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“The important thing is to not stop questioning. Curiosity has its own reason
for existence. One cannot help but be in awe when he contemplates the mysteries of
eternity, of life, of the marvelous structure of reality. It is enough if one tries

merely to comprehend a little of this mystery each day”

“Student: Aren't these the same questions as last year's physics final exam?

Dr. Einstein: Yes; But this year the answers are different.”

Albert Einstein
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Abstract

Many types of composite materials are today used in various types of load carrying
structures, due to their excellent strength and stiffness to weight ratio. Simplicity,
reliability and low cost of the material processing are important factors affecting the

final selection.

With the textile reinforced composites, the cost-efficiency is reached by using dry
preforms which are impregnated by resin infusion, resin transfer molding etc.; this

have made a break-through and have been widely used.

Textile composites with bundle meso-structure have been studied in this thesis for

elastic properties and damage investigations.

In chapter I a state of the art was conducted the different methods for elastic
properties determination in composites with bundle mesostructure and mesostructure
heterogeneity. The different damage features occurring in such composite materials

are also investigated.

Chapter II of this thesis deals with elastic properties modeling for Non-crimp fabric
(NCF) based composites for investigating the effect of meso-structure defects on
mechanical properties degradation. The objective of the work is to formulate a model
for the NCF composite mesostructure in an attempt to investigate the effect of the
waviness on stiffness reduction. Moreover, the stiffness calculation methods for the
complex geometry are explained and justified and finally, the different geometrical

parameters changes are taken into consideration and included in the calculation.

The damage initiation and development is presented in chapter III, where woven
fabric composites designated for high temperature application were investigated
under severe thermal conditions to study their thermal stability and their resistance to
thermal damage. The mechanical performance of the same composites was studied.
The effect of aging was also investigated. 3D models were realized with Finite
elements in order to explain the edge effect on the evolution of the cracks observed

during the tensile tests. In addition, the differences and similarities in cracking in

v



different layers were analysed using probabilistic approaches (a simple one as well as
Monte Carlo simulations with Hashin’s and also shear lag model) and fracture

mechanics arguments.
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Chapter 1

State of the art

1. Introduction: Fibre reinforced composites

The quest of weight gain using materials with superior specific properties, engages the
interest of many researches to explore composite materials. Each year, composites
find their way into hundreds of new applications from golf clubs and tennis rackets to

jet skis, aircraft, missiles and spacecraft.

Composite materials are widely used in different areas such as aeronautics (helicopter
blades, pressure bulkhead, cargo door, etc), maritime transport (boats, etc),
automotive industry (car roof, car carline, etc), electronic (insulation, mounting printed
circuit, boards, etc), buildings (furniture, roofing, etc), industry (tanks, pipes, wind
turbine blades, etc) and even in sports and entertainment (skis, fishing rods, helmets,

etc)...

A composite material consists of an assembly of different immiscible materials which
complement each other and bring about a material whose physical properties are

better than those of the individual constituents working separately.

Polymer composites are formed with reinforcement in the form of particles or fibres
embedded in a matrix. The matrix is often a thermoplastic or a thermoset polymer.
The matrix preserves the geometric arrangement of fibres, protects them from the
environmental attack and damage, to which the sample can be exposed. The fibres can

have inorganic or organic nature such as carbon fibres, glass fibres, oxide fibres, silicon



carbide fibres, etc. They can be continuous or discontinuous filaments. The high
stiffness and strength of polymer composite materials stems from the high stiffness
and strength of fibres. Their geometry allows them to have minimal defects and their
composition gives them a high strength. The fibres work as reinforcements since the
load is transferred to them from the matrix. The volume fraction of fibres for a
structural composite is typically 45%-65%. The maximum theoretical value is 79% for

square array and 91% for a hexagonal array [1].

The fibres can be arranged in different ways: homogenously or uniformly dispersed
like in pre-impregnated tape laminates or in form of bundles like in the woven

reinforced composites or the non-crimp fabric composites.

The pre-impregnated tape laminate, shown in Figure I-1 [2], is a stack of unidirectional
plies in which the layers are perfectly bonded to each other and the mechanical

properties depend on their orientations.

Figure I-1. Internal structure of pre impregnated tape based

cross ply laminate [2]

The main advantage of this material is the high fibre volume fraction that can be
obtained with well aligned fibres, showing an excellent in-plane stiffness and strength.

The problem with this material is that it is expensive. The high costs combine the high



labour costs and the high storing costs (pre-impregnated tapes require low
temperature to prevent curing). Another drawback is the sensitivity to inter-layer
delamination cracking under impact loading due to their poor interlaminar fracture

toughness [3].

This problem is solved with woven composites shown in Figure I-2 [4], the reinforcing

fibres are assembled in bundles in different directions and form a fabric.

Figure I-2. Images of E-glass (left) and basalt (right) woven fabrics [4]

This composite has two-directional reinforcement and its manufacturing cost is lower
than that of the pre-impregnated tape based composite. The woven structure shows
high waviness in the out-of-plane direction. This waviness brings advantages to the
material by improving its fracture toughness and its mechanical properties in the out-
of-plane direction. But, it brings also significant drawbacks to woven composite by

reducing the in-plane properties.

Some drawbacks of the pre-impregnated tape based composites and of the woven
composites are overcome with new type of textile composite called non-crimp-fabric

composites (NCF) presented in Figure I-3 [5].
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Figure I-3. Schematic diagram showing a multi-axial non-crimp fabric [5]

NCFs are relatively new class of textiles in which a fabric is constructed of layers of
fibre bundles aligned in specific directions [6]. The layers of fibres are produced by
laying tows next to each other in a specified direction and subsequently employing a
secondary fine yarn knitted around the tows to hold the fabric in place. The use of
through-thickness stitching allows for improvement in damage tolerance and in the
interlaminar fracture toughness. For textile composites (woven and NCF), the
manufacturing technique provides a dry preform (fabric) which can be used in
complicated shapes before it is consolidated into the final composite by resin transfer
moulding with low manufacturing costs comparing to the pre-impregnated tape based
composite. NCF composites, ideally, would combine a good in-plane response, like pre-
impregnated tape based composites and the good through-thickness stiffness and

strength due to the stitching in the thickness direction [7].

With bundle mesostructure, the woven and NCF composites show heterogeneities in
the micro- and the meso —scale as shown in Figure I-4 [8]. The micro-scale
heterogeneity can be seen from the microstructure of the fibre-matrix inside the
bundles, the meso-scale heterogeneity is due to the structure of layers where the fibre

bundles are separated by the matrix.



Figure I-4. Hierarchical structure of the NCF composites [8]

As it is shown in Figure I-4, the 0°-tows are far from being ideally oriented and
present waviness in the out-of-plane direction. The stitching yarn induces waviness
which leads to the in-plane stiffness reduction. The waviness occurring in NCF
composites are similar to that can be seen in woven reinforced composites with lower

amplitudes.

2. Mechanical properties in composites with bundle

mesostructure

In order to study the mechanical properties dependence on the architecture
parameters, finite element analysis and theoretical analysis methods are more
convenient than the experimental techniques because of the complex geometry and
the numerous parameter controlling the mechanical behaviour of the textile

composites [9-10].

Finite element method (FE) started with Ritz who developed an effective method for

an approximate solution of problems in the mechanics of deformable solids [11-12]. FE



is @ numerical method for finding approximate solutions to boundary value problems
for differential equations. It uses variational methods to minimize an error function
and produces a stable solution. The problem is transformed to an equivalent one in
terms of properties and geometry and the method is based on the discretization
principle which is translated by the choice of a mesh that occurs by dividing the
studied area into sub-domains with simple geometry (triangle, quadrilateral, etc) and
with finite dimensions, hence the finite element method’s name. Results are
determined for each element. The accuracy of the results is directly related to the
mesh quality realized (number of element, their distribution in the structure, form of
element, etc). In FE analysis many errors can be produced, such as wrong
interpretations of the physical model, mechanical modelling errors due to many
assumptions like geometric simplifications and resolution errors which are due to
problems of numerical accuracy. The engineer must be aware of the existence of these

errors and must be able to estimate a level of confidence in the results.

Many researches have been conducted for predicting the mechanical properties of
textile composites. The basic principle to determine the elastic properties of a textile
composite using FE is to divide the structure into unit cells and then mechanical

properties are calculated for the unit cell.

Since the textile composites have a complex architecture it is not easy to incorporate

all geometrical parameters and simplifications are needed in the FE modelling [13].

Naik et al. [14-16] proposed a 2D crimp model for the elastic analysis of a 2D plain

weave. The unit cell in this model was divided into sections and then the series-parallel



models were used to estimate the lower and the upper bounds of the elastic

constants.

Ishikawa and Chou developed the “mosaic” model [17], the “fibre undulation” model
[18] and further the “bridging” model [19] for analysing the elastic behaviour of woven
hybrid composites. In these models a fabric composite was simply regarded as an
assembly of blocks of cross-ply laminates neglecting the shear deformation in the

thickness direction.

Bystrom at al. [20] developed a homogenization method for stiffness matrix
computation of woven composites; the method was called reiterated homogenization.
The authors studied the linear elastic problems with periodic microstructure, which
justifies the use of representative volume element which is enough to represent the

elastic properties of the whole material.

More recent study was performed by Riccio et al. [21] who developed a representative
volume element (RVE) for NCF composites under tension loading taking into account
the tow’s waviness and the stitching. The classical micromechanical theory was used
together with the stiffness averaging method. It was demonstrated that the exclusion
of the tow’s waviness from the model leads to a big error of the stiffness comparing to
the experimental data. However, the lack of stitching in the model is less relevant
leading to a small error that can be neglected. The stiffness dependence on the tow’s
waviness was investigated and it was shown that this stiffness strongly depends on the

waviness.

A mesoscopic FE model of the NCF structure was realized by Drapier [22] in order to

investigate the interlaminar shear behaviour of non-crimp fabric composites. The
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geometrical heterogeneity was taken into account. The tow’s crimp was considered
large enough for the composite to be regarded between the pre-impregnated tapes
and the woven structures. This waviness was assumed as sinusoidal shaped
characterized by a wavelength and amplitude. The same assumption was used in [23]
by Edgren et al. where the authors used Timoshenko beam theory in addition to FE to
calculate the stiffness of a layer in the NCF composite considered like a single curved
beam. In addition to this assumption, Mattsson et al. [24] demonstrated that the 90°-
layer with bundle mesostructure can be replaced by homogenized 90°-layer without

losing accuracy in the NCF laminate stiffness investigation.

One more important geometric parameter that should be taken into consideration
while modelling textile composites, is the inter-strand gap between the bundles, it has
been demonstrated in [25] that a change in the inter-strand gap width leads to a
significant modification of the elastic properties (elastic modulus, shear modulus and
Poisson’s ratios) because of the change of the fibres volume fraction and the matrix

volume fraction inside the layers.

3. The damage features in textile composites

In order to have confidence in the structural integrity of composite components,
designers must have a good understanding of the effect of stress concentrations which
lead to the damage. Studies of initiation of cracks, their growth characteristics and
their effect on the laminate properties belong to an active field of study called damage
mechanics, playing a central role in the assessment of durability and damage tolerance

of composite structures.



Composite structures can undergo multiple micro-cracks before losing ability to carry
the design loads. The damage mechanisms occurring in textile composites are basically
the same as in pre-impregnated tape based composites. It mainly consists of matrix

cracking, delamination and fibres fracture [26] presented in Figure I-5.

Fiber fracture
/
’ Matrixcracking
& Ve
\ /

\,.

. delamination

Figure I-5. Damage mechanisms in laminates [27]

3.1. Matrix crack (Intralaminar cracking)

The stiffness and strength of fibre reinforced composites are higher in the longitudinal
direction than in the transverse one. In addition, the stiffness of the reinforcing fibres
is significantly higher than the matrix material. Thus, stress concentrations occur in the
matrix when a ply is loaded in the transverse direction. The stresses at which the
failure occurs in off-axis ply are lower than that of plies aligned in the loading direction.
In the off-axis plies, the cracks develop and run parallel to the fibres direction. These
cracks are usually the first mode of damage in fibre-reinforced composites. Such cracks
are caused by tensile loading, fatigue loading, as well as by changes in temperature or

by thermal cycling. Matrix cracks do not cause a total failure of the composite, but may

10



lead to significant degradation of the elastic properties and to appearance of other

damage modes. An example of matrix crack is presented in Figure I-6.

Figure I-6. Matrix crack [28].

3.2. Delamination (Interlaminar cracking)

The delamination is a longitudinal crack in the interface between two adjacent plies. Its
propagation leads to the separation of the layers. This mode of damage causes the
rapid deterioration of the mechanical properties and the total failure of the composite
structure. An example of delamination is presented in Figure I-7 where it shows how it

is starting from the matrix crack tip.

Figure I-7. Delamination starting from a matrix crack tip [28]

3.3. Fibres break

11



As its name says, it is the breaking of the fibres oriented parallel to the loading
direction. In a unidirectional composite loaded in tension along the longitudinal
direction, the fibres fail at their weak points and stress redistribution between fibres
and matrix occurs, affecting other fibres and breaking more of them. An example of

broken fibres is presented in Figure 1-8.

Figure I-8. Broken fibres [28]
3.4. Matrix cracks in bundle structured composites

Damages can occur in the textile composites in different length scale, either on the
micro scale or on the meso scale. Figure I-9 represents the different types of cracks

occurring within the fibre bundles introducing after a tensile test.

0°-layer Mairix 90°-bundles

4/ / L
/

Lo

-

i

v

Half cracks, Whole cracks Double cracks
Ng*2 N Na*2

pu =" pw =" po=N -

Longitudinal cracks
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Figure I-9. Schematic showing the four crack types observed in NCF cross-ply

laminates p; refers to crack densities of the different type of cracks [29].

The maximum cracks density is inversely proportional to the ply thickness [30].

34.1. Longitudinal cracks

Longitudinal cracks are presented in Figure I-10. They can appear either within the
bundle or at the bundle-matrix interface. They occur on the loading direction and they
appear at high strains. This type of cracks never occurs in composites with uniform
fibre distribution. They can appear due to fibres tow waviness at strains between

0.39% and 0.66 % [29-30].

Figure I-10. Micrograph of novel longitudinal cracks occurring in the 90°layer of the

NCF cross-ply laminate [29]

3.4.2. Whole cracks (Transverse cracks)

Figure I-11 shows some whole cracks which extend from one 0°layer to another

through two neighbouring 90°fibre bundles [29].
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Figure I-11. Examples of whole cracks running through two neighbouring

90°fibre bundles of the cross-ply NCF laminate [29]

3.4.3. Half cracks (Transverse cracks)

Figure I-12 shows the half cracks which are contained in a single 90° fibre bundle
without connection with others existing in adjacent fibre bundles. This is the first type

of cracks to occur in NCF composites [29].

Figure I-12. Examples of half cracks in 90°fibre bundles of the cross-ply NCF laminate

[29]

344. Double cracks

Figure I-13 shows double cracks which are a combination of half crack and longitudinal

crack. They occur within a single fibre bundle [29].
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Figure I-13. Examples of double cracks in single 90° fibre bundles of the cross-ply NCF

laminate [29].

The same type of cracks were also characterized and studied by John et al. [31] in 3D

woven Fabric.

Edgren et al. demonstrated in [29] that the amount of whole cracks found in NCF
composites is small and doesn’t exceed 0.25cr/mm. The half cracks are more abundant
than whole cracks and appear earlier. But their effect on stiffness degradation is
moderated in NCFs comparing to the pre-impregnated tape based composites. It was
proved that the 90° layer’s damage doesn’t have an important effect on the Young’s
modulus which decreases slightly, since the laminate modulus is mainly controlled by
the 0° non-damaged laminate. However, it has a strong effect on the degradation of
the Poisson’s ratio because the transverse cracks increase the strain in the load
direction and reduce contraction in the transverse direction. The appearance of the
new longitudinal cracks was explained by the stress concentration caused by the

forced straightening of the 0° fibre bundles in tension.

3.5. More studies on damage accumulation in textile
composites
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The complexity in geometry of the damage and its quantification has made the
progress in studying the effect of the damage accumulation on the mechanical
properties in textile composites slower than in composites with uniform fibres

distribution.

Gao et al. [32] have studied the relationship between the mechanical properties and
the damage accumulation in woven fabric laminate under quasi-static loading. The
shear lag analysis, originally derived for the pre-impregnated tape based laminate,
were employed idealized laminate replacing the woven one (Figure I-14), since in the
studied eight-hardness satin fabric, the inter-crimp distance is quite large. It has been
demonstrated that the Young’s modulus is affected little with the accumulation of
matrix cracks and crimp delaminations until the saturation of the crack density. The

Poisson’s ratio was much more sensitive to the damage.

N N .
I T - ¥ i

Figure I-14. I|dealization of two layer woven fabric laminate [32]

Lomov et al. [33] presented an experimental methodology to study the initiation and

development of damage in textile composites in tension test, which was applied to
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different textiles: woven and NCFs. This methodology is based on full field strain
measurement for studying the strain map, on a X-Ray inspection for studying the
cracks placement, orientation and their length distribution, on a C-Scan for the
damaged samples in order to study the damage extend and periodicity and finally on

SEM for micro-characterization of damage.

The damage pattern in NCF composites was studied in [34], it was demonstrated that
the cracking occurs periodically showing that there is a relation between the stitching

and the damage pattern.

During the service life, the composite materials are not only exposed to mechanical
loading but also to thermal loads. In [35], the effect of accelerated aging condition on
woven fabric composite was analysed. A glass fibres eight-hardness satin weave with
two different epoxy matrices (120°C and 180°C) was studied. When the fibres are
protected with better matrix they are less sensitive to the thermal aging effect and

they have better performance under mechanical loading.
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Chapter 11

Effect of meso-structure defects on elastic

properties of textile composites

1. Introduction

Due to high material costs and sensitivity to out-of-plane loads (e.g. impact damage) of
pre-impregnated tape based composites, new manufacturing methods and material
architectures based on dry preforms have been employed in the last decade producing
civil aircraft primary structures. Non-crimp fabric (NCF) reinforced composites are
particularly attractive due to their relatively high performance with less drop in the in-
plane properties compared to traditional woven architectures, reasonable cost and
ease of handling during manufacture. As a result there is a strong interest among
aircraft manufacturers and within other sectors such as wind energy and automotive

industry, to use NCF based composites in primary structures.

NCF composites are manufactured from layered textile preforms consisting of fibre
bundles with a certain orientation assembled by warp-knitted threads [36]. This
production technique allows for substantial reductions in production costs compared
to pre-impregnated tape based materials. In addition improvements in damage
tolerance as well as out-of-plane fracture toughness have been reported [37-39].
During composite manufacture, preforms are stacked in a mould and infiltrated by a
thermoset resin to form the composite. Thus an NCF composite is created which is

heterogeneous not only on microscale (fibres and resin) as for pre-impregnated based
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composites, but also on mesoscale due to the appearance of distinct fibre bundles and
resin pockets. Since the bundle scale is much larger than the fibre scale,
homogenization over the fibre/matrix scale is possible representing the bundle as

transversally isotropic material.

Ideally, NCF composites would consist of perfectly aligned fibre bundles where the size
of each bundle is determined by the stitching procedure. However, due to the complex
manufacturing technique, NCF composites have both in- and out-of-plane waviness of
the bundles which reduces the in-plane stiffness. In [22,40] experimental data
regarding the measured out-of-plane waviness are discussed, and the waviness in
terms of sinusoidal shape was used in a 2D FE-model of a composite with periodic
structure in the thickness direction and a biaxial NCF as a repeating unit cell (RUC) in
order to study the effect of the parameters defining the 2D mesoscopic model on the
NCF compressive strength. It has been shown that the NCF compressive strength is

controlled by the 0°-tow geometrical instability and by the resin shear plastic flow.

In the sense of the out-of-plane waviness the architecture of real NCF composite
described above and shown in Figure II-1a has similarities to woven fabric composites;
see Figure II-1b. Therefore, methods and theoretical models for woven fabric
composites [41] have been applied also for NCF composites. For woven composites
Ishikawa and Chou [17,18] proposed the mosaic and fibre undulation models. In these
models, an assumed representative volume element (RVE) is divided into infinitesimal
strips and the classical laminate theory (CLT) is used to calculate elastic properties of
the strip. The mosaic model disregards the waviness of the bundle whereas the fibre

undulation model also includes the waviness. In [42], the 3D RVE consists of flat matrix
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pockets as well as in-plane and interlaced bundle regions. The iso-strain assumption
was used in the in-plane directions and constant stress assumption in the out-of-plane

direction.

Resin
0°-tow
90°-bundle

R A s~ W . e (b)

Figure I1-1. Edge view of the mesostructure: (a) NCF composite (b) Woven composite

Similar analytical models have been applied to NCF composites in [43, 44]. In [45] the
stitching thread was included in the analysis. Stiffness expressions for NCF composites
assembled by a warp knitting procedure were presented in [46] using the
manufacturing parameters as input. In [47] the reduced volume fraction of the bundle
and matrix due to the distortion created by the stitching yarn was analysed. The
reduced volume fraction was then used together with CLT to predict the mechanical
properties of the laminate. Super-elements containing all details of the NCF
architecture that necessarily requires numerical methods were introduced in [21].

More complex semi-analytical approaches are presented in [20, 24].

A different approach is using the assumption that the NCF composite stiffness problem
can be reduced to CLT problem for laminate with “effective” elastic properties of
“effective flat” layers. The effective stiffness is calculated considering an isolated
curved beam (bundle, layer), replacing its interaction with the rest of the composite

with proper boundary conditions. In [23] the effective modulus was calculated using a
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Timoshenko model for curved beams with different boundary conditions during axial
loading: “free beam” (no restrictions on z-displacement); “simple support” (zero z-
displacement in support points); “elastic foundation” represented by one spring
leading to very similar result as in case with “simple support”. The reduction of the

effective bundle modulus was described by a knock-down factor.

Since the results were very sensitive with respect to the boundary conditions, we
conclude that definition of surface conditions applied to curved tows to obtain
effective stiffness representative for its behaviour in the NCF composite remains an

unresolved problem.

The main objective of the work presented in this chapter is to develop and validate CLT
based methodology for axial stiffness calculation of imperfect biaxial NCF composites
with fibre tow waviness using layers effective properties of idealized straight laminate

(Figure II-2) calculated using 2-dimentional FE modelling.
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Figure I1-2. NCF waved structure replaced by flat layers using effective stiffness while

Ais the amplitude and L is the wavelength.

Different approaches are presented in this thesis: Isolated beam with appropriate

boundary condition and Master curve approach.
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It has to be noted that the observed trends and obtained results in all the following
may be of relevance not only for NCF composites with bundle waviness, but also for

woven com posites.

2. FE modelling procedure (Material, geometry and

assumptions)

In the previous study, [23], a two blanket cross-ply NCF’s 0°-tow waviness was
assumed sinusoidal and two possible geometrical configurations were analysed
numerically: the in-phase case, when the waves of the two outer 0°layers are in
phase, and the out-of-phase case, when the waves of the outer 0°-layers are out of
phase. Those are the extreme cases and in a real composite the RVE is often much
larger than the wave length of the individual bundle in one blanket because the

blankets of the fabric are randomly shifted in horizontal directions.

In this study, we analyse the stiffness of a simple 0/90 unit of the NCF composite. The
rest of the composite is roughly replaced with symmetry conditions. Two units are
analysed, a unit with a surface 0°layer, see Figure II-3a and II-3b, and another with
an embedded 0°-layer, see Figure II-3c. The units correspond to a particular case of

cross-ply NCF composite with zero shifts between blankets.

Bundles in the NCF composite are considered as unidirectional (UD) composites with
certain fibre volume fraction and their elastic properties may be calculated using
hexagonal unit cell as it was explained in [30] or simple rule of mixture based on iso-

strain assumption, Halpin-Tsai expressions etc.
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Bundles or layers with out-of-plane waviness are referred to in following as “curved
bundles” or “curved layers”. First we assume that the structure of curved bundles in a
layer may be replaced by homogenized layer with average fibre volume content, which
is kept 0.6. In the bundle case the fibre volume fraction was 0.7. The elastic constants
of the layers and the constituents are given in Table II-1 for glass fibre- and carbon
fibre- epoxy composites (GF/EP and CF/EP1). CF/EP2 composite properties were not
calculated, they are assumed the same as for CF/EP1 except the longitudinal modulus

which is lower (120GPa).

In calculations where the 90°-layer meso-structure with bundles, Figure II-3a, was
modelled, the shape of the 90°-bundle in Figure II-3a was changed in order to keep
the same fibre volume fraction V; = 0.6 in the 90°layer for models with different

wave amplitudes and/or wave length.

Table II-1 Elastic constants of constituents and homogenized layers

Constituents El (GPa) E2 (GPa) v12 v23 G12 (GPa) G23 (GPa)
Glass fiber 76.00 76.00 0.20 0.20 31.67 31.67
Carbon fiber 233.00 23.00 0.20 0.20 20.00 9.60
Epoxy resin 3.00 3.00 0.38 0.38 1.09 1.09
Composites E1 (GPa) E2 (GPa) v12 v23 G12 (GPa) G23 (GPa)
Carbon fiber/Epoxy (CF/EP1) 141.00 8.80 0.26 0.44 3.60 3.10
Glass fiber/Epoxy (GF/EP) 46.80 11.30 0.26 0.45 3.80 4.00
Cabon fiber/Epoxy (CF/EP2) The same properties as CF/EP1 with lower modulus E1=120 GPa

The error introduced by replacing the layer with bundles by homogenized layer has
been analysed before, for example, in [24] showing that the axial stiffness of a flat 0°-
layer does not change significantly if the bundle mesostructure of the 0°-layer is
replaced by homogenized layer with elastic properties corresponding to the average
volume fraction of fibres in the layer. This result justifies the use of a curved 0°-layer

instead of curved 0%-bundles in NCF composite stiffness investigation. The same study
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demonstrated that the 90°-layer meso-scale details on the NCF laminate stiffness can
be neglected in cross-ply NCF with straight 0°-bundles and constant 90°-layer
thickness. The validity of the assumption, that, in NCF composite with curved 0°-layer,
the 90°-layer bundle structure can be homogenized (“smeared out”), was checked in
the current work comparing axial stiffness of models in Figure II-3a and Figure II-3b

with sinusoidal shape of the waviness.

In calculations both models had the same fibre content. Changing the amplitude A of
the waviness the average thickness of the 90°-layer was not changed. The results
showed that the stiffness is just marginally affected by the mesostructure of the

bundles and the 90°-layer homogenization is justified.

In the next step the CLT approach to NCF composite stiffness calculation is adapted,
replacing the curved layer with a straight layer which has the “effective” in-plane

stiffness of the curved layer. Thus, the laminate is made of “effective” layers.

Coupling
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Figure II-3. NCF composites units (a) surface 0°-layer with bundle structure (b) surface
0°-layer with homogenized 90°-layer (c) embedded 0°-layer with homogenized 90°-

layers.

The thickness of the 0°-layer is equal to the average thickness of one 90°-layer, t, =

tgo -The top surface of the 0°layer in Figure II-3b is traction free and all nodes
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belonging to the top surface of the unit in Figure II-3c are coupled. The finite element
code ANSYS14.0 with PLANE42 elements in plane strain assumption was used. The
coordinate system of each element in the 0°%-layer follows the sinusoidal shape of the
layer. The area of each layer was meshed with quadratic elements with 200 divisions
along the model length and 40 divisions along the thickness direction. Symmetry
condition was applied along the left vertical boundary and a constant x-displacement
was applied along the right vertical boundary leading to average strain in x-direction

equal to 1%. Symmetry condition was applied along the bottom boundary.

Forces, for effective stiffness determination, were calculated by summing the reaction
forces acting on the nodes along the corresponding edge of the layer. The reaction
force on the node shared by both layers is replaced by half of the reaction force of the
neighbouring node, by analogy with the reaction force on the upper-right node in the
free upper boundary which is also equal to half of the reaction force of its

neighbouring node.

3. Effective stiffness determination using isolated
beam subjected to appropriate boundary

conditions

In this approach the curved tows/layers are replaced by straight ones with effective
elastic properties. Isolated curved layers with appropriate boundaries and end
conditions are suggested for effective properties determination. To identify what type
of surface loads on the isolated curved 0°-layer will represent its behaviour in the NCF

composite, FE-analysis of the stress/traction distributions at the 0°-layer/90°-layer
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interface in the NCF composite are conducted and sinus shaped functions are
introduced to represent the surface load distribution. This approximation is then used
in further numerical modelling to calculate the effective modulus of the curved 0°-
layer. It is demonstrated that a CLT based analytical model, in which the
nominal/average thickness of the 90°-layer, the effective stiffness of the curved 0°-
layer and the effective stiffness of the 90°-layer with varying thickness are used,

renders good accuracy.

The CLT approach for calculating the axial stiffness of the NCF composites is very
attractive due to its simplicity in application. For a symmetric and balanced laminate

the macroscopic in-plane stress-strain relationship is

LAM LAM
o™ = QiMe, + Qe (I1-1)

In (II-1) direction 1 is the axial (loading) direction. Focusing on the laminate axial

M)

. LA . . . .
stiffness element Q§1 we will perform FE numerical analysis for plane strain case

M) is obtained directly dividing the calculated axial

(e, = 0). In this loading case QﬁA
average stress by the macroscopic strain applied. The average stress is axial force F;

divided by nominal (average) thickness of the laminate h. Hence

(LAM) _ Fy (11-2)

11 - hey
The laminate stiffness elements are related to the A-matrix of the laminate

LAM _
G = Ay/h Aij = Xk=1Qf te (I1-3)
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—k
With Qi]. and t; being the effective stiffness matrix of the layer in global coordinates

and average layer thickness respectively. Using the CLT approach with effective layers

in a cross-ply NCF composite we obtain

LAM 0—eff t 90-eff t
§1 )= 11 efff"' Q22 eff% (I1-4)
gg_eff is the effective transverse stiffness of the homogenized 90°-layer with varying
thickness (tyq is the average thickness), Qfl_eff is the effective axial stiffness of the

curved 0°layer.

The problem now lies in the correct definition and determination of the effective

stiffness. Two types of models were analysed.

a) Individual curved 0°-layer, see Figure II-4

b) NCF composite shown in Figure II-3a and waved laminate Figure I1-3b

The boundary conditions are presented in Figure II-3 and Figure II-4. For all models,
symmetry condition is applied along the left vertical boundary and an x-displacement
is applied along the right vertical boundary. The average strain in x-direction
introduced by the applied displacement is equal to 1%. An additional symmetry
condition was applied to the waved laminate along the bottom boundary which is the
mid-plane of [0, 90]s NCF composite or the interface with the rest of the composite in a

more general case.

An isolated sinusoidal 0°-layer with constant thickness subjected to load in x-direction
at ends and different combinations of loads on curved surfaces was also analysed using

FE (only half of the wavelength was considered). The boundary conditions used
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analysing isolated curved 0°-layers are shown in Figure II-4. In addition, for the “free
end” 0°layer, the displacement in the z-direction for the middle node of the left
vertical boundary was set to zero. For the curved 0°-layer with “fixed ends” the same
displacement was zeroed for the first and the last nodes along the bottom edge. For
the 0°-layer on “rigid foundation”, this displacement is zero for all nodes belonging to
the bottom boundary. Finally, for the model in Figure II-4d, the load was distributed

along the bottom surface of the curved 0°-layer following a sinus shape function.

Free end 4 Fixed ends 3
> > Ux 5, > Ux
E °layer w E 0°-layer "';
E (a) £ (b)
)
Rigid > Distributed >
foundation z Ux load g Ux
0°-layer "'_‘ :;

Symmetry

Figure II-4. Curved layer subjected to different boundary conditions

3.1. Meso-scale homogenization

First, we will inspect the validity of the assumption that the bundle structure in the
curved 90°-layer can be replaced by a homogenized curved layer, in other words, we
will compare the axial stiffness of models in Figure II-3a and Figure II-3b. In a similar
investigation Mattson et al. [24] demonstrated that the mesoscale details on the NCF
laminate stiffness can be neglected for the case with straight 0°-bundles, we would like

to check it for laminates with curved layers.

In calculations both models (Figure II-3a and Figure II-3b) have the same fibre
content 0.6 in the 90°layer and t, = tyq = 0.3mm. The change in the amplitude A of
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the waviness does not change the average thickness of the 90°-layer. It is equal to the
thickness when there is no waviness. The z-coordinates of the points which belong to

the interface are related to the x-coordinate as follows:

z = Asin (ZTE (x — i)) =—-A (cos (2?)) (I1-5)

The results in Figure II-5 for different combinations of amplitudes and wavelengths
show that the stiffness is just marginally affected by the mesostructure of the bundles
and the 90°-layer homogenization is justified. In the following only the model in Figure

II-3b is analysed.

Q,,"*" (GPa)

A=0mm A=0.06mm A=0.15mm A=0.15mm
L=3mm L=3mm L=3mm L=7.5mm

M Bundle structure % Homogenized 90-layer

Figure II-5. Axial stiffness comparison between NCF composite with 90°-layers

bundles and composite with homogenized 90°-layer.

3.2. Effect of wavelength and amplitude on laminate
stiffness

Results for CF/EP1 laminate with elastic properties in Table 1 are shown in Figure II-6.

Parameters A, ty, L are defined in Figure II-3b. In this figure t, is the thickness of the
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curved 0%layer, to, is the average thickness of the homogenized 90°layer, h = t, +

tgo- It is clear that QﬁAM) is significantly reduced with increasing amplitude and

decreasing wavelength of the waviness.
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Figure II-6. Effect of the waviness on the CF/EP1 NCF composite axial stiffness (t, =

(av)

tgo ~): Using the FE-model in Figure I1-3b

M)

One can see very large reduction of QﬁA with increasing amplitude and decreasing

wavelength of the waviness.

3.3. Predictions based on isolated curved layers with

boundary conditions used in previous studies

The three curves in Figure II-7 showing the laminate stiffness were obtained using (II-
4). The effective stiffness of the 0°-layer Qfl_eff was calculated for isolated curved
layer shown in Figure II-4 using FE with boundary conditions (a), (b) and (c). The 90°-
layer effective stiffness was assumed equal to the 90°-layer material transverse

stiffness using data in Table II-1. These curves may be compared with direct FE results
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(symbols in Figure II-7) taken from Figure II-6. The comparison demonstrates the
failure of these boundary conditions used to give values of 0%layer effective stiffness

relevant for using in (I1-4).
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Figure II-7. Effect of the waviness on the CF/EP1 NCF composite axial stiffness (t, =
tégv)): CLT with effective stiffness of the curved layer according to different boundary

conditions

3.4. The layers effective stiffness dependence on A/to and

L/to

The effective in-plane axial stiffness of the curved layer is lower than the stiffness of a
straight layer mainly because the fibres are not oriented in-plane. However, as shown
in [23], the effective stiffness strongly depends also on the interaction with the

adjacent material (tows of different orientations, resin).

Calculating QﬁAM) according to (II-2) we use the total force F; which due to force
balance is the same in any cross-section. For example, in Figure II-3b Ff =

F;(x = L/2) is equal to FF = F;(x = 0). In other words, using (II-2) and FE it is not
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important in which cross-section the reaction force is obtained before dividing it with

the average composite thickness h .

If instead the CLT based (II-4) is used, the effective layer stiffness has to be found first.
Similarly as was done for the whole laminate stiffness case, we would for this purpose
divide the calculated force acting on some arbitrary cross-section of the layer by its
cross-section area and then by the applied strain. However, the force on a cross-

section of a layer depends on which cross-section we consider. For example

FR(0°) # F£(0°) FR(90°) = FE(90°)  FR(0°) + FR(90°) = F; (I1-6)

The numbers 0° and 90° in parenthesis indicate the layer under consideration.
Because of Equation (6) effective layer stiffness calculated on the left and the right

edge of the model differ

Qf1(0°) # Qf1(0°)  QF,(90°) # Q3,(90°) (II-7)

where

F1 (90 ) F1 (90 )

, Q52(90°) = (II-8)

05,09 =D 0k, (0°) = E9 | 9£,(90%) =

Due to interaction, layers are not subjected to uniaxial loading and strictly speaking the
calculated numbers are not stiffness matrix elements. This explains the two different

values. The situation will be similar analysing isolated curved layers with traction

eff

boundary conditions. Therefore, it has to be clarified which layer stiffness Qfl_ and

055~ to be used in the CLT (II-4).

For this purpose we may formally write that the force is distributed between 0°-layer

and 90°-layer according to:
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FR = FR(0°) + FR(90°) (I1-9)

FE = FL(0°) + FE(90°) (I1-10)
And
FR=F=F (II-11)

Averaging gives:

R L R o L o Rno Lo
F1 — Fi ‘2"F1 — Fi (90 );‘F1 (90°) + Fi (0 )'2"F1 (0°) (II-].Z)
Substituting (II-12) in (II-2) and using (I1-8):
A -A
amy _ Go00T 408, (90)52 tao | OF09+05(0) to .
1 - 2 nt 2 h (1-13)

Comparing (II-13) with the CLT expression in (II-4) the correct expressions for

effective stiffness of layers considering them as “isolated” is given by:

o—eff _ QR (09+0k (0%
R (I1-14)

tgp—A

fo0 (I1-15)

tgo+A
5, (90192 =405, (90)

90-eff _
22 - 2

Forces for using in (II-8) were calculated from the model in Figure II-3b by summing
the reaction forces acting on the nodes along the corresponding edge of the layer. The
reaction force on the node shared by both layers is replaced by half of the reaction
force of the neighbouring node, by analogy with the reaction force on the upper-right
node in the free upper boundary, which is also equal to half of the reaction force of its

neighbouring node. Figure II-8 shows how the effective stiffness of the 0°-

Iayer,Qfl_effand the effective stiffness of the 90°-layer Qgg_eff decrease due to the
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waviness described by A/t, for several values of L/to.The difference between QX (0°)
and QF;(0°) calculated on both edges is rather small. In contrast the transverse
effective stiffness parameters of the 90°-layer, QX,(90) and Q%,(90) have very

different trends: one (calculated at x = 0) is increasing, the other one is decreasing.

ff

The combined effective stiffness Q;g_e calculated according to (II-15) decreases

from about 9 GPa to 7 GPa.
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Figure II-8. Axial stiffness for (a) the 0°-layer and (b) the 90°-layer, CF/EP1 composite

We can introduce knock down factors for the laminate and the layers by dividing the
effective stiffness with the stiffness corresponding to a reference case having straight
tows (A=0). Figure II-9 shows for CF/EP1 that for L/tp=10 the decrease in composite

stiffness is nearly the same as for the 0°-layer effective stiffness.
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Figure II-9. Comparison between knock down factor of the 0°layer, the 90°-layer and

the laminate

Apparently the laminate stiffness reduction is dominated by the reduction of the 0°-
layer stiffness due to waviness. A simplified form of the laminate stiffness expression,
(IT-4), in which the 90°-layer effective stiffness is assumed equal to the 90°-layer

material stiffness may be therefore be motivated:
90—
22 oI = Q22 (II-16)

The accuracy of the simplification in (II-16) will be verified in following calculations.
3.5. Approximation of tractions at the (0/90-layer interface

In line with the objectives of this study, the task is to find the effective stiffness of the
curved 0%layer analysing an isolated curved layer subjected to relevant boundary
conditions. These include not only end loads applied to the layer, but also surface
loading shown as “distributed load” in Figure II-4d. Only in the presence of

“distributed load” forces Ff(0°) and F-(0°) may differ.
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Knowledge regarding the distributed load is conveniently obtained by analysing
stresses at the 0°- and the 90°-layer interface using FE. The results and the observed
trends used to define shape functions for the interface stresses from fitting a limited
number of FE-calculations are presented in this section. The methodology suggested
for finding coefficients in these shape functions is described in more detail in
Appendix. These functions can then be used for curved 0°-layer stiffness analysis with

an arbitrary amplitude or wavelength.

Local stress distribution at the 0/90-layers interface has been analysed: The normal
stress o0, and the shear stress g,; were determined in each node along a path on the
interface. In the FE-analysis those stress components are slightly different on both
sides of the interface. The value along the path on the interface which is given by the
code is the average of the stresses calculated for the closest element to the interface
in the 0%layer and in the 90°-layer. In Figure II-10, the normal stress g, is plotted as a
function of the normalized distance along the x-axis for different A/to and L/to. The
curves show large variation of the normal stress along the interface. This stress is equal
to zero when there is no waviness. The waviness contributes to the appearance of
tensile normal stress in the left part and compressive normal stress in the right part on
the interface. The maximum value of the tensile and the compressive normal stress is
increasing with decreasing L/t and with increasing A/to. For simplicity, this behaviour
was fitted with a sinusoidal function, (II-17), with amplitude depending on the

waviness parameters and the elastic properties of the material.

Op = OpoSin (%ﬂ (x - g)) = —0p (cos (Z%X)) With o, = f (:;O,%,El,etc) (I1-17)
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Figure II-10. Normal stresses at layer interface in CF/EP1 composite and fitting (a) for

L/to=10; (b) for L/tp=25, applied strain 1%.

In Figure II-11, the shear stress o,; on the interface is plotted as a function of the
normalized position along the x-axis for different A/to and L/to. In a straight layer cross-
ply laminate this stress component would be equal to zero. However, the rather
complex o,; behavior becomes significant with increasing 0°-layer amplitude.
Calculations on isolated curved layers showed that the significance of the applied
shear stress on the boundary is small (most important is the normal stress g, ),
justifying the use of the same rough sinus function approximation to fit the shear

stress in the whole parameter region

Ont = Onto SIN (2% (x - E)) = —0Onto (cos (%)) (I1-18)

) A L
Wlth Onto = f (_l_lEll etC)
to to

As one can see in Figure II-11a the fitting is obviously not good for small L/to and

sufficient for larger L/to (Figure I1-11b).
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Figure II-11. Shear stresses at layer interface in CF/EP1 composite and fitting (a) for

L/to=10; (b) for L/tp=25, applied strain 1%.

Thus, performing FE-calculations for a limited number of L/t and A/to cases we can
find approximate interface stress expressions for a given material to be used for any

practical combination of these geometrical parameters.

The main objective of this part was to find simple expressions for further analytical
application. The expressions for g, and g,,;, dependence on L/to and A/t are given in

Appendix.

3.6. Composite stiffness based on effective stiffness of an

isolated 0°-layer with surface loads

In this subsection we use the calculated and approximated normal and shear stress
distributions along the layer interface as surface loads in an isolated curved 0°-layer
model shown in Figure II-12. The approximate expressions for the normal and the
shear stresses given in Appendix are used. The surface load is obtained by multiplying

the stress components by the element length which is assumed equal to the distance
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dx between two neighbouring nodes. The calculated load is applied in the local
coordinate system related to each element on the bottom surface of the curved layer.
This new boundary condition is introduced in addition to the symmetry on the left
edge and the displacement applied in the right edge. Since the loading applied to the
0°layer is not uniaxial the Qfl_eff calculated using (II-14) is, strictly speaking, not
the axial stiffness. Nevertheless, it represents the curved 0°layer mechanical

behaviour in the composite.

Displacement

%< Symmetry
Y

/’Kr{ dx
<l (dI~dx)

Figure I1-12. Application of distributed load on the 0°layer surface

In Figure II-13, where the calculated effective stiffness of an isolated 0°-layer is
presented together with the effective stiffness of the 0°-layer determined from the
waved cross ply laminate, see Section2.4 “The layers effective stiffness dependence
on A/to and L/ty”, good agreement between both solutions is demonstrated. For the
sake of comparison, effective 0°-layer stiffness calculated using the rest of boundary
conditions in Figure II-4 is also presented. Effective stiffness in the case of fixed/free
ends is unrealistically low, while rigid foundation is too high. The most accurate results
are given by the beam with distributed surface load. Thus, the assumption of replacing

the interaction between the 0° and the 90°-layers in the laminate by a distributed load

40



applied to the curved beam is validated. The accuracy can be improved by more
accurate fitting of the interface stresses; the simplicity can be improved by more rough
approximation that, probably, would not affect the calculated stiffness too much.

160 1 0, (GPa) L/to=10
CF/EP1

60 1 & Rigid foundation
% Distributed load

40 -
OFE,Figure 2c
20 - A Fixed ends
0 © Free end Afto
0.0 0.2 0.4 0.6 0.8

Figure II-13. Effective stiffness of the 0°-layer with different boundary conditions

Finally, CLT, see (II-4), is used to determine the laminate stiffness utilizing the effective
stiffness of the curved 0°-layer with distributed load, and the effective stiffness of the
90°-layer. Effective 90°-layer stiffness is used in two approximations: a) With varying
thickness with values from Figure II-8b (this requires FE calculations of the cross-ply

composite); b) using (II-16), i.e. Qgg—eff _

59 (which is not accurate, but simple for
use). In Figure II-14 to Figure II-16 the laminate stiffness is presented as a function of
A/to for different L/to. In Figure II-14a, I1-15a and II-16a the effective stiffness of the
90°-layer is used whereas in Figures II-14b, II-15b and II-16b the 90°-layer with
varying thickness is represented by its transverse stiffness Q39 calculated using data in

Table II-1.These results show good agreement between the analytical CLT approach

with the effective stiffness of the 0°-layer and FE calculation of the laminate stiffness.
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Very small differences in results are seen when the 90°-layer effective stiffness is
represented by its material transverse stiffness, proving that this approximation may

be used.

CF/EP 1

LAM
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Figure II-14. CLT using effective stiffness compared to FE-analysis for CF/EP1
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Figure I1-15. CLT using effective stiffness compared to FE-analysis for GF/EP
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Figure II-16. CLT using effective stiffness compared to FE-analysis for CF/EP2

4. Effective stiffness determination using master

curve approach

In this section, it will be demonstrated that the axial stiffness of a biaxial cross-ply NCF
composite described by knock-down factor is similar to the knock-down factor for the

Ill

curved layer stiffness obtained in the same FE calculation. Then a novel “master curve
approach” is presented which allows calculating the knock down factor of a curved
layer of arbitrary wave amplitude and length. The master curve for the given NCF
composite material is obtained fitting FE knock-down factor values for one (preferably
relatively short) wavelength and at least two values of amplitude. Only one additional
FE calculation is required to cover all possible amplitude cases for a different
wavelength. The curved layer knock-down factor is used to calculate the NCF

composite knock-down factor. The very high accuracy of this approach is

demonstrated in comparison with direct FE calculations.

The CLT approach for calculating the axial stiffness of the NCF composite specimen is

the same as in calculations for the laminate with straight layers. The stiffness elements
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of a laminate with flat layers (NCF composite with zero waviness) are related to the A-

matrix of the laminate

LAM — qLAM /p A =3, Ql’j ty (I1-19)

For the NCF composite represented by laminate with effective layers we have

QNCF A%CF/h ANCF Zk 1Qk eff ty (I1-20)

—k—eff
with Ql.j , try and h being the effective stiffness matrix of the layer in global

coordinates, average layer thickness and average laminate thickness respectively. For
the axial stiffness of a cross-ply laminate and the NCF composite analysed in this part

the following relations are obtained:

t t
LaM = Qfl,f"‘on 90 (I1-21)
NCF — 0 eff to 24 Q90 eff t90 (I1-22)

Where ng ®fT s the effective transverse stiffness of the homogenized 90°-layer with

0—eff

varying thickness (t9o is the average thickness) and @, is the effective axial

stiffness of the curved 0°-layer.

In this section the index “LAM” indicates the NCF with straight layers (A=0), and the

index “NCF” refers to NCF composites with waved layers.

The stiffness knock-down factors for the 0°layer, for the 90°-layer and for the NCF

composite (represented by laminate) are introduced as follows

Qfl_eff Q;g—eff Qi\llCF
ko = =25 koy = =55 kncr = ~1am (I1-23)
Q11 Q32 Q171

Combining (I1-22) and (I1-23) gives
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t ¢
QitMkycr = koQYy go + kgoQ39 % (I1-24)

Using (I1-21) to replace QY; , (I1-24) can be rearranged in the form

ke = ko + Ak Ak = (kog — ky) L2500 (I1-25)

eif™n
The second term in (II-25) depends on the layer stiffness and thickness ratio and on
the difference between the knock-down factors for the 0°- and 90°-layer. It will be
shown further that this term can be neglected without introducing any noticeable
error. Certainly, to find these knock-down factors, we have to start with proper

definition and methodology for determination of the effective stiffness.

NCF

The axial stiffness Q17" of symmetric and balanced NCF composite can be obtained

from the macroscopic in-plane stress-strain relationship
orF = QM e, + 05 e, (I1-26)

In (II-26) x-direction is the specimen axial (loading) direction, see Figure II-3. The NCF

composite axial stiffness element QN‘F is obtained performing FE-analysis for plane

strain case (& NCF is obtained directly dividing the

y = 0). In this loading case Q

calculated axial average stress by the macroscopic strain applied. The average stress is

axial force F, divided by nominal (average) thickness of the laminate h. Hence

NCF — Fr (I1-27)

hey

The effective in-plane axial stiffness of the curved 0°-layer is lower than the stiffness of
a straight layer mainly because the fibres are not oriented in-plane. However, as
shown in [48] and described in details in the previous section, the curved layer in

addition to end loading (applied displacement) is subjected to large normal and
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tangential tractions at the layer interface. In other words the loading to the curved
layer is not uniaxial and as a consequence the force calculated at the right end of the
layer (index R) is not equal to the force on the left end (index L) , ER(0°) = EL(0°) .
This makes the determination of the effective stiffness uncertain, because different
values are obtained using different cross-sections. The same applies to the 90°-layer
with varying thickness ER(90°) # EL(90°). The numbers 0° and 90° in parenthesis
indicate the layer under consideration. Certainly, on both ends the total force is the

same, for example

ER(0°) + EF(90°) = F, (I1-28)

Because of the described reason the effective layer “stiffness” calculated on the left

and the right edge of the model differs

Qf1(0°) # Q1(0°)  Q%,(90°) # Q3,(90°) (II-29)

Fx (90°)
gx(tgo+A)’

Fx (90°)

QR (0°) = ) = EO 2, Q%,(90°) =

,Q22(90°) = —=——1(11-30)

In fact none of these numbers is stiffness, because the loading to the layer is not
uniaxial. For the purpose of employing the CLT, the effective layer stiffness Q0 °IT and

Qgg_eff have to be defined in a way that using (II-20) gives exactly the same values

for NCF composite as direct FE calculation.

In the previous section, it was demonstrated that the following definitions of effective

stiffness give this result

o—eff _ QR (09+0% (09
o =i (I1-31)
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R \too+4
90—eff _ Q22(90) too

22 2

AL tgp—A
+Q32(90) 9;;()

(11-32)

These definitions together with (II-23) will be used in all calculations in this section.

4.1. NCF stiffness knock-down factor

In order to investigate which term (k, or Ak ) is affecting more the NCF knock down
factor in (II-25), calculations are performed for two different ratios of wavelength L
and the layer thickness to : L/tp=10 and L/to=15 and for both CF/EP and GF/EP
materials for the unit with surface 0°-layer. Results are presented in Figure II-17.
Although the knock down factors in the case of CF/EP are decreasing more than for the
case of GF/EP, both figures present similar behaviour of the curves and the same
conclusions can be deduced for both materials. The term Ak in (II-25) can be
neglected since it is almost equal to zero in the figures. Thus, the NCF composite knock
down factor defined by (II-23) can be assumed equal to the 0°-layer knock down

factor defined by (II-23) and (II-31), kycr = kg . In other words, in order to know NCF

cross-ply composite knock down factor, it is enough to know the 0°-layer knock down

factor.
1.2 -Knock down (a) CF/EP 1.2 - Knock down (b) GF/EP
factors factors
1 1
t * 8 o T * e 8 2 0 &
* < * . <
0.8 < 0.8 * .
g
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*
0.4 - # kO (L/t0=10) © ko (L/t0=15) 0.4 - # kO (L/t0=10) < ko (L/t0=15)
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Figure II-17. Comparison of k, and Ak in the expression of NCF knock- down factor in

(II-25) for unit with surface 0°layer (a) CF/EP and (b) GF/EP

In the following, the focus will be mostly on the determination of knock down factor of
the 0°layer. An important observation deduced from Figure II-17 is that the curves of
ko corresponding to L/tp=10 and L/to=15 look similar and have similar shape. This leads
to assumption that both curves may coincide by performing proper “deformation” of
both axis (changing scales). As a consequence the curve corresponding to L/to=15
could be obtained as a part of the curve corresponding to L/tp=10. In the following
discussion it will be shown that the knock-down factor for any L/ty ratio as a function
of A/to based on known relationship for one given L/t ratio can be considered as a
master curve. It is suggested to determine the master curve by performing accurate FE
calculations for the case of short wavelength L/to and to fit it with an analytical

function.

4.2. Master curve approach

4.2.1. Knock-down factor curve and fitting function

The case of L/ty=6 is considered as extreme case where the same amplitude can lead
to a steep angle of the waviness. The 0°-layer knock-down factor is decreasing more
than in cases with larger ratios. The knock-down factor dependence on the wave
amplitude at L/to=6 will be considered as master curve for the rest of calculations. The
analytical fitting of the case of L/to=6 will be used to calculate the knock-down factors
for the other cases of the higher ratios of L/to. The calculated values and the fitting
curves are presented in Figure II-18 for both materials and for the unit with surface

0°-layer. The same fitting expression in (II-33) is found for both materials.
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Figure II-18. Fitting function for Master curve (L/to =6) (surface 0°-layer) (a) CF/EP and

(b) GF/EP

The fitting constants “b” and “c” are given in Table II-2 for both CF/EP and GF/EP

materials and for both surface and embedded 0°-layer cases.

Table II-2. Fitting constants

Surface 0%-layer

Embedded 0°-layer

b c b c
8.39 1.95 4.95 1.95
CF/EP
8.78 2 5.14 2
GF/EP 2.56 1.89 1.51 1.86
2.77 2 1.64 2

The fitting constant c is weakly dependent on the material system and in following it is

considered as a material independent and set equal to 2. The new constant “b” is then

found according to the new c (c=2) in order to get the best possible fitting. This means

that only one parameter “b” depending on the material properties is remaining in the

(I1-33). Then, for instance, even one single FE calculation is enough to determine this

parameter.
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4.2.2. Validation and application of the master curve

approach

In this section the aim is to demonstrate and identify the relationship between knock-
down factor curves for different combinations of L/tp and A/to. It will be explained how
the master curve is used to predict the 0°-layer knock down factor degradation for any

case of L/to.

The procedure, as illustrated in Figure II-19, is the following: We consider the knock-
down factor curves for two different wavelength values L/ty. . Assuming that one of
them is the master curve (in our selection it is the curve for L/tp=6, denoted kg, (Index
M is for Master) and the other one corresponds to a different wavelength L/to=n,
denoted ky,,. An arbitrary value of the knock-down factor, k;is selected on both curves
and corresponding values of the amplitude are denoted (A4/t0)yand (A/t0);,.

Therefore,
kom ((A/t0)31) = kg kon((A/t0)7) = kg (I1-34)

Using data in Figure 1I-19 we may produce a new figure where on the horizontal axis:

_ a/to)y | .
A= o (A/t0), (I1-35)

In (II-35) (A/t0),, is the variable value of the amplitude for k,, curve. In the new
figure each knock-down factor curve is differently “deformed” in the horizontal
direction according to the first term in (II-35). In new coordinates (a, k,) the two
considered points ((A/t0)y, kg) and ((A/t0);, kg) coincide (the a —coordinate is the

same). Generally speaking, there is no reason to expect that other points on these
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curves would coincide too. However, the results presented in Figure I1-20 for CF and
GF for the case of unit with surface 0°layer show that the curves coincide. The
extremely high degree of agreement of numerical results for all inspected materials
and also embedded layers (Figure 1I-3c) as well, indicates that there may be an exact
correlation which we do not know at present. These results imply that knock down

factor kg, curves for all possible wavelength L/t, = n values coincide when they are

(A/t0)y
(4/to)y,

plotted against a = . (A/t0),, . Applying (II-35) to the master curve we have

a = (A/t0),, . Hence, (II-35) can be written as

A/t0)}
(A/t0)y = Gostt - (4/t0), (I1-36)

The numerically established relationship (II-36) between both curves allows for a
simple recalculation routine: for any selected knock-down factor k, and (A4/t0),, on
the master curve the value of amplitude (A4/t0),, that would give the same knock-

down factor for wavelength L/to=n is given by

A/t0)}
(A/t0), = (Gt - (A/60)yy (1137)

To use (II-37) we first have to find (4/t0);, and (A4/t0)},.

An illustration of the procedure is shown in the following figures for CF composite and
for the surface 0°layer case. The knock-down factor curve for L/t, =6, shown in
Figure I1-18, is a master curve represented by fitting expression (II-33). It is used to

find kg, (A/t,) for n=10.
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Performing the FE calculation for n=10 waviness with one chosen value of the

amplitude (4/t0)7, = 0.7 , the calculated knock-down factor is kg = 0.536 . From

(I1-33)

1
a+b-((A/t0),)°

ko

> (4/t0);,=0.312

Then a set of values of (A4/t0),, is chosen, i.e. the first row in Table II-3. The

corresponding values of k, (second row) are calculated from (II-33). Finally (II-37) is

used to calculate corresponding values of (4/t0),.

Table 3. Calculation results (For CF/EP) (Unit with surface 0°-layer)

(A/t0) 0 0.05 0.10 0.15 0.20 0.25 030  (4/t0)}=0.312
k() 1 0.98 0.91 0.83 0.73 0.64 0.56 0.536
(A/t(])m 0 0.11 0.22 0.34 0.45 0.56 0.67 0.70
1.2 -
kO
1 kOn
k
0.8 - . oM
.
0.6 ... - ‘_tfr..!‘
k, NN
_ e
0.4 .
0.2
0 : Alty
(At | (Aty): '
0.0 0.2( [to)in 0.4( [t 0.6 0.8

Figure II-19. Master curve approach
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Figure I1-20. Figure II-19 after calculation using (II-35) for the case of LM/to=6 and

Ln/to=8, for CF/EP and GF/EP and for the unit with surface 0°layer.

The 0°-layer knock down factors k, given in the second row in Table II-3 are plotted as
a function of (4/t0),, given in the third row of the same table. Thus the 0°-layer
knock down factor curve is obtained for the case of L/ty=10 using the fitting expression
of the master curve and only one FE calculation for amplitude A/to=0.7 for L/ty=10. The
results presented in Figure II-21a are for CF/EP material as well as for GF/EP. The
fitting constant ¢ in (II-33) is assumed equal to 2 for both materials. The obtained
knock-down curve is plotted at the same figure with knock-down factor curve
calculated using FE for the same case of L/tp=10. Thus, the master curve approach is
thereby shown to give a good agreement within the considered range of amplitude

and wavelength.

The same procedure is applied for L/to=15 composite (see Figure II-21b). And the
same is done for the unit with embedded 0°-layer as well (see Figure II-22a and Figure

11-22b).
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The c=2 parameter selection is working well for both units and the only remaining
unknown constant is “b” in the fitting expression. This means that few FE calculated
data points may be sufficient to determine the unknown constant “b” in the equation
of the master curve and only another FE-calculation data point to predict the whole

behaviour of the knock down factor at a different wavelength is needed.
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Figure II-21. Comparison of k calculated using FE with k, calculated using master

curve approach for unit with surface 0°-layer (a) L/to=10 and (b) L/to=15.
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Figure I1-22. Comparison of k calculated using FE with k, calculated using master

curve approach for unit with embedded 0°-layer (a) L/to=10 and (b) L/to=15.
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Finally kycr is calculated in (II-25) using k, determined from the master curve

approach together with kg, calculated from (II-23) and (II-32). The results are

presented in Figures II-23 and II-24 and are compared to direct FE calculations for

NCF knock down factor. If kg is used equal to 1 it means that the effective stiffness of

the 90°-layer is considered equal to the transverse stiffness of the UD composite

material, and the effect of the waviness and thickness variation on the 90°-layer

effective stiffness is neglected. The results corresponding to this case in Figures 11-23

and 11-24 are close to the results using (II-25) and ko, calculated using (II-23) and (II-

32). On the other hand, k, determined using the master curve approach is rather close

to the NCF knock-down factors calculated directly from FE. Since ky < kycf , it can be

used as a conservative estimation of the NCF composite axial stiffness reduction.
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Figure I1-23. NCF composite knock down factor with surface 0°-layer (a) CF/EP (b)

GF/EP.
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Figure II-24. NCF composite knock down factor with embedded 0°-layer (a) CF/EP (b)

GF/EP.

5. Master curve approach for effective stiffness of

composite with more complex geometries

5.1. Geometries

Different combinations of the surface and embedded unit cells are realized simulating

the stiffness of NCF composite.

First, one unit cell with surface 0°-layer and one unit cell with embedded 0°-layer are
combined producing two new meso-cells called: In phase meso-cell (when the
waviness of the surface 0°layer and the waviness of the embedded 0°-layer are in
phase), see Figure II-25a, and out of phase meso-cell (when the waviness of the
surface 0°layer and the waviness of the embedded 0°-layer are out of phase as in

Figure I1-25b).
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(a) In phase (b) Out of phase
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Figure I1-25. Meso-cells with in phase and out of phase combinations of surface and

embedded unit cells.

Other combinations of meso-cells are realized by placing surface unit cells (Figure II-
26a) or embedded unit cells (Figure II-26b), with different amplitudes and
wavelengths of the waviness in series (in chain). Meso-models are used to estimate the

effect of interaction between bundles belonging to different units on their effective

stiffness.
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Figure II-26. 0°/90° meso-cells with a) surface units b) embedded units
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Meso-cells in Figure II-26a and Figure II-26b are also combined to produce a more
complex composite with in phase (Figure I1-27a) or out of phase (Figure 11-27b)

waviness.
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Figure II-27. Laminate made of: a) in phase, and b)out of phase, meso-cells.
These models will be used in Section 5.4 and 5.5 to validate the engineering approach
developed in Section 5.3.

5.2. Development of the master curve approach

In the previous section the master curve approach was developed to calculate knock-
down factors for curved 0°-layers. Numerical analysis showed that the 0°-layer knock-
down factor versus amplitude curves for any wavelength can be reduced to one

master curve by curve shifting. The master curve that shows the knock-down factor
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dependence on wave amplitude for a reference wave length is well described by a

one-parameter expression with the parameter dependent on the used material

1

kO = W (II-38)

This expression together with the shifting procedure is used to obtain high accuracy
analytical predictions for knock down factors for cases with different wavelength and
amplitudes. For any new wave length one FE calculations is required. In other words,
the fitting parameter “b” is not only material dependent but also wavelength
dependent. FE parametric analysis was performed to analyse “b”, see Figure 11-28, and

a power law is suggested to fit the “b” parameter dependence on wavelength.
b=cx(L/ty)3 (I1-39)

The fitting constant “c” depends on the used material. Values for the used GF/EP and
CF/EP (CF/EP1) are given in Table II-4. They are different for surface and for

embedded units.

104b (a)tooe=to> 121 b (b) t90°=2t0°

10 A

+ Surface CF/EP
A Embedded CF/Ep 8 ]
W Surface GF/EP
@ Embedded GF/EP 6 -
— Fitting

+ Surface CF/EP
A Embedded CF/EP
M Surface GF/EP
® Embedded GF/EP
— Fitting

L/t L/t
4 6 8 10 12 14 16 4 6 8 10 12 14 16

Figure I1-28. Fitting of the parameter “b”

In Figure II-28b and in Table II-4 a case where the average 90°-layer thickness is

doubled (t90°=2t0°) is also presented. This case will be utilized in Section 5.5 to
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approximately represent the effect of the neighbouring 0°-layer on the knock-down

factor.

Table II-4. Fitting constant “c”

CF/EP GF/EP
¢ Surface 0°-layer = Embedded 0°-layer  Surface 0°-layer = Embedded 0°-layer
t90°=t0° 1882.680 1097.603 612.168 383.528
190°=2t0° 2283.176 1357.775 683.734 395.758

Since the c-constant is material dependent, each new material requires one FE
calculation. Estimation of data in Table II-4 leads to conclusion that in all comparable
cases this constant is roughly three times larger for CF/EP composite. This value is
rather close to the longitudinal modulus ratio of these two materials in Table II-1
(141/46.8=3.01). This may be an indication that the longitudinal modulus of the
corresponding UD material is the main parameter defining the c-parameter. It should
be reminded that all results in this study are obtained assuming sinusoidal shape of the

waviness.

5.3. Engineering approach for the amplitude and

wavelength’s of an equivalent cell

We consider surface or embedded unit cells with different amplitudes and different
wavelengths combined in chain (See Figure I1-26) producing a NCF composite made of
n unit cells. The approach is to replace these chains by one equivalent cell
(correspondingly surface or embedded). The equivalent cell has to have an amplitude
and wavelength that lead to the same stiffness as the initial chain of unit cells has. The
objective is to find the equivalent amplitude and wavelength. This analysis has
practical significance because this is the way how experimental (for example, optical)
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observations can be implemented in a model. The question is: what is the proper
averaging procedure for observation data? The simplest and commonly used method
is to calculate the average of the amplitude and of the wavelength by simple
summation of the local amplitudes and wavelengths (II-40) taking into account the

volume fraction Vi (II-41) of each unit which leads to rule of mixtures
(A/to)aw = Xi=1 Vi (A/to); And (L/to)ay = Xi=1 Vi (L/tp); (Methodl)  (I1-40)

n- is the number of unit cells in the chain, V; is the volume fraction of the i-th unit cell

in the chain
-Unit cell

Vi=" e (I1-41)
VTotal

FEM results in Figure II-29 discussed in detail later show that this simple way of

averaging significantly overestimates the stiffness.
A more accurate and mechanics based procedure is based on summation rule for
stiffness of cells combined in chain. For the equivalent cell

=y, (11-42)

eq — Lij=171_
Qll Qil

which using (II-24) can be written as

1 n Vi
=)t = (I1-43)
kgq Q?l"‘kgo?_ooQgg =1 k§ Qf1 i+k90?_00Q298
Introducing notation
t 90
R = ko 22222 (I1-44)
to Q11
we can rewrite (I1-43) as
1 wn Vi _
kST+R — <=1kl 4R (I1-45)
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Using the knock-down factor of the equivalent cell

1

eq _ .

ko' = T, (L1-46)
equation (45) can be rearranged in form

A+R) T,

kg +R
(4/t))eq = |7 — (11-47)
eq 1_R2i=1ki
o tR

In the above form the amplitude of the equivalent cell cannot be determined because
beq depends on the length of the equivalent cell (equations (38), (39)) which is not
known yet. However, (47) can be simplified: it was demonstrated that kycr = ko,

which means that one can assume ko, = 1. Similar derivation as show above leads to

1
(A/t6)eq = \/E ST Vibi(A/to)? (Method 2) (I1-48)
The same expression is obtained when R — 0, which is the case when the contribution
of the 90°-layer can be ignored.

Method 2 includes b; and also b,, which are LTi dependent and therefore b, for the

equivalent cell can not be determined at the current stage.

The wavelength of the equivalent unit is determined through the average waviness

angle.
4(A/t)i
tan(ag,) = Xity = (I1-49)
(L/to) 4Ai
: eq _ (A/to)eq/tan(aeq) = (A/to)eq/Z?z1L_il (11'50)

In Method 2 (L/t,).q depends via (A/ty).q , see (11-48), on b, whereas b, for the

equivalent cell depends on(L/tO)eq. In other words both parameters are coupled and
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an iterative solution is one of the options: in first iteration we assume that b; and b,

can be neglected in (I1-47) leading to

(A/to)eq = \/Z?zlvi(A/to)l? (Method 3) (I1-51)

This value of (A4/tg)eq is used in (II-50) to find the wave length (L/t;).q and then b,
is found using (II-39). After that (II-48) can be used to refine the value of (A/to)eq

etc. Obviously, Method 3 is the first iteration in a more complex routine for Method 2.

5.4. Stiffness of chain of cells

Axial stiffness of the meso-scale composite consisting of a chain of n=5 unit cells, see
Figure II-26, was calculated analysing separately chain of surface cells, Figure I1-26a,
and embedded cells, Figure II-26b. The waviness parameters for cells used in
calculations are given in Table II-5. The waviness parameters for the equivalent cell
used in engineering calculations were calculated according the three methods

described in Section 5.3. The results are given in Table I1-6.

Table II-5. Used amplitudes and wavelengths

i 1 2 3 4 5
5 cells (A/t); 012 006 015 018  0.09
(L/ty), 10 8 14 6 12

Table II-6. Average amplitude and wavelength of the equivalent cell

CF/EP GF/EP

Surface Embedded Surface Embedded

(Aftodeg  (Vtodeg  (Aftadeg  (L/to)eg (Aftodeg  (L/tddey  (Afto)eg  (L/to)eg

Method 1
(A/to)eq (EQ.(17)) (L/to) ol EQ.(17))

0.404 10.81 0.404 10.81 0.404 10.81 0.404 10.81

Method 2 0.421 9.334 0423 9368 0.418 9257 0407  9.020
{A/to)eq (EQ.{25)) (L/to)eo(EQ.(27))

Method 3
(A/to). (Eq.(28)) (L/10)..(Eq.(27))

0.423 9.370 0.423 9.317 0.423 9.370 0.423 9.370
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FE models containing these 5 cells were created and the calculated QN‘F for GF/EP
and CF/EP composites is presented in Figure II-29. Stiffness of a laminate with
(A/ty) = 0 is presented for comparison. The stiffness of the embedded laminate
with (A/t,) = 0 is lower than for the laminate consisting of surface units because the

fraction of the 0°-layer is smaller in this model (1/3).

Stiffness of the same chain of cells was also calculated analytically using “constant

force” model

1 _on Vi
NCF — 4i=1 i
Q11 Q:lll

(I1-52)

Here stiffness of each cell Q}; was calculated using the master curve: applying (I1-24)
where the knock down factor was found with (II-38), (II-39).The excellent agreement

with FEM for all analysed cases confirms the applicability of (II-52).

Next the concept of the equivalent unit cell representing the composite chain was
investigated. The stiffness of the defined equivalent cell was calculated a) using FEM;
b) using the master curve approach. The results of a) and b) calculations are almost
coinciding. The procedure in the master curve approach is as before: the constant b,
is calculated for the equivalent wavelength using expression (II-39), and then
introduced in expression (II-38) together with the equivalent amplitude to calculate
the knock down factor of the 0°-layer in the equivalent unit cell. The knock-down
factor is used in the CLT expression (II-24), to calculate the axial stiffness of the

equivalent unit.

Among the three methods defining parameters of the equivalent cell Method 1 based
on simple averaging of amplitude and wavelength is the less accurate: for both

materials and for surface as well as embedded composites chains it significantly
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overestimates the composite stiffness. The results in Figure II-29 show that the axial
stiffness of the equivalent cell with average amplitude and wavelength calculated
using Method 2 and Method 3 are in rather good agreement to the axial stiffness of
NCF composite. Method 3 gives almost the same results as Method 2, which means,
that ignoring the variation of the parameter bi does not lead to any considerable error

in calculation of the average amplitude.

35 GPa Q11 (NCF) FEM (b) GF/EP

Q11 (NCF) Master curve approach

80
GPa (A/20)s=0 Q11 (NCF) FEM (a) CF/EP

Q11 (NCF) Master curve approach 30 (A(t0)s=0

70

Method 1

Method 1 5 cells Method2  Method 3
60
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(7]
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Figure I1-29. Axial stiffness of a combination of 5 cells of surface and embedded unit
cells calculated using FEM for the whole chain as well as for the three methods based
on the concept of “equivalent unit cell”: a) CF/EP b) GF/EP. Calculations according to

the master curve approach are also presented for all four cases.

5.5. Interaction effects of curved bundles in cells

connected “in parallel”

The idealized meso-geometry of the NCF composite containing two symmetric layers
(chains of units) is not typical in practice. It was shown previously that surface tractions
due to interaction with the surrounding material strongly affect the knock-down factor
of the 0°-layer. This means that in a multi-layer NCF composite with many embedded

and surface unit cells the waviness parameters of 0°-layer in one cell can significantly
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affect the knock-down factor of the 0°-layer in a cell located on the top or below this

cell.

The interaction effect on knock-down factor was investigated applying FEM on the
models shown in Figure II-25. The objective was to find simplified geometry
(representative cell) that would give a satisfactory description for the large variety of

the parameters in two unit cells connected in parallel.

Since one of the possible simplifications is replacing the neighbouring cell with a 90°-
layer of the same thickness (for 0°-layer E; = E ),we start the analysis with the effect
of the thickness of the 90°-layer on the knock down factor of the 0°-layer. In FEM, both
models (with surface 0%layer and embedded 0°-layer) presented in Figure II-3b and
Figure II-3c are considered changing the thickness ratio between the layers as
following: teo/to = 1, 2, 3, 4. The knock down of the 0°layer is presented as a function
of the amplitude in Figure II-30a and Figure II-30b. Calculation were performed for

wavelength (L/t0)=6.

1.2 1.2 -
ko L/t;=6 ko Lft;=6

(@) Embedded 0°-layer (b)

Surface 0°-layer

0.8 -

0.6 -

0471 —To0/To=1

—T90/T0=1

--T90/T0=2 - T90/T0=2 =~ CF/EP
02 - === CF/EP 0. -

=T90/T0=4 =T90/T0=4
Aft, . Alt,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure II-30. Effect of layers’ thickness ratios on 0°-layer’s knock down factor for the

unit cell with: a) Surface 0°-layer b) Embedded 0°-layer.
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The effect of the thickness of the 90°-layer on the knock-down factor reduction of the
0%layer in Figure II-30 is not significant, the reduction being larger with
increasing toy/t, . The largest change is between to/to=1 and teg/to=2. For the
thickness ratios higher than 2 the knock down factor is almost the same as for the

case tgy/ty = 2.

1.2 -
ko L/t,=6 90°/t0°=2

14

0.8 -
GF/EP
Embedded 0°-layer
0.6 -

0.4 A

CF/EP

< Data — Fitting Surface 0°layer

0.2 A

Alt,

T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure I1-31. Master curve Fitting

The knock-down factor data from FEM were fitted using the master curve expression
(II-38). Good fitting was obtained (see Figure II-31) and the fitting parameter “b” for

the analysed cases is given in Table I1-7.

Next, we analyse meso-cells, shown in Figure II-25, by changing the amplitude of the
0°-layer in one unit and calculating the knock-down factor of the 0°-layer in the other
unit. Changing the waviness in one 0°-layer, the interface tractions between units are
changed (boundary conditions for the unit cell are not symmetry conditions as it was in

Figure I1-3) as well as the knock-down factors.

Table II-7. Fitting constant “b”
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CF/EP GF/EP
t90°/t0° Surface Embedded Surface Embedded
1 8.781 5.136 2.766 1.646
2 10.360 6.201 3.031 1.746
4 10.657 6.392 3.067 1.750

Focusing on the 0°layer in the surface unit cell, the amplitude of the surface 0°-layer
(A/ty); is fixed, changing the amplitude of the 0°-layer (4/ty),, in the embedded and
determining the knock down factor of the 0°-layer in the surface unit. The percentage
of change is calculated with respect to the knock down factor in the surface unit when
(A/ty)m = 0 (flat layer). The same was done also for the 0°-layer in the embedded
unit by fixing (4/ty)., and changing (4/t,)s and calculating the knock down factor of
the 0°%layer in the embedded cell. Results for the most extreme effect of the
neighbouring layer are presented in Table II-8 and Table II-9 were also values
corresponding to unit cells with symmetry boundary conditions are presented for

comparison.

Table II-8.Knock down factor of 0°%layer in the surface unit with (4/ty)s = 0.7

and(L/ty) = 6.

CF GF
(A/t5)m In phase Out of phase In phase Out of phase
ko° % ko % koe % ko %
0 0.178 0.178 0.424 0.424
0.7 0.165 -7.30 0.194 +8.98 0.417 -1.65 0.431 +1.65
Fig 1a
£90°/t0°=2 0.177 0.421
Fig 1a
£90°/t0°=1 0.196 0.438

Table II-9.Knock down factor of 0°layer in the embedded unit with (4/ty), = 0.7

and(L/t,) = 6.
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CF GF

(A/ty), In phase Out of phase In phase Out of phase
ko° % ko° % koe % ko° %
0 0.276 0.276 0.563 0.563
0.7 0.261 -5.43 0.294 +6.52 0.549 -2.48 0.572 +1.59
Fig 1b
£90°/0°=2 0.262 0.557
Fig 1b
£90°/t0°=1 0.291 0.566

Increasing the wave amplitude of the neighbouring 0%layer, the knock-down factor of
the 0%layer in concern increases in the out of phase case and decreases in the in phase
case. The thickness of the 90°-layer in between two 0°-layers is the same and constant
(t90°=2t0°) in average. The symmetric shape of the out of phase model compensates
the bending of the unit and makes the 0°-layer stiffer (the result is similar as using
symmetry condition at the unit interface). The change (%) with respect to the knock-
down factor value when the neighbouring layer is straight also shown in Tables II-8,
I1-9 is very small for GF/EP composite (about 2%) but larger for CF/EP (10% for surface
units and 6% for embedded units). We conclude that the effect of 0°-layer waviness on
the knock-down factor of the neighbouring one is rather small and, therefore, it could

be accounted for using simple approximations.

To identify this simple approximation, we compare the knock down factor of the 0°-
layer in the meso-cell to the factor in the unit cell with t90°=2t0° (as demonstrated
above cells with t90°>2t0° render the same result). For all the cases of out of phase
meso-cells, the approximation of replacing the neighbouring waved 0°-layer by a 90°-
layer with t90°=2t0° would lead to under-estimation of the knock-down factor by 2-
10%. For the in phase meso-cell the same operation would lead to over-estimation of
the knock down of the 0°-layer in concern by about 0.3-7%. In a real NCF composite,

the unit cells are randomly shifted and, therefore, the in-phase and out-of-phase
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meso-cells represent extreme cases. Since the suggested approximation under-
estimates the factor for in-phase units and overestimates it for out-of-phase units, it
may lead to satisfactory stiffness reduction predictions in NCF composites containing
all these meso-cells. Certainly, more detailed and more accurate approximations are
possible, for example applying different approximations for in-phase and out-of-phase

meso-cells.

Finally, the approximation for knock-down factors suggested above was used for
symmetric NCF composite consisting of 5 meso-cells with different amplitudes and

same wavelength (L/t,) = 10 (Figure 11-27).

The stiffness of the two NCF composites shown in Figure II-27, calculated using FEM,
is labelled in Figure I1-32 as “FEM F27a” and “FEM F27b” respectively. The composites
in Figure II-27 were treated also analytically using the engineering approach based on
the master curve. First the knock-down factors of all units were determined accounting
for the 0°-layer interaction in the approximate way described above (using tyy = 2¢, in
the unit cell). In this routine the value of "c" in (II-39) is taken from Table II-4 for case
tyo = 2ty and the calculated "b" is substituted in (II-38) to calculate the knock-down
factor. After that the stiffness of the unit cell is calculated using (II-24) with the real
thickness of the 90°-layer in the cell, tq9 = t;. Then the stiffness of the chain of unit

cells (surface chain is treated separately from the embedded chain) is calculated using

1 _ von Vieurp 1 _von Viemb)
NCF(surf) — 4&i=1 ,i(surf) NCF(emb) — 4i=1 ,i(emb) (II'53)
Q11 Q11 Q11 Q11

The volume fractions of unit cells are calculated as follows

volisurface

(surf) = surface
UOlTotal

Vi (I1-54)
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V voliembedded II
) = -55
i(emb) V01%$%€dded ( )

The stiffness of both chains is used to calculate the stiffness of the NCF composite

shown in Figure I1-27.

NCF NCF b
Q{VlCF = suer11 (s + Vemp Q11 (emb) (I1-56)

In (55) Vyrr @and Ve, are volume fractions of the surface chain and embedded chain

respectively.

The NCF stiffness calculated using this technique is denoted in Figure II-32 as
“master”. The values are between the FEM values for in-phase (Figure II-27a) and out-
of-phase (Figure II-27b) composites. In the used approximation this technique does
not distinguish between in-phase and out-of-phase composites. This is because
calculating the effect of the neighbouring 0°-layer on the knock-down factor the 0°-
layer is replaced by 90°-layer which does not have any in-phase or out-of-phase

waviness.

An alternative for FEM as well as for analytical calculations is replacing the composite
in Figure II-27 by an equivalent meso-cell consisting of two equivalent unit cells
connected in parallel. The potential of this approach is analysed next. The equivalent
amplitude of 0°layer in each equivalent unit cell is calculated separately using
Method3 (II-51) with Vi being either V; s,y Or Vi(emp)- The equivalent wavelength is
calculated according to (50) which in the used calculation case (units of equal length) is

equal to the length of the unit cell.

The equivalent meso-cell with two unit cells in parallel was analysed using a) FEM; b)

analytically. The equivalent meso-cell is different for the in- and out-of-phase cases in
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Figure II-27. This is reflected in two different FEM values “FEM F27a-eq” and “FEM

F27b-eq” in Figure 11-32.

The analytical solution for the equivalent meso-cell is based on the master curve
expressions: a) the knock down factor of 0°-layer in each of the two equivalent cells is
calculated using expressions (I1-38),( II-39) (using "c" in (39) from Table II-4 for case
tgo = 2t, to find parameter “b” ). The effective stiffness of the equivalent unit is then
calculated using expression (II-24) which is based on CLT in equation (II-24). Finally

stiffness of both equivalent units is used to calculate the NCF composite stiffness using
b
Q{V1CF = Veq(surf) Qle;[(surf) + Veq(emb) Qf;l(em ) (II'57)

The results are shown in Figure II-32 as “Master-eq”. Results using the equivalent
meso-cell are very similar as obtained using the detailed meso-structure in Figure II-
27. It proves that the geometrical meso-structure in Figure I1-27 is well represented

by one equivalent meso-cell with equivalent amplitude and wavelength obtained using

Method 3.
70 | GPa W Q11 (NCF) FEM In phase )G Ui 300 Gpa u Q11 (NCF) FEM In phase ) GFeP LTe10
(A/t0)s=0 (A/to)m=0 Q11 (NCF) Master curve approach t90=2t0 Q11 (NCF) Master curve approach t90=2t0

(A/to)s=0 (A/to)m=0
[1Q11 (NCF) FEM Out of phase 25.0 [7Q11 (NCF) FEM Out of phase
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50

20.0
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5 meso-cells
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(A/t0)s2=0.3 (A/to)m2=0.2
(A/t0)s3=0.6 (A/to)m3=0.5 10.0
(A/t0)sa=0.5 (A/to)ma=0.6
(A/t0)s5=0.4 (A/to)ms=0.3
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(A/t0)s1=0.2 (A/to)m1=0.4
(A/t0)s220.3 (A/to)m2=0.2
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FEM F27a Master FEM F27b FEM F27a-eq Master-eq FEM F27b-eq

Figure I1-32. Axial stiffness of in phase and out of phase combinations of surface and
embedded unit cells: a) CF/EP b) GF/EP.
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6. Conclusions

The effect of the 0%-bundle waviness on stiffness of cross-ply NCF composites was
modelled. Multiscale approach was used by first calculating the homogenized bundle
material properties from its constituents by using an assumed hexagonal fibre packing.
The bundle structure of the curved 0°-layer and the bundle structure of the 90°-layer
with varying thickness are then replaced with homogenized materials. Finally, the
curved 0°-layer and the 90°-layer with varying thickness were replaced by flat layers
with effective stiffness and classical laminate theory was used to calculate the

macroscopic stiffness. The presented study focused on the axial macroscopic stiffness.

The macroscopic axial stiffness was expressed through the effective stiffness of the
curved 0%layer and the effective stiffness of the 90°-layer with varying thickness. It
was shown that the effective stiffness of a layer in the composite can be calculated
averaging the apparent stiffness, which are on the right and the left edges of the layer.
These two forces to layer are different due to varying layer thickness and due to the
interaction between layers resulting in normal and shear stresses at the 0°/90°-layer

interface.

Using this approach the effective 0°-layer stiffness was calculated analysing isolated
curved 0°-layer subjected not only to end loading, but also to surface loading. To
identify the surface loads to be applied, a detailed FE-analysis of the interface stresses
was performed. It is concluded that these stresses can be approximated by a sinus
shaped function with amplitude dependent on the wave length and amplitude of the

curve normalized with respect to the layer nominal thickness. Fitting expressions for
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the stress amplitude dependence on these layer waviness parameters were obtained,

and are given in Appendix.

The described sinus shaped surface loads were applied to isolated curved 0°-layer FE-
model together with end loading showing that the calculated effective stiffness of the
layer is in good agreement with the effective stiffness of the 0°-layer extracted from
the cross-ply composite analysis. This proves that further efforts are meaningful to
develop analytical approximate models for curved beams with sinusoidal surface

tractions.

Finally, the calculated effective 0°-layer stiffness was successfully used to calculate the
macroscopic stiffness of three different composites proving validity of the used
multiscale approach. It was also shown that without losing accuracy the effective
stiffness of the 90°%-layer (which generally speaking should be calculated numerically
considering 90°-layer with varying thickness and applied surface and end loads) can be

replaced by the transverse stiffness of the homogenized 90°-layer material.

In another approach, numerical parametric FE-analysis showed that the axial stiffness
reduction (knock-down factor) of a cross-ply type NCF composite made of carbon fibre
(CF) or glass fibre (GF) bundles with out-of-plane waviness of a surface 0-°layer or
embedded 0-°layer is almost the same as the effective stiffness reduction of the
curved 0°layer. This conclusion holds for a large variety of wavelength and wave

amplitudes of imperfections.

Analysing the calculated 0°-layer knock-down factor versus the wave amplitude curves

for NCF composites with different wavelength we observed that these curves for
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different wavelength can be reduced to one master curve by changing the scale of the

wave amplitude axis.

It was found analysing results for CF and GF cases that the numerical data building the
master curve can be fitted by a very simple one-parameter function. Thus, for a given
material only a few FE calculations for a selected wavelength and amplitude are
needed to construct the master curve. More calculations would serve the validation

purpose.

To construct the 0°%layer knock-down factor versus wave amplitude curve for a
different wavelength only one FE calculation is required for arbitrary selected
amplitude. Predictions performed for CF and GF NCF composites show a very good

agreement with direct FE calculations.

Axial stiffness of a symmetric NCF composite, consisting of many 0°/90° unit cells with
different amplitudes and wavelength of the 0°-layer, is calculated using FEM and also

using analytical models with knock-down factors for curved 0°-layers.

Analytical expression for knock-down factor of the 0°-layer in the unit cell is presented.
It is simple but very accurate fitting expression based on extensive FEM parametric
analysis and reflects the effect of the local amplitude and wavelength of the 0°-layer
on the effective stiffness of the layer in the unit cell. There is only one parameter in
these expressions which depends on the used material (values of this parameter are
presented for typical GF/EP and CF/EP materials), which means that for a new material
one FEM calculation for simple unit cell with fixed amplitude and wavelength is
enough to obtain knock-down factors for any combination of amplitude and

wavelength. It was found that the value of the knock down factor is affected by the
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presence and waviness of the 0°-layer in the neighbouring unit cell. In the current
routine this effect is accounted for in a very simple way: assuming that the effect is the
same as increasing the thickness of the 90°-layer. In the next step of simulations rule of
mixtures and constant force assumptions are used when appropriate. Analytical

modelling gives results in a good agreement with FEM.

An alternative approach, attractive for experimental characterization, is to use the
information regarding the variation of local waviness to create an equivalent meso-
cell for the NCF composite. Three different methods to identify parameters of the

equivalent meso-cell are discussed and good agreement with FEM is demonstrated.

Finally, Axial stiffness of a symmetric NCF composite, consisting of many 0°/90° unit
cells with different amplitudes and wavelength of the 0°-layer, is calculated using FEM
and also using analytical models with knock-down factors for curved 0°-layers (Master
curve expression) which is simple but very accurate fitting expression based on
extensive FEM parametric analysis and reflects the effect of the local amplitude and
wavelength of the 0°-layer on the effective stiffness of the layer in the unit cell. There
is only one parameter in these expressions which depends on the used material
(values of this parameter are presented for typical GF/EP and CF/EP materials), which
means that for a new material one FEM calculation for simple unit cell with fixed
amplitude and wavelength is enough to obtain knock-down factors for any
combination of amplitude and wavelength. It was found that the value of the knock
down factor is affected by the presence and waviness of the 0°-layer in the
neighbouring unit cell. In the current routine this effect is accounted for in a very

simple way: assuming that the effect is the same as increasing the thickness of the 90°-
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layer. In the next step of simulations rule of mixtures and constant force assumptions
are used when appropriate. Analytical modelling gives results in a good agreement

with FEM.

An alternative approach, attractive for experimental characterization, is to use the
information regarding the variation of local waviness to create an equivalent meso-
cell for the NCF composite. Three different methods to identify parameters of the

equivalent meso-cell are discussed and good agreement with FEM is demonstrated.
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Chapter 111

Damage in Carbon fibre/polyimide laminates

1. Introduction

An increasing interest of aerospace industry in composite materials for applications in
harsh environments has been driving improvement and development of new
composites. In addition to good mechanical performance some components require
materials suitable for the environment in which it would be functioning. For example,
the composites designated for aero-engine applications considered in this chapter
need to perform good at high temperatures. Thermal cycling (fatigue) and long
exposure to elevated temperatures (aging) can cause changes in the morphology,
strength and stiffness [49-51]. Therefore understanding the behaviour of a composite

material under this type of environmental exposure is of great importance.

Many researches are dedicated to study the thermal stability of the composite by
guantifying the effect of thermal fatigue and aging on the mechanical properties and
the damage development [52-54]. The effect of thermal cycling (-100°C,100°C) and
thermal aging (250h, 400h at 110°C) on mechanical performance of carbon fibre/RTM6
resin and carbon fibre/BMI resin cross-ply laminates was studied in [55] showing that
the intralaminar crack density is a clear function of aging time, indicating the matrix
and interface degradation. The elevated temperature level during thermal cycling with
a fixed lowest level has significant effect on the damage level [56-57]. At the highest
temperature in the cycle the composite laminate is close to the stress-free state and,

therefore, thermo-elastic analysis cannot explain the role of the highest temperature
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in the damage development. Using Paris law with energy release rate (ERR) change
during the cycle to explain fatigue crack propagation, the highest temperature is of
importance because the ERR change is larger. Nevertheless, it is only one of the
possible reasons: during exposure to high temperature irreversible phenomena take
place and when the lowest temperature in the cycle (with high stresses) is reached
micro-damage evolves. Possible causes for degradation are the disintegration of the
molecular network leading to degradation of the resin properties. In [51] authors
demonstrated that this effect can be intensified and accelerated if an elevated
pressure is added.

The degradation may be quantified by the weight loss measurement either after
thermal cycling or after isothermal aging [58-59]. It has been demonstrated that the
isothermally aged woven composite made of carbon fibre/epoxy loses more weight
than the thermally-cycled specimens throughout the entire range of the equivalent
aging time at 170°C. This was explained by the volumetric relaxation of the polymer
matrix after each cycle and by the diffusion rate of oxygen through the epoxy matrix
during thermal cycling, which is considerably lower than the diffusion rate at
isothermal condition. Another study [60] showed that the aging time of carbon
fibre/epoxy (IMS/977-2) composite (at 217°C) has an effect on its viscoelastic
properties. This effect is linked to the effect on the glass transition temperature. The
chemical and physical changes occurring during aging are accompanied by a variation
in molecular mobility, the glass transition temperature increases at the beginning of
aging followed by a decrease.

It is clear that the matrix dictates the material’s response at high temperature. The

degradation of neat polyimide resin and CF/polyimide composite at (320°C, 360°C) was
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studied in [61]. The authors have proved that the composite weight loss comes only
from the matrix degradation indicating that the carbon fibres in the composite have
good thermal oxidation resistance. The choice of the appropriate resin is the most
complicated issue for the high temperature composites. Development of high
temperature polymeric resins was reported in [62] replacing a commonly used epoxy,
with the limit of service temperature above 135°C, by polyimide resin in composites

for service temperatures between 250°C and 350°C.

2. Objectives

The objective of this chapter is to study the thermal fatigue resistance and the
thermal stability of quasi-isotropic CF/polyimide woven composite by analysing the
initiation and evolution of micro-cracking due to thermal cyclic loading or after
isothermal aging at 288°C and afterwards, to study the multiple intralaminar cracking
and delamination growth during tensile loading of the same material. The
experimental findings in different layers are explained analysing the micro-cracking
initiation and growth using stochastic initiation strength distribution approach and
fracture mechanics, focussing on

e Differences in crack density growth in different layers
e Comparing composites with two modifications of the polyimide

e Analysing the effect of high temperature aging on intralaminar cracking

3. Experiments

3.1. Materials description
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The composite material studied in this chapter is designed for severe operating
temperatures with a potential for aero-engine applications. Quasi-isotropic [(+45/-
45)/(90/0)]2s “laminates” were prepared using 8-harness satin weave based on Cytec
T650 carbon fibres and thermosetting polyimide resin denoted NEXIMID® MHT-R
(MHT-R). This resin is provided by Nexam Chemical AB; it is a low molecular weight
phenylethynyl terminated polyimide that contains a combination of 4-
(Phenylethynyl)Phthalic Anhydride (4-PEPA), end-group cross-linker and ethynyl bis-
phthalic anhydride (EBPA) main chain cross-linker. The use of optimized combinations

of the 4-PEPA and EBPA (both Nexamide™ type) enables ultimate Tg of around 370°C.

Specimens were cut from 2 different plates labelled 432, 433. These plates were
manufactured at Swerea SICOMP, Sweden, using resin transfer moulding (RTM) in
stainless steel tool using a flow and pressure controlled injection piston. The material
was initially cured at 340°C for 30min followed by 2.5h post cure at 370°C using 12 bar
pressure. In the 433 plate, the MHT-R resin was mixed with 4% of an additive A57,
which is a reactive diluent acting to lower the viscosity during processing. Both plates
were cooled down during 12 hours and demoulded at 70°C then cooled down to 0°C

for 2 hours.

The volume fraction of fibres is around 60%; the Tg is around 370°C; the uncured resin
melts between 200°C and 250°C and the initiation of cross-linking happens above
320°C. Some mechanical properties of the T650/MHT-R quasi-isotropic laminate [63]

are given bellow:

E Tensile = 48GPa / E Compression = 45GPa.

Tensile strength = 471 MPa / Compressive strength = 371 MPa.
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Strain to failure = 1.05% (in tension) 0.86% (in compression).
Fibre failure strain = 1.7%.

The matrix material is extremely expensive and the amount of material for testing was
very limited. The composite exists only as a quasi-isotropic woven laminate and
therefore properties of unidirectional composite that would be useful for modelling
are not available.

The 8-harness satin meso-architecture allows approximating in theoretical analysis the
composite as a laminate with “layers” of certain bundle orientation. The thickness of
the laminate is 2.9mm which means that average thickness of one “layer” (bundle) is

approximately 0.18 mm. The bundle width is about 1.5mm.

3.2. Experimental procedures

Two groups of specimens were cut from each plate (see Table III-1). The first group
(75mmx8mm) was divided into two subgroups and subjected to two different thermal
cycling loading sequences. The first subgroup was subjected to ramp (R1) between -
60°C and room temperature (RT) whereas the second subgroup to ramp (R2) between
-60°C and 288°C. The specimens were exposed to each temperature for 10 minutes
and were subjected to up to 150 cycles. The fatigue behaviour was characterised by
determining the micro-crack density in a layer by means of optical microscopy.

The specimens (150mmx12mm) of the second part of the plate with letter “A” in the
label were subjected to isothermal loading at 288°C for up to 960 hours (40 days) in air
environment and cooled down to RT for inspection. Then, tensile tests with

displacement rate 2mm/min were performed at room temperature (RT). Strains were
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measured using extensometer with gauge length 50mm. After reaching pre-described
strain the specimen was removed from the machine and inspected using optical
microscope.

Table III-1. Specimens’ labels and loading conditions

432 433
Fatigue Aging Fatigue Aging
o o
R1 R2 (288°) RL 2 (288°)
(-60°-RT) (-60°-288°) (-60°-RT) (-60°-288°)
432-1 432-10 (Oﬁ-:::;d 433-9 433-18 (n:_:::_;d
Edge of (0 cycles) (0 cycles) pe (150 cycles) (150 cycles) i
14d,21d,40d) 14d,21d,40d)
the plate
2322 43211 A-4322 433.8 43317 A-4332
(1 cycles) (1 eycles) (0h,25h, 7d, (100 cycles) (100 cycles) (0h,25h, 7d,
4 v 14d,21d,40d) v 4 14d,21d,40d)
— 432-3 432-12 A-432-3 433-7 433-16 A-433-3
(3 cycles) (3 cycles) (oh) (50 cycles) (50 cycles) (0h)
4324 432-13 A-432-4 433-6 433-15 A-433-4
(5 cycles) (5 cycles) (0h,25h,7d, (20 cycles) (20 cycles) (Oh,25h,7d,
14d,21d,40d) 14d,21d,40d)
432-5 432-14 A-432-5 433-5 433-14 A-433-5
(10 cycles) (10 cycles) (oh) (10 cycles) (10 cycles) (0h)
432-6 432-15 (Uﬁ'gﬁ'g 4 433-4 433-13 (n:';l:ﬁ'g "
(20 cycles) (20 cycles) 14d,21d,40d) (5 cycles) (5 cycles) 14d,21d,40d)
432-7 432-16 (AU:?;.EIZ 433-3 433-12 (%:i';?
(50 cycles) (50 cycles) o (3 cycles) (3 cycles) RO
+10min at -60°) +10min at -60°)
A-432-8 A-433-8
Middle of (mﬁzy-jes) (133 :\-/ges) (Oh,25h, (fﬁ]is) (f ijcil:s) (Oh,25h,
the plate +10min at -60°) +10min at -60°)
432-9 432-18 433-1 433-10
(150 cycles) (150 cycles) (0 cycles) (0 cycles)

Fine polishing was performed after cutting using the following sequence of sand
papers (P240, P600, P1200, P2500, P4000) followed by polishing using liquid diamond
slurry (from 9 micron to 0.25 micron). After certain number of cycles (number in
parenthesis in Table III-1) or certain number of aging hours (for specimens with label
“A” in Table III-1), or after certain applied strain level for not aged (“NA”) and aged
(“A”) specimens, the respective number of cracks N; over distance L (53mm) on the
specimen’s edge was counted at room temperature in each layer separately. The crack
density in each layer was calculated as
N;

pi = (IHI-1)

" Lsin@

where 0 is the fiber orientation angle in the layer.
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The mesostructure and the damage state of all the specimens were analysed under
microscope before any treatment. Some examples are presented in Figure III-1. The
main difference between both plates is in void content. The void content was
measured using image analysis software (NIS-elements BR) together with optical
microscope. The void content was defined as the area fraction of voids from the

observed surface.

+45-layer crack
TN N

Figure III-1. Cracks caused by the residual stresses: a) plate 432; b) plate 433

4. Results and discussions

4.1. Void content and initial damage state

Due to unknown chemical shrinkage stresses and thermal residual stresses arising
when cooling down the composite after manufacturing, cracks, with different
densities, appear in bundles, see Figures III-1 and III-2. The highest initial thermal
stresses are obtained when the plates were gently cooled down to 0°C directly after
manufacturing. We assume that the temperature difference causing the damage state
after manufacturing is approximately 0-340= -340°C. The stress state in the bulk part of
the composite plate can be calculated using the Classical Laminate Theory (CLT).

According to CLT, in a quasi-isotropic laminate the thermal transverse stresses in all
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layers are equal and the in-plane shear stress is zero. Since these two stress
components are responsible for intralaminar cracking, we can say that conditions for
initiation of intralaminar cracks in all layers are the same. Due to statistical distribution
of failure properties in a layer the number of initiated cracks is limited but statistically
it should be the same in all layers.

Cutting specimens from the plate was performed at room temperature (RT) which is
about 22°C higher than the lowest temperature during the manufacturing cycle. This
means that at RT the thermal stresses in the plate were lower by about 6-7 %. New
cracks were not introduced during the cutting, especially because after cutting, about
1 mm from each edge was removed by polishing. Still, the first observation from Figure
III-2 is that the crack density in different layers is quite different. The surface +45-
layers have much higher crack density than the rest of layers; in the 90-layers the crack

density is larger than in the £45-layers, where it is practically negligible.

o é:rack density (cr/mm) (a) Plate 432 o GCr!Ck density (cr/mm) (b)Plate 433

i Surface +45-layer i +45-layer i 90-layer o Surface +45-layer @ #45-layer i 90-layer
0.5 05

0.4 0.4

0.3 0.3
0.2 0.2

0.1 0.1

0.0

432-3 432-4 432-5 432-6 432-7 432-8 433-3 4334 4335 433-6 433-7 433-8

Figure III-2. Crack density on the edge of “untreated” specimens: a) plate 432; b)

plate 433. Direction from left to right is towards the middle of the plate

To explain these observations, 3-D Finite Element (FE) thermal stress analysis was
performed to study edge effects in a specimen with finite width. The upper part of the

laminate with [(+45/-45)/(90/0)]2s configuration was modelled assuming that the
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bundle meso-structure can be homogenized in this evaluation which is more of a
qualitative nature than a quantitative characterization of stresses. The assumed
thermo-elastic constants of the UD composite are: E;=141.025GPa, E;=8.821GPa,
v1,=0.265, v,3=0.442, G1o=3.62GPa, G23=3.11GPa, a,=0, ar=25e®°C.

The total number of SOLID186-type of brick elements was 33600. The simulated
specimen was long in x-direction (for all edge effects from x=0, x=L to decay in the
middle of the specimen) whereas the specimen width was 4mm and thickness 3mm.
These dimensions were selected to have even more interacting edge stresses than in
the experimental cases where the specimen width was 7 mm for thermal cycling and
12 mm for aging.

The in-plane stress distributions normalized with the CLT transverse stress value oy
are presented in Figure III-3. Even for this small width specimen, the transverse stress
in the middle y = W /2 is close to the CLT value, which means that the same plateau
region will be also in the experimental specimens which are wider. It also means that
the magnitude of edge effects is not disturbed by overlapping the stress perturbations
from both edges. The shear stress in layers, in Figure III-3b, is not negligible but still
significantly lower than the transverse stress. In Figure III-3a we observe clear
differences in the edge region between transverse stresses in +45-layers and in 90-
layers. In 90-layers the transverse stress is magnified by approximately 20% whereas in
all 45-layers it is about 30% of the CLT stress. This means that after cutting the thermal
stress state in the specimen is different than in the initial plate. For 90-layers the
transverse stress is about 20% higher which is much larger change than the thermal
stress reduction by 6-7% when the plate was brought from 0°C to RT. This means that

additional cracks were initiated in the edge regions of 90-layers. Most probably they
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did not grow inside the specimen because the stress conditions there did not change
after cutting. This hypothesis was not possible to check experimentally because the
matrix limited amount of material available for testing. On the other hand, the
transverse stress in the edge region of 45-layers is much lower than in the middle part
which means that new cracks were not introduced in these layers by making
specimens. The above analysis explains the difference between crack densities in 90-
and 45-layers shown in Figure III-2. However, it does not explain the much higher

crack density in the surface 45-layer which will be discussed later.

70 ¢, (MPa) (a) Transverse stress | 15 7 gt (MPa) (b) In-plane shear stress
mA
Normalised position along the width 10 4
A
AOO 090-layer
301 20 A -45-layer
3 sl o
20 -é O Surface +45-layer o 01 90-layer
o A -45-layer
10 10 4 OO
) O Surface +45-layer
0 -15 -

Figure III-3 Normalized thermal stress distributions in [(+45/-45)/(90/0)]2s laminates

of finite width W=4 mm: a) transverse stress 0" ; b) in-plane shear stress o/ .

Most of the 90-layer cracks in plate 432 originate from interbundle voids (see Figure
III-1a). The average void content was measured over the area of about 100mm?2. From
one specimen to another, the average void content varied from 0.3% to 2.4% in 432.
The measured void content is not too high; however, the voids were not uniformly
distributed in the material. When measured in a smaller window of 1.15mm?
(0.93mmx1.24mm), the void content varied from 0% to 13% in the plate 432. The void

content in the plate 433, where diluent was used to reduce the viscosity, was almost

zZero.
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General for both plates, it is very high variability between specimens. Therefore, at this
stage solid conclusions regarding the relationship between performance and
manufacturing routines cannot be drawn and all observed trends should be treated
with caution. The void content in the middle of the 432-plate, see Figure I1I-4, is much
higher than at the edge. It correlates with higher crack density in specimens from the
middle of this plate; see Figure III-2a from left to right, especially in the surface layer.
In fact, the role of voids is dual: they act as stress concentrators and first cracks appear
at lower thermal load, but also they lead to larger stress relaxation after the crack is
created, that may delay the appearance of new cracks and arrest the growth of the
existing cracks. This phenomenon was described in [64-65] showing that in mechanical
fatigue the cracking starts first in layers with voids but with increasing number of
cycles the difference in crack density disappears. In the 433-plate diluent was used to
reduce the viscosity, the void content is very low and the micro-damage state is

uniform over the plate; see Figure I11-2b.

Voids content (%)
25
432_edge | 2 432_edge Il

2.0

15

O'S_I il ]
0.0 L - ‘:IW -

432-3 432-4 432-5 432-6 432-7 432-8

Figure III-4. Void content measured on the specimen edges.

To explain the higher crack density in the surface layers we have to distinguish two

steps in crack evolution: initiation and propagation along fibres. The growth of a crack
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may be described by Linear Elastic fracture mechanics (LEFM) which states that the
crack will propagate when the energy release rate (ERR) G which is quadratic function
of the stress reaches or exceeds the critical value (material fracture toughness G,
which in composites may be different for different growth directions and depends on
the fracture mode mixity).

Intralaminar cracks initiate in stress concentration regions (voids, edges) and in
weakest positions where the local fibre concentration is high and/or the fibre/matrix
interface or the matrix is “imperfect” (for example, defects due to impregnation
problems in high fibre content regions) characterized by certain defect state. The crack
initiation process is stochastic and characterized by coalescence of fibre/matrix
debonds leading to growth in the ply thickness direction. Most probably the thickness
direction growth during initiation is the ply-scale thermal stress state governed, which
is according to CLT is the same for all layers. However, at given thermal stress o, the
ERR for defect growth in ply thickness direction is much higher for defects of the same
size at the surface than in internal layers. This fact is well known for infinite or semi-
infinite plates with cracks [66]. The relationship between ERR for surface and internal

crack growth in thickness direction for the same stress are given in [67]

Ssurface _ (112 2)" (I11-2)

Ginternal

Thus many more cracks are initiated in the surface layer of the quasi-isotropic laminate
under thermal loading. When the crack becomes sufficiently large in the ply thickness
direction, propagation of the initiated crack along the fibre direction in the layer
becomes energetically possible. The crack initiated at certain stress may propagate or
not, dependent on the available energy for propagation at this stress level. The energy

approach for crack propagation along fibres is described in [68-70]. The Mode | ERR for
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the steady-state crack growth along fibres can be written in terms of crack opening

displacements ul [69-71]

2an

Gy = [oro)” 2 ull) (I11-3)

Er 2an
In (III-3) t;, is the thickness of the damaged layer which in our case is the same for all

layers, E is transverse modulus of the layer. The average normalized crack opening

()

2an 1S different in surface and in internal layers. Expression (III-3) is

displacement u

valid for low crack densities when stress perturbations from cracks are not interacting

()

which is also the case in this study. The following approximate functions for u, ;,, were
presented in [20] obtained using FE parametric analysis
E n
ul) = A+B (E—g) (IT1-4)
For cracks in surface layer
tk 2 tk
n = —0.52292 (T) +0.8874 + 0.2576 (I11-5)
A=1.2 B = 0.5942 + 0.1901 (2 i—" — 1) (ITI-6)
For cracks in internal layer
A=052 B=03075+01652(s-—1) (IT1-7)
tk 2 tk
n = 0.030667 (—) —0.0626 2% + 0.7037 (I11-8)
2t 2t

In (III-4)-( III-8) ¢, is thickness of the adjacent layer (in our case all layers have the
same thickness,t; = t; ) and ES = E, is the modulus of the adjacent layer in the T-
direction of the cracked layer. Using the same elastic constants for CF UD composite as

in FE modelling we obtain

gl
yinternal =242 (III-g)
2an
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According to (III-3) the energy release rate (ERR) is 2.42 times larger in the surface
layer and according to the ERR based crack propagation criterion the propagation of
initiated crack in the surface layer would start at much lower thermal stresses.
Summarizing the above discussion we can state that in thermal loading: a) the number
of initiated cracks in surface layer is much higher; b) the number of propagating cracks

in the surface layer is much higher.

4.2. Damage state at RT in thermally cycled composites

After certain number of cycles of thermal loading, one specimen was saved and the
number of cracks in this specimen was counted along 53mm on both edges. Each data
point for crack density in Figure III-5 is the average on two edges of one specimen.
First, the damage state resulting from two different thermal loading ramps can be
compared. For all layer orientations the R2 (-60°C to 288°C) ramp induced more
damage than R1 (-60°C to RT). One can think that the upper temperature in R2 (288°C)
is close to the stress free temperature, so less damage could be expected. However,
data reveal that the interval between the minimum and maximum temperature, AT =
Timin — Tmax at fixed T,,,;,, has important effect on the cracking in thermal fatigue. It is
consistent with the Paris law for growth of individual crack in cyclic loading, stating

that the crack growth rate is a power function of the ERR difference

42 — AAGP AG = G(Tpin) — G(Tyg) (IT1-10)

dN
This relationship for intralaminar cracks was validated in [72] studying individual crack
propagation in cross-ply tubes during mixed axial and torsional fatigue loading.

Parameters A and S in (III-10) are expected to be material system dependent and,

hence, different for plates 432 and 433. This is clearly seen in Figure III-5 comparing
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data in different layers for plate 432 and 433 in R2 ramp. AG is larger for R2 ramp than
for R1 ramp (larger range of stress change between max and min temperature). Even if
there is not enough data for quantitative parameter determination it is obvious that
for plate 432 parameter [ is larger: larger difference between crack density
development in R2 and in R1.

According to (III-10) in each ramp the average crack length which is proportional to
the observed crack density grows linearly with the number of cycles. This trend can be
seen in Figure III-5 for cracks in internal layers but the relationship seems to be
different for cracking in the surface +45-layer. The crack density is also much higher in

surface layers.
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Figure III-5. Edge crack density growth in two thermal fatigue ramps (R1 (-60; RT)°C;

R2 (-60;+288)°C for plate 432 and plate 433
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Much larger crack density in surface layers was observed also in [73] where thermal
cycling at cryogenic temperatures was performed. In [73] the crack density determined
on the edge of 90-layer was also higher than in internal 45-layers.

To explain these two features we have to recall that even in fatigue there is an
initiation phase and propagation phase. Certain number of cycles N;,;; is required to
initiate crack and a different number of cycles Ny, is required for its propagation
along fibres to cover the whole width of the specimen. If Ny,,.,, > Njy;; the “fatigue
life” (number of cycles for full development of the crack) is propagation governed, in
contrary, if Nin;; > Nprop the cracking in fatigue is initiation governed. In surface layer,
the ERR for crack growth along fibres is much higher than in internal layers and crack
propagation is almost instant (initiated cracks instantly grow through the specimen).
The initiation is a stochastic process with a certain probability. In [72,74] modification
of the Weibull model was suggested and supported by experiments for density of
initiated cracks in mechanical tensile cyclic loading. After adjustment of notation to our

aims it is as follows

Pk(ff'r ,N)

Pkmax

= 1— exp[~kN® (ﬂ)m] (IT1-11)

Oino

The number of initiated cracks depends on parameter k which due to higher
significance of surface defects is larger for surface layers. The shape of the dependence
on the number of cycles in (III-11) is similar to the stress dependence of probability of
failure in the Weibull distribution: S-shape with three regions. At certain stress, in the
Region 1 of the cyclic loading (small N ) cracks are initiated only in a few weakest
positions. Later on with increasing N (Region 2) the crack density is increasing faster

because many positions have similar resistance to crack initiation. When the cyclic
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loading is continued a fewer number of new cracks are initiated because there are not
so many positions in the layer left with high fatigue resistance (Region 3). In result the
crack density growth rate slows down. In the performed thermal cycling test thermal
stresses are high and rather high crack density formed in the surface 45-layer already
in the last stage of the manufacturing. This means that for this layer the fatigue
cracking starts in Region 2 and slows down when it reaches Region 3.

Comparing both plates, see Figure III-5, in the R2 ramp the plate 433 is thermally
more resistant. During ramp R1 the damage development in both plates is rather
similar; the number of cracks is much smaller. However, ranking regarding the fatigue
resistance is not possible due to the large scatter. The internal +45- and -45-layers
show the same cracking behaviour, thus, they are considered together and the average
crack density of all 45-layers is given in Figure III-5b (counting cracks on both edges of
the specimen). Validity of this procedure is demonstrated in Figure III-6 which shows
crack density in all layers on the edge of one 432 specimen after 150 cycles in ramp R2.
It appears that internal 45-layers have slightly lower amount of cracks than in 90-layers
after 150 cycles. In [73] the thermal fatigue caused crack density, determined on the
edge, was also higher in 90-layer than in internal 45-layers.

1 zCrack density (cr/mm) 432 (R2/150 cycles)
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Figure III-6. Crack density distribution in the layers along thickness on the edge of

specimen 432-18. (Cracks in 0_layers were not counted).

Since the crack counting was on specimen edge the result is consistent with the
transverse stress distribution in Figure III-3: in 45-layers stress in the edge region is
lower and in 90-layers higher than in the bulk of the specimen. In 45-layer case, not all
cracks reached the edge and in 90-layer case some edge cracks did not propagate
inside the layer.

To investigate whether the edge cracks propagate inside the specimen and vice versa
the edge of specimen 432-18 subjected to 150 cycles with R2 was polished to quantify
the damage state at distance d from the specimen edge (d=0.9mm and then
d=2.4mm). The results presented in (Figure III-7) confirm expectations: a) the crack
density inside the specimen is approximately the same in the 90- and internal 45-
layers; b) the crack density inside the internal 45-layers is higher than at edges; c) the
crack density on the edge of surface 45-layer is similar as inside which proves that in
the surface layer there is an excess of ERR for propagation in fibre direction and
therefore, in contrast to internal 45-layers, almost all cracks reach the edge. We do
not see any reason for lower crack density on the edge of the 90-layer and we believe

that the variation shown for this layer in Figure III-7 is a measure of scatter.
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Figure III-7. Cracks density dependence on the edge distance for thermally cycled

specimen after 150 cycles in R2

The analysis given in this section is based on LEFM. In fact, it is not certain that in
ramps with high upper temperature parameters A and n remain constant. More
irreversible effects including aging can be expected at +288C which may lead to
accelerated crack propagation when the lowest temperature is reached in the next
cycle. Temperature gradients during the cooling down part of the cycle can lead to

additional damage in surface layers.

4.3. Damage state at RT in aged composites

Specimens were exposed to 288°C in ambient air environment for certain amount of
hours and cooled down to RT to count cracks on specimen edges. If the time at high
temperature would affect the composite transverse failure properties (aging), thermal
stresses at RT would introduce additional cracks. The crack density versus the number
of aging hours is presented in (Figure III-8), two specimens from each plate were
tested.

The counting was performed 24 hours after removing specimens from the oven. The
crack density was not high enough to have significant effects of crack interaction on
evolution. In a not aged specimen the surface +45-layers have the highest initial crack
density (Figure III-2) which increases linearly with the aging time reaching at the end
of the test approximately l1cr/mm. The crack density on the edge of the 90-layer is
increasing with a higher rate comparing to the surface +45-layer reaching about
1.7cr/mm at the end of the test. The crack density in the internal +45-layers starts to

increase later, after around 400 hours of aging time and the cracking process is
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accelerating. Comparing the aging effect on crack development in both materials (plate

432 and plate 433) we cannot observe any clear difference in the behaviour.
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Figure II1-8. Crack density on the specimen edge versus aging time: a) surface 45-

layers; b) internal 45-layers; c) 90-layers

To establish whether the edge data are representative for the bulk of the composite,
edge polishing of one 40 days aged specimen (433_2) was performed similarly as it was
done for a thermally cycled specimen (see Figure III-9). The results show that the
damage state is very different than on the edge: in the 90-layer cracks are abundant
only on the edge. The amount of cracks in the 90-layer away from edges is very similar
to the number of cracks found on the edge of the same specimen before aging
(originating from residual thermal stresses after manufacturing). It indicates that in the

bulk of the 90-layer the material aging due to high temperature exposure for 40 days is
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rather small: most of the cracks initiated on the aged edge do not propagate inside the

layer.
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Figure III-9. Crack density inside a 40days aged specimen (A-433-2).

The crack density in the internal 45-layers on the aged edge is much lower than in the
90-layers on edge. This has a simple explanation based on the stress distributions in
Figure III-3: even if the material on the specimen edge is significantly degraded,
transverse stress in the 45-layers in this region is much lower than in 90-layers. The
lower stress at the edge means that the middle part of the layer is still responsible for
crack propagation and, since the aging has not affected this part significantly, the crack
density does not change with the distance from the edge.

During the aging test the surface 45-layers are subjected to contact with the high
temperature environment not only in the edge region but also over the whole surface.
Therefore more uniform material degradation can be expected in the layer leading to
overall decrease in resistance to crack initiation and propagation. The stresses at the
edge of surface layers after aging are as low as the stresses on the edge of the internal
45-layers but the available energy conditions are more favourable for a crack to reach

the edge. Since the crack density on the edge of the surface layer is result of
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propagation from the inside of the layer, the crack density is lower than at the edge of
90-layers where the stress is magnified and were the initiation takes place.

The phenomenon of the aged zone propagating from the specimen surface explains
also the peculiar data in Figure III-9 with the crack density in internal 45-layers apart
from edges being in average several times higher than in 90-layers (the propagation
conditions are similar for both types of layers). More detailed analysis reveals that the
crack density in internal 45-layer is a function of the distance of this layer from the
laminate surface. The crack density in the layer next to surface layer is much higher
than in 45-layers close to the symmetry plane of the laminate where the crack density
is very similar as in 90-layers. This means that not only the surface layer but also the
next layer has aged, which is expected because the thickness of one layer (0.18mm) is
much smaller that the size of the observed aged zone at the edge (about 1 mm), even
if the oxygen diffusion rate could be higher in fibre direction.

The long exposure to high temperature in a direct contact with oxidative atmosphere
generally leads to weight loss. An average of weight loss taken over 4 specimens from
each plate is plotted versus the aging hours is Figure III-10. The weight loss did not
exceed 1.4% after 40 days of aging at 288°C.
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Figure III-10. Weight loss due to aging at 288°C
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The degrading effect of the contact with high temperature air is illustrated in Figure
III-11 where the same position on the specimen edge is shown at RT before and after
aging for 40 days. The colour of the surface has changed and the surface is rough
(reminds calk) as if part of the resin material has fallen out especially from places with
resin pockets or pre-existing cracks. Some additional cracks seen on the right are result

of cooling down the specimen to RT after the aging test.

Untreated Aged 40 days

Figure III-11. Edge view of 432-6 specimen before and after 40 days of aging

However, after edge polishing during the procedure to get data for Figure III-9, the
surface looks like the edge of an untreated specimen. It appears that only about 1mm
thick boundary layer at the edge of the specimen was oxidised and much longer time is
needed to degrade the whole specimen (It was decided to remove this aged layer by
polishing before tensile testing was performed to inspect for possible degradation in
the bulk of the composite). These results are consistent with the after aging cracking

data presented in this section. The results provide evidence that this composite may
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be a good candidate for high temperature applications provided that the free surfaces
are not in a direct contact with the air.

Now when the thermal aging effect on cracking is described we have to address again
the thermal fatigue results for ramp R2. During the thermal cycling test specimens
were subjected for in total about 25h at 288°C (10 minutes in each cycle and for 150
cycles). Hence in the thermal cyclic loading, two effects could contribute to the
damage development in the composite: the effect of possible fatigue during cycling
and the effect of thermal aging due to the 25h at high temperature. To investigate the
effect of aging two specimens were kept at 288°C during 25h. It was found (Figure II1-
12) that the specimens aged for 25h after cooling down to -60°C have fewer cracks
than the specimens subjected to R2 cyclic loading, which confirms that only a part of

the cracking in the thermal cycling test is due to aging.
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Figure III-12. Aging and thermal cycling effects on edge crack density

4.4. Damage state in mechanically loaded composites

As mentioned in the previous section the edge zone of aged specimens was severally
damaged and it was removed by polishing before the stepwise mechanical testing

started. The effect of aging on cracking resistance was still expected to be different in
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surface and in internal layers. Mechanical loading introduced more cracks and also
delaminations between layers. Due to limited amount of specimens, sectioning of the
specimen before the final test step (the highest strain level) was not possible, and the
multiple cracking results presented in following sections are based on edge

observations only.

From other side, cracks approaching the edge from the inside can be stopped due to
the lower stress in the edge region, thus, not reaching the edge. Even for undamaged
laminate the stress state at the edge is 3-D and the features of stress concentrations
are different in different layers. The edge effects in thermal and uniaxial mechanical
loading are different and the summary effect is a linear superposition of the two,
where the thermal part remains unchanged whereas the mechanical part grows
linearly with the applied strain. The possible problems with edge observations and also
the possible effects of edge stresses on damage initiation were estimated analysing

stress distributions and also comparing the damage states experimentally.

The simulated specimen was long in x-direction to have a region with x-independent
stress state. The specimen width was varied between 4mm and 30 mm whereas the
laminate thickness was 3mm. These dimensions were selected to have isolated effects

from both edges as well as interactive ones.

According to CLT transverse thermal stress, O'7t~h for the assumed properties and AT =
288 — 25 = 263 is 53 MPa. The CLT 07’5’1 is the same for all layers in a quasi-isotropic
th _

laminate and the CLT thermal shear stress o;7 = 0. The in-plane thermal stress

distributions at the edge are presented in Figure I11-3.
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Whereas thermal stresses are not changing during the tensile test, the mechanical
stress is proportional to the applied strain. In Figure III-13 the mechanical transverse,
ort and in-plane shear stress a/7 distributions in layers are shown for applied

strain € = 1%.
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Figure III-13 Mechanical stress distributions in [(+45/-45)/(90/0)].s laminates of finite

width W=30mm: a) transverse stress a7 ; b) in-plane shear stress a;7.

At 1% strain the total transverse stress in the 45-layer is 07> > 53 + 40 = 93 MPa
whereas the shear stress o7 ~ 0 + 40 = 40 MPa , (:_2 ~ 45% ). At lower loads the
fraction of the shear stress is even lower. For this reason, analysing failure in follows
we will neglect the shear stress contribution assuming that crack initiation is by
transverse stresses. Comparing predictions with data we will show the applicability of

this assumption.

The mechanical transverse stress a7* at the edge has the following features:
e In 90-layers it is magnified by 50% comparing to the CLT value. However the
stress concentration zone is very small (Imm).
e In the internal +45-layers it is by 30% lower than in the CLT zone. In the surface

layer the reduction is 60%
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e Inthe -45-layers there is a magnification about 10%.
The in-plane shear stress a7 in all 45-layers is magnified in the edge region by 20 to
40%. Superposing the mechanical and thermal edge effects we can conclude that
there is transverse stress magnification in 90-layer but not in 45-layers. The shear
stress is magnified at the edge of 45-layers which may “compensate” for the lower
transverse stress in this region leading to rather uniform conditions for damage
initiation in these layers. In terms of crack density there is a risk that in 90-layers more
cracks are in the edge zone because of higher transverse stress making edge
observations unreliable. In 45-layers the crack density on the edge may be more
representative. However, edge delaminations linking cracks are increasing the
significance of each crack in stress reduction and lowering the probability of new
cracks initiating between two existing cracks, thus, working against the edge effect in

stress distribution in 90-layers.

These questions were resolved experimentally comparing damage statistics on the
edge with the damage state quantified (after polishing) at several distances from the
edge. In this inspection one NA specimen after loading to 1% strain and one aged (A)
specimen after loading to 0.7% strain were used. Figure III-14 shows crack density in
different layers as a function on the distance from edge. There is no statistically
confirmed trend with more cracks on the edge of the specimen. This conclusion holds

for NA as well as for A specimens.
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Crack density (cr/mm) a) NA-432-5, £ = 1% Crack density (cr/mm) b) A-432-4, £ = 0.7%
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Figure III-14 Crack density versus distance d from edge: a) NA-432, e=1%, b) A-432,

€=0.7%.

The delamination length normalized with the interface length is shown in Table I1I-2
for each interface in a NA specimen after loading to 1% strain. At the edge the
normalized delaminations are larger (more than 20%) at interfaces closer to the
laminate surface. However, already at d = 0.5mm from the edge the delaminations

are much smaller and they practically disappear at d = 1.5mm.

Table III-2 Normalized delamination length

Normalized delamination length (%)

Before Polishing  Polishing

Interface polishing d=0.5mm d=1.5mm
Top I: surface+45/-45 27.4 0.0 0.0
I: -45/90 21.3 54 0.0
1: 90/0 13.3 1.2 0.0
I: 0/+45 0.5 0.0 0.0
I: +45/-45 15.3 1.5 0.0
I: -45/90 9.0 1.3 1.0
1: 90/0 1.6 0.5 0.0
1: 0/90 2.1 1.5 0.5
1:90/-45 5.0 4.3 0.4
I: -45/+45 13.3 5.0 0.0
1:445/0 0.0 1.0 1.2
I: 0/90 9.3 9.5 0.0
I: 90/-45 24.7 12.4 0.5
Bottom  I:-45/surface +45 14.8 14.8 1.0
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The uniform crack density in Figure III-14 means that most of the initiated cracks had
enough of ERR to propagate along the fibre direction. The hypothesis is that the 45-
cracks initiated in the bulk part could reach the edge and the 90-cracks initiated at the
edge could propagate through the bulk of the layer. However, at the edge of the 90-
layer we have stress concentrations but also edge delaminations relaxing stresses.
Based on the data presented in this section we cannot resolve whether they are self-
compensating or not and whether the edge is or is not the initiation region for most of
the cracks in the 90-layer. Further information on this subject will be given later
where Weibull analysis will be applied to 90-cracks and the results used to predict

multiple cracking in 45-layers.

Nevertheless, the presented results give sufficient confidence in ability of edge
observations to represent the damage state and in the analysis presented in next

section.

4.5. Damage accumulation analysis

Measurements show that the growth of crack density is different in different layers.
We will first analyse the damage evolution in 90- and +45-layers comparing both
composites before and after aging. Then we will analyse the behaviour of -45-layers
which is rather different than the behaviour of +45 layers. But, we will start by

presenting the theories that will be used in the analysis.

4.5.1. Theoretical background

Analysing multiple intralaminar cracking in laminates we have to distinguish two steps

in evolution of each individual crack: initiation (growth mostly in ply thickness

107



direction) and propagation along fibres in the layer. Some of the equations mentioned
in section 4.1 are reused in this section in addition to others to explain the damage
accumulation. The concept will be re-explained from the beginning to make a
complete story. Utilizing Linear Elastic Fracture Mechanics (LEFM) concept, the crack
will grow when the energy release rate (ERR) G which is a quadratic function of stress,
reaches or exceeds the critical value called fracture toughness G, . In composites the
fracture toughness is different for different growth directions and depends on the
fracture Mode mix. Since mechanisms in shear and transverse tensile failure are
similar, we may expect that in a layer with 8—orientation shear stress, O'LQT will facilitate
cracking caused by transverse stress UTG; however, the role of tensile 079 is dominant.
The stress state is a superposition of thermal stresses (zero shear stress in quasi-
isotropic laminates) and mechanical stresses. Unfortunately reliable mixed mode
criteria are not available and are difficult to establish experimentally. Therefore, in
cases when the shear stress is several times smaller than the transverse stress, as it is
in this paper, only Mode | is often considered, keeping in mind that adding Mode Il

would increase the number of cracks.

According to LEFM growth conditions for a crack (notch) with a length a are entirely
different for a crack in the middle of an infinite plate and at the edge of a semi-infinite
plate [66]: the critical stress level for growth is much lower for edge crack. The

relationship between ERR for edge crack and internal crack growth at given stress is

Gsurface — (112 \/E)Z (III-].Z)

Ginternal

In internal layer of a laminate the surface defect growth is suppressed by constraint

from the adjacent layers and most probably defects from the middle of the layer will
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develop a crack. Therefore, for defect of a given size and at given stress aﬁ the ERR for
its growth in ply thickness direction is higher for defect on the free surface of the
surface layer than for the defect in internal layers. After reaching certain size the crack
growth becomes unstable and then slows down close to the interface with the next
layer finally being arrested there [75-76]. In [67] relationship (III-12) was used for
analysis of cracking in surface and internal layers of laminates resulting in the follows

relationship between crack initiation stress in internal and surface layers of the same

orientation

Ot = ko (H1-13)
where

k=112V2 (I11-14)

Intralaminar cracks initiate in stress concentration regions (local fibre clustering, voids,
edges) and in weakest positions where the fibre/matrix interface or the matrix is
“imperfect” (for example, defects due to impregnation problems in high fibre content
regions). The crack initiation process is characterized by coalescence of fibre/matrix
debonds leading to formation of a crack which grows in the ply thickness direction. It
would be convenient to express the thickness direction growth criterion during
initiation in terms of ply- scale stress state calculated using Classical Laminate theory

(CLT) and the factor k to reflect the difference between surface and internal layers.

The initiation of a crack is a stochastic process with certain probability and with
random position if the stress distribution is uniform along the layer. This is because the
weakest position for the crack to come is related to local inhomogeneity with random

location. The local fibre clusters of size of 3-5 fibre diameters (l, = 0.05mm) define
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the critical size when the coalescence of defects may be considered as an unstable
crack. In simulations of crack initiation we assume that any layer in its transverse
direction can be considered as consisting of a chain of elements of this size. The

elements all-together follow the two-parameter Weibull strength distribution,

Pr=1-exp|- (’“’T)m] (IT1-15)

Gino

but the location of an element with certain strength is random. According to (III-13) a
larger amount of cracks is initiated in the surface layer of the quasi-isotropic laminate
than in internal layer of the same orientation. Parameter k is introduced in (III-15) to
reflect the favourable situation for crack initiation in the surface layer of the laminate.

Performing Monte-Carlo simulation we randomly select, for example, N = 2000
elements from a virtually infinite pool of elements to create a specimen of length L, =
N -1y = 100mm. This selection does not exactly represent the initial Weibull
distribution which means that each selection is a new specimen of the same material.
The selected specimen has certain transverse strength distribution along the
transverse direction of the layer. The first crack will appear in the element with the
lowest strength. After that, for any fixed damage state with given spatial distribution of
cracks, the stress distribution is calculated using some model (shear lag, Hashin’s etc)
and failure index (stress versus strength) is calculated in each element to find the
position of the next crack. This procedure seems rather complex but in this way the
interaction between cracks which weakens the stress field and delays cracking is

accounted for.
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If the crack density in an it" layer is low enough to allow for large plateau regions in
stress distribution between cracks, the probability of failure as a function of transverse

stress can be estimated using expression

Py = pidor) (IT1-16)

Pimax

In (16) p; max is the maximum possible crack density in a layer corresponding to the so
called “characteristic damage state”. Based on experimental observations p; yq, =
1/t; where t; is the thickness of the layer. Using the experimental crack density
dependence on transverse stress to calculate P;, we plot the log(—log(1 — Py))
versus logor and use the standard procedure to estimate Weibull parameters. The
result is rather sensitive to the used data points on both extremes: data points at high
crack density are affected by crack interaction whereas the stress at first crack varies a
lot from specimen to specimen, requiring large amount of specimens to be reliable.
The so obtained estimates of Weibull parameters can be used in Monte-Carlo

simulations over the whole crack density region and adjusted to increase the accuracy.

When the crack becomes sufficiently large in the ply thickness direction, propagation
of this crack along the fibre direction in the layer may become energetically possible.
The crack initiated at certain stress may propagate or not, dependent on the available
energy for propagation (ERR) at this stress level. The energy approach for crack
propagation along fibres is described in [20-22]. The Mode | ERR for the steady-state

crack growth along fibres in a layer can be written in terms of crack opening
: (k)
displacements u, ;,, [21-23]

2 ) B
Gy = [or0] 3+ Ugam (I11-17)
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In (III-17) ¢t; is the thickness of the damaged layer, E; is transverse modulus of the

(k)

»an 1S different in surface

layer. The average normalized crack opening displacement u

(k)

»an Were presented in [20] based

and in internal layers. Approximate expressions for u
on results of FE parametric analysis. Using the same elastic constants for CF UD

composite as in FE modelling in section 4.1 we obtain

surface

u an
i ~ 242 (I11-18)

Hence, according to LEFM the propagation of initiated crack in the surface layer
requires much lower stresses than in internal layer of the same orientation. Results
show that cracks in our composite have propagated across the specimen width, which

means that an initiated crack is propagating at the same stress.

Summarizing the above discussion we can expect that a) the number of initiated cracks
in surface layer is much higher; b) in our composite all cracks propagate as soon as
they are initiated. Therefore, focus in this analysis will be on crack initiation which we

will describe by the Weibull analysis discussed above.

4.5.2. Multiple cracking in 90- and +45-layers of not aged

(NA) composites
Analysing cracking in the 90-layers of the 432 NA laminate, first, the crack density
dependence on transverse stress was obtained from the applied strain (using CLT) and
the estimated thermal stresses. Using (III-16) the experimental crack density data for
90-layers was transformed to probability of failure and (III-15) was used to estimate
Weibull parameters. The values for these parameters for both composites (aged as

well as not aged) are given in Table III-3. The log-log relationship is shown in Figure
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III-15a. The first point on the left corresponds to crack density due to thermal stresses
with rather uncertain stress value. The last three points deviate from linearity which is
a sign of crack interaction. According to Figure III-15b, where the test data and the
simulation using (III-16) (solid line labelled P; and referred as Pr-approach) are
shown, deviation starts atpg, = 1.6 cr/mm. In Figure III-15b Monte-Carlo
simulations with the same parameters are also shown (different symbols for shear lag
and Hashin’s model) demonstrating noticeable deviation between the Pr-approach
which ignores crack interaction and Monte-Carlo simulations accounting for it, starting
at pgg = 0.5cr/mm which is much lower than pgy, = 1.6 cr/mm estimated from
deviation between the Pr approach and experimental data. Of course, the result of the
Monte-Carlo simulation depends on the used stress model and it is well known that
Hashin’s model overestimates the interaction of stress perturbations, whereas in the
shear lag model case the result depends on the used modification (we used shear lag
model which assumes existence of a resin rich region of thickness d, = 0.02mm
between layers). Nevertheless, Figure III-15b confirms the conclusions from [77]
obtained from probabilistic consideration: a) crack interaction starts to affect results at
rather low crack density; b) for non-uniformly distributed cracks interaction effects are

noticeable at lower crack densities than for uniformly distributed cracks.

Returning to results of Monte-Carlo simulations in Figure III-15 we have to conclude
that the Weibull parameters obtained using (III-16) ( Py~ approach) are rather
inaccurate: the parameters in Table III-3 give good fit to used data but they are not

the real Weibull parameters.
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III

Since the “real” parameters determined from Monte-Carlo simulations are always
related to some specific approximate stress model, and the goal of this paper is rather
a qualitative explanation of observed phenomena then a “quantitative perfection”,
we will use, when comparing damage development in different layers, different

composites as well as the effect of thermal aging, the Pr -approach because of its

simplicity.

The Weibull parameters from Table III-3 were used to predict crack density in
internal +45-layers and in the surface +45-layer of the NA-432 laminate. All internal
+45-layers behave in a very similar way. The data and simulations using the Ps-
approach are presented in Figure III-16 which shows good agreement proving that a)
cracking in +45-layers has the same transverse stress dependence as in 90-layers,
indicating that the edge effects in 90-layers discussed previously are not significant; b)
at least for low loads the effect of shear stresses in cracking simulation can be
neglected. At low strains the predicted crack density in +45-layers is slightly higher
than the experimental which can be attributed to the “imperfect” parameter

determination in 90-layer and to the discussed edge effect in 90-layer.
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Figure III-15 Cracking in 90-layers (NA-432): a) Weibull plot of test data; b) crack
density versus transverse stress g7, Ps-approach (4); Monte-Carlo simulation using

shear lag and Hashin’s models

Table III-3 Weibull parameters from 90-layer cracking

Composite m SO0 (MPa)

432-NA  7.84 135.2

433-NA  8.33 138.8

432-A 6.88 134.0

433-A 7.3 144.2
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Figure III-16 Crack density growth with strain in +45-layers of NA-432 (data and

predictions using Pf approach)

The crack density in the surface +45- layer, shown in Figure III-16b is significantly
higher with many cracks existing before mechanical loading. The Pf —approach with
k =1 gives the same prediction as for internal +45-layers. An attempt to use in
simulations equation (III-15) with k = 1.12+/2 also failed — far too high crack density

was predicted, see Figure III-16b. As a good fitting value k = 1.13 was found, but this
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values is missing any fracture mechanics meaning and as shown in following it does

not work for other cases.

These results show that the discussion regarding the role of the free surface on defect
growth has been oversimplified. In fact, the k = 1.12+v/2 effect has been proven by
computation micromechanics simulations for the first crack only [78]. It is incorrect to
assume that in the surface layer of the laminate all cracks will initiate at the free
surface: even assuming that the defect state is uniform across the layer (it is just an
assumption- in reality there could be resin rich region at the surface changing the
statistics) only the first cracks will originate from the largest defects close to the
surface, but after that the largest remaining defects are not on the surface of the layer
and sooner or later it will be their turn to grow. Thus, the multiple crack initiation in
the surface layer should be a mix of cracks coming from the surface and from the
interior of the layer. May be the first group of cracks could be characterized by k =
1.12+/2 in (ITI-15) whereas the second group by k = 1. An indecisive support to this is
given by Figures III-16b and III-17b where the first cracks in the surface layer are
close to predictions using k = 1.12v/2 whereas later it becomes closer to the k =1
curve. If so, these two predictions could be used as an upper and lower bounds to the
cracks density. Unfortunately, cracks interaction would have a similar effect: at high
crack density cracks in surface layers are interacting much more than in internal

layers.

The crack density growth with strain in 90-layers of the NA-433 plate which has slightly
modified composition is shown in Figure III-17a. This relationship was used to

estimate Weibull parameters, see Table III-3, using (III-15) and (III-16) as described
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above for NA-432 plate. These parameters were used in the Pr -approach to predict
cracking in +45-layers. The predictions, shown with solid line in Figure III-17a, are in a

good agreement with cracking evolution in this layer.
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Figure III-17 Microcracking development in NA-433

Similarly as for the 432 composite, cracking in the surface +45-layer does not follow
any of the discussed rules regarding. The rather trivial conclusions are: a) fitting with
k = 1.13is not good for this composite; b) the crack density is indeed between the
bounds defined by k = 1.12v/2 and k = 1 being closer to the former at lower crack

density and tending to the latter with increasing crack density.

Comparing results for NA-432 (with voids) and NA-433 (no voids) presented in this
section we do not see large differences. Even the Weibull parameters are very similar
and the differences most probably are due to scatter and a different number of
available data points. A real difference is in surface layers, where 433 laminate,
without voids, has more cracks before mechanical loading and also during increasing
mechanical loading. Indeed, the role of voids may be dual: they act as stress
concentrators and first cracks appear at lower stress, but they also lead to larger stress

relaxation after the crack is created and linked to the void (especially in a surface layer
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where one surface is free). That may delay appearance of new cracks. This
phenomenon was described in [64-65] showing that in mechanical fatigue the cracking
starts first in layers with voids but with increasing number of cycles the difference in

crack density diminishes.

4.5.3. Multiple cracking in 90- and +45-layers of aged (A)
composites

The crack density in aged composites was analysed as described in section 4.5.2. First,

the Weibull parameters, see Table III-3, were obtained from 90-layers cracking data.

These parameters were used in the P; -approach to predict crack density growth in 45-

layers, see Figure III-18 for A-432 and Figure III-19 for A-433. For internal +45-layers

in both aged laminates predictions are in good agreement with test data.

Similarly as for NA specimens, the crack density in the surface layers could not be
predicted: it is even outside the previously defined bounds. The latter means that the
surface layer has different failure properties than the internal layers: it has aged and
therefore p is much higher than in NA case. It seems that the surface layer of the A-
432 composite has aged more than that of the A-433 composite: the crack density at
zero loads is higher and it is growing faster in A-432 composite. Partially it could be

explained by voids in the 432 providing pathways for oxygen during the aging test.
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Figure III-19 Microcracking in A-433 composite

The probability of transverse failure in 90-layers of both composites, not aged (NA) and

aged (A), can be compared from plots in Figure III-20. The behaviour is very similar.

Aging has not affected the damage behaviour of 90-layers.
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Figure III-20 Probability of transverse failure curves for 90-layers of 432 and 433

composites: not aged (NA) and aged (A)

4.54. Extraordinary cracking pattern in -45-layers
In a not damaged quasi-isotropic [(+45/-45)/(90/0)]2s laminate the CLT stresses in +45
and -45-layers are exactly the same and, therefore, the same development of multiple
cracking could be expected in both types of layers. Nevertheless, data presented in
Figure III-21a and Figure III-22a show many more cracks in -45 layers than in

internal +45-layers.
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Figure III-21. Cracking in -45-layers of the 432 quasi-isotropic laminate (layers are

numbered L3, L7 regarding their position with respect to mid-plane): a) NA; b) A.
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Figure III-22 Cracking in -45-layers of the 433 quasi-isotropic laminate (layers are

numbered L3, L7 regarding their position with respect to mid-plane): a) NA; b) A.

In these figures the Py -approach simulations, which describe cracking in +45-layers
very well, are shown as solid lines. Crack density is shown separately in L3 layer which

is close to the mid-plane and in L7 layer which is close to the surface.

For not aged specimens there is no systematic difference between L3 and L7 layers.
The crack density in -45-layers is similar as in +45-layers only in the very beginning of
cracking. After 0.6% strain the crack density in -45-layers is almost two times larger
than in +45-layers. The only explanation for this difference is in stress concentrations
due to damage developing in neighbouring layers. An internal +45-layer has 0- and -45-
layers as adjacent layers. There are no cracks in O-layers (except some thermal cracks)
and cracks in the adjacent -45-layer are perpendicular to expected cracks in the +45-
layerwith small effect of their stress concentrations. In contrary, the -45-layer is
surrounded by +45 layer (the same marginal effect from cracks in this layer) and by 90-
layer where crack density increases first. Cracks in 90-layers cause strong stress
concentration in the adjacent -45-layer. These cracks, often called stitch cracks due to

their appearance [31-32], have been observed in mechanical as well as in thermal
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fatigue and also in quasi-static loading. There is no difference in cracking of NA-432

and NA-433 laminates.

In aged specimens (A-432 and A-433 in Figure III-21b and Figure III-22b)) the
difference in cracking between L7 layers and L3 layers is very large. Whereas in the L3
layers the cracking is in average the same as in not aged specimens, the crack density
in L7 layers is much higher. An obvious explanation for that is aging: layers close to the

laminate mid-plane have not aged and only the surface layer and the L7 -45-layer are.

5. Conclusions

Micro-damage evolution in two quasi-isotropic CF/polyimide composites for high
temperature applications, with different resin composition, was investigated showing
two phenomena: thermal fatigue and thermal aging.

Firstly, the increasing intra-bundle crack density during thermal cycling was studied
showing that the highest temperature in the cycle which has the lowest thermal stress
level is of primary importance for damage developments. To separate the fatigue
effects from possible material aging effects during the total time at high temperature,
a separate group of specimens was aged for the time equal to the total time at the
same highest temperature in the cycling test showing that aging is a part of the total
degradation during cyclic loading.

Secondly, the composite failure resistance during aging was analysed using the aging
time as a variable. The resistance to cracking reduces with aging time and the crack
density after cooling down to room temperature is increasing. Results show a large

edge effect in composite degradation: the number of cracks inside the specimen is

122



much lower than on the edge or in surface layers. Results and observed trends are
explained using 3-D FEM edge stress analysis and linear elastic fracture mechanics.
Afterwards, the intralaminar cracking in tensile loading of the same materials was
investigated analysing effect of thermal aging at 288°C for 30days.

Numerical analysis and following fractography showed that the intralaminar cracking
state on the edge gives a good representation of the damage inside the composite.
Cracking in different layers of a laminate was quantified and analysed using Weibull
transverse strength distribution for crack initiation probability. A simplified parameter
determination and cracking simulation scheme is suggested and results are compared
with Monte-Carlo simulations based on shear lag as well as Hashin’s stress models.
Cracking in internal +45-layers could be adequately predicted based on Weibull
analysis of 90-layers. The crack density in the surface +45-layer was much higher even
for not aged specimens, which is explained by free surface effect on crack initiation.
Cracking in 45-layers adjacent to 90-layer is significantly accelerated by stress
concentrations from cracks in the 90-layer.

Aging degraded about 1mm of the composite at the specimen edges (this region was
removed before mechanical testing) and also the whole surface layer and the layer

next to it whereas failure properties of central layers were not affected.
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Chapter IV

Summary, conclusions and perspectives

In the first part of this thesis, the effect of the 0°-tow waviness on axial stiffness of
cross-ply non-crimp fabric (NCF) composites is analysed using multiscale approach. The
curved 0° and 90°-layers are represented by flat layers with effective stiffness
properties and classical laminate theory (CLT) is used to calculate the macroscopic
stiffness. The effective 0%layer stiffness is calculated analysing isolated curved 0°-
layers subjected not only to end loading, but also to surface loads. The surface loads
are identified in a detailed FE-analysis and approximated by a sinus shaped function
with amplitude depending on the waves parameters. The sinus shaped surface loads
are then applied to an isolated curved 0°-layer FE-model together with end loading to
calculate the effective stiffness of the layer. Finally, the effective 0°-layer stiffness was
successfully used to calculate the macroscopic stiffness of the composite proving
validity of the approach being used and showing that, without losing accuracy, elastic
properties in the 90°%-layers with bundle structure can be replaced by the transverse

stiffness of the homogenized 90°-layer material.

In another approach, it is shown that the NCF composite knock-down factor
characterizing the stiffness degradation has almost the same dependence on wave
parameters as the knock-down factor for the curved 0°-layer. Numerical analysis
showed that 90°-layer knock-down factor versus amplitude curves for different
wavelength can be reduced to one master curve which can be described by a one-

parameter expression with the parameter dependent on the used material. This
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observation is used to obtain high accuracy for analytical predictions for knock down
factors for cases with different wavelength and amplitudes based on two FE

calculations only.

Finally, the axial stiffness of a symmetric NCF composite, consisting of 0°/90° unit cells
with different amplitudes and wavelength of the 0°-layer, is calculated using FEM and
also using analytical models with knock-down factors for curved 0°-layers which
describes the effect of the local amplitude and wavelength of the 0°-layer on the
effective stiffness of the layer in the unit cell. The dependence of the knock-down
factor on the presence and waviness in the neighbouring unit cell is accounted for.
Rule of mixtures and constant force assumptions are used when appropriate to find

the macroscopic stiffness. Analytical modelling is in a good agreement with FEM.

An alternative approach is suggested where one equivalent meso- cell represent the
macro-stiffness of the NCF composite. Methods for geometrical parameter

determination of the equivalent meso-cell are discussed.

As perspectives for this part, we can say that further efforts are meaningful to develop
analytical approximate models for curved beams with sinusoidal surface tractions and
also the observed features used in the master curve approach require further
investigation regarding their mechanical origin and potential of application to more
complex NCF composites with 0%-layer waviness. The study of the effect of the local
meso-structure defects on elastic properties can be continued on Poisson’s ratio for

example.

In the second part of this thesis, the damage in carbon fibre T650 8-harness satin

weave fabric composites with thermosetting polyimide resin designed for high service

126



temperatures is studied. High thermal stresses develop after cooling down to room
temperature, which lead to multiple cracking in bundles/layers of the studied quasi-
isotropic laminates. The composites were subjected to two ramps of thermal cycling
guantifying the increase of crack density in layers. Comparison of two ramps with the
same lowest temperature shows that the highest temperature in the cycle has a
significant effect on thermal fatigue resistance. During thermal aging tests at 288°C the
mechanical properties are degrading with time and the crack density versus aging time
was measured. Aging and fatigue effects were separately analysed showing that part
of the cracking in thermal cycling tests is related to material aging during the high
temperature part of the cycle. Numerical edge stress analysis and fracture mechanics
were used to explain observations.

In a second stage, intra-bundle cracking due to tensile transverse thermal stresses was
observed in the studied [(+45/-45)/(90/0)]2s laminates after the thermal aging at 288°C
for 40 days which caused many new cracks. Both aged and not aged specimens were
tested in uni-axial quasi-static tension quantifying damage development. Differences
and similarities in cracking in different layers were analysed using probabilistic
approaches (simple non-interactive as well as Monte Carlo simulations). It is shown
that cracking in off-axis layers not being in contact with the 90-layer can be predicted
based on Weibull analysis of the 90-layer, whereas in layer which is in contact with the
90-layer the crack density is much higher due to local stress concentrations caused by
cracks in 90-layer. The thermal treatment degraded cracking resistance in the surface
layer and in the next layer whereas failure resistance of layers close to the mid-plane

did not change.
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In perspectives, further study is needed concerning the aging effect on the stiffness
and the strength of this material. More aging can be done for more time and higher

temperature. The polyimide resin is continued to be developed for resistance to higher

temperatures.
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Appendix A
Interface stress amplitude approximate dependence on A/t, and L/t,

Fitting the interface normal and shear stress with (II-17) and (II-18) respectively, the
stress amplitudes a,,, and g, are found. The monotonously decreasing values were

fitted with the following function

1

ono(Pa) = Do (%)2 (A.1)
Constants determined by fitting

Con = Co1n + Cozn (g) + Ca3n (2)2 (A.2)

Con = Ba(2) (a3)

The determined values of constants Ci,;, Co1ny Coony Co3ny B, @ for layers made of

composite materials CF/EP1, CF/EP2 and GF/EP are given in Table A.1.

Table A.1. Values of constants for fitting maximum value of the interface normal stress

(61 =1%)
2 -a
Material C. Con = Co1n + Co2n (%) + C23n (%) C3n = By (%)
Ca1n Ca2n Ca23n B, a
CF/EP1 5.200-10°  —4413-10"1°  —2612-10"°  7.900-10~° 2.337-10""'  0.9339
CF/EP2 5400-10"°  —4205-10"'0  —3.707-1071°  8993-10"° 2.682-10"'"  0.9364
GF/EP 7330-10"°  -2.609-10"1°  —1487-10°  2.009-10~°  6704-10"""  0.9423

Amplitudes of shear stress are also fitted using the same type of expression:
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1

Oneo(Pa) = Clnt+Cznt(§)+ant(%)2 (A.4)
Parameters Cyyt, Cone and Cs, are described by following functions:
Cint = Ciane + Cizne €Xp(—Cizne %) (A.5)
Cont = Ca1nt + Cozne €Xp(—Cozpe %) (A.6)
Cane = Cz1ne + C32ne €XP(—Cazne g) (A.7)

The constants for layers made of the different composite materials found by fitting are

given in Table A.2.

Table A.2. Values of constants for fitting maximum value of the interface shear stress

(6, =1%)

Constants CF/EP1 CF/EP2 GF/EP
Ci1mt 1.261-1078 1.577-1078 -1.074 1078
Ciznt -1.316-107° —7.652-7 —9.064 - 1078
Ciznt 5.200 4.163 4.229
Ca1nt 6.325- 10710 1.121-107° 3.984-107°
Coznt 2.433-1077 1.513-1077 3.107 - 1078
Ca3nt 5.880 5.065 5.356
C31nt 1.124-1071° 8.364-10711 -4.166 - 10711
C32nt —6.445-107° —3.716-107° -2.616-1071°
C33nt 6.180 5.205 4.568
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Titre : Les composites avec mesostructure en faisceaux : Propriétés élastiques et
endommagement

Mots clés : Les composites textiles, endommagement, mécanique de rupture, rigidité,
défauts de mesostructure.

Résumés: Les propriétés élastiques et la résistance a I'endommagement des
composites textiles avec mesostructure en faisceaux ont été étudiées dans cette these.

Le premier chapitre de cette these traite la modélisation des propriétés élastiques des
composites NCF (Non-Crimp Fabric) pour étudier I'effet des défauts de mesostructure
sur la dégradation des propriétés mécaniques. Un modeéle pour la mesostructure des
composites NCF est réalisé pour étudier |'effet de I'ondulation sur la réduction de la
rigidité. Cette derniére est dominée par la réduction de la rigidité de la couche 0°. La
rigidité effective de la couche 0° peut étre déterminée soit par modélisation d'une
seule couche ondulée soumise a un chargement réparti, qui reproduit son interaction
avec les couches voisines, avec application des symétries dans les conditions aux
limites, ou en utilisant une approche de la courbe maitresse. Une expression
analytique est suggérée. Cette expression permet la détermination du facteur de
réduction de rigidité pour toute longueur d'onde et amplitude donnés.

L'initiation et le développement des endommagements sont présentés dans le
deuxieme chapitre, ou les composites textiles désignés aux applications a haute
température ont été étudiés dans des conditions thermiques séveres pour vérifier leur
stabilité thermique et leur résistance aux endommagements thermiques.

Finalement, la performance mécanique des composites destinés pour les hautes
températures, est étudiée, et I'effet du vieillissement thermique a été analysé. Des
modeles 3D ont été réalisés par éléments finis pour expliquer I'effet des bords sur
|'évolution des fissures observées lors des essaies de traction. En outre, les différences
et les similarités au niveau de fissuration dans les différentes couches sont analysés a
travers des approches probabilistes (Monte Carlo, Hashin and shear lag) et aussi la
mécanique de la rupture.
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Title: Composites with bundle mesostructure: elastic properties and damage.

Key words: Textile composites, damage, fracture mechanics, stiffness, mesostructure
defects.

Summary: Textile composites with bundle meso-structure have been studied in this
thesis for elastic properties and damage investigations.

The first chapter of this thesis deals with elastic properties modeling for Non-crimp
fabric (NCF) based composites for investigating the effect of meso-structure defects on
mechanical properties degradation. The objective of the work is to formulate a model
for the NCF composite mesostructure in an attempt to investigate the effect of the
waviness on stiffness reduction. The cross-ply NCF composite stiffness reduction is
dominated by the stiffness reduction of the 0°layer. The 0%layer effective stiffness
can be determined either by modeling a single curved tow subjected to distributed
load, to reproduce its interaction with the neighboring layers, together with symmetry
boundary conditions, or using a master curve approach, where a knock down factor is
introduced to characterize the stiffness reduction and analytical expression is
suggested. This expression allows for determination of knock down factor for any given
wavelength and amplitude of the waviness.

The damage initiation and development is presented is the second chapter, where
woven fabric composites designated for high temperature application were
investigated under severe thermal conditions to study their thermal stability and their
resistance to thermal damage.

Finally, the mechanical performance of the composites designated to high
temperature applications was studied. The effect of aging was also investigated. 3D
models were realized with Finite elements in order to explain the edge effect on the
evolution of the cracks observed during the tensile tests. In addition, the differences
and similarities in cracking in different layers were analysed using probabilistic
approaches (a simple one as well as Monte Carlo simulations with Hashin’s and also
shear lag model) and fracture mechanics arguments.
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