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Abstract

The work described in this thesis is motivated by the use of structured packing columns in acid gas

treatment and post-combustion CO2 capture. In a counter-current mode, flue gases react with the

liquid that flows down over metal sheets, the geometrical complexity of which allows increasing the

specific interfacial area, and thereby the overall efficiency of the process. In the context of multiscale

modeling of structured-packing contacting devices, the focus in this work is on the gas-liquid flows at the

smallest geometrical scale of packing sheets, of the order of the liquid film thickness, aiming to improve

understanding and modeling of two-phase flows and wetting phenomena in structured packings. The

ultimate objective is to build up a CFD methodology to reproduce 3D two-phase flows over complex

surfaces such as structured packing sheets. For this purpose, progress is necessary both in pertinent

computational methods and in the adaptation of experimental methods for observing liquid film flows

over complex surfaces. This thesis therefore consists of computational and experimental parts.

Flows over structured packing sheets may exhibit dry zones, and hence (moving) contact lines, the

numerical simulation of which presents a computational challenge due to the disparity in length scales

involved. Here, the methodology for large-scale numerical simulations of flows with moving contact lines

consists in resolving the flow down to an intermediate scale and modeling effects of smaller ones. The

parallelized freeware Two-Phase Level-Set has been extended for this purpose. First though, because

some level-set methods have been reproached to yield mass conservation issues, an assessment is made of

the mass conservation properties of a range of level-set methods. It is demonstrated that the combined

use of some spatial and temporal discretization schemes allows to drastically reduce mass conservation

errors in level-set methods. Having thus implemented a level-set method with satisfactory performance at

such tests (and others), a novel numerical method is proposed to perform 3D large-scale simulations of

flows with moving contact lines in level-set, under realistic conditions. Validation tests of axisymmetric

droplet spreading in a viscous, and in an inertial regime, simulated in 3D, and sliding drops are shown to

be in excellent agreement with prior experimental and numerical work. The results show that complex

contact-line dynamics observed in prior experimental studies on sliding droplets can be simulated using

the present large-scale methodology.

To facilitate dissemination of this work in industrial applications, a similar subgrid model has been

implemented in a commercial volume-of-fluid code; results of validation tests are shown to be in excellent

agreement with other work.

These computational developments are accompanied by an experimental campaign to observe liquid film

flows over structured packing sheets. All experimental methods used herein are tested and validated

for flat and wavy films down an inclined plane before being used for observing liquid film flows over
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ABSTRACT

packing sheets. The film thickness is measured at local troughs and crests of small-scale corrugations

of the structured packing sheet, for different flow rates, by Chromatic Confocal Imaging. Power laws of

the Reynolds number for the mean liquid film thickness are suggested, with significant differences for

measurements at crests compared to that at troughs. Interface velocity measurements are also performed

by PIV and PTV using hydrophobic particles. Results reveal that the liquid tends to deviate from troughs

of large-scale corrugations, and seems to exhibit local extrema of the velocity magnitude corresponding to

troughs and crests of small-scale corrugations. In all, an experimental database has been built up to support

the development of the CFD methodology in 3D simulations of two-phase flows on a representative

elementary unit of structured packing sheet.

Keywords: two-phase flows, moving contact lines, liquid film, CFD, level-set, VOF, PIV, PTV, structured

packings.
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Résumé

Ces travaux de thèse s’incrivent dans le cadre du traitement de gaz acides et captage CO2 dans les

colonnes à garnissages structurés. Les gaz à traiter réagissent avec un liquide s’écoulant à contre-courant

sur des plaques métalliques dont la compléxité géométrique permet d’accroître l’aire d’échange, et donc

l’efficacité du procédé. Dans un contexte de modélisation multi-échelles des contacteurs à garnissages

structurés, les écoulements gaz-liquide à la plus petite échelle géométrique des plaques de garnissages (de

l’ordre de l’épaisseur du film liquide) sont étudiés, pour améliorer la compréhension et la modélisation

des écoulements diphasiques et phénomènes de mouillage dans les garnissages. L’objectif final est de

développer une méthodologie CFD pour reproduire des écoulements diphasiques 3D sur des géométries

complexes telles que les plaques de garnissages. Pour ce faire, il est nécessaire de progresser en méthodes

numériques et de proposer des méthodes expérimentales pour observer des écoulements de film liquide sur

des géométries complexes. Ces travaux comprennent une partie numérique et une partie expérimentale.

Un écoulement sur une plaque de garnissage structuré peut présenter des zones sèches, et donc des lignes

de contact (dynamiques), ce qui présente un défi en simulation numérique à cause des différentes échelles

de l’écoulement. La méthodologie employée ici en simulation numérique consiste à résoudre l’écoulement

jusqu’à une échelle intermédiaire en modélisant les effets des plus petites échelles. Le code de calcul

Two-Phase Level-Set a été utilisé et modifié dans ce but. Différentes méthodes level-set ont d’abord été

testées de manière à identifier une méthode satisfaisante quant à la réduction des erreurs de conservation

de masse, un problème rencontré en level-set. Il est ici montré que certaines combinaisons de schémas de

discrétisation spatiale et temporelle permettent de réduire considérablement ces erreurs de conservation de

masse. Après avoir réalisé de nombreux tests de validation, une nouvelle méthode numérique est proposée

pour simuler les grandes échelles d’écoulements diphasiques 3D avec ligne de contact dynamique en

level-set, dans des conditions réalistes. La méthode est ici validée pour des écoulements axisymétriques

de gouttes simulés en 3D, en régime visqueux et en régime inertiel, et pour des écoulements de gouttes

sur plan incliné. Les résultats sont en très bon accord avec d’autres travaux numériques et expérimentaux.

Afin de faciliter l’utilisation de cette méthodologie pour des applications industrielles, un modèle sous-

maille similaire a été implémenté dans un code VOF commercial; les résultats sont aussi en très bon

accord avec d’autres travaux.

En plus de ces développements numériques, une campagne expérimentale est mise en oeuvre pour observer

des écoulements de film liquide sur une plaque de garnissage structuré. Les méthodes expérimentales

employées sont d’abord testées et validées pour des écoulements de film plat ou ondulé sur plan incliné, et

ensuite utilisées pour observer des écoulements de film sur des plaques de garnissage. L’épaisseur de film
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RÉSUMÉ

liquide est mesurée aux creux et aux crêtes des picots des plaques de garnissages, pour différents débits,

par imagerie confocale chromatique. Des lois de puissance de l’épaisseur de film en fonction du Reynolds

sont proposées; celles-ci sont très différentes suivant la position des relevés de mesure, aux creux ou aux

crêtes des picots. La vitesse à l’interface de l’écoulement gaz-liquide est aussi mesurée, par PIV et PTV,

en utilisant des particules hydrophobes. Les résultats montrent que le liquide a tendance à dévier du creux

des canaux (corrugations), et la norme de la vitesse semblent présenter des extremums correspondant aux

creux et crêtes des picots. Ces travaux expérimentaux supporteront le développement de la méthodologie

CFD pour simuler des écoulements diphasiques 3D sur un élément unitaire représentatif d’une plaque de

garnissage.

Mots-clés : écoulements diphasiques, lignes de contact dynamiques, film liquide, CFD, level-set, VOF,

PIV, PTV, garnissages structurés.
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Introduction

For gas sweetening and CO2 capture, amine-based processes are often used to put the gas phase in contact

with a strong base solvent, which is crucial for the design of contacting devices, hence the actual resort

to structured packings to enhance the contact area between the two phases. In the scope of acid gas

treatment with structured packing columns, gravity-driven liquid films flow over complex surfaces whilst

being sheared by a counter-current gas flow. The larger the contact area between the two phases, the

more efficient the process is expected to be, hence the use of complex surfaces with large topographical

structures compared to the liquid film thickness. On the other hand, maximum wetting of the complex

surface is wanted but often not achieved, hence the need to develop an optimal geometry of the complex

surface that maximizes wetting and enhances the overall process efficiency.

Studying gas-liquid counter-current flows in columns equipped with structured packing, although necessary

for macroscale modeling of contacting devices, is often expensive and time-consuming. Experimental

campaigns generally allow for direct macroscale modeling of hydrodynamic and mass transfer parameters,

but without accounting for the underlying physics, which may impact the performance of the reactor.

Further development of contacting devices would therefore amount to multiscale modeling, informed

by experiments. Computational Fluid Dynamics is an interesting alternative to long and expensive

experimental campaigns, aiming to improve understanding and modeling of wetting of complex surfaces

such as structured packing sheets, an important phenomenon in contacting devices as the interfacial area

is manifestly linked to wetting of metal sheets.

Wetting phenomena involve flows with moving contact lines, however, the numerical simulation of which

is a computational challenge. Flows with moving contact lines involve a large range of length scales, from

the molecular scale invalidating assumptions of continuum mechanics, to the micrometric scale where

viscosity starts competing with capillarity, and up to the macroscopic scale, far away from the contact

line, where the interface is also affected by the entire flow. The physics occurring in the direct vicinity

of moving contact lines must be modeled in order to be able to predict hydrodynamics of macroscopic

systems. Macroscale models either spring from experimental or theoretical work, the latter providing

details of the flow over the entire range of length scales. Hydrodynamic theories generally consider

a Stokes flow on the smallest scale resolved, in the vicinity of the contact line, coupled with analysis

of flows with moving contact lines on a much larger scale through matched asymptotic expansions.

Such theories subsequently yield macroscale models for the interface shape in the entire contact-line

region. Large-scale numerical simulations of flows with moving contact line may thus be deployed,

using an existing large-scale model derived in prior asymptotic theories. The flow is resolved down to an
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INTRODUCTION

intermediate region, accounting for effects of the under-resolved part of the flow, that is actually known

from the theory. Although macroscale models for two-dimensional general flows exist, they depend on

the actual geometry the flow through higher-order terms of asymptotic expansions.

A first part of this memoir presents the establishment of a computational methodology to reproduce

general three-dimensional flows with moving contact lines. Numerical simulations of two-phase flows

were undertaken with interface-capturing techniques, namely level-set and volume-of-fluid. An existing

macroscale model for contact lines dynamics in two-dimensional flows, derived from hydrodynamic

theories in prior work, was implemented in the freeware Two-Phase Level-Set and further in a commercial

volume-of-fluid code to facilitate dissemination of this work in industry. Implementations were validated

against prior experimental and numerical results of axisymmetric droplet spreading in both viscous and

inertial regimes. Further tests against three-dimensional sliding drops in viscous regime were successful.

In the second part of this memoir, an experimental study is presented for liquid film flows over complex

surfaces that are representative of structured packings. Prior experimental work of this nature is primarily

limited to falling films on a planar inclined surface rather than over complex surfaces. Liquid film

thickness and interface velocity measurements were carried out by chromatic confocal imaging and

particle tracking velocimetry, respectively. After several validation tests, both techniques were used for

quantitative characterization of liquid film flows over complex surfaces. The results are a benchmark for

CFD, but also show direct connections to prior work for falling films on a planar substrate.

This thesis is organized as follows. The first chapter introduces the industrial context and presents

the contribution of this work to multiscale modeling of two-phase flows in gas-liquid reactors. In the

second chapter, experimental techniques for liquid film thickness measurements are reviewed and their

applicability to observing liquid film flows over complex surfaces is discussed, and generalities on static

contact lines and the modeling of moving contact lines are introduced. The third chapter addresses the

problem of mass conservation errors encountered in numerical simulations of two-phase flows in the

level-set framework. These errors are investigated, and key aspects for improving mass conservation are

identified. A novel computational method for the numerical simulation of three-dimensional macroscopic

flows with moving contact lines in the level-set framework is presented in the fourth chapter. Numerical

simulations of flows with moving contact lines were also performed in a commercial volume-of-fluid code,

for some of the same tests, gathered in Appendix B. Experimental techniques for liquid film thickness and

interface velocity measurements are validated in the fifth chapter. Quantitative measurements for liquid

film flows over complex surfaces are undertaken in the last chapter and comparisons are made with prior

work on falling films, when possible, to discuss the reliability of the results. Finally, the main results are

summarized and some perspectives are proposed.
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1.1 Industrial context

Mitigating greenhouse gas emissions, especially carbon dioxide emitted by fossil fuel combustion in

power plants, is important for slowing down global warming. Research has been focusing on carbon

capture and storage to reduce capital and operational expenditure (Raynal et al., 2013). Several techniques

have been developed for optimization, amongst pre-combustion, oxygen combustion and post-combustion

capture (Freund, 2003). The latter have been the main alternative for CO2 capture in power plants as a

large amount of flue gases can be treated – more than 106 m3.h−1 according to Raynal and Royon-Lebeaud

(2007). It consists in separating CO2 from flue gases by a process such as reactive absorption with a strong

base. CO2 absorption in structured packing columns with 30wt% MEA (monoethanolamine) requires a

lot of energy, especially for solvent regeneration. Research has also been carried out for the development

of new solvents and new packing geometries (Raynal et al., 2011).

3



CHAPTER 1. STRUCTURED PACKING COLUMNS AND ACID GAS TREATMENT

For gas treatment in general, acid gas compounds (CO2, H2S, ...) must be separated to liquefy and/or

transport natural gas. Gas fields contain variable amounts of acid gases that should be treated while

natural gas specifications have been becoming more and more severe. Acid gas removal units must be

optimized in terms of size and energy consumption. This also promotes research on new solvents and

packing geometries.

The present project focuses on improving hydrodynamics modeling of two-phase flows in structured

packings, aiming to enhance reliability for pieces of design and their optimization. This thesis consists

of an experimental study of a liquid film flow down on commercial structured packing sheets, and the

development of a CFD methodology that shall be validated from experimental observations. The main

objectives are the following:

• Improvement of understanding and modeling of two-phase flows and wetting in structured packings:

– acquisition of experimental data at local scale (liquid film thickness, interface velocity) of

liquid flows over structured packing sheets;

• Development of a predictive CFD methodology that reproduces three-dimensional two-phase flows

encountered in structured packings at local scale:

– improvement of wetting modeling;

– validation against DNS and experimental results;

– simulation of a counter-current gas-liquid flow over a representative elementary unit (REU) of

structured packing sheet.

1.2 Structured packing columns

1.2.1 Applications

Structured packing columns are increasingly used for acid gas treatment and post-combustion CO2 capture

by amine system cleaning. The process principle is presented in Figure 1.1. The gas to be treated rises

and is exposed to the solvent in the absorption column. The liquid flows down on structured packing

sheets whilst being sheared by the gas: this is a counter-current mode. For CO2 capture, the absorber

operates at atmospheric pressure, while for acid gas treatment the pressure can vary from several bars to

more than 100 bars. Acid compounds are then extracted from the solvent within a regeneration column

at moderate pressure (several bars) and high temperature (110 to 140°C) before being sent to storage or

sulfur recovery unit. Structured packings have high porosity, generally higher than 90%, and low pressure

drops, of the order of 10 mbar.m−1. In order to maximize the absorption column efficiency, one needs

to enhance gas-liquid contact by ensuring homogeneous flow over subsequent surfaces. Actually, the

process efficiency is strongly dependent on geometrical characteristics of packing sheets, in a sense that it

depends on the contact area and the pressure drop; an efficient process allows reaching gas specifications

with reduced pressure drop. These sheets exhibit (large-scale) corrugations (Figure 1.2a) and small-scale

corrugations (Figures 1.2b and 1.2c). Triangular-shaped corrugations of base λu and height hu allow

increasing the interfacial area between the solvent and the gas to be treated, and distributing the liquid all

over metal sheets, while small-scale corrugations of wavelength λc and amplitude Ac may have an effect
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Purified gas
90% CO2 capture

Absorber Stripper

HP CO2

(110 bar)

Flue gas
13.5% CO2

Solvent
make-up

Rich amine

Lean amine

Figure 1.1: Post-combustion CO2 capture process by amine system cleaning (from Raynal et al. (2013)).

c

c

λu

hu

(a)

(b)

(c)

(d)

Figure 1.2: (Large-scale) corrugations (a), close view of small-scale corrugations (b), cut-view of small-
scale corrugations (c) of structured packing sheets that form a packing element (d). (a), (b) and (c) are
from Raynal and Royon-Lebeaud (2007), (d) is from Aroonwilas et al. (2001).

on wetting (Trifonov, 2004) and mass transfer (Kohrt et al., 2011). These two features are important for

enhancing the process efficiency. Corrugations have an inclination angle with the horizontal direction

αu = π/3 for a Mellapak 250X and αu = π/4 for a Mellapak 250Y (Figure 1.2d). A packing element

consists of several vertical sheets that are alternated, that is to say they have an algebraic inclination angle

±αu with the horizontal direction (Figure 1.2d). A lower inclination angle induces higher pressure drop

and higher separation efficiency (Figure 1.3), the latter being linked to transfer parameters (Linek et al.,

1984; Raynal et al., 2013). In the industrial process, sheets are perforated in order to improve wetting.

In this project, only flows over non-perforated sheets are studied to simplify observations and numerical

simulations.

5



CHAPTER 1. STRUCTURED PACKING COLUMNS AND ACID GAS TREATMENT

• Pressure drop per theoretical stage 0.3‑1.0 mbar 

• Pressure drop at 70‑80% looding about 2 mbar/m 

• Minimum liquid load approx. 0.2 m3/m2h

• Maximum liquid load up to more than 200 m3/m2h 

• Vacuum to moderate pressure

• High pressure in selected applications 

• 

Vacuum and atmospheric columns

parameter = head pressure p /mbar

Separation Efficiency
• Pressure drop per theoretical stage 0.3‑1.0 mbar 

• Pressure drop at 70‑80% looding about 2 mbar/m 

• Minimum liquid load approx. 0.2 m3/m2h

• Maximum liquid load up to more than 200 m3/m2h 

• Vacuum to moderate pressure

• High pressure in selected applications 

• 

Vacuum and atmospheric columns

Pressure Drop

Figure 1.3: Separation efficiency (expressed in Height Equivalent to a Theoretical Plate) and pressure
drop characteristics of Mellapak 250X and Mellapak 250Y structured packings (graphs from Sulzer Ltd.).
F = UG

√
ρG (in Pa1/2) is the gas capacity factor, measure of the shear stress due to the gas flow, UG

being the gas superficial velocity at the scale of the column.

1.2.2 Design

1.2.2.1 Hydrodynamic parameters

Hydrodynamic parameters are important for designing absorbers, especially for determining the diameter

of a column.

Liquid holdup

Liquid holdup macroscopically characterizes a reactor as the liquid volume in the column with respect

to the total available volume. It depends on packing geometry, fluid properties, liquid load and the

gas capacity factor UG
√
ρG (Billet and Schultes, 1999) which is an important parameter for designing

structured packing as it measures the shear stress between gas and liquid. For a given liquid load, higher

gas loads yield an increase in liquid holdup: this is called the holdup loading region from which liquid

flow starts being inhibited (Figure 1.4). At some higher gas load, the pressure drop becomes too large and

all the liquid is held up (the flooding point). Some authors (Suess and Spiegel (1992), Sidi-Boumedine

and Raynal (2005), Alix and Raynal (2008)) have proposed correlations for liquid holdup that depend on

packing geometry, fluid properties, liquid and gas loads.
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Comportement de la pression et de la rétention liquide en fonction du débit gaz pour 
Figure 1.4: Liquid holdup and pressure drop characteristics of structured packing columns (Spiegel and
Meier, 1992). A is the pressure drop loading point, B is the loading point, C is the flooding point. Units
are operated in the pressure drop loading region.

Pressure drop

Operational expenditure is directly related to the pressure drop (Raynal et al., 2013). For CO2 capture,

the pressure drop in structured packing columns is typically below 2 mbar.m−1 at operating conditions.

Packing geometry as well as loads and fluid properties influence the pressure drop. Figure 1.4 shows

holdup and pressure drop characteristics for a conventional structured packing column. The pressure drop

drastically increases from a gas load that is half the flooding point: that defines the pressure drop loading

region, in which the gas flow enhances mass-transfer by increasing shear stresses. As a consequence,

units are operated in the pressure drop loading region, generally up to about 80% of the flooding point. As

mentioned above, a higher pressure drop prevents the liquid from flowing down and the liquid holdup

suddenly increases to unity: this is the flooding phenomenon, that must to be avoided.

1.2.2.2 Mass transfer parameters

Mass transfer parameters are important for designing absorbers, especially for determining the height of a

column.

Effective area

The specific effective area or chemical area is an important parameter in gas treatment as it is proportional

to the specific molar absorption rate of gas. In structured packings, liquid flows over metal sheets and the

specific wetted area is ideally equal to the specific packing area. That is not always the case as dry zones

may appear even for uniformly-distributed liquid. The effective area is the dominant parameter in mass

transfer (Raynal et al., 2013).
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Mass transfer coefficients

Mass transfer in the vicinity of a gas-liquid interface behaves differently in gas and liquid phases. The

reciprocals of mass transfer coefficients, kL and kG, represent liquid-side and gas-side resistances to gas

absorption. These coefficients contain information in terms of hydrodynamics and packing geometry.

They are important to determine the column height as most of gas treatment reactions are limited by mass

transfer in the vicinity of the interface. The reader is referred to Appendices II and III of Brahem (2013)

for further information on mass transfer parameters.

1.3 Multiscale modeling of two-phase flows in structured

packings

The modeling of gas-liquid flows in structured packing columns can be pursued by utilizing an averaging

procedure, such as volume averaging, as a generalization of the modeling of flow in porous media.

1.3.1 Pressure drop

As discussed in Section 1.2.2, the pressure drop determines operational expenditure. First predictive

models for the pressure drop in structured packing columns were established empirically based on laws of

Darcy-Forcheimer type, for which Ergun coefficients were determined experimentally (Billet and Schultes,

1999). Now, CFD is a very interesting alternative to long and expensive experimental campaigns. Consider

a gas flow in a structured packing column. Several scales comes into play, from the small corrugations

(Figure 1.2b) to the (large) corrugations (Figure 1.2a), up to the packing element (Figure 1.2d) and further

to the scale of the column. Petre et al. (2003) predicted the dry pressure drop at the scale of the column

by considering all energy losses due to gas-gas and gas-solid interactions at the scale of corrugations.

They identified that losses due to gas-gas interactions occurring at criss-crossing junctions of channels

(large-scale corrugations) mainly contribute to the overall dry pressure drop. Later, Raynal et al. (2004)

observed boundary conditions influenced the numerical results and a periodic element has been worked

out since then. The multiscale approach proposed by Raynal and Royon-Lebeaud (2007) for the overall

(wet) pressure drop in structured packings consists in studying the liquid film flowing down on small-scale

corrugations first (2D in their work), to get the liquid holdup (related to the liquid film thickness), and then

the pressure drop at the scale of corrugations. These hydrodynamic parameters are further used within a

porous-media-type estimate of the overall pressure drop at the scale of the column. Said et al. (2011) have

studied the dry pressure drop for different Representative Elementary Units (REUs) of structured packing

element and observed similar results in the dry pressure drop using different REUs.

In the presence of liquid, the gas phase undergoes further energy losses due to restriction of the gas-flow

cross-section, and gas-liquid interactions. Empirical correlations have been developed for the wet pressure

drop knowing the dry pressure drop (see Billet and Schultes (1999) for instance). Nowadays, numerical

methodologies offer many possibilities for the prediction of wet pressure drops. Assuming that packing

sheets are fully wetted, the approach of Raynal and Royon-Lebeaud (2007) may be applied, starting from

a first three-dimensional simulation of a liquid film at the scale of small corrugations. A more rigorous

methodology might be to directly simulate gas-liquid flows in a REU of structured packing element, such

as that used by Raynal and Royon-Lebeaud (2007), but at much higher computational cost.
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1.3.2 Liquid film

The approach described above for estimating the wet pressure drop requires knowledge of both the

thickness and the interface velocity of the liquid film at the scale of small corrugations. The wetted

area as well as the interface velocity plays a role in mass transfer. Prior work has focused on evaluating

these in two-dimensional volume-of-fluid (VOF) simulations (Raynal and Royon-Lebeaud, 2007). Three

dimensional simulations of liquid film flows over an REU of structured packing sheet seems unavoidable.

Integral models (see Trifonov (2004) and Valluri et al. (2005) for instance), or one-fluid interface-capturing

methods (VOF or level-set for instance, see Tryggvason et al. (2011) for an introduction) may be used

for these. Haroun et al. (2014) carried out 3D VOF simulations of gas-liquid flows in a counter-current

mode over such a REU in order to observe the liquid film thickness and the wetted area. They simulated

transient flows with moving contact lines, with a computational domain initially occupied by air, and

observed results strongly dependent on the value of the contact angle, which was constant in their study.

Accounting for contact line dynamics would have rendered the approach even more rigorous, which might

be a key point for predicting wetting of metal sheets and for improving the overall multiscale strategy.

It is hoped here that the outcomes of such simulations will allow a fair comparison with experimental

results, in terms of wetting, liquid film thickness, interface velocity, and will provide information and

support to further development of closure laws for gas-liquid simulations at the scale of the column in the

porous framework.

1.3.3 Hydrodynamics at the scale of the column

The higher the contact area, the more efficient the process is expected to be. Therefore, an optimal liquid

distribution, that depends on both the distributor and the packing geometry, is wanted. In the literature,

simulations of gas-liquid multiphase flows in structured packing columns have been carried out using an

Euler-Euler description in the framework of porous media (Fourati et al., 2013; Soulaine et al., 2014).

Results have been compared with existing experimental data such as these of Fourati et al. (2012), for

instance.

In the framework of flows through porous media, continuum momentum and continuity equations can be

obtained by volume averaging (Whitaker, 1973), assuming a separation of scales between the pore and

system size. Such an approach has been pursued for structured packings by Iliuta et al. (2004), whose

model for gas-liquid and fluid-solid interactions is mostly in the form of momentum exchange terms of

Darcy-Forcheimer type, of viscous and inertial nature.

In their axisymmetric numerical simulations using Euler-Euler models in this framework, Fourati et al.

(2013) obtained good agreement with their experimental results for the order of magnitude of the pressure

drop (Fourati et al., 2012), but discrepancies were observed regarding liquid spreading.

The approach of Mahr and Mewes (2007, 2008) is similar but they split the liquid phase into two Eularian

phases, with the same fluid properties, that can exchange mass in the vicinity of contact points of two

adjacent structured packing sheets.

Soulaine et al. (2014) used the model of Mahr and Mewes (2007) and further simplified governing

equations by considering creeping-flow conditions; the velocity is related to the pressure via Darcy’s law

and the transient dynamics are only solved in the continuity equations (gas and liquid saturations).

The work undertaken in this thesis includes numerical simulations and experiments on the three-dimensional

gas-liquid flow over a REU (scale of large corrugations). The insight and results obtained may be integrated
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ReL 50–100

ReG 500–5000

Fr ≥ 1

We O(1)

rρ O(10−3)

rµ O(10−2)

LL/λc O(10−1)

LL/Ac O(1)

LL/hu O(5 · 10−2)

LL/λu O(10−2)

LG/λu O(1)

Table 1.1: Orders of magnitude of dimensionless numbers.

in any future work on continuum modelling at the scale of the column.

1.4 Dimensionless groups

Use is made herein of dimensionless groups, as follows. The system is governed by the following

variables:

• kinematic variables: UL, UG;

• physical properties: ρL, µL, ρG, µG, σ;

• the gravity constant: g;

• geometric variables: LL, LG, λu, hu, λc, Ac.

14 variables determine the system and are combinations of 3 dimensions: mass, length and time. From

the Vachy-Buckingham theorem, the system depends on 11 dimensionless numbers that are:

ReL =
ULLL

νL
, ReG =

UGLG

νG
, F r =

U2
L

gLL
,We =

ρLU
2
LLL

σ
,

rρ =
ρG
ρL
, rµ =

µG
µL

,
LL

λc
,
LL

Ac
,
LL

hu
,
LL

λu
,
LG

λu
.

(1.1)

Table 1.1 gathers dimensionless numbers for flows over a Mellapak 250Y sheet that is studied in the

project. The liquid flow is laminar or inertial whereas the gas flow is inertial or turbulent. The Froude

number Fr is greater than 1: upstream disturbances shall not affect the liquid flow downstream. The

Weber number We is about 1: capillary forces have a key role in wetting, which may introduce further

parameters.

Further dimensionless parameters are introduced by a contact-line model, including contact angles and a

ratio of length scales that arises near a contact line, such as a dimensionless slip length.
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1.5 Conclusion

The scope of this work is developing insight and modeling for the optimization of acid gas treatment

processes by amine system cleaning in column equipped with structured packings. Specifically, the focus

here is on wetting phenomena on structured packing sheets, at the scale of corrugations. Optimal surfaces

are wanted in order to maximize wetting of packing sheets and the liquid distribution. Qualitative and

quantitative observations of liquid films over packing sheets are carried out and a CFD methodology is

developed to simulate such flows. The developed CFD approach can be used in the future development of

closure laws for liquid-solid interactions in continuum modeling to simulate gas-liquid flows at the scale

of the column, and/or for testing new packing sheet geometries in order to improve their wettability as

well as the liquid distribution, to contribute to optimizing the chemical process.
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In this chapter, liquid film thickness measurement techniques are reviewed first, including comparisons

and an assessment of their applicability to observing liquid film flows over complex surfaces. Such flows

may exhibit dry zones, and hence (moving) contact lines (three-phase junction). Generalities on contact

lines are therefore presented in a second part of this chapter, notably dynamic contact line models and the

computational methodology for the numerical simulation of two-phase flows with moving contact lines.

2.1 Liquid film thickness measurement techniques

Liquid flows over complex surfaces are studied throughout this thesis. In particular, thickness measure-

ments of a liquid film flowing down on a structured packing sheet Mellapak 250Y are performed (the

sheets used in the thesis do not have perforations). Raynal and Royon-Lebeaud (2007) mentioned geomet-

rical characteristics of a Mellapak 250Y sheet. They have triangular-shaped (large-scale) corrugations

with base λu = 22.4 mm and height hu = 11.6 mm and sinusoidal-shaped small-scale corrugations with

periodic length λc = 2.8 mm and amplitude Ac = 0.3 mm (Figure 1.2).

Consistently with parameters of industrial flows and previous studies (Alekseenko et al., 2008; Dietze

et al., 2009; Vitry, 2011), liquid film flow thicknesses are expected to be between 200 and 1000 µm. A

precision lower than 10 µm is thus preferable. Taking into account the small corrugations, it would be

desirable to achieve a spatial resolution of the order of 20 · 20 µm2. The literature on film thickness
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Figure 2.1: Ultrasonic measurement principle, from Kamei and Serizawa (1998).

measurements on such complex surfaces is virtually non-existent. In order to carry out these liquid film

thickness measurements, existing experimental techniques are reviewed, amongst acoustic, electrical

and optical methods. The present review ends with a conclusive part for selecting the best method for

measuring the thickness of a liquid film flowing down on a structured packing sheet.

2.1.1 Acoustic methods

When an acoustic wave propagating in a liquid film hits an interface, this generally results in partial

transmission and reflection. The acoustic wave is emitted in a solid material using a transducer, the axis

of which being perpendicular to the substrate (Figure 2.1). The traveling wave is then reflected at the

interface back to the probe, which gives the time that separates the emission and the reception of the wave.

Knowing the sound speed and measuring the propagation time yield the liquid film thickness.

Kamei and Serizawa (1998) measured thicknesses ranging from 0.3 to 2 mm with 75-µm accuracy. They

achieved a 0.9-mm-diameter resolution at a rate of 10 kHz.

This technique is non-intrusive and the spatial resolution can be enhanced by increasing the wave frequency.

However, the gas-liquid interface has to be quasi-perpendicular to the transducer so that the probe receives

the reflected signal. Another issue is due to large and small corrugations of structured packing sheets

(Figure 1.2), which makes the application of that technique to thickness measurement of a liquid film

flowing on structured packing sheets a difficult task. Indeed, the transducer must be put perpendicularly

to the plate and has to be in perfect contact with it. Taking into account the small corrugations, perfect

contact between the transducer and the plate cannot be achieved, hence this technique is not adequate.

2.1.2 Electrical methods

2.1.2.1 Conductance

This method is based on the conductivity of liquid media, which is proportional to the liquid volume

between two measuring electrodes. Damsohn and Prasser (2009) designed a field of 1024 electrode pairs

to get a thickness field. They achieved a spatial resolution of 3.12 · 3.12 mm2 for each electrode pair with

a 10-kHz data rate. They measured thicknesses from 100 to 800 µm with 5% accuracy.

14



2.1. LIQUID FILM THICKNESS MEASUREMENT TECHNIQUES
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x0x

Figure 2.2: Laser triangulation principle.

This technique is easily implemented but requires modifying the solid substrate and may thus influence

the hydrodynamics. The spatial resolution is equal to the inter-electrode distance and is therefore limited.

Note that thicknesses higher than the inter-electrode distance cannot be measured as there is a saturation

phenomenon in that case.

2.1.2.2 Capacitance

Many liquids are dielectric media. Liu et al. (2007) used electrical capacitance tomography. They

measured thicknesses of a liquid flowing down inside a 15-mm-ID vertical tube by using eight electrodes.

They measured thicknesses ranging from 50 to 250 µm with a 1-mm inter-electrode distance and 1-kHz

acquisition frequency.

The capacitance measurement method requires modifying the solid substrate, so it is difficult to implement

this for studying undulated sheets. Spatial resolution is limited by the inter-electrode distance. Besides,

merely the total capacity of the multiphase flow is measured, hence corrections should be done to improve

accuracy and obtain the actual film thickness.

2.1.3 Optical methods

2.1.3.1 Laser triangulation

Laser triangulation consists in observing the displacement of a light beam by a reflective interface with

respect to a reference position (Figure 2.2). First, the beam is reflected at a solid substrate and goes onto

the position detector. Then, another measurement is performed when there is the liquid film, which gives a

new position on the detector as the laser is reflected at the free-surface. The light beam has been displaced

by the liquid. Calculation using the measured displacement yields the liquid film thickness.

Gosset and Buchlin (2008) studied a viscous flow around a rotating cylinder soaked in oil. They observed

the time signal of the thickness of a glycerin film at the top of the cylinder. Thicknesses ranging from

100 to 500 µm were measured with 12% accuracy and a spatial resolution of the order of the light beam
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Figure 2.3: Internal reflection principle.

diameter, say 1 mm. The acquisition rate was 250 Hz. Note that they seeded a dye to render the gas-liquid

interface reflective.

Measurement on curved interfaces may lead to substantial difficulties, as the interface profile itself must

be determined to further deduce the height profile. This technique is basically applied when the normal to

the reference reflective surface is almost the same as the normal to the gas-liquid interface. Again, it is not

convenient in the case of undulated substrates, especially micro-structured ones. However, single-point

measurements can be done with this technique for characterizing eventual surface waves.

2.1.3.2 Internal reflection

A light beam going through a transparent medium of index n1 towards another medium less refringent

n2 < n1 yields a total reflection at the interface of these two media when the incident angle i is higher

than arcsin(n2/n1). If the angle of the beam emitted by the light source is high enough so that some total

reflection occurs, then only part of the incident light is transmitted through the interface (Figure 2.3). The

difference in light energy yields the liquid film thickness.

Several references are cited by Tibiriçá et al. (2010). Spatial resolution depends on the limit refraction

angle and the kind of lighting that is used, but it is generally of the order of 1 mm. For instance, the limit

refraction angle for a water-air interface is 48°, hence very small spatial resolution is not achievable. But

the light comes from below the solid substrate that has to be transparent, whereas structured packing

sheets are not.

2.1.3.3 Light absorption

Liquids are or can be made absorbent by seeding a dye. A dye solution is absorbent and the mix of all

radiations that are not absorbed gives the dye color. Such liquids are said to be semi-transparent. When

light goes through an absorbent liquid film, some light is reflected at the interface, some is absorbed by

the liquid and some is transmitted. By the Beer-Lambert law, for a given light intensity I0, the absorbed

light intensity is I0 exp(−εt) where t is the liquid thickness along which light is absorbed and ε is the

absorption coefficient which depends on the wavelength and the local dye concentration.
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aaa

Figure 2.4: Optical-fiber measurement principle, from Alekseenko et al. (2008).

Gosset and Buchlin (2008) studied the instability of a viscous flow around a transparent rotating cylinder

soaked in an oil bath. The perturbation was introduced with an air blast coming out of a nozzle. They

observed the time evolution of the thickness surface field over a view field of 14 cm2 (the spatial resolution

may be reduced depending on the view field and the spatial resolution that are wanted). Thicknesses

ranging from 100 to 500 µm were measured with an accuracy of 8% and a spatial resolution of 0.3 mm.

They used a green light source inside the cylinder and mounted a green filter on the camera.

The considerable advantage of using a camera is that the view field, spatial resolution and acquisition

frequency can be chosen. Results are accurate when the incident light is uniform. Otherwise a few

corrections need to be made in a post-processing step. Lighting the system from inside as Gosset and

Buchlin (2008) did is a good way to achieve uniform lighting. Note that the technique can be applied

by lighting the liquid from above. It is difficult to apply such a technique to systems with substrate of

complex topology, however. Indeed, the attenuation length is actually the optical path length so both

profiles of the gas-liquid interface and the complex substrate must be determined. Moreover, seed particles

may disturb the flow by changing the effective rheology of the particle/fluid mixture, an indication of

which can be obtained from Einstein’s effective viscosity of suspensions. Furthermore, dyes may modify

other properties such as surface tension of the gas-liquid interface (Przadka et al., 2012).

2.1.3.4 Optical-fiber measurement

This technique does not allow investigating the flow over micro-structured substrates considering the

desired resolution. As the diameter of the optical fiber is larger than the size of small corrugations,

modifying the solid substrate would entirely change hydrodynamics, which is unwanted. This technique

is also governed by the Beer-Lambert law. A light beam is emitted and travels within the optical fiber

to strike the gas-liquid interface and then goes back to the sensor. The light energy that comes back

in is compared with the light energy initially emitted by the system. The absorbed light energy is thus

measured and yields the liquid film thickness. Alekseenko et al. (2008) measured thicknesses between 0.1

and 1 mm with a spatial resolution of the order of 0.4 · 0.4 mm2. They achieved an accuracy of the order

of 10 µm. The acquisition frequency was 1 kHz. The investigated plate had perforations. The optical-fiber

was put under the plate so that measurements could be done through a perforation (Figure 2.4).
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2.1.3.5 Diffraction

When a laser light beam goes through a liquid medium with seed particles of diameter lower than the

wavelength, diffraction occurs. The intensity of scattered light is a function of the number of particles, so

that light is attenuated according to Beer-Lambert law. Salazar and Marschall (1975) measured thicknesses

of a liquid film ranging from 0.7 to 3 mm. Spatial resolution is of the order of the light beam, say 1 mm.

High accuracy is achieved with particles of small size, smaller than 1 µm. However, the solid substrate

must be transparent.

2.1.3.6 Light-induced fluorescence (LIF)

LIF techniques have been widely used to study falling films. LIF consists in seeding a fluorescent dye

in the liquid. The fluorescent dye is characterized by its excitation wavelength λe and its re-emission

wavelength λr > λe. The re-emitted light energy is equal to the absorbed energy. That way, thickness

measurements are performed based on the Beer-Lambert law.

Vitry (2011) lighted a water film containing fluorescein with a UV light source from above. The calibration

procedure allowed accounting for optical defects of the camera lens (distortion and vignetting) and spatial

distribution lighting. The interface curvature was taken into account in post-processing. Thicknesses

between 0.1 and 2 mm could be measured over a 328 · 241 mm2 view field with a spatial resolution

of 201 · 201 µm2. An accuracy of 7 mm was achieved with a 150 Hz acquisition rate. Argyriadi et al.

(2006) observed a liquid film flow over a corrugated wall. It was confirmed that a corrugated surface may

stabilize the flow compared with a plane surface. The authors measured thicknesses ranging from 100

µm to 1 mm with respect to the corrugated wall with an accuracy below 20 µm. They had a view field of

25 · 19 mm2 with a spatial resolution of the order of 300 µm. The acquisition frequency was 10 Hz.

High spatial and temporal resolutions can be achieved with recent high-speed cameras. The view field can

be controlled so that effects of small corrugations can be observed. The same problem as for the light

absorption technique is encountered when flows over complex topologies are investigated: the optical

length is the measured quantity hence the substrate profile must be known. The same issues as those for

the light absorption technique have to be dealt with regarding seed particles.

2.1.3.7 Photochromic dye activation

Some chemical entities initially transparent may react in the presence of a light source to form a colored

product. These are called photochromic dyes. They may be used for liquid film thickness measurement

via the Beer-Lambert law or as tracers for velocimetry. The reverse reaction is quasi-instantaneous but the

color fading time is still finite.

Kim and Kim (2005) used photochromic dyes initially transparent that turned violet in the presence of UV

rays. They observed thin liquid films between two microscope slides, and measured thicknesses ranging

from 12.73 to 63.66 µm with an accuracy lower than 2 µm. Liquid films were obviously static but the

technique can be applied dynamically.

Advantages and drawbacks are the same as those encountered for light absorption and LIF techniques.

High spatial and vertical resolution can be achieved depending on the optics. The substrate profile must

be known. Note that photochromic dyes are now less used because of safety reasons.
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Laser Movable mirror

Fixed mirror

Splitter

Observation field

Figure 2.5: Initial configuration of the Michelson interferometer.

2.1.3.8 Interferometry

The resulting light intensity of two waves can be different from the sum of the two illuminations

(interference). Interference patterns can be obtained using a beam splitter, such as in the Michelson

interferometer (Figure 2.5). A light beam is split by a half-silvered mirror. Both rays strike a mirror and

then interfere if some optical path difference is introduced by rotating or translating the moveable mirror.

Mirrors are initially perpendicular to each other and at equal distance to the beam splitter. If the moveable

mirror is translated so that it introduces a difference between the optical paths, one may observe fringes of

equal inclination. If the moveable mirror is rotated, one may obtain fringes of equal thickness.

Han et al. (2011) used an interferometer to observe fringes of equal thickness. Liquid films were between

2 and 20 µm. As liquid films were very thin, the interface played the role of beam splitter. The difference

in optical paths was equal to the liquid film thickness. The latter was determined from the interferogram

by counting the interference fringes. They achieved a spatial resolution of 0.88 · 0.66 mm2 with high

accuracy that depended of the number of fringes. The acquisition frequency was 1 kHz.

This technique is straightforward for the measurement of very thin flat films. In that case there is no need of

reference: the interference phenomenon occurs between rays that are reflected at the free-surface and those

that are reflected at the solid substrate. Note that interferometry-based profilometry (temporal evolution

of interface shape) can be performed. In that case, a reference state interferogram is needed. Regarding

spatial resolution, the thickness is measured at a single spot which size is that of the interferogram.

However, problems are encountered for curved interfaces as the light rays may not come back into the

sensor.

2.1.3.9 Chromatic Confocal Imaging (CCI)

A point source of white light goes through a beam splitter and then through a lens. The image of the point

source through the lens is stretched due to the chromatic aberration of a lens (Figure 2.6). Indeed, glass is

dispersive and blue is deflected more than red. Light is then reflected, goes back through the lens, hits the

half-silvered mirror and reaches the spectrometric sensor. The wavelength of maximal intensity on the

spectrum is related to the distance of the reflective interface to the sensor. The lens has to be put such

that the reflective interface intersects the stretched image of the point source of white light. A confocal
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Figure 2.6: CCI technique principle.

chromatic sensor incorporates all the components. Each sensor is made for a given working distance,

spatial resolution, measurement range and accuracy. The reflective interface position from the sensor is

obtained via the calibration curve determined by the manufacturer.

Lel et al. (2005) used CCI for liquid films flowing down an inclined plane. They measured liquid film

thicknesses ranging from 0.1 to 2 mm with an accuracy of 15 µm and an acquisition rate ranging from 1

to 4 kHz.

Dietze et al. (2009) observed liquid films flowing down inside a vertical cylindrical transparent tube with

the same technique. They followed a refractive index matching procedure to avoid any refraction to occur.

They measured thicknesses ranging from 200 to 700 µm with a spatial resolution of 10 · 10 µm2, an

accuracy of 4 µm and a repetition frequency of 800 Hz. The experimenter used the sensor both with and

without the flowing liquid film to perform an indirect thickness measurement.

Extremely high spatial resolution is achievable with high accuracy. But this is a single-point measurement

so measurements would have to be carried out at several points. Another issue is encountered whilst

locating a curved interface. The optical axis of the sensor must be quasi-perpendicular to the reflective

interface so that a light signal does go back into the sensor.

2.1.3.10 Chromatic Spectral Interferometry (CSI)

This is a profilometry technique. Light is reflected both at a reference mirror and at the gas-liquid interface.

Fringes of equal inclination are obtained. It is based on the same principle as CCI, that is to say the
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Figure 2.7: Schlieren technique principle, from Moisy et al. (2009).

chromatic aberration of a lens. Combining interferometry and CCI of white light allows achieving high

accuracy (lower than 0.1 µm) whilst measuring thicknesses higher than 100 µm. This technique can be

applied with a commercial sensor or with an own experimental setup. Problems due to curved interfaces

may be encountered.

2.1.3.11 Schlieren

The Schlieren method is a profilometry technique that consists in observing deformations of a pattern

through a dynamic interface. The reference pattern can be either carved on the substrate on which the

liquid flows or put below the substrate, should the latter be transparent.

Moisy et al. (2009) observed deformations of a speckle pattern through a gas-liquid interface flowing on

a transparent plane (Figure 2.7). They measured thicknesses of the order of 100 µm with a 14 · 14 cm2

view field, a spatial resolution of 70 · 70 µm2 and a 1-µm accuracy. They acquired 100 frames per second.

They mentioned that the interface-to-pattern distance must be higher than the liquid depth to avoid rays

crossing. However, rays crossing may occur also in the case of highly-curved interfaces.

2.1.3.12 Fourier Transform Profilometry (FTP)

The FTP was first introduced by Takeda and Mutoh (1983). A fringe grating is projected onto a reference

plane. The same grating is then projected onto an object which profile is wanted (Figure 2.8). The image

of the projected fringe grating is not the same on the reference plane as on the object. Differences between

the two images are related to a phase difference between the two frames. Images are recorded and a

Fourier analysis is performed to recover the phase difference, which is related to the elevation depth

(Maurel et al., 2009).

Reconstruction of dynamic gas-liquid interface was carried out by Cobelli et al. (2011) who studied

surface waves. Lagubeau et al. (2012) observed the spreading of a drop impacting on a liquid film with

a high-speed camera. They reconstructed the height field with values ranging from 0.1 to 2 mm with a

spatial resolution of 100 · 100 µm2 and a height resolution of 20 µm. The view field was of the order

of 100 · 100 mm2. They made the gas-liquid interface reflective by seeding 300-nm particles of anatase

(titanium dioxide) which is a white pigment. That dye has the characteristic of not modifying the surface

tension of the gas-liquid interface (Przadka et al., 2012). The concentration of anatase particles was small,

0.2% in volume.
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Fig. 1. Crossed-optical-axes geometry.

can solve the problem of nonplanar contours
crossed-optical-axes geometry.

in

A. Crossed-Optical-Axes Geometry
Figure 1 shows a geometry in which the optical axes

E p Ep of a projector lens crosses the other optical axis
Ec E, of a camera lens at point 0 on a reference plane
R, which is a fictitious plane normal to E' E, and serves
as a reference from which object height h(x,y) is mea-
sured. Grating G has its lines normal to the plane of the
figure, and its conjugate image (with period p) is formed
by the projector lens on plane I through point 0; E, and
Ep denote, respectively, the centers of the entrance and
the exit pupils of the projector lens. The camera lens,
with the centers of the entrance and the exit pupils at
Ec and E', images reference plane R onto the image
sensor plane S. Ep and E, are located at the same
distance lo from plane R. It should be noted that Ep
and E, are the centers of the pupils,10 not the nodal
points of the lenses as is so often confused in the liter-
ature.2'6'8 When the object is a flat and uniform plane
on R, i.e., h (xy) = 0, and if Ep is at infinity (as denoted
by E for a telecentric projector), the grating image
projected on the object surface and observed through
point E is a regular grating pattern which can be ex-
pressed by a Fourier series expansion:

gT(XY) = An ep(2iiinfox), (1)
n=-w

where

where so(x) = BC is a function of x and has a positive
sign when C is to the right of B as in the figure. For the
convenience of later discussion, we express Eq. (3) as a
spatially phase-modulated signal

go(x,y) = EI An expli[2irnfox + n40 (x)fl,
n=-X

where

Oo(x) = 27rfoso(x) = 2irfoBC.

(4)

(5)

Since the grating image is deformed and phase-modu-
lated even for h(x,y) = 0, the crossed-optical-axes ge-
ometry, when used in moire topography, gives nonpla-
nar contours unless the pupils are at infinity, i.e., the
case of telecentric optics.9 This has imposed a great
restriction on the application of the nontelecentric
crossed-optical-axes geometry to moire topography, in
spite of its easy-to-construct merit. In FTP, this initial
phase modulation is automatically corrected as will be
shown in the next section.

For a general object with varying h(x,y), the principal
ray EpA strikes the object surface at point H, and point
H will be seen to be a point D on plane R when observed
through Ec. Hence, the deformed grating image for a
general object is given by

g(x,y) = r(x,y) An expJ27rinfo[x + s(xy)]},
n=-

(6)

or

g(x,y) = r(x,y) Z An expli[27rnfox + np(x,y)]J,
n=-

where

O(x,y) = 27rfos(xy) = 2rfoBD,

(7)

(8)

and r(x,y) is a nonuniform distribution of reflectivity
on the object surface.

B. Parallel-Optical-Axes Geometry
Figure 2 shows a geometry in which the optical axis

EEp of a projector lens and that of a camera lens E'EC
are parallel and are normal to reference plane R. The
conjugate image of grating G is formed on plane R, and
the three points A, B, and C in Fig. 1 degenerate into
point C in Fig. 2, so that Eqs. (5) and (8) become

Jo IPo = cosO/p (2)

is the fundamental frequency of the observed grating
image. The x axis is chosen as in the figure and the y
axis is normal to the plane of the figure. If Ep is at fi-
nite distance, we observe on the image sensor plane a
deformed grating image with a pitch increasing with x,
even for h (x ,y) = 0. Noting that a principal ray through
a conjugate image point A strikes reference plane R at
point B in the telecentric case and at point C in the
nontelecentric case, we write the deformed grating
image for h(x,y) = 0 as

go(x,y) = _ A expI27rinfo[x + so(x)]1,
n=--

(3)
Fig. 2. Parallel-optical-axes geometry.
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Figure 2.8: Fourier transform profilometry principle, from Takeda and Mutoh (1983).

In the end, this technique cannot be applied to measure a 500-µm liquid film flowing on a solid substrate.

Indeed, such a thin liquid film cannot be made opaque (and reflective) enough for applying the technique.

That was not an issue for Lagubeau et al. (2012) because the droplet was dropped onto a liquid layer that

had the same concentration of reflective particles.

2.1.4 Discussion

Table 2.1 summarizes the collected information on existing thickness measurement techniques. Acoustic

and electrical techniques cannot be applied because they require modifying the substrate. The same

problem is encountered with optical-fiber measurements. Diffraction and internal reflection methods are

dismissed because the substrate is not transparent. Any optical technique might lead to issues regarding

curved-interface flows. Therefore, interferometry, CSI and Schlieren methods may be dismissed. For

techniques based on the Beer-Lambert law, one may avoid these spurious aspects by calculating the

interface slope (Vitry, 2011). Note that the observation area is confined with glass in the experimental

setup used in Chapter 6, hence absorption of glass would have to be taken into account.

This leaves two options to be considered further. If the LIF technique is employed, lighting must be as

uniform as possible, glass planarity has to be checked and corrected if necessary, and the plate must

be black-tainted to avoid spurious reflections. Note that fluorescent seed particles may modify liquid

and wetting properties. Tainting the plate may modify wetting properties as well. This technique has

the advantage of yielding a view field. However, the exact equation of the complex surface must be

determined as the reference for each run. If the CCI technique is applied, there is no need to taint the

plate or to use seed particles: wetting properties are preserved but the film thickness measurement is at

a single point. The CCI technique has been chosen because it does not require any modification of the

geometry and will not modify any liquid property. Specifications of the CCI system are gathered in Table

2.2. Although thicknesses smaller than 500 µm are expected to be measured, observing through the glass

channel imposes a minimal working distance, hence the choice of this CCI system. Problems related to

distance measurement through a glass medium will be discussed in Chapter 6.
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Technique Principle Thickness Resolution Issues

Ultrasonic Speed of sound 0.3 – 2 mm 1 mm2 Corrugated plate,
resolution

Conductance Liquid conductivity 100 – 800 µm 3.12 · 3.12 mm2
Support

modification,
resolution

Capacitance Liquid dielectric constant 50 – 250 µm 1 mm2
Substrate

modification,
resolution

LT Reflection 100 – 500 µm 1 mm2
Corrugated plate,
resolution, curved

interface

Internal
reflection

Total reflection 0.01 – 2 mm 1 mm2 Non-transparent and
corrugated plate

Absorption Beer-Lambert > 100 µm 0.3 · 0.3 mm2 Corrugated plate,
curved interface

Optical fiber
Beer-Lambert > 100 µm 1 mm

Substrate
modification

Diffraction
Beer-Lambert, particle
diameter < wavelength

0.7 – 3 mm 1 mm
Non-transparent and

corrugated plate

LIF Beer-Lambert 0.1 - 2 mm 100 · 100 µm2 Corrugated plate,
curved interface

Photochromic Beer-Lambert 12 – 64 µm 1 mm Corrugated plate

Interferometry
Reflection at substrate

and gas-liquid interface
2 – 20 µm 0.88 · 0.66 mm2 Curved interface

CCI Chromatic aberration 0.1 – 2 mm 10 · 10 µm2 Curved interface

CSI CCI + interferometry 0.1 - 2 mm 1µm2
Curved interface,

interface profile but
not thickness

Schlieren
Speckle-pattern

deformation
0.1 – 1 mm 70 · 70 µm2

Curved interface,
interface profile but

not thickness

FTP
Deformation of a

projected fringe grating
0.1 – 2 mm 100 · 100 µm2 Penetration length

Table 2.1: Summary of liquid film thickness measurement methods.

Measuring
range

Minimum
working
distance

Spot diameter Axial accuracy Maximum tilt Acquisition rate

10000 µm 66.9 mm 51 µm 0.9 µm ±12° 0.1 – 2 kHz

Table 2.2: Specifications of the CCI system, STIL OP-10000.
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2.2 Contact lines

Throughout the thesis, flows with moving contact lines are considered. A contact line is a three-phase

junction, in the present context, this refers to the intersection of two separate fluid phases and a solid

substrate. Contact lines are observed for any liquid flow over a substrate exhibiting dry zones. Flows

over structured packing sheets may involve moving contact lines. A brief introduction is presented here.

Macroscale modeling of flows with moving contact lines is discussed further in Chapter 4.

2.2.1 Static contact lines

Let σLS and σGS be the energy per unit area of liquid-solid and gas-solid interfaces, respectively, and σ

denote the energy per unit area or surface tension of the gas-liquid interface. If the contact line is moved

with a positive infinitesimal displacement dx between two steady states (Figure 2.9), liquid-solid and

gas-liquid interfaces gain energies σLSdxdy and σ cos θY dxdy, respectively, while the gas-solid interface

loses an energy σGSdxdy. Young’s equation (Young, 1805) expresses energy conservation at the contact

line:

σGS = σLS + σ cos θY . (2.1)

The Young angle θY is a theoretical angle for homogeneous substrates. In reality, any solid surface

exhibits heterogeneities, that can either be of a geometrical or chemical nature and viewed as some kind

of roughness. A review of roughness effects on wetting phenomena is available in Quéré (2008).

2.2.1.1 Roughness

Contact angle hysteresis

The apparent contact angle θap is often different from the Young angle θY because of local pieces of

roughness of the substrate. A contact line that would advance on a perfectly smooth, clean substrate may

remain pinned in reality because of geometrical or chemical heterogeneities until it reaches a maximum

angle called the advancing contact angle θA, above which motion occurs. The receding contact angle

θR is the minimum angle below which the contact line can be receded. The contact angle hysteresis

∆θ = θA − θR increases with the substrate roughness and can have a value close to θA in some cases.

Wenzel model

Roughness modifies the contact angle. Wenzel (1936) assumed the liquid to fit perfectly the substrate

topography (Figure 2.10). In this case, a positive infinitesimal displacement dx of the contact line leads to

gains rσLSdxdy and σ cos θapdxdy of energy of liquid-solid and gas-liquid interfaces, respectively, and a

loss rσGSdxdy of energy of the gas-solid interface. Here, r is a roughness coefficient that corresponds to

the ratio of the actual to the projected area. Energy conservation yields:

rσGS = rσLS + σ cos θap. (2.2)

The Wenzel equation that defines the substrate roughness is then obtained from (2.1) and (2.2):

cos θap = r cos θY . (2.3)
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dx

Liquid Gas

θY

Figure 2.9: Infinitesimal displacement on a smooth substrate.

dx

Liquid Gas

θap

Figure 2.10: Infinitesimal displacement on a rough substrate.

From (2.3), roughness enhances the wettability of a hydrophilic solid. Indeed, θap < θY for a rough

(r > 1) and hydrophilic (θY < π/2) substrate. Likewise, the rougher a solid, the more hydrophobic:

θap > θY for a rough and hydrophobic (θY > π/2) substrate.

The assumptions of the Wenzel model are very restrictive. In particular, (2.3) is not valid in the case of

a very rough (r ≫ 1) substrate. That would involve complete wetting or complete drying, which is not

observed experimentally. Moreover, roughness does not necessarily enhance wetting on a hydrophilic

substrate. The Wenzel model is generally valid for low receding contact angles (Quéré, 2008) and a

droplet size large compared with microstructures (Wolansky and Marmur, 1999). If the size of a droplet is

of the same order as that of microstructures, then the Wenzel equation is modified (Swain and Lipowsky,

1998).

Cassie model for smooth but heterogeneous substrates

Consider a smooth surface that has a two-material composition (Figure 2.11). f1 and f2 denote the fraction

of materials 1 and 2, respectively, θ1 and θ2 denote the static angles of pure materials 1 and 2. The Cassie

equation for the resulting contact angle is:

cos θap = f1 cos θ1 + f2 cos θ2. (2.4)

This model is not of interest for structured packing sheets which are made of one material. Note that the

Cassie and Wenzel models are sometimes combined for modeling substrates that are rough and chemically

heterogeneous.

Cassie-Baxter model for superhydrophobic substrates

For a highly-hydrophobic substrate made of microstructures, Cassie and Baxter (1944) assumed that part

of the solid remains dry, that is to say the liquid does not fit everywhere the substrate (Figure 2.12). In
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Liquid Gas

θap

Figure 2.11: Static contact line on a smooth substrate made of two materials.

Liquid Gas

dx

θap

Figure 2.12: Infinitesimal displacement on a super-hydrophobic substrate.

that case, if fS denotes the fraction of solid in contact with liquid, a positive infinitesimal displacement

dx leads to gains fSσLSdxdy and σ
(

(1− fS) + cos θap
)

dxdy of energy of liquid-solid and gas-liquid

interfaces respectively and a loss fSσGSdxdy of energy of the gas-solid interface. The resulting energy

conservation reads:

fSσGS = fSσLS + σ
(

(1− fS) + cos θap
)

. (2.5)

(2.1) and (2.5) yield:

cos θap = fS − 1 + fS cos θY . (2.6)

The fraction of solid in contact with liquid fS may not be uniform. From (2.6), an increase in fS yields a

decrease in θap: the rougher the substrate, the more hydrophobic.

Superhydrophilic substrates

For a highly-hydrophilic solid made of microstructures, there is no dry zone between the drop and the

substrate but there may be a precursor film (Quéré, 2008). Let fS be the fraction of microstructures. A

positive infinitesimal displacement dx of the contact line leads to gains fSσLSdxdy and σ cos θapdxdy of

energy of liquid-solid and gas-liquid interfaces respectively and losses fSσGSdxdy and (1− fS)σdxdy
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Figure 2.13: Experimental results of Onda et al. (1996): cosine of the apparent angle against cosine of
Young angle for water droplets on different surfaces.

of energy of the gas-solid and gas-liquid interfaces. From energy conservation,

fSσGS + (1− fS)σ = fSσLS + σ cos θap. (2.7)

Then (2.1) and (2.7) yield:

cos θap = 1− fS + fS cos θY . (2.8)

From (2.8), θap increases with fS : the rougher the substrate, the more hydrophilic.

Application to structured packing sheets

In this project, small corrugations of structured packing sheets are not considered as pieces of roughness

because the thickness of the liquid film flowing over structured packing sheets is of the order of the

amplitude of small corrugations, Ac = 0.3 mm. However, structured packing sheets are made of stainless

steel, a material that may exhibit a hysteresis behavior, as observed in Chapter 5. Stainless steel sheets

have a hydrophilic behavior for the cases investigated there, with static angles lower than π/2. Structured

packing sheets should then be considered as hydrophilic substrates with cos θY > 0.

Onda et al. (1996) observed the change in apparent contact angle due to rough substrates. They varied

the Young angle using different liquids. Their results, shown in Figure 2.13, can be represented by (2.3)

for angles θ close to π/2 and by (2.8) for angles θ close to 0. For the systems studied in Chapter 5,

Wenzel model might be suitable for characterizing static contact angles on stainless steel sheets, as no

super-hydrophilic behavior has been observed there.

On the validity of Wenzel model

According to the Wenzel equation (2.3), roughness enhances wetting in the case of a hydrophilic substrate.

Cox (1983) demonstrated that wetting may either be enhanced or inhibited depending on spatial variations

of roughness. He determined that wetting is enhanced for a liquid spreading parallel to grooves and

inhibited for a liquid spreading perpendicularly to grooves. Savva et al. (2011) conducted a statistical

study considering a random function for modeling roughness. They demonstrated that roughness inhibits
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Figure 2.14: Length scales and contact angles involved in the description of moving contact lines.

spreading of a hydrophilic-fluid droplet. Therefore, roughness may have to be taken into account. As

suggested by Sui et al. (2014), contact angle hysteresis is a basic way to represent roughness. Numerically,

roughness would reflect the presence of structures that are smaller than the scale of the flow that is resolved

next to wall boundaries.

2.2.2 Moving contact lines

2.2.2.1 The moving contact line paradox

In hydrodynamics, a no-slip condition is usually used at wall boundaries. Moffatt (1964) showed that this

condition leads to a singularity at the moving contact line because both shear stress and pressure next to

the wall are inversely proportional to the distance from the contact line. Snoeijer and Andreotti (2013)

reviewed existing models that have been developed to get around this problem. Sui et al. (2014) have

taken an interest in using such models to simulate flows with moving contact lines.

2.2.2.2 Contact angles and length scales

In order to describe microscopic or mesoscopic models that allow circumventing the moving contact

line singularity, several length scales must be defined. Three length scales are generally considered in

compliance with asymptotic models developed by Hocking and Rivers (1982) and by Cox (1986) for

viscous regimes (Figure 2.14). The theory of Cox (1986) is presented in detail in Section 2.2.2.3.

2.2.2.3 Modeling of moving contact lines

Microscopic models

This section briefly describes contact line models that have been developed for a proper description of the

physics in the immediate vicinity of a moving contact line, in the inner region. These microscopic models,

reviewed by Bonn et al. (2009) and by Snoeijer and Andreotti (2013), allow alleviating the contact line
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Figure 2.15: Slip length definition.

singularity. However, they have been worked out at very small scales so their use for direct numerical

simulation of macroscopic flows would require a huge computational effort. Nevertheless, characteristic

length scales of such physics are needed for the development of asymptotic methods used for describing

larger scales. The review presented here is not exhaustive, the reader is referred to the above-mentioned

reviews for a more complete and detailed account.

Slip model

A common model is to assume the existence of slip (Dussan V., 1979), at a scale that is typically

nanometrical, such that the no-slip boundary condition for the velocity field is replaced by a slip condition

(Figure 2.15):

u(x, 0)− Uwall = λ
∂u

∂z
(x, 0). (2.9)

Here the microscopic length scale λ corresponds to the slip length, which is the characteristic length scale

over which slip occurs.

Different slip length models have been developed, from statistical physics for example. More information

can be found in the review of Snoeijer and Andreotti (2013). Although this approach alleviates the

singularity in the wall shear stress, a weak singularity in the pressure remains - this is logarithmic in the

distance to the contact line (Huh and Mason, 1977).

Kinetic model

In (2.1), a force per unit length σ cos θY acts on the contact line. When the latter starts moving, the

effective force per unit length becomes σ(cos θY − cos θd). As a drag force, it should be related to the

viscosity and the contact line velocity. The general trend can be captured by introducing the coefficient ι

that may depend on θw (Sui et al., 2014), such as the contact line speed reads:

UCL = ι
σ

µ
(cos θY − cos θd). (2.10)

The force per unit length σ(cos θY − cos θd) is referred to as the unbalanced Young force acting on the

contact line.
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Precursor film model

At small contact angles, a precursor film may form ahead of the contact line due to inter-molecular

interaction forces (de Gennes, 1985). This model has been widely used for simulating moving contact

lines in the lubrication theory (Troian et al., 1989; Bertozzi and Brenner, 1997; Kalliadasis, 2000; Kondic

and Diez, 2001; Grigoriev, 2005). This model easily allows getting around the contact line stress

singularity since the contact line has either been eliminated (when assuming the entire solid to be wetted

by the film) or, if the precursor film is of finite extent, its thickness reduces down to molecular scales near

its edge where continuum theory is no longer expected to apply. As the precursor film is about 10 nm, its

consideration in numerical simulation leads to same leading-order results as with a slip length of the same

order (see references in the review of Sui et al. (2014)).

Macroscale models

The various contact-line models summarized above generally introduce some very small physical length

scale (slip length, precursor thickness, etc.). Numerical simulations of flows with moving contact lines

based on any of these for realistic cases will necessarily be extremely expensive due to the resulting large

range of length scales. It is therefore of interest to formulate a macroscale model wherein the flow on

a scale that can be resolved numerically for applications does account for the influence of microscopic

hydrodynamics; in particular, for the possibly strong interface curvature near a moving contact line. A

straightforward way to simulate a macroscopic flow with moving contact lines is to impose a constant

contact angle value as boundary condition, equal to the static angle, but that would only be useful for

a very small capillary number based on the contact line speed, wherein the interface is not expected

to be strongly curved near the contact line. To formulate a macroscale model, hydrodynamic theories

such as that of Hocking and Rivers (1982) for axisymmetric droplet spreading or that of Cox (1986) for

two-dimensional flows can be used as a basis. Cox (1986) first developed an asymptotic theory for moving

contact lines in viscous regime, and further extended his work to more rapid flows, in inertial regime (Cox,

1998).

Viscous regime

In the viscous theory of Cox (1986), three length scales are considered (Figure 2.14). The outer (macro-

scopic) region is located far away from the contact line. Let λ and ǫ be the length scales of the inner

(microscopic) region and the intermediate (mesoscopic) region, respectively, made dimensionless with a

length scale of the overall flow (see below), such as λ≪ ǫ≪ 1. The interface slope at a point located in

the inner region is denoted by θw. The interface slope at a point located in the intermediate region, at a

distance d from the contact line, is denoted by θd. The apparent contact angle, that is the angle that the

gas-liquid interface profile extrapolated from the outer region makes with the substrate, is denoted by θap.

The length scale λ of the inner region, is a characteristic length scale associated with the physics that

occurs in the immediate vicinity of the contact line, on which the stress singularity is curtailed. Henceforth

this is referred to herein as the slip length (Figure 2.14).

In the inner region, the interface slope θw is often taken as practically constant and assumed equal to the

static contact angle (Huh and Scriven, 1971). Comparison against asymptotic theories does suggest that in

fact this angle may depend on the contact-line speed (Sui and Spelt, 2013b), but this does not break down
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the theory discussed here (see further discussion below). Cox (1986) suggested that θw should first be

taken equal to the advancing contact angle θA when hysteresis is accounted for, in the case of a rough

substrate.

In the intermediate region, viscous bending affects the interface slope; mathematically, this region is

usually required in order to match the interface shape in the outer region to that in the inner region. Far

away from the contact line, in the outer region, a no-slip boundary condition applies and the interface

profile depends on that of the intermediate region; more recently this has been found to be an overlap

region by Sibley et al. (2015) who identified this overlap by considering higher orders in CaCL for the

interface slope solutions in the inner and outer regions. According to the theory of Cox (1986), the

intermediate length scale is ǫ = O(1/| lnλ|). The existence of the intermediate region has been proved

throughout several experiments carried out by Ngan and Dussan V. (1989), Dussan V. et al. (1991), Shen

and Ruth (1998), Ramé et al. (2004). These authors determined characteristic length scales O(10 µm) for

the intermediate region and O(1 nm) for the inner region.

The outer region is the region located far away from the contact line, wherein the apparent angle is affected

by the interface slope in the intermediate region, the macroscale flow geometry, the contact-line speed,

and the slip law that is used. Its length scale may be the size of a drop, the thickness of a liquid film, or

the capillary length which is the distance from the contact line over which capillary effects competes with

gravity effects. The length scale of the outer region should then be the minimum of the geometric scale

(drop size or film thickness) and the capillary length, although the choice of this length scale may be

arbitrary for three-dimensional flows.

Contact angles of different scales are asymptotically linked to each other by a function of the contact

line speed. The capillary number CaCL = µUCL/σ and the Reynolds number ReCL = LUCL/ν are

assumed to be small: CaCL ≪ 1 and ReCL ≪ 1. Capillary forces dominate viscous forces which

dominate inertial forces. Gravity forces are assumed to be small when compared to capillary forces, that

is for a small Bond number Bo = ρgL2/σ. The substrate is supposed to be planar. This theory was

experimentally demonstrated to be valid up to the limit CaCL ≤ 0.1 (Chen et al., 1995; Lavi and Marmur,

2004). The analysis Cox (1986) results in the following relationship between the local dynamic angle θd
located at a distance d from the contact line in the intermediate region, the microscopic contact angle θw,

and the contact-line speed,

g(θd, rµ) = g(θw, rµ) + CaCL ln

(

d

λ

)

+ CaCLQi +O(Ca2CL), (2.11)

with

g(θ, rµ) =

θ
∫

0

(x2 − sin2 x)(π − x+ sinx cosx)rµ + [(π − x)2 − sin2 x](x− sinx cosx)

2 sinx[(x2 − sin2 x)r2µ + 2(x(π − x) + sin2 x)rµ + (π − x)2 − sin2 x]
. (2.12)

The coefficient Qi in (2.11) depends on the viscosity ratio rµ = µ2/µ1, the contact angle θw in the inner

region and the slip law that is used. That term is often left out for simplification if the slip length is not

extremely small, although in practice this may have an important quantitative effect as argued by Sui and

Spelt (2013a). It is known for rµ = 0 in axisymmetric flows from the work of Hocking and Rivers (1982).

Otherwise, it can be determined by comparison with experimental or DNS results. As θw is often assumed

equal to the advancing angle for an advancing contact line (Cox, 1986), the dynamic angle is larger than

the advancing angle for an advancing contact line. The analysis of Cox (1986) that results in (2.11) is not
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dependent on the direction of contact-line motion, and therefore covers also receding contact lines, for

which the dynamic angle is smaller than the receding angle.

Some experiments have flagged up that the microscopic angle may depend on the contact line velocity

(Sheng and Zhou, 1992; Ramé et al., 2004). For instance, Sheng and Zhou (1992) developed a dynamic

model for the wall angle that notably allowed Sui and Spelt (2013b) to accurately simulate, using a realistic

value for the slip length, the rapid droplet spreading experiment of Ding et al. (2012). An important

concern with this approach is, however, that the value of the coefficient Qi in (2.11) is not known a priori

for general flows. A sensitivity study of results obtained to the value of this parameter should normally be

conducted.

The key idea in large-scale computations is to only resolve the flow down to some point in the contact-line

region, and to obtain the angle between the interface and substrate there from the above theory. The theory

itself has been developed by matching interface shapes in the various regions. A discussion of the notion

that macroscopic flow depends only on the hydrodynamics of the intermediate region through the interface

slope is in Kafka and Dussan V. (1979). For these reasons, it is expected that it is sufficient to resolve the

flow down to the intermediate region by modeling effects of the inner region on the intermediate region

from (2.11); the application of the computational work in this thesis can be considered to be a test of the

validity of these assertions.

Equation (2.11) determines the dynamic angle θd that has to be implemented as boundary condition at a

point that is at a distance d from the contact line. For a slip length O(1 nm), there is practically no change

in the hydrodynamics of the outer region while the dynamic angle θd is being imposed at the distance from

the contact line between O(10 nm) and O(10 µm) (Kafka and Dussan V., 1979). Ngan and Dussan V.

(1989) located the intermediate region at a distance from the contact line O(10 µm). In their numerical

simulations, Dupont and Legendre (2010) imposed a contact angle θd calculated from a simplified version

of (2.11), obtained from the theory of Ngan and Dussan V. (1989) by setting d = 10 µm. That boundary

condition was taken independent of the grid spacing whereas (2.11) gives the interface slope at any

location d. This was taken into account in simulations performed by Sui and Spelt (2013b). They imposed

a contact angle function of the uniform grid spacing h as boundary condition and approximated the

distance d in (2.11) by:

d =
h

2 sin
(

(θd + θw)/2
) . (2.13)

Mesh-dependent boundary conditions still lead to grid convergence (Afkhami et al., 2009; Sui and Spelt,

2013b). Maglio and Legendre (2014) also used a mesh-dependent boundary condition by approximating

the distance d in (2.11) by h/2.

Inertial regime

The inertial theory of Cox (1998) proposes a macroscale model for flows wherein inertial effects have to

be accounted for when compared to viscous forces: ReCL ≫ 1. Capillary forces still dominate viscous

forces: CaCL ≪ 1. It is assumed that the boundary layer is laminar and no flow separation occurs. Cox

(1998) works out two different cases. First, he considered flows wherein viscous effects are entirely

negligible with respect to inertial effects: 1 ≪ λ−1 ≪ ReCL. Thus there is an inertial regime everywhere

including in the inner region as λReCL ≫ 1. Next, Cox considered the case of a flow wherein the inner

regime is viscous and the outer regime is inertial: 1 ≪ ReCL ≪ λ−1. This latter condition is often met in

the case of aqueous flows down an incline and is of interest here.
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The intermediate region is further divided into a viscous subregion and an inviscid subregion. These match

in a transitional zone located at a distance d∗ from the contact line. Cox (1998) chooses the corresponding

Reynolds number Re∗ such as:

d∗ =
Re∗

Re
. (2.14)

The interface slope θd in the viscous sublayer at a distance d from the contact line is still obtained from

the viscous regime equation of Cox (1986):

∀d ∈ [αλ, d∗], g(θd, rµ) = g(θw, rµ) + CaCL ln

(

d

αλ

)

+ CaCLQi +O(Ca2CL). (2.15)

The constant α = O(1) represents effects of the inviscid subregion on the viscous subregion. Sui and

Spelt (2013a) suggested that Re∗ = O(1) and found good agreement with experimental benchmark by

setting a Reynolds number Re∗ = 0.37 for rapid droplet spreading. The interface slope θ∗ in the matching

transitional zone is obtained from the viscous regime equation:

g(θ∗, rµ) = g(θw, rµ) + CaCL ln

(

d∗

λ

)

+ CaCLQi +O(Ca2CL). (2.16)

The interface slope θd in the inviscid subregion at a distance d > d∗ to the contact line reads

giv(θd)− giv(θ
∗) = CaCL

(

hiv(θd)− hiv(θ
∗) + ln

(

d

d∗

)

)

+O(Ca2CL), (2.17)

with

hiv(θ) = −2 ln
(

sin
θ

2

)

+ 2

θ
∫

π

x

1− cosx
dx, (2.18)

and

giv(θ) = 1.53161(θ − sin θ). (2.19)

Practically, one first assumes that the first grid cell next to the wall is in the viscous subregion and

calculates the boundary angle θd from (2.11) before checking d < d∗, where d and d∗ are obtained from

(2.13) and (2.14), respectively. If d > d∗, then the interface slope θ∗ in the matching transitional zone

needs to be calculated from (2.16) and the boundary angle θd in the inviscid subregion is calculated from

(2.17)–(2.19).

On the validity of macroscale models

In the above macroscale models for viscous and inertial regimes, gravity is not accounted for. It is

therefore assumed that gravity effects are negligible compared to capillary effects, i.e. for a small Bond

number Bo = ρgL2/σ, where L is the macroscale. For a gas-liquid flow with a 500-µm water film,

Bo = 0.03. Thus, for the work in this thesis, the intermediate region is not sensitive to gravity effects and

the above macroscale model can be applied.

Another concern is the fact that the model of Cox (1986) was developed in two dimensions, and its validity

in three dimensions is uncertain. It is true though that the theory of Cox (1986) agrees with the model of

Hocking and Rivers (1982), the latter being for axisymmetric droplet spreading with very small viscosity

ratio. It is possible to assess the significance of variation in the third dimension a posteriori: if one

assumes the theory of Cox (1986, 1998) in three dimensions, then in the results obtained the magnitude
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in transverse variations (parallel to the substrate) of the interface slope should be small compared to the

vertical variations (normal to the substrate), that is, in spherical coordinates (r, ω, ϕ),
∣

∣

∣

∣
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1

r sinω
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. (2.20)

Finally, models of Hocking and Rivers (1982) and that of Cox (1986) are for spreading on a planar

substrate. For a sinusoidal substrate, with amplitude Ac and small corrugation λc, the interface profile in

the intermediate region remains unchanged for ǫL≪ λc and ǫL≪ Ac, which is the case of structured

packing sheets.

Discussion

For simulating liquid film flows of 200 to 500 µm with moving contact lines, one may want to use a general

macroscale model such as that of Cox (1986, 1998) described in Section 2.2.2. The dynamic boundary

angle can be implemented with (2.11) or (2.17) to resolve the flow down to the intermediate region -

which is quite large compared to the inner region. The methodology consists in starting calculations on a

coarse computational grid and doing convergence tests. As the wavelength of small corrugations λc = 2.8

mm is large compared with the size of first-layer cells, these small corrugations shall not be numerically

considered as pieces of roughness. All small corrugations should normally be taken into account in the

computational domain geometry. Contact angle hysteresis may also have to be considered to account for

pieces of roughness that are not visible, i.e. that are small compared with small corrugations. Hysteresis

depends on the material of the substrate and fluid properties so its measurement shall be performed on a

flat plate made of the same material, and using the same fluids. Practically, a simple model of hysteresis

is to set the wall angle in the macroscale model equal to the advancing (resp. receding) angle for an

advancing (resp. receding) contact line.

2.3 Conclusion

Existing experimental methods for liquid film thickness measurement have been reviewed and their

applicability to observing liquid film flows over structured packing sheets have been discussed. The CCI

technique has been selected as a non-intrusive single-point measurement technique for its high spatial

resolution and the fact that it does not require any modification of the substrate geometry, nor the use of

any additive substance to the liquid; curved gas-liquid interfaces may be problematic though, as with any

other optical method.

For simulating flows with moving contact lines, the methodology consists in resolving the flow down to

an intermediate scale while accounting for effects of smaller scales in the dynamic contact angle model.

In particular, the angle (interface slope in the intermediate region) to impose as a boundary condition

depends on the angle that the interface makes with the substrate in the inner region, the length scale of the

inner region (the slip length), and the contact line speed. General macroscale models based on asymptotic

theories of Cox (1986, 1998) for viscous and inertial regimes will be used here, keeping in mind that these

were developed in two dimensions.
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Numerical simulations of two-phase

flows in the level-set framework
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The asymptotic theory of Cox (1986, 1998) provides moving contact line models for both viscous and

inertial regimes. These can be implemented in two-phase flows solvers in order to account for contact

line dynamics. The freeware TPLS (Two-Phase Level-Set) of Ó Náraigh et al. (2014) has been extended

for the purpose. That is presented in the next chapter. But first, mass conservation errors, which are

commonly encountered in level-set methods, have been analyzed and solutions have been proposed to

remedy this problem.

3.1 Introduction

Level-set methods are widely used for the numerical simulation of two-phase flows (see for instance,

Osher and Fedkiw (2006)). In these, as in other interface-capturing methods such as volume-of-fluid

and diffuse-interface methods, interfaces are evolved through a scalar field that is defined throughout

the domain (see Tryggvason et al. (2011) for an introduction). In level-set, the instantaneous interface is

defined precisely, at a constant value (usually zero) of this scalar ’level-set’ function, which is continuous
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at interfaces. Level-set for interfaces in two-phase flows is used either in conjunction with a continuous

surface tension formulation (see Sussman et al. (1994), for example), wherein the governing equations of

motion for the fluids (with different fluid properties) are combined into one set, or a ghost-fluid approach,

to account for interface conditions (Osher and Fedkiw, 2006). In the former, this is attractive because

of ease of implementation and convenience for the representation of surface tension; in the latter, they

provide the basis for prescribing interface conditions at a sharp interface.

For application in two-phase flows, the level-set function φ is generally chosen to be the signed distance

to the interface (Sussman et al., 1994), as it is herein, although a smoothed Heaviside function has been

proposed also (Olsson and Kreiss, 2005). That is, at any point in the flow, |φ| is equal to the distance to

the nearest interface, and the sign of φ is different in each fluid, such that φ varies only gradually across an

interface. An advantage of this is that the normal vector and curvature of an interface are readily obtained

from φ.

The following evolution equation can be deduced from kinematical compatibility (see Section 1.10 in

Pozrikidis (2011), for instance),
∂φ

∂t
+ u · ∇φ = 0, (3.1)

where u is a velocity field that for flow without phase change is simply the fluid velocity field; with phase

change, it should be modified to account for the rate of phase change. The argument from kinematical

compatibility is that (3.1) applies only at interfaces. Using it throughout the flow generally, which is

commonly done, results in the level-set function ceasing to be a distance function, since the velocity field

is a priori not uniform in the direction perpendicular to the interface.

For this reason, after having evolved the solution of the level-set function from (3.1) over one timestep,

it is ’reinitialized’ to verify the eikonal equation |∇φ| = 1. Several methods have been developed for

solving this equation, such as fast-marching methods (Sethian, 2001), fast-sweeping methods (Zhao, 2005)

and reinitialization methods based on the iterative solve of a Hamilton-Jacobi equation (Sussman et al.,

1994). The latter are of interest here because they are straightforward to implement and to parallelize. The

Hamilton-Jacobi equation that is solved iteratively reads

∂ψ

∂τ
+ sign(ψ)

(

|∇ψ| − 1
)

= 0, (3.2)

subject to the initial condition that ψ is equal to the advected level-set function φ. After integration of ψ

over pseudo time τ , the result is transferred to the level-set function φ.

A first concern with such methods is that the solution of (3.2) may move the zero level-set, leading to

mass conservation issues, as the zero level-set should only move by the advection equation (3.1). Several

methods, discussed in the next section, have been proposed in order to perform the redistancing (or

reinitialization) by minimizing interface displacement, hence reducing interface distortion and improving

mass conservation. Some authors already observed better reinitialization of the level-set function by using

higher-order schemes for spatial or temporal discretization (du Chéné et al., 2008; Min, 2010). However,

a comparison of different reinitialization methods has not been reported in the literature, and is the main

first objective of this study, addressed in Section 3.3.1.

A second concern investigated herein is the performance of a two-phase flow solver in the absence of

capillary forces and with only weak dissipation. It is established in Section 3.3.2 that Rayleigh-Taylor

instability may, in some level-set methods, exhibit numerical distortion of the interface.
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Finally, a well-known issue is the presence of parasitic currents around interfaces in two-phase flow

simulations with a one-fluid formulation, not only in level-set (Scardovelli and Zaleski, 1999; Francois

et al., 2006; Meland et al., 2007; Popinet, 2009; Abadie et al., 2015). These are due to numerical methods

used to account for the pressure jump across the interface. A priori, the accuracy whereby interface

curvature is determined may be improved by a better reinitialization of the level-set function, but it seems

not to be known whether this significantly reduces parasitic currents. If curvature is less accurate, it seems

more probable to get higher curvature gradients, hence parasitic currents of higher magnitude. Section

3.3.3 compares different reinitialization methods and aims to identify those, or the key elements of those

that result in satisfactory mass conservation, reduced interface distortion (without surface tension) and

reduced parasitic currents.

Discretization and reinitialization methods tested in this work are first presented in some detail. Results

follow, notably for tests in three-dimensional systems, with a first series of tests for a translating sphere,

without a Navier-Stokes solver. Some reinitialization methods, identified as mass-conservative, are then

tested for Rayleigh-Taylor instability to check their ability of not giving rise to numerical distortion of the

interface. Finally, parasitic currents are quantified for a static bubble and a translating bubble, to identify

which reinitialization methods may lead to reduced parasitic currents.

3.2 Computational methods

The various methods used to solve the advection equation (3.1), the reinitialization (3.2), the coupling

to the Navier-Stokes equations and the numerical method to resolve the latter, are presented below. The

methods are presented for a uniform grid. Throughout the numerical approximation of the solution at

time tn and location (xi, yj , zk) is denoted by a superscript n and subscript i,j,k. The timestep is denoted

by ∆t, the uniform grid spacing by h.

3.2.1 Advection equation

The main purpose of solving the advection equation (3.1) is to accurately advect the level-set function in the

vicinity of the interface. Equation (3.1) is discretized using high-order spatial and temporal discretization

methods. The spatial discretization can be either using the non-conservative equation, or after rewriting

(3.1) in conservative form first, for incompressible flows, upon using that the velocity field is divergence

free. In either case, the pertinent version of a fifth-order weighted-essentially-non-oscillatory (WENO5)

scheme is typically used. The results presented in this study were obtained with the conservative form of

(3.1) and the WENO5 scheme of Jiang and Shu (1996) in space, summarized in Section A.1; the same

WENO5 scheme can be used for the non-conservative form to directly compute ∇φ at cell faces. For

temporal discretization, a third-order Adams-Bashforth method is used (Butcher (2000); the second-order

version is not recommended (Sengupta and Dipankar, 2004)) that gets a numerical approximation to the

advection term A at time n+ 1
2 knowing its value at times n, n− 1, n− 2:

φn+1 − φn

∆t
= 23

12A
n − 4

3A
n−1 + 5

12A
n−2. (3.3)
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3.2.2 Temporal discretization of the reinitialization equation

Once the updated level-set function φn+1
i,j,k has been determined from the advection equation, this is used

as the initialization for solving the Hamilton-Jacobi equation (3.2). We denote by ψm
i,j,k the updated value

at pseudo-time τm = m∆τ , where ∆τ is the pseudo-time step, which is therefore subject to the initial

condition ψ0
i,j,k = φn+1

i,j,k obtained from the advection equation. After completion, the result is transferred

back to φn+1
i,j,k .

To assess the significance of the order used for the temporal discretization of the Hamilton-Jacobi equation

(3.2), the following three temporal discretizations for that are tested: first-order forward Euler method (FE),

total variation-diminishing second-order Runge-Kutta method (TVD RK2) and the latter’s third-order

counterpart (TVD RK3) (Shu and Osher, 1988). These are briefly recalled in Section A.2.

3.2.3 Spatial discretization of the reinitialization equation

Several discretizations of the second term in (3.2) (the numerical Hamiltonian) are tested in subsequent

sections. These aim to amount to upwinding procedures such that information propagates away from the

interface, whilst the level-set function is not modified in the direct vicinity of interfaces. These methods

are recalled below. Reference is made to the set of cells Γ within a distance of one grid spacing from the

zero level-set. This set is defined formally by considering all grid cells Ci,j,k in the computational domain

Ω, and for each all neighboring cells CI,J,K ,

Γ = {Ci,j,k ∈ Ω : min
(I,J,K)∈υi,j,k

(ψ0
i,j,kψ

0
I,J,K) < 0}, (3.4)

with

υi,j,k = {(i− 1, j, k), (i+ 1, j, k), (i, j − 1, k), (i, j + 1, k), (i, j, k − 1), (i, j, k + 1)}. (3.5)

3.2.3.1 Method of Sussman et al. (1994) and fix of Russo and Smereka (2000)

The iterative procedure to solve the Hamilton-Jacobi equation reads here:

ψm+1
i,j,k =







ψm
i,j,k −∆τ/h

(

sign(ψ0
i,j,k)|ψm

i,j,k| − di,j,k
)

if Ci,j,k ∈ Γ,

ψm
i,j,k −∆τsign(ψ0

i,j,k)
(

|Gψm
i,j,k| − 1

)

otherwise,
(3.6)

where Gψ is a numerical approximation of ∇ψ, specified below. Just before starting the iterative

procedure, the target distance for cells in the band of cells around the interface is determined as di,j,k =

ψ0
i,j,k/|Gψ0

i,j,k|. Russo and Smereka (2000) proposed computing an approximation of the target distance

by using the maximum change in ψ0
i,j,k in each direction:

di,j,k = h
ψ0
i,j,k

δ0i,j,k
, (3.7)

with

δ0i,j,k = max
(

|ψ0
i,j,k − ψ0

i−1,j,k|, |ψ0
i+1,j,k − ψ0

i,j,k|, |ψ0
i,j,k − ψ0

i,j−1,k|,

|ψ0
i,j+1,k − ψ0

i,j,k|, |ψ0
i,j,k − ψ0

i,j,k−1|, |ψ0
i,j,k+1 − ψ0

i,j,k|,
√

(ψ0
i+1,j,k − ψ0

i−1,j,k)
2 + (ψ0

i,j+1,k − ψ0
i,j−1,k)

2 + (ψ0
i,j,k+1 − ψ0

i,j,k−1)
2
/

2, ǫ
)

,
(3.8)
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where ǫ≪ 1 is set equal to h in this work. Outside the interfacial band (Ci,j,k /∈ Γ), Godunov’s scheme

selects the upwind derivative to compute |Gψm|, needed for use in (3.6):

|Gψm| =







√

max(a2P , b
2
M ) + max(c2P , d

2
M ) + max(e2P , f

2
M ) if ψ0 ≥ 0,

√

max(a2M , b
2
P ) + max(c2M , d

2
P ) + max(e2M , f

2
P ) if ψ0 < 0,

(3.9)

with ·P = max(·, 0) and ·M = min(·, 0), a = D−
x ψ

m, b = D+
x ψ

m, c = D−
y ψ

m, d = D+
y ψ

m,

e = D−
z ψ

m, f = D+
z ψ

m.

A simple version of this method uses first-order upwinding for these one-sided derivatives. Without any

special measures in the interfacial band, but replacing the sharp sign function by a smoothed version

(specified below, see Equation (3.12)), the spatial discretization outlined above then corresponds to the

original method of Sussman et al. (1994); the measures in the interfacial band, with first-order upwinding,

is the basic version of the subcell fix proposed by Russo and Smereka (2000).

Russo and Smereka (2000) underlined that the basic version of their method can be extended to higher-

order schemes, by using their original first-order subcell fix (3.7)–(3.8) but higher-order methods outside

the interfacial band. In that approach, for a cell outside the interfacial band of grid cells the right-sided

and left-sided derivatives of the level-set function can be obtained by using the optimal fifth-order WENO

reconstruction of Jiang and Shu (1996), that was generalized to solve Hamilton-Jacobi equations by Jiang

and Peng (2000). The fifth-order reconstruction is presented in Section A.3.

Higher-order subcell fixes can be constructed by using the interface position in the calculation of right-

sided and left-sided derivatives (Min and Gibou, 2007; du Chéné et al., 2008). The method of Min and

Gibou (2007) is based on ENO2 constructions, that of du Chéné et al. (2008) on a WENO5 scheme.

Both methods use the interface position in the stencils selected for computing right-sided and left-

sided derivatives. These methods were not tested here because their implementation has been found

comparatively complex.

3.2.3.2 High-order constrained reinitialization of Hartmann et al. (2010)

This consists in adding a forcing term in the original form of the discretized reinitialization equation, to

pin the zero level-set,

ψm+1 − ψm

∆τ
+ sign(ψ0)

(

|Gψm| − 1
)

= ωδmF F
m, (3.10)

where ω is a weighting factor, which is set to 0.5, given the test results of Hartmann et al. (2010). The

iterative procedure (3.10) advances by a predictor-corrector scheme, to determine the right-hand side term.

At each pseudo-time step, the level-set function is first predicted at each grid cell in the entire domain

with the original reinitialization equation,

ψ̃m+1
i,j,k = ψm

i,j,k −∆τSh(ψ
0
i,j,k)

(

|Gψm
i,j,k| − 1

)

, (3.11)

where Sh denotes the smoothed sign function,

Sh(ψ
0
i,j,k) =

ψ0
i,j,k

√

(ψ0
i,j,k)

2 + h2
. (3.12)
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Once the forcing term has been determined, as detailed below, the predicted level-set function ψ̃ is

corrected at each cell in order to pin the zero level-set:

ψm+1
i,j,k = ψ̃m+1

i,j,k +∆τωδF
m
i,j,kF

m
i,j,k. (3.13)

The forcing term is computed for cells in the interfacial band. The forcing term Fm is applied only at

cells that keep the same neighbors across the interface during reinitialization (Hartmann et al., 2010), so

that δmF in (3.10) reads:

δF
m
i,j,k =

{

1 if υ̃mi,j,k = υ̃0i,j,k,

0 otherwise,
(3.14)

with

υ̃mi,j,k = {(I, J,K) ∈ υi,j,k : ψm
i,j,kψ

m
I,J,K < 0}, (3.15)

and υi,j,k defined in (3.5). For the high-order constrained reinitialization HCR1 of Hartmann et al. (2010)

the forcing term reads

1Fm
i,j,k =

1

h

(

− ψm
i,j,k +

ψ0
i,j,k

N

∑

(I,J,K)∈υ̃0
i,j,k

ψm
I,J,K

ψ0
I,J,K

)

, (3.16)

where N is the number of neighbors to Ci,j,k across the interface. For the high-order constrained

reinitialization HCR2 of Hartmann et al. (2010) the forcing term is

2Fm
i,j,k =

1

h

(

− ψm
i,j,k +

(

ψ0
i,j,k

/

∑

(I,J,K)∈υ̃0
i,j,k

ψ0
I,J,K

)

∑

(I,J,K)∈υ̃0
i,j,k

ψm
I,J,K

)

. (3.17)

The optimal fifth-order WENO reconstruction of Jiang and Peng (2000) and Godunov’s method are used

in |Gψm| as discussed in the preceding subsection.

3.2.3.3 Interface-preserving algorithm of Sussman and Fatemi (1999)

This method also uses a source term in the Hamilton-Jacobi equation,

∂ψ

∂τ
+ sign(ψ)

(

|∇ψ| − 1
)

= λδ(ψ0)|∇ψ0|, (3.18)

where the coefficient λ is selected such that the total volume of a fluid is not changed over any fixed

volume of the two-phase flow. In discretized form,

ψm+1 − ψm

∆τ
+ sign(ψ0)

(

|Gψm| − 1
)

= λδh(ψ
0)|Gψ0|, (3.19)

where δh(ψ) = H ′
h(ψ) is the smoothed delta function and use is made of the smoothed Heaviside function,

Hh(ψ) =























0 if ψ ≤ −h,
1

2

(

1 +
ψ

h
+

1

π
sin
(π

h
ψ
)

)

if |ψ| < h,

1 if ψ ≥ h;

(3.20)

λ, which is not constant during the reinitialization, is specified below. Equation (3.19) can be solved

iteratively with a predictor-corrector scheme. At each pseudo-time step, the level-set function at any point

in the domain is first predicted from the original reinitialization equation,

ψ̃m+1
i,j,k = ψm

i,j,k −∆τ
(

2Hh(ψ
0
i,j,k)− 1

)(

|Gψm
i,j,k| − 1

)

, (3.21)

40



3.2. COMPUTATIONAL METHODS

and then corrected, for cells in the interfacial band, to preserve the interface shape,

ψm+1
i,j,k = ψ̃m+1

i,j,k +∆τλi,j,kδh(ψ
0
i,j,k)|Gψ0

i,j,k|, (3.22)

with a correction factor that reads

λi,j,k = −
∫

Ci,j,k
δh(ψ

0)(ψ̃m+1 − ψ0)/∆τ
∫

Ci,j,k
δ2h(ψ

0)|Gψ0| . (3.23)

Integration over a cell Ci,j,k centered at (xi, yj , zk) can be done with a 27-point stencil:

∫

Ci,j,k

f =
h3

78

(

52fi,j,k +
1
∑

l=−1

1
∑

m=−1

1
∑

n=−1

αl,m,nfi+l,j+m,k+n

)

, (3.24)

where αl,m,n = 0 if l = m = n = 0, and αl,m,n = 1 otherwise.

In this work, |Gψm
i,j,k| is calculated with the WENO5 reconstruction of Jiang and Peng (2000) and

Godunov’s method. |Gψ0
i,j,k| in the correction step (4.24) is computed by first-order upwinding along

with Godunov’s scheme.

3.2.4 Navier-Stokes solver

For each time step, after advection and reinitialization of the level-set function, a single set of Navier-

Stokes equations is solved throughout the entire computational domain for incompressible flow,

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ 1

Re
∇ ·
(

µ
(

∇u+ (∇u)T
)

)

+
1

ReCa
κ∇Hξ +

1

Fr
ρĝ, (3.25)

and

∇ · u = 0, (3.26)

wherein the smoothed Heaviside function (3.20) is used to approximate the change in density and viscosity

across the interface:

ρ = Hξ +
ρ1
ρ0

(1−Hξ),

µ = Hξ +
µ1
µ0

(1−Hξ).
(3.27)

The smooth width ξ is here set equal to 1.5h, Re = ρ0LU/µ0 is the Reynolds number that compares

inertial effects to viscous effects, Ca = µ0U/σ is the capillary number that compares viscous effects to

capillary effects, and Fr = U2/(gL) is the Froude number that compares inertial to gravitational effects;

ĝ is the unit gravity vector. The curvature κ = −∇ · (∇φ/|∇φ|) is computed as the divergence of the

normal vector in this work. The continuum surface model of Brackbill et al. (1992) is used to account for

the normal stress discontinuity across the interface. The last term in (3.25) is required in a single-fluid

formulation to cancel out a singular contribution from the divergence of the stress, the normal stress being

discontinuous across interfaces.

The system (3.25)-(3.26) is solved with a standard projection method (see, for instance, Tryggvason et al.

(2011)), with a semi-implicit viscous solve of a Helmholtz equation for the temporary velocity, followed

by the solve of a Poisson equation for the artificial pressure in order for un+1 to satisfy (3.26). Details of

the corresponding spatial and temporal discretization are given in the work of Ó Náraigh et al. (2014) and

in Section A.4. The detailed spatial discretization of the surface tension term is postponed to Section 3.3.3

where parasitic currents are investigated.
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Method Spatial discretization Temporal discretization

RS-RK2 First-order upwinding with fix of Russo and
Smereka (2000)

TVD RK2

RS-W5-RK2
WENO5 scheme with fix of
Russo and Smereka (2000)

TVD RK2

HCR1-W5-
RK2

WENO5 scheme with fix HCR1 of
Hartmann et al. (2010)

TVD RK2

HCR2-W5-
RK2

WENO5 scheme with fix HCR2 of
Hartmann et al. (2010)

TVD RK2

SF-W5-FE
WENO5 scheme with fix of
Sussman and Fatemi (1999)

Forward Euler

SF-W5-RK2
WENO5 scheme with fix of
Sussman and Fatemi (1999)

TVD RK2

W5-RK2 WENO5 scheme TVD RK2

NR – –

Table 3.1: Reinitialization methods tested in this work.

3.3 Results and discussion

In this section, different combinations of spatial and temporal discretization schemes are tested for a

translating sphere, without the Navier-Stokes solver, to investigate mass conservation of the level-set

method on its own. Subsequently, the methods are tested for Rayleigh-Taylor instability without surface

tension to observe whether higher-order methods allow reducing parasitic interfacial waves; all methods

are compared both qualitatively and quantitatively. Finally, parasitic currents that arise when solving a

static-bubble or a translating-bubble problem are reported.

For quantitative comparisons, use is made in the following of the mass M(t) of one of the fluids at time t,

that is determined approximately by integrating the smoothed Heaviside function over the computational

domain:

M(t) =
1

LxLyLz

Lx
∫

0

Ly
∫

0

Lz
∫

0

Hξ(φ(x, y, z, t))dxdydz, (3.28)

and the mass loss at time t is

∆(t) = 1−M(t)/M(0). (3.29)

The various methods presented in the preceding section are referred to using the acronyms RS-RK2,

RS-W5-RK2, RS-W5-RK2, HCR1-W5-RK2, HCR2-W5-RK2, SF-W5-FE, SF-W5-RK2, W5-RK2 and

NR, where RS, W5 and SF stands for the modified method of Russo and Smereka (2000), the WENO5

scheme of Jiang and Peng (2000) and the algorithm of Sussman and Fatemi (1999), respectively. The case

W5-RK2 is just the original method (Sussman et al., 1994), with a smoothed signed function as (3.12).

The case NR is without reinitialization. The different methods are summarized in Table 3.1.
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(a) t∗ = 0 (b) t∗ = 2 (c) t∗ = 10

Figure 3.1: Time evolution of the interface shape with RS-RK2.

(a) t∗ = 0 (b) t∗ = 2 (c) t∗ = 10

Figure 3.2: Time evolution of the interface shape with all methods using the WENO5 scheme.

3.3.1 Translating sphere

Reinitialization methods are tested first for a sphere that moves at constant velocity (U, V,W ) = (1, 0.5, 0).

The computational domain is a cube of linear dimension 4R, where R is the radius of the sphere; periodic

boundaries are used in the first two directions, and wall boundaries for the remaining z-direction. The

grid spacing is h = R/15. The Courant-Friedrichs-Lewy (CFL) number defined as CFLx = U∆t/h

is set to 0.1. In all simulations, reinitialization is performed at each time-step with Nit = 30 iterations

and a pseudo time-step ∆τ = 0.3h. The choice of these two parameters is discussed in Section 3.3.1.2.

Eight methods are tested here: RS-RK2, RS-W5-RK2, HCR1-W5-RK2, HCR2-W5-RK2, SF-W5-FE,

SF-W5-RK2, W5-RK2 and NR.

3.3.1.1 Qualitative results

Figure 3.1 presents the instantaneous shapes at times t∗ = (U/(8R))t obtained with RS-RK2. The

interface exhibits oscillations at early times and is considerably affected at later times. Figure 3.2 presents

instantaneous shapes obtained in all other methods (those that use a WENO5 scheme and NR), as no

difference is qualitatively observed between them: the interface does not exhibit any unwanted pattern

and still looks like a sphere at later times.
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Figure 3.3: Mass loss ∆ as a function of time t∗ = (U/(8R))t. On the left-hand side, cases wherein
the WENO5 scheme is used overlap (except for W5-RK2). A close-up view is thus presented on the
right-hand side.

Method Mass loss

RS-RK2 −1.7 · 10−1

RS-W5-RK2 −5.2 · 10−5

HCR1-W5-RK2 2.1 · 10−4

HCR2-W5-RK2 2.4 · 10−4

SF-W5-FE −1.2 · 10−4

SF-W5-RK2 −2.8 · 10−5

W5-RK2 4.1 · 10−3

NR 1.8 · 10−4

Table 3.2: Mass loss for the translating sphere test; t∗ = 10.

3.3.1.2 Quantitative results

Mass loss against time is presented in Figure 3.3, with a close-up view on cases that use the WENO5

scheme, for which mass conservation is considerably improved. Note that the method W5-RK2, for which

there is no particular fix next to the interface, performs worse than other methods using the WENO5 and

the case NR without reinitialization. A further comparison between all cases in the close-up view of

Figure 3.3 shows that mass conserves better with the method SF-W5-RK2. The mass loss at t∗ = 10 is

presented in Table 3.2. As expected, higher-order temporal discretization methods performs better than a

simple FE method. The method SF-W5-RK3 was tested but it did not yield further improvement in mass

conservation. Effects of parameters Nit and ∆τ on mass loss are presented in Table 3.3 for the method

SF-W5-RK2. The results are converged for Nit ≥ 8. Better results are obtained with ∆τ = 0.3h.

The effect of the timestep on mass loss is reported in Figure 3.4. The method SF-W5-RK2 yields better

mass conservation when decreasing the timestep, in contrast with RS-W5-RK2, HCR1-W5-RK2 and

HCR2-W5-RK2. This is due to the fact that the subcell fix of SF-W5-RK2 aims to preserve mass
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Nit Mass loss (∆τ = 0.15h) Mass loss (∆τ = 0.3h)

1 −4.2 · 10−5 −3.4 · 10−5

2 −3.9 · 10−5 −2.8 · 10−5

4 −3.6 · 10−5 −2.7 · 10−5

8 −3.6 · 10−5 −2.8 · 10−5

16 −3.6 · 10−5 −2.8 · 10−5

30 −3.6 · 10−5 −2.8 · 10−5

Table 3.3: Effects of parameters Nit and ∆τ with the method SF-W5-RK2 for the translating sphere test;
t∗ = 10.
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Figure 3.4: (Color online) Mass loss as a function of time for different timesteps.

explicitly, whereas the subcell fix of RS-W5-RK2 just makes use of a different stencil, and that of HCR1-

W5-RK2 and HCR2-W5-RK2 is computed with an interpolation method, which does not guarantee mass

conservation. When decreasing the timestep, the mass loss rate is nearly unchanged with RS-W5-RK2 but

is increased with HCR1-W5-RK2 and HCR2-W5-RK2.

3.3.2 Rayleigh-Taylor instability

This classical benchmark test for two-phase flow solvers is used here to assess the performance of level-set

methods coupled with a Navier-Stokes solver for two-phase flows with density contrast, but in the absence

of surface tension; accounting for surface tension introduces its own difficulties, investigated in the next

subsection. In this test, the interface is initially a cosine of small amplitude y(x) = d
(

2+0.1 cos(2πx/d)
)

,

where d is the domain width and 4d is the domain height. No-slip is imposed at the bottom and top

boundaries, and periodicity is imposed in the other direction. The density of the heaviest fluid is denoted

by ρh, that of the lightest by ρl, and g denotes the gravitational acceleration, the viscosities are equal.

Two parameters are mainly involved in Rayleigh-Taylor instability without viscosity contrast and without

surface tension: the Atwood numberA = (ρh−ρl)/(ρh+ρl) and the Reynolds numberRe = ρhd
√
gd/µ.

The case (A,Re) = (0.5, 3000) was studied by Ding et al. (2007), following the early simulation at the
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same A value in the inviscid limit by Tryggvason (1988) and those by Guermond and Quartapelle (2000)

which showed that at large Re the interface shape remained different from that inviscid result. In the

present work, the uniform grid spacing is h = d/192 and the dimensionless time step, scaled by (d/g)1/2,

is set to 5 · 10−4. Unlike the inviscid Rayleigh-Taylor instability, for which the linear theory predicts a

growth rate proportional to the square root of the wavenumber (Rayleigh, 1883), accounting for viscosity

induces damping, especially for large wavenumbers. From Menikoff et al. (1977), it can be deduced that

in the case investigated here, the growth rate of the initial wave is about half that of the most unstable

wavelength (λm ≃ 0.1 for the case investigated), and is more than 4 times larger than the growth rate of a

wavelength of the size of the grid spacing used herein. Therefore, the linear theory predicts that small

waves will not have time to grow and such a grid spacing should be sufficient to obtain converged results

in terms of the amplitude of the perturbation (which has been verified for the case SF-W5-RK2, see Figure

3.6 below for qualitative results), allowing for quantitative comparison with prior work. In all simulations,

reinitialization is performed at each time-step with Nit = 30 iterations and a pseudo timestep ∆τ = 0.3h.

Effects of the parameter Nit on the results are presented in Section 3.3.2.2. Five methods are tested here:

RS-RK2, RS-W5-RK2, RS-W5-RK3, HCR1-W5-RK2, and SF-W5-RK2.

3.3.2.1 Qualitative results

We first present in Figure 3.5 the results obtained with SF-W5-RK2, which compare very well with

results of Guermond and Quartapelle (2000) (see their Figure 2, note their different definition for Re)

and those of Ding et al. (2007) (see their Figure 6). Effects of the grid spacing are shown in Figure 3.6:

results are converged for the grid spacing h = 1/192 used herein. In the results obtained with RS-RK2

(Figure 3.7), oscillations were observed at the interface, primarily at the descending tip at later times.

These are not observed in prior work cited above for this case. With higher-order spatial discretization

of the reinitialization step, RS-W5-RK2, these oscillations are seen in Figure 3.8 to be reduced, but the

interface still exhibits large waves at later times along the sides of the descending heavy fluid, which is

also not observed in prior work. The use of a higher-order temporal discretization scheme, RS-W5-RK3,

is seen to result in only little difference (compare Figure 3.9 with Figure 3.8 for RS-W5-RK2). But with

HCR1-W5-RK2 (Figure 3.10) and SF-W5-RK2 (Figure 3.5), the interfacial waves are absent altogether.

These results suggest that it is the first-order fix of the algorithm of Russo and Smereka (2000) that gives

rise to parasitic oscillations; this may be due to the fact that a one-dimensional stencil may often be used

for the computation of the target distance in (3.7)–(3.8), whereas the subcell fix of the method of Sussman

and Fatemi (1999) makes use of the integrated smoothed Heaviside function and that of Hartmann et al.

(2010) is an interpolation method, which a priori accounts for multidimensionality.

3.3.2.2 Quantitative results

Mass loss, time signals of which are presented in Figure 3.11, is reduced with SF-W5-RK2, and even more

so with HCR1-W5-RK2. Before t = 2.25, when the flow does not present any under-resolved structure,

all methods yield good mass conservation, with a mass variation below 0.1%. Table 3.4 gives the mass

loss at a later time. HCR1-W5-RK2 performs better than all other methods here. HCR1-W5-RK2 and

SF-W5-RK2 are quantitatively compared against prior tests in Figure 3.12, where positions of the tip and

the trough of the interface are given as a function of time. Good quantitative agreement is achieved against

benchmark results. Note that Tryggvason (1988) used inviscid fluids, hence the differences observed in
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(a) t = 0 (b) t = 1.5 (c) t = 1.75 (d) t = 2.25

(e) t = 2.5 (f) t = 2.75 (g) t = 3.25 (h) t = 3.5

Figure 3.5: Instantaneous shapes with SF-W5-RK2 for Rayleigh-Taylor instability.
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(a) h = 1/48 (b) h = 1/96 (c) h = 1/192 (d) h = 1/384

Figure 3.6: Dependence of the shape on the grid spacing with SF-W5-RK2 for Rayleigh-Taylor instability;
t = 3.5.

(a) t = 0 (b) t = 2.25 (c) t = 2.75 (d) t = 3.5

Figure 3.7: Instantaneous shapes with RS-RK2 for Rayleigh-Taylor instability.
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(a) t = 0 (b) t = 2.25 (c) t = 2.75 (d) t = 3.5

Figure 3.8: Instantaneous shapes with RS-W5-RK2 for Rayleigh-Taylor instability.

(a) t = 0 (b) t = 2.25 (c) t = 2.75 (d) t = 3.5

Figure 3.9: Instantaneous shapes with RS-W5-RK3 for Rayleigh-Taylor instability.
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(a) t = 0 (b) t = 2.25 (c) t = 2.75 (d) t = 3.5

Figure 3.10: Instantaneous shapes with HCR1-W5-RK2 for Rayleigh-Taylor instability.
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Figure 3.11: Mass loss ∆ as a function of time t∗ = t
√
A for Rayleigh-Taylor instability.

this work, using a large but still finite Reynolds number. Note also that good quantitative agreement was

obtained with all reinitialization methods here, but not qualitatively, as discussed above in Section 3.3.2.1.

The effect of the parameter Nit was tested and no qualitative difference was observed in the results for

Nit ≥ 1. Quantitative effects of this parameter on mass loss and the amplitude of the perturbation are

reported in Table 3.5. The results remain virtually unchanged for Nit ≥ 8.

3.3.3 Parasitic currents

Final tests aim to identify which higher-order reinitialization method performs best in reducing the

maximum magnitude of parasitic currents. These arise around interfaces when solving the Poisson
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Figure 3.12: Position of the tip and the trough as a function of time t∗ = t
√
A for Rayleigh-Taylor

instability.

Method Mass loss

RS-RK2 −1.6 · 10−2

RS-W5-RK2 −1.9 · 10−2

RS-W5-RK3 −1.9 · 10−2

HCR1-W5-RK2 −3.0 · 10−3

SF-W5-RK2 −1.1 · 10−2

Table 3.4: Mass loss for Rayleigh-Taylor instability; t = 3.5.

Nit Mass loss Amplitude of the perturbation

1 −1.3 · 10−2 1.79235

2 −1.2 · 10−2 1.79334

4 −1.2 · 10−2 1.79381

8 −1.1 · 10−2 1.79396

16 −1.1 · 10−2 1.79414

30 −1.1 · 10−2 1.79394

Table 3.5: Effect of the parameter Nit with SF-W5-RK2 for Rayleigh-Taylor instability; (∆τ, t) =
(0.3h, 3.5).
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equation for the artificial pressure in the context of the projection method, whilst represents the normal

stress discontinuity. Thus, parasitic currents are the result of inconsistent discretization of the normal to

the interface with that of the pressure gradient and numerical errors in curvature computation (Renardy

and Renardy, 2002; Francois et al., 2006; Meland et al., 2007; Popinet, 2009). The reader is referred to

the recent work of Abadie et al. (2015) for further information on parasitic currents.

Capillarity is accounted for here using the Continuum Surface Force (CSF) model (Brackbill et al., 1992),

that is, by a source term in the momentum equation (3.25), as recalled in the introduction. For the

particular case of a static bubble, the artificial pressure is the solution of the Poisson equation

∇ ·
(

1

ρ
∇p
)

= ∇ ·
(

1

ReCa

κ

ρ
∇Hξ

)

. (3.30)

Computing the capillary forces with the gradient of the smoothed Heaviside function rather than with the

smoothed Dirac delta function has been shown to reduce the maximum magnitude of parasitic currents

(Meland et al., 2007). In (3.30), a consistent discretization of the gradient of the smoothed Heaviside

function with that of the pressure gradient yields, in 1D:

pi+1 − pi
ρi+ 1

2

− pi − pi−1

ρi− 1
2

∆x2
=

κi+ 1
2

ρi+ 1
2

(

(Hξ)i+1 − (Hξ)i
)

−
κi− 1

2

ρi− 1
2

(

(Hξ)i − (Hξ)i−1

)

ReCa∆x2
(3.31)

With such a consistent discretization, the maximum magnitude of parasitic currents is very small when

imposing the exact curvature (Camax = 1.9 · 10−14 with SF-W5-RK2 for the two-dimensional case of the

static bubble, investigated below). Therefore, in any simulation, the only contribution to parasitic currents

comes from the computation of the curvature κ = −∇ · (∇φ/|∇φ|), discretized here as the divergence of

the normal vector.

Two test cases are considered in this section, that are based on those that have been used extensively with

other methods in prior work, in 2D, notably by Popinet (2009) and Abadie et al. (2015). 3D results are

also presented in this work.

3.3.3.1 Static bubble

The first test is for a static bubble of diameter D at the center of a square domain (in 3D, discussed in this

section, a cubic domain is used) of linear dimension 5D/2 and no gravity. Unlike in previous work, not

just one quarter of the domain is resolved, but the entire domain, thus symmetry across the bubble is not

imposed. The upper and lower boundaries are symmetry boundaries, the left and right boundaries are

periodic (in 3D, periodicity is also imposed in the third direction). The Laplace number that compares

capillary with viscous forces is set to La = ρσD/µ2 = 12000, where σ is the surface tension; the density

and viscosity are equal for both fluids. The grid spacing is set to h = 5D/128 and the timestep, scaled by

the inertial capillary time
√

ρD3/σ, is set to 10−3. In all simulations, reinitialization is performed at each

time-step with Nit = 30 iterations and a pseudo time-step ∆τ = 0.3h. The effect of the parameter Nit on

the results is discussed at the end of this section. Three methods are tested: RS-W5-RK2, HCR1-W5-RK2

and SF-W5-RK2. A typical pressure field obtained for a static bubble is shown in Figure 3.13. The

error in the pressure jump is here within 0.3%. Despite a relatively good representation of the normal

stress discontinuity, parasitic currents arise (Figure 3.14), with maximum magnitude very close to the

interface. 2D and 3D quantitative results of maximum magnitude of parasitic currents and mass loss
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Figure 3.13: Pressure field for a 2D static bubble, normalized by 2σ/D, obtained with the method
SF-W5-RK2; (La, t) = (12000, 30).

Method Camax Mass loss

RS-W5-RK2 (2D) 4.5 · 10−5 −9.7 · 10−3

HCR1-W5-RK2 (2D) 5.0 · 10−5 −3.4 · 10−3

SF-W5-RK2 (2D) 5.0 · 10−5 −2.3 · 10−3

RS-W5-RK2 (3D) 1.0 · 10−4 −4.3 · 10−2

HCR1-W5-RK2 (3D) 1.1 · 10−4 −2.2 · 10−2

SF-W5-RK2 (3D) 1.1 · 10−4 −2.2 · 10−2

Table 3.6: Maximum magnitude of parasitic currents and mass loss for the static bubble; (La, t) =
(12000, 30).

are shown in Figure 3.15. The time signal of the maximum magnitude of parasitic currents exhibits

discontinuities (which might be due to the use of the max operator in Equation (3.8)), while those obtained

with HCR1-W5-RK2 and SF-W5-RK2 overlap and do not present discontinuities. SF-W5-RK2 performs

better than HCR1-W5-RK2 in conserving mass, while mass conservation is worse with RS-W5-RK2.

Results would look even worse with RS-RK2, so those are not presented here. Quantitative results at

t = 30 are reported in Table 3.6. 2D results in terms of maximum magnitude of parasitic currents are

very close to those obtained by (Abadie et al., 2015) with their methods LS-CCSF and LS-SSF (see their

Figure 3). In 3D, it is now seen for this case, the maximum magnitude of parasitic currents is doubled

and the mass gain increases nearly by an order of magnitude. Finally, the effect of the parameter Nit on

mass loss is reported in Table 3.7 for the method SF-W5-RK2-3D; the parameter Nit has no effect on the

maximum magnitude of parasitic currents for this case. The results are virtually unchanged for Nit ≥ 8.
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Figure 3.14: Velocity field for a 2D static bubble with SF-W5-RK2; (La, t) = (12000, 30).
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Figure 3.15: Capillary number Camax based on the maximum speed of parasitic currents and mass loss ∆
and as a function of time for the static bubble; La = 12000.

Nit Mass loss

1 −0.0152

2 −0.0159

4 −0.0165

8 −0.0168

16 −0.0168

30 −0.0168

Table 3.7: Effect of the parameter Nit for a 3D static bubble with the method SF-W5-RK2; (La, t,∆τ) =
(12000, 30, 0.3h).
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Figure 3.16: (Color online) Capillary number based on the maximum magnitude of parasitic currents as a
function of time for the translating bubble.

3.3.3.2 Translating bubble

For the same setup a uniform initial velocity is now imposed in x-direction, U , to assess whether the

performance of the methods is affected by that. Given the absence of walls this should persist. U introduces

a further dimensionless group, for instance, a Weber number We = ρDU2/σ, which is set to 0.4 as in

prior (2D) work (Popinet, 2009; Abadie et al., 2015); several values of La are tested. The timestep, here

scaled by D/U , is set to 5 · 10−4 for La ∈ {120, 1200, 12000} and to 5 · 10−5 for La ∈ {12, 24, 60}.

Some 2D and 3D results are shown in Figure 3.16 for methods HCR1-W5-RK2 and SF-W5-RK2. The

mass loss rate (not shown) quickly levels off as soon as the maximum magnitude of parasitic currents

does, as for the static bubble. All results, in terms of maximum magnitude of parasitic currents and mass

loss rate, in 2D and in 3D, are plotted against La in Figure 3.17. The values of the maximum magnitude

of parasitic currents are akin to those obtained by Abadie et al. (2015). However, magnitudes have been

found almost independent of the Laplace number within the range of investigation. In 3D, the parasitic

velocities are increased by half an order of magnitude. Besides, the absolute value of mass loss rate is

generally lower in 2D than in 3D (Figure 3.17), and reaches lower values for lower Laplace numbers

with SF-W5-RK2. The mass loss rate with HCR1-W5-RK2 is way higher than with SF-W5-RK2 for

La ∈ {12, 24, 60}. To investigate whether this is due to the fact that a smaller timestep was used for these

Laplace numbers, further simulations were performed for La = 120, with both methods, to identify the

effect of the timestep on the mass loss rate. Results are reported in Figure 3.18. The timestep has nearly

no effect on the mass loss rate with SF-W5-RK2, whereas it increases when the timestep is reduced with

HCR1-W5-RK2. That observation is consistent with results of the sensitivity study to the timestep done

in Section 3.3.1.2.
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Figure 3.17: Capillary number based on the maximum speed of parasitic currents and mass loss rate as
a function of the Laplace number for the translating bubble. Results with LS-CCSF and LS-SSF were
obtained for a 2D translating bubble by Abadie et al. (2015).
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Figure 3.18: Dependence of the mass loss rate on the timestep for the 2D translating bubble; La = 120.
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3.4 Conclusions

Different combinations for spatial and temporal discretization of the reinitialization equation have been

tested for a translating sphere, Rayleigh-Taylor instability, and parasitic currents (static bubble and

translating bubble). Several conclusions can be drawn from this work. For temporal discretization of the

reinitialization equation:

• TVD RK2 improves mass conservation compared to first-order forward Euler.

• TVD RK3 does not result in further improvement in mass conservation.

• Mass conservation may be quantitatively affected by the timestep, depending on the method that is

used for spatial discretization of the reinitialization equation.

For spatial discretization of the reinitialization equation:

• A high-order spatial discretization scheme is necessary to avoid mass loss and interface distortion. In

all methods presented here, the combination of TVD RK2 for temporal discretization and WENO5

for spatial discretization has shown improvement in mass conservation.

• In absence of capillary forces, the modified algorithm of Russo and Smereka (2000), RS-W5-RK2,

tested here yields parasitic interfacial waves in some solutions of the Navier-Stokes equations. Note

that using higher-order subcell fixes, as proposed by du Chéné et al. (2008), may reduce these

artificial oscillations. This was not tested here because implementation was found to be complex, and

anticipate that the computational cost may be a concern, especially in 3D. No parasitic oscillations

have been observed in the absence of surface tension for the high-order constrained reinitialization

of Hartmann et al. (2010), HCR1-W5-RK2, nor for the method based on the interface-preserving

algorithm of Sussman and Fatemi (1999), SF-W5-RK2.

• Regarding parasitic currents, it was found that a consistent discretization of the capillary force with

that of the pressure gradient reduces the maximum magnitude of parasitic currents (as previously

observed by Francois et al. (2006) using volume-of-fluid methods), and drastically improves mass

conservation. The present tests have shown good agreement with prior (2D) work of Abadie et al.

(2015). In 3D, the maximum magnitude of parasitic currents is increased by half an order of

magnitude. There is nearly no mass loss due to parasitic currents with SF-W5-RK2, and even less

when reducing the timestep, in contrast with HCR1-W5-RK2.

Finally, the predictor-corrector scheme of Sussman and Fatemi (1999) seems to be the most promising

method here, when combined with TVD RK2 for temporal discretization and the optimal fifth-order

WENO reconstruction for spatial discretization. Indeed, the method SF-W5-RK2 performs very well at

conserving mass for a simple translation test on a coarse grid. The two methods, HCR1-W5-RK2 and

SF-W5-RK2, have shown very good agreement with results of prior work on Rayleigh-Taylor instability,

as well as on static-bubble and translating-bubble tests. In the end, two reinitialization methods that

are straightforward to implement have been shown to pass several benchmark tests and are seen as very

good candidates for accurate interface capturing with satisfactory mass conservation, with a preference

for SF-W5-RK2 for which mass conservation is improved by decreasing the timestep, in contrast with

HCR1-W5-RK2. The method SF-W5-RK2 was chosen for the rest of the thesis.
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The previous chapter focused on general problems encountered in level-set methods, especially mass

conservation errors, that can be reduced with the method of Sussman and Fatemi (1999). Here, a new

way of implementing (any) macroscale models in the level-set framework is presented. The method,

fully detailed in this chapter, is validated for viscous and inertial droplet spreading. It also accounts for

contact-angle hysteresis, and results are presented for three-dimensional flows of sliding drops.

4.1 Introduction

Many applications involve spreading and wetting phenomena, such as acid gas treatment with contacting

devices, microfluidics, coating films, inkjet printing (Bonn et al., 2009). Any motion of the contact
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(or triple) line occurring therein poses several formidable challenges. Using a no-slip condition at the

wall would result in a stress singularity in the vicinity of a moving contact line (Moffatt, 1964; Huh

and Scriven, 1971). This has provoked consideration of the circumstances at a nanometer scale about

a contact line and various models (slip, kinetic, precursor film and diffuse interface, amongst others)

have been formulated for moving contact lines (for a review see Snoeijer and Andreotti (2013)). The

main challenge for implementation in a computational method for two-phase flows, which is the main

subject of this chapter, is that these models involve a large range of length scales: from the scale of,

for instance, the size of a droplet, down to a length scale that is nanometric, in line with the original

notion that different physical behavior mostly enters close to a contact line. Despite this different physical

behavior occurring only at such a small scale, the flow behavior is affected also on a scale much larger

than this nanometric region, and the interface is strongly curved accordingly, unless the capillary number

based on the contact-line speed is very small. For instance, a slip model allows for the flow to slip at a

nanometric scale, the slip length (Dussan V., 1979). During the spreading of a droplet of radius L, unless

very slow, the flow and interface shape are affected significantly on a length scale L/ln(1/λ), where λL

is the (dimensional) slip length (Hocking and Rivers, 1982; Cox, 1986): that is, over a region that is

usually only an order of magnitude smaller than the drop size. Therefore, on the one hand, an ordinary

discretization of a droplet without consideration of contact lines already enters such a scale, whereas on

the other, simulations under realistic conditions wherein such flows are resolved down to a realistic slip

length (or other small length scale) are not feasible, due to the disparity in length scales. It is therefore of

interest to couple the computational method with analysis that represents the unresolved flow behavior.

Such an approach is usually referred to as a large-scale (or macroscale) model (for a review see Sui et al.

(2014)).

If no part of the contact-line region is resolved numerically at all, the above strategy suggests to impose a

relation between an apparent contact angle and the contact-line speed (for example, see Spelt (2005); Fang

et al. (2008)). Under these restrictions, no special measures are made to accommodate contact-line motion,

the only effect of the physical behavior at smaller scales enters through this relation for an apparent angle.

In other words, the flow corresponds to the solution for the ’outer region’ in asymptotic analysis such

as that of Cox (1986), at a scale much larger than the region affected significantly by the contact line.

This introduces some difficulties. On the one hand, the resolution should remain coarse compared to the

contact-line region (wherein the interface is curved), whereas on the other hand, the overall flow should be

well resolved, which can over-restrict the possible numerical resolution. Furthermore, a suitable relation

for the apparent angle would be needed, whereas no universally valid model is available for any flow

in an outer region. For instance, Cox (1986) assumes that the far field (viewed from the contact line)

corresponds to a wedge flow.

Beyond such a limited approach, the interface shape in any part of the contact-line region is required,

for coupling with the computational method. For this purpose, prior asymptotic theory can be made use

of. For example, the detailed theory of Cox (1986) (not just his result for a sole apparent contact angle)

provides a first approximation of the interface slope as a function of the local distance to the contact line,

the capillary number, the viscosity ratio, and the ratio of length scales, λ. The theory is discussed, with its

extensions to higher order and accounting for inertial effects in the next section.

The formulation of such an approach for three-dimensional flows is here considered in the context of

level-set methods, a specific class of interface-capturing methods for two-phase flows, that is presented
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below in Section 4.3.1. For an interface-capturing method based on finite volumes, one usually defines

the scalar variable at cell centers. The approach set out above would amount to the following in this

context. In practical applications part of the contact-line region will be resolved numerically. In this

region, the interface is strongly curved, thus for a given grid spacing, the distance between the contact line

and the center of grid cells adjacent to the substrate is first estimated. This distance can then be used in

the theoretical relation between the interface slope at this distance and the contact-line speed, which is

then imposed through either the slope of the interface at this first grid cell, or by the contact-line speed.

Several such large-scale methods coupled with hydrodynamic theories have been developed previously. In

the level-set framework, Sui and Spelt (2013b) simulated axisymmetric droplet spreading both for viscous

and inertial regimes. They validated their large-scale simulations against direct numerical simulations

(DNS, wherein the entire flow is resolved) of droplet spreading in viscous regime performed by Sui and

Spelt (2013a), and experiments of Ding et al. (2012) on droplet spreading with inertial effects. In their

method, Sui and Spelt (2013b) imposed a contact angle boundary condition coupled with the contact line

speed. The level-set function at the wall would be set in order to be consistent with the calculated contact

line position. The extension to three dimensions is a priori not straightforward, as the coupling with

the quasi-two-dimensional theory must be imposed along the direction of the contact-line speed, which

is not aligned with the computational grid. Still in the level-set framework, Luo et al. (2016) recently

proposed to impose the macroscale model through the curvature, their 2D level-set method has lead to

good agreement with prior analytical, numerical and experimental results, but they have not presented

3D results. In the volume-of-fluid framework, Afkhami et al. (2009) developed a numerical contact

angle model from the theory of Cox (1986), developing the important notion that the numerical angle

to be imposed should depend on the size of the first grid cell next to the wall, but requiring as input an

apparent contact angle value in the outer region in transient simulations. Using that same model, Dupont

and Legendre (2010) simulated two-dimensional droplet spreading and droplet sliding. Later Maglio

and Legendre (2014) performed three-dimensional volume-of-fluid simulations of sliding drops. They

compared their numerical results against the experiment of Le Grand et al. (2005). They obtained good

agreement regarding the onset of motion and they could simulate the different sliding regimes. However,

their results lead them to believe that viscous forces were under-predicted in some cases for which they

have not obtained good quantitative agreement for sliding speeds.

A level-set method is developed herein for the simulation of three-dimensional flows with moving contact

lines, coupled with hydrodynamic theory, without having to resolve the flow down to the slip length,

for regimes of contact-line motion that are either primarily viscous or with inertial effects in part of

the contact-line region. Part of this work includes the removal of numerical problems that may arise

near the wall boundary when solving the Hamilton-Jacobi equation in the redistance step. Della Rocca

and Blanquart (2014) proposed a modified reinitialization equation for the first layer of cells above the

substrate but they have not used a macroscale model. Another aspect concerns the theory of Cox (1986,

1998), that was developed in two dimensions, and its use in three dimensions remains uncertain. This

work presents a numerical tool to investigate the possible use of macroscale models in three dimensions.

Finally, this work is pioneering regarding three-dimensional flows with contact angle hysteresis in the

level-set framework.

The problem is formulated in Section 4.2, wherein the macroscale models for both viscous and inertial

regimes and the computational methodology to make use of these are summarized. The numerical methods
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for implementation of such models in the level-set framework is presented in Section 4.3. The code is

validated against axisymmetric droplet spreading in both viscous and inertial regimes in Section 4.4,

tested against the experiment of Ding et al. (2012) for droplet spreading in inertial regime, and against

experiments of Podgorski et al. (2001) and Le Grand et al. (2005) for sliding droplets in viscous regime.

4.2 Problem formulation

In this section the overall formulation of the two-phase flow method without contact lines is first recalled.

The contact-line model is presented subsequently: first for cases wherein contact-line motion is rather

slow such that no inertial effects arise in the contact-line region; in the final subsection, the contact-line

model for cases wherein inertial effects do enter the contact-line region is formulated.

4.2.1 Formulation for the bulk two-phase flow

Consider a three-dimensional flow of two fluids governed by the incompressible Navier-Stokes equations

(4.1) and (4.2), without phase change. A single set of equations is used in dimensionless form: the

momentum equation

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ 1

Re
∇ ·
(

µ
(

∇u+ (∇u)T
)

)

+
1

ReCa
κ∇Hξ +

Bo

ReCa
ρĝ, (4.1)

and the conservation of mass

∇ · u = 0. (4.2)

These equations are accompanied by an interface-capturing technique to evolve interfaces, for which a

level-set method is used, the presentation of which is deferred to Section 4.3.1. The dimensionless local

density and viscosity are not constant but follow from the level-set function (see Section 4.3.1). The

boundary conditions of each fluid at an interface with the other fluid, namely continuity of velocity, a

discontinuity in normal stress due to surface tension, and continuity of tangential stress, can be shown to

be satisfied by this formulation (Tryggvason et al., 2011). In particular, the jump in normal stress leads to

a singularity in the first two terms of the right-hand side of (4.1) that is compensated by the third term,

where κ is the interface curvature and Hξ is the local volume fraction of one of the two fluids which is

also inferred from the interface-capturing method. Precise definitions of these quantities derived from the

level-set function are given in Section 4.3.1. In (4.1), the Reynolds number Re = ρ0LU/µ0 compares

inertial to viscous effects, the capillary number Ca = µ0U/σ is the ratio of viscous to capillary forces, the

Bond number Bo = ρ0gL
2/σ compares gravity to capillary forces and ĝ denotes the unit gravity vector.

The governing equations (4.1) and (4.2) are resolved in a rectangular domain. The bottom boundary is a

planar solid boundary that is intersected by interfaces, the intersection lines being the contact lines. The

contact-line models used and corresponding boundary conditions on the solid substrate are presented in

the next subsections. The top boundary is also a planar solid boundary. The computational domain has

periodic boundaries in the other two directions.

4.2.2 Theory for contact-line motion dominated by viscous/capillary effects

Cases wherein the Reynolds number based on the contact-line speed ReCL = LUCL/ν is small are

considered first, regardless of which viscosity of the two fluids is used. The capillary number CaCL =
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Wall

Flow
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θw

θd

θap

Fluid 1

Fluid 2

Inner region
O(λL)

Intermediate region
O(ǫL)

Outer region
O(L)

Figure 4.1: Angles and length scales involved in asymptotic theories of flows with moving contact lines.
The curved solid line represents the interface.

µUCL/σ is assumed to be small also (again, for both viscosities), but not necessarily excessively so, as

CaCL|lnλ| may be O(1). Thus, capillary forces dominate viscous forces which dominate inertial forces.

Gravity is assumed to be small compared to capillary forces. The theory summarized below has been

demonstrated experimentally to be valid up to CaCL ≤ 0.1 (Chen et al., 1995; Lavi and Marmur, 2004).

Classical analyses consider flows near contact lines at different length scales (e.g., Cox (1986)), see

Figure 4.1. In an ‘outer problem’, the flow is analyzed at a typical linear dimension L that corresponds to

that of the overall flow (such as a radius of a spreading droplet). At this scale, the flow is subject to the

boundary conditions without contact lines (such as a no-slip condition). The theoretical problem is to

formulate the angle that the interface makes with the substrate, the ‘apparent angle’ θap. This involves

matching to the solution of the ‘inner problem’, which is the flow considered at the small scale introduced

by the contact-line model, denoted herein by λL. Here, λ shall be referred to as the dimensionless slip

length, although the analysis of Cox (1986) is not necessarily restricted to this contact-line model. At this

small scale, the actual contact angle θw applies at the contact line, which is often assumed equal to the

static contact angle (Huh and Scriven, 1971). Some experimental results suggest that θw may depend on

the contact-line speed (Ramé et al., 2004), for instance, a dependency on a capillary number based on the

contact-line speed (Sheng and Zhou, 1992; Sui and Spelt, 2013b).

Viewed from the contact line, the solution of the inner problem applies up to a distance of O(λL) (the

inner region), and that of the outer problem beyond a distance of O(L) (the outer region). The matching

between these regions is at an intermediate scale, ǫ = O(L/| lnλ|), unless the contact-line speed is very

small (e.g., Cox (1986)). In the original analyses, this is treated as a separate, ‘intermediate region’; more

recently this has been found to be an overlap region by Sibley et al. (2015) who identified this overlap by

considering higher orders in CaCL for the interface slope solutions in the inner and outer regions. The

predicted shape of the intermediate region has been confirmed experimentally by Ngan and Dussan V.

(1989), Dussan V. et al. (1991), Shen and Ruth (1998), Ramé et al. (2004).

The interface shape predicted in the overlap (or intermediate) region is that of key interest here, as the
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outer region is resolved numerically, whereas the inner region is only resolved in DNS which is beyond

the reach of computations for realistic systems. The asymptotic relationship between the local dynamic

angle θd located at a distance d from the contact line in the overlap region and the actual contact angle θw
is

g(θd, rµ) = g(θw, rµ) + CaCL ln

(

d

λ

)

+ CaCLQi +O(Ca2CL), (4.3)

with

g(θ, rµ) =

θ
∫

0

(x2 − sin2 x)(π − x+ sinx cosx)rµ + [(π − x)2 − sin2 x](x− sinx cosx)

2 sinx[(x2 − sin2 x)r2µ + 2(x(π − x) + sin2 x)rµ + (π − x)2 − sin2 x]
. (4.4)

The interface slope at a distance d from the contact line is therefore obtained from the implicit relation

(4.3). The coefficient Qi therein is often left out for simplicity if the slip length is not extremely small, but

it may otherwise have an important quantitative effect (Sui and Spelt, 2013a). In principle, it depends

on the viscosity ratio rµ = µ2/µ1, the contact angle θw in the inner region, the slip law that is used, and

the flow geometry. For droplet spreading and dewetting, Qi − 1 was tabulated by Hocking and Rivers

(1982) for rµ = 0, corresponding to Qi(α) in their Table 1. The determination of Qi for other problems

may necessitate comparison with experimental or DNS results, and/or a sensitivity test. An example of an

application wherein this arises is presented in Section 4.4.3.

4.2.3 Theory for contact-line motion with inertial effects

Inertial effects first enter the contact-line region depicted in Figure 4.1 from the larger scales, upsetting the

analysis outlined in the previous subsection, although not to the extreme extent that inertia would enter at

the very small scale of the inner problem. Thus the case with 1 ≪ ReCL ≪ λ−1 is considered, following

one of the cases analyzed by Cox (1998). Capillary forces still dominate viscous forces: CaCL ≪ 1. It is

assumed that the boundary layer is laminar and no flow separation occurs and that the flow is quasi-steady.

The overlap/intermediate region discussed in the previous subsection is now divided into a viscous

subregion and an inviscid subregion. These match in a transitional zone located at a distance d∗ from the

contact line. Cox (1998) defined the corresponding Reynolds number Re∗ such that

d∗ =
Re∗

Re
. (4.5)

The interface slope θd in the viscous subregion at a distance d from the contact line is still obtained

from the viscous regime equation of Cox (1986), i.e., (4.3). Cox (1998) included a constant O(1) in the

argument of the logarithm (which could be absorbed in Qi anyway), but reasonable results were obtained

by Sui and Spelt (2013a) when setting this to unity, as it shall be done herein. Cox (1998) suggested

that Re∗ = O(1) and Sui and Spelt (2013a) found good agreement with a benchmark test by setting

Re∗ = 0.37 for rapid droplet spreading. The interface slope θ∗ in the matching transitional zone is

obtained from the viscous regime equation:

g(θ∗, rµ) = g(θw, rµ) + CaCL ln

(

d∗

λ

)

+ CaCLQi +O(Ca2CL). (4.6)

The interface slope θd in the inviscid subregion at a distance d > d∗ from the contact line reads:

giv(θd)− giv(θ
∗) = CaCL

(

hiv(θd)− hiv(θ
∗) + ln

(

d

d∗

)

)

+O(Ca2CL), (4.7)

64



4.3. NUMERICAL METHOD

with

hiv(θ) = −2 ln
(

sin
θ

2

)

+ 2

θ
∫

π

x

1− cosx
dx (4.8)

and

giv(θ) = 1.53161(θ − sin θ). (4.9)

4.2.4 Outline of use of the above theories in large-scale computations

The computational method developed in the subsequent section aims to resolve numerically contact-

line regions down to an intermediate scale (fully resolving at the inner scale (DNS) being too costly

computationally). As set out in the next section, this requires from the theories summarized above the

angle between the interface and the substrate at a distance from the contact line that corresponds to the

smallest resolved scale (in the present approach, the first grid point at which the level-set function is

adjacent to the substrate).

In the present approach, at any time, the resolved angle between interface and substrate θd and the

corresponding distance from the contact line d are determined from the numerical simulation (i.e., the

level-set function). The contact-line speed is obtained from substitution of these in the appropriate

theoretical expression: first use (4.3), then calculate d∗ from (4.5). If d < d∗, the first grid point is in the

viscous subregion and the boundary angle θd is that obtained with (4.3). If d > d∗, then the interface

slope θ∗ in the matching transitional zone needs to be calculated from (4.6) and the boundary angle θd in

the inviscid subregion is calculated from (4.7)–(4.9).

The approach outlined here supposes that prescription of the interface slope somewhere in an over-

lap/intermediate region suffices for the determination of the flow on a larger scale. Some evidence in

support of this hypothesis is available. This is the approach underlying the asymptotic analyses, wherein

the interface shape is matched between the various regions, and is a point discussed further by Kafka

and Dussan V. (1979), who argue that the macroscopic flow is affected by inner dynamics through the

interface slope in the overlap region. Thus, consistent with the analyses, the flow is resolved down to a

point in the intermediate length scale by modeling effects of the inner region on the intermediate region

from (4.3).

For a slip length O(1 nm), there is practically no change in the hydrodynamics of the outer region if the

dynamic angle θd is being imposed at the distance from the contact line between O(10 nm) and O(10 µm)

(Kafka and Dussan V., 1979). Ngan and Dussan V. (1989) located the intermediate region at a distance

from the contact line O(10 µm). Further support for this approach is the good agreement obtained in prior

work for axisymmetric flows Sui and Spelt (2013b). Beyond these arguments, the present work puts the

above hypothesis to the test for three-dimensional flows.

4.3 Numerical method

4.3.1 The level-set method

The method is briefly recalled here; the reader is referred to the previous chapter for further details.

The level-set method (e.g., Sussman et al. (1994)) allows simulating two-phase flows with a one-fluid

model. It consists in locating the interface with a signed distance function that is continuous. The level-set
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function is denoted by φ in this work. Let Ω+ (resp. Ω−) be the phase where the level-set function is

positive (resp. negative). Any cell that is part of the domain Ω = Ω+ ∪ Ω− is denoted by Ci,j,k. The

interface, located at the zero of the level-set function, moves with the fluid, which suggests that the

evolution of the level-set function is given by the following advection equation:

∂φ

∂t
+ u · ∇φ = 0. (4.10)

A priori, the velocity field changes in the direction perpendicular to the interface, so the solution of this

transport equation does generally not remain a distance function; for the level-set function, (4.10) only

applies at interfaces. Using this transport equation in spite of this, then necessitates enforcing the condition

|∇φ| = 1 so that the level-set function is still a distance function. The Hamilton-Jacobi equation can be

solved iteratively to maintain a distance function:

∂ψ

∂τ
+ sign(ψ)(|∇ψ| − 1) = 0. (4.11)

with an initialization field ψ0 = φ̃ that is the scalar obtained from the advection equation (4.10). The

level-set method suffers from mass conservation issues in some cases because of the redistance step that

is usually carried out with the Hamilton-Jacobi equation (4.11). Several methods (Russo and Smereka,

2000; Sussman and Fatemi, 1999; Hartmann et al., 2010; Min and Gibou, 2007; du Chéné et al., 2008)

have been developed in order to perform the redistancing by minimizing the displacement of the interface,

hence improving mass conservation. Further details on the resolution of the Hamilton-Jacobi equation in

general can be found in the previous chapter, and for flows with contact lines in the next subsection.

After the redistance step, the incompressible Navier-Stokes equations for Newtonian fluids without phase

change are resolved. The one-fluid formulation of the Navier-Stokes equations given by (4.1) and (4.2) is

used. The smoothed Heaviside function Hξ is used to approximate the continuity of fluid properties at the

interface by smoothing them over a length often taken as ξ = 1.5h, where h is the uniform isotropic grid

spacing (Sussman et al., 1994). The smoothed Heaviside function reads:

Hξ(φ) =















1 if φ > ξ,
1
2

(

1 + φ
ξ + 1

π sin
(πφ

ξ

)

)

if |φ| ≤ ξ,

0 if φ < −ξ,
(4.12)

Fluid properties are then calculated as:

ρ = Hξ + rρ(1−Hξ),

µ = Hξ + rµ(1−Hξ),
(4.13)

where rρ and rµ denote density and viscosity ratios, respectively. The curvature κ is calculated accurately

with the level-set function,

κ = −∇ ·
( ∇φ
|∇φ|

)

. (4.14)

and is herein limited to 1/h.

The flow solver is based on the Two-Phase Level-Set (TPLS) freeware of Ó Náraigh et al. (2014). The

advection equation (4.10) is treated with the optimal fifth-order weighted essentially non-oscillatory

(WENO5) reconstruction of Jiang and Shu (1996) in space and a third-order Adams-Bashforth method in

time (Butcher, 2000). The Navier-Stokes equations (4.1) and (4.2) are solved with a standard projection
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method, wherein diffusive terms are treated with a Crank-Nicolson scheme and other terms are calculated

with a third-order Adams-Bashforth method. Further details and comparisons of the computational method

against analysis for other two-phase flow problems can be found in the work of Ó Náraigh et al. (2014)

and in the previous chapter.

4.3.2 Contact angle implementation and redistancing

In this section it is proposed to use the level-set function for implementing the macroscale model, that is

to say imposing a contact-line velocity that is consistent with the interface slope predicted by asymptotic

theories. For the redistance step, the Hamilton-Jacobi equation (4.11) is discretized using an upwinding

procedure so that information propagates away from the interface. Let Pk be the set of the cells located at

z = (k− 1/2)∆z (Figure 4.2). Boundary conditions of the level-set function next to the wall are imposed

by using a set of ghost cells P0, the wall being equidistant from planes P0 and P1. If the level-set function

at ghost cells is updated at each pseudo-time step of the redistance step by extrapolation, some information

goes to the substrate. In Figure 4.2, information should always go to the wall boundary for the acute

side Ω+ and should always go away from the wall boundary for the obtuse side Ω−. Della Rocca and

Blanquart (2014) emphasized the fact that extrapolation of the level-set function to the ghost cells leads to

a numerical problem in the obtuse side. Indeed, in the obtuse side, some information goes to the wall

boundary when the level-set function is extrapolated to the ghost cells Ci,j,k ∈ P0 and some goes away

from the wall at the next pseudo-time step of the redistance step as information is supposed to come from

the interface according to the upwinding procedure. As a consequence, the level-set function eventually

goes to zero next to the wall after a few time steps. In this case, the obtuse side is known as the blind

spot. The main issue here is to populate the blind spot (Della Rocca and Blanquart, 2014), especially for

three-dimensional flows.

In this work, a new algorithm is proposed to populate the blind spot avoiding the numerical problem

mentioned above. As the contact line is part of the flow, the level-set function at ghost cells Ci,j,k ∈ P0

should be advected by the flow rather than be obtained by extrapolation, the latter leading to a loss of

information. The following algorithm is thus implemented:

Step 1

At all cells but the ghost cells, the level-set function is advected by using the advection equation (4.10).

At ghost cells, it is advected by using another advection equation, wherein the macroscale model is used:

∂φ

∂t
+ UCLn̂CL · ∇φ = 0. (4.15)

The direction of motion n̂CL is directly obtained from the level-set function,

n̂CL = − ∂xφêx + ∂yφêy
√

(∂xφ)2 + (∂yφ)2
, (4.16)

and the contact line speed is calculated from the macroscale model, knowing the interface slope θ at cells

Ci,j,k ∈ P1 from the level-set function,

cos θ = − ∂zφ

|∇φ| . (4.17)
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Wall
Blind spot

Contact line

θ

Ω− (φ < 0) Ω+ (φ > 0)

Interface
(φ = 0)

P0

P1

P2

P3

Figure 4.2: Illustration of the blind spot and definition of designations. Here, the obtuse side corresponds
to Ω− and the acute side corresponds to Ω+. The blind spot is delimited by the wall and the dashed line.
The ghost plane P0 is located at z = −∆z/2. The dotted cells that are within a distance of one grid
spacing from the zero level-set are part of the set Γ.

Rather than using finite-difference centered schemes, though suitable here, it is preferred to approximate

the gradient of the level-set function in (4.16) – (4.17) by computing the level-set function at cell corners,

similarly to the computation of the mean curvature with the cell-based discrete divergence operator

(Sussman et al., 1999). After that, the local slope θ is extended off the interface to all cells Ci,j,k ∈ P1 by

using the following equation:
∂θ

∂τ
+ sign(φ)

∇φ
|∇φ| · ∇θ = 0. (4.18)

In (4.18), ∇θ is computed by first-order upwinding and the level-set normal is calculated with a second-

order centered scheme. The pseudo time step ∆τ is there set to 0.3h. Extending the local slope off the

interface has the key role of allowing for the ghost cells Ci,j,k ∈ P0 to be given the value of the local slope

at the interface. Such an extension method has notably been used in ghost-fluid methods (Fedkiw et al.,

1999). The interface slope θ is then used to provide the contact line speed from the macroscale model by

applying the method outlined in Section 4.2.4, which makes use of Equations (4.3)–(4.4) in the viscous

regime or Equations (4.3)–(4.9) in the inertial regime, with a distance to the contact line d approximated

as h
/(

2 sin
(

(θd + θw)/2
))

. The level-set function can now be advected by using (4.15). The next step

consists in reinitializing the level-set function before it is used by the Navier-Stokes solver.

Remark

The contact-line speed UCL in (4.15) is determined numerically by the procedure outlined above. This

introduces small discretization error, so it may be necessary in some cases to apply some filtering of

the contact line velocity components. Ideal low-pass filtering is used for that purpose only for three-

dimensional sliding drops. For the contact line velocity component fi,j , the value obtained after low-pass
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filtering reads

f̄i,j =
1

9

1
∑

l=−1

1
∑

m=−1

fi+l,j+m. (4.19)

Step 2

The level-set function at ghost cells undergoes a special numerical treatment during the reinitialization

step. First, the set of cells Γ that are within a distance of one grid spacing from the zero level-set is

determined (Figure 4.2):

Γ = {Ci,j,k ∈ Ω : min
(I,J,K)∈υi,j,k

(φi,j,kφI,J,K) < 0}, (4.20)

with

υi,j,k = {(i− 1, j, k), (i+ 1, j, k), (i, j − 1, k), (i, j + 1, k), (i, j, k − 1), (i, j, k + 1)}. (4.21)

The level-set function at ghost cells Ci,j,k ∈ P0 ∩ Γ is pinned during the redistance step. Other ghost

cells Ci,j,k ∈ P0\(P0 ∩ Γ) are given a linearly extrapolated value. This way, the pinned ghost cells act

as a boundary condition for the level-set function. At all other cells Ci,j,k ∈ Ω\P0 the level-set function

is updated with the algorithm of Sussman and Fatemi (1999) with an initialization field ψ0 equal to

the advected field obtained from (4.10). That authors proposed adding a correction term to the original

reinitialization equation (4.11) in order to preserve the interface shape. Let ψm be the updated value at

pseudo-time τm = m∆τ , where ∆τ is the pseudo-time step. In a semi-discretized form, the modified

reinitialization equation reads:

ψm+1 − ψm

∆τ
+ sign(ψ)(|Gψm| − 1) = λδh(ψ

0)|Gψ0|, (4.22)

where Gψ is a numerical approximation of ∇ψ, δh = H ′
h is the smoothed delta function, with Hh defined

in Equation (4.12), and λ is a correction factor that will be detailed below. (4.22) is here solved iteratively

with a predictor-corrector scheme. For all cells but the ghost cells, ψm+1 is first predicted from the

original reinitialization equation,

ψ̃m+1
i,j,k = ψm

i,j,k −∆τ
(

2Hh(ψ
0
i,j,k)− 1

)(

|Gψm
i,j,k| − 1

)

, (4.23)

and then corrected to preserve the interface shape,

ψm+1
i,j,k = ψ̃m+1

i,j,k +∆τλi,j,kδh(ψ
0
i,j,k)|Gψ0

i,j,k|, (4.24)

with a correction factor that reads

λi,j,k = −
∫

Ci,j,k
δh(ψ

0)(ψ̃m+1 − ψ0)/∆τ
∫

Ci,j,k
δ2h(ψ

0)|Gψ0| . (4.25)

Integration over a cell Ci,j,k can be done with a 27-point stencil:

∫

Ωi,j,k

f =
h3

78

(

52fi,j,k +
1
∑

l=−1

1
∑

m=−1

1
∑

n=−1

αl,m,nfi+l,j+m,k+n

)

, (4.26)

where αl,m,n = 0 if l = m = n = 0, αl,m,n = 1 otherwise. In the prediction equation (4.23), temporal

discretization is done with a total-variation-diminishing second-order Runge-Kutta method (Shu and

Osher, 1988) and |Gψm
i,j,k| is calculated with a WENO5 scheme of Jiang and Peng (2000). |Gψ0

i,j,k| in

the correction equation (4.24) is computed by first-order upwinding and Godunov method.
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Remark

Pinning the level-set function at ghost cells Ci,j,k ∈ P0 ∩ Γ during the redistance step is not sufficient to

avoid the numerical problem related to the blind spot mentioned above. From experience, it is possible to

avoid this by setting divided differences of the WENO5 scheme to zero whenever they are supposed to be

calculated using values of the level-set function that have been extrapolated to the ghost cells. That way,

after extrapolation to the ghost cells, information is enforced not to go back up in the blind spot and the

numerical problem does not prevail anymore.

4.4 Results and discussion

The 3D code is tested against two axisymmetric cases of droplet spreading: first in the viscous regime,

then in the inertial regime. Finally, three-dimensionnal simulations of sliding droplets in viscous regime

with contact angle hysteresis are performed.

4.4.1 Axisymmetric droplet spreading in viscous regime

The algorithm is first validated against DNS results of Sui and Spelt (2013a). Those authors simulated

axisymmetric droplet spreading in the viscous regime. The dynamic angle θd is obtained herein from (4.3)

with θw = π/6, Qi = −0.7, λ = 10−4, rµ = 0.1, rρ = 0.1. For axisymmetric droplet spreading in the

viscous regime, the parameter Qi in (4.3) is in fact known for small viscosity ratio rµ, from the theoretical

analysis of Hocking and Rivers (1982). Those authors tabulated values of Qi − 1, denoted by Qi(α) in

their Table 1, hence the value herein chosen for the parameter Qi. In (4.1), the Reynolds number Re and

the Ohnesorge number Oh =
√

Ca/Re are set to 5 and 0.1 respectively. Velocities are scaled by the

initial downward velocity and lengths are normalized by the droplet diameter 2R. The initial state is a

spherical cap with a contact angle of π/3. The time is normalized by the viscous time ρR2/µ. Simulations

are performed on three uniform grids, h ∈ {1/64, 1/128, 1/256}, with ∆t/h fixed, set to 256×5.0 ·10−6

here. In Figure 4.3, results are compared against DNS (Sui and Spelt, 2013a) and results of macroscale

simulations that Sui and Spelt (2013b) performed with an axisymmetric code. Results appear to converge

for both the drop base radius and the contact line speed. The contact line speed compares very well with

the DNS results as well. Note that Sui and Spelt (2013b) showed grid convergence could not be achieved

for the drop base radius as a function of time when considering a constant contact angle equal to the static

angle for the entire simulation, and spreading would be over-estimated there. This test finally shows that

contact line dynamics affects wetting at the macroscale, and that through the higher-order term CaCLQi

of (4.3). Indeed, Sui and Spelt (2013b) showed spreading would be under-estimated without that term.

4.4.2 Axisymmetric droplet spreading in inertial regime

Ding et al. (2012) experimentally studied rapid spreading of water drops. Air was the surrounding

gas. Authors identified a regime for droplet ejection, referred to as second-stage pinch-off. The flow

is qualitatively described in the next paragraph. The dynamic angle θd is here obtained from (4.3) or

(4.7) with θw = 23°, Qi = −0.99, Re∗ = 0.37, rµ = 0.05, rρ = 0.001. Sui and Spelt (2013b)

determined a slip length of 10−16 m by fitting the experimental results to the inertial theory of Cox

(1998). They showed that using such an unrealistic slip length and a constant wall angle θw allowed
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Figure 4.3: Drop base radius and contact line speed as a function of time for viscous spreading.

getting the same results as with a realistic slip length 10−9 m and a dynamic wall angle. A slip length of

10−16 m is used in this work. Sui and Spelt (2013b) performed their simulations with a Weber number

We = ReCa equal to 0.033 and Oh = 0.006 based on an initial downward velocity 0.079 m.s−1 and

an initial drop radius 3.85 · 10−4 m. Based on the actual initial drop radius 3.055 · 10−4 m, We and

Oh in (4.1) are here set to 0.027 and 0.0067, respectively. The smooth width is set to 2.5h to ensure

convergence of the pressure solver. The initial level-set function is a spherical droplet that touches the

wall φ(x, y, z) = R−
(

x2 + y2 +
(

z −R
√

1− 1/16
)2)1/2

. The grid spacing, normalized by the drop

radius, is h = 1/90. The time step, made dimensionless by the inertial-capillary time
√

ρR3/σ, is set to

1.25 · 10−5.

Qualitative results presented in Figure 4.4 compare very well with the experiment of Ding et al. (2012) and

numerical results of Sui and Spelt (2013b). When the water drop initially hits the solid substrate (Figure

4.4a), the interface is strongly curved next to the contact line as the contact angle at the wall is equal to θw
(Figure 4.4b). As a consequence, a train of capillary waves travels from the contact line (Figure 4.4c) up

to the top of the drop (Figure 4.4d) and then travels back down to the contact line (Figures 4.4e – 4.4g). A

pinching neck forms (Figure 4.4h) but there is no droplet pinch-off yet, but rather the neck re-expands

(Figure 4.4i): a capillary wave starts traveling from the re-expanding neck (Figure 4.4j) to the contact

line, yielding to the formation of another pinching neck (Figure 4.4k), a smaller one, that further leads to

droplet ejection (Figure 4.4l). As in the experiment, a second-stage droplet pinch-off is observed. Sui and

Spelt (2013b) showed that the use of a constant contact angle equal to θw lead to a first-stage pinch-off. In

that case there would be ejection of a droplet from the first pinching neck.

Figure 4.5 shows very good quantitative agreement with experimental and numerical results of Ding

et al. (2012) and Sui and Spelt (2013b) respectively. The train of capillary waves reaches the contact

line around t = 1. The other capillary wave coming from the re-expanding neck reaches the contact line

after t = 2. Sui and Spelt (2013b) mentioned that the first grid cell next to the wall was in the inviscid

subregion for velocities higher than 1.3 with parameters (h,We,Oh) = (1/100, 0.033, 0.006). The

algorithm implemented here allows getting the same results. However, for the parameters (h,We,Oh) =

(1/90, 0.027, 0.0067) used here, the first grid cell next to the wall is in the inviscid subregion for velocities
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(a) t = 0 (b) t = 0.075 (c) t = 0.2

(d) t = 0.6 (e) t = 0.725 (f) t = 0.85

(g) t = 1.225 (h) t = 1.825 (i) t = 1.925

(j) t = 2 (k) t = 2.075 (l) t = 2.15

Figure 4.4: Rapid spreading of a water drop leading to a second-stage droplet pinch-off.
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Figure 4.5: Capillary number based on the contact line speed as a function of time for rapid spreading.

higher than 1.47, corresponding to capillary numbers higher than 0.00162. This test case shows that

contact line dynamics qualitatively affects the flow at the macroscale and it has to be taken into account to

simulate macroscopic flows with moving contact lines.

4.4.3 Sliding drop in viscous regime

Podgorski et al. (2001) and then Le Grand et al. (2005) experimentally studied viscous drops sliding

down an inclined plane. They observed different regimes referred to as oval, corner, cusp and pearling

regimes. For small inclinations angles, oval drops are observed. When the inclination angle is increased,

the curvature locally increases at the back of the drop, leading to cornered shapes, and further to cusp

shapes. By increasing the inclination angle further, the drop stretches and a tail forms, that leads to a

capillary instability resulting in droplet pinch-off, or pearling. The experimental results were found to be

in good quantitative agreement with the viscous theory of Cox (1986).

The experiments of Le Grand et al. (2005) were simulated by Maglio and Legendre (2014), who performed

macroscale simulations by using the theory of Cox (1986) with a volume-of-fluid method. They obtained

good qualitative and quantitative agreement for the most viscous fluids. However, the sliding speeds they

obtained in their simulations for the fluid 47V10 were higher than in the experiment. They suggested this

discrepancy to come from the fact that only the large-scale viscous dissipation was taken into account

by numerically resolving the flow only down to the intermediate region, and not that of the inner region.

Hitherto, such pearling drops have not been obtained in the level-set framework. The numerical results

presented here demonstrates the efficiency of the computational method to account for contact angle

hysteresis in three dimensions. Note that the asymptotic theory of Cox (1986) was developed in two

dimensions, and its use in three dimensions for strongly curved contact lines remains uncertain, which

forms a further motivation of the present case study.

The first case simulated here is from the experiment of Le Grand et al. (2005), with the fluid 47V10.

The dynamic angle θd is obtained from (4.3) with θw,A = 50.5°, θw,R = 45.5°, a droplet volume

V = 6 mm3, a slip length λV 1/3 = 10−9 m (consistent with the experiment), Qi = 0, rµ = 0.001 and

rρ = 0.001. Initially, the drop is a spherical cap with a contact angle equal to θw,A − 0.5°. For given fluid
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(a) Top view.

(b) Side view.

Figure 4.6: Qualitative results for the oval sliding drop; (Bo sinα, t) = (0.65, 1.5). Flow is from left to
right.

properties, the flow is governed by a single parameter that is the inclination angle α. Let Bo be the Bond

number Bo = ρV 2/3g/σ. Bo sinα is here set to 0.65. The time is normalized by the viscous time scale

ρV 2/3/µ. Three grids were used, with grid spacing h ∈ {1/48, 1/72, 1/108} and ∆t/h fixed, here equal

to 108× 2.5 · 10−6.

The oval regime was observed (see Figure 4.6), which is consistent with the experiment. Time signals of

droplet height, base length, base width and speed are plotted in Figure 4.7. Results are nearly independent

of the grid spacing and very close to the experimental data, with geometrical and speed data within 10%

from the experiment.

For the same initial conditions, the parameter Bo sinα is now set to 0.90, for which Le Grand et al.

(2005) observed the corner regime. Simulations were done on two grids, h ∈ {1/48, 1/72}, and

∆t/h = 72 × 5 · 10−6. As in the experiment, the corner regime is obtained (Figure 4.8). In Figure

4.9, geometrical data and sliding speed are within 10% from experimental data. It can be noted that the

speed is now lower than in the experiment. This may be due to the fact that the macroscale model used

here was developed for vanishingly small Bond numbers, Bo≪ 1. In reality, the interface slope in the

intermediate region may have increased at the front and decreased at the tail of the drop compared to
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Figure 4.7: Quantitative results for the oval sliding drop; Bo sinα = 0.65.

the oval regime, yielding a higher sliding speed compared to the numerical results obtained using the

gravity-free macroscale model.

The case simulated next is from the experiment of Podgorski et al. (2001), with the fluid 47V10. The

dynamic angle θd is obtained from (4.3) with θw,A = 52°, θw,R = 42°, a droplet volume V = 8 mm3,

a slip length λV 1/3 = 10−8 m (consistent with the experiment), rµ = 0.001 and rρ = 0.001. Initially,

the drop is a spherical cap with a contact angle equal to θw,A − 0.5°. Bo sinα is here set to 1.69. The

time step is 5 · 10−6 and the grid spacing is h = 1/60. Mass loss was checked and the mean shift of the

interface, computed as the difference between the current volume and the initial volume divided by the

current interface area, was lower than one grid spacing at the time of second pinchoff.

Qualitatively, the simulation is in agreement with the experiment as a pearling drop is observed (Figure

4.10). Quantitatively, as shown in Figure 4.11, the sliding speed has a value within 15% from the

experimental speed. The lower values at time 2.275 and 3.05 in Figure 4.11 are direct consequences

of the first and second pinch-offs. Such differences with the experimental results were expected. First,

because of the point made above: at O(1) values of Bo, the contact-line region is expected to be affected

by gravity, which is still an open area. Using a macroscale model that accounts for gravity may improve

the accuracy of numerical predictions. Secondly, the (effective) slip length is a parameter that depends on

the coefficient Qi of the higher-order term in (4.3). That coefficient depends on the flow geometry and

is not known a priori for general flows. Sui and Spelt (2013a) showed that term may have to be taken

into account. Thirdly, the asymptotic theory of Cox (1986), developed for general two-dimensional flows,

although consistent with the axisymmetric hydrodynamic theory of Hocking and Rivers (1982), remains

valid in three dimensions only for small contact line curvature. Indeed, Snoeijer et al. (2005) showed that

the contact line curvature has a non-negligible effect on the flow, while the theory of Cox (1986) does not

account for this. In spite of these limitations, the theory does give satisfactory results for a realistic slip

length, and that without accounting for gravity, nor for higher-order terms (coefficient Qi).
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(a) Top view.

(b) Side view.

Figure 4.8: Qualitative results for the corner-regime drop; (Bo sinα, t) = (0.90, 2.0). Flow is from left
to right.
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Figure 4.9: Quantitative results for the corner-regime sliding drop; Bo sinα = 0.90.
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(a) Top view; t = 2.95.

(b) Top view; t = 3.00.

(c) Top view; t = 3.05.

(d) Side view; t = 3.05.

Figure 4.10: Qualitative results for the pearling drop; Bo sinα = 1.69. Flow is from left to right.
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Figure 4.11: Speed of the pearling drop against time. Bo sinα = 1.69. The dashed line is the experimental
speed at steady state.

4.5 Conclusion

A new level-set method has been developed to simulate three-dimensional macroscopic flows with moving

contact lines. Along with the asymptotic theory of Cox (1986, 1998) as macroscale model, the code

reproduces accurately axisymmetric droplet spreading in both viscous and inertial regimes for which

excellent qualitative and quantitative agreement have been obtained. The numerical method allows

simulating three-dimensional sliding drops with contact angle hysteresis, for which the code has again

showed good agreement with experimental results. This new method is seen as an efficient numerical

tool to investigate the use of asymptotic theories in three dimensions and to predict wetting in all kind

of processes. For flows with moving contact lines with significant effects of gravity, the results indicate

that further generic (analytical and/or DNS) work is needed. It is believed that the method can further be

used for the simulation of more complex flows such as liquid films with moving contact lines, and for

the extension of macroscale models to more complicated physical systems involving non-flat substrates,

Marangoni stresses (Sui and Spelt, 2015), etc...

To facilitate dissemination of this work in industrial applications, the macroscale model of Cox (1986,

1998) was implemented in a commercial volume-of-fluid code, and successfully tested against the

axisymmetric inertial spreading and the three-dimensional oval drop of Section 4.4.2 and Section 4.4.3,

respectively. Results are gathered in Appendix B.
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To characterize flows with moving contact lines such as those considered herein require data on advancing

angles for advancing contact lines, alongside data on receding angles for receding contact lines. The

first section presents contact angle measurements. Comparison with experimental results available in the

literature supports the experimental procedure. In the second section, liquid film thickness measurements

by Chromatic Confocal Imaging (CCI), used in the next chapter, are carried out and compared with the

analytical solution of a flat film down an inclined plane. Measurements are further validated for wavy

films by simultaneous measurements with another technique. Interface velocity measurements are also

validated for the flat film, and further tested for a wavy film.

Uncertainty analyses are presented in Appendix C.

5.1 Measurement of contact angle hysteresis with a Drop Shape

Analyser

5.1.1 Experimental apparatus

The KRUSS Drop Shape Analyzer 100 is used for contact angle measurement. The apparatus consists of

an optical system with camera and arm to deposit the droplet down on the substrate with a needle that has
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Liquid
θ θ

Needle

Flow

Figure 5.1: Advancing angle measurement technique. Liquid is added at very low flow rate. The advancing
angle is the mean angle over the period of contact line slow motion.

an outer diameter of 206± 0.5 µm. The resolution is about 210.0± 0.7 pix/mm. Advancing angles are

measured by adding some liquid to an initial droplet at a flow rate of the order of 1 µL/min (Figure 5.1).

As some liquid is added, the droplet grows with static contact lines; the angle increases until it reaches the

advancing angle and the contact lines start advancing slowly. Receding angles are measured by removing

some volume from the droplet (Figure 5.2). Receding contact angle measurements with this technique are

less accurate than advancing angle measurements, notably because of limits in spatial resolution here (in

the case of small receding angles) and evaporation at the contact line. Moreover, the volume is smaller in

that case and the presence of the needle may affect the curvature next to the contact line. Measurements

may be disrupted by:

• evaporation: the measurement time must be such that the evaporated volume is small compared to

the droplet volume, especially for receding angle measurements;

• temperature: that question comes in as the temperature is not controlled, and the air temperature

may be different from one measurement to another due to heating of the lamp. However, a change

in the contact angle with temperature is expected to be of the order of −0.1°.K−1 for the system

investigated here (Bernardin et al., 1997), hence the fact that the temperature is not controlled is not

problematic for reproducibility of measurements.

• gravity: for a droplet size of the order of the capillary length, Lc =
√

σ/ρg, the bigger the droplet,

the more flattened it becomes;

• meniscus effect: an apparent angle is measured here so if the droplet is too small, then the curvature

at the contact line may lead to erroneous measurements. The droplet must be big enough so that the

curvature next to the contact line is not affected by the needle.

80



5.1. MEASUREMENT OF CONTACT ANGLE HYSTERESIS WITH A DROP SHAPE ANALYSER

Liquid
θ

Needle
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Figure 5.2: Receding angle measurement technique. Liquid is withdrawn at moderate flow rate. The
receding angle corresponds to the angle for which motion starts.

Measurement are performed automatically with the software by locally fitting the interface shape next to

the contact line to a general equation of the form ax2 + by2 + cxy + dx+ ey + f = 0. The slope then

yields the apparent angle. As previously done by Lam et al. (2001) the advancing angle is here measured

as the apparent angle observed when advancing the contact line at small capillary number CaCL. Lam

et al. (2001) pointed out that receding angle measurements may have to be done at higher flow rates,

especially for volatile liquids. However, one may want to check that CaCL ≪ 1, so that the apparent

angle (the one that is measured) can be assumed equal to the wall angle, consistently with asymptotic

theory such as that of Cox (1986).

The droplet radius should be of the same order but less than the capillary length: in that case one may

think there is no gravity effect on the droplet and the droplet size is big enough so that the needle does not

affect the curvature next to the contact line. Meanwhile, spreading isotropicity must be checked at all

time.

5.1.2 Experimental procedure

5.1.2.1 Cleaning procedure

Stainless steel samples are first cleaned with acetone to remove dirt and then rinsed with distilled water

before being dried in an oven at 40°C. For measurements, tap water is preferred over distilled water

despite the presence of impurities because it is thought that the composition of distilled water would

quickly evolve when in contact with air, whereas tap water is already stable.

5.1.2.2 Advancing angle

Let Lc =
√

σ/ρg be the capillary length of a liquid, which is the length scale over which capillarity

competes with gravity. Some liquid is added progressively to the initial droplet. The droplet must be large
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enough for the distance d from the needle to the contact line to be larger than the capillary length, d > Lc.

Indeed, when the contact line is advancing, one does not want the curvature next to the contact line to be

modified by the presence of the needle. Besides, a flattened droplet is unwanted, and the condition for the

Bond number (d/Lc)
2 < 1 is required. In practice, the droplet has an initial volume V0 & 10 µL, so that

Bo . 1 and d . Lc.

5.1.2.3 Receding angle

Some liquid is removed progressively from the initial droplet that should be such that d > Lc when

motion occurs, so that the curvature next to the contact line is not modified by the presence of the needle.

In practice the droplet is initially such that d . Lc to make use of the maximum spatial resolution of the

DSA.

5.1.3 Results

Angles are first obtained for tap water on PMMA samples and on stainless steel samples, and compared

with the results of Dupont (2007). The mean advancing angles are obtained by time-averaging contact

angles measured for contact lines advancing at low capillary number CaCL. A typical evolution of the

contact angle against time is presented in Figure 5.3: the contact line is initially stationary, some liquid

is added to the droplet, the contact angle increases (Figure 5.3a) until it reaches the advancing value θA
and the contact line starts advancing (Figures 5.3b and 5.3c). From Figure 5.3c, the capillary number

CaCL is of the order of 10−7 and the difference of the wall angle with respect to the apparent angle can

be estimated using the theory of Cox (1986):

θw
θap

− 1 =
3CaCL

θ3w
lnλ, (5.1)

where λ is the dimensionless slip length. For the cases investigated, with a realistic slip length of 10−9

m, λ = 10−6 and 3CaCL lnλ = −4 · 10−6, so it can be considered that the wanted wall angle, if not

extremely small, is equal to the measured apparent angle.

For receding angle measurements, the contact line must move faster, especially for volatile liquids (Lam

et al., 2001). The receding angle θR is here identified as the angle when the contact line starts receding

(Figure 5.4).

Results presented in Table 5.1, that were obtained from 5 sets of measurements, compare well with prior

results, thus validating the experimental procedure. Results obtained with sodium hydroxide on stainless

steel are provided in Table 5.2: as expected, wetting is enhanced by adding sodium hydroxide to water

- with a molar concentration of 0.1 mol.L−1 in sodium hydroxide, the advancing angle is here about

10° lower than with tap water. Note that random uncertainties are higher for measurements on stainless

steel samples compared to PMMA samples, probably because of roughness effects. Although one may

point out that the number of samples for receding angle measurements (5 to 12 here) is relatively small

compared to the number of samples of advancing angle measurements (a few hundreds), yielding an

increase in random uncertainty compared to a normal distribution, the values of overall uncertainties may

not be expected to go below that obtained for advancing angle measurements. Further sets of receding

angle measurements should be carried out here in order to reduce random uncertainties though.
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Figure 5.3: Advancing contact angle measurement by adding-volume technique.
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Figure 5.4: Receding contact angle measurement by removing-volume technique. The dotted line indicates
the beginning of the receding motion, corresponding to a contact angle θR.
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PMMA Stainless steel

Dupont (2007)
θA (°) ∼ 85 ∼ 90
θR (°) ∼ 45 ∼ 20

Current work
θA (°) 82.9± 3.7 84.0± 8.2
θR (°) 52.0± 4.0 15.9± 10.5

Table 5.1: Experimental values of advancing and receding angles of water.

Water NaOH 0.1 mol/L

θA (°) 84.0± 8.2 73.1± 7.7

θR (°) 15.9± 10.5 14.5± 8.8

Table 5.2: Experimental values of advancing and receding angles on stainless steel.

5.2 Inclined plane

5.2.1 Introduction

The CCI technique is validated in the case of a liquid film down an inclined plane. The experimental

setup of Allouche (2014) is used for this purpose. The liquid flows down an inclined glass plane of

2000·464 mm2. The inclination can be varied up to 15° with an accuracy of 0.035° allowed by a motorized

stand. The liquid flows in a closed loop. It is fed from the downstream tank to the inlet via a volumetric

pump with helical lobes. The fluid temperature is directly measured in the tank using a thermocouple, with

an accuracy of 0.1°C. The volume flow rate is known from an electromagnetic flowmeter with an accuracy

of 0.5 mL.s−1. Flat-film and then wavy-film thicknesses are observed. For wavy films, a vibrating pot

introduces a disturbance with controlled frequency for generating surface waves at the inlet. Such a

forcing is of common practice in order to get rid of natural noise by generating a monochromatic surface

wave (Chang, 1994).

5.2.2 Liquid film thickness measurement by Chromatic Confocal Imaging

5.2.2.1 Flat film

In this subsection, flat films are observed and compared with the analytical (Nusselt) solution. The liquid

film thickness is measured with the CCI system (Figure 5.5). The Nusselt velocity profile of a flat film

down an inclined plane is

u(y) = 3UN
y

hN

(

1− y

2hN

)

, (5.2)

where hN is the film thickness, UN is the bulk velocity,

UN =
h2Ng sinβ

3ν
, (5.3)

and β denotes the inclination angle. The pressure field is

p(y) = p(hN ) + ρg(hN − y) cosβ. (5.4)
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Figure 5.5: Schematic of the experimental setup for measuring the thickness of a flat film.

The system is described by two dimensionless parameters: the Reynolds number Re = UNhN/ν, and the

Kapitza number Ka, often preferred to the Weber number We = ρhNU
2
N/σ in order to compare inertial

to capillary forces, for its dependence on fluid properties and inclination angle only:

Ka =
σ

ρν4/3(g sinβ)1/3
. (5.5)

Note the Kapitza number actually satisfies Ka = (3Re)2/3/(3Ca), with a capillary number Ca =

We/Re. The smaller the Kapitza number, the more stable the flow. Therefore, the more viscous the

fluid, the easier the observation of a flat film. Charogiannis et al. (2015) have studied liquid films

with water-glycerine mixtures. The mixture they used for observing flat films was 80%wt in glycerine,

yielding Kapitza numbers of 14 to 20 in their setup. Here, the inclination angle was set to 10°. For a

fluid temperature of 22.3°C, dynamic viscosity and density were determined to be 60.5 ± 1.4 cP and

1176.8±4.2 kg.m−3 respectively. With a surface tension of 62.0 N.m−1 (not measured), the corresponding

Kapitza number was 23. A flat film was then observed for five different Reynolds numbers. For each

Reynolds number, several sets of 1, 000 data points with a 200-Hz acquisition rate were carried out.

Parameters of the sets of measurements are provided in Table 5.3. Measurements are compared with the

analytical solution in Figure 5.6. Excellent agreement is achieved against the analytical solution, with

relative errors for the mean experimental values within 2 % from the analytical solution.
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µ (mPa.s) 60.5± 1.4

ρ (kg.m−3) 1176.8± 4.2

b (mm) 464± 1

β (°) 10.0± 0.1

Q (mL.s−1) 40± 2 80± 2 121± 2 159± 2 203± 2

Re 1.7± 5.5% 3.4± 3.4% 5.1± 2.9% 6.7± 2.7% 8.5± 2.5%

Table 5.3: Experimental parameters along with uncertainties due to systematic and random errors; the
uncertainty in the Reynolds number is determined from the flat-film analytical solution.

1 2 3 4 5 6 7 8 9
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m
)

Analytical solution

Experimental data

Figure 5.6: Comparison of experimental film thicknesses against the flat-film analytical solution. Uncer-
tainty bars account for the accuracy of the CCI system, the eventual tilt of the optical pen with respect to
the normal to the interface, uncertainties in the measurement of parameters of the system, and random
uncertainties in film thickness measurements.
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Figure 5.7: Comparison of PSD and CCI techniques on measuring the amplitude of a wave.

5.2.2.2 Wavy film

This subsection aims to compare both experimental techniques, that with the CCI system and that using the

Position Sensing Detector (PSD), on measuring the amplitude of a two-dimensional wave resulting from a

one-dimensional streamwise disturbance with frequency f = ω/(2π). The CCI system gives the height

h(x0, t) = s0(t) at the position x0 whereas the PSD indirectly gives the slope ∂xh(x1, t) = αs1(t)/H

at the position x1 = x0 +∆x (Figure 5.7), where α is the coefficient of proportionality of the PSD (in

m.V−1) determined in a prior calibration step and H is the distance of the sensor from the interface. It

is recalled here that the PSD returns the voltage corresponding to the abscissa of the Laser beam on the

sensor. The two time signals, that of the CCI and the voltage, can be written as:

si(t) = Ci cos(ωt− φi), i ∈ {0, 1}. (5.6)

Synchronous demodulation techniques are used for getting the phase difference of the two signals. These

can be recast as

si(t) = Ai cos(ωt) +Bi sin(ωt), i ∈ {0, 1}, (5.7)

with

Ai = Ci cos(φi), Bi = Ci sin(φi), i ∈ {0, 1}. (5.8)

Amplitudes are obtained by integrating time signals over n periods:

Ai =
2

nT

nT
∫

0

si(t) cos(ωt)dt, i ∈ {0, 1},

Bi =
2

nT

nT
∫

0

si(t) sin(ωt)dt, i ∈ {0, 1},

(5.9)
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aPSD (µm) 45.3± 2.8 50.3± 3.1 47.6± 3.0 50.0± 3.1 53.5± 3.3

aCCI (µm) 45.3± 1.3 45.4± 1.3 47.4± 1.4 46.5± 1.4 50.0± 1.4

λ (cm) 10.0± 0.1 11.1± 0.1 10.4± 0.1 10.8± 0.1 11.6± 0.1

Table 5.4: Comparison of measurement techniques on measuring a wavy-film amplitude; β = 15°,
Re = 8.0, ν = 5.61 · 10−5 m2.s−1.

which yields the phases,

φi = arctan

(

Bi

Ai

)

, i ∈ {0, 1}, (5.10)

hence the wavelength

λ = 2π
x1 − x0
φ1 − φ0

. (5.11)

Let X be the position of the Laser beam on the PSD and H the distance between the reflective interface

and the PSD. n is the refractive index of the fluid and the wave amplitude reads

C1 =
λ∆X

(n− 1)2πH
. (5.12)

The linear PSD has been calibrated to get the displacement ∆X from the voltage at the terminals of the

sensor. Five sets of measurements were carried out. Each run consisted in acquiring 5,000 samples at

a rate of 1 kHz. The forcing frequency was set to 6 Hz. The refractive index was not measured there

but was approximated to be 1.44± 0.01 after measuring viscosity, density, and comparing them to the

tabulated values gathered by the Glycerine Producers’ Association (1963). Table 5.4 gathers amplitudes

and wavelength obtained in each set. The uncertainty analysis is detailed in Appendix C. The uncertainty

in the measurement of aPSD is mainly due to uncertainties in the wavelength λ and the distance H from

the sensor to the interface. The relative error in the mean amplitude measured with the CCI system with

respect to the mean amplitude measured with the PSD sensor, is always within 10%, thus validating the

experimental procedure.

5.2.3 Interface velocity measurement of a liquid film

In this section well-known particle-imaging techniques (Particle Image Velocimetry and Particle Tracking

Velocimetry; see Adrian (1991) for a review) are tested for measuring the projection of the free-surface

velocity field in a plane normal to the optical axis of the digital camera used for the purpose. Measurements

are first performed for a flat film and compared to Nusselt analytical solution. A further test is considered

to check whether these techniques can be applied in the presence of waves.

5.2.3.1 Particle Image Velocimetry

In PIV, local comparisons of two successive images taken at times t0 and t1 = t0 +∆t are carried out

with cross-correlation techniques. The displacement (in pixels) of a pattern of seed particles corresponds

to the maximum of the correlation function. The cross-correlation operation consists in multiplying a

local pattern of a reference intensity field I0(x, y) with that of the intensity field I1(x+∆x, y +∆y) and

searching for the couple (∆x,∆y) that maximizes the correlation function. The velocity is then obtained

knowing the time difference between the two successive images, ∆t, and the scale factor, determined in a
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prior calibration step. The reader may refer to, for instance, the book of Raffel et al. (1998) for further

information on PIV fundamentals. Below, PIV measurements are performed by cross-correlating two

frames of single exposure, with a maximum acquisition rate of 15 Hz here. The software DaVis 8.2.2

from LaVision Inc. has been used for acquisition and post-processing. In PIV, the calibration procedure

introduces a systematic uncertainty. Another systematic uncertainty, that depends on the cross-correlation

algorithm that is used, is due to the accuracy in the determination of a displacement, which basically

ranges from 0.04 to 0.1 pixel (Stanislas et al., 2008).

5.2.3.2 Particle Tracking Velocimetry

While PIV is well suited for high image density (high concentration of particles, typically 10 particles

within an interrogation window), PTV is often preferred for low image density. There, Lagrangian tracking

is carried out: the velocity is obtained knowing the time difference ∆t and determining particle centers at

times t0 and t1 = t0 +∆t. The cross-correlation algorithm of Brevis et al. (2011) has been used here.

Particles are detected in the second frame and interrogation windows are chosen to coincide with particle

centers for subsequent cross-correlation operations. PTV is often used in addition to PIV aiming to reach

a better spatial resolution in the velocity field (Charogiannis et al., 2015). PTV algorithms can still be

used for relatively high image density, keeping in mind that such conditions may increase systematic

errors in the determination of particle centers due to particle overlapping (Guezennec et al., 1994). This is

one of the main drawbacks in PTV compared to PIV, even though efforts have been made to alleviate this

problem. As in PIV, the calibration procedure introduces a systematic uncertainty. A further uncertainty is

found in the determination of particle centers, the accuracy of which is typically of the order of 0.1 pixel

(Udrea et al., 1996).

5.2.3.3 Setup

The setup for observing flat or wavy liquid films is presented in Figure 5.8. The light source is a pulsed

Laser B-PIV 200-15 from Litron Lasers Ltd., with a wavelength of 532 nm and a maximum pulse

repetition rate of 15 Hz. In order to get a viewfield of 1 to 2 cm2, particles are illuminated with the Laser

beam spot, magnified to reach a diameter of a few centimeters. Frame pairs are recorded with an imager

sCMOS camera from LaVision Inc., with 6.5-µm pixels, a CCD chip size of 2560× 2160 pixels and a

16-bit digital output. Tracers are fluorescent red polyethylene microspheres from Cospheric LLC, with

a density of 0.995 g/cm3 and size ranging from 10 to 45 µm. Calibration was performed via a scaling

procedure using a ruler. The apparent pixel size was about 7.0± 0.5% µm/pix for all cases presented in

this subsection. A typical frame is shown in Figure 5.9.

5.2.3.4 Flat film

Flat films are observed first, and results are compared with the Nusselt solution. The temporal resolution

ranges from 450 to 1350 µs to yield displacements of about 12 pixels. The acquisition rate is set to 15 Hz.

Velocity vectors are obtained in 32× 32 interrogation windows. In PIV, a multi-pass processing procedure

is used, without window overlap. In the multi-pass processing, vectors are deleted when having a peak

ratio lower than 1.2, and when the difference to average is 1.5 times the local standard deviation. The
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Figure 5.8: Schematic of the experimental setup for measuring the interface velocity of a flat or a wavy
film.
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Figure 5.9: Typical frame of single exposure in PIV measurements.
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ν · 106 (m2.s−1) 53.1 · ±1.2 53.1± 1.2 53.1± 1.2 51.4± 3.1 53.5± 3.3

Q (mL.s−1) 40± 2 79± 2 120± 2 160± 2 201± 2

Re 1.7± 5.5% 3.3± 3.4% 5.0± 2.8% 6.7± 2.7% 8.4± 2.6%

Table 5.5: Experimental parameters along with uncertainties due to systematic and random errors; the
uncertainty in the Reynolds number is derived from the flat-film analytical solution.

mean displacement is here obtained from several image pairs by summing cross-correlation functions,

Rtot
i,j (x, y) =

1

N

N
∑

k=1

Rk
i,j(x, y), (5.13)

where N is the number of frame pairs and Rk
i,j is the cross-correlation function of an image pair with

intensity fields Ik0 and Ik1 at the pixel pi,j for the pair of frames k,

Rk
i,j(x, y) =

i+Nx
∑

l=i−Nx

j+Ny
∑

m=j−Ny

Ik0 (l,m)Ik1 (l + x,m+ y), (5.14)

with 2Nx + 1 and 2Ny + 1 the number of pixels within the interrogation window in x- and y- directions,

respectively.

In PTV, the cross-correlation algorithm of Brevis et al. (2011) has been used.

Experimental parameters for all sets of measurements are given in Table 5.5. Image pairs have been

post-processed by both PIV and PTV. Figure 5.10 presents the mean velocity field obtained for a Reynolds

numberRe = 1.7: the flow is uniform, with measured velocities ranging from 6.64 to 6.74 cm.s−1 for PIV

measurements and from 5.2 to 7.4 cm.s−1 for PTV measurements. Such large range of velocities in PTV

measurements may be due to some particle overlapping, as high density images have been post-processed

here. Figure 5.11 compares experimental velocities to the corresponding analytical solutions. Results

obtained by PIV and PTV are very close to the analytical solutions. The analytical solution for the highest

three Reynolds numbers is outside the uncertainty interval, whatever the technique, PIV or PTV. This is

thought to be a problem with focus: if the particles are not exactly in the focal plane but a little bit farther

from the camera, the displacements are underestimated. However, each experimental velocity is within

3% from the corresponding analytical solution, which sounds promising for subsequent tests to support

the reliability of these velocimetry techniques.

5.2.3.5 Wavy film

This subsection reports a feasibility test of free-surface velocity measurement with waves of small

amplitude. A disturbance is introduced at the inlet and the wavy film is observed a few tens of centimeters

farther downstream. Figure 5.12 presents the mean velocity fields obtained by PIV and PTV when the

acquisition system was synchronized with the forcing frequency, here set to 6 Hz. Part of the wave is

observed and, as expected, the interface velocity profile is one-dimensional. That test further supports the

reliability of these techniques.
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(a) Velocity field obtained by PIV.
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(b) Velocity field obtained by PTV.

Figure 5.10: Mean velocity field of a flat film obtained from a full sequence of image pairs. β = 10°,
Re = 1.7, ν = 5.31 · 10−5 m2.s−1.
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Figure 5.11: Comparison of experimental free-surface velocities against the flat-film analytical solution.
Uncertainty bars accounts for the scaling procedure, the accuracy of the cross-correlation algorithm,
uncertainties in the measurement of parameters of the system, and random uncertainties introduced in the
space-averaging procedure.

5.3 Conclusion

An experimental procedure has been presented and validated for measuring advancing and receding

contact angles, needed for characterisation of flows with moving contact lines. Results compare well with

experimental data from prior work. Liquid film thickness by CCI and interface velocity measurements by

PIV and PTV have also been undertaken. Good agreement with the analytical solution of a flat film has

been achieved for all techniques. Further wavy-film tests have shown promising results: the CCI technique

yields similar results to the PSD technique for measuring the amplitude of a wavy film, and velocimetry

results obtained by particle-imaging techniques, PIV and PTV, are consistent with expectations for a flow

subject to one-dimensional streamwise disturbances.
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(a) Velocity field obtained by PIV.
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(b) Velocity field obtained by PTV.

Figure 5.12: Mean velocity field of a wavy film obtained by PIV. The forcing frequency and the acquisition
rate are set to 6 Hz. β = 15°, Re = 8.1, ν = 5.52 · 10−5 m2.s−1.
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Characterizing the flow over a Representative Elementary Unit (REU) of structured packing sheet is one

of the main objectives of this thesis. The subject of this chapter is experimentally obtaining quantitative

information on both liquid film thickness and velocity field, also with the aim of validating the CFD

methodology. Further details of the experimental methods used here are presented in Chapter 5.
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Figure 6.1: Schematic of the experimental apparatus.

6.1 Experimental setup

6.1.1 Apparatus

Figure 6.1 presents the schematic of the experimental apparatus designed for observing flows over

packing sheets. The observation area is made of four 210 · 400 mm2 non-perforated packing sheet pieces.

The distribution box consists of several tubes perforated at the same levels. At steady state, when the

distribution box is fed with liquid at some given flow rate, the liquid is drained out of the distribution box

through the perforated tubes, providing equal flow rates into the channels (large corrugations) via the use

of modular injectors plugged to the perforated tubes. The liquid loop consists of a pumping system and a

tank. The counter-current gas flow, whenever it is turned on, is confined in the observation area within a

glass channel of size 840 · 400 · 25 mm3. Gas and liquid temperature are controlled with an exchanger.

6.1.2 Preliminary observations

This section presents preliminary qualitative observations of liquid flows without the counter-current gas

flow. Some dye is added to tap water to visualize the flow. Figure 6.2 presents qualitative results obtained

when increasing the liquid flow rate, starting with a dry metal sheet. Four channels are fed with liquid

so that wall effects do not disturb the flow. At low flow rates, the flow is essentially gravity-driven and

rivulets are observed, shapes of which, for given fluid properties, are only functions of the flow rate and the

static angle. Rivulets start merging from 40 L.h−1. For higher flow rates, inertial forces increase, allowing

for the formation of a liquid film that seems to follow the direction of channels (large corrugations) of the

metal sheet. Maximum wetting seems to be achieved for flow rates QL ≥ 100 L.h−1.

Figure 6.3 presents qualitative results obtained when decreasing the liquid flow rate, starting from a large
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flow rate that gives a liquid-film regime with maximum wetting. Dewetting starts being observed at the

first two packing sheet pieces from the top for flow rates QL ≤ 80 L.h−1, and at the third packing sheet

piece from the top for flow rates QL ≤ 40 L.h−1. Decreasing the flow rate starting from a liquid-film

regime does not lead back to the rivulet regime: the system exhibits a hysteresis behavior, partly due to the

presence of small-scale corrugations that remain filled with liquid. In this work, the third packing sheet

piece from the top has been chosen as the observation area, where the flow is assumed to have developed

for flow rates QL ≥ 60 L.h−1. For such flow rates, liquid films are observed and the Reynolds number

will be defined based on the total flow rate and the inlet width b corresponding to the four channels fed

with liquid:

ReL =
QL

bνL
, (6.1)

where b is approximated as

b = Nchannels
2
√

h2u + (λu/2)2

sinαu
. (6.2)

Tap water at 20 ± 1.0 °C will be the working fluid for all subsequent measurements and all sets of

measurements will be carried out decreasing the liquid flow rate, starting from a value QL = 225 L.h−1.

6.1.3 Outline of local measurements

In the following sections, results of local measurements of liquid film thickness and interface velocity are

reported. Although measurements in the presence of a counter-current gas flow were anticipated, through

the glass channel, thickness measurements have first been performed by Chromatic Confocal Imaging

(CCI) without counter-current gas flow, so that there was no need for observing through the glass channel.

Results of interface velocity measurement are also reported for that configuration. Difficulties related to

observing through the glass channel are then discussed and subsequent results of liquid film thickness

measurements are compared to those obtained without the glass channel. In Figure 6.4 it is shown how the

camera or the CCI system is arranged in order for its optical axis to be perpendicular to the mean plane of

a large-scale triangular corrugation. The term mean plane is employed here because of the presence of

small corrugations.

6.2 Liquid film thickness measurement without the glass channel

6.2.1 Setup

The CCI system has been validated in Chapter 5 for a flat and then a wavy liquid film down an inclined

plane. The technique is now applied to measure the thickness of a liquid film flowing down a REU of

structured packing sheet. First sets of measurements are here carried out without the counter-current gas

flow; the optical pen of the CCI system is arranged the same way as the camera for subsequent velocity

measurements, as shown in Figure 6.4. The liquid film thickness is measured indirectly, first acquiring

the signal corresponding to the dry substrate, then the signal corresponding to the reflective gas-liquid

interface.

A first problem that arises with the setup concerns light reflection at a complex surface. The optical axis

of the CCI system is arranged perpendicularly to the packing sheet channel but the small corrugations

constrain the experimentalist to carry out measurements close to crests and troughs of small corrugations
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(a) QL = 15 L.h−1 (b) QL = 35 L.h−1 (c) QL = 40 L.h−1 (d) QL = 50 L.h−1

(e) QL = 60 L.h−1 (f) QL = 70 L.h−1 (g) QL = 80 L.h−1 (h) QL = 100 L.h−1

(i) QL = 175 L.h−1 (j) QL = 300 L.h−1

Figure 6.2: Preliminary observations, increasing the flow rate.
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(a) QL = 300 L.h−1 (b) QL = 80 L.h−1 (c) QL = 70 L.h−1 (d) QL = 60 L.h−1

(e) QL = 40 L.h−1 (f) QL = 25 L.h−1 (g) QL = 15 L.h−1 (h) QL = 10 L.h−1

Figure 6.3: Preliminary observations, decreasing the flow rate.

(Figure 6.5), so that the reflected light ray does get back to the sensor. Indeed, the maximum tilt of the

CCI system with respect to the reflective surface must be lower than 12°. For the record, characteristics of

the CCI system are given in Table 2.2.

6.2.2 Film thickness statistics

In this subsection, statistical characteristics of a liquid film flowing down a packing sheet are investigated.

Examples of time signals are presented in Figure 6.6 for different Reynolds numbers. The acquisition

rate was 1 kHz. The maximum film thickness increases with the Reynolds number, so does the standard

deviation from the time-average film thickness. Correlations of the time-average liquid film thickness

function of the Reynolds are wanted here. Some prior studies of statistical characteristics of liquid film

flowing down a flat plate are listed in Table 6.1. Although these studies are not for a liquid film over

corrugations, they provide experimental data of statistical characteristics to be compared with current

results.
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Figure 6.4: Experimental setup for interface velocity measurements. For liquid film thickness measure-
ments, the optical pen of the CCI system replaces the camera.

Figure 6.5: Liquid film thickness measurement on a complex geometry with a CCI system. Solid lines are
for incident rays coming from the sensor and reflected rays going back to it. Dashed lines are for reflected
rays not going back to the sensor; measurements are thus limited to near-trough and near-crest regions.
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Figure 6.6: Time signals of the liquid film thickness measured at a small-corrugation trough.

Authors Fluid β (°) Technique

Moran et al. (2002) Silicone oil 45 Photochromic

Ambrosini et al. (2002) Water 45–90 Capacitance

Drosos et al. (2004, 2006) Water, alcoholic solutions 90 Conductance

Lel et al. (2005) Silicone oils 13–90 CCI

Zhou et al. (2009) Water 49–90 CCI

Table 6.1: Non-exhaustive list of prior experimental studies of statistical characteristics of liquid film
flowing down a flat plate and corresponding liquid film thickness measurement technique. β is the
inclination angle.

Quantitative results for the time-average liquid film thickness at troughs and crests are presented in

Figure 6.7a. Results are also presented in Figure 6.7b where they are normalized by (g sinαc/ν
2)−1/3

as is customarily done for direct comparison with the Nusselt solution (Lel et al., 2005). Measurement

uncertainties are mainly in the systematic uncertainty due to eventual tilt of the sensor, and random

uncertainties (see Section C.4.1 for calculation details of uncertainties). A curve of the form h∗ =

a(1 + Reb) is fitted to the normalized liquid film thickness at troughs as it has been observed that the

troughs remain filled with liquid when surrounding crests undergo dewetting. A curve of the form

h∗ = aReb is fitted to the normalized liquid film thickness at crests as it has been observed that the crests

are not wetted for a zero liquid flow rate. The mean of the sum of squared residuals and the correlation

coefficient of each curve fit are gathered in Table 6.2. Correlation coefficients suggest that good fits have

been obtained in this range of Reynolds numbers. The power law at troughs is very close to the 1/3 power

law of the flat film solution, suggesting that the velocity at troughs may be reasonably predicted with the

flat-film solution. The exponent of the power law is more than twice higher at crests than the 1/3 exponent

of the flat film, suggesting a different velocity profile, with increased shear stresses. The flat-film solution

over-predicts the results obtained here. This may be due to the presence of small-scale corrugations, which

locally modifies the hydrodynamics. Vlachogiannis and Bontozoglou (2002) observed that the liquid film

thickness may be locally lower than the Nusselt film thickness, depending on the shape of corrugations.
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Figure 6.7: Time-average film thickness. h∗ = h(g sinαc/ν
2)1/3 is the normalized thickness.

Location Equation
√
SSR/M r2

Trough 0.559(1 +Re0.370) 0.0470 0.954

Crest 0.0386Re0.775 0.0293 0.974

Table 6.2: Results of non-linear curve fits.

Moreover, a phase shift between the interface shape and the wall may be the reason why the thickness is

lower than Nusselt’s at troughs.

For these same sets of measurements, standard deviations, reported in Figure 6.8a, increase with the

Reynolds number (in this range) as observed in prior work by Drosos et al. (2004) (see their Figure 7).

Normalized standard deviations, reported in Figure 6.8b, seem to exhibit a local maximum for a Reynolds

number of the order of 1000. Extrapolating the results to higher Reynolds number lets suggest that an

increase in the Reynolds number yields a decrease in the normalized standard deviation; that is consistent

with results reported by Yu et al. (1995) for water films down an inclined plane.

6.2.3 Power spectral density

Power Spectral Density (PSD) analysis have been carried out in prior studies of falling films down an

inclined flat plane, by Drosos et al. (2004) for instance, and it is of interest here to observe the influence

of small-scale corrugations, if any, on power density spectra. Haroun (2008) observed mass transfer

enhancement with large waves in his numerical simulations. PSD analysis is thus of interest for industrial

purposes as well. PSDs were estimated by Fourier transforming the auto-correlation function (Welch,

1967). 80,000 samples were used with a sampling frequency of 1 kHz.

Spectra corresponding to crest and trough measurements are reported in Figure 6.9 for different Reynolds

numbers. The analysis reveals rather broad spectra, suggesting the presence of three-dimensional structures

at the interface. For the smallest Reynolds number studied here, Re = 89, there is no noticeable peak

corresponding to a specific frequency. For larger Reynolds numbers, spectra exhibit a peak, corresponding

to a modal frequency of about 9 Hz. Results are here very close to that obtained with inclined-plane
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Figure 6.8: Standard deviations and standard deviations normalized by the time-average film thickness.
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Figure 6.9: Power spectral density of the liquid film thickness.

configurations by Ambrosini et al. (2002) and Drosos et al. (2004) regarding the modal frequency which

is about 8 to 10 Hz, suggesting that the presence of small corrugations does not have quantitative effects

on interfacial structures of the flow. The higher the Reynolds number, the sharper the peak: large waves

carry even more energy with increasing Reynolds number. These large waves are not necessarily that of

highest amplitudes, as shown by Zadrazil et al. (2014) with their vertical annular flow configuration. A

small dependency on the Reynolds number is noticeable for the modal frequency that seems to slightly

decrease with increasing Reynolds number. Zadrazil et al. (2014) also noticed that slight decrease in the

modal frequency with increasing the Reynolds number.

Differences between spectra at trough and crest are not significant at low frequencies, especially for

Reynolds numbers Re ≥ 185. Differences between crest and trough spectra are more noticeable at higher

frequencies (larger than 20 Hz); at the modal frequency the density power has roughly the same value for

trough and crest measurements (for Re ≥ 185) so smaller waves carry more energy at troughs, where the
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Figure 6.10: Typical observation area for interface velocity measurements, corresponding to the upper
face of a large-scale triangular corrugation. The red segment is one centimeter long.

mean thickness is higher compared to that at crests. For a similar Reynolds number, the exponent of the

power law decay is smaller at crests than at troughs, which is consistent with the fact that the spectra look

almost identical for lower frequencies while the mean film thickness is higher at troughs, so the frequency

spectrum at troughs must be broader than at crests. Another explanation could be given from the fact that

the film thickness locally decreases in the vicinity of a crest, yielding a local decrease in the Weber number

and hence stabilization of smallest waves, explaining a lower cutoff frequency and a narrower spectrum

at crests compared to that at troughs. Note that time signals in Figure 6.9 are piecewise continuous:

discontinuities quantitatively affect the estimate of power density spectra at higher frequencies (power law

decays) but the modal frequency is correct because its estimate results from continuous parts of the time

signal.

6.3 Interface velocity measurement without the glass channel

6.3.1 Setup

As reported in Chapter 5, the use of hydrophobic fluorescent particles has enabled measurement of the

interface velocity of a flat film and further observed the one-dimensionality of the interface velocity field

of a 2D wavy film by PIV and PTV. It is attempted here to apply one of these techniques to a liquid film

flow down a REU of structured packing sheet. The camera aims at the REU, in the direction perpendicular

to the liquid film flow inside a channel (Figure 6.4), i.e. perpendicular to the upper face of the large-scale

triangular corrugation (Figure 6.10). Hydrophobic particles are dusted at the top of the geometry, just after

the inlet. Particles that do not stick to the interface are blown away in order not to hinder observations. As

in Chapter 5, the same pulsed Laser is used, with a repetition rate of 15 Hz. Particles are illuminated with

the beam spot, magnified to reach a diameter of a few centimeters. Calibration was again carried out by

using a ruler carefully deposited on the upper face of the large-scale triangular corrugation (Figure 6.11).

The apparent pixel size was 10.8± 0.5% µm/pix. A typical frame that is exploitable is shown in Figure

6.12.

Compared to the inclined-plane tests of Chapter 5, it was difficult to obtain uniform concentrations of

particles in the observation area. However it was possible to track particles with such low concentrations,

and get several velocity vectors from an image pair. The PTV algorithm of Brevis et al. (2011), successfully

tested for flat and wavy falling films down an inclined plane in Chapter 5, was used for the purpose.
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Figure 6.11: Calibration procedure. The ruler is deposited on the upper face of the large-scale triangular
corrugation.

6.3.2 Results and discussion

Results presented here are for the flow rate QL = 125 L.h−1, or Re = 185. The temporal resolution

was set to 250 µs, yielding displacements in the range 8–20 pixels. Velocity vectors were obtained from

different image pairs, to yield a mean velocity field that was interpolated on a grid. Figure 6.13 shows the

mean interface velocity field, corresponding to the boxed area of Figure 6.14. The spatial resolution for

the vector field in Figure 6.13 is 32 pixels, corresponding to 346 µm. In processing image pairs, particles

were located by indicating the maximum size of a particle and the minimum intensity threshold emitted

by a particle, so that there were no outliers due to eventual ill-focused particles. No post-processing was

applied but deleting a few vectors directed upwards. Some vectors still seem to be erroneous, like that

with smallest magnitude at (x, y) = (8.8, 30.1) mm, an error that must be due to an incorrect evaluation

of a particle center (Guezennec et al., 1994).

It can be observed in Figure 6.13 that the flow does not follow the channels of large-scale corrugations,

but is essentially directed downwards. The crest at (x, y) = (8.7, 30.8) mm seems to correspond to a

local maximum of the velocity magnitude. The trough at (x, y) = (7.7, 35.3) mm seems to correspond to

a local minimum of the velocity magnitude. Depending on the shape of corrugations and flow parameters

(Pozrikidis, 1988), and consistently with an increase (resp. decrease) in the wall shear stress next to crests
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Figure 6.12: Typical frame exploitable in PTV. Troughs and crests of small-scale corrugations are
underneath hydrophobic particles.

(resp. troughs) with respect to that of the flat film, it is possible to observe local maxima of the velocity

field next to crests, and local minima next to troughs; that behavior seems even more intense with larger

differences in the liquid film thickness between troughs and crests of periodic corrugations (Trifonov,

1999). On the other hand, looking at the entire velocity field, it seems unclear whether some features

of small-scale corrugations locally affect the interface velocity field. That would be consistent with

power spectral densities of liquid film thickness reported in Section 6.2.3, the modal frequency wherein

having the same value at troughs and crests. In Figure 6.13, the velocity magnitude globally seems to

decrease with decreasing y. The upper part of the velocity field in Figure 6.13 is closer to the trough of

large-scale triangular corrugations, for which the local inclination angle with the horizontal reaches π/2,

hence explaining the presence of higher velocity magnitudes there. Calculating a space-average velocity

magnitude does not make any sense here since the flow is clearly not uniform.

But it is still possible to locally compare the results with the flat-film analytical solution. Large-

scale triangular corrugations make an angle αc = π/4 with the horizontal and their half top angle,

arctan
(

λu/(2hu)
)

, is also of the order π/4. Therefore, this suggests a comparison of local velocity mag-

nitudes for y ≤ 32 mm with the flat-film analytical solution corresponding to an angle π/4, which actually

is of the order of 0.65 m.s−1. Using the flat-film solution clearly over-predicts the velocity magnitude for

y ≤ 32 mm, which is consistent with the fact that the flat-film thickness solution would over-predict the
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Figure 6.13: Local mean interface velocity field obtained by PTV;Re = 185. The image in the background
was used amongst all image pairs selected for the construction of this mean velocity field. The straight
line indicates the direction of the channel (large-scale triangular corrugation). The blue and red boxed
areas seem to correspond to local extrema of the velocity magnitude.
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Figure 6.14: Typical frame exploitable in PTV. Troughs and crests of small-scale corrugations are
underneath hydrophobic particles. A velocity field corresponding to the boxed area was constructed in
Figure 6.13.

thickness, as observed in Section 6.2. Further up in Figure 6.13, for y ≥ 32 mm, it would seem more

appropriate to compare velocity magnitudes with that of a vertical flat film, which is of the order of 0.73

m.s−1. The flat-film solution clearly under-predicts largest velocity magnitudes, given that the upper left

of Figure 6.14 does not correspond exactly to the trough of large-scale triangular corrugations yet, and

one would expect the solution of a vertical film to over-estimate the velocity magnitudes there.

6.4 Liquid film thickness measurement through the glass

channel

6.4.1 Difficulties

Having investigated the case of falling films, in this section, liquid film thickness measurements in the

presence of a counter-current gas flow are presented. For that, the gas flow is confined in a glass channel

as explained in Section 6.1. A difficulty arises due to optical dispersion in use of the same CCI system for

measuring the liquid film thickness through the glass. Considering the particular case with optical axis of

the optical pen perpendicular to the glass, that leads to a deformation of the measuring range (image of

the white light point source by the optical pen) along the optical axis. The measured distance is thereby

modified, and the modification is a function of the wavelength. That may be corrected when knowing the

glass thickness and the dispersion curve of the glass, i.e. the dependence of the refractive index on the
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Figure 6.15: Modification of the measuring range of the CCI system by interposition of a transparent
medium of width t and refraction index n. a is the size of the chromatic lens. The x-axis coincides with
the optical axis of the optical pen.

wavelength (see Figure 7 of Dietze et al. (2009)). For the particular case of a liquid film flowing down

over a packing metal sheet, distance measurement through the glass that makes an angle γ with the optical

axis of the optical pen are further affected in a sense that the measuring range deviates from the optical

axis (see Figure 6.15).

An idea to get around that problem is to use a pair of compensating prisms, in order for the optical axis

of the optical pen to be perpendicular to the transparent medium. Such a procedure was attempted, first

measuring the refractive index of the glass to use prisms made of a glass with the same refractive index,

then choosing the angle of prisms adequately – the angle that the optical axis of the optical pen makes

with the normal to the glass channel is arctan(2hu/λu) ≃ π/4. Unfortunately, light attenuation through

the glass was even more pronounced with the pair of prisms and the signal detected by the sensor was too

weak for accurate distance measurement, even by maximizing the exposure time.

Several alternatives are worth considering:

• Asking the manufacturer for a CCI system specifically designed to carry out measurements with an

angle γ through a transparent medium. This may be dismissed straight away as the system would

be designed for a fixed angle γ, which is not wanted, should observations of liquid films over other

geometries be foreseen;

• Using a more powerful light source and a pair of prisms, and correcting distance measurement

signals, as done by Dietze et al. (2009);

• Carrying out measurements through the glass, not correcting the signals but accurately estimating

systematic uncertainties.
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Figure 6.16: Time-average film thickness for measurements through the glass channel and comparison
with glass-free results previously obtained at troughs and crests.

Although using a more powerful light source and the pair of prisms appears to be the more rigorous

approach, to set up in due time, preliminary tests were conducted without correcting time signals but

accounting for the deviation of the measuring range in calculations of systematic uncertainty. The

acquisition rate had to be lowered down to 200 Hz (against 1 kHz for prior measurements in Section

6.2) to have enough illumination going back to the CCI sensor, the glass channel itself participating to

light attenuation. For the sake of clarity, calculation of the systematic uncertainty introduced by such a

procedure is detailed in Section C.4.2. As the functional relationship of the CCI system (the wavelength

seen by the sensor as a function of the distance) is not provided by the manufacturer, thicknesses could

not be corrected, and are here reported as they were displayed by the CCI system, with an additional

positive uncertainty, added to account for the deviation of focusing points along the optical axis of the

optical pen. The positive, mean relative uncertainty was used in calculations, determined in Section C.4.2,

corresponding to the error in a thickness measurement over the entire measuring range. This mean relative

uncertainty in the thickness measurement was determined to be 0.083, corresponding, for instance, to a

maximum uncertainty of 23 µm in a thickness of 275 µm. For the same thickness, the lateral deviation

between the two focusing points (that of the reference substrate and that of the gas-liquid interface) is 33

µm, which sounds reasonable given that the corrugations have amplitude and wavelength of 0.3 mm and

2.8 mm, respectively.

6.4.2 Results

A further difficulty arose in positioning the optical pen in order for the measuring range to intersect the

solid substrate, the lateral deviation between the two extreme focusing points, y′red−y′blue being of the order

of 1.2 mm (see Section C.4.2 for details). As a consequence, it was not possible to know with certitude to

which location the signal corresponded – a trough or a crest. Figure 6.16 presents qualitative results that

were obtained though. Results are also compared with glass-free results of Section 6.2. Good agreement

is obtained whenever the glass-free values are within uncertainty bars of through-glass values. All trough
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values lie within uncertainty intervals of through-glass values, which sounds promising. However, some

through-glass values do not correspond to any glass-free value, of a trough or a crest. This is thought to

be due to the deviation of focusing points away from the optical axis of the optical pen, the deviation

being different for the reference point (solid substrate) and the dynamic point (reflective interface). This

may lead to inaccurate results. That may be the reason why no through-glass values have been found

to correspond to crest glass-free values. Finally, such a procedure is not reliable and it seems necessary

to use a more powerful light, along with a pair of compensating prisms to prevent the measuring range

deviating from the optical axis.

6.5 Conclusion

Local measurements of liquid film thickness were carried out at troughs and crests of small-scale

corrugations by CCI. Results revealed that, at the center of the upper face of large-scale corrugations, the

liquid film thickness at troughs and crests of small corrugations were smaller than that predicted by the

flat-film analytical solution. In that same area, measurements of interface velocity magnitude, carried out

by PTV for a single value of the Reynolds number though, were also found to be smaller than that of the

flat-film analytical solution, which was consistent with the film thickness. Higher velocity magnitudes

were measured closer to the trough of the large-scale corrugation, where the flat-film solution would

under-predict it. Liquid film thicknesses higher than the flat-film solution are expected there. A local

maximum (resp. minimum) of velocity magnitude was observed next to a small-corrugation crest (resp.

trough), for these specific flow conditions, consistently with an increase (resp. decrease) in the wall shear

stress next to the crest (resp. trough) (Pozrikidis, 1988). Power density spectra were found broader at

troughs than at crests, suggesting that capillary effects locally stabilize smallest waves at crests. Regarding

the mean liquid film thickness, a power law close to the flat film solution was found at troughs, suggesting

that the flat-film solution may give reasonable prediction of the flow at troughs. The power law was found

higher at crests, suggesting a different velocity profile with increased shear stresses.

Further experimental and numerical work is needed to identify and characterize different regimes. An-

ticipating measurements with a counter-current gas flow, liquid film thicknesses were measured, still

for a falling film, through the glass channel (designed to confined the gas flow), by CCI. The additional

systematic uncertainty for measuring film thicknesses through the glass channel was quantified, and dis-

crepancies were obtained from the glass-free case, as expected, mainly due to lateral deviation (function

of the wavelength) of the measuring range of the CCI system. Using a pair of compensating prisms and a

more powerful light source would certainly allow to alleviate these discrepancies. For future transient

simulations of three-dimensional liquid film flows with moving contact lines, it is proposed to test the

macroscale model for first fingering instabilities (Huppert, 1982), and further on liquid film flows over

structured packing sheets, accounting for small-scale corrugations in the computational geometry.
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The work presented in this thesis consists of two main strands of research. One of these concerns the

development and use of a CFD methodology for the numerical simulation of three-dimensional large-scale

flows. Key here is the use of an available (2D) large-scale model for contact line dynamics in two-phase

flow solvers, which has resulted in a numerical tool for use in investigations of wetting phenomena on

complex surfaces. The second strand of research was to develop an experimental methodology to perform

quantitative measurements of liquid film thickness and interface velocity on such a geometry, aiming

to characterize different flow regimes while providing experimental data. Both these two strands were

necessary to bridge the gap between experiments and CFD of liquid film flows over structured packing

sheets.

The development of numerical methods for the simulation of two-phase flows with moving contact lines

was undertaken in the framework of interface-capturing methods for two-phase flows. Using the freeware

TPLS as a basis, key steps for reducing mass conservation errors in level-set methods were identified and

implemented, in Chapter 3. A new computational method for level-set simulations of flows with moving

contact lines in 3D was developed and validated against numerical and experimental benchmark tests, in

Chapter 4. 3D tests suggest that available 2D macroscale models are potentially usable for 3D flows with

moving contact lines. The macroscale model was further implemented in a commercial volume-of-fluid

solver to facilitate dissemination of this work in industry, so that the macroscale model can be tested

in numerical simulation of flows with moving contact lines over complex surfaces, such as structured

packing sheets.

Likewise, the experimental methods suitable for quantitative characterization of liquid films flowing

down complex surfaces were deployed and validated using basic tests. Experimental techniques were

used further to perform liquid film thickness and interface velocity measurements of liquid film flowing

down a representative elementary unit of structured packing sheet. Different regimes were identified and

differences from the flat-film analytical solution were analyzed.

Specifically, the approach in the first (numerical) part of the thesis, is mainly based on a level-set

method for numerical simulations of two-phase flows with moving contact lines. Different existing

reinitialization methods therein were implemented in the otherwise pre-existing in-house code (TPLS) and

tested first against standard benchmarks wherein the Navier-Stokes solver is not used such as a translating

sphere. This has established that the Hamilton-Jacobi equation used in reinitialization may be accurately

solved with a TVD RK2 scheme in time and a WENO5 scheme in space. Two other tests were carried out
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wherein the Navier-Stokes equations are resolved. It was demonstrated that Rayleigh-Taylor instability

without capillary forces could be accurately simulated using the near-interface fix of Hartmann et al.

(2010) (HCR1-W5-RK2) or that of Sussman and Fatemi (1999) (SF-W5-RK2). Additional tests for a

static and then a translating bubble, for which the magnitude of parasitic currents was found to be as low

as that reported in the recent literature on other interface-capturing codes, suggest finally that SF-W5-RK2

is the most promising method amongst those tested here for reduced mass conservation errors in level-set.

That particular reinitialization method was used thereafter in this thesis. The computational method was

extended subsequently to account for contact line dynamics in simulating flows with moving contact lines.

A new numerical method was developed, for 3D flows, that basically consists in advecting the contact

line with the velocity corresponding to the actual interface slope in the first cell next to the wall, the

velocity magnitude being obtained from theory (the macroscale model). Axisymmetric droplet spreading

in a slow, viscous regime and then in a more rapid (inertial) regime wherein inertial effects arise in the

contact-line region were simulated and found to compare very well with prior DNS and experimental

work. Further tests were conducted for sliding droplets down an inclined plane. Results were qualitatively

consistent with experiments of Podgorski et al. (2001) and Le Grand et al. (2005), which comforts the

potential use of the macroscale model in 3D, for qualitative agreement at the macroscale at least, even in

the presence of highly-curved contact lines. Although quantitative results for the geometry and the speed

of the drops were very satisfactory, they do suggest that the viscous model Cox (1986), developed with

negligible gravity, may not be suitable for flows in the presence of significant effects of gravity (Bond

number values Bo ≥ 1). These results therefore call for further DNS and theoretical investigation to

account for gravity in theoretical (macroscale) models. Overall, contact-line dynamics quantitatively

affects spreading and it may affect the flow qualitatively up to its macroscale in some cases. Finally,

the macroscale model was implemented also in a commercial volume-of-fluid code, albeit in a different

way due to restrictions on the modifications users can make. Qualitative and quantitative agreement was

obtained for axisymmetric spreading in the inertial regime. The single sliding-drop test that was conducted

also compared satisfactorily with experimental results and numerical results obtained with TPLS.

In the second (experimental) part, specifically, liquid film thicknesses were measured by Chromatic

Confocal Imaging, which is a non-intrusive single-point measurement technique; velocity measurements

were carried out by particle tracking using hydrophobic fluorescent particles. Validation tests were

performed for a two-dimensional viscous liquid film flowing down an inclined plane, comparing against

the flat-film analytical solution, for which very good agreement was obtained. A further test was conducted

for a two-dimensional wavy film, introducing a wave using a vibrating pot. There, the amplitude of

the wave could be measured simultaneously, with success, by Chromatic Confocal Imaging and using

a Position Sensing Device to relate the displacement of the Laser beam spot to the wave amplitude.

The interface velocity fields obtained using particle tracking and particle imaging algorithms were two-

dimensional, as expected, and compared well to each other. The validated techniques were then tested

for falling films down the upper face of a large-scale triangular corrugation of structured packing sheet.

Observations were made in the center of that area, between the trough and the summit of the large-

scale triangular corrugation. Liquid film thickness was measured at troughs and crests of small-scale

corrugations, evidencing larger thicknesses at troughs. For Reynolds numbers in the range 89 − 333,

the film thickness was found to be over-predicted by the corresponding flat-film solution, based on the

angle of large-scale triangular corrugations. This may be due to the presence of small-scale corrugations,
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which locally modifies the hydrodynamics. Such a behavior has already been observed (Vlachogiannis

and Bontozoglou, 2002). The local interface velocity magnitude in the corresponding observation area

was found to be under-predicted by the flat-film solution next to the trough of the large-scale triangular

corrugation, but over-predicted further away from that trough. The velocity magnitude seems to exhibit

maxima at crests and minima at troughs; this would be consistent with an increase in the wall shear

stress next to crest, and a decrease next to troughs, with respect to the flat film. Results of liquid film

thicknesses were fitted to power laws of the Reynolds number. The exponent at troughs was found to be

very close to the that of the flat film, suggesting that the flat-film solution may be suitable for predicting

flow behavior at troughs. At crests, the exponent was found to be significantly higher than for the flat-film

solution, suggesting a different velocity profile with increased shear stresses. Power density spectra of

the liquid film thickness estimated at troughs and crests were found to be rather broad, suggesting the

presence of three-dimensional interfacial structures. Narrower spectra were obtained at crests, with lower

cutoff frequency than at troughs, suggesting that capillary effects tends to stabilize the smallest interfacial

structures at crests. For the purpose of making quantitative measurements for a liquid film sheared by

a counter-current gas flow, similar measurements through a transparent medium were made. The time

signal was found to be modified by optical defects. For counter-current systems, using the Chromatic

Confocal Imaging system with a more powerful light source and a compensating pair of prisms may yield

accurate liquid film thickness measurement through the glass channel.

The experimental and computational developments presented here will be key in numerical simulations

of three-dimensional liquid film flows (with moving contact lines) over a representative elementary unit

of structured packing sheets. Guidelines are proposed here to continue the development and validation

of such a CFD methodology. As discussed in Chapter 1, the flow at the scale of large corrugations is

desired (Raynal and Royon-Lebeaud, 2007; Said et al., 2011; Soulaine, 2012). As Haroun et al. (2014)

observed strong dependence of wetting on the contact angle in numerical simulations, it is proposed

here to account for contact line dynamics in the simulations. As underlined in this memoir, contact-line

dynamics has quantitative effects and even sometimes qualitative effects on the flow up to the macroscale.

The macroscale model of Cox (1986, 1998), developed for general two-dimensional flows, has been

implemented and validated against two-dimensional and axisymmetric flows in this thesis, and been tested

successfully against three-dimensional sliding drops. The next step is, of course, to validate the model

for liquid film flows with moving contact lines, on a rather basic case first, for which experimental and

theoretical results are available. The fingering instability is perfectly suited for this purpose. In his seminal

work, Huppert (1982) observed viscous liquid films of constant volume flowing down an inclined plane.

In the lubrication approximation, that is for a thin viscous film, he first derived a similarity solution for

the height profile of the two-dimensional flow in the outer region, with negligible gravitational effects

(Bo ≪ 1). After the two-dimensional flow had developed, Huppert (1982) observed the development

of small disturbances at the moving contact line, that would grow in time to form saw-tooth or rivulet

patterns, referred to as fingers. Since then, fingers have been studied extensively, experimentally (de Bruyn,

1992; Veretennikov et al., 1998; Johnson et al., 1999) and theoretically or numerically (Troian et al.,

1989; Bertozzi and Brenner, 1997; Kalliadasis, 2000; Kondic and Diez, 2001). Prior numerical work,

essentially in the lubrication approximation, consisted in perturbing the contact line of a base-state flow,

and observe the formation and evolution of fingers, using results from experiments and the linear theory

for qualitative and quantitative comparisons. It is proposed here to adopt the same methodology, but using
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the full Navier-Stokes equations and the macroscale model of Cox (1986). For that, two-dimensional

liquid films with moving contact line would be simulated first, in a two-dimensional channel with no-slip

condition at bottom and top boundaries, the analytical profile of a liquid film in a channel (Fourati

et al., 2013; Schmidt et al., 2016) prescribed at the inlet, and an outflow condition for the remaining

boundary. When the base state has been reached, the domain can be extended in the third (transverse)

direction (with periodic boundary) and the contact line be perturbed with a single mode. The growth of

the perturbation can then be compared to theoretical (Bertozzi and Brenner, 1997), numerical (Kondic

and Diez, 2001), and experimental results (Johnson et al., 1999). If the general macroscale model of Cox

(1986) happens to give satisfactory results to predict the linear growth of fingers, then this can be used

for further three-dimensional simulations of flows with moving contact lines on complex surfaces. The

CFD methodology consists in resolving the macroscale and part of the intermediate region, influenced

by the inner dynamics only, that is typically a few tens of microns. Therefore, for simulations of flows

with moving contact lines on structured packing sheets with small-scale corrugations of λc = 2.8 mm, the

corrugations must be taken into account in the computational geometry. Experimental data of liquid film

thickness and interface velocity will be used to support the CFD methodology.

In future experimental work, it would then be interesting to observe the effect of the counter-current gas

flow in the liquid film thickness, on the power law of liquid film thicknesses (function of the Reynolds

number), and on power density spectra as well. For that, the CCI system may be used with a more

powerful light source and a pair of compensating prisms to observe the flow through the glass channel.

Interface velocity measurements may be foreseen as well, using compensating prisms. Regarding PSD

spectra of the liquid film thickness, it is expected that the counter-current gas flow will impact the modal

frequency, while increasing the energy of the signal, as observed by Drosos et al. (2006) and Zadrazil et al.

(2014), in different configurations though, for a flow down an inclined flat plane and a vertical annular

flow, respectively. Another interesting aspect would be to undertake wave celerity measurements, as done

by Drosos et al. (2004) for instance, by cross-correlating time signals of two optical pens, and see the

impact, if any, of small corrugations on dispersion curves compared to the flat-film case, bearing in mind

that wavy films may be beneficial or detrimental to mass transfer under some circumstances.
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This appendix presents the WENO5 scheme for the conservative advection equation, Runge-Kutta

schemes for the reinitialization equation, the WENO5 scheme for Hamilton-Jacobi equations, and general

discretization methods of Navier-Stokes equations based on that of the solver TPLS used in the thesis.

A.1 WENO5 scheme for the conservative advection equation

For an incompressible flow ∇ · u = 0, the advection equation can be recast in conservative form as

∂φ

∂t
+∇ · (φu) = 0. (A.1)

Integrating the one-dimensional form of (A.1) over a cell centered at xi yields

∂φ̄i
∂t

+
1

h
(ui+ 1

2
φi+ 1

2
− ui− 1

2
φi− 1

2
) = 0, (A.2)
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with

φ̄i =
1

h

x
i+1

2
∫

x
i− 1

2

φ(x)dx. (A.3)

The WENO5 scheme allows computing φ±
i+ 1

2

and φ±
i− 1

2

, where + and − stand for the upwind and

downwind reconstruction, respectively. The value φ±
i+ 1

2

is a combination of three values φ(p)±
i+ 1

2

, p ∈ J1, 3K,

obtained with a third-order essentially non-oscillatory (ENO) scheme (Shu and Osher, 1988), with three

different stencils. Weights ω(p)±

i+ 1
2

, p ∈ J1, 3K, are computed in order to select the smoothest reconstruction.

The fifth-order reconstruction reads

φ±
i+ 1

2

= ω
(1)±

i+ 1
2

φ
(1)±

i+ 1
2

+ ω
(2)±

i+ 1
2

φ
(2)±

i+ 1
2

+ ω
(3)±

i+ 1
2

φ
(3)±

i+ 1
2

, (A.4)

where φ(p)±
i+ 1

2

, p ∈ J1, 3K are the third-order ENO reconstructions,

φ
(1)±

i+ 1
2

= 1
3c

±
1 − 7

6c
±
2 + 11

6 c
±
3 ,

φ
(2)±

i+ 1
2

= −1
6c

±
2 + 5

6c
±
3 + 1

3c
±
4 ,

φ
(3)±

i+ 1
2

= 1
3c

±
3 + 5

6c
±
4 − 1

6c
±
5 ,

(A.5)

and coefficients c±p , p ∈ J1, 5K, are obtained from three different stencils,

c−p = φ̄i−2+(p−1), p ∈ J1, 5K,

c+p = φ̄i+3−(p−1), p ∈ J1, 5K.
(A.6)

The smoothness indicators s(p), p ∈ J1, 3K, are defined as

s(1) = 13
12(c

±
1 − 2c±2 + c±3 ) +

1
4(c

±
1 − 4c±2 + 3c±3 )

2,

s(2) = 13
12(c

±
2 − 2c±3 + c±4 ) +

1
4(c

±
2 − c±4 )

2,

s(3) = 13
12(c

±
2 − 2c±4 + c±5 ) +

1
4(3c

±
3 − 4c±4 + c±5 )

2,

(A.7)

and weights are computed as

ω
(p)±

i+ 1
2

=
α
(p)±

i+ 1
2

α
(1)±

i+ 1
2

+ α
(2)±

i+ 1
2

+ α
(3)±

i+ 1
2

, p ∈ J1, 3K, (A.8)

with

α
(1)±

i+ 1
2

= 1
10

(

1
ǫ+s(1)

)2

, α
(2)±

i+ 1
2

= 3
5

(

1
ǫ+s(2)

)2

, α
(3)±

i+ 1
2

= 3
10

(

1
ǫ+s(3)

)

. (A.9)

ǫ is set to 10−7 in this work.

A.2 Runge-Kutta schemes

The following Runge-Kutta schemes have been tested in the reinitialization step.
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A.2.1 Forward Euler

The FE method is a one-step time integration:

ψm+1 − ψm

∆τ
+ sign(ψ0)

(

|Gψm| − 1
)

= 0, (A.10)

where Gψ is a numerical approximation of ∇ψ.

A.2.2 TVD RK2

The TVD RK2 method is a two-step time integration that consists of two FE steps,

ψ̃m+1 − ψm

∆τ
+ sign(ψ0)

(

|Gψm| − 1
)

= 0,

ψ̃m+2 − ψ̃m+1

∆τ
+ sign(ψ0)

(

|Gψ̃m+1| − 1
)

= 0,

(A.11)

followed by averaging:

ψm+1 = 1
2(ψ

m + ψ̃m+2). (A.12)

A.2.3 TVD RK3

The TVD RK3 method is a three-step time integration. The first two steps are simply FE steps:

ψ̃m+1 − ψm

∆τ
+ sign(ψ0)

(

|Gψm| − 1
)

= 0,

ψ̃m+2 − ψ̃m+1

∆τ
+ sign(ψ0)

(

|Gψ̃m+1| − 1
)

= 0.

(A.13)

Next, ψ̃m+ 1
2 is obtained by linear interpolation:

ψ̃m+ 1
2 = 3

4ψ
m + 1

4 ψ̃
m+2. (A.14)

Finally, there is a FE step,

ψ̃m+ 3
2 − ψ̃m+ 1

2

∆τ
+ sign(ψ0)

(

|Gψ̃m+ 1
2 | − 1

)

= 0, (A.15)

followed by linear interpolation:

ψm+1 = 1
3ψ

m + 2
3 ψ̃

m+ 3
2 . (A.16)

A.3 WENO5 scheme for Hamilton-Jacobi equations

The fifth-order reconstruction for one-sided finite differences of spatial derivatives reads

D±
x ψi = ω

(1)±
i D±

x ψ
(1)
i + ω

(2)±
i D±

x ψ
(2)
i + ω

(3)±
i D±

x ψ
(3)
i , (A.17)

where Dxψ
(p)±
i , p ∈ J1, 3K are the third-order ENO reconstructions,

D±
x ψ

(1)
i = 1

3c
±
1 − 7

6c
±
2 + 11

6 c
±
3 ,

D±
x ψ

(2)
i = −1

6c
±
2 + 5

6c
±
3 + 1

3c
±
4 ,

D±
x ψ

(3)
i = 1

3c
±
3 + 5

6c
±
4 − 1

6c
±
5 ,

(A.18)
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and coefficients c±p , p ∈ J1, 5K are computed from three different stencils,

c−p =
ψ̄i−2+(p−1) − ψ̄i−3+(p−1)

h
, p ∈ J1, 5K,

c+p =
ψ̄i+3−(p−1) − ψ̄i+2−(p−1)

h
, p ∈ J1, 5K.

(A.19)

The smoothness indicators s(p), p ∈ J1, 3K are defined as

s(1) = 13
12(c

±
1 − 2c±2 + c±3 ) +

1
4(c

±
1 − 4c±2 + 3c±3 )

2,

s(2) = 13
12(c

±
2 − 2c±3 + c±4 ) +

1
4(c

±
2 − c±4 )

2,

s(3) = 13
12(c

±
2 − 2c±4 + c±5 ) +

1
4(3c

±
3 − 4c±4 + c±5 )

2,

(A.20)

and weights are computed as

ω
(p)±
i =

α
(p)±
i

α
(1)±
i + α

(2)±
i + α

(3)±
i

, p ∈ J1, 3K, (A.21)

with

α
(1)±
i = 1

10

(

1
ǫ+s(1)

)2

, α
(2)±
i = 3

5

(

1
ǫ+s(2)

)2

, α
(3)±
i = 3

10

(

1
ǫ+s(3)

)2

. (A.22)

A.4 Navier-Stokes solver

The Navier-Stokes equations, which read in a semi-discretized form,

un+1 − un

∆t
=

1

12

(

23Cn−16Cn−1+5Cn−2
)

+
1

2ρn+
1
2

(

Dn+D∗−2∇p
)

+
1

2

(

Mn+1+Mn
)

, (A.23)

∇ · un+1 = 0, (A.24)

are solved with a standard projection method, with a semi-implicit viscous solve for the temporary velocity

u∗ (Tryggvason et al., 2011), such as the momentum equation recasts

un+1 − un

∆t
=

1

12

(

23Cn − 16Cn−1 + 5Cn−2
)

+
1

2ρn+
1
2

(

(Dn +Dn+1) + (D∗ −Dn+1)− 2∇ζ
)

+
1

2

(

Mn+1 +Mn
)

,

(A.25)

where ζ is the artificial pressure, such as

1

2

(

D∗ −Dn+1
)

−∇ζ = −∇p. (A.26)

In (A.23), D are the diffusive viscous terms, which are implicit in the temporary velocity u∗, and C is the

sum of the convective terms and the left-over viscous terms, which are treated explicitly with a third-order

Adams-Bashforth method. Time averaging is used to compute the surface tension terms M, as both φn+1

and φn are known.

The two-step projection method consists in solving Helmholtz equation for the temporary velocity u∗,

u∗ − un

∆t
=

1

12

(

23Cn − 16Cn−1 + 5Cn−2
)

+
1

2ρn+
1
2

(

Dn +D∗
)

+
1

2

(

Mn+1 +Mn
)

, (A.27)
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and then Poisson equation for the artificial pressure,

∇ ·
(

∇ζ
ρn+

1
2

)

=
∇ · u∗

∆t
, (A.28)

in order to get a divergence-free velocity field at time n+ 1,

un+1 = u∗ −∆t
∇ζ
ρn+

1
2

, (A.29)

that satisfies the continuity equation (A.24).

A.4.1 Diffusive viscous terms

The diffusive viscous terms are discretized in finite volumes, such as at (i+ 1/2, j),

Di+ 1
2
,j =

1

Re

µi+1,j

ui+ 3
2
,j − ui+ 1

2
,j

∆x
− µi,j

ui+ 1
2
,j − ui− 1

2
,j

∆x
∆x

+
1

Re

µi+ 1
2
,j+ 1

2

ui+ 1
2
,j+1 − ui+ 1

2
,j

∆y
− µi+ 1

2
,j− 1

2

ui+ 1
2
,j − ui+ 1

2
,j−1

∆y

∆y
.

(A.30)

A.4.2 Other viscous terms

C is a numerical approximation of the convective terms Cc plus the left-over viscous terms Cv. The

left-over viscous terms are discretized in finite volumes, such as at (i+ 1/2, j),

Cv
i+ 1

2
,j
=

1

Re

µi+1,j

ui+ 3
2
,j − ui+ 1

2
,j

∆x
− µi,j

ui+ 1
2
,j − ui− 1

2
,j

∆x
∆x

+
1

Re

µi+ 1
2
,j+ 1

2

vi+1,j+ 1
2
− vi,j+ 1

2

∆x
− µi+ 1

2
,j− 1

2

vi+1,j− 1
2
− vi,j− 1

2

∆x
∆y

,

(A.31)

with, for instance,

µi+ 1
2
,j+ 1

2
=

1

4

(

µi,j + µi+1,j + µi,j+1 + µi+1,j+1

)

. (A.32)

A.4.3 Convective terms

In x-direction, the convective term at (i+ 1/2, j) reads

Cc
i+ 1

2
,j
= −ui+ 1

2
,j

(

ui+ 3
2
,j − ui− 1

2
,j

2∆x

)

− vi+ 1
2
,j

(

ui+ 1
2
,j+1 − ui+ 1

2
,j−1

2∆y

)

, (A.33)

with

vi+ 1
2
,j =

1

4

(

vi,j+ 1
2
+ vi+1,j+ 1

2
+ vi,j− 1

2
+ vi+1,j− 1

2

)

. (A.34)
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A.4.4 Curvature and capillary terms

The capillary term M is discretized using second-order centered finite differences so that its discretization

is consistent with that of the pressure gradient:

Mi+ 1
2
,j = − 1

We

κi+ 1
2
,j

ρi+ 1
2
,j

(Hξ)i+1,j − (Hξ)i,j
∆x

, (A.35)

with

κi+ 1
2
,j =

1

2

(

κi+1,j + κi,j
)

, (A.36)

where κi,j is computed as the divergence of the normal vector, with the cell-based discrete divergence

operator (Sussman et al., 1999). In 2D:

κi,j =
1

2

(

n1
i+ 1

2
,j+ 1

2

− n1
i− 1

2
,j+ 1

2

∆x
+
n1
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2
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2

− n1
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2
,j− 1

2
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)

+
1

2

(
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2
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2
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2

∆y
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n2
i− 1

2
,j+ 1

2

− n2
i− 1

2
,j− 1

2

∆y

)

,

(A.37)

with (n1, n2) = Gφ/|Gφ| an approximation of the normal vector, such as, for instance,

(Gφ)1
i+ 1

2
,j+ 1

2

=
1

2

(

φi+1,j+1 − φi,j+1

∆x
+
φi+1,j − φi,j

∆x

)

. (A.38)

A.4.5 Pressure equation

Poisson equation for the pressure (A.28) is discretized using second-order centered finite differences. For

example, in 1D:
1

ρi+ 1
2

ζi+1 − ζi
∆x

− 1

ρi− 1
2

ζi − ζi−1

∆x

∆x
=

1

∆t

(

u∗
i+ 1

2

− u∗
i− 1

2

∆x

)

. (A.39)

A.4.6 Velocity field

Finally, the velocity field is obtained from (A.29), that is discretized with second-order centered finite

differences, which reads, in 2D:

ui+ 1
2
,j = u∗

i+ 1
2
,j
− 1

ρi+ 1
2
,j

ζi+1,j − ζi,j
∆x

. (A.40)
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For industrial purposes, the macroscale models of Cox (1986, 1998) have been implemented in the

commercial code ANSYS Fluent 15.0, that has been developed to simulate many flows that can be laminar,

turbulent, multiphase, compressible, etc. Axisymmetric and three-dimensional flows are simulated to

validate the implementation, and results are compared to that obtained with TPLS in Chapter 4.

B.1 Numerical methods

B.1.1 The volume-of-fluid method

The interesting option of the commercial software ANSYS Fluent is the volume-of-fluid (VOF) method

of Hirt and Nichols (1981), which is another interface-capturing method that allows simulating two-phase

flows with a one-fluid formulation, as level-set. It consists in locating the interface with the volume fraction

function of one fluid, arbitrarily chosen, that varies from 0 to 1 over a few cells next to the interface. As

the interface moves with the fluid, the evolution of the VOF function is given by the following advection

equation:
∂α

∂t
+ u · ∇α = 0. (B.1)
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As the VOF function is not continuous at the interface, a geometrical reconstruction of the interface is

generally done in order to accurately compute the advection term (Scardovelli and Zaleski, 1999) in

Equation (B.1). The VOF method does not suffer from mass conservation errors as some LS codes but the

calculation of surface tension forces and the location of the interface are not necessarily as accurate as

with LS methods. Hence some authors, such as Sussman and Puckett (2000), have developed a combined

LS-VOF method in order to take advantage of both methods.

In the VOF framework, fluid properties are calculated with the VOF function that is the volume fraction

of one fluid,

ρ(α) = αρ1 + (1− α)ρ2,

µ(α) = αµ1 + (1− α)µ2,
(B.2)

and volume conservation yields

α1 + α2 = 1. (B.3)

The single-fluid formulation of the Navier-Stokes equations for two fluids reads

∂

∂t
(ρu) + (u · ∇)(ρu) = −∇p+∇ · (2µS)− σκ

∇α
|∇α| + ρg, (B.4)

∂ρ

∂t
+∇ · (ρu) = 0, (B.5)

with S the rate-of-strain tensor, defined as

Si,j =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

− δi,j
3

∇ · u. (B.6)

In Equation (B.4), capillary effects are taken into account with the Continuum Surface Force model of

Brackbill et al. (1992), already presented in the previous Chapter 3.

B.1.2 Solution methods

Discretization is done in finite volumes on a collocated grid: all physical quantities such as velocity,

pressure, viscosity, density and volume fraction function are defined at cell centers. The PISO (Pressure-

Implicit wit Splitting Operator) algorithm of Issa (1985) is used for pressure-velocity coupling. Momentum

equations are solved with a second-order upwind scheme in space. The advection term in (B.1) is computed

with the CICSAM (Capturing Sharp Fluid Interfaces on Arbitrary Meshes) method of Ubbink and Issa

(1999) as the methodology developed in this project will further be used for simulations with complex

geometries.

B.1.3 Implementation of the macroscale model via UDFs

In ANSYS Fluent 15.0, the contact angle needs to be specified at wall boundaries. The contact-line speed

is first computed by using the temporary velocity of the PISO algorithm and the gradient of the volume

fraction. In 3D:

U∗
CL = − u∗∂xα+ v∗∂yα

√

(∂xα)2 + (∂yα)2
. (B.7)

where u∗ is the intermediate velocity, solution of a Helmholtz equation (see Equation (17) of Issa (1985)).

The corresponding contact angle obtained from the theory of Cox (1986, 1998) is then given to the solver

via User-Defined Functions (UDFs), and is used to compute the direction of the capillary term at the

contact line, n̂ = cos θdêx + sin θdêy, which is normal to the interface.
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Initial diameter (mm) 0.611

Impact speed (m.s−1) 0.079

µL (Pa.s) 1.003 · 10−3

ρL (kg.m−3) 998.2

µG (Pa.s) 1.7894 · 10−5

ρG (kg.m−3) 1.225

σ (kg.s−2) 0.0728

θw (°) 23

Slip parameter (m) 10−16

Table B.1: Parameters used for the simulation of the experiment of Ding et al. (2012) with ANSYS Fluent.

B.2 Results and discussion

B.2.1 Axisymmetric droplet spreading in inertial regime

The case simulated here is the one that was simulated in Section 4.4.2, also simulated by Sui and Spelt

(2013b) using the inertial theory of Cox (1986), and compared to the experiment of Ding et al. (2012).

The computational domain is a square with a no-slip condition at the bottom, symmetry boundaries on the

right-hand side and the top, and the left-hand side boundary is axisymmetric. The initial state is a sphere

of radius R centered at (0, R). Parameters of the simulation setup are gathered in Table B.1. Note that

the contact-line dynamics can be modeled using an unrealistically small slip length and a constant wall

angle; Sui and Spelt (2013b) obtained similar results using a realistic slip length and a dynamic wall angle.

Below, lengths are normalized by the initial radius of the drop and the timestep, made dimensionless by

the inertial-capillary time scale
√

ρR3/σ, is set equal to 2.5 · 10−5.

Figure B.1 presents qualitative results obtained accounting for contact-line dynamics; a second-stage

droplet pinch-off is observed, which is consistent with the experiment. Figure B.2 presents qualitative

results without the contact-line model, with a constant angle equal to the wall angle; a first-stage droplet

pinch-off is observed, in contrast with the experiment. Contact-line dynamics qualitatively affects the

flow up to the macroscale.

Time signals of the capillary number based on the contact-line speed are reported in Figure B.3. With the

macroscale model, grid convergence is achieved, and the physical events are well observed in the time

signal of the contact-line speed: the first capillary wave, coming back from the top of the drop, reaches

the contact-line around t = 1.0, and the second wave, coming from the re-expanding neck, gets to the

contact line after t = 2.0. Time signals obtained in VOF simulations look time-shifted. This is thought to

be due to the initial position of the center of the drop, which was actually different from that used with

TPLS, where the initial position of the center of the drop was
(

0, R(1− 1/16)1/2
)

against (0, R) here in

the VOF simulation. Indisputably, the pinch-off observed here is of second-stage type, not first-stage, and

the same characteristic events can be read in time signals of the contact-line speed. For the record, time

signals of the drop-base radius are presented in Figure B.4 for the case with macroscale model and the

case with constant contact angle. As expected, spreading is overestimated if the contact-line dynamics is

not taken into account.
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Figure B.1: Evolution of the shape using the dynamic contact angle model. A second-stage pinch-off is
obtained, which is consistent with the experiment.

Figure B.2: Evolution of the shape using a constant contact angle. A first-stage pinch-off is obtained,
which is not consistent with the experiment.
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Figure B.3: Contact-line speed as a function of time for inertial spreading.
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Figure B.4: Comparison of time signals of drop base radius between the case with dynamic contact angle
and the case with constant contact angle for inertial spreading; h = 1/120.

B.2.2 Sliding drop in viscous regime

The purpose of this section is to validate the implementation of the macroscale model in 3D. The setup

is exactly that of Section 4.4.3, with the governing parameter Bo sinα set to 0.65, corresponding to the

oval regime observed by Le Grand et al. (2005). The dynamic angle θd is obtained from the viscous

theory of Cox (1986) (4.3) with θw,A = 50.5°, θw,R = 45.5°, a droplet volume V = 6 mm3, a slip length

λV 1/3 = 10−9 m (consistent with the experiment), Qi = 0, rµ = 0.001 and rρ = 0.001. Initially, the

drop is a spherical cap with a contact angle equal to θw,A − 0.5°. Lengths are scaled with V 1/3, where V

is the drop volume, and time is normalized by the viscous time scale ρV 2/3/µ. Simulation results with a

grid spacing h = 1/32 and a time step ∆t = 5 · 10−6 were obtained.

A comparison with both experimental results of Le Grand et al. (2005) and numerical results obtained

with TPLS in Section 4.4.3 is undertaken aiming to support the reliability of implementations of both

codes. A top view of the oval drop is shown in Figure B.5, where the interface is colored by the height. As

expected, an oval drop is observed, which is consistent with experiments. Qualitatively, results compare

very well with those obtained with TPLS in Section 4.4.3. Time signals of the base length, the base width,

the height and the speed of the drop are presented in Figure B.6, along with quantitative results obtained

with TPLS in Section 4.4.3. A steady state is well achieved and quantitative results in terms of shape and

sliding speed obtained are all within 20% from experimental data, which is satisfactory for such a coarse

grid. Further convergence tests would have to be performed to assess the reliability of the results.
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(a) Results obtained with ANSYS Fluent. The periodic boundary is at x = 4, the results have been duplicated and
translated for representation.

(b) Results obtained with TPLS.

Figure B.5: Top views of oval sliding drops obtained with the two codes; (Bo sinα, t) = (0.65, 1.5).
Flow is from left to right. The interface is colored by the height.
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Figure B.6: Quantitative results for the oval sliding drop; Bo sinα = 0.65.

B.3 Conclusion

The macroscale models for viscous regime (Cox, 1986) and inertial regime (Cox, 1998) were implemented

in the VOF solver of ANSYS Fluent 15.0. Convergence tests were conducted for axisymmetric droplet

spreading in inertial regime, for which good qualitative and quantitative agreement was achieved with the

experiment and prior numerical work. The subgrid model was also implemented in 3D and tested on a

coarse grid against drop sliding in viscous regime. Good qualitative agreement was obtained with the

experiment and numerical results obtained with TPLS for the same test case.

143





Appendix C

Experimental uncertainties

Outline
C.1 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2 Contact angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.2.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.2.2 Apparent angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.3 Inclined-plane experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.3.1 Dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.3.2 Flow-rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.3.3 Liquid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.3.4 Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.3.5 Liquid film thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.3.6 Wavy-film amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.3.7 Interface velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.4 Complex-surface experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.4.1 Liquid film thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C.4.2 Liquid film thickness measurement through a transparent medium . . . . . . . . 154

This appendix first summarizes key aspects of uncertainty analysis and then presents, for each experimental

setup, which errors are accounted for in measurement uncertainties.

C.1 Uncertainty analysis

Uncertainty analysis consists in identifying different sources of errors, systematic and random, in order to

estimate the measurement uncertainty. Let consider the case of multiple-sample analysis: the result for

the true value v is presented as the sum of a mean measured value v̄ plus the measurement uncertainty δv

for a set of M samples:

v = v̄ ± δv. (C.1)
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The measurement uncertainty is an estimate of the combination of all measurement errors, systematic and

random, and represents a confidence interval for the true value. For instance, for normally distributed

random errors and in absence of any systematic error, the uncertainty would be 1.960σ, where σ is the

standard deviation, the coefficient 1.960 corresponding to a probability of 95% for the true value to lie in

the range [v̄ − 1.960σ, v̄ + 1.960σ]. But this is true only for an infinity of samples. For M samples, the

true value v would read

v = v̄ ± t(M,p)
SM√
M
, (C.2)

with SM the experimental standard deviation,

SM (v) =

√

√

√

√

1

M − 1

M
∑

i=1

(vi − v̄)2, (C.3)

and t(M,p) the Student multiplier of the two-tailed distribution, p being the probability for one vi, i ∈
J1,MK, to lie in the range

[

v̄ − t(M,p)SM/
√
M, v̄ + t(M,p)SM/

√
M
]

. Note that lim
M→∞

t(M,.95) = 1.960,

corresponding to a normal distribution.

In this work, the multiplier t(60,.95) = 2.000 will be used in calculations of random uncertainties for

a set of measurements with a number of samples greater than 60.

From the law of propagation of uncertainties (Joint Committee for Guides in Metrology, 2008), for a

system of variables (vj)j∈J1,NK, the overall uncertainty in a measurement of a variable vk, k ∈ J1, NK, is

a combination of uncertainties due to each variable:

δvk =

(

N
∑

j=1

(

∂vk

∂vj
δvj
)2
)1/2

, (C.4)

where (∂vk/∂vj)j∈J1,NK\k are the sensitivity coefficients. When the variable vk can be recast in the form

vk =
∏

j∈J1,NK\{k}

(vj)aj ,

the calculation of the relative uncertainty is straightforward (see Moffat (1988)):

δv

v
=

(

∑

j∈J1,NK\{k}

(

aj
δvj

vj

)2
)1/2

. (C.5)

The overall uncertainty is calculated as the root mean square of systematic uncertainties δsv and random

uncertainties δrv, as they are independent:

δv =
√

(δsv)2 + (δrv)2. (C.6)

The systematic uncertainty is generally a combination of uncertainties due to accuracy of sensors,

calibration, positioning of sensors, post-processing, etc. The root-mean-square operator is always used to

calculate a combination of uncertainties due to independent sources of uncertainty.
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C.2 Contact angles

C.2.1 Scaling

The scaling procedure automatically determines the apparent size of a pixel from the knowledge of the

outer diameter of the needle, which is d = 206.0± 0.5 µm. The scaling factor α in the experiment was

determined to be about 210 pix/mm. Let dp be the outer diameter of the needle in pixels. The functional

relationship is α = dp/d. The relative systematic uncertainty in the determination of the scale factor α

reads

δsα

α
=

(

(

δdp
dp

)2

+

(

δd

d

)2
)1/2

, (C.7)

Considering an error of 0.1 pixel in locating the outer edges of the needle and estimating the sensitivity

coefficients with the upper or lower limits of the confidence intervals that maximize uncertainties, the

scaling factor reads α = 210.0± 0.7 pix/mm.

C.2.2 Apparent angles

For the determination of apparent angles, the interface shape next to the contact line is automatically fitted

by the software to a general equation of the form ax2 + by2 + cxy + dx+ ey + f = 0, or f(x, y) = 0.

The software reports the mean square root error in micrometers. The tangent to this curve at the contact

line yields the apparent angle. A normal vector of the tangent to the curve f(x, y) = 0, at a point (x0, y0),

is ∇f(x0, y0). The resolution of ∇f(x0, y0) · (t1, t2) = 0 for the direction vector (t1, t2) yields the slope

of the tangent, hence the apparent contact angle.

The software only reports the fit error in micrometers, which is basically lower than 1 µm. The upper

limit, will be used for estimating the systematic error, such as δx = δy = 1 µm. The uncertainty in the

measurement of θ reads

δsθ =

(

(

∂θ

∂x
δx

)2

+

(

∂θ

∂y
δy

)2
)1/2

. (C.8)

It is reasonable to consider that the apparent angle is estimated over a distance dp = 30 pixels for

estimating sensitivity coefficients, even though such a small distance may overestimate the uncertainty. In

this case, sensitivity coefficients are equal to α/dp, where α is the scale factor.

C.2.2.1 Advancing angle

Several sets of measurements of advancing angles have been performed. A result is presented as a mean

plus a measurement uncertainty, that accounts for systematic and random errors. The uncertainty due to

random errors is δrθ = t(60,.95)SM/
√
M and the overall uncertainty is obtained from (C.6). Tables C.1

and C.2 give experimental uncertainties in measurements of advancing and receding angles, respectively.

C.2.2.2 Receding angle

The measurement uncertainty in the receding angle is estimated the same way as for the advancing angle,

except, of course, that the Student t multiplier is greater than for advancing angles because of a lower

number of samples.
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δsθA (°) δrθA (°) δθA (°)

Water on PMMA 0.8 3.6 3.7

Water on stainless steel 0.8 8.2 8.2

NaOH 0.1 mol/L on stainless steel 0.8 7.6 7.7

Table C.1: Experimental uncertainties in advancing angle measurements.

δsθR (°) δrθR (°) δθR (°)

Water on PMMA 0.8 3.9 4.0

Water on stainless steel 0.8 10.5 10.5

NaOH 0.1 mol/L on stainless steel 0.8 8.8 8.8

Table C.2: Experimental uncertainties in receding angle measurements.

C.3 Inclined-plane experiment

C.3.1 Dynamic viscosity

Glycerine mixtures have here been characterized by dynamic viscosity measurements with a rheometer

MCR72 from Anton Paar GmbH, in a cone-plate mode. Viscosity measurement are carried out at constant

shear rate γ̇ = ω̇/α, where ω̇ and α are the angular speed and the opening angle, respectively. The

dynamic viscosity is just the shear stress 3T/(2πR3), with a torque T and a radius R, divided by the

shear rate, that is µ = 3αT/(2πR3ω̇). The device returns the dynamic viscosity with an accuracy of

0.001 mPa.s. Many uncertainties are a priori involved in the determination of the dynamic viscosity: that

in the temperature (controlled here and known with an accuracy of 0.1°C), that in the opening angle (δα),

that in the radius (δR), that in the shear rate (δγ̇), and that in the torque (known with a resolution of 10−9

kg.m2.s−2). For the sake of clarity, the uncertainties presented in the manuscript are random uncertainties

calculated from values of dynamic viscosity returned by the software.

C.3.2 Flow-rate

As stated in the manuscript, the flow rate is controlled with a volumetric pump with helical lobes, and

measured with an electromagnetic flowmeter with an accuracy of 0.5 mL.s−1. In the experiment, during

a set of measurements, the flowmeter has measured changes in the volume flow rate of ±1 mL.s−1.

A systematic uncertainty of 2 mL.s−1 shall be used in subsequent uncertainty calculations, that of the

Reynolds number for instance.

C.3.3 Liquid density

The liquid density ρ has been determined by weighing some liquid volume V = 20.0± 0.1 mL with an

electronic weighing scale, accurate down to 10−3 g. The relative systematic uncertainty in that protocol is

δsρ

ρ
=

(

(

δm

m

)2

+

(

δV

V

)2
)1/2

, (C.9)
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to which the random error must be added.

C.3.4 Reynolds number

The Reynolds number based on the volumetric flow rate is Re = ρQ/(µb), where b is the channel depth,

yielding a relative uncertainty

δRe

Re
=

(

(

δρ

ρ

)2

+

(

δQ

Q

)2

+

(

δµ

µ

)2

+

(

δb

b

)2
)1/2

. (C.10)

C.3.5 Liquid film thickness

For the CCI system, the manufacturer reports an axial accuracy of δsd = 0.9 µm in a distance measurement,

hence an accuracy of δsh = 1.8 µm in an indirect thickness measurement, as carried out in this work. This

accuracy holds for a measurement in normal conditions. The sensor can receive a signal with a maximum

tilt angle (with respect to the reflective object) θmax = 12°. The sensor can still receive a signal for angles

greater than θmax when the reflective surface is diffusive, but the value θmax specified by the manufacturer

will be used in the calculations of uncertainties. This tilt angle introduces a relative systematic uncertainty

δsh

h
=

1

cos θmax
− 1. (C.11)

In the flat-film configuration, an additional systematic uncertainty, due to uncertainties in the flow rate,

fluid properties and inclination angle, must be taken into account, consistently with the flat-film solution

h =
(

3µQ/(bρg sinβ)
)1/3

, yielding an additional relative systematic uncertainty, that reads, making use

of Equation (C.10):

δsh

h
=

1

3

(

(

δRe

Re

)2

+

(

δβ

tanβ

)2
)1/2

. (C.12)

The overall systematic uncertainty is the mean square root of the axial accuracy, the uncertainty due

to the tilt angle, and the uncertainty in other variables. The uncertainty due to random errors is δrh =

t(M,.95)SM
√
M and the overall uncertainty is obtained from (C.6).

C.3.6 Wavy-film amplitude

In this case, a 1D sinusoidal perturbation is introduced at the inlet and propagates downstream. The time

signal is acquired during 30 periods and results are reported of the wavy-film amplitude.

C.3.6.1 CCI measurements

Distance measurement

The systematic uncertainty in the distance measurement is calculated accounting for the accuracy of the

system and the maximum systematic error due to an eventual tilt angle.
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Amplitudes of the time signal, A0 and B0

Calculations of the amplitudes from the time signal yields an additional systematic error. The time signal

reads s0(t) = A0 cos(ωt) + B0 sin(ωt), and amplitudes are obtained by integrating the signal over n

periods:

A0 =
2

nT

t0+nT
∫

t0

s0(t) cos(ωt)dt,

B0 =
2

nT

t0+nT
∫

t0

s0(t) sin(ωt)dt.

(C.13)

Signals are integrated over I = [t0, t0 +∆t] with the trapezium rule,

A0 =
2

nT

N−2
∑

i=0

(

s0(ti) cos(ωti) + s0(ti+1) cos(ωti+1)
)∆t

2
,

B0 =
2

nT

N−2
∑

i=0

(

s0(ti) sin(ωti) + s0(ti+1) sin(ωti+1)
)∆t

2
,

(C.14)

with N the number of samples. For a function g continuous on I = [ti, ti+1], the error in the integration

of g over I using the trapezium rule is, at leading-order, −(ti+1 − ti)
3g′′(ti)/12, yielding systematic

uncertainties in A0 and B0:

δsA0 =
2

nT

∆t3

12

∣

∣

∣

∣

N−2
∑

i=0

2ω2
(

A0 cos(2ωti) +B0 sin(2ωti)
)

∣

∣

∣

∣

,

δsB0 =
2

nT

∆t3

12

∣

∣

∣

∣

N−2
∑

i=0

2ω2
(

A0 sin(2ωti)−B0 cos(2ωti)
)

∣

∣

∣

∣

.

(C.15)

Actual amplitude C0

C0 =
√

A2
0 +B2

0 so the systematic uncertainty in the amplitude is

δsC0 =

(

(

A0
√

A2
0 +B2

0

δA0

)2

+

(

B0
√

A2
0 +B2

0

δB0

)2
)1/2

, (C.16)

to which the axial accuracy and the eventual tilt of the CCI system must be added.

Phase φ0

Knowing that φ0 = arctan(B0/A0), obtaining the uncertainty in the phase difference is straightforward:

δsφ0 =

(

(

− B0

A0

√

A2
0 +B2

0

δA0

)2

+

(

δB0
√

A2
0 +B2

0

)2
)1/2

. (C.17)

C.3.6.2 PSD measurements

Phase and amplitudes of the time signal

Amplitudes of the time signal, A1, B1 and φ1 are calculated the same way as A0, B0 and φ0.
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δsα/α δrα/α δα/α

0.0167 0.0005 0.0168

Table C.3: Experimental uncertainties in the coefficient of proportionality of the PSD.

Distance between the two measurement points, ∆x

The distance between the two measurement points is measured before starting a set of measurements, with

a ruler. ∆x = 10.0± 0.5 mm in the sets of measurements carried out here.

Wavelength, λ

The wavelength is λ = 2π∆x/(φ1 − φ0), so the relative systematic uncertainty is:

δsλ

λ
=

(

(

δ∆x

∆x

)2

+

(

δφ0
φ0

)2

+

(

δφ1
φ1

)2
)1/2

. (C.18)

Linearity of the PSD

The PSD returns the voltages at the terminals of the sensor corresponding to the coordinates of the Laser

beam on the sensor. The PSD is a linear sensor and its coefficient of proportionality α, in mm.V−1, is

determined using a linear motorized stage with a 25-mm travel range and an accuracy in displacement

δd = 0.5 µm. The accuracy in the position of the Laser beam on the sensor is δX = 25 µm and the

resolution in the voltage is δV = 5 mV. The relative systematic uncertainty in the determination of the

coefficient of proportionality is

δsα

α
=

(

(

2δX

∆X

)2

+

(

2δd

∆X

)2

+

(

2δV

∆VX

)2
)1/2

, (C.19)

where ∆VX is the voltage at the terminals of the sensor corresponding to the two abscissas Xmin and

Xmax of the Laser beam on the sensor. The additional random uncertainty due to fitting ∆X to αVX is

obtained with Student distribution, such as

δrα

α
=

2SM (X)√
M∆X

, (C.20)

with M the number of samples, and the overall relative uncertainty is just the combination of systematic

and random uncertainties

δα

α
=

(

(

δsα

α

)2

+

(

δrα

α

)2
)1/2

. (C.21)

Relative uncertainties are gathered in Table C.3. Finally, the measured coefficient of proportionality is

α = 0.1637± 0.0027 mm.V−1.

Displacement on the PSD, ∆X

The additional uncertainty in the displacement ∆X on the PSD is due to the calibration procedure.

Basically, the position on the sensor isX(t) = αs1(t), with α the coefficient of proportionality. Therefore,
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the systematic uncertainty in the displacement is

δsX =

(

(A2
1 +B2

1)(δα)
2 +

(

αA1
√

A2
1 +B2

1

δA1

)2

+

(

αB1
√

A2
1 +B2

1

δB1

)2
)1/2

. (C.22)

Distance from the PSD to the interface, H

This has been measured with a measuring tape, H = 18.0± 0.5 cm in the sets of measurements carried

out here.

Refractive index

The refractive index has not been measured here. However, density and viscosity have been measured,

and a corresponding value n = 1.44± 0.01 has been selected, amongst the tabulated values gathered by

the Glycerine Producers’ Association (1963), and used in further calculations.

Wavy-film amplitude

The amplitude indirectly measured with the PSD is C1 = λ∆X/
(

(n− 1)8πH
)

, so the relative systematic

uncertainty is

δsC1

C1
=

(

(

δλ

λ

)2

+

(

δ∆X

∆X

)2

+

(

δn

n− 1

)2

+

(

δH

H

)2
)1/2

. (C.23)

C.3.7 Interface velocity

C.3.7.1 PIV

The different sources of uncertainties in PIV are identified below.

Scaling

The scaling procedure consists in determining the apparent size of a pixel by using a ruler. It is reasonable

here to consider an accuracy δdp of the order of 20 pixels in the procedure, yielding a relative systematic

uncertainty in the scale factor δsα/α = δdp/dp. In these sets of measurements dp is of the order of 2000

pixels so the scale factor reads α = 7.0± 0.5%. This introduces an uncertainty in a displacement d, of

which the relative systematic uncertainty is

δsd

d
=
δsα

α
, (C.24)

and the relative uncertainty in the velocity component in the x-direction, δsu · êx = δsd/∆t, is

δsu · êx
u · êx

=
δsα

α
, (C.25)

where ∆t is the time difference between two successive frames. It will be considered here that the value

of ∆t is exact, although this is uncertain.
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Cross-correlation algorithm

In PIV, the accuracy in the determination of the displacement of a pattern, δd, depends on the cross-

correlation algorithm that is used, but is usually in the range 0.04 to 0.1 pixel (Stanislas et al., 2008).

Therefore, the systematic uncertainty in a velocity component, in the x-direction for instance, is

δsu · êx =
u · êx
|u|

δd

∆t
. (C.26)

δd is here set to 0.1 pixel for uncertainty calculations. This must be combined with the uncertainty due to

the scaling procedure.

Particular case of a flat film

For the flat film, an uncertainty must be taken into account, arising from uncertainties in parameters of the

system. The analytical free-surface velocity is Uth = 3
2

(

Q2ρg sinβ/(3µb2)
)1/3

, and the corresponding

systematic relative uncertainty is:

δsUth

Uth
=

1

3

(

(

2δQ

Q

)2

+

(

δρ

ρ

)2

+

(

δβ

tanβ

)2

+

(

δµ

µ

)2

+

(

2δb

b

)2
)1/2

(C.27)

Sum of cross-correlation functions and space-averaging

In Section 5.2.3, results are presented of the free-surface velocity magnitude by space-averaging the mean

velocity field obtained from the temporal summation of correlation functions. The uncertainty introduced

in the summation of correlation functions cannot be quantified here and will be contained in random

uncertainties due to the final space-averaging. The random uncertainty due to that space-averaging is

quantified using Student distribution.

C.3.7.2 PTV

The uncertainty due to the scaling procedure and that from the analytical solution prevail. For PTV

measurements, the cross-correlation-based algorithm of Brevis et al. (2011) is used. The accuracy in

locating a particle will be taken equal to 0.1 pixel (Udrea et al., 1996; Lei et al., 2012), hence an accuracy

in a displacement δd = 0.2 pixels. Additional sources of errors may arise due to overlaps of particles

(Guezennec et al., 1994).

C.4 Complex-surface experiment

C.4.1 Liquid film thickness

As mentioned in Section C.3.5, components of systematic uncertainty in an indirect measurement of

the liquid film thickness are due to the accuracy of the system, δsh = 1.8 µm here, and the uncertainty

due to the tilt of the sensor, that introduces a relative systematic uncertainty δsh/h = 1/ cos θmax − 1.

The uncertainty due to random errors, t(M,.95)SM
√
M , must be added to systematic uncertainties to

yield the overall uncertainty. The film thickness normalized by (g sinαc/ν
2)−1/3, is denoted by h∗. The
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normalization introduces a further relative systematic uncertainty due to kinematic viscosity,

δsh∗

h∗
=

(

(

δsh

h

)2

+

(

3

2

δsν

ν

)2
)1/2

, (C.28)

to which the random uncertainty must be added. The dynamic viscosity of the fluid was not measured but

was taken as νL = (1.0034± 0.0248)10−6 m2.s−1, corresponding to a temperature of 20.0± 1.0 °C.

C.4.2 Liquid film thickness measurement through a transparent medium

The interposition of a glass of thickness t between the optical pen and its measuring range introduces a

bias in distance measurement, that is actually function of the wavelength corresponding to the distance

seen by the sensor. Let γ be the angle that the glass makes with the optical axis of the optical pen. We here

want to correct that bias, or at least estimate its maximum and account for it in uncertainty calculations.

Figure C.1 shows the configuration for that, with the origin O here chosen to coincide with the signal seen

by the sensor. For a given wavelength, the bias due to the interposition of the glass thickness is unique:

whatever the position of the glass, the optical path difference introduced by that transparent medium is the

same, and only depends on the angle γ. The choice of the origin O is thus completely arbitrary and the

calculation of the bias does not depend on the position of the origin. In Figure C.1, it can be seen that

the fact that the transparent medium is not perpendicular to the optical axis deviates the measuring range

from the optical axis, whereas the deviation would be along the optical axis in an orthogonal configuration

(Dietze et al., 2009). The deviation, or the position of M ′(x′, y′) is wanted. For that, two intersection

points of the light rays with the glass slide are introduced, Ik, k ∈ {d, u}. The lengths δk = |OIk| are

also introduced. For k ∈ {d, u},

δk = t(tan ik − tan rk), (C.29)

hence, using the Snell-Descartes law of refraction,

δk = t

(

tan ik −
sin ik

√

n2 − sin2 ik

)

. (C.30)

Points Id and Iu thus have the coordinates

(xk, yk) = (−δk cos γ,−δk sin γ), k ∈ {d, u}, (C.31)

and the straight lines (Dd) and (Du) have equations

y − yd =− tan(ω − id)(x− xd),

y − yu =tan(iu − ω)(x− xu),
(C.32)

From there, the deviations in x and y direction are easily obtained, and for a distance x0 seen by the

sensor, the actual distance x′ reads

x′ = x0 +
yd − yu + xd tan(ω − id) + xu tan(iu − ω)

tan(ω − id) + tan(iu − ω)
, (C.33)

and the deviation from the optical axis is

y′ = yd − tan(ω − id)(x
′ − xd). (C.34)
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t

iu
ω

ru

id

a
ω

Iu

Id x

(Du)

(Dd)

Ordγ

M ′(x′, y′)

Figure C.1: Modification of the measuring range of the CCI system by interposition of a transparent
medium of width t and refraction index n. a is the size of the chromatic lens. The axis Ox coincides with
the optical axis of the optical pen.

Noting that ω − id = iu − ω, γ + ω = π/2, and making use of (C.30)–(C.31), (C.33) and (C.34) recast

x′ = x0 +
t

2

(

sin γ

cot(γ + id)
+ cos γ

)

[

tan ik −
sin ik

√

n2 − sin2 ik

]k=u

k=d

,

y′ = − cot(γ + id)x
′ − t

(

tan id −
sin id

√

n2 − sin2 id

)

(

sin γ − cot(γ + id) cos γ
)

.

(C.35)

The glass is of BK7 type and the CCI sensor acquires a signal for wavelengths in the range 400–700 nm,

corresponding to refractive indices nblue = 1.5308 and nred = 1.5131, respectively (Polyanskiy, 2016).

The refractive index was actually determined experimentally for a wavelength 532 nm, by measuring

deviations of a Laser beam spot. A value of n = 1.5146 with a thickness t = 14.95 mm were determined

with the least-squares method. For information, the glass thickness is 15.0 millimeters-wide according

to the manufacturer and the refractive index in the database of Polyanskiy (2016) corresponding to that

wavelength is 1.5195. We now want the maximum biases x′ − x0 and y′, corresponding to the wavelength

the wavelengths 400 nm and 700 nm. For that, the angle ω − id can actually be calculated knowing the

size of the lens, a (see Figure C.1), and the minimum working distance, xmin, the measuring range, ∆x.

Here, a = 15.0 mm, xmin = 66.9 mm and ∆x = 10000 µm. The angles ω − id,blue are obtained from

tan(ω − id,blue) = a/xmin and tan(ω − id,red) = a/(xmin +∆x), yielding

cot(γ + id,blue) =
a

xmin
, (C.36)
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Wavelength x′ − x0 y′

400 nm 22.0 mm -13.7 mm

700 nm 21.1 mm -12.5 mm

Table C.4: Biases introduced in distance measurement by interposing a glass slide between the optical pen
and the reflective interface. The numerical values are that obtained for given CCI system, glass thickness,
and incidence angle.

and

cot(γ + id,red) =
a

xmin +∆x
. (C.37)

The angle γ is determined by the triangular shape of large corrugations of the structured packing sheet,

γ = arctan

(

2hu
λu

)

. (C.38)

Numerical values of biases introduced by the glass thickness are gathered in Table C.4.

For an indirect thickness measurement (distance measurement for the reference and distance measurement

with the liquid film), as carried out here, the sensor would measure a thickness equal to the measuring

range ∆x, corresponding to an actual thickness (x′ − x0)blue − (x′ − x0)red. Finally, as the functional

relationship between the distance measured and the wavelength is not provided by the manufacturer,

the experimental thickness reported in Section 6.4 will be that measured plus an additional positive

uncertainty, corresponding to the mean value of the relative systematic uncertainty, calculated with the

numerical values of Table C.4, that is

δsh

h
=

(x′ − x0)blue − (x′ − x0)red

∆x
− 1, (C.39)

hence δsh/h = 0.083. On the other hand, the mean difference in the deviation from the optical axis of

the optical pen is, between two distance measurements, (y′red − y′blue)/∆x = 0.120. The thicknesses

measured in this experiment are lower than 275 µm, corresponding to a difference in y coordinate between

the two measurement points lower than 33 µm, which first seems to be reasonable given that the amplitude

of small corrugations is 2.8 mm. This is discussed further in Section 6.4.
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