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Abstract

Modern cognitive science of language concerns itself with (at least) two fundamental ques-
tions: how do humans learn language? —the learning problem —and why do the world’s
languages exhibit some properties and not others? —the typology problem. Though the
relation between language acquisition and typology is not necessarily one of equivalence,
there are many points of contacts between these two domains. On the one hand, children
work on language through an extended period of time and their progression could plau-
sibly reveal aspects of the cognitive blueprint for language. On the other hand, paying
attention to the structural commonalities of languages can clue us in to what the human
learning mechanism producing these preferences must look like. These questions, although
complementary, represent different approaches of understanding the features of cognition
underlying the language faculty and have often been dealt with separately by different
research communities.

In this dissertation, I attempt to link these two questions by looking at the lexicon, the
set of word-forms and their associated meanings, and ask why do lexicons look the way
they are? And can the properties exhibited by the lexicon be (in part) explained by the
way children learn their language? One striking observation is that the set of words in a
given language is highly ambiguous and confusable. Words may have multiple senses (e.g.,
homonymy, polysemy) and are represented by an arrangement of a finite set of sounds
that potentially increase their confusability (e.g., minimal pairs). Lexicons bearing such
properties present a problem for children learning their language who seem to have difficulty
learning similar sounding words and resist learning words having multiple meanings. Using
lexical models and experimental methods in toddlers and adults, I present quantitative
evidence that lexicons are, indeed, more confusable than what would be expected by chance
alone (Chapter 2). I then present empirical evidence suggesting that toddlers have the
tools to bypass these problems given that ambiguous or confusable words are constrained
to appear in distinct context (Chapter 3). Finally, I submit that the study of ambiguous
words reveal factors that were currently missing from current accounts of word learning
(Chapter 4). Taken together this research suggests that ambiguous and confusable words,
while present in the language, may be restricted in their distribution in the lexicon and
that these restrictions reflect (in part) how children learn languages.
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Résumé

Il y a (au moins) deux questions fondamentales que l’on est amené à se poser lorsqu’on
étudie le langage: comment acquiert-on le langage? —le problème d’apprentissage —et
pourquoi les langues du monde partagent certaines propriétés mais pas d’autres? —le
problème typologique. Bien que l’acquisition du langage n’explique pas directement la
typologie des langues, et vice-versa, il existe de nombreux points de contacts entre ces
deux domaines. D’une part, la manière dont les enfants développent le langage peut être
informative sur les aspects cognitifs générant l’existence de telle ou telle propriété dans les
langues. D’autre part, étudier les propriétés qui sont communes à travers les langues peut
nous éclairer sur les spécificités du mécanisme de l’apprentissage humain qui conduisent à
l’existence de ces propriétés. Ces deux questions ont souvent été traitées séparément par
différents groupes de recherche, bien qu’elles représentent une approche complémentaire à
l’étude des caractéristiques cognitives qui sous-tendent la faculté du langage.

Dans cette thèse, j’entreprends de relier ces deux domaines en me focalisant sur le lex-
ique, l’ensemble des mots de notre langue et leur sens associés, en posant les questions
suivantes: pourquoi le lexique est-il tel qu’il est? Et est-ce que les propriétés du lexique
peuvent être (en partie) expliquées par la façon dont les enfants apprennent leur langue?
Un des aspects les plus frappants du lexique est que les mots que nous utilisons sont am-
bigus et peuvent être confondus facilement avec d’autres. En effet, les mots peuvent avoir
plusieurs sens (par exemple, les homophones, comme "avocat") et sont représentés par un
ensemble limité de sons qui augmentent la possibilité qu’ils soient confondus (par exemple,
les paires minimales, comme "bain"/"pain"). L’existence de ces mots semble présenter un
problème pour les enfants qui apprennent leur langue car il a été montré qu’ils ont des
difficultés à apprendre des mots dont les formes sonores sont proches et qu’ils résistent à
l’apprentissage des mots ayant plusieurs sens. En combinant une approche computation-
nelle et expérimentale, je montre, quantitativement, que les mots du lexique sont, en effet,
plus similaires que ce qui serait attendu par chance (Chapitre 2), et expérimentalement,
que les enfants n’ont aucun problème à apprendre ces mots à la condition qu’ils apparais-
sent dans des contextes suffisamment distincts (Chapitre 3). Enfin, je propose que l’étude
des mots ambigus permet de révéler des éléments importants du mécanisme d’apprentissage
du langage qui sont actuellement absents des théories actuelles (Chapitre 4). Cet ensemble
d’études suggère que les mots ambigus et les mots similaires, bien que présents dans le
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Résumé

langage, n’apparaissent pas arbitrairement dans le langage et que leur organisation reflète
(en partie) la façon dont les enfants apprennent leur langue.
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1 Introduction

Language is such a common feature of our daily life that we rarely pause to think about it.
It seems as natural for us to see children learn to speak as it is to see them learn to walk.
Yet language may be more complex than one may think. While every child in the world
walks in the same way, it is clearly the case that they do not speak in the same way: A child
born in North India will (likely) learn Hindi while a child born in France will (more than
likely) learn French. More over, walking has not evolved much across generations: There
are limited variations between the way children and their parents are walking. Languages,
on the contrary, seem to vary without established limits, so fast, that within the span of a
human life, one can see novel words and expressions coming into daily usage.

Languages are thus complex systems, that not only differ greatly from one another at
every level of description (sound, lexicon, grammar, meaning) but also evolve rapidly. Yet,
children gain a good understanding of their native language even before they learn to dress
themselves alone or brush their teeth. Two-year-olds are capable of learning an average
of 10 new words per day without explicit training or feedback and can learn grammatical
rules for which there is only scarce evidence in their environment. Thus, it is not surprising
that people have spent decades thinking about the learning problem: how do children learn
languages, despite languages being implemented so differently across the world?

Certainly, the presence of fundamental differences between languages does not imply that
languages are unconstrained systems that vary freely. As several scholars have observed,
languages also share important similarities. All languages are complex symbolic systems
that combine the same units (phonemes, morphemes, words, sentences) to convey a po-
tential infinity of meanings. These properties, inter alia, are listed as design features of
languages (a term introduced by Hockett, 1969). Besides these core properties, languages
also share important statistical tendencies in their surface patterns: properties that occur
more often than chance. For instance, subjects tend to precede objects in simple declarative
sentences (Greenberg, 1966). Such universals, although not observed in all languages1, in-
dicate that languages may not be random samples of properties, at least not at an abstract
level. A resulting question thus concerns why languages share some properties and not
others. To date, this typology problem has received less attention than its corresponding

1Note that most "absolute universals", that is, properties that are universally represented in language,
are contested (Evans & Levinson, 2009).
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1 Introduction

what-question (i.e., what are the properties languages share) that is still heavily debated
(e.g., Evans & Levinson, 2009).

The learning and typology problems discussed above are mutually informative of one an-
other. On the one hand, paying attention to the structural commonalities between lan-
guages would delineate necessary properties of human languages and thus characterize the
constraints on cognitive capacities that humans may bring into the learning problem. On
the other hand, the study of language acquisition has to provide mechanisms that will
allow children to learn any of the world’s language, and such general mechanisms could
plausibly reveal aspects of the cognitive blueprint for language.

A particularly interesting illustration of the interaction between learning and typology
is the distribution of grammatical encoding across languages. In order to interpret a
sentence, we need to determine the grammatical roles of the words to understand who did
what to whom. There are two major ways in which languages signal syntactic relationships
and grammatical roles: word order and case-marking. Slobin & Bever (1982) found that
Turkish, English, Italian and Serbo-Croatian children asked to act out transitive sentences
of the type "the squirrel scratches the dog" differed in their ability to perform this task.
Turkish-speaking children as well as English and Italian-speaking children had no problem
determining the meaning of these simple sentences, most likely because of the presence of
regular case-marking (in Turkish) and fixed word order (in English and Italian) indicated
readily who is doing what to whom. In contrast, Serbo-Croatian children performed poorly,
most likely because this language combines a flexible word order with a non-systematic
case-marking system. These results show that some properties are harder to learn than
others in line with typological data: Most of the world’s languages display either a fixed
word order or alternatively, a regular case-marking system. This suggests that language
properties which are easily learnable proliferate, while others, not easily learnable, remain
limited or die out.

Certainly, learning and typology are not directly related (see Bowerman, 2011). Learning
is dependent on the maturation of the brain and of other cognitive functions (executive
functions, memory, etc) that may shape the learning progress. As such, learning difficulties
or learning facilities may not reflect solely cognitive constraints on the linguistic system
but also maturational constraints. Conversely, language patterns are not only influenced
by learning but also by language usage in mature speakers and by external environmental
properties inherent to human culture. In sum, while language acquisition and language
typology have a lot of potential to be informative about one another, disentangling their
individual contributions is a delicate problem by itself.

There are certain cases, however, where typology and learning can give us insight into one
another. These are cases where we know that a given property exists in languages and we
also know that such a property is difficult to learn for children. Such cases are particularly
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1.1 Ambiguity in the lexicon

interesting as one can examine what exactly enables children to learn such a property any-
way, what the distribution of this property is, both within and across languages, whether
it correlates with children’s abilities, as well as what other processes this property could
account for. Thus, instead of trying to solely explain learning by typology, or typology by
learning, one could study both in a complementary approach to understand the features
of cognition that underly the language faculty.

In this thesis, I take this complementary approach to look at the lexicon, the set of word
forms and their associated meanings, and concentrate on one puzzle of languages: the pres-
ence of ambiguity. Ambiguity in the lexicon can arise in two different ways: First because
the same phonological form can have multiple meanings (e.g., homophones, "bat" refers
to both flying mammals and sport instruments); Second, because word forms may sound
very much alike (e.g., "sheep" and "ship") and can easily be confused during language
usage. This gives rise to the idea that phonological proximity is a concern. The purpose
of this dissertation is to examine why lexicons are ambiguous. For this, I will attempt to
answer two-sub-questions: How prevalent are ambiguity and confusability in the lexicon?
And how can children manage to learn such ambiguous and confusable words? I will then
discuss whether the distribution of ambiguity in the lexicon can be (in part) explained by
the way children learn their language.

The plan of this introductory chapter is as follows. I start by describing what could be
the pros and the cons of an ambiguous lexicon and how this feature of lexicons impacts
language processing (Section 1.1). I then turn to the domain of language acquisition and
evaluate the impact of phonological proximity and phonological identity on different aspects
of learning as well as how these factors challenge current word learning accounts (Section
1.2).

1.1 Ambiguity in the lexicon

Sganarelle: - Je veux vous parler de quelque chose
Pancrace: - Et de quelle langue voulez vous vous servir avec moi?
Sganarelle: - De quelle langue?
Pancrace: - Oui.
Sganarelle: - Parbleu! De la langue que j’ai dans la bouche, je crois

que je n’irais pas emprunter celle de mon voisin.
Pancrace: - Je vous dis de quel idiome, de quel langage?
Sganarelle: - Ah!

— Molière, le mariage forcé

Everybody has once faced a situation where the meaning of an utterance or a word was
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1 Introduction

uncertain. We may ask an interlocutor to specify her intended meaning because there
is an ambiguity about the meaning the speaker intended to convey (like Sgnararelle, we
may wonder whether langue means "tongue" or "language" in that context.). However,
the frequency of such interventions is typically quite sparse, simply because most of the
time we are not aware of the ambiguity of our speech. Consider, for instance, the sentence
in French "la grande ferme la porte" (The big girl closes the door), each word in this
sentence can map onto several meanings: "grande" can refer both to a (big) girl and the
adjective big, "ferme" can both mean the noun farm and the verb to close and "porte"
could either mean the noun door or the verb to carry. Moreover, even a function word such
as "la" is ambiguous in French as it could be an article the, or an object clitic as in "Je
la ferme" I close it. Yet despite the availability of several interpretations for each word in
this sentence, it is likely that French listeners processed the sentence without noticing any
ambiguity. Keeping this in mind, paying attention to our own productions will cause us to
realize that ambiguity is the norm rather than the exception; it is a pervasive property of
natural language (Wasow, Perfors, & Beaver, 2005).

Languages are thus full of words that have multiple distinct senses (homophones). To have
a rough idea of the magnitude of this phenomena, I used the details of a multilingual ency-
clopedic dictionary (BabelNet2, Navigli & Ponzetto 2012) which readily gives the number
of word forms and the number of disjoint senses used in the dictionary. We can read that
across the 67 languages represented in Figure 1.1, homophones cover approximately 4%
of the words across languages. This number does not include polysemous words, which
involve different but related senses (e.g., "café" coffee which means, in French, the coffee
plant, the drink made of roasted seeds of this plant as well as the place where this bever-
age is served) nor grammatical morphemes that may be homophonous (e.g., the English
morpheme "-s" is used for possessives as well as for plurals).

2BabelNet is a multilingual encyclopedic dictionary combining resources from WordNet, Wikipedia and
other semantic networks. Details and data are available at http://babelnet.org. Note that BabelNet
covers 271 languages but coverage is poor for most of them and thus do not appear in Figure 1.1
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1.1 Ambiguity in the lexicon
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Figure 1.1: Distribution of the proportions of homophones across 67 languages; data obtained
from BabelNet (Navigli & Ponzetto, 2012). The red dashed line indicates the mean
proportion of homophones across languages.

Ambiguity does not only appear in error-free sequences of words, but also arises during
normal language use, i.e., conditions where the transmission of the intended message is
not always perfect. Speakers may make errors in their productions because they are too
emotional (stress, joy), because they do not yet master the language they are speaking
in (young children) or simply because they did not plan sufficiently in advance what they
were about to say. In addition, listeners may mishear because of inattention or because the
message was corrupted due to external factors (e.g., receiving a phone call in the subway,
being in a loud environment). In such situations it is likely to misperceive one word as a
different, phonologically close, word. This is especially common in songs, for instance, a
shared misperception of the song "Purple Haze" of Jimmy Hendrix is to hear "Excuse me
while I kiss this guy" instead of "Excuse me while I kiss the sky".3 Yet, given that noisy
situations prevail in normal language use, it is surprising that we do not confuse words as
often as opportunities arise.

To visualize the extent to which word forms may be similar to one another, Figure 1.2
shows a graph in which each word in the English lexicon is a node and any phonological
neighbors (i.e., words that are one edit apart like "cat" and "bat") are connected by an
edge (as in Arbesman, Strogatz, & Vitevitch 2010; Vitevitch 2008). Words with no or few
neighbors tend to be clustered on the outside (the perimeter of the circle). Visually, many
words tend to cluster together in the middle of the circle indicating that there are some
regions of high phonological density (hence high confusability) in the English lexicon.

3https://www.youtube.com/watch?v=PQyGrPw8P50
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1 Introduction

Figure 1.2: Phonological neighbor network of the English lexicon (constrained to the subset of
monomorphemic words). Each red dot is a word, and any two connected words are
phonological neighbors.

1.1.1 The function of ambiguity in the lexicon

At first sight, ambiguous and confusable words appear to be a great flaw of the linguistic
system (Chomsky, 2002), especially for theorists arguing that the shape and properties
of language have evolved to optimize communication (Hockett, 1969; Pinker & Bloom,
1990a). If lexicons are efficient solutions to the communicative problem of transmitting
information, we expect that language should completely disambiguate meaning and avoid
similar-sounding words to make sure that we never misunderstand each other (much like
legal texts). At the extreme, this would lead to a language system which maximize dis-
tinctiveness where each word form would be paired with a single meaning and would be
maximally distinct from all other word forms to optimize its recoverability. Suppose for
instance a language with a limited phone inventory {b, p, a} in which the only allowed
syllables are CV. Intuitively one may start to form words using the shortest forms possible,
such that "ba". Yet because this language maximizes the recoverability of its words, "pa"
will be disallowed as it is too close (one phoneme difference) to an existing word, leaving
us only with one word of two phonemes instead of the two combinations possible within
the constraints of that language. To express more meanings, such language needs longer
words, for instance: "baba", "papa" but again not "bapa" and "paba" which are too close
to existing words. And so on. It is easy to see that a language with a hard constraint for
distinctiveness will have many words (as one word can have only one meaning) and long,
therefore complex, words (as words need to be distinctive). Certainly, clarity of the signal
is only one aspect of an efficient communicative system. An efficient communicative system
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1.1 Ambiguity in the lexicon

must also be composed of simple signals that are easily memorized, produced, processed
and transmitted over generations of learners. Simple signals would be frequent, short and
composed of common sound sequences. At its limit, the easiest language would be a lan-
guage maximally compressible that uses only one simple word to express all meanings, such
as "ba". Certainly, natural languages neither seem to be fully compressible nor distinctive
and are likely to be situated on the scale of possible languages existing in-between these
two extremes.

The idea that there should be a balance between clarity and simplicity, or distinctiveness
and compressibility, is not new (e.g., Piantadosi, Tily, & Gibson, 2012; Shannon, 1947;
Zipf, 1949). Zipf formalized the principle of least effort which advances that languages are
a tradeoff between listeners’ and speakers’ interests. At the phonological level, listeners
want words to be distinctive, while speakers want simple words that minimize articulatory
effort and maximize brevity and phonological reduction. At the lexical level, listeners
want a large vocabulary size such that each word maps onto a single meaning, while
speakers want to reduce the size of the vocabulary to a limited list of simple words that
map onto several meanings. This is, in essence, what Zipf’s law is about: If one lists all
the words of a language by how often they are used, the second most frequent word is
about half as frequent as the most frequent one, the third most frequent is about a third
as frequent as the most frequent one, the fourth is a fourth as frequent and so on. In
addition, frequent words tend also to have more meanings (Zipf, 1949) and to sound more
alike (Mahowald, Dautriche, Gibson, & Piantadosi, submitted , see Appendix A) than less
frequent words. Thus, Zipf’s law is consistent with a lexical tradeoff: when speakers tend
to choose more frequent words this makes the listener’s task harder (as these words are the
most ambiguous). By contrast, when listeners find it easier to determine a word’s meaning,
this means that the speaker had to work harder (as these words will be less frequent and
more numerous). Additionally frequent words in languages are simpler than unfrequent
words: They tend to be short, predictable and phonotactically typical (Mahowald et al.,
submitted ; Piantadosi, Tily, & Gibson, 2011; Zipf, 1949). Similarly, by assigning shorter and
phonotactically simple forms to more frequent and predictable meanings, and longer and
phonetically more complex forms to less frequent and less predictable meanings, languages
establish a trade-off between the overall effort needed to produce words and the chances
of successful transmission of a message.

Previous quantitative analyses of the lexicon used word frequency as a tool to argue for the
presence of functional trade-offs. By showing that frequent words carry different proper-
ties than less frequent words, they demonstrate that certain properties are non-uniformly
distributed across the words of the lexicon in a way that is consistent with communicative
optimization principles. Yet much previous work has focused on simply measuring statisti-
cal properties of natural language and interpreting the observed effects. This does not tell
us whether the properties we observe are a by-product of chance or are really the manifes-
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tation of communicative principles or other cognitive principles associated with language
use and language acquisition. If we want to understand the processes that give rise to
the observed structure of the lexicon, we need to simulate a range of possible processes to
assess which aspects of natural language occur by chance and which are the result of con-
straining forces. This can be done in (at least) two ways: 1) by simulating the emergence
of lexical structure in accelerated lab time (e.g., Kirby, Cornish, & Smith, 2008, using the
iterated learning paradigm, I will discuss further this experimental method in the General
Discussion) or 2) by using computing power to simulate the generation of lexical structure
with different constraints, structures, and biases. In this work, I focus on the latter.

In chapter 2.1, I propose to investigate whether the pattern of word form similarity in
the lexicon differs from chance and in what direction. As I outlined before, ambiguous and
similar-sounding words may be a useful property of natural languages, simply because they
allow the re-use of words and sounds which are the most easily understood and produced
(Juba, Kalai, Khanna, & Sudan, 2011; Piantadosi, Tily, & Gibson, 2012; Wasow et al.,
2005). However, ambiguous and similar-sounding words may be harmful to communication
as they increase the chances of being misunderstood. The purpose of this chapter is thus
to quantify where natural lexicons are situated along the continuum ranging from fully
compressible to fully distinctive lexicons and whether this differs from what we would
expect by chance alone.

1.1.2 Ambiguity in language processing

Il y a des verbes qui se conjuguent très irrégulièrement.
Par exemple, le verbe "ouïr".
Le verbe ouïr, au présent, ça fait : J’ois... j’ois...
Si au lieu de dire "j’entends", je dis "j’ois",
les gens vont penser que ce que j’entends est joyeux
alors que ce que j’entends peut être particulièrement triste.
Il faudrait préciser: "Dieu, que ce que j’ois est triste !"

— Raymond Devos

In practice, ambiguous and similar-sounding words may not harm communication as
strongly as one might think. Indeed, words are rarely uttered in isolation but are part
of the broader context in which they are used: the sentence in which they are pronounced,
the discourse, the speakers involved, the register of language, the surroundings, etc. In
other words, if we are able to integrate other sources of information to constrain the pos-
sible meaning of a word, then disambiguation may become (almost) free of cost.

Work on language processing supports this idea as many studies provided evidence that
adults use various kind of information to constrain lexical access: verb selectional re-
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striction (Altmann & Kamide, 1999), verb structural bias (Trueswell & Kim, 1998), se-
mantic features (Federmeier & Kutas, 1999), event expectations (Kamide, Altmann, &
Haywood, 2003), visual environment (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy,
1995), speakers (Creel, Aslin, & Tanenhaus, 2008), prosody (Millotte, René, Wales, &
Christophe, 2008; Millotte, Wales, & Christophe, 2007) or even discourse (Nieuwland &
Van Berkum, 2006). As a result, it seems unlikely that one could be confused about the
meaning of the word "bat" in a sentence such as "Bats are present throughout most of the
world, performing vital ecological roles of pollinating flowers and dispersing fruit seeds."
(extracted from Wikipedia).

Predictability has thus emerged as a pivotal factor in human language processing. Adults
constantly form expectations about what might occur next in their environment. As a
result, the cost of ambiguous and similar-sounding words may be sufficiently lowered, such
that these words may not be detrimental for everyday speech comprehension. The fact that
people hardly notice ambiguities proves the efficiency of our context-dependent language
processing system. Of course, this does not mean that there is no cost associated with the
processing of ambiguous and similar-sounding words. Most obviously, since these words’
meanings are evaluated in the broader context of the utterance, there is a cost of integrating
the context of the word and, perhaps, deciding which meaning is appropriate (e.g., Swinney,
1979; Tanenhaus, Leiman, & Seidenberg, 1979). Yet, the cost of integrating contextual
information may be lower for adult listeners than the lexical competition generated by
ambiguous words in the absence of context.

The costs and benefits of phonological proximity of words is often (if not always) evaluated
in reference to language usage. This approach, however, overlooks language development.
This is problematic as language systems are there to be learned. Specifically, previous
work looking at the evolution of language highlighted the fact that there is a relationship
between the ease with which a linguistic property is learnt and transmitted accurately, and
its prevalence across languages (e.g., Boyer & Ramble, 2001; Culbertson & Newport, 2015;
Culbertson, Smolensky, & Legendre, 2011; Hudson Kam & Newport, 2009; Kirby, Cornish,
& Smith, 2008). Though this may not be the sole explanation of the prevalence of a given
property in languages (see Rafferty, Griffiths, & Ettlinger, 2013), learnability is a necessary
condition for the observation of this property. As a result, the presence of ambiguous and
similar-sounding words in the lexicon suggests that these words must be learnable by
children – and of course they are, otherwise we would not find them in the lexicon. This
does not mean that any kind of ambiguity can be learnt by children, but rather that the
kind of ambiguous and similar-sounding words that are present in languages must exhibit
properties that make them learnable, inter alia, and that other kinds of words lacking these
properties may be eliminated in the course of language learning. In the following, I will
review the challenges that are generated by ambiguous and similar sounding words with
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regard to the word learning problem. I will also propose a few properties that would make
such words easier to learn.

1.2 Ambiguity: A challenge for language acquisition?

Anyone who contemplates lexical acquisition will realize that ambiguous and similar-
sounding words present a problem for children learning their language. Normally one can
identify a pair of homophonous words if they sound the same but have different meanings.
Similarly, two words form a minimal pair if their word forms differ by a single phoneme,
but they have different meanings. Of course, this is a relatively easy task for adults be-
cause we already know which words are homophonous and which words sound similar to
one another. By contrast, young language learners do not initially know which word forms
have multiple meanings and which phonological elements are contrastive in their language:
They must discover this during the course of language development. In order to examine
what kind of challenge these words bring into the word learning game, we first need to
define what a word is, what aspects need to be acquired, and how this is done.

What’s in a word? By definition, a (content) word is composed of a phonological form
that is paired with a concept. For instance the word "cat" is composed of a sequence of
sounds, /kaet/, which is linked to the concept of CAT. Quite generally, the meaning of a
word can be defined by its extension, that is the set of entities to which that word refers
(e.g., the meaning of "cat" represents the set of all cats and only cats). Yet, we know much
more about a word than its meaning: We know that "cat" is a noun, we also know that
the meaning of "cat" is more similar to the meaning of "dog" than it is to the meaning of
"chair" and we have stored information about contexts (linguistic and non linguistic) in
which this word may occur. Thus the knowledge of a word also includes the knowledge of
its syntactic properties, its relations with other words in the lexicon and some other types
of non-linguistic knowledge, such as the situations in which that word typically occurs
(e.g., Perfetti & Hart, 2002).

This brings us to the question of what aspects of words children learn when they "learn
words". Recent evidence has shown that as early as the first year of life, infants acquire the
meanings of basic nouns and verbs in their language (Bergelson & Swingley, 2012, 2013;
Tincoff & Jusczyk, 2012). It is, however, unlikely that all dimensions of word meanings
and all of their properties are in place this early on. For instance, it is only during the
second year of life that toddlers start to realize how familiar and novel words are related to
other words in their lexicon (Arias-Trejo & Plunkett, 2013; Wojcik & Saffran, 2013) and
have accumulated knowledge of the grammatical environment in which a word can appear
(Bernal, Dehaene-Lambertz, Millotte, & Christophe, 2010). These studies and many others
provide growing evidence that children do not fast-map a dictionary-like definition at the
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first encounter of a word (Carey, 1978a). Instead, word learning seems to be a slow
process, gradually emerging through the accumulation of statistical, syntactic, semantic,
and pragmatic fragmental evidence (e.g., Bion, Borovsky, & Fernald, 2013; Carey, 1978a;
Gelman & Brandone, 2010; L. Smith & Yu, 2008).

How do children learn the meaning of words? There are, at least, four (non-sequential)
problems that children must solve to in order to learn the meaning of words: extracting
word forms from the speech signal (the segmentation problem), determining what counts
as a novel word and what does not (the identification problem), determining what it refers
to (the mapping problem) and determining the relevant concept to which it is associated
(the extension problem). The fact that many phonological forms are alike or have several
meanings potentially create a challenge at each level of the word learning process. I review
these challenges in turn below.

1.2.1 The segmentation problem

Because words are generally not uttered in isolation, one of the first tasks for infants
learning a language is to extract the words that make up the utterances they hear. This is
not a trivial task because there is typically no pause between words. Adults are known to
rely on their lexicon in order to segment continuous speech into words (e.g., Marslen-Wilson
& Welsh, 1978). Because infants in their first year mostly lack such lexical knowledge,
this procedure was thought to be unavailable to them, leading researchers to focus on
alternative cues that can be recovered from the speech such as statistical regularities (e.g.,
Saffran, Aslin, & Newport, 1996), phrasal prosody (Gout, Christophe, & Morgan, 2004),
phonotactics (e.g., Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993), but also
knowledge about the environment such as the broader context of the learning situation
(see Synnaeve, Dautriche, Börschinger, Johnson, & Dupoux, 2014, for a computational
implementation of this idea).4

Certainly lexical ambiguities, such as homophones, are not a challenge for the segmentation
problem since there is no ambiguity on the phonological form of the word. In fact, one
could even imagine that a highly compressible lexicon with a small vocabulary size (thus
with a lot of lexical ambiguities) would be easier to segment since all word forms would
occur frequently in speech making it easier to spot their word boundaries. Indeed, when
exposed to a stream of speech containing only 6 words (a rather compressible lexicon),

4Language occurs in context and is constrained by the events occurring in the daily life of the child. For
example, during an eating event one is most likely to speak about food, while during a zoo-visit event,
people are more likely to talk about the animals they see. These extra-linguistic contexts are readily
accessible to very young children and could be used to boost the probability of specific vocabularies
and constrain the most plausible segmentation of an utterance (e.g., at meal times, you expect food
vocabulary).
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infants distinguish between words and non-words after only 2 min of exposure (Saffran et
al., 1996), suggesting that a compressible lexicon is easy to segment.

Regarding similar-sounding words, it has been suggested that they can facilitate the seg-
mentation process. Indeed, studies have shown that hearing familiar words in the speech
signal can help segmenting the speech into words: By 8 months of age, infants segment
words more successfully when they are preceded by frequent functions words (Shi & Lep-
age, 2008) or when they are preceded by a very familiar name such as "mommy" (Bortfeld,
Morgan, Golinkoff, & Rathbun, 2005). Accordingly, it might be easier to isolate a novel
word (e.g., "tog") from the speech stream when it sounds similar to a known word ("dog").
Supporting that idea, Altvater-Mackensen & Mani (2013) showed that 7-month-old Ger-
man infants familiarized with a word such as "Löffel" spoon in the lab had less difficulty
segmenting novel words such as "Löckel" (similar in the onset) or "Nöffel" (similar in the
offset) than phonologically unrelated words such as "Sotte". Thus, phonological overlap
with a familiarized word may help infants recognize novel similar-sounding words in the
speech stream.

Taken together, this suggests that compressible lexicons with reduced vocabulary size and a
fair amount of phonological overlap may help infants in the segmentation process. Although
this issue will not be further addressed in the main body of this thesis, it is certainly an
interesting question to follow up for computational models of segmentation.5 At any rate,
compressible lexicons may be functionally advantageous for speech segmentation.

1.2.2 The identification problem

To learn the meaning of a word, children must be able to identify a phonological form as
a potential candidate for a novel entry into the lexicon. In the case of similar-sounding
words, they must identify that minimally different phonological forms (e.g., "sheep" and
"ship") map onto two different meanings, and are not the by-product of the normal sound
variability of their language. Indeed, one difficulty for learners is that the same sound
categories are realized differently by different speakers of the same language (e.g., Labov,
1966) and differ depending on the phonetic context they appear in (e.g., Holst & Nolan,
1995). As a result, different instances of a given word do not all sound the same. Hence,
children must learn to distinguish between the acceptable instances of a word and the
instances that do not correspond to that word.

Clearly, the presence of similar-sounding words adds an additional complexity to the word

5One can imagine creating two artificial corpora: one using a compressible lexicon and the other using a
distinctive lexicon, keeping the number and frequency of words constant. The idea would be to evaluate
on which corpus the same segmentation model (for instance, Adaptor Grammars, M. Johnson, Griffiths,
& Goldwater, 2006) would give the best segmentation result.
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identification task. Indeed, several studies have shown that 14-month-old toddlers have a
hard time differentiating between novel word forms that differ only in one phoneme (Pater,
Stager, & Werker, 2004; Stager & Werker, 1997) (e.g., "bih" and "dih") despite being
perfectly able to distinguish the phonemic contrast (e.g., /b/ and /d/). Yet, the same age
group can succeed when the novel word forms are presented in a more supportive context
(Yoshida, Fennell, Swingley, & Werker, 2009), i.e. if they are embedded in a sentence
(Fennell & Waxman, 2006) or if the objects onto which the words map are presented prior
to the experiment (Fennell, 2012). This suggests that young toddlers need more support
to attend and encode minimally different forms. However, the presence of supportive
context does not suffice in all conditions: Older 19-month-olds fail to use a single-feature
phonological distinction to assign a novel meaning to a word form that sounds similar to
a very familiar one (Swingley & Aslin, 2007) (e.g., learning a novel word such as "tog"
when having "dog" in their lexicon). Again, perceptual discrimination between the familiar
and the novel label was not an issue as children of the same age are able to distinguish
familiar words from mispronounced variants (e.g., Mani & Plunkett, 2007; Swingley &
Aslin, 2002). In sum, this suggests that young children have difficulty in attending to and
encoding similar word forms compared to more distinct word forms.

In the case of ambiguous words, such as homophones, the problem is even more complex
since the phonological form alone does not indicate whether a new lexical entry is ap-
propriate for the phonological form. For example, to learn the word "bat", a child must
observe several instances of the word "bat" referring to animal bats and several instances
of the word "bat" referring to baseball bats. Let us assume, for the sake of simplicity,
that a given child has parents whose passion is spelunking. It is likely that this child
will encounter a greater proportion of animal-bat situations than baseball-bat situations
early in life. As a result, (s)he may have already linked "bat" to animal-bat.6 Yet, how
does the learner know that a novel lexical entry for the word "bat" is appropriate during
baseball-bat instances?

Previous research showed that preschoolers perform poorly on tasks requiring them to
assign a different, unrelated meaning to a known word (e.g., learning that "snake" could
also refer to a novel object that is not a snake) compared to learning a novel meaning
for a novel word form (e.g., learning that "blicket" refers to a novel object) (Casenhiser,
2005; Doherty, 2004; Mazzocco, 1997). One possible interpretation of these findings is
that homophones are learnt later in language development because children have yet to
possess the required skills to learn them. However, this seems unlikely: In another study
we indirectly7 showed that children, as young as 28 months of age, know the meaning of
several homophonous pairs (such as "porte" meaning either door or carry, de Carvalho,

6This situation may be true for a number of homophones which are often described as having a primary
meaning (the most frequent) and (a) secondary meaning(s) (the least frequent(s)).

7The aim of the study was not to evaluate children’s knowledge of homophones but used noun-verb ho-
mophonic pairs to show that children can use prosody to constrain their syntactic analysis of sentences.
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Dautriche, & Christophe, 2014, 2015). Another possibility is that children need more
evidence before accepting a new meaning for a known word than what is provided by
experimental protocols because they already possess an established meaning for the tested
word form (e.g., "snake"). At any rate, this suggests that identifying whether a new
meaning is appropriate for a known word adds a degree of difficulty that children do not
run into when learning non-homophones.

Both similar-sounding and ambiguous words challenge learners with the same basic prob-
lem: Identifying what counts as a novel word and what does not. In the case of similar-
sounding words, children must not only be able to distinguish different phonological forms
(e.g., "tog" vs. "dog") but they must also be able to interpret that such a phonological
distinction could be indicative of a novel word. In the case of homophones, the problem
is even more complex since the same phonological form is used to label several meanings
and phonemic information thus cannot be used as a cue to distinguish them (see however
Conwell & Morgan, 2012; Gahl, 2008). So how do children eventually succeed at learning
these words? As I highlighted earlier, there are many important factors other than phonol-
ogy in interpreting speech. Adults are sufficiently attuned to their language to attend to
the relevant context (i.e., linguistic, visual, pragmatic, etc.) for disambiguating ambiguous
words and minimizing the risk of confusing similar-sounding words. Yet, it is an open
question whether children, like adults, also take a broader range of contextual information
into consideration when judging the likelihood that a word form is attached to a novel
meaning.

In chapter 3, I investigate wether toddlers’ ability to learn similar-sounding words (learn-
ing "tog" when "dog" is already in their lexicon) and homophones (learning a second
meaning for "dog") depends on the context these novel words are presented in. In partic-
ular, I propose that phonological proximity and at the extreme end, phonological identity,
with a known word does not impede learning, as long as the novel and the known words
appear in distinct syntactic or semantic contexts. For instance, homophones may be easier
to learn when their meanings are sufficiently distant syntactically (e.g. "an eat" may be a
good label for a novel animal), or semantically (e.g. "a potty" as a new label for a novel
animal), but not when they are close (e.g. "a cat" for a novel animal). In other words,
presenting a similar or a known word form in a context that is distinct from its original use
may eliminate the possibility that the original meaning was intended and thereby boost the
likelihood that a novel meaning was intended. To test this, French 18- to 20-month-old tod-
dlers were taught novel words that are phonologically similar or identical to familiar words
and manipulated the words’ syntactic and semantic distance to their familiar competitors.
The results of this study were subsequently used to evaluate whether the dimensions that
make similar-sounding words and homophones easier to learn are indeed reflected in the
organization of these words in the lexicon (which would suggest that a learning pressure
may have been applied to the evolving lexicon).
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1.2.3 The mapping problem

Upon hearing a novel word (and having identified it as such), children must determine what
the referent of the word is. Imagine that the child is exposed to the word "apple" in a
situation where (s)he’s eating one in the kitchen. What can the child infer about the word
in such a situation? The response is straightforward: not much in the absence of other
information. There are a number of objects, relations, properties that could be a potential
match for "apple" in that single situation. This raises the question of how children learn
to map the meaning of a word onto its label. One possible mechanism that has been
proposed to reduce referential ambiguity involves keeping track of semantic properties that
are constant across all contexts in which that word occurs. Imagine now that the learner
hears the word "apple" while (s)he is eating one in the kitchen, but also when (s)he sees
some in a grocery store and then, as (s)he’s looking at a picture of an apple in a book. The
basic idea is that different situations will help the learner to keep track of what remains
invariant across these situations (i.e., the apple), a process referred to as cross-situational
learning (Akhtar & Montague, 1999; Pinker, 1989; Siskind, 1996).

Experimental evidence has shown that both adults and infants successfully converge toward
the correct meaning of the word after several individually ambiguous exposures (L. Smith
& Yu, 2008; Trueswell, Medina, Hafri, & Gleitman, 2013; Vouloumanos & Werker, 2009; Yu
& Smith, 2007) though the time needed to converge depends on the referential ambiguity of
each learning situation (Medina, Snedeker, Trueswell, & Gleitman, 2011; K. Smith, Smith,
Blythe, & Vogt, 2006) and the type of label considered (e.g., object vs. action labels
Monaghan, Mattock, Davies, & Smith, 2014). Thus, information about the word’s referent
can be extracted from the environmental statistics of its use. Yet, exactly how learners
use these statistics is a subject of debate.

Some work suggests that learners accumulate evidence about multiple candidate referents
for a given word (accumulative account, e.g., L. Smith & Yu, 2008; Vouloumanos & Werker,
2009; Yu & Smith, 2007). That is, each time a new word is uttered, children entertain
a whole set of situationally plausible referents and learning entails pruning the potential
referential candidates as new instances of the word cause some of these candidates to
be implausible by the situation. Other evidence suggests that learners maintain a single
hypothesis about the likely referent of the word (hypothesis testing account, e.g., Medina et
al., 2011; Trueswell et al., 2013). Based on a single exposure to a given word, children select
the most plausible interpretation of this word. As new information becomes available in
subsequent learning situations, this hypothesis may be confirmed or falsified. In the case
of falsification, the old candidate referent is replaced by a new one.

That being said, the crucial question for the present work is whether the presence of
similar-sounding or ambiguous words affects such learning process(es). Regarding similar-
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sounding words, the mapping problem is very much linked to the problem of identification.
As long as children have the means to identify that "tog" and "dog" are distinct words
(see chapter 3 for an exploration of what can make two words more distinct) then this
cross-situational process should work just as well as for phonologically unrelated words
(e.g., "dog", "spoon") (Escudero, Mulak, & Vlach, 2015, for evidence that adults learn
minimally different words such as "pix"/"pax" just as well as words that are more different,
across multiple ambiguous situations.).

The presence of ambiguous words, by contrast, induces an additional difficulty, not only for
the learner but also for cross-situational word learning accounts. Imagine a child learning
the word "bat." (S)he might be observing several situations involving an animal-bat and
several situations involving a baseball-bat (and probably also some situations where neither
of these items is available). At the end of the day, an accumulative learner will end up
with a lot of evidence that "bat" could be associated with both animal-bats and baseball-
bats, since such a learner can entertain several possible referents for a given word.8 Yet,
if word learning is best explained by a hypothesis-testing account, there is no possible
way to explain how the meaning of homophones might eventually be learned. Recall that
according to this view, word-referent mapping involves a one-to-one association which gets
updated until it reaches a stable adult stage. Thus, in one particularly informative situation
of animal-bat, the child may guess that the most likely referent for "bat" is animal-bat, yet
when encountering baseball-bat situations it is likely that the child will have to change its
best guess for a baseball-bat, and so on. In sum, the learner will keep on oscillating between
the two referents of the word without ever forming a stable word-referent association.

Logically speaking, the presence of homophony suggests that learners must be able to
entertain at least a few plausible referents for a word. One may imagine other learning
strategies to accommodate the finding that learners encode more than a single meaning
hypothesis. For instance, Koehne, Trueswell, & Gleitman (2013) proposed a multiple-
hypothesis tracking strategy, according to which learners may memorize not only one
hypothesis, but all past hypotheses for a given word (see also Stevens, Trueswell, Yang, &
Gleitman, submitted). Importantly, this suggests that both strategies, accumulative and
hypothesis testing, may be two extreme cases along a continuum of learning strategies,
between remembering every possible occurrence and remembering only the one that is
being entertained (see also Yurovsky & Frank, under review). Including more and more
complex word learning phenomena, such as homophony, will be thus help us advance
towards more realistic word learning accounts (see also the extension problem).

Simply looking at co-occurence statistics between words and their potential referents may

8Note, however, that it does not mean that they have formed two separate lexical entries that happen to
be homophones – I come back to this problem when tackling the extension problem of word learning
below.
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not be enough to account for homophony.9 As discussed before, learners must be able to
distinguish between different meanings of the same word form (the identification problem).
This might be possible if learners encode not only form-referent co-occurences but also
other kinds of information. In previous work, I suggested that cross-situational learning
is informed by the type of learning context (see Appendix B, Dautriche & Chemla, 2014).
This idea rests on the observation that in the kitchen, one is more likely to speak about food
than in the bathroom and the opposite holds for bath items. As such, the extra-linguistic
context, which is naturally available to young children, may help learners in constraining
the likely referent of the word in a given situation. If, as I suggested earlier, a sufficiently
large semantic distance is a major characteristic of homophone pairs in language, then we
expect homophones to appear in clearly different contexts. For instance, animal-bats and
baseball-bats cover distant concepts, and it is likely that the situations in which animal-
bats are mentioned (caving, garden at night) are quite different from the situations in which
baseball-bats are mentioned (sport event). Thus, if learners retain contextual information,
they may be able to "tag" different instances of the homophonous word, which may help
them realize that they should track two separate referents instead of just a single one.

In sum, homophony challenges current word learning accounts on important grounds that
need to be addressed to tackle more complex, and more ecologically valid, word learn-
ing phenomena. For the learner, the presence of homophones, as well as similar-sounding
words, presents similar challenges for mapping as it does for identification: Finding the
correct referent(s) of a word may be facilitated if learners are not overwhelmed by phono-
logical identity, or proximity, and use other types of information, for instance the broader
context of the learning situation, to constrain their word-referent hypotheses. Whether
or not the distribution of ambiguous and similar-sounding words in the lexicon allows for
such distinction will be addressed in chapter 3.

1.2.4 The extension problem

At the same time as children determine the likely referent of a word, they must also
determine the relevant extension associated with the word (i.e. the subset of entities to
which a given word refers). In general, children will not observe all the entities that exhaust
the set of candidate exemplars, but will rather observe only a subset of those. Suppose for
instance, that the child observes that the word "cat" is used to refer to their pet. Ideally,
the child should be able to extend the word to other cats, not just their own one. Yet, even
assuming that the child understood which object the word refers to, in that context (the
mapping problem), the meaning of "cat" is still underspecified after this single learning

9Nor for word learning in general. Recall that learning the meaning of a word is more than just establishing
a link between a form and a referent, but also involves gaining knowledge about its syntactic properties
and the situations in which this word may occur.
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situation (Quine, 1960). Certainly "cat" could refer to the set of all cats and only cats
but many other extensions are compatible with that one experience: Felix the cat, one of
its body parts, Felix the cat at 3pm in the kitchen, the set of all black cats, the set of all
pets, the set of all animals and so on. In sum, the learner must decide between a number
of nested and overlapping possibilities.

Many theoretically plausible meanings can be ruled out simply because children do not,
or cannot, consider them (e.g., Felix the cat at 3pm in the kitchen). Yet, many plausi-
ble hypotheses still remain. This has led researchers to hypothesize that children come
equipped with constraints or biases about which hypotheses are more likely than others. A
sensible way to characterize the constraints necessary for word learning is to observe how
children extend words in controlled environments. In experiments testing this, children are
usually shown several learning exemplars (e.g., "these are blickets") and asked whether the
word could be extended to new objects (e.g., "which one of these is a blicket?"). Using
such a paradigm, it has been shown that children are more likely to treat novel labels as
referring to objects of the same kind (the taxonomy constraint, Markman & Hutchinson,
1984), or of the same shape (the shape bias, Landau, Smith, & Jones, 1988). Moreover,
even young infants of 10 months expect that a word labels a group objects that share a
common property (Plunkett, Hu, & Cohen, 2008). Accounts of word learning (associative
learning accounts, e.g., Regier, 2005; Yu & Smith, 2007; hypothesis elimination accounts,
e.g., Pinker, 1989; Siskind, 1996; Bayesian accounts Frank, Goodman, & Tenenbaum, 2009;
Piantadosi, Tenenbaum, & Goodman, 2012; Xu & Tenenbaum, 2007) accordingly presup-
pose that the extension of a word is convex in conceptual space. That is, if two objects
A and B are both labelled by the word ”blicket”, then A and B are exemplars of a single
concept whose members are contiguous in conceptual space (Gärdenfors, 2004).

However this approach will fail as soon as identity of form does not imply identity of
meaning, that is when the language contains words that have multiple meanings such as
homophones. For example, if a child is learning the word "bat", (s)he might be observing
several exemplars of animal-bats and several exemplars of baseball-bats. Thus, if both
animal-bats and baseball-bats are thought to be exemplars of a single concept (the cate-
gory including animal-bats and baseball-bats), then such a concept should encompass the
common properties of both flying mammals and sport instruments, leading to very broad
interpretations such as "thing" or "stuff". Thus, reasoning across different exemplars based
on forms that are homophonous will lead to an overextension of the label, since all "things"
are not "bats". Note that contrary to the mapping problem, here the issue is not about
knowing that a word can apply to several referents but knowing that these referents belongs
to distinct meanings and not a single one.

There are two possibilities that may explain why current word learning accounts have diffi-
culty in dealing with homophony. The first possibility is that they simulate children’s prior
knowledge: Children may start with an expectation that the structure of the language is
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clear, that is, involving transparent, uniform mappings between forms and meanings, lead-
ing to one-to-one correspondence across these domains (Slobin, 1973, 1975). The second
possibility is that these priors reflect only what we know about very narrow word learning
phenomena (learning unambiguous object labels) and cannot possibly explain the learn-
ing of other phenomena, such as homophones. At any rate, the existence of homophony
in languages suggests that children must be able to entertain the possibility that other
form-meaning representations, besides a one-to-one correspondence between forms and
meanings, are possible.

In chapter 4, I provide the first careful examination of what homophones can tell us
about word learning from a theoretical and an experimental standpoint, using both an
adults and a child population. On the experimental side, I explore the circumstances
under which learners accept several meanings for the same word form. In particular, I
explore whether a word is more likely to yield homophony when it is learnt from exem-
plars clustered at two different positions in conceptual space than when exemplars form
a uniform group. For instance, to learn "bat", learners will observe several exemplars of
animal-bats and several exemplars of baseball-bats, but no non-bat exemplars. I hypoth-
esize that such a distribution of learning exemplars will cue learners that they are in the
presence of a homophonous word. Note that if homophones cover distant concepts (see
the identification problem), we expect a significant gap in conceptual space between the
exemplars of a homophone, which may increase the ease with which learners are able to
learn homophones. In essence, chapter 4 formalizes the intuition that distinctiveness in
meaning is an important factor for the discovery of homophony. On the theoretical side,
I illustrate, with the example of homophony, how making the prior assumptions of word
learning accounts explicit provides the best means to identify irreducible assumptions the
learning system may rely on.

1.3 Summary

The presence of ambiguity in languages is a problem at most levels of word learning (see,
however, a potential advantage during the segmentation problem). At first sight, this
may be taken as a demonstration that languages are not influenced at all by children’s
learning difficulties. Yet, as many have suggested, languages are a trade-off between several
functional pressures competing for opposite properties. This suggests two non-mutually
exclusive explanations: 1) the presence of ambiguity in languages may be the consequence
of other functional pressures not related with the acquisition of words (e.g., cognitive
constraint on word usage) and 2) the kind of ambiguity that is present in the lexicon is
learnable; that is learning may exercise some more fine-grained influence on the distribution
of ambiguity in the lexicon by keeping only ambiguous words of the learnable kind. I explore
these ideas by first quantifying the amount of word form similarity in the lexicon (chapter
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2). I then explore the question of what kind of ambiguity may be learnable by children
(chapter 3), and I finish by formalizing how children can learn ambiguous words (chapter
4).
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2 Quantifying word form similarity in the
lexicons of natural languages

An important question is whether language is designed such that it can be reduced to
properties of the cognitive system. Perceptual distinctiveness has been shown to play an
important role in shaping the phonology of languages. For instance, Wedel, Kaplan, &
Jackson (2013) show that phoneme pairs that have been merged in the course of language
change distinguished fewer minimal pairs than pairs of phonemes that remained contrastive
in the language. This suggests that there are constraints favoring less confusable contrasts
over more confusable contrasts. These constraints have been argued to derive from com-
municative efficiency: successful transmission of a message requires listeners to be able
to recover what is being said, therefore the likelihood that two distinct words would be
confusable should be minimized.

The importance of perceptual distinctiveness in phonology has been widely reported (e.g.,
Flemming, 2004; Graff, 2012; Lindblom, 1986; Wedel et al., 2013). Yet very few studies
have looked at 1) perceptual distinctiveness in the lexicon (i.e., at the word form level);
2) the manifestation of other functional pressures, in particular those which are not only
beneficial for the listener but also serve the interest of the speaker and 3) the interaction
of phonological distinctiveness with other factors that are relevant for language processing
and acquisition, such as semantic distinctiveness. Here we precisely tackle these three
points and ask whether the structure of word form similarity in the lexicon is the result
of communicative and cognitive pressures associated with language acquisition and use.
On one hand, one might expect that a well-designed lexicon should avoid confusable word
forms to satisfy communicative constraints. On the other hand, one might expect that
a well-designed lexicon should favor word form similarity to make the lexicon easier to
produce, learn and remember.

section 2.1 proposes a new methodology to investigate whether the structure of word
form similarity in the lexicon differs from chance and in what direction. This methodology
compares real lexicons against "null" lexicons by creating random baselines that provide a
null hypothesis for how the linguistic structure should be in the absence of communicative
and cognitive pressures. By simulating the generation of lexical structure without any
communicative or cognitive constraint, it is thus possible to quantify whether there is
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more or less word form similarity in the lexicons of natural languages compared to the
chance level.

In section 2.2, I looked at the interaction of word form similarity and semantic similarity
in relation with possible functional advantages. To date, with 101 languages in the sample,
this is the largest cross-linguistic analysis that offers insight into the processes that govern
language learning and use across languages.
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1 Introduction

de Saussure (1916) famously posited that the links between wordforms and their meanings are arbi-
trary. As Hockett (1960) stated: “The word ‘salt’ is not salty, ‘dog’ is not canine, ‘whale’ is a small
word for a large object; ‘microorganism’ is the reverse.” Despite evidence for non-arbitrary struc-
ture in the lexicon in terms of semantic and syntactic categories (Bloomfield, 1933; Monaghan et al.,
2014), the fact remains that here is no systematic reason why we call a dog a ‘dog’ and a cat a ‘cat’ in-
stead of the other way around, or instead of ‘chien’ and ‘chat.’ In fact, our ability to manipulate such
arbitrary symbolic representations is one of the hallmarks of human language and makes language
richly communicative since it permits reference to arbitrary entities, not just those that have iconic
representations (Hockett, 1960).

Because of this arbitrariness, languages have many degrees of freedom in what wordforms they
choose and in how they carve up semantic space to assign these forms to meanings. Although the
mapping between forms and meanings is arbitrary, the particular sets of form-meaning mappings
chosen by any given language may be constrained by a number of competing pressures and biases
associated with learnability and communicative efficiency. For example, imagine a language that
uses the word ‘feb‘ to refer to the concept HOT, and that the language now needs a word for the
concept warm. If the language used the word ‘fep’ for WARM, it would be easy to confuse with ‘feb‘
(HOT) since the two words differ only in the voicing of the final consonant and would often occur
in similar contexts (i.e. when talking about temperature). However, the similarity of ‘feb‘ and ‘fep’
could make it easier for a language learner to learn that those sound sequences are both associated
with temperature, and the learner would not have to spend much time learning to articulate new sound
sequences since ‘feb’ and ‘fep’ share most of their phonological structure. On the other hand, if the
language used the word ‘sooz’ for the concept WARM, it is unlikely to be phonetically confused with
‘feb’ (HOT), but the learner might have to learn to articulate a new set of sounds and would need to
remember two quite different sound sequences that refer to similar concepts.

Here, we investigate how communicative efficiency and learnability trade off in the large-scale
structure of natural languages. We have developed a set of statistical tools to characterize the large-
scale statistical properties of the lexicons. Our analysis focuses on testing and distinguishing these
two pressures in natural lexicons: a pressure for dispersion (improved discriminability) versus a pres-
sure for clumpiness (re-use of sound sequences). Below, we discuss each in more detail.

A pressure for dispersion of wordforms

Under the noisy channel model of communication (Gibson et al., 2013; Levy, 2008; Shannon,
1948), there is always some chance that the linguistic signal will be misperceived as a result of errors
in production, errors in comprehension, inherent ambiguity, and other sources of uncertainty for the
perceiver. A lexicon is maximally robust to noise when the expected phonetic distance among words
is maximized (Flemming, 2004; Graff, 2012), an idea used in coding theory (Shannon, 1948). Such

2 Quantifying word form similarity in the lexicons of natural languages
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dispersion has been observed in phonetic inventories (Flemming, 2002; Hockett & Voegelin, 1955) in
a way that is sensitive to phonetic context (Steriade, 1997, 2001). The length and clarity of speakers’
phonetic pronunciations are also sensitive to context predictability and frequency (Bell et al., 2003;
Cohen Priva, 2008), such that potentially confusable words are pronounced more slowly and more
carefully. Applying this idea to the set of wordforms in a lexicon, one would expect wordforms to be
maximally dissimilar from each other, within the bounds of conciseness and the constraints on what
can be easily and efficiently produced by the articulatory system. The pressure for dispersion can be
illustrated by noting that languages avoid long but similar-sounding words. While English has words
like ‘accordion’ and ‘encyclopedia’, it does not also have ‘accordiom’ and ‘encyclofedia.’ Indeed, a
large number of phonological neighbors (i.e., words that are one edit apart like ‘cat’ and ‘bat’) can
impede spoken word recognition (Luce, 1986; Luce & Pisoni, 1998), and the presence of lexical com-
petitors can affect reading times (Magnuson et al., 2007).

A pressure for clumpiness of wordforms

Well-designed lexicons must also be easy to learn, remember, and produce. What would such
a lexicon look like? In the extreme case, one could imagine a language with only one wordform.
Learning the entire lexicon would be as simple as learning to remember and pronounce one word.
While this example is absurd, there are several cognitive advantages for processing words that are
similar to other words in a speaker’s mental lexicon. There is evidence that adults and preschool-
ers learn novel words occupying phonologically dense areas of the lexicon more readily than novel
words from sparser phonological spaces (Storkel et al., 2006). Also, words that have many similar
sounding neighbors in the lexicon are easier to remember than words that are more phonologically
distinct (Vitevitch et al., 2012) and facilitate production by reducing speech error rate (Stemberger,
2004; Vitevitch & Sommers, 2003) and naming latencies (Vitevitch & Sommers, 2003) (but see Sadat
et al. (2014) for a review of the sometimes conflicting literature on the effect of neighborhood density
on lexical production). Additionally, words with many phonological neighbors tend to be phoneti-
cally reduced (shortened in duration and produced with more centralized vowels) in conversational
speech (Gahl, 2015; Gahl et al., 2012).This result is expected if faster lexical retrieval is associated
with greater phonetic reduction in conversational speech as it is assumed for highly predictable words
and highly frequent words (Aylett & Turk, 2006; Bell et al., 2003). In sum, while words that partially
overlap with other words in the lexicon may be difficult to recognize (Luce, 1986; Luce & Pisoni,
1998), they seem to have an advantage for learning, memory and lexical retrieval.

Another source of regularity in the lexicon comes from a correspondence between phonology
and semantic and/or syntactic factors. For example, there is evidence that children and adults have a
bias towards learning words for which the relationship between their semantics and phonology is not
arbitrary (Imai & Kita, 2014; Imai et al., 2008; Monaghan et al., 2011, 2014; Nielsen & Rendall, 2012;
Nygaard et al., 2009). Furthermore, it may be preferable for words of the same syntactic category to
share phonological features, such that nouns sound like nouns, verbs like verbs, and so on (Kelly et
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al., 1992). The presence of these natural clusters in semantic and syntactic space therefore result in
the presence of clusters in phonetic space. Imagine, for instance, that all words having to do with
sight or seeing had to rhyme with ‘look’. A cluster of ‘-ook’ words would develop, and they would
all be neighbors and share semantic meaning. One byproduct of these semantic and syntactic clusters
would be an apparent lack of sparsity among wordforms in the large-scale structure of the lexicon.

Another source of phonological regularity in the lexicon is phonotactics, the complex set of con-
straints that govern the set of sounds and sound combinations allowed in a language (Hayes & Wilson,
2008; Vitevitch & Luce, 1998). For instance, the word ‘blick’ is not a word in English but plausibly
could be, whereas the word ‘bnick’ is much less likely due to its implausible onset bn- (Chomsky
& Halle, 1965).1 These constraints interact with the human articulatory system: easy-to-pronounce
strings like ‘ma’ and ‘ba’ are words in many human languages, whereas some strings, such as the last
name of Superman’s nemesis Mister Mxyzptlk, seem unpronounceable in any language. Neverthe-
less, the phonotactic constraints of a language are often highly language-specific. While English does
not allow words to begin with gn, French does. Phonotactic constraints provide an important source
of regularity that aids production, lexical access, memory and learning. For instance, words that
are phonotactically probable in a given language (i.e., that make use of frequent transitions between
phonemes) are recognized more quickly than less probable sequences (Vitevitch, 1999). Furthermore,
infants and young children seem to learn phonotactically probable words before learning less prob-
able words (Coady & Aslin, 2004; Storkel, 2004, 2009; Storkel & Hoover, 2010) and infants prefer
listening to high-probability sequences of sounds compared to lower probability sequences (Jusczyk
& Luce, 1994; Ngon et al., 2013).

The upshot of this regularity for the large-scale structure of the lexicon is to constrain the lexical
space. For instance, imagine a language called Clumpish in which the only allowed syllables were
those that consist of a nasal consonant (like m or n) followed by the vowel a. Almost surely, that
language would have the words ‘ma’, ‘na’, ‘mama’, ‘mana’, and so on since there are just not that
many possible words to choose from. The lexical space would be highly constrained because most
possible sound sequences are forbidden. From a communicative perspective, such a lexicon would be
disadvantageous since all the words would sound alike. The result would be very different from the
lexicon of a hypothetical language called Sparsese in which there were no phonotactic or articulatory
constraints at all and in which any phoneme was allowed. In a language like that, lexical neighbors
would be few and far between since the word ‘ma’ would be just as good as ‘Mxyzptlk’.

1There are many existing models that attempt to capture these language-specific rules. A simple model is an n-gram
model over phones, whereby each sound in a word is conditioned on the previous n-1 sounds in that word. Such models
can be extended to capture longer distance dependencies that arise within words (Gafos, 2014) as well as feature-based
constraints such as a preference for sonorant consonants to come after less sonorant consonants (Albright, 2009; Goldsmith
& Riggle, 2012; Hayes, 2012; Hayes & Wilson, 2008).
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Assessing lexical structure

In this work, we ask whether the lexicon is clumpy or sparse. But, because of phonotactics and
constraints on the human articulatory system, a naive approach would quickly conclude that the lexi-
con is clumpy. Natural languages look more like Clumpish than they do like Sparsese since any given
language uses only a small portion of the phonetic space available to human language users.2 We
therefore focus on the question of whether lexicons show evidence for clumpiness or sparsity above
and beyond phonotactics in the overall (aggregate) structure of the lexicon.

The basic challenge with assessing whether a pressure for dispersion or clumpiness drives the or-
ganization of wordform similarity in the lexicon is that it is difficult to know what statistical properties
a lexicon should have in their absence. If we believe, for instance, that the wordforms chosen by En-
glish are clumpy, we must be able to quantify clumpiness compared to some baseline. Such a baseline
would reflect the null hypothesis about how language may be structured in the absence of cognitive
forces. Indeed, our methods follow the logic of standard statistical hypothesis testing: we create a
sample of null lexicons according to a statistical baseline with no pressure for either clumpiness nor
dispersion. We then compute a test measure (e.g., string edit distance) and assess whether real lexi-
cons have test measures that are far from what would be expected under the null lexicons. We present
a novel method to compare natural lexicons to phonotactically-controlled baselines that provide a
null hypothesis for how clumpy or scattered wordforms would be as the result of only phonotactics.3

Across a variety of measures, we find that natural lexicons have the tendency to be clumpier than
expected by chance (even when controlling for phonotactics). This reveals a fundamental drive for
regularity in the lexicon that conflicts with the pressure for words to be as phonetically distinct as
possible.

2 Method

Assessing the extent to which the lexicons of natural languages are clumpy or sparse requires a model
of what wordforms should be expected in a lexicon in the absence of either force. Prior studies look-
ing at the statistics of language—in particular Zipf’s law (Mandelbrot, 1958; Miller, 1957)—have
made use of a random typing model in which sub-linguistic units are generated at random, occasion-
ally leading to a word boundary when a “space” character is emitted. However, this model makes
unrealistic assumptions about the true generative processes of language (Howes, 1968; Piantadosi et
al., 2013) as the sequences of sounds composing words are not generated randomly but follow com-
plex constraints (Baayen, 1991; Hayes, 2012). To more accurately capture the phonotactic processes

2As an illustration, English has 44 phonemes so the number of possible unique 2-phone words is 442 = 1936, yet there
is only 225 unique 2-phone words in English, thus only 11% of the space possible for two -phone words is actually used in
English.

3Using a similar approach, Baayen (1991) studied wordform similarity in relation to words’ frequency by simulating
lexicons (see also Baayen (2001)’s implementation of the Simon-Mandelbrot model.)
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at play in real language, here we built several generative models of lexicons: ngrams over phones,
ngrams over syllables, and a PCFG over syllables. After training, we evaluated each model on a held-
out dataset to determine which most accurately captured each language. The best model was used as
the statistical baseline with which real lexicons are compared. We studied monomorphemes of Dutch,
English, German and French. Because our baseline models capture effects of phonotactics, we are
able to assess pressures for clumpiness or dispersion over and above phonotactic and morphological
regularities.

2.1 Real Lexicons

We used the lexicons of languages for which we could obtain reliably marked morphological parses
(i.e., whether a word is morphologically simple like ‘glad’ or complex like ‘dis-interest-ed-ness’).
For Dutch, English and German we used CELEX pronunciations (Baayen et al., 1993) and restricted
the lexicon to all lemmas which CELEX tags as monomorphemic. The monomorphemic words in
CELEX were compiled by linguistic students and include all words that were judged to be nondecom-
posed. For French, we used Lexique (New et al., 2004), and I.D. (a native French speaker) identified
monomorphemic words by hand. Note that, for Dutch, French and German, these monomorphemic
lemmas include infinitival verb endings (-er in French, -en or -n in German and Dutch).4 Since it is
not clear how to separate homophones from polysemy, we chose to focus on surface phonemic forms:
when two words with different spellings shared the same phonemic wordform (e.g., English ‘pair’ and
‘pear’ are both pronounced /per/), we included that phonemic form only once. In order to focus on the
most used parts of the lexicon and not on words that are not actually ever used by speakers, we used
only those words that were assigned non-zero frequency in CELEX or Lexique, including these words
in the simulation however, does not change the results observed. All three CELEX dictionaries were
transformed to turn diphthongs into 2-character strings in order to capture internal similarity among
diphthongs and their component vowels. In each lexicon, we removed a small set of words containing
foreign characters and removed stress marks. Note that since we removed all the stress marks in the
lexicons, noun-verb pairs that differ in the position of stress were counted as a single wordform in our
lexicon (e.g., in English the wordform ‘desert’ is a noun when the stress in on the first vowel ‘désert’
but is a verb when the stress is on the last vowel ‘desért’ but we use only the wordform /desert/ once).
This resulted in a lexicon of 5343 words for Dutch, 6196 words for English, 4121 words for German
and 6728 words for French.

2.2 Generative models of Lexicons

In order to evaluate each real lexicon against a plausible baseline, we defined a number of lexical
models. These models are all generative and commonly used in natural language processing (NLP)
applications in computer science. The advantage of using generative models is that we can use the

4Removing these verb endings and running the same analysis on the roots did not change the results observed for these
3 languages (but see section 4.2 for an analysis where verb endings matter)

2 Quantifying word form similarity in the lexicons of natural languages

28



set of words of real lexicons to construct a probability distribution over some predefined segments
(phones, syllables, etc.) that can be then used to generate words, thus capturing phonotactic regulari-
ties.5 These models are all lexical models, that is, their probability distributions are calculated using
word types as opposed to word tokens, so that the phonemes or the syllables from a frequent word
like the are not weighted any more strongly than those from a less frequent word.6 We defined three
categories of models:

• n-phone models: For n from 1 to 6, we trained a language model over n phones. Like an
n-gram model over words, the n-phone model lets us calculate the probability of generating a
given phoneme after having just seen the previous n-1 phonemes: P(xi|xi−(n−1), ...,xi−1). The
word probability is thus defined as the product of the transitional probabilities between the
phonemes composing the word, including symbols for the beginning and end of a word. For
example, the word ‘guitar’ is represented as I g I t A: r J in the lexicon where I and J are the
start and the end symbols. The probability of guitar considering a bigram model is therefore:

P(g|I)×P(I|g)×P(t|I)×P(A:|t)×P(r|A:)×P(J |r)

These probabilities are estimated from the lexicon directly. For example P(A:|t) is the frequency
of tA: divided by the frequency of t.

• n-syll models: For n from 1 to 2, we trained a language model over syllables. Taking the same
example as above, ‘guitar’ is represented as I gI tA:r J and its probability from a bigram novel
over syllable is:

P(gI|I)×P(tA:r|gI)×P(J |tA:r)

In order to account for out-of-vocabulary syllables in the final log probabilities, we gave them
the same probability as the syllables appearing one time in the training set.

5Fine-grained models of phonotactics exist for English (e.g., Hayes (2012)) yet adapting them to other languages is not
straightforward and there is no common measure that will allow us to compare their performances.

6Admittedly, the experience speakers have of real language is token-based, and not type-based. Yet, using token-based
probability estimates instead of type-based probability estimates to capture phonotactic regularities does not change the
pattern of results for the 4 languages.
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• Probabilistic Context Free Grammar (Manning & Schutze, 1999, PCFG;): Words are rep-
resented by a set of rules of the form X → α where X is a non-terminal symbol (e.g., Word,
Syllable, Coda) and α is a sequence of symbols (non-terminal and phones). We defined a word
as composed of syllables differentiated by whether they are initial, medial, final or both initial
and final.

Word → SyllableI (Syllable)+ SyllableF

Word → SyllableIF

Syllable → (Onset) Rhyme

Rhyme → Nucleus (Coda)

Onset → Consonant+

Nucleus → Vowel+

Coda → Consonant+

These rules define the possible structures for words in the real lexicon. They are sufficiently
general to be adapted to the four languages we are studying, given the set of phonemes for
each language. Each rule has a probability that determines the likelihood of a given word. The
probabilities are constrained such that for every non-terminal symbol X , the probabilities of
all rules with X on the left-hand side sum to 1: ∑P(X → α) = 1. The likelihood of a given
word is thus the product of the probability of each rule used in its derivation. For example, the
likelihood of ‘guitar’ is calculated as the product of all probabilities used in the derivation of
the best parse (consonant and vowel structures are not shown for simplification):

Word → SyllableI(Onset(g) Rhyme(Nucleus(I) Coda(t)))

SyllableF(Rhyme(Nucleus(A:) Coda(r)))

The probabilities for the rules are inferred from the real lexicon using the Gibbs sampler used
in Johnson et al. (2007) and the parse trees for each word of the held-out set are recovered using
the CYK algorithm (Younger, 1967).

2.3 Selection of the best model

To evaluate the ability of each model to capture the structure of the real lexicon, we trained each model
on 75% of the lexicon (the training set) and evaluated the probability of generating the remaining
25% of the lexicon (the validation set). This process was repeated over 30 random splits of the
dataset into training and validation sets. For each model type, we smoothed the probability distribution
by assigning non-zero probability to unseen ngrams or rules in the case of the PCFG. This was to
allow us to derive a likelihood for unseen but possible sequences of phonemes in the held-out set.
Various smoothing techniques exist, but we focus on Witten-Bell smoothing and Laplace smoothing
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which are straightforward to implement in our case.7 All smoothing techniques were combined with
a backoff procedure (though not for the PCFG), such that if the context AB of a unit U has never
been observed (p(U |AB) = 0) then we can use the distribution of the lower context (p(U |B)). The
smoothing parameter was set by doing a sweep over possible parameters and choosing the one that
maximized the probability of the held-out set. The optimal smoothing was obtained with Laplace
smoothing with parameter .01 and was used in all models described.

In order to compare models, we summed the log probability over all words in the held-out set.
The model that gives the highest log probability on the held-out data set is the best model, in that it
provides a “best guess” for generating random lexicons that respect the phonotactics of the language.
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Figure 1: Each point represent the mean log probability of one model to predict the held-out data set. The
nphone models are represented in green, the nsyll models in pink and the PCFG in blue. The
5-phone model has the highest log probability (indicated by a red segment) for all languages.
Standard deviation of the mean are represented but too small to be visible at this scale.

As shown in Figure 1, the 5-phone model gives the best result for all lexicons. In all cases, the
6-phone was the next best model, and the 4-phone was close behind, implying that n-phone models
in general provide an accurate model of words. The syllable-based models performed particularly
poorly. Thus, we focus our attention on the 5-phone model in the remainder of the results, treating
this as our best guess about the null structure of the lexicon.

7Other smoothing techniques such as Good Turing or Kneser-Ney cannot be implemented easily as they rely on the
number of units for which frequency is equal to one which is not available in every model we tested.
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3 Results: Overall similarity in the lexicon

We use the 5-phone model to generate simulated null lexicons—ones without any pressure for clumpi-
ness or dispersion other than the 5-phone generating process—and study the position of the real lexi-
con with respect to the simulated ones. For each language, we generated 30 lexicons with the 5-phone
model trained on the entire real lexicon. We additionally constrain the generation to ensure that the
distribution of word lengths in each simulated lexicon matches the distribution of word lengths in
the real lexicon. On average our best lexicon model generated 52% real words for Dutch, 53% for
English, 47% for French, and 41% for German. Note that it is not surprising that the best lexicon
model generates only about 50% of real words since the smoothing parameter allowed the generation
of non-words likely to be attested in the language.

To compare real and simulated lexicons, it is necessary to define a number of test statistics that can
be computed on each lexicon to assess how it uses its phonetic space. As in null hypothesis testing,
we compute a z-score using the mean and standard deviation estimated from 30 lexicons generated by
our best lexicon model. We then ask whether the real lexicon value falls outside the range of values
that could be expected by chance under the null model. The p-value reflects the probability that the
real lexicon value could have arisen by chance under our chosen 5-phone null model.

We present result separately for a number of different measures of wordform similarity.

3.1 Minimal pairs

We first considered the number of minimal pairs present in each lexicon. A minimal pair is a pair of
words of the same length for which a single sound differs (e.g., ‘cat’ and ‘rat’). If real lexicons are
clumpier than expected by chance, then the real lexicons should have more minimal pairs than their
simulated counterparts. If they are more dispersed, the real lexicons will have fewer minimal pairs.

Figure 2 summarizes this hypothesis test, showing how the various simulated lexicons compare to
the real lexicons in terms of number of minimal pairs for each language. Each histogram represents a
distribution of minimal pair counts broken up by language across the 30 simulated lexicons. The red
dot represents the real lexicon value and the dotted lines represent the 95% confidence interval. All
histograms fall to the left of the red dot, which suggests that the real lexicon has more minimal pairs
than any of the simulated ones in all four languages (all ps < .001; see Table 1). This pattern suggests
that the real lexicon is clumpier than expected by chance.
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Figure 2: Comparison of the total number of minimal pairs for each language (red dot) to the distribution
of minimal pairs counts across 30 simulated lexicons (histograms). Vertical black lines represent
95% confidence intervals. For all four languages, the real lexicon has significantly more minimal
pairs than predicted by our baseline.

Dutch English French German

real 13,237 18,508 7,464 4,151
µ (simulated) 11,653 16,276 6,830 3,594
σ (simulated) 124 159 113 96
z 12.77 14.03 5.61 5.80
p <.001 <.001 <.001 <.001

Table 1: z-statistics comparing the total number of minimal pairs in the real lexicon with the chance distribu-
tion of mean µ and standard deviation σ corresponding to the distribution of minimal pairs counts
in the 30 simulated lexicon for each language.

To see whether this effect is driven by words of specific length, we looked at the number of
minimal pairs for each length. We concentrated on words of length 2 to 7 which represent more than
90% of all words in each language. As shown in Figure 3, the real lexicon has more minimal pairs than
the simulated ones consistently across words of any length. For all languages, the effect is larger for
words of smaller length (length 3 to 4; 30 to 50% of all words in each language) where most minimal
pairs are observed. The smaller effect for longer words (especially words of length 7 and above) is
likely due to a floor effect since longer words are far less likely to have minimal pairs than short
words. Note that, for words of length 2, we see a somewhat degenerate case since there are relatively
few possible 2-phoneme words, yet for at least 3 languages it appears that there are more minimal pairs
of length 2 than what would be expected by chance. This is explained by the smoothing parameter
of the model that allows the generation of unseen sequences of sounds (recall that we smoothed the
probability distribution to account for rare sequences of sound that may be unseen in the lexicon of
monomorphemes).
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As a result the model is not exactly reproducing all the 2-phoneme words of the languages.8
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Figure 3: Comparison of the number of minimal pairs by word length (2-7) for each language (red dots) to
the distribution of minimal pairs counts across 30 simulated lexicons (histograms). Vertical black
lines represent 95% confidence intervals. One star represents p < .05, two stars p < .01, and three
stars p < .001.

3.2 Levenshtein distance

We can evaluate clustering using more global measures by considering the average string edit distance
(Levenshtein distance) between words (Levenshtein, 1966). The Levenshtein distance between two
sound strings is simply the number of insertions, deletions and replacements required to get from
one string to another. For instance, the Levenshtein distance between ‘cat’ and ‘cast’ is 1 (insert an
‘s’), and it is 2 between ‘cat’ and ‘bag’ (c→ b, t→g). To derive a measure of Levenshtein distance
that summarizes the whole lexicon, we compute the average Levenshtein distance between words in
the lexicon by simply computing the distance between every pair of words in the lexicon and then
averaging these distances.9 If the lexicon is clumpier than expected by chance, words will tend to

8Inspection of these 2-phoneme words reveals that most of these words are actual wordforms present in the language
(hence attested forms, e.g. "is" in English) but are not counted as distinct monomorphemic lemmas and thus are not included
in our real lexicons.

9 A possible objection to using Levenshtein distances is that there is little apparent difference in phonological confus-
ability between a pair like ‘cats’ and ‘bird’, which has a Levenshtein distance of 4, and a pair like ‘cats’ and ‘pita,’ which has
a Levenshtein distance of only 3 but which is arguably even more different since it differs in syllable structure. Ultimately,
neither pair is especially confusable: the effects of phonological confusability tail off after 1 or 2 edits.
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be more similar to one another and we expect to observe a smaller average Levenshtein distance. In
contrast, a larger average Levenshtein distance in the real lexicons relative to the simulated lexicons
would suggest that the lexicon is more dispersed than expected by chance.

As shown in Figure 4, the average Levenshtein distance between words is significantly smaller for
the real lexicon than in the simulated lexicons for all four languages (see Table 2). The difference is
numerically small, but that is to be expected because minimal pairs are statistically unlikely. That is,
the edit distance between two words is largely a product of their lengths. For example, on average,
the edit distance between two 5-letter words is 5. Nonetheless, the Levenshtein metric provides us
with an additional piece of evidence that words in the real lexicons are more similar to each other than
what would be expected by chance.
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Figure 4: Distribution of average Levenshtein distances for each of the 30 simulated lexicons. The red dot
represents the real lexicon’s value, and the dotted lines are 95% confidence intervals.

Dutch English French German

real 4.95 4.96 5.32 5.53
µ (simulated) 4.97 4.97 5.34 5.57
σ (simulated) 0.005 0.002 0.002 0.005
z -3.80 -6.0 -6.2 -6.9
p <.001 <.001 <.001 <.001

Table 2: z- statistics comparing the average Levenshtein distance in the real lexicon with the chance distri-
bution of mean µ and standard deviation σ corresponding to the distribution of average Levenshtein
distance in the 30 simulated lexicon for each language.

3.3 Network measures

Simply calculating phonological neighbors, however, does not tell us everything about how wordforms
are distributed across a lexicon. Perhaps some words have many neighbors while others have few. Or
it could be the case that neighbor pairs tend to be more uniformly distributed across the lexicon. To
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answer these questions, we constructed a phonological neighborhood network as in Arbesman et al.
(2010), whereby we built a graph in which each word is a node and any phonological neighbors are
connected by an edge, as in the toy example in Figure 5, that shows the situation for a lexicon of 14
words.

lob

hog

log

dip

cap

zen

dog

cat

lip

lot

cab

pup

dot

cot

Figure 5: Example phonological network. Each word is a node, and any words that are 1 edit apart are
connected by an edge.

Figure 6 shows examples of such networks for English 4-phone words, where each word is a
node, with an edge drawn between any two words that are phonological neighbors (1 edit away).
Words with no or few neighbors tend to be clustered on the outside. (The ring of points around the
perimeter of the circle represent the isolates–words with no neighbors.) Words with many neighbors
are, in general, plotted more centrally. We compared the shape of lexicons generated by different
models to the real lexicon. As can be seen in Figure 6, of all the models, the 5-phone model most
closely resembles the real lexicon. Substantially more clustering is observed in the more restrictive
generative models: the 5-phone, 2-syll and PCFG models have many more connected neighbors than
a 1-phone model. This corresponds to the fact that many more words are possible in the 1-phone
model (e.g. ‘cktw’ is a possible word), than in a more constrained model that respects phonotactics.
Therefore the space is largest in the 1-phone model, and the probability of generating a word that
is a neighbor of a previously generated word is correspondingly lower. Crucially, however, the real
lexicon seems even clumpier overall than the lexicons produced by any of the generative models.
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Figure 6: Sampling of phonological neighbor network from the different generative models applied on all
4-phone wordforms of the English lexicon. Each point is a word, and any two connected words are
phonological neighbors. The simulated lexicons from less constrained generative models are less
clustered and have more isolates (words with no neighbors, plotted on the outside ring).

Using techniques from network analysis that have been fruitfully applied to describe social net-
works and other complex systems (Barabási & Albert, 1999; Wasserman & Faust, 1994; Watts &
Strogatz, 1998), we can quantitatively characterize the clustering behavior of the lexicon. We com-
puted the transitivity, average clustering coefficient, and the percent of nodes in the giant component.
All three of these measures can be used to evaluate how tightly clustered the words in the lexicon are.
A graph’s transitivity is the ratio of the number of triangles (a set of 3 nodes in which each node in the
set is connected to both other nodes in the set) to the number of triads (a set of 3 nodes in which at least
two of the nodes are connected). Thus, transitivity in effect asks, given that A is connected to B and
B is connected to C, how likely is it that A is also connected to C? The average clustering coefficient
is a closely related measure that finds the average clustering coefficient across all nodes, where the
clustering coefficient of a node is defined as the fraction of possible triangles that could go through
that node that actually do go through that node. Both values measure the extent to which nodes cluster
together. The largest cluster in a network is known as the giant component. A network with many
isolated nodes will have a relatively small giant component, whereas one in which nodes are tightly
clustered will have a large giant component. These measures give us some insight into the internal
structure of the lexicon, over and above those obtained by looking at more global measures such as
the number of minimal pairs and the average Levenshtein distance. If the real lexicon is clumpier than
expected by chance, we predict that, relative to the simulated lexicons, the real lexicons will show
higher transitivity, higher average clustering coefficients, and a larger proportion of words in the giant
component.
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Figure 7: Distributions of our best generative model (the histograms) compared to the real lexicon (the red
dot) in terms of network measures for lexical networks (where each node is a word and any 2 nodes
that are minimal pairs are joined in the network): the percent of nodes in the average clustering
coefficient, giant component, and transitivity.

As observed in Figure 7, there is no systematic difference between the real lexicon and the sim-
ulated ones regarding the average clustering coefficient measures and the percentage of nodes in the
giant component. Yet there is a significant effect of transitivity (see Table 3). The reason that average
clustering coefficient shows less of an effect than transitivity is likely that average clustering coeffi-
cient is more dependent on low-degree nodes, like the many isolates that exist for longer words in
lexical networks (Sporns, 2011). The lack of effect for the giant component measure may simply be
because the proportion of words in the giant component is not a particularly robust measure since it
can be dramatically shifted by the addition or subtraction of one or two key neighbors. The higher
transitivity, however, suggests that in addition to having more overall neighbors in the real lexicons,
the neighborhoods themselves are more well-connected than the neighborhoods in simulated lexicons
are. That is, if two words A and B are both neighbors of word C, A and B are themselves more likely
to be neighbors in the real lexicon than they are in the simulated lexicons.
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Dutch English French German

real 0.2 0.22 0.12 0.16
µ (simulated) 0.19 0.21 0.13 0.14

Average σ (simulated) 0.005 0.003 0.002 0.005
Clustering coefficient z 0.1 2 -2 2.7

p 0.9 .05 .05 <.01

real 0.72 0.66 0.46 0.52
µ (simulated) 0.72 0.68 0.46 0.53

Giant component σ (simulated) 0.008 0.006 0.006 0.01
z -0.1 -2.4 -0.4 -0.9
p 0.9 <.05 0.7 0.4

real 0.3 0.35 0.31 0.36
µ (simulated) 0.3 0.33 0.3 0.32

Transitivity σ (simulated) 0.003 0.003 0.004 0.007
z 1.8 5.4 2.6 5.5
p 0.07 <.001 <.05 <.001

Table 3: z- statistics comparing various network measure (Average clustering coefficient, proportion of words
in the giant component, transitivity) in the real lexicon with the chance distribution of mean µ and
standard deviation σ corresponding to the distribution of these measures in the 30 simulated lexicon
for each language.

3.4 Robustness of the results

We chose as our baseline a 5-phone model because it performed best on the cross-validation test.
Yet, it is important to note that any pattern of clumpiness or dispersion that we find should occur
independently of this specific lexical generation model. To check whether our results were robust
across the different measures of wordform similarity, we compared the same measures (minimal pairs
count, average Levenshtein distance and network measures) obtained in the 3 best models according
to our evaluation (see Figure 1): the 5-phone model, the 6-phone model and the 4-phone model.
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Figure 8: Distributions of a given measure for our best model of word generation (5-phone in dark color),
our second best model (6-phone in light color) and our third best model (4-phone in translucent
color) compared to the measure in the real lexicons (the red dots) for the four languages and all the
measures reviewed so far.

As shown in Figure 8, we find qualitatively similar results with the 3 best models across all the
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measures of wordform similarity previously introduced.10 In general, there were more minimal pairs
and lower average Levenshtein distance in the real lexicons than across the three best models. As for
the 5-phone model, no conclusive results were obtained for the average clustering coefficient and the
giant component measures but the transitivity was higher in the real lexicons than in the three best
models of lexicons.

This is evidence that the pattern of clumpiness we found with the 5-phone model is robust across
lexical generation models. A pressure for clumpiness is thus visible beyond the particular model of
phonotactic probability adopted by the best models produced here.

We also tested whether the German, Dutch, and French infinitival verb endings could be driving
clumpiness effects by redoing the analyses above using just root forms (i.e., by removing the infinitival
ending from the verbs). One might imagine that, because most verbs end in -er in French, for instance,
these words have fewer degrees of freedom and thus edit distances will be smaller across the lexicon.
In our analysis using just root forms, however, the results were qualitatively the same as when we used
lemmas in their infinitive form, likely because the generative models already capture this regularity.
That is, our baseline models too have a disproportionate number of words ending in -er in French
and -en in German and Dutch. Because the presence of these infinitival stems does not substantially
alter the result, we chose to keep them in the main analysis so as to be consistent with the standard
databases we used (CELEX and Lexique).

3.5 Interim summary

In general, these measures suggest that the lexicon is clumpy: words tend to be more phonologically
similar to each other than would be expected by chance. Word pairs in the real lexicon are more likely
to be minimal pairs and more likely to have a small edit distance compared to words in the “chance”
simulated lexicons. The chance rate here was determined through a priori model comparison of
different plausible generating models for words. This technique has allowed us to test for clumpiness
vs. dispersion while still respecting the major phonotactic tendencies in each language. It is important
to emphasize that these results were computed on monomorphemes, so the results are not an artifact
of morphology.

Crucially, the lexicon shows a tendency towards clumpiness above and beyond phonotactics. As
we discussed earlier, phonotactic rules themselves can be thought of as a major source of clumpiness
in the lexicon, insofar as phonotactics dramatically restricts the space of possible words. Yet, while our
best lexical model controls for phonotactic regularity, we still observe clumpiness in the real lexicon
compared to this baseline. This suggests additional pressure for clustering beyond just phonotactics.

10The 3-phone model behaves somewhat differently and in fact shows more clustering than the 5-phone model. But,
because its performance on the held-out data set is poor compared to the models shown here, we do not focus on this model.
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4 Results: Finer-grained patterns of similarity in the lexicon

Across a variety of measures, we found that wordforms tend to be more similar than expected by
chance across all languages under study. Yet, while wordform similarity might be explained by a
variety of cognitive advantages (see Introduction), it does not necessarily follow that the lexicon is
not subject to communicative pressure. A possibility is that the similarity between wordforms may
not be uniformly distributed across the real lexicon but may be constrained by other dimensions that
maximize their distinctiveness in the course of lexical processing, such as:

1. phonological distinctiveness: Not every pair of phonemes is equally confusable. For instance,
a minimal pair like ‘cap’ and ‘map’ are unlikely to be confused since /k/ and /m/ are quite
distinct. But ‘cap’ and ‘gap’ differ by only the voicing of the first consonant and are thus much
more confusable (Miller & Nicely, 1955). From a communicative perspective, this more subtle
contrast is potentially much more troublesome for communication and is therefore more likely
to be avoided. So even though the number of minimal pairs is higher than expected by chance
in natural lexicons, this might not be problematic for communication as long as they are not
based on confusable contrasts.

2. grammatical categories: Not every pair of words is equally confusable. For instance, nouns
(e.g. ‘berry’) are more likely to be confused with other nouns (e.g., ‘cherry’) than words from
another grammatical category (e.g., the adverb ‘very’) because they appear in a noun syntactic
context which constrains listeners to expect a noun in this position. Therefore, from a commu-
nicative point of view, there should be more minimal pairs distributed across syntactic categories
than within the same syntactic category to minimize the risk of miscommunication.

In the following we test how the simulated lexicons compare to the real lexicons along these two
dimensions.

4.1 Wordform distinctiveness in minimal pairs

The accurate recognition of a word depends on the distinctiveness of the phonological contrasts dis-
tinguishing words. If lexicons aim to minimize confusability, they should prefer distinctive contrast
minimal pairs as opposed to confusable ones. In the case of ‘cap’ and ‘map,’ for instance, one word is
unlikely to be confused for the other since the contrast is quite distinctive. But one retains the benefits
of being able to re-use the word coda -ap in both cases. Thus, it is possible that lexicons can have
the learning benefit of having frequent minimal pairs, as long as they are not based on confusable
contrasts.

To evaluate this hypothesis, we looked at the 5% most frequent minimal pair contrasts and derived
a measure of confusability for these contrasts. Phonemes can be characterized by their phonological
features: place of articulation (e.g., labial, dental, palatal), manner of articulation (e.g., stop, fricative,
glides) and voice for consonants (voiced, unvoiced); height (close to open), backness (front to back)
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and roundness for vowels. For each of the 5% most frequent pairs of contrasts, we calculated the
difference in phonological features between each member of the pair. For example the pair /k/ and /m/
has 3 features that differ: place, manner and voicing. The test statistic that we use here is the average
number of features that differ in a minimal pair. This measure ranges from 1 (highly confusable) to 3
(highly distinguishable).11

Figure 9 shows the average number of features that differ in the 5% most frequent minimal pair
contrasts in the real lexicon and across all simulated lexicons for each language. The minimal pairs
contrasts in the real lexicon are no more distinguishable in phonetic space than are the minimal pairs
in the chance lexicon. This indicates that minimal pairs do not rely on more perceptible contrasts for
distinctiveness than what is expected by phonotactics alone.
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Figure 9: Distributions of the average number of feature difference for the 5% most frequent minimal pair
contrasts in the simulated lexicon compared to the real lexicon (the red dot). The dotted lines
represent 95% confidence intervals derived from the distribution of simulated lexicons. There is no
evidence that these frequent contrasts are more perceptible than expected by chance (all ps > .30).

The previous measure showed that frequent minimal pair contrasts are not more perceptible than
expected by chance alone. But because we used a coarse measure of confusability (the average num-
ber of different phonological features) looking only at the most used contrasts, it could still be the case
that a more perceptual and language-specific measure of phoneme confusability–looking at a broader
range of possible contrasts–would be a better predictor of clumpiness. If the lexicons prefer minimal
pairs to be distinctive then we should observe more minimal pairs having easily perceptible contrasts
than those having confusable contrasts. In order to investigate this possibility, we looked at mini-
mal pairs in English for which confusability data between phonemes are readily available (Miller &
Nicely, 1955). We computed the distance between the mean number of minimal pairs in our simulated
lexicons and the number of minimal pairs in the real lexicon for each of the 120 contrasts present in
the Miller and Nicely dataset. The distance is simply the difference between a) the mean number of
minimal pairs in the simulated lexicons and b) the number of minimal pairs in the real lexicon, divided
by the standard deviation of the value across the 30 simulated lexicons. In effect, this acts as a z-score

11For French we added nasalization as a vowel feature. The measure for French vowel contrasts therefore ranged from 1
to 4.
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that tell us how far the real lexicon value falls from what we expect under a null model.
Figure 10 shows the z-score obtained for each phonemic contrast as a function of its confusability

(the higher the more confusable). As it can be observed, there is no effect of confusability on the
z-score (p > 0.5). That is, there is no evidence that the English lexicon is more clumpy around highly
distinctive contrasts than around highly confusable contrasts.
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Figure 10: z-score obtained between the mean number of minimal pairs in the real lexicon and in the simu-
lated lexicons for each of the minimal pair contrasts present in the Miller and Nicely’s dataset as
a function of their (log) confusability.

Thus, it appears that the clumpiness effect is driven not just by highly distinct sound sequences
but is present even when considering highly confusable sounds. This points to a pressure for lexical
clumpiness which may work against robust communication.

4.2 Wordform similarities within and across grammatical categories

Words do not usually appear in isolation but are embedded in richer linguistic context. A wealth
of studies show that adults and children use the context of a sentence to constrain lexical access
(Altmann & Kamide, 1999; Borovsky et al., 2012). Hence even if the lexicon is clumpy as a whole, the
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context might be sufficient to disambiguate between two similar wordforms. One obvious contextual
disambiguation is the syntactic category of words. For example, consider the sentence “did you see
my sock?” The chance that a native English speaker might confuse the word ‘sock’ with ‘lock’ in
the context of following ‘my’ might be greater than confusing ‘sock’ with ‘mock’, because ‘lock’ is a
noun–which is consistent with the syntactic context–whereas ‘mock’ is a verb, which is inconsistent
with the syntactic context. Moreover, because children as young as 18-months have been shown to
use function words to recognize and learn the difference between verbs and nouns on-line, these sorts
of categorizing effects may be crucial to language acquisition (Cauvet et al., 2014).

As with the lexicon more broadly, there are two possible outcomes that could arise from comparing
word forms within as opposed to across syntactic categories. On the one hand, because context is
usually enough to distinguish among different parts of speech, confusability of words should be less
of a problem across syntactic categories. That is, even though ‘bee’ and ‘see’ are minimal pairs, one is
unlikely to misperceive “I was just stung by a bee” as “I was just stung by a see.” This account predicts
more similarity across syntactic categories than within syntactic categories. On the other hand, the
effects of learnability and ease of processing may be enhanced by having increased similarity between
words of the same part of speech. That is, having nouns that sound like other nouns and verbs that
sound like other verbs could convey a processing advantage. Under this account, we would expect
more similarity within as opposed to between syntactic category.

For this evaluation, we used the Part Of Speech (POS) tags in CELEX for Dutch, English and
German and in Lexique for French to count the number of minimal pairs within the same syntactic
categories (e.g., ‘lock’ / ‘sock’) and across different syntactic categories (e.g., ‘mock’ / ‘sock’). For
each simulated lexicon, we randomly assigned the syntactic categories of real words of length n to
generated words of length n and similarly counted the number of minimal pairs appearing within and
across the same syntactic categories.12 Note that for wordforms having several syntactic categories
in the real lexicon (homophones, e.g.,‘seam’/‘seem’ which are counted as a single wordform in our
lexicons, /sim/), we chose the syntactic category of the most frequent items (e.g., because the most
frequent meaning of /sim/ is ‘seem’ it will be categorized as a verb). Because there are more across-
category minimal pairs than within-category minimal pairs across languages, we divided the number
of minimal pairs appearing across and within categories by the number of across- and within-category
word pairs respectively. The final measure is thus the probability of getting a minimal pair, across
categories or within categories.

12This was to ensure that certain categories, such as pronouns, which are reserved for smaller words will not be assigned
to longer words.
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Figure 11: Distributions of the probability of getting a minimal pair within and across syntactic categories
compared to the real lexicon (the red dot). The dotted lines represent 95% confidence intervals
derived from the distribution of simulated lexicons. All 4 languages are significantly more likely
to have minimal pairs within categories than would be expected by chance.

Dutch English French German

real 0.002 0.0048 0.0016 0.0017
µ (simulated) 0.0033 0.0044 0.0019 0.0021

across σ (simulated) 1e-04 1e-04 1e-05 1e-04
syntactic categories z -21.5 9 -6 -6.6

p <.001 <.001 <.001 <.001

real 0.0069 0.0045 0.0018 0.0037
µ (simulated) 0.0046 0.0038 0.0015 0.0026

within σ (simulated) 1e-04 1e-04 1e-05 1e-04
syntactic categories z 31.2 9.6 6.5 11.7

p <.001 <.001 <.001 <.001

Table 4: z- statistics comparing the probability of getting a minimal pair within and across syntactic cate-
gories in the real lexicon with the chance distribution of mean µ and standard deviation σ corre-
sponding to the distribution of the probability of having a minimal pair in the 30 simulated lexicon
for each language. The red p-values shows a significant effect of clumpiness and the blue ones a
significant effect in the opposite direction.

As before, we compare the real lexicon to the simulated lexicons but break the measures down
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by similarity within syntactic category (only looking at the similarity of nouns to other nouns, verbs
to other verbs, and so on) and between syntactic category (only looking at the similarity of nouns to
non-nouns, verbs to non-verbs, etc.). As shown in Figure 11, we found that there are more minimal
pairs within the same syntactic category in the real lexicons than would be expected by chance for
all 4 languages. That is, for within syntactic category analyses, all four languages are clumpier than
expected under the null models. For the across-category analysis, the result is less clear. For French,
German, Dutch, there are fewer minimal pairs across different syntactic categories than would be
expected by chance. For English, there are more across-category minimal pairs than expected by
chance.

A subsequent post-hoc analysis found that the unclear results for the across-category analysis can
in part be explained by the infinitival affixes that appear on French, Dutch, and German verbs. When
we remove these verb endings, the across-category differences look roughly like what one expects by
chance (see Figure 12). This result is unsurprising since the presence of verb stems like -er means
that any given verb is less likely to be a neighbor of a noun since most nouns do not end in -er. The
within-category analysis is qualitatively unchanged by focusing on roots (in all cases the real lexicon
is clumpier than expected by chance).
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Figure 12: As in Figure 11, these histograms show the distribution of the probability of getting a minimal
pair within and across syntactic categories compared to the real lexicon, but without infinitive
endings on verbs in Dutch, French and German.

Note that the probability of getting a minimal pair within the same syntactic category is greater
than the probability of getting a minimal pair across different syntactic categories for Dutch, French
and German but not for English. A possible explanation for this difference is that there is still some
verbal morphology present in the lemmas for Dutch, French and German that we could not capture,
and this morphology artificially inflates the number of within-category minimal pairs compared to
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the number of across-category minimal pairs. For instance, in Dutch, verbs of motion systematically
display phonaesthemes (typically a schwa followed by a sonorant) that are not analyzed as suffixes.
Another possibility for this difference is that the probability of getting a minimal pair across and
within syntactic categories may not be directly comparable because the length distributions for within
category words and across categories words are different and may thus drive part of the difference
found here. As a result we prefer to concentrate on the comparison of the real lexicon with the
simulated lexicons.

4.3 Interim summary

To sum up, we did not find evidence that clumpiness is more likely among perceptible than confusable
phonological contrasts. That is, it seems that confusable phoneme pairs like ‘m’ and ‘p’ are just as
likely to be the basis of minimal pairs as less confusable pairs. One possible explanation for this null
result is that even highly confusable phoneme pairs like ‘b’ and ‘p’ are only confusable in certain
specific contexts, such as after vowels at the end of words as in ‘cab’ and ‘cap’ (Steriade, 1997). Even
then, though, context might be enough to disambiguate the words such that the confusability is not an
issue.

We found evidence for more clumpiness within syntactic category than across syntactic categories.
This may potentially be the consequence of a more general pattern: words of the same syntactic cat-
egory may share more phonological properties than with words of different classes (Kelly, 1992).
For English words, it is also the case that we see more clustering across categories than expected
by chance. But that is not the case for French, German, or Dutch when we control for the presence
of infinitival markers. Therefore, at least for these languages, it may even be the case that this syn-
tactic category effect drives the larger clumpiness effect observed across the lexicon. This would be
consistent with the findings of Monaghan et al. (2014) and Dautriche et al. (submitted), who show a
relationship between semantic and phonological similarity.

5 General Discussion

We have shown that lexicons use their degrees of freedom in a systematic and interesting way. While
we can still characterize the relationship between wordforms and meanings as arbitrary, structure
emerges when one considers the relationships within the space of possible wordforms. Across a wide
variety of measures of phonological similarity, the real lexicons of natural languages show signifi-
cantly more clustering than lexicons produced by the “best” generative model selected by our held-out
model comparison procedure.

Because we focused on monomorphemic words, this effect cannot be a result of words sharing
prefixes and suffixes. It is also not a product of any structure captured by sound-to-sound transition
probabilities such as phonotactic regularities, since our models capture these patterns. This last point
is crucial: even though our model took away some clustering effect by capturing sound-to-sound
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transition probabilities (compare the density of neighborhood between the network of the 1-phone
model to the 5-phone model in Figure 6), there is still some clustering effect that is not explained by
frequency distribution of groups of phonemes.

Certainly, one explanation for the clumpiness in the lexicon is shared phonetic properties of se-
mantically related words. Like ‘skirt’ and ‘shirt’, many words in the language share deep etymological
roots. Moreover, the presence of sound symbolism in the lexicon is another source of structure in the
lexicon not captured by our models. For instance, there is a tendency in English for gl- words to be
associated with light reflectance as in ‘glimmer’, ‘gleam’ and ‘glisten’ (Bergen, 2004; Bloomfield,
1933). There are additionally cross-linguistic correspondences between form and meaning, such as a
tendency for words referring to smallness to contain high vowels (Hinton et al., 2006; Sapir, 1929).
Interestingly, recent studies show that phonologically similar words tend to be more semantically sim-
ilar across measures of wordform similarity over the whole English lexicon (Monaghan et al., 2014)
but also in Dutch, French and German. This suggests that clumpiness in the lexicon cannot be at-
tributed to small islands of sound symbolism. Rather, it reveals a fundamental drive for regularity
in the lexicon, a drive that conflicts with the pressure for words to be as phonologically distinct as
possible.

One possible source of the lexicon’s clumpiness is that speakers preferentially re-use common
articulatory sequences. That is, beyond just phonotactics and physical constraints, speakers find it
easier to articulate sounds that they already know. Recall our example of the language in which there
is only one word for a speaker to learn. She would quickly become an expert. Along those lines,
the presence of any given sound sequence in the language makes it more likely that the sequence
will be re-used in a new word or a new pronunciation of an existing word. In that sense, the lexicon
‘overfits’: any new word is deeply dependent on the existing words in the lexicon. Note that because
our baseline used a lexical generation model, any pressure for re-use must occur over and above the
observed statistical trends (e.g., 5-phone sequences) in the language.

Relatedly, lexical clumpiness may be advantageous for word production. While words having
many neighbors are challenging for word recognition (Luce, 1986; Luce & Pisoni, 1998), they may
be easy words to produce (Gahl et al., 2012). Previous studies suggest that listener-oriented model
of speech production– where speakers adjust their speech to ensure intelligibility of words that might
otherwise be difficult to understand (as could be words with many neighbors)– are limited by at-
tentional demands and working memory in conversational speech (Arnold, 2008; Lane et al., 2006).
However, speakers may produce words with many neighbors faster, because they are easier to access
and retrieve (Dell & Gordon, 2003; Gahl et al., 2012). Hence a clumpy lexicon would be beneficial
for a speaker-oriented model of speech production associated with rapid lexical access and retrieval.

A clumpy lexicon also may allow for easier compression of lexical knowledge. By having words
that share many parts, it may be possible to store words more easily. Though we concentrate here
on monomorphemic lemmas, these account only for one third of all the lemmas in the lexicon. The
fact that languages reuse words or parts of words in the remaining two thirds of the lemmas shows
that re-use of existing phonological material must be important. It may even be the case that, much
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as morphology allows the productive combination of word parts into novel words, there exist sound
sequences below the level of the morpheme that also act as productive units of sound.

The interaction of these cognitive and articulatory constraints with the pressure for communicative
efficiency is complex. Despite the fact that one might expect the lexicon to be maximally dispersed
for communicative efficiency, these results strongly suggest that the lexicon is not nearly as sparse as
it could be–even given various phonetic constraints. Thus, why does communicative efficiency not
conflict with clumpiness in the lexicon?

One possibility is that clumpiness does not appear randomly in the lexicon but is organized along
dimensions that maximize wordform recoverability. We hypothesized that recoverability could be
enhanced if similar wordforms such as minimal pairs were disambiguated by minimally confusable
sounds. Our results provide no evidence that the lexicon is less clumpy for confusable sounds than
for non-confusable sounds. Relatedly, lexical access might be faster in a lexicon where confusable
wordforms span different syntactic categories. Yet we find that, if anything, wordforms are more sim-
ilar within the same syntactic category than what would be expected by chance for all four languages
despite the absence of morphology. This is in line with experimental evidence showing that phono-
logical similarity might act as pointer to grammatical categories to facilitate learning (Monaghan et
al., 2011).

Another possibility that would explain why communicative efficiency does not conflict with clumpi-
ness in the lexicon is that contextual information outside the word pronunciation is usually enough to
disambiguate words. Therefore it simply does not matter whether certain words are closer together
in phonetic space than they might otherwise be. Piantadosi et al. (2012) showed that lexical am-
biguity, such as dozens of meanings for short words like run, does not impede communication and
in fact promotes it by allowing the re-use of short words. In a similar way, there may be a com-
municative advantage from having not just identical words re-used but from re-using words that are
merely similar. In all cases, context may be enough to disambiguate the intended meaning and avoid
confusion–whether it be confusion between two competing meanings for the same word or confusion
between two similar-sounding words.

Likewise, our analysis here concentrated on the phoneme representation of words ignoring the
fact that speech contains a lot of fine phonetic details that listeners could use to disambiguate between
words. For instance, pairs of homophones such as ‘thyme’/‘time’ in English can be differentiated
based on their duration (“gahl2008time”, n.d.), or on their stress pattern (e.g., ‘désert’ and ‘desért’).
Kemps et al. (2005) show that English and Dutch listeners are sensitive to fine-grained durational
differences between a base word (‘run’) and the base word as it occurs in an inflected or derived word
(‘runner’). Being sensitive to these cues may also be useful to disambiguate between words that sound
similar such as minimal pairs.

The methodology used here, whereby the real lexicon is compared to a distribution of statistically
plausible ‘null’ lexicons, could be generalized to answer other questions about the lexicon and human
language more generally. While much previous work has focused on simply measuring statistical
properties of natural language, modern computing power makes it possible to simulate thousands
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of different languages with different constraints, structures, and biases. By comparing real natural
language to a range of simulated possibilities, it is possible to assess which aspects of natural language
occur by chance and which exist for a reason.

Of course, we must keep in mind that the present work examines only a small number of European
languages. To know whether the effect generalizes would require a larger number of languages, and
we undertake exactly such a project in other work (Dautriche et al., submitted). Specifically, we use
a corpus of 100+ languages from Wikipedia to show large-scale evidence for a) more frequent words
to be more orthograhpically probable and have more minimal pairs than less frequent words and b)
for semantically related words to be more phonetically similar than less related words. While the
Wikipedia corpus does not focus on monomorphemes and is therefore less controlled than the results
presented here, it suggests that the clumpiness we observe in the lexicons of Dutch, English, German,
and French likely generalizes to other languages as well.

In future work, it may be possible to test increasingly sophisticated models of phonotactics using
this methodology. Perhaps our models of phonotactics are simply not good enough yet to capture
the rich structure of natural language. But the results here suggest that any “null” model that can
approximate natural language will need to account for not just the preferred sounds of a language but
for the entire space of existing words. That is, the goodness of ‘dax’ as an English word depends not
just on an underlying model of English sound structure but on the fact that ‘lax’ and ‘wax’ are words,
that ‘bax’ is not, and on countless other properties of the existing lexicon.

Overall, we have shown that lexicons are more richly structured than previously thought. The
space of wordforms for Dutch, English, German and French is clumpier than what would be expected
by the best chance model by a wide variety of measures: minimal pairs, average Levenshtein distance
and several network properties. The strongest evidence comes from minimal pairs, for which the effect
size was quite large. From this, we conclude that the clustered nature of the lexicon holds over and
above the patterns that are captured by a phonotactic model. Underlying the pressure for dispersion
in the lexical system is a deep drive for regularity and re-use beyond standard levels of lexical and
morphological analysis.
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Abstract

Although the mapping between form and meaning is often regarded as arbitrary, there are in
fact well-known constraints on wordforms which are the result of functional pressures associated
with language use and its acquisition. In particular, languages have been shown to encode some
meaning distinction in their sound properties that are described to be important for language learn-
ing. Here, we investigate the relationship between semantic distance and phonological distance
at the large-scale structure of the lexicon. We show evidence in 101 languages from a diverse ar-
ray of language families that more semantically similar word pairs are also more phonologically
similar. We argue that there is a pervasive functional advantage for lexicons to have semantically
similar words be phonologically similar as well.
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1 Introduction

Why do languages have the set of wordforms that they do? Although the mapping between form and
meaning is often regarded as arbitrary (de Saussure, 1916; Hockett, 1960), there are in fact well estab-
lished regularities in lexical systems. The simplest of these involve correlations between word length
and frequency (Zipf, 1949) or informativity (Piantadosi et al., 2011). Patterns can also be found in
which specific wordforms are in a language, including the presence of clusters of phonological forms
(over and above effects of phonotactics or morphology) (Mahowald, Dautriche, Gibson, Christophe,
& Piantadosi, submitted), observed particularly in high-frequency words (Mahowald, Dautriche, Gib-
son, & Piantadosi, submitted). Deeply semantic regularities are are also observed: sound symbolism,
in which languages encode some meaning distinction in their sound properties,1 is one such form-
meaning regularity and is present across many languages and cultures (e.g., Bremner et al., 2013;
Childs, 1994; Hamano, 1998; Kim, 1977). For instance, adults intuitively pair ‘bouba’ with a picture
of a rounded object while they pair ‘kiki’ with a picture of a spiky object (the "bouba-kiki" effect,
e.g., Bremner et al. 2013). Relatedly, certain sequences of sounds, called phonesthemes, tend to carry
a certain semantic connotation. For instance, there is a tendency in English for gl- words to be asso-
ciated with light reflectance as in ‘glitter’, ‘glimmer’, and ‘glisten’ (Bergen, 2004; Bloomfield, 1933)
or words ending with -ack and -ash associated with abrupt contact (e.g., ‘smack’, ‘smash’, ‘crash’,
‘mash’). Additionally, certain meaning distinctions are present in the phonological form of words
more transparently. For instance, semantic features, such as objects vs. actions, that are associated
with grammatical distinctions may be marked morphologically (Monaghan & Christiansen, 2008;
Pinker, 1984).

Several studies suggest that systematic form-meaning mappings may facilitate word learning (e.g.,
Imai & Kita, 2014; Monaghan et al., 2011). The idea is that learning similarities among referents (and
hence forming semantic categories) may be facilitated if these similarities appear also at the level of
the wordform. For instance, it might be easier to learn the association of fep and feb to CAT and DOG

than to CAT and UMBRELLA. This advantage in learning may be a explanation for the observation of
sound-symbolism in languages and predicts that phonologically similar words would tend to be more
semantically similar. In this spirit, several studies have established that it is easier to learn languages
that are compressible (Kemp & Regier, 2012). For instance, in the limit, the easiest language to learn
is a language that uses only one word to express all meanings. More generally, it should be easier to
learn languages whose words tend to sound similar to each other, as fep and feb, because there is less
phonetic material to learn, remember or produce (Gahl et al., 2012; Stemberger, 2004; Storkel et al.,
2006; Storkel & Lee, 2011; Vitevitch & Sommers, 2003).

Yet there may also be a functional disadvantage for form-meaning regularities. Another feature of
semantically related words is that they are likely to occur in similar contexts. For instance, weather
words like ‘rain’, ‘wind’, and ‘sun’ are all likely to occur in the same discourse contexts–namely

1Note that this is not specific to spoken languages, sign languages do also map meanings into visual sign (see Strickland
et al. in press)
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when people are talking about the weather. As a result, one might imagine that context makes it
more difficult to distinguish between semantically similar words. If someone said, “Weather forecast:
___ today and tomorrow” the missing word could plausibly have be ‘sun’ or ‘wind’, but it’s unlikely
to be ‘boat’ or ‘John’. Therefore, one would also predict that semantically related words should be
more distant in phonological space than semantically unrelated words, much like theories positing
dispersion of phonemes in vowel space (e.g., Liljencrants & Lindblom, 1972).

In this work, we investigate the relationship between semantic distance and phonological dis-
tance. If there is a positive correlation between semantic distance and phonological distance—i.e.,
more similar wordforms are more semantically similar—then this would imply a pressure for phono-
logical clustering that is tied specifically to meaning. On the other hand, if there is a negative corre-
lation between semantic distance and phonological distance, there would be a pressure for dispersion
for words’ meanings to be more distinct relative to phonological distance, likely due to communica-
tive pressures of confusability. Monaghan et al. (2014) previously examined the correlation between
semantic distance and phonological distance in English. In this work, the authors found that phono-
logically similar words tend to be more semantically similar. While this result is telling, the sample
of a single language does not indicate if form-meaning regularities in the lexicon are the product of
functional pressures that universally apply, or historical accidents of English.

In the present work, the existence of large-scale data sets in a large number of languages makes it
possible to investigate semantic and phonological relatedness across human language more generally.
We use a dataset of 101 languages extracted from Wikipedia from a diverse array of language fami-
lies. First, we performed several statistical tests to look at the correlation between semantic similarity
(calculated using Latent Semantic Analysis over each Wikipedia corpus) and orthographic similar-
ity: Pearson correlations and a mixed model analysis to ensure that the correlation observed does not
depend on a particular language family. Second, we probed the relation between semantic and phono-
logical similarity by using a different measure looking at the interaction of semantic relatedness and
the likelihood of finding a minimal pair. Finally, we also used a subset of 4 languages to assess whether
the correlation between semantic and phonological similarity still hold in a set of monomorphemic
words with phonemic representations. In sum, across all these languages we found that semantically
similar words tend to be phonologically similar, providing large-scale, cross-linguistic evidence for
phonological clustering of semantically similar words.

2 Method

101 orthographic lexicons:

We extracted the lexicons of 101 languages from the Wikipedia database (as in Appendix A and
Mahowald, Dautriche, Gibson, & Piantadosi (submitted)). We define as the lexicon of these language
the 5,000 most frequent wordforms in the Wikipedia corpus.2 Because a proper lemmatizer does not

2Since we calculated words’ semantic distance for all pairs of words of the same length, this restriction was to limit the
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exist for most of these languages, all of the 5,000 most frequent wordforms were included regardless
of their morphemic status. In order to minimize the impact of semantic similarity due to morpholog-
ical regularity (e.g., while comparing ‘cat’ and ‘cats’), we only compared words of the same length
(Section 3.3 presents a more rigorous analysis looking at semantic distance in monomorphemic words
in a smaller number of languages).

3 phonemic lexicons:

To assess whether a correlation between semantic similarity and phonological similarity holds
in a set of monomorphemic words with phonemic representations, we also used phonemic lexicons
derived from CELEX for Dutch, English and German (Baayen et al., 1995) and Lexique for French
(New et al., 2004). The lexicons were restricted to include only monomorphemic lemmas (coded as
"M" in CELEX; I.D. (a French native speaker) identified mono-morphemes by hand for French). That
is, they contained neither inflectional affixes (like plural -s) nor derivational affixes like -ness. In order
to focus on the most used parts of the lexicon, we selected only words whose frequency in CELEX or
in Lexique is strictly greater than 0. Since we used the surface phonemic form, when several words
shared the same phonemic form (e.g., ‘bat’) we included this form only once.

All three CELEX dictionaries were transformed so that diphthongs were changed into 2-character
strings. In each lexicon, we removed a small set of words containing foreign characters. This resulted
in a lexicon of 5459 words for Dutch, 6512 words for English, 4219 words for German and 6782
words for French.

Variables under consideration:

For each pair of words of the same length in each of the lexicons, we computed the pair’s:

• Orthographic/Phonological distance: we used the edit distance, or Levenshtein distance be-
tween the two orthographic strings in the case of the 101 orthographic lexicons and phonemic
strings in the case of the 4 phonemic lexicons. The smaller the distance, the more similar word-
forms are to each other. For example, the words ‘cat’ and ‘car’ are very similar, with an edit
distance of 1.

• Semantic distance: we used Latent Semantic Analysis (LSA, Landauer & Dumais 1997), a
class of distributional semantic models that build on the hypothesis that words’ meanings can
be inferred from their context (Harris, 1954). Two words are expected to be semantically similar
if their pattern of co-occurence in some observed text is similar. For example, ‘cat’ and ‘dog’
will be more similar than ‘cat’ and ‘bottle’ because they are more likely to co-occur with the
same vocabulary (e.g., animal, domestic, pet, etc.). One advantage of using this technique as a
proxy for semantics rather than hand-made lexical taxonomies such as WordNet (Miller, 1995) –
which is only extensively developed in English – is that it can be adapted for any language given

number of possible calculations for each language.
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a sufficiently large corpus. We note however that the results obtained from several measures of
word distance using WordNet provide the same results as an LSA model trained on English (see
Appendix B).

We applied LSA on Wikipedia for each language using the Gensim package (Rehurek & So-
jka, 2010) in the R programming language (R Core Team, 2013). This model splits the whole
Wikipedia corpus into documents consisting of n lines of text and constructs a word-document
matrix where each row i is a word and each column j, a document. Each matrix cell ci j cor-
responds to the frequency count of word i in document j. The matrix is then reduced to a
dimension d corresponding to the number of semantic dimensions of the model using Singular
Value Decomposition. The semantic distance between two words is computed as 1 minus the
absolute value of the cosine of the angle between the two word vectors in the space of dimen-
sion d. A value close to 0 indicates that two words are close in meaning, whereas values close
to 1 indicate that the meanings are not related.

For our purposes we defined a document as a Wikipedia article (number of documents per
language corpus: median = 42,989; min = 104 – Buginese; max = 36.6 billion – English) and
d = 500 dimensions3 based on (Fourtassi & Dupoux, 2013; Rehurek & Sojka, 2010). We also
discarded words that appear in less than 20 documents and in more than 50% of the documents
to account for the fact that very common and very rare terms are weak predictors of semantic
content (a procedure commonly used in Machine Learning; Luhn (1958)).

3 Results

3.1 Large-scale effects of semantics on 101 languages

3.1.1 Pearson correlations analysis

For each language, we computed Pearson correlations between the semantic distance of all pairs of
words of the same length (focusing on words of length 3 to 7) and the pairs’ orthographic distance.
The semantic distance was centered around the mean semantic distance for each length and each
language and scaled by the standard deviation for each length and each language. To evaluate the
correlation between semantic distance and orthographic distance, we need to compare it to a baseline
that reflects the chance correlation between form and meanings in the lexicon. We created such a
baseline by randomly permuting the form/meaning mappings for words of a given length, randomly
reassigning every word meaning to a word of the same length. For example, the meaning of ‘car’
could be reassigned to ‘cat’ and the meaning of ‘dog’ to ‘rat’. Under this permutation, the mapping
between form and meaning (unlike in the real lexicon) is entirely arbitrary for words of a given length.
For each language, we randomly reassigned meanings 30 times and computed Pearson correlations for

3For Buginese which was the only language having less documents than 500 (the number of dimensions), we took d = 20
based on (Fourtassi & Dupoux, 2013).
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each word length. We then asked whether the correlation between wordform distance and semantic
distance of the real lexicons falls outside the range of correlation values that could be expected by
chance, where chance means random form-meaning assignments.

Figure 1 summarizes this hypothesis test for 4-letter words across the 101 languages. Each bar
represents the Pearson correlation score for a given language, and each color represents a language
family. We observe that a) all correlations are positive but one (Buginese4); b) most of the correlations
are significantly positive (in 74/101 languages; dark colors) meaning that the correlation between
semantic distance and orthographic distance is more positive that what would be expected by chance
alone.

As in standard null hypothesis testing, we compute a z-score using the mean and standard deviation
of correlations scores estimated from these 30 meanings rearrangements. The p-value reflects the
probability that the real lexicon correlations could have arisen by chance. As can be seen in Table
1, we found that the great majority of languages display a significant positive correlation between
semantic distance and orthographic distance for all lengths. Yet, even though the correlation is highly
significant, one needs to observe that this is a tiny effect explaining only a very small amount of the
variance (r < 0.05).

word
length

mean
correlation

proportion showing
positive correlation

proportion showing
significant correlation

3 letters 0.049 1 0.72
4 letters 0.041 0.99 0.74
5 letters 0.040 0.99 0.73
6 letters 0.040 1 0.94
7 letters 0.047 0.91 0.71

Table 1: For each length: (a) the mean Pearson correlation across languages for the relationship
between semantic and orthographic distance; (b) the proportion of languages that show a positive
correlation between semantic distance and orthographic distance, and (c) the proportion of lan-
guages for which this relationship is significantly different from chance at p < .05, chance being
the correlation obtained during 30 random form-meaning reassignments.

3.1.2 Mixed effect analysis

To ensure that the observed effect does not depend on a particular language family, we ran a mixed
effect regression predicting scaled semantic distance for each pair of words from the Levenshtein
distance between the word of the pair. We used a maximal random effect structure with random
intercepts for each language, language sub-family, and language family and slopes for Levenshtein
distance for each of those random intercepts. Because of the large number of data points, we fit each

4Recall that Buginese was our smaller corpora. Inspection of the words of that corpus revealed that, in addition, most of
the nouns were names of places (on average 60% from a random samples of 100 words).
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Figure 1: Pearson correlation between semantic distance (1 - cosine) and orthographic distance
(Levenshtein distance) for each language for word of length 4. Languages are grouped per lan-
guage family for Indo-European languages (left plot) and non Indo-European languages (right
plot). Dark colors are used for significant Pearson correlations (p < .05) and light colors for
non-significant correlations.
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length separately (words of length 3 through length 7). We compared the full model to an identical
model without a fixed effect for the number of minimal pairs using a likelihood ratio test.

Table 2 shows the coefficient estimates for an effect of Levenshtein distance on semantic distance.
For every word length, the coefficient for Levenshtein distance is significantly positive meaning that
increased semantic distance comes with increased Levenshtein distance beyond effects of language
family or sub-family.

word
length

Levenshtein
distance

3 letters .11 ***
4 letters .07 ***
5 letters .06 ***
6 letters .04 ***
7 letters .04 ***

Table 2: Summary of the full models including random intercepts and slopes for language, sub-
family, and family for Levenshtein distance for each word length. Three asterisks means that by
a likelihood test, the predictor significantly improves model fit at p < .001.

3.2 Likelihood of finding a minimal pair in 101 languages

In addition we looked at the interaction of semantic relatedness and the likelihood of finding a minimal
pair. For each language, we compared the number of minimal pairs in the top 10% of semantically re-
lated words pairs ntop, and in the bottom 10% of semantically related words pairs, nbottom, by looking
at the ratio ntop

nbottom
. A ratio below 1 means that there are more minimal pairs in semantically unrelated

words than in related words, while a ratio greater than 1 means that there are more minimal pairs
among semantically related words than unrelated words. Figure 2 shows the histogram of the distri-
bution of ratio ntop

nbottom
across all languages. As we can observe, in all 101 languages, minimal pairs are

on average 3.52 (median of the distribution) more likely to appear in the top 10% semantically related
words than in the least 10% related words.5

5Note that we obtain qualitatively the same results by looking at the 25% most related and the 25% least related words
or other percentages.
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Figure 2: Distribution of the ratio of the number of minimal pairs in the 10% most related words
compared to the number of minimal pairs in the 10% least related words in a given lexicon,
across all the languages. A ratio below 1 means that there are more minimal pairs in semantically
unrelated words than in related words, while a ratio greater than 1 means that there are more
minimal pairs among semantically related words than unrelated words.
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3.3 Generalizing form-meaning regularity to monomorphemic words

One obvious explanation for the positive correlation between semantic and orthographic distances is
the presence of morphological regularity among the 101 lexicons we studied here. Even though we
studied words of the same length to limit this effect, there is certainly some morphological regularity
remaining (e.g., ‘capitalist’ / ‘capitalism’). To separate the correlation between phonological and
semantic distance due to morphemic regularity from the correlation we are interested in, we restricted
our analysis to four languages, Dutch, English, French and German, for which mono-morphemic
codes are readily available.

For the monomorphemes of Dutch, English, French and German, we computed Pearson correla-
tions between semantic distance and phonological distance for each word length and compared it to
the correlations obtained after 30 random form-meaning reassignments. As shown in Figure 3, the
correlations obtained in the real lexicons for each word length (the red dot) tend to be significantly
more positive than the correlations obtained in 30 random configurations of form-meaning pairings
(the histograms) (see also Table 3).
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Figure 3: Pearson correlations between semantic distance and phonological distance for word
of length 3 to 7 (in rows) for Dutch, English, French and German. Each histogram shows a
distribution of correlations obtained after 30 random form-meaning assignments (chance level).
The red dots are the correlations found in the real lexicon for that particular length. The dotted
lines represent the 95% interval. The red dots tend to be to the right of the histograms.
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Word length Dutch English French German
real 0.015 0.025 0 0.011
r (simulated) 0 0 0.001 0.001

3 σ (simulated) 0.003 0.002 0.003 0.006
z 4.9 12.9 -0.3 1.7
p <.001 <.001 0.769 0.099
real 0.031 0.019 0.009 0.026
r (simulated) -0.001 0 0 0.001

4 σ (simulated) 0.003 0.002 0.002 0.005
z 11.6 11.6 3.8 5.2
p <.001 <.001 <.001 <.001
real 0.052 0.017 0.015 0.058
r (simulated) -0.002 0 0 -0.001

5 σ (simulated) 0.006 0.003 0.003 0.006
z 9.8 6.7 5.6 9.3
p <.001 <.001 <.001 <.001
real 0.045 0.003 0.013 0.107
r (simulated) 0.001 0.001 0 0.002

6 σ (simulated) 0.006 0.004 0.003 0.007
z 7.3 0.6 4.4 14
p <.001 0.525 <.001 <.001
real <.05 <.05 <.05 0.097
r (simulated) 0 0 0.001 -0.001

7 σ (simulated) 0.007 0.005 0.003 0.01
z 4.7 2.7 4.9 10.3
p <.001 <.01 <.001 <.001

Table 3: z-statistics comparing the Pearson correlations (r) between semantic distance (1 - cosine)

and orthographic distance (Levenshtein distance) for each word length (2 to 7 phones) and each

language with the chance distribution of mean µ and standard deviation σ corresponding to the

distribution of Pearson correlations obtained in 30 random form-meaning mappings for each word

length and each language (see Figure 3).

Overall semantic distance is positively correlated with phonological distance (r = 0.04) signifi-
cantly more than what would be expected by chance (p < .001 across all lengths and all languages).
Thus we replicate the pattern observed among the 101 lexicons: similar wordforms tend to be more
semantically similar than distinct wordforms. This is not the result of morphological similarity here
since we looked only at monomorphemes in these four languages.

4 General Discussion

We have shown that across 101 languages, similar sounding words tend also to be more semantically
similar above and beyond what could be expected by chance (an extension of Monaghan et al. (2014)
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in English). In order to remove the contribution of morphology from this correlation, we conducted
the same analysis on the set of monomorphemic lemmas of a restricted number of languages and
found exactly the same pattern of results. This suggests that the pattern of clumpiness in the lexicon
may be in part explained by form-meaning regularities, over and beyond morphological regularity,
across a large range of typologically different languages.

What could be the reasons of form-meaning regularity in the lexicon? One possibility is that
form-meaning regularity is due to etymology. Etymology is an important source of regularity in
form-meaning mappings: certain words are historically related or derived from other words in the
lexicon (even when the lexicon is restricted to morphologically simple words). For example, ‘skirt’
and ‘shirt’ are historically the Old Norse and Old English form of the same word, whose meanings
have since diverged. Similarly, the presence of local sound-symbolism (e.g., the phonesthemes gl- in
English) may drive the correlation. Yet, previous work showed that neither etymological roots nor
small clusters of sound symbolic words were sufficient to account for the pattern of systematicity
observed across the English lexicon (Monaghan et al., 2014). Though this needs to be confirmed for
the languages under study here, this suggests a global pattern of form-meaning systematicity across
the whole lexicon over and above etymological roots.

Another possibility is that form-meaning regularity is carried by the grammatical category of the
words. Even though we looked at monomorphemes, words from the same grammatical category share
phonological features (Cassidy & Kelly, 1991; Kelly, 1992), such that nouns sound more similar to
other nouns and verbs to other verbs (see also Mahowald, Dautriche, Gibson, Christophe, & Piantadosi
(submitted)), and are overall more semantically closer to words of the same grammatical category
(e.g., verbs are more likely to map onto actions and nouns onto objects). Such systematic form-
meaning mappings may be helpful during language learning to cue grammatical categories (Monaghan
et al., 2011) and may be one of the outcomes of language transmission and evolution (Kirby et al.,
2008) such that the optimal structure of the vocabulary may be one that incorporates form-meaning
regularities at the large scale of the lexicon.

Still, the prevalence of wordform similarity in the lexicon conflicts in theory with communicative
efficiency. Imagine a language that displays an extreme pattern form-meaning regularity where similar
and frequent concepts such as CAT and DOG will be associated with similar wordforms such as ‘feb’
and ‘fep’ respectively. These words will be easily confused since their forms differ only from one
phoneme and their meanings are similar. Nevertheless, we observed a correlation between semantic
similarity and phonological distance. Perhaps, then, semantically similar words are not as confusable
as one might suspect. Indeed, context is typically sufficient to disambiguate between meanings, since
adult speakers use many cues when processing spoken sentences (e.g. prior linguistic context Altmann
& Kamide (1999); visual information Tanenhaus et al. (1995); speaker Creel et al. (2008)). As a
result, finer-grained contextual information may be sufficient most of the time for adults’ listeners to
distinguish between phonologically similar words.

To our knowledge, with 101 languages in the sample, this is the largest cross-linguistic analy-
sis showing a correlation between semantic similarity and phonological similarity among monomor-
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phemic words showing evidence of systematicity in form-meaning mappings beyond morphological
regularity (at least for Dutch, English, French and German). Ultimately, the results here suggest a
functional advantage to having lexicons in which there is a positive correlation between phonetic and
semantic similarity.
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A Appendix: Dataset of 101 lexicons from Wikipedia

We started with lexicons of 115 languages from their Wikipedia databases (https://dumps.wikimedia
.org). We then excluded languages for which a spot-check for non-native (usually English) words in
the top 100 most frequent words in the lexicon between 3 and 7 characters revealed more than 80%
of words were not native. In this way, languages that used non-alphabetic scripts (like Chinese) were
generally excluded since the 3-7 letter words in Chinese Wikipedia are often English. However, we
included languages like Korean in which words generally consist of several characters. After these
exclusions, 101 languages remained.6 We analyzed the data both with and without these exclusions,
and the exclusions do not significantly affect the overall direction or magnitude of the results. The lan-
guages analyzed included 62 natural Indo-European languages and 39 non-Indo-European languages.
Of the non-Indo-European languages, there are 12 language families represented as well as a Cre-
ole and 4 constructed languages (Esperanto, Interlingua, Ido, Volap) that have some speakers. (The
analysis is qualitatively the same after excluding constructed languages.) The languages analyzed are
shown in Tables 4 and 5.

To get a sense of how clean these Wikipedia lexicons are, we randomly sampled 10 languages for
which we then inspected the 100 most frequent words and an additional 100 random words to look
for intrusion of English words, HTML characters, or other undesirable properties.

For the top 100 words in the lexicons of the 10 sampled languages, we found at most 3 erroneous
words. For the same languages, we also inspected a randomly selected 100 words and found that the
mean number of apparently non-intrusive words was 93.5 (with a range from 85 to 99). The most
common intrusion in these languages was English words.

West Germanic: Afrikaans, German, English, Luxembourgish, Low
Saxon, Dutch, Scots, Yiddish, Alemannic; Goidelic: Irish, Scottish Gaelic;
Brythonic: Breton, Welsh; Hellenic: Greek; South Slavic: Bulgar-
ian, Macedonian, Serbo-Croatian, Slovene; Albanian: Albanian; Ira-
nian: Central Kurdish, Persian, Kurdish, Mazandarani, Tajik; Romance:
Aragonese, Asturian, Catalan, Spanish, French, Galician, Italian, Lom-
bard, Neapolitan, Occitan, Piedmontese, Portuguese, Romanian, Sicilian,
Venetian, Walloon; West Slavic: Czech, Polish, Slovak; Armenian: Ar-
menian; Italic: Latin; North Germanic: Danish, Icelandic, Norwegian
(Nynorsk), Norwegian (Bokmal), Swedish; Baltic: Lithuanian, Latvian;
Indo-Aryan: Fiji Hindi, Marathi, Urdu, Bosnian, Croatian, Punjabi, Ser-
bian; East Slavic: Belarusian, Russian, Ukrainian; Frisian: West Frisian

Table 4: Table of Indo-European languages used, language families in bold.

6We excluded: Gujarati, Telugu, Tamil, Bishnupriya Manipuri, Cantonese, Newar, Bengali, Japanese, Hindi, Malayalam,
Marathi, Burmese, Nepali, Kannada
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Austronesian: Minang, Amharic, Indonesian, Malay, Sundanese, Ce-
buano, Tagalog, Waray-Waray, Buginese, Javanese; Altaic: Mongolian,
Azerbaijani, Bashkir, Chuvash, Kazakh, Kyrgyz, Turkish, Tatar, Uzbek;
creole: Haitian; Austroasiatic: Vietnamese; Kartvelian: Georgian;
Niger-Congo: Swahili, Yoruba; Vasonic: Basque; Afro-Asiatic: Mala-
gasy; Quechuan: Quechua; Semitic: Arabic, Egyptian Arabic, Hebrew;
Korean: Korean; Uralic: Estonian, Finnish, Hungarian; Tai: Thai; con-
structed: Esperanto, Interlingua, Ido, Volap

Table 5: Table of non-Indo-European languages used, language families in bold.

B Appendix: Comparison between LSA and Wordnet

We additionally compared the Pearson correlations between semantic distance and phonemic distance
across different measures of semantic distance: (a) 1 minus the cosine distance between co-occurence
vectors obtained by training a LSA model on the English Wikipedia and (b) several measures relying
on WordNet structure to produce a score to quantify the distance between two concepts. Table 6
shows such a comparison for the 3702 nouns of the English phonemic lexicon using the Wordnet path
measure (the minimum path length between two concepts in the WordNet network) and WordNet
lin information content measure (Lin, 1998). Overall all semantic distance measures show the same
qualitative pattern for every word length: there seems to be a positive correlation between semantic
similarity and phonological distance in the English lexicon showing that semantically similar nouns
tend also to be phonologically similar.

word
length

LSA
(cosine)

wordnet
(path)

wordnet
(lin)

3 letters .021 *** .018 *** .012 ***
4 letters .013 *** .013*** .014 ***
5 letters .011 *** .002 * .022 ***
6 letters .004 *** .011 * .037 *
7 letters 0.01 ** .015 ** .017 *

Table 6: Comparison of Pearson correlations coefficients for each word length using different
semantic similarity distances.
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2.3 Summary and Discussion

2.3 Summary and Discussion

Across languages and language families, I find that the structure of word form similarity
in the lexicon is not arbitrary but is the result of functional pressures, such that 1) there
is more phonological similarity in the lexicon than expected by chance (section 2.1), and
2) semantically related pairs of words are also orthographically related (section 2.2).

Null lexicons

The methodological contribution of this work is a new way of assessing linguistic structure
through the creation of random baselines that provide a null hypothesis for how the lin-
guistic structure should be in the absence of communicative and cognitive pressures. This
could be used to assess the distribution of other linguistic phenomena.

Note however that the chance level depends entirely on how we define it. Here our question
required us to model the phonotactics of the language sufficiently well in order to create
null lexicons that make plausible assumptions about the true generative process of words
(contra a random typing model, Howes, 1968). Yet this is not to say that a n-gram model
on phones is the right way to think about words and certainly some better models of
phonotactics already exists (BLICK, Hayes, 2012) but their adaptation to other languages
than English is not easy.10

In addition, the chance level I defined is language-specific, that is our best non-word
generative model was trained on a single language to generate non-words of that language.
One could imagine that the chance level should be more general, i.e., trained across all
possible languages, since our primary question concerns the presence of general, thus non
language-specific, cognitive pressures on the set of word forms. Yet, this may be unrealistic
in practice. Since languages have different phonotactic constraints that may influence the
space of possible words for that language, comparing measures of word form similarity in
a global random baseline to each individual languages may not be representative of the
constraints, in the absence of functional pressures, for that language.

Limitations

One limitation of this work is the use of orthographic corpora in section 2.2. Orthography
is often taken as an approximation for phonology, yet it would be useful to dispose of

10Note that at least for English, generating random baselines using non-words that are phonotactically
"good" according to BLICK does not change the pattern of results obtained in section 2.1.
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lexicons that are transcribed phonemically and are morphologically tagged. However since
101 languages were used in this study, this, to some extent, takes away this concern.

Another perhaps more important limitation regarding the scope of this dissertation is the
focus on word form similarity alone. Indeed, we are still left with the question of how much
homophony is present in languages? The methodology developed here, however, cannot
give a satisfying answer to that question. Recall that to compare word form similarity in a
given language to chance level, I focused on monomorphemes; but homophones are not only
limited to the set of monomorphemes: for instance in French "porte" means both the noun
door and the verb to carry conjugated in the present tense singular. Thus, homophony
may arise in morphologically complex words (e.g., to carrypres.sing) that do not appear in
the list of monomorphemes. One could generate null lexicons for the set of word forms
in a given language, encompassing thus all possible forms. Yet, this would go beyond the
assumptions of our current generative model (a n-gram on phones), as it is not equipped
with a mechanism to generate morphologically complex words.

Conclusions

In sum, across a large range of measures, we showed that there is more phonological
similarity in the lexicon than expected by chance and that these words tend to be correlated
with greater semantic similarity. This suggests that there is a pressure for the lexicon to
be more clumpy, that is, to be more compressible. As we argued, such a pressure may be
beneficial not only for speakers, as it minimizes articulatory effort and relieves memory load
(as less sound sequences are used), but also for learners at it may help them to learn some
aspects of their language (as word form regularity may be helpful in segmenting words from
speech and more systematic form-meaning mappings help category formation). However,
such properties may be detrimental for some other aspects of learning as it suggests that
children may have a hard time differentiating these forms to attribute them meanings. One
important question is thus: how do children manage to learn such a lexicon?
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3 Learning confusable and ambiguous
words

Carey (1978b) has described word learning as starting with a process where children "flag
"new word!" upon hearing a phonological sequence with no current lexical entry". Indeed,
one feature of novel words is that they are often composed of unfamiliar sequences of
sounds. However, a new word can be phonologically similar or even identical to a word
that already exists in the child’s lexicon and yet, be associated with a novel meaning. For
instance, the child may already know the word "sheep" but needs to be able to identify that
"ship", a minimally different word form, is a different word despite the phonetic variability
of the speech signal. Similar-sounding words present thus learners with a challenging case
where they need to find the right balance between phonological tolerance, to recognize
known words, and phonological sensitivity, to be able to learn these new words.

Not only must children be able to identify novel word forms in the signal to consider them
as candidate lexical entries, they also must be able to identify novel meanings even when
the word form is identical to a form they already know, as in the case of homophones. For
instance the child may already know that "bat" means bat-animals and be confronted with
a sentence such as "aluminum bats are much easier to swing when compared to wooden
bats". How does the child determine that "bat" is used here to refer to a baseball-bat
and not an animal-bat? Homophony thus presents learners with a unique word learning
situation where they cannot rely on the signal alone to determine whether a phonological
form is a candidate for a novel entry in the lexicon as a new word.

In this chapter, I investigate whether 18- to 20-month-old toddlers take into account other
factors than phonology when determining what counts as a new word. Specifically, in
section 3.1, I test whether toddlers take into account the syntactic context to determine
whether a novel phonological neighbor of a word they know could be interpreted as a novel
word (learning "tog" when "dog" is already in their lexicon). In section 3.2, I take these
results further, and look whether children’s ability to learn homophones depends on the
syntactic or semantic context they are presented in. Finally in section 3.3, I evaluate
whether similar-sounding words and homophones that exhibit properties that make them
learnable by children are more represented in the lexicon of natural languages than similar-
sounding words and homophones that are harder to learn.
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a b s t r a c t

Novel words (like tog) that sound like well-known words (dog) are hard for toddlers to learn, even though
children can hear the difference between them (Swingley & Aslin, 2002, 2007). One possibility is that
phonological competition alone is the problem. Another is that a broader set of probabilistic considera-
tions is responsible: toddlers may resist considering tog as a novel object label because its neighbor dog is
also an object. In three experiments, French 18-month-olds were taught novel words whose word forms
were phonologically similar to familiar nouns (noun-neighbors), to familiar verbs (verb-neighbors) or to
nothing (no-neighbors). Toddlers successfully learned the no-neighbors and verb-neighbors but failed to
learn the noun-neighbors, although both novel neighbors had a familiar phonological neighbor in the tod-
dlers’ lexicon. We conclude that when creating a novel lexical entry, toddlers’ evaluation of similarity in
the lexicon is multidimensional, incorporating both phonological and semantic or syntactic features.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many of the words young children hear are not yet in their
vocabulary. As a result, in everyday conversation toddlers must
often decide whether a given word-form corresponds to a word
they already know, or to a word to be learned. In principle, children
could accomplish this by checking to see if each utterance can be
parsed entirely into a sequence of familiar words. If it cannot, per-
haps the unidentified portions correspond to new words.

The problem, of course, is to define what counts as an instance
of a familiar word and what does not. Different instances of a given
word do not all sound the same. Talkers have different voices and
varying accents (e.g., Labov, 1966); words sound different depend-
ing on the phonetic context they appear in (e.g., Holst & Nolan,
1995), and speakers routinely blend sounds together or omit com-
pletely entire sounds and even whole syllables of words (e.g.,
Ernestus & Warner, 2011; Johnson, 2004). Such phenomena are
present in the speech parents direct to their children (e.g., Bard &
Anderson, 1983). Drawing the boundary between the set of accept-
able instances of a word, and the instances that cannot correspond
to that word, is complex.

Traditionally, it is said to be the role of the language’s phonol-
ogy to define the set of phonetic differences that distinguish words,

to resolve these ambiguities. If words are represented as phonolog-
ical descriptions adequate for maintaining contrast, and heard
utterances are converted into phonological descriptions during
speech comprehension, a simple comparison procedure should be
adequate for identifying new words. If a word-form in the utter-
ance fails to line up with any word-forms in the lexicon, this means
that a new word has been heard.

This might not work for children, for several reasons. Children’s
skills of phonetic categorization are inferior to adults’ and undergo
substantial refinement well into the school years, despite the rapid
progress toward language-specific perception made in infancy
(e.g., Hazan & Barrett, 2000; Kuhl, 2004). In many cases children
may not successfully characterize utterances in phonological
terms. And even when they can, it is not clear that children under-
stand that phonological distinctions are meant to signal lexical dis-
tinctions. Although children recognize words more easily when the
words are spoken with their canonical pronunciations than when
spoken with deviant pronunciations (e.g., Swingley, 2009), this
does not imply that the mispronunciations are interpreted as novel
words (e.g., White & Morgan, 2008). Toddlers do resist interpreting
some discriminable, but not phonological, differences as con-
trastive (Dietrich, Swingley, & Werker, 2007; Quam & Swingley,
2010), which suggests some sophistication in relating speech and
the lexicon. But being wary of interpreting a non-phonological
distinction as if it could distinguish words does not imply the
inverse skill of readily interpreting phonological distinctions as
contrastive.

http://dx.doi.org/10.1016/j.cognition.2015.06.003
0010-0277/� 2015 Elsevier B.V. All rights reserved.
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One study tested whether toddlers could use a single-feature
phonological distinction to assign a novel meaning to a
word-form that sounded similar to a very familiar one (Swingley
& Aslin, 2007). 19-month-olds were shown a novel object, which
was repeatedly named using clear (hyperarticulated) speech. In
some cases the novel name given was similar to a familiar word
(e.g., tog, similar to dog), and in some cases it was not (e.g., shang,
not similar to any words children knew). Children were tested
using a fixation procedure in which pictures of two novel objects
were presented on a screen, and one of the pictures was labeled
using its novel name (e.g., ‘‘Look at the {tog, shang}’’. Fixation to
the named picture was used to index learning of the word. In
two experiments, children were able to learn words that sounded
very different from the other words in their vocabularies (like
shang), but children did not learn the phonologically similar words
(like tog). For some of the items tested, children of the same age
had previously shown discrimination of the nonce label and its
familiar counterpart, so perceptual discrimination per se was
apparently not at issue (e.g., Swingley & Aslin, 2002).

Why might this be? One possibility is that phonological compe-
tition alone is the problem. The lexical entry of dog might be acti-
vated by the phonologically neighboring form tog, interfering with
children’s considering the possibility that a new word was being
offered. This explanation of the experimental results is consistent
with a view that children first adopt a phonological criterion of
similarity, which apparently requires a greater difference than
the single phonological feature tested in the experiment, and pro-
ceed accordingly.

Another possibility is that a broader set of probabilistic consid-
erations is responsible. Not only is tog phonologically similar to a
well-entrenched word, but it is also syntactically and semantically
similar: both tog and dog are nouns referring to objects. Considering
that the 18-month-old lexicon is relatively sparse in both phonol-
ogy and semantics (Swingley & Aslin, 2007; but see Coady & Aslin,
2003 for older children) the appearance of a novel word that is
both phonologically similar to, and somewhat semantically close
to, a familiar word, might seem implausible to children, leading
them to suppose that the novel word might in fact be a rather
dubious instance of the familiar word.

Adults too may, in some conditions, fail to interpret a
one-feature phonological change as lexically meaningful (e.g.,
White, Yee, Blumstein, & Morgan, 2013). Under conditions in
which the speech signal and the referential context are less clear
(conditions which prevail quite generally in human communica-
tion), adults can interpret phonologically novel word forms as
instances of known words (e.g., Cole, Jakimik, & Cooper, 1978).
For example, upon hearing ‘‘this singer has a beautiful foice’’, lis-
teners are more likely to misperceive foice as an instance of voice.
In such a case, adults find it plausible that the word voice has been
uttered since both the syntactic and the semantic context con-
strained their lexical search toward singing-related nouns.
Although /f/ and /v/ are lexically contrastive in English, the differ-
ence in voicing value may plausibly be interpreted as noise rather
than indicating the presence of a new word in this particular con-
text. In arriving at an analysis of spoken sentences, adults use a
diverse array of sources of information: the physical context (e.g.,
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995); the prior
linguistic context (e.g., Altmann & Kamide, 1999); pragmatic
expectations supported by the discourse (e.g., Nieuwland & Van
Berkum, 2006); and idiosyncrasies of the speaker (e.g., Creel,
Aslin, & Tanenhaus, 2008). In a sense, all of these are needed
while interpreting speech because speakers are aware that listen-
ers have this information at their disposal, and frequently provide
only just enough phonetic information to allow the listener to
resolve the intended meaning given the context (e.g., Hawkins,
2003).

These findings with adults highlight the importance of factors
other than phonology in interpreting speech. Yet it is open to ques-
tion whether toddlers identify words primarily using phonological
criteria, or whether, like adults, they take into consideration a
broader range of probabilities in judging the likelihood that a
phonological distinction implies a novel word. In support of the
latter, here we present evidence that toddlers evaluate other fac-
tors than phonological features, such as syntactic or semantic fea-
tures, when evaluating the possibility that a novel sequence of
sounds is a new word.

We started from Swingley and Aslin (2007)’s result that tod-
dlers failed to learn new object labels that sounded similar to
familiar object labels. In three experiments, French
18-month-olds were taught object labels that were phonological
neighbors of a familiar noun (a noun-neighbor, as tog was, for
dog), neighbors of a familiar verb (a verb-neighbor, like teaching
kiv, a neighbor of give) or no-neighbors (such as shang). The
noun-neighbor and the verb-neighbor were both phonologically
similar to a familiar word in children’s lexicon. But only the
noun-neighbor was also semantically and syntactically similar to
its neighbor; the verb-neighbor was not. If children take into
account semantic or syntactic likelihoods when interpreting novel
neighbors, verb-neighbors should be perceived as sufficiently dis-
tinct from any word in the lexicon to be easily assigned a novel
object meaning – just like no-neighbor words – whereas
noun-neighbors are expected to suffer from the competition with
the familiar noun and be hard to learn. In contrast, if children fail
to learn both noun-neighbors and verb-neighbors, this would indi-
cate that children stake everything on phonological similarity in
deciding whether a word-form is a new word.

2. Experiment 1

Experiment 1 sought to replicate Swingley and Aslin (2007)’s
results showing that phonological neighbors of a familiar noun
(noun-neighbors) are hard for toddlers to learn. We taught
French 18-month-olds two novel object labels: a noun-neighbor
(e.g., ‘‘ganard,’’ a neighbor of ‘‘canard’’ duck) and a no-neighbor
(e.g., ‘‘torba’’). Word learning was then evaluated using a
language-guided looking method (Fernald, Zangl, Portillo, &
Marchman, 2008; Swingley, 2011). Children were presented with
the two novel objects and heard sentences that named one of the
pictures (e.g., ‘‘il est où le ganard?’’ where is the ganard?). An
above-chance proportion of looks toward the target picture after
word onset was taken as evidence that the word had been learned.

2.1. Method

2.1.1. Participants
Sixteen French 18-month-olds participated in the study, rang-

ing in age from 17;19 (months; days) to 18;23, with a mean of
18;13 (SD = 0;8; 7 girls). An additional 8 children were not
included in the sample because they refused to wear the sticker
necessary for eye-tracking (n = 3), fussiness during the experiment
resulting in more than 50% of trials with missing eye tracking data
(n = 3), no increase in average proportion of looks toward the target
during familiar-word trials (n = 1)1 and hearing problems reported
by the parents (n = 1). The attrition rate was somewhat higher than

1 Following previous pilot experiments, before commencing testing here we
decided on an exclusion criterion of rejecting children who looked at the target on
average less than 55% of the time (from word onset until the end of the trial) over the
8 familiar-word trials. Individual time courses were inspected to be sure to not reject
children who only quickly looked toward the target instead of having a sustained
look; there were no such cases. This criterion was applied blind to condition
performance.
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expected, which we tentatively attribute to the children’s having just
participated in a separate study involving 10 min of active searching
for toys.

2.1.2. Apparatus, procedure and design
Each child was taught two words: one novel word whose

phonological form was similar to a noun they know
(noun-neighbor) and one that had no phonological neighbor in
their lexicon (no-neighbor). Before coming to the lab, parents filled
out a questionnaire of vocabulary including all the neighbors of the
test words. This was to ensure that children would be taught a
novel word that neighbored a noun they already knew. Toddlers
sat on their parent’s lap about 70 cm away from a television screen.
Their eye movements were recorded by an Eyelink 1000 eye-
tracker. We used a 5-point calibration procedure. Once the calibra-
tion was judged acceptable by the experimenter, the experiment
began.

The experiment was composed of two phases: a teaching phase
and a testing phase. During the teaching phase, children were pre-
sented with a first introductory video and 4 teaching videos, 2 for
each novel word. Which of two objects the noun-neighbor referred
to was counterbalanced across toddlers. The order of presentation
of the teaching video was interleaved between the two words and
counterbalanced across toddlers. After presentation of the teaching
videos, the test phase started as soon as children looked at a fixa-
tion cross.

The test phase was composed of 16 trials: 8 trials with familiar
words and 8 test trials with novel words, 4 per novel word. Each
trial started with the simultaneous presentation of two pictures
on the right and left sides of the screen. Two seconds later, the
audio stimuli started: (‘‘Regarde le [target], tu le vois le [target]?’’
Look at the [target], Do you see the [target]?). The trial ended
3.5 s after the first target word onset. Trials were separated by a
1 s pause. No immediately consecutive trials presented the same
pictures or words. Target and distractor pictures appeared the
same number of times on the right and the left side of the screen.
Target side did not repeat more than two times on consecutive
trials.

The whole experiment lasted about 5 min.

2.1.3. Materials
Novel words. All novel words were bisyllabic and started with a
stop consonant. We used the Lexique database (New, Pallier,
Brysbaert, & Ferrand, 2004) to identify 4 novel words whose
phonological form was similar to a common noun
(noun-neighbors) and 4 novel words that had no phonological
neighbor in children’s lexicon (no-neighbor).

The 4 noun-neighbors differed from their real-noun counter-
parts by inversion of the voicing value of the initial consonant.
The four words were pallon, ganard, gochon, and pateau (/palõ/,
/gana�/, /goSõ/, /pato/), neighbors of ballon, canard, cochon, and
bateau (ball, duck, pig, boat) which are all likely to be known by
children of that age according to CDI reports from previous studies.
Frequency counts of the familiar nouns in a corpus of child directed
speech (Lyon corpus, Demuth & Tremblay, 2008) were as follows
(frequencies were calculated on the phonological forms of these
words thus conflating the singular and the plural of the nouns):
ballon, 201; canard, 179; cochon, 180; bateau, 105. Parents were
also asked to report any other neighbors likely to be known by
their children. Both ganard and gochon had no other phonological
neighbors than the familiar noun competitor that we chose, but
children knew one or two other familiar nouns close to pallon
(salon, living-room) and pateau (gateau, cake; rateau, rattle). Thus,
ganard and gochon had a phonological neighborhood density of 1
in children’s lexicon; pallon had a phonological neighborhood den-
sity of 2 and pateau, on average, of 2.25. All noun-neighbors had no

other neighbors in another syntactic category likely to be known
by children.

The no-neighbors were generated from an n-phone model
trained on the Lexique database with the constraint that they
should be phonologically similar to less than 2 low frequency
words in the French lexicon. Four phonotactically legal bisyllabic
no-neighbor words were chosen: prolin, barlié, torba, lagui (/p�ol~e/,
/barljé/, /tOrba/, /lagi/). To ensure that children would not learn the
no-neighbors better than the noun-neighbors simply because
these words were phonotactically easier (Graf Estes & Bowen,
2013; Storkel, 2001), we ensured that the sound-to-sound proba-
bilities were on average higher for the noun-neighbors than for
the no-neighbors (cumulative bigram log-probability
logP = �7.07 for no-neighbors; logP = �5.59 for noun-neighbors;
this was calculated using a n-phone model on the set of word types
in the French lexicon, taken from the Lexique database; New et al.,
2004).

Noun-neighbors and no-neighbors were yoked in pairs, such
that each child would learn one of 4 pairs of words: (prolin,
gochon), (barlié, pateau), (torba, pallon), (lagui, ganard). Children
were all presented with a noun-neighbor for which they had a
phonological neighbor in their lexicon according to parental report.

Novel objects. The novel objects were two unfamiliar animals. One
resembled a pink white-spotted octopus with an oversized head.
The other looked like a rat with bunny ears and a trunk (see
Fig. 1). At the end of the experiment, parents were asked whether
their child was familiar with either animal; all parents said no.

Teaching videos. Word teaching was done on a television screen. A
first introductory video showed a speaker (the last author) playing
with a car (une voiture) and labeling it several times in a short
story. This video was intended to familiarize children with the pro-
cedure, showing them that the speaker would talk about the object
she manipulates. The teaching phase included four short videos of
about 30 s each. In each video, the same speaker talked about the
novel object she was playing with and labeled it 5 times using
one of the novel words. The noun-neighbor word was used in
two videos, and the no-neighbor word in the other two. In total,
toddlers heard each novel word 10 times.

Testing stimuli. The pictures were photographs of objects on a light
gray background. For familiar trials, we chose 8 objects that chil-
dren of that age are likely to know: voiture, banane, poussette,
chaussure, chien, poisson, cuillère, maison (car, banana,
baby-stroller, shoe, dog, fish, spoon, house). Pictures were yoked
in pairs (e.g., the banana always appeared with the car). For test tri-
als, the pictures of the two novel animals were always presented
together (as in Fig. 1).

The audio stimuli consisted of the sentences ‘‘Regarde le [target],
tu le vois le [target]?’’ (Look at the [target], Do you see the [target]?)
or ‘‘il est où, le [target]? Regarde le [target].’’ (Where is the [target]?

Fig. 1. Novel objects used during the experiments.
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Look at the [target]!) where [target] was the target word and was
pronounced two times in a given trial. All sentences were recorded
by the last author (the same speaker as in the videos). The average
duration of the novel words was 610 ms for the noun-neighbors
and 598 ms for the no-neighbors.

2.1.4. Measurement and analysis
Gaze position on each trial was recorded via an eye-tracker with

a 2 ms sampling rate. We inspected the time course of eye move-
ments from the onset of the first occurrence of the target word

(‘‘Look at the [target].’’) until the end of the trial. One recurrent
problem when analyzing continuous time series is the choice of a
window of analysis. Time can be made categorical by choosing a
series of consecutive time windows tailor-made to the data and
then performing separate analysis on each time window; or, more
frequently in the infant literature, by imposing a single, large win-
dow to maximize the chances of observing a change in eye fixa-
tions. While the first option leads to a problem of multiple
comparisons, the second often conflates response time and accu-
racy, thus resulting in a loss of information (Swingley, 2011) and
both options are subject to biases inherent to window selection.
Here, in order to test whether toddlers had learned each novel
word we conducted a cluster-based permutation analysis (Maris
& Oostenveld, 2007) to find a time window where we observed a
significant increase in looks toward the target picture. This type
of analysis, originally developed for EEG data, is free of
time-window biases, preserves the information available in the
time series and is able to cope well with multiple comparisons.2

The cluster-based analysis works as follows: at each time point
we conducted a one-tailed3 t-test on fixations to the target com-
pared to chance (0.5). All fixation proportions were transformed
via the arcsin square function to fit better the assumptions of the
t-test. The means and variances were computed over subjects within
conditions. Adjacent time points with a significant effect (t > 2;
p < .05) were grouped together into a cluster. Each cluster was
assigned a single numerical value measuring its size, and defined
as the sum of all the t-values within the cluster (intuitively, a cluster
is larger if it contains time-points for which the two conditions are
very significantly different, and if it spans a longer time-window).
To obtain the probability of observing a cluster of that size by
chance, we conducted 1000 simulations where conditions (novel
label, chance) were randomly assigned for each trial. For each simu-
lation, we computed the size of the biggest cluster identified with
the same procedure that was used for the real data (sum of all the
t-values within a cluster of significant t-values). Clusters in the chil-
dren’s data were taken as significant if the probability of observing a
cluster of the same size or bigger in the randomized data was smaller
than 5% (that is, if a cluster that big was observed in less that 50
cases over 1000), corresponding to a p-value of 0.05.

It is important to note that the criterion for including a time bin
in a cluster (t > 2 in our study) is independent of the process which
assesses cluster significance, so it does not affect the likelihood of a
false positive. Yet, it does have an influence on the size of the time
window that one can find. If the threshold is low then the time
window will be wider. However the same low threshold will be
applied to the randomized data as well, such that the chance of

getting a bigger cluster will also increase under the null hypothe-
sis, thus maintaining the rate of false positive under 0.05.

In addition, to test whether there was a significant difference
between conditions (whether children found the noun-neighbor
harder to learn than the no-neighbor), we conducted an additional
cluster-based permutation analysis in which clusters were formed
on the basis of paired two-tailed t-tests comparing the looking pro-
portions between conditions at each time point.

Thus in total, we conducted three cluster-based analyses: one
for each word condition (no-neighbor; noun-neighbor) comparing
the average proportion of looks toward the target picture for each
test word to 50%, and one comparing the looking proportions
between conditions.

2.2. Results

Fig. 2 shows the average proportion of looks toward the target
picture for familiar and test words (noun-neighbor and
no-neighbor) from the onset of the first target word (Regarde le

[target], tu le vois le [target]? Look at the [target], do you see the
[target]?) until the end of the trial.

Children showed recognition of the no-neighbor (green curve in
Fig. 2) but not the noun-neighbor (red curve in Fig. 2). The
cluster-based permutation analyses revealed that they fixated the
correct picture above chance when asked to look at the
no-neighbor (2178–2568 ms time-window, green-shaded area in
Fig. 2; p < .05) but stayed around chance level in the case of the
noun-neighbor (no significant time window found by the
cluster-based permutation analysis). The difference between the
recognition of the no-neighbor and the noun-neighbor was signif-
icant in the time window ranging from 2044 to 2852 ms (p < .01,
gray-shaded area in Fig. 2). Thus, children learned the
no-neighbor but not the noun-neighbor (p = 0.19). We also
observed that the recognition of the no-neighbor occurred with a
delay of about 900 ms compared to the recognition of familiar
words (gray curve in Fig. 2), a finding we will return to later in dis-
cussing subsequent experiments.

2.3. Discussion

After a brief but intensive exposure to a pair of novel words,
French 18-month-olds performed better when tested on a novel
no-neighbor (e.g., ‘‘torba’’) than on a novel noun-neighbor (e.g.,
‘‘ganard,’’ a novel neighbor of ‘‘canard,’’ duck) in a word recognition
task. When presented with the two novel objects on the screen and
hearing a sentence labeling one of them, children correctly recog-
nized the no-neighbor but failed to recognize the noun-neighbor.
This may be surprising given that children of that age can infer
the meaning of a word via mutual exclusivity (e.g., Markman &
Wachtel, 1988). That is, if they learnt the no-neighbor then they
should be able to infer the meaning of the noun-neighbor by pro-
cess of elimination during the test phase. Yet several studies have
shown that mutual exclusivity effects seem to disappear when
children are confronted with a novel word that is phonologically
similar to a familiar word (e.g., Merriman, Marazita, & Jarvis,
1995). When children heard ‘‘Regarde le pallon!’’ look at the pallon,
they may start looking for a ‘‘ballon’’, the phonological competitor,
and go back and forth between the two images to find the closest
match.

This result replicates Swingley and Aslin’s (2007) findings with
English and Dutch 18-month-olds, showing that children of that
age find it hard to learn a phonological neighbor of a familiar noun.
We will now test toddlers’ ability to learn a novel neighbor of a
familiar verb.

2 Following a reviewer’s suggestion, we also compared the results of this method
with more traditional methods such as the salience-corrected fixations (see Swingley,
2011, for a discussion of this measure) and the more recent growth curve analysis
method (Barr, 2008). Both methods of analysis lead to the same conclusion and are
available upon request to the first author.

3 Note that we used one-tailed t-tests because our hypothesis was directional as we
expected a higher-than-chance looking proportion when the word was recognized,
yet using two-tailed t-test did not change the pattern of results. In particular none of
the clusters of fixations below chance level passed the permutation test.
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3. Experiment 2

In Experiment 1, 18-month-olds failed to learn a noun-neighbor
(e.g., ‘‘ganard’’) showing that they are sensitive to its phonological
similarity to a known word in their lexicon (‘‘canard’’ duck). In
Experiment 2, we build on this failure to investigate whether tod-
dlers are able to appreciate other factors than phonological fea-
tures when deciding whether a given word-form corresponds to
a novel word or is an instance of an already-known word. In the
same task, we taught French 18-month-olds two novel object
labels: one with a phonological neighbor from a different syntactic
category (verb-neighbor; e.g., ‘‘barti’’ neighbor of ‘‘parti’’ gone) and
one with no neighbors (no-neighbor e.g., ‘‘torba’’).

Following Experiment 1, we expected children to learn the
no-neighbor. If toddlers were to fail to learn the verb-neighbor, this
would be evidence that phonological similarity to a known word is
sufficient to prevent toddlers from considering the verb-neighbor
as a novel word. On the contrary, if toddlers were to succeed in
learning the verb-neighbor – just as they learn the no-neighbor
word – this would indicate that children take into account not only
phonological likelihood but also syntactic and/or semantic likeli-
hood when deciding whether a given word-form denotes a novel
word or not.

3.1. Method

3.1.1. Participants
Sixteen French 18-month-olds, ranging from 17;18 to 19;4 with

a mean of 18;8, (SD = 0;15; 8 girls) took part in this experiment.
Twelve additional children were replaced because of refusal to
wear the sticker necessary for eye-tracking (n = 2), fussiness during
the experiment resulting in more than 50% of trials with missing
eye tracking data (n = 6), experimenter error (n = 2), no increase
in the average proportion of looks toward the target during famil-
iar trials (n = 2).

3.1.2. Apparatus, procedure and design
Similar to Experiment 1 except that this time children were

taught two words with a phonological neighbor: one novel word

whose phonological form was similar to a verb they know
(verb-neighbor) and one whose phonological form was not familiar
to any word they know (no-neighbor).

3.1.3. Materials
Similar to Experiment 1 except for the set of novel words used

in the teaching phase.

Novel words. We chose 4 novel words whose phonological forms
were similar to a common verb (verb-neighbors) and 4 novel
words that had no neighbors in toddlers’ lexicons (no-neighbors).
Words were selected following the same procedure as in
Experiment 1.

The 4 no-neighbors were the same as in Experiment 1. The 4
verb-neighbors were chosen following the same criteria as for
the noun-neighbors: they were all bisyllabic words starting with
a stop consonant and differing from a common verb in the voicing
of that initial consonant: barti, dombé, gassé, tonné (/ba�ti/, /dõbe/,
/gase/, /tone/), being neighbors of parti, tombé, cassé, donné (gone,
fallen, broken, given) and having no other neighbors known to chil-
dren, according to parental report.4 The verb-neighbors were mod-
eled on the past participle forms of the verbs. This form was chosen
because it is very common (the most frequent morphological form
for 3 of the 4 verbs; Demuth & Tremblay, 2008) and because it is
bisyllabic, Frequency counts of the familiar nouns in a corpus of child
directed speech (Lyon corpus, Demuth & Tremblay, 2008) were as
follows: parti, 112; tombé, 411; cassé, 263; donné, 252. These counts
were calculated on the phonological form of the neighbor in parental
input and thus included the past participle form of the verb as well
as the infinitive form (except for parti whose infinitive form is not
homophonic to the past participle).

The average duration of the novel words in the test sentences
was 620 ms for the verb-neighbors and 598 ms for the
no-neighbors.
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Fig. 2. Proportion of looks toward the target picture from the onset of the target word (Regarde le [target], tu le vois le [target]? Look at the [target], do you see the [target]?) for
the noun-neighbor (red), the no-neighbor (dark green) and the familiar words (gray). Toddlers performed significantly better on the no-neighbor than on the noun-neighbor:
they successfully learned the no-neighbor (green shaded time window) as shown by an increase of looks toward the correct picture, but failed to learn the noun-neighbor,
staying at chance level. The gray-shaded time window corresponds to the region where toddlers were more likely to look at the target picture when asked for the no-neighbor
than when asked for the noun neighbor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4 The word-form parti is a homophone and can be used as a noun meaning
‘‘political party’’ or ‘‘part’’. None of the children we tested knew these meanings,
based on parental report.
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3.1.4. Measure and analysis
Similar to Experiment 1.

3.2. Results

Eye movement results were analyzed as in Experiment 1. As
shown in Fig. 3, toddlers started to look more toward the target pic-
ture for both the verb-neighbor (blue curve) and the no-neighbor
(green curve) soon after the end of the target word. The
cluster-based permutation analyses found a significant
time-window where the proportion of looks to the target was
significantly above chance for the verb-neighbor condition
(1092–1746 ms, blue-shaded time-window; p < .01) as well as for
the no-neighbor condition (950–1254 ms, green-shaded time-
window; p < .05). There was no significant difference between con-
ditions (verb-neighbor, no-neighbor) suggesting that one word was
not recognized better than the other (no time window found).

3.3. Discussion

Toddlers successfully learned a verb-neighbor in Experiment 2
and failed to learn a noun-neighbor in Experiment 1, although both
words had a familiar phonological neighbor in toddlers’ lexicon.
Performance on the verb-neighbor and the no-neighbor were not
different (in Experiment 2), suggesting that the phonological
resemblance to a familiar word in their lexicon did not impact their
understanding of the verb-neighbor as a novel word, compared to
the no-neighbor. Here, toddlers were not overwhelmed by the
phonological similarity to a known word, presumably because

the likelihood that the novel noun, ‘‘un barti’’, would be considered
as a plausible variant of the familiar verb, ‘‘parti’’ gone, is low. This
suggests that toddlers integrate semantic and/or syntactic likeli-
hood in the process of creating a novel lexical entry.

Contrary to Experiment 1, where the recognition of the
no-neighbor started about 1500 ms after word onset, in
Experiment 2 there was no delay in the recognition of the novel
words: toddlers recognized the verb-neighbor and the
no-neighbor at about the same time as they recognized the familiar
words (roughly 600 ms after word onset). The crucial difference
between Experiment 1 and Experiment 2 is the presence of a novel
word that is difficult to learn, the noun-neighbor. One possibility is

thus that the presence of the noun-neighbor in the test trials hin-
dered the recognition of the no-neighbor in Experiment 1 (cf.
Swingley & Aslin, 2007). Recall that during the test trials, toddlers
were presented with the two novel objects and asked to select the
noun-neighbor half of the time, and the no-neighbor the other half.
This may have confused toddlers, if the link between the
noun-neighbor and the novel object was difficult to make for them.
If the presence of the noun-neighbor is a major reason why we
observe a delay in Experiment 1, then we might expect that the
recognition of any novel word, including the verb-neighbor, should
be slowed down when taught together with a noun-neighbor.

4. Experiment 3

In Experiment 3, we seek to directly compare toddlers’ perfor-
mance for learning a noun-neighbor versus learning a
verb-neighbor in a within-subjects design. Using the same experi-
mental materials and basic design from the prior experiments, here
we taught children two novel object labels: one noun-neighbor as
in Experiment 1 and one verb-neighbor as in Experiment 2.
Following Experiment 1 and Experiment 2, we expected toddlers
to succeed in learning the verb-neighbor, and to fail to learn the
noun-neighbor.

4.1. Method

4.1.1. Participants
Sixteen French 18-month-olds were tested (ranging from 17;26

to 18;29 with a mean of 18;8, SD = 9, 7 girls). An additional 8 chil-
dren were not included in the final sample because of refusal to
wear the sticker necessary for eye-tracking (n = 3), fussiness during
the experiment resulting in more than 50% of trials with missing
eye tracking data (n = 2), no increase in average proportion of looks
toward the target during familiar trials (n = 2), or no knowledge of
the phonological neighbors (n = 1).

4.1.2. Apparatus, procedure and design
Similar to Experiment 1 except that this time children were

taught two words with a phonological neighbor: one novel word
whose phonological form was similar to a verb they know
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Fig. 3. Proportion of looks toward the target picture from the onset of the target word (Regarde le [target], tu le vois le [target]? Look at the [target], do you see the [target]?) for
the verb-neighbor (blue), the no-neighbor (green) and the familiar words (gray). Toddlers successfully learned both the verb-neighbor (blue-shaded time window) and the
no-neighbor (green-shaded time window). There was no significant difference between the verb-neighbor and no-neighbor conditions. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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(verb-neighbor) and one whose phonological form was similar to a
noun they know (noun-neighbor).

4.1.3. Materials
The materials were similar to those of Experiment 1 except for

the set of novel words used in the teaching phase.

Novel words. We used the 4 noun-neighbors used in Experiment 1
(novel words whose phonological form was similar to a noun) and
the 4 verb-neighbors from Experiment 2 (novel words whose
phonological form was similar to a verb). All 4 verb-neighbors
had only one phonological neighbor known to the children, the
two noun-neighbors, ganard and gochon had exactly one phonolog-
ical neighbor and the two other noun-neighbors, pallon and pateau
had on average 1.75 phonological neighbors in children’s lexicon.
The noun-neighbors’ cumulative bigram log-probability was
slightly lower than the one of the verb-neighbors (logP = �5.59
for noun-neighbors; logP = �6.21 for verb-neighbors). Verbs were,
on average, 56% more frequent than the nouns, based on counts
from the Lyon corpus of French child-directed speech (Demuth &
Tremblay, 2008).

Verb-neighbors and noun-neighbors were yoked in pairs, such
that each child would learn one of 4 pairs of words: (pallon, gassé),
(ganard, tonné), (gochon, barti), (pateau, dombé). Children were
taught a verb-neighbor and a noun-neighbor for which they knew
the phonological neighbors, according to parental report.

The average duration of the novel words in the test sentences
was 620 ms for the verb-neighbors and 610 ms for the noun-
neighbors.

4.1.4. Measure and analysis
Similar to Experiment 1.

4.2. Results

As can be seen in Fig. 4, we replicated the pattern of results
observed in Experiment 1 and 2. Toddlers successfully learned
the verb-neighbor: they looked toward the correct picture at
above-chance rates for the verb-neighbor (1660–2930 ms,
blue-shaded time-window; p < .01) but resisted learning the
noun-neighbor, showing no recognition of the novel word (no

significant time-window found; p = 0.80). As a result, toddlers rec-
ognized the verb-neighbor significantly better than the noun
neighbor (2024–2662 ms, gray-shaded time-window; p < .05),
showing that toddlers’ processing of these phonological neighbors
is significantly different, depending on the syntactic category of the
neighboring word.

Note that toddlers recognized the verb-neighbor at about
1500 ms after target word onset, a delay comparable with the time
course of recognition of the no-neighbor in Experiment 1. This sug-
gests that the presence of the noun neighbor in these two experi-
ments slowed down the recognition of the other novel word.

4.3. Discussion

Children failed to learn an object label when it was a phonolog-
ical neighbor of a noun they knew (as in Experiment 1) but suc-
ceeded when it was a phonological neighbor of a verb they knew
(as in Experiment 2). Experiment 3 replicated this phenomenon
within children, ruling out variation among children as a possible
explanation of the difference between the results of Experiments
1 and 2. The failure to learn a noun-neighbor cannot be attributed
to phonological competition alone, because both the
noun-neighbor and the verb-neighbor had a frequent phonological
neighbor in the children’s lexicon. The most likely explanation,
then, is that children take into account semantic and/or syntactic
likelihood when interpreting a novel word.

An unexpected observation was that toddlers were slowed
down in their recognition of newly-taught words which were
tested at the same time as noun-neighbors: no-neighbors in
Experiment 1, and verb-neighbors in Experiment 3. Given that
both no-neighbors and verb-neighbors were observed to be recog-
nized quickly in Experiment 2 (in the absence of the
noun-neighbor), this suggests that the presence of the object the
noun-neighbor referred to was sufficient to delay recognition of
the other object in Experiments 1 and 3. To our knowledge, no
prior study has reported a delay in novel word recognition while
learning phonological noun-neighbors, though Swingley and
Aslin (2007) did find that performance on familiar nouns was
affected by children’s (unsuccessful) exposure to novel
noun-neighbors. The confusion triggered by noun-neighbors is
consistent with our interpretation in terms of toddlers estimating
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Fig. 4. Proportion of looks toward the target picture from the onset of the target word (Regarde le [target], tu le vois le [target]? Look at the [target], do you see the [target]?) for
the verb-neighbor (blue), the noun-neighbor (red) and the familiar words (gray). Toddlers recognized the verb-neighbor significantly above chance level (blue-shaded time
window) but failed to recognize the noun-neighbor. As a result, their performance was significantly better for the verb-neighbor than for the noun-neighbor within the time
region shaded in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the likelihood that a given word-form corresponds to a novel lex-
ical entry or an existing one: When the odds are against the cre-
ation of a novel lexical entry – because the phonological and
semantic/syntactic similarity appear too great to be coincidental
– children attempt to reconcile the deviant phonological form with
the existing lexical entry. This process might involve trying to fig-
ure out in what circumstances the observed phonological change
may be licensed by the native language, as well as what extension
of the word’s meaning may encompass both the familiar referent
and the novel referent. Whatever the exact nature of this process,
it may contribute to the confusion that is observed.

5. General discussion

A simple rule for determining whether a spoken word corre-
sponds to a word in the lexicon is to compare the phonological
form of this word to the phonological forms in the lexicon. When
the forms match, the word’s identity is known; if the heard form
matches no known words, it may be a candidate for entry into
the lexicon as a new word. Part of the function of a phonological
system is to ensure that this matching process can work, at least
when the signal itself is carefully produced and clearly heard.

Young children apparently have some difficulty in operating
with their developing phonology in this way. For example, they
have some trouble learning similar-sounding words (e.g., Stager
& Werker, 1997). Swingley and Aslin’s (2007) finding, in which
the proximity of a novel word like tog to the familiar word dog
made the novel word hard to learn, showed that lexical activation
processes, whose function is to account for the sounds in an utter-
ance in terms of the correct string of words (and possibly in spite of
mispronunciation or misperception), can conflict with word learn-
ing processes. In that study, the novel object intended as the refer-
ent for the novel word (e.g.) tog had no real resemblance to its
familiar counterpart (dog). Similarly in the present experiments,
the plush pink octopus object labeled here as pateau is not a rea-
sonable member of the category of boats (bateaux). Such consider-
ations suggest that children’s difficulty might be purely a matter of
phonological proximity: tog (or pateau) is simply too close to a
familiar word to permit ready detection as a novel form.

The present work shows that this is not the case. In fact similar-
ity of the novel referent to its competitor’s denotation matters. The
similarity of a pateau (plush octopus) to a bateau (boat) is not great,
but it is greater than the similarity of the same octopus to the
meaning of parti or cassé (gone, broken) because it shares the same
syntactic category (nouns) and the same broad semantic category
(toys).

With the present data we cannot determine whether it is the
syntactic difference that is most important, or the semantic one, or
both; but to get some purchase on this question we looked for
potential item differences within the experiments. Recall that two
of our familiar nouns were animals (canard, duck, and cochon, pig)
and two were artifacts (ballon, ball, and bateau, boat). Given how
fundamental the distinction between animals and artifacts is, even
to infants (e.g., Setoh, Wu, Baillargeon, & Gelman, 2013), our items
ganard and gochon (as plush animals) were probably semantically
much closer to their competitors canard and cochon than pateau
or pallon (as plush animals) were to bateau or ballon. If semantic
similarity were the main driving force behind our results, we would
expect children to learn pateau and pallon more easily than ganard
and gochon. Indeed, inspection of the results revealed a nonsignifi-
cant trend toward better performance on pateau and pallon than
ganard and gochon for participants in Experiment 1 and 3. It could
be interesting to vary this similarity systematically with more
items; here, there are confounding features of the words, such as
uneven phonotactic probability and neighborhood density, that

make interpreting this trend difficult. At any rate, although the pre-
sent result cannot tells us whether the semantic or the syntactic dif-
ference between the neighbors and their familiar competitors play
a role, it is clear that 18-month-olds take more into consideration
than the sounds alone.

Might some unmeasured difference between our noun and verb
neighbors be responsible for our effects? For example, frequent
words are generally recognized more readily than infrequent
words (e.g., Solomon & Postman, 1952). Could it be that the inter-
fering effect of noun neighbors derives from stronger activation of
those words, and not from the direct consequences of semantic or
syntactic distance from the novel objects? This might happen if the
phonological form of nouns were more strongly established in chil-
dren’s lexicons than the phonological form of verbs: indeed, verbs
in French occur in more varied phonological forms than nouns, due
to morphology. However, as we reported, the exact phonological
forms of the verbs we used were, on average, 56% more frequent
than the nouns in parental input, and as frequent as the nouns in
children’s production, based on counts from the Lyon corpus of
French child-directed speech (Demuth & Tremblay, 2008), and par-
ents in each experiment reported that their children knew the
neighboring words.

Another possibility is that independently of frequency, the
meanings of the noun neighbors were better entrenched in chil-
dren’s lexicons than the meanings of the verb neighbors, leading
to greater interference. Yet if more entrenched representations
lead to greater interference, we would also expect that
verb-neighbors should lead to more interference than a word with
no neighbor. That’s not what we observe: children learnt
verb-neighbors just as well as no-neighbors in Experiment 2. So
while we cannot dismiss the possibility that more entrenched rep-
resentations of the familiar nouns over the familiar verbs plays a
role in children’s interpretation of novel neighbors, our data pro-
vide little support for this hypothesis. Thus our main point would
still hold, namely that semantic or syntactic similarity plays a role
in children’s interpretation of novel neighbors.

Thus, we propose that young toddlers’ evaluation of similarity
in the lexicon in the context of word learning is multidimensional,
incorporating both phonological and semantic and/or syntactic
features. The plausibility of a syntactic contribution to the results
is supported by prior studies showing that children, like adults,
use the sentence context to build on-line expectations about the
syntactic category of an upcoming word (e.g., Bernal,
Dehaene-Lambertz, Millotte, & Christophe, 2010). Toddlers as
young as 14 to 18 months expect a noun to follow a determiner
and expect a verb after a personal pronoun (Cauvet et al., 2014;
He & Lidz, 2014; Kedar, Casasola, & Lust, 2006; Shi & Melancon,
2010; Zangl & Fernald, 2007). For instance, Cauvet et al. (2014)
showed that French 18-month-old toddlers trained to turn their
head for a known target noun (‘‘la balle’’ the ball), responded more
often to the word ‘‘balle’’ when it appeared in a noun context (‘‘une
balle’’ a ball) than when it appeared (incorrectly) in a verb context
(‘‘on balle’’ they ball). In fact, in that last case, they did not turn
their head more often than for control sentences which did not
contain the target word at all. In our study, when children were
processing the syntactic context of our sentences, they should have
expected a noun at the point where the verb-neighbor, barti, was
heard. Since barti occurred in a context where the familiar verb
parti was not expected, one possibility is that children did not
access the familiar verb parti at all, and therefore that they did
not even notice the similarity with a word present in their lexicon.
Another possibility is that children may have accessed parti despite
the nominal context because the integration of contextual cues is
limited by toddlers’ developing executive function abilities (e.g.,
Khanna & Boland, 2010, but see Rabagliati, Pylkkänen, & Marcus,
2013) Yet the presence of additional cues provided by the learning
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situation (i.e., repetition of the verb-neighbor in a noun context,
presence of a novel object and contingent gaze cues from the
speaker whenever the verb-neighbor was used) may render the
possibility that the verb-neighbor barti is a novel word a more
plausible alternative than for the noun-neighbor.

Children process words in context, just as adults do. In particu-
lar, the linguistic context plays a prominent role in constraining
lexical access and thus in estimating the likelihood that a novel
phonological word-form is a novel lexical entry rather than a vari-
ant of a known word. Manipulating the linguistic context by plac-
ing a verb-neighbor in a noun syntactic frame indicated to children
that a new meaning was appropriate for the novel word-form. We
would expect the same result to be found using other syntactic
frames (e.g., pronouns) or by doing the symmetric manipulation
(i.e., presenting a noun-neighbor in a verb syntactic frame). This
suggests also that the linguistic context may play a role in learning
several meanings for perfectly identical word-forms (homophones;
see also Casenhiser, 2005), a possibility that we are currently
exploring.

Learning neighbors of familiar words is difficult for toddlers, but
as we showed, this difficulty disappears when the novel words
appear in contexts that are sufficiently different from their known
neighbors (either syntactically or semantically or both). If learn-
ability influences language changes, then this constraint on early
lexical acquisition might have a long-lasting impact on the overall
structure of the lexicon. Do lexicons avoid similar-sounding
words? And when similar-sounding words do occur, are they pref-
erentially distributed across syntactic or semantic categories to
improve their learnability (and their recoverability)? Recent stud-
ies observed that not only do mature lexicons contain many
similar-sounding words, perhaps even more than would be
expected by chance (Dautriche et al., 2014), but there is also a ten-
dency for phonologically similar words to be more semantically
similar than phonologically distinct words (Monaghan, Shillcock,
Christiansen, & Kirby, 2014; Dautriche et al., 2014). In sum, lexi-
cons appear to favor similar-sounding words which are semanti-
cally related.

At first sight this might appear at odds with the present study,
yet there are two ways to resolve this apparent inconsistency.
First, a rich literature suggests that similar-sounding words display
a range of advantages for language use: they are easier to remem-
ber, produce and process for adults (e.g., Vitevitch, 2002;
Vitevitch, Chan, & Roodenrys, 2012; Vitevitch & Stamer, 2006)
and preschoolers (e.g., Storkel & Lee, 2011; Storkel & Morrisette,
2002). Also, greater systematicity of form-to-meaning mappings
could facilitate the grouping of words into categories (Padraic
Monaghan, Christiansen, & Fitneva, 2011). Overall, the processing
benefits for similar-sounding words might outweigh an initial
learning disadvantage. Second, an early disadvantage for learning
similar-sounding words may not actively exert a selective pressure
for words that are more phonologically dissimilar because children
may eventually manage to learn neighbors through repeated expo-
sure. Thus, instead of being reflected in the static organization of
the lexicon, the constraint we uncovered may be reflected in the
dynamics of early lexical growth: early in children’s lexical devel-
opment, novel words may preferably be added whenever they can
be easily distinguished from already existing words along at least
one dimension (phonological, syntactic, and/or semantic).
Previous work looking at the growth of the lexicon focused on
how either phonological similarity or semantic similarity influ-
ences word learning, but not on potential interactions between sev-
eral dimensions (Carlson, Sonderegger, & Bane, 2014; Hills,
Maouene, Maouene, Sheya, & Smith, 2009; Steyvers &
Tenenbaum, 2005; but see Regier et al., 2001).

In sum, our work shows that 18-month-old children process
words in context, using multiple sources of information.

Phonological similarity alone does not serve as a kind of filter that
collapses phonological neighbors in advance of meaningful analy-
sis. Rather, 18-month-olds appear to evaluate simultaneously the
phonological, syntactic and/or semantic likelihood of this sequence
of sounds being a new word.
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3.2 Learning homophones: syntactic and semantic contexts
matter

As I showed, children find it difficult to learn a phonological neighbor of a word they know
when the known word and the novel word are also close syntactically (and/or semantically).
Yet, this difficulty is reduced when phonological neighbors are presented in a different con-
text : When a phonological neighbor of a verb is presented in a noun context, there is no
interference from the known verb. Thus, the syntactic context helps children to distin-
guish between two minimally different words and to accept that they possess two different
meanings (section 3.1). Here, I investigate whether in the absence of any phonological cue
to distinguish between the meanings of a pair of homophones, children use contextual cues
to identify when a given word form is likely to instantiate a new meaning. In other words,
can children learn a second meaning for a word form they already know?

Previous studies looking at homophone comprehension in preschoolers suggest that 5-year-
olds find it difficult to use the semantic context of the sentence to derive the meaning
of a homophone (Beveridge & Marsh, 1991; Campbell & Bowe, 1977). When presented
with the less common meaning of a pair of homophones (e.g., the "wing" of a castle) in
a disambiguating context, children failed to use the semantic information to interpret the
word form and instead accessed its primary meaning in more than 80% of the cases (e.g.,
the "wing" of a bird) (Campbell & Bowe, 1977). While this may suggest at first that
contextual cues might not be very relevant to acquire the meanings of homophones, since
children appear not to use them, there are several important limitations to these studies.
Importantly, children’s lexical knowledge of the less common meaning of a pair of homo-
phones was not assessed prior to test. In fact, when tested on two meanings they know,
4-year-olds had no problem to correctly interpret homophones when the context selected
either the primary meaning or the subordinate meaning of the word form (Rabagliati,
Pylkkänen, & Marcus, 2013).

Most relevantly, several developmental studies investigated the acquisition of homophony
where children were taught a second meaning for a word they know (e.g., "door" would
label an unfamiliar object) (Casenhiser, 2005; Doherty, 2004; Mazzocco, 1997). In these
studies, preschoolers listened to stories where the known word was used to label a novel
referent in relation with pictures they were presented with. For instance, they could see
a picture with a tree and the novel referent on the top of it and hear "Way up in the
tree, Tommy saw a door" (the word was used once or twice in a sentence across these 3
studies) and asked to point to the referent of the word in a set of picture (including or not
the known referent of the word, i.e., a door). Mazzocco (1997) showed that toddlers and
preschoolers found it easier to learn a novel meaning for a novel word form than a second
meaning for a known word form. In this task where they were asked to map a known
word (e.g. "door") to a referent that already had a label (e.g. a clown), children had to
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learn not only that this word form have several meanings, but also to learn that it is a
synonym for the known referent (the clown). Their difficulty with homophones may thus
just reflect their difficulties in learning synonyms (children are biased to assume that word
extensions are mutually exclusive, the mutual exclusivity bias, see Markman & Wachtel,
1988). Yet, even when the known referent was replaced by an unfamiliar referent (e.g., a
tapir), children still found it more difficult to learn a second meaning for a known word
than to learn a meaning for a novel word (Casenhiser, 2005; Doherty, 2004).

All in all, these studies suggest that children find it difficult to learn homophones when
(1) they are used in a context that does not bring sufficient evidence that a new meaning
is appropriate and when (2) the learning situation is not sufficiently ecological. Crucially,
previous studies did not manipulate whether the learning situation they proposed to chil-
dren could plausibly lead them to conclude that an additional meaning was likely for that
known word. They also relied on rather poor learning instances, where the word was used
only a limited number of time (once or twice) in stories that failed to provide sufficient
evidence to constrain a potential novel meaning for the word. Indeed it may not be suf-
ficient for children to know that "door" refers to an unfamiliar animal (e.g., a tapir), as
the referent of the word is still ambiguous (e.g., Quine, 1960). They may need additional
evidence about what properties are associated with the new meaning of "door" (e.g., living
in the jungle, eating berries) to narrow down its meaning.

Here I propose that children’s ability to learn homophones crucially depends on the context
they are presented in. That is, homophones may be easier to learn when the two meanings
are made sufficiently distant by the context in which they are used. In 4 experiments, I
manipulate different sources of information that may help children to identify when a novel
meaning for a known word is appropriate:

• Syntactic and semantic distance: The previous results with neighbors (see sec-
tion 3.1) suggest that using a known word with a different syntactic category may
increase the likelihood of adding a new meaning for this word. In Experiment 1,
toddlers will be taught an animal label that is homophonous with a known verb
(e.g., "an eat"). If children take into account semantic and/or syntactic likelihoods
when identifying whether a given word form would instantiate a novel meaning, they
should be able to learn verb-homophones (taught as animal labels).

• Semantic distance: Experiment 1 cannot determine whether it is the syntactic
distance or the semantic one that is most important when learning homophones. In
Experiment 2 and 3, children will be taught animal labels that are homophonous
with a known artifact (semantically distinct) or with a known animal (semantically
close). If a semantic distinction between meanings of a pair of homophones is suffi-
cient to learn them, children should have no problem learning artifact-homophones
(taught as animal labels).
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• Syntactic distance: Similarly, the syntactic distance alone may be sufficient to
learn homophones. In Experiment 4, children will be taught animal labels that are
homophonous with a known animal (e.g., "unmasculine chat", a cat) but associated
with a different gender (e.g., "unefeminine chat"). Since grammatical gender is not
a semantic property in French, it can thus be used to test the effect of syntactic
distance independently from semantic distance.

• Neighborhood density: Besides syntax and semantics, another important factor
in language learning and processing is the phonological context of the word in the
lexicon. Dense neighborhoods slow down lexical retrieval in adults compared to sparse
neighborhoods (Vitevitch & Luce, 1998), hence it may be easier to learn a secondary
meaning for a word form with high phonological neighborhood density than for a
word form with low phonological neighborhood density simply because the primary
meaning of the word would be less accessible. In Experiment 5, children will be
taught an animal label that is homophonous with the label of a known artifact which
has no neighbor in children’s lexicon. If neighborhood density has an influence, such
sparse artifact-homophones should be more difficult to learn than dense artifact-
homophones.

In these experiments, I will test 20-month-olds, thus younger children than in previous
studies (Casenhiser, 2005; Doherty, 2004; Mazzocco, 1997), for several reasons: (1) toddlers
of this age already use the different sources of information that I propose to investigate
here during lexical processing (noun vs. verb, e.g., Cauvet et al., 2014; semantic relations,
e.g., Arias-Trejo & Plunkett, 2013; gender cues, e.g., Van Heugten & Christophe, in press;
neighborhood density, e.g., Newman, Samuelson, & Gupta, 2008) and (2) they may already
have acquired a certain number of homophone pairs (de Carvalho et al., 2014) suggesting
that learning lexical ambiguities should be possible at this young age. In these experiments,
toddlers will be taught homophones in the word learning task used in section 3.1, which
has the advantage of presenting novel words in a richer context than in previous studies
on preschoolers.

3.2.1 Experiment 1 - Manipulating the syntactic and semantic distance

Experiment 1 investigated whether the syntactic and/or semantic context would be suffi-
cient to signal that a novel meaning for a known word was appropriate. Most relevantly,
Casenhiser (2005) found that 4-year-olds find it easier to learn an additional meaning for
a known word when used in a disambiguating linguistic context. As in section 3.1, I ma-
nipulate the syntactic and/or the semantic context by placing a known verb in a noun
frame to label a novel animal (a verb-homophone; e.g., "an eat"). In such a case, both
meanings are used in distinct syntactic contexts ("to eat" is a verb while "an eat" is a
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noun) and they are also semantically distinct ("to eat" refers to an action and "an eat"
refers to an animal). If toddlers evaluate the syntactic and/or semantic features of words
when identifying novel words, verb-homophones should be perceived as sufficiently distinct
from the known verb to be assigned a novel meaning.

Method

Participants. Thirty-two French 20-month-olds, ranging from 19;1 to 20;9 with a mean
age of 20;3, (SD = 0;5; 13 boys) took part in this experiment. Five additional children
were replaced because of fussiness during the experiment resulting in more than 50% of
trials with missing eye tracking data (n = 3), experimenter error (n = 1), born at less than
37 weeks’ gestation (n = 1).

Apparatus, procedure and design. Similar to the Experiments of section 3.1 except
that this time toddlers were taught one novel word that was homophonous with a verb
(a verb-homophone) and a novel word that did not resemble any word in the children’s
lexicons (a non-homophone).

Material. Similar to the Experiments of section 3.1 except for the set of novel words used
in the teaching phase.

Novel words. I chose 4 phonological word forms of verbs that toddlers of that age are likely
to know (according to the CDI of previous studies) and the 4 novel word forms used in
Experiments of section 3.1.

The 4 non-homophones were all bisyllabic: "prolin", "barlier", "torba", "lagui" (/pKolẽ/,
/barljé, /tOKba/, /lagi/) and had no phonological neighbors with words that toddlers knew.
The 4 verb-homophones were also all bisyllabic words: "manger", "tomber", "casser",
"cacher" (/mãZe/, /tõbe/, /kase/, /kaSe/) meaning: eat, fall, break and hide. The verb-
homophones were the infinitive and the past participle forms of the known verbs. These
forms were used because they were bisyllabic and they are very common (the most frequent
morphological form for all 4 verbs; Demuth & Tremblay, 2008). The average duration of
the novel words in the test sentences was 640ms for the verb-homophones and 622ms for
the non-homophones.

Measure and Analysis. Similar to the Experiments of section 3.1.
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Results

Figure 3.1 shows the proportion of looks towards the target picture from the beginning of
the first target word ("Regarde le [target]! tu le vois le [target]" Look at the [target]]!
Do you see the [target]) until the end of the trial.
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Figure 3.1: Proportion of looks towards the target picture from the beginning of the first target
word (do you see the [target]?) for the verb-homophone (in green) and for the
non-homophone (in gray). Toddlers successfully learnt both novel words as they
significantly increased their look towards the correct picture after target word onset.

Toddlers recognized both the verb-homophone (green curve) and the non-homophone
(black curve). The cluster-based permutation analysis (Maris & Oostenveld, 2007) iden-
tified a significant time-window where toddlers looked significantly above chance (0.5) for
the verb-homophone (from 1000ms after word onset, p < .001; green shaded area in Figure
3.1) and for the non-homophone (from 1000ms after word onset, p < .001; gray shaded
area in Figure 3.1). There was no significant difference between conditions, suggesting that
toddlers learnt both words equally well.

Discussion

Toddlers successfully learnt the verb-homophone just as well as the non-homophone. This
may be surprising given that several studies have shown that even preschoolers find it
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difficult to associate a novel meaning to a known word (Casenhiser, 2005; Doherty, 2004;
Mazzocco, 1997). Yet contrary to previous studies, toddlers may not have been disturbed
by the re-use of a known verb, as the syntactic context, a noun frame, decreased the
likelihood that the speaker could possibly be using the known meaning of the verb (see
also Casenhiser, 2005). This suggests that children can use the syntactic context to identify
whether a novel meaning is appropriate for a word, even when the word is already associated
to a meaning.

One possibility is that toddlers did not even notice that a familiar verb was used in this
experiment. Indeed, toddlers use the syntactic context to constrain lexical access: For
instance they expect a noun after a determiner and a verb after a pronoun (e.g., Cauvet
et al., 2014; Shi & Melancon, 2010; Zangl & Fernald, 2007). Thus, when presented with
a noun phrase such as "C’est un manger!" (this an eat! ), toddlers may simply not have
accessed the familiar verb and this made it very easy to link an additional meaning to the
word, just as easy as for the non-homophone.

Yet another possibility is that toddlers initially noticed that the verb they knew was used
in an incorrect frame. Indeed, two-year-old children display an early left-lateralized brain
response when an expected noun is incorrectly replaced by a verb (e.g., "je prends la
mange" I take the eat, Bernal et al., 2010). Relevantly, ERP studies looking at adults’
processing of lexical ambiguities in reading tasks found that the syntactic context alone
was insufficient to constrain lexical access in the case of noun/verb homographs (e.g., the
park/to park) as evidenced by a frontal negativity compared to unambiguous words (e.g.,
Lee & Federmeier, 2012). Yet additional semantic constraints on the meaning of the words
eliminated the frontal negativity (e.g., Lee & Federmeier, 2009). Such a frontal compo-
nent has been suggested to reflect the recruitment of frontally mediated meaning selection
mechanisms needed to disambiguate noun-verb homographs in the absence of constraining
semantics (e.g., Novick, Trueswell, & Thompson-Schill, 2010) suggesting that the syntac-
tic context alone may be insufficient to suppress totally the inappropriate meaning of the
word. Yet, in our experiment, because the verb is never used to convey its initial mean-
ing (thus the verb meaning is never pre-activated) but repetitively used in a noun frame
with a visual support (i.e., the novel referent), social support (i.e., the speaker looking
contingently to the referent each time she uses the verb-homophone) and supplemented
with information about its novel meaning (e.g., "Un manger, ca a des grandes oreillles"
Eats have big ears), this may have increased the likelihood that the known meaning of the
verb was inappropriate in that context and supported the identification of an additional
meaning for the known verb form.

At any rate, the present results show that children have no problem learning noun-verb
homophones in a supportive context. This has important consequences for theories of
syntactic development looking at the acquisition of syntactic categories. One common
assumption is that children may start grouping words into categories by observing their
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distributional context: For instance, all words X appearing in the context [you X the] are
likely to be verbs. To obtain adult-like categories (nouns, verbs, etc), learners would need
to merge these context-based categories, possibly by grouping together the categories that
share a portion of their categorized words (Mintz, 2003). For instance, [you X the] and [he
X the] would be grouped together since words such as "drink", "eat", "give" would appear
in both contexts. Yet words that appear in multiple categories should make distributional
cues to category less effective. Learners could conflate distributions and create a single
category that contains both nouns and verbs. In fact, noun/verb homophones have been
cited as evidence against the logical possibility of learning grammatical categories from
their distributions (Pinker, Lebeaux, & Frost, 1987). To get around this problem, two
solutions have been proposed.

The first solution suggests that children may be sensitive to a (small) perceptual distinc-
tion between nouns and verbs such that they would be able to maintain two phonologically
distinct representations of the same word form (e.g., park-NOUN and park-VERB Conwell,
2015; Conwell & Morgan, 2012). This is supported by several sources of evidence showing
that there are prosodic differences between noun and verb homophones, such that noun
tokens are longer than verb tokens (Conwell & Morgan, 2012; Shi & Moisan, 2008).11 Fol-
lowing this hypothesis, learners would use this sensitivity to tackle the ambiguity problem,
such that words that appear in more than one lexical category should not pose a problem
for children.

The second solution suggests that children could start building syntactic categories by
grouping words together according to their semantic category as soon as they start to
know the meaning of basic words (from 9 months of age, Bergelson & Swingley, 2012,
2013) (Brusini, 2012; Gutman, Dautriche, Crabbé, & Christophe, 2014). For example,
they could start grouping together "toy", "car", and "spoon" because they all refer to
concrete objects, and "drink", "eat", and "give" because they all refer to actions. The
knowledge of a few content words may allow learners to discover the distributional context
in which they appear: They could notice that nouns/objects appear most of the time
preceded by determiners and verbs/actions by pronouns or auxiliary, and subsequently use
this information to categorize new words. Following this hypothesis, children rely on the
context to attribute a category (or a meaning) to novel words.

Certainly, these two solutions are not mutually exclusive. What I showed here is that
at 20 months of age, children are not confused by noun/verb homophones because they
11This is, however, not surprising given that nouns may be more likely than verbs to appear at the end

of a prosodic phrase as in [the kids’ brush] [is on the table] (where brackets indicate prosodic phrase
boundaries) and thus is typically lengthened compared to verbs that are more likely to appear phrase-
internally as in [the kids] [brush their teeth] (Delais-Roussarie, 1995). Thus, these prosodic differences
may not be part of the phonological form of the word but depend on the position of the word in the
sentence: Both nouns and verbs homophones appear to have the same duration when they are situated
in the same position in the sentence (Sorensen, Cooper, & Paccia, 1978).
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already process words in context, suggesting that noun/verb homophones may not be
a major problem for syntactic development. Interestingly, similarly to toddlers in this
study, several computational (Bayesian) models of syntactic category acquisition are able
to deal well with noun-verb ambiguity (e.g., Goldwater & Griffiths, 2007; Parisien, Fazly,
& Stevenson, 2008). Yet these models find it difficult to identify the syntactic category
of a noun when there is a strong lexical bias in favor of the verb of the homophone pair
(Parisien et al., 2008) while toddlers, as I just showed, have no problem in such cases.

Importantly, here, I concentrated on learning noun/verb homophones, yet one interesting
following question is how does that relate to the acquisition of noun/verb polysemes that
share the same form and have related meanings (e.g., a kiss/to kiss). I showed that children
are sensitive to the syntactic context in which a known word is used to decide whether
the word may instantiate a new meaning. Yet the existence of polysemes suggests that
noun/verb distributional cues do not necessarily trigger the formation of a novel distinct
lexical entry. Indeed noun/verb polysemes share not only a common phonological form but
also the same lexical representational base (e.g., Caramazza & Grober, 1976). Oshima-
Takane, Barner, Elsabbagh, & Guerriero (2001) propose that children can learn the cross-
categorical use of these words not only by paying attention to the distributional cues of
the noun/verb pair but also, by using the semantic information of the words, noting for
instance that the same word could be used for an artifact and its function (e.g., brush) (see
also Lippeveld & Oshima-Takane, 2014). Thus paying attention to the semantic relation
between the meanings of a word may help children to differentiate between noun/verb
homophones and noun/verb polysemes.

To conclude, I started by noting that learning homophones may be easier when their
meanings are made sufficiently distinct by the context in which they are used. When a
verb form referring to an action was used as a noun to label a novel object, children had
no problem to learn it. Yet the present result cannot tell whether the syntactic distance
(verb/noun) or the semantic distance (action/object) mattered here. In Experiment 2, I
investigate the effect of semantic distance alone on learning noun-noun homophones.

3.2.2 Experiment 2 & 3 - Manipulating the semantic distance

Learning homophones may be easier when the semantic distance between their meanings
is large. For example, "bat" is likely to be unambiguous in a context where one speaks
about sport, as we do not expect the bat-animal meaning in this context. Intuitively,
homophones seem to map onto clearly distinct meanings (e.g., animal-bat/baseball-bat,
flour/flower, mussel/muscle, etc.) suggesting an advantage for homophones that are se-
mantically distinct over semantically close (I come back to this idea in section 3.3).

In Experiment 2, toddlers were taught either a novel animal noun that was homophonous
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with a noun referring to an artifact (an artifact-homophone, syntactically identical, but
semantically distant; e.g., "un pot", a potty) or a novel animal noun that was homophonous
with a noun referring to an animal (an animal-homophone, both syntactically and se-
mantically close; e.g., "un chat", a cat). Contrary to Experiment 1, a non-homophone was
not taught, so as to minimize task difficulty, since learning a second meaning for a known
noun may be more challenging that learning a second meaning for a known verb. Yet be-
cause children were taught a single word, I also controlled that a potential learning effect
would not be due to a preference for looking at the only labeled animal, namely toddlers
might look more towards the labeled animal during the test phase not because they asso-
ciated the novel label to this animal but because this animal is the only one that has been
named during the teaching phase. Therefore, during the test phase toddlers were tested
both on the homophone (the artifact-homophone condition or the animal-homophone con-
dition), and on an untaught non-homophone (the non-homophone condition). If toddlers
in the non-homophone condition looked more towards the unlabeled animal (or at least be-
haved differently from the homophone conditions; the mutual exclusivity effect), this would
suggest that toddlers formed a form-meaning association between the artifact-homophone,
or the animal-homophone, and its animal referent.

Experiment 2

Method

Participants. Thirty-two French 20-month-olds took part in this experiment, sixteen
learnt an artifact-homophone (range = 19;2 months to 20;8 months, mean = 19;8, SD =
0;6, 8 boys) and sixteen learnt an animal-homophone (range = 19;4 months to 20;9 months,
mean = 20;2, SD = 0;4, 6 boys). Sixteen additional children were replaced because of
technical problem (n = 7)12, fussiness during the experiment resulting in more than 50%
of trials with missing eye tracking data (n = 6), refusal to wear the sticker necessary for
eye-tracking (n = 2) and not knowing any of the test words according to their parents’
report (n = 1).

Apparatus, procedure and design. Similar to Experiment 1 except that this time
toddlers were taught a single novel word that was homophonous with a known noun re-
ferring to an artifact (an artifact-homophone) or a known noun referring to an animal (an
animal-homophone). The other plush animal was still presented, for a video of the same
duration, with the same movements and story line, but without any label (only pronouns
were used – "do you see this one? It has big ears..."). During the test phase, toddlers had

12For Experiments 2 and 3, the position of the eye-tracker relative to the screen was improperly centered
resulting in a loss of data when children were looking towards one side of the screen.
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4 test trials on the homophone label (the artifact- or the animal-homophone) and 4 test
trials on the non-homophone label (the non-homophone condition).

Material. Similar to Experiment 1 except for the set of novel words used in the teaching
phase.

Novel words. I chose 4 phonological word forms of nouns labeling artifacts that toddlers
of that age are likely to know, 4 phonological word forms of nouns labeling animals that
toddlers of that age are likely to know (according to the CDI of previous studies) and 4
novel non-homophones.

The 4 artifact-homophones were all monosyllabic words: "verre", "pot", "pull", "bain"
(/vEK/, /po/, /pyl/, /bẽ/) meaning: glass, potty, sweater and bath. On average, these
words had a phonological neighborhood density of 3.8 (irrespective of the syntactic category
of the word) and an average frequency count of 152 in a corpus of child directed speech
(the Lyon corpus, Demuth & Tremblay, 2008).

The 4 animal-homophones were also all monosyllabic words: "chat", "loup", "poule",
"mouche" (/Sa/, /lu/, /pul/, /muS/) meaning: cat, wolf, hen and fly. These words had
an average phonological neighborhood density of 3.1 (irrespective of the syntactic category
of the word) and a frequency count of 157 in a corpus of child directed speech (the Lyon
corpus, Demuth & Tremblay, 2008).

The 4 novel non-homophones were identical to those used in Experiment 1.

The average duration of the novel words in the test sentences was 455ms for the artifact-
homophones, 517ms for the animal-homophones and 622ms for the non-homophones.

Measure and Analysis. Similar to Experiment 1, except that this time the dependent
variable was the proportion of looks towards the plush animal labeled during the learning
phase (in order to compare any potential difference in behavior between the test trials on
the homophone label and the mutual exclusivity trials on the non-homophone label). The
cluster analysis was this time run from -1500ms before target word onset until the end of
the trial.

Results

Artifact-homophone group

Figure 3.2 shows the proportion of looks towards the referent of the artifact-homophone
(the labelled animal during the learning phase) from -1000ms before the beginning of the
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first target word ("Regarde le [target]! tu le vois le [target]" Look at the [target]]! Do
you see the [target]) until the end of the trial.
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Figure 3.2: Proportion of looks towards the artifact-homophone referent from the beginning of
the first target word (do you see the [target]?) for the artifact-homophone (in blue)
and for the non-homophone (in black). Toddlers successfully learnt the artifact-
homophone as they significantly increased their look towards the correct picture after
target onset , and this behavior was significantly different from the non-homophone
condition, in which children tended to switch back to the unnamed plush animal
(dark blue shaded area).

Toddlers looked significantly above chance towards the target in the artifact-homophone
condition (blue curve; from 1122ms after target word onset; p < .01; light blue shaded area
in Figure 3.2) and did not show any preference for any of the objects in the non-homophone
condition (p > 0.3). Crucially there was a significant difference in performance between the
artifact-homophone condition and the non-homophone condition (from 1928 ms to 2508ms
after target word onset; dark blue shaded area; p < .05). This difference in performance
ensures that the increase in looking towards the artifact-homophone was not due to a
preference for looking at the only labeled animal.13

13Another group of toddlers tested on the non-homophone condition only showed a significant mutual
exclusivity effect: They looked more at the unnamed animal. One possibility is that we do not observe
a mutual exclusivity effect here because the task was more complex, since toddlers were tested on two
words (the artifact-homophone and the non-homophone) instead of one (the non-homophone).
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This effect was replicated with another group of 16 toddlers that was tested only on the
animal-homophone during the test phase.
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Figure 3.3: Replication of the artifact-homophone group except that this time toddlers were
tested on the artifact-homophone label only. Toddlers looked significantly above
chance towards the target in the artifact-homophone condition (blue curve; from
578ms after target word onset; p < .05; blue shaded area)

Toddlers successfully learnt the artifact-homophone. This suggests that they have no
problem learning a second meaning for a known word when this additional meaning is
semantically distinct from the original meaning of the word. Yet, if semantic distinction
is really what matters, toddlers should fail to learn a second meaning for a known word
when the additional meaning is semantically close to the known meaning of the word (the
animal-homophone group).

Animal-homophone group

Figure 3.4 shows the proportion of looks towards the labelled referent from the beginning
of the first target word ("Regarde le [target]! tu le vois le [target]" Look at the [target]]!
Do you see the [target]) until the end of the trial.
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Figure 3.4: Proportion of looks towards the animal-homophone referent from the beginning of
the first target word (do you see the [target]?) for the animal-homophone (in gold)
and for the non-homophone (in black).

Crucially, toddlers behaved differently when they learnt an animal-homophone: In both the
animal-homophone condition (gold curve) and the non-homophone condition (black curve)
they looked at the animal-homophone referent at a rate above chance before the onset of
the target word (from about -400ms to 70ms around target word onset for both conditions;
ps < .05).There was no difference between conditions. Thus, not only did toddlers in the
animal-homophone condition fail to show any recognition of the animal-homophone label,
they also failed to apply mutual exclusivity when tested on a non-homophone, suggesting
that they did not learn to associate the animal-homophone word to the correct plush
animal.

There was a significant difference between the artifact-homophone condition and the
animal-homophone condition (from 1924ms to 2584ms after target word onset, p < .04).
This suggests that toddlers are confused when the two meanings of a pair of homophones
are semantically close.
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This effect was replicated with another group of 16 toddlers that was tested only on the
animal-homophone during the test phase.
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Figure 3.5: Replication of the animal-homophone group except that this time toddlers were
tested on the animal-homophone label only. Similarly they looked at the target
picture significantly above chance yet again before target word onset (from -1018ms
to 1000ms around target word onset; p < .05).

In sum, toddlers did not show recognition of the animal-homophone, instead they looked
at the target animal before word onset as if they were surprised by the possibility of such
a form-meaning association.

Discussion

Toddlers had no problem learning an artifact-homophone but failed to display any learning
of the animal-homophone. This suggests that toddlers treated these labels differently and
this critically affected their identification of what counts as a novel lexical entry.

One possibility is that they found it easier to learn homophones that are semantically
distinct over homophones that are semantically close. When the speaker used an artifact
label to name a novel animal, the difference between the normal usage of the word and
this novel situation is so great that it looks unlikely that the speaker could use the label
to refer to the original meaning. However, when the original meaning (an animal) is close
enough to the novel meaning (another animal), as in the case of the animal-homophone, it
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may be more difficult for toddlers to differentiate between a less prototypical member of
the original meaning of the label and a novel meaning instance.

Another possibility is that some unmeasured difference between the set of artifact labels and
the set of animal labels was responsible for the observed effect. While both sets of words
were matched for frequency, neighborhood density in toddlers’ lexicon and phonotactic
probability, toddlers may have a better lexical representation for the animal labels than
the artifact labels used in this study, leading to greater interference (e.g., McKenna &
Parry, 1994; Setoh, Wu, Baillargeon, & Gelman, 2013, for some evidence that animals may
have a special status). Thus, toddlers may find it more difficult to learn a second meaning
for an animal-label than for an artifact-label not because the semantic distance between
the two meanings is greater for the artifact-homophones but because toddlers may have
greater difficulty in suppressing the primary meaning of the animal-homophones. The next
experiment disentangles between these two possibilities.

Experiment 3

Experiment 3 was similar to Experiment 2, except that this time toddlers were taught
that the animal-homophone labels used in Experiment 2 could label a novel artifact (e.g.,
"un chat", a cat, was used to label a novel music instrument). Thus, the set of animal-
homophone labels was identical to Experiment 2 but, crucially, the semantic distance
between the two meanings of the label increased. If semantic distance between meanings
of a pair of homophones is a major reason why learning an artifact-homophone is easier
than learning a animal-homophone in Experiment 2, then toddlers should have no problem
learning an animal-homophone when the novel meaning is sufficiently distant semantically
from the animal category. On the contrary if better lexical representations for the animal-
labels used in Experiment 2 led to the observed effect, then toddlers should still fail to
learn an animal-homophone even though its second meaning is semantically distinct from
its original meaning.

Method

Participants. Fourteen14 French 20-month-olds took part in this experiment. 14 ad-
ditional children were replaced because of technical problem (n = 10; see footnote 12),
refusal to wear the sticker necessary for eye-tracking (n = 2), because the parent took out
the earphones during the experiment (n = 1) and because the child did not know any of
the target words (n = 1).

14This experiment is on-going.
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Apparatus, procedure and design. Similar to the animal-homophone group in Exper-
iment 2.

Material. Similar to Experiment 2 except for the set of novel objects used during the
teaching phase.

Novel objects. The novel objects were two unfamiliar artifacts. One was a music instrument
composed of 8 spinning colored bells and the other was a colored spinning top (see Figure
3.6).

Figure 3.6: Novel objects used in Experiment 3.

Measure and Analysis. Similar to Experiment 2.

Results

Figure 3.7 shows the proportion of looks towards the labelled referent from the beginning
of the first target word ("Regarde le [target]! tu le vois le [target]" Look at the [target]]!
Do you see the [target]) until the end of the trial.

Importantly the animal-homophone label did not trigger a "surprisal effect" as in Ex-
periment 2: When the animal-homophone is used to label an artifact, toddlers increased
their looks towards the correct artifact referent (though this preference was not significant;
p = .3). This time, they also correctly performed mutually exclusivity as they looked
significantly below chance to the animal-homophone referent (grey shaded area, from 2242
ms until the end of the trial; p < .05).
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Figure 3.7: Proportion of looks towards the animal-homophone referent (an artifact) from the
beginning of the first target word (do you see the [target]?) for the animal-
homophone (in gold) and for the non-homophone (in black).

Crucially there was a significant difference in performance between the animal-homophone
condition and the non-homophone condition (from 2676 ms to 3500 after target word onset,
dark orange shaded area, p < .05). This indicates that toddlers treated these two words
differently, very much like the artifact-homophone group in Experiment 2 (where artifact-
homophones labelled novel animals; there was no significant difference between Experiment
3 and the artifact-homophone group in Experiment 2 for both the homophone and the non-
homophone conditions p > .1) and importantly, differently from the animal-homophone
group (where animal-homophones labelled animals; although there were no significant dif-
ference between Experiment 3 and the animal-homophone group in Experiment 2 for the
homophone and the non-homophone conditions, p > .3).

Discussion

Toddlers were able to learn an artifact-homophone when it labeled a novel animal but failed
to learn an animal-homophone labeling the same animal (Experiment 2). However when
the animal-homophone was used to label a novel artifact, toddlers seemed to be able to
learn it (Experiment 3). Thus, the results suggest that toddlers have no problem learning
a second meaning for a known word if this second meaning is semantically distinct from
the first known meaning.
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However, while toddlers’ performance in Experiment 3 did not differ from the artifact-
homophone group in Experiment 2, it seems that toddlers were not as successful to learn
an animal-homophone as an artifact-homophone even when the semantic distance between
the novel and the primary meaning is kept the same. There may be two possibilities to
account for this observation: First, there may be a small effect of animal labels vs. artifact
labels: It could be the case that lexical representations for animals are more entrenched
than the lexical representations of the artifacts chosen in this set of experiments and thus
interfere more with the creation of a novel lexical entry; Second, the stories of Experiment
3 and Experiment 2 are different and involve different sets of objects. Thus it may be
the case that the stories used in Experiment 3 are more complicated for toddlers than the
stories of Experiment 2. In particular because they involve more complicated vocabulary
(e.g., for artifacts: "button", "playing music", "bell", "spinning" vs. for animals: "ear",
"nose", "legs", "jumping") that may be less known to toddlers of that age. Future work will
control for that possibility by teaching toddlers non-homophones for these novel artifacts
to check whether these stories generally make word learning more challenging.

In sum, in Experiment 1 showed that toddlers had no problem to learn a second meaning
for a known word when this second meaning was syntactically and semantically distinct
from the known meaning. Experiment 2 showed that a semantic distinction between the
meanings of a pair of homophones was sufficient to learn them. One question that remains
is whether a syntactic distinction between the members of a homophone pair may be
sufficient to learn two meanings for the same word form. I investigate this question in
Experiment 4.

3.2.3 Experiment 4 - Manipulating the syntactic distance using gender

Experiment 4 investigated whether solely increasing the syntactic distance between the
meanings of a pair of homophones may facilitate the acquisition of these meanings. To iso-
late the effect of syntax from semantic, I focused on grammatical gender. Crucially, gram-
matical gender is a lexical property, as opposed to a semantic property in languages where
gender categories are not clearly defined in semantic terms (as it is the case in French).
In gender-marking languages, the gender of the noun determines the form of associated
determiners and adjectives. In French, feminine nouns are preceded by a gender-marked
definite article "la" or indefinite "une" and masculine nouns by the gender-marked definite
article "le" or the indefinite "un" when used in their singular form. Such gender cues
have been shown to constrain lexical access in adults (e.g., Dahan, Swingley, Tanenhaus,
& Magnuson, 2000; Spinelli & Alario, 2002) but also in young children (E. K. Johnson,
2005; Lew-Williams & Fernald, 2007; Van Heugten & Shi, 2009). Interestingly for the
current study, adults use such gender-marked context to selectively access the meaning of
homophones (Spinelli & Alario, 2002). For instance, in French, /sEl/ means both saddle
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(feminine) and salt (masculine) and each meaning is accessed independently when preceded
by a gender-marked article. Gender could thus be used to distinguish between different
meanings of the same phonological form, by preventing the activation of lexical candidates
that do not belong to the same gender category.

I explored whether a context marked for grammatical gender can help toddlers to identify a
second meaning for a known word when the original and the second meanings are associated
with different genders. In Experiment 4, toddlers were taught that a novel animal label
was homophonous with an animal noun they already knew (as in Experiment 2) but this
time in a different gender-marked context (a gender-homophone, semantically identical
to the first meaning but syntactically different; e.g., "une chat", a catfeminine, normally
masculine in French). If a gender-marking context is sufficient to identify an additional
meaning for a known word, then toddlers should recover from their failure to learn an
animal-homophone (Experiment 2) and correctly learn it when presented in a different
gender-context.

Method

Participants. Sixteen French 20-month-olds took part in this experiment (range = 19;2
months to 21 months, mean = 20;2, SD = 0;5, 7 boys). Two additional children were
replaced because of fussiness during the experiment resulting in more than 50% of trials
with missing eye tracking data.

Apparatus, procedure and design. Similar to Experiment 2 except that this time
there was no non-homophone condition (as toddlers’ behavior was consistent between the
same experiment with and without this condition, compare Figure 3.2 and 3.3 as well as
Figure 3.4 and 3.5).

Material. Similar to Experiment 2 expect for the gender of the labels.

Novel words. The 4 animal-homophones were taught with a different gender (therefore
gender-homophones): une chat, une loup, un poule, un mouche (cat, wolf, hen and fly)
instead of un chat, un loup, une poule, une mouche. The average duration of the novel
words in the test sentences was 530ms for the gender-homophones.

Measure and Analysis. Similar to Experiment 1.
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Results

Figure 3.8 shows the proportion of looks towards the target around the beginning of the
first target word ("Regarde le [target]! tu le vois le [target]" Look at the [target]]! Do
you see the [target]) until the end of the trial.
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Figure 3.8: Proportion of looks towards the target picture from the beginning of the first target
word (do you see the [target]?) for the gender-homophone (in orange). Toddlers
failed to show any recognition of the gender-homophone.

Toddlers taught a gender-homophone patterned the same way than toddlers taught an
animal-homophone (Figure 3.4 and 3.5): They looked at the target at a rate above chance
but again, before target word onset (from -364ms until 0ms) though this effect was only
marginally significant (p = 0.09). This suggests that toddlers fail to learn the gender-
homophones in the same way they failed to learn the animal-homophones (Experiment
2).

Discussion

Experiment 4 isolated the effect of syntax alone in the identification of a novel meaning
by using a gender-marked context. The results show that toddlers failed to take this
information into account. Certainly it does not mean that syntax alone is insufficient to
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distinguish between meanings of a pair of homophones, but that gender may not provide
enough evidence for toddlers that a novel meaning is intended in that situation.

Yet there may be several others interpretations for toddlers’ failure. One possibility is that
French 20-month-olds do not yet use gender when processing spoken language. However, I
believe this possibility to be unlikely: A recent study shows that 18-month-old toddlers can
track the statistical dependencies between gender-marked articles and nouns (Van Heugten
& Christophe, in press). Toddlers prefer to listen to article-noun sequences in which the
gender-marked article matched with the gender of the noun (e.g., "lafem poussettefem",
the stroller) than when the gender-marked article mismatched with the gender of the
noun (e.g.,"lemasc poussettefem"). This suggests that toddlers of that age may already be
sensitive to gender cues when processing speech.

Another possibility is that gender information may not bring convincing evidence that a
novel meaning is intended when used to label animals. Indeed, gender marking for an
animal-label corresponds to the male and female individuals of the specie (e.g., "unmasc

chat" /Sa/ refers to the male cat and "unefem chatte" /Sat/ to the female cat). Accordingly
if toddlers already know that animals may have different biological genders and understand
that female individuals are often preceded by a feminine article (e.g., "la") and male in-
dividuals by a masculine article (e.g., "le"), they may have considered that the original
meaning was intended when presented with the novel animal, as in Experiment 2, despite
being preceded by contradictory gender information. Thus, if gender-marking helps to
distinguish an additional meaning for a known word form, such information may be avail-
able only when labeling non-biological entities. In order to test this hypothesis, the same
experiment could be conducted on artifact-labels instead of animal-labels.15

At any rate, while toddlers of that age use gender cues when processing speech, such cues
may not constitute systematic evidence to identify that a word form could map onto several
meanings (as I discussed in the case of animal labels) and accordingly toddlers may fail
to use it as I show here. If this is correct, this suggests that learning should not exert a
pressure for across-genders homophones to be more represented than chance in the lexicon,
I come back to this hypothesis in section 3.3.

3.2.4 Experiment 5 - Manipulating neighborhood density

The previous experiments manipulated the distance (semantic and syntactic; semantic
alone; syntactic alone) between a known first meaning and a novel second meaning. Exper-
iment 5 investigated whether the phonological context of the word in the lexicon (whether

15Though, one would need to find a condition where children fail on artifact-labels first.
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it belongs to a dense vs. sparse phonological neighborhood) modulates the conditions in
which toddlers accept a secondary meaning for a known word.

Phonological neighborhood density for a word is the number of words that differ by one
addition, one deletion or one substitution (Luce, 1986). For instance, neighbors of "cat"
include words such as "cap", "hat", "fat", "rat", "at", "catch", etc. Some words are said
to live in a dense neighborhood when they have many neighbors and some words live in a
sparse neighborhood because they have only a few neighbors. Importantly, neighborhood
density has been shown to play a critical role in speech processing: Adults recognize words
faster when they live in sparse neighborhoods than when they live in dense neighborhoods
(Luce & Pisoni, 1998a; Magnuson, Dixon, Tanenhaus, & Aslin, 2007). Such an inhibitory
effect may also help toddlers to learn homophones as I explain below.

In previous experiments, toddlers were taught a novel meaning for a known word form
with a high phonological neighborhood density in toddlers’ lexicon. Indeed, on average
the animal-homophones had a phonological neighborhood density of 3.1 and the artifact-
homophone of 3.8, which is rather high considering that an average French 20-month-old
toddler comprehends about 200 words (according to measures using the French CDI in
previous experiments, Kern, 2007). One possibility is that learning an artifact-homophone
was possible in Experiment 2 because of the semantic distance between the original meaning
(an artifact) and the novel meaning (an animal) of the word. Yet, another non-mutually
exclusive possibility for their success, is the use of word forms with high phonological
neighborhood density in this experiment (e.g., "bain" bath) which may have activated
others words in toddlers’ lexicon (e.g., "pain" bread, "main" hand), thus inhibiting strongly
the known meaning and favoring the possibility of a novel meaning in these conditions.

Experiment 5 explored whether neighborhood density modulates the learning effect ob-
served in Experiment 2. Toddlers were taught that a novel animal label was homophonous
with an artifact noun they already know (as in Experiment 2) but this time the label
was from a sparse phonological neighborhood in toddlers’ lexicon (a sparse-homophone:
Semantically distinct from the original meaning but whose word form has a low phonolog-
ical neighborhood density; e.g., "un livre", a book). If phonological neighborhood density
helped toddlers to learn the artifact-homophones in Experiment 2, then toddlers should
fail to learn the sparse-homophones. On the reverse, if toddlers are able to learn the sparse-
homophones as well as the artifact-homophones in Experiment 2, this would suggest that
increasing the semantic distance between the meanings of a pair of homophones is enough
to learn these meanings, independently of the phonological neighborhood density of the
word form.
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Method

Participants. Sixteen French 20-month-olds took part in this experiment (range = 19;1
months to 21 months, mean = 20;1, SD = 0;6, 9 boys). Six additional children were
replaced because of fussiness during the experiment resulting in more than 50% of trials
with missing eye tracking data (n = 3), refusal to wear the sticker necessary for eye-tracking
(n = 1), no increase in average proportion of looks towards the target during familiar-word
trials (n = 1) and technical problem (n = 1).

Apparatus, procedure and design. Similar to Experiment 4.

Material. Similar to Experiment 4 except for the set of sparse-homophones used in the
teaching phase.

Novel words. I chose 4 phonological word forms of nouns labeling artifacts that toddlers
of that age are likely to know (according to the CDI of previous studies).

The 4 sparse-homophones were also all monosyllabic words: livre, fleur, fraise, sieste
(/livK/, /flœK/, /fKEz/, /siEst/) meaning: book, flower, strawberry and nap. These words
had an average phonological neighborhood density of 0 in children’s lexicon (irrespective
of the syntactic category of the word). The average duration of the sparse-homophones in
the test sentences was 726ms.

Measure and Analysis. Similar to Experiment 1.

Results

Figure 3.9 shows the proportion of looks towards the target around the beginning of the
first target word ("Regarde le [target]! tu le vois le [target]" Look at the [target]]! Do
you see the [target]) until the end of the trial.
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Figure 3.9: Proportion of looks towards the target picture around the beginning of the first
target word (do you see the [target]?) for the sparse-homophone (in dark blue). The
replication of Experiment 2 (Figure 3.3) has been reproduced here in dashed line
(light blue) for convenience).

Toddlers taught a sparse-homophone behaved like toddlers taught an artifact-homophone:
They looked to the correct referent at a rate above chance (from 864ms until 1876ms;
p < .05) suggesting that they learnt the sparse-homophone.

There was no statistical difference in learning a sparse-homophone and a (dense) artifact-
homophone in the same experimental design: I compared the replication of Experiment 2,
in which children are tested only on the animal-homophone, with the sparse-homophone
condition (p = 0.15).

Discussion

Toddlers successfully learnt a sparse-homophone, and behaved in the same way as if they
learnt a (dense) artifact-homophone. This suggests that phonological neighborhood density
does not exert a major influence on homophone learning.

However, despite the lack of statistical significance, there seems to be a learning advantage
for dense artifact-homophones compared to sparse artifact-homophones (Figure 3.9) sug-
gesting that an influence of neighborhood density on learning may be visible with more sta-
tistical power. Yet such an advantage might be also compatible with another explanation:
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Dense artifact-homophones are composed of more frequent sound sequences than sparse
artifact-homophones (cumulative bigram log-probability logP = −3.38 for dense artifact-
homophones; logP = −5.69 for sparse artifact-homophones16) and there is evidence that
toddlers and children find it easier to learn words composed of frequent segments than
words composed of infrequent segments (Graf Estes & Bowen, 2013; Storkel & Maekawa,
2005).

At any rate, the present results suggest that the effect of phonological neighborhood density
is smaller than the effect of semantic distance.

3.2.5 Conclusions

An important part of the word learning process requires children to identify what counts as
a novel word and what does not. This is especially a challenge when learning homophones,
where the same phonological form is used to refer to several distinct meanings. Here, I
investigated different sources of information that may help children to identify when a novel
meaning for a known word is appropriate. Specifically I manipulated 1) both the syntactic
and the semantic distance between the novel word and its familiar homophone across
experiments (Experiment 1-4) and 2) the position of the word form in the phonological
network of the mental lexicon (Experiment 5).

Experiment 1 showed that toddlers had no problem learning homophones when their mean-
ings are realized in different syntactic categories: "an eat" was a good label for a novel
animal despite children knowing the meaning of the verb "to eat". Yet, this does not tell us
whether the syntactic distinction (noun/verb) or the semantic distinction (object/action)
between the two meanings was important to learn homophones. Experiment 2 and 3
showed that a semantic distinction between the two meanings of a pair of homophones was
sufficient to trigger learning: Toddlers learnt easily that "a potty" could also label a novel
animal but failed in a condition where the novel animal was labelled "a cat". However,
Experiment 4 failed to show that the syntactic context alone, when different meanings of
a homophone are cued by different genders, is sufficient to learn a second meaning for a
known noun: Toddlers failed to learn that a novel animal could be called "unefem chat"
a cat despite the existence of the article "unefem" that indicates that "chat" (a masculine
noun in French) may not be used in its known meaning. Finally, Experiment 5 suggests
that the phonological density of the word form of the homophone does not have a major
influence on establishing that this word form maps onto several meanings.

The word learning process, thus, does not seem to exclusively rely on identifying those word
forms that have no lexical entry and associate them a meaning (e.g., Carey, 1978b). As I
16This was calculated using a ngram model on the set of word types in the French lexicon, taken from the

Lexique database; (New, Pallier, Brysbaert, & Ferrand, 2004)
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showed were, deciding what counts as novel word or not depends on the context in which
the word form appears, even when this word form already has a lexical entry in children’s
lexicon. In particular, the linguistic context plays a prominent role in constraining lexical
access to the existing word and thus impacting the likelihood that this word form could
convey a novel meaning in that context. Similarly, when the two meanings of the same
word form are semantically distinct, it makes it easier to identify that a novel meaning is
intended.

Taken as a whole, this set of studies suggests that learning homophones is less challenging
for toddlers than one might think: When the two meanings of a pair of homophones appear
in contexts that are sufficiently distinct, they are learnt as easily as non-homophones. I
conclude that creating a novel lexical entry depends on multiple sources of information
coming from the lexicon and the parsing system.
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3.3 Similar-sounding words and homophones in the lexicon

The results obtained in both section 3.1 and 3.2 suggest that the process of creating a
novel lexical entry is mediated by multiple sources of information coming from the lexicon
(e.g., lexical-semantic relationships) and the parsing system (e.g., expecting a noun or a
verb in a given linguistic context). As a result, minimal pairs of words and homophone
pairs are less challenging for children than previous studies suggested, at least whenever
each member of the pair appears in distinct syntactic or semantic contexts. One important
question is whether the structure of the lexicon reflects these constrains on learning: Is it
the case that members of a homophone pair, or a minimal pair, are more distant from one
another than would be expected by chance alone? Such a result would suggest that the
lexicon might be shaped by learning constraints.

3.3.1 Minimal pairs in the lexicon

Learning neighbors of familiar words is difficult for toddlers, but as I showed, this diffi-
culty disappears when the novel words appear in contexts that are sufficiently different
from their known neighbors (either syntactically or semantically or both) (section 3.1). If
learnability influences language changes, then this constraint on early lexical acquisition
might have a long-lasting impact on the overall structure of the lexicon. Do lexicons avoid
similar-sounding words? And when similar-sounding words do occur, are they preferen-
tially distributed across syntactic or semantic categories to improve their learnability (and
their recoverability)?

The quantitative analyses of the lexicon done in section 2.1 suggest that natural lexicons
contain many similar sounding words, more than what would be expected by phonotactics
and morphological regularity. In addition, lexicons display a small but significant tendency
for similar sounding words to be also more semantically similar (section 2.2, Monaghan,
Shillcock, Christiansen, & Kirby, 2014). Relevant to the results with toddlers, in section
2.1, I also looked at whether lexicons favor similar-soundings words (i.e., minimal pairs)
to appear across syntactic categories rather than within the same syntactic category (see
Figure 3.10 copied below for convenience). These results show that all 4 languages (Dutch,
English, French and German) have more minimal pairs within categories than would be
expected by chance. In sum, lexicons show an advantage for similar sounding words that
are closely related.
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Figure 3.10: These histograms show the distribution of the probability of getting a minimal pair
within and across syntactic categories compared to the real lexicon (the red dot).
The dotted lines represent 95% confidence intervals derived from the distribution
of simulated lexicons. All 4 languages are significantly more likely to have minimal
pairs within categories (bottom row) than would be expected by chance.

At first sight, this might appear at odds with children’s difficulty for learning similar
sounding words. Yet, learning is certainly not the sole pressure that could influence the
phonological structure of the lexicon. As discussed in chapter 2, word form similarity
may be preferred for other cognitive reasons. Indeed, similar-sounding words have been
shown to be easier to remember and produce for adults (e.g., Vitevitch, 2002; Vitevitch,
Chan, & Roodenrys, 2012; Vitevitch & Stamer, 2006) and preschoolers (e.g., Storkel & Lee,
2011; Storkel & Morrisette, 2002). Similarly, the result that words of the same syntactic
category share more phonological properties than with words of different classes (see also
Kelly, 1992) makes it easier to group words into categories and may help the acquisition
of syntactic or semantic categories (Monaghan, Christiansen, & Fitneva, 2011).

Why does word learning not actively exert a selective pressure for words that are phono-
logically dissimilar over the course of language evolution? There may be two possible
explanations for this. First, children may eventually learn phonological neighbors through
repeated exposure and more varied learning contexts. Thus banning these words from
appearing in the lexicon may not be required since it is not a major impediment to learn-
ing. Second, the present results suggest that the creation of a novel lexical entry depends
on children’s ability to use the context in which the novel word appears to constrain its
possible meanings. Over the course of development, children develop their lexicon as well
as their parsing abilities. As a result they become more sensitive to finer-grained contexts
that could help them to identify more easily when a novel meaning is intended, and this
even in cases when its associated word form is similar to a word form they already know.
For instance, in a sentence such as "Do you want to drive the tog?", children will likely
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interpret "tog" as a type of vehicle since they could use its immediate context (i.e., "drive")
to attribute properties ("could be driven") to the novel word that makes it unlikely to be
confused with "dog".

Importantly, the observation that difficulties in learning phonological neighbors do not
scale up to the overall structure of the lexicon does not mean that learning does not exert
an influence at all. Yet its influence may be less critical than the other cognitive pressures
mentioned above for this particular phenomenon. While learning difficulties may not be
visible in the static structure of the lexicon, they may be reflected in the dynamics of early
lexical growth: Novel words may preferably be added along dimensions that allow them
to be easily distinguishable from already existing words. Previous work looking at the
dynamic growth of the lexicon only focused on how phonological similarity or semantic
similarity of single words to other words in the rest of the lexicon may separately influence
word learning (Carlson, Sonderegger, & Bane, 2014; Hills, Maouene, Maouene, Sheya, &
Smith, 2009; Steyvers & Tenenbaum, 2005, but see Regier 2005). For instance, Hills et
al. (2009) show that the order of acquisition of nouns depends on the semantic or the
phonological connectivity to other words in the lexicon: The more connected the word, the
earlier it is acquired. Yet as we have seen, looking at a single dimension independently of
the others may not account for the learning pattern observed here. Thus, it remains open
to question whether the growing lexicon reflects the influence of the learning system.

3.3.2 Homophones in the lexicon

Learning homophones may be difficult even for preschoolers (Casenhiser, 2005; Doherty,
2004; Mazzocco, 1997), yet as I showed this difficulty is reduced when both meanings of
a pair of homophones have different syntactic categories or cover distinct concepts. One
interesting question is thus whether these learnability advantages translate into the overall
structure of the lexicon: Are there more homophones from different syntactic categories
than same-category homophones in lexicons? Similarly, are members of a homophone
pair more likely to be semantically distant in languages? Interestingly the present results
also suggest that grammatical gender and neighborhood density do not help toddlers to
identify whether a given word form maps onto several meanings. Following the same idea,
this suggests that these factors might not exert a major influence on the organization of
homophony within the lexicon.

To investigate these questions, I extracted the pairs of homophones in the lexicon of 4 lan-
guages (Dutch, English, French and German) and looked at their distributions in both the
syntactic (grammatical categories and gender) and semantic spaces. I then compared these
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distributions to random baselines that simulate how homophone pairs should be distributed
under random conditions if there were no cognitive pressure (including learning).17

Method

Lexicons. I used the phonemic lexicons of 4 languages: Dutch, English, German (ex-
tracted from CELEX, Baayen, Piepenbrock, & van H, 1993) and French (extracted from
Lexique, New et al., 2004). For each language, I defined a lexicon as the set of the most
10,000 frequent word forms.

To identify homophone pairs in each lexicon, I took all the pairs of words that share the
same phonological form but are from different lemmas according to their lemma code in
CELEX and Lexique. This procedure eliminated homophones coming from the same root
but instantiated by different categories (e.g., to fight/a fight) or where one of the forms
has a silent morphological marker (e.g., chien/chiens dog/dogs, which are pronounced in
the same way in French).

Measures.

Syntactic category. I used the Part Of Speech (POS) tags in CELEX for Dutch, English and
German and in Lexique for French to count the number of homophones within the same
syntactic category (e.g., animal-"bat"/baseball-"bat") and the number of homophones
across different categories (e.g., a park/to park).

Gender. I used the gender information tags provided in CELEX for Dutch and German
and in Lexique for French to count the number of noun-noun homophones within the same
gender (e.g., "avocat" meaning avocadomasc or lawyermasc) and across different genders
(e.g., mur/mûre, wallmasc/blackberryfem). Note that there are 3 grammatical genders in
Dutch and German (feminine, masculine, neutral) and 2 in French (feminine, masculine).
English was not concerned by this measure as it is not a gender-marked language.

Semantic Similarity. I applied Latent Semantic Analysis (LSA, Landauer & Dumais 1997)
on Wikipedia for each language using the Gensim package (Rehurek, Sojka, & others, 2010)
(see section 2.2). Thus, each word of the Wikipedia corpus was modeled as a vector in
a multidimensional space. The semantic similarity between two words is the cosine of
the angle between the two word vectors. A value close to 1 indicates that two words are
close in meaning, whereas values close to 0 indicate that the meanings are not related.

17Note that I did not study (yet) the influence of neighborhood density on homophones. However one
previous study suggests that shorter words and more phonotactically probable words (which also have
more phonological neighbors, see Mahowald, Dautriche, Gibson, & Piantadosi submitted) have more
meanings than longer and less phonetically likely words (Piantadosi, Tily, & Gibson, 2012). Yet, a
future study should examine whether there is an influence of phonological neighborhood density on the
number of meanings beyond confounding factors such as frequency, phonotactic probability and length.
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I computed the semantic similarity between the two members of homophone pairs that
shared their syntactic category (excluding across-categories homophones). Yet, because
LSA is computed over an orthographic corpus, only homophones that are written differently
can be distinguished with this measure, therefore I looked only at these homophones that
have different orthography (between 200 and 400 pairs for the 4 languages under study).

Random baselines.

Syntactic category. For each language, I shuffled the syntactic categories within each word
length. I then evaluated the number of pairs of homophones that fell across categories for
this random configuration.

Gender. For each language, I extracted the subset of nouns from the lexicon and shuffled
their grammatical gender within each word length. I then evaluated the number of pairs
of homophones that have a different gender for this random configuration.

Semantic similarity. Similarly, I randomly shuffled the LSA vectors within all words of
the same length and computed the average cosine similarity of this configuration of form-
meaning mappings for all pairs of homophones.

Each random baseline was repeated 30 times in order to obtain a chance distribution for
the given measure.

Results

Across-categories homophones in the lexicon

I first considered the proportion of homophone pairs that are distributed across syntactic
categories. If there are more homophones across syntactic categories than expected by
chance, the proportion of across-categories homophones should be greater in the lexicons
than in the random baselines.

Figure 3.11 shows how the random baselines (the histograms) compare to the lexicons
(the red dots). Crucially, all histograms fall to the left of the red dot, which means
that all lexicons have more across-categories homophones than expected by chance (all
ps < .001). Note that the proportion of across-categories homophones (ranging from 0.8
to 0.9 across the 4 languages) is greater than the proportion of same-category homophones
(the complementary proportion). This suggests that there is a pressure for homophones
to be distributed across syntactic categories rather than within.
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Figure 3.11: These histograms show the distribution of the proportion of across-categories ho-
mophones compared to the real lexicon (the red dot). The dotted lines represent
95% confidence intervals derived from the distribution of random baselines. All 4
languages have significantly more across-categories homophones than expected by
chance.

Across-genders homophones in the lexicon

I then considered the proportion of noun-noun homophone pairs that are distributed across
different genders. Because English is not a gender-marked language, this analysis focuses
on Dutch, German and French.

As shown in Figure 3.12, the proportion of across-genders homophones is lower than chance
(German) or undistinguishable from chance (Dutch and French), suggesting that there is no
pressure for distributing noun-noun homophones across grammatical genders unless there
are phonological correlates of gender-marking that make it difficult to get different-gender
homophone pairs – but would make it easier to learn and remember gender itself.
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Figure 3.12: These histograms show the distribution of the proportion of across-genders homo-
phones compared to the real lexicon (the red dot). The dotted lines represent 95%
confidence intervals derived from the distribution of random baselines. Lexicons
do not have more different-gender homophones than expected by chance.

120



3.3 Similar-sounding words and homophones in the lexicon

Semantically unrelated homophones in the lexicon

Finally, I looked at the average semantic similarity of all pairs of homophones from the same
grammatical category and whose members have a different orthography (see the Method
section).

As seen in Figure 3.13, the average semantic similarity between meanings of a homophone
pair does not differ from chance across all 4 languages. I discuss one possible explanation
for this result in the Discussion.
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Figure 3.13: These histograms show the distribution of the average semantic distance between
members of a pair of homophones compared to the real lexicon (the red dot). The
dotted lines represent 95% confidence intervals derived from the distribution of
random baselines. The members of the pairs of homophones in these 4 lexicons are
not more semantically distant than expected by chance.

Discussion

The distribution of homophones in the lexicon is mainly in line with the results with
toddlers: 1) there are more across-categories homophones in the lexicon than same-category
homophones and it is also the case that toddlers learn homophones easily when they span
different syntactic categories; 2) the distribution of homophone pairs across grammatical
genders is not different from chance and toddlers appear to not be influenced by gender
when learning homophones. However, 3) the average semantic similarity between the two
members of a pair of homophones is as low as the chance level of semantic relatedness, yet
toddlers find it easier to learn homophones when their meanings are sufficiently distinct.

Point 3) above seems to contrast with the results with toddlers. Yet, the result of the
lexical analysis should not be surprising. Recall that the chance level was constructed by
randomly assigning a meaning (i.e., a vector) to each word involved in a homophone pair.
Yet, how likely is it for two randomly chosen meanings in the lexicon to be similar? The
intuition is that it is pretty low. As a result, the chance level already measures the absence
of similarity between two meanings. Thus if homophones are indeed semantically distinct,
then it is no surprise that their average semantic distance does not differ from such chance
level.
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3 Learning confusable and ambiguous words

It is also important to consider the methodological limitations of these results. All these
analyses depend on the coding scheme used for lemmas: Which word form counts as a
lemma and which word forms are derived from it. This was essential to spot homophones
which, by definition, belong to different lemmas. Yet it certainly misses homophones on
the way. For instance, "to run" and "a run" are coming from the same lemma according to
CELEX. Yet "a run" could mean, inter alia, a score in baseball while "to run" could mean
to manage a place. This is a case where these distinct meanings could well be considered
as homophones and not as derived meanings of the same base (polysemes).18

Despite these limitations, the present results show that there are some correspondences
between what makes homophones easy to learn and how they are organized in the lexicon.
Certainly this does not imply that learning difficulties, and learning facilities, translate
directly into lexical structure. The distribution of homophones in the lexicon is also com-
patible with a pressure for communication: If words can be easily distinguished in context,
there is more chances that the message will be transmitted accurately. The aim of the
present work was not to distinguish between these pressures (I discuss possibilities of do-
ing so in the General Discussion) but to point out that the homophones that are currently
in the language display properties that make them learnable. This suggests, tentatively,
that homophones that did not display these properties may have been eliminated from the
lexicon across language evolution.

18Note that the boundary between certain polysemous words (called irregular polysemous) and homo-
phones is unclear (Rabagliati & Snedeker, 2013)
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3.4 Summary and Discussion

At the beginning of this chapter I laid out that similar-sounding words and ambiguous
words were a challenge for children who need to determine what counts as a novel word
and what does not (the identification problem).

In section 3.1, I revisited children’s failure to learn similar-sounding words (learning
"tog" when "dog" is already in their lexicon Swingley & Aslin, 2007). I proposed that
toddlers may resist considering "tog" as a novel object label because its neighbor "dog"
is also an object, such that both words share too many commonalities between them. To
increase the likelihood that a novel form such as "tog" could be interpreted as a novel
word, I manipulated the syntactic context of the form. In particular, 18-month-olds were
taught object labels that were phonological neighbors of a familiar noun (as "tog" was,
for "dog"), or neighbors of a familiar verb (like teaching "kiv", a neighbor of "give").
Children successfully learnt the verb-neighbors but failed to learn the noun-neighbors.
Thus, manipulating the linguistic context by placing a verb-neighbor in a noun syntactic
frame indicated to children that a new meaning was appropriate for the novel word form.
Learning neighbors of familiar words is difficult for toddlers, but this difficulty disappears
when the novel words appear in contexts that are sufficiently different from their known
neighbors.

In section 3.2, I investigated whether children’s ability to learn homophones depends
also on the context these words are presented in. I showed that 20-month-olds are willing
to learn a second meaning for a word they know, provided that the two homophones are
sufficiently distant syntactically (e.g. "an eat" is a good label for a novel animal), or
semantically (e.g. "a sweater" for a novel animal), but not when they are close (e.g. "a
cat" for a novel animal). This suggests that when the two members of a homophone pair
appear in contexts that are sufficiently distinct (either syntactically or semantically) they
are learnt as easily as non-homophones.

As the present results suggest, minimal pairs and homophones may be less problematic than
previously thought, at least when each member of the pair appears in different syntactic
or semantic contexts that indicate to children that a meaning distinction is necessary.

In section 3.3, I evaluated whether similar-sounding words and homophones are dis-
tributed in the lexicon in a way that makes them more distinctive, thus more learnable.
Interestingly enough, my results show that despite being more learnable, there is no pres-
sure for minimal pairs to appear across distinct syntactic categories in the lexicon and to be
semantically distinct (see section 2.2). In contrast, such a pressure exists for homophones,
that is, there are more across-categories homophones than expected by chance and that
homophones were as semantically dissimilar as any random pair of words in the lexicon.
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3 Learning confusable and ambiguous words

Note that this trend was observed for all 4 languages under study (Dutch, English, French
and German) suggesting that these results are robust cross-linguistically (though further
investigation with more language families needs to be done in order to confirm this).

How can we explain that minimal-pairs and homophones are distributed differently in
the lexicon? I suggest that these differences reflect the influence of different functional
pressures associated with language acquisition and language use. There may be a greater
advantage for minimal pairs to be more semantically similar and clustered within the
same syntactic category than for homophones. I suggested that a compressible lexicon,
or clumpy lexicon, would be advantageous for speech production (i.e., re-use of common
articulatory sequences), memory (i.e., less sound sequences to remember) and learning
categories (i.e., phonological similarity may facilitate the identification of syntactic and
semantic classes). Additionally such a clumpy lexicon would also be advantageous to
segment speech into words (see the Introduction 1.2.1, Altvater-Mackensen & Mani, 2013).
A pressure for clumpiness would prevail over a pressure for distinctiveness because adults,
and children as I showed here, are able to use fine-grained contextual cues to access the
relevant meaning of the word successfully (see the relevant discussion in section 3.3). On
the contrary, homophones show an advantage of distinctiveness over clumpiness, suggesting
that because of form-identity, there is no choice but for these words to be distinctive in
meaning in order to be learnable and transmitted with accuracy.

In sum, the lexicon is the theater of functional tradeoffs: Several pressures seem to be at
play in the lexicon and influence differently the set of word forms present in the language
and how they associate to meanings. An important future direction for this work will
be to determine exactly how such functional tradeoffs arise in the course of language use
and its acquisition depending on the phenomenon (e.g., minimal pairs, homophones) under
study.
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4 Theories of word learning and
homophony: what is missing, what do
we learn

Learning the meaning of a word is not an easy task, though children make it appears
this way. Certainly, after a few presentations children are able to correctly identify the
appropriate referent of a novel word they just have been taught (see Chapter 3). Yet, it is
unclear what exactly they have "learned" about the word and which lexical representation
they have formed. Suppose that a speaker uses "banana" to refer to the fruit the child is
eating, what can the child infer about the word "banana"? At this point, even assuming
that the child understood which object is referred to by the word in context (a non obvious
problem, see section 1.2.3), the meaning of "banana" is still undetermined (Quine, 1960).
Certainly "banana" could refer to the set of all bananas and only bananas but many others
meanings are consistent with that one experience: the set of all fruits, the set of all yellow
objects and so on.

Existing theories of word learning have stressed the importance of prior knowledge or con-
straints about possible word meanings to constrain the learning problem faced by the child
(e.g., Bloom, 2001; Goodman, 1955; Markman, 1989). For instance, children assume that
novel labels refer to whole objects rather than parts of the object (the whole object con-
straint, Markman, 1991), to objects of the same type (the taxonomic constraint, Markman
& Hutchinson, 1984) and to unnamed objects (the mutual exclusivity constraint, Mark-
man & Wachtel, 1988). These constraints on word learning have specifically addressed the
problem of learning unambiguous words where a single form is used to refer to a single
meaning.

I propose that current accounts of word learning face massive challenges which can be
revealed by trying to incorporate more word learning phenomena into the picture. In this
chapter, I focus in particular on the role of homophony: what are the factors that lead
language learners to postulate homophony for a new word? and what does homophony
reveal about the word learning algorithm? Specifically, in Section 4.1, I investigate
whether observing a "gap" in conceptual space between the learning exemplars for a given
word or the intervention of other lexical items in that gap, lead adult learners to postulate

127



4 Theories of word learning and homophony: what is missing, what do we learn

homophony for a word. In Section 4.2, I take this results further by looking at children’s
acquisition of homophones.
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Abstract 

 

Homophones are word forms associated with two separate meanings. Two sets of 

experiments documented two factors that lead adults to postulate homophony for newly 

learned words: the gap in conceptual space between the learning exemplars for a given word 

and the intervention of other lexical items in that gap (Experiment 1). These effects were 

modulated by zeugmas, linguistic manipulations coherent with the presence/absence of 

homophony (Experiment 2). We show how homophony yields a challenge to current 

accounts of word learning, which share, explicitly or implicitly, a “convexity constraint”: 

learners seek to associate a given phonological form with a single meaning, whose extension 

is convex in conceptual space. Homophones, however, cover disconnected areas in 

conceptual space and therefore call for an explicit way to integrate them into current models 

of word learning. 
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Learning the word “cat” implies associating the sequence of sounds /kaet/ to the set 

of all cats and only cats. Quite generally one description of the meaning of a content word is 

its “extension”, i.e. the set of all entities to which that word refers (an idea discussed in detail 

in the tradition of formal semantics at least since Frege, 1892). But language learners need 

to infer the extension of a word based on a set of exemplars that surely do not exhaust that 

extension. The underlying inference problem would be unsolvable without prior knowledge, 

most notably some that could constrain the hypothesis space, which is the set of potential 

meanings for words (e.g., Bloom, 2001; Goodman, 1955; Keil, 1989; Markman, 1989; and 

Mitchell, 1980 for a formal proof). 

 

Such priors have been described over different forms of conceptual structure (e.g., 

Tenenbaum, Kemp, Griffiths, & Goodman, 2011) in association with different models of 

meaning inference  (e.g., Bayesian inference, Xu & Tenenbaum, 2007; Hypothesis 

elimination, Siskind, 1996; Associative learning, Regier, 2005). Irrespective of these 

differences, all current accounts assume that those concepts that happen to have word forms 

associated with them are convex, that is, they form a coherent cluster in conceptual space 

(e.g., Gardenfors, 2004). For instance, an arbitrarily motivated concept such as DOG OR 

TABLE is not a possible concept because it does not form a coherent class of objects (see 

Murphy & Medin, 1985 for the idea of “conceptual coherence”). Crucially, all current accounts 

of word learning transpose the idea of concept convexity into an explicit or implicit “convexity 

constraint” on words: learners seek to associate a given phonological form with a convex 

extension. That is, if A and B can be labeled using the sound /kaet/, then all objects falling in 

between A and B in conceptual space can also be labeled with the word /kaet/.  

 

There is evidence suggesting that language learners may start with a convexity 

constraint. For instance, toddlers and preschoolers prefer to extend a novel word (e.g., 

“blicket” designing a dog) to an object of the same kind (e.g., a cat) rather than to an object 

of a different kind (e.g., a bone) (e.g., Markman & Hutchinson, 1984; Waxman & Gelman, 

1986; see also the “shape bias”, showing that infants extend a label on the basis of the 

shape, Landau, Smith, & Jones, 1988). Hence, children seem to expect that the extension of 

a given label groups together objects that share a common property. If such a property is 

prioritized in the way we organize the world (we discuss the importance of some properties 

over others to define conceptual spaces further in the General Discussion), then it follows 

that extensions of words should follow a convexity constraint. 

 

Our goal is to study how homophones fit into this picture, because they present a 

challenge to the convexity constraint. Indeed, words do not have to point to individual 

4 Theories of word learning and homophony: what is missing, what do we learn
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concepts. A homophone is a phonological form associated arbitrarily with several meanings 

(contrary to polysemy, see e.g., Rabagliati & Snedeker, 2013; Rabagliati, Marcus, & 

Pylkkänen, 2010), which together form a discontinuous set in conceptual space. For 

instance, the English word “bat” applies both to the convex concept of ANIMAL BATS and to 

the convex concept of BASEBALL BATS, but, regardless of how the conceptual space is 

constructed, not all intervening objects sharing a common property of animal bats and 

baseball bats count as bats. However, all current approaches implement the convexity 

constraint to reduce the hypothesis space and therefore mechanically predict that when 

encountering this word form that applies to animal bats and baseball bats, English learners 

should conclude that bat applies to any intervening object, as would words that apply very 

broadly, such as  “thing” or “stuff”. The very existence of homophony in human languages 

thus shows that learners do not adhere blindly to a convexity constraint. This challenges the 

details of any account that rely on the convexity constraint to reduce the hypothesis space.  

 

 Concretely, our point of departure will be work by Xu and Tenenbaum (2007). One 

advantage of their study is that it implements the convexity constraint in a predictive model, 

but it also provides the means to test it in a non-circular way. To do so, they first gathered 

similarity judgments between pairs of objects, and inferred a tree-structure over the whole 

set. This tree structure represents the taxonomy between the objects: different dogs are 

close together and form a subtree, mammals form a (bigger) subtree, etc. Such a hypothesis 

space reflects the taxonomic assumption (Markman, 1989) that requires words to label the 

nodes of a tree-structured hierarchy of natural concepts, in line with developmental data 

(e.g., Keil, 1989; Markman & Hutchinson, 1984; Markman, 1989; Waxman & Gelman, 1986). 

Crucially, Xu and Tenenbaum used this structured conceptual space to test a model of word 

learning according to which the extension inferred for a given word label should be a set of 

objects with no gap in conceptual space and which minimally includes all exemplars. 

Accordingly, they demonstrate that, when exposed to a set of learning exemplars, 

participants generalize the extension of the exemplars’ label to the smallest subtree that 

contains all these exemplars (their convex hull). In other words, participants pick the smallest 

generalization that satisfies the convexity constraint. 

 

The present study explores the situations that lead language learners to postulate 

homophony for a new word using the word learning paradigm used by Xu and Tenenbaum. 

In Experiment 1, we manipulate two factors that should invite learners to favor a homophone 

interpretation of a novel label: 

a) The size of the gap, in conceptual space, that separates different learning 

exemplars of a given word. To learn a homophone, language learners are exposed to a 

4.1 What homophones say about words
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discrete set of learning exemplars. For instance, for the word bat, they would observe several 

animal-bats and several baseball bats. However if the underlying true concept were the 

broad category that encompasses animal-bats, baseball-bats and all intervening objects 

(e.g., “thing”), then presumably learners would not observe exemplars confined to two 

corners of this set. Rather, they would observe a set of learning exemplars randomly 

(uniformly) sampled from the broad category. Observing exemplars clustered at two distant 

positions in the hypothesis space, i.e., observing a large gap between the exemplars may 

boost the likelihood that the exemplars are sampled from two independent categories, 

favoring a homophone interpretation.  

b) The intervention of other lexical items in that gap. Evidence for homophony may 

also come from other words in the lexicon. There has been much evidence that words and 

their underlying concepts mutually constrain each other. For instance, language learners 

assume that words do not overlap in meaning (the “mutual exclusivity effect”; e.g., Markman 

& Wachtel, 1988). Having evidence that an additional label point towards an intervening 

region of the conceptual space (e.g., between animal-bat and baseball bats) may help 

learners discover more subtle configurations about how words map onto meanings. 

 

Our results show that participants refrain from associating a label to a broad concept 

encompassing all the exemplars. Yet it does not entail that learners postulate homophony in 

these cases. We address this question more directly in Experiment 2. All in all, our results 

suggest that the effects documented in Experiment 1 are the footprints of homophony. This 

shows that current accounts of word learning face new challenges when incorporating 

homophony into the picture and that homophony can reveal (some of) the existing 

constraints on how words are associated with concepts in general. 

 

Experiment 1: gap in conceptual space and overall structure of the lexicon 

 

We used a word learning paradigm à la Xu and Tenenbaum (2007): participants were 

exposed to a new label through a couple of learning exemplars and asked whether the label 

should be extended to test items. We introduced a) a large gap in conceptual space between 

learning exemplars b) an intervening exemplar with a different label in that gap. We predicted 

that these two manipulations would lead to a breaking point after which participants would 

violate the convexity constraint, i.e., exclude items in the gap from the extension of the label.  

 

Method  

Participants. One hundred and five adults were recruited through Amazon’s 

Mechanical Turk (45 females; M = 33 years; 102 native speakers of English) and 
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compensated $0.50 for their participation. We excluded participants for lack of engagement 

in the task (criterion: participants who selected no test item in more than 50% of the 

“attractive” trials, in which at least 3 items should have been selected, see below; n = 0 in 

Experiment 1A, n =16 in Experiment 1B) and participated in both versions of the experiment 

or in a previous pilot version (n = 3 and 5). This resulted in 41 participants in Experiment 1A 

and 40 participants in Experiment 1B. Data collection was stopped when each of the 

experiment had at least 40 participants. The number of participants was established before 

data collection began. 

 

Procedure and display. Participants were tested online. They were instructed that 

they would be exposed to words from an alien language and would have to select images 

that correspond to those words. In the instructions, participants were shown an example of a 

trial with pictures and a label that would not appear during the test. In each trial, participants 

first saw 3 or 4 learning exemplars, presented as the combination of a picture and a 

sentence. The first three learning exemplars (referred to as LE1, LE2 and LE3 below) were 

presented in random order and labeled with a novel word, e.g., blicket, via a prompt of the 

form “This is a blicket” underneath each of them. The fourth learning exemplar (LEX below), if 

present, was labeled with another novel word highlighted in red, as in e.g., “This is a bosa” 

and was always the right-most exemplar. Once participants pressed a button “Show”, they 

would see a set of 4 pictures below the learning exemplars and be asked to select from 

these test items which one(s) could be labeled with the first novel word: “Do you see any 

other blicket(s)?” (see Figure 1.1). They responded by clicking to select none, one or multiple 

test items. When a picture was selected, its frame became green. Participants could unselect 

their choice by clicking on it again. Once a response was validated, the set of selected 

pictures was recorded and the test continued to the next trial. 
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Figure 1. 1) Screenshots from Experiment 1A. Participants first see the 3 learning exemplars 

for the word “blicket” and one optional learning exemplar for the word “bosa”. After pressing 

the “show” button they then see the test pictures and are asked to find the other blickets. 

Once the pictures are selected (green frame), participants submit their answers by pressing 

the “done” button. 2) Schema of the structure of a trial in conceptual space. The first row of 

pictures corresponds to the learning exemplars (LE1, LE2, LE3, LEX) and the second row to the 

test items. The intervening item LEX appeared only in half of the test trials (hence the 

parentheses). 

 

Conditions. Each participant saw 12 test trials and 10 filler trials. 

 

Test trials. The structure of test trials is represented schematically in Figure 1.1, the key 

factor is how the learning exemplars (LE1, LE2, LE3 and optionally LEX) were spread in 

conceptual space (here a tree-structure) and how the test items were distributed between 

them. As shown in Figure 1.2, there were two gaps between the exemplars: one small gap 

between LE1 and LE2 and one much larger gap between LE2 and LE3. Test items were picked 

somewhere in the middle of the first small gap (middle-small-gap), of the large gap (middle-

large-gap), in the large gap but close to the corresponding exemplars (border-large-gap) or 

out of all the exemplars altogether (out). 

 

Six of the test trials, “Gap trials”, were designed solely to test the effect of the size of 

a gap between learning exemplars. They displayed three learning exemplars (LE1, LE2, LE3) 

associated with a to-be-learned label. According to the convexity constraint, participants 

should select all test items in the minimal subtree containing all learning exemplars, but we 
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expected that participants would be willing to violate this constraint and exclude middle-large-

gap (or not as much as middle-small-gap).  

 

Another 6 test trials, “Gap+Intervention trials”, had a fourth learning exemplar with a 

secondary label (the LEX bosa exemplar in Figure 1). The convexity constraint applies to 

single lexical entries and is in principle blind to the rest of the lexicon, but we expected that 

participants would select the middle-large-gap test item less in these trials with an 

intervening label than in the test trials without this intervening label. 

 

Filler trials. One filler trial was presented first so that participants could familiarize themselves 

with the task (with no particular indication of it however). Nine other fillers were randomly 

interspersed between the test trials. 6 “attractive” fillers were designed such that participants 

would select at least 3 of the 4 test pictures (3 of these filler trials contained three learning 

exemplars, all with the same label as in the Gap test trials, and 3 others included a fourth 

learning exemplar with a secondary label as in the Intervention test trials). 3 “repulsive” fillers 

implemented the opposite bias: participants were expected to select one or no test picture.  

 

Materials. Our stimuli relied on a set of to-be-learned labels and taxonomically 

organized objects. 

 

Labels. 28 phonotactically legal non-words of English were used for both experiments and 

were not repeated across trials.   

 

Objects in conceptual space. We tested participants on two sets of objects organized into 

drastically different taxonomic hierarchies: natural objects, with a similarity measure based 

on phylogenetic trees (Experiment 1A) and artificial objects constructed in a parametric 

fashion, so that a similarity measure between these objects can be defined in a canonical 

way (Experiment 1B; Figure 2). Objects from this artificial taxonomy do not exist such that 

the actual lexicon of our participants cannot influence our experimental results.  

 

One important difference with Xu and Tenenbaum’s paradigm is that our conceptual 

space did not rely on subjective, experimentally-gathered similarity judgments, but rather on 

objective similarity measures: one based on the distance in the phylogenetic tree and the 

other based on the parameterization of the objects. Surely these measures are only a proxy 

for participants’ representation of the similarity relationships between the objects. Yet, any 

effect that can be detected from these imperfect objective measures will retrospectively 

validate that it is a good approximation of the underlying subjective measure. We describe 
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the two sets of objects at the basis of Experiments 1A and 1B, their structure, and how our 

experimental conditions were obtained in each case in the Supplemental Material. The 

experimental material for both experiments is available at 

https://osf.io/u473e/?view_only=33576a1ac18746b08d7e3fcc96e10e9a 

 

 

 
Figure 2. Examples of the artificial stimuli used in Experiment 1B, out of a set of 1024 

possible unique combinations obtained from 5 parameters (core pattern, core pattern 

occurrences, size of the core pattern, number of radial lines, number of bumps in the radial 

lines) with 4 levels each. 

 

Presentation and trial generation. The order of the trials as well as the pairing 

between the labels and the set of learning exemplars was fully randomized and differed for 

each participant. All trials were generated automatically following the algorithmic constraints 

described in the Supplemental Material for each stimuli type. 

 

Statistical analysis. In a mixed logit regression (Jaeger, 2008), we modeled the 

selection of a test item (coded as 0 or 1) for each experiment (natural or artificial stimuli). 

Both models included two categorical predictors with their interaction: Test Item (middle-

small-gap, border-large-gap, middle-large-gap, out) and Trial Type (Gap vs. 

Gap+Intervention) as well as a random intercept and random slopes for both Test Item and 

Trial Type for participants. We coded our predictors such that selection of middle-large-gap 

for Gap trials served as a baseline (unless otherwise mentioned) against which we compared 

a) responses to the other test items, b) the responses to middle-large-gap in 

Gap+Intervention trials.  
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All analyses were conducted using the lme4 package (Bates & Sarkar, 2004) of R. 

Ceiling effects (both in the choice of middle-small-gap and out, see Figure 2) impacted the 

log-estimation behind the logit models such that even obvious effects revealed by mere 

visual inspection of the data were not captured by the analysis. To get rid of these ceiling 

effects in a highly conservative way we introduced random noise: we ran the same analysis 

on a modified dataset where we randomly changed 5% of the responses within each Trial 

Type and each Test Item. 

 

 

Results 

Figure 3 reports the average proportion of selection of each test item by Trial Type 

(Gap vs. Gap+Intervention trials) and Experiment (1A or 1B). 

 

For Gap trials (Figures 3.1a and 3.2a), we replicate the minimal category effect seen 

in previous results (i.e., Xu & Tenenbaum, 2007) showing that participants are more likely to 

select a test item belonging to the category which is minimally consistent with the exemplars 

(middle-small-gap, border-large-gap, middle-large-gap) than a test item outside of this 

category (out), both for Experiment 1A (β = -1.56, z = -8.80, p < .001) and Experiment 1B (β 

= -5.17, z = -11.46, p < .001)1. Crucially, the size of the gap between learning exemplars 

modulated the convexity constraint. That is, participants selected middle-small-gap items 

more than middle-large-gap items both in Experiment 1A (Mmiddle-large-gap = 0.59, Mmiddle-small-gap 

= 0.98; β = 0.83, z = 3.85, p < .001) and in Experiment 1B (Mmiddle-large-gap = 0.44, Mmiddle-small-gap 

= 0.94; β = 3.04, z = 9.55, p < .001). Participants were sensitive to the distribution of the 

learning exemplars with natural stimuli but also with unfamiliar stimuli. This latter case shows 

that familiarity with the categories (e.g., mammals, carnivores, animals) and possible existing 

labels for them cannot fully explain the results.  

 

For Intervention trials (Figures 3.1b and 3.2b), we first replicate the effect described 

above: participants were sensitive to the size of the gap between the exemplars, that is, they 

selected middle-small-gap more than middle-large-gap in Experiments 1A (Mmiddle-large-gap = 

0.43, Mmiddle-small-gap = 0.97; β = 3.82, z = 9.75, p < .001) and in Experiment 1B (Mmiddle-large-gap = 

0.32; Mmiddle-small-gap = 0.82; β = 2.70, z = 10.32, p < .001). Crucially, we expected that the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!We Helmert-coded the predictor Test Item to compare the choice of out to the choice of the 
rest of the test items as a group.!

4.1 What homophones say about words

137



!

!

presence of an intervening item would increase participants’ violation of the convexity 

constraint.  

Indeed, in Experiment 1A, participants selected middle-large-gap less in 

Gap+Intervention trials than in Gap trials (β = -0.68, z = -3.65, p < .001). Yet, the presence of 

an intervening lexical item did not affect the choice of any other test items (all ps > 0.7) 

leading to an interaction effect: the difference between the selection rate of middle-small-gap 

and middle-large-gap was greater in Gap+Intervention trials than in Gap trials (β = 0.74, z = 

2.62, p < .01). 

In Experiment 1B, participants similarly selected middle-large-gap less in 

Gap+Intervention trials than in Gap trials (β = -0.52, z = -2.18, p < .05). But we should pause 

and note that the same was true for middle-small-gap items (β = -1.21, z = -3.68, p < .001; 

here the intercept reflected selection of middle-small-gap in Gap trials). This was because 

the intervening exemplar LEX was sometimes close to middle-small-gap (and even closer 

than it was to middle-large-gap), thus introducing an independent reason not to select 

middle-small-gap in these intervention trials.  

Overall, we did observe that intervening labels block the extension of a word to the 

minimal category including all observed exemplars, even though this effect was polluted for 

artificial stimuli.  
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Figure 3. Proportion of choice of each test item averaged across Experiment 1A with natural 

objects (upper panel) and Experiment 1B with artificial objects (lower panel) for each trial 

type (Gap vs. Gap+Intervention trials). The x-axis follows (with some simplification) the 

structure in conceptual space: the position of the learning exemplars is indicated among the 

bars for the test items with the dashed lines. Error bars indicate standard errors of the mean.  

 

Discussion 

We highlighted two factors that disturb the association of a word form to the single 

category that minimally includes all its learning exemplars: a) the size of the gap between the 

exemplars; b) the presence of intervening lexical items. There may be three potential 

interpretations for these results:  

1) Participants associated a label to two meanings that each satisfies the convexity 

constraint. That is, participants postulated homophony, a non-immediate way to bind labels 

and concepts.  

2) Participants associated a label with a set covering entities from several disjoint 

concepts (e.g., as in DOG OR TABLE), either because meaning discontinuity is acceptable or 

because the specific experimental task that we propose led them to do so.  

3) Participants did not associate the new word with a meaning at all. Instead, they 

simply went by similarity of the test items to the learning exemplars: they selected more the 

objects close to the exemplars (middle-small-gap) than to the objects further away from them 

(middle-large-gap). The role of the intervening label may be harder to account for in this 

view, but one may imagine some strategic effect such that if an object is close to some 

irrelevant object X, it will decrease the tendency to say that this object belongs to a set that 

was not said to contain X. 

Experiment 2 was designed to distinguish between these three interpretations. 

 

Experiment 2: linguistic manipulations 

 

Homophones interact with linguistic constructions in a characteristic way. Zeugmas 

are the typical rhetorical device used to pun on the different senses of ambiguous words 

(e.g., Cruse, 1986; Zwicky & Sadock, 1975) and have been extensively used as a test to 

distinguish words with an extension that covers a broad category from polysemous and 

ambiguous words (e.g., Cruse, 1986; Geeraerts, 1993). Consider for instance “John and his 

driving license expired last Thursday” (Cruse, 1986), where the verb “expire” has two distinct, 

but related, senses (i.e. “died” and “not valid anymore”). If the zeugmatic sentence is 

acceptable, it shows that the relevant word is polysemous or ambiguous (the two meanings 

are distinct) rather than vague (the boundary between meanings are indisctinct).  
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Interestingly, zeugmas can be used to distinguish between a homophone, where a 

label applies to two convex concepts, and a word associated with a disjunctive meaning, 

where a label would apply to a disjoint concept. For instance, if “blicket” maps onto a 

disjunctive concept, such as DOG OR TABLE, it should be possible to use a plural sentence 

“these are two blickets” when pointing to a dog and a table, while it would be zeugmatic to 

say “these are two bats”, pointing at one animal-bat and one baseball-bat. This is explained 

in a theory of homophones in which two words, with different meanings, share the same 

form: one cannot use a single phonological form to refer to both meanings at the same time. 

However, different tokens of the phonological form may pick out different meanings: it may 

therefore be more natural to say in a situation as above “This is a bat (pointing at the animal-

bat), this is also a bat (pointing at the baseball-bat)”. 

We will use these two constructions to test whether the effects we documented in the 

experiments above are the signatures of homophony. If participants postulated homophony, 

the plural zeugmatic construction, which is not compatible with homophony, should increase 

the tendency to form a single convex category encompassing all learning exemplars (as 

dictated by the convexity constraint in the absence of homophony), compared to the also 

construction. This would be evidence that participants did not postulate that a label could 

map onto a discontinuous concept and that our effects are not solely driven by similarity, 

since the similarity of the test items to the exemplars is held constant across the two 

linguistic constructions. 

Method  

Participants. Ninety adults were recruited through Amazon Mechanical Turk (28 

females; M = 30 years; 87 native speakers of English) and were compensated $0.50 for their 

participation. We excluded subjects who participated in both conditions of the experiment (n 

= 3). This resulted in 44 participants in the also-condition and 43 participants in the plural-

condition. Data collection was stopped when each of the conditions had at least 40 

participants. The number of participants was established before data collection began.  

 

Procedure and display were similar to Experiment 1, except that each trial now 

included 4 learning exemplars and 6 test items. 

 

Conditions. Each participant saw 8 test trials and 16 filler trials.  

 

Test trials. As schematized in Figure 4, each test trial contained 4 learning exemplars (LE1, 

LE2 and LE1’, LE2’). We implemented symmetry in the distribution of learning exemplars such 

that there were two small gaps (between LE1 and LE2 and between LE1’ and LE2’) and one 
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large gap (between the two pairs of exemplars). This distribution of exemplars in conceptual 

space may favor the construction of sharp boundaries over two disjoint categories (see also 

discussion of the “size principle” in the General Discussion). The position of the six test items 

is shown in Figure 4. Two test items were placed inside the small gaps (middle-small-gap 

and middle-small-gap’), two items just outside of the minimal subtrees S(LE1,LE2) and 

S(LE1’,LE2’) containing each pair of exemplars (border-large-gap and border-large-gap’), one 

item inside the large gap (middle-large-gap, either attached to S(LE1,LE2) or to S(LE1’,LE2’)) 

and one item outside of the minimal subtree containing all four learning exemplars (out). 

 

 

 
Figure 4. Schema of the tree-structure of the items used in a trial for Experiment 2. The 

boxed items correspond to the learning exemplars. 

 

The 8 test trials were created according to the schema in Figure 4, but their mode of 

presentation differed across the two conditions. In the also-condition, the four learning 

exemplars were presented in pairs: the left pair was labeled with a given word (e.g., “These 

are two blickets”) and the right pair with the same word using also (e.g., “These are also two 

blickets”). In the plural-condition, the four learning exemplars were ordered in pairs as in the 

also-condition but the four exemplars were grouped together in a gray frame and labeled at 

once via a plural sentence (e.g., “These are four blickets”; see Figure 5).  

We expected that participants would select the test items middle-large-gap and 

border-large-gap more in the plural-condition than in the also-condition, because homophony 

is less of an option while using the plural construction. 
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Figure 5. Possible learning exemplars for a test trial as presented in 1) the plural-condition 

and 2) the also-condition.  

 

Filler trials. 16 filler trials were interspersed, half of which were visually similar to the test 

trials of the plural-condition (Figure 5.1) and the other half were visually similar to the test 

trials of also-condition (Figure 5.2; but with a different label for the two pairs of objects and, of 

course, no also in the description). 

 

Material. We used the same set of objects as in Experiment 1A and the same labels.  

 

Presentation and trial generation. The experiment always started with 3 filler trials. 

All trials were generated pseudo-randomly following the constraints described in the 

Supplemental Material.  

 

Statistical analysis. As before, we modeled the selection of a test item in a mixed 

logit model including two categorical predictors with their interaction: Test Item (middle-small-

gap, border-large-gap, middle-large-gap, out) and Linguistic Condition (Plural vs. Also) as 

well as a random intercept and a random slope for Test Item on participants. The selection of 

middle-large-gap in the plural-condition served as a baseline (unless otherwise mentioned). 

 

 

 

Results 

The results are presented in Figure 6. The pairs (LE1, LE2) and (LE1’, LE2’) played 

symmetric roles, we accordingly collapsed responses for middle-small-gap and middle-small-
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gap’ and responses for border-small-gap and border-small-gap’ (practically ignoring the 

prime sign in the report).  

 

First, the results confirm the existence of a gap effect. Participants showed sensitivity 

to the sampling distribution of the exemplars, in that they selected more middle-small-gap 

than middle-large-gap in both the also-condition (β = 2.20, z = 11.26, p < .001) and the 

plural-condition (β = 1.70, z = 8.59, p < .001).  

 

Interestingly, the minimum path (in terms of number of branches) between the 

learning exemplars LE1 and LE2 was smaller in Experiment 1A (mean for d(LE1, LE2) = 3.65), 

compared both to (LE1, LE2) and (LE1’, LE2’) in Experiment 2 (mean for d(LE1,LE2) = 7.16) (see 

Supplemental material). Accordingly, we found a cross-experiment gap effect such that 

middle-small-gap was less selected in Experiment 2 (M = 0.75) than in Experiment 1A (M = 

0.95). 

 

Our critical expectation concerned the comparison between linguistic presentations. 

Test items in the gap between (LE1, LE2) and (LE1’, LE2’) were selected more often in the 

plural-condition than in the also-condition: this was true both for middle-large-gap (β = 0.73, z 

= 2.24, p < .05) and border-large-gap (β = 0.64, z = 2.13, p < .05), resulting in an interaction 

effect: the difference between the selection rate of middle-small-gap (serving as a baseline) 

and the combined selection rate of middle-large-gap and border-large-gap was greater in the 

plural-condition than in in the also-condition (β = 0.46, z = 2.02, p < .05).2 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!We Helmert coded the predictor Test Item to compare the choice of middle-small-gap to the 
choice of the middle-large-gap and border-large-gap as a group.!
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Figure 6. Proportion of selection of each test item averaged across 1) The plural-condition 

using a linguistic construction discarding the possibility of homophony and 2) the also-

condition using a linguistic construction more suitable to homophony. Error bars indicate 

standard errors of the mean. 

 

 Discussion 

When presented with a plural construction (e.g., “These are blickets”), participants 

were more likely to associate the word to a category that spans over all the exemplars than 

when they were presented with a construction compatible with homophony (e.g., “This is a 

blicket and this is also a blicket”). This effect suggests that the gap effect documented in 

Experiment 1 is the footprint of homophony mapping two words with the same phonological 

form onto two convex concepts and not of the association of a single word to a discontinuous 

category. 

 

Certainly, in line with previous results (e.g., Goldstone, 1994), participants were 

guided in part by similarity: they extended a label more to an object close to the exemplars 

(middle-small-gap) than to an object further away (middle-large-gap) and they extended the 

label less to middle-small-gap in Experiment 2 than they did in Experiment 1 due to a greater 
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distance between the learning exemplars in Experiment 2.3 Yet, such similarity effects cannot 

explain the main result of Experiment 2 since the linguistic manipulation is realized holding 

constant similarity relations among learning exemplars and test items. The amount of 

similarity-driven generalization in participants’ responses could be quantified (see Xu and 

Tenenbaum for a model comparison of rule- vs. similarity-based model), but it is sufficient for 

our purposes to note that it cannot account for the entirety of the present effects, which are 

driven by linguistic manipulations alone in Experiment 2.4 

One may also ask whether the plural/also effect is linked to the very specific linguistic 

constructions involved or whether it is merely driven by the visual, two-part presentation that 

co-varies with these constructions in our experiments. Importantly, a visual effect (i.e., a 

visual “zeugma”) would make the same point as a more specific linguistic construction effect: 

all that matters for our argument is that there is room for two tokens of the same phonological 

form, either because two tokens are indeed present, or simply because the presentation 

introduces different labeling events. 

 

General Discussion 

 

We documented two factors that reduce the tendency to map a phonological form 

onto a single, convex extension, an explicit or implicit assumption about learners in all 

current accounts of word learning: a) the size of the gap in conceptual space between 

learning exemplars; b) the presence of an intervening label for entities in that gap. These 

effects were modulated by linguistic manipulations coherent with the presence/absence of 

homophony. We submit that when encountering novel words in such situations, learners 

prefer to postulate homophony to preserve concept convexity, whereby a label applies to two 

convex concepts, rather than accepting that a label applies to a single discontinuous 

concept. 

 In the following we first come back to the very idea of a conceptual space, how to 

access such an abstract construct. Second, we move to the level of words and show how the 

current study of homophony is relevant to current accounts of word learning broadly, and 

why other phenomena should be subjected to the same scrutiny. Finally, our results are 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!Note that this is also compatible with the size principle documented by Xu and Tenenbaum 
(2007): since the boundaries of the categories defined by the pairs of exemplars (LE1, LE2) 
and (LE1’, LE2’) were less sharp than in Experiment 1A, the correct level of generalization was 
more uncertain in Experiment 2 than in Experiment 1A.!
4!While we demonstrate that participants are sensitive to the linguistic constructions in which 
the words enter, we cannot tell whether the also construction alters the results in one 
direction (towards homophony), or whether the also construction pushes in the opposite 
direction (against homophony), or both.!
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based on adult data only and we discuss their relevance for children in the process of 

learning their native language. 

How to work with concepts 

A provocative question at this point is whether the notion of conceptual space is 

useful. One worry is that there may not be a stable metric between abstract entities across 

contexts (Tversky, 1977), such that two entities can be made arbitrarily similar by changing 

the dimension under consideration. For instance, one may consider that a Ferrari and a VW 

Beatle are closer to one another than a Ferrari and a diamond, but this similarity relation may 

reverse if the context involves paying attention to the value of entities. However, we submit 

that some dimensions are privileged: they are more stable across contexts, by default, and 

infants are biased to pay more attention to them (e.g., Poulin-Dubois, Lepage, & Ferland, 

1996). For instance, animacy may be a property that is privileged in that sense, over say 

color, to categorize objects. It does not always have to be the case, but on average this will 

create the basis for a stable set of privileged features to (partly) provide a structure for 

conceptual space (see also Barsalou, 1983 for the notion of ad hoc categories and Keil, 

1981; Osherson, 1978 for the idea of concept naturalness).  

The next worry then is to decide how one can objectively assess what the actual, 

“privileged” metric in conceptual space is. Xu and Tenembaum (2007) gathered subjective 

judgments of similarities, independently from the categorization task. In our studies, we 

decided on a structure of conceptual space prior to using it for our test. Specifically, our 

notion of convexity relied on phylogenetic trees and on an arbitrary metric over a multi-

dimensional space of visual features. The hope was that there would be a sufficiently good 

matching between these idealized conceptual spaces and what participants would actually 

take to be the relations between the relevant entities. Since participants had access to the 

entities only through visual representations, one may worry that we over-evaluated the 

chances that perceptual features could determine concepts. Perceptual features as such 

may not be the determinant of conceptual structure, since concepts may be defined by non-

observable properties. Several developmental studies show that, indeed, children prefer to 

draw inferences based on category membership than inferences based on perceptual 

appearances (e.g., Gelman & Coley, 1990; Gelman & Markman, 1987; Graham, Kilbreath, & 

Welder, 2004). Nevertheless, we use perceptual similarity as a proxy to reflect conceptual 

structure and follow previous work in that respect (see Medin & Schaffer, 1978; Nosofsky, 

1986; Shepard, 1964; Smith & Medin, 1981; Xu & Tenenbaum, 2007). Interestingly, we note 

that young children may also use such a proxy in their earliest word meaning inferences 

(Graham & Poulin-Dubois, 1999; Landau et al., 1988). 
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The current inquiry was based on the hope that conceptual space could be 

approximately circumscribed by objective or scientifically based properties (e.g., phylogenetic 

trees). There surely has to be some correlation between such an objectively based 

categorization and actual, subjective categorization (e.g., Atran, 1998). Most importantly, the 

fact that our results come out the right way suggests a posteriori that our simplifying 

hypotheses are acceptable to a sufficient degree: our results could not be obtained if our 

assumptions to approximate the underlying conceptual structure were inappropriate. 

Challenges for accounts of word learning  

The above discussion only refers to concepts, not to words. A natural assumption is 

that one word would map to one concept, but it does not have to be so. For instance, a word 

could map onto a set of concepts, as if there was a word meaning DOG OR TABLE (where DOG 

and TABLE here are supposed to be disjoint concepts). Our study of homophones shows that 

this does not happen. Instead, when a word could potentially have such a disjunctive, 

discontinuous meaning, a homophone is created. As a result, the convexity condition of 

concepts invades the level of words, but this comes at the cost of the existence of 

homophones, which constrains the learning device, as we will now discuss. 

All current accounts of word learning presuppose a convexity constraint whereby 

word forms map onto a single meaning that ought to be convex in conceptual space. But this 

assumption bans homophony from the system. Specifically, it seems that incorporating 

homophony in the best current views of word learning (i.e., Bayesian approaches of word 

learning, Xu & Tenenbaum, 2007) requires that the learning system allows for this from the 

start: children would come to the world with a learning mechanism able to learn non-

homophones, just like the modern models of word learning, but there would have to be a 

different learning mechanism to track and learn homophones, one part of the system that is 

not currently described. If the architecture of the learning system were such that it separated 

homophones and non-homophones so sharply, it would be a very strong prior that amounts 

to saying that children know, innately, that their to-be-learnt language will include 

homophones. If this prior cannot be eliminated (by tweaking the learning inference 

component, see our proposition regarding the possibility of a sampling effect below), the 

innate expectation of homophony would be a striking example of innate linguistic knowledge. 

The problem is more general. Current models of word learning incorporate built-in 

constraints to reduce the hypothesis space. Sometimes these constraints not only reduce the 

hypothesis space, but also ban phenomena that are outside of the reduced hypothesis 

space. This is the situation we revealed for the convexity constraint and homophony. In 

principle, there are two solutions to this problem: one could hope that later refinements will 
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be able to get rid of the constraint or, if this is not obtained, one could take this difficulty at 

face value and postulate that the system implement independent learning modules (e.g., one 

for homophones and one for non-homophones), implying that the distinction between 

homophones and non-homophones is at least innately “expected”. Let us illustrate with 

another example. Xu and Tenenbaum (2007) propose a rational use of co-occurrences of 

words and objects to learn content words. Function words, however, occur in all sorts of 

contexts and may co-occur with all possible objects, in principle. Hence, the model predicts 

that words like “the” or “and” mean the same as “thing” or “stuff”, which also co-occur with 

any kind of object. Arguably, learners deploy a different strategy to learn content words and 

function words (see relatedly Piantadosi, Tenenbaum, & Goodman, 2012 for the use of a 

different strategy for learning numerical concepts). Yet before separating hypothesis spaces 

for content words and hypothesis spaces for function words, one would need to propose a 

mechanism that separates function and content words for rational reasons (see, e.g., 

Hochmann, 2013 for empirical facts that could support this rational mechanism). But the fact 

that this separation is triggered in the first place may have to be implemented in the prior part 

of the learning system, thus making it an innate component that languages contain both 

function words and content words.  

In sum, current word learning accounts break the learning problem into manageable 

pieces of the puzzle, studying object labels, ambiguous words, functions words or numerical 

concepts separately. A reconciliation of these pieces into a single solution may be technically 

easy; one could say that the system “expects” these differences. But it has rich 

consequences because in the absence of a more complete picture, it amounts to postulating 

that subtle and quite specific phenomena such as the distinction between function words and 

content words or the existence of homophony have an innate basis. 

 

Early language acquisition 

Through the study of homophones, our studies uncover several factors that play an 

important role in revealing the existing constraints on how words associate with concepts in 

general. An important open question is whether these factors influence word learning during 

the earliest stages of word acquisition. While studying adults may inform us about the 

general strategies involved in word learning (Markson & Bloom, 1997), children have 

different cognitive resources and biases and may consequently use different strategies. We 

detail four relevant factors that could lead to the emergence of homophony in children and 

leave their study open for future research: 

1) Concept convexity. Adults refrain from associating a label to a broad concept when 

positive evidence is missing for a large gap within the concept. The observation that a label 
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applies to a discontinuous extension triggers the formation of novel word representations that 

are compatible with the convexity constraint. Do children also expect words to refer to 

coherent and convex concepts and, if so, what representation do they adopt when the 

convexity constraint is not met? Plunkett, Hu, and Cohen (2008) offer a relevant study in 

which they presented 10-month-old infants with exemplars of a word forming a gap in 

conceptual space: the presence of a similar label was enough for children to extend the label 

to all intervening items in that gap. Yet, they only tested rather small gaps, which may very 

well be before the breaking point of the convexity constraint. 

2) Sampling effect.  Xu and Tenenbaum (2007) document a “size principle” according to 

which the sharpness of a concept is a function of the number of learning exemplars, for both 

children and adults. We showed an effect of the distribution of the learning exemplars in 

conceptual space: observing exemplars clustered at two distant positions in the hypothesis 

space boosted the likelihood that the exemplars were sampled from two independent 

categories. Children are sensitive to the size principle; they may also show sensitivity to such 

a “distribution principle”, a possibility that we are currently exploring. 

3) The structure of the semantic lexicon. When confronted with a new word, adults consider 

the existence of other (potentially unknown) words. Specifically, they generalize a word A 

less to a new object if this new object comes in the vicinity of a concept labeled by a word B. 

This demonstrates that learners have expectations about the structure of the semantic 

lexicon as a whole and priors about how words may share the conceptual space. This new 

kind of evidence against individual word-by-word learning is coherent with simpler, so-called 

“mutual exclusivity effects” (Markman & Wachtel, 1988), according to which a new word 

should not occupy the same conceptual space as a known word. Interestingly, this effect has 

to be modulated by other factors, since some words surely overlap in conceptual space (e.g., 

compare cat and animal). To our knowledge, priors over the whole lexicon are missing from 

current word learning computational models – and their implementation raises immediate 

challenges. 

4) Linguistic factors: Adults’ generalization was modulated by the linguistic construction in 

which words were presented. While we used linguistic constructions as a linguistic test for 

homophony, these constructions may also be used to discover homophony (noting that 

homophones never appear in plural constructions but may appear in some more appropriate 

constructions such as the also construction we documented). Whether children are able to 

pick up on this is an empirical question, both because they may not be sensitive to these 

linguistic factors (effectively this would otherwise be a case of linguistic bootstrapping of 

homophony) or because the relevant facts may be too sparse in their input, e.g., if 

homophones cover distant concepts, it is unlikely that these two concepts will be mentioned 

within the same learning situation. 
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Summary 

In this work, we showed that a word is more likely to yield homophony if: (a) it is learnt 

from exemplars leaving an important gap between them (in conceptual space), (b) this gap in 

conceptual space is occupied by other words. We submit that encountering novel words in 

such situations may trigger forms of word representations which comply with concept 

convexity. More generally, we argue that incorporating homophony and other challenging 

word learning phenomena into current word learning accounts, will provide a better 

understanding of learners’ implicit knowledge and assumptions about how word forms map 

onto meanings. 
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Abstract

How do children infer the meaning of a word? Current accounts of word learning assume that chil-
dren expect a word to map onto exactly one concept whose members form a coherent category. If this
assumption was strictly true, children should infer that a homophone, such as ”bat”, refers to a single
superordinate category that encompasses both animal-bats and baseball-bats. The current study explores
the situations that lead children to postulate that a single word-form maps onto several distinct mean-
ings, rather than a single superordinate meaning. Three experiments showed that adults and 5-year-old
French children use information about the sampling of learning exemplars (and in particular the fact
that they can be regrouped in two distinct clusters in conceptual space) to postulate homophony. This
unexplored sensitivity and the very possibility of homophony are critically missing from current word
learning accounts.
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Introduction

To learn a word, language learners must draw a link in their mental lexicon between a phonological form
and its meaning. While many words conform with a one-to-one mapping between form and meaning, this is
not always the case: a homophone is a phonological form associated arbitrarily with several meanings, each
of which corresponds to a concept. For instance, the word form “bat” applies both to the concept ANIMAL

BAT and to the concept BASEBALL BAT. Hence, homophones present children with a non-standard word
learning situation, for which they need to discover that there is a decoupling between linguistic signals and
concepts.

In order to examine what kind of challenge homophony brings into the word learning task, let us con-
sider a typical word learning situation. Children do not observe associations between words and concepts;
rather, they observe the co-occurrences of word forms and exemplars of their associated concepts. Thus,
one major problem for the learner is to infer the meaning of the word from a set of exemplars that is con-
sistent with an unbounded number of possible meanings (Quine, 1960). Existing theories of word learning
have stressed the importance of prior knowledge to constrain the learning problem faced by the child (e.g.,
Bloom, 2001; Goodman, 1955; Markman, 1989). Such priors have been described at the level of concepts
(what are the possible concepts our mind is ready to entertain) and at the level of word forms (what are the
constraints on possible form-concept configurations).

All current accounts of word learning (associative learning accounts, e.g., Regier 2005; Yu & Smith
2007; hypothesis elimination accounts, e.g., Pinker 1989; Siskind 1996; Bayesian accounts, e.g., Frank et
al. 2009; Piantadosi et al. 2012; Xu & Tenenbaum 2007) assume that learners rest on two main assumptions:
First, the structure of the language is clear, that is, involves transparent, uniform mappings between forms
and concepts, leading to one-to-one correspondence across these domains (a constraint at the level of word
forms). Second, those concepts are convex (a constraint at the level of concepts), that is, whose members
form a group that share a common set of properties that holds them to be contiguous in conceptual space
(see further the notion of concept convexity in Gärdenfors, 2004; and the related notion of conceptual
coherence in Murphy & Medin, 1985). For instance, a concept such as CAR OR WATER, is not a proper
candidate for a concept because its members would be drawn from two disjoint sets which do not form a
convex cluster of entities in conceptual space. Yet there is a sense in which this convexity constraint does
not translate at the level of word forms: if a phonological form is used to refer to two objects A and B,
it does not imply that all objects between A and B in conceptual space can also be labeled by the same
form, as in the case of homophones (see discussion in Dautriche & Chemla, submitted). In other words,
the extension of the meaning(s) of a word form is not necessarily convex.

Evidence for a convexity constraint at the level of concepts comes from several experimental studies
(Dautriche & Chemla, submitted; Xu & Tenenbaum, 2007). In these studies, the conceptual space is de-
fined over a tree-structured representation of entities by clustering a set of entities based on their similarity.
Subtrees correspond to categories that words could label at different levels of granularity (e.g., cat, fe-
line, mammal, animal). When exposed to a set of learning exemplars uniformly sampled from a category,
adults extend the label to the minimal subtree including all the exemplars (Xu & Tenenbaum, 2007). For
example, when presented with three “feps” labeling three Dalmatians, adults readily extend “fep” to the
set of all Dalmatians, would they be presented with a Dalmatian, a Labrador and a German-shepherd they
would extend the label to the set of all dogs. Yet, when presented with exemplars clustered at two distant
positions in conceptual space, such as {two primates, one mushroom}, adults did not extend the label to
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all objects falling within a convex category encompassing all exemplars (i.e. LIVING BEINGS), rather, they
preferred to restrict the label to members of two disjoint subcategories (i.e. PRIMATE and MUSHROOM).
Furthermore, this effect is strengthened by the manipulation of specific linguistic evidence that signals or
bans homophony, such that the occurrence in some particular constructions (so called zeugmas, Zwicky &
Sadock 1975). The interpretation is the following. When encountering novel words, adults are first guided
by the idea of a one-to-one mapping between words and concepts, and convexity of concepts thus yields
word forms with convex extensions. Yet, when observing evidence against the convexity of the set of enti-
ties that may be labelled by a given word form (i.e. the presence of two distinct convex clusters of learning
exemplars in conceptual space), adults postulate homophony, that is they prioritize concept convexity over
the possibility that a word form maps onto a single concept (Dautriche & Chemla, submitted).

An important question is whether concept convexity influences word learning during language devel-
opment. Do children also expect word forms to refer to convex concepts? In case this seems untenable, do
they also know about the backup strategy, homophony? Much developmental work suggests that children
start with the assumption that one word form maps onto exactly one concept (Slobin, 1973, 1975) and that
they follow some convexity constraint in that they expect concepts to group objects that share a common
property. For instance, once children have mapped one form to an object, they will extend it to other objects
that share the same ontological kind (the taxonomic constraint, Markman & Hutchinson, 1984), or the same
shape (the shape bias, Landau et al., 1988). Yet, it remains open to question how children react to cases
where concept convexity is challenged (see however Plunkett et al., 2008), i.e. when there is evidence that
the extension of a word form is not convex: do they postulate homophony to maintain concept convexity
(an important assumption to form concepts in the first place), do they prioritize sticking to a one-to-one
mapping assumption between word form and meaning (an important assumption to learn words), or do they
simply ignore the presence of two smaller convex clusters of exemplars and save their prior assumptions
about both word forms and concepts by simply postulating a broad meaning for the word in question?

Relevantly, it has been experimentally demonstrated that 3- to 9-year-old children have difficulty in
learning homophones (Casenhiser, 2005; Doherty, 2004; Mazzocco, 1997). In particular they find it more
difficult to learn a second meaning for a word they know (thus a homophone, e.g., learning that the familiar
word form ”door” also labels an unfamiliar object) than to learn a completely novel word (e.g., learning that
”blick” labels an unfamiliar object). This suggests that children are slower to learn secondary meanings of
homophones than to learn novel words, consistent with the idea that children prefer to preserve a one-to-one
mapping between forms and meanings. Yet another possibility is that homophone learning is difficult in
these conditions because the homophones are chosen such that one meaning is already available to children
and thus interferes with their ability to learn a novel meaning for the same word form. Indeed even when
both meanings of a pair of homophones are known to children before the experiment, they find it difficult
to retrieve the less frequent meaning of the pair when the most frequent meaning is activated, but have
less trouble to do so when the task provides greater contextual support for the less frequent interpretation
(Beveridge & Marsh, 1991; Campbell & Bowe, 1977; Rabagliati et al., 2013). That is, in experiments where
a second meaning novel meaning is taught for a known word form, the competition between the known
first meaning and the novel secondary meaning may mask children’s ability to consider homophones as a
possible option.

The present study addresses exactly this key problem by testing the simultaneous acquisition of two
meanings for a single word form. When learning a homophone, such as “bat”, learners will observe several
exemplars of animal-bats and several exemplars of baseball-bats, all linked to the same word form “bat”.
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In such a case, if learners hypothesize that this word form applies to a single, convex concept, as most word
forms do, they would never discover homophony. Instead, they could consistently postulate that “bat”
refers to some superordinate, coherent category encompassing both animal bats and baseball bats, just like
a word like “thing” does. However, if “bat” was indeed linked to such a broad category, it is likely that
learners would have observed many things that are called ”bat” but are neither animal bats nor baseball bats
(a uniform distribution of exemplars drawn from the superordinate category of “things”) rather than having
observed only animal bats and baseball bats (a bimodal distribution of exemplars within the superordinate
category).

We thus ask whether children capitalize on the sampling distribution of the learning exemplars to postu-
late homophony. To our knowledge, this is the first study that looks at the acquisition of multiple meanings
for a new word by children. In Experiment 1, we combined two tests (inspired from Srinivasan & Snedeker,
2011 and Xu & Tenenbaum, 2007) to replicate previous results with adult participants, circumscribing the
situations in which homophony emerges. In Experiment 2, we exported our experimental procedure with
children, showing that they also refrained from associating a label to a broad set of entities encompassing
all learning exemplars when they form two distinct convex clusters. Experiment 3 provides a control with
adults to discard the possibility of a superficial explanation for part of our effect. Altogether, our results
suggest that children by the age of 5 use information about the sampling distribution of learning exemplars
to discover whether a novel word form is associated with one or several meanings. Just like adults, children
expect that words, but not word forms, refer to convex concepts and form lexical representations that follow
this constraint, in essence showing early awareness that homophony is a possibility in natural languages.

Experiment 1

The experiment consisted of two testing phases: the extension test and the representation test. The ex-
tension test was similar to Xu & Tenenbaum (2007) and Dautriche & Chemla (submitted): participants
were taught novels labels from an alien language (e.g., “blicket”) for animal categories and were asked to
extend this label to test items. We manipulated whether the set of exemplars they observed formed either a
uniform or a bimodal distribution of the minimal superordinate category encompassing all the exemplars.
If participants are sensitive to this sampling information, we predicted that they should be less likely to
extend the label to all objects that are in the superordinate category when the exemplars form a bimodal
distribution compared to when they form a uniform distribution.

During the representation test, we tested whether participants represented the meaning(s) of the word
they have just been taught as two separate lexical entries (i.e. homophony) or as a single lexical entry.
The procedure was similar to Srinivasan & Snedeker (2011): participants were taught that a subset of the
examples previously shown were wrongly labelled and are in fact labelled by another word in that language
(the corrected label, e.g., “these are not blickets, these are feps”). When the exemplars formed a bimodal
distribution (as in the case of homophones, e.g., two animal-bats and two baseball-bats), the corrected
label corresponded to one of the meanings of the initial word (e.g., “fep” labelled the two animal-bats).
When the exemplars formed a uniform distribution (e.g., one animal-bat, one tree, one car, one-baseball
bat), the corrected label applied to two of the exemplars (e.g., “fep” labelled one animal-bat and one car).
Participants were then tested on their extension of the corrected label. If a bimodal distribution of exemplars
is sufficient to trigger homophony, and assuming that participants can rely on the independence of the two
meanings of a homophone, they should restrict the corrected label to the subcategory for which they have
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evidence (e.g., “fep” refers to animal-bats) and not extend it to the broader category (e.g., exclude baseball-
bats). On the opposite, if participants readily extend the corrected label to the unattested meaning (or at
least as much as in the uniform condition), this would suggest that they interpreted the initial word as
referring to a broad category, and not as a homophone.

Method

Participants

Nineteen adults were recruited from Amazon Mechanical Turk (6 Females; M = 37 years; all native speak-
ers of English) and were compensated $0.4 for their participation. One additional participant was excluded
because he did not provide any answer.

Procedure and display

Adults were tested online. They saw the pictures of two aliens, one blue and one red, both coming from
the same planet. They were instructed that they would be exposed to words from their language and would
have to select images that correspond to those words. In the instructions, they saw an example of a trial
with the pictures and the label used for the training trial.

The trials followed the time course schematically represented in Figure 1. In the learning phase, 4
learning exemplars were displayed as a combination of a picture and a prompt underneath each of them
(e.g., “This is a blicket”), allegedly pronounced by the blue alien who was pictured at the bottom of the
screen.

The extension test started as soon as adults pressed a “Go to test” button placed below the exemplars.
Participants were presented with 12 test pictures displayed one-by-one below the 4 learning exemplars and
asked whether this test item could be labelled by the novel word (e.g.,“Is this also a blicket?”). Participants
could answer by clicking on a “yes” or “no” button on the screen. When the response was “yes”, the
picture frame became green, if it was “no”, the picture frame became red. Once the response was validated
by participants by pressing a “Done” button, the test continued to the next test picture.

In the last two test trials, the extension test was followed by a representation test. On the left side of
the screen, participants saw 2 of the 4 learning exemplars, highlighted in a green frame, with the red alien
appearing with the prompt “What are you saying these are not blickets, these are feps!”.1 Once participants
pressed the “I got that” button, the blue alien re-appeared on the right side of the screen recognizing his
mistake and asking whether the corrected label could apply to 3 novel test pictures presented one-by-one
(e.g., “Ooooh you are right! I made a mistake, Is this a fep too?”). Participants validated their answer by
pressing a “Done” button before moving to the next test picture.

At the end of the experiment, there was a final questionnaire asking participants about their age, native
language and country.

1We chose to rename two of the learning exemplars instead of one following a pilot study conducted with adults. When a single
exemplar was re-labelled, adults were confused whether the corrected label applied only to this specific instance or to the whole
category of the initial label.
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Figure 1: Time course of a trial in experiments 1 and 2. Adults were tested online while children
were tested in their preschool. The mode of presentation differed between the two age groups: adults
learned words through written prompts while children saw videos. The time course was the same for
both groups. Participants first saw the 4 learning exemplars for the novel word presented by one of
the aliens. In the extension test: participants then saw 12 test pictures presented one-by-one and were
asked whether the image corresponds to the word just learned. In the last two trials, the extension
test was followed by a representation test: first participants saw two of the learning exemplars being
renamed with another label (the corrected label) by a second alien. Then participants see another set
of 3 test pictures presented one-by-one and are asked whether each of them can also be named with
the corrected label.

Conditions

Each participant saw 1 training trial and 4 test trials: 2 uniform and 2 bimodal trials. For a simple and
schematic explanation, we refer the reader to Figure 2 which represents the structure of test trials and
introduces visually the associated terminology.
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Figure 2: Schema of the structure of a trial in conceptual space for the extension test (1) and
the representation test (2). The first row of pictures corresponds to the configuration of the learning
exemplars (LE1, LE2, LE3, LE4) in the bimodal condition and the second row to the configuration of
the learning exemplars in the uniform condition. The third row corresponds to the test items.

Training trial. The training trial was the same for all participants: the 4 learning exemplars were the
pictures of 4 animals (a dog, a goat, a pig and a cow) and the 4 test items were two animals (a cat, a horse)
and two plants (a tree, a pumpkin). It was designed so that participants understand readily the task, inviting
them to extend the novel label to the two animals but not to the two plants.

Test trial. The key factor differentiating the two test conditions (uniform and bimodal) concerns the
distribution of the learning exemplars (LE1, LE2, LE3, LE4) in conceptual space (here a tree-structure).

• In the uniform trials, the learning exemplars formed a uniform distribution sampled from a superor-
dinate category such that all learning exemplars are about the same distance from one another.

• In the bimodal trials, the learning exemplars formed a bimodal distribution sampled from two inde-
pendent subcategories belonging to the superordinate category such that they formed two clusters of
exemplars: (LE1, LE2) and (LE3, LE4).

During the extension test (Figure 2.1), the 12 test items were either:

• out: out of the superordinate category formed by the 4 exemplars (4 items).

• in: in one of the two subcategories (2 items in between LE1 and LE2 and 2 in between LE3 and
LE4)

• in-superordinate: in the superordinate category but not in any subcategory (4 items)

During the representation test (Figure 2.2), another label (the corrected label) applied to 2 of the learn-
ing exemplars: LE1 and LE4 in the uniform trials and LE1 and LE2 in the bimodal trials. The 3 test items
were either:

• out: out of the superordinate category formed by the 4 exemplars of the initial word.
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• in(1,2): in the subcategory formed by LE1 and LE2.

• in(3,4): in the subcategory formed by LE3 and LE4.

Materials

Our stimuli relied on a set of to-be-learned labels and taxonomically organized objects.

Labels. We chose 7 phonotactically legal non-words of English that were not repeated across trials: 5 for
the initial labels blicket, smirk, zorg, moop, tupa and 2 for the corrected labels kaki, fep.

Objects in conceptual space. Participants were tested on a set of 100 animals organized into a taxonomic
hierarchy extracted from NCBI (http://www.ncbi.nlm.nih.gov) to obtain an objective measure of similarity
between the different items as in (Dautriche & Chemla, submitted).2 For each item, we selected 3 color
photographs showing the animal in its natural background.

Presentation and trial generation.

The order of the trials as well as the pairing between the labels and the set of learning exemplars was fully
randomized and differed for each participant. We created 2 lists of trials, such that each uniform trial had
a corresponding bimodal trial in the other list. That is LE1, LE3 and the test items were common between
a pair made of a uniform and a bimodal trial, while LE2, LE4 varied to make the trial uniform or bimodal.
All trials were generated automatically following the algorithmic constraints described in the supplemental
material and selected following pilot data on adults (the full list of trials is available is the supplemental
material). Participants were randomly assigned to one of the two lists of trials.

Data analysis

Analyses were conducted using the lme4 package (Bates et al., 2014) of R (R Core Team, 2013). In a mixed
logit regression (Jaeger, 2008), we modeled the selection of a test item (coded as 0 or 1) independently for
the extension test and the representation test. The extension test model included two categorical predictors
with their interaction: Test Item (out, in, in-superordinate) and Sampling Condition (uniform vs. bimodal)
as well as a random intercept and random slopes for both Test Item and Sampling Condition and their
interaction for participants and trial pairs.

The representation test model included as well two categorical predictors with their interaction: Test
Item (out, in(1,2), in(3,4)) and Sampling Condition (uniform vs. bimodal) with a random intercept and ran-
dom slopes for Sampling Condition for participants.3 As can be seen in Figure 4, participants were at
ceiling in selecting in(1,2) in the bimodal condition. This impacted the log-estimation behind the logit
model for the representation test, such that the estimates and the standard errors calculated by the model

2Species for which there is a clear difference between scientific and subjective popular taxonomy were excluded (e.g., sea mam-
mals: counter-intuitively, dolphins are closer to elephants than to sharks).

3There was no random slopes for Test Items because it leads to implausible estimates and standard error even after correction (see
thereafter). There was also no random effect for trial pairs since the two last trials could be different for each participant.
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were implausibly big. To get rid of these ceiling effects in a highly conservative way we introduced random
noise: we run the same analysis on a modified dataset where we changed randomly 10% of the responses
given for in(1,2) in the bimodal condition (2 responses).

Results

Extension test

Figure 3 reports the average proportion of selection of each test item by sampling condition (uniform
vs. bimodal) during the extension test.
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Figure 3: Proportion of choice of each test item during the extension test averaged for each trial
condition (uniform vs. bimodal) for adults in Experiment 1. Error bars indicate standard errors of the
mean.

Participants were sensitive to the distribution of the learning exemplars: they selected more in-superordinate
items in the uniform condition than in the bimodal condition (Muni f orm = 0.68, SE = 0.04 ; Mbimodal = 0.45,
SE = 0.04; β =−3.38,z =−2.48, p < .05). We note that the distribution of the learning exemplars also af-
fected the selection rate of out items: they selected more out items in the uniform compared to the bimodal
condition (β = 1.79,z = 2.03, p < .05). Yet, this is expected following the size principle documented by
Xu and Tenenbaum (2007): the boundaries of the superordinate category defined by the 4 learning exem-
plars in the uniform condition are less sharp (for an equal number of exemplars) than the boundaries of
the subcategories in the bimodal condition. As a result, there is more uncertainty about the correct level of
generalization in the tree-structured hierarchy leading to a slightly higher selection rate of out items in the
uniform condition.

However the sampling distribution of the exemplars modulated participants’ responses beyond the size
principle effect since we observe two interaction effects: the difference between the selection rate of in-
superordinate items and in items was greater in the bimodal than in the uniform condition (β = 5.70,z =
3.23, p < .01); similarly the difference between the selection rate of in-superordinate items and out items
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was marginally smaller in the bimodal than in the uniform condition (β =−1.58,z =−1.67, p < .1). This
suggests that participants were more inclined to extend the label to all objects in the superordinate category
including all the exemplars when the exemplars formed a uniform distribution than when they formed a
bimodal distribution.

Representation test

Figure 4 reports the average proportion of selection of each test item by trial condition (uniform vs. bi-
modal) during the representation test.
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Figure 4: Proportion of choice of each test item during the representation test averaged for each trial
condition (uniform vs. bimodal) for adults in Experiment 1. Error bars indicate standard errors of the
mean.

Crucially, the distribution of the exemplars influenced participants’ representation of the initial word: in
the bimodal condition, participants were less likely to extend the corrected label to unattested items (in(3,4))
than in the uniform condition (Muni f orm = 0.53, SE = 0.12; Mbimodal = 0.16, SE = 0.08; β = −5.05,z =
−3, p < .01). This is compatible with a homophonous representation of the initial word in the bimodal
condition, where only one of the two meanings (in(3,4)) has been affected by the later correction.

Discussion

The sampling distribution of the exemplars modulated adults’ interpretation of a novel word: when the
exemplars formed a uniform distribution, participants were more likely to extend its label to all objects
falling in the superordinate category containing all the exemplars than when the exemplars formed a bi-
modal distribution (extension test).

Yet, one may worry that participants did not form a lexical representation but rather extended the label
based on similarity to the learning exemplars: they selected more in-superordinate items in the uniform
than in the bimodal condition simply because, on average, in-superordinate items may be closer to the
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learning exemplars in the uniform than in the bimodal condition. Yet that’s not the case: recall that in
our similarity space (Figure 2), the common ancestor of in-superordinate items with any pair of learning
exemplars, i.e. (LE1, LE2) or (LE3, LE4), is the same in the uniform and the bimodal condition. Certainly
participants’ responses were in part guided by similarity of the test items to the learning exemplars: in the
bimodal condition during the extension test, adults selected in-superordinate items at a higher rate than out
items (β =−2.30,z =−1.99, p < .05). Yet it is sufficient for our purpose to note that this does not account
for the entirety of our effect.4

An interesting question is whether observing the exemplars in a bimodal distribution was sufficient for
participants to form homophonous form-meaning representations. Indeed, there may be two interpretations
of the results of the extension test:

1. Participants formed words’ representations that respect concept convexity. In the bimodal condition,
participants postulated homophony: they associated the novel word with two independent meanings,
each corresponding to a convex concept (e.g., PRIMATE and SNAKE).

2. Participants accepted that a word’s meaning could be a set of disconnected concepts: in the bimodal
condition they associated the novel word to a single, disjoint concept (e.g., PRIMATE OR SNAKE).

The results of the representation test favor the first possibility. When presented with a bimodal distribution
of exemplars (e.g., 2 primates and 2 snakes) labelled by a single word “blicket”, participants interpreted
the corrected label based on its taught meaning alone (e.g., the 2 snakes but not the 2 primates) suggesting
that they preferentially understood “blicket” as a word form associated with two homophonic words, rather
than as a single word with a single discontinuous meaning.

All in all, we replicate previous results (Dautriche & Chemla, submitted) showing that the distribu-
tion of learning exemplars interacts with constraints on concept convexity to form different form-meaning
representations. When the exemplars form a uniform distribution, participants are more likely to asso-
ciate the word to a single convex meaning that encompasses all the learning exemplars (and every entity
in between them). Yet, when the exemplars form a bimodal distribution, participants prefer to postulate
homophony such that the novel word is associated to two convex meanings, rather than to a single, broad
convex meaning or to a single discontinuous meaning. The critical question then, is, do children also postu-
late homophony when there is evidence that the exemplars of a word are distributed in two convex clusters
in conceptual space? Experiment 2 investigated this question by adapting the design of Experiment 1 to
French preschoolers.

4Note that similarity to the exemplars also played a role in the representation test, in which participants selected more in(1,2) items
than in(3,4) items in the uniform condition (β = −4.01,z = −2.61, p < .01) simply because in the tree structure for uniform trials
(Figure 2), in(1,2) is closer to LE1 than in(3,4) to LE4, thus more likely to be selected as an instance of the corrected label.
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Experiment 2

Method

Participants

Twenty-one 5-year-old monolingual French speaking children (5;1 to 6;1, Mage = 5;6, 10 girls) were tested
in a public preschool in Paris. Their parents signed an informed consent form. Three additional children
were tested but not included in the analysis because they systematically responded yes (n = 1) or no (n = 2)
without even looking at the test pictures or responding before they appeared on the screen.

Procedure and display

The experiment was identical to Experiment 1 except that we used videos instead of written prompts with
children (see Figure 1).

Children were tested individually in a quiet room in their preschool. During the experiment, children
sat next to the experimenter, in front of a computer and wore headphones to listen to the stimuli. Before
the experiment began, children watched a video where two alien puppets introduced them with the task.
The two puppets presented themselves as Boba and Zap, and told the children that they were coming from
another planet where they speak a different language, so they would teach the children words of their
language. Once a child demonstrated to the experimenter that (s)he understood the task, the experiment
started. In each trial, children saw 4 learning exemplars, presented one-by-one as the combination of a
picture and a video of Boba labeling the picture with a non-word “Ça, on appelle ça une bamoule!” This,
we call it a bamoule. Each learning exemplar was displayed on the screen when the experimenter clicked
on a button. Once children saw all 4 learning exemplars, they saw a last video where Boba asked them to
repeat the word. This was to ensure that children were on task and for the experimenter to know which
word was used by the puppet (as the words were randomly assigned to a set of learning exemplars and the
experimenter could not hear the stimuli).

During the extension test, children were presented with the 12 test pictures displayed one-by-one below
the 4 learning exemplars. For each of them, the experimenter asked: “Est ce que tu penses que ça s’appelle
une bamoule?” Do you think it is called a bamoule?. When the child answered, the experimenter clicked
accordingly on the “yes” or “no” button on the screen. Children could change their mind if they wanted
within a few seconds after their answer or longer if the experimenter saw that they were still hesitating.
Once a response was validated by the experimenter, the test continued to the next test picture.

In the last two test trials, the extension test was followed by a representation test. Children saw 2 of
the 4 learning exemplars grouped in a frame together with a video where the second puppet, Zap, scolded
the first one, Boba, for using the wrong word for the two exemplars displayed “C’est pas des bamoules ça!
C’est des torbas!” These are not bamoules! These are torbas (the whole script for this video can be found
in the supplemental material). Boba then, aknowledged his mistake. During the dialogue, the frame of the
pictures was blinking in green. At the end of the video, the experimenter asked the child what happened and
replayed the video if the child did not understand the video or did not remember the novel word. Children
were then tested whether the corrected label could apply to 3 novel test pictures. Each of the test picture
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was displayed below the two learning exemplars and the child was asked by the experimenter “Est ce que
tu penses que ça, ça s’appelle un torba?” Do you think that this is called a torba?.

At the end of the experiment, there was a final video where the two puppets said good-bye to the child.
The whole Experiment lasted about 15 min. All sessions were audiotaped.

Conditions, Materials, Presentation and trial generation, Data analysis.

Everything was similar to Experiment 1, except that the experiment was in French and hence the set of non-
words consisted of 9 phonotactically legal non-words of French: bamoule was always used in the training
trial. From the remaining 8 non-words that were used in the test trials, half of them were bisyllabic and
were used as the initial label (toupa, fimo, lagui, yoshi), the other half were trisyllabic and were used as
the corrected labels (midori, cramoucho, didolu, baboocha). The difference in the number of syllables was
introduced to make it easier for children to distinguish between the initial and the corrected labels.

Results

Extension test

As shown in Figure 5, children and adults behaved in the same way: children selected more in-superordinate
items in the uniform condition than in the bimodal condition (Muni f orm = 0.61, SE = 0.04 ; Mbimodal = 0.28,
SE = 0.04; β =−2.56,z =−3.73, p < .001). The distribution of the learning exemplars did not affect any
other test items for children (all ps> 0.7) resulting in two interaction effects: the difference between the se-
lection rate of in-superordinate items and in items, was greater in the bimodal than in the uniform condition
(β = 2.79,z = 2.30, p < .05); similarly the difference between the selection rate of in-superordinate items
and out items, was smaller in the bimodal than in the uniform condition (β=−3.28,z=−4, p< .001). This
suggests that children were more likely to extend the label to all objects in the minimal subtree containing
all the exemplars in the uniform condition compared to the bimodal condition.
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Figure 5: Proportion of choice of each test item during the extension test averaged for each trial
condition (uniform vs. bimodal) for children. Error bars indicate standard errors of the mean.

For uniform trials, we replicate previous results (Xu & Tenenbaum, 2007): children were more likely
to extend the label to all objects in the minimal subtree containing all the exemplars than to objects that
are out of the subtree (in vs. out, β =−5.39,z =−6.28, p < .001; in-superordinate vs. out, β =−3.01,z =
−3.82, p < .001). We note that the distance of the test items to the learning exemplars affected children’s
responses: they selected more in items than in-superordinate items (β = −2.29,z = −2.80, p < .01) sug-
gesting that children’s extension of the label may be in part guided by similarity of the test items to the
learning exemplars.

For bimodal trials, children were more likely to extend the label to objects that were in one of the two
subcategories (in) than to other objects that were either in the superordinate category containing all the
exemplars but out of the subcategories (in-superordinate, β = −5.12,z = −4.61, p < .001) or out of the
superordinate category (out, β =−4.85,z =−8.01, p < .001). There was no difference between the selec-
tion rate of in-superordinate items and out items for children (p > 0.7) suggesting that children excluded
in-superordinate items from the extension of the word.

Representation test

The distribution of the exemplars influenced children’s representation of the initial word (see Figure 6): in
the bimodal condition, children were less likely to extend the corrected label to unattested items (in(3,4))
than in the uniform condition (Muni f orm = 0.64, SE = 0.10; Mbimodal = 0.28, SE = 0.10; β = −1.66,z =
−2.51, p = .01).
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Figure 6: Proportion of choice of each test item during the representation test averaged for each trial
condition (uniform vs. bimodal). Error bars indicate standard errors of the mean.

While children and adults behaved statistically the same way (p > 0.2), there were some visible differ-
ences. In particular, there was a main effect of Sampling Condition for children: children were more likely
to select test items in the uniform than in the bimodal condition (χ(1) = 8.20, p < .01). They even selected
more out items in the uniform than in the bimodal condition (β= 2.56,z= 2.20, p< .05; no such difference
was observed for adults, p > 0.2). The selection rate of out items in the uniform condition is similar to their
selection rate during the extension test. One may wonder why children selected it even less in the bimodal
condition during the representation test. Children may be driven by a “size principle” (Xu & Tenenbaum,
2007): what determines whether the hypothesized extension of a label will have sharp boundaries is the
number of consistent hypotheses with the exemplars. In the representation test, the category defined by
the two exemplars is rather narrow (e.g., snakes) ensuring that very few meaning hypotheses are possible
for the corrected word. During the extension test, there were more meaning hypotheses possible for the
initial word: despite the fact that two exemplars were presented for each of the two subcategories (e.g.,
INSECTS and PRIMATES), the possibility that the initial word corresponded to the minimal superordinate
category encompassing all the exemplars could still be entertained leading to a bigger uncertainty about
the boundaries of the categories of the initial word compared to the boundaries of the corrected word.

Discussion

These results suggest that children, just like adults, postulate homophony for a word when the learning
exemplars formed a bimodal distribution, i.e. that the meaning of that word form is best represented as two
independent convex clusters rather than a big cluster encompassing all the exemplars.

At this point, we would like to point out a weakness in the second of our tests, the representation test.
Because the category including the re-labelled exemplars is wider in the uniform case (e.g., a snake and
a mouse) compared to the bimodal case (e.g., two different kinds of snakes), this may be sufficient for
children to extend the corrected label to more test items in the uniform compared to the bimodal condition:
indeed, a chimp is more likely to be a “fep” when “fep” labels a snake and a mouse than when “fep” labels
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two snakes. This could happen independently of what children had learned about the meaning of the initial
word “blicket”. Thus, although our results reflect exactly what we could expect to observe if children
had hypothesized that “blicket” was a homophone when observing a bimodal distribution of its exemplars,
we cannot entirely rule out the possibility that children, and adults, responded to the representation test
independently from the extension test, in which case the representation test would tell us nothing about what
had been learned initially. To test whether participants responded to the representation test independently
from the extension test, i.e., whether participants’ extension of the corrected label was independent from
their representation of the initial word, we ran a control experiment with adults, in which we tested both
participants’ representation of the initial word not only by testing their extension of the corrected label
(“fep”) but also by testing their updated extension of the initial label (“blicket”).

Experiment 3

In Experiment 3, adults learned a novel word, e.g., “blicket” (the initial label), from a set of exemplars, and
were instructed that some of the exemplars were not “blickets” but “feps” (the corrected label).

When “blicket” applies to a bimodal distribution of exemplars (e.g., two animal-bats and two baseball-
bats) and “fep” corresponds to one of the meanings of the initial word (e.g., the two animal-bats), if par-
ticipants recruit what they have learned from “blicket”, they should restrict not only the corrected label to
the subcategory for which they have evidence (e.g., “fep” refers to animal-bats and not to baseball-bats) as
in Experiment 1, but they should also update their representation of “blicket” (e.g., “blicket” now refers to
baseball-bats and not to animal-bats). On the opposite, if they readily extend “blicket” to animal-bat items,
although these items are now labelled as “feps”, then this will suggest that their responses for “fep” and
“blicket” are independent. When “blicket” applies to a uniform distribution of exemplars (e.g., one animal-
bat, one tree, one car, one-baseball bat) and the corrected label applies to two of the exemplars (e.g., “fep”
labelled one animal-bat and one car), if participants recruit their lexical representation of “blicket” during
the representation test, they should, as in Experiment 1, be more willing to extend “fep” to all “blickets”
(e.g., the broader category of animal-bat, tree, car and baseball bat) but crucially they should also update
their lexical representation for “blicket” (e.g., excluding now the broader category of animal-bat, tree, car
and baseball bat from it). On the contrary if participants’ lexical representation of “blicket” is unaltered,
this would suggest that participants have independent lexical representations for “fep” and “blicket”.

In sum, for both conditions if participants’ extension of the corrected label, “fep”, is uninformed by
what they learned about “blickets”, then their representation of “blicket” should be untouched. On the
other hand, if participants recruited their lexical representation of “blicket” during the representation test,
then they should update this lexical representation by excluding all the “feps” from it.

Method

Participants

Twenty adults were recruited from Amazon Mechanical Turk (8 Females; M = 33 years; 19 native speakers
of English) and were compensated $0.4 for their participation.
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Procedure and display

The experiment was identical to the adult version in Experiment 1 except that during the representation test
we tested their representation of the corrected word (as in Experiment 1) but also their representation of
the initial word.

During the representation test, as before, on the left side of the screen the red alien labelled 2 of the
4 learning exemplars by another word “What are you saying these are not blickets, these are feps!”. On
the right side of the screen, the blue alien seen during the extension text appeared with a test item and two
prompts 1) “Ooooh you are right! I made a mistake, Is this a fep too?” (representation test for the corrected
word) and below it 2) “Is this a blicket?” (representation test for the initial word). There was a “yes” or
“no” button below each question to record participants’ answer.

Conditions, Materials, Presentation and trial generation, Data analysis.

Similar to Experiment 1.

Results

Extension test

Figure 7 reports the average proportion of selection of each test item by trial condition (uniform vs. bi-
modal) during the extension test.
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Figure 7: Proportion of choice of each test item during the extension test averaged for each trial
condition (uniform vs. bimodal) in Experiment 2. Error bars indicate standard errors of the mean.

The extension test replicated the results of Experiment 1: participants’ responses were modulated by
the distribution of the learning exemplars: participants chose more in-superordinate items in the uniform
than in the bimodal condition (Muni f orm = 0.75, SE = 0.04; Mbimodal = 0.34, SE = 0.03; β = −6.31,z =
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−3.57, p< .001). The sampling distribution did not affect the choice of any other test items (ps> 0.1). As a
result, the difference between the selection rate of in-superordinate and in items was greater in the uniform
than in the bimodal condition (β = 3.68,z = 1.98, p < .05) and the difference between the selection rate
of in-superordinate and out items was smaller in the bimodal condition compared to the uniform condition
(β =−5.33,z =−2.51, p < .05).

Representation test

Figure 8 reports the average proportion of selection of each test item by trial condition (uniform vs. bi-
modal) during the representation test for the corrected label. This test also replicated the results of Exper-
iment 1: in the bimodal condition, participants were less likely to extend the corrected label to unattested
items (in(3,4)) than in the uniform condition (Muni f orm = 0.36, SE = 0.10; Mbimodal = 0.1, SE = 0.06;
β =−2.26,z =−2.19, p < .05). The sampling distribution of the exemplars did not affect the responses to
other test items (ps > 0.5)
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Figure 8: Proportion of choice of each test item during the representation test averaged for each trial
condition (uniform vs. bimodal) when participants were tested on the extension of the corrected label.
Error bars indicate standard errors of the mean.

As shown in Figure 9, when tested on the initial label, participants selected more in(3,4) in the bimodal
than in the uniform condition (Muni f orm = 0.5, SE = 0.11; Mbimodal = 0.86, SE = 0.08; β = 2.28,z =
2.70, p < .01). This suggests that the sampling distribution of the exemplars affected participants’ repre-
sentation of both the corrected and the initial words. The sampling distribution did not affect the response
of any other test items (ps > 0.1).
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Figure 9: Proportion of choice of each test item during the representation test averaged for each trial
condition (uniform vs. bimodal) when participants were tested on the initial label. Error bars indicate
standard errors of the mean.

In the uniform condition, participants refrained from applying the initial label to any of the test items
that were within the superordinate category formed by the 4 exemplars (in(1,2) and in(3,4)). This was
evidenced by the fact that the selection rate of in(1,2) and in(3,4) as representatives of “blickets” was not
different from their choice of the out items (ps > 0.15). This suggests that the corrected word overrode the
representation of the initial word: all items previously labelled as “blickets” are now “feps”, thus “blicket”
is not associated with any meaning.

In the bimodal condition, participants refrained from applying the initial label to test items that belonged
to the subcategory of items that had been relabelled with the corrected label: they did not choose in(1,2) as
representatives of the initial label more often than out items (p > 0.2); however, they readily extended the
initial label to test items that were outside the subcategory of relabelled items (in(3,4) vs. out: β=−4.52,z=
−4.46, p < .001). In other words, when exposed to two primates and two snakes all labeled “blicket”, if
the two primates are relabeled “feps”, participants still consider that the new instances of snakes are valid
instances of “blicket”.

Discussion

When the initial word was corrected by another word (e.g., “these are not blickets, these are feps”), par-
ticipants took into account what they have learned about the initial word ( “blicket”) to comprehend the
extension of the corrected word. We replicated the results from Experiment 1: in the uniform condition,
participants were more likely to associate the corrected word to the superordinate category that spans all 4
learning exemplars than in the bimodal condition. In addition, participants also updated their representation
of the initial word. Specifically, in the uniform condition, participants refrained to associate the initial label
to all items that were previously labelled by it (as all are now in the extension of the corrected word, “fep”).
Yet, when the exemplars formed a bimodal distribution, i.e. were taken from two clusters of exemplars C1

and C2 such that the corrected label applied only to one of the clusters of exemplars C1, participants still
considered test items belonging to C2 as valid instances of the initial label. This suggests that adults in
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Experiment 1 recruited the representation of the initial word during the representation test.

However, the alternative explanation, i.e., that the representation of the corrected label “fep” is com-
puted on the basis of the learning exemplars for “fep” only (independently of the representation of the initial
label “blicket”), cannot be entirely ruled out. Participants could have extended the corrected label “fep”
according to the distribution of its exemplars in the representation test (i.e., extend it to more test items
in the uniform condition than in the bimodal condition simply because the category covered by the two
exemplars in the representation test is wider in the uniform case) and then used this information to decide
how “blicket” should be extended. Clearly if participants decide that a given item I is an instance of “fep”,
they will be more willing to exclude it from the extension of “blicket” and this independently of how they
decided that I is a “fep”. However, it should be noted that out items are excluded both from the extension
of “fep” and the extension of “blicket”, suggesting that when responding to “blicket” in the representation
test, participants are still influenced by their responses for “blicket” during the extension test (where they
also excluded out items from the extension of the word). So this would suggest that, while participants may
not recruit their initial representation of “blicket” to extend “fep” to test items in the representation test,
they still recruit it (together with what they have learned about “fep”) to find the extension of “blicket” in
the representation test. While we cannot entirely dismiss the possibility that participants would selectively
attend to their initial representation of “blicket” in the representation test when responding to “blicket” but
not to “fep”, our data provide little support for this hypothesis.

We conclude thus that the most likely interpretation of our results in Experiment 1 is that adults re-
cruited the representation of the initial word during the representation test. Adults preferred, in the first
phase, to postulate that the novel word carries homophony when it is learned from exemplars in a bimodal
distribution. Given the similarity of the results between Experiments 1 and 2, one would be tempted to
extend this interpretation to the children results from Experiment 2. At this point, however, a note of cau-
tion is necessary. One limitation of the present data is that we used our conclusion with adults to rule out a
possible confound for Experiment 1 and 2 with adults and children. Yet we cannot exclude the possibility
that this very explanation may still underly children’s response pattern. We leave it for future research to
establish a more direct argument to explain both children’s and adults’ performance in these experiments.

General Discussion

Children are sensitive to the sampling distribution of the learning exemplars when learning words (as in Xu
& Tenenbaum, 2007). Yet, we demonstrate that this interacts with the kind of form-meaning representation
children are ready to entertain. Observing a bimodal distribution of learning exemplars for a novel word
indicated to our participants that the word was likely to have several meanings. Importantly, our results
suggest that these meanings were stored separately, suggesting that children’s representation of the novel
word in these conditions is very much similar to homophony (Srinivasan & Snedeker, 2011). This extends
previous results from adults (Dautriche & Chemla, submitted) and suggests that when observing a bimodal
distribution of exemplars for the same word form, children generate form-meaning representations, such
as homophony, that respect concept convexity.

Current word learning accounts have documented and modeled paradigmatic cases of word acquisition,
where a single form is associated with a single meaning. We pursued that enterprise by showing that less
standard situations, such as homophony, can help highlight the key role of factors such as the sampling
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distribution of exemplars. It also helps better understand the priors that may constrain and guide word
acquisition, as we detail below.

Missing factors in word learning accounts

Previous studies have shown that children are sensitive to sampling principles when learning words. Xu
& Tenenbaum (2007) describe a size principle: children’s confidence in the boundary of the set of entities
associated with a word increases as they observe more learning exemplars, even if they are all identical.
Here we showed that children were sensitive to the distribution of learning exemplars in conceptual space,
another statistical principle presumably following from the assumption that the exemplars of a word are
sampled randomly from the underlying category (c.f Xu & Tenenbaum, 2007). Intuitively, in the case of
homophones, we expect the label to occur with a set of exemplars S drawn from two distinct subcategories
X1 and X2. Thus, S would take the form of a bimodal distribution within the single superordinate category
X encompassing the two subcategories (i.e. X is the minimal well-formed category such that X1∪X2 ⊂ X).
Yet if the word were to be associated with the whole X , we would expect the exemplars that are associated
with the label (i.e., S) to be uniformly distributed within X . Our results suggest that children can use such
sampling considerations to decide whether a word is associated with one category (standard case) or several
categories (homophone), even when exposed to very few exemplars.5

There are other factors, not documented here, that may interact with the expectation that concepts are
convex and could help children to identify that a word has several meanings. First, evidence for homophony
may come from other words in the lexicon. Adults are less likely to extend a label (e.g., “blicket”) to an
entity, even if this entity falls right between the learning exemplars for the label, when this entity also falls
close to some entity labelled by another word (e.g., “fep”) (Dautriche & Chemla, submitted). Intuitively,
the interfering label provides further evidence for the presence of two distinct clusters of exemplars in
conceptual space, that are separated by another concept labelled by another word (“fep” in the example).
This suggests that learners have expectations not only about how words occupy the conceptual space,
but also about how they share the conceptual space. Similarly, children assume that word extensions are
mutually exclusive (Markman & Wachtel, 1988), and may thus possibly use the presence of other words
in their lexicon together with a constraint on concept convexity to discover that a word is likely to have
several meanings.

Second, some linguistic constructions may be helpful to discover homophony (or the absence of ho-
mophony). For instance, children could notice that words mapping to a single meaning commonly appear
in some plural sentences where homophones never appear (e.g., “These are two bats” pointing at one
baseball-bat and one animal-bat). And this is so for reasons one can understand: a single phonological
form cannot be used to refer to two words at the same time, even if the two words are homophonic.6 Adults
have been shown to use such constructions to assess homophony (Dautriche & Chemla, submitted), and
children may also be sensitive to such linguistic evidence.

These factors may help learners to identify words with multiple meanings. Yet, they also raise im-
mediate challenges for current word learning accounts. For instance, we assumed until now that children
understood which object is referred to by the word in context. Yet, in the real world, the label is uttered

5One may argue that the low number of exemplars was not a limitation in our task because it could be compensated by pragmatic
considerations: participants may expect that the learning exemplars were not drawn at random by the aliens, but rather that the aliens
in our stories were trying to be informative about the meaning of the words and chose their exemplars optimally.

6Note that such a sentence is not agrammatical but zeugmatic (Zwicky & Sadock, 1975).
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in a complex visual environment where the true referent is likely to be confounded with other possible
referents present at the same time (the mapping problem, Quine, 1960). Thus it is likely that the set of
exemplars for a label contains outliers, i.e. items that are outside of the true extension of the word, because
the child would have failed to narrow down the true referent of the word. As a result, the set of exemplars
would certainly form a multimodal distribution (e.g., a set of banana exemplars along with a dog exemplar
– that happened to eat a banana during one of the learning event). The challenge for the learner is thus to
distinguish between outliers of the true meaning of the word and representative examples of a new word
meaning. General principles such as the convexity of concepts and one-to-one mapping between word
forms and concepts may help discard noise of this type. However, if these general principles allow excep-
tions, as our study of homophony reveals, they may hardly help disentangle signal (of homophony) from
noise.

Missing priors in word learning accounts

Our results suggest that children expect meanings to be convex, and are willing to postulate homophony
rather than breaking this constraint (postulating a disjoint meaning) or than enforcing that convexity con-
straint at all cost (postulating a broad lexical entry for problematic words).

This contradicts current word learning accounts which, technically, transpose the notion of convexity
from the level of concepts to the level of word forms, assuming that word forms link to concepts in a
one-to-one fashion. Accordingly, none of the current accounts allow for the possibility that children can
associate word forms with multiple meanings. As a matter of fact, many developmental studies have doc-
umented that preschoolers have notable difficulties in learning homophones (Casenhiser, 2005; Doherty,
2004; Mazzocco, 1997). In these studies, the encounter of the second meaning of a homophone is simu-
lated by using familiar words (e.g., “snake”) to refer to novel referents (e.g., an unfamiliar object). Yet,
we suggest that children’s failure in these studies does not reflect an excessive reliance on a one-to-one
mapping between form and meaning, but rather insufficient executive skills for such a task; as the current
results show, children have no problem learning homophones when they have to learn the two meanings
simultaneously. Learning homophones in our study may be easier than learning a second meaning for a
known word because children do not have to inhibit a highly active word representation for one of the mean-
ings (Khanna & Boland 2010, see also Choi & Trueswell 2010; Novick, Trueswell, & Thompson-Schill
2010). This suggests that children’s difficulty in learning homophones may have been previously over-
rated and that endowing the learning system with a strict one-to-one form-meaning mapping constraint
cannot solely account for the mechanism underlying the acquisition of homophones. Certainly it may still
be possible that a one-to-one form-meaning mapping constraint is guiding word learning at earlier stages
of language development, as 5-year-olds may already have learned to relax this constraint to accommo-
date more challenging form-meaning mappings, such as homophony. Yet, if this is the case, current word
learning accounts should be able to explain how children depart from this default assumption.

The present work thus has important implications for current word learning accounts. When a label
seems to apply to a disjoint set of objects, the learner has two options: 1) postulate homophony (i.e. the
possibility that a word form maps onto two distinct meanings) or 2) follow a one-to-one form-meaning
mapping constraint and postulate that the label is a single word that applies to a larger set of objects (the
category that covers all the positive instances of the label). Most accounts predict that 2) is the default, but
this has to be refined since children eventually learn homophones (e.g., it is likely that English preschoolers
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know both meanings of the word form “bat”; see also de Carvalho et al. 2015 for evidence that French 3-
year-olds have acquired a certain number of homophone pairs). An important open issue then is to equip
the learning system with the right built-in constraints. At this point it seems that word learning is guided
by a) learners’ expectations that concepts are convex, always; b) learners’ expectation that word forms
are linked to one meaning, in general; and c) the possibility that a word form maps onto several distinct
meanings if a) is challenged. While a) helps to constrain the possible concepts one can entertain, b) helps
to constrain the number of hypotheses children need to consider when learning words (especially while
used in combination with a)). Note that this would constitute very specific priors for a general learning
system: it presupposes that children already know that an essential feature of their to-be-learnt lexicon
is to be composed of form-meaning mappings of very specific kinds. The present study contributes to
point c) above: children can entertain the possibility that a word maps onto several distinct meanings to
accommodate apparent violations of a) concept convexity at the detriment of b) a one-to-one mapping
between forms and meanings. This suggests that children are able to selectively trigger or silence b) as
a function of the learning situation (and we documented that this could be made possible by observing
the sampling distribution of the learning exemplars). One possibility for current word learning accounts
would be thus to implement these three built-in constraints directly in the learning system and tweak the
learning inference component to accommodate the sampling effect we document. Yet this would be a rather
strong assumption that amounts to saying that the learning system expects the existence of a phenomenon
as specific as homophony, from the start.

Because current word learning accounts specialized into fairly simple word leaning phenomena (i.e.,
one form associated with a single meaning), they equipped the learner with specialized built-in constraints
(e.g., a one-to-one form-meaning mapping constraint) that cannot explain learning of other more complex
phenomena, such as homophony. Incorporating homophony, and potentially other less trivial word learning
situations, will allow these accounts to delineate the more general priors that children bring into the word
learning task. Yet, although adding different built-in constraints to these accounts may be technically easy,
this may be theoretically challenging as we described above, as one would need to explain how the learning
system is capable of juggling between different priors to appropriately learn different types of words.

Conclusion

Homophony presents a challenge to word learners: it requires children to discover that word forms and
concepts are not always in a one-to-one relation, an otherwise important assumption to restrict the search
space for word meanings. The present study showed that children use information about the sampling
distribution of learning exemplars (and in particular the fact that they form two distinct convex clusters in
conceptual space) to infer homophony for a novel label. We argue that this unexplored sensitivity and the
very possibility of homophony should be incorporated into future accounts of word learning.
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Supplemental material

Trial generation

We define S(A, B) the minimal, well-formed subtree containing A and B.

In the bimodal condition, the learning exemplars (LE1, LE2, LE3, LE4) were chosen such that (LE1,

LE2) have at least 3 more common ancestors than (LE1, LE3). LE2 and LE4 were chosen such that S(LE1,

LE2), respectively S(LE3, LE4), was the first subtree which contained at least 4 animals.

The uniform condition was defined from the bimodal distribution. LE1 and LE3 were kept the same

but LE2 and LE4 were chosen such that S(LE1, LEbimodal
2 ) ⊂ S(LE1, LEuni f orm

2 ) and S(LE3, LEbimodal
4 ) ⊂

S(LE3, LEuni f orm
4 ) such that LE1, LE2, LE3 and LE4 were about the same distance (in number of branches)

from one another.

The test items (in, in-superordinate, out) were chosen such that:

1. 2 in items belonged to the smallest subtree containing LE1, LE2, S(LE1, LE2) and 2 in items be-

longed to the smallest subtree containing LE3, LE4.

2. in-superordinate items were not in S(LE1, LE2), neither in S(LE3, LE4) but it was in S(LE1, LE2,

LE3, LE4).

3. out items were not in S(LE1, LE2, LE3, LE4).

The test trials chosen for the present set of experiments were chosen after piloting with adults and

selecting the trials that maximized our chances of observing an effect with children.

List of trials

List of learning exemplars for each trial in each list. Note that within a list, participants were not asked

to learn two words with the same target meaning. Target meanings for the uniform condition are defined

according to the out items used for each trial. Note that all target meanings may not have a word in

children’s lexicon. Yet this is not a problem: we do not expect children to map these novel words on words

they already know.

1
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List 1

Condition LE1, LE2,LE3,LE4 Target meaning(s)

bimodal gulf crayfish snake, viper, baboon, gorilla snake; primate

uniform clown fish, anaconda, hawk, horse animal

bimodal scarab, ladybug, tiger, leopard beetle; feline

uniform grizzly, chita, chimpanzee, porcupine mammal

List 2

Condition LE1, LE2,LE3,LE4 Target meaning(s)

uniform gulf crayfish snake, swan, baboon, mouse amniote

bimodal clown fish, yellow tang fish, hawk, owl fish; bird

uniform scarab, toad, tiger, robin animal

bimodal grizzly, panda, chimpanzee, cacajao bear; primate

Example of script used during the representation test of Experiment 2

Example of dialogue between the two aliens during the representation test in Experiment 2. All dialogues

followed the same frame yet displayed small variations in order to not be repetitive.

2
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Zap: Mais, mais tu dis n’importe quoi Boba!

But, but Boba, what you say is wrong!

Boba: Bah, qu’est ce que j’ai dit?

Huh, what did I say?

Zap: C’est pas des [initial word] ça, c’est des [corrected word]!

These are not [initial word], these are [corrected word]

Boba: Oooooh, tu as raison, oui, c’est des [corrected word].

Oooooh, you are right, yes, these are [corrected word]

Zap: Et oui c’est des [corrected word], pas des [initial word]!

Yes, these are [corrected word], not [initial word]!

3
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4.3 Summary and Discussion

4.3 Summary and Discussion

What is missing, what do we learn

One piece of all current word learning models that make them succeed is that they presup-
pose that word forms map onto a single meaning that ought to be "convex" in conceptual
space. This assumption simplifies both the research question and the learning task; yet in
some versions of it, it also bans homophony from the system entirely.

In this chapter, I provided the first careful look at what homophones have to say about word
learning, from a theoretical and an experimental standpoint both with adults (Section
4.1) and with children (Section 4.2). On the experimental side, I showed that a word
is more likely to yield homophony if: (a) it is learnt from exemplars leaving an important
gap between them (in conceptual space), (b) this gap in conceptual space is occupied by
other words. These results lead to conclusions beyond homophony, and about the existing
constraints on how words associate with concepts in general. For instance, (b) above
demonstrates that words compete with each other to occupy the conceptual space so that
word learning has to be thought about as a global process over the lexicon, rather than a
one-word at a time mechanism.

One of the main contribution of the present set of studies is that currently, learning in dif-
ferent domains (object labels, function words including functional morphemes, numerical
concepts) involves different prior hypotheses on the hypothesis space of meanings (and how
words maps onto concepts). Yet, this assumes implicitly that learners are already able to
distinguish between several word "domains" in the first place, e.g., they are able to trigger
different learning algorithm when facing function words vs. content words. Accordingly,
word learning algorithm, even those that are argued to emerge from domain-general mech-
anisms (as in Bayesian models), are more specialized than they look like. I come back to
this point further in the General Discussion.

Learning homophones

This was the first set of studies looking at the simultaneous acquisition of the meanings of
a pair of homophones and testing their representations. Recall that in section 3.2, I found
that learning a secondary meaning for a known word is easier when the second meaning is
semantically distinct from the original meaning of the word. To some extent this is compa-
rable to one of the factors I uncovered here: observing a gap in conceptual space between
learning exemplars increases the likelihood that we are in the presence of homophones. Yet
the studies reported in section 3.2 did not look at the representation of the words: children
were taught that "bath" could label a novel animal and could recognize it during the test
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phase, yet it is unclear what kind of representation they entertained for "bath". Did they
form another lexical entry to accommodate the novel meaning ("bath" is a homophone)?
Did they broaden the original meaning of "bath" to include the novel one ("bath" would be
a very broad category encompassing animals, bath items, and everything "in between")?
Or did they simply considered that the word could label a set of disconnected concepts
("bath" meaning bath or pink octopus)? The present set of studies suggests that
toddlers are more likely to postulate homophony when there is evidence for an important
gap in conceptual space between two learning exemplars of the same word form. Yet we
cannot exclude the possibility that younger toddlers may lack the metalinguistic skills to
dissociate the level of words from the level of concepts and would thus prefer to associate a
single meaning for a given form. Clearly, the children tested in the present study (5.5 years)
possess the metalinguistic abilities to conceive the relationship between form and meaning
(Backscheider & Gelman, 1995; Peters & Zaidel, 1980). An interesting open question is
thus whether younger children, who have not yet been proven to possess this ability are
nevertheless able to build lexical representations that conform with homophony.
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5 General Discussion

Children start learning their first words within their first year of life and by the time they
reach adulthood, they will know approximately 60,000 words (Bloom, 2001). Words are
generally acquired without any training or feedback: It seems that whatever inference
mechanism children use to learn the meanings of words, they eventually get it right, even
when the evidence is scarce or noisy. This may suggest a tight connexion between the
mechanisms that children employ when acquiring their lexicon and the way the lexicon is
structured and used.

Yet, the presence of ambiguity in the lexicon challenges this view. Indeed, words can
have multiple senses (e.g., homophones) and are represented by an arrangement of a finite
set of phonemes that potentially increases their confusability (e.g., minimal pairs). Given
that children initially appear to experience difficulty learning similar-sounding words (e.g.,
Stager & Werker, 1997; Swingley & Aslin, 2007) and resist learning homophones (e.g.,
Casenhiser, 2005; Mazzocco, 1997), lexicons containing many confusable word pairs likely
present a problem for children. The fit between lexicon structure and lexical learning
abilities may hence not be as good as common intuition may suggest.

Motivated by this apparent discrepancy between learning abilities and typological pattern
with respect to ambiguity in the lexicon, this dissertation addresses the link between these
two factors. In particular, I addressed the possibility that there may be no paradox between
children’s learning abilities and the presence of ambiguity in the lexicon: On the one hand
the presence of ambiguity in languages may be the consequence of other functional pressures
not related with the acquisition of words. On the other hand, the kind of ambiguity that is
present in the lexicon is learnable; that is learning may exercise some finer-grained influence
on the distribution of ambiguity in the lexicon by keeping only ambiguous words of the
learnable kind. I summarize below the results obtained along these two (non-mutually
exclusive) lines of work.

5.1 The lexicon: The arena of many functional constraints

Languages have to simultaneously satisfy constraints concerning expressive power and ease
of learning and processing (in production and in comprehension). Expressive power will
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lead to languages that are more complex, while ease of learning and processing tends to
maximize simplicity of the linguistic code. Yet importantly, the constraints for ease of
processing and learning may conflict: Speakers want many words that are easier to say,
thus a more regular and compressible lexicon that maximizes the re-use of word forms
and parts of word forms, while listeners and learners want many words that can be easily
identified, thus a more distinctive lexicon that maximize the phonological distance between
words. However, no quantitative study to date has investigated whether lexicons are more
likely to be compressible or more distinctive than chance levels, where chance would be
what the lexicon would look like in the absence of functional pressures.

In chapter 2, I provided such a methodology for quantifying the amount of phonological
clustering present in the lexicon. My results show that natural lexicons (at least for the four
languages under study) have more similar-sounding words than what would be expected
based on chance alone. In addition, I show that greater phonological clustering in the
lexicon may be explained (in part) by semantic factors: Across a large corpus of 101
languages, similar-sounding words tend to be semantically closer than expected by chance.
This reveals a fundamental drive for compressibility in the lexicon that conflicts with the
pressure for words to be as phonetically distinct as possible.

The prevalence of ambiguous words was not measured using this methodology (see the
discussion in section 2.3). Yet, previous studies have shown that short, frequent and
phonotactically probable words are likely to have more meanings than other, more complex
and unfrequent words (Piantadosi, Tily, & Gibson, 2012). Thus, all factors that facilitate
lexical processing (word length, frequency, phonotactic likelihood) predict, independently,
an increase of ambiguity (see for an identical pattern for similar-sounding words, Mahowald
et al., submitted , Appendix A). This suggests that the frequency distribution of words is
structured in a non-arbitrary way, which results in a maximization of the use of ambiguous
and similar-sounding words.

Taken together, these results reveals two important tendencies: First, lexicons may be
organized less arbitrarily than previously proposed (de Saussure, 1916; Hockett, 1969) –
at least when considering the distribution of similar-sounding words and their mappings
to meanings. Second, just like Zipfian distributions can be interpreted as the result of a
functional trade-off between speakers’ and listeners’ interests regarding word length and
word forms, the distribution of word form similarity in the lexicon appears to be explained
by cognitive pressures: Phonological proximity benefits word production (e.g., Dell &
Gordon, 2003) but is detrimental for word recognition (e.g., Luce & Pisoni, 1998b) and
word learning (e.g., Casenhiser, 2005; Swingley & Aslin, 2007). By assigning similar-
sounding and ambiguous word forms to more frequent and predictable meanings, and less
similar forms to less frequent and less predictable meanings, languages establish a trade-
off between the overall effort needed to produce words and the probability of successful
transmission of a message, and thus, of successful learning of the language.
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In sum, the above-chance presence of similar-sounding words in the lexicon illustrates the
presence of multiple functional pressures that compete in the lexicon to minimize the global
cost of the language: Similar-sounding words aid speech production (and memory) beyond
the cost of perceptual confusion of these words. In other words, ease of production may
weigh more heavily on the presence of similar-sounding words than ease of comprehension
or learning, resulting in more compressible lexicons.

5.2 Ambiguity in context is not a challenge for language
acquisition

Even within the learning system, phonological proximity may display at the same time some
functional advantages and some functional disadvantages. To form a novel lexical entry in
their lexicon, children must be able to extract a word form and associate it to a meaning. In
theory, a compressible lexicon may be advantageous for learning as it reduces the amount
of new information that must be represented in the lexicon. For instance, to learn a novel
word such as "blick", children need to create a novel phonological representation /blIk/
that needs to be associated to a novel semantic representation. Learning several meanings
for the same phonological form (or re-using parts of a phonological form) may be more
efficient because children only need to learn a novel semantic representation that they can
associate with an already existing phonological representation (Storkel & Maekawa, 2005;
Storkel, Maekawa, & Aschenbrenner, 2012). Thus, compressible lexicons may display a
functional advantage as it minimizes the amount of phonological information that must be
learnt and remembered. Yet, compressible lexicons may, at the same time, be functionally
challenging for learning as it requires learners to create a new semantic representation when
few or no phonological cues can be used to signal that a new meaning is intended (see also
section 1.2).

In chapter 3, I showed that French 18- to 20-month-old toddlers had no problem learning
object labels that were phonological neighbors of a familiar verb (e.g., learning "kiv",
a neighbor of "give") but did find it difficult to map neighbors of a familiar noun onto
a novel object (e.g., learning "tog", a neighbor of "dog"). This suggests that toddlers
are not confused by phonological similarity per se when learning words. In fact, even
in cases where the novel word is phonologically identical to a word in toddlers’ lexicons
(i.e., a homophone), toddlers correctly learnt the novel meaning, provided that the two
homophones are sufficiently distant syntactically (e.g. "an eat" is a good name for a
novel animal) or semantically (e.g. "a potty" for a novel animal). When the homophones
were close on both dimensions (e.g. "a cat" for a novel animal), however, no learning
was observed. These results show that toddlers recruit multiple sources of information
to infer whether or not a given word form is likely to instantiate a novel meaning. More
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generally, the process of creating a lexical entry seems to be mediated by toddlers’ existing
lexicon and their parsing abilities. This suggests that the functional disadvantage of having
similar-sounding and homophonous word pairs in the lexicon may be reduced when the
meanings of these words appear in contexts that can be recognized as distinct by children’s
developing parsing system.

Chapter 4 formalized this conclusion for current word learning accounts, circumscribing
the conditions in which homophonous word representations can emerge. Intuitively, in the
case of homophones, we expect the label to occur with a set of exemplars S drawn from two
distinct subcategories X1 and X2. Thus, S would take the form of a bimodal distribution
within the single superordinate category X encompassing the two subcategories (i.e. X is
the minimal well-formed category such that X1 ∪ X2 ⊂ X). Yet if the word were to be
associated with the whole X, we would expect the exemplars that are associated with the
label (i.e., S) to be uniformly distributed within X. My results suggest that children and
adults can use such sampling considerations to decide whether a word is associated with
one category (standard case) or several categories (homophone), even when exposed to very
few exemplars. In particular, I showed that a word is more likely to be considered as a
homophone when its exemplars are sampled from semantic categories leaving an important
gap between them in conceptual space. Yet, this kind of sampling information may be
informative beyond cases of semantic distance between meanings: When the members of
a pair of homophones are not from the same syntactic category, the sampling distribution
of the syntactic context of the label would thus be bimodal and help learners to postulate
homophony.

Interestingly, in chapter 4, I also proposed that the learning system is equipped with
built-in constraints that allow for the existence of homophony. This is important because
contrary to similar-sounding words, homophony presents an additional challenge for word
learners: It requires them to discover that there is no one-to-one correspondence between
word forms and the associated concepts (as discussed in the Introduction, section 1.2).
Certainly, word learning is guided by a set of built-in constraints regarding the possible
concepts and form-meaning configurations. This set of experiments makes the following
constraints explicit: Learners 1) always expect concepts to be convex, that is, to con-
sist of groups of contiguous entities in conceptual space; 2) generally expect words to
be associated with a single meaning; 3) entertain the possibility that a word maps onto
several meanings if concept convexity is challenged. These constraints show that, albeit
dispreferred, homophony can be a possible outcome of our learning system.

Certainly, the requirements to learn similar-sounding words and homophones are differ-
ent. While pairs of similar-sounding words can be distinguished at the word form level,
homophones cannot: The only way for homophones to be recognized as such is to have
sufficiently distinct meanings. Meaning distinctiveness is thus fundamental for these words
to be learnt and to remain in the language. Interestingly, Bloomfield (1962) reports that in
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a dialect of Southwestern France, when the Latin forms "gallus" rooster and "cattus" cat
were in danger of merging into one form, "gat", another novel word acquired the meaning
rooster, suggesting that the use of the same label for cat and rooster was unwanted and
caused speakers to remap a new form onto one of these meanings. This illustrates that
pairs of homophones that belong to the same semantic field tend to be eliminated during
the course of language evolution. Conversely, while pairs of similar-sounding words may be
easier to learn when they have distinct meanings, this is not a mandatory property for these
words to be correctly recognized. In addition, while homophones require that learners form
lexical representations that dissociate linguistic signals from concepts (i.e., one word form
associated with several meanings), similar-sounding words do not. Meaning distinctiveness
may thus be a prerequisite for children to form more complex lexical representations, such
as homophony, that depart from an intuitive bias to map each phonological form to a sin-
gle meaning. Yet meaning distinctiveness may be unnecessary for similar-sounding words,
that still conform to a one-to-one mapping between forms and meanings.

While lexicons are compressible at the word form level, are they constrained by other di-
mensions that maximize meaning distinctiveness? Chapter 3 showed that while members
of a pair of homophone appear to be distinctive, i.e., homophones preferentially appear
across syntactic categories rather than within and their meanings are semantically distinct,
this does not seem the case for similar-sounding words, i.e., minimal pairs are more likely
to appear within the same syntactic category and to be semantically related. Thus ho-
mophones show an advantage for meaning distinctiveness, but similar-sounding words do
not. Yet as chapters 3 and 4 suggest, this functional disadvantage may be reduced when
the meanings of similar-sounding words and homophones can be distinguished in context.
This suggests that toddlers’ learning abilities impact the way in which homophones are
distributed in the lexicon, but not by the way similar-sounding words are organized.

Importantly, this does not mean that there is no functional disadvantage associated with
the presence of similar-sounding words that are also more syntactically and semantically
similar: As I showed, learning novel words in these conditions is difficult. Yet, this dis-
advantage may be outweighed by other learning advantages: (a) similar-sounding words
may be easier to spot in the speech stream (Altvater-Mackensen & Mani, 2013, see also
section 1.2.1); (b) similar-sounding words sharing the same grammatical category may help
children group words into categories (i.e., nouns, verbs) (Cassidy & Kelly, 1991; Monaghan
et al., 2011); but also other processing advantages: (c) similar-sounding words are easier
to produce and to memorize. In sum, the distribution of similar words in the lexicon,
both at the word form level and at the syntax/semantic level, may simply reflect a greater
functional advantage rather than the absence of functional cost.

The empirical evidence presented in chapters 3 and 4 suggests that the learning system of
young children is equipped with constraints and mechanisms that allow them to successfully
learn ambiguous and similar-sounding words as long as these words can be distinguished in
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a context that children can capitalize on. Thus, children can deal with ambiguity as long as
distinctiveness along other dimensions that are relevant for them is maximized. In addition,
I suggest that learning exercises a finer-grained influence on the distribution of ambiguity
in the lexicon by selecting ambiguous words whose meaning can be easily disambiguated
by the context in which they occur, while pruning out ambiguous words which are not
distinguishable through their context, which makes them both hard to learn and prone to
triggering misunderstandings. Interestingly the distribution of similar-sounding words in
the lexicon did not seem to be affected by children learning difficulties potentially because
they confer a greater advantage for speech production and memory (see chapter 2). I
propose that the difference between the distribution of ambiguous and similar-sounding
words illustrates the presence of multiple functional pressures that compete in the lexicon,
and that the end result is a trade-off that minimizes the global cost for language users.
Yet, while we can probably get an idea of the weight of different functional pressures from
observing the structure of the lexicon (and of languages more generally), we cannot tell
whether they actually explain why lexicons look the way they are. In the set of studies
presented in this thesis, I examine the connexions between learning and processing abilities
and lexicon structure, but this work does not provide evidence about whether there is a
directional and causal relation between the way our mind is working and language. I turn
to this point in the following sections.

5.3 How did the lexicon become the way it is?

Language is transmitted culturally from one generation to the next: First-generation speak-
ers produce sentences, which second-generation learners use in order to infer the properties
of the language. These cycles of production and inference are crucial in understanding how
language has developed and evolved into the structure we observe now.

Iterated learning provides a framework to study the emergence of a linguistic system
through cultural transmission. Iterated learning is the process by which individuals learn
a language produced by a previous individual, who learnt it in the same way (Kirby et
al., 2008; Kirby, Griffiths, & Smith, 2014; K. Smith, Kirby, & Brighton, 2003), and can be
simulated using computational models or experiments with human participants in the lab.
Kirby, Tamariz, Cornish, & Smith (2015) show that the languages that emerge from iter-
ated learning are shaped by the processes of both cross-generation transmission (language
learning) and within-generation communication (language use). Iterated learning can thus
be used to isolate effects of learning (i.e., where a participant learns a language and then
tries to recall it) and the effects of communication (i.e., where participants interact with
one another).

Work using this paradigm has consistently shown that individuals will preferentially dis-
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card forms and structures that are disadvantageous in favor of other, more advantageous
words and phrases (e.g., Reali & Griffiths, 2009; K. Smith & Wonnacott, 2010). For in-
stance, Reali & Griffiths (2009) show that over repeated episodes of learning, a lexicon with
multiple labels for objects (synonyms or many-to-one form-meaning mappings) evolves into
a lexicon that associates each label with a unique object. This is consistent with the obser-
vation that there is a historical tendency for languages to lose many-to-one mappings over
time and that children display a bias against many-to-one mappings (Markman & Wachtel,
1988). Note that to date, no work exists investigating in such a paradigm whether lexicons
evolve to be more phonologically similar and start tolerating the existence of homophones
over time.

Iterated learning thus offers a promising venue for future research to understand how
functional pressures from both language learning and language usage combine to produce
the particular distribution of ambiguous and confusable words found in human languages.
Imagine that individuals are taught an artificial lexicon that contains pairs of similar-
sounding words and pairs of homophones that vary in their meaning distinctiveness. Our
results with child learners predict that the degree to which members of homophone or
minimal pairs are distinct may influence participants’ learning abilities, thus affecting the
transmission of these words to the next generation of learners. We might expect that,
across generations, pairs of homophones which cannot be distinguished by their seman-
tic or syntactic context will disappear from the language, while pairs of minimal pairs
will tend to stay and be easier to learn if they facilitate syntactic or semantic grouping.
This may provide direct evidence that 1) functional processes directly influence the dis-
tribution of those words in the lexicon, for instance by looking at whether phonological
proximity tends to decrease or increase during learning and/or during communication; 2)
the different patterns of distribution found for ambiguous and confusable words stem from
different functional pressures that weigh differently in the process of language usage and
transmission.

While looking at language evolution in accelerated lab time provides us with an impression
of which functional pressures give rise to a particular structure, functional pressures may
not be the only determinant of structure. Certainly, languages must adapt to constraints
external to the human mind.

5.4 The influence of external factors on the lexicon

Several studies have previously demonstrated that the cultural process of transmitting a
language, in combination with the constraints and biases of language learners and users,
offers an explanation for language structure (e.g., Kirby, 1999). For example, composi-
tional languages (i.e., languages in which the meaning of an expression is determined by
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the meaning of its constituent expressions) emerge from unstructured languages through
repeated transmission through a learning bottleneck (e.g., Brighton, 2002; Brighton, Smith,
& Kirby, 2005; Vogt, 2005). Because language learners need to infer the whole language
from limited evidence (the "bottleneck"), compositionality appears as a natural solution
for language since it is the only way for learners to infer the properties of a large linguis-
tic system with limited evidence.Thus, the process of transmission itself may give rise to
structure because it constrains the kind of inferences that learners can entertain. In par-
ticular, the size of the "bottleneck" influences whether the resulting language will reflect
the inductive biases or constraints of the learning system: The smaller the bottleneck the
faster it will converge to the priors of the learner (e.g., Griffiths, Christian, & Kalish, 2008;
Griffiths & Kalish, 2007; Kirby, Dowman, & Griffiths, 2007; Reali & Griffiths, 2009), yet
when the bottleneck is large (a large amount of information is available to the learner), the
language will be a combination of the learner’s priors with the distribution of events in the
world (the posterior, in Bayesian terms) (Perfors & Navarro, 2014). Thus, the transmission
process by itself is a mediating force in the shaping of languages.19

These results are particularly interesting in relation to the distribution of homophones
in languages. Many have suggested that learners expect words to be associated with a
single convex meaning (a one-to-one form-meaning mapping bias). Yet, as we showed in
chapter 4, learners offset this constraint when they are given evidence that the meaning
onto which the word would map is not convex, allowing for the formation of homophones.
Thus, when the evidence is fairly limited (hence the bottleneck is small), learners will more
readily follow the more general constraint that one word should be associated to a single
meaning. For instance, if learners are provided with only a small number of exemplars,
revealing that the word "bat" is associated to two baseball-bats and one animal-bat, they
will be likely to infer that "bat" means baseball-bat and discard the animal-bat exemplar.
This may be especially true when one of the two meanings of a pair of homophones is
very infrequent. Conversely, if the bottleneck is large, that is, if learners observe many
exemplars for each meaning of the homophone pair, learners will have more evidence that
concept convexity is not met and will postulate homophony. As such, the amount of
homophony that remains in the language should depend on how easy it is for the learner
to identify the two meanings (chapters 3 and 4) but may also depend on the size of the
bottleneck – how much evidence the learner is given to observe. Similarly, languages may
have evolved to impose greater phonological overlap to words that are semantically and
syntactically related (chapter 4) such that learners would quickly group words according
to their relevant syntactic or semantic categories even when the size of the bottleneck is
small.

The structure of the world also interacts with learners and users of a language and influences

19Note however that it does not preclude the possibility that the type of response our mind is adopting to
the bottleneck problem, i.e., in this example compositionality, may be grounded in human cognition.
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the resulting structure. For instance, the population size has an influence on language com-
plexity: Languages spoken by larger groups have larger signal inventories (this is true even
in animal communicative systems, Freeberg, Dunbar, & Ord, 2012) but simpler morphol-
ogy than languages spoken in smaller communities, both in real world languages (Lupyan
& Dale, 2010; Nettle, 2012) and in artificial learning experiments (Atkinson, Kirby, &
Smith, 2015). In addition, the structure of the environment influences the structure of
the language: If entities in the world are grouped along a single dimension (e.g., objects
are naturally grouped according to their size), the languages of iterated learning exper-
iments evolve to reflect that structure independently of the dimension chosen (i.e., size,
color, etc) and independently of the language the first generation has to learn (Perfors &
Navarro, 2014).20 Similarly, the situational context is an important driver of the space of
meanings: If a meaning dimension (e.g., color, shape, motion) is made not relevant during
word learning (because it does not help to infer an intended meaning), then languages will
not encode this particular meaning dimension (Silvey, Kirby, & Smith, 2014). Others have
reported the importance of frequency of use as an explanation of language structure (e.g.,
Bybee, 2006): High frequency patterns are learnt easily, independently of their regularity
in the language, while low-frequency patterns are difficult to learn when they are irregular
and thus, may disappear from the language. The classical example is the acquisition of
English past tense. Irregular past forms (e.g., go→ went) are more likely to be frequent in
the language and when they are not frequent, they are more likely to show some regularity
in their past forms (e.g, breed → bred; bleed → bled; meet → met).

Frequency may be an important factor to explain the existence of similar-sounding words
and homophones in the lexicon. Recall that ambiguity and confusability is more likely to
appear on frequent forms than on infrequent forms (Mahowald et al., submitted ; Piantadosi,
Tily, & Gibson, 2012; Zipf, 1949). As discussed in chapter 2, words with higher frequencies
are beneficial for speakers. Yet, in addition, it could also be an advantage for learners: As
homophones and similar-sounding words are frequent, this will provide them with enough
evidence through the learning bottleneck to learn the meanings of those words, allowing
thus for a greater likelihood that these words are transmitted to the next generation and
remain in the language. Certainly this also imposes constraints on which homophones are
most likely to stay in the languages: Homophones whose meanings occur frequently will be
more likely to be transmitted than homophones with unbalanced frequencies where only
the most frequent meaning will go through.

Maturational constraints can also impact the structure of language. For instance, when
adults and 5-year-olds were exposed to a language with an inconsistent grammar, children
regularized the language – their output was more consistent than their input, while adults

20Certainly, the way we structure the world may, to some extent, also depend on the language we use.
For instance, the way that languages partition the color spectrum into labeled categories affects color
similarity judgments, memory, and discrimination (e.g., Regier & Kay, 2009; Roberson, Davies, &
Davidoff, 2000; Winawer et al., 2007).
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reproduced only what they heard (Hudson Kam & Newport, 2009). Hudson Kam &
Newport (2009) hypothesized that children’s restricted memory capacities limit their ability
to store complex forms (see also Newport, 1990), and are thus more likely to impact the
structure of language compared to adults. This aligns nicely with the case of similar-
sounding and ambiguous words. Maturational constraints linked to memory constraints
may limit the appearance of maximally distinctive lexicons since it would be more difficult
for children to learn them, as they would need to remember more phonological forms
and more sound sequences, and favor compressible lexicons that have a certain amount of
phonological overlap.

In the case of homophones, an additional maturational constraint seems critical for chil-
dren: The ability to conceive the relationship between form and meaning. Metalinguistic
awareness of that sort seems to appear between 3 and 4 years of age (Doherty, 2000). For
instance, here is the quote of 4-year-old French kid, well aware of homophones (in French
/vEK/ means, inter alia, either the color, green; the material, glass; something to drink
from, a glass; or an animal, a worm):

C’est /vEK/ mais c’est pas en /vEK/, enfin c’est en /vEK/, mais c’est pas DU /vEK/
This is [green] but it is not [glass], well it is in [green], but it is not made of [glass]

If metalinguistic awareness develops late in younger children, this may limit their abilities to
learn homophones. However, it is unclear exactly when this metalinguistic ability develops.
Certainly children younger than 3 years of age know a few pairs of homophones (de Carvalho
et al., 2014) and can readily attach a second meaning to a known word form in certain
conditions (chapter 3). Yet, very little is known about the lexical representations of
these words at that age and how children reflect about them. One possibility is that
learning homophones may not have to be metalinguistic at its earliest stages: Toddlers
may start building two separate lexical entries for the same word form because the context
in which each meaning is used fully prevents them from accessing the other meaning(s) of
the same form. Then, only later, children may realize that the mapping between forms and
meanings is ambiguous. According to this view, it is crucial that the meanings of a pair of
homophones are distinct for homophones to be able to remain in the language. Another
possibility is that children have these metalinguistic skills from the start. Interestingly
some toddlers appear to initially use certain word forms to refer to multiple referents (e.g.,
Vihman, 1981). For instance "cat" could be used in reference to a cat but also in reference
to a dog or any object. One interesting question is whether their representation of "cat"
is simply greatly underspecified or whether they are aware that the true meaning of "cat"
is the set of cats and only cats, and use this word because they do not possess a better
alternative in their lexicon. If the latter case is true, this would suggest that children
have the ability to distinguish between words and concepts early on and may be able to
entertain homophony.21

21Certainly this is not the only way to test whether children know that words and concepts are not related
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Taken together, as I reviewed above, there are many factors, determined by functional
considerations and the external world, that could explain part of the amount and the
particular distribution of homophones and similar-sounding words in the lexicon. In my
future work, I will continue pursuing these directions. In particular, I will investigate
the role of frequency in the transmission of ambiguous and similar-sounding words in
the iterative learning paradigm with adults, and I will extend the study of one-to-many
form-meaning mappings to younger children, in order to gain an understanding of the
maturational constraints underlying the representation of homophonous meanings.

5.5 Insights into the link between language and mind

I started this thesis by noting that there is a connection between the mechanisms by which
we acquire and process languages on the one hand and the structure of languages on the
other hand. Yet the origin of such a relationship is the topic of a long-standing (but im-
portant) debate (Chomsky, 1986; Christiansen & Chater, 2008; Evans & Levinson, 2009;
Pinker & Bloom, 1990b). One view argues that this relationship has occurred because
of specialized biological machinery that embodies the principles that govern natural lan-
guages (e.g., Chomsky, 1986). As such, these principles do not need to be determined by
functional considerations since they are hard-wired in the learning system. A second view
holds that the structure of language has evolved to fit domain-general learning and process-
ing constraints (e.g., Christiansen & Chater, 2008). From this perspective, the learner’s
cognitive constraints are likely to be helpful in learning the target language because the
language has evolved to conform to these biases. Both views agree that languages are
shaped by the mind but differ in whether this occurs through language-specific or domain-
general mechanisms. The present work does not aim to disentangle between these views
but rather provides some interesting insights into these ideas that will need to be further
explored.

For a long time, the presence of ambiguity has challenged the view that language is de-
signed to fit our learning and processing needs. Yet, much evidence (e.g., Piantadosi, Tily,
& Gibson, 2012; Wasow et al., 2005), including the data presented in the body of this
thesis, proposes that the existence of ambiguity and confusability may find an explana-
tion when one is considering the competing needs of learners, listeners and speakers of the
language. The studies in that dissertation started to address this question by looking at
a few languages and study child learners and provide an interesting starting point sug-
gesting that ambiguity, and the way it is distributed in the lexicon, may be functionally
motivated. Certainly, future work should expand this investigation further: Indeed, most
of the languages studied here are historically related (thus share some of their properties)

in a one-to-one fashion. Yet this also relates directly to children metalinguistic abilities and provides
an interesting framework to study the representation of words in early vocabularies.
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and most language acquisition studies are restricted to a few languages. In future work,
I plan to overcome the scarcity of data by taking advantage of the existence of big cor-
pora (see chapter 2) and simulate language evolution in the lab (e.g., iterated learning)
to study different learning and communicative configurations and supplement children’s
learning data. This will be a crucial component for disentangling the impact of different
functional pressures, and understand why/how they weigh differently for different aspects
of language.

Does word learning emerge from innately constrained cognitive mechanisms or from more
domain-general mechanisms? Bayesian approaches are often called for to reduce learning
to domain-general mechanisms. Yet, a careful look at the literature reveals that current
models of word learning, including Bayesian models, assume very strong built-in constraints
for the learning algorithm. These models do not take into account certain word learning
phenomenon, such as homophony, when describing word learning. I suggest that this is
due to a specialization of the individual word learning algorithms put forth by researchers:
One algorithm can learn object labels, another one can learn function words, yet another
can learn number words, etc. Yet none of these algorithms can be used to learn all kinds
of words. This may not be a problem by itself, but while focusing on learning a single
word type, current word learning accounts implicitly incorporate built-in assumptions that
may or may not be justified. For instance, the existence of several learning algorithms
rests on the assumption that learners already know to distinguish between different word
types (e.g., function words and content words or words having several meanings versus
words having only one) so that they can apply the relevant learning algorithm in a given
situation. One possibility is that these accounts assume that word distinction is an innate
property of the learning system. Another possibility is that children use a domain-general
mechanism to distinguish between these words: For instance, infants have been shown
to use word frequency as a cue to distinguish between function words and content words
(Hochmann, Endress, & Mehler, 2010)22. Also, it has been shown that infants distinguish
between function and content words at birth, likely based on acoustical cues only (Shi,
Werker, & Morgan, 1999). At any rate, these implicit priors, and their origin, need to be
specified and studied. As I have shown, one way of doing so is to look at more diverse
word learning phenomena within the same word learning model to reveal and understand
what may count as a an actual cognitive constraint and what is merely a simplification of
the learning algorithm.

In addition, this thesis provided evidence that the lexicon is strongly constrained by the
kinds of representations our mind is willing to entertain. As we showed, learners expect
concepts to be convex. That is, they expect its members to form a coherent cluster in

22Though whether this is domain-general or domain-specific is still debatable. On the one hand, there
could be an innate constraint saying that frequent morphemes are functional. On the other hand, there
could be a general appreciation of frequency: if a given word is too frequent, then it is unlikely to refer
to a concrete object and therefore must be used for some other (functional) purposes.
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conceptual space. Yet while this constraint is certainly not language-specific, it seems that
learners assume that their to-be-learnt lexicon is composed of form-meaning mappings of
a very specific kind: They expect words to be mapped onto a single concept. This seems
a rather specific assumption on the language they are about to learn, yet this does not
necessarily imply that this is a language-specific constraint: Learners have been shown
to have a preference for simplicity across a wide range of cognitive processes (Chater &
Vitányi, 2003), including language learning. Accordingly, learners may expect that forms
and meanings come in a one-to-one relation because that may be the simplest representa-
tion that learners could possibly find (see also Slobin, 1973, 1975, for the argument that
expecting clarity between signals and their functions is an important driving principle).
However, one important finding reported in the present work was that learners can enter-
tain more complex meaning representations (homophony) in cases where there is no clear
mapping between a word form and a single meaning, but only in the "right" contexts. This
is a very specific built-in constraint for a general learning system that seems to expect that
a linguistic phenomenon as specific as homophony may be a possibility from the start.
Certainly, this calls for further investigation and leaves several open questions for future
research, regarding the hierarchy of the constraints of the learning system (as I showed con-
cept convexity seems to be prioritized over forming a one-to-one mapping between forms
and meanings), and the possibility of the existence of some very specific constraints on the
mapping between forms and meanings in the learning system.

5.6 Conclusion

This work investigated why lexicons are ambiguous. A prominent feature of this thesis
has been the combined use of lexical models to quantify the amount of ambiguity in the
lexicon and experimental methods in toddlers and adults to investigate what exactly en-
ables children to learn ambiguous and confusable words. Taken together, this research
suggests that ambiguous and confusable words, while present in the language, may be re-
stricted in their distribution in the lexicon and that these restrictions reflect (in part) how
children learn languages, and (in part) the existence of several other constraints on the
lexicon. Taken together, this dissertation provides the basis for a research program ded-
icated to understanding how cognitive constraints coming from language acquisition and
language use combine to produce the lexicons found in human languages through cultural
transmission.
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Abstract

If natural language lexicons are structured for ease of production, the easiest-to-produce words will
be used more often than words that have higher production costs. This account conflicts with predictions
from noisy channel theories, which predict that the most frequent words in a language should be the
most phonetically distinct in order to avoid perceptual confusion. We test these competing hypotheses
using corpora of 101 languages from Wikipedia. We find that, across a variety of languages and language
families, the most frequent forms in a language tend to be more phonotactically well-formed and have
more phonological neighbors than less frequent forms.

1 Introduction

Zipf famously observed that frequent words tend to be shorter than infrequent words. (Zipf, 1935). This
inverse relationship between word length and word frequency, and a closely related inverse relationship
between word length and predictability in context (Piantadosi et al., 2011), has since been found across
a variety of languages. These statistical patterns in the lexicon are most likely a functional product of
language use (Piantadosi, 2014; Zipf, 1949): from an information-theoretic perspective (Shannon, 1948),
it is more efficient for the most predictable, most frequently used codes to be short. By assigning shorter
forms to more frequent and predictable meanings and longer forms to less frequent and less predictable
meanings, languages establish a trade-off between the overall effort needed to produce words and the
chances of successful transmission of a message. It would be onerous and slow to have to re-use long
words over and over when the content is predictable. But when the content is unpredictable, longer words
are likely to be more robust to noise and allow for information to be transmitted at a rate at which the
message will be understood (Aylett & Turk, 2004; Levy & Jaeger, 2007; van Son & Pols, 2003).

Besides length, one important dimension by which words can vary is their phonological form. In
addition to theorizing about length, Zipf (1935) also claimed that the Principle of Least Effort predicts that
easily articulated sounds should be used more often in language than more difficult sounds. In this work,

∗For correspondence, e-mail kylemaho@mit.edu
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we operationalize this idea in terms of phonotactic probability. Some words, like cat, are composed of
sequences that are easy to pronounce. Other words in the language, like dwarf, are harder to pronounce
because they have more unusual phoneme sequences. A side effect of phonotactic probability is that words
with higher phonotactic probability tend to be more phonologically similar to one another. Phonological
neighborhood density is a measure of the number of words in the lexicon that are phonologically similar
to a given target word (Luce, 1986; Vitevitch & Luce, 1998). For instance, phonological neighbors of
cat include cast, bat, and at. Critically, words with high phonotactic probability are likely to have higher
phonological neighborhood density than words with lower phonotactic probability since highly probable
words are likely close in phonetic space to other phonotactically probable words.

Both phonotactic probability and neighborhood density have been shown to play a critical role in lan-
guage processing and acquisition, as we discuss below in more detail.

Phonotactic probability

Phonotactic probability is a measure of the well-formedness of a string in a given language. For instance, in
English, the word drop is phonotactically quite probable, dwop is less probable but still allowed, and dsop
has, essentially, no probability. In this work, we will use orthographic probability, as measured by an n-
gram model, as a proxy for phonotactic probability. Under a bigram model of orthographic probability, for
instance, the probability of a string like drop would depend on the probability of the two-letter sequences
that make up the word: dr, ro, and rp.

Phonotactic probability is likely related to articulatory constraints as well as other factors, and there is
compelling evidence that phonotactically probably words are easier to produce and understand in language
use. For instance, it has been claimed that the phonetics of languages evolve to enable easy articulation
and perception (Lindblom, 1983, 1990, 1992) and the patterns of sounds observed across languages reflect
articulatory constraints (Kawasaki & Ohala, 1980). Therefore, a language whose most frequent words are
phonotactically probable likely requires less production effort than a language organized such that the most
frequent strings are not phonotactically likely.

Less obviously, the same may also be true of comprehension and learning: phonotactically probable
words are more easily recognized than less probable words (Vitevitch, 1999). And there appears to be a
learning advantage for probable strings: probable strings are learned more easily by infants and children
(Coady & Aslin, 2004; Storkel, 2004, 2009; Storkel & Hoover, 2010) and infants prefer high-probability
sequences of sounds compared to lower probability sequences (Jusczyk & Luce, 1994; Ngon et al., 2013).
All of this evidence suggests a functional advantage to using phonotactically probable words. Here, we
will think of a word’s phonotactic probability as a proxy for the cost of using that particular word.

Phonological neighborhood density

Phonological neighborhood density of a word w is the number of words that differ from word w by one
insertion, deletion, or substitution (Luce, 1986; Vitevitch & Luce, 1998). On one hand, words with many
neighbors have an inhibitory effect on lexical access in perception (Luce, 1986; Vitevitch & Luce, 1998)
and elicit lexical competition that slows down word learning in toddlers (Swingley & Aslin, 2007). More-
over, Magnuson et al. (2007) shows that high-density word onsets inhibit reading times. However, phono-
logical similarity (a) facilitates the ease with which people produce words (Gahl et al., 2012; Stemberger,
2004; Vitevitch & Sommers, 2003); (b) supports novel word representation in working memory (Storkel
& Lee, 2011) and (c) boosts word learnability in adults (Storkel et al., 2006). As Dell & Gordon (2003)

A Word forms are structured for efficient use
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demonstrate in their model, phonological similarity in the lexicon challenges word recognition yet bene-
fits word production.1 This asymmetry between the effect of phonological similarity in word recognition
and word production provides a window into the functional pressures that act on wordform similarity and
makes competing predictions as to whether the most frequent words in a language should have more or
fewer phonological neighbors than less frequent words.

The present study

What we know about neighborhood density and phonotactic probability (which are highly correlated with
each other) leads to two possible predictions about the functional organization of the lexicon. On one hand,
following a noisy channel setting (Gibson et al., 2013; Levy, 2008; P. Smith, 1970) where a speaker is
transmitting a message to a receiver with some probability of error along the way, one wants to make sure
that the most frequent words are most perceptually distinct from each other in order to minimize the number
of errors made. On the other hand, if speakers prefer to re-use common articulatory sound sequences, one
should structure the lexicon such that the most frequent words consist of phonotactically likely strings.
That way, the infrequent and hard-to-pronounce words only rarely need to be used.

To evaluate the extent to which the phonological forms of words may be explained by word usage,
we investigated whether (a) wordforms that are orthographically probable (as measured over word types)
are likely to be more frequent (by token) than wordforms that are less orthographically probable and (b)
whether wordforms that are orthographically similar to other words are likely to be more frequent than
phonologically more unique wordforms.

If we observe a positive correlation between frequency and orthographic probability and between fre-
quency and phonological density, it would indicate that lexicons are structured so that the most commonly
used words are easy to produce. In contrast, a negative correlation would indicate that highly-frequent
words are more subject to a pressure for dispersion of word forms. Note that, because we train the phono-
tactic model and measure neighbors using unique word forms and then correlate those measures with the
token frequency of those word forms, we avoid any circularity in this analysis. That is, the estimates of
phonotactic probability and neighborhood density do not depend on the frequency of the word forms.

This kind of correlation has been examined in the literature before, but only for a small number of
languages. Landauer & Streeter (1973) performed a similar analysis for English, and Frauenfelder et al.
(1993) for English and Dutch. All found that the most frequent words in the language have higher phono-
tactic probability and more phonological neighbors than more infrequent words. While these results are
suggestive, it is difficult to draw conclusions based on a small set of related languages. In the current study,
we used orthographic lexicons from 101 typologically diverse languages downloaded from Wikipedia in
order to investigate whether the relationship between phonotactic probability, neighborhood density, and
frequency reflect functional constraints. We found that frequent wordforms tend to be phonotactically
likely and have more neighbors than less frequent wordforms, suggesting that there is a functional pressure
associated with word usage for languages to prefer phonotactically probable strings that are phonologically

1Sadat et al. (2014), however, find that phonological neighborhood density actually causes longer naming latencies in production
and therefore has an inhibitory effect–but that there are also facilitative effects of neighborhood density in lexical access. Vitevitch
& Stamer (2006) (like Sadat et al. (2014)) argue that morphologically rich languages like Spanish and French typically show an
inhibitory effect for words with many neighbors in naming tasks. Chen & Mirman (2012) present a model showing that, whether or
not neighborhood effects in general are facilitative or inhibitory may be task dependent. While the literature on the topic is large and
complex, for our purposes, it is sufficient to acknowledge that there is at least some facilitative effect in language production associated
with having an easy-to-pronounce string with many neighbors relative to a difficult-to-pronounce string with few neighbors. Language
production would be inhibited if speakers had to rely mostly on difficult-to-pronounce wordforms.
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West Germanic: Afrikaans, German, English, Luxembourgish, Low Saxon,
Dutch, Scots, Yiddish, Alemannic; Goidelic: Irish, Scottish Gaelic; Brythonic:
Breton, Welsh; Hellenic: Greek; South Slavic: Bulgarian, Macedonian, Serbo-
Croatian, Slovene; Albanian: Albanian; Iranian: Central Kurdish, Persian,
Kurdish, Mazandarani, Tajik; Romance: Aragonese, Asturian, Catalan, Span-
ish, French, Galician, Italian, Lombard, Neapolitan, Occitan, Piedmontese, Por-
tuguese, Romanian, Sicilian, Venetian, Walloon; West Slavic: Czech, Polish, Slo-
vak; Armenian: Armenian; Italic: Latin; North Germanic: Danish, Icelandic,
Norwegian (Nynorsk), Norwegian (Bokmal), Swedish; Baltic: Lithuanian, Lat-
vian; Indo-Aryan: Fiji Hindi, Marathi, Urdu, Bosnian, Croatian, Punjabi, Ser-
bian; East Slavic: Belarusian, Russian, Ukrainian; Frisian: West Frisian

Table 1: Table of Indo-European languages used, language families in bold.

Austronesian: Minang, Amharic, Indonesian, Malay, Sundanese, Cebuano, Taga-
log, Waray-Waray, Buginese, Javanese; Altaic: Mongolian, Azerbaijani, Bashkir,
Chuvash, Kazakh, Kyrgyz, Turkish, Tatar, Uzbek; creole: Haitian; Austroasiatic:
Vietnamese; Kartvelian: Georgian; Niger-Congo: Swahili, Yoruba; Vasonic:
Basque; Afro-Asiatic: Malagasy; Quechuan: Quechua; Semitic: Arabic, Egyp-
tian Arabic, Hebrew; Korean: Korean; Uralic: Estonian, Finnish, Hungarian;
Tai: Thai; constructed: Esperanto, Interlingua, Ido, Volap

Table 2: Table of non-Indo-European languages used, language families in bold.

more similar to one another.

2 Method

101 orthographic lexicons:

We used the lexicons of 101 languages extracted from Wikipedia. The details on these lexicons, includ-
ing the typological details and our corpus cleaning procedure, are explained in Appendix A. The languages
analyzed included 62 natural Indo-European languages and 39 non-Indo-European languages. Of the non-
Indo-European languages, 12 language families are represented as well as a Creole and 4 constructed
languages (Esperanto, Interlingua, Ido, Volap) that have some speakers. (The analysis is qualitatively the
same after excluding constructed languages.) The languages analyzed are shown in Tables 1 and 2.

For this analysis, we defined a lexicon as the set of the 20,000 most frequent unique orthographic
wordforms (word types) in a given language. We used only orthographic wordforms here, which are a
good proxy for phonological forms (an assumption tested in Section 3.2 for a small number of languages).

3 phonemic lexicons:

To assess whether the Wikipedia corpus (which uses orthographic forms and contains morphologically
complex words) is a good proxy for a more controlled corpus that uses phonemic representations and is
restricted to monomorphemic words, we also analyzed phonemic lexicons derived from CELEX for Dutch,
English and German (Baayen et al., 1995) and Lexique for French (New et al., 2004). The lexicons were

A Word forms are structured for efficient use
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restricted to include only monomorphemic lemmas (coded as "M" in CELEX; I.D. (a French native speaker)
identified mono-morphemes by hand for French). That is, they contained neither inflectional affixes (like
plural -s) nor derivational affixes like -ness. In order to focus on the most used parts of the lexicon, we
selected only words whose frequency is greater than 0. (The CELEX database includes some rare words
listed as having 0 frequency, which were not in the original CELEX sample.) Since we used the surface
phonemic form, when several words shared the same phonemic form (e.g., ‘bat’) we included this form
only once.

All three CELEX dictionaries were transformed to make diphthongs into 2-character strings. In each
lexicon, we removed a small set of words containing foreign characters. This resulted in a lexicon of 5459
words for Dutch, 6512 words for English, 4219 words for German and 6782 words for French.

Variables under consideration:

For each word in each language we computed the word’s:

• Token frequency: for orthographic lexicons: across all the Wikipedia corpus of the language; for
phonemic lexicons: using the frequency in CELEX

• Orthographic probability (as a proxy for phonotactic probability): We trained an ngram model on
characters (n = 3 with a Laplace smoothing of 0.01 and with Katz backoff in order to account for
unseen but possible sound sequences) on each lexicon and used the resulting model to find the prob-
ability of each word string under the model. Table 3 shows examples of high and low probability
English words under the English language model.

word log probability
shed -3.75
reed -3.69
mention - 4.63
comment -4.68
tsar -8.64
Iowa -9.47
tsunami - 12.90
kremlin -11.53

Table 3: Phonotactically likely and unlikely words in English with their log probabilities

• Orthographic neighborhood density (as a proxy for phonological neighborhood density): PND is
defined for each word as the number of other words in the lexicon that are one edit (an insertion,
deletion, or substitution) away in phonological space (Luce, 1986; Luce & Pisoni, 1998). For in-
stance, ‘cat’ and ‘bat’ are phonological neighbors, as well as minimal pairs since they have the same
number of letters and differ by 1. ‘Cat’ and ‘cast’ are neighbors but not minimal pairs. We will
focus on minimal pairs, as opposed to neighbors, in order to avoid confounds from languages having
different distributions of word lengths.
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word
length

mean
correlation

proportion showing
positive correlation

proportion showing
significant correlation

3 letters .27 (.26) 1.00 (1.00) .97 (.92)
4 letters .24 (.24) .98 (.98) .97 (.96)
5 letters .23 (.22) .99 (.99) .98 (.96)
6 letters .21 (.20) 1.00 (1.00) .97 (.98)
7 letters .19 (.19) 1.00 (1.00) .98 (.99)

Table 4: Separated by length, (a) the mean correlation across languages for the relationship between
orthographic probablility and frequency, (b) the proportion of languages that show a positive correla-
tion between orthographic probability and frequency, and (c) the proportion of languages for which
this relationship is significantly different from 0 at p < .05. In parentheses, we include each value for
the subset of the lexicons that do not appear in the English Subtlex subtitles corpus.

word
length

mean
correlation

proportion showing
positive correlation

proportion showing
significant correlation

3 letters .19 (.19) 1.00 (.99) .97 (.84)
4 letters .17 (.16) .98 (.99) .97 (.93)
5 letters .18 (.18) .98 (.98) .98 (.96)
6 letters .19 (.18) 1.00 (1.00) .97 (.97)
7 letters .18 (.18) .99 (.99) .98 (.96)

Table 5: Separated by length, (a) the mean correlation across languages for the relationship between
number of minimal pairs and frequency, (b) the proportion of languages that show a positive correla-
tion between number of minimal pairs and frequency, and (c) the proportion of languages for which
this relationship is significantly different from 0 at p < .05. In parentheses, we include each value for
the subset of the lexicons that do not appear in the English Subtlex subtitles corpus.

3 Results

3.1 Large-scale effects of frequency on 101 languages

Correlational analysis

Figures 1 and 2 plot the correlations for each language and length (from 4 to 6 letters) separately, between
orthographic probability and frequency for non-Indo-European and Indo-European language respectively.
Points to the right of the dotted line at 0 show a positive correlation. Almost all languages indeed show a
positive correlation.

Figures 3 and 4 are similar plots for the correlation between minimal pairs and frequency. Once again,
almost all languages show a positive correlation.

Analyzing each length separately and focusing on words of 3 to 7 letters, we found a significant cor-
relation between log frequency and orthographic probability in most languages (see Table 4). For instance
for the 4-letter words, 99 of 101 languages showed a positive correlation and 98 out of the 101 correlations
were significantly positive at p < .05.

We also found a robust correlation between log frequency and number of minimal pairs (mean r = .18
across lengths and languages) for almost all languages, as shown in Table 5.
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Figure 1: Correlation coefficients between orthographic probability and frequency, by language and
length, with 95% confidence intervals based on Fisher transforms for words of length 4 to 6 for non-
Indo-European languages. Dots to the right of the dotted line at 0 show a positive correlation. The
numbers along the y-axis are the Pearson correlations. Text and points are colored by language family.
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Figure 2: Correlation coefficients between orthographic probability and frequency, by language and
length, with 95% confidence intervals based on Fisher transforms for words of length 4 to 6 for Indo-
European languages. Dots to the right of the dotted line at 0 show a positive correlation. The numbers
along the y-axis are the Pearson correlations. Text and points are colored by language family.

A Word forms are structured for efficient use

220



4 5 6
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.15

0.02

0.10

0.10

0.15

0.15

0.16

0.19

0.21

0.25

0.37

−0.05

−0.00

0.04

0.13

0.19

0.19

0.19

0.20

0.24

0.25

0.11

0.14

0.16

0.21

0.15

0.08

0.18

0.20

0.29

0.26

0.12

0.15

0.19

0.33

0.09

0.10

0.10

0.14

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.09

0.06

0.09

0.10

0.12

0.12

0.13

0.16

0.23

0.23

0.46

−0.02

−0.01

0.07

0.07

0.12

0.14

0.14

0.15

0.18

0.23

0.06

0.19

0.23

0.23

0.13

0.05

0.20

0.17

0.22

0.22

0.17

0.19

0.24

0.14

0.09

0.15

0.15

0.15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.09

0.10

0.12

0.13

0.13

0.14

0.15

0.18

0.20

0.24

0.35

0.03

0.04

0.11

0.12

0.12

0.14

0.15

0.19

0.21

0.34

0.05

0.19

0.23

0.26

0.15

0.08

0.02

0.19

0.22

0.19

0.21

0.22

0.25

0.10

0.14

0.21

0.21

0.21Basque

Finnish

Estonian

Hungarian

Thai

Egyptian Arabic

Arabic

Hebrew

Quechua

Swahili

Yoruba

Korean

Georgian

Haitian

Esperanto

Ido

Interlingua

Volap

Amharic

Javanese

Malay

Tagalog

Indonesian

Buginese

Sundanese

Minang

Cebuano

Waray−Waray

Vietnamese

Mongolian

Chuvash

Kazakh

Kyrgyz

Azerbaijani

Turkish

Tatar

Bashkir

Uzbek

Malagasy

−0.50 −0.25 0.00 0.25 0.50−0.50 −0.25 0.00 0.25 0.50−0.50 −0.25 0.00 0.25 0.50

Pearson correlations with 95% CIs

la
ng

ua
ge

Language_Group
●a
●a
●a
●a
●a
●a
●a
●a
●a
●a
●a
●a
●a
●a

Afro−Asiatic
Altaic
Austroasiatic
Austronesian
constructed
creole
Kartvelian
Korean
Niger−Congo
Quechuan
Semitic
Tai
Uralic
Vasonic

Non−IE correlations between minimal pairs and frequency

Figure 3: Correlation coefficients between number of minimal pairs and frequency, by language and
length, with 95% confidence intervals based on Fisher transforms for words of length 4 to 6 for non-
Indo-European languages. Dots to the right of the dotted line at 0 show a positive correlation. The
numbers along the y-axis are the Pearson correlations. Text and points are colored by language family.
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Figure 4: Correlation coefficients between number of minimal pairs and frequency, by language and
length, with 95% confidence intervals based on Fisher transforms for words of length 4 to 6 for Indo-
European languages. Dots to the right of the dotted line at 0 show a positive correlation. The numbers
along the y-axis are the Pearson correlations. Text and points are colored by language family.
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In order to ensure that any observed effects are not the product of English overlap, we ran the same
analyses on the full lexicons as well as on subsets of lexicons that exclude any word that also appears in
the English Subtlex subtitles database (Brysbaert & New, 2009). This excludes English intrusions but also
excludes perfectly good words like die in German (which means “the” and is unrelated to English “die”)
and French dire (meaning “to say” and unrelated to the English adjective dire). Note that, for all lengths,
the results obtained when excluding all English words are similar in terms of overall correlation. Because
most of the English words excluded are actually not intrusions but are native words that just happen to also
be English forms, we include them in all subsequent analyses.

Additionally, we find a robust correlation between orthographic probability and number of minimal
pairs (mean r = .49 across all lengths considered). This result holds for all lengths across the vast majority
of languages and is consistent with the idea that words with high orthographic probability are more likely
to have neighbors since the orthographic probabilities of their neighbors will be on average high too. For
example, a word like ‘set’ is more likely to have more minimal pairs in English than the word ‘quiz’ simply
because the letters in ‘set’ are more common and so, probabilistically, there are more opportunities for a
word to be orthographically close to ‘set’ than to ‘quiz.’

It follows that the correlations between frequency and phonological similarity uncovered previously
should be (partly) due to both frequency and orthographic probability being correlated with phonological
similarity. Thus, the question becomes (a) whether the correlation between frequency and phonological
similarity remains after factoring out the effect of orthographic probability and (b) whether the correla-
tion between frequency and orthographic probability remains after factoring out the effect of phonological
similarity. Moreover, many of the languages in this study are highly related, so we need an analysis that
generalizes across families and languages to make sure that the effect is not just lineage-specific.

Mixed effect analysis

We ran a mixed effect regression predicting (scaled) frequency for each word from orthographic proba-
bility and number of minimal pairs, where both predictors were normalized for each language and length.
We used a maximal random effect structure with random intercepts for each language, language sub-family,
and language family and slopes for orthographic probability and number of minimal pairs for each of those
random intercepts. In effect, this random effect structure allows for the possibility that some languages or
language families show the predicted effect whereas others do not. It allows us to test whether the effect
exists beyond just language-specific trends. Because of the complex random effect structure and the large
number of data points, we fit each length separately and focused on words of length 3 through length 7.

For 4-letter words (a representative length), a 1 standard deviation increase in orthographic probability
was predictive of a .20 standard deviation increase in frequency; a 1 standard deviation increase in number
of minimal pairs was predictive of a .06 standard deviation increase in frequency. To assess the significance
of orthographic probability above and beyond the number of minimal pairs, we performed a likelihood ratio
test comparing the full model to an identical model without a fixed effect for orthographic probability (but
the same random effect structure). The full model was significantly better by a chi-squared test for goodness
of fit (χ2(1) = 30.9, p < .0001). To assess the significance of the number of minimal pairs above and
beyond the effect of orthographic probability, we compared the full model to an identical model without
a fixed effect for the number of minimal pairs using a likelihood ratio test. Once again, the full model
explained the data significantly better (χ2(1) = 10.6, p < .001). Thus, both the number of minimal pairs
and orthographic probability appear to make independent contributions in explaining word frequency. This
effect holds above and beyond effects of language family or sub-family, which are included in the model
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word
length

orthographic
probability

number of
mininimal pairs

3 letters .23** .08**
4 letters .20*** .06***
5 letters .19*** .07**
6 letters .15*** .11***
7 letters .13*** .11***

Table 6: Separated by length, the model coefficient from the full model including random intercepts
and slopes for language, sub-family, and family for orthographic probability and number of minimal
pairs. Two asterisks means that by a likelihood test, the predictor significantly improves model fit at
p < .01. Three asterisks means p < .001.

as random effects. Note that the effect size is larger for orthographic probability than it is for number of
minimal pairs and that a model including a fixed effect of probability but not minimal pairs has a better
model fit (AIC = 520310) than one that includes minimal pairs but not probability as a fixed effect (AIC
= 520330). We find a similar pattern of results for all other lengths examined, as summarized in Table
6. Overall, these results suggest that both the number of minimal pairs and the orthographic probability
independently predict frequency but that the effect of orthographic probability is stronger and is likely, in
part, driving the neighborhood effect.

In Appendix B, we show the results of a lasso regression (Tibshirani, 1996), for each length and lan-
guage, predicting scaled frequency from scaled orthographic probability and scaled number of minimal
pairs. As with our other analyses, this analysis suggests that more frequent words have higher orthographic
probability and more minimal pairs but that the minimal pairs result is driven, at least in part, by ortho-
graphic probability.

3.2 Testing correlation generalizability to phonemic representations

We used orthographic lexicons because they could be easily extracted for a large number of languages.
However, a better measure of phonotactics could be calculated on the phonemic transcription of words,
and a better measure of phonological similarity should exclude morphological similarity by focusing only
on monomorphemes. To assess whether the correlation between frequency and phonological similarity
and between frequency and phonotactic probability hold in a set of monomorphemic words with phonemic
representations, we performed the same analysis using the four phonemic lexicons from Dutch, English,
French, and German.

As before, we tested whether the token frequency could be predicted by phonotactic probability (here
approximated by phonemic probability using a ngram model operating over triphones) and/or number of
minimal pairs. The correlations obtained in these four phonemic lexicons replicated previous correlations
with the orthographic lexicons for these languages: all four languages still showed positive correlations for
the relationship between phonotactic probability and frequency and between number of minimal pairs and
frequency.

That said, the correlations were slightly lower in the more controlled set for the 4 languages than when
using the same measures in the larger data set: the correlation between minimal pairs and frequencies
(across the 4 languages and word lengths 3-7) is, on average, .03 lower for the correlation between minimal
pairs and frequency and .10 lower for the correlation between orthographic probability and frequency. This
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suggests that part of the effect could be driven by morphology–which is absent in the controlled phonemic
lexicons but present in the Wikipedia corpus.

4 Discussion

We found that frequent wordforms are more likely to be similar to other wordforms and composed of
more likely sequence of phonemes than infrequent ones. These correlations were robustly present across
a large number and wide variety of typologically different languages. Just as the Zipfian word frequency
distribution allows for functional optimization of word lengths(Piantadosi, 2014; Piantadosi et al., 2011)
and word forms (Piantadosi et al., 2012), this work shows that the frequency profile of even words of the
same length is structured in a non-arbitrary way so as to maximize the use of “good” word forms.

Note that, form a noisy channel perspective, there is a tradeoff in structuring the lexicon this way. In
a language where phonotactically probable strings in dense neighborhoods are the most frequent words,
there may be an increased chance of perceptual confusion. On the other hand, it is possible that in everyday
speech, noise conditions may not be extreme enough that perceptual confusion would be an issue. Or maybe
the cost of perceptual confusion–asking an interlocutor to repeat a phrase or getting the information some
other way–is typically not high enough to offset the cost that would come with structuring the lexicon such
that the most frequent word forms were phonetically odd.

We do not believe that the main result of this paper is purely a result of morphological regularity since
the same analyses run on monomorphemic words in a subset of languages show the same pattern of results.
Moreover, although phonotactic constraints are an obvious and major source of regularity in the lexicon, it
is important to note that these results are not likely just the result of phonotactic constraints since the results
hold even after controlling for the influence of phonotactic probability, at least in the analyses reflecting
the influence of word usage. In a companion study (Mahowald et al., submitted) in which we constructed a
phonotactically-controlled baseline for lexicons, we provided compelling evidence that natural lexicons are
more tightly clustered in phonetic space than would be expected by chance, over and above the constraints
imposed by phonotactics. This, taken together with the present results, suggests that languages tend to
favor wordform similarity in the lexicon.

In this study, we addressed the issue of why wordform similarity in lexicons diverges from what can
be expected by chance alone, but we leave it to future work to investigate how it got to be that way. One
promising body of work in that vein concerns language evolution. Indeed, there has been much experimen-
tal work studying the evolution of language showing that language users will preferentially discard forms
and structures that are disadvantageous in favor of other, fitter words and phrases (Fedzechkina et al., 2012;
K. Smith et al., 2003). Thus, one plausible mechanism for the effects described here is that generations of
learners improve on the lexicon, honing it over time by avoiding words that are too strange, complex, or
that otherwise don’t fit with the rest of the words in the lexicon.
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Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current
word frequency norms and the introduction of a new and improved word frequency measure for american
english. Behavior Research Methods, 41(4), 977–990.

Chen, Q., & Mirman, D. (2012). Competition and cooperation among similar representations: toward a
unified account of facilitative and inhibitory effects of lexical neighbors. Psychological review, 119(2),
417.

Coady, J. A., & Aslin, R. N. (2004). Young children’s sensitivity to probabilistic phonotactics in the
developing lexicon. Journal of Experimental Child Psychology, 89(3), 183–213.

Dell, G. S., & Gordon, J. K. (2003). Neighbors in the lexicon: Friends or foes? Phonetics and Phonology
in Language Comprehension and Production: Differences and Similarities, 6, 9.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. The Annals of
statistics, 32(2), 407–499.

Fedzechkina, M., Jaeger, T. F., & Newport, E. L. (2012). Language learners restructure their input to
facilitate efficient communication. Proceedings of the National Academy of Sciences, 109(44), 17897–
17902.

Frauenfelder, U., Baayen, R., & Hellwig, F. (1993). Neighborhood density and frequency across languages
and modalities. Journal of Memory and Language, 32(6), 781–804.

Gahl, S., Yao, Y., & Johnson, K. (2012). Why reduce? phonological neighborhood density and phonetic
reduction in spontaneous speech. Journal of Memory and Language, 66(4), 789–806.

Gibson, E., Bergen, L., & Piantadosi, S. (2013). Rational integration of noisy evidence and prior semantic
expectations in sentence interpretation. Proceedings of the National Academy of Sciences.

Jusczyk, P., & Luce, P. (1994). Infants’ sensitivity to phonotactic patterns in the native language. Journal
of Memory and Language, 33(5), 630–645.

Kawasaki, H., & Ohala, J. J. (1980). Acoustic basis for universal constraints on sound sequences. The
Journal of the Acoustical Society of America, 68(S1), S33–S33.

Landauer, T., & Streeter, L. (1973). Structural differences between common and rare words: Failure
of equivalence assumptions for theories of word recognition. Journal of Verbal Learning and Verbal
Behavior, 12(2), 119–131.

Levy, R. (2008). A noisy-channel model of rational human sentence comprehension under uncertain input.
In Proceedings of the conference on empirical methods in natural language processing (p. 234âĂŞ243).
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A Appendix: Dataset of 101 lexicons from Wikipedia

We started with lexicons of 115 languages from their Wikipedia databases (https://dumps.wikimedia
.org). We then excluded languages for which a spot-check for non-native (usually English) words in the
top 100 most frequent words in the lexicon between 3 and 7 characters revealed more than 80% of words
were not native. In this way, languages that used non-alphabetic scripts (like Chinese) were generally ex-
cluded since the 3-7 letter words in Chinese Wikipedia are often English. However, we included languages
like Korean in which words generally consist of several characters. After these exclusions, 101 languages
remained.2 We analyzed the data both with and without these exclusions, and the exclusions do not sig-
nificantly affect the overall direction or magnitude of the results. The final languages included 62 natural
Indo-European languages and 39 non-Indo-European languages. Of the non-Indo-European languages,
there are 12 language families represented as well as a Creole and 4 constructed languages (Esperanto,
Interlingua, Ido, Volap) that have some speakers. (The analysis is qualitatively the same after excluding
constructed languages.)

To get a sense of how clean these Wikipedia lexicons are, we randomly sampled 10 languages for which
we then inspected the 100 most frequent words and an additional 100 random words to look for intrusion
of English words, HTML characters, or other undesirable properties.

For the top 100 words in the lexicons of the 10 sampled languages, we found at most 3 erroneous words.
For the same languages, we also inspected a randomly selected 100 words and found that the mean number
of apparently non-intrusive words was 93.5 (with a range from 85 to 99). The most common intrusion in
these languages was English words.

B Appendix: Lasso regression analysis

Lasso analysis

We fit separate lasso regressions (Tibshirani, 1996) for each length and language predicting scaled fre-
quency from scaled orthographic probability and scaled number of minimal pairs. The lasso regression
puts a constraint on the sum of the absolute value of the regression coefficients (L1-regularization) and
thus effectively pushes some coefficients to 0 if they are not needed. We set the value of the lasso parame-
ter using cross-validation to minimize the out-of-sample error and used the lars software package (Efron
et al., 2004) in R.

In Figure 5, for each language, we plot the coefficient for scaled number of minimal pairs on the x-axis
against the coefficient for scaled orthographic probability on the y-axis. If both predictors show robust
effects, we would predict the points to cluster in the upper right quadrant. If both predictors showed little
effect, the points would cluster around 0.

Although the lasso regression drives some of these coefficients to 0, the plot clearly shows effects of
both minimal pairs and orthographic probability (with larger coefficients in general for orthographic prob-
ability). Specifically, for 4 and 5 letter words, only 2 languages show negative coefficients for orthographic
probability and none for 6 and 7 letter words.

Thus, it appears that more frequent words also have higher orthographic probability as well as more
minimal pairs, although the minimal pairs effect is driven in part by orthographic probability.

2We excluded: Gujarati, Telugu, Tamil, Bishnupriya Manipuri, Cantonese, Newar, Bengali, Japanese, Hindi, Malayalam, Marathi,
Burmese, Nepali, Kannada
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Figure 5: This plot shows the lasso regression coefficients (predicting scaled frequency) for scaled
number of minimal pairs and scaled orthographic probability.
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Cross-Situational Word Learning in the Right Situations

Isabelle Dautriche and Emmanuel Chemla
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Upon hearing a novel word, language learners must identify its correct meaning from a diverse set of
situationally relevant options. Such referential ambiguity could be reduced through repetitive exposure
to the novel word across diverging learning situations, a learning mechanism referred to as cross-
situational learning. Previous research has focused on the amount of information learners carry over from
1 learning instance to the next. In the present article, we investigate how context can modulate the
learning strategy and its efficiency. Results from 4 cross-situational learning experiments with adults
suggest the following: (a) Learners encode more than the specific hypotheses they form about the
meaning of a word, providing evidence against the recent view referred to as single hypothesis testing.
(b) Learning is faster when learning situations consistently contain members from a given group,
regardless of whether this group is a semantically coherent group (e.g., animals) or induced through
repetition (objects being presented together repetitively, just like a fork and a door may occur together
repetitively in a kitchen). (c) Learners are subject to memory illusions, in a way that suggests that the
learning situation itself appears to be encoded in memory during learning. Overall, our findings
demonstrate that realistic contexts (such as the situation in which a given word has occurred; e.g., in the
zoo or in the kitchen) help learners retrieve or discard potential referents for a word, because such
contexts can be memorized and associated with a to-be-learned word.

Keywords: word learning, hypothesis testing, language acquisition, memory, lexical representation

Children observe their environment and learn the associations
between word forms and their world referents. Yet, the signal is
noisy: A word is not uttered in the sole presence of its referent but
in a complex visual environment where multiple word-to-meaning
mappings are available (Quine 1964). One possible mechanism
that may reduce the referential ambiguity is cross-situational
learning, or the aggregation of information across several expo-
sures to a given word (Akhtar & Montague, 1999; Pinker, 1989;
Siskind, 1996).

Cross-situational learning has been studied experimentally with
adults and infants (K. Smith, Smith, & Blythe, 2011; L. Smith &

Yu, 2008; Trueswell, Medina, Hafri, & Gleitman, 2013; Voulou-
manos & Werker, 2009; Yu & Smith, 2007). Typically, partici-
pants are asked to learn the meaning of several (up to 18) new
words in situations simulating the ambiguity of the real world. For
example, Yu and Smith (2007) exposed adults to a series of
learning trials containing n words and a set of n possible referents.
Each trial separately was thus underinformative, but toward the
end of the study, participants selected the correct referent at
greater-than-chance levels. Participants’ success in these para-
digms has been taken as evidence for an accumulative account of
word learning (K. Smith et al., 2011; L. Smith & Yu, 2008;
Vouloumanos & Werker, 2009; Yu & Smith, 2007). According to
this view, each time a new word is uttered, children entertain a
whole set of situationally plausible meanings and learning entails
pruning the potential referential candidates as new instances of the
word are made implausible by the situation. The word-meaning
mapping thus starts as a one-to-many association.

Such accumulative account of word learning has recently been
challenged by an alternative hypothesis-testing account (Medina,
Snedeker, Trueswell, & Gleitman, 2011; Trueswell et al., 2013).
Unlike the accumulative account, the hypothesis-testing strategy
does not require learners to remember multiple referents for a
given word. Instead, based on a single exposure to a given word,
a learner selects the most plausible interpretation of this word (a
process referred to as fast-mapping). As new information becomes
available in subsequent word usages, this hypothesis may be
confirmed or falsified. In the case of falsification, the old referen-
tial candidate is promptly replaced by a new one. Thus, according
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to this view, word-meaning mapping involves a one-to-one asso-
ciation, which continues to be updated until it reaches a stable
(adult) stage. Support for such an account comes from the obser-
vation of the sequence of hypotheses learners formulate during the
course of word learning. In a modification of the original experi-
ment of Yu and Smith (2007), Trueswell and colleagues (2013)
presented adults with a series of learning trials containing one
word and n candidate referents and asked subjects to select the
word meaning at each trial. In line with previous work, participants
learned the meaning of words over the course of the study. How-
ever, contrary to previous experiments in which analyses focused
on participants’ final performance, Trueswell and colleagues ex-
amined participants’ trial-by-trial accuracy. Crucially, they found
that (a) participants persisted in their choices (e.g., if they picked
dog as the meaning for the word blicket, they would maintain this
hypothesis as long as it is confirmed by the learning situation), and
(b) participants picked a new meaning hypothesis at chance among
the available candidates otherwise (we propose a refinement of this
measure below). This was taken as evidence that participants had
no memory for previously seen referents beyond the one they
entertained as a possible meaning, as predicted by an hypothesis-
testing account.

Work on cross-situational learning has typically focused on the
nature of the word-meaning mappings during the learning process.
On the one hand, a complete one-to-many word-meaning mapping
(following the accumulative account) seems implausible given the
memory cost this presupposes. On the other hand, one-to-one
word-meaning mappings (following the hypothesis-testing ac-
count) imply that a vast amount of potentially useful information
is lost along the way.

In this study, we investigate one potential source of information
left out by these two extreme views, the broader context of the
learning situation, and we examine its role in constraining word
learning strategies. Although naturalistic word learning environ-
ments introduce a potentially more complicated set of referent
candidates that are typically eliminated in lab-based settings, this
richer context may in fact contain more structure and could, as a
result, help learning. That is, the set of possible referents for a
word in a real learning situation is not a pseudo-random set of
unrelated objects; they co-occur in the real world, and this could
play an important role in cross-situational learning.

Our reasoning is best introduced with an example. In a zoo,
people naturally talk about animals, whose name children may or
may not know (“Do you see the blicket there?”; “The dax seems
hungry today!”). An accumulative word learner would encode the
full one-to-many word-meaning mapping as constrained by the
situations for each occurrence of a new word (a “blicket” could
mean lion, elephant, or monkey, and so could “dax,” as this word
has been heard in the same situation). By contrast, a hypothesis-
testing learner would bind each word to one chosen referent (a
“blicket” could mean a lion, whereas a “dax” could mean a
monkey). In both cases, however, subsequent learning could be
constrained at a different level if the learner encodes that these
words were encountered in a zoo. Hence, the information that a
zoo-word refers to an animal may persist beyond the specific
situation in which it was uttered and on top of the currently
entertained hypotheses. In other words, learners may encode
higher order properties of situations and use it to deduce meaning

across situations (“I heard blicket in the zoo, it must be one of these
animals . . . ”).

We thus propose to investigate to what extent cross-situational
learning relies on context to develop word-meaning mappings. To
this end, we first replicate the results of previous word learning
experiments using a paradigm similar to Trueswell et al. (2013)
(Experiment 1) and introduce a novel measure that quantifies the
amount of information stored and retrieved across trials in such a
paradigm. Second, we investigate whether introducing more eco-
logically valid situations would further boost memory retrieval of
previously encountered referents. Specifically, we manipulate
higher order properties of a word-learning situation—the semantic
relation among the possible referents (Experiment 2) and context
consistency (Experiment 3)—and test their effects on participants’
learning strategy using the measure developed in Experiment 1.
Finally, we demonstrate that if context can improve word learning,
this improvement is subject to memory illusions, in a way that
suggests that the learning situation itself is memorized and asso-
ciated to novel words during cross-situational learning (Experi-
ment 4).

Experiment 1

We conducted a classical word-learning experiment using a
paradigm similar to that used by Trueswell et al. (2013). Partici-
pants were exposed to a sequence of learning instances. In each
instance, participants saw four images and a sentence featuring a
to-be-learned word (e.g., “There is a blicket here”). At each learn-
ing instance, participants were asked to select a plausible referent
for the word (based on the current and past information they
received). The correct word referent was present in all learning
instances for that word.

Our goal was to develop a measure suitable to quantify the
amount of information that participants store and retrieve from a
previous learning instance. Our measures differed from the one
used in Trueswell et al. (2013) in two ways. First, we did not base
our measure on the actual accuracy of answers but solely on their
compatibility with previous learning instances. Second, we fo-
cused on learning instances of a word W where the referent
selected in the previous learning instance for W is absent (and not
on all cases in which this previous choice was incorrect, as
Trueswell et al., 2013, did). According to the hypothesis-testing
view, if participants remember only their conjecture for W, these
are the cases in which they should randomly pick a novel referent
among the current candidates since they cannot confirm their
previous hypothesis. By contrast, if participants remember more
than their single previous hypothesis for the word, their choice of
a new referent should be informed by the set of referents that was
present in previous learning instances.

Method

Participants. Fifty adults were recruited through Amazon
Mechanical Turk (22 females, M � 34 years of age, 48 native
speakers of English—as per voluntary answers given on a ques-
tionnaire at the end of the experiment). The experiment lasted
between 5 and 10 min, and participants were paid $0.85.

Stimuli and design. Twelve phonotactically legal English
non-words were selected from http://elexicon.wustl.edu/ (blicket,
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dax, smirk, zorg, leep, moop, tupa, krad, slique, vash, gaddle, and
clup)1 as well as 12 objects representing these non-words (cat,
dog, cow, rabbit, pants, hat, socks, shirt, pan, knife, bowl, and
glass). For each of these 12 objects, five different photographs
were selected. The one-to-one pairing between the 12 non-words
and the 12 objects was fully randomized and differed for each
participant.

The trial design follows the same constraints as that in Exper-
iment 1 of Trueswell et al. (2013), with the exception that each
learning instance contained four possible referents in our study but
five possible referents in theirs. As represented in Figure 1, each
trial was a learning instance for a given word, for example, blicket,
consisting of four pictures aligned horizontally on a white back-
ground along with a written prompt “There is a blicket there.” The
pictures were selected pseudo-randomly such that (1) the correct
referent was always represented, (2) no incorrect referent occurred
with a word more than twice in the experiment, (3) each object
appeared the same number of times (5 times as the correct referent
and 15 times as a distractor), and (4) all pictures occurred the same
number of time in the experiment. There were five learning in-
stances per word during the experiment, resulting in a total of 60
trials. The experiment consisted of five blocks each of which
contained 12 trials, one for each to-be-learned word. The list of 12
words occurred in the same order in each of the blocks.

Procedure. Participants were tested online. They were in-
structed that they were to learn words by associating them with
images displayed on the screen. Prior to test, participants were
given a screenshot of a learning instance involving a word and a
set of pictures that were not used at test. No information about the
number of to-be-learned words or the number of learning instances
was given. For each trial, participants were asked to click on the
image they believed could represent the meaning of the word.
Once they responded, the test continued with the next trial. We
recorded participants’ answers at each trial as well as their re-
sponse times.

Data processing. Five participants were excluded from our
analysis for obvious violations of the instructions (two always
selected the left image, three had reaction time [RT] patterns
indicating that they were 5–10 times faster in the last block than in
the first and second block—including these participants in the
analyses does, however, not impact the pattern of results). We also
removed five responses out of 3,000 for being implausibly fast
(below 1 s) or slow (above 30 s; following K. Smith et al., 2011).
Participants who provided 50 or fewer responses out of 60 were
discarded (but this criterion did not eliminate any participants in
this first experiment).

Data analysis. Participants’ responses were coded as 0 (in-
correct) or 1 (correct) for each trial. Since we analyzed categorical
responses, we modeled them using logit models as recommended
by Jaeger (2008). We ran mixed model analyses using R 2.15 and
the lme4 package (Bates & Sarkar, 2007); plots have been realized
using the ggplot2 package (Wickham, 2009). Beta estimates are
given in log-odds (the space in which the logit models are fitted),
with the odds of an event defined as the ratio of the number of
occurrences where the event took place to the number of occur-
rences where the event did not take place. Significant positive beta
estimates indicate an increase in the log-odds, and hence an in-
crease in the likelihood of occurrence of the dependent variable
with the predictor considered (calculated using the inverse logit

function [logit�1]). We computed two tests of significance: (a) the
Wald’s Z statistic, testing whether the estimates are significantly
different from 0, and (b) the �2 over the change in likelihood
between models with and without the considered predictor. Since
the results did not change between the two tests, we report the Z
statistic only.

The random effect structure chosen for each model is the max-
imal random effect structure justified by model comparison and
supported by the data. We followed the procedure outlined in
Baayen, Davidson, and Bates (2008), starting with the full random
effect structure and reducing the structure on a step-by-step basis
until excluding a random term resulted in a significant decrease of
the log-likelihood compared to the model including it. For the sake
of clarity, the chi-square comparisons between models are not
reported.

Results and Discussion

We report three analyses looking at (1) the learning curve; (2)
accuracy as a function of the previous response, following
Trueswell et al. (2013); and (3) a novel measure characterizing
information retrieval from prior experience.

1. Learning curve: A replication. Figure 2 presents partici-
pants’ accuracy in each block. We modeled the accuracy with a
mixed logit model using a predictor Block (1–5) with subjects and
words as random effects on intercepts plus a random slope for the
effect of Block with subjects. We found a significant effect of
Block on accuracy (� � 0.36, z � 10.25, p � .001). The beta
coefficient indicates that for every new block, participants were
59% (logit�1 [0.36]) more likely to be accurate than in the previ-
ous block. We thus replicate previous findings showing that par-
ticipants gradually learned word-meaning mappings across learn-
ing instances (Yu & Smith, 2007; Trueswell et al., 2013).

2. Trial-by-trial analysis: Accuracy dependent responses.
Using Trueswell et al.’s (2013) analysis on participants’ responses,
we compared the average proportion of correct responses in
Blocks 2–5 depending on whether the previous referent selection
for that particular word was correct or incorrect (see Figure 3). We
modeled the proportion of correct responses using a predictor
Previous Response Accuracy (Correct vs. Incorrect) with subjects
and words as random effects on intercepts and a random slope for
the effect of Previous Response Accuracy with subjects. We ap-
plied an offset corresponding to the logit of the chance level to the
model (i.e., .25, the probability of being correct in a trial) to
compare the intercept against chance level. We found a main effect
of Previous Response Accuracy (� � 1.40, z � 10.94, p � .001),
showing that participants were 80% (logit�1 [1.40]) more likely to
be accurate when they were correct on the previous learning
instance than when they were incorrect.

We then compared participants’ average accuracy against
chance level separately depending on whether their previous
response was correct or incorrect. We found that (a) partici-
pants’ accuracy was significantly above chance when they had

1 As one reviewer pointed out, three of these words are actually real
words: smirk, leep, and slique (although the latter two are spelled differ-
ently). However, because accuracy was not predicted by word type (non-
word vs. real words: z � 1, p � .4), it is unlikely that only the small group
of real (but infrequent) words induced the observed results.
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been correct in the previous learning instance for that word (789
data points; � � 3.13, z � 12.10, p � .001), and (b) accuracy
also exceeded chance after being incorrect in the previous trial
(1,339 data points; � � 0.33, z � 3.48, p � .001).

While (a) aligns nicely with the results from Trueswell et al.
(2013), (b) does not. Instead, Trueswell et al. found that after an
incorrect response, participants were at chance in the next learning
instance.

The apparent difference between our results and Trueswell et
al.’s (2013) results could be explained when one takes into
account that the current analysis collapses two situations for
which the hypothesis-testing strategy predicts different behav-
iors: (I) if the participant’s previous selection is present, par-
ticipants should repeat their incorrect previous hypothesis, and
(II) if is it not present, participants should be at chance in selecting the
correct referent. Hence, the outcome of this analysis is dependent on
the proportion of instances of Types I and II.

Both Trueswell et al.’s (2013) first experiment and the pres-
ent experiment are constrained in the same way: No object can
be repeated more than twice as a distractor for a given word.
However, in Trueswell et al., each trial displayed five possible
referents (in contrast to the four referents displayed here);
hence, objects had to be repeated more often as distractors to
account for the additional fifth picture on each trial. While both
occurrences for a given distractor are not necessarily in two
subsequent trials for a given word, there should be a higher
proportion of instances of Type I in Trueswell et al.’s study than
in the present experiment (12% of Type I instances on the total
number of trials where the previous choice is incorrect). Since
Type I trials lead to incorrect responses, this difference could
explain why the analysis reveals better results for the current
experiment.

3. New analysis: A measure of information retrieval. To
distinguish learning strategies based on one-to-one and one-to-
many word-meaning mappings, we need to quantify the amount
of information stored and retrieved at each learning occasion

during cross-situational learning. In the following, we propose
such a measure.

We selected from Block 2 all learning instances of Type II,
that is, learning instances for a word x in which the participant’s
choice for x from Block 1 is not present. Figure 4 represents a
measure of selecting a response that is informed by previously
seen referents. Specifically, for each trial, we computed the set
S of referents that were also present in the first block for this
word. Figure 4 represents the proportion of responses that
belong to S minus the expected proportion of falling in S by
chance (cardinal of S divided by 4). We modeled the proportion
of responses that belong to S with subjects and words as random
effects on intercepts and applied an offset corresponding to
chance to the model. Note that chance level of selecting a
referent present in the previous learning instance is now trial
dependent (1, 2, or 3 images could be repeated from the
previous trial); hence, the offset applied to each trial was the
logit of the corresponding chance level of selecting a previously
seen referent (.25, .50, or .75).

The resulting measure significantly exceeds zero (336 data
points; � � 0.27, z � 2.28, p � .05); that is, participants were
more likely than chance to select a previously seen referent.
This result is not specific to Block 2: While considering all
learning instances where participants’ previous choice was not
present, the measure also significantly exceeded zero (1,172
data points; � � 0.27, z � 3.77, p � .001). This analysis shows
that in our paradigm, participants store more than a single
hypothesis for the meaning of a word. Specifically, we show
that participants resorted to previously encountered, but not
chosen, referents in cases where their previous hypothesis is
irrelevant.

Although Trueswell et al. (2013) did not employ this analy-
sis, one would expect to find the same result in one of their
experiments: their Experiment 3. In this experiment, partici-
pants were presented with only two objects on the screen at a
time, and, crucially, no single object was used twice as a

Figure 1. Experimental design. A learning trial of a to-be-learned word is a set of four candidate referents
presented with the word in a simple declarative sentence. The five learning instances for each word are
distributed in five blocks such that there is exactly one learning instance for a given word per block—hence, 12
trials per block. As depicted, each block is an ordered list of 12 trials, such that there are exactly 11 intervening
trials between two learning instances of the same word. This resulted in a total number of 60 trials. The
word–referent pairings were randomly assigned for each participant.
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distractor for a given word. Hence, the accurate answer (not
selecting the distractor) corresponds to the only response that is
fully coherent with previous learning instances (since the dis-
tractor was never previously presented with this word). The two
measures are thus merged here. Yet, Trueswell et al. did not
find improved accuracy following an incorrect selection. To
explain the absence of evidence for accumulative learning in
Trueswell et al.’s Experiment 3, one could think about reasons
why two-object and four-object trials trigger different strate-
gies. It is possible that participants’ strategy depends on a
tradeoff between the cost and the incentive to remember more
than a single conjecture for a word in a given experimental
situation. While memorizing two possible referents is easier
than memorizing four possible referents, it is not clear that there
is a real advantage of doing so to succeed in the task. Remem-
bering only the object guessed means remembering 50% of the
whole scene in the two-object trial— hence, an already quite
high probability of success in the next trial (where chance is
already at 50%). While the cost of remembering the objects may
be higher in the four-object trial, there would also be more
incentive to do so given the higher ambiguity following the
lower probability of success (chance is at 25%, so it may be
worth investing resources into enhancing this probability). Al-
beit speculative, superficial aspects of the experimental situa-
tion could thus in principle alter participants’ strategy. We
leave the exploration of this issue for future research. Our
current goal is to investigate the effect of context on prior

experience retrieval, and we will do so with the novel, more
restrictive measure we proposed.

4. Control analysis: Participants’ strategy in online versus in
lab experiments. So far, the discussion has not considered the
possibility that there could be more fundamental differences
between Trueswell et al.’s (2013) paradigm and ours. For
instance, our participants were not present and monitored in the
lab. It is thus possible that they completed the task in a different
way (e.g., taking notes) and that their performance would
therefore not reflect the natural learning ability. To assess this
possibility, we analyzed participants’ response times, and we
gathered more information about our population in a replication
of Experiment 1.

1. In Experiment 1, participants took on average 5,323 ms
(SE � 68) to associate a meaning to a word, making it unlikely
they took notes. More objectively, a linear regression on the
participants’ accuracy in the final block using average RT
throughout the experiment as a predictor did not reveal any
effect of RT on accuracy (z � �1.24, p � .2). This suggests
that there is no division within the population between partic-
ipants who would have taken notes (thus being slow and accu-
rate) and those who would not have taken notes (thus being
relatively fast and inaccurate).

2. The same experiment was administered to 30 new partic-
ipants recruited in exactly the same way from the same popu-
lation. The crucial difference was the addition of a question at
the end of the final questionnaire: “Did you take notes during

chance level
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Figure 2. Learning curves. Average accuracy aggregated by subject for each block in Experiments 1–3. Error
bars indicate the standard error of the mean.
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the task?” Among the 28 participants who finished the task,
none of them reported taking notes, suggesting that the new
participants performed the task in the appropriate way. The
results of this control experiment patterned with those of Ex-
periment 1 on the three analyses that were conducted.2 This
suggests that the methodology used in Experiment 1 corre-
sponds to the type of cross-situational learning exercise we are
interested in.

Summary. Our results provide evidence that participants store
more than simple one-to-one word-meaning mappings. In the next
experiments, we investigate whether external constraints on simul-
taneously presented referents for a word can alter prior information
retrieval.

Experiment 2: Encoding Semantic Relation

We adapted Experiment 1 to evaluate one of such contextual
constraint: the semantic relation among the possible referents. We
modified the first block such that all four pictures on each trial
corresponded to one of the following natural categories: animals
(dog, cat, rabbit, cow), dishes (pan, bowl, knife, glass), clothes
(pants, socks, shirt, hat). For instance, if blicket referred to a dog,
the three other distractor images it co-occurred with were all
possible animal referents, mimicking a zoo-context. Furthermore,

words belonging to a given category were presented on consecu-
tive trials (allowing the learner to first learn words related to the
zoo, and then words related to a bedroom and so on). By imposing
these constraints on the situation of the first learning instance, we
hope to reduce the overall memory cost for encoding the situation
and thus improve cross-situational learning. As a consequence, we
expect an increase in performance in the second learning instance
for Experiment 2 compared to Experiment 1.

Method

Participants. Forty adults were recruited from Amazon Me-
chanical Turk (25 females, M � 40 years of age, 37 native
speakers of English). Two participants were excluded from our
analysis because over 20% of their responses fell outside the
1–30-s response time window (see Experiment 1—Analysis).

Stimuli and design. The stimuli and the design were the same
as in Experiment 1 except for new constraints on the first block of
learning instances (see Figure 5 for a schematic description): (1)
on all trials of the first block, each word was presented along with
distractors from the target object category (animals, clothes, or
dishes), and (2) the words from a given category were presented in
consecutive trials.

Procedure and analysis. The procedure and analysis are
identical to those in Experiment 1.

Results

We replicated the two main results of Experiment 1. First, we
modeled the accuracy with a mixed logit model using a predictor
Block (1–5) with subjects and words as random effects on inter-
cepts and a random slope for the effect of Block with subjects
(Model 1). Participants demonstrated a gradual learning of word-
referent pairs across learning instances, as evidenced by a signif-
icant effect of Block on accuracy (see Figure 2; � � 0.39, z �
7.12, p � .001). Participants were 60% (logit�1 [0.39]) more likely
to be accurate than in the previous block. Second, we modeled the
measure defined in Experiment 1 with subjects and words as
random effects on intercepts (Model 2). Participants stored more
information during the first exposure of the word than expected by
chance (see Figure 4; 223 data points; � � 1.20, z � 6.37, p �
.001).

We compared Experiment 1 and Experiment 2 along these two
dimensions. First, we modeled participants’ accuracy in Blocks 1

2 Regarding the learning curve, we modeled the accuracy with a predic-
tor Block (1–5) and a predictor Experiment (Experiment 1, Control) with
subjects and words as random effects on intercepts. There was no effect of
the predictor Experiment (z � 1, p � .4), showing that the learning curves
were similar.

Furthermore, accuracy was modeled after an incorrect response with a
predictor Experiment (Experiment 1, Control) with subjects and words as
random effects on intercepts and an offset of the chance level. There was
no effect of the predictor Experiment (z � �1.5, p � .1), showing that
control participants’ accuracy after an incorrect response was not different
from earlier participants’ (MControl � 0.32, SEControl � 0.02; MExp.1 � 0.31,
SEExp.1 � 0.02).

Finally, we modeled our measure of information retrieval with a pre-
dictor Experiment (Experiment 1, Control) with subjects and words as
random effects on intercepts and an offset of the chance level, and we
found no difference between the Control and Experiment 1 (z � 0.2, p �
.8; MControl � 0.06, SEControl � 0.02; MExp.1 � 0.06, SEExp.1 � 0.01).

Figure 3. Accuracy dependent measure. Accuracy in Blocks 2–5 for
previously correct or incorrect words in Experiment 1. Error bars indicate
the standard error of the mean.
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and 2 for these two experiments similarly to Model 1 but applied
to the results of both experiments at once and with an additional
predictor Experimental condition (Experiment 1, Experiment 2)
and its interaction with Block (1 vs. 2). We restricted the compar-
ison to Blocks 1 and 2 to ensure that distance or performance at or
near ceiling would not mask the effect of Block 1. As discussed
above, we observed a significant effect of Block on accuracy. In
addition, we also observed a significant interaction between Block
and Experimental condition (see Figure 2; � � 0.43, z � 2.11, p �
.03). Second, we modeled our measure of information retrieval for
Experiments 1 and 2 similarly to Model 2 with a predictor Exper-
imental condition (Experiment 1, Experiment 2). Our information
retrieval measure shows that participants in Experiment 2 were
significantly more likely than participants in Experiment 1 to
resort to previously encountered, but not selected, referents (see
Figure 4; � � 0.90, z � 4.32, p � .001). The probability of
choosing a previously encountered referent increased by 71%
(logit�1 [0.90]) in Experiment 2 compared to Experiment 1.

Discussion

The comparison between Experiment 1 and Experiment 2 shows
that providing learners with an opportunity to rely on higher-order
properties of situations allowed them to resort to previously encoun-
tered experience more efficiently than participants who were exposed
to artificial, randomly assembled situations (Experiment 1).

As expected, richer contextual information boosted participants’
use of a cross-situational learning strategy. There are three possible
interpretations for this result. (1) Context consistency and memory:
Participants used contextual information to inform their word
learning strategy. We come back to this issue in Experiment 4, but

it is important to note that there are two possible explanations for
such an effect. First, in a one-to-many mapping approach, tempo-
rary lexical entries may be easier to memorize if the multiple
potential referents for a word are semantically coherent. Second, it
could be that contextual information is stored as an independently
accessible source of information: Participants may memorize as-
sociations between a word and situations in which it was uttered,
and these situations could directly inform word-meaning mappings
in subsequent learning instances. (2) A closest-match strategy:
Participants follow a hypothesis-testing strategy, but when their
current hypothesis is absent from the picture display, they resort to
the closest match. Concretely, if their current hypothesis is that
blicket means dog, but no dog is present in the display, learners
would not randomly select any other possible meaning but would
rather select the closest match, which in this experiment will be
another animal. (3) Partial representations: Participants entertain
partial representations: They may encode the semantic category of
a word (e.g., animal) in the same way as they may encode the
grammatical features of this word (e.g., syntactic category, gender,
animacy, etc.) without encoding any meaning hypotheses. In fol-
lowing learning instances, participants would then (randomly)
select one member of the encoded category.

Hypotheses 2 and 3 contrast with Hypothesis 1, as for these two
options, participants would thus select a distractor from the correct
category more often than chance, but this would not be mediated
by memory for the previous learning situation itself. Experiment 3
disentangles between these possible interpretations of the improve-
ment observed between Experiments 1 and 2.

Figure 4. Information retrieval measure. Corrected tendency to select a
previously seen referent: average for all second learning instances of 1 or
0 (depending on whether the answer was in the previous learning instance)
minus the chance of selecting a referent present in the previous learning
instance. Error bars indicate the standard error of the mean.

Figure 5. An example of the trial presentation in Block 1 for Experiment
2. Adults saw 12 trials, one for each to-be-learned word, such that all
objects in one trial were from the same natural category of the referent
(animal, cloth, dish). All words referring to objects from the same natural
category appeared in succession.
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Experiment 3: Encoding Context Consistency

Experiment 3 was set up to replicate Experiment 2 with three
artificial categories of objects with no a priori coherence (e.g.,
{apple, dog, flower, hat}) instead of “natural” categories. Note that
despite the lack of semantic coherence among these objects, cat-
egories could nonetheless emerge here due to the repeated and
consecutive co-occurrence of the four objects that constitute each
of them.

Although these categories are clearly artificially induced, the
process of category induction may in fact not be unnatural. Spe-
cifically, under the right circumstances, many sets of objects,
however unrelated they may appear to be, can co-occur. For
example, in the kitchen, you may simultaneously see an apple, a
dog, a vase with flowers, and a hat hung on the wall. These items
are not transparently related, but all of them may be simultane-
ously found in the kitchen, possibly for quite different reasons.
Thus, in the absence of semantic relations between the objects of
an artificial category in Experiment 3, the coherence may be
induced by their co-occurrence on four consecutive trials (once for
each of the word that refers to them). The consistent display here
plays the role of the kitchen in the example above.

If participants fail to use this contextual consistency, then they
should behave like participants in Experiment 1, where none of the
objects within a trial was semantically related to the other. This
would favor Hypotheses 2 and 3, which attribute the improvement
observed in Experiment 2 to semantic consistency. By contrast, if
the artificial categories improve cross-situational learning com-
pared to Experiment 1, this would favor Hypothesis 1, which relies
on consistency in general and not on a tendency to resort to a
semantically close selection (as of Hypothesis 2) or on partial
representations (remembering “animal” instead of specific ani-
mals; as per Hypothesis 3).

Method

Participants. Forty adults were recruited from Amazon Me-
chanical Turk (12 females, M � 34 years of age, 39 native
speakers of English). Four participants were excluded from our
analysis because over 20% of their responses felt outside the
1–30-s response time window (see Experiment 1—Analysis) (n �
2) or because they participated in previous experiments (n � 2).

Stimuli and design. The design was similar to Experiment 2.
We used a novel set of objects in order to minimize the potential
semantic associations among them within each of the three artifi-
cial categories. Categories were defined as follows: {apple, dog,
flower, hat}, {pants, chair, pan, teddy bear}, and {leaf, snake,
watch, book}.

The first block follows the same design as in Experiment 2, but
the position on the screen for each object within the trials of the
same category was fixed. For example, considering the set {apple,
dog, flower, hat}, these objects appeared in the same position
(albeit with different images) on the screen in all four learning
instances for the four target words associated with them. This
should raise the awareness that the situation is constant. Thus, a
dog might be the left-most object for four consecutive trials, but
the image used on each trial will change.

Procedure and analysis. The procedure and analysis are
identical to those in Experiments 1 and 2.

Results

We replicated the two main results of Experiments 1 and 2.
First, we modeled participants’ accuracy in Experiment 3 with a
mixed logit model using a predictor Block (1–5) with subjects and
words as random effects on intercepts and a random slope for the
effect of Block with subjects (Model 1). Participants demonstrated
a gradual learning of word-referent pairs across learning instances
as evidenced by a significant effect of Block on accuracy (see
Figure 2; � � 0.20, z � 3.48, p � .001). Second, we modeled our
measure of information retrieval in Block 2 with subjects and
words as random effects on intercepts (Model 2). Participants
retrieved more information from the first exposure to a word than
expected by chance (see Figure 4; 231 data points; � � 0.68, z �
4.68, p � .001).

We compared the three experiments along these two dimen-
sions. First, we modeled participants’ accuracy in Blocks 1 and 2
for the three experiments with the predictor Block (1 vs. 2) used in
Model 1 and an additional predictor Experimental condition (Ex-
periment 1, Experiment 2, Experiment 3) and its interaction with
Block. There was no significant interaction between Block and
Experimental condition (Experiment 3 vs. Experiment 1:
� � �0.20, z � �1.02, p � .3; Experiment 3 vs. Experiment 2:
� � 0.21, z � 1.02, p � .3; see Figure 2). Second, we modeled our
information retrieval measure in Block 2 for the three experiments
similarly to Model 2 with a predictor Experimental condition
(Experiment 1, Experiment 2, Experiment 3). Participants in Ex-
periment 3 were significantly less likely to choose a previously
seen, but not selected, referent than participants in Experiment 2
(� � 0.47, z � 2.14, p � .05), but they were significantly more
likely to do so than participants in Experiment 1 (� � �0.42,
z � �2.11, p � .05; see Figure 4).

Overall, these results demonstrate that participants in this ex-
periment retrieved the systematic co-occurrence of seemingly un-
related objects to degree intermediate between participants in
Experiments 1 and 2. This shows that participants use contextual
information from consistent contexts to inform word learning, and
they do so to a greater extent if contexts furthermore share a
semantic relation.

Discussion

Participants used the artificial categories presented in the first
learning instance to guide their choice of the word’s referent in
subsequent instances. Crucially, this effect was preserved even
though none of the objects presented in the first learning instance
shared a “natural” property. This rules out the possibility that the
results from the previous experiment could be due entirely to an
under-specification of a selection (e.g., animal instead of dog) or
to a tendency to resort to a semantically close choice (e.g., from
dog to cat) when the previously hypothesized referent was not
available. Instead, our results favor the hypothesis that contextual
consistency helps encoding situations in both Experiments 2 and 3.

Nonetheless, participants in Experiment 3 were less likely to
resort to previously encountered referents than participants in
Experiment 2. One reasonable explanation may be that encoding
an artificial relation is more demanding than encoding a natural
relation: While participants in Experiment 2 could remember a
label readily available to characterize the relation among objects
(“animal,” “clothes,” or “dishes”), participants in Experiment 3
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had to encode the category as a plain list of objects. Hence,
learners may have encoded contextual information in both exper-
iments, but the format of the relevant information varies from one
experiment to the other, and this could recruit different memory
resources.

Experiment 3 showed that contextual consistency, and not only
semantic consistency, helped learners resort to possible word
meaning hypotheses. However this effect could be explained by
two possible representations of context in memory. (a) Internal to
word-meaning mappings: One-to-many word-meaning mappings
may be more or less easier to remember, and a coherence between
the possible meanings may indirectly boost an active memory for
these mappings. As a result, multiple hypotheses for a word are
better remembered when these hypotheses form a coherent group,
but context is not necessarily stored in memory as such. (b)
External to word-meaning mappings: Contextual information
could be directly accessible as an independent source of informa-
tion, that is, learners could remember the situation in which they
heard a word in addition to the single or multiple hypotheses they
entertain for this word. In this case, contextual information can be
used actively to constrain subsequent learning instances.

Experiment 3 did not distinguish between an internal versus an
external representation of context since contextual representation
was confounded with word-meaning representations. In Experi-
ment 4, we propose to disentangle these two possibilities and
assess whether context is represented per se in memory.

Experiment 4: Context Representation in Memory

Experiment 4 investigates whether the effect of context ob-
served in Experiments 2 and 3 is the result of an internal or an
external representation of context. Much like Experiments 2 and 3,
objects in the first block of this experiment were grouped into three
sets. Two of these sets contained objects from a single natural
category (animals and clothes) as in Experiment 2, henceforth,
“natural sets.” By contrast, the third set was hybrid: It contained
two (new) animals and two (new) pieces of clothes. For a word
whose referent belongs to a natural set, participants could encode
a natural category (e.g., animal), as in Experiment 2. However,
some objects from this natural category occurred in the hybrid set
and should not be considered possible referents for this word after
the first learning instance (contrary to Experiment 2).

We propose to reproduce a memory illusion effect identified in
earlier work (Roediger & McDermott, 1995) showing that partic-
ipants asked to remember a list of words are likely to mis-report a
word as being part of this list if there is a natural relation between
the word and the list. For example, participants incorrectly recall
the word sleep as a member of a list such as bed, pillow, night.
Applied to our word learning task, lists can be thought of as sets
of objects seen in the first block (e.g., dog, cat, snake, cow). If
context is encoded as an additional source of information (Hypoth-
esis b), participants are in the same situation as in the memory
illusion experiment, and we expect to reproduce the same illusion.
Participants should be more likely to map a target word in the
natural sets onto a distractor object from the appropriate natural
category than from the other category. However, crucially, this
bias for the appropriate category should be observed even when we
compare only distractors from the hybrid set, which had never
appeared with the target word before. If context is not encoded

independently and the effect occurs at the level of the lexicon
(Hypothesis a), then there is no immediate expectation with respect
to this illusion.

Method

Participants. A total of 119 adults were recruited from Am-
azon Mechanical Turk (47 females, M � 36 years of age, 116
native speakers of English). Twenty-four participants were ex-
cluded from our analysis because they participated in previous
experiments (n � 14), because they indicated that they took notes
during the task (n � 4), or because their RT patterns were highly
irregular, in a fashion similar to participants who indicated that
they took notes (e.g., 5–10 times faster from one block to another;
n � 6).

Stimuli and design. The design was similar to Experiment 2.
We formed two natural sets—animals {cat, cow, snake, rabbit},
and clothes {pants, tie, hat, socks}—and one hybrid set of images
mixing objects from each natural category: {dog, rat, shirt, shoe}.
The hybrid set served as a reservoir of objects that could reveal the
illusion when used as distractors. The hybrid set was always
presented first.

We generated the learning trials following the constraints
described in Experiment 1. However, our planed analysis fo-
cused on responses in the second block such that the target
would be from one of the natural sets but responses would be a
distractor from the hybrid set H. Hence, in order to have more
data points of interest, we assigned the learning instance with
the maximal number of distractors belonging to H (among the
four learning instances otherwise distributed randomly in
Blocks 2–5) to the second block. To limit the frequency of
objects from H in Block 2, we did this for target objects in
natural sets, but the opposite for target objects in H (which trials
were not of interest). As a result, participants saw on average
five instances of the objects in the hybrid set during Block 2
(instead of four instances before).

Procedure and analysis. The procedure and analysis are
identical to those in Experiment 1, 2, and 3.

Results

We selected learning instances from Block 2 for words belong-
ing to the two natural sets of objects. We looked at the artificial set
of objects to compare the proportion of responses that belong to
the set S of distractors from the same category and to the set D of
distractors from a different category. Figure 6 shows the propor-
tion of responses in S and D minus the probability of selecting
them by chance (the cardinal of S and D divided by 4). Note that
we selected trials where neither set S nor set D were empty (482
data points; chance level for S or D was either .25 or .50).

We modeled the proportion of responses in the artificial set of
objects by a predictor Distractor type (Same category vs. Different
category). Observations of the results led us to add a predictor
Semantic category (Animals vs. Clothes) to the model, as well as
its interaction with Distractor type. The random structure included
subjects and words as random effects on intercepts and no random
slope was justified. We applied an offset corresponding to chance
to the model.

We observe a main effect of Distractor type (� � 0.45, z � 2.7,
p � .01), showing that participants were 61% (logit�1 [0.45])
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more likely to choose a distractor object from the same category as
the target than from another category, even if this object did not
co-occur with the word in the previous trial.3

Discussion

Participants are more likely to select a distractor from the
semantic category of the target than a possible referent from
another category. Crucially, this effect occurs even though none of
the distractors were present in the first learning instance for that
word. This illusion is consistent with previous findings both in
word learning task (Koehne & Crocker, 2011) and in memory
tasks (Roediger & McDermott, 1995) and, thus, provides an indi-
rect argument for the fact that learning situations are stored in
memory per se.

Our results thus suggest that a situation in which a novel word
occurs can be stored and bound to this word during word learning.
Others have argued that, even in adults, the information that is
retrieved about a word is the accumulation of all the situations in
which that word has been encountered (Perfetti & Hart, 2002).
Although our results are compatible with such a proposal, they are
at present restricted to cross-situational word learning stages and
provide no evidence that early word representation is the set of
learning contexts in which this word was encountered. In the

General Discussion, we discuss the broader implications of our
results for the role and representation of contextual information
during the development of lexical representations.

General Discussion

The present article examined the impact of the context on word
learning mechanisms. In four experiments, we showed that learn-
ers can simultaneously retrieve multiple candidates for the mean-
ing of a word and that manipulating the contextual properties of
the set of plausible candidates could boost the amount of informa-
tion retrieved. Specifically, our results show that cross-situational
learning benefits from higher-order properties of a word-learning
situation: the semantic relation between the possible referents
(Experiment 2) as well as contextual consistency (Experiment 3).
Moreover, this effect is subject to memory illusions, in a way that
suggests that the effect of context found above is the result of an
attempt to store contextual information directly in memory (Ex-
periment 4).

Learning Strategies

Most of the accounts of cross-situational learning have concen-
trated on the amount of information the learner stores for each
learning instance. We introduced two learning strategies at the
opposite end of the continuum: an accumulative learning account,
in which the learner encodes one-to-many word-meaning map-
pings, and a hypothesis-testing account, in which the learner
remembers a single word-meaning association. While computa-
tional models have emphasized the importance of defining the
number of hypotheses entertained at each point in time (Yu &
Smith, 2012), we add a new parameter showing that learners could
also encode a different kind of information, context, to increase the
amount of prior experience they could retrieve. Our results argue
against an extreme version of the hypothesis-testing account where
learning operates only through a single hypothesis for each word.
Instead, we suggest that cross-situational learning is informed by
the type of learning context.

One may imagine other learning strategies in more intermediate
continuum positions to accommodate the finding that learners
encode more than a single meaning hypothesis. For instance,
Koehne, Trueswell, and Gleitman (2013) proposed multiple-
hypothesis tracking strategy, according to which learners may
memorize not only one hypothesis, but all past hypotheses for a
given word. Previous research on cross-situational learning has
also suggested that learners do not attend equally to all possible
meanings for a word and use several additional strategies to prune
the set of possible meanings (mutual exclusivity: Yurovsky & Yu,
2008; attention to stronger associations: Yu & Smith, 2012).

Overall, investigations about word learning strategies concen-
trated on the possible forms of relations learners could entertain

3 Additionally there is a significant interaction between Distractor type
and Semantic category (� � 1.07, z � 3.19, p � .01). Participants were
significantly more likely to choose a distractor from the same type as the
target for words referring to clothes than for words referring to animals.
This could be due to the fact that in this task the memory illusion may be
stronger for one category than for the other (e.g., because the animal
category may be more salient than the cloth category, making it more
subject to illusions).

Figure 6. Experiment 4. Proportion of responses falling in the hybrid set
as whether responses are from the semantic category of the target word
(left bar) or from another category (right bar) minus the probability of
selecting them by chance. Error bars indicate the standard error of the
mean.
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between a word and possible referents. Here, we propose that some
contextual information is memorized and can boost word learning
in realistic situations.

Implications for Learning Words in the Real World

Learners relied on previously experienced information more
efficiently when this information was packaged conveniently. That
is, cross-situational learning was improved not only by a natural
relation between possible referents (Experiment 2) but also by an
artificial relation between objects solely induced by their repeti-
tively joint presentation (Experiment 3). Of course, real-life situ-
ations are much more complex learning environments than the
situations in the word-learning paradigm we used in Experiment 1
(Medina et al., 2011): Here, the level of referential ambiguity is
relatively low (four possible referents), only one word is presented
at a time, and the true referent is always present in all word
occurrences. Further simplification of the task may hence seem
inappropriate. However, the specific simplifications we introduced
in Experiments 2 and 3 in fact make the task more ecologically
valid. In daily life, learners navigate through situations they may
be interested in and find coherent. This could help them remember
various properties of these situations (a kitchen, a zoo, a pantry,
etc.). In Experiments 2 and 3, we introduced such coherence and
showed that it has a specific impact on their strategy and perfor-
mance for learning new words.

Interestingly, a recent computational approach looking at envi-
ronment regularities showed that coherent activity contexts such as
eating, bathing or other regular activities could help simplify the
learning problem (Roy, Frank, & Roy, 2012). Our results align
with this view, showing that more complex information from the
broader context in which a word has been uttered is part of the
learning problem faced by the child. The role of the learning
environment on word learning requires attention in future research.

The Representation of Lexical Meaning During
Learning

One important issue in the acquisition of word meaning involves
the kind of representations children form about words. In other
words, what do learners encode about a word when they first hear
it? The full understanding of a word requires that learners not only
know its word form, its meaning, and its syntactic properties but
also information about contexts in which this word may occur.
Recent evidence has shown that even infants in the first year of life
have already acquired some knowledge for basics words (Bergel-
son & Swingley, 2012, 2013). However, there is growing evidence
that children do not fast-map a dictionary-like definition at the first
encounter of the word. Instead, word learning, including verb
learning, seems to be a slow process gradually emerging through
the accumulation of syntactic, semantic, and pragmatic fragmental
evidence (Bion, Borovsky, & Fernald, 2013; Gelman & Brandone,
2010; Yuan & Fisher, 2009). However it is currently unclear what
this partial knowledge might be. The present results suggest that,
alongside linguistic features (e.g., phonological form, syntactic
category), non-linguistic features such as semantic category (Ex-
periment 2) and situations in which the word occurred (Experi-
ments 3 and 4) may be encoded and part of an early word
representation. Non-linguistic relations between words are a cru-

cial component of the organization of the lexicon. Work on lexical
priming has evidenced that young 21-month-olds already possess
a structured knowledge of familiar words based on non-linguistic
information such as semantic and associative relations (Arias-
Trejo & Plunkett, 2013). As models of lexical development sug-
gest (Steyvers & Tenenbaum, 2005), such a semantic organization
of the lexicon is the product of the mechanisms by which word-
meaning associations are constructed throughout learning. This
suggests that semantic and contextual relations may be encoded
from the earliest step of lexical acquisition (see Wojcik & Saffran,
2013, for evidence that toddlers can encode similarities among
referents when learning words).

However, to our knowledge, no cross-situational study investi-
gated the role of the learning context in word learning. Such
studies could not only shape our understanding of early word
representation but also shed light on the content and structure of
adults’ mature lexical entries.

Summary

Overall, our findings suggest that learners store in memory the
learning situation in which they hear a novel word and use this
information to constrain their word-meaning hypotheses. We first
proposed a new way to analyze classical word learning experi-
ments through an information retrieval measure. We then modified
the classical word learning paradigm to evaluate whether realistic
features of the world could inform word learning strategies. Our
results show that prior experience is better used when it consists of
coherent contexts, and real-world situations may well be coherent
contexts in the relevant sense. We conclude that such paradigms,
however simple, could and should be used to further study the
structure, richness, and poverty of the representations that consti-
tute the early developing lexicon.
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