Competing Orders in URu 2 Si 2 : from Ordered Magnetism to Spin Liquid Phases
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The main objective of this thesis is to investigate the competing ordered phases in the metallic heavy fermion compound URu 2 Si 2 , which displays a body-centered tetragonal lattice. We first provide a study case of the competition between antiferromagnetic (AF) and spin liquid phases. The antiferromagnetic state is study with spin-wave theory.

Whereas the spin liquid analysis has been carried out in an algebraic spin liquid representation. In the second part, we describe an effective theory for Raman scattering experiments at these particular phases. We provide insight about the hidden order phase displayed by the heavy fermion compound URu 2 Si 2 .

Ordres en compétition dans URu 2 Si 2 : de l'ordre magnétique aux phases de liquide de spin.

Résumé: L'objectif central de cette thèse est d'étudier des phases ordonnées en compétition dans des matériaux magnétiques présentant une structure cristalline tétragonale centrée. Ce travail est divisé en deux parties principales. Dans la première, nous présentons les résultats de notre étude de la compétition entre des états ordonnés antiferromagnétiques et des phases liquides de spin. Nous montrons comment ces dernières peuvent être stabilisées par la frustration géométrique et par une généralisation de la symétrie de spin au groupe SU(n). Les états antiferromagnétiques sont décrits par une théorie d'onde de spin et l'analyse de liquide de spin est effectuée par une représentation fermionique des opérateurs de spin. Dans la deuxième partie, nous décrivons une théorie effective pour dércrire des expériences de diffusion Raman. Nous fournissons un aperçu de la phase d'ordre caché affichée par le composé de fermions lourds URu 2 Si 2 .

Prologue.

In this thesis, we analyze the competing magnetic phases of systems with a three dimensional lattice structure. Our main object are the body-centered tetragonal (BCT) lattices, whose structure is shown in Fig(1(b)). This is one of the 14 three-dimensional Bravais lattices types [Ashcroft 1976] and this crystalline structure is realized in several strongly correlated electrons materials with unusual magnetic and transport properties. It belongs to the point group D 4h (space group No. 139 I4/mmm). Among these transformations we can mention reflection, inversion and rotations of 2π/n around a specific axis, in which n can be an integer. Different examples of materials, including the heavy fermion systems [Stewart 1984] and rare earth atoms, display the BCT lattice structure and have been intensively studied for the last decades.

In URu 2 Si 2 , a still mysterious hidden order (HO) phase was discovered in 1986, that appears below the critical temperature T 0 ≈ 17 K close to a pressure-induced antiferromagnetic (AF) transition [Palstra 1985, Maple 1986, Mydosh 2011]. The compounds YbRh 2 Si 2 and CeRu 2 Si 2 display non-Fermi liquid properties that are observed in the vicinity of the antiferromagnetic quantum phase transitions and are still poorly understood [Custers 2003, Friedemann 2009]. The CeCu 2 Si 2 was the first heavy fermion material in 

Contents

which unconventional superconductivity was discovered in 1979 close to an AF transition [Steglich 1979]. The CePd 2 Si 2 exhibits unconventional superconductivity which is related to an AF transition [Mathur 1998].

We will particularly focus on the problem of the hidden order phase in URu 2 Si 2 . We begin by reviewing the current state of research of the hidden order in URu 2 Si 2 .

The problem of the HO phase in the heavy fermion compound URu 2 Si 2 .

After thirty years of intense investigations, the origin of the mysterious hidden order (HO) phase of URu 2 Si 2 is still unrevealed despite strong preliminary experimental indications [Palstra 1985, Maple 1986] confirming the phase transition from a metallic state to a newly ordered phase. The properties of this particular system comes from the Uranium element, which is from the actinide family in the periodic table. The URu 2 Si 2 can display puzzling features in which the unusual properties derive directly from the U open 5f shell.

The systems is also known as a moderate heavy fermion with a Sommerfeld coefficient of ∼ 180 m J/mol K 2 . The mobile electrons, at low temperatures, behave as if their masses were a hundred times heavier than the mass of an electron in silicon or in a simple metal.

Such systems exhibit a great variety of interesting phenomena like anomalies in electrical and thermal conductivities, quantum phase transitions between magnetically ordered state, superconductivity and, finally, the emergence and dissociation of local magnetic moments.

URu 2 Si 2 , represented in Fig( 2), has a body-centered-tetragonal (BCT) crystal structure at high temperatures, with lattice parameters a = 4.121 Å and c = 9.681 Å . Its first Brillouin zone is shown in figure (1(a)). The transition at T 0 ≈ 17.5 K is a second order phase transition to a new phase well characterized by bulk thermodynamic and transport measurements [START_REF] Broholm | [END_REF], Maple 1986, Palstra 1985]. The order parameter and the elementary excitations of the newly ordered phase are still unknown, i.e., they cannot be determined directly from experiments. This fascinating new phase is at the center of considerable discussion concerning the origin of the mechanism that is governing it.

The phase diagram (Fig. 3) obtained for the URu 2 Si 2 is very interesting [Hassinger 2008[START_REF] Villaume | Signature of hidden order in heavy fermion superconductor URu 2 Si 2 : Resonance at the wave vector Q 0 = (1, 0, 0)[END_REF]]. In ambient pressure, the system undergoes by a second-order phase transition at T 0 = 17.5 K to a new hidden order phase with a small magnetic moment µ ≈ 0.02 µB. At very low temperature, a superconducting phase is found below T ≈ 1.5 K. In the PM phase, the lattice structure is BCT, which belongs to the space group No 139 (I4/mmm).

When entering on the HO phase, the structure becomes simple tetragonal (ST) , which belongs to the point group symmetry No 136 (P 4 2 /mnm) [Harima 2010]. The possibility that HO displays a lower point group symmetry, with a subgroup of No 136 will be discussed in chapter 3 of this thesis.

Magnetic measurements reported an Ising like magnetic response along the c axis [Palstra 1985]. Transport and thermodynamic measurements suggest a considerable Fermi surface reconstruction occurring at the HO transition [Palstra 1985, Maple 1986]. The measured specific heat and the jump in the resistivity at the transition are consistent with the opening of an energy gap over a substantial part of the Fermi surface.

Over the years, different proposals have been put forward to explain the hidden order phase, which can be roughly classified as itinerant and localized. To mention some of them:

There have been proposals in terms of the emergence of local currents [START_REF] Haule | Arrested Kondo effect and hidden order in URu 2 Si 2[END_REF]], multipolar order [Harima 2010[START_REF] Kusunose | On the Hidden Order in URu2Si2 -Antiferro Hexadecapole Order and Its Consequences[END_REF], spin liquids [Pépin 2011, Thomas 2013], unconventional density waves [Riseborough 2012], hastatic and nematic order [Chandra 2013, Okazaki 2011]. Moreover, it is well known that a second-order phase transition is always accompanied by some symmetry breaking, such as the time-reversal case in antiferromagnets or U(1) gauge symmetry breaking in superconductors. The order parameter is introduced to describe the ordered state with reduced symmetries. The manifestation of the HO should not be different. In this respect, however, if the OP is unknown the question of what symmetry is effectively broken remains uncertain. pressure a phase transition occurs from the paramagnetic (PM) phase to the so called hidden-order (HO), at T 0 ≈17.5 K. The phase diagram exhibits also data from resistivity (circles) and ac calorimetric (triangles measurements). At low pressure, the HO phase is dominant and there is a first order phase transition to a AF phase when a pressure ≈ 0.5 GPa is applied.

U Ru

There is a consensus about the change in the lattice periodic structure when passing from the paramagnetic (PM) phase -in which the system has a body centered tetragonal (BCT) lattice structure -to the HO regime -a simple tetragonal structure (ST). This is manifested by the folding in the Brillouin zone along the c axis of the BCT lattice [Buhot 2014, Boariu 2013, Hassinger 2010], see Fig.

(1). Hence, the suggestion arises that the HO transition breaks BCT translational symmetry. It is also argued that the change in lattice structure can cause an instability on the Fermi surface. As a consequence of that, there is a large Fermi surface gap in some regions in k space [Maple 1986[START_REF] Elgazzar | [END_REF], Boariu 2013, Tonegawa 2012].

A complementary approach was introduced by Harima-Miyake-Flouquet [Harima 2010]. They present a point group analysis of the URu 2 Si 2 crystal structure. Thereby it is possible to associate the HO transition as a change of crystal point group symmetry. They claim that a second-order structural transition occurs from the "mother" space group I4/mmm to P 4 2 /mnm based on a systematic analysis of various scattering data [Saitoh 2005].

Some of these questions do call for further investigation, new theoretical proposals and also modern experimental technique investigations. It is not our intention here to solve all these questions. However, we try to provide some explanations using a simpler case. The next sections are devoted to present briefly the methodology employed in this work and to give a general overview before engaging ourselves in a detailed analysis.

Overview.

The previous section serves as an introduction to the problem of the exciting competing ordered phases in the Heavy fermion compound URu 2 Si 2 . We want to establish connections between our results and the question of HO phase.

In the fist part of this work, we provide a case study of the competition between antiferromagnetic (AF) and spin liquid (SL) phases. The AF is represented in a spin-wave theory, while the spin liquid analysis is carried out in an algebraic spin liquid representation.

In Chapter 1, we start with an introduction on the phenomenon of Frustration in antiferromagnets. We give an overview about frustrated systems, with frustration being a result of competing interactions that are not fully predominating against each other or with symmetries which lack a clear geometrical definition. In particular, the BCT structures possess those two characteristics. We introduce the Heisenberg Hamiltonian to deal with localized spins in an antiferromagnetic system and we also introduce the concept of spin wave, to motivate our analysis of the collective excitations that are featured in these systems. We describe two experimental techniques that can probe this type of collective excitations.

In Chapter 2, we consider a model with localized spins. We show how frustration in the BCT lattice can enhance the critical value of S. This opens new possibilities for the realization of unconventional electronic quantum ordering in a 3-dimensional system. To see that clearly, we use a fermionic SU(n) symmetric representation of the Heisenberg model.

We identify three spin liquid phases that can be stabilized if n is bigger than a critical value.

These spin liquid states are then tested as possible candidates for the HO in URu 2 Si 2 .

For the second part, we use our model to develop an effective theory to describe Raman scattering experiments performed in materials with these particular structures.

In Chapter 3, we develop an effective theory to incorporate the varieties of states present in chapter 3. Our starting point is a non interacting model that is able to generate the different phases under investigation by systematic variation of a small number of parameters. The aim is to relate our effective theory directly to the Raman scattering experiments performed in the hidden-order phase of URu 2 Si 2 . To do that, we present numerical results and we make comparisons with Raman scattering data for URu 2 Si 2 .

Chapter 4. We present an overview of the whole work, draw conclusions about the Contents relevance of this work and point out futures perspectives which might be object of future work.

Chapter 1

Introduction.

1.1 Frustrated systems.

The phenomenon of frustration is present in spin systems when there is competition between interactions of magnetic degrees of freedom or incompatibilities with the lattice structure [Lacroix 2011, Balents 2010, Gingras 2009, Starykh 2015, Ramirez 1994]. In particular, frustrated quantum antiferromagnets have been at the center of intense experimental and theoretical investigations for many years. Frustration leads the way to a highly degenerate ground state and opens a window for novel states of matter. Perhaps the easiest way to visualize this is to consider a triangular lattice [Fazekas 1974]. Here frustration results from the impossibility of consistently establishing an AF ordering in the underlying lattice. We can construct an array of spins placing each one of them at each corner of the triangle lattice. This lattice exhibits frustration because if an up-and down-spin occupy two corners of the triangle, the spin on the third corner will necessarily break the AF arrangement with one of its two neighbors. In spite of the presence of frustration, neighboring spins in a triangular lattice still manage to order at a 120 o angle and exhibiting a AF Néel order. Other examples of frustrated lattice are the 2D Kagomé [Han 2012, Helton 2007] and the 3D pyrochlore [Bramwell 2001] or the body-centered tetragonal (BCT) [Rastelli 1990].

As argued before, the last example will be the main object of study in this work.

Fluctuations, thermal or quantum, play a major role. They can order the system by selecting one specific ordered state out of the ground-state manifold of degenerate states [Rastelli 1987], but they can also destroy any kind of magnetic long-range order [Chandra 1988]. This opens the way to new types of ground states such as the spin nematic [Andreev 1984], in which the order parameter is not the local spin but a more complicated object; valence-bond crystals [Anderson 1973, Iqbal 2012] that are completely non-magnetic states with a broken translational symmetry; spin ice or spin liquid phases [Anderson 1973, Anderson 1987], in which both the rotational SU(2) symmetry in spin space and the translation symmetry in real space are preserved .

The Heisenberg Hamiltonian.

To understand the features of frustration it is usual to consider a simple Hamiltonian that accounts for interactions between nearest neighbor spins placed at fixed sites in some specific lattice. The Heisenberg Hamiltonian is [Heisenberg 1928]

H = J i,j S i • S j . (1.1)
The exchange coupling J is defined as the interaction between the nearest neighbors and the S is the spin operators, labeled by the indices i and j indicating their positions in the lattice. The sum is taken over the nearest-neighbor pairs. Each spin operator S satisfy the usual commutation relations [S x i , S y i ] = i S z i of the SU(2) algebra. The spin operators all have spin S, i.e. the operators S 2 i have eigenvalue S(S + 1) where S is either an integer or half-integer. Each spin has a mean polarization oriented along some easy direction.

The ordering displayed by the system depends on the sign of the exchange coupling J, dimensionality and lattice structure. If J < 0 the ground state of the systems assumes a ferromagnetic configuration, i.e. all the spins point out along the same direction, choosing a specific orientation and breaking spontaneously the rotational symmetry of the Heisenberg Hamiltonian. If J > 0, the exchange coupling favors the antiparallel alignment of the spins and the ground state now favors the system to an antiferromagnetic (AF) configuration. In both cases there is the breaking of the rotational symmetry of the Heisenberg

Hamiltonian. [Fazekas 1999]. In the case of antiferromagnets, there is the emergency of bipartite lattices, in which the next-nearest neighbors of one sub-lattice A belong to the other sub-lattice B, allowing the system to reach a configuration of a Néel state in the classical limit. The presence of frustration also results in degenerate manifold of ground states rather than a single stable ground-state configuration at the classical level.

When the quantum fluctuation are present, they interfere with the average direction in 
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The Heisenberg model in a square lattice.

For a square lattice, the Heisenberg Hamiltonian is solved with a mean-field approach [START_REF] Manousakis | The spin-1 2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides[END_REF]]. This approach consists of classical spin in a lattice with nearestneighbor coupling J 1 and next-nearest-neighbor coupling J 2 , Fig. (1.1). The Fourier transform of the coupling constants is the classical spin-wave dispersion and is given by J(Q AF ) = 2J 1 (cos(q x a) + cos(q y a)) + 4J 2 cos(q x a) cos(q y a).

(1.2)

The Néel phase for small J 2 is characterized by an anti-parallel alignment of nearest neighbor spins, with a corresponding ordering wave vector Q AF = (π, π). The second kind of AF state for large J 2 is twofold degenerated and corresponds to the ordering wave vectors Q AF = (π, 0) and Q AF = (0, π).

These two states are characterized by a parallel spin orientation of nearest neighbors in vertical (horizontal) direction and an anti-parallel spin orientation of nearest neighbors in horizontal (vertical) direction and exhibit therefore Néel order. These two ordered phases are separated by a first-order transition. This remains true regardless of the relative angle θ between the spins of each sublattice, so that the ground-state manifold consists of all states with Néel-ordered sub-lattices. The ground state is thus infinitely degenerate, and the degeneracy is controlled by a continuous parameter, the angle θ between the sub-lattices.

In the linear spin-wave approach, which goes beyond the classical theory, quantum fluctuations destroy the magnetic order in the intermediate region of 0.4J 1 J 2 0.6J 1 , hence leading to a magnetically disordered state [Chandra 1988, Ren 2014]. However, the nature of this disordered phase is still elusive and several proposals have been raised, including spin-liquid states [Anderson 1973]. Two quantum phase transitions in the model are already known: the second-order transition from the Néel state to the spin liquid state at (J 2 /J 1 ) ≈ 0.38, and the first-order transition from the spin liquid state to the collinear state at (J 2 /J 1 ) ≈ 0.60 [de Oliveira 1991, Chandra 1988].

The next section is devoted to describe how quantum fluctuation can be incorporate to the problem by describing the theory of spin waves and also what these fluctuations can do with the degeneracy of the system.

Spin-wave theory.

The concept of spin-waves was first introduced by Bloch in 1930 [Bloch 1930]. These theories have enjoyed great popularity in the study of a wide variety of quantum magnets. In the beginning it was directed to the study of systems with simple ferromagnetic

Hamiltonians [Oguchi 1960] and after that it has been applied to antiferromagnetic models [Anderson 1952, Kubo 1952], including frustrated ones [Xu 1991, Oguchi 1990]. In recent years it has reached such a state of refinement that it can deal with disordered systems [Mucciolo 2004, Castro 2006] and quasicrystals [START_REF] Wessel | [END_REF]]. Its application is straightforward and its physical interpretation is clear, such that it is now a widely used tool since the last decades.

The Holstein-Primakoff approach.

The basic idea of semiclassical spin-wave theories is that quantum fluctuations only slightly perturb the long-range ordered state of the classical limit of the model. Spin waves are the low energy excitations in a standard magnetic system. This approach treats the mean value of the spin operator S as being of big magnitude (semi-classical limit), which characterizes the spins as rotating around their positions of equilibrium. The collective behavior is equivalent to rotations of the classical magnetic moment. In the large S limit and at low excitations, it is natural to describe the ordered state in terms of small fluctuations of these spins around their expected values.

The Heisenberg Hamiltonian has a global spin rotation symmetry. When the ground state of the Hamiltonian is magnetically ordered (either ferromagnetically for J < 0 or antiferromagnetically for J > 0), so that S i = 0, this ground state is not invariant under a global spin rotation. We say that the ground state"spontaneously" breaks the global spin rotation symmetry of the Hamiltonian. In this situation, we expect that gapless modes of the spectrum of energy associated to the spontaneous symmetry breaking of global spin rotation emerge. This is a consequence of the Goldstone's theorem [START_REF] Goldstone | [END_REF], Nambu 1960]. The theorem states that when the ground state breaks a continuous symmetry of the Hamiltonian, gapless bosonic excitations will exist in the energy spectrum. Bring it to our context, a quantized spin wave is called a "magnon" and they are the Goldstone modes of magnetic systems.

The effect of quantum fluctuations are conveniently represented in terms of spin raising and lowering operators, with S ± = S x ± iS y . The most general quantum-mechanical way to set up spin waves follows the Holstein-Primakoff (HP) [Holstein 1940] transformations.

Since we are in the limit of low excitations, this transformations replace the S ± for bosonic creation and annihilation operators a † and a, respectively [START_REF] Manousakis | The spin-1 2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides[END_REF]]. This reads,

S + i = (2S -a † i a i ) 1/2 a i S - i = a † i (2S -a † i a i ) 1/2 S z i = (S -a † i a i ). (1.3) The function φ(n i ) = (2S -ni ) 1/2 , where ni = a † i a i , is expanded as φ(n i ) =: √ 2S 1 - ni 4S - n2 i 32S 2 -... (1.4)
Where ni is the number operator.

The leading term of this expansion is proportional to 1/S and if we truncate the series at this stage we define the linear spin wave theory, which means that all corrections to the Hamiltonian and magnetization will be proportional to S. Terms of high order in this expansion take into account the interaction between magnons 1 . The purpose here is to calculate physical properties like the staggered sub-lattice magnetization and see how quantum fluctuations are able to modify significantly the classical spectrum of elementary excitations or if they could destabilize such ordered phases.

There are some well established results for two-dimensional systems. For example, in the square lattice [Oguchi 1990] (This model was first solved by Anderson in a semiclassical approximation to determine the ground state energy and the wave function [Anderson 1952]) and in the triangular lattice [START_REF] A V Chubukov | Large-S expansion for quantum antiferromagnets on a triangular lattice[END_REF]]. Particularly, for the square lattice, the model considers the Heisenberg Hamiltonian with nearest neighbor coupling 1 In linear spin wave approximation the Hamiltonian describes a system of uncoupled harmonic oscillators.

If we take into account higher order terms, we are introducing interaction between the harmonic oscillators.

However, the effect of these interactions can be suppressed at least by a factor 1/S compared to the O(S)

noninteracting term and one can expect that their effects are small for a large S. Therefore, they can either be neglected to a first approximation or be treated as weak perturbations on the noninteracting theory.

(J 1 ) and next-nearest neighbor (J 2 ). It was pointed out that quantum fluctuation can destabilize the classical ordered states even at large S. When p = J 2 /J 1 tends to 1/2, leading quantum fluctuation become very soft, driving the system away from the classical fixed point. The instability can generate a spin liquid, at the ground state [Chandra 1988].

Order by disorder mechanism.

The phenomenon of frustration gives us a plethora of ground states indicating that the system is plausibly disordered. However, these degenerate ground states may be situated in very different regimes: they experience different thermal and quantum fluctuations.

The fluctuations have a special role in these systems because they may partially lift the degeneracy and so make systems more ordered [Rastelli 1987[START_REF] Buhrandt | [END_REF]]. The system, instead of having a disorder degeneracy, is finally ordered due to the new minimum energy selection at the classical or quantum level. This is recognized as "order by disorder mechanism". It was first proposed by Villain et al. [Villain 1980] for studying classical Ising systems, while the order by quantum disorder scenario was first considered by Shender [Shender 1982]. We take into account only those quantum fluctuation and leaving the questions of thermal apart, by referring only to the work of Villain. [Villain 1980].

Let us see how this concept of order by disorder works in practice, with quantum fluctuations. By looking back to the quantum Heisenberg model itself, the linear spin waves approximation only considers in the expansion the linear S corrections. In terms of the Holstein-Primakoff transformations, we end up with a Hamiltonian

H = E 0 + k A k a † k a k + B k 2 (a † k a † -k + a k a -k ) (1.5)
With E 0 being the zero point energy which is proportional to S 2 . The A k and B k are proportional to S and they also depend on the exchange couplings J. Since the Hamiltonian acquires this non-trivial non-diagonal form, we perform a canonical transformation to new operators α k . Such procedure is also known as a Bogoliubov transformation [Bogoljubov 1958, Ohara 1989], like

α k = u k a k + v k a † -k . (1.6)
With that, the Hamiltonian is written in the diagonal form

H = E 0 + k ω k α † k α k + 1 2 (1.7)
The elementary excitations above the ground state are spin waves of one flavor and they are created by the action of α † on the ground state. The energy of these states is given by

ω k = A 2 k -B 2 k .
The condition for the functions u k and v k are

u k = cosh θ k v k = -sinh θ k , (1.8) in which θ k = arctan(B k /A k ).
The energy of the quantum state is obtained by taking these quantum fluctuations.

Therefore

E = E 0 + 1 2 k ω k (1.9)
It is worth to say that the system will choose some states inside the manifold that minimize this expression. The mechanism of order by disorder was investigated in two-dimensional square lattices [Danu 2016], while, in the three-dimensional versions, we can mention the face-centered cubic (fcc) [Sinkovicz 2016] and BCT lattices [Rastelli 1989, Rastelli 1987].

In the next section we will see that in the Heisenberg model, when frustration together with a low spin quantum number is present, the situation where long-range magnetic order and breaking of SU(2) symmetry is not the most common one. Down to zero temperature they tend to form states with spins paired into rotationally invariant singlets or "valence bonds". They constitute an alternative to the long range magnetic order.

Alternatives to long-range magnetic ordering in Heisenberg models.

Up to now we have seen that the degeneracy in the ground state together with fluctuations does not favor magnetic ordering. These two main features cause the presence of additional zero frequency modes at the spin wave dispersion rather than those that can be expected on general grounds with the ordering wave vector Q AF . In the limit of small k these additional zero modes may lead to divergences and to corrections of the local magnetization ∆m [Chandra 1988, Chandra 1990].

This correction of the local magnetization can be calculated from the sub-lattice magnetization through the relation 1.3 at the leading order in large S expansion, i.e. (1.11) where N is the number of lattice sites. If long-range magnetic order is maintained, highorder terms will have to open a gap at these accidental zero modes to restore the finite value of the correction. The correction has to be smaller than the mean value of the spin S, which is not often the case. This is an indication that we must look for alternatives to magnetic long-range order. We divided these new states into two groups: the ones capable of breaking the SU(2) symmetry and the ones that preserve the SU(2) symmetry. The spinliquids are in the last group.

S z i = S -a † i a i . (1.10) This implies that ∆m = a † i a i = S -S z i = 1 N k a † k a k ,
The concept of SL was first proposed by Anderson [Anderson 1973] in order to describe an Antiferromagnet system with spin-1/2 in triangular lattice with odd total spin value per unit cell. For instance a product of spin singlet dimers has to break the lattice symmetry.

They are allowed to go through quantum mechanical fluctuations. Therefore the ground state is a superposition of all possible singlet dimers describing a Resonating Valence Bond (acronym RVB) state. This suggestion was for spins placed in a triangular lattice having in mind the physics behind the high-temperature superconductors [Anderson 1987].

The SL phase can be interpreted as a fluid-like state of matter in which the constituents spins are highly correlated though the fluctuations are very strong down to temperatures near the absolute zero [Balents 2010]. In theory, it represents a new state of matter. Unlike conventional magnetic states, the fluctuations give rise to the emergent collective behavior which could be mediated by gauge fields or fractional particles excitations. Low dimensionality might be as well one of the foremost ingredients for the formations of SL. Unlike the ferromagnetic state with parallel spins or the antiferromagnetic Néel state with antiparallel spins, a quantum SL never enters into a long range ordered phase with a static arrangement of spins. The presence of singlet dimers necessarily breaks the spatial translation symmetry. For RVB states the ground state is a superposition of all possible singlet dimers. It is a non magnetic state although spin are highly correlated with one another and they do not break the SU(2) symmetry.

Although, there has been much effort in verifying the existence of RVB states, they are difficult to be realized. Numerical studies using quantum Monte Carlo simulations [Foulkes 2001, Santos 2003, Troyer 2005] cannot be performed for frustrated magnets because they cannot handle the so called minus sign problem associated with the anticommutation of the fermions, which makes the analysis intractable up to this date. Theoretically, the quantum dimer models [Moessner 2011] have been demonstrated the possibility of realizing an RVB state. It is not our intention here to stress on all aspects of spin liquids. However we would also like to mention a different kind of spin liquids, known as algebraic spin liquids.

Algebraic spin liquids

Algebraic spin liquids have this name because of the algebraically decay of their spinspin correlations functions. They comprehend half-integer spin chains, in contrast to integer spin chains, in which the correlation decay exponentially. They can be extended to 2D frustrated systems, where we can implement a fermionic representation of spin-1/2 operators, sometimes known as Abrikosov fermions [Baskaran 1988, Affleck 1988b, Dagotto 1988]. Basically we replace the spin variable by

S i = 1 2 α,α c † i,α σc i,α (1.12)
where the c † i,α and c i,α are fermionic creation and annihilation operators, respectively, satisfying the local single-particle occupation constraint α c † i,α c i,α = 1, and σ ≡ (σ x , σ y , σ z )

denotes the Pauli matrices.

In most cases the Heisenberg Hamiltonian is non quadratic and a simple and approximate mean-field decoupling is required for the four-fermion operator [Wen 1996, Wen 2002]. By introducing a bond operator χ ij = α c † i,α c j,α the Hamiltonian can be decoupled by defining the order parameter χ 0 ij = χ ij . Thus, the solutions are obtained by the self-consistent equations. We know that the self-consistency of equation leads to many possibilities of ground-states, but we would like to stress two of them. The first solution for χ 0 ij = χ 0 leads to a set of bonds that covers the full lattice resulting in the dimerized state, while χ 0 ij = 0 to other bonds, see Fig.

(1.2 (a)). The second is χ 0 ij = χ 0 e iθ ij with θ chosen such that it provides a π-flux phase per plaquete [Affleck 1988a, Marston 1989], see Fig. 

† i,σ → e iθ c † i,σ ,
where θ can take any value. This characterizes U(1) gauge symmetry in the problem, and this type of spin liquid is sometimes referred to as a U(1) spin liquid.

Chiral and Modulated spin liquids: two examples of spatially ordered spin liquids.

Recently, another kind of mean-field approximation has been proposed for a different spin liquid state, known as modulated spin liquid (MSL) [Pépin 2011], where the order parameter is defined as χ 0 ij = χ 0 ±∆, with ∆ being real. The real spatial modulations break translational symmetry where the value of the bond acquires an oscillating sign from site to site see Fig. Another different alternative to the long range magnetic order in Heisenberg models is the case in which besides the SU(2) symmetry breaking there is also time-reversal (T) and parity symmetry (P) breaking. So far, the models that we have considered preserve the time-reversal symmetry. Another family of quantum spin liquids was suggested whose states might be stabilized by the presence of frustration and the breaking of time-reversal and of parity symmetries. They are known as chiral spin liquids [Wen 1989, Khveshchenko 1994]. A possible order parameter is the spin chirality S 1 • (S 2 × S 3 ), defined in a triad of spins placed at the site 1, 2 and 3. In the context of mean field approximation, the state is described by an ansatz χ ij , where χ ij is complex and generate a flux that is neither equal to 0 nor to π [Wen 2004].

The best evidences so far in favor of such ground states have been obtained for extensions of the Heisenberg model on the Kagome lattice [Bauer 2014[START_REF] He | [END_REF]. By introducing term of the form S i • (S j × S k ) on each plaquete which explicitly breaks the T and P symmetries.

Probing Frustrated Magnets.

In this section, we are going to discuss two main experimental techniques that are largely used to investigate magnetic systems. The first subsection is dedicated to present the basics concepts behind neutron scattering technique, while the second part is devoted to optical spectroscopy, more precisely, Raman electronic scattering. These are two very useful experimental tools used to probe the nature of of excitations of disordered and highly degenerate states that occur in frustrated magnets.

1.4. Probing Frustrated Magnets.

Inelastic Neutron Scattering.

Inelastic neutron scattering is used to study the spin-spin correlations in magnetic frustrated systems. It provides direct information of the existing magnetic order as well as the existing magnetic interactions [Hutchings 1972]. Taking a paramagnetic system in comparison with a system where the spins are ordered, like ferromagnetic or antiferromagnetic systems, the response given by neutron scattering is undoubtedly different for these two cases. For paramagnetic systems the spin-spin correlations decrease with the distance which leads to a continuous or diffuse patterns. While for spin ordered systems the correlations have one component with periodic symmetry that gives rise to discrete scattering in the form of Bragg peaks [Bramwell 2011]. Therefore, neutron scattering reflects the different symmetries underlying the physical system.

In an inelastic neutron experiment, an incident beam of neutrons of known wave vector k i is scattered by the sample into an outgoing neutron of wave vector k f . It is possible to measure the change in both the direction and magnitude of the neutron wave vector, or equivalently, the changes in the momentum and energy when the neutrons interact with the sample [Bramwell 2011]. The magnetic field produced by the spins in the sample scatters the neutrons. It is also possible that the spin field can vary in space and time. Second order dynamical perturbation theory shows that the scattering is essentially proportional to the dynamical structure factor S(q, ω) of two-spin correlation function of the sample:

S α,β (q, ω) = 1 2π R +∞ -∞ dt e i(q•R-ωt) S α 0 (0)S β R (t) (1.13)
The partial differential cross section measures the number of neutrons scattered in a solid angle dΩ within a range of energy between E and E + dE. The spin-spin correlation function S(q, ω) is the quantity directly associated with inelastic neutron scattering. The momentum q represents the difference between the initial momentum (k i ) and the final momentum (k f ) and the final momentum and is defined as scattering vector.

Particularly it has been used to study the properties of strongly correlated magnetic systems with large application for studying the spin excitation spectrum in the overdoped regime of the high temperature superconductors [START_REF] Bourges | Inelastic-neutron-scattering study of antiferromagnetic fluctuations in YBa 2 Cu 3 O 6.97[END_REF]], itinerant antiferromagnetism [Liu 1970, Sokoloff 1969] and spin-spin correlation in magnetic frustrated systems [Mirebeau 2014, Lee 2000].

Optical spectroscopy.

The coupling between light and matter can be seen as a source of information for describing and understanding the physical properties of a particular system. The system can be either a molecule or a crystal structure. The different process in which light interact with matter can be divided in some categories such as absorption, photo-emission or diffusion [Baym 1990]. In our case we are interested in process where there is diffusion of light. The system will be irradiated by a monochromatic light with frequency ω i and will diffuse part of this light in a different direction with frequency ω f . Part of this diffused light will have the same frequency as the initial one (ω f = ω i ). This process is known as elastic diffusion or Rayleigh scattering. Another part of the scattered light will have a different frequency from the initial one (ω f = ω i ). This process is known as inelastic diffusion or Raman diffusion [Duyne 2003]. The Rayleigh diffusion is caused by spatial inhomogeneity (molecules, individual atoms, gases, etc) and the Raman diffusion is caused by temporal fluctuations (molecular vibration, lattice vibrations, magnetic excitation). Since our interest here is the Raman diffusion we can also predict what are the elementary or collective excitations of the system (phonon, exciton, magnons, etc) [Devereaux 2007].

The Raman diffusion is a second order process which involve two photons, one incident photon with frequency ω i and momentum wave vector q i and the diffused photon with frequency ω f and momentum wave vector q f . The Raman displacement is the difference of the initial and final frequencies of the photons ω = ω iω f . The frequency difference ω is a result of the energy exchange process between light and matter. This can be translated scattering.

Quantum mechanical description of Raman scattering.

The aim of this section is to present the quantum mechanical description for inelastic light scattering in general. For sake of simplification, by now, we set and c equals to unity. It is by no means as detailed as other reviews available for consultation [Garmire 2013, Devereaux 2007, Devereaux 1997]. However, it explains the main features about this process. 

General approach.

We consider a Hamiltonian for N electrons coupled to the electromagnetic field. It can be written as

H = N i (p i + (-e/c) Â(r i )) 2 2m + H Coulomb + H f ields . (1.14)
Where p = -i∇ is the momentum operator, -e is the magnitude of electronic charge and c

the speed of light. The quantity Â(r i ) is the vector potential of the electromagnetic field at space-time r i and m is the electron mass. Also we define H Coulomb as being the Coulomb interaction and H f ields is the free electromagnetic part. If we develop the quadratic term , we can rewrite the Hamiltonian in a more compact form as

H = H + H int , (1.15) 
where now

H = H 0 + H f ields , with the usual definition of H 0 = 1 2m N i (p i ) 2 + H Coulomb and H int = H A + H AA where H A = - e 2mc N i (p i • Â(r i ) + Â(r i ) • pi ) (1.16)
and

H AA = e 2 2mc 2 N i Â(r i ) 2
(1.17)

Here we use the Coulomb gauge ∇ • Â(r i ) = 0, that guarantees that A is purely transverse.

Since we are dealing with a many body problem, we can use the second quantization formalism. In this approach, the interacting Hamiltonian can be written as

H int = - e c d 3 r ĵ(r) • Â(r) + e 2 2mc 2 d 3 r ρ(r) Â(r) • Â(r).
(1.18)

It is also appropriate to use the representation of the density and current operators

ρ(r)=ψ † (r)ψ(r), (1.19) j(r) = 1 2m [ψ † (r)(pψ(r)) -(pψ † (r))ψ(r)], (1.20)
where the operators ψ(r) and ψ † (r) are respectively fermionic operators which annihilate and create particles at a point r. They can be expanded in momentum space as

ψ(r)= k,m φ(r, m)c k,m (1.21) ψ † (r)= k,n φ * (r, n)c † k,n (1.22)
The functions φ * (r, n) and φ(r, n) are eigenstates of the Hamiltonian H 0 , which may be simply plane waves corresponding to position r. The indices n and m specify other quantum number associated with the state, like band index or spin for example. Electron states with momentum k are created or annihilated by c † k,n , c k,n , respectively, and the indices n or m referring to the quantum number associated with the state, such as the momenta and/or spin states.

In second quantization, the vector potential A is a linear combination of creation and annihilation operators for photons. The nonvanishing matrix elements produced by the action of this operator depend entirely of the initial and final states in question. The operator Â(r) is written as

Â(r) = q,µ A 0 (ω q )[a q,µ ε µ q e iq•r + a † q,µ ε * µ q e -iq•r ], (1.23) where A 0 (ω q ) = c 2
2ωqV . The bosonic operators a q and a † q annihilate or create photons with wave vector q and polarization ε µ q . The volume V define the box for the periodic boundary conditions of A. By using this representation of A in second quantization as well as eq(1.19) and eq(1.20), we rewrite the terms of H AA and H A as

H AA = e 2 2mc 2 k,n;k ,m q 1 ,µ 1 ;q 2 ,µ 2 A 0 (ω q 1 )A 0 (ω q 2 )c † k,n c k ,m × [ n|e iq 1 •r |m a q 1 ,µ 1 ε µ 1 q 1 + n|e -iq 1 •r |m a † q 1 ,µ 1 ε * µ 1 q 1 ] × [ n|e iq 2 •r |m a q 2 ,µ 2 ε µ 2 q 2 + n|e -iq 2 •r |m a † q 2 ,µ 2 ε * µ 2 q 2 ] (1.24)
and

H A = - e m k,n;k ,m q 1 ,µ 1 A 0 (ω q 1 )c † k,n c k ,m × [ n|pe iq 1 •r |m a q 1 ,µ 1 ε µ 1 q + n|pe -iq 1 •r |m a † q 1 ,µ 1 ε * µ 1 q 1 ], (1.25) with n|e iq•r |m = d 3 rφ * (r, n)e iq•r φ(r, m), (1.26) n|p • e iq•r |m = d 3 rφ * (r, n)p • e iq•r φ(r, m).
(1.27)

The first term H AA gives rise to intraband electronic transitions from the two-photon scattering in first-order perturbation theory. While H A is related to intraband or interband electronic transitions from the single-photon scattering at second order via intermediate states. It does not contribute at first order since the average of the momentum operator is zero.

The probability transition and effective density operator.

The electronic Raman scattering cross section is proportional to the probability transition between one initial state and one final state of the system. This transition rate can be calculated by the Fermi's golden rule.

Γ I→F = 2π| F |H int |I | 2 δ(E F -E I ) (1.28)
The Let us first discuss the effect of H AA . We have as initial and final state

|I =|k, m |n q 1 ,µ 1 , n q 2 ,µ 2 = 0 (1.29) |F =|k + q, n |n q 1 ,µ 1 -1, n q 2 ,µ 2 = 1 . (1.30)
We have two possible processes. The photon matrix element can be non-zero if the A on the right annihilates a q 1 , µ 1 photon and the A on the left creates a q 2 , µ 2 photon, or vice versa. These two possibilities give us

F |H AA |I = e 2 mV n i ω q ω -q k,n,m µ 1 ,µ 2 k + q, m|c † k,m c k-q,m |k, m (ε µ 1 q • ε * µ 2 -q ) (1.31)
At second order, we compute the expectation value of H A but now we have an intermediate state, with two possible process. They represent the destruction of an incident photon and the creation of an diffused photon, or vice versa.

|M 1 =|k + q 2 , l |n q 1 ,µ 1 -1, n q 2 ,µ 2 = 0 (1.32) |M 2 =|k -q 1 , l |n q 1 ,µ 1 , n q 2 ,µ 2 = 1 (1.33)
At second order, the probability amplitude for H A is

F |H A |I (2) = M F |H A |M 1 M 1 |H A |I E I -E M 1 + F |H A |M 2 M 2 |H A |I E I -E M 2 .
(1.34)

By using the definitions of |F , |I and |M , we end up with

F |H A |I (2) = e 2 2m 2 V n i ω 1 ω 2 k,n,m,l µ 1 ,µ 2 × n, k + q|p • ε * µ 2 q 2 c † k,n c k-q 2 ,m |k + q 2 , l l, k + q 2 |p • ε µ 1 q 1 c † k,n c k+q 1 ,m |k, m ε k,n -ε k+q 2 ,l -ω 2 + n, k + q|p • ε µ 1 q 1 c † k,n c k+q 1 ,m |k -q 1 , l l, k -q 1 |p • ε * µ 2 q 2 c † k,n c k-q 2 ,m |k, m ε k,n -ε k-q 1 ,l + ω 1 . (1.35)
The momentum transferred during the process is defined as q = q 1 -q 2 and the difference in energy is given by ω = ω 1ω 2 .

In this way, we end up with the final expression for the probability rate

Γ I→F = πe 4 n i 2m 2 V 2 ω i ω f | n, k + q| ρ(q)|k, m | 2 δ(ε k+q,n -ε k,m -ω) (1.36)
Where we have introduced the effective density operator [Hayes 2012]

ρ(q) = k,n γ k,n (ε i , ε f )c † k+q,n c k,n (1.37)
In experiments, the selection of the symmetries of excitations observed by Raman are selected by the orientation of the sample and the polarizations of photons. Since the momentum transferred to electrons q is much less than the momentum scale of order k F , the Fermi momentum in metallic systems, the limit q → 0 is a good approximations in practically all cases. Therefore,

γ k,n (ε i , ε f ) = µ i ,µ f ε µ i • ε * µ f + 1 m µ i ,µ f ,l n, k|p • ε * µ f |k, l l, k|p • ε µ i |k, m ε k,n -ε k,l -ω f + n, k|p • ε µ i |k, l l, k|p • ε * µ f |k, m ε k,n -ε k,l + ω i . (1.38)
In Fig.

(1.5) we represent these two cases considered here, using perturbation theory.

At first order, the Raman scattering produce a creation of an electron-hole pair at the same band by promoting the electron to a level of energy above the Fermi level. At second order we have creation of a electron-hole pair at different bands which involve virtual intermediate states.

The importance of light polarization.

In the previous section 1.5.1.1, we saw that the effective density operator has two contributions, one generated by the coupling of electron's charge to the two photons and the other by the coupling of electron's current to a single photon. However, to evaluate the Raman scattering matrix of effective density operator ρ(q) is a difficult task, since we cannot always specify the quantum numbers of the electronic many body state.

However, applying symmetry arguments we are able to view what types of excitations can be created. The charge density fluctuations, due to light scattering, are modulated in the directions determined by the polarization of incident and scattered photons involved on the process. Thus, these density fluctuations have the symmetry imposed on them by the way in which light is oriented [Devereaux 2007]. This can be seen on the dependence of Raman matrix elements on the initial and final fermion state. Basically the Raman matrix elements can be decomposed in into basis functions of the irreducible point group symmetry of the crystal [Shastry 1990, Hayes 2012].

Another important consequence is the fact that we are able to map the Brillouin zone (BZ). The analysis is based in the representative basis functions Φ(k) from the complete set of BZ harmonics from the crystal's pint group symmetry. Consequently we are able to map excitations in different regions of the Brillouin zone by just choosing the polarization direction of incident photon.

The Correlation functions.

The Raman scattering cross section is the quantity accessible in the experiments and can be written in terms of the transition probability of Fermi's golden rule.

R(q, ω) = r 2 0 ω f ω i Γ I→F (1.39)
where Γ I→F is given by the probability transition in Eq.(1.36) and r 0 = e 2 /mc 2 is the Thompson radius. For weakly interacting systems, the Raman scattering cross section reduces to a correlation function S of an effective charge density ρ(q).

R(q, ω) = r 2 0 ω f ω i S(q, iω → ω + i0), (1.40)
where S(q, iω) is defined as

S(q, iω) = n e -βEn Z dτ e iωτ n|T τ ( ρ(q, τ ) ρ(-q, 0))|n (1.41)
with T τ being the time ordering operator and Z = n e -βEn is the partition function for the system, with β = 1/k B T . The effective density ρ will be defined as

ρ(q, τ ) = k,n γ k,n (ε i , ε f )c † k+q,n (τ )c k,n (τ ) (1.42)
The operators are time dependent in the Heisenberg picture. We also introduced the scattering amplitudes γ k,n (ε i , ε f ), as in Eq.(1.38).

The dynamical effective density-density correlation function or the Raman response S can be written in terms of a dynamical effective density susceptibility χ via the fluctuation dissipation theorem

S(q, ω) = - 1 π [1 + n B (iω, T )] χ (q, ω) (1.43)
where n B (iω, T ) is the Bose distribution function. At finite temperature, the susceptibility is define as a correlation function of the effective density operator

χ(q, iω) = - 1 V β 0 dτ e iωτ T τ (ρ(q, τ )ρ(-q, 0)) . (1.44)
The effective density operator ρ is given by Eq.(1.42). Thus, for noninteracting electrons the Raman scattering is given by a two-particle effective density correlation function. There are several methods to calculate this correlation function, e.g. diagrammatic perturbation theory [Devereaux 1999, Devereaux 1997, Perkins 2013], dynamical mean field theory (DMFT) [Freericks 2001]. In the HO phase, it exhibits precisely an electronic gap below ∆ G ∼ 55 cm -1 (6.8 meV)

and a sharp excitation deep inside the gap at 14 cm -1 (1.7 meV) that matches the neutron resonance at Q, Chapter 2

Spin liquid versus long-range magnetic order.

In this chapter we present our studies related to the competition of the spin liquid states against the onset of long range magnetic order in a body centered tetragonal (BCT) lattice.

It was discussed earlier on that in the presence of frustration the classical magnetic order can be unstable against spin liquid states. It was also pointed out that low dimensionality is a key ingredient for the emergence of a SL ordering.

Contradicting this low dimensionality idea, in this chapter we will analyze the effect of frustration in the 3D BCT lattice1 . We begin by describing the classical ground states of the system. After that, we develop a spin-wave theory in order to study the quantum fluctuations. The BCT lattice displays full frustration induced by its own lattice structure.

We define three kinds of exchange couplings between the spins located at the center and the spins sitting on the corner of the lattice, fig(2.1). We know that frustration is a key ingredient to destabilize classical magnetic order. However, in this 3D case we will see that in the framework of the spin wave theory the magnetic states are stable against quantum fluctuation at the lowest order.

The other approximation that can be carried out is to consider the effect of the fermionic excitations in the large-N limit. In this limit it is possible to destabilize the classical ordered state and observe the emergence of SL phases. Recently, the fermionic approach of the Heisenberg model has been carried out in order to investigate the formation of spin liquid states in a 2d [Pépin 2011] and 3d system [Thomas 2013]. The emergence of spin-liquid states motivates the analyses presented in the next chapter for Raman scattering.

2.1 Ground state for J 1 -J 2 -J 3 model.

The spin waves in modulated magnetic structures display certain interesting aspects which are not shared by simple ferromagnetic structures. However, this same feature makes their experimental study considerably more difficult. The structures can be defined as incommensurate with the lattice periodicity, when the original translational symmetry in the direction of the wave-vector is totally destroyed, and commensurate structures, in the case this symmetry is only modified, though possibly quite drastically. In this system a rotational symmetry is already spontaneously broken by the ground state. In this case, Goldstone theorem (1961) [Nolting 2009] predicts the existence of collective modes with energies approaching zero as their wavelengths go to infinity. Let us see how these two kinds of structures emerge in our model.

Let us derive the possible classical antiferromagnetic states from the Heisenberg model in a BCT lattice. Before performing our standard spin-wave approach, we first consider the classical limit, S → ∞. The 3d version of the Heisenberg Hamiltonian that describes this system is

H = J 1 i,j S i • S j + J 2 i,j S i • S j + J 3 i,j S i • S j , (2.1) 
where J 1 -J 2 -J 3 are the interactions on the BCT lattice, as showed in figure (2.1). The exchange couplings are the antiferromagnetic interlayer coupling J 1 and the intra-layer nearest and the next-nearest neighbors J 2 and J 3 , respectively.

The possible emergent classical ordered states are derived by writing down the Fourier transforms for the spin operators as

S i = 1 √ N q e -iq•R i S q , (2.2)
and minimizing the classical energy

J(q) = 8J 1 γ 1 (q) + 2J 2 γ 2 (q) + 4J 3 γ 3 (q). (2.3)
The γ expressions are, respectively

γ 1 (q)=cos q x a 2 cos q y a 2 cos q z c 2 , (2.4)
γ 2 (q)=cos (q x a) + cos (q y a) , (2.5) γ 3 (q)=cos (q x a) cos (q y a) .

(2.6)

The wave vector Q AF is written in reduced notation as will be those that minimize the classical energy J(q), given by eq(2.3). We introduce the dimensionless parameters p 2 = J 2 /J 1 and p 3 = J 3 /J 1 . We derive the saddle point equation that minimize the dispersion J(q) in appendix A. The trivial solutions for these equations give us the commensurate states,

Q AF = 2π l a , m b , n c , (2.7)
Q I AF = (1, 1, 1) and Q II AF = (1/2, 1/2, ν
). This phases correspond to the regimes in which J 1 and J 2 dominate, respectively. The degeneracy ν indicates the underlying tow-dimensionality.

There are other two possible states, given by the incommensurate wave vector that characterize helical states. One of them is

Q III inc = (0, Υ 3 , 0) which is degenerate with Q III inc = (1, Υ 3 , 1), Q III inc = (Υ 3 , 0, 0) and Q III inc = (Υ 3 , 1, 1), where Υ 3 = 1 π arccos ± 1 p 2 +2p 3 . The second one is Q II inc = (Υ 2 , Υ 2 , 1), which is degenerate with Q II inc = (Υ 2 , Υ 2 ± 1, 0), with Υ 2 = 1
2π arccos 1-p 2 2p 3 . Another possibility of an ordering wave-vector Q III AF = (0, 1/2, ν) was proposed [Sugiyama 1990] in case J 3 dominates. This corresponds to the commensurate order in a purely bi-dimensional square lattice. However the state with modulation

Q III inc is energetically more stable than Q III AF . The classical phase diagram is displayed in fig.
(2.2) and it shows each of the antiferromagnetic orders associated with each wave vector. The ordering wave vectors are continuous along each critical line (see appendix A) with the exception of the transition between Q II inc -Q III inc . The next step is to check the large-S corrections at a giving ground state with a specific Q. The presence of two incommensurate states requires a generalization of the spin wave approach in order to take into account those kind of states. 

Q I AF Q II AF Q II inc Q III inc p 3 p 2 Figure 2.2: The classical phase diagram of J 1 -J 2 -J 3 model on BCT lattice.
The coordinates p 2 and p 3 are defined as the ratio between J 2 /J 1 and J 3 /J 1 respectively. Solid lines indicate transitions between the stable magnetic orders with the modulation wave-vector Q defined previously.

Large S expansion and possible instabilities of the SW excitations.

Since we have derived the classical phase diagram for J 1 -J 2 -J 3 , let us now investigate the stability of magnons excitations against quantum fluctuations with the framework of the spin wave (SW) analysis. We find that this fluctuation can either increase or decrease the value of S c (critical value of S). This magnitude is related with the maximum value of S for which the elementary excitations, i.e. the spin waves are still stable. Our approach consists essentially in doing the large S expansion [START_REF] A V Chubukov | Large-S expansion for quantum antiferromagnets on a triangular lattice[END_REF]].

We can write the Heisenberg Hamiltonian 2.1 in short for this approach as

H = i,j J ij S i • S j (2.8)
We use the generalized form of the Holstein-Primakoff (see section 1.2.2) transformations taking into account helical states [Diep 1989[START_REF] Chubukov | On the quantum effects in helimagnets[END_REF]]

S x i = S 2 (a i + a † i ), (2.9)   S z i S y i   =   cos θ i sin θ i -sin θ i cos θ i     S -a † i a i -i S 2 a i -a † i   , (2.10)
with a and a † being boson annihilation and creation operators, respectively. The angle

θ i = Q•(R i -R o )
, where z is the easy axis that characterizes the site at R o in some reference position. The scalar product S i • S j is rewritten using these transformation as

S i • S j = S 2 (a i + a † i )(a j + a † j ) + cos θ j-i (S -a † i a i )(S -a † j a j ) - S 2 cos θ j-i (a i -a † i )(a j -a † j ) + i S 2 sin θ j-i (a i -a † i )(S -a † j a j ) -i S 2 sin θ j-i (S -a † i a i )(a j -a † j ), (2.11)
where we use the notation θ j -

θ i = θ j-i = Q • (R j -R i ).
We keep the bilinear terms of the product since it is a generalization of the linear spin wave theory. These are terms of order S 2 and S that are relevant in the large S series. We find the following expression

S i • S j = S 2 cos θ j-i -S cos θ j-i (a † i a i + a † j a j ) + S 2 (1 -cos θ j-i )(a i a j + a † i a † j ) + S 2 (1 + cos θ j-i )(a i a † j + a † i a j ).
(2.12)

Therefore, the Hamiltonian is

H= i,j J ij [S 2 cos θ j-i -S cos θ j-i (a † i a i + a † j a j ) + S 2 (1 -cos θ j-i )(a i a j + a † i a † j ) + S 2 (1 + cos θ j-i )(a i a † j + a † i a j )].
(2.13)

By invoking the Fourier transforms of a i and a † i

a i = 1 √ N k e ik•R i a k a † i = 1 √ N k e -ik•R i a † k , (2.14) 
and considering that R j = R i + δ, we split the sum in the Hamiltonian such that

H= S 2 N 2 δ J δ cos (Q • δ) -S δ J δ cos(Q • δ) k a † k a k + S 4 iδ J δ (1 -cos(Q • δ))   1 N k,k e i(k+k )•R i e ik •δ a k a k + h.c.   + S 4 iδ J δ (1 + cos(Q • δ))   1 N k,k e i(k-k )•R i e -ik •δ a k a † k + h.c.   (2.15) Since i e i(k-k )•R i = N δ k,k
, we rearrange the terms and get the usual expansion of the Hamiltonian in terms of the spin eigenvalue S.

H= S 2 N J(Q) 2 -SJ(Q) k a † k a k + S 4 k δ J δ (1 -cos(Q • δ))(e -ik•δ a k a -k + e ik•δ a † k a † -k ) + S 4 k δ J δ (1 + cos(Q • δ))(e -ik•δ a k a † k + e ik•δ a † k a k ).
(2.16)

We use the following Fourier transform

J(k)= δ J δ e -ik•δ (2.17) (2.18)
and, finally, we end up with the expression

H= S 2 N J(Q) 2 -SJ(Q) k a † k a k + S 4 k J(k) - J(k + Q) + J(k -Q) 2 (a k a -k + a † k a † -k ) + S 4 k J(k) + J(k + Q) + J(k -Q) 2 (a k a † k + a † k a k ).
(2.19)

If we split the sums into "positive" and "negative" values of k and if we make a change of variable k → -k in the sum where k is negative, it follows that

H= S 2 N J(Q) 2 +S k J (k) 2 + J (k + Q) + J (k -Q) 4 -J(Q) a † k a k + a † -k a -k +S k J (k) 2 - J (k + Q) + J (k -Q) 4 a † k a † -k + a k a -k (2.20)
We see that this expression is a perturbative expansion in decreasing powers of S. We keep only the leading terms O(S 2 ) and the first order term. Another point that can be seen from this is that it provides a generalized expression for no matter what phase we take into account. In the next section we will see how we can diagonalize this Hamiltonian and find important relations in order to determine the S critical.

Diagonalization of the Hamiltonian.

The difficulty in dealing with such a Hamiltonian is obvious. We must diagonalize it first. What we have to do is to use an unitary transformation that allow us to rewrite it in that way. Let us use the following transformations

  a k a † -k   =   cosh (θ k ) -sinh (θ k ) -sinh (θ k ) cosh (θ k )     α k α † -k   (2.21)
Of course, the operators α k and β k must obey the same commutation relations of a k and b † k . This is in the same spirit of the Bogoliubov quasiparticles in superconductivity theory.

We can see that the Hamiltonian has the following matrix form

H = E 0 + S k a † k a -k   A k B k B k A k     a k a † -k   , (2.22) 
with

A k = J (k) 2 + J (k + Q) + J (k -Q) 4 -J (Q) (2.23) B k = J (k) 2 - J (k + Q) + J (k -Q) 4 (2.24)
The eigenvalues of this matrix are given by

λ k = Ω + k Ω - k , where Ω + k = A k + B k and Ω - k = A k -B k
, are the dispersion frequencies obtained for Bogoliubov quasiparticles. Therefore, we find that

H = E 0 + S k [A k (cosh 2θ k -1) -B k sinh 2θ k ] +S k [A k cosh 2θ k -B k sinh 2θ k ] α † k α k + α † -k α -k . (2.25) with B k cosh 2θ k -A k sinh 2θ k = 0 or equivalently tanh 2θ k = B k A k .
These expressions in terms of hyperbolic functions will be used later on to write the corrections for S c . Finally, the energy of the ground state is expressed as

E = E 0 + S k Ω + k Ω - k - Ω + k + Ω - k 2 (2.26)
By using this expression, it is possible to compute the corrections for the energies for each of the classical ground states derived in the previous section. We will investigate how quantum fluctuations can stabilize a particular order for Q II AF in the next section. . 

2.2.2

Order by disorder and the degeneracy of the modular vector Q II AF .

In solving the classical phase diagram of our model, we saw that because of the presence of frustration we ended up with one particular state that exhibits degeneracy. For the Q II AF , the value of q z can take any value which leads to a manifold of possible configurations along z. This indicate that the system is most likely degenerate and almost 2D, without correlations along the c axis. However, as we mention before, these degenerate ground states may be situated in very different regimes: they experience thermal and quantum fluctuations. The fluctuations have a special role in these systems because they may partially lift this degeneracy and induce in this way the onset of an ordered state [Rastelli 1987[START_REF] Buhrandt | [END_REF] Here again the presence of quantum fluctuations is the mechanism to lift some of this degeneracy. The determination of the appropriate Q II AF automatically selects one precise state from the available manifold of states. We take the expression (2.26) and compute numerically the energy for specific values of ν as a function of p 2 . In Fig. (2.3), we plot the values of E for three values of ν. The degeneracy is lifted in favor of ν = 0 that gives the same result of ν = 1. For other values between the interval 0 < ν < 1 the selected values of ν are therefore ν =1/2, ν = 0 or ν = 1.

Fluctuation corrections to the magnetization.

Let us now consider the influence of the fluctuations on the stability of the antiferromagnetic ordered states. We have in mind Anderson's idea [Anderson 1973] that strong quantum fluctuations may generate novel spin liquid ground states. Since we have derived the classical phase diagram and specified the possible ordered states by a given ordering wave vector Q, we can analyze the zero-point fluctuations around those ordered states. We can derive the sub-lattice magnetization per spin and include the effects of fluctuations by taking

S z i = S -a † i a i (2.27)
or equivalently,

m = S - 1 N k a † k a k (2.28)
We can use the relation (2.21), and write down the product of operators. In the linear spin wave approximation, the quasiparticles created by α k and α -k represent a fully decoupled system in which the particle number is conserved. That means that we have

α k α -k = α † k α † -k = 0.
If we do this, we end up with one expression like

a † k a k = sinh 2 θ k + α † k α k cosh 2 θ k + α † -k α -k sinh 2 θ k .
(2.29)

The α k and α -k quasiparticles are non-interacting Bosons. Therefore, the expectation values of their occupation number operators are the Bose-Einstein distribution functions.

To calculate the magnetization, we convert the sum in eq.(2.28) into an integral over the Brillouin zone for the BCT lattice and perform the corresponding numerical calculation.

In Fig.

(2.4), we present the respective result for m for each AF phase, at T 0 and for S = 1/2, as a function of p 2 , when p 3 is a given value on the critical line. For p 2 < 0.93 the magnetization is a decreasing function and above this point it becomes negative, suggesting the possible existence of a disordered phase. However, the existence of the AF phase Q II inc in this region prevents the formation of this disordered state.

The next step is the calculation of the S c , that is the S value at which the spin wave excitation starts to become unstable. We are interested in the T 0 limit and in the case in 

Q II inc .
For values of p 2 < 0.93 the magnetization is a decreasing function and it becomes negative after this point. This suggest that the possibility of having a quantum disordered state, like spin liquids [Anderson 1973, Chandra 1988]. However, the presence of the incommensurate orders that are still AF, for values of 0.93 < p 2 < 1.0 prevents the formation of such disordered state. which the magnetization vanishes. Therefore, it turns out that

Q I AF Q II AF Q III inc p 3 p 2 Q I I i n c × Ô Ò ¹ Û Ú Ò × Ø Ð Ø Ý
S c = - 1 2 + BCT d 3 k 64π 3 Ω + k + Ω - k Ω + k Ω - k (2.30)
Once again, by performing numerical calculations, we calculate S c considering each phase as a function of p 2 when p 3 is approaching the critical line. The result is plotted in Fig.

(2.6).

Unlike the 2D case, the fluctuation corrections do not diverge [Chandra 1988]. We call attention to the fact that, in the 3D case, frustration can relatively increase the critical value of S below which the linear spin-wave correction cancels the staggered magnetization, i.e., S c ≡ ∆m(p 2 , p 3 ). Indeed, for a fixed p 2 , we find that S c increases when p 3 approaches its critical value associated with the classical phase boundary. This maximal value is plotted in the inset of Fig( 2.6) as a function of p 2 for the continuous Q II AF /Q II inc transition and on each side of the discontinuous Q II inc /Q III inc transition. On each of these critical lines, we find S c ∼ √ p 2 for large p 2 . Furthermore, a logarithmic S c ∼ ln(p 2 /2p 3 ) and a power law

S c ∼ 1/ p 3 -p 2 /2 are respectively obtained at large p 2 in the vicinity of the Q II inc → Q III inc and of the Q III inc → Q II inc transitions.
This results is consistent with the square lattice spin wave analysis present elsewhere [Chandra 1988].

These results tell us that the SW approach reveals some weaknesses of the present magnetic orders, but the three-dimensionality protects these states against small fluctuations at the lowest linear order. To go beyond this approach we must study the possible instabilities emerging from the next orders in the 1/S expansion and consider the interactions between the spin-wave bosonic excitations. However, it has been shown for a two-dimensional lat-tice that the second-order correction can indeed increase considerably the magnitude of the sub-lattice magnetization, although first-order perturbation produce a decreases in the magnitude [Igarashi 2005]. It is thus possible that the series oscillates and this may be a general characteristic of SW expansion in our model. Therefore, stabilizing a spin-liquid state seems to require going beyond second order when invoking a perturbation approach from classical order. We leave this aside, and we now turn to the analysis of possible nonmagnetic phases in our model using the algebraic spin liquid approximation.

Algebraic spin liquid.

Generalized SU(n) symmetric approach.

It was suggested by P. W. Anderson [Anderson 1987] that small spin values, low spatial dimensions, and large frustration are the three main ingredients for the melting of magnetic long range order and for the emergence of exotic spin liquid ground state. There is increasing evidence that quantum effects play a major role in the low-temperature properties of various classes of magnetic systems. In this section we analyze the possibility that the spin forms a resonating valence bond state with fermionic excitations and SL correlations [Fazekas 1974] The physical motivations for this study are the unconventional physical phenomena exhibited by metallic systems with BCT structure. In several of these correlated systems, the magnetic degrees of freedom seems to be "deconfined " into fermionic modes that may actually contribute to the existing of the Fermi surface, unlike weakly coupled bosons. This situation, which also might occur in high-T c superconductors [Anderson 1987, Wen 1996], could be easily strengthened by a coupling of the Heisenberg spin of J 1 -J 2 -J 3 model to extra charge degrees of freedom. We study the possible fermionic "deconfinement" of spin operators as an intrinsic property of the Heisenberg model.

Once again, we take the Heisenberg Hamiltonian, for S = 1/2, and generalize it to its SU(n)-symmetric form2 .

H n = i,j J ij n σ,σ χ † i,σ χ i,σ χ † j,σ χ j,σ , (2.31) 
where χ † i,σ and χ i,σ are fermionic creation and annihilation operators in a site i and spin degeneracy σ = 1, ..., n, which are subject to the local constraints σ χ † i,σ χ i,σ = n/2. This is a standard SU(n) generalization [Affleck 1988a] of the fermionic representation developed by Abrikosov for n = 2. The scaling factor 1/n ensures that the energy remains finite at the large-n limit.

In order to take into account the SL correlations, the Hubbard-Stratonovich decoupling [Pépin 2011, Thomas 2013], is used to introduce two kinds of order parameters 3 :

• the local magnetization field:

m σ i = χ † i,σ χ i,σ - 1 2 , (2.32)
• the inter-site SL field:

ϕ ij = - 1 n σ χ † i,σ χ j,σ .
(2.33)

The purely magnetic mean-field approximation is described by the staggered magnetization m σ i = ±S Q and which is completely equivalent to the one obtained in the large S limit.

The corresponding ground state phase diagram is once again given by Fig.

(2.2).

The stability of the various possible magnetic phases can be analyzed by testing different SL ansätze as possible alternatives for the ground state. Generalizing the modulated SL (MSL) order [Thomas 2013], we consider the nearest-neighbor inter-site correlations

ϕ 1 ij = 1 2 [Φ 1 + ie iQ I AF • R i +R j 2 Φ M ],
(2.34) The free energy per spin component and per lattice site is written as

ϕ 2 ij = Φ 2 , (2.35) ϕ 3 ij = Φ 3 , ( 2 
F = F 0 - k B T 32π 3 BCT d 3 k s=± ln(1 + e - E s k k B T ) - λ 0 2
(2.37) 3 The detailed Mean field decoupling can be seen in A.3 Where λ 0 denotes the Lagrange multiplier that minimizes F in order to satisfy the fermionic occupation constraint. The mean field AF ordering state has

F 0 = -2J(Q) n |S Q | 2 with dispersion E ± k = λ 0 ± J(Q) n S Q .
For the SL states we find, accordingly

F 0 J 1 = |Φ 1 | 2 + |Φ M | 2 + 2p 2 |Φ 2 | 2 + 2p 3 |Φ 3 | 2 , (2.38)
and the dispersion

E ± k -λ 0 J 1 = 2p 2 γ 2 (k)Φ 2 + 4p 3 γ 3 (k)Φ 3 ± 4 (γ 1 (k)Φ 1 ) 2 + (γ M (k)Φ M ) 2 .
(2.39)

The real term Φ M does not have the periodicity of the BCT lattice. The term γ M (k) = sin(k x /2) sin(k y /2) sin(k z /2)4 takes into consideration a possible spatial amplitude modulation of the SL field. The numerical analysis consists basically in solving self-consistently the mean-field parameters for each AF or SL state. The most stable solution is selected by the minimization of the free energy, eq.(2.37). The MSL phase is a BCT adaptation of the "kite" phase investigated in [Affleck 1988a] on a square lattice. We also tested another non-homogeneous "flux" phase with the SL character, i.e., a chiral state with complex ϕ 1 ij = (ϕ 1 ji ) * (see Fig. 3.1(d)), that could be described using the same formalism, but with the replacement γ M (k) → sin(q x /2) sin(q y /2) cos(q z /2). This chiral SL was found to have a higher energy than the MSL.

The phase diagram for large n.

For n 3 we find purely AF ground states, and for n 10 the most stable states are SL characterized by finite values of either Φ M , Φ 2 , or Φ 3 . At mean-field level, these three SL parameters do not coexist. Furthermore, we remark that the transition between the MSL and the Φ 2 -dominated SL phases is first order. Beyond mean field, we expect that only the SL critical temperature associated with a non-zero Φ M still corresponds to a phase transition signalled by the translation symmetry breaking. For 4 n 9, we find a rich phase diagram exhibiting AF and SL quantum phase transitions that are controlled by J 1 -J 2 -J 3 parameters, as illustrated in (phase diagram of large n). Increasing n, the AF-SL instability shows up first within the Q II inc phase. Furthermore, comparing the large-S phase diagram in Fig.

(2.8) obtained for n = 4 (phase diagram of large n), one observes that the S c = 1/2 spin-wave instability is located in the same region where the 2-dominant state becomes stabilized. Moreover, going beyond the specificity of the associated order parameters, the phase diagram of large n indicates that the SL instability "propagates" from large-p 2 (Φ 2 ) to smaller-p 2 (MSL) areas if we increase the value of n.

The modulated spin liquid phase.

An interesting feature also appears for the MSL solution: with a relatively high numerical accuracy the modulation field Φ M is found to be always equal to the homogeneous field Φ I . This leads to a very extreme situation for the interlayer ϕ 1 ij = 1 2 [Φ 1 ± Φ M ] which vanishes on half of the bonds while it keeps its finite value Φ 1 = Φ M on the other bonds.

Introducing the probability p singlet ij that a given bond R i R j forms a singlet, the formation of the MSL state can be interpreted here as follows: first, for all the interlayer bonds such that Q I AF • (R i + R j )/2 = π/2, the interaction terms are effectively decoupled at mean-field level, leading to p singlet ij = 1/4 and S i • S j = 0. Then the SL with S i • S j = 0 is formed on the other interlayer bonds, with

Q I AF • (R i + R j )/2 = -π/2
, that remain effectively coupled. Using the numerical value Φ 1 = Φ M ≈ 0.45 computed at T = 0 in the MSL, we find that p singlet ij ≈ 0.60 on these effectively coupled bonds. This value has to be compared with the value ln(2) ≈ 0.69 that is predicted for a one-dimensional Heisenberg chain by using exact methods, like Bethe ansatz or DMRG [Schollwöck 2005]. We may thus interpret the MSL as a crystal of interacting filaments formed by the connected effectively coupled bonds (2.8.d). In this picture, spin excitations are deconfined fermions moving along these filaments. This may generalize the usual concept of valence-bond crystal [Lacroix 2011] where localized spin-1 excitations correspond to confined fermions. 
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Summary.

In conclusion, we considered a model with only localized spins. However, charge fluctuations play a crucial role in destabilizing AF states in heavy fermions and cuprates.

In the context of the cuprates, the AF phase of the insulating parent compounds corresponds to Q II AF . The SL phase introduced by Anderson et al. [Fazekas 1974, Anderson 1987, Baskaran 1987] corresponds to the homogeneous correlated state associated here with Φ 2 .

Stabilizing a SL state in 3D is commonly thought to be more tricky in view of the fact that the corresponding linear SW correction remains finite within a large-S approach. Nevertheless, we show how frustration in the BCT lattice can enhance the critical value S c that, in some sense, characterizes the weakness of AF order against SW fluctuations. In connection with this weakening, we could identify various SL phases that can be stabilized when n is larger than a relatively small critical value.

We also notice the possible emergence of stable SL phases in cubic lattices that has also been proposed recently [START_REF] Laubach | [END_REF], Farnell 2016]. This opens new perspectives for the realization of unconventional electronic quantum orderings in 3D systems. In particular, our results suggest that materials, like URu 2 Si 2 , with BCT-lattice structure, have the feature of manifesting themselves in numerous different phases. Indeed, the very phase diagram depicted in Fig. (2.2) and phase diagram of large n could provide a unifying framework for the understanding and for the analysis of the rich phase diagram of URu 2 Si 2 .

With respect to the large n analysis, the number n may be considered as an effective parameter related to the electronic orbital degeneracy, which could be phenomenologically increased or decreased by charge fluctuations or crystal-field effects. Considering a given compound, n might also be effectively decreased by applying an external magnetic field.

Similarly, a tuning of the model parameters p 2 and p 3 may phenomenologically account for some effects of applied pressure [Thomas 2013]. This scenario could explain two different AF instabilities of the HO phase that are observed experimentally in URu 2 Si 2 : assuming that the HO is a MSL order and applying a finite pressure this corresponds to increasing J 1 for a fixed n (see Fig. 2.8), leading to a commensurate AF instability characterized by Q I AF , as observed experimentally [Palstra 1985, Mydosh 2011]. Alternatively, applying a magnetic field without pressure corresponds to lowering the effective value of n for fixed p 2 and p 3 : the MSL (HO) is destabilized to an incommensurate AF. Interestingly, by using different numerical values of J 1 , J 2 , and J 3 obtained from different fits of inelastic-neutronscattering data, our scenario predicts an instability from MSL to Q III inc = (Υ 3 , 0, 0) with Υ 3 ≈ 0.69 [Broholm 1991], 0.66 [Kusunose 2012]. This scenario could be tested experimentally since it predicts that the AF order Q III inc could be continuously tuned to Q I AF by applying pressure on URu 2 Si 2 under a high magnetic field. This SL mechanism driven by frustration on the BCT lattice may also be tested for the heavy-fermion URu 2 Si 2 . The possible formation of a MSL could also give rise to a commensurately ordered pairing that would break the BCT symmetry down to simple tetragonal. Such a modulated pairing scenario could be tested with the superconducting instability observed for this compound inside the HO phase. Alternatively, even if the chiral SL order was found here to be less stable than the MSL, an opposite result could occur if we include charge fluctuations.

Chapter 3

Raman signatures of electronic states in URu 2 Si 2 .

In the last chapter, we saw that spin liquids states may arise as an alternative to the long-range magnetic order in BCT structures. We also made clear that the presence of frustration is a key ingredient to stabilize those new kinds of phases. Our aim now is to develop an effective theory which incorporates these varieties of states. Our starting point is a two band effective Hamiltonian that it is able to generate the phases of interest by systematic variation of a small number of parameters [Das 2012, Das 2014, Oppeneer 2011].

Afterwards, we want to relate our effective theory with Raman scattering experiments performed at the hidden-order phase of URu 2 Si 2 [Buhot 2014]. The effective theory describes the possible emergent phases in a BCT lattice without making any assumption about the specific order parameter. Instead, we assume that the HO phase has something to do with a particular choice of space group.

In this context we follow Harima-Miyake-Flouquet [Harima 2010] who have suggested earlier on that the second order phase transition from the PM phase to the HO is directly related to a change in the point group symmetry. In the PM phase, the BCT lattice belongs to the space group No 139 (I4/mmm), with a local point group D 4h . When entering the HO phase, the ST lattice belongs to the new space group No 136 (P 4 2 /mnm, D 2h ). This leads to the loosing of C 4 rotation (rotation by π/2) at the U site. This lower of symmetry is a consequence of the Coulomb interaction between the localized 5f electrons and it does not require any lattice distortion, but the charge distortion at the U site. As a consequence, the charge distribution inside the HO phase also changes, although this is difficult to be detected by the existing experimental techniques. This consensual change in the lattice structure when passing from the PM phase to the HO regime reflects itself in other physical properties. The folding in the Brillouin zone along the c axis of the BCT was observed in several experiments [Buhot 2014, Boariu 2013, Hassinger 2010]. It places the Z point on top of the Γ point of the Brillouin zone as expected when a transition from a BCT to an ST lattice takes place. By changing the lattice structure, one instability on the Fermi surface develops, and this produces a pseudogap in some regions of k-space [Maple 1986[START_REF] Elgazzar | [END_REF], Boariu 2013, Tonegawa 2012].

When dealing with space group or point group symmetry representation, sometimes it is convenient to work with its irreducible representation of the lattice symmetry group. This feature is applicable as soon as optical investigations are under consideration, specifically in the context of Raman scattering experiments [Devereaux 2007]. Here the emphasis is given to the types of space groups that represent the spin liquid order introduced before, i.e., the modulated spin liquid. The effect of the breaking of lattice symmetry is implicit in the periodic modulation in the density of electronic spins. We also discuss the possible existence of a second kind of spin liquid, the so-called chiral spin liquid. Each state is associated with a particular space group signaled by some specific parameter. All of these possible ordered phases break the lattice translation symmetry in the same way, which is also a remarkable feature of the phase transition from PM to HO phase of the URu 2 Si 2 .

The next section is devoted to describe the Hamiltonian of our model and to explain how we incorporate all those different phases into it.

The Hamiltonian of effective model.

In order to construct a model which displays different ordering phases as candidates for hidden order in URu 2 Si 2 , we have to take into account experimental features that are well established.

First, the low-pressure experiments performed at the HO phase show clearly that it is not an AF phase, but at pressures above P x ∼ 0.5 GPa, the HO suffers a first-order transition and the long-range antiferromagnetic order is established with wave vector Q AF = {0, 0, 1} that corresponds to a lattice doubling along c-axis. Inelastic neutron scattering experiments performed at the HO phase characterized this state by the presence of a sharp resonance at wave-vector Q 0 = {1, 0, 0}, which is equivalent to Q 0 = {0, 0, 1} [START_REF] Villaume | Signature of hidden order in heavy fermion superconductor URu 2 Si 2 : Resonance at the wave vector Q 0 = (1, 0, 0)[END_REF]].

Going through the AF phase leads to the collapse of the resonance and to the observation of an inelastic neutron magnetic signal at Q AF [Harima 2010]. Thus, it is reasonable to search for a model that accounts for this change in the lattice structure while, switching from the HO to the AF by applying pressure, induces supplementary time-reversal symmetry breaking, as is the case for an onset of antiferromagnetic ordering.

Angle-resolved photo-emission spectroscopy (ARPES) demonstrated that there is a Fermi surface instability of the itinerant quasiparticles taking part in the PM to HO transition. The HO phase is also accompanied by a remarkable symmetry change of the electronic structure and this is consistent with the periodicity characterized by the commensurate vector Q 0 [Bareille 2014]. Density-functional theory (DFT) calculations investigate the Fermi surface properties of URu 2 Si 2 . Their results conclude that there is a strong nesting between portions of the Fermi surface which are linked to each other by wave vector Q 0 [Oppeneer 2011]. Effects of interaction between two FS sectors leads to hybridization, FS gaping and lattice symmetry breaking.

Here, we construct a two band effective theory that is based on a simple tight-bindinglike Hamiltonian of spinless fermions which can be used to characterize the HO phase.

A similar two-band model was recently used to describe the Raman signatures in ironarsenide based superconductors with strong Fermi surface nesting [Yang 2014]. A tightbinding effective model was also proposed for a spin-orbit density wave as a candidate to explain the HO in URu 2 Si 2 [Das 2014, Oppeneer 2011].

One crucial ingredient to building an effective model for URu 2 Si 2 is the underlying lattice symmetry. In the PM phase, the lattice structure is BCT symmetric, but the HO lowers the symmetry to simple tetragonal (ST). This lowering of symmetry can be characterized by a nesting of the BCT Fermi surface with Q 0 = {0, 0, 1} With this assumption, we write the Hamiltonian as

H = i (E 0 + me iQ•R i )c † i c i + i,j t ij c † i c j . (3.1)
The operators c † i and c i are the creation and annihilation of spinless fermions at a given site i with position R i . The parameter E 0 adjust the chemical potential. The hopping t ij connects nearest neighbors on the BCT lattice, but they may break BCT lattice symmetry down to simple tetragonal lattice symmetry.

We start in the framework of a regular paramagnetic state where the system has its structure defined by the space group No 139 (I4/mmm, D 4h ). We assume that it can pass 1. The space group No 123 (P 4/mmm), with Q being an ordering wave vector characterizing one modulation

me iQ•R i , (3.2)
This parameter can account for some local Kondo hybridization or a charge-density wave or, in the last case, an staggered magnetization.

2. The space group No 128 (P 4/mnc) characterizes a chiral spin liquid phase:

t ij = t 1 ± i∆ c . (3.3)
3. The space group No 126 (P 4/nnc) characterizes a modulated spin liquid phase:

t ij = t 1 ± ∆ M . (3.4)
Since the c's operators here represent fermions, the magnetic states, specified for the parameter m, is justified by the fact that fermions here are like spinons in a deconfined phase which have an intrinsic magnetic moment. This also leads to the formation of SL phases because the spinons can be seem as the elementary excitations in this phase which posses the character of being fractionalized [Kitaev 2006].

We have seen in the previous chapter that the various wave vectors characterize different magnetic ordered ground states on the BCT lattice. Here, we consider only Q = Q I AF because of the experimental evidence from INS [Bourdarot 2010] that both AF and HO phases break BCT lattice symmetry to the simple tetragonal lattice symmetry with an wave vector Q 0 = Q I AF . By using me iQ•R i , to characterize a given phase that breaks the lattice translation symmetry, we assume that the fermions at k band are coupled to fermions at k + Q band by the particular wave vector Q [Yang 2014[START_REF] Ványolos | Electronic Raman scattering in unconventional density waves[END_REF]].

The hopping parameter t ij can be either complex or real. If it is complex, the imaginary part is associated with the parameter ∆ c . The choice of the sign relates itself to the orientation of the link between two sites. In approaching a site, we consider a plus sign in eq.( 3.3) or if the link leaves the site is a minus, see Fig. 3.1(d)). If t ij is real, we add the term ∆ m for first inter-plane neighbors, which corresponds to the MSL phase that is schematically illustrated in Fig. 3.1(c). The choice of the sign plus, in eq.(3.4), represents a full line and if it is the minus sign it represents a dotted line. The other real cases are t ij = t 2 for first neighbors in-plane and t ij = t 3 , for the second neighbors in-plane, see Fig. 3.1(a). Indeed in this work, we do not investigate the in-plane ordering.

Using the Fourier transforms for the creation and annihilation operators

c † i = 1 √ N k e -ik•R i c † k (3.5) c i = 1 √ N k e ik•R i c k , (3.6)
where the sum in k runs over the first Brillouin zone of the BCT lattice, we write down the Hamiltonian in a matrix representation with a folded Brillouin zone from the BCT to the Simple Tetragonal (ST) lattice. The Hamiltonian in second quantized form becomes

Ĥ= k Ψ † k h k Ψ k , (3.7)
with the sum over k now running over the first Brillouin zone of the tetragonal (T) lattice (see a more detailed calculation in appendix B). Using

Ψ k =   c k c k+Q   , (3.8) h k =   ε k V * k V k ε k+Q   , (3.9)
It follows that the E k eigenvalues give us the dispersion in the form

E ± k = ε k + ε k+Q 2 ± |V k | 2 + ε k -ε k+Q 2 2 .
(3.10) with the specific relations

ε k = E 0 + t 1 γ 1 k + t 2 γ 2 k + t 3 γ 3 k and V k = m + i∆ SL f SL (k)
, that are present in eq.(3.9), where ∆ SL can be ∆ m or ∆ c if we have a modulated or chiral spin liquid, respectively and f SL (k) being defined in the same fashion. The derivation of γ's factors is made in appendix B. The off-diagonal term V k couples the two bands which are connected by the lattice wave vector Q. As a result it turns out that

γ 1 k = 8 cos k x a 2 cos k y a 2 cos k z c 2 (3.11) γ 2 k = 2(cos (k x a) + cos (k y a)) (3.12) γ 3 k = 4 cos (k x a) cos (k y a) (3.13) f c (k)= 8 sin k x a 2 sin k y a 2 cos k z c 2 (3.14) f m (k)= 8 sin k x a 2 sin k y a 2 sin k z c 2 . (3.15)
The diagonalization of the Hamiltonian from eq.(3.7) can be performed by using one general representation of the Bogoliubov transformations (see B.2 in appendix). We define

Ψ k = Pk Ψ diag k , (3.16) 
where The relations for cos(θ k ) and sin(θ k ) provide the conditions for the θ k parameter. We find

Ψ diag k =   α k β k   (3.
cos(2θ k )= ε k -ε k+Q |V k | 2 + ε k -ε k+Q 2 2 (3.19) sin(2θ k )= |V k | |V k | 2 + ε k -ε k+Q 2 2 (3.20) (3.21)
In a similar way, we find that

ϕ k = -(arg(V k ) ± π) (3.22)
Consequently, the Hamiltonian in the diagonal basis is written as

Ĥ = k α † k β † k   E + k 0 0 E - k     α k β k   (3.23)
In chapter 1, we saw that the light can couple either to charge or current degrees of freedom and this allows us to define the charge and current sectors, respectively. The charge sector is related to the density-density correlation function while the current sector is related to the current-current correlation function. To each sector, we can associate a specific vertex which is directly linked with the irreducible point group symmetry of the lattice. In order to clarify this association with point group symmetries and apply this concept in our analysis, let us describe the possible vertices for BCT lattice structure.

The correlation functions and Raman vertices for the BCT lattice.

Let us present the correlation functions that will be used to compute the Raman response. For simplicity, we assume the small moment transfer limit, which allows us to use the effective mass approximation to calculate Raman vertices for each specific sector with a defined symmetry.

The spinon density sector.

The physical quantity observed experimentally is the Raman scattering cross section.

It is determined by the dynamical structure factor S(q, iω), which is directly related to the imaginary part of the Raman response χ through the fluctuation dissipation theorem

Sλ (q, ω) = - 1 π [1 + n B (ω)]Im[ χλ (q, ω)], (3.24)
where n B (ω) is the Bose distribution function and λ stands for the specific irreducible point group of the lattice in consideration. The Raman response for the electron system measures the "effective density" fluctuations by

χλ (q, iω m ) = - 1 V β 0 dτ e iωmτ T τ (ρ λ (q, τ )ρ λ (-q, 0)) , (3.25)
where V is the volume of the system and ρλ is the effective density operator. It is convenient to decompose this matrix element into basis functions of the irreducible point group of the lattice in accordance with the polarization of the incident and scattered light λ = B 1g , A 1g , etc [Devereaux 2007]. Using the effective polarization-dependent density [Valenzuela 2013]

ρλ (q, τ ) = k,α,α γ λ α,α (k)c † k+q/2,α (τ )c k-q/2α (τ ), (3.26) 
where γ λ α,α (k)'s are matrix elements which originate from the second derivatives of the matrix h k . Then, it follows that the density-density correlation function (see appendix B.3) can be written as

χλ (iω m ) = 1 V k 1 β ωn Tr[γ λ (k)G k (iω n + iω m )γ λ (k)G k (iω n )], (3.27) 
where V is the volume of the system, β is the inverse of temperature, and ω m = 2mπ/β

and ω n = (2n + 1)π/β are bosonic and fermionic Matsubara frequencies, respectively.

For URu 2 Si 2 , by combining different incident and scattered light polarizations and sample geometries, the Raman scattering can extract informations of the A 1g , B 1g , B 2g and A 2g symmetries of the D 4h point group. For each one of these representations, we have to write an appropriate vertex. In the effective mass approximation this leads to

γ A 1g (k)= ∂ 2 h k ∂k 2 x + ∂ 2 h k ∂k 2 y (3.28) γ B 1g (k)= ∂ 2 h k ∂k 2 x - ∂ 2 h k ∂k 2 y (3.29) γ A 2g (k)= ∂ 2 h k ∂k x ∂k y - ∂ 2 h k ∂k y ∂k x (3.30) γ B 2g (k)= ∂ 2 h k ∂k x ∂k y + ∂ 2 h k ∂k y ∂k x . (3.31) 
Vertices like the A 2g cannot be accessed independently by linear polarizations. Only sums including circular polarizations allows the isolation of the corresponding A 2g components.The relation in 3.30 is identically zero. However if we take into account higer order derivatives with respect k-components we could have γ A 2g (k) = 0. The A 2g symmetry is usually associate with chiral excitations [Khveshchenko 1994, Devereaux 2007].

The spinon current sector.

Usually resonant contributions are associated with strong correlations, as is the case of the Heisenberg limit of the Hubbard model [Devereaux 2007]. When this is indeed the case, we need to go beyond first order in the perturbative expansion and consider the role of two, three and four point correlation functions. The definition of the current sector is based on the work of resonant features of Raman experiments for the insulating cuprates compounds [Khveshchenko 1994, Liu 1993]. The theory showed that the Raman spectroscopy is a direct tool to investigate electronic current algebra and the chirality of charged excitations which are believed to be important for various mechanisms for high-T c superconductivity [Laughlin 1988].

However, here we simply compute the two particle correlation function for the current operator. The µ component of the current operator is

ĵµ (q, τ ) = k,α,α γµ αα (k)c † k+q/2,α (τ )c k-q/2,α (τ ), (3.32) 
where ĵµ = ĵ•µ, with µ being an unitary vector along some coordinate (x, y, z), and γµ (k) = ∂h k /∂k µ . We can write down the current-current correlation function as

χµν (q, iω m ) = - 1 V β 0 dτ e iωmτ T τ ĵµ (q, τ ) ĵν (-q, 0) (3.33)
Although the vertices are different now, the procedure of calculate this correlation function follows what we did in the previous section. Once again we consider the effective mass approximation in which q → 0 and if we proceed with similar calculations of appendix B.3, we find that,

χµν (iω m ) = 1 V k 1 β ωn Tr[γ µ (k)G k (iω n + iω m )γ ν (k)G k (iω n )] (3.34)
In order to extract the signal of a particular symmetry we have to specify the components of all derivatives. For example for the BCT lattice the correlation function for the irreducible symmetries A 1g , B 1g and B 2g are, respectively

χA 1g (iω m )= χxx (iω m ) + χyy (iω m ) (3.35) χB 1g (iω m )= χxx (iω m ) -χyy (iω m ) (3.36) χB 2g (iω m )= χxy (iω m ) + χyx (iω m ) (3.37)
We have only to specify which components of k µ or k ν we are taking in the derivatives and perform our calculations. However, in this approach we do not have any signal for A 2g

symmetry. What we have to do is to consider a different correlation function.

If we define an operator that is proportional to the equal time current-current commutator, such that,

Mµν (q, τ ) = [ ĵµ (q, τ ), ĵν (q, τ )], (3.38) 
We can extract the signal for A 2g by computing the following correlation function

χA 2g (q, iω m ) = - 1 V β 0 dτ e iωmτ T τ M A 2g (q, τ ) M A 2g (-q, 0) , (3.39) 
where M A 2g (q, τ ) = Mxy (q, τ ) -Myx (q, τ ). If we consider the an effective mass approximation where q → 0, we get the following expression

χA 2g (iω m ) = 1 βV k,n Tr γA 2g (k)G k (iω n + iω m )γ A 2g (k)G k (iω n ) . (3.40)
The vertex for A 2g symmetry is defined as

γA 2g (k)= ∂h k ∂k x ∂h k ∂k y - ∂h k ∂k y ∂h k ∂k x (3.41)
For this specific case of the A 2g symmetry, it looks as if this contribution will be zero. However, in the next section we will see that when writing down h k in terms of the SU(2) basis, i.e. the Pauli's matrices, we pick up a nonvanishing result.

3.2.3

Extracting the A 2g response.

We will now show how to extract a non-zero signal for the symmetry A 2g in the current sector. Consider the expression for the vertex for A 2g before as

γA 2g (k) = ∂h k ∂k x ∂h k ∂k y - ∂h k ∂k y ∂h k ∂k x , (3.42) 
this is analogous to the commutation

γA 2g (k) = ∂h k ∂k x , ∂h k ∂k y . (3.43)
We can make use of the Pauli's matrices together with an identity, and rewrite h k as

h k =A k 1 + Re(V k )σ 1 + Im(V k )σ 2 + B k σ 3 , (3.44) 
with

A k = ε k + ε k+Q 2 , (3.45) B k = ε k -ε k+Q 2 . (3.46) Using the notation, Im(V k ) = V k and Re(V k ) = V k , the commutator becomes ∂h k ∂k x , ∂h k ∂k y = ∂V k ∂k x ∂V k ∂k y - ∂V k ∂k x ∂V k ∂k y [σ 1 , σ 2 ] + ∂V k ∂k x ∂B k ∂k y - ∂B k ∂k x ∂V k ∂k y [σ 2 , σ 3 ] + ∂B k ∂k x ∂V k ∂k y - ∂V k ∂k x ∂B k ∂k y [σ 3 , σ 1 ] (3.47)
Using the commutation relations for the Pauli matrices, we have

∂E k ∂k x , ∂E k ∂k y = ∂V k ∂k x ∂B k ∂k y - ∂B k ∂k x ∂V k ∂k y 2iσ 1 + ∂B k ∂k x ∂V k ∂k y - ∂V k ∂k x ∂B k ∂k y 2iσ 2 + ∂V k ∂k x ∂V k ∂k y - ∂V k ∂k x ∂V k ∂k y 2iσ 3 . (3.48)
In our model, we have explicitly defined the form of V k . By doing so, all the terms that involve derivatives with respect to the real part of V k vanish identically. The only term that survives is the fist one on the right hand side. Therefore, we have that

γA 2g (k)= ∂V k ∂k x ∂B k ∂k y - ∂V k ∂k y ∂B k ∂k x 2iσ 1 . (3.49)
From this result, we can check if the γ A 2g (k) is invariant under time reversal symmetry or not. For spinless particles, the time reversal operator T is directly connected to the complex conjugation operator K, i.e., T = K. If a particular operator is invariant under time reversal symmetry, this means that

T ÂT -1 = Â (3.50)
For our operator γ A 2g (k) It follows that

T γA 2g (k)T -1 = - ∂V k ∂k x ∂B k ∂k y - ∂V k ∂k y ∂B k ∂k x 2iσ 1 (3.51)
However, time reversal operation also changes momentum from k → -k. Here we keep in mind the definitions of B k in Eq.(3.46) and

V k = m + i∆ c/m f c/m (k). The function B k is
always even because of the dispersion ε k . For the imaginary part of V k , we have to consider the two spin liquid dispersions. For the chiral spin liquid γ c k is even, while for the modulate spin liquid γ m k is odd. Therefore

f c (-k) = f c (k) (3.52) f m (-k) = -f m (k) (3.53)
These results show that, in terms of time reversal symmetry, only the modulated SL has a γA 2g (k) time reversal invariant, as it should be [Thomas 2013] if the HO does not break this symmetry. In contrast, for the chiral SL, there is a breaking of the time reversal symmetry [Wen 1989].

In the next section, we analyze our results based on the numerical calculations of the spinon density-density and spinon current-current correlation functions.

Numerical analysis.

In the following, we present our results for the effective theory of Raman scattering in URu 2 Si 2 . We compute the correlation functions numerically in each sector, using Eq.(3.27) in the spinon density sector and (3.35-3.37) for A 1g , B 1g and B 2g symmetries in the spinon current sector together with Eq.(3.40) for A 2g symmetry. Following that, we extract the imaginary part of these correlation functions as required by the Raman response. All the results are calculated at T = 0 K.

The spinon density sector.

We begin with the spinon density sector, by computing the density-density correlation function derived previously, namely

χλ (iω m ) = 1 βV k,n Tr[γ λ (k)G k (iω n + iω m )γ λ (k)G k (iω n )].
(3.54)

The γ λ (k) vertices are defined in eq.(3.28)-(3.30). We concentrate on the response provided by A 1g , B 1g and B 2g , since the A 2g , in this case, does not provide any Raman signature.

The Raman signal for the conventional PM state, which is associated to the space group

No 139 (I4/mmm), is presented in fig.

(3.2(a)). This metallic phase has the space group associated with the full BCT lattice. We observe a signal when we activate only the hopping t 1 for symmetries A 1g and B 2g . In contrast, for B 1g , we must have both t 1 and t 2 non zero.

We also verify the effect of t 1 together with t 2 or t 3 for the symmetries A 1g and the B 2g ). In the A 1g case, it results in a modification of the shape of curve in a broader region around the quasi-elastic peak. For B 2g no significant change was observed.

For all these three symmetries no Raman signal could be detected when either t 2 or t 3 are activated one at a turn or when they are turned on together.

We analyze now the other three possible states is activated together with t 2 and in the inset t 1 and t 3 .In this analysis, we use t 1 = 1.0 eV, and t 2 = t 3 = 0.5 eV. We added a small phenomenological scattering rate Σ= 3.5 meV in the imaginary part of the self-energy in the Green's function e-f) display the CSL phase, which corresponds to the space group symmetry No 128 (P 4/mnc). There is a gap opening in the case of the A 1g and B 2g symmetries for all states signaling the effect of breaking the lattice translation symmetry. In the case of B 1g , insets (b),(d),(e), the signal does not present any change from the ordinary state described in (3.2). In this graphs we set t 1 = 1.0 eV for A 1g and B 2g , while t 1 = 1.0 and t 2 = 0.5 eV for B 1g . We use a small scattering rate Σ = 3.5 meV.

No 128 (P 4/mnc). The tests consist in keeping t 1 activated for A 1g and B 2g symmetries when varying the parameters ∆ m , ∆ c and m. For the B 2g case, we keep t 1 and t 2 activated.

These phases now display lattice translation symmetry breaking. The results are shown in Fig.

(3.3). For A 1g and B 2g , a gap is opening for the three parameters. For B 1g , there is no difference with respect to the paramagnetic state. When t 1 and t 2 or t 1 and t 3 are activated together, the gap is lost for the A 1g and B 2g symmetries by performing variation of m. The effect of tuning the parameters ∆ c and ∆ m moves the peak but does not tell us much about what kind of states is truly manifested. The effect of the coexistence between m and the ∆'s was also investigate. However, the only resulting effect is that, in this case, the gap is enhanced. Thus, It is not possible to predict with precision which state is actually being observed from Raman data in the spinon density sector.

The electronic Raman signal displays clear signatures of the opening a gap produced by the systematic variation of the different parameters which are related to the phases which are under test. The peaks observed in the A 1g and the B 2g symmetries disappear as we move towards higher frequencies. For the B 1g symmetry, we have only one Raman signal but no matter what parameter we tune this does not produce any considerable difference in the response. In particular, in the case when only t 1 is active, the phases exhibit the nesting condition ε k±Q = -ε k , with ordering wave vector Q = {1, 1, 1}. That is in agreement with recent studies of the Fermi surface properties the PM phase of URu 2 Si 2 and has a direct relation with HO phase [Oppeneer 2011].

The spinon current sector.

The spinon current sector as we stated earlier on is described by the correlation func- ). However in these two cases the gap is not present in A 1g or B 1g symmetries. In the B 2g case, the signal is increased and the gap is significantly enhanced by ∆ c (see insets of 3.5(d) and 3.5(f)). The effect of having a coexisting m and ∆ is also shown to be relevant. However, as in the spinon density sector, the presence of ∆ m or ∆ c only increases the value of the gap, without revealing which parameter is responsible for producing this effect. If we include t 2 and t 3 simultaneously, the gap disappears in all symmetries.

The exhaustive analysis of the spinon current sector show us that the PM phase, the phase described by m, the modulated SL and the chiral SL phases display Raman signatures of the A 1g , B 1g and B 2g symmetries. The gap manifests itself simultaneously, for the three symmetries, in the case of m activated. We can distinguish between the spin liquid phases by looking at the specific response, that in the case of modulated SL presents itself as a quasielastic peak for the A 1g and the B 1g symmetries, while for the chiral SL it shows a structureless broader region with a peak. In the case of B 2g , the gap appears for the modulated and for the chiral SL phases for significant large values of ∆, with a significant increasing of the signal.

The case of A 2g symmetry.

The plots in Fig. No significant change in the gap is observed even though the maximum is raised for m equals to 0.5 eV and 1.0 eV. We set t 1 = 1.0 eV and use a small scattering rate Σ = 3.5 meV.

In Figs. both the peak and the magnitude of the gap increase. This opens the possibility for either the modulated SL phase, connected with space group No 126 (P 4/nnc), or the chiral SL phase, connected with the space group No 128 (P 4/mnc). However, we cannot distinguish between these two states because the Raman signal appears to be the same in the two cases.

We also verify the effect of varying m for both ∆ m and ∆ c fixed. The results are shown in Fig. (3.6(c)-3.6(d)). Inthis situation, the value of the gap does not change with m and the intensity of the signal decreases as m increases. We also check the effect of activating t 1 either together with t 2 or t 3 , for the A 2g symmetry. In the first case, t 1 together with t 2 , the gap is still present, whereas, for t 1 together with t 3 , it disappears completely, giving way to a quasielastic response.

The A 2g symmetry case clearly shows the presence of a gap when both m and one of the ∆'s are activated. This result open the possibility for the two spin liquid states: the modulated SL with space symmetry group No 126 (P 4/nnc) and the CSL, with point symmetry space No 128 (P 4/mnc). However, we cannot distinguish with exactitude which one is the most appropriate because the Raman signatures look the same for the two cases. We must consider other properties, like the point group symmetry, in order to make predictions bout the HO in URu 2 Si 2 . Our results show clearly that there is always the presence of a gap, that is associated with an state that breaks the lattice translation symmetry.

Discussion of the results and connection with Raman experiments in URu

2 Si 2 .
The main result for the spinon density sector is the appearance of a gap that manifests itself in the Raman signal for the specific A 1g and B 2g symmetries. Similar responses were observed by Raman scattering in the iron-based superconductor materials [Yang 2014], though this time for different symmetries (B 1g and B 2g ). The spectra of those materials displays many spin density-wave gaps as expected in a band-folding itinerant picture of multiband systems. Here the gap is clearly related with the folding of the Brillouin zone that results from the breaking of lattice translation symmetry from a BCT to simple tetragonal structure. Still in the spinon density sector, for the B 1g case, we have observed a Raman signal. However, this signal does not present any considerable difference no matter what parameter we tune. It suggests that with the symmetry B 1g we cannot discriminate between any ordered states that considered here.

We then turn our attention to the spinon current sector. The Raman signatures for the associated PM phase, with the space group No 139 (I4/mmm), are very similar to the ones obtained in the spinon density sector. Hence, the dispersion of the two bands displays the same nesting feature with ε k+Q = -ε k , when only t 1 is present. The Raman signatures for the phase in which m takes place, having space group No 123 (P 4/mmm), are displayed in the A 1g , B 1g and B 2g symmetries. They show the presence of the gap, and a decrease of the corresponding Raman signal as m is increased. This can be associated, again, with 3.4. Discussion of the results and connection with Raman experiments in URu 2 Si 2 . 65 an spin density wave instability. For m = 0, the chiral SL and the modulates SL phases do not display any gap either in A 1g or B 1g symmetries. The only result is present in B 2g symmetry, which displays a gap for these two specific orders.

The recently Raman experiments performed in the heavy-fermion compound URu 2 Si 2 [Buhot 2014] in the HO regime show the presence of a gap in this particular phase associated precisely with the symmetry A 2g . This gap is related with an electron-hole continuum of excitations that is expected if there is a reconstruction of Fermi surface and it is compatible with what was predict by other experimental techniques like inelastic neutron scattering [START_REF] Villaume | Signature of hidden order in heavy fermion superconductor URu 2 Si 2 : Resonance at the wave vector Q 0 = (1, 0, 0)[END_REF]] and ARPES [START_REF] Andres | Fermi-surface instability at the /'hiddenorder/' transition of URu 2 Si 2[END_REF]. A recent theoretical proposition for the signal in A 2g suggested that it is a result of local interactions and the crystal-field splitting of degenerate many-body local multiplet of the U 5f 2 electronic states [START_REF] Haule | Arrested Kondo effect and hidden order in URu 2 Si 2[END_REF], Kung 2015]. Without taking these scenarios into account, our simple model can predict the signal at A 2g symmetry by considering a effective tight-binding model that involves only first neighbors on the BCT lattice.

Our results reproduce the gap that appears in the A 2g symmetry, in the spinon current sector. Among the states that we assume to characterize HO, the signal manifests itself for modulated SL and chiral SL at the same time as we keep one small values of m. The particularity arises from the fact that we must consider both the m and one ∆ at the same time.

This feature suggests the interplay between the the phase discriminated by m parameter and hidden order phase [Chandra 2013]. The gap at hidden order does not mean that this transition is a density wave transition. In terms of space group, or point group symmetry, this feature of having the two parameters activated means that the system lower its symmetry.

Regarding the question of the space group symmetry, it seems clear that there is a phase transition associated with the change in the lattice structure, in both sectors. The paramagnetic order is displayed when we activate any of the homogeneous hopping t 1 , t 2 or t 3 , and it corresponds to a state with space group No 139 (I4/mmm). When activating one of the parameters that break the lattice translation symmetry, we observed a clear change in the Raman response that translates itself into a gap opening, reinforcing the idea of a change in the lattice structure.

The phases in which a non-zero m coexists with the ∆'s, where we observed the A 2g symmetry, are determined by the particular choice of ∆. If ∆ c is present, the state with the space group No 128 P 4/mnc manifests and it is known as a chiral SL phase. On the other hand, if ∆ m takes place, the state is related to the space group No 126 P 4/nnc and it is defined as a modulated SL phase. Indications, on the framework of cuprates systems [Liu 1993], seem to indicate that the A 2g symmetry may account for the appearance of one excitation where quantum fluctuations destroy the Néel order, and hence the elementary excitations have a fractional character with a chiral nature [Khveshchenko 1994, Wen 2002, Wen 1989]. This may favor the choice of chiral SL as responsible for the appearance of such excitations.

However, in their analysis, Harima-Miyake-Flouquet rejected this idea based on the fact that the space group No 128 P 4/mnc is incompatible with the nuclear quadrupole resonance experiments for URu 2 Si 2 [Harima 2010]. Therefore, such phase with this particular symmetry would not account for HO. Another constraint to reject the chiral SL state is the breaking of time-reversal symmetry that is presented by this phase since, at the HO, no evidence for this violation has been reported so far [Das 2013]. Therefore, our results suggest that among the two spin liquid states the modulated SL is the most probable state for the HO phase.

Chapter 4

Conclusions and Perspectives.

The most noticeable result emerging from this thesis is that the hidden order phase can indeed be seen as a modulated spin liquid state. This conclusion was build upon the study of two different models that are used to investigate the HO phase in URu 2 Si 2 . In the first of them, we investigated the J 1 -J 2 -J 3 Heisenberg model for the BCT lattice structure and its relation with the HO and the antiferromagnetism of URu 2 Si 2 . In the second model, we elaborate on the possible existing non-conventional spin states and use it to explore the recent results from Raman spectroscopy in URu 2 Si 2 . Motivated by great amount of experimental information of URu 2 Si 2 , we provided new theoretical elements to investigate the hidden order phase.

In chapter 2, we applied the J 1 -J 2 -J 3 Heisenberg model to the BCT lattice. We made use of linear spin wave theory to test the stabilities of the existing magnetic orderings. The magnetic orders derived for this model comprises two commensurate antiferromagnetic phases labeled by the antiferromagnetic wave vectors Q I AF = (1, 1, 1) and Q II AF = (1/2, 1/2, 0), with Q II AF being selected by the "order by disorder" mechanism.

We also confirmed the existence two incommensurate orders, characterized by the vectors Q II inc and Q III inc . Then, we checked the stability of the magnons excitations for each of this phases. The linear spin wave theory showed that there are instabilities of these excitation modes associated with the particular incommensurate AF orderings, even though the three-dimensionality character of the system allows only small fluctuations.

It became clear that the spin wave approach is too approximate and as a result it is unable to predict spin liquid states. For this reason, we carried out an SU(n) symmetric generalization of the Heisenberg model. The physical motivations for this study were again the unusual phenomena exhibited by URu 2 Si 2 . They are connected with the fact that the magnetic degrees of freedom seem to be deconfined into fermionic modes and may con-tribute to the formation of the Fermi surface [Pépin 2011]. We found that it is possible, with this SU(n) approach, to stabilize the spin liquid phases when n is larger than a critical value. Three spin liquid phases emerged naturally from our analysis. Two of those SL are the analogous of the RVB states [Anderson 1973] in a 3d system. We also find the presence of a modulated spin liquid (MSL), with wave vector Q I AF . This MSL phase was recently suggested as a candidate to describe the hidden order phase in URu 2 Si 2 [Pépin 2011]. This particular modulated state can be verified experimentally by inelastic neutron or Raman scattering experiments or any other experimental techniques based on the orientation dependencies, which are initially set by in the experiment [Thomas 2013]. Such an MSL phase might be responsible also for a commensurately ordered pairing that breaks the BCT symmetry down to the simple tetragonal lattice structure. Moreover, it might also be related to the superconducting instability observed in URu 2 Si 2 inside the HO phase.

Secondly, motivated by the result that it is possible to stabilize both the spin liquid phase together with an AF order in a BCT lattice, we turn to chapter 3, where we presented a two band non-interacting effective theory, which is used to explain recent Raman scattering experiments performed at the HO phase of URu 2 Si 2 [Buhot 2014]. This new model deals with the same possible electronic states predicted in the framework of Heisenberg J 1 -J 2 -J 3 model. Using the space group and point group symmetry arguments of Harima-Miyake-Flouquet [Harima 2010], we made a space group analysis by checking the spin liquid scenarios that results from our effective tight-binding Hamiltonian. We regrouped the spin liquid phases into two different classes of space groups plus two other classes of space groups, one for a metallic state and another one to describe an ordering phase that is characteristic to some phenomena that is common in heavy fermion systems.

In the later, if the charge degrees of freedom were considered explicitly in the model, this ordered phase would represent the local Kondo Hybridization or a charge-density wave phase and even it can account to some small magnetic moment.

The first space group under investigation is No 139, with full BCT lattice symmetry, that might describe the high-temperature paramagnetic metallic phase. The other three space groups break the BCT lattice translation symmetry down to the simple tetragonal lattice structure. This change of the lattice space groups also imply a change in point group symmetry. However all the possible candidates still belong to the same tetragonal class of space group. The group No 123, that happens to be the most symmetric one, describes the possibility of a local Kondo Hybridization or a charge density wave phase in a scenario where we could take into account charge degrees of freedom or in the last case a staggered magnetic moment of the localized spin. We justify this assumption by assuming that our model describe a phenomenological theory for this particular system of URu 2 Si 2 and we may proceed with the analysis without take this ingredients explicitly into account and consider as if they were presented since the beginning. The other two space group that we consider is the space group No 126 that favors the modulated SL phase and the space group No 128 represents the chiral SL order.

In the detailed point group symmetry analysis of Harima-Miyake-Flouquet [Harima 2010], they presented a systematic study considering various scattering experiments to investigate the compatibility of the point groups symmetries which could be associated with the candidates to describe the hidden order. Among the space groups Future perspectives for this work would be to investigate a two band model with interactions to see how the correlations modify the calculated Raman signatures. Such a model should preserve the features stressed here at HO phase: the breaking of lattice translation symmetry and the preservation of the time reversal symmetry, as well as the direct link of the Fermi surface with the nesting condition for two bands, as recently proposed through the spin-orbit coupling mechanism [Das 2014]. Among these interactions, we could consider for example the interplay between the spin liquid and Kondo physics [Zhu 2008],

since in URu 2 Si 2 the charges degrees of freedom coexist with the magnetic correlations.

In this context, the Kondo lattice models should be appropriate to describe on the same footing local and non-local degrees of freedom. There are experimental pieces of evidence that there two kinds of gaps may be revealed in URu 2 Si 2 . One pseudo-gap signaling the Kondo effect in temperatures T K ≈ 70 K which is inferred by spectroscopy measurements [Lobo 2015] and another gap which results as consequence of the folding of the Fermi Surface in temperatures below T 0 = 17.5 K, precisely at HO phase, that is detected by angle resolved photoemission spectroscopy (ARPES) [Santander-Syro 2009] and inelastic neutron [Bourdarot 2010]. A recent theoretical approach using the Kondo lattice model [Montiel 2014] shows the coexistence between the Kondo effect and the modulated SL phase. It states that both gaps appearing in URu 2 Si 2 can occur at different temperatures, and the HO phase is seen as a modulated SL. In this way, for future investigations, it is important that the Kondo effect is present in our model because since this is a well known mechanism to "deconfine" the local magnetic degrees of freedom into Abrikosov fermions which are partially responsible for the spin liquid states.

we end up with a new system of equation that in order to solve we have to define some possibilities

     ±S + p 2 S -2p 3 S + p 3 S(S 2 -D 2 ) = 0 ±D + p 2 D -2p 3 D -p 3 D(S 2 -D 2 ) = 0 (A.16)
We consider four different possibilities, 

= ± 2p 3 -p 2 ∓1 4p 3 . This implies that Q II inc = (Υ 2 , Υ 2 , 0) or Q II inc = (Υ 2 , Υ 2 , 1).
2. D = 0 and S = 0, where cos qx 2 = cos

qy 2 ± π , with cos qx 2 = ± 2p 3 -p 2 ±1 4p 3 . This implies that Q II inc = (Υ 2 , -Υ 2 , 0) or Q II inc = (Υ 2 , -Υ 2 , 1).
3. S = 0 and D = 0, we recover the commensurate phases. Note that if this occurs, we have a degeneracy in k z for Q II AF . This degeneracy can be characterized by the wave vector Q II AF =(1/2, 1/2, ν) that was introduced before. The argument discussed in the section of order by disorder shows that the most preferred phase is the one that selects ν = 0.

4. S = 0 and D = 0, where we can find the constraint for p 3 and p 2 where p 3 = p 2 /2.

The first two possibilities give us the second incommensurate wave vector Q II inc . However, we have to choose the sign inside the square root based on the argument of stability for this state. The next step is to check if our results truly correspond to stable states ordered accordingly to the Q's wave vectors that we derived. We have to analyze the stability of these two new incommensurate phases.

Since our cosines functions should run between zero until one, which means that the components of the vector q must lie in the interval 0 < q i < 2π, we state that what is inside the square roots should be a positive quantities. This means that 0 < 2p 3p 2 ± 1 < 1.

(A.17)

With this last inequality, we found four lines defined by the following equations Ordering wave vector

p 2 + 1 2 < p 3 < 1 + p 2 2 (A.
J Q AF Q I AF = (1, 1, 1) -1 + p 2 2 + p 3 2 Q II AF = 1 2 , 1 2 , 0 -p 2 2 + p 3 2 Q III inc = (1, M, 1) - 1 2(p 2 +2p 3 ) -p 3 2 Q II(-) inc
= (q x , q y , 1), Q II(-) inc = (q x , q y , 0) -

c 2 1 8p 3 -p 2 2 + p 3 2 , c 1 = 2p 3 -p 2 -1 Q II(+)
inc = (q x , q y , 0), Q II(+) inc = (q x , q y , 1) - 

c 2 2 8p 3 -p 2 2 + p 3 2 , c 2 = 2p 3 -p 2 + 1

A.2 Continuous versus discontinuous transitions lines.

Another simple check that we can make is to test if the wave vectors are continuous in each critical line of the phase diagram. This is a crucial point in order to investigate the 1/S corrections in the framework of spin wave calculations, since we have already had some results for the commensurate phases.

First, let us test the continuity of Q II inc when we approaching to the critical lines that delimits Q I AF end Q III AF . For Q II inc , we have the condition cos q x 2 =cos q y 2 = ± 2p 2p 2 + 1 4p 3 , (A.28) σ χ † i,σ χ i,σ = n/2, with n/2 fermions on each site, each one with a different flavour due to the Pauli exclusion principle [Affleck 1988a, Marston 1989 (A.37)

Here we do not take into account the second term in eq.(A.36) because it is of second order in large n expansion. In eq.(A.37) we wrote the products of fermionic operators like in mean field formalism. Here we consider the couplings J W eiss > 0 and J SL > 0. The interactions in a 3-d BCT Lattice are J 1 -J 2 -J 3 ,

Ĥ = - J SL (l) n i,j α [ χ † iα χ jα χ † jα χ iα + χ † iα χ jα χ † jα χ iα + χ † iα χ jα χ † jα χ iα ] + J W eiss (l) n i,j α [ χ † iα χ iα χ † jα χ jα + χ † iα χ iα χ † jα χ jα -χ † iα χ iα χ † jα χ jα ] (A.38)
Now we defined three kinds of fields φ1 i,j , φ2 i,j and φ3 i,j by φ(l) i,j =α χ † iα χ jα (A.39)

That are associated with each coupling constant J 1 , J 2 and J 3 respectively. The magnetization is defined by .40) belongs to A or B, respectively. Then,

m R i = 1 n α χ † iα χ iα (A
H = 1 2 k c † k c k [E(k) + E * (k)] + 1 2 k c † k+Q c k+Q [E (k + Q) + E * (k + Q)] + 1 2 k c † k+Q c k [E (k) -E * (k)] + 1 2 k c † k c k+Q [E (k + Q) -E * (k + Q)] (B.8)
We can write the Hamiltonian in a matrix representation, as follows

H= k Ψ † k h k Ψ k . (B.9)
With the definition of Ψ k given by eq.(3.8) and

h k =   E(k)+E * (k) 2 E(k+Q)-E * (k+Q) 2 E(k)-E * (k) 2 E(k+Q)+E * (k+Q) 2   . (B.10)
With the definition of E(k), the hopping t i,j and taking the wave vector Q = (1, 1, 1)

we can recognize the following terms when doing the sum in the neighbours vectors δ.

E(k) + E * (k) 2 = t 1 γ 1 k + t 2 γ 2 k + t 3 γ 3 k (B.11) E (k + Q) + E * (k + Q) 2 = -t 1 γ 1 k + t 2 γ 2 k + t 3 γ 3 k (B.
12)

E (k + Q) -E * (k + Q) 2 = i8∆ SL γ SL k (B.13) E(k) -E * (k) 2 = i8∆ SL γ SL k (B.14)
If we add the contribution from m and E 0 we recover the h k matrix defined in section (??).

We would like to highlight the derivation of the k dependent term in V k , which came from the ∆ in t i,j . Considering the first neighbours inter-plane. In this case, the sum in δ The first sum in δ taking the t 1 term produce the γ 1 k and the second sum give us γ SL k .

This last terms can be γ c k or γ m k depending on the definition of t ij (eq.( 3.3) and eq.(3.4)).

This complete our demonstration of the relation that have been presented so far in that section.

B.2 Diagonalisation of the Hamiltonian.

The procedure for diagonalizing the Hamiltonian in k-space use a general representation of Bogoliubov transformations. The Hamiltonian in eq(3.1) must be in a diagonal form and in order to do that we invoke a unitary transformation matrix that makes

Ψ k = Pk Ψ diag k (B.16)
Where, as introduced before, the matrix for the spin component is

Ψ k =   c k c k+Q   (B.17)
While in the diagonal basis is Where the dispersions are given by

Ψ diag k =   c +,k
E ± k = ε(k) + ε(k + Q) 2 ± |V (k)| 2 + ε(k) -ε(k + Q) 2 2 (B.22)
We have to solve the matrix equation (B.20) that leads to the following linear systems of equations. 

ε k = E + k cos 2 θ k + E - k sin 2 θ k (B.23) ε k+Q = E + k sin 2 θ k + E - k cos 2 θ k (B.24) V k = (E - k -E + k ) e -

B.3 The density-density correlation function.

Let us derive the result for the density-density correlation function in eq.(3.27). The procedure is analogous for the current-current correlation in eq.(??).

Recall that the dynamical effective density-density correlation function or Raman response S can be written in terms of a dynamical effective density susceptibility χ via the fluctuation dissipation theorem Recall the effective density operator ρ(q, τ ), ρλ (q, τ ) = k,α,α γ λ α,α (k)c † k+q/2,α (τ )c k-q/2α (τ ) (B.33)

(-τ ) (B.36)
We can write down the Fourier transform for the Green's function as

G k (τ ) = 1 β n e -iωnτ G k (iω n ) (B.37)
We end up,

... = 1 β 2 n 1 ,n 2 G α 1 α 1 k 1 -q 2 ,k 1 + q 2 (iω n 1 )G α 2 α 2 k 2 + q 2 ,k 2 -q 2 (iω n 2 ) (B.38) - 1 β 2 n 3 ,n 4 e -iωn 3 τ e iωn 4 τ G α 1 α 2 k 2 + q 2 ,k 1 + q 2 (iω n 4 )G α 1 ,α 2 k 1 -q 2 ,k 2 -q 2 (iω n 3 ) Therefore, χλ (q, iω) = 1 V β 0 dτ e iωτ k 1 ,k 2 α 1 ,α 1 α 2 ,α 2 γ λ α 1 α 1 (k 1 )γ λ α 2 α 2 (k 2 ) × 1 β 2 n 3 ,n 4 e -iωn 3 τ e iωn 4 τ G α 1 α 2 k 2 + q 2 ,k 1 + q 2 (iω n 4 )G α 1 ,α 2 k 1 -q 2 ,k 2 -q 2 (iω n 3 ) - 1 β 2 n 1 ,n 2 G α 1 α 1 k 1 -q 2 ,k 1 + q 2 (iω n 1 )G α 2 α 2 k 2 + q 2 ,k 2 -q 2 (iω n 2 ) (B.39)
The integrals in imaginary time give β 0 dτ e iωτ = βδ -ω,0 and β 0 dτ e -i(ωn 3 -ω-ωn 4 )τ = βδ ωn 3 ,ωn 4 +ω . We remark that all ω n are fermionic Matsubara frequencies and that ω is a bosonic one. The Green function for the Hamiltonian in a diagonalized form is G αα kk (iω n ) = δ αα δ kk G k (iω n ). Then, the final result is In the correlation functions on eq.(3.27) and (??), after write down the trace for each od this correlations, we must to perform the Matsubara's sum over the fermionic frequency ω n . It can be done analytically, since they are of the kind

χλ (q = 0, iω) = 1 V k α 1 ,α 2 γ λ α 1 α 2 (k)γ λ α 2 α 1 (k) 1 β n G k (iω n )G k (iω n + iω) - 1 V k 1 ,k 2 α 1 α 2 γ α 1 α 1 µ (k 1 )γ α 2 α 2 ν (k 2 ) 1 β n 1 ,n 2 G k 1 (iω n 1 )G k 2 (iω n 2 )δ ω,0 ( 
S = 1 β n G α (k, iω n + iω m )G α (k, iω n ) (B.43)
Where the Green's functions are G α (k, iω n ) = 1/(iω n -E α k ), α is ± related to the eigenvalue E ± k . We rewrite the product of these two green functions as

G α (k, iω n + iω m )G α (k, iω n ) = 1 iω m + E α k -E α k [G α (k, iω n ) -G α (k, iω n + iω m )] (B.44)
If we place this last expression inside the sum S and have in mind the usual result [Mahan 2000], B.45) in which n F (E α k ) is the Fermi distribution, with energy E ± k . Finally, we get the following result .46) 

1 β n G α (k, iω n ) = n F (E α k ), ( 
S = 1 iω m + E α k -E α k (n F (E α k ) -n F (E α k )) (B
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 1 Figure 1: (a) Corresponding structure in reciprocal space, Brillouin zone, of the BCT, and the main points and directions. (b) The bct lattice structure.

Figure 2 :

 2 Figure 2: (Left) Crystal structure of body-centered tetragonal lattice for URu 2 Si 2 . The corresponding space group is the I4/mmm. (Middle) The antiferromagnetic pattern for the spin alignment of U moments. (Right) Corresponding structure in reciprocal space, Brillouin zone, of the BCT, with its the main symmetry points and directions.
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 3 Figure 3: Temperature versus pressure phase diagram for URu 2 Si 2 from [Villaume 2008]. At zero

  which the spin are aligned in the ground state. It is common to use the theory of spin wave (SW) to incorporate these fluctuations. Before entering in discussions about fluctuations, let us see the application of Heisenberg model to one simple and widely studied example. The Heisenberg model on the square lattice in the classical regime.

Figure 1

 1 Figure 1.1: (a) Ground-state energy per site N, for J 1 -J 2 Heisenberg model. The two ground states regions are indicated with respect Q I AF = {π, π} and Q II AF = {π, 0}. (b) The J 1 -J 2 Heisenberg model. Each vertex indicates a spin and the parameter θ is indicated.

  ). The order parameter χ ij is invariant under the gauge transformation c

  (1.2 (c)). The phase on the bond is not oriented and consequently there is no flux generated there.

  Figure 1.2: (a)-(b) The dimerized state and the Affleck-Marston π-flux phase on square lattice with θ is equal to π/4 [Affleck 1988a]. (c) The modulated spin liquid [Pépin 2011]. The sign plus or minus makes the distinction between solid or dashed bonds.

  Figure 1.3: The Raman-scattering spectrum taken on (Y 0.92 Ca 0.08 )Ba 2 Cu 3 O 6.3 . The inset shows the photon polarization in the CuO 2 plane. From this picture it is possible to conclude that Raman scattering can give us lot of information from the systems, as phonon and magnons. [Devereaux 2007].

Figure 1

 1 Figure 1.4: (a) The creation process of a phonon with frequency ω. (b) Creation process of a pair particle-hole of frequency ω.

Figure 1 . 5 :

 15 Figure 1.5: Some process that can occur in Raman electronic diffusion. At first order in perturbation theory we have the intraband process (a). At second order in perturbation theory. we have intraband (b) and interband (c) process.

  Figure1.6: The Raman spectra for URu 2 Si 2 in a pure A 2g symmetry at paramagnetic phase and hidden order phase. In both cases, the quasielastic spin scattering in the paramagnetic phase. Data in (a) is from[Cooper 1987] while (b) is from[Buhot 2015].

  Fig(1.7(a)). These two signatures were confirmed only in the A 2g precisely at the HO phase, as shown in Fig.(1.7(b)).They proposed that the gap is due to quasiparticle excitations near the Fermi level, that accounts for the Fermi surface reconstruction at the HO transitions. Different Raman results, at the HO phase, were obtained byKung et al. [Kung 2015]. They found that beyond the signal in A 2g there is also A 1g signatures exactly at the same energy. These signals come from the transitions in the crystalline field environments from partially delocalized levels. Both experimental results have shown a direct connection between the HO and A 2g symmetry. Although an explanation among his connections still requires theoretical investigations.

Figure 2

 2 Figure 2.1: The BCT lattice with the J 1 -J 2 -J 3 interactions underlined. The lattice constants are set to a = b = c = 1

Figure 2

 2 Figure 2.3: Energy as a function of p 2 , for S = 1/2. Including the first corrections we are able to lift the degeneracy in favor of ν=0 or ν=1, which means q z =0 or 2π.

  ]. Let us see what happens when the degeneracy present is associated with Q II AF . Let us verify what happens with the fluctuations produced by those S corrections.

Figure 2

 2 Figure 2.4: The magnetization phase diagram as a function of p 2 = J 2 /J 1 for S = 1/2 , when p 3 is defined in the critical lines. The quantum corrections to the magnetization diverges as p 2 → ∞ for

Figure 2 . 5 :Figure 2 . 6 :

 2526 Figure 2.5: The classical phase diagram modified to show the region where spin wave theory becomes unstable for S = 1/2.

  .36) with a bond index definition similar to that exhibited in Fig.(2.1). The three kinds of spin liquid patterns are shown in Fig.(2.7).It depicts Φ 2 and Φ 3 as two-dimensional correlations as in square lattice. Finally, we also have the interplane correlation φ 1 ij , represented by dashed lines which φ 1 ij = Φ 1 + Φ M and φ 1 ij = Φ 1 -Φ M bond modulations represented by solid lines.

  Figure 2.7: The three kinds of inter-site spin liquids correlations on the BCT structure. (ab) For Φ 2 and Φ 3 , have two-dimensional character as in square lattice. Φ 3 is a long-range ordered modulation. (c) The inter-plane correlation. Dashed lines represent Φ 1 ij = Φ 1 +Φ M and solid lines represent Φ 1 ij = Φ 1 -Φ M the bond modulation.

Figure 2 . 8 :

 28 Figure 2.8: (a-c) Ground-state phase diagram of the J 1 -J 2 -J 3 model in coordinates (p 2 , p 3 ) computed self-consistently for different values of n.

  from this regular state to a new phase defined with three different space groups symmetries which could be associated with the No 123 (P 4/mmm, D 4h ), the No 126 (P 4/nnc, D 4 ) or the No 128 (P 4/mnc, C 4h ). Also those point symmetry groups D 4 and C 4h have the same selection rules and also they are subgroups of point group D 4h[Harima 2010]. We introduce appropriate parameters that capture the characteristics of these ordered states.

  Figure 3.1: The four possible ordered states that are considered in our model. Figure (a) shows the paramagnetic phase, that displays the full BCT lattice structure with space group No 139. In Fig.(b) we represent an states that breaks lattice translation symmetry and results in to two sub-lattices that reduces the BCT down to ST lattice. This phase is characterized by the space group symmetry No 123. Figure(c), we represent the modulated SL phase, associated with the space group No 126.

Figure

  Figure (d), the chiral SL phase, that is related to the space group No 128.
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  see Fig.(3.2(b))

  Figure 3.2: Raman signal in the spinon density sector for the paramagnetic state, with space group No 139. Figure (a) shows the response for the symmetries A 1g and B 2g when only t 1 is active. In the B 1g case, the signal is obtained when we turn both t 1 and t 2 . (b) Raman response when t 1

Figure 3 . 3 :

 33 Figure 3.3: Raman response for the spinon density sector. Figures (a-b) display the response in the case of m activated. This state is related to the space group No 123 (P 4/mmm).Figures (cd) associated with the MSL phase, connected to the space group No 126 (P 4/nnc).Figures (e-f) 

Figure 3 . 4 :

 34 Figure 3.4: Raman signal in the the spinon current sector for paramagnetic state, with space group No 139. The A 1g , B 1g and B 2g symmetries can be observed when only t 1 is active.

Figure 3 . 5 :

 35 Figure 3.5: Raman response in the spinon current sector for the A 1g , the B 1g and the B 2g symmetries. Figure (a)-(b) display the phase characterized by m parameter, associated to the space group symmetry No 123 (P 4/mmm). The gap is proportional to the value of m and as soon as we increase m the signal decreases. Figures (c)-(d) display the modulated SL phase, associated with the point space symmetry No 126 (P 4/nnc). There is no gap for the A 1g and the B 1g symmetries. For B 2g symmetry, the gap appears when we go up to high values of ∆ m . Figures (e)-(f) display the chiral SL phase, which corresponds to space group No 128 (P 4/mnc). There is a gap only for the B 2gsymmetry. We set t 1 = 1.0 eV and use a small scattering rate Σ = 3.5 meV.

  (3.6(a)) and (3.6(b)), we fixed the value of m while varying the ∆'s. Note that, since the space groups No 128 and No 126 are sub-groups of the No 123, the coexistence between the parameter m with a non-zero ∆ m or ∆ c still corresponds to the particular groups No 126 or No 138, respectively. By increasing the values of ∆ m or ∆ c , in both cases,

Figure A. 1 :

 1 Figure A.1: The regions of existence for Q II inc . The expression inside the square root (2p 3p 2 ± 1) choose the value of k z that give us the sign plus. This will be clear when we comparing the criteria for the stability of the incommensurate phases. We underlined the regions for Q II(+) inc and Q II(-) inc .

  take in to account the eight different neighbours inter-plane. They are respectively δ=(x, y, z)δ 7 =(a/2, a/2, -c/2) (B.15g) δ 8 =(-a/2, a/2, -a/2) (B.15h)

  h text is the matrix in (3.9) and h dia k is the matrix of the Hamiltonian written down in the diagonal basis with the diagonal terms being the eigenvalues of H. Consequently, the Hamiltonian in the diagonal basis is

  iφ sin θ k cos θ k (B.25)V * k = (E - k -E + k ) e iφ sin θ k cos θ k (B.26) the equation (B.26) and (B.26) are linearly dependants since one is the conjugate of the other. The relations for cos θ k and sin θ k . By summing and subtracting B.24 and B.25, we haveε k + ε k+Q =E + k + E - k (B.27) ε kε k+Q =(E + k -E - k ) cos 2θ k (B.28)From the second equation we easily obtain the condition of θ k bycos 2θ k = ε kε k+Q |V k | 2 + ϕ k is extract from (B.26), written in the polar form for a complex number.Therefore,ϕ k = -(arg(V k ) ± π). (B.32)This complete our demonstration of the relation in eq.(3.21) and (3.22).

  Tr γ λ (k)G k (iω n + iω)γ λ (k)G k (iω n ) , (B.41)that provides the signal at the charge channel. The next step is to compute the trace in this expression and the sums in Matsubara fermionic frequency. Finally, we perform the numerical integration over k space in the first Brillouin zone of Simple T-lattice by replacing the sum into an integral as 1

  scattering tensor | F |H int |I | 2 is calculated by perturbation theory in H int . It will involve contributions from both H A at second order and H AA at first order. The term H A involves the coupling between current and H AA is the contribution from charge. Later on we will see that this produces the charge and current sector of our Raman analysis in the next chapter.

  they analyzed, three of them are precisely the No 123 (I4/mmm) , No 126 (P 4/nnc) and No 128 (P 4/mnc). The other point groups considered by them were the No 129, No 131, No 134, No 136 and the No 137. In the end, they concluded that the point group No 136should characterize the HO phase. However, if we take into account the new experimental results from Raman, we can demonstrate instead that there are clear signatures of the four groups that might be associated with the paramagnetic, antiferromagnetic, modulated SL and chiral SL phases.Our results reproduces the gap opening in the Raman response for particular symmetries and for a given choice of parameters that describe these phases. This gap is a consequence of the breaking of lattice translation symmetry and is compatible with what happens in the phase transition from PM to HO phase of URu 2 Si 2 . The Raman scattering measurements for URu 2 Si 2 establish strong constraints for the A 2g symmetry. This is in agreement with our results which favors a modulated spin liquid phase scenario for HO.The modulated spin liquid phase, with space group No 126 is, in this way, compatible with the Raman experiments invoking the A 2g symmetry at HO. The alternative chiral SL is rejected because it automatically results into the breaking of time-reversal symmetry, that it is not observed in the HO phase. In this way, we demonstrate that our relatively simple two-band effective model which take into account bond orderings defined for first neighbors is compatible with Raman scattering signatures at the A 2g symmetry.

  Table A.1: Ordering wave vectors for each antiferromagnetic state and its respective clas-the other phases. With the equations above we can predict that the shape of the phase diagram is like the Fig.(2.2). By this point end on we should always use Q II

	3. When E(Q II(+) inc ) < E(Q II inc ), we end up with the equation
	p 3 3 +	p 2 2	-1 p 2 3 +	1 -p 2 2 4	p 3 -	p 2 (p 2 -1) 2 8	< 0,	(A.22)
	which has the trivial solution			
							p 3 <	p 2 2	.	(A.23)
	4. When E(Q II AF ) < E(Q	II(-) inc ) we have the following result
						p 3 <	p 2 + 1 2	(A.24)
	5. If we have E(Q	II(-) inc ) < E(Q III inc ), we find the equation
	p 3 3 +	p 2 2	+ 1 p 2 3 -	p 2 2 -1 4	p 3 -	p 2 (p 2 + 1) 2 8	> 0.	(A.25)
	with the trivial solution				
							p 3 >	p 2 2	(A.26)
	6. The last case is when E(Q I AF ) < E(Q	II(-) inc ). It give us the result
					p 3 <	3 -p 2 ± 8 (1 -p 2 ) 2	.	(A.27)
	By comparing each of these cases, we can conclude that the ordering vector Q II(-) inc	is
	not stable against							
	sical energy.							

inc instead of Q II(+) inc .

  ]. As n increases from 2 to larger values, quantum spin fluctuations are enhanced, weakening any spin order.† iα χ jβ χ † jα χ iβ nδ αβ δ α βδ αβ δ α β (A.35)If J = J W eiss + J SL , applying the mean field theory, we have† iα χ iα χ † jβ χ jβ + χ † iα χ iα χ † jβ χ jβ + χ † iα χ iα χ † jβ χ jβ ] [ χ † iα χ jα χ † jα χ iα + χ † iα χ jα χ † jα χ iα + χ † iα χ jα χ † jα χ iα ]

	Let us use this in the Heisenberg Hamiltonian			
	Ĥ = χ Ĥ = 1 n 2 i,j J i,j αβ,α β J n i,j αβ χ † iα χ jβ χ † jβ χ iα -	J n 2	i,j α,α	χ † iα χ iα χ † jα χ jα	(A.36)
	Ĥ=-J SL J W eiss (l) n (l) [ χ -i,j αβ n i,j α				

One version of this chapter has been published. C. Farias, C. Thomas, C. Pépin, A. Ferraz, C. Lacroix and S. Burdin. [Farias

2016] 

This work was carried out by C. Thomas in collaboration to[Farias 2016]. In this part, we do not driven much attention to specific calculations, and only concentrate in the results.

This expression is derived in appendix B. For the moment it will be sufficient to say that it can be obtained from the Fourier transform of the Hamiltonian Hn after the mean field decoupling.

Appendix A

Detailed calculations for chapter 2.

A.1 The saddle point equation for the Classical phase diagram.

In this appendix, we will derive here the saddle point equations that minimize the dispersion J(q) presented in the section 2.1. By writing the derivatives of the classical energy J(q) = 8J 1 γ 1 (q) + 2J 2 γ 2 (q) + 4J 3 γ 3 (q), (A.1)

We end up with the following system of equations ∂J(q) ∂q x = -4J 1 sin q x 2 cos q y 2 cos q z 2 -2J 2 sin (q x ) -4J 3 sin (q x ) cos (q y ) , (A.2) ∂J(q) ∂q y = -4J 1 cos q x 2 sin q y 2 cos q z 2 -2J 2 sin (q y ) -4J 3 cos (q x ) sin (q y ) , (A.3) ∂J(q) ∂q z = -4J 1 cos q x 2 cos q y 2 sin q z 2 = 0.

(A.4)

The next step is to solve this system of equations and to do so, we have to take into account the possible cases for q z .

If we have q z = 0 or q z = 2π, we see that eq.(A.4) is automatically satisfied and we end up with two equations for k x and k y ±4J 1 sin q x 2 cos q y 2 -2J 2 sin (q x ) -4J 3 sin (q x ) cos (q y ) = 0, (A.5)

These two equations can be factorized as

We introduce the notation where p 2 = J 2 /J 1 and p 3 = J 3 /J 1 as the dimensionless parameters. We can consider the trivial solutions when we have q x and q y equal to zero or 2π. This give us the first commensurate state, Q I AF = (0, 0, 0) or Q I AF = (1, 1, 1). The second trivial solution is obtained for q x = π and q y = π. In this case, it does not matter what values q z takes, because the cosine function vanishes, which means that we have a degeneracy for this wave vector. Therefore the second trivial solution is Q II AF = (1/2, 1/2, ν). On the other hand, if q x = 0 or q x = 2π and since sin qy 2 = 0, we end up with the first incommensurate wave vector Q inc , with the condition that

In reduced notation we can write this incommensurate wave vector as

, where Υ 3 = 1 π arccos ± 1 p 2 +2p 3 . This is completely analogous to the case where we consider now q y = 0 or q y = 2π and sin qx 2 = 0. Now we have as the incommensurate state

. All this states are degenerated in a sense that they reproduce the same classical energy J(q). If we do not consider the trivial case, which means sin qx 2 = 0 and sin qy 2 = 0, we have to solve the following system of equations

We perform a change of variables as

We end up with a new systems of equations

Summing and subtracting these two equations and making one more change of variables, where we define

that can be written as cos q x 2 = cos q y 2 + π .

(A.29) Therefore, we have the relation between q x and q y q x = ±q y ± 2π + 4nπ.

(A.30)

When we approach to the critical line defined by p c 3 = p 2 -1 2 , that is the critical line that delimits the phase transition between Q II inc and Q II AF , we end up with the following condition for q x cos q x 2 = 0.

(A.31)

This implies that q x = ±π + 2nπ and q y = ±π. This is the limit of wave-vector Q II AF = (π, π, 0) and we conclude that Q inc inc is continuous in this critical line.

If we approach to the line between Q II inc and Q I AF , p c 3 = 1-p 2 2 , we end up with

which means q x = ±2π + 2nπ and q y = ±2π. This is the limit of wave-vector Q I AF = (2π, 2π, 0) and we conclude that Q II inc is also continuous in this critical line.

On the other hand, if we approach to the line between Q II inc and Q III inc , p c 3 = p 2 2 , we end up with the condition cos

This does not correspond to the limit when we take the relations of cosines for Q III inc and this tells that the wave vector is not continuous at this critical line. Although, in the limit of p 2 → ∞, we have Q III inc → Q III AF and Q II inc → Q II AF , which corresponds to the limit of an antiferromagnetic in 2D case, with Q III AF = (0, π) and Q II AF = (π, π) .

A.3 The mean field decoupling of SU(n) Heisenberg model.

We are going to explain the procedure of mean field decoupling that led to definitions in eq.(2.32) and eq.(2.33). For this aim, we use one generalization of the Abrikosov fermionic representation of the spin operators

where, χ † iα (χ iα ) is the creation (destruction) operator for fermions at site i and the in- In this section we present the derivations for the relation that were presented in the section 3 for the structure factors γ k associated with the hoping t i,j . First, let us write down the Hamiltonian from the real to k-space, by using the Fourier transforms of the creation destruction operators. Remembering the Hamiltonian

with the respective definitions for the hoping terms that specify the point group symmetries in eq.(3.2), (3.3) and (3.4). We highlight that the sing ± in (3.3) and (3.4), means that the it is alternating between two sites. By making use of the Fourier transforms of the c's operators

The sum in sites are related with the BCT lattice. The Hamiltonian can be seen as a

Let us concentrate on the hopping term

since is this part that gives rise the factor's structure γ.

We developed the calculation for a general hopping t i,j and at the end we will concentrate only in the first neighbours inter-plane, since the in-plane relations can be derived in the same fashion as for square lattice. For the hopping inter-plane, we have

and

For the CSL case, the sign plus means that the link is oriented in the incoming direction of the central site, otherwise is minus. On the other hand, for the MSL case the sign plus means a bonding (full line) between one site at corner and central site, otherwise is an anti-boding (dashed line), as showed in fig(3.1).

By using the Fourier transforms in (B.3), we rewrite the Hamiltonian and we end up with

Where we defined E R i (k ) = δ t i,i+δ e ik •δ and the sum is k runs over the first Brillouin zone of BCT. The next step is to split the sum in the BCT-Brillouin zone as being a sum of two tetragonal lattices, where we use the fact that the BCT is bipartite in two simple tetragonal sub-lattices A and B. We end up with four terms

Now the sums in k run over the T-lattice. But the sums in i run over the BCT lattice.

We can also split the sum in the BCT-Lattice in a sum for sub-lattice A and B. This

preserves the hermiticity of the Hamiltonian. Which gives the relation between E(k) ≡ E B (k ) = (E A (k )) * . We know that 1 N R e -i(k-k )•R = 1 2 δ kk and e -iQ•R = ±1 if R

The operators c † k+q/2,α (τ ) and c k-q/2,α (τ ) are time dependent, as in the Heisenberg representation, and they are related with the creation and destruction of electrons, respectively.

We can work out the correlation function in 3.25, just inserting the definition of ρλ (q, τ ) on it. In this way, χλ (q, iω) = -1 V β 0 dτ e iωτ k 1 ,k 2 α 1 ,α 1 α 2 ,α 2