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Competing Orders in URu2Si2: from Ordered Magnetism to Spin Liquid
Phases.

Abstract: The main objective of this thesis is to investigate the competing ordered phases

in the metallic heavy fermion compound URu2Si2, which displays a body-centered tetrag-

onal lattice. We first provide a study case of the competition between antiferromagnetic

(AF) and spin liquid phases. The antiferromagnetic state is study with spin-wave theory.

Whereas the spin liquid analysis has been carried out in an algebraic spin liquid representa-

tion. In the second part, we describe an effective theory for Raman scattering experiments

at these particular phases. We provide insight about the hidden order phase displayed by

the heavy fermion compound URu2Si2.

Keywords: Antiferromagnetism, Spin Liquid, Hidden Order, Raman scattering, BCT lat-

tice, Point Group Symmetry.





Ordres en compétition dans URu2Si2: de l’ordre magnétique aux phases de
liquide de spin.

Résumé: L’objectif central de cette thèse est d’étudier des phases ordonnées en compéti-

tion dans des matériaux magnétiques présentant une structure cristalline tétragonale cen-

trée. Ce travail est divisé en deux parties principales. Dans la première, nous présentons

les résultats de notre étude de la compétition entre des états ordonnés antiferromagné-

tiques et des phases liquides de spin. Nous montrons comment ces dernières peuvent être

stabilisées par la frustration géométrique et par une généralisation de la symétrie de spin

au groupe SU(n). Les états antiferromagnétiques sont décrits par une théorie d’onde de

spin et l’analyse de liquide de spin est effectuée par une représentation fermionique des

opérateurs de spin. Dans la deuxième partie, nous décrivons une théorie effective pour

dércrire des expériences de diffusion Raman. Nous fournissons un aperçu de la phase

d’ordre caché affichée par le composé de fermions lourds URu2Si2.

Mots clés: Antiferromagnétisme, Liquide de Spin, Ordre Caché, Diffusion Raman,

Réseau BCT , Groupe de Symétrie ponctuel.
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Prologue.

In this thesis, we analyze the competing magnetic phases of systems with a three di-

mensional lattice structure. Our main object are the body-centered tetragonal (BCT) lat-

tices, whose structure is shown in Fig(1(b)). This is one of the 14 three-dimensional Bravais

lattices types [Ashcroft 1976] and this crystalline structure is realized in several strongly

correlated electrons materials with unusual magnetic and transport properties. It belongs

to the point groupD4h (space group No. 139 I4/mmm). Among these transformations we

can mention reflection, inversion and rotations of 2π/n around a specific axis, in which n

can be an integer. Different examples of materials, including the heavy fermion systems

[Stewart 1984] and rare earth atoms, display the BCT lattice structure and have been inten-

sively studied for the last decades.

In URu2Si2, a still mysterious hidden order (HO) phase was discovered in 1986, that

appears below the critical temperature T0 ≈ 17 K close to a pressure-induced antifer-

romagnetic (AF) transition [Palstra 1985, Maple 1986, Mydosh 2011]. The compounds

YbRh2Si2 and CeRu2Si2 display non-Fermi liquid properties that are observed in the vicin-

ity of the antiferromagnetic quantum phase transitions and are still poorly understood

[Custers 2003, Friedemann 2009]. The CeCu2Si2 was the first heavy fermion material in

Z

Γ X

(100)

(001)

(010)

(a) (b)

Figure 1: (a) Corresponding structure in reciprocal space, Brillouin zone, of the BCT, and the main
points and directions. (b) The bct lattice structure.
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which unconventional superconductivity was discovered in 1979 close to an AF transition

[Steglich 1979]. The CePd2Si2 exhibits unconventional superconductivity which is related

to an AF transition [Mathur 1998].

We will particularly focus on the problem of the hidden order phase in URu2Si2. We

begin by reviewing the current state of research of the hidden order in URu2Si2.

The problem of the HO phase in the heavy fermion compound

URu2Si2.

After thirty years of intense investigations, the origin of the mysterious hidden order

(HO) phase of URu2Si2 is still unrevealed despite strong preliminary experimental indica-

tions [Palstra 1985, Maple 1986] confirming the phase transition from a metallic state to a

newly ordered phase. The properties of this particular system comes from the Uranium

element, which is from the actinide family in the periodic table. The URu2Si2 can display

puzzling features inwhich the unusual properties derive directly from theU open 5f shell.

The systems is also known as a moderate heavy fermion with a Sommerfeld coefficient

of ∼ 180 m J/mol K2. The mobile electrons, at low temperatures, behave as if their masses

were a hundred times heavier than the mass of an electron in silicon or in a simple metal.

Such systems exhibit a great variety of interesting phenomena like anomalies in electri-

cal and thermal conductivities, quantum phase transitions between magnetically ordered

state, superconductivity and, finally, the emergence and dissociation of local magnetic mo-

ments.

URu2Si2, represented in Fig(2), has a body-centered-tetragonal (BCT) crystal structure

at high temperatures, with lattice parameters a = 4.121 Å and c = 9.681 Å . Its first Brillouin

zone is shown in figure (1(a)). The transition at T0 ≈ 17.5 K is a second order phase tran-

sition to a new phase well characterized by bulk thermodynamic and transport measure-

ments [Broholm 1987, Maple 1986, Palstra 1985]. The order parameter and the elementary

excitations of the newly ordered phase are still unknown, i.e., they cannot be determined

directly from experiments. This fascinating new phase is at the center of considerable dis-

cussion concerning the origin of the mechanism that is governing it.

The phase diagram (Fig.3) obtained for the URu2Si2 is very interesting [Hassinger 2008,

Villaume 2008]. In ambient pressure, the system undergoes by a second-order phase tran-

sition at T0 = 17.5 K to a new hidden order phase with a small magnetic moment µ ≈ 0.02

µB. At very low temperature, a superconducting phase is found below T≈ 1.5 K. In the PM

phase, the lattice structure is BCT, which belongs to the space group No 139 (I4/mmm).
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When entering on the HO phase, the structure becomes simple tetragonal (ST) , which be-

longs to the point group symmetry No 136 (P42/mnm)[Harima 2010]. The possibility that

HO displays a lower point group symmetry, with a subgroup of No 136 will be discussed

in chapter 3 of this thesis.

Magnetic measurements reported an Ising like magnetic response along the c axis

[Palstra 1985]. Transport and thermodynamicmeasurements suggest a considerable Fermi

surface reconstruction occurring at the HO transition [Palstra 1985, Maple 1986]. Themea-

sured specific heat and the jump in the resistivity at the transition are consistent with the

opening of an energy gap over a substantial part of the Fermi surface.

Over the years, different proposals have been put forward to explain the hidden order

phase, which can be roughly classified as itinerant and localized. Tomention some of them:

There have been proposals in terms of the emergence of local currents [Haule 2009], multi-

polar order [Harima 2010, Kusunose 2011], spin liquids [Pépin 2011, Thomas 2013], uncon-

ventional density waves [Riseborough 2012], hastatic and nematic order [Chandra 2013,

Okazaki 2011]. Moreover, it is well known that a second-order phase transition is always

accompanied by some symmetry breaking, such as the time-reversal case in antiferromag-

nets or U(1) gauge symmetry breaking in superconductors. The order parameter is intro-

duced to describe the ordered state with reduced symmetries. The manifestation of the

HO should not be different. In this respect, however, if the OP is unknown the question of

what symmetry is effectively broken remains uncertain.

U

Ru

Si

Figure 2: (Left) Crystal structure of body-centered tetragonal lattice for URu2Si2. The correspond-
ing space group is the I4/mmm. (Middle) The antiferromagnetic pattern for the spin alignment of
U moments. (Right) Corresponding structure in reciprocal space, Brillouin zone, of the BCT, with
its the main symmetry points and directions.
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Figure 3: Temperature versus pressure phase diagram for URu2Si2 from [Villaume 2008]. At zero
pressure a phase transition occurs from the paramagnetic (PM) phase to the so called hidden-order
(HO), at T0 ≈17.5 K. The phase diagram exhibits also data from resistivity (circles) and ac calori-
metric (triangles measurements). At low pressure, the HO phase is dominant and there is a first
order phase transition to a AF phase when a pressure ≈ 0.5 GPa is applied.

There is a consensus about the change in the lattice periodic structure when passing

from the paramagnetic (PM) phase - in which the system has a body centered tetrago-

nal (BCT) lattice structure - to the HO regime - a simple tetragonal structure (ST). This

is manifested by the folding in the Brillouin zone along the c axis of the BCT lattice

[Buhot 2014, Boariu 2013, Hassinger 2010], see Fig.(1). Hence, the suggestion arises that

the HO transition breaks BCT translational symmetry. It is also argued that the change in

lattice structure can cause an instability on the Fermi surface. As a consequence of that,

there is a large Fermi surface gap in some regions in k space [Maple 1986, Elgazzar 2009,

Boariu 2013, Tonegawa 2012].

A complementary approach was introduced by Harima-Miyake-Flouquet

[Harima 2010]. They present a point group analysis of the URu2Si2 crystal struc-

ture. Thereby it is possible to associate the HO transition as a change of crystal point

group symmetry. They claim that a second-order structural transition occurs from the

“mother” space group I4/mmm to P42/mnm based on a systematic analysis of various

scattering data [Saitoh 2005].

Some of these questions do call for further investigation, new theoretical proposals and

also modern experimental technique investigations. It is not our intention here to solve all

these questions. However, we try to provide some explanations using a simpler case. The
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next sections are devoted to present briefly the methodology employed in this work and

to give a general overview before engaging ourselves in a detailed analysis.

Overview.

The previous section serves as an introduction to the problem of the exciting competing

ordered phases in the Heavy fermion compound URu2Si2. We want to establish connec-

tions between our results and the question of HO phase.

In the fist part of this work, we provide a case study of the competition between antifer-

romagnetic (AF) and spin liquid (SL) phases. The AF is represented in a spin-wave theory,

while the spin liquid analysis is carried out in an algebraic spin liquid representation.

In Chapter 1, we start with an introduction on the phenomenon of Frustration in an-

tiferromagnets. We give an overview about frustrated systems, with frustration being a

result of competing interactions that are not fully predominating against each other or

with symmetries which lack a clear geometrical definition. In particular, the BCT struc-

tures possess those two characteristics. We introduce the Heisenberg Hamiltonian to deal

with localized spins in an antiferromagnetic system and we also introduce the concept of

spin wave, to motivate our analysis of the collective excitations that are featured in these

systems. We describe two experimental techniques that can probe this type of collective

excitations.

In Chapter 2, we consider a model with localized spins. We show how frustration in

the BCT lattice can enhance the critical value of S. This opens new possibilities for the real-

ization of unconventional electronic quantum ordering in a 3-dimensional system. To see

that clearly, we use a fermionic SU(n) symmetric representation of the Heisenberg model.

We identify three spin liquid phases that can be stabilized if n is bigger than a critical value.

These spin liquid states are then tested as possible candidates for the HO in URu2Si2.

For the second part, we use ourmodel to develop an effective theory to describe Raman

scattering experiments performed in materials with these particular structures.

In Chapter 3, we develop an effective theory to incorporate the varieties of states

present in chapter 3. Our starting point is a non interacting model that is able to gener-

ate the different phases under investigation by systematic variation of a small number of

parameters. The aim is to relate our effective theory directly to the Raman scattering exper-

iments performed in the hidden-order phase of URu2Si2. To do that, we present numerical

results and we make comparisons with Raman scattering data for URu2Si2.

Chapter 4. We present an overview of the whole work, draw conclusions about the
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relevance of this work and point out futures perspectives which might be object of future

work.



Chapter 1

Introduction.

1.1 Frustrated systems.

The phenomenon of frustration is present in spin systems when there is competition

between interactions of magnetic degrees of freedom or incompatibilities with the lattice

structure [Lacroix 2011, Balents 2010, Gingras 2009, Starykh 2015, Ramirez 1994]. In par-

ticular, frustrated quantum antiferromagnets have been at the center of intense experi-

mental and theoretical investigations for many years. Frustration leads the way to a highly

degenerate ground state and opens a window for novel states of matter. Perhaps the easi-

est way to visualize this is to consider a triangular lattice [Fazekas 1974]. Here frustration

results from the impossibility of consistently establishing anAF ordering in the underlying

lattice. We can construct an array of spins placing each one of them at each corner of the tri-

angle lattice. This lattice exhibits frustration because if an up- and down-spin occupy two

corners of the triangle, the spin on the third corner will necessarily break the AF arrange-

ment with one of its two neighbors. In spite of the presence of frustration, neighboring

spins in a triangular lattice still manage to order at a 120o angle and exhibiting a AF Néel

order. Other examples of frustrated lattice are the 2DKagomé [Han 2012, Helton 2007] and

the 3D pyrochlore [Bramwell 2001] or the body-centered tetragonal (BCT) [Rastelli 1990].

As argued before, the last example will be the main object of study in this work.

Fluctuations, thermal or quantum, play a major role. They can order the system

by selecting one specific ordered state out of the ground-state manifold of degenerate

states [Rastelli 1987], but they can also destroy any kind of magnetic long-range order

[Chandra 1988]. This opens the way to new types of ground states such as the spin

nematic [Andreev 1984], in which the order parameter is not the local spin but a more

complicated object; valence-bond crystals [Anderson 1973, Iqbal 2012] that are completely
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non-magnetic states with a broken translational symmetry; spin ice or spin liquid phases

[Anderson 1973, Anderson 1987], in which both the rotational SU(2) symmetry in spin

space and the translation symmetry in real space are preserved .

1.1.1 The Heisenberg Hamiltonian.

To understand the features of frustration it is usual to consider a simple Hamiltonian

that accounts for interactions between nearest neighbor spins placed at fixed sites in some

specific lattice. The Heisenberg Hamiltonian is [Heisenberg 1928]

H = J
∑
〈i,j〉

Si · Sj . (1.1)

The exchange coupling J is defined as the interaction between the nearest neighbors and

the S is the spin operators, labeled by the indices i and j indicating their positions in the

lattice. The sum is taken over the nearest-neighbor pairs. Each spin operator S satisfy the

usual commutation relations [Sxi , S
y
i ] = i~Szi of the SU(2) algebra. The spin operators all

have spin S, i.e. the operators S2
i have eigenvalue S(S + 1) where S is either an integer or

half-integer. Each spin has a mean polarization oriented along some easy direction.

The ordering displayed by the system depends on the sign of the exchange coupling J ,

dimensionality and lattice structure. If J < 0 the ground state of the systems assumes a

ferromagnetic configuration, i.e. all the spins point out along the same direction, choosing

a specific orientation and breaking spontaneously the rotational symmetry of the Heisen-

berg Hamiltonian. If J > 0, the exchange coupling favors the antiparallel alignment of the

spins and the ground state now favors the system to an antiferromagnetic (AF) configu-

ration. In both cases there is the breaking of the rotational symmetry of the Heisenberg

Hamiltonian. [Fazekas 1999]. In the case of antiferromagnets, there is the emergency of

bipartite lattices, in which the next-nearest neighbors of one sub-lattice A belong to the

other sub-lattice B, allowing the system to reach a configuration of a Néel state in the clas-

sical limit. The presence of frustration also results in degenerate manifold of ground states

rather than a single stable ground-state configuration at the classical level.

When the quantum fluctuation are present, they interfere with the average direction in

which the spin are aligned in the ground state. It is common to use the theory of spin wave

(SW) to incorporate these fluctuations. Before entering in discussions about fluctuations,

let us see the application of Heisenberg model to one simple and widely studied example.

The Heisenberg model on the square lattice in the classical regime.



1.1. Frustrated systems. 9

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

QI
AF QII

AF

E
/
4
J
1
N

J2/J1

(a) (b)

Figure 1.1: (a)Ground-state energy per site N, for J1-J2 Heisenberg model. The two ground states
regions are indicated with respect QI

AF = {π, π} and QII
AF = {π, 0}. (b) The J1-J2 Heisenberg

model. Each vertex indicates a spin and the parameter θ is indicated.

1.1.2 The Heisenberg model in a square lattice.

For a square lattice, the Heisenberg Hamiltonian is solved with a mean-field approach

[Manousakis 1991]. This approach consists of classical spin in a lattice with nearest-

neighbor coupling J1 and next-nearest-neighbor coupling J2, Fig.(1.1). The Fourier trans-

form of the coupling constants is the classical spin-wave dispersion and is given by

J(QAF) = 2J1(cos(qxa) + cos(qya)) + 4J2 cos(qxa) cos(qya). (1.2)

The Néel phase for small J2 is characterized by an anti-parallel alignment of nearest

neighbor spins, with a corresponding ordering wave vector QAF = (π, π). The second

kind of AF state for large J2 is twofold degenerated and corresponds to the ordering wave

vectors QAF = (π, 0) and QAF = (0, π).

These two states are characterized by a parallel spin orientation of nearest neighbors in

vertical (horizontal) direction and an anti-parallel spin orientation of nearest neighbors in

horizontal (vertical) direction and exhibit therefore Néel order. These two ordered phases

are separated by a first-order transition. This remains true regardless of the relative angle θ

between the spins of each sublattice, so that the ground-state manifold consists of all states

with Néel-ordered sub-lattices. The ground state is thus infinitely degenerate, and the

degeneracy is controlled by a continuous parameter, the angle θ between the sub-lattices.

In the linear spin-wave approach, which goes beyond the classical theory, quantum

fluctuations destroy the magnetic order in the intermediate region of 0.4J1 . J2 . 0.6J1,
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hence leading to a magnetically disordered state [Chandra 1988, Ren 2014]. However, the

nature of this disordered phase is still elusive and several proposals have been raised, in-

cluding spin-liquid states [Anderson 1973]. Two quantum phase transitions in the model

are already known: the second-order transition from the Néel state to the spin liquid state

at (J2/J1) ≈ 0.38, and the first-order transition from the spin liquid state to the collinear

state at (J2/J1) ≈ 0.60 [de Oliveira 1991, Chandra 1988].

The next section is devoted to describe how quantum fluctuation can be incorporate to

the problem by describing the theory of spin waves and also what these fluctuations can

do with the degeneracy of the system.

1.2 Spin-wave theory.

The concept of spin-waves was first introduced by Bloch in 1930 [Bloch 1930]. These

theories have enjoyed great popularity in the study of a wide variety of quantum mag-

nets. In the beginning it was directed to the study of systems with simple ferromagnetic

Hamiltonians [Oguchi 1960] and after that it has been applied to antiferromagneticmodels

[Anderson 1952, Kubo 1952], including frustrated ones [Xu 1991, Oguchi 1990]. In recent

years it has reached such a state of refinement that it can deal with disordered systems

[Mucciolo 2004, Castro 2006] and quasicrystals [Wessel 2005]. Its application is straight-

forward and its physical interpretation is clear, such that it is now a widely used tool since

the last decades.

1.2.1 The Holstein-Primakoff approach.

The basic idea of semiclassical spin-wave theories is that quantum fluctuations only

slightly perturb the long-range ordered state of the classical limit of the model. Spin waves

are the low energy excitations in a standard magnetic system. This approach treats the

mean value of the spin operator S as being of big magnitude (semi-classical limit), which

characterizes the spins as rotating around their positions of equilibrium. The collective

behavior is equivalent to rotations of the classicalmagneticmoment. In the large S limit and

at low excitations, it is natural to describe the ordered state in terms of small fluctuations

of these spins around their expected values.

The Heisenberg Hamiltonian has a global spin rotation symmetry. When the ground

state of the Hamiltonian is magnetically ordered (either ferromagnetically for J < 0 or

antiferromagnetically for J > 0), so that 〈Si〉 6= 0, this ground state is not invariant

under a global spin rotation. We say that the ground state“spontaneously” breaks the
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global spin rotation symmetry of the Hamiltonian. In this situation, we expect that gap-

less modes of the spectrum of energy associated to the spontaneous symmetry break-

ing of global spin rotation emerge. This is a consequence of the Goldstone’s theorem

[Goldstone 1962, Nambu 1960]. The theorem states that when the ground state breaks a

continuous symmetry of the Hamiltonian, gapless bosonic excitations will exist in the en-

ergy spectrum. Bring it to our context, a quantized spin wave is called a “magnon” and

they are the Goldstone modes of magnetic systems.

The effect of quantumfluctuations are conveniently represented in terms of spin raising

and lowering operators, with S± = Sx ± iSy. The most general quantum-mechanical way

to set up spin waves follows the Holstein-Primakoff (HP) [Holstein 1940] transformations.

Since we are in the limit of low excitations, this transformations replace the S± for bosonic

creation and annihilation operators a† and a, respectively [Manousakis 1991]. This reads,

S+
i = (2S − a†iai)1/2ai S−i = a†i (2S − a

†
iai)

1/2 Szi = (S − a†iai). (1.3)

The function φ(n̂i) = (2S − n̂i)1/2, where n̂i = a†iai, is expanded as

φ(n̂i) =:
√

2S

(
1− n̂i

4S
− n̂2i

32S2
− ...

)
(1.4)

Where n̂i is the number operator.

The leading term of this expansion is proportional to 1/S and if we truncate the se-

ries at this stage we define the linear spin wave theory, which means that all corrections

to the Hamiltonian and magnetization will be proportional to S. Terms of high order in

this expansion take into account the interaction between magnons1. The purpose here is

to calculate physical properties like the staggered sub-lattice magnetization and see how

quantum fluctuations are able to modify significantly the classical spectrum of elementary

excitations or if they could destabilize such ordered phases.

There are some well established results for two-dimensional systems. For example,

in the square lattice [Oguchi 1990] (This model was first solved by Anderson in a semi-

classical approximation to determine the ground state energy and the wave function

[Anderson 1952]) and in the triangular lattice [Chubukov 1994]. Particularly, for the square

lattice, the model considers the Heisenberg Hamiltonian with nearest neighbor coupling
1In linear spin wave approximation the Hamiltonian describes a system of uncoupled harmonic oscillators.

If we take into account higher order terms, we are introducing interaction between the harmonic oscillators.
However, the effect of these interactions can be suppressed at least by a factor 1/S compared to the O(S)

noninteracting term and one can expect that their effects are small for a large S. Therefore, they can either be
neglected to a first approximation or be treated as weak perturbations on the noninteracting theory.
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(J1) and next-nearest neighbor (J2). It was pointed out that quantumfluctuation can desta-

bilize the classical ordered states even at large S. When p = J2/J1 tends to 1/2, leading

quantum fluctuation become very soft, driving the system away from the classical fixed

point. The instability can generate a spin liquid, at the ground state [Chandra 1988].

1.2.2 Order by disorder mechanism.

The phenomenon of frustration gives us a plethora of ground states indicating that the

system is plausibly disordered. However, these degenerate ground states may be situated

in very different regimes: they experience different thermal and quantum fluctuations.

The fluctuations have a special role in these systems because they may partially lift the

degeneracy and so make systems more ordered [Rastelli 1987, Buhrandt 2014]. The sys-

tem, instead of having a disorder degeneracy, is finally ordered due to the new minimum

energy selection at the classical or quantum level. This is recognized as “order by disor-

der mechanism”. It was first proposed by Villain et al. [Villain 1980] for studying classical

Ising systems, while the order by quantum disorder scenario was first considered by Shen-

der [Shender 1982]. We take into account only those quantum fluctuation and leaving the

questions of thermal apart, by referring only to the work of Villain. [Villain 1980].

Let us see how this concept of order by disorder works in practice, with quantum fluc-

tuations. By looking back to the quantum Heisenberg model itself, the linear spin waves

approximation only considers in the expansion the linear S corrections. In terms of the

Holstein-Primakoff transformations, we end up with a Hamiltonian

H = E0 +
∑
k

[
Ak a

†
kak +

Bk

2
(a†ka

†
−k + aka−k)

]
(1.5)

With E0 being the zero point energy which is proportional to S2. The Ak and Bk are

proportional to S and they also depend on the exchange couplings J . Since the Hamil-

tonian acquires this non-trivial non-diagonal form, we perform a canonical transforma-

tion to new operators αk. Such procedure is also known as a Bogoliubov transformation

[Bogoljubov 1958, Ohara 1989], like

αk = ukak + vka
†
−k. (1.6)

With that, the Hamiltonian is written in the diagonal form

H = E0 +
∑
k

~ωk

[
α†kαk +

1

2

]
(1.7)

The elementary excitations above the ground state are spin waves of one flavor and they

are created by the action of α† on the ground state. The energy of these states is given by
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ωk =
√
A2

k −B2
k. The condition for the functions uk and vk are

uk = cosh θk vk = − sinh θk, (1.8)

in which θk = arctan(Bk/Ak).

The energy of the quantum state is obtained by taking these quantum fluctuations.

Therefore

E = E0 +
1

2

∑
k

~ωk (1.9)

It is worth to say that the systemwill choose some states inside themanifold that minimize

this expression. The mechanism of order by disorder was investigated in two-dimensional

square lattices [Danu 2016], while, in the three-dimensional versions, we can mention the

face-centered cubic (fcc) [Sinkovicz 2016] and BCT lattices [Rastelli 1989, Rastelli 1987].

In the next section we will see that in the Heisenberg model, when frustration together

with a low spin quantum number is present, the situation where long-range magnetic or-

der and breaking of SU(2) symmetry is not the most common one. Down to zero tem-

perature they tend to form states with spins paired into rotationally invariant singlets or

“valence bonds”. They constitute an alternative to the long range magnetic order.

1.3 Alternatives to long-range magnetic ordering in Heisenberg

models.

Up to now we have seen that the degeneracy in the ground state together with fluctu-

ations does not favor magnetic ordering. These two main features cause the presence of

additional zero frequency modes at the spin wave dispersion rather than those that can be

expected on general grounds with the ordering wave vector QAF. In the limit of small k

these additional zero modes may lead to divergences and to corrections of the local mag-

netization ∆m [Chandra 1988, Chandra 1990].

This correction of the local magnetization can be calculated from the sub-lattice mag-

netization through the relation 1.3 at the leading order in large S expansion, i.e.

〈Szi 〉 = S − 〈a†iai〉. (1.10)

This implies that

∆m = 〈a†iai〉 = S − 〈Szi 〉 =
1

N

∑
k

〈a†kak〉, (1.11)
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where N is the number of lattice sites. If long-range magnetic order is maintained, high-

order terms will have to open a gap at these accidental zero modes to restore the finite

value of the correction. The correction has to be smaller than the mean value of the spin

S, which is not often the case. This is an indication that we must look for alternatives to

magnetic long-range order. We divided these new states into two groups: the ones capable

of breaking the SU(2) symmetry and the ones that preserve the SU(2) symmetry. The spin-

liquids are in the last group.

The concept of SLwas first proposed byAnderson [Anderson 1973] in order to describe

anAntiferromagnet systemwith spin-1/2 in triangular latticewith odd total spin value per

unit cell. For instance a product of spin singlet dimers has to break the lattice symmetry.

They are allowed to go through quantum mechanical fluctuations. Therefore the ground

state is a superposition of all possible singlet dimers describing a Resonating Valence Bond

(acronym RVB) state. This suggestion was for spins placed in a triangular lattice having in

mind the physics behind the high-temperature superconductors [Anderson 1987].

The SL phase can be interpreted as a fluid-like state of matter in which the constituents

spins are highly correlated though the fluctuations are very strong down to temperatures

near the absolute zero [Balents 2010]. In theory, it represents a new state of matter. Unlike

conventional magnetic states, the fluctuations give rise to the emergent collective behavior

which could be mediated by gauge fields or fractional particles excitations. Low dimen-

sionality might be as well one of the foremost ingredients for the formations of SL. Unlike

the ferromagnetic state with parallel spins or the antiferromagnetic Néel state with an-

tiparallel spins, a quantum SL never enters into a long range ordered phase with a static

arrangement of spins. The presence of singlet dimers necessarily breaks the spatial trans-

lation symmetry. For RVB states the ground state is a superposition of all possible singlet

dimers. It is a non magnetic state although spin are highly correlated with one another

and they do not break the SU(2) symmetry.

Although, there has been much effort in verifying the existence of RVB states, they

are difficult to be realized. Numerical studies using quantum Monte Carlo simulations

[Foulkes 2001, Santos 2003, Troyer 2005] cannot be performed for frustrated magnets be-

cause they cannot handle the so called minus sign problem associated with the anti-

commutation of the fermions, which makes the analysis intractable up to this date. Theo-

retically, the quantum dimer models [Moessner 2011] have been demonstrated the possi-

bility of realizing an RVB state. It is not our intention here to stress on all aspects of spin

liquids. However we would also like to mention a different kind of spin liquids, known as

algebraic spin liquids.
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1.3.1 Algebraic spin liquids

Algebraic spin liquids have this name because of the algebraically decay of their spin-

spin correlations functions. They comprehend half-integer spin chains, in contrast to in-

teger spin chains, in which the correlation decay exponentially. They can be extended

to 2D frustrated systems, where we can implement a fermionic representation of spin-

1/2 operators, sometimes known as Abrikosov fermions [Baskaran 1988, Affleck 1988b,

Dagotto 1988]. Basically we replace the spin variable by

Si =
1

2

∑
α,α′

c†i,ασci,α′ (1.12)

where the c†i,α and ci,α are fermionic creation and annihilation operators, respectively, sat-

isfying the local single-particle occupation constraint
∑

α c
†
i,αci,α = 1, and σ ≡ (σx, σy, σz)

denotes the Pauli matrices.

In most cases the Heisenberg Hamiltonian is non quadratic and a simple and ap-

proximate mean-field decoupling is required for the four-fermion operator [Wen 1996,

Wen 2002]. By introducing a bond operator χij =
∑

α c
†
i,αcj,α the Hamiltonian can be de-

coupled by defining the order parameter χ0
ij = 〈χij〉. Thus, the solutions are obtained by

the self-consistent equations. We know that the self-consistency of equation leads to many

possibilities of ground-states, but wewould like to stress two of them. The first solution for

χ0
ij = χ0 leads to a set of bonds that covers the full lattice resulting in the dimerized state,

while χ0
ij = 0 to other bonds, see Fig.(1.2 (a)). The second is χ0

ij = χ0eiθij with θ chosen

such that it provides a π-flux phase per plaquete [Affleck 1988a, Marston 1989], see Fig.(1.2

(b)). The order parameter χij is invariant under the gauge transformation c†i,σ → eiθc†i,σ,

where θ can take any value. This characterizes U(1) gauge symmetry in the problem, and

this type of spin liquid is sometimes referred to as a U(1) spin liquid.

1.3.2 Chiral and Modulated spin liquids: two examples of spatially ordered
spin liquids.

Recently, another kind of mean-field approximation has been proposed for a different

spin liquid state, known as modulated spin liquid (MSL) [Pépin 2011], where the order

parameter is defined asχ0
ij = χ0±∆, with∆ being real. The real spatial modulations break

translational symmetry where the value of the bond acquires an oscillating sign from site

to site see Fig.(1.2 (c)). The phase on the bond is not oriented and consequently there is no

flux generated there.
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(a) (b) (c)

Figure 1.2: (a)-(b) The dimerized state and the Affleck-Marston π-flux phase on square lattice with
θ is equal to π/4 [Affleck 1988a]. (c)Themodulated spin liquid [Pépin 2011]. The sign plus orminus
makes the distinction between solid or dashed bonds.

Another different alternative to the long range magnetic order in Heisenberg mod-

els is the case in which besides the SU(2) symmetry breaking there is also time-reversal

(T) and parity symmetry (P) breaking. So far, the models that we have considered pre-

serve the time-reversal symmetry. Another family of quantum spin liquids was sug-

gested whose states might be stabilized by the presence of frustration and the break-

ing of time-reversal and of parity symmetries. They are known as chiral spin liquids

[Wen 1989, Khveshchenko 1994]. A possible order parameter is the spin chirality S1 · (S2×
S3), defined in a triad of spins placed at the site 1, 2 and 3. In the context of mean field

approximation, the state is described by an ansatz χij , where χij is complex and generate

a flux that is neither equal to 0 nor to π [Wen 2004].

The best evidences so far in favor of such ground states have been obtained for exten-

sions of the Heisenberg model on the Kagome lattice [Bauer 2014, He 2015]. By introduc-

ing term of the form Si · (Sj × Sk) on each plaquete which explicitly breaks the T and P

symmetries.

1.4 Probing Frustrated Magnets.

In this section, we are going to discuss two main experimental techniques that are

largely used to investigate magnetic systems. The first subsection is dedicated to present

the basics concepts behind neutron scattering technique, while the second part is devoted

to optical spectroscopy, more precisely, Raman electronic scattering. These are two very

useful experimental tools used to probe the nature of of excitations of disordered and

highly degenerate states that occur in frustrated magnets.
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1.4.1 Inelastic Neutron Scattering.

Inelastic neutron scattering is used to study the spin-spin correlations inmagnetic frus-

trated systems. It provides direct information of the existing magnetic order as well as the

existing magnetic interactions [Hutchings 1972]. Taking a paramagnetic system in com-

parison with a system where the spins are ordered, like ferromagnetic or antiferromag-

netic systems, the response given by neutron scattering is undoubtedly different for these

two cases. For paramagnetic systems the spin-spin correlations decrease with the distance

which leads to a continuous or diffuse patterns. While for spin ordered systems the corre-

lations have one component with periodic symmetry that gives rise to discrete scattering

in the form of Bragg peaks [Bramwell 2011]. Therefore, neutron scattering reflects the dif-

ferent symmetries underlying the physical system.

In an inelastic neutron experiment, an incident beam of neutrons of knownwave vector

ki is scattered by the sample into an outgoing neutron of wave vector kf . It is possible to

measure the change in both the direction and magnitude of the neutron wave vector, or

equivalently, the changes in the momentum and energy when the neutrons interact with

the sample [Bramwell 2011]. The magnetic field produced by the spins in the sample scat-

ters the neutrons. It is also possible that the spin field can vary in space and time. Second

order dynamical perturbation theory shows that the scattering is essentially proportional

to the dynamical structure factor S(q, ω) of two-spin correlation function of the sample:

Sα,β(q, ω) =
1

2π

∑
R

∫ +∞

−∞
dt ei(q·R−ωt)〈Sα0 (0)SβR(t)〉 (1.13)

The partial differential cross section measures the number of neutrons scattered in a

solid angle dΩ within a range of energy between E and E + dE. The spin-spin correlation

function S(q, ω) is the quantity directly associated with inelastic neutron scattering. The

momentum q represents the difference between the initial momentum (ki) and the final

momentum (kf ) and the final momentum and is defined as scattering vector.

Particularly it has been used to study the properties of strongly correlated magnetic

systems with large application for studying the spin excitation spectrum in the overdoped

regime of the high temperature superconductors [Bourges 1996], itinerant antiferromag-

netism [Liu 1970, Sokoloff 1969] and spin-spin correlation in magnetic frustrated systems

[Mirebeau 2014, Lee 2000].
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1.4.2 Optical spectroscopy.

The coupling between light and matter can be seen as a source of information for de-

scribing and understanding the physical properties of a particular system. The system can

be either amolecule or a crystal structure. The different process inwhich light interactwith

matter can be divided in some categories such as absorption, photo-emission or diffusion

[Baym 1990]. In our case we are interested in process where there is diffusion of light. The

systemwill be irradiated by amonochromatic light with frequency ωi andwill diffuse part

of this light in a different direction with frequency ωf . Part of this diffused light will have

the same frequency as the initial one (ωf = ωi). This process is known as elastic diffusion

or Rayleigh scattering. Another part of the scattered light will have a different frequency

from the initial one (ωf 6= ωi). This process is known as inelastic diffusion or Raman diffu-

sion [Duyne 2003]. The Rayleigh diffusion is caused by spatial inhomogeneity (molecules,

individual atoms, gases, etc) and the Raman diffusion is caused by temporal fluctuations

(molecular vibration, lattice vibrations, magnetic excitation). Since our interest here is the

Raman diffusion we can also predict what are the elementary or collective excitations of

the system (phonon, exciton, magnons, etc) [Devereaux 2007].

The Raman diffusion is a second order processwhich involve two photons, one incident

photonwith frequencyωi andmomentumwave vector qi and the diffused photonwith fre-

quency ωf and momentum wave vector qf . The Raman displacement is the difference of

the initial and final frequencies of the photons ω = ωi − ωf . The frequency difference ω is

a result of the energy exchange process between light and matter. This can be translated

into a process of absorption (anti-Stokes) or creation (Stokes) of collective elementary ex-

citations or individual ones (phonon, magnons, electron-hole pairs) in the material. We

illustrate this schematically in fig(1.3).

In the fig(1.4) we describe the creation of a phonon (a) and of a electron-hole pair (b).

In these processes one electron is initially excited to a higher energy level. The process of

excitation can occur in the same band or in different bands, in this last case the energy of

light beam is close the excitation one and we can observe the enhancement of diffusion,

knowing the resonant process. Electrons that are excited to intermediate states can be dif-

fused by the lattice, later on creating a phonon excitation and then relaxing to the original

state by emitting a photon of energy different from that one from incident electromagnetic

wave (see Fig.1.4 (a)). In the case of an electronic Raman process, the electron in its excited

state relaxes to a different final state creating an electron-hole pair around the Fermi level

(see Fig. 1.4 (b)). In the next section we will present the general concepts about Raman
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Figure 1.3: TheRaman-scattering spectrum taken on (Y0.92Ca0.08)Ba2Cu3O6.3. The inset shows the
photon polarization in theCuO2 plane. From this picture it is possible to conclude that Raman scat-
tering can give us lot of information from the systems, as phonon and magnons. [Devereaux 2007].

scattering.

1.5 Quantum mechanical description of Raman scattering.

The aim of this section is to present the quantum mechanical description for in-

elastic light scattering in general. For sake of simplification, by now, we set ~ and c

equals to unity. It is by no means as detailed as other reviews available for consultation

[Garmire 2013, Devereaux 2007, Devereaux 1997]. However, it explains the main features

about this process.

Figure 1.4: (a) The creation process of a phonon with frequency ω. (b) Creation process of a pair
particle-hole of frequency ω.
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1.5.1 General approach.

We consider a Hamiltonian for N electrons coupled to the electromagnetic field. It can

be written as

H =
N∑
i

(p̂i + (−e/c)Â(ri))
2

2m
+HCoulomb +Hfields. (1.14)

Where p̂ = −i∇ is the momentum operator,−e is the magnitude of electronic charge and c

the speed of light. The quantity Â(ri) is the vector potential of the electromagnetic field at

space-time ri and m is the electron mass. Also we define HCoulomb as being the Coulomb

interaction and Hfields is the free electromagnetic part. If we develop the quadratic term ,

we can rewrite the Hamiltonian in a more compact form as

H = H ′ +Hint, (1.15)

where now H ′ = H0 + Hfields, with the usual definition of H0 = 1
2m

∑N
i (p̂i)

2 + HCoulomb

and Hint = HA +HAA where

HA = − e

2mc

N∑
i

(p̂i · Â(ri) + Â(ri) · p̂i) (1.16)

and

HAA =
e2

2mc2

N∑
i

Â(ri)
2 (1.17)

Here we use the Coulomb gauge∇·Â(ri) = 0, that guarantees that A is purely transverse.

Since we are dealing with a many body problem, we can use the second quantization

formalism. In this approach, the interacting Hamiltonian can be written as

Hint = −e
c

∫
d3r ĵ(r) · Â(r) +

e2

2mc2

∫
d3r ρ(r)Â(r) · Â(r). (1.18)

It is also appropriate to use the representation of the density and current operators

ρ(r)=ψ†(r)ψ(r), (1.19)

j(r) =
1

2m
[ψ†(r)(p̂ψ(r))− (p̂ψ†(r))ψ(r)], (1.20)

where the operators ψ(r) and ψ†(r) are respectively fermionic operators which annihilate

and create particles at a point r. They can be expanded in momentum space as

ψ(r)=
∑
k,m

φ(r,m)ck,m (1.21)

ψ†(r)=
∑
k,n

φ∗(r, n)c†k,n (1.22)
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The functions φ∗(r, n) and φ(r, n) are eigenstates of the Hamiltonian H0, which may be

simply plane waves corresponding to position r. The indices n andm specify other quan-

tum number associated with the state, like band index or spin for example. Electron states

with momentum k are created or annihilated by c†k,n, ck,n, respectively, and the indices

n or m referring to the quantum number associated with the state, such as the momenta

and/or spin states.

In second quantization, the vector potential A is a linear combination of creation and

annihilation operators for photons. The nonvanishingmatrix elements produced by the ac-

tion of this operator depend entirely of the initial and final states in question. The operator

Â(r) is written as

Â(r) =
∑
q,µ

A0(ωq)[aq,µ ε
µ
q e

iq·r + a†q,µ ε
∗µ
q e−iq·r], (1.23)

where A0(ωq) =
√

c2~
2ωqV

. The bosonic operators aq and a†q annihilate or create photons

with wave vector q and polarization εµq . The volume V define the box for the periodic

boundary conditions of A. By using this representation of A in second quantization as

well as eq(1.19) and eq(1.20), we rewrite the terms of HAA and HA as

HAA =
e2

2mc2

∑
k,n;k′,m

q1,µ1;q2,µ2

A0(ωq1)A0(ωq2)c†k,nck′,m

× [〈n|eiq1·r|m〉aq1,µ1 ε
µ1
q1

+ 〈n|e−iq1·r|m〉a†q1,µ1 ε
∗µ1
q1

]

× [〈n|eiq2·r|m〉aq2,µ2 ε
µ2
q2

+ 〈n|e−iq2·r|m〉a†q2,µ2 ε
∗µ2
q2

] (1.24)

and

HA = − e

m

∑
k,n;k′,m
q1,µ1

A0(ωq1)c†k,nck′,m

× [〈n|peiq1·r|m〉aq1,µ1 ε
µ1
q + 〈n|pe−iq1·r|m〉a†q1,µ1 ε

∗µ1
q1

], (1.25)

with

〈n|eiq·r|m〉 =

∫
d3rφ∗(r, n)eiq·rφ(r,m), (1.26)

〈n|p · eiq·r|m〉 =

∫
d3rφ∗(r, n)p · eiq·rφ(r,m). (1.27)

The first termHAA gives rise to intraband electronic transitions from the two-photon scat-

tering in first-order perturbation theory. While HA is related to intraband or interband

electronic transitions from the single-photon scattering at second order via intermediate

states. It does not contribute at first order since the average of the momentum operator is

zero.
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1.5.1.1 The probability transition and effective density operator.

The electronic Raman scattering cross section is proportional to the probability transi-

tion between one initial state and one final state of the system. This transition rate can be

calculated by the Fermi’s golden rule.

ΓI→F = 2π|〈F |Hint|I〉|2δ(EF − EI) (1.28)

The scattering tensor |〈F |Hint|I〉|2 is calculated by perturbation theory in Hint. It will

involve contributions from both HA at second order and HAA at first order. The term HA

involves the coupling between current and HAA is the contribution from charge. Later on

we will see that this produces the charge and current sector of our Raman analysis in the

next chapter.

Let us first discuss the effect of HAA. We have as initial and final state

|I〉=|k,m〉|nq1,µ1 , nq2,µ2 = 0〉 (1.29)

|F 〉=|k + q, n〉|nq1,µ1 − 1, nq2,µ2 = 1〉. (1.30)

We have two possible processes. The photon matrix element can be non-zero if the A on

the right annihilates a q1, µ1 photon and the A on the left creates a q2, µ2 photon, or vice

versa. These two possibilities give us

〈F |HAA|I〉=
e2

mV

√
ni

ωqω−q

∑
k,n,m
µ1,µ2

〈k + q,m|c†k,mck−q,m|k,m〉(εµ1
q · ε

∗µ2

−q ) (1.31)

At second order, we compute the expectation value of HA but now we have an inter-

mediate state, with two possible process. They represent the destruction of an incident

photon and the creation of an diffused photon, or vice versa.

|M1〉=|k + q2, l〉|nq1,µ1 − 1, nq2,µ2 = 0〉 (1.32)

|M2〉=|k− q1, l〉|nq1,µ1 , nq2,µ2 = 1〉 (1.33)

At second order, the probability amplitude for HA is

〈F |HA|I〉(2) =
∑
M

[〈F |HA|M1〉〈M1|HA|I〉
EI − EM1

+
〈F |HA|M2〉〈M2|HA|I〉

EI − EM2

]
. (1.34)
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By using the definitions of |F 〉, |I〉 and |M〉, we end up with

〈F |HA|I〉(2) =
e2

2m2V

√
ni
ω1ω2

∑
k,n,m,l
µ1,µ2

×
[
〈n,k + q|p · ε∗µ2

q2
c†k,nck−q2,m|k + q2, l〉〈l,k + q2|p · εµ1

q1
c†k,nck+q1,m|k,m〉

εk,n − εk+q2,l − ω2

+
〈n,k + q|p · εµ1

q1
c†k,nck+q1,m|k− q1, l〉〈l,k− q1|p · ε∗µ2

q2
c†k,nck−q2,m|k,m〉

εk,n − εk−q1,l + ω1

]
. (1.35)

Themomentum transferred during the process is defined as q = q1−q2 and the difference

in energy is given by ω = ω1 − ω2.

In this way, we end up with the final expression for the probability rate

ΓI→F =
πe4ni

2m2V 2ωiωf
|〈n,k + q| ˆ̃ρ(q)|k,m〉|2δ(εk+q,n − εk,m − ω) (1.36)

Where we have introduced the effective density operator [Hayes 2012]

ˆ̃ρ(q) =
∑
k,n

γk,n(εi, εf )c†k+q,nck,n (1.37)

In experiments, the selection of the symmetries of excitations observed by Raman are se-

lected by the orientation of the sample and the polarizations of photons. Since themomen-

tum transferred to electrons q ismuch less than themomentum scale of order kF , the Fermi

momentum in metallic systems, the limit q → 0 is a good approximations in practically all

Figure 1.5: Some process that can occur in Raman electronic diffusion. At first order in pertur-
bation theory we have the intraband process (a). At second order in perturbation theory. we have
intraband (b) and interband (c) process.
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cases. Therefore,

γk,n(εi, εf ) =
∑
µi,µf

εµi · ε∗µf

+
1

m

∑
µi,µf ,l

[〈n,k|p · ε∗µf |k, l〉〈l,k|p · εµi |k,m〉
εk,n − εk,l − ωf

+
〈n,k|p · εµi |k, l〉〈l,k|p · ε∗µf |k,m〉

εk,n − εk,l + ωi

]
. (1.38)

In Fig.(1.5) we represent these two cases considered here, using perturbation theory.

At first order, the Raman scattering produce a creation of an electron-hole pair at the same

band by promoting the electron to a level of energy above the Fermi level. At second order

we have creation of a electron-hole pair at different bands which involve virtual interme-

diate states.

1.5.2 The importance of light polarization.

In the previous section 1.5.1.1, we saw that the effective density operator has two con-

tributions, one generated by the coupling of electron’s charge to the two photons and the

other by the coupling of electron’s current to a single photon. However, to evaluate the Ra-

man scattering matrix of effective density operator ˆ̃ρ(q) is a difficult task, since we cannot

always specify the quantum numbers of the electronic many body state.

However, applying symmetry arguments we are able to view what types of excitations

can be created. The charge density fluctuations, due to light scattering, are modulated in

the directions determined by the polarization of incident and scattered photons involved

on the process. Thus, these density fluctuations have the symmetry imposed on them by

the way in which light is oriented [Devereaux 2007]. This can be seen on the dependence

of Raman matrix elements on the initial and final fermion state. Basically the Raman ma-

trix elements can be decomposed in into basis functions of the irreducible point group

symmetry of the crystal [Shastry 1990, Hayes 2012].

Another important consequence is the fact that we are able to map the Brillouin zone

(BZ). The analysis is based in the representative basis functions Φ(k) from the complete

set of BZ harmonics from the crystal’s pint group symmetry. Consequently we are able to

map excitations in different regions of the Brillouin zone by just choosing the polarization

direction of incident photon.
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1.5.3 The Correlation functions.

The Raman scattering cross section is the quantity accessible in the experiments and

can be written in terms of the transition probability of Fermi’s golden rule.

R(q, ω) = r20
ωf
ωi

ΓI→F (1.39)

where ΓI→F is given by the probability transition in Eq.(1.36) and r0 = e2/mc2 is the

Thompson radius. For weakly interacting systems, the Raman scattering cross section re-

duces to a correlation function S̃ of an effective charge density ˆ̃ρ(q).

R(q, ω) = r20
ωf
ωi
S̃(q, iω → ω + i0), (1.40)

where S̃(q, iω) is defined as

S̃(q, iω) =
∑
n

e−βEn

Z

∫
dτ eiωτ 〈n|Tτ (ˆ̃ρ(q, τ)ˆ̃ρ(−q, 0))|n〉 (1.41)

with Tτ being the time ordering operator and Z =
∑

n e
−βEn is the partition function for

the system, with β = 1/kBT . The effective density ˆ̃ρwill be defined as

ˆ̃ρ(q, τ) =
∑
k,n

γk,n(εi, εf )c†k+q,n(τ)ck,n(τ) (1.42)

The operators are time dependent in the Heisenberg picture. We also introduced the scat-

tering amplitudes γk,n(εi, εf ), as in Eq.(1.38).

The dynamical effective density-density correlation function or the Raman response S̃

can be written in terms of a dynamical effective density susceptibility χ̃ via the fluctuation

dissipation theorem

S̃(q, ω) = − 1

π
[1 + nB(iω, T )]χ̃

′′
(q, ω) (1.43)

where nB(iω, T ) is the Bose distribution function. At finite temperature, the susceptibility

is define as a correlation function of the effective density operator

χ̃(q, iω) = − 1

V

∫ β

0
dτeiωτ 〈Tτ (ρ̃(q, τ)ρ̃(−q, 0))〉. (1.44)

The effective density operator ˆ̃ρ is given by Eq.(1.42). Thus, for noninteracting electrons the

Raman scattering is given by a two-particle effective density correlation function. There are

several methods to calculate this correlation function, e.g. diagrammatic perturbation the-

ory [Devereaux 1999, Devereaux 1997, Perkins 2013], dynamicalmean field theory (DMFT)

[Freericks 2001].
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(a)

  

(b)

Figure 1.6: The Raman spectra for URu2Si2 in a pure A2g symmetry at paramagnetic phase and
hidden order phase. In both cases, the quasielastic spin scattering in the paramagnetic phase. Data
in (a) is from [Cooper 1987] while (b) is from [Buhot 2015].

1.5.4 Raman spectroscopy in URu2Si2.

The first Raman spectroscopy experiments were performed on URu2Si2 in 1987 by

Cooper et al. [Cooper 1987] and in 2006 Lampakis et al. [Lampakis 2006]. The measure-

ments carried out by Cooper et al. (Fig.1.6(a)) have revealed the presence of signal for

symmetry A1g, which is associated with the presence of phonons. The intensity of the

Raman response has a dependence on temperature. Hence, suggesting that at low tem-

peratures, the electron-phonon coupling is strengthened. The responses to the symmetry

A2g are associated with the quasielastic spin scattering in the paramagnetic phase. Due to

the limitations of the experimental resolution at that time, these studies reveal no evidence

for the hidden order phase. Lampakis’ work tells us about the temperature dependence

of the phonon that can be accessible by Raman spectroscopy. The response, in this case, is

associated with the languishing of the curve related to the symmetry A1g for temperatures

near the transition temperature T0. Although, in this case also, no evidence is presented

for the hidden order phase.

New experiments with Raman spectroscopy were performed precisely in the hidden

order phase [Buhot 2014]. They had shown that the phase transition from PM to HO state
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(a) (b)

Figure 1.7: The Raman spectra for URu2Si2 in a pure A2g symmetry at paramagnetic phase and
hidden order phase, adapted from [Buhot 2015].

is characterized by two Raman signatures of pure A2g symmetry. In the paramagnetic

phase the signal show a quasi-elastic response for this particular symmetry, Fig.(1.6(b)).

In the HO phase, it exhibits precisely an electronic gap below ∆G ∼ 55 cm−1 (6.8 meV)

and a sharp excitation deep inside the gap at 14 cm−1 (1.7 meV) that matches the neutron

resonance at Q, Fig(1.7(a)). These two signatures were confirmed only in the A2g precisely

at the HO phase, as shown in Fig.(1.7(b)).

They proposed that the gap is due to quasiparticle excitations near the Fermi level, that

accounts for the Fermi surface reconstruction at the HO transitions. Different Raman re-

sults, at the HO phase, were obtained by Kung et al. [Kung 2015]. They found that beyond

the signal in A2g there is also A1g signatures exactly at the same energy. These signals

come from the transitions in the crystalline field environments from partially delocalized

levels. Both experimental results have shown a direct connection between the HO and

A2g symmetry. Although an explanation among his connections still requires theoretical

investigations.





Chapter 2

Spin liquid versus long-range

magnetic order.

In this chapterwe present our studies related to the competition of the spin liquid states

against the onset of long range magnetic order in a body centered tetragonal (BCT) lattice.

It was discussed earlier on that in the presence of frustration the classical magnetic order

can be unstable against spin liquid states. It was also pointed out that low dimensionality

is a key ingredient for the emergence of a SL ordering.

Contradicting this low dimensionality idea, in this chapter we will analyze the effect

of frustration in the 3D BCT lattice1. We begin by describing the classical ground states

of the system. After that, we develop a spin-wave theory in order to study the quantum

fluctuations. The BCT lattice displays full frustration induced by its own lattice structure.

We define three kinds of exchange couplings between the spins located at the center and

the spins sitting on the corner of the lattice, fig(2.1). We know that frustration is a key

ingredient to destabilize classical magnetic order. However, in this 3D case wewill see that

in the framework of the spin wave theory the magnetic states are stable against quantum

fluctuation at the lowest order.

The other approximation that can be carried out is to consider the effect of the fermionic

excitations in the large-N limit. In this limit it is possible to destabilize the classical ordered

state and observe the emergence of SL phases. Recently, the fermionic approach of the

Heisenberg model has been carried out in order to investigate the formation of spin liquid

states in a 2d [Pépin 2011] and 3d system [Thomas 2013]. The emergence of spin-liquid

states motivates the analyses presented in the next chapter for Raman scattering.

1One version of this chapter has been published. C. Farias, C. Thomas, C. Pépin, A. Ferraz, C. Lacroix and
S. Burdin. [Farias 2016]
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2.1 Ground state for J1 − J2 − J3 model.

The spin waves in modulated magnetic structures display certain interesting aspects

which are not shared by simple ferromagnetic structures. However, this same feature

makes their experimental study considerably more difficult. The structures can be defined

as incommensuratewith the lattice periodicity, when the original translational symmetry in

the direction of the wave-vector is totally destroyed, and commensurate structures, in the

case this symmetry is only modified, though possibly quite drastically. In this system a

rotational symmetry is already spontaneously broken by the ground state. In this case,

Goldstone theorem (1961) [Nolting 2009] predicts the existence of collective modes with

energies approaching zero as their wavelengths go to infinity. Let us see how these two

kinds of structures emerge in our model.

Let us derive the possible classical antiferromagnetic states from theHeisenbergmodel

in a BCT lattice. Before performing our standard spin-wave approach, we first consider the

classical limit, S → ∞. The 3d version of the Heisenberg Hamiltonian that describes this

system is

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj + J3
∑
〈〈i,j〉〉

Si · Sj , (2.1)

where J1-J2-J3 are the interactions on the BCT lattice, as showed in figure (2.1). The ex-

change couplings are the antiferromagnetic interlayer coupling J1 and the intra-layer near-

est and the next-nearest neighbors J2 and J3, respectively.

The possible emergent classical ordered states are derived by writing down the Fourier

transforms for the spin operators as

Si =
1√
N

∑
q

e−iq·RiSq, (2.2)

and minimizing the classical energy

J(q) = 8J1γ1(q) + 2J2γ2(q) + 4J3γ3(q). (2.3)

The γ expressions are, respectively

γ1(q)=cos
(qxa

2

)
cos
(qya

2

)
cos
(qzc

2

)
, (2.4)

γ2(q)=cos (qxa) + cos (qya) , (2.5)

γ3(q)=cos (qxa) cos (qya) . (2.6)

The wave vector QAF is written in reduced notation as

QAF = 2π

(
l

a
,
m

b
,
n

c

)
, (2.7)
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Figure 2.1: The BCT lattice with the
J1-J2-J3 interactions underlined. The
lattice constants are set to a = b = c = 1

where a, b and c are the lattice constants for the BCT lattice. For simplicity, let us consider

that the lattice constants are a = b = c = 1. The values considered for QAF = 2π (l,m, n)

will be those that minimize the classical energy J(q), given by eq(2.3). We introduce the

dimensionless parameters p2 = J2/J1 and p3 = J3/J1. We derive the saddle point equation

that minimize the dispersion J(q) in appendix A. The trivial solutions for these equations

give us the commensurate states, QI
AF = (1, 1, 1) and QII

AF = (1/2, 1/2, ν). This phases

correspond to the regimes in which J1 and J2 dominate, respectively. The degeneracy ν

indicates the underlying tow-dimensionality.

There are other two possible states, given by the incommensurate wave vector that

characterize helical states. One of them is QIII
inc = (0,Υ3, 0) which is degenerate with

QIII
inc = (1,Υ3, 1), QIII

inc = (Υ3, 0, 0) and QIII
inc = (Υ3, 1, 1), where Υ3 = 1

π arccos
(
± 1
p2+2p3

)
.

The second one is QII
inc = (Υ2,Υ2, 1), which is degenerate with QII

inc = (Υ2,Υ2± 1, 0), with

Υ2 = 1
2π arccos

(
1−p2
2p3

)
. Another possibility of an ordering wave-vector QIII

AF = (0, 1/2, ν)

was proposed [Sugiyama 1990] in case J3 dominates. This corresponds to the commensu-

rate order in a purely bi-dimensional square lattice. However the state with modulation

QIII
inc is energetically more stable than QIII

AF. The classical phase diagram is displayed in

fig.(2.2) and it shows each of the antiferromagnetic orders associated with each wave vec-

tor. The ordering wave vectors are continuous along each critical line (see appendix A)

with the exception of the transition between QII
inc − QIII

inc. The next step is to check the

large-S corrections at a giving ground state with a specific Q. The presence of two incom-

mensurate states requires a generalization of the spin wave approach in order to take into

account those kind of states.
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Figure 2.2: The classical phase diagram of J1-J2-J3 model on BCT lattice. The coordinates p2 and
p3 are defined as the ratio between J2/J1 and J3/J1 respectively. Solid lines indicate transitions
between the stable magnetic orders with the modulation wave-vector Q defined previously.

2.2 Large S expansion and possible instabilities of the SW excita-

tions.

Since we have derived the classical phase diagram for J1-J2-J3, let us now investigate

the stability of magnons excitations against quantum fluctuations with the framework of

the spin wave (SW) analysis. We find that this fluctuation can either increase or decrease

the value of Sc (critical value of S). This magnitude is related with the maximum value of

S for which the elementary excitations, i.e. the spin waves are still stable. Our approach

consists essentially in doing the large S expansion [Chubukov 1994].

We can write the Heisenberg Hamiltonian 2.1 in short for this approach as

H =
∑
〈i,j〉

JijSi · Sj (2.8)

We use the generalized form of the Holstein-Primakoff (see section 1.2.2) transformations

taking into account helical states [Diep 1989, Chubukov 1984]

Sxi =

√
S

2
(ai + a†i ), (2.9) Szi

Syi

=

 cos θi sin θi

− sin θi cos θi

 S − a†iai
−i
√

S
2

(
ai − a†i

)  , (2.10)
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with a and a† being boson annihilation and creation operators, respectively. The angle

θi = Q·(Ri −Ro), where z is the easy axis that characterizes the site atRo in some reference

position. The scalar product Si · Sj is rewritten using these transformation as

Si · Sj=
S

2
(ai + a†i )(aj + a†j) + cos θj−i(S − a†iai)(S − a

†
jaj)

−S
2

cos θj−i(ai − a†i )(aj − a
†
j) + i

√
S

2
sin θj−i(ai − a†i )(S − a

†
jaj)

−i
√
S

2
sin θj−i(S − a†iai)(aj − a

†
j), (2.11)

where we use the notation θj − θi = θj−i = Q · (Rj −Ri). We keep the bilinear terms of

the product since it is a generalization of the linear spin wave theory. These are terms of

order S2 and S that are relevant in the large S series. We find the following expression

Si · Sj= S2 cos θj−i − S cos θj−i(a
†
iai + a†jaj)

+
S

2
(1− cos θj−i)(aiaj + a†ia

†
j) +

S

2
(1 + cos θj−i)(aia

†
j + a†iaj).

(2.12)

Therefore, the Hamiltonian is

H=
∑
〈i,j〉

Jij [S
2 cos θj−i − S cos θj−i(a

†
iai + a†jaj)

+
S

2
(1− cos θj−i)(aiaj + a†ia

†
j) +

S

2
(1 + cos θj−i)(aia

†
j + a†iaj)]. (2.13)

By invoking the Fourier transforms of ai and a†i

ai =
1√
N

∑
k

eik·Riak a†i =
1√
N

∑
k

e−ik·Ria†k, (2.14)

and considering that Rj = Ri + δ, we split the sum in the Hamiltonian such that

H=
S2N

2

∑
δ

Jδ cos (Q · δ)− S
∑
δ

Jδ cos(Q · δ)
∑
k

a†kak

+
S

4

∑
iδ

Jδ(1− cos(Q · δ))

 1

N

∑
k,k′

ei(k+k′)·Rieik
′·δakak′ + h.c.


+
S

4

∑
iδ

Jδ(1 + cos(Q · δ))

 1

N

∑
k,k′

ei(k−k
′)·Rie−ik

′·δaka
†
k′ + h.c.


(2.15)
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Since
∑

i e
i(k−k′)·Ri = Nδk,k′ , we rearrange the terms and get the usual expansion of the

Hamiltonian in terms of the spin eigenvalue S.

H=
S2NJ(Q)

2
− SJ(Q)

∑
k

a†kak

+
S

4

∑
k

∑
δ

Jδ(1− cos(Q · δ))(e−ik·δaka−k + eik·δa†ka
†
−k)

+
S

4

∑
k

∑
δ

Jδ(1 + cos(Q · δ))(e−ik·δaka†k + eik·δa†kak).

(2.16)

We use the following Fourier transform

J(k)=
∑
δ

Jδe
−ik·δ (2.17)

(2.18)

and, finally, we end up with the expression

H=
S2NJ(Q)

2
− SJ(Q)

∑
k

a†kak

+
S

4

∑
k

[
J(k)− J(k + Q) + J(k−Q)

2

]
(aka−k + a†ka

†
−k)

+
S

4

∑
k

[
J(k) +

J(k + Q) + J(k−Q)

2

]
(aka

†
k + a†kak).

(2.19)

If we split the sums into “positive” and “negative” values of k and if we make a change of

variable k→ −k in the sum where k is negative, it follows that

H=
S2NJ(Q)

2

+S
∑
k

[
J (k)

2
+

(
J (k + Q) + J (k−Q)

4

)
− J(Q)

](
a†kak + a†−ka−k

)
+S

∑
k

[
J (k)

2
−
(
J (k + Q) + J (k−Q)

4

)](
a†ka

†
−k + aka−k

)
(2.20)

We see that this expression is a perturbative expansion in decreasing powers of S. We

keep only the leading termsO(S2) and the first order term. Another point that can be seen

from this is that it provides a generalized expression for nomatter what phase we take into

account. In the next section we will see howwe can diagonalize this Hamiltonian and find

important relations in order to determine the S critical.
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2.2.1 Diagonalization of the Hamiltonian.

The difficulty in dealing with such a Hamiltonian is obvious. We must diagonalize it

first. What we have to do is to use an unitary transformation that allow us to rewrite it in

that way. Let us use the following transformations ak

a†−k

 =

 cosh (θk) − sinh (θk)

− sinh (θk) cosh (θk)

 αk

α†−k

 (2.21)

Of course, the operators αk and βk must obey the same commutation relations of ak and

b†k. This is in the same spirit of the Bogoliubov quasiparticles in superconductivity theory.

We can see that the Hamiltonian has the following matrix form

H = E0 + S
∑
k

(
a†k a−k

) Ak Bk

Bk Ak

 ak

a†−k

 , (2.22)

with

Ak=
J (k)

2
+

(
J (k + Q) + J (k−Q)

4

)
− J (Q) (2.23)

Bk=
J (k)

2
−
(
J (k + Q) + J (k−Q)

4

)
(2.24)

The eigenvalues of this matrix are given by λk =
√

Ω+
k Ω−k , where Ω+

k = Ak + Bk and

Ω−k = Ak − Bk, are the dispersion frequencies obtained for Bogoliubov quasiparticles.

Therefore, we find that

H = E0 + S
∑
k

[Ak (cosh 2θk − 1)−Bk sinh 2θk]

+S
∑
k

[Ak cosh 2θk −Bk sinh 2θk]
(
α†kαk + α†−kα−k

)
. (2.25)

with Bk cosh 2θk − Ak sinh 2θk = 0 or equivalently tanh 2θk = Bk
Ak

. These expressions in

terms of hyperbolic functions will be used later on to write the corrections for Sc. Finally,

the energy of the ground state is expressed as

E = E0 + S
∑
k

(√
Ω+
k Ω−k −

Ω+
k + Ω−k

2

)
(2.26)

By using this expression, it is possible to compute the corrections for the energies for

each of the classical ground states derived in the previous section. Wewill investigate how

quantum fluctuations can stabilize a particular order for QII
AF in the next section. .
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Figure 2.3: Energy as a function of p2, for S = 1/2. Including the first corrections we are able to
lift the degeneracy in favor of ν=0 or ν=1, which means qz=0 or 2π.

2.2.2 Order by disorder and the degeneracy of the modular vectorQII
AF.

In solving the classical phase diagram of our model, we saw that because of the pres-

ence of frustration we ended up with one particular state that exhibits degeneracy. For

the QII
AF, the value of qz can take any value which leads to a manifold of possible con-

figurations along z. This indicate that the system is most likely degenerate and almost

2D, without correlations along the c axis. However, as we mention before, these degen-

erate ground states may be situated in very different regimes: they experience thermal

and quantum fluctuations. The fluctuations have a special role in these systems because

they may partially lift this degeneracy and induce in this way the onset of an ordered state

[Rastelli 1987, Buhrandt 2014]. Let us see what happens when the degeneracy present is

associated with QII
AF. Let us verify what happens with the fluctuations produced by those

S corrections.

Here again the presence of quantum fluctuations is the mechanism to lift some of this

degeneracy. The determination of the appropriate QII
AF automatically selects one precise

state from the available manifold of states. We take the expression (2.26) and compute

numerically the energy for specific values of ν as a function of p2. In Fig. (2.3), we plot the

values of E for three values of ν. The degeneracy is lifted in favor of ν = 0 that gives the
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same result of ν = 1. For other values between the interval 0 < ν < 1 the selected values

of ν are therefore ν =1/2, ν = 0 or ν = 1.

2.3 Fluctuation corrections to the magnetization.

Let us now consider the influence of the fluctuations on the stability of the antiferro-

magnetic ordered states. We have in mind Anderson’s idea [Anderson 1973] that strong

quantumfluctuationsmay generate novel spin liquid ground states. Sincewe have derived

the classical phase diagram and specified the possible ordered states by a given ordering

wave vectorQ, we can analyze the zero-point fluctuations around those ordered states. We

can derive the sub-lattice magnetization per spin and include the effects of fluctuations by

taking

〈Szi 〉 = S − 〈a†iai〉 (2.27)

or equivalently,

〈m〉 = S − 1

N

∑
k

〈a†kak〉 (2.28)

We can use the relation (2.21), and write down the product of operators. In the lin-

ear spin wave approximation, the quasiparticles created by αk and α−k represent a fully

decoupled system in which the particle number is conserved. That means that we have

〈αkα−k〉 = 〈α†kα
†
−k〉 = 0. If we do this, we end up with one expression like

〈a†kak〉 = sinh2 θk + 〈α†kαk〉 cosh2 θk + 〈α†−kα−k〉 sinh2 θk. (2.29)

The αk and α−k quasiparticles are non-interacting Bosons. Therefore, the expectation

values of their occupation number operators are the Bose–Einstein distribution functions.

To calculate the magnetization, we convert the sum in eq.(2.28) into an integral over the

Brillouin zone for the BCT lattice and perform the corresponding numerical calculation.

In Fig.(2.4), we present the respective result for m for each AF phase, at T ' 0 and for

S = 1/2, as a function of p2, when p3 is a given value on the critical line. For p2 < 0.93 the

magnetization is a decreasing function and above this point it becomes negative, suggest-

ing the possible existence of a disordered phase. However, the existence of the AF phase

QII
inc in this region prevents the formation of this disordered state.

The next step is the calculation of the Sc, that is the S value at which the spin wave

excitation starts to become unstable. We are interested in the T ' 0 limit and in the case in
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scale in the axis are logarithmic in order to see the asymptotic behaviour for large p2.

which the magnetization vanishes. Therefore, it turns out that

Sc = −1

2
+

∫
BCT

d3k

64π3
Ω+
k + Ω−k√
Ω+
k Ω−k

(2.30)

Once again, by performing numerical calculations, we calculate Sc considering each phase

as a function of p2 when p3 is approaching the critical line. The result is plotted in Fig.(2.6).

Unlike the 2D case, the fluctuation corrections do not diverge [Chandra 1988]. We call

attention to the fact that, in the 3D case, frustration can relatively increase the critical value

of S below which the linear spin-wave correction cancels the staggered magnetization, i.e.,

Sc ≡ ∆m(p2, p3). Indeed, for a fixed p2 , we find that Sc increases when p3 approaches its

critical value associated with the classical phase boundary. This maximal value is plotted

in the inset of Fig(2.6) as a function of p2 for the continuous QII
AF/Q

II
inc transition and on

each side of the discontinuous QII
inc/Q

III
inc transition. On each of these critical lines, we find

Sc ∼ √p2 for large p2. Furthermore, a logarithmic Sc ∼ ln(p2/2 − p3) and a power law

Sc ∼ 1/
√
p3 − p2/2 are respectively obtained at large p2 in the vicinity of the QII

inc → QIII
inc

and of the QIII
inc → QII

inc transitions. This results is consistent with the square lattice spin

wave analysis present elsewhere [Chandra 1988].

These results tell us that the SW approach reveals someweaknesses of the presentmag-

netic orders, but the three-dimensionality protects these states against small fluctuations at

the lowest linear order. To go beyond this approachwemust study the possible instabilities

emerging from the next orders in the 1/S expansion and consider the interactions between

the spin-wave bosonic excitations. However, it has been shown for a two-dimensional lat-
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tice that the second-order correction can indeed increase considerably the magnitude of

the sub-lattice magnetization, although first-order perturbation produce a decreases in the

magnitude [Igarashi 2005]. It is thus possible that the series oscillates and this may be a

general characteristic of SW expansion in our model. Therefore, stabilizing a spin-liquid

state seems to require going beyond second order when invoking a perturbation approach

from classical order. We leave this aside, and we now turn to the analysis of possible non-

magnetic phases in our model using the algebraic spin liquid approximation.

2.4 Algebraic spin liquid.

2.4.1 Generalized SU(n) symmetric approach.

It was suggested by P.W. Anderson [Anderson 1987] that small spin values, low spatial

dimensions, and large frustration are the three main ingredients for the melting of mag-

netic long range order and for the emergence of exotic spin liquid ground state. There is

increasing evidence that quantum effects play a major role in the low-temperature proper-

ties of various classes of magnetic systems. In this section we analyze the possibility that

the spin forms a resonating valence bond state with fermionic excitations and SL correla-

tions [Fazekas 1974]

The physical motivations for this study are the unconventional physical phenomena

exhibited by metallic systems with BCT structure. In several of these correlated systems,

themagnetic degrees of freedom seems to be “deconfined ” into fermionic modes that may

actually contribute to the existing of the Fermi surface, unlikeweakly coupled bosons. This

situation, which also might occur in high-Tc superconductors [Anderson 1987, Wen 1996],

could be easily strengthened by a coupling of the Heisenberg spin of J1-J2-J3 model to

extra charge degrees of freedom. We study the possible fermionic “deconfinement” of

spin operators as an intrinsic property of the Heisenberg model.

Once again, we take the Heisenberg Hamiltonian, for S = 1/2, and generalize it to its

SU(n)-symmetric form2.

Hn =
∑
i,j

Jij
n

∑
σ,σ′

χ†i,σχi,σ′χ
†
j,σ′χj,σ, (2.31)

where χ†i,σ and χi,σ are fermionic creation and annihilation operators in a site i and spin

degeneracy σ = 1, ..., n, which are subject to the local constraints
∑

σ χ
†
i,σχi,σ = n/2. This is

2This work was carried out by C. Thomas in collaboration to [Farias 2016]. In this part, we do not driven
much attention to specific calculations, and only concentrate in the results.
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a standard SU(n) generalization [Affleck 1988a] of the fermionic representation developed

by Abrikosov for n = 2. The scaling factor 1/n ensures that the energy remains finite at the

large-n limit.

In order to take into account the SL correlations, the Hubbard-Stratonovich decoupling

[Pépin 2011, Thomas 2013], is used to introduce two kinds of order parameters3:

• the local magnetization field:

mσ
i = 〈χ†i,σχi,σ〉 −

1

2
, (2.32)

• the inter-site SL field:

ϕij = − 1

n

∑
σ

〈χ†i,σχj,σ〉. (2.33)

The purely magnetic mean-field approximation is described by the staggered magnetiza-

tionmσ
i = ±SQ andwhich is completely equivalent to the one obtained in the large S limit.

The corresponding ground state phase diagram is once again given by Fig.(2.2).

The stability of the various possible magnetic phases can be analyzed by testing differ-

ent SL ansätze as possible alternatives for the ground state. Generalizing the modulated SL

(MSL) order [Thomas 2013], we consider the nearest-neighbor inter-site correlations

ϕ1
ij =

1

2
[Φ1 + ie

iQI
AF·

(
Ri+Rj

2

)
ΦM ], (2.34)

ϕ2
ij = Φ2, (2.35)

ϕ3
ij = Φ3, (2.36)

with a bond index definition similar to that exhibited in Fig.(2.1). The three kinds of spin

liquid patterns are shown in Fig.(2.7).It depicts Φ2 and Φ3 as two-dimensional correlations

as in square lattice. Finally, we also have the interplane correlation φ1ij , represented by

dashed lines which φ1ij = Φ1 + ΦM and φ1ij = Φ1 − ΦM bond modulations represented by

solid lines.

The free energy per spin component and per lattice site is written as

F = F0 −
kBT

32π3

∫
BCT

d3k
∑
s=±

ln(1 + e
− Es

k
kBT )− λ0

2
(2.37)

3The detailed Mean field decoupling can be seen in A.3
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(a) Φ2 (b) Φ3 (c) MSL

Figure 2.7: The three kinds of inter-site spin liquids correlations on the BCT structure. (a-

b) For Φ2 and Φ3, have two-dimensional character as in square lattice. Φ3 is a long-range

orderedmodulation. (c) The inter-plane correlation. Dashed lines representΦ1
ij = Φ1+ΦM

and solid lines represent Φ1
ij = Φ1 − ΦM the bond modulation.

Where λ0 denotes the Lagrange multiplier that minimizes F in order to satisfy the

fermionic occupation constraint. The mean field AF ordering state has F0 = −2J(Q)
n |SQ|2

with dispersion E±k = λ0 ± J(Q)
n SQ. For the SL states we find, accordingly

F0

J1
= |Φ1|2 + |ΦM |2 + 2p2|Φ2|2 + 2p3|Φ3|2, (2.38)

and the dispersion

E±k − λ0
J1

= 2p2γ2(k)Φ2 + 4p3γ3(k)Φ3 ± 4
√

(γ1(k)Φ1)2 + (γM(k)ΦM)2. (2.39)

The real term ΦM does not have the periodicity of the BCT lattice. The term γM(k) =

sin(kx/2) sin(ky/2) sin(kz/2)4 takes into consideration a possible spatial amplitude modu-

lation of the SL field. The numerical analysis consists basically in solving self-consistently

the mean-field parameters for each AF or SL state. The most stable solution is selected

by the minimization of the free energy, eq.(2.37). The MSL phase is a BCT adaptation

of the “kite” phase investigated in [Affleck 1988a] on a square lattice. We also tested an-

other non-homogeneous “flux” phasewith the SL character, i.e., a chiral statewith complex

ϕ1
ij = (ϕ1

ji)
∗ (see Fig.3.1(d)), that could be described using the same formalism, but with

the replacement γM (k)→ sin(qx/2) sin(qy/2) cos(qz/2). This chiral SL was found to have a

higher energy than the MSL.

4This expression is derived in appendix B. For the moment it will be sufficient to say that it can be obtained
from the Fourier transform of the Hamiltonian Hn after the mean field decoupling.
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2.4.2 The phase diagram for large n.

For n 6 3 we find purely AF ground states, and for n > 10 the most stable states

are SL characterized by finite values of either ΦM , Φ2, or Φ3. At mean-field level, these

three SL parameters do not coexist. Furthermore, we remark that the transition between

the MSL and the Φ2-dominated SL phases is first order. Beyond mean field, we expect

that only the SL critical temperature associated with a non-zero ΦM still corresponds to a

phase transition signalled by the translation symmetry breaking. For 4 6 n 6 9, we find

a rich phase diagram exhibiting AF and SL quantum phase transitions that are controlled

by J1-J2-J3 parameters, as illustrated in (phase diagram of large n). Increasing n, the AF-

SL instability shows up first within the QII
inc phase. Furthermore, comparing the large-S

phase diagram in Fig.(2.8) obtained for n = 4 (phase diagram of large n), one observes

that the Sc = 1/2 spin-wave instability is located in the same region where the 2-dominant

state becomes stabilized. Moreover, going beyond the specificity of the associated order

parameters, the phase diagram of large n indicates that the SL instability “propagates”

from large-p2 (Φ2) to smaller-p2 (MSL) areas if we increase the value of n.

2.4.3 The modulated spin liquid phase.

An interesting feature also appears for the MSL solution: with a relatively high numer-

ical accuracy the modulation field ΦM is found to be always equal to the homogeneous

field ΦI . This leads to a very extreme situation for the interlayer ϕ1
ij = 1

2 [Φ1 ± ΦM ] which

vanishes on half of the bonds while it keeps its finite value Φ1 = ΦM on the other bonds.

Introducing the probability psingletij that a given bond RiRj forms a singlet, the formation

of the MSL state can be interpreted here as follows: first, for all the interlayer bonds such

that QI
AF · (Ri+Rj)/2 = π/2, the interaction terms are effectively decoupled at mean-field

level, leading to psingletij = 1/4 and 〈Si · Sj〉 = 0. Then the SL with 〈Si · Sj〉 6= 0 is formed

on the other interlayer bonds, with QI
AF · (Ri + Rj)/2 = −π/2, that remain effectively

coupled. Using the numerical value Φ1 = ΦM ≈ 0.45 computed at T = 0 in the MSL, we

find that psingletij ≈ 0.60 on these effectively coupled bonds. This value has to be compared

with the value ln(2) ≈ 0.69 that is predicted for a one-dimensional Heisenberg chain by us-

ing exact methods, like Bethe ansatz or DMRG [Schollwöck 2005]. We may thus interpret

the MSL as a crystal of interacting filaments formed by the connected effectively coupled

bonds (2.8.d). In this picture, spin excitations are deconfined fermions moving along these

filaments. This may generalize the usual concept of valence-bond crystal [Lacroix 2011]

where localized spin-1 excitations correspond to confined fermions.
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Figure 2.8: (a-c) Ground-state phase diagram of the J1 − J2 − J3 model in coordinates (p2, p3)
computed self-consistently for different values of n.

2.5 Summary.

In conclusion, we considered a model with only localized spins. However, charge fluc-

tuations play a crucial role in destabilizing AF states in heavy fermions and cuprates.

In the context of the cuprates, the AF phase of the insulating parent compounds corre-

sponds toQII
AF. The SL phase introduced byAnderson et al. [Fazekas 1974, Anderson 1987,

Baskaran 1987] corresponds to the homogeneous correlated state associated here with Φ2.

Stabilizing a SL state in 3D is commonly thought to be more tricky in view of the fact that

the corresponding linear SW correction remains finite within a large-S approach. Never-

theless, we show how frustration in the BCT lattice can enhance the critical value Sc that, in

some sense, characterizes the weakness of AF order against SWfluctuations. In connection

with this weakening, we could identify various SL phases that can be stabilized when n is

larger than a relatively small critical value.

We also notice the possible emergence of stable SL phases in cubic lattices that has also
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been proposed recently [Laubach 2016, Farnell 2016]. This opens new perspectives for the

realization of unconventional electronic quantum orderings in 3D systems. In particular,

our results suggest thatmaterials, likeURu2Si2, with BCT-lattice structure, have the feature

of manifesting themselves in numerous different phases. Indeed, the very phase diagram

depicted in Fig.(2.2) and phase diagram of large n could provide a unifying framework for

the understanding and for the analysis of the rich phase diagram of URu2Si2.

With respect to the large n analysis, the number n may be considered as an effective

parameter related to the electronic orbital degeneracy, which could be phenomenologically

increased or decreased by charge fluctuations or crystal-field effects. Considering a given

compound, n might also be effectively decreased by applying an external magnetic field.

Similarly, a tuning of themodel parameters p2 and p3 may phenomenologically account for

some effects of applied pressure [Thomas 2013]. This scenario could explain two different

AF instabilities of the HO phase that are observed experimentally in URu2Si2: assuming

that the HO is a MSL order and applying a finite pressure this corresponds to increasing

J1 for a fixed n (see Fig. 2.8), leading to a commensurate AF instability characterized by

QI
AF, as observed experimentally [Palstra 1985, Mydosh 2011]. Alternatively, applying a

magnetic field without pressure corresponds to lowering the effective value of n for fixed

p2 and p3: the MSL (HO) is destabilized to an incommensurate AF. Interestingly, by using

different numerical values of J1, J2 , and J3 obtained fromdifferent fits of inelastic-neutron-

scattering data, our scenario predicts an instability fromMSL toQIII
inc = (Υ3, 0, 0)withΥ3 ≈

0.69 [Broholm 1991], 0.66 [Kusunose 2012]. This scenario could be tested experimentally

since it predicts that the AF order QIII
inc could be continuously tuned to QI

AF by applying

pressure on URu2Si2 under a high magnetic field.

This SL mechanism driven by frustration on the BCT lattice may also be tested for the

heavy-fermionURu2Si2. The possible formation of aMSL could also give rise to a commen-

surately ordered pairing that would break the BCT symmetry down to simple tetragonal.

Such a modulated pairing scenario could be tested with the superconducting instability

observed for this compound inside the HO phase. Alternatively, even if the chiral SL order

was found here to be less stable than the MSL, an opposite result could occur if we include

charge fluctuations.
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Raman signatures of electronic states

in URu2Si2.

In the last chapter, we saw that spin liquids states may arise as an alternative to the

long-range magnetic order in BCT structures. We also made clear that the presence of

frustration is a key ingredient to stabilize those new kinds of phases. Our aim now is to

develop an effective theory which incorporates these varieties of states. Our starting point

is a two band effective Hamiltonian that it is able to generate the phases of interest by sys-

tematic variation of a small number of parameters [Das 2012, Das 2014, Oppeneer 2011].

Afterwards, wewant to relate our effective theory with Raman scattering experiments per-

formed at the hidden-order phase of URu2Si2 [Buhot 2014]. The effective theory describes

the possible emergent phases in a BCT lattice without making any assumption about the

specific order parameter. Instead, we assume that the HO phase has something to do with

a particular choice of space group.

In this context we followHarima-Miyake-Flouquet [Harima 2010] who have suggested

earlier on that the second order phase transition from the PM phase to the HO is directly

related to a change in the point group symmetry. In the PM phase, the BCT lattice belongs

to the space group No 139 (I4/mmm), with a local point group D4h. When entering the

HO phase, the ST lattice belongs to the new space group No 136 (P42/mnm, D2h). This

leads to the loosing ofC4 rotation (rotation by π/2) at the U site. This lower of symmetry is

a consequence of the Coulomb interaction between the localized 5f electrons and it does

not require any lattice distortion, but the charge distortion at the U site. As a consequence,

the charge distribution inside the HO phase also changes, although this is difficult to be

detected by the existing experimental techniques.

This consensual change in the lattice structure when passing from the PM phase to the
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HO regime reflects itself in other physical properties. The folding in the Brillouin zone

along the c axis of the BCT was observed in several experiments [Buhot 2014, Boariu 2013,

Hassinger 2010]. It places the Z point on top of theΓ point of the Brillouin zone as expected

when a transition from a BCT to an ST lattice takes place. By changing the lattice structure,

one instability on the Fermi surface develops, and this produces a pseudogap in some

regions of k-space [Maple 1986, Elgazzar 2009, Boariu 2013, Tonegawa 2012].

When dealing with space group or point group symmetry representation, sometimes

it is convenient to work with its irreducible representation of the lattice symmetry group.

This feature is applicable as soon as optical investigations are under consideration, specifi-

cally in the context of Raman scattering experiments [Devereaux 2007]. Here the emphasis

is given to the types of space groups that represent the spin liquid order introduced before,

i.e., the modulated spin liquid. The effect of the breaking of lattice symmetry is implicit

in the periodic modulation in the density of electronic spins. We also discuss the possible

existence of a second kind of spin liquid, the so-called chiral spin liquid. Each state is as-

sociated with a particular space group signaled by some specific parameter. All of these

possible ordered phases break the lattice translation symmetry in the same way, which is

also a remarkable feature of the phase transition from PM to HO phase of the URu2Si2.

The next section is devoted to describe the Hamiltonian of our model and to explain how

we incorporate all those different phases into it.

3.1 The Hamiltonian of effective model.

In order to construct a model which displays different ordering phases as candidates

for hidden order in URu2Si2, we have to take into account experimental features that are

well established.

First, the low-pressure experiments performed at the HO phase show clearly that it is

not anAFphase, but at pressures abovePx ∼ 0.5GPa, theHOsuffers a first-order transition

and the long-range antiferromagnetic order is establishedwithwave vectorQAF = {0, 0, 1}
that corresponds to a lattice doubling along c-axis. Inelastic neutron scattering experi-

ments performed at the HO phase characterized this state by the presence of a sharp reso-

nance at wave-vector Q0 = {1, 0, 0}, which is equivalent to Q0 = {0, 0, 1} [Villaume 2008].

Going through the AF phase leads to the collapse of the resonance and to the observa-

tion of an inelastic neutron magnetic signal at QAF [Harima 2010]. Thus, it is reasonable

to search for a model that accounts for this change in the lattice structure while, switch-

ing from the HO to the AF by applying pressure, induces supplementary time-reversal
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symmetry breaking, as is the case for an onset of antiferromagnetic ordering.

Angle-resolved photo-emission spectroscopy (ARPES) demonstrated that there is a

Fermi surface instability of the itinerant quasiparticles taking part in the PM to HO tran-

sition. The HO phase is also accompanied by a remarkable symmetry change of the elec-

tronic structure and this is consistent with the periodicity characterized by the commensu-

rate vector Q0 [Bareille 2014]. Density-functional theory (DFT) calculations investigate the

Fermi surface properties of URu2Si2. Their results conclude that there is a strong nesting

between portions of the Fermi surface which are linked to each other by wave vector Q0

[Oppeneer 2011]. Effects of interaction between two FS sectors leads to hybridization, FS

gaping and lattice symmetry breaking.

Here, we construct a two band effective theory that is based on a simple tight-binding-

like Hamiltonian of spinless fermions which can be used to characterize the HO phase.

A similar two-band model was recently used to describe the Raman signatures in iron-

arsenide based superconductors with strong Fermi surface nesting [Yang 2014]. A tight-

binding effective model was also proposed for a spin-orbit density wave as a candidate to

explain the HO in URu2Si2 [Das 2014, Oppeneer 2011].

One crucial ingredient to building an effective model for URu2Si2 is the underlying lat-

tice symmetry. In the PM phase, the lattice structure is BCT symmetric, but the HO lowers

the symmetry to simple tetragonal (ST). This lowering of symmetry can be characterized

by a nesting of the BCT Fermi surface with Q0 = {0, 0, 1}
With this assumption, we write the Hamiltonian as

H =
∑
i

(E0 +meiQ·Ri)c†ici +
∑
〈i,j〉

tijc
†
icj . (3.1)

The operators c†i and ci are the creation and annihilation of spinless fermions at a given

site i with position Ri. The parameter E0 adjust the chemical potential. The hopping tij
connects nearest neighbors on the BCT lattice, but they may break BCT lattice symmetry

down to simple tetragonal lattice symmetry.

We start in the framework of a regular paramagnetic state where the system has its

structure defined by the space group No 139 (I4/mmm, D4h). We assume that it can pass

from this regular state to a new phase defined with three different space groups symme-

tries which could be associated with the No 123 (P4/mmm,D4h), the No 126 (P4/nnc,D4)

or the No 128 (P4/mnc, C4h). Also those point symmetry groups D4 and C4h have the

same selection rules and also they are subgroups of point group D4h [Harima 2010]. We

introduce appropriate parameters that capture the characteristics of these ordered states.
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t1

t2

t3

(a) (b) (c) (d)

Figure 3.1: The four possible ordered states that are considered in our model. Figure (a) shows the
paramagnetic phase, that displays the full BCT lattice structure with space groupNo 139. In Fig.(b)
we represent an states that breaks lattice translation symmetry and results in to two sub-lattices that
reduces the BCT down to ST lattice. This phase is characterized by the space group symmetry No
123. Figure(c), we represent the modulated SL phase, associated with the space group No 126.
Figure (d), the chiral SL phase, that is related to the space group No 128.

1. The space group No 123 (P4/mmm), with Q being an ordering wave vector charac-

terizing one modulation

meiQ·Ri , (3.2)

This parameter can account for some local Kondo hybridization or a charge-density

wave or, in the last case, an staggered magnetization.

2. The space group No 128 (P4/mnc) characterizes a chiral spin liquid phase:

tij = t1 ± i∆c. (3.3)

3. The space group No 126 (P4/nnc) characterizes a modulated spin liquid phase:

tij = t1 ±∆M . (3.4)

Since the c’s operators here represent fermions, the magnetic states, specified for the pa-

rameterm, is justified by the fact that fermions here are like spinons in a deconfined phase

which have an intrinsic magnetic moment. This also leads to the formation of SL phases

because the spinons can be seem as the elementary excitations in this phase which posses

the character of being fractionalized [Kitaev 2006].

We have seen in the previous chapter that the various wave vectors characterize differ-

ent magnetic ordered ground states on the BCT lattice. Here, we consider only Q = QI
AF
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because of the experimental evidence from INS [Bourdarot 2010] that both AF and HO

phases break BCT lattice symmetry to the simple tetragonal lattice symmetrywith anwave

vector Q0 = QI
AF. By using meiQ·Ri , to characterize a given phase that breaks the lattice

translation symmetry, we assume that the fermions at k band are coupled to fermions at

k + Q band by the particular wave vector Q [Yang 2014, Ványolos 2005].

The hopping parameter tij can be either complex or real. If it is complex, the imaginary

part is associated with the parameter ∆c. The choice of the sign relates itself to the orienta-

tion of the link between two sites. In approaching a site, we consider a plus sign in eq.(3.3)

or if the link leaves the site is a minus, see Fig.3.1(d)). If tij is real, we add the term ∆m

for first inter-plane neighbors, which corresponds to the MSL phase that is schematically

illustrated in Fig.3.1(c). The choice of the sign plus, in eq.(3.4), represents a full line and

if it is the minus sign it represents a dotted line. The other real cases are tij = t2 for first

neighbors in-plane and tij = t3, for the second neighbors in-plane, see Fig.3.1(a). Indeed

in this work, we do not investigate the in-plane ordering.

Using the Fourier transforms for the creation and annihilation operators

c†i=
1√
N

∑
k

e−ik·Ric†k (3.5)

ci=
1√
N

∑
k

eik·Rick, (3.6)

where the sum in k runs over the first Brillouin zone of the BCT lattice, we write down the

Hamiltonian in a matrix representation with a folded Brillouin zone from the BCT to the

Simple Tetragonal (ST) lattice. The Hamiltonian in second quantized form becomes

Ĥ=
∑
k

Ψ†khkΨk, (3.7)

with the sum over k now running over the first Brillouin zone of the tetragonal (T) lattice

(see a more detailed calculation in appendix B). Using

Ψk=

 ck

ck+Q

 , (3.8)

hk=

 εk V ∗k

Vk εk+Q

 , (3.9)

It follows that the Ek eigenvalues give us the dispersion in the form

E±k =
εk + εk+Q

2
±
√
|Vk|2 +

(
εk − εk+Q

2

)2

. (3.10)
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with the specific relations εk = E0 + t1γ
1
k + t2γ

2
k + t3γ

3
k and Vk = m + i∆SLfSL(k), that

are present in eq.(3.9), where ∆SL can be ∆m or ∆c if we have a modulated or chiral spin

liquid, respectively and fSL(k) being defined in the same fashion. The derivation of γ’s

factors is made in appendix B. The off-diagonal term Vk couples the two bands which are

connected by the lattice wave vector Q. As a result it turns out that

γ1k= 8 cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
(3.11)

γ2k= 2(cos (kxa) + cos (kya)) (3.12)

γ3k= 4 cos (kxa) cos (kya) (3.13)

fc(k)= 8 sin

(
kxa

2

)
sin

(
kya

2

)
cos

(
kzc

2

)
(3.14)

fm(k)= 8 sin

(
kxa

2

)
sin

(
kya

2

)
sin

(
kzc

2

)
. (3.15)

The diagonalization of the Hamiltonian from eq.(3.7) can be performed by using one gen-

eral representation of the Bogoliubov transformations (see B.2 in appendix). We define

Ψk = P̂kΨ
diag
k , (3.16)

where

Ψdiag
k =

 αk

βk

 (3.17)

and

P̂k =

 cos θk eiϕ sin θk

−e−iϕ sin θk cos θk

 (3.18)

The relations for cos(θk) and sin(θk) provide the conditions for the θk parameter. We find

cos(2θk)=
εk − εk+Q√

|Vk|2 +
(
εk−εk+Q

2

)2 (3.19)

sin(2θk)=
|Vk|√

|Vk|2 +
(
εk−εk+Q

2

)2 (3.20)

(3.21)

In a similar way, we find that

ϕk= −(arg(Vk)± π) (3.22)

Consequently, the Hamiltonian in the diagonal basis is written as

Ĥ =
∑
k

(
α†k β†k

) E+
k 0

0 E−k

 αk

βk

 (3.23)
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In chapter 1, we saw that the light can couple either to charge or current degrees of

freedom and this allows us to define the charge and current sectors, respectively. The

charge sector is related to the density-density correlation function while the current sector

is related to the current-current correlation function. To each sector, we can associate a

specific vertex which is directly linked with the irreducible point group symmetry of the

lattice. In order to clarify this association with point group symmetries and apply this

concept in our analysis, let us describe the possible vertices for BCT lattice structure.

3.2 The correlation functions and Raman vertices for the BCT lat-

tice.

Let us present the correlation functions that will be used to compute the Raman re-

sponse. For simplicity, we assume the small moment transfer limit, which allows us to use

the effective mass approximation to calculate Raman vertices for each specific sector with

a defined symmetry.

3.2.1 The spinon density sector.

The physical quantity observed experimentally is the Raman scattering cross section.

It is determined by the dynamical structure factor S̃(q, iω), which is directly related to the

imaginary part of the Raman response χ̃ through the fluctuation dissipation theorem

S̃λ(q, ω) = − 1

π
[1 + nB(ω)]Im[χ̃λ(q, ω)], (3.24)

where nB(ω) is the Bose distribution function and λ stands for the specific irreducible point

group of the lattice in consideration. TheRaman response for the electron systemmeasures

the “effective density” fluctuations by

χ̃λ(q, iωm) = − 1

V

∫ β

0
dτeiωmτ 〈Tτ (ρ̃λ(q, τ)ρ̃λ(−q, 0))〉, (3.25)

where V is the volume of the system and ρ̃λ is the effective density operator. It is con-

venient to decompose this matrix element into basis functions of the irreducible point

group of the lattice in accordance with the polarization of the incident and scattered light

λ = B1g, A1g, etc [Devereaux 2007]. Using the effective polarization-dependent density

[Valenzuela 2013]

ˆ̃ρλ(q, τ) =
∑
k,α,α′

γλα,α′(k)c†k+q/2,α(τ)ck−q/2α′(τ), (3.26)
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where γλα,α′(k)’s are matrix elements which originate from the second derivatives of the

matrix hk. Then, it follows that the density-density correlation function (see appendix B.3)

can be written as

χ̃λ(iωm) =
1

V
∑
k

1

β

∑
ωn

Tr[γλ(k)Gk(iωn + iωm)γλ(k)Gk(iωn)], (3.27)

where V is the volume of the system, β is the inverse of temperature, and ωm = 2mπ/β

and ωn = (2n+ 1)π/β are bosonic and fermionic Matsubara frequencies, respectively.

ForURu2Si2, by combiningdifferent incident and scattered light polarizations and sam-

ple geometries, the Raman scattering can extract informations of the A1g, B1g, B2g and A2g

symmetries of the D4h point group. For each one of these representations, we have to write

an appropriate vertex. In the effective mass approximation this leads to

γA1g(k)=
∂2hk
∂k2x

+
∂2hk
∂k2y

(3.28)

γB1g(k)=
∂2hk
∂k2x

− ∂2hk
∂k2y

(3.29)

γA2g(k)=
∂2hk
∂kx∂ky

− ∂2hk
∂ky∂kx

(3.30)

γB2g(k)=
∂2hk
∂kx∂ky

+
∂2hk
∂ky∂kx

. (3.31)

Vertices like the A2g cannot be accessed independently by linear polarizations. Only sums

including circular polarizations allows the isolation of the corresponding A2g compo-

nents.The relation in 3.30 is identically zero. However if we take into account higer order

derivatives with respect k-components we could have γA2g(k) 6= 0. The A2g symmetry is

usually associate with chiral excitations [Khveshchenko 1994, Devereaux 2007].

3.2.2 The spinon current sector.

Usually resonant contributions are associated with strong correlations, as is the case

of the Heisenberg limit of the Hubbard model [Devereaux 2007]. When this is indeed the

case, we need to go beyondfirst order in the perturbative expansion and consider the role of

two, three and four point correlation functions. The definition of the current sector is based

on the work of resonant features of Raman experiments for the insulating cuprates com-

pounds [Khveshchenko 1994, Liu 1993]. The theory showed that the Raman spectroscopy

is a direct tool to investigate electronic current algebra and the chirality of charged exci-

tations which are believed to be important for various mechanisms for high-Tc supercon-

ductivity [Laughlin 1988].
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However, here we simply compute the two particle correlation function for the current

operator. The µ component of the current operator is

ĵµ(q, τ) =
∑
k,α,α′

γ̃µαα′(k)c†k+q/2,α(τ)ck−q/2,α′(τ), (3.32)

where ĵµ = ĵ·µ, withµ being an unitary vector along some coordinate (x, y, z), and γ̃µ(k) =

∂hk/∂kµ. We can write down the current-current correlation function as

χ̃µν(q, iωm) = − 1

V

∫ β

0
dτeiωmτ 〈Tτ ĵµ(q, τ)ĵν(−q, 0)〉 (3.33)

Although the vertices are different now, the procedure of calculate this correlation function

follows what we did in the previous section. Once again we consider the effective mass

approximation in which q → 0 and if we proceed with similar calculations of appendix

B.3, we find that,

χ̃µν(iωm) =
1

V
∑
k

1

β

∑
ωn

Tr[γ̃µ(k)Gk(iωn + iωm)γ̃ν(k)Gk(iωn)] (3.34)

In order to extract the signal of a particular symmetry we have to specify the compo-

nents of all derivatives. For example for the BCT lattice the correlation function for the

irreducible symmetries A1g, B1g and B2g are, respectively

χ̃A1g(iωm)=χ̃xx(iωm) + χ̃yy(iωm) (3.35)

χ̃B1g(iωm)=χ̃xx(iωm)− χ̃yy(iωm) (3.36)

χ̃B2g(iωm)=χ̃xy(iωm) + χ̃yx(iωm) (3.37)

We have only to specify which components of kµ or kν we are taking in the derivatives and

perform our calculations. However, in this approach we do not have any signal for A2g

symmetry. What we have to do is to consider a different correlation function.

If we define an operator that is proportional to the equal time current-current commu-

tator, such that,

M̂µν(q, τ) = [ĵµ(q, τ), ĵν(q, τ)], (3.38)

We can extract the signal for A2g by computing the following correlation function

χ̃A2g (q, iωm) = − 1

V

∫ β

0
dτ eiωmτ 〈TτM̂A2g(q, τ)M̂A2g(−q, 0)〉, (3.39)

where M̂A2g(q, τ) = M̂xy(q, τ) − M̂yx(q, τ). If we consider the an effective mass approxi-

mation where q→ 0, we get the following expression

χ̃A2g(iωm) =
1

βV
∑
k,n

Tr
[
γ̃A2g(k)Gk(iωn + iωm)γ̃A2g(k)Gk(iωn)

]
. (3.40)
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The vertex for A2g symmetry is defined as

γ̃A2g(k)=
∂hk
∂kx

∂hk
∂ky
− ∂hk
∂ky

∂hk
∂kx

(3.41)

For this specific case of theA2g symmetry, it looks as if this contributionwill be zero. How-

ever, in the next section we will see that when writing down hk in terms of the SU(2) basis,

i.e. the Pauli’s matrices, we pick up a nonvanishing result.

3.2.3 Extracting the A2g response.

Wewill now show how to extract a non-zero signal for the symmetry A2g in the current

sector. Consider the expression for the vertex for A2g before as

γ̃A2g(k) =
∂hk
∂kx

∂hk
∂ky
− ∂hk
∂ky

∂hk
∂kx

, (3.42)

this is analogous to the commutation

γ̃A2g(k) =

[
∂hk
∂kx

,
∂hk
∂ky

]
. (3.43)

We can make use of the Pauli’s matrices together with an identity, and rewrite hk as

hk=Ak1 + Re(Vk)σ1 + Im(Vk)σ2 +Bkσ3, (3.44)

with

Ak =
εk + εk+Q

2
, (3.45)

Bk =
εk − εk+Q

2
. (3.46)

Using the notation, Im(Vk) = V ′′k and Re(Vk) = V ′k, the commutator becomes[
∂hk
∂kx

,
∂hk
∂ky

]
=

(
∂V ′k
∂kx

∂V ′′k
∂ky

− ∂V ′′k
∂kx

∂V ′k
∂ky

)
[σ1,σ2]

+

(
∂V ′′k
∂kx

∂Bk
∂ky

− ∂Bk
∂kx

∂V ′′k
∂ky

)
[σ2,σ3]

+

(
∂Bk
∂kx

∂V ′k
∂ky
− ∂V ′k
∂kx

∂Bk
∂ky

)
[σ3,σ1] (3.47)

Using the commutation relations for the Pauli matrices, we have[
∂Ek

∂kx
,
∂Ek

∂ky

]
=

(
∂V ′′k
∂kx

∂Bk
∂ky

− ∂Bk
∂kx

∂V ′′k
∂ky

)
2iσ1

+

(
∂Bk
∂kx

∂V ′k
∂ky
− ∂V ′k
∂kx

∂Bk
∂ky

)
2iσ2

+

(
∂V ′k
∂kx

∂V ′′k
∂ky

− ∂V ′′k
∂kx

∂V ′k
∂ky

)
2iσ3. (3.48)
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In our model, we have explicitly defined the form of Vk. By doing so, all the terms that

involve derivatives with respect to the real part of Vk vanish identically. The only term that

survives is the fist one on the right hand side. Therefore, we have that

γ̃A2g(k)=

(
∂V ′′k
∂kx

∂Bk
∂ky

− ∂V ′′k
∂ky

∂Bk
∂kx

)
2iσ1. (3.49)

From this result, we can check if the γA2g(k) is invariant under time reversal symmetry

or not. For spinless particles, the time reversal operator T is directly connected to the

complex conjugation operator K, i.e., T = K. If a particular operator is invariant under

time reversal symmetry, this means that

TÂT−1 = Â (3.50)

For our operator γA2g(k) It follows that

T γ̃A2g(k)T−1 = −
(
∂V ′′k
∂kx

∂Bk
∂ky

− ∂V ′′k
∂ky

∂Bk
∂kx

)
2iσ1 (3.51)

However, time reversal operation also changes momentum from k → −k. Here we keep

in mind the definitions of Bk in Eq.(3.46) and Vk = m+ i∆c/mfc/m(k). The function Bk is

always even because of the dispersion εk. For the imaginary part of Vk, we have to consider

the two spin liquid dispersions. For the chiral spin liquid γck is even, while for themodulate

spin liquid γmk is odd. Therefore

fc(−k) = fc(k) (3.52)

fm(−k) = −fm(k) (3.53)

These results show that, in terms of time reversal symmetry, only the modulated SL has a

γ̃A2g(k) time reversal invariant, as it should be [Thomas 2013] if the HOdoes not break this

symmetry. In contrast, for the chiral SL, there is a breaking of the time reversal symmetry

[Wen 1989].

In the next section, we analyze our results based on the numerical calculations of the

spinon density-density and spinon current-current correlation functions.

3.3 Numerical analysis.

In the following, we present our results for the effective theory of Raman scattering in

URu2Si2. We compute the correlation functions numerically in each sector, using Eq.(3.27)

in the spinon density sector and (3.35-3.37) for A1g, B1g and B2g symmetries in the spinon

current sector together with Eq.(3.40) for A2g symmetry. Following that, we extract the

imaginary part of these correlation functions as required by the Raman response. All the

results are calculated at T = 0 K.
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3.3.1 The spinon density sector.

We begin with the spinon density sector, by computing the density-density correlation

function derived previously, namely

χ̃λ(iωm) =
1

βV
∑
k,n

Tr[γλ(k)Gk(iωn + iωm)γλ(k)Gk(iωn)]. (3.54)

The γλ(k) vertices are defined in eq.(3.28)-(3.30). We concentrate on the response provided

by A1g, B1g and B2g, since the A2g, in this case, does not provide any Raman signature.

The Raman signal for the conventional PM state, which is associated to the space group

No 139 (I4/mmm), is presented in fig.(3.2(a)). This metallic phase has the space group

associatedwith the full BCT lattice. We observe a signalwhenwe activate only the hopping

t1 for symmetries A1g and B2g. In contrast, for B1g, we must have both t1 and t2 non zero.

We also verify the effect of t1 together with t2 or t3 for the symmetries A1g and the B2g

(see Fig.(3.2(b))). In the A1g case, it results in a modification of the shape of curve in a

broader region around the quasi-elastic peak. For B2g no significant change was observed.

For all these three symmetries no Raman signal could be detected when either t2 or t3 are

activated one at a turn or when they are turned on together.

We analyze now the other three possible states. The phase characterized by m pa-

rameter, which has space group No 123 (I4/mmm); the modulated spin liquid phase, as-

sociated with the No 126 (P4/nnc); and the chiral spin liquid, which is connected with
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Figure 3.2: Raman signal in the spinon density sector for the paramagnetic state, with space group
No 139. Figure (a) shows the response for the symmetries A1g and B2g when only t1 is active. In
the B1g case, the signal is obtained when we turn both t1 and t2. (b) Raman response when t1
is activated together with t2 and in the inset t1 and t3.In this analysis, we use t1 = 1.0 eV, and
t2 = t3 = 0.5 eV. We added a small phenomenological scattering rate Σ= 3.5 meV in the imaginary
part of the self-energy in the Green’s function
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Figure 3.3: Raman response for the spinon density sector. Figures (a-b) display the response in
the case of m activated. This state is related to the space group No 123 (P4/mmm). Figures (c-
d) associated with the MSL phase, connected to the space group No 126 (P4/nnc). Figures (e-f)
display the CSL phase, which corresponds to the space group symmetry No 128 (P4/mnc). There
is a gap opening in the case of the A1g and B2g symmetries for all states signaling the effect of
breaking the lattice translation symmetry. In the case of B1g , insets (b),(d),(e), the signal does not
present any change from the ordinary state described in (3.2). In this graphs we set t1 = 1.0 eV for
A1g and B2g , while t1 = 1.0 and t2 = 0.5 eV for B1g . We use a small scattering rate Σ = 3.5 meV.
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No 128 (P4/mnc). The tests consist in keeping t1 activated for A1g and B2g symmetries

when varying the parameters ∆m, ∆c andm. For the B2g case, we keep t1 and t2 activated.

These phases now display lattice translation symmetry breaking. The results are shown in

Fig.(3.3). For A1g and B2g, a gap is opening for the three parameters. For B1g, there is no

difference with respect to the paramagnetic state. When t1 and t2 or t1 and t3 are activated

together, the gap is lost for the A1g and B2g symmetries by performing variation ofm. The

effect of tuning the parameters ∆c and ∆m moves the peak but does not tell us much about

what kind of states is truly manifested. The effect of the coexistence between m and the

∆’s was also investigate. However, the only resulting effect is that, in this case, the gap is

enhanced. Thus, It is not possible to predict with precision which state is actually being

observed from Raman data in the spinon density sector.

The electronic Raman signal displays clear signatures of the opening a gap produced by

the systematic variation of the different parameters which are related to the phases which

are under test. The peaks observed in the A1g and the B2g symmetries disappear as we

move towards higher frequencies. For the B1g symmetry, we have only one Raman signal

but nomatterwhat parameterwe tune this does not produce any considerable difference in

the response. In particular, in the case when only t1 is active, the phases exhibit the nesting

condition εk±Q = −εk, with ordering wave vector Q = {1, 1, 1}. That is in agreement with

recent studies of the Fermi surface properties the PM phase of URu2Si2 and has a direct

relation with HO phase [Oppeneer 2011].

3.3.2 The spinon current sector.

The spinon current sector as we stated earlier on is described by the correlation func-

tions in Eq.(3.35-3.36) for A1g, B1g and B2g symmetries and Eq.(3.40) for A2g symmetry. We

start by describing the results for the first three symmetries, and in the next subsection we

will present the results concerning A2g. In the Fig.(3.4) we have the Raman responses at

the PM phase, with respect the space group No 139 (I4/mmm), which is associated with

the the A1g, the B1g and the B2g symmetries. They are similar to the results of the spinon

density sector. Now, A1g, B1g and B2g display a signal when only t1 is activated. Once again

we consider the effect of turning on the parameters that break lattice translation symmetry,

one by one. The first case is whenm, connected with the space group No 123 (P4/mmm),

is activated. There is a gap opening for A1g, B1g and B2g symmetries (see Fig.(3.5(a)) and

(3.5(b))). As soon as we move towards high values of m which are comparable with the

hopping t1, the signal decreases, evenwith the enhancement of the gap. A similar behavior
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Figure 3.4: Raman signal in the the spinon current sector for paramagnetic state, with space

group No 139. The A1g, B1g and B2g symmetries can be observed when only t1 is active.

occurs when we turn ∆m for the modulated SL phase (space group No 126 (P4/nnc)), or

turn instead ∆c for the chiral SL phase (space group No 126 (P4/mnc)), in the A1g and the

B1g symmetries (see Fig.(3.5(c)-3.5(f))). However in these two cases the gap is not present

in A1g or B1g symmetries. In the B2g case, the signal is increased and the gap is significantly

enhanced by ∆c (see insets of 3.5(d) and 3.5(f)). The effect of having a coexistingm and ∆ is

also shown to be relevant. However, as in the spinon density sector, the presence of ∆m or

∆c only increases the value of the gap, without revealing which parameter is responsible

for producing this effect. If we include t2 and t3 simultaneously, the gap disappears in all

symmetries.

The exhaustive analysis of the spinon current sector show us that the PM phase, the

phase described by m, the modulated SL and the chiral SL phases display Raman signa-

tures of the A1g, B1g and B2g symmetries. The gap manifests itself simultaneously, for the

three symmetries, in the case of m activated. We can distinguish between the spin liquid

phases by looking at the specific response, that in the case of modulated SL presents itself

as a quasielastic peak for the A1g and the B1g symmetries, while for the chiral SL it shows

a structureless broader region with a peak. In the case of B2g, the gap appears for the

modulated and for the chiral SL phases for significant large values of ∆, with a significant

increasing of the signal.

3.3.3 The case of A2g symmetry.

The plots in Fig.(3.6) represent the results for the A2g symmetry. In contrast with what

happened in the spinon density sector, the symmetry A2g does not vanishes in the spinon

current sector. We need simply to activate t1 together with m and with one of the ∆’s in
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Figure 3.5: Raman response in the spinon current sector for the A1g , the B1g and the B2g symme-
tries. Figure (a)-(b) display the phase characterized bym parameter, associated to the space group
symmetry No 123 (P4/mmm). The gap is proportional to the value ofm and as soon as we increase
m the signal decreases. Figures (c)-(d) display the modulated SL phase, associated with the point
space symmetry No 126 (P4/nnc). There is no gap for the A1g and the B1g symmetries. For B2g

symmetry, the gap appears when we go up to high values of ∆m. Figures (e)-(f) display the chiral
SL phase, which corresponds to space group No 128 (P4/mnc). There is a gap only for the B2g

symmetry. We set t1 = 1.0 eV and use a small scattering rate Σ = 3.5 meV.



3.3. Numerical analysis. 63

order to observe the signal.

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10 12 14

A2g
m=100 meV

∆c meV

R

a

m

a

n

r

e

s

p

o

n

s

e

(

a

.

u

.

)

ω (meV)

75

100

500

1000

(a)

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10 12 14

A2g
m=100 meV

∆m meV

R

a

m

a

n

r

e

s

p

o

n

s

e

(

a

.

u

.

)

ω (meV)

75

100

500

1000

(b)

0

0.0005

0.001

0.0015

0.002

0 2 4 6 8 10

A2g

∆c=75 (meV)

m=(meV)

R

a

m

a

n

r

e

s

p

o

n

s

e

(

a

.

u

.

)

ω (meV)

55

100

500

1000

(c)

0

0.0003

0.0006

0.0009

0.0012

0 2 4 6 8 10

A2g

∆m=75 (meV)

m=(meV)

R

a

m

a

n

r

e

s

p

o

n

s

e

(

a

.

u

.

)

ω (meV)

55

100

500

1000

(d)

Figure 3.6: Raman response in the spinon current sector for A2g . Figures (a)-(b) display the Raman
signal when we increase the values of ∆c and ∆m, while keepingm fixed. As soon as the values of
∆’s are increased above 0.5 eV, the intensity os the signal raises and the gap is enhanced. Figures
(c)-(d) display the Raman signal when we increase the value ofm, while keeping ∆c and ∆m fixed.
No significant change in the gap is observed even though the maximum is raised for m equals to
0.5 eV and 1.0 eV. We set t1 = 1.0 eV and use a small scattering rate Σ = 3.5 meV.

In Figs.(3.6(a)) and (3.6(b)), we fixed the value of m while varying the ∆’s. Note that,

since the space groups No 128 and No 126 are sub-groups of the No 123, the coexistence

between the parameter m with a non-zero ∆m or ∆c still corresponds to the particular

groups No 126 or No 138, respectively. By increasing the values of ∆m or ∆c, in both cases,

both the peak and the magnitude of the gap increase. This opens the possibility for either

the modulated SL phase, connected with space group No 126 (P4/nnc), or the chiral SL

phase, connected with the space groupNo 128 (P4/mnc). However, we cannot distinguish

between these two states because the Raman signal appears to be the same in the two cases.

We also verify the effect of varyingm for both ∆m and ∆c fixed. The results are shown in
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Fig.(3.6(c)-3.6(d)). Inthis situation, the value of the gap does not change with m and the

intensity of the signal decreases as m increases. We also check the effect of activating t1
either together with t2 or t3, for the A2g symmetry. In the first case, t1 together with t2, the

gap is still present, whereas, for t1 together with t3, it disappears completely, giving way

to a quasielastic response.

The A2g symmetry case clearly shows the presence of a gap when both m and one of

the ∆’s are activated. This result open the possibility for the two spin liquid states: the

modulated SL with space symmetry group No 126 (P4/nnc) and the CSL, with point sym-

metry spaceNo 128 (P4/mnc). However, we cannot distinguishwith exactitudewhich one

is the most appropriate because the Raman signatures look the same for the two cases. We

must consider other properties, like the point group symmetry, in order to make predic-

tions bout the HO in URu2Si2. Our results show clearly that there is always the presence

of a gap, that is associated with an state that breaks the lattice translation symmetry.

3.4 Discussion of the results and connection with Raman experi-

ments in URu2Si2.

The main result for the spinon density sector is the appearance of a gap that manifests

itself in the Raman signal for the specific A1g and B2g symmetries. Similar responses were

observed by Raman scattering in the iron-based superconductor materials [Yang 2014],

though this time for different symmetries (B1g and B2g). The spectra of those materials

displays many spin density-wave gaps as expected in a band-folding itinerant picture of

multiband systems. Here the gap is clearly related with the folding of the Brillouin zone

that results from the breaking of lattice translation symmetry from a BCT to simple tetrag-

onal structure. Still in the spinon density sector, for the B1g case, we have observed a Ra-

man signal. However, this signal does not present any considerable difference no matter

what parameter we tune. It suggests that with the symmetry B1g we cannot discriminate

between any ordered states that considered here.

We then turn our attention to the spinon current sector. The Raman signatures for the

associated PM phase, with the space group No 139 (I4/mmm), are very similar to the ones

obtained in the spinon density sector. Hence, the dispersion of the two bands displays the

same nesting feature with εk+Q = −εk, when only t1 is present. The Raman signatures for

the phase in which m takes place, having space group No 123 (P4/mmm), are displayed

in the A1g, B1g and B2g symmetries. They show the presence of the gap, and a decrease

of the corresponding Raman signal as m is increased. This can be associated, again, with
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an spin density wave instability. For m = 0, the chiral SL and the modulates SL phases

do not display any gap either in A1g or B1g symmetries. The only result is present in B2g

symmetry, which displays a gap for these two specific orders.

The recently Raman experiments performed in the heavy-fermion compound URu2Si2
[Buhot 2014] in the HO regime show the presence of a gap in this particular phase asso-

ciated precisely with the symmetry A2g. This gap is related with an electron-hole con-

tinuum of excitations that is expected if there is a reconstruction of Fermi surface and it

is compatible with what was predict by other experimental techniques like inelastic neu-

tron scattering [Villaume 2008] and ARPES [Santander-Syro 2009]. A recent theoretical

proposition for the signal in A2g suggested that it is a result of local interactions and the

crystal-field splitting of degeneratemany-body localmultiplet of theU 5f2 electronic states

[Haule 2009, Kung 2015]. Without taking these scenarios into account, our simple model

can predict the signal at A2g symmetry by considering a effective tight-binding model that

involves only first neighbors on the BCT lattice.

Our results reproduce the gap that appears in the A2g symmetry, in the spinon current

sector. Among the states that we assume to characterize HO, the signal manifests itself for

modulated SL and chiral SL at the same time as we keep one small values ofm. The partic-

ularity arises from the fact that we must consider both them and one ∆ at the same time.

This feature suggests the interplay between the the phase discriminated by m parameter

and hidden order phase [Chandra 2013]. The gap at hidden order does not mean that this

transition is a density wave transition. In terms of space group, or point group symme-

try, this feature of having the two parameters activated means that the system lower its

symmetry.

Regarding the question of the space group symmetry, it seems clear that there is a phase

transition associated with the change in the lattice structure, in both sectors. The param-

agnetic order is displayed when we activate any of the homogeneous hopping t1, t2 or t3,

and it corresponds to a state with space group No 139 (I4/mmm). When activating one

of the parameters that break the lattice translation symmetry, we observed a clear change

in the Raman response that translates itself into a gap opening, reinforcing the idea of a

change in the lattice structure.

The phases in which a non-zero m coexists with the ∆’s, where we observed the A2g

symmetry, are determined by the particular choice of ∆. If ∆c is present, the state with

the space group No 128 P4/mnc manifests and it is known as a chiral SL phase. On the

other hand, if ∆m takes place, the state is related to the space group No 126 P4/nnc and

it is defined as a modulated SL phase. Indications, on the framework of cuprates systems
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[Liu 1993], seem to indicate that the A2g symmetry may account for the appearance of one

excitation where quantum fluctuations destroy the Néel order, and hence the elementary

excitations have a fractional character with a chiral nature [Khveshchenko 1994, Wen 2002,

Wen 1989]. This may favor the choice of chiral SL as responsible for the appearance of such

excitations.

However, in their analysis, Harima-Miyake-Flouquet rejected this idea based on the

fact that the space group No 128 P4/mnc is incompatible with the nuclear quadrupole

resonance experiments for URu2Si2 [Harima 2010]. Therefore, such phase with this partic-

ular symmetry would not account for HO. Another constraint to reject the chiral SL state

is the breaking of time-reversal symmetry that is presented by this phase since, at the HO,

no evidence for this violation has been reported so far [Das 2013]. Therefore, our results

suggest that among the two spin liquid states the modulated SL is the most probable state

for the HO phase.



Chapter 4

Conclusions and Perspectives.

The most noticeable result emerging from this thesis is that the hidden order phase

can indeed be seen as a modulated spin liquid state. This conclusion was build upon the

study of two different models that are used to investigate the HO phase in URu2Si2. In

the first of them, we investigated the J1 − J2 − J3 Heisenberg model for the BCT lattice

structure and its relation with the HO and the antiferromagnetism of URu2Si2. In the

second model, we elaborate on the possible existing non-conventional spin states and use

it to explore the recent results from Raman spectroscopy in URu2Si2. Motivated by great

amount of experimental information of URu2Si2, we provided new theoretical elements to

investigate the hidden order phase.

In chapter 2, we applied the J1 − J2 − J3 Heisenberg model to the BCT lattice. We

made use of linear spin wave theory to test the stabilities of the existing magnetic order-

ings. The magnetic orders derived for this model comprises two commensurate antifer-

romagnetic phases labeled by the antiferromagnetic wave vectors QI
AF = (1, 1, 1) and

QII
AF = (1/2, 1/2, 0), with QII

AF being selected by the “order by disorder” mechanism.

We also confirmed the existence two incommensurate orders, characterized by the vectors

QII
inc and QIII

inc. Then, we checked the stability of the magnons excitations for each of this

phases. The linear spin wave theory showed that there are instabilities of these excita-

tion modes associated with the particular incommensurate AF orderings, even though the

three-dimensionality character of the system allows only small fluctuations.

It became clear that the spin wave approach is too approximate and as a result it is un-

able to predict spin liquid states. For this reason, we carried out an SU(n) symmetric gen-

eralization of the Heisenberg model. The physical motivations for this study were again

the unusual phenomena exhibited by URu2Si2. They are connected with the fact that the

magnetic degrees of freedom seem to be deconfined into fermionic modes and may con-



68 Chapter 4. Conclusions and Perspectives.

tribute to the formation of the Fermi surface [Pépin 2011]. We found that it is possible,

with this SU(n) approach, to stabilize the spin liquid phases when n is larger than a critical

value. Three spin liquid phases emerged naturally from our analysis. Two of those SL are

the analogous of the RVB states [Anderson 1973] in a 3d system. We also find the presence

of a modulated spin liquid (MSL), with wave vector QI
AF. This MSL phase was recently

suggested as a candidate to describe the hidden order phase in URu2Si2 [Pépin 2011]. This

particular modulated state can be verified experimentally by inelastic neutron or Raman

scattering experiments or any other experimental techniques based on the orientation de-

pendencies, which are initially set by in the experiment [Thomas 2013]. Such anMSLphase

might be responsible also for a commensurately ordered pairing that breaks the BCT sym-

metry down to the simple tetragonal lattice structure. Moreover, it might also be related

to the superconducting instability observed in URu2Si2 inside the HO phase.

Secondly, motivated by the result that it is possible to stabilize both the spin liquid

phase together with an AF order in a BCT lattice, we turn to chapter 3, where we pre-

sented a two band non-interacting effective theory, which is used to explain recent Raman

scattering experiments performed at the HO phase of URu2Si2 [Buhot 2014]. This new

model deals with the same possible electronic states predicted in the framework of Heisen-

berg J1 − J2 − J3 model. Using the space group and point group symmetry arguments

of Harima-Miyake-Flouquet [Harima 2010], we made a space group analysis by checking

the spin liquid scenarios that results from our effective tight-binding Hamiltonian. We re-

grouped the spin liquid phases into two different classes of space groups plus two other

classes of space groups, one for a metallic state and another one to describe an ordering

phase that is characteristic to some phenomena that is common in heavy fermion systems.

In the later, if the charge degrees of freedom were considered explicitly in the model, this

ordered phase would represent the local Kondo Hybridization or a charge-density wave

phase and even it can account to some small magnetic moment.

The first space group under investigation is No 139, with full BCT lattice symmetry,

that might describe the high-temperature paramagnetic metallic phase. The other three

space groups break the BCT lattice translation symmetry down to the simple tetragonal

lattice structure. This change of the lattice space groups also imply a change in point group

symmetry. However all the possible candidates still belong to the same tetragonal class of

space group. The group No 123, that happens to be the most symmetric one, describes the

possibility of a local Kondo Hybridization or a charge density wave phase in a scenario

where we could take into account charge degrees of freedom or in the last case a staggered

magnetic moment of the localized spin. We justify this assumption by assuming that our
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model describe a phenomenological theory for this particular system of URu2Si2 and we

may proceed with the analysis without take this ingredients explicitly into account and

consider as if they were presented since the beginning. The other two space group that

we consider is the space group No 126 that favors the modulated SL phase and the space

group No 128 represents the chiral SL order.

In the detailed point group symmetry analysis of Harima-Miyake-Flouquet

[Harima 2010], they presented a systematic study considering various scattering ex-

periments to investigate the compatibility of the point groups symmetries which could

be associated with the candidates to describe the hidden order. Among the space groups

they analyzed, three of them are precisely the No 123 (I4/mmm) , No 126 (P4/nnc) and

No 128 (P4/mnc). The other point groups considered by them were the No 129, No 131,

No 134, No 136 and the No 137. In the end, they concluded that the point group No 136

should characterize the HO phase. However, if we take into account the new experimental

results from Raman, we can demonstrate instead that there are clear signatures of the four

groups that might be associated with the paramagnetic, antiferromagnetic, modulated SL

and chiral SL phases.

Our results reproduces the gap opening in the Raman response for particular sym-

metries and for a given choice of parameters that describe these phases. This gap is a

consequence of the breaking of lattice translation symmetry and is compatible with what

happens in the phase transition from PM to HO phase of URu2Si2. The Raman scattering

measurements for URu2Si2 establish strong constraints for the A2g symmetry. This is in

agreement with our results which favors a modulated spin liquid phase scenario for HO.

The modulated spin liquid phase, with space group No 126 is, in this way, compatible

with the Raman experiments invoking the A2g symmetry at HO. The alternative chiral SL

is rejected because it automatically results into the breaking of time-reversal symmetry,

that it is not observed in the HO phase. In this way, we demonstrate that our relatively

simple two-band effective model which take into account bond orderings defined for first

neighbors is compatible with Raman scattering signatures at the A2g symmetry.

Future perspectives for this work would be to investigate a two band model with inter-

actions to see how the correlations modify the calculated Raman signatures. Such a model

should preserve the features stressed here at HO phase: the breaking of lattice translation

symmetry and the preservation of the time reversal symmetry, as well as the direct link of

the Fermi surface with the nesting condition for two bands, as recently proposed through

the spin-orbit coupling mechanism [Das 2014]. Among these interactions, we could con-

sider for example the interplay between the spin liquid and Kondo physics [Zhu 2008],
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since in URu2Si2 the charges degrees of freedom coexist with the magnetic correlations.

In this context, the Kondo lattice models should be appropriate to describe on the

same footing local and non-local degrees of freedom. There are experimental pieces of

evidence that there two kinds of gaps may be revealed in URu2Si2. One pseudo-gap sig-

naling the Kondo effect in temperatures TK ≈ 70 K which is inferred by spectroscopy

measurements [Lobo 2015] and another gap which results as consequence of the folding

of the Fermi Surface in temperatures below T0 = 17.5 K, precisely at HO phase, that is de-

tected by angle resolved photoemission spectroscopy (ARPES) [Santander-Syro 2009] and

inelastic neutron [Bourdarot 2010]. A recent theoretical approach using the Kondo lattice

model [Montiel 2014] shows the coexistence between the Kondo effect and the modulated

SL phase. It states that both gaps appearing in URu2Si2 can occur at different tempera-

tures, and the HO phase is seen as a modulated SL. In this way, for future investigations,

it is important that the Kondo effect is present in our model because since this is a well

known mechanism to “deconfine” the local magnetic degrees of freedom into Abrikosov

fermions which are partially responsible for the spin liquid states.



Appendix A

Detailed calculations for chapter 2.

A.1 The saddle point equation for the Classical phase diagram.

In this appendix, we will derive here the saddle point equations that minimize the

dispersion J(q) presented in the section 2.1. By writing the derivatives of the classical

energy

J(q) = 8J1γ1(q) + 2J2γ2(q) + 4J3γ3(q), (A.1)

We end up with the following system of equations

∂J(q)

∂qx
= −4J1 sin

(qx
2

)
cos
(qy

2

)
cos
(qz

2

)
− 2J2 sin (qx)− 4J3 sin (qx) cos (qy) , (A.2)

∂J(q)

∂qy
= −4J1 cos

(qx
2

)
sin
(qy

2

)
cos
(qz

2

)
− 2J2 sin (qy)− 4J3 cos (qx) sin (qy) , (A.3)

∂J(q)

∂qz
= −4J1 cos

(qx
2

)
cos
(qy

2

)
sin
(qz

2

)
= 0. (A.4)

The next step is to solve this system of equations and to do so, we have to take into account

the possible cases for qz .

If we have qz = 0 or qz = 2π, we see that eq.(A.4) is automatically satisfied and we end

up with two equations for kx and ky

±4J1 sin
(qx

2

)
cos
(qy

2

)
− 2J2 sin (qx)− 4J3 sin (qx) cos (qy) = 0, (A.5)

±4J1 cos
(qx

2

)
sin
(qy

2

)
− 2J2 sin (qy)− 4J3 cos (qx) sin (qy) = 0. (A.6)

These two equations can be factorized as

sin
(qx

2

) [
± cos

(qy
2

)
− p2 cos

(qx
2

)
− 2p3 cos

(qx
2

)
cos (qy)

]
= 0, (A.7)
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and

sin
(qy

2

) [
± cos

(qx
2

)
− p2 cos

(qy
2

)
− 2p3 cos (qx) cos

(qy
2

)]
= 0. (A.8)

We introduce the notation where p2 = J2/J1 and p3 = J3/J1 as the dimensionless parame-

ters. We can consider the trivial solutions whenwe have qx and qy equal to zero or 2π. This

give us the first commensurate state, QI
AF = (0, 0, 0) or QI

AF = (1, 1, 1). The second trivial

solution is obtained for qx = π and qy = π. In this case, it does not matter what values qz
takes, because the cosine function vanishes, which means that we have a degeneracy for

this wave vector. Therefore the second trivial solution is QII
AF = (1/2, 1/2, ν).

On the other hand, if qx = 0 or qx = 2π and since sin
( qy

2

)
6= 0, we end up with the first

incommensurate wave vector Qinc, with the condition that

cos
(qy

2

)
= ±

(
1

p2 + 2p3

)
. (A.9)

In reduced notation we can write this incommensurate wave vector as QIII
inc = (0,Υ3, 0)

degenerated with QIII
inc = (1,Υ3, 1), where Υ3 = 1

π arccos
(
± 1
p2+2p3

)
. This is completely

analogous to the case where we consider now qy = 0 or qy = 2π and sin
( qx

2

)
6= 0. Now we

have as the incommensurate state QIII
inc = (Υ3, 0, 0) or QIII

inc = (Υ3, 1, 1). All this states are

degenerated in a sense that they reproduce the same classical energy J(q).

If we do not consider the trivial case, which means sin
( qx

2

)
6= 0 and sin

( qy
2

)
6= 0, we

have to solve the following system of equations∓ cos
( qy

2

)
+ p2 cos

( qx
2

)
+ 2p3 cos

( qx
2

)
cos (qy) = 0

∓ cos
( qx

2

)
+ p2 cos

( qy
2

)
+ 2p3 cos (qx) cos

( qy
2

)
= 0

(A.10)

We perform a change of variables as

X = cos
(qx

2

)
(A.11)

Y = cos
(qy

2

)
. (A.12)

We end up with a new systems of equations∓Y + p2X + 2p3X(2Y 2 − 1) = 0

∓X + p2Y + 2p3Y (2X2 − 1) = 0
. (A.13)

Summing and subtracting these two equations and making one more change of variables,

where we define

S = X + Y, (A.14)

D = X − Y, (A.15)
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we end up with a new system of equation that in order to solve we have to define some

possibilities ±S + p2S − 2p3S + p3S(S2 −D2) = 0

±D + p2D − 2p3D − p3D(S2 −D2) = 0
(A.16)

We consider four different possibilities,

1. S 6= 0 and D = 0, where cos
( qx

2

)
= cos

( qy
2

)
, with cos

( qx
2

)
= ±

√
2p3−p2∓1

4p3
. This

implies that QII
inc = (Υ2,Υ2, 0) or QII

inc = (Υ2,Υ2, 1).

2. D 6= 0 and S = 0, where cos
( qx

2

)
= cos

( qy
2 ± π

)
, with cos

( qx
2

)
= ±

√
2p3−p2±1

4p3
. This

implies that QII
inc = (Υ2,−Υ2, 0) or QII

inc = (Υ2,−Υ2, 1).

3. S = 0 and D = 0, we recover the commensurate phases. Note that if this occurs,

we have a degeneracy in kz for QII
AF. This degeneracy can be characterized by the

wave vector QII
AF =(1/2, 1/2, ν) that was introduced before. The argument discussed

in the section of order by disorder shows that the most preferred phase is the one

that selects ν = 0.

4. S 6= 0 and D 6= 0, where we can find the constraint for p3 and p2 where p3 = p2/2.

The first two possibilities give us the second incommensurate wave vector QII
inc. However,

we have to choose the sign inside the square root based on the argument of stability for

this state. The next step is to check if our results truly correspond to stable states ordered

accordingly to the Q’s wave vectors that we derived. We have to analyze the stability of

these two new incommensurate phases.

Since our cosines functions should run between zero until one, which means that the

components of the vector q must lie in the interval 0 < qi < 2π, we state that what is inside

the square roots should be a positive quantities. This means that

0 < 2p3 − p2 ± 1 < 1. (A.17)

With this last inequality, we found four lines defined by the following equations

p2 + 1

2
< p3 < 1 +

p2
2

(A.18)

and
p2 − 1

2
< p3 <

p2
2
. (A.19)

These equations define the regions of the existence of the two incommensurate phases in

the phase diagram, as show in Fig.(A.1)
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Figure A.1: The regions of existence for QII
inc. The expression inside the square root (2p3 − p2 ± 1)

choose the value of kz that give us the sign plus. This will be clear when we comparing the criteria
for the stability of the incommensurate phases. We underlined the regions for Q

II(+)
inc and Q

II(−)
inc .

The next step is comparing the stability between the new incommensurate phases

Q
II(+)
inc and Q

II(−)
inc with the QIII

AF and also with the two commensurate QI
AF, and QII

AF. We

can summarize the results for the dispersions relations in the table A.1

By using the expressions for each classical energy, we compared each of this energy

against the other in order to establish the critical lines in the phase diagram. We have the

following cases:

1. When E(QII
AF) < E(Q

II(+)
inc ), it results in the following equation

p3 <
p2 − 1

2
. (A.20)

2. E(QI
AF) < E(Q

II(+)
inc ), that give us another equation

p3 <
1− p2

2
. (A.21)

Ordering wave vector JQAF

QI
AF= (1, 1, 1) −1 + p2

2 + p3
2

QII
AF =

(
1
2 ,

1
2 , 0
)

−p2
2 + p3

2

QIII
inc = (1,M, 1) − 1

2(p2+2p3)
− p3

2

Q
II(−)
inc = (qx, qy, 1), QII(−)

inc = (qx, qy, 0) − c21
8p3
− p2

2 + p3
2 , c1 = 2p3 − p2 − 1

Q
II(+)
inc = (qx, qy, 0), QII(+)

inc = (qx, qy, 1) − c22
8p3
− p2

2 + p3
2 , c2 = 2p3 − p2 + 1

Table A.1: Ordering wave vectors for each antiferromagnetic state and its respective clas-

sical energy.
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3. When E(Q
II(+)
inc ) < E(QII

inc), we end up with the equation

p33 +
(p2

2
− 1
)
p23 +

(
1− p22

4

)
p3 −

(
p2 (p2 − 1)2

8

)
< 0, (A.22)

which has the trivial solution

p3 <
p2
2
. (A.23)

4. When E(QII
AF) < E(Q

II(−)
inc ) we have the following result

p3 <
p2 + 1

2
(A.24)

5. If we have E(Q
II(−)
inc ) < E(QIII

inc), we find the equation

p33 +
(p2

2
+ 1
)
p23 −

(
p22 − 1

4

)
p3 −

(
p2 (p2 + 1)2

8

)
> 0. (A.25)

with the trivial solution

p3 >
p2
2

(A.26)

6. The last case is when E(QI
AF) < E(Q

II(−)
inc ). It give us the result

p3 <
3− p2 ±

√
8 (1− p2)

2
. (A.27)

By comparing each of these cases, we can conclude that the ordering vector Q
II(−)
inc is

not stable against the other phases. With the equations abovewe can predict that the shape

of the phase diagram is like the Fig.(2.2). By this point end on we should always use QII
inc

instead of Q
II(+)
inc .

A.2 Continuous versus discontinuous transitions lines.

Another simple check that we can make is to test if the wave vectors are continuous in

each critical line of the phase diagram. This is a crucial point in order to investigate the 1/S

corrections in the framework of spin wave calculations, since we have already had some

results for the commensurate phases.

First, let us test the continuity of QII
inc when we approaching to the critical lines that

delimits QI
AF end QIII

AF. For QII
inc, we have the condition

cos
(qx

2

)
= − cos

(qy
2

)
= ±

√
2p2 − p2 + 1

4p3
, (A.28)
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that can be written as

cos
(qx

2

)
= cos

(qy
2

+ π
)
. (A.29)

Therefore, we have the relation between qx and qy

qx = ±qy ± 2π + 4nπ. (A.30)

When we approach to the critical line defined by pc3 = p2−1
2 , that is the critical line that de-

limits the phase transition between QII
inc and QII

AF, we end up with the following condition

for qx
cos
(qx

2

)
= 0. (A.31)

This implies that qx = ±π + 2nπ and qy = ±π. This is the limit of wave-vector QII
AF =

(π, π, 0) and we conclude that Qinc
inc is continuous in this critical line.

If we approach to the line between QII
inc and QI

AF, pc3 = 1−p2
2 , we end up with

cos
(qx

2

)
= ±1 (A.32)

which means qx = ±2π + 2nπ and qy = ±2π. This is the limit of wave-vector QI
AF =

(2π, 2π, 0) and we conclude that QII
inc is also continuous in this critical line.

On the other hand, if we approach to the line between QII
inc and QIII

inc, pc3 = p2
2 , we end

up with the condition

cos
(qx

2

)
= ± 1√

2p2
(A.33)

This does not correspond to the limit when we take the relations of cosines for QIII
inc and

this tells that the wave vector is not continuous at this critical line. Although, in the limit

of p2 → ∞, we have QIII
inc → QIII

AF and QII
inc → QII

AF, which corresponds to the limit of an

antiferromagnetic in 2D case, with QIII
AF = (0, π) and QII

AF = (π, π) .

A.3 The mean field decoupling of SU(n) Heisenberg model.

Weare going to explain the procedure ofmeanfielddecoupling that led to definitions in

eq.(2.32) and eq.(2.33). For this aim, we use one generalization of the Abrikosov fermionic

representation of the spin operators

Si =
1

n

∑
αβ

χ†iα~σαβχiβ (A.34)

where, χ†iα(χiα) is the creation (destruction) operator for fermions at site i and the in-

dex α specifies the spin, where α = 1, ..., n. The operators satisfy the local constraint
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∑
σ χ
†
i,σχi,σ = n/2, with n/2 fermions on each site, each one with a different flavour due to

the Pauli exclusion principle [Affleck 1988a, Marston 1989]. As n increases from 2 to larger

values, quantum spin fluctuations are enhanced, weakening any spin order.

Let us use this in the Heisenberg Hamiltonian

Ĥ =
1

n2

∑
〈i,j〉

Ji,j
∑

αβ,α′β′

χ†iαχjβχ
†
jα′χiβ′

(
nδαβ′δα′β − δαβδα′β′

)
(A.35)

Ĥ =
J

n

∑
〈i,j〉

∑
αβ

χ†iαχjβχ
†
jβχiα −

J

n2

∑
〈i,j〉

∑
α,α′

χ†iαχiαχ
†
jα′
χjα′ (A.36)

If J = JWeiss + JSL, applying the mean field theory, we have

Ĥ=−
JWeiss
(l)

n

∑
〈i,j〉

∑
αβ

[〈χ†iαχiα〉χ
†
jβχjβ + χ†iαχiα〈χ

†
jβχjβ〉+ 〈χ†iαχiα〉〈χ

†
jβχjβ〉]

−
JSL(l)

n

∑
〈i,j〉

∑
α

[〈χ†iαχjα〉χ
†
jαχiα + χ†iαχjα〈χ

†
jαχiα〉+ 〈χ†iαχjα〉〈χ

†
jαχiα〉]

(A.37)

Here we do not take into account the second term in eq.(A.36) because it is of second

order in large n expansion. In eq.(A.37) we wrote the products of fermionic operators like

in mean field formalism. Here we consider the couplings JWeiss > 0 and JSL > 0. The

interactions in a 3-d BCT Lattice are J1-J2-J3,

Ĥ = −
JSL(l)

n

∑
〈i,j〉

∑
α

[〈χ†iαχjα〉χ
†
jαχiα + χ†iαχjα〈χ

†
jαχiα〉+ 〈χ†iαχjα〉〈χ

†
jαχiα〉]

+
JWeiss
(l)

n

∑
〈i,j〉

∑
α

[〈χ†iαχiα〉χ
†
jαχjα + χ†iαχiα〈χ

†
jαχjα〉 − 〈χ

†
iαχiα〉〈χ

†
jαχjα〉] (A.38)

Now we defined three kinds of fields ϕ̃1
i,j ,ϕ̃2

i,j and ϕ̃3
i,j by

ϕ̃
(l)
i,j = −

∑
α

〈χ†iαχjα〉 (A.39)

That are associated with each coupling constant J1, J2 and J3 respectively. The magnetiza-

tion is defined by

m~Ri
=

1

n

∑
α

〈χ†iαχiα〉 (A.40)
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Detailed calculations for chapter 3

B.1 The structure factors γk.

In this section we present the derivations for the relation that were presented in the

section 3 for the structure factors γk associatedwith the hoping ti,j . First, let us write down

the Hamiltonian from the real to k-space, by using the Fourier transforms of the creation

destruction operators. Remembering the Hamiltonian

H =
∑
i

(E0 +meiQ·Ri)c†ici +
∑
〈i,j〉

tijc
†
icj , (B.1)

with the respective definitions for the hoping terms that specify the point group symme-

tries in eq.(3.2), (3.3) and (3.4). We highlight that the sing ± in (3.3) and (3.4), means that

the it is alternating between two sites. By making use of the Fourier transforms of the c’s

operators

c†i =
1√
N

BCT−BZ∑
k

e−ik·Ric†k (B.2)

c†k =
1√
N

BCT−Lattice∑
R

eik·Ric†i (B.3)

The sum in sites are related with the BCT lattice. The Hamiltonian can be seen as a

sum H = H0 + Ht, where H0 =
∑

i(Eo + meiQ·Ri)c†ici and H1 =
∑
〈i,j〉 tijc

†
icj . Let us

concentrate on the hopping term

H1 =
∑
〈i,j〉

tijc
†
icj , (B.4)

since is this part that gives rise the factor’s structure γ.
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We developed the calculation for a general hopping ti,j and at the end we will concen-

trate only in the first neighbours inter-plane, since the in-plane relations can be derived in

the same fashion as for square lattice. For the hopping inter-plane, we have

tij = t1 ± i∆c. (B.5)

and

tij = t1 ±∆M . (B.6)

For the CSL case, the sign plus means that the link is oriented in the incoming direction

of the central site, otherwise is minus. On the other hand, for the MSL case the sign plus

means a bonding (full line) between one site at corner and central site, otherwise is an

anti-boding (dashed line), as showed in fig(3.1).

By using the Fourier transforms in (B.3), we rewrite the Hamiltonian and we end up

with

H1 =
1

N

∑
k,k′

c†kck′
∑
i

e−i(k−k
′)·RiERi(k

′)

(B.7)

Where we defined ERi(k
′) =

∑
δ ti,i+δe

ik′·δ and the sum is k runs over the first Brillouin

zone of BCT. The next step is to split the sum in the BCT-Brillouin zone as being a sum

of two tetragonal lattices, where we use the fact that the BCT is bipartite in two simple

tetragonal sub-lattices A and B. We end up with four terms

H1 =
1

N

∑
k,k′

c†kck′
∑
i

e−i(k−k
′)·RiERi(k

′)

+
1

N

∑
k,k′

c†kck′+Q

∑
i

e−i(k−k
′−Q)·RiERi(k

′ + Q)

+
1

N

∑
k,k′

c†k+Qck′
∑
i

e−i(k+Q−k′)·RiERi(k
′)

+
1

N

∑
k,k′

c†k+Qck′+Q

∑
i

e−i(k−k
′)·RiERi(k

′ + Q).

Now the sums in k run over the T-lattice. But the sums in i run over the BCT lattice.

We can also split the sum in the BCT-Lattice in a sum for sub-lattice A and B. This

requires that ti,i+δ = tAδ if Ri ∈ A or ti,i+δ = tBδ if Ri ∈ B. The condition tBδ =
(
tAδ
)∗

preserves the hermiticity of the Hamiltonian. Which gives the relation between E(k) ≡
EB(k′) = (EA(k′))∗. We know that 1

N

∑
R e
−i(k−k′)·R = 1

2δkk′ and e−iQ·R = ±1 if R
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belongs to A or B, respectively. Then,

H =
1

2

∑
k

c†kck[E(k) + E∗(k)] +
1

2

∑
k

c†k+Qck+Q [E (k + Q) + E∗ (k + Q)]

+
1

2

∑
k

c†k+Qck [E (k)− E∗ (k)] +
1

2

∑
k

c†kck+Q[E (k + Q)− E∗ (k + Q)] (B.8)

We can write the Hamiltonian in a matrix representation, as follows

H=
∑
k

Ψ†kh
′
kΨk. (B.9)

With the definition of Ψk given by eq.(3.8) and

h′k=

 E(k)+E∗(k)
2

E(k+Q)−E∗(k+Q)
2

E(k)−E∗(k)
2

E(k+Q)+E∗(k+Q)
2

 . (B.10)

With the definition of E(k), the hopping ti,j and taking the wave vector Q = (1, 1, 1)

we can recognize the following terms when doing the sum in the neighbours vectors δ.

E(k) + E∗(k)

2
= t1γ

1
k + t2γ

2
k + t3γ

3
k (B.11)

E (k + Q) + E∗ (k + Q)

2
= −t1γ1k + t2γ

2
k + t3γ

3
k (B.12)

E (k + Q)− E∗ (k + Q)

2
= i8∆SLγ

SL
k (B.13)

E(k)− E∗(k)

2
= i8∆SLγ

SL
k (B.14)

If we add the contribution fromm and E0 we recover the hk matrix defined in section (??).

We would like to highlight the derivation of the k dependent term in Vk, which came

from the ∆ in ti,j . Considering the first neighbours inter-plane. In this case, the sum in δ

take in to account the eight different neighbours inter-plane. They are respectively

δ=(x, y, z) (B.15)

δ1=(a/2, a/2, c/2) (B.15a)

δ2=(−a/2, a/2, c/2) (B.15b)

δ3=(−a/2,−a/2, c/2) (B.15c)

δ4=(a/2,−a/2, c/2) (B.15d)

δ5=(−a/2,−a/2,−c/2) (B.15e)

δ6=(a/2,−a/2,−c/2) (B.15f)

δ7=(a/2, a/2,−c/2) (B.15g)

δ8=(−a/2, a/2,−a/2) (B.15h)
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The first sum in δ taking the t1 term produce the γ1k and the second sum give us γSLk .

This last terms can be γck or γmk depending on the definition of tij (eq.(3.3) and eq.(3.4)).

This complete our demonstration of the relation that have been presented so far in that

section.

B.2 Diagonalisation of the Hamiltonian.

The procedure for diagonalizing the Hamiltonian in k-space use a general representa-

tion of Bogoliubov transformations. TheHamiltonian in eq(3.1) must be in a diagonal form

and in order to do that we invoke a unitary transformation matrix that makes

Ψk = P̂kΨ
diag
k (B.16)

Where, as introduced before, the matrix for the spin component is

Ψk =

 ck

ck+Q

 (B.17)

While in the diagonal basis is

Ψdiag
k =

 c+,k

c−,k

 (B.18)

The unitary matrix transformation is

P̂k =

 cos θk eiϕ sin θk

−e−iϕ sin θk cos θk

 (B.19)

Which allow us to write

hk = P̂kh
dia
k P̂−1k . (B.20)

Where htext is the matrix in (3.9) and hdiak is the matrix of the Hamiltonian written down

in the diagonal basis with the diagonal terms being the eigenvalues of H . Consequently,

the Hamiltonian in the diagonal basis is

Ĥ =
T−BZ∑

k

(
c†+,k c†−,k

) E+
k 0

0 E−k

 c+,k

c−,k

 (B.21)

Where the dispersions are given by

E±k =
ε(k) + ε(k +Q)

2
±
√
|V (k)|2 +

(
ε(k)− ε(k +Q)

2

)2

(B.22)
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We have to solve the matrix equation (B.20) that leads to the following linear systems

of equations.

εk= E+
k cos2 θk + E−k sin2 θk (B.23)

εk+Q= E+
k sin2 θk + E−k cos2 θk (B.24)

Vk= (E−k − E+
k ) e−iφ sin θk cos θk (B.25)

V ∗k = (E−k − E+
k ) eiφ sin θk cos θk (B.26)

the equation (B.26) and (B.26) are linearly dependants since one is the conjugate of the

other. The relations for cos θk and sin θk. By summing and subtracting B.24 and B.25, we

have

εk + εk+Q=E+
k + E−k (B.27)

εk − εk+Q=(E+
k − E−k ) cos 2θk (B.28)

From the second equation we easily obtain the condition of θk by

cos 2θk=
εk − εk+Q√

|Vk|2 +
(
εk−εk+Q

2

)2 . (B.29)

sin 2θk=
|Vk|√

|Vk|2 +
(
εk−εk+Q

2

)2 (B.30)

(B.31)

The condition for ϕk is extract from (B.26), written in the polar form for a complex number.

Therefore,

ϕk = −(arg(Vk)± π). (B.32)

This complete our demonstration of the relation in eq.(3.21) and (3.22).

B.3 The density-density correlation function.

Let us derive the result for the density-density correlation function in eq.(3.27). The

procedure is analogous for the current-current correlation in eq.(??).

Recall that the dynamical effective density-density correlation function or Raman re-

sponse S̃ can be written in terms of a dynamical effective density susceptibility χ̃ via the

fluctuation dissipation theorem Recall the effective density operator ˆ̃ρ(q, τ),

ˆ̃ρλ(q, τ) =
∑
k,α,α′

γλα,α′(k)c†k+q/2,α(τ)ck−q/2α′(τ) (B.33)
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The operators c†k+q/2,α(τ) and ck−q/2,α′(τ) are time dependent, as in the Heisenberg repre-

sentation, and they are related with the creation and destruction of electrons, respectively.

We canwork out the correlation function in 3.25, just inserting the definition of ˆ̃ρλ(q, τ)

on it. In this way,

χ̃λ(q, iω) = − 1

V

∫ β

0
dτeiωτ

∑
k1,k2

∑
α1,α′1α2,α′2

γλα1α′1
(k1)γ

λ
α2α′2

(k2)

× 〈Tτ (c†
k1+

q
2
,α1

(τ)ck1−q
2
,α′1

(τ)c†
k2−q

2
,α2

(0)ck2+
q
2
,α′2

(0))〉 (B.34)

Using the Wick’s theorem in 〈...〉, we arrive into a product of two Green Functions

〈...〉 = 〈ck1−q
2
,α′1

(τ)c†
k1+

q
2
,α1

(τ)〉〈ck2+
q
2
,α′2

(0)c†
k2−q

2
,α2

(0)〉

− 〈ck1−q
2
,α′1

(τ)c†
k2−q

2
,α2

(0)〉〈ck2+
q
2
,α′2

(0)c†
k1+

q
2
,α1

(τ)〉 (B.35)

The definition of Green’s function is Gαα′kk′ (τ) = −〈ck,α(τ)c†k′,α′(0)〉 for τ > 0, where α are

eigenumbers for Ĥ . Then

〈...〉 = G
α1α′1
k1−q

2
,k1+

q
2
(0)G

α2α′2
k2+

q
2
,k2−q

2
(0)−Gα

′
1,α2

k1−q
2
,k2−q

2
(τ)G

α1α′2
k2+

q
2
,k1+

q
2
(−τ) (B.36)

We can write down the Fourier transform for the Green’s function as

Gk(τ) =
1

β

∑
n

e−iωnτGk(iωn) (B.37)

We end up,

〈...〉= 1

β2

∑
n1,n2

G
α1α′1
k1−q

2
,k1+

q
2
(iωn1)G

α2α′2
k2+

q
2
,k2−q

2
(iωn2) (B.38)

− 1

β2

∑
n3,n4

e−iωn3τ eiωn4τG
α1α′2
k2+

q
2
,k1+

q
2
(iωn4)G

α′1,α2

k1−q
2
,k2−q

2
(iωn3)

Therefore,

χ̃λ(q, iω) =
1

V

∫ β

0
dτeiωτ

∑
k1,k2

∑
α1,α′1α2,α′2

γλα1α′1
(k1)γ

λ
α2α′2

(k2)

×
[

1

β2

∑
n3,n4

e−iωn3τ eiωn4τG
α1α

′
2

k2+
q
2
,k1+

q
2
(iωn4)G

α
′
1,α2

k1−q
2
,k2−q

2
(iωn3)

− 1

β2

∑
n1,n2

G
α1α

′
1

k1−q
2
,k1+

q
2
(iωn1)G

α2α
′
2

k2+
q
2
,k2−q

2
(iωn2)

]
(B.39)

The integrals in imaginary time give
∫ β
0 dτ e

iωτ = βδ−ω,0 and
∫ β
0 dτ e

−i(ωn3−ω−ωn4 )τ =

βδωn3 ,ωn4+ω
. We remark that all ωn are fermionic Matsubara frequencies and that ω is a
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bosonic one. TheGreen function for theHamiltonian in a diagonalized form isGαα
′

kk′
(iωn) =

δαα′ δkk′Gk(iωn). Then, the final result is

χ̃λ(q = 0, iω) =
1

V
∑
k

∑
α1,α2

γλα1α2
(k)γλα2α1

(k)
1

β

∑
n

Gk(iωn)Gk(iωn + iω)

− 1

V
∑
k1,k2

∑
α1α2

γα1α1
µ (k1)γ

α2α2
ν (k2)

1

β

∑
n1,n2

Gk1
(iωn1)Gk2

(iωn2)δω,0

(B.40)

We have the following dynamical part

χ̃λ(iω) =
1

V
∑
k

1

β

∑
n

Tr
[
γλ(k)Gk(iωn + iω)γλ(k)Gk(iωn)

]
, (B.41)

that provides the signal at the charge channel. The next step is to compute the trace in

this expression and the sums in Matsubara fermionic frequency. Finally, we perform the

numerical integration over k space in the first Brillouin zone of Simple T-lattice by replacing

the sum into an integral as
1

V
∑
k

→
∫
TBZ

d3k

(2π)3
. (B.42)

B.4 Matsubara sums.

In the correlation functions on eq.(3.27) and (??), after write down the trace for each od

this correlations, we must to perform the Matsubara’s sum over the fermionic frequency

ωn. It can be done analytically, since they are of the kind

S =
1

β

∑
n

Gα(k, iωn + iωm)Gα(k, iωn) (B.43)

Where theGreen’s functions areGα(k, iωn) = 1/(iωn−Eαk ), α is± related to the eigenvalue

E±k . We rewrite the product of these two green functions as

Gα(k, iωn + iωm)Gα
′
(k, iωn) =

1

iωm + Eα
′

k − Eαk
[Gα

′
(k, iωn)−Gα(k, iωn + iωm)] (B.44)

If we place this last expression inside the sum S and have in mind the usual result

[Mahan 2000],
1

β

∑
n

Gα(k, iωn) = nF (Eαk ), (B.45)

in which nF (Eαk ) is the Fermi distribution, with energy E±k . Finally, we get the following

result

S =
1

iωm + Eα
′

k − Eαk
(nF (Eα

′
k )− nF (Eαk )) (B.46)
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