filter" développé par D. R. 

G. Mitchell 

(http://www.dmscripting.com/hrtem_filter.html). 

 

 

 

 

Fig. 2.3 – Modèles structuraux proposés pour les 

nanocristaux dans les zones I et II.  
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Fig. 2.4 - images en mode ADF (STEM à 200 kV) montrant (a) plusieurs chaînes d'iode seul, (b) des doubles chaînes 

d’iode hélicoïdales, (flèches), (c) une triple hélice de chaînes d'iode (les deux nœuds des chaînes sont indiqués par des 

flèches rouges, la configuration des chaînes triples peut être observée clairement dans les régions marquées de flèches 

blanches), (e) cristaux d’iode avec la structure orthorhombique et (f) des nanotubes larges probablement aplatis et dont 

les deux canaux latéraux résultant sont remplis d’iode (flèches blanches) ; (d) image HRTEM (200 kV) montrant une 

phase ordonnée de l’iode présent dans l’échantillon NiI2@DWNT. Cette phase ressemble à la structure de Phase III pour 

l'iode proposée par Guan et al [4] qui est illustrée dans les encarts.  

2.5  Mécanismes de remplissage  

2.5.1 Influence des propriétés physiques et chimiques sur le taux de remplissage 

Une série d'iodures métalliques ont été classés selon leur taux de remplissage, comme indiqué dans le 

tableau 2.1. Les paramètres physico-chimiques comme la tension superficielle, la viscosité, les points 

de fusion et d’ébullition et la pression de vapeur des composés de remplissage ont été recueillis dans 

la littérature [5, 6] et sont également répertoriés dans le tableau 2.1. Aucun d'entre eux ne permet 

d'établir de façon évidente une corrélation avec le classement sur la base du taux de remplissage.  

La réactivité chimique a donc été également considérée comme un possible facteur pertinent, 

puisque la première étape du remplissage est forcément l'ouverture des CNTs. Le potentiel redox du 
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couple iodure métallique / métal a été choisi comme paramètre pour en rendre compte puisque 

l'ouverture des CNTs pourrait se faire par réaction avec l'iode provenant de la décomposition de 

l'iodure. Les potentiels redox calculés des différents composés de remplissage sont reportés dans le 

tableau 2.1 et conduisent à un autre classement, dont les valeurs sont listées par ordre décroissant dans 

la dernière colonne afin de faciliter la comparaison avec le classement basé sur les taux de 

remplissage.  

Tableau 2.1 : Taux de remplissage estimés et propriétés des matériaux de remplissage. Ceux-ci sont répertoriés selon 

leur taux de remplissage. La colonne de droite indique le classement selon la valeur du potentiel redox. 

Matériau de 

remplissage 

Taux de 

remplissage 

estimé (%) 

Point 

de 

fusion 

(°C) 

Point 

d'ébullition 

(°C) 

Tension 

de 

surfacea 

(mJ/m2) 

Viscositéa 

(mN.s/m2)

Tension 

de 

vapeura 

(Pa) 

Potentiel 

redoxb (V) et 

classement 

NiI2 51±5 797 n.a. 54 n.a. 26400 -0.002  1 
AgI 38±5 558 1506 171 3.58 0.2 -0.526 6 

SnI2 34±5 320 714 43 n.a. 31.8 -0.358 4 

PbI2 32±5 402 953 50 n.a. 22.7 -0.489 5 
FeI2 27±5 587 827 71 n.a. 320 -0.298 3 

CdI2 22±5 387 742 47 17.7 91.5 -0.638 7 

CoI2 14±5 520 570 53 n.a. 8.8 -0.139 2 
LiI <1 469 1171 94 2.12 0.1 -2.414 8 

KI <1 681 1330 70 1.6 35.4 -2.749 9 

I2 27±5 113.7 184.3 37 n.a. 1094 0.000   
aToutes les valeurs s'entendent à la temperature de fusion du matériau de remplissage. 
bPour le couple [iodure métallique / métal], quand cela est nécessaire , EI2/I

- est fixé à 0V puisqu'utilisé comme couple de 

référence pour les calculs. 
n.a. = non disponible 

De cette comparaison, il apparaît que les deux classements sont en assez bon accord, avec toutefois 

quelques anomalies, dont AgI et CoI2. Ce résultat montre donc une bonne corrélation entre le taux de 

remplissage et le potentiel redox du couple iodure métallique / métal. Cette corrélation peut être en 

lien avec la nécessité de premièrement ouvrir les tubes pour que le remplissage par effet capillaire 

puisse se produire. Par conséquent, nous proposons que la capacité du composé de remplissage à 

ouvrir les CNTs est primordiale, étant donné que nos DWCNTs sont initialement fermés. D'une 

certaine manière, et considérant aussi que les halogénures fondus sont censés être des liquides 

ioniques, le potentiel d’oxydoréduction peut être considéré comme un indicateur de la réactivité des 

halogénures métalliques vis-à-vis du carbone.  
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En ce qui concerne l’anomalie observée pour AgI, dont le taux de remplissage était le deuxième 

plus élevé alors que le potentiel redox est classé 6ème, elle peut s'expliquer par la forte tension de 

surface de AgI qui favorise le remplissage capillaire pour ce composé parmi les autres iodures. CoI2 

représente la seconde anomalie car il a été classé n°7 selon le taux de remplissage, mais n°2 en termes 

de potentiel d’oxydoréduction. Ce désaccord a été attribué à la forte propension des CoI2 à se 

dimériser avant même que le point de fusion n'ait été atteint, si l'on fait l'hypothèse que la 

dimérisation est préjudiciable à l’ouverture, et donc au remplissage, et contribue peut-être aussi à 

diminuer la réactivité. 

2.5.2   Influence des propriétés du CNT hôte sur le taux de remplissage 

Grâce à notre sélection de nanotubes, les paramètres qui peuvent être discutés sont : 1) le nombre de 

parois (de 1 à plus de 10) ; 2) le diamètre intérieur (de 0,5 à 70 nm) ; 3) la nature chimique de la paroi 

du tube intérieur (carbone ou BN) ; 4) l'énergie de surface de la surface interne du tubes hôte (pour ce 

dernier paramètre, aucune valeur n'est indiquée puisque nous n'avons pas eu accès à des mesures 

expérimentales). 

En comparant les taux de remplissage estimés avec PbI2 pour divers types de CNT hôte comme 

indiqué dans le tableau 2.2, le classement suivant est obtenu :  

PbI2@SWCNT = PbI2@DWCNT > PbI2@FWCNT > PbI2@h-MWCNT > PbI2@c-MWCNT-a 

Tableau 2.2: Taux de remplissage estimés obtenus pour PbI2@CNTs, PbI2@BNNTs et NiI2@BNNTs, ainsi que quelques 

caractéristiques des nanotubes utilisés 

Echantillon PbI2@ 

SWCNT 
PbI2@ 

DWCNT 
PbI2@ 

FWCNT 
PbI2@ 

c-MWCNTs-a 
PbI2@ 

h-MWCNT 
PbI2@ 
BNNTs 

NiI2@ 
BNNTs 

Taux de 

remplissage 

mesuré (%) 
32±5 32±5 25±5 <1 20±5 <1 0 

Nombre de parois 
1 2 2-6 > 10 N. A. 2-4 2-4 

Domaine de 

diamètre interne 
1.35 nm 1-2 nm 1.5-3.5 nm 2-10 nm 50-70 nm 1.2-3 nm 1.2-3 nm 

La discussion (section 2.5.1) permet d'expliquer les meilleurs taux de remplissage observés pour 
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PbI2@SWCNT, PbI2@DWCNT et PbI2@FWCNT par rapport à c-MWCNT-a par le fait que le faible 

nombre de parois facilite l'ouverture par l'halogénure fondu (les nanotubes c-MWCNTs-a sont restés 

fermés).  

Cependant, comme la plupart des h-MWCNTs étaient naturellement ouverts à une extrémité, la 

question de la réactivité de l'iodure fondu vis-à-vis du carbone n'entre pas en ligne de compte et des 

taux de remplissage significatifs sont observés. La question de savoir pourquoi le taux de remplissage 

ne dépasse pas 20% reste ouverte. Ceci pourrait s'expliquer par l'équation de Jurin : ݄ ൌ ଶఊ௖௢௦ఏ

௥௚ఘ
 qui 

montre qu’un grand diamètre intérieur de CNT devrait défavoriser une grande longueur de 

remplissage - contrairement aux CNTs de petit diamètre - ce qui revient à une efficacité moindre de 

remplissage. Toutefois, étant donné que h n’a pu être calculée en raison du manque de données 

nécessaires, il est possible que le taux de remplissage attendu aurait dû être inférieur à 20 % dans le 

cas particulier des larges valeurs de diamètre intérieur des h-MWCNTs. Dans ce cas, le taux de 

remplissage relativement élevé pourrait être dû à l’énergie de surface, qui est plus élevée pour les 

h-MWCNTs que pour les DWCNTs et FWCNTs étant donné que la surface intérieure des premiers est 

principalement composée de graphène présentant de nombreuses liaisons pendantes. Cette incertitude 

concernant quel paramètre prévaut sur le taux de remplissage entre les énergies de surface ou le 

diamètre du tube intérieur pourrait avoir été écartée en considérant les c-MWCNTs-a, à condition que 

ces derniers n'aient pas été ouverts. Cependant, des c- MWCNTs naturellement ouverts de grand 

diamètre ne sont pas faciles à obtenir, et soumettre des c-MWCNTs de grand diamètre à un traitement 

chimique pour les ouvrir conduit à des modifications qui sont susceptibles de rendre les expériences 

non comparables. 

Une incertitude semblable demeure aussi dans le cas des nanotubes de nitrure de bore (BNNT). 

D'une part le fait que PbI2 n’a pas rempli ces derniers pourrait provenir de la mauvaise réactivité de 

PbI2 avec le nitrure de bore, rendant impossible l'ouverture des BNNTs, ou encore de la faible énergie 

de surface du BN par rapport au graphène [7]. D'autre part le fait que les BNNTs ont été fortement 

détruits lors des essais de remplissage par NiI2 au lieu de PbI2 pourrait s'expliquer par la forte 

réactivité de BN avec les espèces de l’iode libérées par la décomposition de NiI2, avec la possible 

libération de triiodure de bore. 
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2.6  Conclusions  

Dans ce chapitre, divers halogénures métalliques (métaux, métaux alcalins et métaux de transition) 

ainsi que de l'iode ont été introduits avec succès dans des DWCNTs (principalement) en utilisant la 

méthode de la phase fondue, ou occasionnellement par la méthode en phase gaz (pour l'iode). Nous 

avons mis en évidence des structures particulières pour NiI2 et l'iode encapsulés, en comparaison avec 

leurs équivalents macroscopiques. En outre, l’influence de diverses caractéristiques des CNTs ainsi 

que des propriétés chimiques et physiques les plus pertinentes des matériaux sur le taux de 

remplissage a été étudiée. Nous avons constaté que : 1) pour divers types de CNTs remplis de PbI2, les 

CNTs de plus petits diamètres sont les mieux remplis ; 2) dans la série des iodures métalliques, le taux 

de remplissage peut être principalement lié au potentiel redox du couple iodure métallique / métal. 

D'autres paramètres tels que la formation de dimères, la tension superficielle ou la libération anticipée 

d'iode (comme dans le cas de NiI2) peuvent également jouer un rôle complémentaire dans le 

processus de remplissage.  
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Chapitre 3  Chimie in situ des hybrides X@DWCNTs 

 

 3.1    Introduction  

Une des limitations de la méthode "sels fondus" est qu'elle ne permet généralement pas d'insérer dans 

les CNTs des matériaux de très haut point de fusion (typiquement >1000°C), comme par exemple de 

nombreux oxydes, la plupart des fluorures, sulfures, et un bon nombre de métaux. Cependant, la 

synthèse de nanostructures 1D de tels matériaux représente souvent un intérêt tout particulier. Dans ce 

cas, la stratégie consiste alors à insérer un précurseur, qui sera ensuite transformé in situ pour générer 

le matériau désiré. Dans le chapitre 3, nos travaux de sulfuration in situ de PbI2@DWCNT pour 

obtenir PbS@DWCNT et la réduction in situ de FeI2@DWCNT et de NiI2@DWCNT pour obtenir 

respectivement Fe@DWCNT et Ni@DWCNT sont présentés, ainsi que nos essais de fluoration de 

FeI2@DWCNT dans le but d'obtenir FeF2@DWCNT (collaboration LMI Clermont Ferrand). De 

nombreuses méthodes de caractérisations sont employées pour s'assurer que la transformation 

souhaitée a bien eu lieu (MET, EELS, X-EDS, DRX, XPS). 

3.2  Sulfuration in situ de PbI2@DWNT 

Nous avons souhaité utiliser la réaction de PbI2 avec le soufre pour obtenir PbS et de l'iode (éliminé) 

pour obtenir des nanocristaux de PbS. Pour effectuer la sulfuration, une ampoule contenant le 

mélange de poudres de soufre et de PbI2@DWCNTs est scellée sous vide puis chauffée dans un four 

avec une inclinaison de 10 à 250 °C pendant 72 h puis refroidie naturellement à température 

ambiante. Le soufre en excès a été lavé par du toluène à 60° C pendant 10 min.  

Afin de vérifier si la sulfuration a réussi, l'échantillon (supposé être) PbS@DWNT a été étudié 

par analyse EELS. Le spectre EELS (Fig. 3. 1b) obtenu au niveau de faisceaux de NTC encapsulant 

des nanocristaux (Fig. 3. 1a) a permis d'identifier la présence de soufre et d’iode. Toutefois, la 

présence de plomb est difficile à détecter par EELS en raison de son énergie d’ionisation trop élevée. 

Des analyses XPS complémentaires ont donc été réalisées. Les résultats XPS montrent que la 

concentration atomique du soufre dans l’échantillon de PbS@DWCNTs est beaucoup plus élevée que 
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celle du plomb et de l’iode, ce qui indique que les CNTs ont été légèrement dopés avec le soufre suite 

à l’étape de sulfuration, alors que la synthèse de nanocristaux de PbS n’a pas réussi. 

 

Fig. 3.1 – (a) images HAADF (FEI Tecnai-F20 équipé d’un détecteur HAADF) des faisceaux de NTC susceptibles de 

contenir des nanocristaux de PbS@DWNT et (b) spectre EELS obtenu en additionnant les spectres collectés le long de la 

ligne rouge tracée en (a). 

La comparaison entre les spectres S 2p de PbS@DWCNT (Fig. 3.2b) et du soufre "massif" [1] (-S8; 

l’allotrope du soufre le plus stable, voir encart de la Fig. 3.2b) suggère que les atomes de soufre sont 

liés aux CNTs et non pas existants comme des molécules de soufre libre. L’échec de l’obtention des 

cristaux de PbS est attribué à la diffusion lente du soufre ainsi qu'à la lente cinétique de la réaction 

entre PbI2 et S à l'intérieur des CNTs (une expérience de contrôle effectuée avec PbI2 et S en poudres 

(hors CNTs) dans les mêmes conditions expérimentales a bien conduit à la synthèse de PbS). Nous 

avons donc obtenu un dopage des CNTs par le soufre mais pas de preuve évidente de la présence de 

PbS (qui est certainement tout de même présent mais en très faible proportion). 

  

Figure 3.2 - (a) spectre XPS global de PbS@DWNT (b) spectres XPS S 2p de PbS@DWNT, et du soufre "massif" en encart 

(S 2p) [1]. 
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3.3  Réduction in situ par H2 

Nous avons choisi d'utiliser l'hydrogène gazeux comme agent réducteur. Sur le principe, la réduction 

des nanocristaux de FeI2 ou NiI2 encapsulés doit conduire à des nanocristaux de Fe ou Ni, et à la 

libération d'acide iodhydrique (HI). La réduction est réalisée dans un four horizontal sous atmosphère 

de H2 (débit de 5L/h). Nous avons exploré différentes conditions expérimentales pour optimiser la 

synthèse de ces nanocristaux métalliques : le four a été chauffé à 400° C ou 500° C pendant 24 heures, 

et les échantillons réduits obtenus ont été notés Fe@DWCNT_400_24, Fe@DWCNT_500_24, 

Ni@DWCNT_400_24 et enfin Ni@DWCNT_500_24. 

 

3.3.1. Réduction in situ de FeI2@DWCNT 

 

Tous les échantillons réduits ont été étudiés par METHR et analyse EELS et à titre de comparaison, la 

proportion de nanocristaux de Fe est plus élevée pour le traitement effectué à la plus haute 

température (Fe@DWNT_500_24). 
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Fig. 3.3 - images HRTEM de (a) un nanocristal de Fe encapsulé dans Fe@DWNT_400_24 et (c) un 
nanocristal de Fe encapsulé dans Fe@DWNT_500_24; (b) et (d) spectres EELS provenant des 
nanocristaux de Fe montrés dans les images HRTEM correspondantes.  
 
 

3.3.2. Réduction In situ de NiI2@DWCNT 

 

Des nanocristaux de Ni (identifiés par les spectres EELS) sont observés dans les échantillons réduits 

et la même observation que dans le cas du fer d'une quantité plus importante dans l'échantillons réduit 

à la plus haute température (500°C) est faite. La Fig. 3.4 montre des images HRTEM et spectres 

EELS de nanocristaux de Ni encapsulés dans les échantillons Ni@DWCNT_400_24 et 

Ni@DWCNT_500_24. Ici aussi, la réduction n'est que partielle et il faut noter que NiI2 est encore 

présent dans tous les échantillons réduits, ce qui s'explique toujours par la même raison. 
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Fig. 3.4 - images HRTEM de (a) un nanocristal de Ni encapsulé dans Ni@DWCNT_400_24 et (c) un nanocristal de Ni 

encapsulé dans Ni@DWCNT_500_24; (b) et (d) spectres EELS provenant des nanocristaux de Ni montrés dans les 

images HRTEM correspondantes. 

 

 

3.4  Fluoration in situ  

Pour obtenir des nanocristaux de FeF3 dans des DWCNTs, la fluoration in situ de nanocristaux de FeI2 

encapsulés dans des CNTs représente une voie attractive. Une des problématiques concerne la 

réactivité des CNTs vis-à-vis du fluor et donc la difficulté à fluorer le contenu des CNTs sans fluorer 

les CNTs eux-mêmes. Ces travaux ont été réalisés grâce à la une collaboration de longue date avec 

l’Institut de Chimie de Clermont-Ferrand (ICCF, UMR 6296) [K. Guerin, M. Dubois] et le travail de 

doctorat de Lea Doubtsof. Une méthode possible pour transformer FeI2 en FeF3 sans endommager les 

CNTs a donc été proposée. Il est intéressant de noter que les DWCNTs sont de bons candidats pour 

cette expérience de fluoration in situ car leur température de fluoration est relativement élevée (200 - 

300° C) [2]. 

L’échantillon utilisé pour la fluoration a été préparé en remplissant des DWCNTs purifiés avec FeI2 

(FeI2@DWCNT-p). Les DWCNTs purifiés ont été obtenus par chauffage sous air de DWCNTs bruts 

à 550° C pendant 30 min, puis lavage dans une solution de HCl pour éliminer les résidus d’oxyde 

métallique (CoO) générés lors de l’étape précédente. L'échantillon FeI2@DWCNT-p a été synthétisé 

selon les procédures décrites au chapitre 2. La réaction de fluoration impliquée dans ce travail peut 

être décrite comme suit : 

FeI2@DWNT-p + 13/2 F2 → FeF3@DWNT-p + 2Si5    (réaction 3.1) 

Pour effectuer la fluoration, l'échantillon FeI2@DWCNT-p a été chauffé à 50 °C dans un 

courant de fluor gazeux pendant 24h. Une perte de poids de 22 % après fluoration a été mesurée, en 
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accord avec ce qui était prévu pour cette réaction. 

Des images MET de DWCNTs purifiés (champ clair) et des images en champ sombre (ADF) 

des échantillons purifiés (FeI2@DWCNT-p) et fluoré (FeF3@DWCNT-p) sont montrées sur la figure 

3.5.  

 
Fig. 3.5 - images MET (a) de DWCNTs purifiés, (b) FeI2@DWCNT-p (ADF) montrant les nanocristaux encapsulés et (c) 

de FeF3@DWNT-p ADF montrant les cristaux encapsulés. 

On peut voir que les CNTs forment de gros faisceaux et que le carbone désorganisé présent dans les 

DWCNTs bruts est rarement observé dans les DWCNTs purifiés, indiquant que l’oxydation sous air 

est efficace pour purifier les CNTs. Les images en champ sombre montrent que les CNTs sont remplis 

de nanocristaux dans les deux cas, avant (FeI2@DWCNT-p) et après (FeF3@DWCNT-p) fluoration. 

Pour vérifier si les nanocristaux de FeI2 ont bien été transformés en FeF3 après la fluoration, 

une analyse X-EDS est effectuée sur des échantillons FeI2@DWCNT-p et FeF3@DWCNT-p. 

Les pics Fe-K I-Lsont présents dans les spectres EDS obtenus dans des faisceaux de l'échantillon 

FeI2@DWCNT-p (Fig. 3.6b), confirmant l’encapsulation de FeI2 dans les CNTs. Les pics Fe K et F 

K sont aussi observés dans les spectres EDS provenant de gros faisceaux de nanotubes pour 

l'échantillon fluoré (FeF3@DWCNT-p) (Fig. 3.6 d), ce qui implique la présence de FeF3 après 

fluoration. Cependant, le pic I-L est toujours présent dans les spectres de FeF3@DWCNT-p, 

impliquant que certains nanocristaux de FeI2 encapsulés ne sont pas fluorés, ce que nous expliquons 

toujours par les mêmes raisons cinétiques.  
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Figure 3.6 - (a) et (c) images STEM de FeI2@DWCNT-p et FeF3@DWCNT-p ; (b) et (d) spectres EDS correspondant aux 

zones encadrées en (a) et (c). L'encart présenté en (b) est un spectre agrandi de la région de 3 à 8,5 kV montrant les pics 

de I et Fe. 

3.5   Conclusion  

En résumé, diverses transformations in situ, y compris la sulfuration, la réduction et la fluoration 

d'hybrides (iodure métallique)@DWCNTs ont été effectuées. Que ces transformations aient été 

fructueuses (réduction par H2 et fluoration) ou non (sulfuration), une conclusion générale est que la 

difficile progression des réactifs et des sous-produits de la réaction dans la cavité interne de CNTs 

d'aussi petit diamètre que des DWCNTs ralentit énormément la vitesse de la réaction. De ce fait, il est 

courant que le produit contienne finalement un mélange du produit initial et du produit désiré, ainsi 

qu'un cortège d'étapes intermédiaires. 
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Conclusions générales et perspectives 

Dans cette thèse, nous avons prouvé que le remplissage de DWCNTs par des halogénures 

métalliques et l'iode est une approche facile pour synthétiser diverses nanostructures 1D allant de 

nanofils d'iodures métalliques à différentes structures de l'iode atomique, du fait de l'effet de 

confinement dans la cavité interne des CNTs. En outre, nous avons également prouvé que cette même 

cavité interne peut être utilisée comme un nanoréacteur permettant des réactions chimiques in situ.  

Une conclusion générale est que la réactivité chimique des matériaux de remplissage vis-à-vis du 

CNT, et en particulier des extrémités initialement fermées, joue un rôle essentiel dans le remplissage 

des CNTs. Nous avons montré dans le cas des iodures métalliques que le potentiel 

d’oxydoréduction du couple iodure métallique / métal peut être utilisé pour comparer une série de 

composés d'une même famille (ici les iodures) et même de procéder à un classement des taux de 

remplissage qui peuvent être attendus. Il resterait à démontrer la validité générale de cette approche 

en s'intéressant à d'autres familles (par exemple, les chlorures métalliques, ou encore les halogénures 

d'un métal donné) mais il faut bien garder à l'esprit que le travail de caractérisation à mener est très 

lourd. En ce qui concerne le nombre de parois son augmentation conduit sans trop de surprises à 

rendre le remplissage plus difficile. Finalement, la stabilité thermique (vue sous l'ange de l'énergie 

libre de Gibbs) du matériau de remplissage joue aussi un rôle important puisque le remplissage 

apparaît d'autant plus difficile que la stabilité du composé est grande. Bien entendu, d'autres 

paramètres tels que la viscosité, la pression de vapeur saturante, la mouillabilité, seraient très 

importants à prendre en compte de façon plus détaillée, et certains (tension de surface, énergie des 

surface) ont d'ailleurs été considérés ici pour expliquer des variations de détails. Mais ces données 

sont souvent absentes de la littérature, en particulier à la température des sels fondus, ce qui rend la 

tâche plus difficile qu'il pourrait sembler initialement.  

Nous avons mis en évidence dans le cas de l'iode que la source utilisée (iode fondu ou gazeux, ou 

encore iode provenant de la décomposition d'un iodure (NiI2 en particulier) joue aussi un rôle 

considérable sur l'organisation de cet élément dans les CNTs avec des structures allant de simples 

chaînes atomiques linéaires à des chaînes hélicoïdales jumelles ou triplées ou encore des structures 

cristallines similaires au matériau massif, ou au contraire très différentes. Ceci ouvre donc des 
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perspectives intéressantes pour la synthèse préférentielle de telle ou telle structure. Enfin, un cas 

particulier et encore jamais vu dans la littérature a été mis en évidence, qui est la présence probable 

de tubes larges aplatis en rubans dont les bords forment des canaux longitudinaux qui se sont 

remplis d'iode. Le choix de l'une ou l'autre des configurations de l'iode est induit par la valeur du 

diamètre interne de chaque nanotube concerné. 

Diverses transformations in situ telles que la sulfuration, la réduction et la fluoration d'hybrides 

iodure métallique@DWCNT ont été effectuées. Que ces transformations aient été fructueuses 

(réduction par H2 et fluoration) ou non (sulfuration), la difficile progression des réactifs et des 

sous-produits de la réaction dans la cavité interne de CNTs d'aussi petits diamètres que des DWCNTs 

ralentit énormément la vitesse de la réaction. Une transformation totale est probablement possible au 

prix d'un allongement considérable de la durée du traitement. 

Notre travail au cours des trois dernières années a donné un nouvel éclairage sur les mécanismes 

impliqués lors du remplissage de CNTs par la méthode des sels fondus et a fourni quelques pistes 

pour la synthèse de nanocristaux métalliques 1D tout en démontrant l’inefficacité de certaines autres. 

Afin de mieux comprendre les mécanismes de remplissage, travailler à la fois sur d'autres composés 

et sur d'autres CNTs de diamètre variable serait utile afin d'accumuler davantage de données et de 

mieux prendre en compte ce paramètre. La difficulté essentielle que nous avons rencontrée en quittant 

le domaine familier des DWCNTs est de trouver des sources fiables d'échantillons de CNTs dont il 

serait possible de ne faire varier idéalement qu'une seule caractéristique (le diamètre par exemple). 

L'étude des propriétés physiques des hybrides que nous avons préparés, que ce soit à titre 

individuel ou collectif (poudres, "buckypapers", etc.) serait très intéressante. En effet, on peut 

s'attendre, que ce soit au niveau électrique ou magnétique, à des modifications importantes des 

propriétés des nanocristaux du fait de la différence importante de structure par rapport au matériau 

macroscopique. En cas de transfert de charge avec les CNTs, ce sont des modifications des propriétés 

des CNTs qui peuvent être attendues, et il se pourrait que certains des matériaux hybrides préparés au 

cours de ces travaux présentent des comportements tout à fait originaux. La plupart des 

caractérisations décrites dans les perspectives sont actuellement en cours avec différents 

collaborateurs, mais les résultats, encore inconnus au moment de la rédaction de cette conclusion, 

n'ont malheureusement pas pu figurer dans le manuscrit. 
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